
 

 

 

 

CHAIN DYNAMICS AND LAYERING WITHIN POLYELECTROLYTE 

MULTILAYER FILMS 

 

A Dissertation 

by 

VIKTAR SELIN  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Svetlana A. Sukhishvili 
Committee Members, Jodie Lutkenhaus 
 Yossef Elabd 
 Zhengdong Cheng 
Head of Department, Ibrahim Karaman 

 

December 2018 

 

Major Subject: Materials Science and Engineering 

 

Copyright 2018 Viktar Selin



 

ii 

 

ABSTRACT 

The current study is focused on understanding main factors affecting dynamics of 

polymer chains included within layer-by-layer (LbL) films and impact of chain dynamics 

on film structure. LbL films, or polyelectrolyte multilayers (PEMs), can be deposited on 

a variety of substrates such as silicon, glass, plastics, and metals via alternating adsorption 

of oppositely charged polymers. Modification of surfaces with LbL films impart the 

substrates with new properties and functionalities, such as controlled wettability and 

uptake of water or capability to retain and/or controllably release small molecules. For 

many applications of PEMs, specifically for constructing multifunctional films for 

sequential, multi-step delivery of bioactive compounds, it is critically important to 

understand and control film structure. There are two possible modes of the PEM growth: 

linear growth, with a small, constant increase in the film thickness at each dipping step 

(lPEMs), and non-linear growth, with per-cycle film mass increasing with the number of 

deposited layers (nlPEMs). PEMs can switch between linear and non-linear film growth 

as a function of pH, temperature, or number of deposited layers. My goal was to relate 

polyelectrolyte chain mobility to the mechanism of PEM film growth and to establish the 

origin of transitions between linear and non-linear growth regimes. This goal was 

accomplished in experiments which allowed direct observation of chain displacements 

and PEM structural evolution upon exposure of these films to solutions at varied pH and 

ionic strength. My findings widen the fundamental knowledge about the mechanism of 

LbL growth and can be used for developing theories and modeling of PEM films. 

Moreover, these results can be useful in designing polyelectrolyte nanoassemblies for 
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biomedical applications, such as drug delivery coatings for medical implants or tissue 

engineering matrices. 
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NOMENCLATURE 

AFM Atomic force microscopy 

ATRP Atom transfer radical polymerization 

BPEI Branched polyethylenimnine 

D Diffusion coefficient 

DMA 2-(dimethylamino)ethyl methacrylate 

EBiB Ethyl-2-bromoisobutyrate 

FRAP Fluorescent recovery after photobleaching 

HMTETA 1,1,4,7,10,10-hexamethyltriethylenetetramine 

LbL Layer-by-layer 

lPEM linear polyelectrolyte multilayers 

NR Neutron reflectometry 

PA Polyanion 

PC Polycation 

PDI Polydispersity index 

PDMAEMA Poly(2-(dimethylamino)ethyl methacrylate) 

PE Polyelectrolyte 

PEC Polyelectrolyte complex 

PMAA Poly(methacrlylic) acid 
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1. INTRODUCTION 

1.1. Introduction to Layer-by-Layer Technique 

The layer-by-layer (LbL) technique is a robust method to construct polyelectrolyte 

multilayers (PEM) based upon sequential deposition of interacting components.1 A large 

variety of interactions can be used such as hydrogen-bonding, covalent, host-guest, 

electrostatic interactions, etc. with electrostatic interactions being the most widely 

studied.2 The large variety of interactions that can be used to deposit LbL films provides 

flexibility in the choice of components and, therefore, the ability to preprogram 

functionality of the resulting films (Fig 1-1).  

 

Fig. 1-1. Schematic overview of possible LbL components (A) and possible applications 
(B). Reprinted from [6] with permission from AAAS. 
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Thus, as film constituents, multiple components such as polymers, small 

molecules3, micelles4, 2D materials5 can be used (Fig 1-1A). Using a proper surface 

pretreatment technique allows growing PEMs on the variety of substrates including 

silicon6, titanium7, polymers.8-9 As a result, LbL is a powerful and robust technique that 

may find applications in multiple fields such as gas separation10, sensors11 and drug 

delivery (Fig 1-1B).12 

In a basic experiment (Fig. 1-2) a pretreated substrate is alternatingly exposed to 

working solutions of polyelectrolytes, with rinsing steps in between, until the desired 

number of layers is deposited. There are multiple ways how LbL deposition can be 

performed. In a classical way, also known as dipping deposition, described by Decher13, 

the substrate is alternatively immersed into polymer solutions (Fig. 1-2A). The advantage 

of this implementation is in its ability to use a substrate of arbitrary size and shape. 

However, the deposition process sometimes can be very time-consuming. To speed up the 

deposition process a spin-assisted deposition can be used (Fig. 1-2B). A flat pretreated 

substrate is fixed on the reactionary stage and working solutions are placed on top of the 

substrate alternately. The centrifugal force that is a function of a rotating speed alter the 

structure and properties of resulting PEMs.14 Such a difference was demonstrated with 

free-standing films prepared by dip- and spin-assisted deposition of poly(ethylene oxide) 

and poly(acrylic acid) demonstrated a striking difference in optical properties. 

Furthermore, Seo et al. showed that the opacity of the material made of the dip-assisted 

film is related to the surface roughness while the transparency of the material made of the 

spin-assisted film is attributed to the stratified nature of the film.15  
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One more way to deliver solutions to the surface is to use spraying (Fig. 1-2C). 

Kolasinska et al. reported that PEMs prepared by dipping are thicker, denser, and less 

rough than films assembled by spraying having the same number of layers.16 

 

Fig. 1-2. Schematic representation of LbL process using dipping (A), spin-coating (B) 
and spray-coating (C) techniques. Reprinted from [6] with permission from AAAS. 

1.2. Growth Regimes of LbL Films 

The literature distinguishes two regimes of PEMs growth – namely, linear and non-

linear. The linear regime is dominant and observed for many systems composed of strong 

polyelectrolytes.17-18 On the other hand, multilayers composed of polyelectrolyte pairs 

with weaker binding (such as polypeptides, polysaccharides) are frequently reported to 
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grow non-linearly.19-21 Generally, the literature agrees that interaction strength is the main 

factor that controls growth regime (Fig. 1-3). 

Additionally, the growth regime can be controlled by deposition conditions. For 

example, the growth regime for systems that contain weak polyelectrolytes can be altered 

by pH adjustments. Such adjustments affect ionization degree of polyelectrolytes causing 

charge misbalance and as a result weaker binding and non-linear growth.22-23 Since PEM 

formed by oppositely charged polymer chains are electrostatic by nature, salt is one more 

way to affect intrinsic ion pairing and interaction strength. Salt added upon assembly 

screens the electrostatic charges on the polyelectrolyte chains resulting in a larger 

thickness.24-25 However, a further increment of salt concentration may cause a decrease in 

thickness and even film dissolution.18, 26 Other deposition variables such as temperature,27-

29 polyelectrolyte molecular weight,30-31 and chain architecture32-33 can also be used to 

affect the PEMs growth.  

 

Fig. 1-3. Schematic representation of linear (left) and non-linear (right) growth. 
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1.3. General Introduction 

Assembly of PEM films using the LbL technique has emerged as a powerful means 

to create a variety of coatings and/or functional nanostructured materials useful in 

biomedical, sensing, photovoltaics, separation, and photonic applications.13, 34-37 

LbL technique presents a versatile way to coat the surfaces of a diverse range of 

materials with nanoscopically structured films.38 PEMs have found a number of 

applications, showing particular promise for surface functionalization of biomedical 

devices to control cell adhesion, antibacterial properties and localized delivery of bioactive 

molecules.37,39,40 

Current development of advanced materials for implants, coronary stents, and 

catheters often involves both organic and inorganic components.41-44 Such hybrid 

materials can advantageously combine, for example, the excellent mechanical properties 

and durability of inorganic materials (such as titanium and ceramics) with the capability 

of polymers to self-heal or serve as a platform for drug delivery and control cellular 

proliferation.45 Traditionally, polymers are deposited on surfaces of biomaterials via heat 

molding or solution casting,46-48 but controlling the uniformity, thickness, and 

functionality of the coating using these methods is challenging.49  

In addition to ionically pairs, cooperative interactions that lie at the heart of many LbL 

systems — secondary interactions such as hydrogen bonding, van der Waals forces, and 

hydrophobic interactions — can also play important role in LbL assembly.50-52 The 

cooperative type of intermolecular interactions is quite universal and can be applied to 

metal-protein 53 and hydrogen bonding systems.54 
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Among many external factors that influence assembly and post-assembly behavior 

of LbL films (such as temperature, solvent, and pH, among others), the effect of salt is 

most closely related to the electrostatic nature of ionic pairing within PEM films. Stratified 

lPEMs are built from kinetically frozen polyelectrolyte chains, which are stitched together 

by multiple ionic polymer-polymer associations. Atomic force microscopy (AFM) studies 

of film surface topography55-56 and fluorescence recovery after photobleaching (FRAP)57-

58 studies of the diffusion of assembled PE chains reveals an absence of chain motion and 

rearrangement at low salt concentrations. Addition of salt promotes chain motion as the 

salt ions break “old” polymer-polymer contacts and allow new ones to form. Such mobility 

has been observed as AFM-measured film smoothing,55-56 or as the center-of-mass 

diffusion of assembled polymer chains as demonstrated by FRAP.57-59 Post-assembly 

exposure of PEMs to salt solutions also increases film fuzziness, i.e. the degree of 

interpenetration between individual film layers, as indicated by NR60-62 and neutral impact 

collision ion scattering spectroscopy.63 Yet salt-induced diffusion of PE chains within the 

bulk of PEM films remains poorly understood quantitatively, with the only experimental 

results on salt dependence being an AFM topography study of the film surface.56 

Molecular-level information on the structure and dynamics of LbL films has been derived 

from FRAP and NR experiments,64-67 but these studies did not explore the functional 

dependence of polymer chain dynamics and LbL film structure on salt concentration.  

While multilayer films are closely related to polyelectrolyte complexes (PECs),68-69 the 

layering and anisotropic dynamics of polymer chains70 raise new questions about the 

directional dependence of polymer chain motions. However, even for PECs, the salt 
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dependence of chain dynamics has scarcely been studied, with only one recent report of a 

stretched exponential dependence of the PEC apparent relaxation time on salt 

concentration in a rheological experiment.71 For structured, anisotropic PEM films, 

McAloney et al. observed an exponential dependence of the characteristic time for film 

surface smoothing on salt concentration.56 However, for the bulk of PEM films, such 

dependencies are not reported.  

A decrease in the inter-polyelectrolyte binding strength leads to complete loss of 

film structure and formation of strongly interdiffused, exponentially depositing films.72 In 

contrast to the consistent picture showing the role of polyelectrolyte type (i.e. strength of 

polyelectrolyte “sticky” binding points) and charge density on stratification of LbL 

films,61, 73-74 our understanding of the effect of other fundamental parameters of 

polyelectrolyte chains (such as polyelectrolyte molecular weight) on film structure is still 

in its infancy.62,65   

Depending on the binding strength between the components18, 75, and therefore the 

mobility of polymer chains during LbL film deposition, two main types of film growth 

can be distinguished. Namely, linear LbL growth describes those systems that exhibit a 

constant increment in thickness with deposition of successive bilayers and is usually a 

characteristic of strongly paired polyelectrolytes and/or nanoparticles20, 76. In contrast, 

non-linear films demonstrate an increase in deposited film mass per deposition step, 

reflecting the high mobility of chains during deposition and the resulting penetration of 

the invading component into the film.19, 77-78 Non-linear growth mode has been 

predominantly reported for more weakly bound systems, and can be additionally 
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controlled by several parameters. One of these parameters is polymer molecular weight 

— a parameter that is directly related to mobility of polymer chains within the films.59, 79 

For ionically paired PEMs, the mobility of chains also can be regulated by the introduction 

of small ions.80-81 Moreover, in the case of weak polyelectrolytes, ionization of polymer 

chains, determined by solution pH and assembly conditions, can also affect chain mobility 

and film growth.82-83 

Diffusion of at least one of polyelectrolytes within the film was established as a 

condition necessary to observe exponential film growth, and a model suggesting “in-and-

out” free diffusion of polyelectrolyte chains between film and solution at alternating film 

deposition cycles was developed.19, 72, 84 Diffusion of polyelectrolyte chains being limited 

to a zone close to the film-solution interface was also suggested, and used to explain a 

transition from exponential to linear film growth after a large number of deposition steps.85 

The “in-and-out” model is widely but not universally accepted; some groups propose an 

alternative “dendritic and island” explanation for exponential film growth.86 The only 

existing mathematical model of exponential film growth21 assumes diffusion of 

polyelectrolytes throughout PEMs and consequent film swelling. To assess the validity of 

such assumptions, it is necessary to measure and quantify chain diffusion and layer 

intermixing in nonlinear PEMs. Very recently, another mechanism of exponential growth 

has been proposed by Schlenoff that describes nonlinear deposition as a consequence of 

the diffusion of ionic binding sites rather than mass diffusion of the polymers.87 Overall, 

in spite of an increasing number of experimental reports of nonlinear growth in LbL films, 

the structure and dynamics of these films are still poorly understood. 
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For the use of LbL films as drug-delivery coatings, the overall capacity for loading 

bioactive molecules is especially important, and micron-thick rather than ultrathin films 

are optimal. At the same time, it is desirable to control film stratification to enable 

sequential delivery of multiple functional molecules.88 Addressing this challenge requires 

a detailed understanding of LbL films that grow non-nonlinearly and feature more mass 

deposited in fewer steps compared to films grown linearly.20 

Our goal is to address several unanswered questions regarding chain dynamics 

within polyelectrolyte multilayers assembled at the conditions where linear or non-linear 

film deposition occurs. First, we aim to quantitatively explore functional dependences of 

center-of-mass diffusion of LbL-assembled polyelectrolyte chains on salt concentration in 

directions parallel and perpendicular to the substrate. While diffusion in the direction 

perpendicular to the substrate at various salt concentrations will be determined in neutron 

reflectometry experiments (described in the next chapter), diffusion in the direction 

parallel to the substrate will be compared with the same system in FRAP experiments. In 

addition, our goal is to study the molecular weight dependence of the salt-induced film 

layer intermixing by alternating PMAA chain length. Second, we aim to focus on nlPEMs 

and study the correlation between chain diffusivity, polyelectrolyte deposition time, and 

film internal structure at different stages of film growth for nlPEMs of varying deposition 

history. To achieve that we will systematically monitor nlPEMs growth in a dry state as 

well as in situ by spectroscopic ellipsometry. During these studies, a deposition time of 

films assembly will not be fixed, and we will explore internal structure and polyelectrolyte 

ionization at the stages where PEMs are completely saturated with components. Third, we 
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aim to study the case of the assembly where deposition times were fixed for all layers 

within the film but varied between different films. We will study swelling of LbL films 

constructed using fixed deposition time and explore how the internal film structure affects 

the kinetics of polyelectrolyte chain invasion. Moreover, we aim to explore the effect of 

layer deposition time on film stability in salt solutions. 

  



 

11 

 

2. EXPERIMENTAL PROCEDURES 

2.1. Labeling of PAs 

Labeling of PMAA with Alexa Fluor® 488 was performed in 0.1 M phosphate 

buffer at pH 5 as described elsewhere.89 5 µL (6.34 × 10-4 mmol) of PMAA solution, 1 

mg (5.20 × 10-3 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

and 1.2 mg (5.50 × 10-3 mmol) of N-hydroxysulfosuccinimide sodium salt were mixed in 

0.1 M phosphate buffer at pH 5. The solution was continuously stirred for one hour, 

followed by the addition of 25 µL (4.38 × 10-4 mmol) of Alexa Fluor® 488 dihydrazide 

in 0.1 M phosphate buffer at pH 5. The reaction was allowed to continue overnight. The 

solution was then diluted with 0.1 M phosphate buffer solution at pH 7 and dialyzed 

against 0.01 M phosphate buffer at pH 7 with 0.1 M NaCl for 72 hours, and then against 

Milli-Q water for 48 hours. The molecular weight cutoff of the dialysis cassettes was 5,000 

for PMAA7k and 10,000 for PMAA25k, PMAA105k , PMAA145k and PMAA480k. The dialysis 

was terminated when no fluorescence was detected in the outer dialysis water (measured 

by FCS). 

2.2. Synthesis and Quaternization of PCs 

2.2.1. PDMA synthesis 

Hydrogenated poly(2-(dimethylamino)ethyl methacrylate) (hPDMAEMA) 

homopolymer was synthesized by atom transfer radical polymerization (ATRP) as 

previously described90. In brief, DMAEMA (1.86 g), EBiB, CuBr, and HMTETA were 

mixed in 8 mL of 2-propanol, at a molar ratio of 150:1:1:2, respectively. The solution was 

stirred continuously in an argon atmosphere at room temperature for 12 h. The 
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polymerization was terminated with liquid nitrogen and the solution diluted with THF. 

The copper salts were purified by passage through a basic aluminum oxide column. The 

polymer was precipitated in cold hexane and then dried in a vacuum oven at 25 °C 

overnight. Gel permeation chromatography (GPC) analysis of hPDMAEMA was 

performed in DMF with polystyrene (PS) standards. 

2.2.2. PDMA quaternization 

The Mw and Mw/Mn of the homopolymer were 90 kDa and 1.10, respectively, as 

determined by GPC. Quaternization of hPDMAEMA to obtain a 100% quaternized 

polycation with a molecular weight of 95 kDa, abbreviated here as hQPC, was carried out 

at room temperature. To synthesize hQPC, hPDMAEMA was dissolved in a mixture of 

ethanol/benzene (v:v = 3:1), and a stoichiometric amount of hydrogenated dimethyl sulfate 

was added to the solution. The mixture was stirred at room temperature overnight (Fig. A-

1). The precipitated product was washed with acetone three times and dried under vacuum 

overnight. A similar procedure was carried out to synthesize deuterated quaternized 

polycation (dQPC). To that end, dPDMAEMA was treated with fully deuterated rather 

than hydrogenated methyl sulfate. The degree of quaternization was determined by 1H-

NMR in D2O at pH 9. Briefly, after quaternization with dimethyl sulfate, a new peak at 

3.3–3.4 ppm appeared, reflecting successful quaternization of the dimethylamino proton 

with a methyl group. The absence of a peak C at δ 2.3–2.5 ppm and a peak at δ 4.2–4.4 

ppm, which both correspond to dimethylamino protons in hPDMAEMA, indicates 

complete quaternization of hPDMAEMA homopolymer. 
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2.3. LbL Films Assembly 

LbL films were deposited on silicon wafer substrates (111, Institute of Electronic 

Materials Technology, Poland) by sequential dipping in 0.2 mg/L PMAA and QPC 

solutions in 0.01 M phosphate buffer at pH 4.5 or pH 6.0 for 10 min. Prior to film 

deposition, silicon wafers were cleaned as described elsewhere81 and primed with a 

monolayer of BPEI adsorbed from 0.2 mg/mL solution at pH 9 for 15 min. In between 

polymer deposition steps, the wafers were rinsed twice by immersing in 0.01 M phosphate 

buffer solutions at pH 4.5 or pH 6.0 for 2 min. Film deposition was terminated after 

depositing a desired number of layers. 

2.4. Characterization Methods 

2.4.1. Fluorescence recovery after photobleaching (FRAP) 

The effect of molecular weight on the diffusion coefficient of PMAA* within 

PC/PMAA multilayer films was performed using a homemade FRAP setup with design 

and optics described earlier.23, 70, 89 Briefly, the 488 nm wavelength light beam from a 

Spectra-Physics Stabilite 2017 laser is spatially filtered and expanded three times, 

attenuated 100 times, reflected from a Chroma Q505LP dichroic mirror and illuminates 

the back aperture of an Olympus 60× plan apochromat infinity-corrected oil immersion 

objective with N.A. of 1.45. The fluorescent signal collected from the sample by the same 

objective passes through the dichroic mirror, is reflected from a Thorlabs BB1-E02 

broadband dielectric mirror, and then filtered by a Chroma HQ535/50 narrow band filter 

and a spatial filter with 10 cm focus length and 15 μm pinhole. This provides the effective 

optical system magnification of 37.5×, and allows the sample volume lateral size behind 



14 

the pinhole to be 0.4 μm. The exact value of a bleaching spot radius (0.239 µm) was 

determined experimentally by FCS using calibration solution of Alexa 488 Fluor® with 

the known value of the diffusion coefficient. The FRAP instrument was equipped with a 

programmable computer-controlled shutter in order to control measurements in required 

time intervals.  

QPC/PMAA PEMs were prepared by LbL assembly within home-built glass 

cuvettes. A surface priming layer was prepared by injecting BPEI solution at pH 9 into the 

cells for 15 min, followed by rinsing with Milli-Q water. Alternative depositions of 

polyelectrolytes were controlled at pH 4.5 and room temperature with two 1 min 0.01 M 

phosphate/citrate buffer rinsing cycles between the 15 min polymer deposition steps. 60 μl 

of NaCl solutions were added into glass cells with deposited films and sealed with 

parafilm. Concentration and pH of NaCl solutions within 0.01 M phosphate/citrate buffer 

were adjusted to various values depending on the experiment. A spot in the films was 

bleached for 5 seconds by a focused laser at 1 mW. After the bleaching process, the 

fluorescence intensity of multilayer films in the bleached zone was recorded every 2 - 60 

min (depending on the observed recovery kinetics and a time program) at 1 µW. Since the 

recovering time required for fluorescence intensity of films in all experiments was much 

longer than the bleaching time (≥2 hours vs. 5 seconds), a contribution of molecular 

motion during bleaching to the fluorescence intensity recovery profile was negligible.  

2.4.2. Spectroscopic Ellipsometry 

Thicknesses and optical constants in both dry and swollen states of PEMs were 

characterized by a variable angle spectroscopic ellipsometer (VASE, M-2000 
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UV−visible−NIR (240−1700 nm) J. A. Woollam Co., Inc., Lincoln, NE, USA) equipped 

with a temperature-controlled liquid cell. For measurements in the liquid cell, the cell 

geometry dictated that the angle of incidence be 75°. In all experiments, the temperature 

was set to 25 °C. To avoid effects of absorption in the ultraviolet and near-infrared light 

region by the buffer solution, the working wavelength band was set to 370.5–999 nm. 

Prior to deposition of PEM films, the thickness of the oxide layer on the silicon substrate 

was measured. Dry measurements were carried out at three angles of incidence: 45°, 55°, 

and 65°. 

To fit the ellipsometric data from dry films, a three-layer model was used, in which 

the first two layers represented the silicon substrate and its oxide layer, and the third layer 

represented the PEM film. The polymer layer was treated as a Cauchy material of 

thickness d, having a wavelength-dependent refractive index n(λ) = A + B/λ2 + C/λ3, where 

A, B, and C are fitting coefficients, and λ is the wavelength. The film extinction coefficient 

was assumed to be negligible (k = 0). Thickness d and the three coefficients A, B, and C 

were fitted simultaneously.  

For in situ ellipsometry experiments, a silicon wafer with a pre-deposited film of 

known dry thickness was placed into a liquid cell. The cell was then filled with 0.01 M 

buffer at pH 6.0 and a thickness measurement was taken. The measurements were 

finalized after a constant wet thickness was reached and then by removing the sample from 

the cell, drying with nitrogen flow, and measuring the dry thickness again. To fit the 

ellipsometric data for the in situ measurements, a four-layer model was used. An 

additional layer represents the semi-infinite buffer solution and was also treated as a 
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transparent Cauchy medium, with a wavelength-dependent refractive index nbuf(λ) = Abuf 

+ Bbuf/(λ)2 + Cbuf/(λ)3, where Abuf, Bbuf, and Cbuf are fitting coefficients, and λ is the 

wavelength. For the buffer solutions, Abuf, Bbuf, and Cbuf were determined prior to in situ 

experiments by measuring nbuf(λ) for a bare, clean silicon wafer installed in the liquid cell 

containing 0.01 M phosphate buffer at pH 6.0. After completion of the in situ 

measurements, the dry thicknesses of the films were measured again to assure that the 

thicknesses used in the swelling experiments were consistent with the independently 

measured dry film thicknesses obtained in the film growth experiments. In all experiments, 

the coefficients A, B, C were consistent within 5%. 

2.4.3. Fourier-transform infrared spectroscopy (FTIR) 

To study ionization of PMAA chains within PEM films, PMAA11
4min and 

PMAA11
24min films were deposited onto undoped silicon wafers (University Wafer, Inc., 

Boston, MA, USA) and FTIR spectra were recorded with a Tensor II spectrophotometer 

(Bruker Optic GmbH, Ettlingen, Germany). For each sample, 96 scans were recorded 

between 600 and 4 000 cm−1 with 4 cm−1 resolution with the standard Bruker OPUS/IR 

software (version 7.5), using an interferogram of a bare silicon wafer as a background. To 

obtain and study QPC12
4min and QPC12

24min films, one additional layer of the polycation 

was deposited on top of PMAA11
4min and PMAA11

24min multilayers. 

2.4.4. Neutron reflectometry (NR) 

Samples prepared for NR studies were assembled using two different designs. In 

the first design, used for observing the uptake and penetration of dQPC chains into 

hydrogenated matrices, films were assembled using 8 and 24 min immersions 
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(PMAA11
8min and PMAA7

24min, respectively). Scattering densities (SLDs) for the 

hydrogenated stacks, upon penetration of a deuterated polyelectrolyte from solution, were 

held constant for all annealed samples, in fitting varying only the outermost layer’s 

thickness, interfacial roughnesses, and SLD. In another design, films contained a dPMAA 

block within the middle region of the film, i.e., had QPC8/dPMAA9/QPC14
4min, 

QPC8/dPMAA9/QPC14
8min, QPC4/dPMAA5/QPC10

16min, or QPC4/dPMAA5/QPC8
24min 

architecture. 

NR measurements were performed at the Spallation Neutron Source Liquids 

Reflectometer (SNS-LR) at the Oak Ridge National Laboratory (ORNL). The reflectivity 

data were collected using a sequence of 3.4-Å-wide continuous wavelength bands 

(selected from 2.55 Å < λ < 16.7 Å) and incident angles (ranging over 0.6° < θ < 2.34°). 

The momentum transfer, Q = (4π sinθ/λ), was varied over a range of 0.008 Å−1 < Q < 

0.193 Å−1. Reflectivity curves were assembled by combining seven different wavelength 

and angle data sets together, maintaining a constant relative instrumental resolution of 

δQ/Q = 0.023 by varying the incident-beam apertures. Scattering densities within 

hydrogenated and deuterated stacks were averaged over the 12 constituent bilayers, with 

each stack exhibiting its characteristic thickness, scattering-length density, and interlayer 

roughness. Those characteristic parameters were adjusted until the reflectivity curve was 

best fitted (minimized χ2). 

  



18 

3. DIFFUSIONAL RESPONSE OF LAYER-BY-LAYER ASSEMBLED

POLYELECTROLYTE CHAINS TO SALT ANNEALING1

3.1. Introduction 

Assembly of polyelectrolyte multilayer (PEM) films using the layer-by-layer 

(LbL) technique has emerged as a powerful means to create a variety of coatings and/or 

functional nanostructured materials useful in biomedical, sensing, photovoltaics, 

separation, and photonic applications.13, 34-37 Many applications of LbL assemblies in 

photonics and for multistage drug delivery rely on film stratification. Yet layering of 

sequentially adsorbed polyelectrolytes is diffuse1, 91 because of the propensity of polymer 

chains to increase their conformational entropy, and mixing is further enhanced by chain 

interdiffusion. Studies of the internal structure of LbL films composed of various 

polyelectrolyte types using neutron reflectometry (NR) have revealed correlations 

between the strength and type of polymer-polymer interactions and layer intermixing. 

While strongly ionically paired poly(allylamine hydrochloride)/poly(styrene sulfonate) 

(PSS/PAH) films consistently show the smallest degree of layer interpenetration,1, 66, 73 

weak polyelectrolyte and hydrogen bonded films are much more interdiffused.61, 67 A 

further decrease in the inter-polyelectrolyte binding strength leads to complete loss of film 

structure and formation of strongly interdiffused, exponentially depositing films.72 In 

contrast to the consistent picture showing the role of polyelectrolyte type (i.e. strength of 

1 Reprinted with permission from “Diffusional response of layer-by-layer assembled 
polyelectrolyte chains to salt annealing” by Victor Selin, John F. Ankner, and Svetlana A. 
Sukhishvili, 2015. Macromolecules, 48, 3983–3990, Copyright 2015 by American 
Chemical Society. 
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polyelectrolyte “sticky” binding points) and charge density on stratification of LbL 

films,61, 73-74 our understanding of the effect of other fundamental parameters of 

polyelectrolyte chains (such as polyelectrolyte molecular weight) on film structure is still 

in its infancy.62,65  

Among many external factors that influence assembly and post-assembly behavior 

of LbL films (such as temperature, solvent, and pH, among others), the effect of salt is 

most closely related to the electrostatic nature of ionic pairing within PEM films. Stratified 

LbL films are built from kinetically frozen polyelectrolyte chains, which are stitched 

together by multiple ionic polymer-polymer associations. Atomic force microscopy 

(AFM) studies of film surface topography55-56 and fluorescence recovery after 

photobleaching (FRAP)57-58 studies of the diffusion of assembled PE chains reveals an 

absence of chain motion and rearrangement at low salt concentrations. Addition of salt 

promotes chain motion as the salt ions break “old” polymer-polymer contacts and allow 

new ones to form. Such mobility has been observed as AFM-measured film smoothing,55-

56 or as the center-of-mass diffusion of assembled polymer chains as demonstrated by 

FRAP.57-59 Post-assembly exposure of PEMs to salt solutions also increases film 

fuzziness, i.e. the degree of interpenetration between individual film layers, as indicated 

by NR60-62 and neutral impact collision ion scattering spectroscopy.63 Yet salt-induced 

diffusion of PE chains within the bulk of PEM films remains poorly understood 

quantitatively, with the only experimental results on salt dependence being an AFM 

topography study of the film surface.56 Molecular-level information on the structure and 

dynamics of LbL films has been derived from FRAP and NR experiments,64-67 but these 
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studies did not explore the functional dependence of polymer chain dynamics and LbL 

film structure on salt concentration.  

While multilayer films are closely related to polyelectrolyte complexes (PECs),68-

69 the layering and anisotropic dynamics of polymer chains70 raises new questions about 

the directional dependence of polymer chain motions. However, even for PECs, the salt 

dependence of chain dynamics has scarcely been studied, with only one recent report of a 

stretched exponential dependence of the PEC apparent relaxation time on salt 

concentration in a rheological experiment.71 For structured, anisotropic PEM films, 

McAloney et al. observed an exponential dependence of the characteristic time for film 

surface smoothing on salt concentration.56 However, for the bulk of PEM films, such 

dependencies are not reported. Here, we quantitatively explore functional dependences of 

center-of-mass diffusion of LbL-assembled polyelectrolyte chains on salt concentration in 

directions parallel and perpendicular to the substrate, and an additionally study the 

molecular weight dependency of the salt-induced film layer intermixing. 

3.2. Materials 

Branched polyethylenimine (BPEI) with Mw = 25 kDa and PDI = 2.50 were 

purchased from Aldrich. Hydrogenated PMAA polymethacrylic acid (hPMAA, or 

PMAA) with Mw/Mn 1.02-1.05 with Mw 7 kDa, 35 kDa and 145 kDa, abbreviated as 

PMAA7k, PMAA35k and PMAA145k, as well as deuterated PMAA (dPMAA) with 

molecular weights 5 kDa, 40 kDa and 180 kDa (dPMAA5k, dPMAA40k and dPMAA180k, 

Mw/Mn < 1.1) were purchased from Polymer Source, Inc. Ultrapure Milli-Q water 
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(Millipore) with a resistivity of 18.2 MΩ/cm was used in all experiments. All other 

chemicals were purchased from Aldrich and used without further purification. 

3.3. Effect of Molecular Weight of a Weak PE on Film Deposition, Internal 

Layering and Salt-induced Intermixing 

Fig. 3-1 compares ellipsometry data (Fig. 3-1A, B) on total film thickness and NR 

results (Fig. 3-1C, D) on interfacial intermixing in films constructed using QPC and 

PMAA of different molecular weights. While only hydrogenated polymers were used in 

film deposition for the ellipsometry measurements (panels A and B), films for NR 

measurements were composed of two 10-12-bilayer stacks containing hydrogenated and 

deuterated polyacids, respectively. In all assemblies, QPC of the same molecular weight 

of 35 kDa was used, while the molecular weight of PMAA was varied. QPC/PMAA films 

for ellipsometry measurements were constructed using hPMAA7k, hPMAA35k and 

hPMAA145k, while the film architecture for NR was 

(QPC/hPMAA7k)12/(QPC/dPMAA5k)12, (QPC/hPMAA35k)10/(QPC/dPMAA40k)10, and 

(QPC/hPMAA145k)10/(QPC/dPMAA180k)10, abbreviated below as 12bl-12bl and 10bl-10-

bl two-stack films, respectively. All films were deposited on Si wafers containing a 

BPEI/hPMAA precursor layer. Figs. 3-1A and 3-1B show that the average ellipsometric 

bilayer thickness of dry QPC/PMAA, 5.2± 0.2 nm, was similar for all of the films. In 

contrast, NR measurements of the internal film structure indicate dramatic differences in 

the degree of layer intermixing (Figs. 3-1C and 3-1D). The internal mixing in as-deposited 

films has been characterized by the film interfacial width σint,0, calculated as a Gaussian 

width of the boundary between hydrogenated and deuterated stacks. Note that the 



 

22 

 

Gaussian width is a factor of 2.35 smaller than interfacial widths given as full-width-at-

half-maximum (fwhm) as presented in our earlier reports.59, 61 For the two higher 

molecular weight polymers (dPMAA40k and dPMAA180k), the σint,0 value of 2 nm was 

significantly smaller than the dimensions of unbound PMAA chains, 5.5 and 12 nm for 

dPMAA40k and dPMAA180k, respectively, estimated as 2RG (where RG is the radius of 

Fig. 3-1. The effect of PMAA molecular weight on QPC/PMAA LbL film growth and 
intermixing: (A, B) film growth and the average bilayer thickness of dry films as 
determined by ellipsometry. (C) neutron scattering density profiles for 12bl-12bl 
QPC/PMAA7k, 10bl-10bl QPC/PMAA35k and QPC/PMAA145k two-stack films shown in 
the interfacial region, where distance equal to zero corresponds to the interface between 
hydrogenated and deuterated stacks; and (D) interfacial width between hydrogenated and 
deuterated stacks after film deposition. Reprinted from [114] with permission from 
American Chemical Society. 
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gyration of a Gaussian coil, calculated using the monomer length and the persistence 

length of PMAA chains as 0.255 and 0.3 nm, respectively92). Therefore, long PMAA 

chains are largely constrained within the xy plane during adsorption to the surface, and are 

dramatically flattened due to cooperative binding of PMAA with highly charged QPC. In 

contrast, the internal layers of the shortest polymer PMAA7k are much more diffuse, with 

σint,0 of 7.8 nm (Figs. 3-1C and 3-1D) being 2.5-fold larger than the PMAA7k 2RG of 3 nm. 

Therefore, there is a strong nonlinear dependence of internal chain intermixing on PMAA 

molecular weight. One possible contribution to such dependence might be variations in 

the PEM surface roughness for films assembled using PMAA of different lengths. 

However, the surface roughness was ~5 nm for films assembled with both the shortest 

PMAA7k and the longest PMAA145k (see Supporting Information). While the contribution 

of the film roughness to broadening the internal film interfaces cannot be excluded, layer 

intermixing can also occur when PE chains adsorb within the top layer of the film during 

immersion of substrates in PE-containing 0.01M buffer solutions. Within the outermost 

film layer, chains are more hydrated93-94 and more mobile than within the bulk of the film59 

because of the asymmetric environment at the film-buffer interface. When films are 

exposed to PE solutions for extended periods of time (10 min per layer deposition), 

invading short chains can penetrate significant depths into neighboring layers. In our 

previous work, we studied the effect of PMAA molecular weight on the lateral diffusion 

of PMAA chains assembled within the bulk of a film consisting of another polycation 

(non-quaternized PDMAEMA), and found that the characteristic diffusion time scales 

linearly with molecular weight.59 Here, NR data on PMAA interdiffusion in the direction 
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perpendicular to the substrate suggest a different type of behavior, with much higher 

mobility of short PMAA7k chains. If one assumes that layer intermixing occurs only during 

a single deposition cycle when PMAA7k was included within the top bilayer (total 

deposition time of 30 min, including rinsing steps), and that the interfacial broadening 

follows a simple Fickian diffusion law, then the diffusion coefficient in the direction 

perpendicular to the substrate, D⊥, can be calculated from the equation σint,0
2=2D⊥ t.62 Such 

a calculation is an extreme oversimplification of the complex diffusion process in layered 

films, and gives only a rough estimate of the upper bound of diffusional chain intermixing 

during film buildup. The estimate gave a value of 2x10-16 cm2/s, which is about two orders 

of magnitude larger than the deposition-induced interdiffusion coefficient of longer (Mw 

80 kDa) polystyrene sulfonate chains assembled with a long polycation in low-salt 

conditions. This difference can be accounted for by both weaker PMAA/QPC ionic pairing 

and by the lower molecular weight of the polyanion used in our work.  
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We next aim to explore whether a similarly strong effect of the PMAA chain length 

on film intermixing is exhibited during post-assembly annealing of LbL films in salt 

solutions. Fig. 3-2 illustrates the impact of salt annealing in 0.4 M NaCl on the internal 

structure of 12bl-12bl films assembled using PMAA of different molecular weights. The 

Fig. 3-2. The effect of annealing in 0.4 M NaCl solutions on the internal structure of 
PEMs. Neutron reflectivity data (left - plotted as RQ4 to enhance small features) and 
corresponding scattering length density profiles (right) for dry12bl-12bl QPC/PMAA7k 
and 10bl-10bl QPC/PMAA35k and QPC/PMAA145k films before and after annealing in 0.4 
M NaCl at pH 4.5. Reprinted from [114] with permission from American Chemical 
Society. 
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neutron scattering length density profiles in Fig. 3-2 indicate much stronger salt-induced 

layer intermixing in samples constructed using the shortest molecular weight of PMAA, 

PMAA7k, and a dramatically smaller change in interfacial width for films assembled with 

longer PMAA chains. The change in internal interfacial width for the 7k data, our diffusion 

marker, is seen via a change in the modulation of the intensity of the total-film-thickness 

fringes. A 3-5% increase in the overall thickness of PMAA35k- and PMAA145k-containing 

films is likely due to inclusion of hydrated salt ions within the film. Such an increase 

comprised <1% of the film thickness for PMAA7k-containing films, probably due to 

shorter exposure of these films to 45%-humidity ambient air prior to NR measurements 

(2-4 hours after drying with nitrogen gas vs. several days for films with longer PMAA). 

Since LbL films become glassy when dried,95 slight variations in film hydration after 

drying did not affect the chain mobility measurements, which were triggered by exposure 

to salt solutions. 

Because of the extremely small broadening (≤ 3 Å, i.e. much smaller than chain 

dimensions) of the interfacial width in QPC/PMAA35k and QPC/PMAA145k films after 10-

hr annealing in 0.4 M NaCl, we did not proceed with further annealing of these samples, 

and estimated only an upper-bound value of D⊥ for dPMAA chain diffusion in these films. 

The estimated diffusion coefficients were extremely low, ~2x10-19 cm2/s and ~1x10-

19 cm2/s for QPC/PMAA35k and QPC/PMAA145k films, respectively. An extremely 

sluggish salt-induced layer intermixing of polyelectrolytes in LbL films was also observed 

by Schlenoff and co-workers60 and Helm and co-workers.62 An increase in salt 

concentration was an obvious possibility to observe faster intermixing in QPC/PMAA35k 
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and QPC/PMAA145k films, but in this study we were especially interested in PEM films 

which contained fast-diffusing short PMAA7k chains, which fall apart in solutions with 

salt concentrations higher than 0.5 M NaCl.  

 

Fig. 3-3. NR data on time evolution of the square of the internal interfacial width (A) and 
the corresponding diffusion coefficients (B) for perpendicular-to-the substrate diffusion 
of PMAA chains of different molecular weights assembled within stacked multilayer films 
of the same architecture as in Fig. 3-2 during film annealing in 0.4 M NaCl at pH 4.5. 
Reprinted from [114] with permission from American Chemical Society. 

The faster intermixing QPC/PMAA7k system allowed us to perform systematic 

measurements of the diffusional broadening its internal structure. Fig. 3-3 summarizes 

these results (A, B), and compares them with the layer intermixing rates in films 

containing longer PMAA chains (B, C). The dependence of σint
2 on time becomes 

nonlinear at long annealing times, probably due to thinning of the PEM supply stacks and 

consequent deviation of the diffusion conditions from the infinite reservoir model. From 

the initial slope of the σint
2 – t for annealing times ≤ 0.5 hour, a diffusion coefficient of 

~1x10-16 cm2/s was calculated for QPC/PMAA7k. This value is about 3 orders of 

magnitude larger than those found in the QPC/PMAA35k and QPC/PMAA145k systems. 
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Surprisingly, while for the two longer PMAAs (PMAA35k and PMAA145k) the 

perpendicular-to-the-substrate diffusion coefficient D⊥ is very weakly dependent on the 

PMAA molecular weight, as shown in Fig. 3-3. Such a difference might be due to 

significant barriers to out-of-plane chain motions due to chain flattening and stretching of 

long PE chains upon adsorption, which must be overcome upon salt annealing. Salt should 

break cooperative polymer-polymer ionic pairs and transform laterally stretched long PE 

chains into more relaxed 3D conformations prior to inducing their significant center of 

mass diffusion. In contrast, shorter PMAA7k chains are much more mobile and form highly 

interdiffused layers even before annealing in salt. More interdiffused layer boundaries 

within initially deposited QPC/PMAA7k films enable faster layer intermixing upon 

annealing the films in salt solutions. 

3.4. Effect of Salt Concentration on Diffusion of LbL-assembled PMAA7k 

Polymer Chains 

We next quantitatively explore the dependence of layer intermixing on the 

concentration of small ions. To that end, 12bl-12bl QPC/PMAA7k films were annealed for 

different time intervals in NaCl solutions with concentrations between 0.1 and 0.4 M 

NaCl. At concentrations lower than 0.1 M NaCl, the time required to observe significant 

layer intermixing was prohibitively long. In solutions with NaCl concentrations 0.5 M and 

higher, films quickly decomposed. Fig. 3-4 illustrates changes in layer intermixing during 

prolonged annealing of the films in salt solutions. Neutron reflectivity data together with 

the neutron scattering density profiles for different times of film annealing in 0.4M NaCl 

solution are given in Supporting Information and summarized in Fig. A-1.At times longer 
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than 0.5 h for annealing in 0.4M NaCl, and longer than 6-h exposure to 0.1 M NaCl 

solutions, diffusion eventually occurred over distances larger that the size of the 

unperturbed polymer (2RG for PMAA7k of 3 nm). Diffusion kinetics initially followed a 

linear dependence σint
2 vs. t (Fig. 3-4A), but slowed down at longer annealing times. 

Deviations from a single-slope behavior in the dependence of σint
2 on annealing time have 

been recently reported for PEM multilayers by Soltwedel et al.,62 and explained by 

depletion of the supply of macromolecules in the reservoir stacks at long annealing times. 

Although in this work the supply regions of the film in hydrogenated and deuterated stacks 

were still partially preserved even after 10-hour film annealing in NaCl solutions of the 

highest concentration of 0.4 M (Fig. 3-4A), it is possible that gradual depletion of the 

supply of diffusing molecules within polymer stacks causes deviations from a simple 

infinite reservoir diffusion model as film layers become significantly interdiffused at long 

exposure times. In addition, re-establishment of entanglements of QPC chains in more 

interdiffused films may also contribute to long-time nonlinearity in Fig. 3-4A. 

Fig. 3-4B shows the ionic strength dependence of the diffusion coefficients for 

layer intermixing, D⊥, calculated from the initial slopes of σint
2 vs. t on salt concentration 

as D⊥ = σint
2/2t. Diffusion accelerated nearly an order of magnitude in response to a 4-fold 

increase in NaCl concentration (Fig. 3-4B). Among various possible functional 

dependences (power law60, exponential96 or stretched exponential71), the best fit for the 

data was an exponential function D⊥ ∝ 𝑒𝑒𝑏𝑏[𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁], were b is the slope of the semi-logarithmic 

plot (Fig. 3-4B).  
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Fig. 3-4. The effect of salt concentration on time evolution of interfacial width (A) and 
diffusion coefficients (B) during annealing of 12bl-12bl QPC/PMAA7k films in salt 
solutions. The inset in panel A shows short-time linear regions of σint

2 vs. t dependences. 
Reprinted from [114] with permission from American Chemical Society. 

To explore whether a similar dependence on salt concentration holds for PMAA 

chain diffusion in the direction parallel to the substrate, we have performed FRAP 

measurements. For these experiments, PEM films were constructed that contained 

PMAA7k with covalently attached Alexa-488 label (PMAA7k*) molecules as a marker 

layer. Fluorescent PMAA7k* was assembled within the center of the bulk of the film to 

avoid effects at the substrate or PEM/water interfaces.70 After bleaching a spot using a 

focused high-power laser beam, fluorescence recovered to ∼80% of the original value 

when exposed to salt solutions. Following the assumption that diffusion of polymer chains 

obeys a Gaussian distribution of chain displacement probability, lateral diffusion 

coefficients of LbL-assembled PMAA* were calculated as D//=γR2/4t1/2 (where the beam 

shape factor γ is 1.4 for the chosen bleaching depth, and R = 0.24 μm is the radius of the 

bleaching spot). The data again revealed an intuitive result that diffusion speeds up with 
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an increase in salt concentration, as is illustrated by representative recovery curves in Fig. 

4-5A. Specifically, the characteristic recovery half-time (calculated as the time required 

for recovery of 50% of bleached fluorescence intensity, when the recovery curves were 

fitted as y=y0+Aext, (where y is normalized fluorescence intensity, y0=0.2 is fluorescent 

intensity just after bleaching, t – time, and A and x - fitting parameters) was 43 and 6 min 

for 0.1 M and 0.4M NaCl solutions, respectively. Although the data could be satisfactorily 

fitted with a single exponential function, suggesting that within our experimental error 

there was only a single population of mobile PMAA* chains within the LbL films, 

fluorescence intensity consistently recovered to ~ 80%, independent of the solution ionic 

strength, indicating that a fraction of the PMAA* chains remained immobile. Control 

experiments (Fig. A-2) indicate that a change in the bleaching degree to 0.1, achieved by 

an increase in bleaching time, did not affect the plateau value of recovered fluorescence, 

suggesting that film photo-crosslinking probably has did not occur in experiments reported 

in Fig. 3-4. For each ionic strength, recovery curves were measured repeatedly at different 

points within the same multilayer films and with different samples (new cells, new 

QPC/PMAA films), and the data averaged over five bleaching experiments were used to 

calculate D// shown in Fig. 3-5B. Absolute values of D// in Fig. 3-5B are higher than those 

we previously reported in a similar multilayer system, which however contained non-

quaternized PC rather than a quaternized polycation QPC.59 For example, the D// of 

8.3±0.2×10-14 cm2s-1 reported for PC/PMAA7k films exposed to 0.4 M NaCl solutions59 is 

~6-fold lower than the 5.1±0.2×10-13 cm2s-1 measured in this work for QPC/PMAA7k 

films. The faster diffusion found in this work can be explained by sterically weakened 
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ionic pairing between the polycation and PMAA after quaternization of polycation units. 

In our previous study, such an effect accounted for a two-fold difference in PMAA110k* 

mobility assembled within similar LbL films.70  

 

Fig. 3-5. Lateral diffusion of PMAA7k* chains assembled within 
(QPC/PMAA7k)3/(QPC/PMAA7k*)/(QPC/PMAA7k)3 films in NaCl solutions of different 
concentrations: FRAP recovery curves (A) and dependence of D// on ionic strength (B). 
Reprinted from [114] with permission from American Chemical Society. 

Fig. 3-5B illustrates that the data on the ionic strength dependence of D// gave a 

straight line when plotted semi-logarithmically, suggesting an exponential dependence of 

lateral diffusion on salt concentration. Interestingly, a similarly simple exponential 

dependence on salt concentration has been reported for a very different system, in which 

chain mobility was inferred not from a direct measurement of center-of-mass molecular 

diffusion as done in this work, but from measurements of film topography, i.e. time 

evolution of surface roughness in salt solutions as studied by atomic force microscopy.56 

Annealing poly(diallyldimethylammonium chloride) (PDADMAC)/PSS films in salt 

solutions revealed that the half-life of the film morphology t0.5 scaled as t0.5 ~ exp(-
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csalt/c0),56 where csalt is the concentration of NaCl in annealing solutions, and c0 is 

concentration of polyelectrolyte repeating units in the assembled LbL films. This model 

is based on a probabilistic approach of finding an ion within the film, and suggests that 

salt ions enable breaking of old and formation of new polymer-polymer contacts, therefore 

facilitating morphology changes.56 

Another approach also suggests that the breaking of inter-polyelectrolyte contacts 

by salt ions is central to the rearrangement and reorganization of bound polyelectrolyte 

chains, but considers this as an activated process governed by a free energy barrier related 

to the separation of ionic groups within polymer-polymer contacts and surrounding them 

with monovalent ions. If one assumes that separated ionic groups behave independently, 

then interactions between these ions via a screened electrostatic potential leads to a square 

root dependence of the activation barrier on salt concentration, and the resulting stretched 

exponential dependence of the relaxation time on salt concentration.71 Such a dependence 

has been recently proposed by Spruijt et al. to describe the relaxation dynamics of 

electrostatically assembled polyelectrolyte complexes in rheological experiments.71 Our 

data in Fig. 3-5A did not give a satisfactory fit to this model, however. 

A different, more common line of argument considers that counterions are 

thermodynamically bound, or condensed on polyelectrolyte chains with a high linear 

charge density,97 and therefore small ions cannot be considered “free” after disruption of 

polymer-polymer ionic pairs. Release of condensed counterions upon polyelectrolyte 

assembly, therefore, presents a significant entropic contribution to the free energy of 

polyelectrolyte binding. This approach, developed by Record et al.98-99 to describe the 
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binding of biomolecules, has become a powerful tool to study a variety of biomolecular 

assembly events.100-101 Similar physics drives the association of polyelectrolyte complexes 

composed of synthetic polymers.102-103 For the case of layered polyelectrolyte complexes, 

i.e. PEM films, an approach based on consideration of ionic equilibrium upon inclusion 

of ions within LbL films was developed by Schlenoff and co-workers.55, 60 The model 

considers that diffusion occurs through the motion of polyelectrolyte segments of several 

charged units, and that several polymer-polymer ionic pairs must break simultaneously 

before a segment moves. This line of argument leads to a power law dependence of the 

polyelectrolyte chain characteristic time and diffusion coefficient on salt concentration D 

~ D0[NaCl]λ, where D0 is the bulk diffusion coefficient, and λ is the length of a diffusing 

segment, proportional to the number of adjacent charged moving polyelectrolyte units.60 

For PDADMAC/PSS LbL films, a λ of 4 units has been predicted. Although the fit of our 

experimental data to this model gave a low value of R2=0.93 (data not shown), D0 for 

vertical and lateral diffusion D⊥0 and D//0 of 2.54×10-16 cm2/s and 3.50×10-12 cm2/s, 

respectively, could be estimated. The estimated value of bulk diffusion coefficient for D⊥0 

is comparable to the 7.1 x 10-17 cm2/s value reported by Schlenoff, with an expected 

deviation because of the different polyelectrolytes used for LbL film construction. 

The fact that our data could be best fitted by an exponential (D⊥= 1.6×10-

17e1.87[NaCl] cm2/s and D// = 4.0×10-14e2.56[NaCl] cm2/s ) rather than a power law function is 

somewhat surprising, as it is the power law model that takes into account ion condensation, 

polymer chain rigidity and cooperativity in inter-polyelectrolyte binding. There are many 

contributions, however, that this model does not consider, including the release of water 
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molecules (changes in multilayer hydration), any non-electrostatic contribution to 

segmental binding, and changes in the film dielectric environment at different levels of 

“doping” of LbL films with salt ions. Non-electrostatic contributions to the free energy of 

binding ∆G can be taken into account, for example, by an additional term which depends 

linearly rather than logarithmically on salt concentration Csalt: ∆G = a + blnCsalt + mCsalt, 

where a is a fitting parameter, and b and m describe the magnitude of electrostatic and 

non-electrostatic interactions.101 At the same time, the dielectric environment within LbL 

films (dielectric constants of 30 and <19 were reported for PAH/PSS) and 

PDADMAC/PSS films, respectively104) changes with the “doping” with salt. This latter 

effect depends on the relative hydration of multilayers and invading small ions, and varies 

with counterion type and concentration.105 If the hydration of LbL films increases at higher 

concentrations of small ions, then electrostatic interactions within the film weaken, 

allowing for more efficient salt inclusion. All of these effects might lead to deviations 

from the predicted power law dependence of the diffusion coefficient, and even the 

occurrence of the seemingly simple exponential scaling observed in this work. 

 

Fig. 3-6. Schematic representation of the main findings in the current chapter.   



 

36 

 

4. NONLINEAR LAYER-BY-LAYER FILMS: EFFECTS OF CHAIN 

DIFFUSIVITY ON FILM STRUCTURE AND SWELLING2 

4.1. Introduction 

The layer-by-layer (LbL) technique presents a versatile way to coat the surfaces of 

a diverse range of materials with nanoscopically structured films.38 LbL-deposited 

polyelectrolyte multilayers (PEMs) have found a number of applications, showing 

particular promise for surface functionalization of biomedical devices to control cell 

adhesion, antibacterial properties and localized delivery of bioactive molecules.37,39,40 For 

the use of LbL films as drug-delivery coatings, the overall capacity for loading bioactive 

molecules is especially important, and micron-thick rather than ultrathin films are optimal. 

At the same time, it is desirable to control film stratification to enable sequential delivery 

of multiple functional molecules.88 Addressing this challenge requires detailed 

understanding of LbL films that grow non-nonlinearly and feature more mass deposited 

in fewer steps compared to films grown linearly.20 The designation of PEMs as either 

linear or nonlinear (lPEMs and nlPEMs, respectively) refers to the shape of their growth 

curves, wherein total film thickness is plotted vs. deposition time or number of deposition 

steps. The rate of deposition and whether it increases with time is determined by the 

strength of binding between polyelectrolyte components.18, 75 Linear film growth is typical 

for strongly bound polyelectrolytes, and exhibits a constant increment in mass increase 

                                                 

2 Reprinted with permission from “Nonlinear layer-by-layer films: effects of chain 
diffusivity on film structure and swelling” by Victor Selin, John F. Ankner, and Svetlana 
A. Sukhishvili, 2017. Macromolecules, 50, 6192–6201, Copyright 2017 by American 
Chemical Society. 
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per deposition step and fast saturation of mass at each deposition step. In contrast, 

accelerated, non-linear (also often called “exponential”) film growth is mostly observed 

for systems with weak binding between polyelectrolyte chains.19, 77-78 Thicker films are 

formed as mobile polymer chains do not just bind at the film surface, but penetrate deeper 

within films.84, 106 Recently, differing growth kinetics for linear and nonlinear films was 

reported for a clay-containing system, with a strong increase in film thickness with 

deposition time observed for weakly bound polymer/clay pairs, and film thickness being 

almost independent of deposition time for strongly interacting polymer-clay pairs.107 

Chain mobility and film growth modes are dependent on polyelectrolyte type and chain 

rigidity, 108 and can be modulated by concentration and type of salt,109,58, 110-111 

temperature,112-113 or solution pH. 22-23  

Films which grow nonlinearly (exponentially) were first seen in pairs of weakly 

associating biological polyelectrolytes. 19-20, 84, 106 Diffusion of at least one of 

polyelectrolytes within the film was established as a condition necessary to observe 

exponential film growth, and a model suggesting “in-and-out” free diffusion of 

polyelectrolyte chains between film and solution at alternating film deposition cycles was 

developed.19, 84, 106 Diffusion of polyelectrolyte chains being limited to a zone close to the 

film-solution interface was also suggested, and used to explain a transition from 

exponential to linear film growth after a large number of deposition steps.85 The “in-and-

out” model is widely but not universally accepted; some groups propose an alternative 

“dendritic and island” explanation for exponential film growth.86 Overall, in spite of an 

increasing number of experimental reports of nonlinear growth in LbL films, the structure 
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and dynamics of these films are still poorly understood. The only existing mathematical 

model of exponential film growth21 assumes diffusion of polyelectrolytes throughout 

PEMs and consequent film swelling. To assess the validity of such assumptions, it is 

necessary to measure and quantify chain diffusion and layer intermixing in nonlinear 

PEMs.  

In recent studies, we used neutron reflectometry to study the effect of ionic strength and 

film deposition techniques on the diffusivity of polyelectrolyte chains within linear 

PEMs.14, 114 In this work, we focus on nlPEMs and study the correlation between chain 

diffusivity, polyelectrolyte deposition time and film internal structure at different stages 

of film growth for films of varying deposition history. 

4.2. Materials 

Branched polyethyleneimine (BPEI) with Mw=25 kDa and Mw/Mn = 2.50 was 

purchased from Aldrich. Hydrogenated polymethacrylic acid (hPMAA, or PMAA) with 

Mw 180 kDa and Mw/Mn=1.02 was purchased from Polymer Standard Services (PSS) 

GmbH, Germany. Deuterated poly(2-(dimethylamino)ethyl methacrylate) (dPDMAEMA, 

d15) with Mw 90 kDa and Mw/Mn 1.8, as well as deuterated PMAA (dPMAA) with 

molecular weight 180 kDa and Mw/Mn < 1.1 were purchased from Polymer Source, Inc. 

Hydrogenated 2-(dimethylamino)ethyl methacrylate monomer (DMAEMA), ethyl 2-

bromoisobutyrate (EBiB), CuBr and 1,1,4,7,10,10-hexamethyltriethylenetetramine 

(HMTETA), hydrogenated and fully deuterated methyl sulfate (d6), as well as all solvents 

were purchased from Sigma-Aldrich. Ultrapure Milli-Q water (Millipore) with a 
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resistivity of 18.2 MΩ/cm was used in all experiments. All other chemicals were 

purchased from Aldrich and used without further purification. 

4.3. Film Growth, Swelling and Polyelectrolyte Ionization 

Fig. 4-1 illustrates the effect of the deposition time on the growth of PMAA/QPC 

films. Fig. 4-1A shows that the amount of material assembled within multilayer films 

increases with the deposition time, and switches from being constant per deposition cycle 

 

Fig. 4-1. (A) Thickness of dry PMAA/QPC films constructed using 0.1 mg/ml polymer 
solutions in 0.01 M phosphate buffer at pH 6 and 4, 8 or 24 min per-layer deposition times 
(squares, circles, and triangles, respectively). (B) Thicknesses of the dry PMAA/QPC film 
when the amount of polymer deposited was allowed to saturate at each deposition step. 
The inset presents an enlarged view of deposition within the first four layers. (C) The 
kinetics of QPC uptake by 1-, 3-, 5- and 7-layer films containing PMAA as the top layer 
(2nd, 4th, 6th and 8th layer deposition steps). Reprinted from [133] with permission from 
American Chemical Society. 

to being thickness-dependent when layer deposition time increases from 4 and 24 minutes. 

This effect is strong and results in a 5-fold difference in film thickness after ten deposition 

cycles using 4 or 24 minutes per layer. Qualitatively, this result is similar to observations 

by Schlenoff and co-workers, which were made for a different polyelectrolyte system 

studied at high salt concentrations,81 where an almost two-fold increase in film thickness 



 

40 

 

was reported when the polyelectrolyte deposition time increased from 8 to 20 min. Fig. 4-

1B shows the growth of the film when the deposition time per layer was not fixed, but 

instead the mass of the deposited polymers was allowed to equilibrate and reach a plateau 

value at each deposition step. Twice as much QPC as PMAA was deposited, in agreement 

with the higher molecular weight of the QPC repeat units compared to PMAA (150 and 

72 g/mol, respectively). 

Importantly, both the masses of PMAA and QPC deposited at each film growth 

step and the kinetics of polyelectrolyte uptake were strikingly different between the first 

several layers and subsequent film deposition steps (Fig. 4-1B). The small mass deposited 

within the first layers (2-4 mg/m2, calculated assuming a density of dry LbL films of 

1 g/cm3) is consistent with a monolayer coverage, indicating binding of polyelectrolytes 

only in the outermost film region. In contrast, during adsorption of the film’s 8th layer, 

QPC mass uptake was as large as ~160 mg/m2, suggesting deposition of QPC within the 

interior of the film. Deposition of polyelectrolytes at the film surface or within the interior 

was kinetically distinct (Fig. 4-1B and C). While adsorption of polyelectrolytes within the 

first and second layers (PMAA and QPC, respectively) saturated within the first 2 minutes, 

equilibration of the QPC mass deposited within the 8th layer of the film with an initial 

thickness of 120 nm continued for as long as 150 min. Rapid binding of polyelectrolytes 

within the first layers was limited by the diffusion flux from solution and persisted as the 

mode of polyelectrolyte adsorption till the 4th layer (Fig. 4-1C). A similar trend was 

observed for uptake of PMAA (Fig. B-2). For films with a larger number of layers, fast 

polyelectrolyte binding and saturation at the film’s surface was followed by the slow 



 

41 

 

diffusion of a large amount of material within the film interior. Fig. 1C highlights these 

differences by showing the kinetics of QPC uptake by the film plotted as a function of the 

normalized polymer mass uptake, q versus √𝑡𝑡 , where q is a normalized mass uptake, 

calculated from the dry film thickness as (lt – l0)/(l∞ − l0), where l0, lt, l∞ – initial, effective 

(at time t) and equilibrated thicknesses of the dry films, and t denotes the exposure time.115 

The maximum film thickness at which polyelectrolytes adsorbed at the film surface rather 

than penetrating into the interior (corresponding to a three-layer film, Figs. 4-1B and C) 

was about 8 nm. After subtraction of the thickness of the precursor BPEI layer of 1.5 nm, 

the remaining 6.5 nm can be taken as an estimate of a dense, near-substrate zone in which 

chains are immobilized as a result of adsorption and pinning to a solid surface and hence 

are inhibited from rearranging and allowing penetration of newly binding chains. 

While the data in Fig. 4-1 are presented for dry films, dynamic interpolymer 

binding and uptake of polyelectrolytes within the film bulk are expected to cause 

significant film swelling. Fig. 4-2A shows changes in the degree of swelling as 

PMAA/QPC film was built up when saturated with polyelectrolytes at each deposition 

step. The swelling ratio was determined as the ratio of wet film thickness, measured by in 

situ ellipsometry in the presence of buffer above the growing film, to the thickness of the 

dry films. For measurements of wet film thicknesses, polyelectrolyte solutions were 

replaced with a buffer at desired time points in order to inhibit the uptake of 

polyelectrolytes within the film and avoid the interference of an increased refractive index 

of the backing solutions. For measurements of dry film thicknesses, films were taken out 



 

42 

 

of the polyelectrolyte solutions, repeatedly rinsed with 0.01 M phosphate buffer. 

 

Fig. 4-2. (A) The swelling ratio of a PMAA/QPC film monitored during deposition of the 
first 8 layers. Red circles and black squares correspond to exposure of the film to QPC 
and PMAA solutions, respectively. (B) In situ thicknesses of PMAA/QPC film when 
deposited polymer amounts were allowed to saturate at each deposition step. (C) qH/2 
versus t1/2 dependence plotted for the construction of 4th, 6th and 8th layers of the 
PMAA/QPC film. Reprinted from [133] with permission from American Chemical 
Society. 

The swelling data correlate well with the uptake of polyelectrolytes within the films. While 

films composed of up to three polyelectrolyte layers contained less than 100% of water 

(calculated by deriving water fraction from the swelling thickness, assuming a constant 

density), consecutive film construction steps caused a dramatically larger uptake of water, 

and the swelling ratio oscillated between the limiting values of 3.8 and 2.4 for deposition 

of QPC and PMAA, respectively. Based on these ratios, nlPEMs swell much more than 

linear PEMs, whose water content is usually about 40-60%.116-118 Fig. 4-2B shows in situ 

thicknesses during PMAA/QPC film growth, and the inset in Fig. 4-2B − the correlation 

between the polyelectrolyte mass deposited and film swelling. Note that the data for film 

swelling as a function of QPC deposited within the 6th and 8th deposition cycles collapses 

onto almost the same curve when plotted as a function of the relative amount of QPC 
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bound to the film (the ratio of the mass of QPC to the initial mass of the film at the 

beginning of polycation deposition), again suggesting penetration of QPC throughout the 

entire film. The uptake of QPC (which carries permanent charge) results in a strong 

increase in film swelling, caused by the excess charge brought in by QPC charged loops, 

i.e. QPC units that do not participate in formation of ionic pairs with PMAA. The addition 

of a weak polyelectrolyte ‒ PMAA ‒ on the contrary, resulted in film de-swelling as charge 

in the PMAA loops was suppressed as larger amounts of the polyacid accommodated 

within the film.119 As polyelectrolytes were allowed enough time to diffuse through the 

entire film, the limiting swelling ratios oscillated between those characteristic of QPC and 

of PMAA, depending on which was being added.  

To quantitatively assess diffusion of the polyelectrolyte with a permanent charge, 

QPC, within the film, we used a Fickian diffusion model. The diffusion coefficients for 

QPC chains can be determined from the slopes of the initial linear region of qH/2 plotted 

against square root of time (Fig. 4-2C) following the equation 
2 2

4
q HDt = , where D is the 

diffusion coefficient, q is the normalized mass uptake, calculated from measurements of 

dry film thicknesses as (lt – l0)/(l∞ − l0), where l0, lt, l∞ – initial, effective (at time t) and 

equilibrium thicknesses of dry films, t – exposure time to a polyelectrolyte solution, and 

H − film thickness at time t. In this simplistic model, the choice of film thickness presents 

the biggest uncertainty.120 We have chosen H to be the wet film thickness as measured 

with spectroscopic ellipsometry. The value of H increases with time with the uptake of 

polymer chains. While a reliable determination of the diffusion constant was not feasible 
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based on our data when chains diffused in solution and bound to the film surface (the 

deposition of the 2nd layer), diffusion coefficients determined from the slopes in Fig. 4-2C 

for layer numbers 4, 6 and 8 reflected penetration of QPC chains into the multilayer film. 

The diffusion coefficients for transport of QPC chains within the film were 1.3±0.5×10-13 

cm2/s, 1.7±0.8×10-12 cm2/s and 5.4±1.2×10-12 cm2/s for deposition of the 4th, 6th and 8th 

layers, respectively, i.e. values of D increased with a lower rate as the films grew thicker, 

indicating ‘fading’ memory of the attachment to the hard substrate. These values are five 

orders of magnitude smaller than those found for diffusion of free polyelectrolyte chains 

of similar molecular weight in solution23, 89, and similar to those observed for the mobility 

of QPC chains within linearly deposited LbL films in the presence of high concentrations 

of salts.120  

As for the mechanism of polyelectrolyte diffusion, it is likely that QPC diffuses 

within the films while remaining bound to PMAA chains rather than in its “free” state 

(diffusion of “free” polyelectrolyte chains was earlier found in a different LbL system 

composed of natural macromolecules and/or synthetic polypeptides121). In the 

PMAA/QPC system, while chains remain bound to the film matrix during polymer uptake 

from solution, propagation of the invading chains within the bulk of the film is likely to 

occur though the exchange of polyelectrolyte ‘sticky’ binding points in the electrostatic 

network. The large number of invading QPC chains diffusing within the film introduce a 

large charge excess that is accommodated by loops of polymer chains bound within a 

network of electrostatically associated chains. The multilayer is reminiscent of surface-

immobilized non-stoichiometric polyelectrolyte complexes, which are significantly 
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swollen by excess charge accumulated in polymer loops and the osmotic pressure 

originating from the inclusion of charge-compensating small counter-ions. 

Fig. 4-3. FTIR spectra of dry PMAA/QPC films containing either QPC (A, 10-layer film) 
or PMAA (B, 11-layer film) as and outermost layer. The data illustrate reduced ionization 
of PMAA in the films containing PMAA as the outermost layer. Reprinted with 
permission from “Nonlinear layer-by-layer films: effects of chain diffusivity on film 
structure and swelling” by Victor Selin, John F. Ankner, and Svetlana A. Sukhishvili, 
2017. Macromolecules, 50, 6192–6201, Copyright 2017 by American Chemical Society. 

As shown in Fig. 4-2, binding a weak polyelectrolyte (PMAA) rather than QPC 

has an opposite effect on film swelling, i.e. the film deswelled as more polyelectrolyte was 

bound. We hypothesize that this is due to the adjustment of charge in the PMAA chains 

to the total charge in the nlPEM film, and have directly detected charge renormalization 

using FTIR spectroscopy. While in earlier studies, this technique was used by several 

groups, including ours, to study ionization of weak polyelectrolytes assembled within 

linear PEMs,119,122 here we apply FTIR spectroscopy to study the ionization of PMAA 

within nlPEMs. Fig. 4-3 shows FTIR spectra of a 10-layer PMAA/QPC film deposited in 

saturation conditions and terminated with QPC, as well as the same film after deposition 
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of PMAA as the 11th layer in the film. Both spectra show vibrational bands at 1725 cm–1 

and 1568 cm–1 associated with stretching vibrations of uncharged carboxylic groups (ν,  

−C═O) and asymmetric stretching vibrations of the carboxylate groups (νas, −COO–), 

respectively, as well as a small peak at 1685 cm–1 associated with hydrogen-bonded dimers 

(−COOH) of protonated carboxylic groups. The ionization degree of PMAA within the 

assembled multilayers was calculated as the ratio of the area of −COO– to the sum of 

−COOH and −COO– absorbances, assuming equal extinction coefficients for vibrations 

associated with these bands.123 This quantification gave the ionization degrees of PMAA 

as 60±2% and 38±2% for films terminated with QPC and PMAA, respectively. These data 

clearly show that uptake of QPC causes an increase in the average ionization of assembled 

PMAA chains due to formation of ion pairs between QPC and previously uncharged 

PMAA units, while the addition of PMAA causes suppression of the ionization of PMAA 

in the adsorbed polymer loops, likely as a result of accumulation of an excess of negative 

charge within the film. Also note that the integrated intensity of the 956 cm–1 band 

characteristic of QPC and probably associated with CH2 wagging vibrations of methylene 

group,124 remained unchanged after PMAA addition (Fig. 4-3), suggesting that polyacid 

binds to the electrostatically associated network without causing desorption of QPC 

chains. 

4.4. Film Internal Structure: Neutron Reflectometry Studies  

In earlier studies, neutron reflectometry has been applied to establish correlations 

between the strength of intermolecular binding and film intermixing for linear PEMs of 

electrostatically assembled films, 23, 61, 114,73,66, and films stabilized by hydrogen bonding.67 
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In this work, neutron reflectometry is used to study the effect of a new parameter important 

for nlPEMs– layer deposition time – on internal film structure and to quantitatively 

measure the diffusion of invading polyelectrolytes into the film.  

Table 4-1. Fitted parameters of the thickness and interfacial roughness of a deuterated 
stack incorporated within the hydrogenated matrix of different PMAA/QPC films 
(Design I). 

 dPMAA stack dQPC stack 

Deposition time, min d, nm σint, nm d, nm σint, nm 

4 14.4 6.7 16.7 12.8 

8 26.0 12.0 26.7 15.8 

24 35.2 12.0 90.6 16.0 

 

To that end, we have designed two different types of experiments. In the first 

scenario (Design I), films were constructed in which deuterated polyelectrolytes (either 

dPMAA or dQPC) were included as ‘marker’ layers in the middle of PEMs constructed 

using hydrogenated polymers, wherein each layer was assembled using a specific 

deposition time (Figs. 4-4 and 4-5). In the second scenario (Design II, shown below in 

Fig. 4-6), films were first constructed using hydrogenated polymers, and then the kinetics 

of penetration of deuterated QPC chains into the film was studied as a function of exposure 

time to a dQPC solution. The reflectivity model for Design I consisted of the BPEI priming 

layer and three hydrogenated/deuterated/hydrogenated stacks. The SLD of the 

hydrogenated stacks was constrained to the value for the hydrogenated matrix determined 
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in an independent measurement of hydrogenated films. The SLD of the deuterated block 

was found by fitting the reflectivity data. The model for Design II initially consisted of 

only two stacks – a priming layer and a hydrogenated matrix. Upon absorption of 

deuterated chains, an additional stack representing the hydrogenated matrix enriched with 

deuterated polymers was introduced into the model.  

Fig. 4-4 shows neutron reflectivity data and the calculated SLD profiles of nlPEMs 

constructed using per-layer deposition times which were constant for each individual film, 

but varied between different nlPEMs. Because the amount of material deposited was 

strongly time-dependent and, due to instrumental resolution, the total film thickness in NR 

should not exceed ~350 nm, films constructed using longer deposition times by design 

had fewer polyelectrolyte layers. Fig.4-4 shows the dramatic effect of layer deposition 
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time on internal film structure. Films constructed using 4, 8, and 24 min deposition times 

demonstrated increasingly larger and more diffuse deuterated stacks. For 4-min, 8-min-  

Fig. 4-4. Reflectometry data (A, C) and scattering length density profiles for PMAA/QPC 
films formed using hydrogenated and deuterated components. (B) SLD profiles of films 
assembled using dPMAA as a marker layer with design (hPMAA/hQPC)x / 
(dPMAA/hQPC) / (hPMAA/ hQPC)y using 4, 8 and 24 min deposition times (black, red 
and blue lines, respectively) where x and y indicate the number of bilayers (for 4 and 8 
min deposition times x and y were 4; for the 24 min deposition time, x and y are 3 and 2 
respectively. (D) SLD profiles of films assembled using dQPC as a marker layer with 
design (hPMAA/hQPC)x / (hPMAA/dQPC) / (hPMAA /hQPC)y for samples with 4, 8 and 
24 min deposition times (black, red and blue lines, respectively) where x and y reflect the 
number of bilayers (for 4 and 8 min deposition times x and y were 4; for the 24 min 
deposition time x and y are 3 and 2, respectively). Reprinted from [133] with permission 
from American Chemical Society. 

and 24-min film assemblies, the integrated area under the stacks of dPMAA and dQPC 

increased as 1 : 1.8 : 2 and 1 :1.7 : 3.4, respectively. This is in agreement with an increase 
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of the total mass of polymers bound within nlPEM films for different deposition times. 

This ratio, derived from ellipsometric data, yields values of 1 : 1.7 : 2.6 and 1 : 1.8 : 2.5 

for films of comparable thickness (Fig. 4-1A). Tracking the increase in deposited polymer 

mass, the interfacial full width, σint, between hydrogenated and deuterated blocks 

increased from 6.7 to 12.0 nm for dPMAA, indicating greater intermixing between 

hydrogenated and deuterated stacks. Interestingly, the maximum SLD of dPMAA and 

dQP is independent of the layer deposition time, indicating there is a constant ratio 

between hydrogenated and deuterated chains as they mix within the multilayer (Tables B-

1 - B-6). At the same time, the kinetics of the increase in the deuterated stack width was 

strikingly different for dPMAA- and dQP-containing films (Fig. 4-4). An increase in either 

the width or the integrated SLD of the deuterated stacks indicates both an increased 

spreading and a larger amount of deuterated polymer adsorbed at each deposition step. 

Diffusion of polymer already within the films is coupled with the diffusion of arriving 

polyelectrolyte chains into the multilayer matrix, and so more polymer can be bound at 

the film surface from solution as deposition progresses. Therefore, the amount of 

additional adsorbed material is limited by the interdiffusion/penetration rate of 

polyelectrolyte into the existing film. The faster intermixing of QPC into the film and the 

larger amount of QPC adsorbed within each layer compared to dPMAA can be explained 

by the different degrees of polymerization (DP) of PMAA and QPC (DPs 2090 and 570 

for PMAA and QPC, respectively), which leads to more sluggish dynamics of PMAA 

chains in the film. Diffusion coefficients for dPMAA and dQPC penetration estimated 

from d2 vs. t dependences using the data in Table 4-1 yield estimated values of 3.9×10-15 
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cm2/s and 3.5×10-14 cm2/s, respectively. These values, estimated from measurements of 

Fig. 4-5. Reflectometry data (A, C) and scattering length density profiles (B, D) for 
PMAA/QPC films formed using hydrogenated and deuterated components. (B) Film 
assembled using dPMAA as a marker layer with design (hPMAA/hQPC)4 / 
(dPMAA/hQPC) / (hPMAA/hQPC)4 prepared using an 8 min deposition time after 30 and 
210 min exposure to 0.01 M phosphate buffer at pH 6.0. (D) Film assembled using 
dPMAA as a marker layer with design (hPMAA /hQPC)4 / (hPMAA/dQPC) / 
(hPMAA/hQPC)4 using an 8 min deposition time after 30 and 210 min exposure to 0.01 
M phosphate buffer at pH 6.0. Reprinted from [133] with permission from American 
Chemical Society. 

dry nlPEMs, are two orders of magnitude lower than those measured for the intrusion of 

polyelectrolyte molecules into wet films. Penetration of polyelectrolyte chains into the 

films is also determined by the presence of a ‘supply’ of polyelectrolyte chains in solution, 

and did not occur when films were immersed in polyelectrolyte-free buffer solutions. Fig. 
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4-5 shows that nlPEMs, featuring deuterated marker layers in the middle region of the

film, using 8 min deposition time did not show any changes in internal structure upon 

exposure to a 0.01 M phosphate buffer solution for as long as two hours (Tables B-7 - 

B10).  

Fig. 4-6. The effect on the film internal structure of the exposure of a 6-bilayer 
hydrogenated PMAA/QPC film to a 0.2 mg/ml dQPC solution, as illustrated by neutron 
reflectometry data (plotted as RQ4 to enhance small features) (left) and the corresponding 
fitted scattering length density profiles (right). Reprinted from [133] with permission from 
American Chemical Society. 

We next aimed to directly observe the diffusion of deuterated polyelectrolyte 

chains as they invade the film. In this experiment, a hydrogenated 6-bilayer nlPEM 

assembled using the 8-min per layer protocol containing PMAA as the outermost layer 

was immersed in a 0.2 mg/ml solution of dQPC; the film was taken out of solution, rinsed 

with buffer and dried prior to the NR measurement. Fig. 4-6 summarizes the NR data for 

various times of exposure to dQPC solutions (Tables B-11 – B-17).  

Upon exposure to the deuterated polymer solution, the oscillation minima shift to 

lower Q values indicating an increase in total film thickness. The reflectivity data for the 
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initially hydrogenated matrix have been fitted using a precursor film plus a single stack. 

After exposure to the deuterated polymer, we use a two-stack model, with the bottom stack 

corresponding to the hydrogenated material, and the upper stack associated with the 

addition of deuterated polymer. The fitted neutron reflectometry profiles are shown in Fig. 

4-6, right. The addition of dQPC to the film is observed from an increase in SLD values,

which at shorter times occurred only within the upper part of the film. As exposure time 

increased, an enhanced SLD zone propagated deeper in the film until the deposited 

polymer was distributed throughout the film. A zone impermeable to dQPC penetration 

even at longer times is seen in the fitted SLD profiles in Fig. 4-6. The total thickness of 

this zone of hydrogenated polyelectrolytes (Table B-16) was ~150 Å, which included a 

75-Å layer of lower SLD incorporating the BPEI layer. The remaining 75 Å of the

PMAA/QPC film, approximately corresponding to a single bilayer, is strongly bound to 

the substrate and cannot be replaced by deuterated chains. This is in good agreement with 

the 6.5 nm thickness of the dense near-substrate zone estimated from ellipsometry 

experiments (see above). Fig. 4-7A shows the kinetics of dQPC penetration into the film 

as represented by changes in the width of the deuterated stack d. The diffusion coefficient 

was determined to be 1.1±0.1×10-14 cm2/s from the d2 vs. t graph shown as an inset in Fig. 

4-7A. This value is one to two orders of magnitude smaller than that of QPC chains
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determined using the thicknesses of swollen films in Fig. 4-2, since the diffusion 

coefficient will be underestimated if the diffusion distances are taken from dry film 

measurements. Fig. 4-7B shows the plateau values of SLD of dQPC-containing films, 

which are largely composed of hydrogenated PMAA and deuterated QPC chains, as a 

Fig. 4-7. Time dependence of the polyelectrolyte penetration depth, d (A) and the plateau 
SLD value (B) during the invasion of dQPC chains into a hydrogenated 6-bilayer 
PMAA/QPC film assembled using the 8 minutes per layer deposition procedure. 
Reprinted from [133] with permission from American Chemical Society. 
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function of time. By comparing the data in Figs. 4-7A and B, two regimes for dQPC 

penetration into nlPEM can be distinguished. The first regime is caused by diffusion of 

the initial dQPC, which occurs with the diffusion coefficient estimated above. The second 

process involves a slower enrichment of PMAA/QPC complexes with deuterated chains. 

This slower addition of deuterated chains is rate limited by the sluggish chain 

rearrangements of earlier formed hPMAA/QPC contacts to accommodate excess dQPC 

within the film. The arriving polyelectrolyte chains bring in excess charge that causes the 

film to swell as shown in Fig. 4-2 above. 

The fitted plateau values of SLD also enable us to estimate the relative amounts of 

hydrogenated and deuterated polymers, as well as the content of water in the LbL film. 

We first analyzed the initial, as deposited PEM which contained only hydrogenated 

polyelectrolytes. The total SLDH of this matrix was found by fitting the reflectivity data to 

be 6.43×10-7 Å-2. One can express the total SLDH of the hydrogenated matrix as follows: 

2 2H hPMAA hPMAA hQPC hQPC H O H OSLD SLD SLD SLDω ω ω= + + , (4-1)

where the ω values represent the mass fractions of the different film components. SLD 

values of each component were calculated using known atomic densities and polymer 

atomic compositions (Table B-18). The values of ω were fitted simultaneously with the 

boundary conditions set for ω for PMAA and QPC not to exceed 0.6, and for ω for H2O 

not to exceed 0.2, and the sum of the ω components adds up to 1. Only one solution for 

film composition was found, i.e. ωhQPC = 0.46, ωhPMAA = 0.439 and ωH2O = 0.101. The 
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water content of 10.1% is in a good agreement with previously reported values found using 

neutron reflectometry for linear PEMs.125  

Fig. 4-8. Effect of the exposure time of a hydrogenated PMAA/QPC film to a 0.2 mg/ml 
dQPC solution on the mass ratios of all components within the 6-bilayer nlPEM film. 
Reprinted from [133] with permission from American Chemical Society. 

The fitted values of ωhQPC and ωhPMAA were taken as initial values for further 

calculations, performed for films after the addition of dQPC. The water content in the 

films was assumed to be constant for all film compositions, because samples were dried 

with the same procedure. Also, the amount of deuterated polyelectrolyte was allowed to 

increase assuming no loss of hydrogenated polymer. Then, after exposure of the film to 

dQPC, the SLD of the top block can be calculated as follows: 

2 2D hPMAA hPMAA hQPC hQPC H O H O dQPC dQPCSLD SLD SLD SLD SLDω ω ω ω= + + + , (4-2) 
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where two additional parameters, i.e. ωdQPC and the SLD of dQPC, with ωdQPC set to be 

less than ωhQPC. With the fitted values of the parameters set to be less than initial values 

of the hydrogenated matrix, the equation was fitted to find ωdQPC. The calculated mass 

ratios (ω) of each component in the stack enriched with the deuterated material are 

provided in Table B-19. The calculations indicate that the content of dQPC in the film 

increases from zero to ~20% with time, while the fractional content of hydrogenated 

PMAA and QPC decreases to below 40% of the total mass. These results show that even 

after long-term (192 min) exposure of nlPEMs to dQPC, films contain both hydrogenated 

and deuterated polycation chains, i.e. enrichment with polycations is likely to occur as co-

adsorption of additional dQPC chains rather than via replacement of the original hQPC 

(Fig 4-9). 

Fig. 4-9. Schematic representation of main findings for the current chapter. 
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5. IONICALLY PAIRED LAYER-BY-LAYER HYDROGELS: WATER AND 

POLYELECTROLYTE UPTAKE CONTROLLED BY DEPOSITION TIME3 

5.1. Introduction 

Polyelectrolyte multilayers (PEMs) are traditionally made by sequential deposition 

of oppositely charged polymers at a surface using the layer-by-layer (LbL) technique38. In 

addition to ionically pairs, cooperative interactions that lie at the heart of many LbL 

systems—secondary interactions such as hydrogen bonding, van der Waals forces, and 

hydrophobic interactions—can also play important role in LbL assembly50-52. The 

cooperative type of intermolecular interactions is quite universal and can be applied to 

metal-protein53 and hydrogen bonding systems54. The applicability of the LbL technique 

to a wide range of polymers and substrates, and the ease of incorporation of highly 

functional molecules within these films, have excited interest in a wide range of 

applications including tissue engineering126, in which LbL assemblies can be used to 

enhance tissue regeneration127-128. Moreover, PEMs show particular promise for surface 

functionalization of biomedical devices to create hemocompatible, antibacterial, and 

antioxidant surfaces129, or to control cell adhesion-localized delivery of bioactive 

molecules18, 37, 39. Future proposed applications of PEMs as bioactive matrices or drug 

molecule carriers dictate certain requirements for film capacity and functionality, defined 

by the overall film thickness and controllable swelling. In particular, it becomes 

                                                 

3 Reprinted with permission from “Ionically paired layer-by-layer hydrogels: water and 
polyelectrolyte uptake controlled by deposition Time” by Victor Selin, John F. Ankner, 
and Svetlana A. Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI. 
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increasingly desirable to achieve a film thickness on the order of microns upon the 

deposition of a small number of bilayers. In addition, well-controlled interaction with 

water, i.e., swelling, can enable controlling the dosage of an active component released 

from the film.  

Depending on the binding strength between the components18, 75, and therefore the 

mobility of polymer chains during LbL film deposition, two main types of film growth 

can be distinguished. Namely, linear LbL growth describes those systems that exhibit a 

constant increment in thickness with deposition of successive bilayers and is usually a 

characteristic of strongly paired polyelectrolytes and/or nanoparticles20, 76. On the other 

hand, nonlinear films demonstrate an increase in deposited film mass per deposition step, 

reflecting the high mobility of chains during deposition and the resulting penetration of 

the invading component into the film19, 77-78. This growth mode has been predominantly 

reported for more weakly bound systems, and can be additionally controlled by several 

parameters. One of these parameters is polymer molecular weight—a parameter that is 

directly related to mobility of polymer chains within the films59, 79. For ionically paired 

PEMs, the mobility of chains also can be regulated by the introduction of small ions80-81. 

Moreover, in the case of weak polyelectrolytes, ionization of polymer chains, determined 

by solution pH and assembly conditions, can also affect chain mobility and  

film growth82-83. 

The literature fundamentally agrees that the main factor causing exponential 

growth is enhanced diffusivity of polymer chains86, 106, 130. For more strongly bound films, 

the invading component is kinetically frozen at the outermost PEM layer and does not 
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diffuse deeply, resulting in linear film growth with a small incremental mass increase that 

corresponds to monolayer coverage. The original mechanism of exponential growth was 

attributed to an “in-and-out” diffusion of polymer chains throughout the entire film 

thickness86. This mechanism was later modified to include chain diffusivity in systems 

that do not exhibit diffusion throughout the whole film20, 130-132. Very recently, another 

mechanism of exponential growth has been proposed by Schlenoff that describes 

nonlinear deposition as a consequence of the diffusion of ionic binding sites rather than 

mass diffusion of the polymers87. 

Our group recently conducted a study of nonlinear growth where the deposition 

time used for adsorption of each individual layer was not fixed, but instead polymer 

adsorption and absorption was followed up to complete saturation of the film with the 

incoming polyelectrolyte133. At saturation, nonlinear films exhibited high (up to 4-fold of 

dry thickness) swelling ratios and were reminiscent of substrate-bound ionically 

crosslinked gels. We have demonstrated that as more time was allowed for an incoming 

polyelectrolyte to penetrate the film, film swelling continuously increased, and more time 

was required to reach saturation for larger layer numbers. In this work, we studied a more 

practical scenario, in which deposition times were fixed for all layers within the film, but 

varied between different films. While previously, by applying the neutron reflectometry 

(NR) technique23, 61, 66-67, 73, 114 to dry LbL films, we demonstrated that layer deposition 

time controlled film internal structure133; here, we study swelling of LbL films constructed 

using fixed deposition time and explore how the internal film structure affects kinetics of 

polyelectrolyte chain invasion. Moreover, we explore the effect of layer deposition time 
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on film stability in salt solutions. This study further contributes to the understanding of 

the relationship between growth conditions of non-linear PEMs and the behavior of these 

films in aqueous solutions containing small ions and/or polyelectrolytes.  

5.2. Materials 

Branched polyethyleneimine (BPEI) with Mw = 25 kDa and Mw/Mn = 2.50 was 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Hydrogenated polymethacrylic 

acid (hPMAA, or PMAA) with Mw 180 kDa and Mw/Mn = 1.02 was purchased from 

Polymer Standard Services (PSS) GmbH (Mainz, Germany). Deuterated poly(2-

(dimethylamino)ethyl methacrylate) (dPDMAEMA, d15) with Mw 90 kDa and Mw/Mn 1.8, 

as well as deuterated PMAA (dPMAA) with molecular weight 180 kDa and Mw/Mn < 1.1, 

were purchased from Polymer Source, Inc (Dorval, Québec, Canada). Hydrogenated 2-

(dimethylamino)ethyl methacrylate monomer (DMAEMA), ethyl 2-bromoisobutyrate 

(EBiB), CuBr and 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), 

hydrogenated and fully deuterated methyl sulfate (d6), as well as all solvents, were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure Milli-Q water (Merck 

Millipore, Burlington, MA, USA) with a resistivity of 18.2 MΩ/cm was used in all 

experiments. All other chemicals were purchased from Aldrich and used without further 

purification. 

5.3. Multilayer Buildup and Polyelectrolyte Uptake Experiments 

LbL films were deposited on silicon wafer substrates (111 orientation, Institute of 

Electronic Materials Technology, Warsaw, Poland). Prior to film deposition, silicon 

wafers were cleaned as described elsewhere 81 and primed with a monolayer of BPEI 
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adsorbed from 0.2 mg/mL solution at pH 9 for 15 min. PEM film was then deposited by 

sequential dipping in 0.2 mg/mL PMAA and QPC solutions in 0.01 M phosphate buffer 

at pH 6.0 for 4, 8, 16, or 24 min. In between polymer deposition steps, the wafers were 

rinsed by immersing twice in 0.01 M phosphate buffer solutions at pH 6.0 for 2 min. The 

procedure was repeated until the required number of layers was reached. Deposition time 

per cycle during PEM assembly is denoted as a superscript with the number of minutes 

used for deposition written next to the layer name. The number of layers in the PEM films 

is denoted by a subscript. Thus, PMAA7
16min denotes a PEM film assembled using 16 min 

per step and terminated at layer number 7, which is PMAA.  

For the polyelectrolyte uptake studies using neutron reflectometry (NR), 

hydrogenated films PMAA11
8min and PMAA7

24min were exposed to 0.2 mg/L solutions of 

dQPC in 0.01 M phosphate buffer at pH 6.0 for different time intervals. After rinsing with 

18.2 MΩ/cm Milli-Q water and drying under nitrogen flow for 5 min, NR measurements 

were performed, and then the films were returned to the polymer solution for continued 

polymer uptake. Samples for internal structure studies were assembled using 4 and 8 min 

deposition times per immersion cycle having the design QPC8/dPMAA9/QPC14 or 16 and 

24 min deposition times with design QPC4/dPMAA5/QPC10 and QPC4/dPMAA5/QPC8, 

respectively. The difference in sample architectures was dictated by the resolution 

requirements for thickness determination using NR. 
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5.4. Film Swelling, Stability in Salt, and Poly(Methacrylic Acid) (PMAA) 

Ionization as a Function of Layer Deposition Time 

Fig. 5-1 shows the total dry film thickness as a function of deposition time per 

layer. To compare the increment in thickness during film growth for each deposition time, 

two samples were deposited simultaneously, terminated with either poly(methacrylic acid) 

(PMAA) or quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC). Fig. 5-1a 

illustrates that the total amount of material absorbed increases with deposition time per 

layer. The dry thickness of both PMAA11
24min and QPC12

24min films was more than 1.5× 

greater than that for the films made using an 8 min deposition time. Similar observations 

by Schlenoff and co-workers were made for a different polyelectrolyte system studied at 

high salt concentrations: when the polyelectrolyte deposition time increased from 3 to 20 

Fig. 5-1. (a) Dry and in situ thicknesses of PMAA11 (poly(methacrylic acid),red symbols) 
and QPC12 (quaternized poly-2-(dimethylamino)ethyl methacrylate, blue symbols) films 
as a function of deposition time per layer; (b) Calculated swelling ratio of PMAA11 (red 
symbols) and QPC12 (blue symbols) films as a function of deposition time per layer. 
Reprinted with permission from “Ionically paired layer-by-layer hydrogels: water and 
polyelectrolyte uptake controlled by deposition Time” by Victor Selin, John F. Ankner, 
and Svetlana A. Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI.  
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min, a 1.5-fold increase in film thickness was observed81. The thicknesses of QPC-

terminated films were greater in all cases, with a tendency to increase with time. Moreover, 

comparison of the thickness ratios QPC12
4min/PMAA11

4min and QPC12
24min/PMAA11

24min 

gives 1.1 and 1.35, respectively, reflecting a strong dependence of mass absorbed on 

exposure time and therefore confirming the diffusive nature of growth in non-linear PEMs, 

also described in our previous work133. 

Fig. 5-1b shows that not only the amount of polymers uptaken by the film at each 

deposition step but also the degree of film swelling was strongly affected by the deposition 

time per layer. The swelling ratio was determined as the ratio of wet film thickness, 

measured by in situ ellipsometry in the presence of buffer above the growing film, to the 

thickness of the dry films. Longer layer deposition times allowed for greater film 

intermixing, charge overcompensation, and enhanced creation of QPC loops, which are 

formed by QPC units that do not participate in the formation of ionic pairs with PMAA 

and carry a permanent charge133. The osmotic pressure created by the counterions, 

electrostatic and steric repulsion between excess charge in the loops, as well as the film 

hydration all contribute to an uptake of large amounts of water into the films. In addition, 

film swelling was higher for QPC-capped films. On the contrary, the penetration during 

deposition of PMAA, which is a weak polyelectrolyte, resulted in lower swelling, as a 

charge in the PMAA loops was suppressed by the greater amount of the polyacid 

accommodated within the films119, 133.  
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The amount of water penetrating into the films intuitively should be related to 

binding strength between assembled polyelectrolytes. One way to characterize the 

polyelectrolyte binding strength is to compare the stability of LbL films in different salt 

solutions, where small ions compete with electrostatic pairs formed by polymer 

association. Exposure of PEMs to salt concentrations lower than those of film dissolution 

promotes polymer diffusion and causes film smoothening as shown and quantified by 

atomic force microscopy for systems formed by strong and weak polyelectrolytes55, 134. 

Notably, prior work on PEM films of strong polyelectrolytes, often composed of strongly 

electrostatically pairing polystyrene sulfonate (PSS), has shown that these films can 

sustain relatively high salt concentrations, up to 3.5 M NaCl55-56. Such concentrations of 

salt can disassemble PEM films if they are formed by weak polyelectrolytes, such as 

PAA26 or the PMAA used in this work. To avoid film dissolution, much lower salt 

concentrations (0.1–0.4 M) were used to study enhanced polyelectrolyte chain dynamics 

within QPC/PMAA films114. Fig. 5-2 shows that higher salt concentrations (such as a 0.54 

M NaCl solution) lead to disassembly of QPC/PMAA films. The dry thickness of LbL 

films assembled using various deposition times per layer was measured after overnight 

exposure to a 0.54 M NaCl solution. The decrease in thickness results from binding site 

disruption and subsequent loss of material. The rate of desorption of polyelectrolytes from 

the film was not affected by the film deposition time, thickness, and/or internal structure 

and was approximately the same (~3–4 nm/min, data not shown) for all films. However, 

the equilibrated mass loss was larger for thicker PMAA11
24min films when compared to 

thinner PMAA11
4min films (~90% and ~75% of the original thickness, respectively) after 
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exposure to 0.54 M NaCl for 24 h (Fig. 5-2a). This effect demonstrates that increased 

 

Fig. 5-2. (a) Total film thicknesses and stability of PMAA11 films assembled using 
different deposition times per layer upon post assembly overnight exposure to 0.54 M 
NaCl; (b) stability of PMAA11

8min and QPC12
8min films within NaCl solutions of various 

concentrations after overnight exposure. Reprinted with permission from “Ionically paired 
layer-by-layer hydrogels: water and polyelectrolyte uptake controlled by deposition Time” 
by Victor Selin, John F. Ankner, and Svetlana A. Sukhishvili, 2018. Gels, 4, 7, Copyright 
2018 by MDPI. 

deposition time per layer results in a decrease in film stability in salt solutions. Shorter 

deposition times produce better-layered structures, with fewer polymer units included in 

loops and a larger number of ionic pairs per single polymer chain, which can withstand 

salt ion assaults better. In contrast, longer deposition times produce highly intermixed 

nonlinear PEMs that are more prone to disassembly in salt solutions. Fig. 5-2b compares 

mass retained after an overnight immersion of PMAA-capped and QPC-capped films in 

solutions with different salt concentrations. Both films showed the same expected trend of 

decreasing stability with increasing salt concentration, but films capped with QPC in all 
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salt concentrations were less stable than PMAA-capped assemblies. This observation 

shows that it might be possible to control film stability via QPC immersion.  

 

Fig. 5-3. Fourier-transform infrared spectroscopy (FTIR) spectra of dry PMAA11
4min and 

PMAA11
24min (a); FTIR spectra of dry QPC12

4min and QPC12
24min (b); calculated values of 

PMAA ionization degree within QPC12
4min, QPC12

24min, PMAA11
4min and PMAA11

24min 
films (c). Reprinted with permission from “Ionically paired layer-by-layer hydrogels: 
water and polyelectrolyte uptake controlled by deposition Time” by Victor Selin, John F. 
Ankner, and Svetlana A. Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI. 

An explanation for this effect was then sought in the higher swelling of QPC-

capped films (Fig. 5-1b), and ionization of assembled PMAA was determined using FTIR. 

Earlier, FTIR was used by several groups, including ours, to study the ionization of weak 

polyelectrolytes assembled within linear PEMs14, 119, 122, 133. Fig. 5-3a shows FTIR spectra 

of PMAA11
4min and PMAA11

24min films. Both spectra show vibrational bands at 1725 cm−1 

and 1568 cm−1 associated with the stretching vibrations of carbonyl vibrations of QPC (ν, 

>C=O) and asymmetric stretching vibrations of the carboxylate groups (νas, −COO−), 

respectively, as well as a peak at 1685 cm−1 associated with the vibrations of protonated 

carboxylic groups (−COOH). The ionization degree of PMAA within the assembled 

multilayers was calculated as the ratio of the area of −COO− to the sum of −COOH and 

−COO− absorbances, assuming equal extinction coefficients for vibrations associated with 

these bands123. The ionization degrees of PMAA were 50 ± 2% and 46 ± 2% for 
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PMAA11
4min and PMAA11

24min films, respectively. A layer of QPC was then deposited on 

these films and the resulting QPC12
4min and QPC12

24min films were measured again (Fig. 5-

3b), yielding PMAA ionization of 57 ± 2% and 82 ± 2%, respectively. QPC taken up by 

the film causes an increase in the average ionization of assembled PMAA chains due to 

the formation of ion pairs between QPC and previously uncharged PMAA units, while the 

addition of PMAA suppresses the ionization of PMAA in the adsorbed polymer loops, 

likely because of the accumulation of an excess of negative polymer charge within the 

film. Previously, it was shown by several groups that complexation of weak 

polyelectrolytes in PEMs lowers the pKa and alters the ionization of carboxylic 

groups135,136. The effect of capping layer on ionization of assembled weak polyelectrolytes 

was previously reported for PEMs that demonstrate linear growth137-138. Here, we show 

that the capping layer also impacts ionization of weak polyelectrolytes in non-linear LbL 

films.  

It is also clearly seen that ionization of PMAA is strongly dependent on deposition 

time (Fig. 5-3c), and larger amounts of uptaken QPC lead to higher charge in assembled 

PMAA chains. As shown in Fig. 5-2, however, larger deposition time per layer decreases 

the stability of LbL films in salt solutions, suggesting that ionization of PMAA within the 

films is inversely correlated to films stability. We suggest that a key to lower salt stability 

of the films constructing using longer deposition times is their larger swelling, caused by 

more loopy conformations of QPC. In highly swollen films, loopy QPC chains have fewer 

binding points with PMAA and accumulate excess charge, increasing osmotic pressure 
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within the film. As a result, the net interaction energy between polyelectrolytes decreases, 

leading to faster chain dynamics. 

5.5. Effect of Film Internal Structure on Polyelectrolyte Uptake: Neutron 

Reflectometry Studies 

A central point of this work is an exploration of how assembly conditions of non-

linear LbL films, and therefore internal film structure, affect invasion of polyelectrolyte 

chains. To that end, we assembled films with different internal structures, using deposition 

times that were fixed for all layers within the same film, and varied between various films. 

In the first set of experiments, which sought to quantify the internal structure of the films 

using NR, a layer of dPMAA was incorporated within the film for contrast (Fig. 5-4). 

After establishing the required film thicknesses, a number of layers, and quantifying layer 

intermixing, dPMAA was substituted with hydrogenated PMAA for film construction, and 

fully hydrogenated films, assembled with different deposition time per layer, were 

exposed to a solution of dPMAA to study the effect of internal film layering on the uptake 

of invading chains. The results of the latter ‘chain invasion’ experiments are shown in Fig. 

5-5 and 5-6. In both cases, the sample design was dictated by the requirements of the NR 

technique. Thus, knowing that the thickness of deposited films is a function of deposition 

time, the number of bilayers was altered for 4, 8, 16, and 24 min films. Because the amount 

of material deposited depended strongly on immersion time and, due to instrumental 

resolution, the total film thickness in NR should not exceed ~350 nm, films constructed 

using longer deposition times by design had fewer polyelectrolyte layers. Upstream 

collimation determines the angular divergence of the incident beam (δθ) which, in turn, is 
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the dominant term in the instrumental resolution of the SNS-LR (δQ/Q = δθ/θ, where θ is 

the angle of incidence onto the sample). The maximum resolvable film thickness is given 

by dmax = 2π/δQ, which is about 350 nm for these measurements. 

 

Fig. 5-4. Reflectometry data (a,c) and scattering length density profiles for PMAA/QPC 
films formed using hydrogenated and deuterated components; (b) SLD profiles of films 
assembled using dPMAA as a marker layer with layer sequences 
QPC8/dPMAA9/QPC14

4min and QPC8/dPMAA9/QPC14
8min, (black and red lines, 

respectively); (d) SLD profiles of films assembled using dPMAA as a marker layer with 
layer sequences QPC4/dPMAA5/QPC10

16min and QPC4/dPMAA5/QPC8
24min for samples 

with 16 and 24 min deposition times (blue and orange lines, respectively). Reprinted with 
permission from “Ionically paired layer-by-layer hydrogels: water and polyelectrolyte 
uptake controlled by deposition Time” by Victor Selin, John F. Ankner, and Svetlana A. 
Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI. 
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Fig. 5-4 shows reflectivity data and fitted profiles for a series of samples containing 

incorporated dPMAA marker layers (i.e., QPC8/dPMAA9/QPC14
4min, 

QPC8/dPMAA9/QPC14
8min, QPC4/dPMAA5/QPC10

16min and QPC4/dPMAA5/QPC8
24min 

films) with designed varied internal structure controlled by layer deposition time. The 

polymer layers included in the reflectivity model consisted of the BPEI priming layer and 

three hydrogenated/deuterated/hydrogenated stacks. The SLD of the hydrogenated stacks 

was constrained to be the value for the hydrogenated matrix determined in an independent 

measurement. The SLD of the deuterated block was found by fitting the reflectivity data 

(Tables C-1 – C-4). Fig. 5-4 highlights the dramatic effect of layer deposition time on 

internal film structure. As seen from the SLD profiles, the deuterated marker layers appear 

as peaks in SLD, whose shape indicates the amount of material deposited, its position, and 

its spatial extent within the layer. Importantly, the value of the SLD of the deuterated block 

has almost the same value, 2.33 × 10−6 Å−2, for all four samples and is independent of the 

deposition time per layer and sample design.  

Based on dPMAA chain diffusivity, allowing more time per layer deposition 

encouraged penetration of PMAA chains into neighboring layers. This effect is revealed 

by a change in interfacial width and deuterated block thickness as a function of deposition 

time. Thus, based on chain diffusivity, 4 and 8 min deposition times do not allow chains 

to penetrate much into the hydrogenated bulk. However, increasing deposition time to 16 

and 24 min causes a noticeable change in chain intermixing. Tracking the increase in 

deposited polymer mass, the interfacial full width, σint, between hydrogenated and 

deuterated blocks increased from 6.7 to 16.7 nm for dPMAA, indicating a greater 
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intermixing between hydrogenated and deuterated stacks. Continuing this trend, 24 min 

immersion allows enough time for dPMAA to penetrate completely through the film, 

down to a dense layer (entangled with BPEI) near the substrate, as described in our 

previous work 133.  

Fig. 5-5 illustrates penetration of deuterated dQPC chains into the hydrogenated 

matrix constructed using different deposition times per layer. Specifically, hydrogenated 

matrices were assembled using 8 and 24 min immersions per layer (PMAA11
8min and 

PMAA7
24min). These films were immersed in a 0.2 mg/mL solution of dQPC, then taken 

out of solution, rinsed with buffer, and dried prior to the NR measurement. The model 

used to fit the NR data initially consisted of only two stacks—a priming layer and a 

hydrogenated matrix. Upon absorption of deuterated chains, an additional stack 

representing the hydrogenated matrix enriched with deuterated polymers was introduced 

into the model. Fig. 5-5 shows NR data and the calculated SLD profiles of PEMs 

constructed using per-layer deposition times that were constant for each individual film 

but varied between different PEMs, specifically 8 and 24 min (Tables C-5 – C-12). For 

both deposition times (PMAA11
8min and PMAA7

24min), upon exposure to the deuterated 

polymer solution, the reflectivity oscillation minima shifted to lower Q values indicating 

an increase in total film thickness. The fitted NR profiles are shown in Fig. 5-5b,d.  
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Fig. 5-5. The effect on the film internal structure of the exposure of hydrogenated 
PMAA11

8min and PMAA7
24min films to a 0.2 mg/mL dQPC solution, as illustrated by 

neutron reflectometry. Reflectometry data (plotted as RQ4 to enhance small features) (a,c) 
and scattering length density profiles (b,d) for PMAA11

8min and PMAA7
24min films exposed 

to dQPC solution for 4, 8, and 24 min in phosphate buffer at pH 6.0. Reprinted with 
permission from “Ionically paired layer-by-layer hydrogels: water and polyelectrolyte 
uptake controlled by deposition Time” by Victor Selin, John F. Ankner, and Svetlana A. 
Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI. 

Polycation penetration into the two films was strikingly different. The addition of 

dQPC to the films is observed by the increase in SLD values, which, at shorter times, 

occurred only within the near-surface region of the PMAA11
8min film. The more tightly 
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bound and structured PMAA11
8min matrix demonstrated only a gradual increase of SLD for 

the second block at short exposure times. As exposure time increased, an enhanced SLD 

zone propagated deeper into the film until the deposited polymer was distributed 

throughout the film. A thin layer impermeable to dQPC was present at the substrate in 

both systems. The presence of a ~8 nm-thick impermeable zone was previously observed 

and rationalized as a single bilayer that is strongly bound to the substrate and could not be 

replaced by deuterated chains133. Fig. 5-6a shows a quantitative analysis of NR data upon 

dQPC penetration. The initial values of SLD correspond to zero time of exposure and are 

equal to the SLD of the hydrogenated block. Quantitatively, after 4 min of exposure to 

dQPC solution, the SLD of the block enriched with deuterated material increased by 8% 

and 68% for PMAA11
8min and PMAA7

24min films, respectively. Adsorption of the 

Fig. 5-6. A comparison of the effect on film internal structure of the exposure of 
hydrogenated PMAA11

8min and PMAA7
24min films to a 0.2 mg/mL dQPC solution, as 

illustrated by fitted scattering length density (a) and the fitted thicknesses of deuterated 
block (b). Reprinted with permission from “Ionically paired layer-by-layer hydrogels: 
water and polyelectrolyte uptake controlled by deposition Time” by Victor Selin, John F. 
Ankner, and Svetlana A. Sukhishvili, 2018. Gels, 4, 7, Copyright 2018 by MDPI. 
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deuterated polycation was also accompanied by an increase in the overall film thicknesses, 

as seen in the NR profiles. Relatively slow dynamics of penetration of polymer chains 

within PMAA11
8min films can be explained by the higher degree of layering and higher 

density of barriers in the dQPC penetration path. In drastic contrast, penetration into the 

PMAA7
24min matrix was enhanced in comparison with penetration into the PMAA11

8min 

films. As seen in Fig. 5-6, even for the shortest dQPC exposure time of 4 min, the polymer 

permeated the entire film, and a waiting time of 24 min was sufficient for the film to 

become saturated with the polycation. Note that the time scale of polycation invasion 

within PMAA7
24min film was comparable to that of penetration of QPC into nonlinear films 

assembled using times required to reach saturation at each deposition step 133. Both the 

high degrees of swelling hydrogenated films assembled with longer deposition times (Fig. 

5-1b), as well as differences in film layering (Fig. 5-4), might have contributed to faster 

penetration kinetics of dQPC within PMAA7
24min films. The difference in the degree of 

swelling of PMAA11
8min and PMAA7

24min films is not large (swelling rations 1.6 and 1.7, 

respectively), however. It is likely that the strikingly different internal structure and 

layering of PMAA11
8min and PMAA7

24min films seen in Fig. 5-4 determined the large 
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differences in the kinetics of uptake of polyelectrolyte chains within LbL films (Fig. 5-6). 

Schematically, this process represented on Fig. 5-7. 

 

Fig. 5-7. Schematic representation of polycation (dQPC, red lines) penetration into 
matrices assembled at different conditions. PMAA and QPC chains represented as 
orange and blue lines, respectively.  
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6. CONCLUSIONS 

Quantitative studies of the diffusion of polyelectrolytes within linear PEMs 

revealed several features. First, the propensity of films to layer intermixing in salt 

solutions was strongly dependent on polyelectrolyte molecular weight (barrier-like). Films 

assembled with the shortest polyelectrolyte chains demonstrated significant center-of-

mass diffusion of assembled polyelectrolyte chains in the direction perpendicular to the 

substrate when these films were annealed in solutions with moderate salt concentrations. 

Measurements of diffusion coefficients of assembled chains in directions perpendicular 

and parallel to the substrate as a function of salt concentration demonstrated that both 

diffusion coefficients rose exponentially with increased salt content.  

We also performed quantitative studies of the dynamic of polyelectrolyte chains 

within non-linear PEMs. The growth of electrostatically assembled films was strongly 

time-dependent, with the amount of material deposited at each deposition step increasing 

with the number of deposition steps. Diffusion of polyelectrolytes during film deposition 

was directly correlated with this thickness increase when diffusion coefficients of the 

penetrating polymer chains were estimated from ellipsometry and neutron reflectometry 

measurements. While diffusion coefficients of polyelectrolyte chains were drastically 

slower than those in solution for both dry and solvent-swollen films, significant chain 

diffusivity occurred within highly swollen non-linear PEMs. Swelling of the film was 

correlated with penetration of polyelectrolytes and accumulation of excess charge 

throughout the entire film thickness. Interestingly, binding of permanently charged and 

weak polyelectrolytes had opposite effects on film swelling, resulting in periodic 
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oscillations of film swelling with layer number. Furthermore, we demonstrated that 

deposition time can be effectively used to control the internal structure of non-linear PEMs 

as shown by neutron reflectometry and that polyelectrolyte layers can be localized within 

the film by reducing the deposition time allowed for layer assembly. The estimated values 

of diffusion coefficients argue for diffusion of polyelectrolytes within the film in their 

bound rather than “free” state. 
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APPENDIX A 

SUPPORTING MATERIAL FOR CHAPTER 3 

 
Table A-1. Average values and standard deviations for dry ellipsometric thicknesses of 
bilayers within QPC/PMAA films. 

Multilayer films QPC/PMAA 

Mw of PMAA 7,000 35,000 145,000 

dbilayer (nm) 5.6 ± 0.4 5.5 ± 0.5 5.2 ± 0.5 

 

 

Table A-2. Average vertical diffusion coefficients D⊥ and standard deviations for PMAAs 
within QPC/PMAA PEMs obtained from NR results in Fig. 3-4. 

 
[NaCl] 

0.1 M 0.2 M 0.3 M 0.4 M 

D⊥ of PMAA (× 10-17 cm2/s) 2.59 ± 0.46 3.35 ± 0.55 6.00 ± 0.97 9.04 ± 0.19 

 

 

Table A-3. Average lateral diffusion coefficients D// and standard deviations for PMAA7k
* 

within QPC/PMAA PEMs obtained from FRAP results in Fig. 3-5. 

 
[NaCl] 

0.1 M 0.2 M 0.3 M 0.4 M 

D// of PMAA* (× 10-13 cm2/s) 
0.77 ± 0.16 1.33 ± 0.21 2.56 ± 

0.20 

5.50 ± 0.26 
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Table A-4. Model parameters for a 10bl-10bl QPC/PMAA145k film.  
Layer Nb (Å-2) d (Å) σint,0 (Å) 

(QPC/dPMAA)10 2.59E-06 342.7 47.5 

(QPC/hPMAA)10 9.40E-07 317.3 23.8 

BPEI 2.57E-06 8.0 0.9 

SiO2 3.20E-06 15.0 2.1 

Si 2.07E-06 100.0 0.9 

 

Table A-5. Model parameters for a 10bl-10bl QPC/PMAA145k film annealed in 0.4M NaCl 
for 10 hours. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)10 2.59E-06 356.0 47.7 

(QPC/hPMAA)10 9.40E-07 335.0 25.5 

BPEI 2.57E-06 8.0 0.9 

SiO2 3.20E-06 15.0 0.9 

Si 2.07E-06 100.0 0.9 

 
Table A-6. Model parameters for a 10bl-10bl QPC/PMAA35k film.  

Layer Nb (Å-2) d (Å) σint,0 (Å) 

(QPC/dPMAA)10 2.59E-06 277.5 34.6 

(QPC/hPMAA)10 8.52E-07 323.5 24.3 

BPEI 1.28E-06 15.0 2.1 

SiO2 3.20E-06 15.0 2.1 

Si 2.07E-06 100.0 0.9 
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Table A-7. Model parameters for a 10bl-10bl QPC/PMAA35k film annealed in 0.4M NaCl 
for 10 hours. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)10 2.59E-06 295.1 34.9 

(QPC/hPMAA)10 8.52E-07 335.0 27.0 

BPEI 1.28E-06 18.0 7.7 

SiO2 3.20E-06 18.0 2.1 

Si 2.07E-06 100.0 0.9 

 
Table A-8. Model parameters for a 12bl-12bl QPC/PMAA7k film. 

Layer Nb (Å-2) d (Å) σint,0 (Å) 

(QPC/dPMAA)12 2.540E-06 480.0 49.8 

(QPC/hPMAA)12 9.415E-07 810.0 76.2 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.400E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 

 
Table A-9. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 5 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 480.0 71.5 

(QPC/hPMAA)12 9.415E-07 810.0 81.2 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 
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Table A-10. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 10 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 472.0 68.3 

(QPC/hPMAA)12 9.415E-07 818.0 88.5 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 

 

 

 

Table A-11. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 15 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 472.0 55.3 

(QPC/hPMAA)12 9.415E-07 820.0 91.0 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 
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Table A-12. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 20 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 472.0 73.2 

(QPC/hPMAA)12 9.415E-07 820.0 93.6 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 

 

 

 

Table A-13. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 30 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 470.0 70.6 

(QPC/hPMAA)12 9.415E-07 811.0 97.4 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 
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Table A-14. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 50 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 480.0 51.0 

(QPC/hPMAA)12 9.415E-07 812.0 103 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 

 

 

Table A-15. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 90 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 480.0 52.3 

(QPC/hPMAA)12 9.415E-07 810.0 112.8 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 
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Table A-16. Model parameters for a 12bl-12bl QPC/PMAA7k film annealed in 0.4M NaCl 
for 150 minutes. 

Layer Nb (Å-2) d (Å) σint (Å) 

(QPC/dPMAA)12 2.540E-06 480.0 56.2 

(QPC/hPMAA)12 9.415E-07 810.0 106.4 

BPEI 9.750E-07 18.0 7.7 

SiO2 3.200E-06 15.0 4.3 

Si 2.070E-06 100.0 6.4 

 

 

 

Fig. A-1. The neutron scattering density profiles for various times of annealing a 12bl-
12bl QPC/PMAA7k film in 0.4M NaCl. 
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Fig. A-2. Fluorescence recovery monitored with a 1-µW laser beam for 
(QPC/PMAA7k)3/(QPC/PMAA7k*)/(QPC/PMAA7k)3 films exposed to 0.1M NaCl 
solutions. Films were bleached to 20% and 10% of initial fluorescence for 2 and 5 s, 
respectively, using a 1mW laser beam.  
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APPENDIX B 

SUPPORTING MATERIAL FOR CHAPTER 4 

 

Fig. B-1. 1H-NMR spectra of hPDMAEMA before quaternization (A) and after complete 
quaternization and conversion to hQPC (B) measured in D2O at pH 9. 
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Fig B-2. The kinetics of PMAA uptake by the film during 1st, 3rd, 5th and 7th layer 
deposition steps. 
 

 

 

 

Table B-1. Model parameters for (PMAA/QPC)4(dPMAA/QPC)(PMAA/QPC)4 film 
constructed using a 4 min per layer deposition time.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 457.0 47.6 
d-stack 2.330E-06 143.4 66.8 
H-stack 6.430E-07 478.3 57.2 
BPEI 2.500E-07 29.8 29.8 
SiO2 3.200E-06 18.0 5.0 
Si 2.070E-06 100.0 5.0 
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Table B-2. Model parameters for (PMAA/QPC)4(QPC/dPMAA)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time.  
 

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 477.4 139.0 
D-stack 2.405E-06 260.0 166.0 
H-stack 6.443E-07 404.0 118.8 
BPEI 2.500E-07 75.0 75.0 
SiO2 3.200E-06 18.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

Table B-3. Model parameters for (PMAA/QPC)3 (dPMAA/QPC)(PMAA/QPC)2 film 
constructed using a 24 min per layer deposition time.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 206.8 89.9 
D-stack 2.136E-06 351.9 119.9 
H-stack 6.430E-07 328.2 93.7 
BPEI 2.500E-07 24.1 24.1 
SiO2 3.200E-06 19.5 5.0 
Si 2.070E-06 100.0 5.0 
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Table B-4. Model parameters for (PMAA/QPC)4(PMAA/dQPC)(PMAA/QPC)4 film 

constructed using a 4 min per layer deposition time.  

. 

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 471.5 241.4 
d-stack 2.260E-06 167.4 127.9 
H-stack 6.430E-07 281.7 113.5 
BPEI 2.500E-07 20.7 20.7 
SiO2 3.200E-06 39.9 5.0 
Si 2.070E-06 100.0 8.0 

 

 

Table B-5. Model parameters for (PMAA/QPC)4(PMAA/dQPC)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 753.3 80.8 
d-stack 2.522E-06 266.1 158.0 
H-stack 6.430E-07 368.6 165.3 
BPEI 4.850E-07 48.0 17.6 
SiO2 3.200E-06 19.0 3.0 
Si 2.070E-06 100.0 3.0 
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Table B-6. Model parameters for (PMAA/QPC)3(PMAA/dQPC)(PMAA/QPC)2 film 
constructed using a 24 min per layer deposition time.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 162.9 162.9 
d-stack 2.080E-06 905.9 160.0 
H-stack 6.430E-07 25.5 25.5 
BPEI 1.100E-07 85.4 85 
SiO2 3.200E-06 33.6 3.0 
Si 2.070E-06 100.0 3.0 

 

 

Table B-7. Model parameters for (PMAA/QPC)4(PMAA/dQPC)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time after 30 min exposure to a 0.01 M 
phosphate buffer.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 753.3 80.8 
d-stack 2.522E-06 266.0 148.4 
H-stack 6.430E-07 382.4 165.3 
BPEI 4.850E-07 48.0 17.6 
SiO2 3.200E-06 19.0 3.0 
Si 2.070E-06 100.0 3.0 

 

Table B-8. Model parameters for (PMAA/QPC)4(dPMAA/QPC)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time after 30 min exposure to a 0.01 M 
phosphate buffer.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 477.0 159.0 
d-stack 2.405E-06 260.0 160.0 
H-stack 6.443E-07 410.0 125.0 
BPEI 2.500E-07 75.0 75.0 
SiO2 3.200E-06 18.0 5.0 
Si 2.070E-06 100.0 5.0 
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Table B-9. Model parameters for (PMAA/QPC)4(PMAA/dQPC)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time after 210 min exposure to a 0.01 M 
phosphate buffer. 

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 753.3 78.0 
d-stack 2.522E-06 266.0 167.0 
H-stack 6.430E-07 366.7 165.3 
BPEI 4.850E-07 48.0 17.6 
SiO2 3.200E-06 19.0 3.0 
Si 2.070E-06 100.0 3.0 

 

Table B-10. Model parameters for (PMAA/QPC)4(dPMAA/QPC)(PMAA/QPC)4 film 
constructed using a 8 min per layer deposition time after 210 min exposure to a 0.01 M 
phosphate buffer. 

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 477.0 159.0 
d-stack 2.405E-06 260.0 145.0 
H-stack 6.443E-07 410.0 125.0 
BPEI 2.500E-07 75.0 75.0 
SiO2 3.200E-06 18.0 5.0 
Si 2.070E-06 100.0 5.0 

 

Table B-11. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time. 

Layer Nb (Å-2) d (Å) σint (Å) 

H-Block 6.430E-07 1002.0 120.0 
BPEI 3.790E-07 28.0 5.0 
SiO2 3.200E-06 19.0 10.0 
Si 2.070E-06 100.0 19.0 
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Table B-12. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 

8 min per layer deposition time after 4 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 7.000E-07 430.5 85.0 
H-block 6.430E-07 556.6 180.0 
BPEI 4.500E-07 73.5 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

 
Table B-13. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time after 8 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 8.000E-07 589.7 100.8 
H-block 6.430E-07 419.7 177.7 
BPEI 5.000E-07 67.9 67.0 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 
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Table B-14. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time after 24 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 1.080E-06 660.0 155.0 
H-block 6.430E-07 352.0 325.9 
BPEI 2.700E-07 75.0 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

Table B-15. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time after 48 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 1.490E-06 1027.0 192.4 
H-block 6.430E-07 68.8 88.6 
BPEI 2.700E-07 75.0 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

Table B-16. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time after 96 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 1.500E-06 1048.0 201.4 
H-block 6.430E-07 75.0 64.2 
BPEI 2.390E-07 75.0 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 
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Table B-17. Model parameters for hydrogenated (PMAA/QPC)6 film constructed using a 
8 min per layer deposition time after 192 min exposure to a 0.2 mg/ml dQPC solution. 

Layer Nb (Å-2) d (Å) σint (Å) 

D-block 1.642E-06 1102.0 202.0 
H-block 6.430E-07 69.4 69.4 
BPEI 2.390E-07 75.0 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

Table B-18. SLD values calculated for the PEM components.  
 QPC PMAA QPC dPMAA dQPC PMAA H2O 

SLD, Å-

2 4.71E-07 1.10E-06 4.71E-07 5.11E-06 
6.36E-

06 1.10E-06 -5.60E-07 
 

 

Table B-19. Mass ratios calculated for the corresponding SLD values. 
Exposure 

time, 
min 

QPC 
mass 
ratio 

PMAA 
mass 
ratio 

dQPC 
mass 
ratio 

Water 
content 

SLD of D-
containing 
block, Å-2 

0 0.460 0.439 0.000 0.101 6.43E-07 
4 0.458 0.431 0.010 0.101 7.00E-07 
8 0.451 0.424 0.023 0.101 7.70E-07 
24 0.436 0.414 0.049 0.101 9.12E-07 
48 0.417 0.363 0.118 0.101 1.29E-06 
96 0.383 0.361 0.154 0.101 1.50E-06 
192 0.364 0.356 0.178 0.101 1.64E-06 
394 0.361 0.333 0.205 0.101 1.78E-06 
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APPENDIX C 

SUPPORTING MATERIAL FOR CHAPTER 5 

Table C-1. Model parameters for QPC8/dPMAA9/QPC14
4min film.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 457.0 47.6 

D-stack 2.330E-06 143.4 66.8 
H-stack 6.430E-07 478.3 57.2 

BPEI 2.500E-07 29.8 29.8 

SiO2 3.200E-06 18.0 5.0 

Si 2.070E-06 100.0 5.0 
 

Table C-2. Model parameters for QPC8/dPMAA9/QPC14
8min film.  

 
Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 477.4 139.0 

D-stack 2.405E-06 260.0 166.0 
H-stack 6.443E-07 404.0 118.8 

BPEI 2.500E-07 75.0 75.0 

SiO2 3.200E-06 18.0 5.0 

Si 2.070E-06 100.0 5.0 
 

Table C-3. Model parameters for QPC4/dPMAA5/QPC10
16min film.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 5.33E-07 652.6 165.6 

D-stack 2.30E-06 270.1 178.0 
H-stack 6.39E-07 290.5 120.0 

BPEI 3.12E-07 15.9 5.0 

SiO2 3.40E-06 26.1 16.3 

Si 2.07E-06 100.0 19.0 
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Table C-4. Model parameters for QPC4/dPMAA5/QPC8
24min

 film.  
Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 7.550E-07 314.0 270.6 

D-stack 2.287E-06 581.7 176.2 
H-stack 1.550E-06 115.5 109.9 

BPEI 3.500E-07 5.0 5.0 

SiO2 3.200E-06 25.0 18.0 

Si 2.070E-06 100.0 25.0 
 

 

Table C-5. Model parameters for PMAA7
24min.  

Layer Nb (Å-2) d (Å) σint (Å) 

H-stack 6.430E-07 540.0 65.0 

BPEI 3.790E-07 28.0 5.0 
SiO2 3.200E-06 19.0 10.0 

Si 2.070E-06 100.0 19.0 
 

 

Table C-6. Model parameters for hydrogenated PMAA7
24min film after 4 min exposure to 

a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-stack 1.980E-06 500.5 80.0 
H-stack 6.430E-07 95.0 95.0 
BPEI 3.790E-07 75.0 30.6 
SiO2 3.200E-06 18.7 5.0 

Si 2.070E-06 100.0 18.7 
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Table C-7. Model parameters for hydrogenated PMAA7
24min film after 8 min exposure to 

a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-stack 2.050E-06 506.4 79.3 
H-stack 6.430E-07 88.7 88.7 
BPEI 3.790E-07 75.0 30.6 
SiO2 3.200E-06 18.7 5.0 

Si 2.070E-06 100.0 18.7 
 

 

Table C-8. Model parameters for hydrogenated PMAA7
24min film after 24 min exposure 

to a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-stack 1.953E-06 521.6 80.7 
H-stack 6.430E-07 92.0 92.0 
BPEI 3.790E-07 75.0 30.0 
SiO2 3.200E-06 18.7 5.0 

Si 2.070E-06 100.0 18.7 
 

 

Table C-9. Model parameters for hydrogenated PMAA11
8min film. 

Layer Nb (Å-2) d (Å) σint (Å) 

H-Block 6.430E-07 1002.0 120.0 
BPEI 3.790E-07 28.0 5.0 
SiO2 3.200E-06 19.0 10.0 
Si 2.070E-06 100.0 19.0 
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Table C-10. Model parameters for hydrogenated PMAA11
8min film after 4 min exposure 

to a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-block 7.000E-07 430.5 85.0 
H-block 6.430E-07 556.6 180.0 
BPEI 4.500E-07 73.5 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

 

Table C-11. Model parameters for hydrogenated PMAA11
8min film after 8 min exposure 

to a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-block 8.000E-07 589.7 100.8 
H-block 6.430E-07 419.7 177.7 
BPEI 5.000E-07 67.9 67.0 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 

 

Table C-12. Model parameters for hydrogenated PMAA11
8min film after 24 min exposure 

to a 0.2 mg/ml dQPC solution. 
Layer Nb (Å-2) d (Å) σint (Å) 

D-block 1.080E-06 660.0 155.0 
H-block 6.430E-07 352.0 325.9 
BPEI 2.700E-07 75.0 62.5 
SiO2 3.400E-06 16.0 5.0 
Si 2.070E-06 100.0 5.0 
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Fig C-1. Polymerization of DMAEMA (top) and quaternization of hPDMAEMA 
(bottom). 
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Fig. C-2. 1H-NMR spectra of hPDMAEMA before quaternization (A) and after complete 
quaternization and conversion to hQPC (B) measured in D2O at pH 9. 
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