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ABSTRACT

The interaction of turbulence with shock waves, while very common in nature

and engineered systems, is a very difficult problem from a theoretical, numerical

and experimental perspective. A main challenge comes from the two-way coupling

between the shock and turbulence which occurs over a wide range of scales in time

and space. As a result, many investigations have resorted to strong simplifications

such as the linearization of the governing equations or the assumption of mean con-

ditions across the shock independent of turbulent fluctuations. When the interaction

is strong, a condition that is realized when turbulence is relatively intense, much less

is known about the behavior of both the shock and turbulence. The focus of this

work, thus, is on shock-turbulence interactions (STI) at high turbulent intensities

using high-fidelity direct numerical simulations (DNS) that fully resolve the shock.

Highly accurate methods are developed to simulate a stationary normal shock as

the turbulent flow passes through the domain and used to generate a massive highly

resolved database at a wide range of conditions. The numerical study is guided by

novel theoretical work that result in analytical expressions for thermodynamic jumps

across the shock that, unlike previous results in the literature, depend on turbulence

characteristics. Comparison with DNS data shows that these expressions can indeed

predict quantitatively a number of statistical variables of interest. The theory also

predicts the emergence of new regimes of the interaction which results in distinct

amplification or attenuation of different variables depending on governing parame-

ters. This previously unseen behavior is verified against DNS as well. Results on the

ii



shock structure are used to validate previous theoretical proposals and extend the

analysis to much stronger interactions which leads to the observation of a new regime

(a vanished regime in addition to the well-known wrinkled and broken regimes) in

which turbulence undergoes a classical spatial decay as it crosses the shock. Finally,

the amplification of turbulence across the shock is studied using our DNS results as

well as the large collection available in the literature. Disagreements in the literature

on Reynolds stresses are resolved by recognizing a special kind of similarity scaling on

two different parameters in two different limits. This analysis reconciles apparently

contradicting results in the literature. This analysis is extended to other quantities

of interest such as enstrophy and mass flux with similar success.
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I. INTRODUCTION

I.A Turbulence and Shock Waves: An Overview

Turbulence is a natural phenomenon in fluid dynamics that exists in many natural

and engineering systems. Its unpredictable and unrepeatable nature have made it one

of the most challenging long-standing scientific problems. The seemingly stochastic

motions observed in turbulent flows and its sensitivity to initial conditions, numerical

methods and experimental facilities, make the problem extraordinary difficult. The

governing laws given by the Navier-Stokes equations are a set of non-linear PDEs of

such complexity that proofs of existence and uniqueness of solution currently stand

as one of the well-recognized millennium problems. Another important characteris-

tic of turbulence is the wide range of temporal and spatial scales. Such wide range

of scales increases computational demands and experimental resources for captur-

ing phenomena at both large and small scales. Though turbulent flows are chaotic

with sensitivity to initial conditions and environmental disturbances, the statistical

properties of a fully-developed turbulent flow tends to possess universal statistics

features. This has been indeed a common trend in turbulence research through its

history.

Generally, turbulence in compressible flows comprises solenoidal and dilatational

motions. The former is represents the rotational nature of turbulence and is asso-

ciated with negligible density fluctuations. Additionally, for purely solenoidal flows,

hydrodynamics is typically decoupled from thermodynamics in solenoidal compo-

nents which provides a formidable simplification to the problem. In this cases, tur-
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bulence is said to be incompressible and has been studied widely over the decades

and a rich literature exist that document the advances in the field (Monin & Yaglom,

1975a,b; Pope, 2000). However, in many situations of practical interests the flow is

compressible with considerable density fluctuations. These compressibility effects are

accounted for in the dilatational component of fluctuations which result in additional

complexity and a much more challenging set of phenomena to be understood.

A shock wave is a thin region of rapid compression where hydrodynamics and

thermodynamics conditions change drastically. The formation of a shock wave oc-

curs when a moving object exceeds the speed of sound and forces sound waves to

collapse and propagate downstream. The compression exerted from the shock on the

flow converts the mean kinetic energy to internal energy, resulting in lower velocity

and higher temperature downstream of the shock. Though the region of variation is

only a few mean free paths, properties of flows and thermodynamics are generally

continuous across the shock. One of the challenges of studying shock waves comes

from the very small shock thickness which requires substantial computational re-

sources to fully resolve the region. Experimental efforts also face great challenges

to capture the phenomena across the shock. The second challenge is shock stabil-

ity as the stability of the location of the shock may depend on proper downstream

conditions which may themselves be affected by turbulence. Slight change in post-

shock conditions can result in shock unsteadiness. Another challenge is the validity

of a continuum approach. A very strong shock wave in a fluid is known to present

some deviations from the one described by the Navier-Stokes equations at high Mach

numbers.

Here, we aim to study the interaction of isotropic turbulence and a normal
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shock wave using a theoretical approach based on the quasi-equilibrium assump-

tion (Donzis, 2012b) and direct numerical simulations (DNS) at a range of mean

Mach number where a Navier-Stokes description of the relevant physical phenomena

is still valid. Thus, we confine ourselves to relatively low Mach numbers.

I.B Background and Literature Review: Shock-turbulence Interactions

Shock-turbulence interactions are observed in a number of contexts including su-

personic aerodynamics, turbulent combustion, and astrophysical flows among others,

making it an important topic in fluid dynamics. The existence of a shock in a tur-

bulent flow can significantly alter both the mean fields and turbulent characteristics

in the vicinity and downstream of the shock (Andreopoulos et al., 2000; Chen &

Donzis, 2018). At the same time, turbulence can also change the structure of the

shock. This two-way coupling makes well-known laminar theories predicting, for

example, properties jumps across the shock inapplicable in the general case (Lele,

1992a; Lee et al., 1993; Larsson & Lele, 2009; Velikovich et al., 2012; Larsson et al.,

2013). The complexities associated with such flows have made investigations very

challenging from the theoretical, experimental and numerical standpoints. To make

progress, therefore, it seems necessary to devise flow configurations that reduce com-

plexity yet maintain the essential physics and features of interest. Thus, the canonical

interaction of isotropic turbulence with a normal shock without complexities due to

boundary conditions, mean shear stresses, or externally imposed unsteady effects,

have received substantial interest and a large body of literature is devoted to the

topic (Sagaut & Cambon, 2008; Gatski & Bonnet, 2009).

Early theoretical studies (Ribner, 1954a; Moore, 1954; Ribner, 1954b) analyzed
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the impingement of different disturbances on a normal shock where the shock is

considered a discontinuity and the disturbances are small. The formulation further

assumed an inviscid flow and that the incoming disturbance can be constructed as

a linear combination of simple waves, typically assumed to follow the first-order de-

composition of Kovasznay (1953) into vortical, entropy and acoustic modes. If the

governing equations and jumps conditions across the shock are linearized, one can

obtain a closed solution, now known as the linear interaction analysis (LIA). Decades

later, Wouchuk et al. (2009) generalized the analytical solutions originally developed

by Ribner and provided explicit expressions for different amplification factors across

a shock. They also discussed additional limiting cases in terms of compressibility

which were missing in Ribner’s pioneering work. Although LIA can indeed, under

certain conditions, predict some of the trends associated of amplification of turbu-

lence, evidence from experiments (Andreopoulos et al., 2000) and simulations (Lee

et al., 1993; Mahesh et al., 1995; Lee et al., 1997; Larsson & Lele, 2009; Donzis,

2012a) have shown that other characteristics of the incoming turbulence not taken

into account in the theory can strongly modify the outcome of the interaction. Since

the shock is essentially a very strong longitudinal velocity gradient, it may seem

that rapid distortion theory (RDT) can also provide complementary insight. This

has indeed been done by Jacquin et al. (1993) and Kitamura et al. (2016) who also

used Helmholtz’s decomposition to obtain amplification factors for turbulent kinetic

energy. However, RDT was found to overestimate turbulence amplification, in part,

due to the non-homogeneous compression induced by the shock (Jacquin et al., 1993).

Because of the analytical intractability of the problem, direct numerical simula-

tions (DNS) have become over the last few decades an invaluable and mature tool to
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seek fundamental insight into STI. A number of DNS studies that investigated STI

have also presented comparisons with different theories. Lee et al. (1993), without

any technique of shock fitting or shock capturing, used DNS to investigate the inter-

actions of vortical turbulence with a weak shock and found an increase in Reynolds

stresses and enstrophy but a reduction of turbulent length scales. Pressure work

was found to be the dominant mechanism in the rapid evolution of turbulent kinetic

energy (TKE). Amplified fluctuations were also reported in thermodynamic prop-

erties in the vicinity of the shock due to the shock compression. As the flows pass

through the shock, the evolution of thermodynamic fluctuations show a rapid decay

mediated mainly by density-dilatation correlations. Further analysis showed that the

polytropic exponent relating pressure and density fluctuations satisfies the isentropic

relation even inside the shock. Subsequent numerical work relied on shock-capturing

schemes to extend the range of Mach numbers and turbulent strength upstream of

the shock (Lee et al., 1997; Larsson & Lele, 2009). These numerical schemes, while

able to capture the very steep gradients present in strong shocks, can also artificially

dampen some turbulence scales close to those shocks (Johnsen et al., 2010). Still,

the conclusions from these investigations are consistent, at least qualitatively, with

previous findings: amplification of Reynolds stresses and enstrophy and a decrease of

turbulent length scales. A number of studies focused on the influence of the charac-

teristics of the incoming turbulence based on Kovasznay decomposition (Hannappel

& Friedrich, 1995; Mahesh et al., 1997; Jamme et al., 2002; Quadros et al., 2016a) for

which LIA provides specific predictions. Consistent results were obtained and showed

that compared to pure vortical fluctuations the presence of entropy fluctuations up-

stream of the shock enhances the amplification of Reynolds stresses and transverse
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enstrophy. On the other hand, the presence of these fluctuations further decreases

transverse Taylor microsacles and integral length scales. In contrast, the presence

of acoustic fluctuations upstream of shock results in a reduction of the amplification

of stresses and the reduction of transverse Taylor microscales. As amplification fac-

tors are different in the streamwise and transverse directions, Larsson et al. (2013)

investigated the induced anisotropy behind shock waves. Unlike Reynolds stresses,

enstrophy was found to return to isotropy over a long distance behind the shock.

Using fully resolved simulations and LIA to generate high Rλ post-shock fields, Ryu

& Livescu (2014) and Livescu & Ryu (2016) also investigated postshock anisotropy

and showed that the postshock probability density function (PDF) of the deviatoric

strain rate becomes more symmetric as the Mach number increases, indicating a

decrease of vortex strectching and an increase in skewness of longitudinal velocity

derivatives. Recently, Quadros et al. (2016a,b) studied the heat flux by looking at

the correlation of velocity and internal energy fluctuation using both LIA and DNS.

Their results suggest that the near-field correlation is dominated by pressure-energy

and pressure-dilatation terms which come from the acoustic mode; the far field is

governed by the other two modes. Besides the turbulence amplification found across

the shock, Boukharfane et al. (2018) cast the attention to the turbulent mixing of a

passive scalar in the presence of a normal shock. A significant enhancement of scalar

mixing was reported downstream of the shock: the postshock p.d.f. of the scalar

shows a much smaller standard deviation compared to the decaying turbulence. In

contrast to the evolution of velocity fluctuations, attenuation is found in the scalar

variance across the shock dominated by diffusive transport term.

As DNS data accumulated over the years, it became also clear that the result of
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the interaction depends on characteristics of turbulence not accounted for in theoreti-

cal approaches such as LIA. In LIA, for example, the only parameter that determines

the amplification of turbulence is the mean Mach number M . However, the collection

of amplification factors of streamwise velocity (G ≡ u
′2
2 /u

′2
1 , where primes indicate

root-mean-square quantities and 1 and 2 indicate locations upstream and downstream

of the shock) in Donzis (2012a) shows, as mentioned above, systematic trends with

Reynolds and turbulent Mach numbers in addition to M . These observations suggest

that some of the assumptions behind LIA (linearity, no viscosity effects, shock wave

as a discontinuity) are not satisfied, at least for the conditions presented in the liter-

ature. It was then proposed an alternative scaling parameter, K, that includes not

only the mean Mach number but also the turbulent Mach number and the Reynolds

number. This parameter K ≡ Mt/R
1/2
λ (M − 1), which can be written as the ratio

of laminar shock thickness to Kolmogorov length scale, was shown to provide a good

collapse of the available data. While some new numerical studies have appeared

since then (which are also compared against predictions below), the main focus has

been on relatively strong shocks. Regimes where, instead, turbulence is relatively

strong—and where assumptions behind classical theories may be inapplicable—have

thus received relatively less attention, and is a thrust in the present work.

Experimental investigations, while very challenging, have also been pursued using

different facilities and means of turbulence generation The interaction of a normal

shock with grid-generated turbulence inside a shock tube was measured by hot-wire

anemometry (Honkan & Andreopoulos, 1992) and in wind tunnel (Inokuma et al.,

2017), while hot-wire and laser Doppler velocimetry were both used by Barre et al.

(1996), and a new multi-hot-wire probe which is capable of measuring quantities re-
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lated velocity gradient was developed (Agui et al., 2005). Qualitatively, experimental

results are consistent with simulations: turbulence was observed to be amplified with

decreased length scales. However, also consistent with simulations, data suggest that

the interaction depends on other characteristics not included in classical theoretical

approaches such as the turbulence integral scale of the incoming turbulence (Agui

et al., 2005).

Of interest also is the effect of turbulence on the shock, especially when turbulence

is relatively intense. The degree of variation in the peak compression inside a shock

wave has been used as an indicator of the relative strength of the turbulence to

the shock. When the turbulence is relatively weak, the dilatation along different

streamlines across shock front shows similar compression peaks. When turbulence is

strong, however, the shock characteristics become less homogeneous across the shock

surface. At high enough turbulent intensities, it has been found that the shock may

present “holes” on its surface along which variables do not undergo a steep gradient

change consistent with classical one-dimensional inviscid theoretical results. Instead,

variables can change smoothly or present multiple peaks. These two qualitatively

distinct regimes have been termed wrinkled and broken (Lee et al., 1993; Larsson &

Lele, 2009) and have been traditionally determined from visual observations of flow

fields.

To quantify the effects of turbulence on the shock, one can consider the rms-to-

mean ratio of dilatation at the shock, Θ (described more precisely below). For a

shock in a laminar uniform flow we have Θ = 0, and as turbulence becomes stronger,

Θ increases too. Thus Θ is a natural measure of how distorted the shock front is

due to turbulence. Under the so-called quasi-equilibrium (QE) assumption (that
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is, as explained more fully in subsequent sections, the assumption that the shock

locally adjust instantaneously to local conditions generated by turbulent fluctua-

tions) we have derived an expression for Θ which depends solely on the parameter

Mt/∆M (Donzis, 2012b) and that collapsed the data available then. Furthermore,

we proposed a mechanism for the creation of holes as the response to subsonic re-

gions resulting from strong turbulent fluctuations upstream of the shock. While the

proposed criterion (Mt/∆M ≈ 0.6) indeed identified correctly wrinkled and broken

regimes (Donzis, 2012b), no data was available to test directly the appearance of

subsonic regions. In this work we are able to both test this result as well as validate

and extend the analytical expression obtained for Θ to the case of strong turbulence.

It has also been observed that turbulence fluctuations can affect the mean proper-

ties of the flow around the shock. The well-known Rankine-Hugoniot (RH) relations

provide an exact solution to the governing equations for the change of properties

across a one-dimensional steady laminar normal shock Thompson (1984). These ex-

pressions depend only on M . From theoretical considerations when turbulence is

present, however, one can expect the results to depend also on turbulent characteris-

tics, in particular the strength of the incoming fluctuations. Lele (1992b) considered

shock jumps of density and pressure in the presence of upstream turbulence and

suggested weakened jumps as turbulence intensity increases. In particular using an

RDT closure he derived closed expressions for these jumps as a function of M and

Mt. However, Larsson et al. (2013) suggested that while results were in qualitative

agreement with DNS data, there were substantial quantitative disagreement and pro-

posed an empirical dependence on Mt/M instead. In addition to its fundamental

importance, understanding the effect of turbulence on mean fields has implications
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for stability of shock waves in practical devices such as scramjets as well as in sim-

ulations of STI. It is indeed for the latter that this effect has been discussed most

extensively mainly because imposing a laminar RH jump in pressure, leads to a mov-

ing instead of stationary shock wave (Larsson & Lele, 2009; Ryu & Livescu, 2014).

Corrections to eliminate this so-called drift are typically found in an trial and error

manner. Thus, there is a clear need to further our fundamental understanding of

the effect of turbulence on mean fields, an effort that is undertaken here as well.

Interestingly we found, for example, that in some circumstances jumps are weakened

but in others are strengthened. It is also noteworthy that the widely used LIA ap-

proach assumes the mean flow to be known from laminar conditions and unaffected

by fluctuations. Thus discrepancies between DNS and LIA may, in part, stem from

this neglected effect on the mean hydrodynamic and thermodynamic properties of

the flow downstream of the shock.

Besides thermodynamic variables, hydrodynamic properties across the shock have

also been studied. An analytical expression for vorticity jump was provided by Trues-

dell (1952) by applying RH relations and assuming no viscosity and thermal conduc-

tion. The result showed that shock curvature is the only mechanism that contribute

to vorticity even for an irrotational flow. Years later, other expressions were derived

by Kevlahan (1997) that includes the baroclinic effects and shock compression which

also imposed RH relations. In addition, Velikovich et al. (2012) studied the modified

shock jump conditions with preshock density nonuniformity which is locally homo-

geneous and isotropic. The theory was based on small-amplitude limits and assumed

no preshock velocity fluctuations. Unlike thermodynamic jumps, no comparison was

provided to verify the accuracy of vorticity jump predictions given in the literature.
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In what follows we present theory and a large DNS database to study jump

relations for STI, statistics of the shock structure as well as regimes of the interaction,

and amplification factors. The rest of the paper is organized as follows. In section 2,

the details of the numerical methods used including grid convergence and domain size

effects are introduced. In section 3, the quasi-equilibrium assumption is described

and utilized to obtain thermodynamic jumps and rms-to-mean dilatation at the shock

which are compared with DNS data. Amplification factors are discussed in section

4. Finally, conclusions are presented in section 5.

I.C Objective of Present Work

In this work we propose to:

1. Develop high-fidelity numerical methods to simulate stationary normal shock

waves in turbulent flows.

2. Generate a very large database of a stationary normal shock interacting with

anisotropic and isotropic turbulence under a wide range of shock and turbulent

conditions.

3. Formulate theoretical relations of turbulent shock jumps and compare to avail-

able data in the literature.

4. Study the change of shock structure at different levels of turbulence intensity.

5. Analyze the shock compression effects on turbulence amplification at a wide

range of turbulent conditions.
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II. DIRECT NUMERICAL SIMULATIONS

DNS has been a very useful and powerful tool to study turbulence. It fully resolves

the entire range of turbulence scales from integral length scales to Kolmogorov scales,

leaving no modeling technique to modify the flows numerically. Even though this

physical accuracy comes with a great cost of computation, such challenge has been

gradually overcome by the increase of supercomputing resources. In the mean time,

present simulations use shock-resolving scheme to capture the shock compression.

Similar to DNS, this scheme also imposes no numerical assumption to resolve the

scales in the flows. Therefore, This section discusses all the details in the present

simulations, including how we generate the turbulence and stabilize the shock.

II.A Model Descriptions

II.A.1 Governing equations

The simulations presented here are based on the compressible Navier-Stokes equa-

tions written here as

∂ρ

∂t
+∇ · (ρu) = 0, (II.1)

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ · τ + ρf + S (II.2)

∂

∂t
(ρe) +∇ · (ρeu) = −p∇ · u+∇ · (κ∇T ) + τ · ∇u+ Se (II.3)
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where ρ is density, u is the velocity vector, p is pressure, τ is the stress tensor for a

Newtonian fluid given by τij = µ(∂ui/∂xj+∂uj/∂xi−(2/3)δij∂uk/∂xk), f is the body

force vector that will be used below to generates turbulence, S is a sponge vector,

e is internal energy, κ is thermal conductivity and T is temperature. The viscosity

follows a power law with temperature as µ = µ0(T/T0)
0.75 (µ0 and T0 are reference

values) which has been found to be very close to Sutherland’s formula (Chapman &

Rubesin, 1949), and has been widely adopted in many STI studies (Larsson et al.,

2013; Ryu & Livescu, 2014; Huete et al., 2017). The Prandtl number is assumed to

be constant at Pr = 0.72. Finally, to close the system of equations, an ideal gas is

assumed which follows the equation of state p = ρRT with R being the gas constant

of the fluid.

II.A.2 Shock Stabilization and Boundary Conditions

In order to sustain a statistically stationary shock at a prescribed location in the

domain it is necessary to impose a relatively high pressure downstream of the shock

which is here done using a sponge region (S1 in figure II.1). In a laminar shock, a

pressure jump given by standard Rankine-Hugoniot relations would be sufficient to

keep the shock at a given location. This is not the case when the flow is turbulent

(Larsson & Lele, 2009). The interaction of turbulent fluctuations with the normal

shock produces oscillations of the shock surface and a well-known slow drift of the

shock (Lee et al., 1993; Larsson et al., 2013; Ryu & Livescu, 2014) which is due to

the difference between the postshock pressure in a laminar and turbulent flow. Since

the appropriate pressure jump that needs to be imposed to obtain a stationary shock

does in fact depends on the actual solution of the problem, standard STI simulations
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(a)
U0

shockS0 S1 S2

∆✛ ✲

(b)
U0

shockS0 S1 S2

Figure II.1: A schematic of shock interacts with (a) isotropic turbulence and (b)
anisotropic turbulence in the computational domains.

adjust the back pressure typically in a trial-and-error fashion to maintain the shock

at a desired location. Our analytical results in the following §III, instead, provide the

explicit dependence of pressure jumps on characteristics of the upstream turbulence.

This is imposed, as previously mentioned, through S1.

In addition, care has to be taken to avoid boundary reflections as the flow be-

comes subsonic downstream of the normal shock. Thus, we use a second sponge (S2

in figure II.1) between the first sponge (S1) and the outlet. In this region the flow is

smoothly accelerated to supersonic speeds. The main idea is that under such condi-

tions no characteristic can travel upstream from the outlet avoiding, thus, potential

effects from outflow boundary conditions. This approach has been used and tested

in previous studies (Freund, 1997; Ryu & Livescu, 2014). In both sponge regions S1
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and S2 we include a body force of the following form:

Sq = A〈q〉(x− xs1)
n1(x− xs2)

n2

ln1+n2+1
s

(qref − q) (II.4)

where A is a constant, 〈·〉 represents an average over the sponge region, xs1 and xs2

are the beginning and the end points of a sponge, ls is the length of a sponge, n1

and n2 are constant exponents, and subscript ref stands for the specified value that

a variable inside the sponge converge to. This particular form ensures that forces

progressively become stronger and weaker as the flow enters and leaves the sponge,

respectively. Clearly the strength of the sponge forcing vanishes at its boundaries,

that is Sq = 0 at x = xs1 and x = xs2.

In S1 we enforce a back pressure necessary to keep the shock at a statistically

steady location. Since p = (γ − 1)ρe, we use q = ρe in Eq. (II.4) for the energy

equation Eq. (II.3) with (ρe)ref computed such that it corresponds to the desired

pressure. The specific value imposed was determined from the analytical expressions

derived below which indeed resulted in stationary shocks, giving thus numerical

support to the theoretical work presented here. In S2 the flow is brought to supersonic

speeds by accelerating the u1 components. In this region, thus, we have q = u1. The

reference value for velocity is given by the inlet mean flow condition.

There is some freedom in choosing the sponge parameters, A, n1 and n2. How-

ever, we found that some combinations were potentially unstable, in particular if

Sq changes rapidly in space. On the other hand, if Sq is too weak, variables may

not approach the reference value during their residence time in the sponge. From

numerical experimentation we found that (n1,n2)=(1,1) in S1 and (2,0) in S2 provide
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adequate results.

II.B Turbulence Generation

To study the generality of our theoretical results presented here, in addition to

various Reynolds numbers and turbulent Mach numbers, we performed a series of

DNS using a spectral forcing scheme but with two different procedures which results

in statistically isotropic and anisotropic turbulence, respectively. Both methods,

which will be discussed momentarily, produce turbulence with different character-

istics which is convected downstream by a superimposed mean velocity U0 at the

domain inlet.

II.B.1 Forcing scheme

The forcing scheme for both approaches described below, is implemented by an

additional body force in the momentum equation which is stochastic and applied at

large scales. This force is constructed using integrated Ornstein-Uhlenbeck processes

with finite-time correlation in Fourier space. In physical space, the forcing can be

written as

f =
∑

|k|<kF

f̂⊥(k)e
−ik·x (II.5)

where f̂⊥(k) = (I−kk/k2) · f̂ is the projection of the mode at wave number k onto

a plane perpendicular to the wave vector itself. This guarantees that the stirring

mechanism that generates turbulence is, by construction, solenoidal. The forcing

parameters are chosen to achieve a given Rλ and Mt and, at the same time, yield

integral length scales which are a fraction of the domain size. Additionally grid

spacing should be fine enough to resolve accurately the small scales (discussed in
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§II.E). Further details of the forcing and statistics of the resulting turbulence fields

are described in Donzis & Jagannathan (2013) and Jagannathan & Donzis (2016).

II.B.2 Isotropic and anisotropic turbulence

Isotropic turbulence (IT). In this procedure a separate simulation of isotropic

turbulence in a triply-periodic domain is conducted. Turbulence is sustained by a

large scale stochastic forcing to achieve a given Rλ and Mt. Details of these simu-

lations and the numerical procedure can be found in Donzis & Jagannathan (2013)

and Jagannathan & Donzis (2016). Once in steady state, the turbulence is convected

through the inlet using Taylor hypothesis at a velocity U0 which corresponds to a

mean Mach number, M . The schematic of this procedure is shown in figure II.1(a).

A similar procedure has been used before in the literature (e.g. Ryu & Livescu, 2014)

though forcing details are somewhat different. Some studies in the literature have

used decaying simulations (e.g. Mahesh et al., 1996; Larsson & Lele, 2009) though a

potential challenge in this situation is the effects of initial conditions which may not

disappear at the time turbulence is assumed to be fully developed. Longer times,

on the other hand, would lead to a much weaker turbulence. The approach adopted

here does not depend on initial conditions and the Reynolds and Mach numbers are

determined by the forcing mechanism in the isotropic simulations.

Spatially developing turbulence (SDT). In this approach, turbulence is generated

upstream of the shock as it is convected from the inlet at U0. A sketch is shown in

figure II.1(b), where we also see that the domain is longer in the streamwise direction

than that for the isotropic approach above. Such configuration provides similarities

to grid-generated turbulence in wind tunnels where anisotropy in the turbulence
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has been consistently observed (Grant & Nisbet, 1957; Mohamed & Larue, 1990)

and may resemble more practical situations where turbulence develop spatially as it

approaches the shock. The interaction between the fluctuations and the mean flow in

the region S0, results in unequal production rates in the streamwise and transverse

energies in axisymmetric flows (Taylor, 1935). The result is a slightly anisotropic flow

with a streamwise component of the velocity variance being larger than transverse

components.

II.C Numerical Algorithm

This investigation seeks to fully resolve the wide range of scales in both the shock

wave and the turbulence using DNS without imposing any numerical technique. The

required resolutions and storage for the studies become crucial with increasing shock

strength and turbulence intensities. To capture the motions in time and space, high

order schemes are implemented in the simulations, and their details are discussed

here.

II.C.1 Temporal derivatives

Turbulence fluctuations evolve rapidly in time and space. The challenge of DNS

is the number of grid points involved in spatial discretizations increases drastically

with turbulence intensities. As a result, the corresponding memory management for

temporal derivatives becomes critical.

The time advancement in the simulations is performed with an explicit third

order low-storage Runge-Kutta scheme (Williamson, 1980). Consider a quantity, q,
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in a three-dimensional domain its governing equation can be written as:

∂q

∂t
= f(q) (II.6)

where f contains all the other mechanisms besides the trasient term in the equation.

Traditionally, the n-th order explicit Runge-Kutta scheme advances with a finite

difference equation:

q(n+1) = q(n) +
n
∑

j=1

wjfj. (II.7)

where n means the n-th time step and wj is the coefficient of the j-th increment term

in the scheme. Such method requires storage, nNxNyNz, for each variable where Nx,

Ny and Nz are the numbers of grid points in x, y and z direction, respectively. From

the formula, we can see that more memory is required with the increasing order.

To alleviate such requirement, a different principle adopted in the simulations is to

leave the useful information on the register which will receive the contribution f(xj)

instead of starting with a new empty register. Such algorithm is expressed as:

qj = ajqj +∆tf(xj−1) (II.8a)

xj = xj−1 + bjqj where j = 1 · · ·n. (II.8b)

Successive values of qj and xj overwrite the previous ones so that at each increment

only 2NxNyNz storage is required. A third order scheme implemented in present

simulations results in (a1, a2, a3) = (0, −5/9, 153/128) and (b1, b2, b3) = (1/3,

15/16, 8/15).

Compared to traditional Runge-Kutta scheme in a three-dimensional problem,
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the storage requirement in this high order scheme for each variable is a constant,

2NxNyNz. With the increase of temporal derivative order, the simulations can better

capture the evolution in time without requesting more memory.

The value of each time step, ∆t, is decided by the dominant term between con-

vection and diffusion in Eq. (II.2) with a CFL condition to avoid instability. The

formula for deciding ∆t is

∆t = min

Ñ
1

(u1+c)max

∆x
+ (u2+c)max

∆y
+ (u3+c)max

∆z

,
min(∆x2,∆y2,∆z2)

max(ν, κ
ρCp

)

é
CFL (II.9)

where ()max represents the largest value among in the domain, c is speed of sound,

∆x, ∆y and ∆z are the size of grid points in three different directions, ν is kinematic

viscosity and Cp is specific heat capacity. With variables change temporally, ∆t will

be updated correspondingly at each time step.

II.C.2 Spatial derivatives

Typically, the accuracy of a finite difference increases with the length of stencils.

However, it is also known that explicit finite differences have difficulties in achieving

high orders while remaining stable (Chertock & Abarbanel, 2000). Furthermore, the

spectral methods are typically limited to simple domains and simple boundary con-

ditions (Lele, 1992a). As a result, compact schemes were proposed to achieve high

accuracy while still maintaining short stencils. The implementation and use of com-

pact schemes for isotropic compressible turbulent simulations have been described

in details in Jagannathan & Donzis (2016). For periodic boundary condition in the

transverse directions, such sixth order method is also applied in present simulations.

However, due to the non-periodic boundary condition in streamwise direction and the
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further requirements needed to resolve the shock, we show here a new tenth order im-

plementation and produce grid-independent results in shock-resolving configurations

in the following section in II.E.

In the direction of mean flow where non-periodic boundary condition is applied,

the formulation of first derivative for interior nodes is given as

βf
′

i−2 + αf
′

i−1 + f
′

i + αf
′

i+1 + βf
′

i+2 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
(II.10)

where f
′

i represents the finite difference approximation of first derivative at grid

point i and α, β, a, b and c are the coefficients derived by matching the Taylor series

coefficients of various orders. Expend the terms at the right hand side, we can obtain

(II.11)

∞
∑

0

δn0∆xn

n!
+ 2α

∞
∑

0,2,...

∆xn

n!
f
(n+1)
i + 2β

∞
∑

0,2,...

2n∆xn

n!
f
(n+1)
i

=
∞
∑

0,2,...

a+ 2nb+ 3nc

(n+ 1)!
∆xnf

(n+1)
i

which can be simplied to

∞
∑

0

(n+ 1)(δn0 + 2α + 2β2n)

(n+ 1)!
f
(n+1)
i =

∞
∑

0,2,...

a+ 2nb+ 3nc

(n+ 1)!
∆xnf

(n+1)
i . (II.12)

The formal order of truncation error is decided by the first unmatched coefficient

leading to the constraints

second order (n=0): 1 + 2α + 2β = a+ b+ c

fourth order (n=2): 3(2α + 23β) = a+ 22b+ 32c

sixth order (n=4): 5(2α + 25β) = a+ 24b+ 34c
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eighth order (n=6): 7(2α + 27β) = a+ 26b+ 36c

tenth order (n=8): 9(2α + 29β) = a+ 28b+ 38c.

The linear system of coefficient can be either be tridiagonal where β = 0 or

pentadiagonal where β 6= 0. Inside the domain of present studies, pentadiagonal

scheme is applied and the tenth order scheme leads to: α = 1/2, β = 1/20, a = 17/12,

b = 101/150 and c = 1/100.

For the points on the boundary, the first derivative can be obtained from a forward

formulation

(II.13)f
′

1 + α1f
′

2 =
1

∆x
(a1f1 + b1f2 + c1f3 + d1f4)

where the subscript 1 is at the boundary while subscript 2, 3 and 4 are its neighboring

points. Again, by replacing Taylor series for all terms in Eq. (II.13) the equation is

expressed as
∞
∑

0

δn0∆xn

n!
f
(n+1)
1 + α1

∞
∑

0

∆xn

n!
f
(n+1)
1 =

[

a1
∞
∑

−1

δn0∆xn−1

(n+ 1)!
f
(n+1)
1 + b1

∞
∑

−1

∆xn−1

(n+ 1)!
f
(n+1)
1

+ c1
∞
∑

−1

2n∆xn−1

(n+ 1)!
f
(n+1)
1

+ d1
∞
∑

−1

3n∆xn−1

(n+ 1)!
f
(n+1)
1

]

.

(II.14)

Further simplification leads to

(II.15)

∞
∑

0

ñ
δn0
n!

+
α

n!
− δn−1a1

(n+ 1)!
− b1

(n+ 1)!
− 2n+1c1

(n+ 1)!
− 3n+1d1

(n+ 1)!

ô
∆xnf

(n+1)
1

= (a1 + b1 + c1 + d1)
f
(0)
1

∆x
.

If the node is at the outlet, a backward formulation is adopted which result in

identical equation. Similar to the central formulation, the first unmatched coefficient
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determines the order of truncation error and fourth order scheme is applied to the

boundary in present simulations

second order:











































(n=-1): a1 + b1 + c1 + d1 = 0

(n=0): b1 + 2c1 + 3d1 = 1 + α1

(n=1): 1
2
(b1 + 4c1 + 9d1) = α1

third order (n=2):
1

6
(b1 + 8c1 + 27d1) =

α1

2

fourth order (n=3):
1

24
(b1 + 16c1 + 81d1) =

α1

6
.

By solving the linear equations above, the coefficients of fourth order scheme for

the points on the boundaries are α1 = 3, β1 = 0, a1 = −17/6, b2 = 3/2, c2 = 3/2

and d2 = −1/6.

The schemes near the boundary nodes are chosen with great care by increasing

the truncation order slowly toward tenth order (Poinsot & Lele, 1992). In particular,

we use an one-sided fourth order scheme at the boundary, biased central fourth and

sixth order schemes at the next two grid points, followed by an eighth order central

scheme before applying a tenth order scheme at the rest of all interior points.

An approach to construct approximations that satisfy global conservation con-

straint should also be considered while choosing the values of coefficients for first

derivatives. Consider a conservation law with a form

(II.16)
∂f

∂t
+

∂F

∂x
= 0,

over a domain [a, b] and F = F (f) with certain initial and boundary conditions.
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Upon integration over the entire domain yields

(II.17)
d

dt

∫ b

a
f(x, t)dx = F |x=a,t − F |x=b,t,

which indicates that the change of total f inside the domain only comes from the

flux of f across the boundary. This is a global conservation statement which poses

an additional constraint to the coefficients of first derivatives. Consider the system

of the linear equations from each grid points with different coefficients be written as

Af ′ = B
df

dx
(II.18)

where A and B are given in a N2 sparse matrix and N is the number of grid

point in streamwise direction. B is therefore given as Eq. (II.19). Each row in the

equation shows the coefficients of corresponding equations and the given weighting

functions w1, w2, w3 and w4 for global conservation. In order to satisfy the global

conservation constraint, it is required that the summation of each column from 2 to

N -1 of the matrix to be exactly zero. This constraint promises only the boundary

nodes have contribution to the fluxes. Node 4 is specifically chosen to be imposed on

the conservation restriction, meaning the coefficients for node 4 become dependent
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on neighboring coefficients.

B =























































w1a1 w1b1 w1c1 w1d1

−w2a2/2 0 w2a2/2 0

−w3b3/4 −w3a3/2 0 w3a3/2 w3b3/4

−w4c4/6 −w4b4/4 −w4a4/2 0 w4a4/2 w4b4/4 w4c4/6

−c/6 −b/4 −a/2 0 a/2 b/4 c/6

−c/6 −b/4 −a/2 0 a/2 b/4 c/6

. . . . . . . . . . . . . . .























































(II.19)

By imposing the global conservation condition, it is shown that:

(II.20)
3b+ 2c

3b4
=

c

c4

where b4 and c4 are coefficients to be determined by b and c which are the coefficients

from the tenth order interior scheme. The global conservation constraint finally leads

to α4 = 633/1268.

The summary of the coefficients for first derivatives at different grid points along

the streamwise direction are presented as follows. For the first five points from the

boundaries:

(II.21)f
′

1 + α1f
′

2 =
1

∆x
(a1f1 + b1f2 + c1f3 + d1f4)

where the coefficients are given by

α1 = 3, a1 = −17

6
, b1 =

3

2
, c1 =

3

2
and d1 = −1

6
.

(II.22)α2f
′

1 + f
′

2 + α2f
′

3 = a2
f3 − f1
2∆x
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where the coefficients are related by

α2 =
1

4
and a2 =

2(α2 + 2)

3
.

(II.23)β3f
′

1 + α3f
′

2 + f
′

3 + α3f
′

4 + β3f
′

5 = a3
f4 − f2
2∆x

where α3, β3 and a3 are given by

α3 =
17

57
, β3 =

3α3 − 1

12
and a3 =

−6α3 + 16

9
.

(II.24)β4f
′

2 + α4f
′

3 + f
′

4 + α4f
′

5 + β4f
′

6 = a4
f5 − f3
2∆x

+ b4
f6 − f2
4∆x

+ c4
f7 − f1
6∆x

where α4, β4, a4, b4 and c4 are given by

α4 =
633

1268
, β4 =

8α4 − 3

20
, a4 =

−7α4 + 12

6
, b4 =

568α4 − 183

150
and c4 =

9α4 − 4

50
.

βf
′

i−2 + αf
′

i−1 + f
′

i + αf
′

i+1 + βf
′

i+2 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
(II.25)

where α, β, a, b and c are given by

α =
1

2
, β =

1

20
, a =

17

12
, b =

101

150
and c =

1

100
.

The derivation of second derivatives is analogous to the first derivatives’. The

formulation of the second derivative for the interior nodes is presented as

(II.26)
βf

′′

i−2 + αf
′′

i−1 + f
′′

i + αf
′′

i−1 + βf
′′

i+2

= a
fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi + fi−2

4∆x2
+ c

fi+3 − 2fi + fi−3

9∆x2
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where f
′′

i represents the finite difference approximation of second derivative at grid

point i. Similar to the first derivative, the form being tridiagonal or pentadiagonal

depends on the choice of β and present studies also choose pentadiagonal for second

derivatives. The relation given above can be expressed in terms of Taylor series

expansion:

(II.27)

2β
∞
∑

0,2,...

2n∆xn

n!
f
(n+2)
i + 2α

∞
∑

0,2,...

∆xn

n!
f
(n+2)
i +

∞
∑

0,2,...

δn0∆xn

n!
f
(n+2)
i

= (−2a− 2

4
b− 2

9
c)

∞
∑

0

δ0n∆xn−2

n!
f
(n)
i + a

∞
∑

0,2,...

2∆xn

n!
f
(n)
i

+
b

4

∞
∑

0,2,...

2 · 2n∆xn−2

n!
f
(n)
i +

c

9

∞
∑

0,2,...

2 · 3n∆xn−2

n!
f
(n)
i .

Again, the first unmatched coefficient determines the order of truncation order,

second order (n=0): a+ b+ c = 1 + 2α + 2β

fourth order (n=2): a+ 22b+ 32c =
4!

2!
(α + 22β)

sixth order (n=4): a+ 24b+ 34c =
6!

4!
(α + 24β)

eighth order (n=6): a+ 26b+ 36c =
8!

6!
(α + 26β)

tenth order (n=8): a+ 28b+ 38c =
10!

8!
(α + 28β).

For the points on the boundary, the general form of second derivative approxi-

mation is given as

f
′′

1 + α1f
′′

2 =
1

∆x2
(a1f1 + b1f2 + c1f3 + d1f4 + e1f5) (II.28)
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Replacing Taylor expansion for all the terms yields

∞
∑

0

δn0∆xn

n!
f
(n+2)
1 + α1

∞
∑

0

∆xn

n!
f
(n+2)
1 = a

∞
∑

−2

δn(−2)∆xn

(n+ 2)!
f
(n+2)
1 + b

∞
∑

−2

∆xn

(n+ 2)!
f
(n+2)
1

+ c
∞
∑

−2

2n∆xn

(n+ 2)!
f
(n+2)
1 + d

∞
∑

−2

3n∆xn

(n+ 2)!
f
(n+2)
1

+ e
∞
∑

−2

4n∆xn

(n+ 2)!
f
(n+2)
1 .

(II.29)

The truncation orders given by the first unmatched coefficients are

second order



































































(n=-2): a+ b+ c+ d+ e = 0

(n=-1): b+ 2c+ 3d+ 4e = 0

(n=0): b+ 4c+ 9d+ 16e = 2(1 + α1)

(n=1): b+ 8c+ 27d+ 64e = 9α1

third order (n=2): b+ 16c+ 81d+ 256e = 16α1

fourth order (n=3): b+ 32c+ 243d+ 1024e+ 20α + 160β.

Similar to the first derivatives, the truncation orders of second derivatives increase

slowly from the boundary to the interior points. An one-sided fourth order is imple-

mented at the boundary. Biased central fourth order, sixth order and eighth order

are implemented at the following three grid points. For the rest of grid points in the

interior, a tenth order scheme is applied.

The summary of coefficients in second derivatives at the first five grid points from

the boundaries are presented as follows

(II.30)f
′′

1 + α1f
′′

2 =
1

∆x2
(a1f1 + b1f2 + c1f3 + d1f4 + e1f5)
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where the coefficients are given by

α1 = 10, a1 =
11α1 + 35

12
, b1 =

−5α1 − 26

3
,

c1 =
α1 + 19

2
, d1 =

α1 − 14

3
and e1 =

−α1 + 11

12
.

(II.31)α2f
′′

1 + f
′′

2 + α2f
′′

3 = a2
f3 − 2f2 + f1

∆x2

where the coefficients are related by

α2 =
1

10
and a2 =

4(−α2 + 1)

3
.

(II.32)β3f
′′

1 + α3f
′′

2 + f
′′

3 + α3f
′′

4 + β3f
′′

5 = a3
f4 − 2f3 + f2

∆x2
+ b3

f5 − 2f3 − f1
4∆x2

where α3, β3 and a3 are given by

α3 =
12

97
, β3 = − 1

194
and a3 =

−9α3 − 12β3 + 6

4
.

(II.33)β4f
′′

2 + α4f
′′

3 + f
′′

4 + α4f
′′

5 + β4f
′′

6 = a4
f5 − 2f4 + f3

∆x2
+ b4

f6 − 2f4 − f2
4∆x2

where α4, β4, a4, b4 and c4 are given by

α4 =
344

1179
, β4 = −38α4 − 9

214
, a4 =

−1191α4 + 696

428
and b4 =

2454α4 − 294

535
.

βf
′′

i−2 + αf
′′

i−1 + f
′′

i + αf
′′

i+1 + βf
′′

i+2 = a
fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi − fi−2

4∆x2

+ c
fi+3 − 2fi − fi−3

9∆x2

(II.34)
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where

α =
334

899
, β =

43

1798
, a =

1065

1798
, b =

1038

899
and c =

79

1798
.

The implemented schemes have been thoroughly verified. For example, in fig-

ure II.2, we compare the grid convergence tests using sixth and tenth order scheme

on the interior points. For the sixth order scheme, the truncation orders change from

the boundaries to the interior are third order, fourth order, fourth order and sixth

order. The comparison of the two schemes focuses on two of the main quantities

used in this work that is amplification factor, G, and rms-to-mean dilatation, Θ, at

the shock. While the first one is a low order quantity, the latter presents much more

challenges and has been used as the most stringent constraint in assessing our numer-

ics. Figure II.2 shows the evolutions of G and Θ with resolutions. In the figure we

can see how tenth order schemes approach grid convergence at lower resolution than

sixth order schemes for Θ, as expected. The comparison indicates the advantage of

higher order scheme over convergence against lower resolution. A more detailed grid

independence test will be discussed in the following section §II.E where quantities

are normalized by proper characteristic scales.

II.D Averages and Characteristic Locations

Turbulent flows present fluctuations at a wide range of scales and it is thus con-

venient to decompose the flows into a mean and fluctuations. This is typically done

using Reynolds decomposition, that is f = 〈f〉 + f ′ where 〈f〉 is a suitably defined

mean and f ′ is the fluctuating part; clearly 〈f ′〉 = 0. In compressible flows, it is

often more convenient to use the density-weighted or Favre average (e.g. Gatski &

Bonnet, 2009) defined as f̃ = 〈ρf〉/〈ρ〉 which leads to significant simplifications in
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Figure II.2: Grid independence tests with sixth order scheme (solid) and tenth order
scheme (dashed) for (a) amplification factors, and (b) rms-to-mean ratio of dilatation.
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the governing equations. The fluctuations around the Favre averages are denoted by

f ′′ such that f = f̃ + f ′′ and 〈ρf ′′〉 = 0.

The specific space over which averaging is done depends naturally on the flow

of interest. In particular, averages are meaningfully taken over dimensions of homo-

geneity. For example, experimental measurements of statistically stationary flows

commonly average quantities over long periods of time. In isotropic simulations,

averages are conducted over the entire volume since the flow is homogeneous in the

three spatial directions. In STI, since the streamwise direction, x, is not homoge-

neous, averages can be taken over the other two homogeneous directions, that is

over y-z planes. Furthermore, since the flows presented here are also statistically

stationary, one can improve statistical convergence by averaging over time as well.

Indeed, unless otherwise noted, angular brackets represent plane and time averages

in what follows.

Figure II.3(a) shows at typical distribution of the streamwise Reynolds stress as

a function of x/L, the streamwise direction normalized by the dissipation length

scale at x1 where x1 is defined later in this section. We make a few remarks here to

identify specific characteristic locations in the flow and leave more detailed physical

discussions relegated to later sections. Turbulence enters the domain from the left,

and it undergoes a viscous decay which reduces turbulent stresses. As turbulence

reaches the vicinity of the shock, these Reynolds stresses as well as other thermo-

dynamic properties, such as p (figure II.3(b)), begin to increase due to transfers of

energy between modes. The local minimum thus formed, has been defined in the lit-

erature as the upstream location of the shock and will be denoted here by a subscript

1. Assessing amplification or reduction across the shock can be then performed by
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normalizing a quantity of interest by its value at this upstream condition denoted by

a subscript 1. Obviously, for any quantity q(x) we have q(x1)/q1 = 1. Figure II.3(a)

shows a typical variation of R11/R11,1 =
flu′′
1u

′′
1/
flu′′
1u

′′
1|1 in the streamwise direction.

The non-dimensional parameters that characterize the flow are naturally defined

at x1. These are the mean Mach number of the incoming flow (M ≡ 〈u1〉/〈c〉) which

for a stationary shock is also the so-called shock Mach number, the Taylor Reynolds

number (Rλ ≡ 〈ρ〉u1,rmsλ/〈µ〉), and the turbulent Mach number (Mt ≡ fl|u1
′′|

1/2
/〈c〉).

Inside the shock region, stresses reach a peak at a location where the pressure

gradient is largest. Reynolds stresses then decrease and reach a downstream min-

imum where pressure attain a maximum. This location, identified as 2′, indicates

the end of the region dominated by shock compression. An expansion wave would

follow behind the shock (Larsson & Lele, 2009) where the stress reaches its down-

stream maximum. This process is dominated by pressure-dilatation exchanges that

transfers internal energy to turbulent kinetic energy (Lee et al., 1993). Such transfer

results in a local minimum of pressure and other thermodynamic variables which

is considered in following sections. The Reynolds stresses increase but eventually

viscous dissipation dominates the energy exchanges and turbulence undergoes again

a classical viscous decay. The local maximum of R11/R11,1 downstream of the shock

is denoted here by a subscript 2. We have also verified that the locations of the

minimum and maximum for density and temperature do coincide with those of the

pressure. Thus, the discussion here focuses on the comparison of Reynolds stresses

and pressure.

Though R11 and thermodynamic quantities share similar characteristic locations

that mark regions dominated by different mechanisms, other turbulent quantities
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Figure II.3: Typical streamwise distribution of (a) Reynolds stress R11 and (b) pres-
sure both normalized by their upstream value at M = 1.2, Rλ ≈ 25, and Mt = 0.21.
Vertical dashed lines at x1, x2′ and x2 for reference.
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Figure II.4: Normalized distributions of Reynolds stress R11 (solid), transverse en-
strophy Ω22 (dashed), mass flux variance J11 (thick dashed), dissipation ǫ (dotted)
and Kolmogorov length scale η (dash-dotted) at M = 1.2, Rλ ≈ 25 and Mt = 0.21.
Same vertical dashed lines as in figure II.3.
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show very distinct distributions. Beside R′
11s, the distributions of transverse enstro-

phy, Ω22 = 〈ω2ω2〉, variance of mass flux, J11 = 〈(ρu1)
′2〉, viscous dissipation, ǫ, and

Kolmogorov length scale, η, are shown in figure II.4. It is clearly shown that viscous

decays dominates in the areas away from shock vicinity. The figure also shows that

the x1 of Ω22 and J11 are located slightly downstream of x1R11
while x2′

Ω22
and x2′

J11

are close to x2′
R11

but still with quantitative difference. On the other hand, good

agreements on x1 and x2′ are shown between dissipation, Kolmogorov length scale

and R11. One main difference between R11 and other quantities is that only R11

has a postshock peak at x2′ . Other quantities all show a monotonic decay after x2′ .

To further understand the distribution in each quantity it requires deeper discussion

with corresponding budget which is beyond present investigation.

As seen in figure II.3, the local minimum in Reynolds stresses downstream of

the shock (x2′
R11

) coincides with the maximum in pressure (x2′p). However, this has

not been systematically assessed. We do precisely that in figure II.5(a&b) where we

plot the distance between x1 to the minimum of the Reynolds stresses downstream

of the shock (x2′
R11

− x1) versus the distance between x1 and the maximum of the

mean pressure downstream of the shock (x2′p − x1) both normalized by Kolmogorov

scales (other normalizations are possible and lead to the same conclusions). If these

locations coincide, the data would lie on a straight line with slope of 1 (dashed line

in figure II.5). In general we see that for IT simulations the differences between

x2′R11
and x2′p , if any at all, are very small. Some SDT simulations (stars in the

figure), however, are above the line implying that x2′R11
is slightly closer to the shock

than x2′p , which may point to a subtle but complex dynamic mechanism related

to anisotropic Reynolds stresses. While a thorough understanding of this issue is
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Figure II.5: Location of minimum in Reynolds stresses and maximum of pressure
both downstream of the shock (x2′R11
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M = 1.1 (circles), M = 1.2 (squares) and M = 1.4 (diamonds). Dashed lines with
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relegated for future work, we note here that the effect is small. Similar plots are given

in figure II.5(c&d) for Ω22 and J11. Though with some scatter, the x2′ of Ω22 is located

consistently close to x2′
R
11. Contrary to Ω22, J11 shows a more complicated trend.

At (x2′
R11

− x1)/η1 . 10, x2′
J11

is located further downstream than x2′
R11

. Such trend

changes when (x2′
R11

− x1)/η1 & 10, and x2′
J11

becomes fairly close to x2′
R11

. Again,

studies of different quantities evolving through space require analyses on budgets

and is relegated for future work. In any case, to be precise in our calculations and

avoid ambiguity, pressure jumps are computed at x2′p while Reynolds stresses are

computed at x2R11
. With this understanding we will use, for simplicity in notation,

x2′ and x2 for in what follows, respectively.
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II.E Resolution and DNS Database

We have generated a large DNS database of STI simulations. In table II.1 we

summarize the parameters for the simulations of STI with IT. The incoming tur-

bulence is at turbulent Mach numbers Mt ranging from 0.05 to 0.54 and Reynolds

numbers up to 65. These parameters are obtained at location x1. The table also

includes the ratio of Kolmogorov length scale to grid size η/∆x, and the laminar

shock thickness to grid size, δl/∆x, where (Thompson, 1984) δl = 2k1µ1/(c1ρ1∆M)

with k1 = (4/3 + µυ/µ1 + (γ − 1)/Pr), and µυ is the coefficient of bulk viscosity. In

our simulations k1 ∼ O(1). We have also included the classification of the regime

of the interaction based on Donzis (2012b) where we proposed a specific mechanism

for hole creation and a semi-analytical prediction of the boundary between regimes.

In particular we proposed a transition from wrinkled to broken at Mt/∆M ≈ 0.6

which is consistent with the regime observed at different conditions from DNS in the

literature (Larsson et al., 2013; Ryu & Livescu, 2014). In addition, a new regime is

also proposed to address unprecedented phenomena with details given in §IV.B.

To ensure grid independence, convergence tests were conducted to study the sen-

sitivity of variables that characterize both effects on the shock and the turbulence to

grid resolution. To do so, it is important to assess the effect of resolution on both

large and, more critically, small scales. Two quantities that satisfy these require-

ments and we analyze in detail below are the streamwise Reynolds stress, specifically

its amplification factor, and the maximum dilatation at the shock. Contributions

to these variables come primarily from large and small scales, respectively. The lat-

ter is thus critically sensitive to resolution as it is computed at a location where
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grid M Rλ Mt δl/∆x 〈δt〉/∆x η/∆x regime

1024x2562 1.1 12 0.05 4.89 11.0 8.58 wrinkled
512x1282 1.1 10 0.08 4.84 9.40 4.86 broken
512x1282 1.1 10 0.14 8.42 17.1 4.96 broken
256x1282 1.1 11 0.22 6.90 13.9 2.55 broken
256x1282 1.1 11 0.29 10.1 16.3 2.65 broken
256x1282 1.1 11 0.34 11.5 17.2 2.82 vanished*
1024x2562 1.1 27 0.13 4.85 23.8 4.65 broken
512x1282 1.1 24 0.22 4.57 25.8 2.56 broken
512x1282 1.1 25 0.30 6.99 29.5 2.68 broken
512x1282 1.1 24 0.44 12.83 50.0 3.05 vanished*
2048x5122 1.2 12 0.05 4.86 15.6 17.7 wrinkled
1024x2562 1.2 11 0.08 4.85 14.5 9.80 wrinkled
512x1282 1.2 10 0.14 4.53 12.3 4.94 broken
512x1282 1.2 12 0.22 7.42 19.6 5.05 broken
256x1282 1.2 13 0.39 5.82 16.6 2.48 broken
2048x5122 1.2 27 0.12 4.85 34.4 9.42 broken
1024x2562 1.2 24 0.21 4.82 36.4 5.14 broken
1024x2562 1.2 23 0.32 7.24 43.2 5.23 broken
512x2562 1.2 25 0.44 5.34 49.9 2.82 broken
2048x5122 1.2 47 0.34 4.69 84.5 4.61 broken
1536x5122 1.2 42 0.42 5.36 84.9 4.10 broken
4096x5122 1.2 62 0.28 4.86 129 6.48 broken
2048x5122 1.2 65 0.51 5.05 109 3.64 broken
2048x5122 1.4 23 0.23 4.82 45.6 9.51 wrinkled
1536x5122 1.4 25 0.33 5.45 48.8 7.78 broken
1024x2562 1.4 23 0.45 5.58 61.2 5.47 broken
1024x2562 1.4 24 0.54 6.32 61.8 5.35 broken

Table II.1: DNS database of isotropic turbulence passing through a shock: number
of grid points, mean Mach number (M), turbulent Mach (Mt) and Taylor Reynolds
numbers (Rλ), normalized shock thickness and Kolmogorov length scale. The regime
correspond to the criterion in (Donzis, 2012b): Mt/∆M less than and greater than
0.6 for the wrinkled and broken regimes respectively. Conditions for vanished regimes
(marked with *) are computed at the upstream minimum for pressure as that for
R11 disappears in this regime.
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grid M Rλ Mt R11/R22 δl/∆x 〈δt〉/∆x η/∆x regime

384x1282 1.07 5 0.15 1.24 25.9 25.11 5.86 vanished*
768x1282 1.1 4 0.02 1.26 8.55 9.15 13.6 wrinkled
384x1282 1.1 5 0.04 1.25 6.98 7.65 6.33 wrinkled
384x1282 1.1 5 0.07 1.33 11.7 12.2 6.47 broken
384x1282 1.1 5 0.12 1.57 15.8 17.1 6.14 broken
768x1282 1.1 13 0.06 1.11 4.88 9.96 5.23 wrinkled
512x1282 1.1 12 0.09 1.29 5.77 10.4 4.36 broken
384x1282 1.1 13 0.13 1.47 5.94 10.6 3.27 broken
384x1282 1.1 10 0.16 1.10 7.30 13.7 3.25 broken
768x1282 1.2 7 0.07 1.40 6.95 10.04 9.92 wrinkled
384x1282 1.2 5 0.09 1.37 7.37 9.25 6.49 wrinkled
384x1282 1.2 5 0.12 1.48 8.20 10.9 6.06 broken
384x1282 1.2 5 0.16 1.64 9.37 13.2 5.75 broken
1536x2562 1.2 13 0.05 1.44 4.75 11.0 12.9 wrinkled
896x1282 1.2 12 0.08 1.23 4.86 10.6 8.34 wrinkled
512x1282 1.2 13 0.16 1.48 4.98 12.6 4.38 broken

Table II.2: DNS database of anisotropic turbulence passing through a shock: number
of grid points, mean Mach number (M), turbulent Mach (Mt) and Reynolds numbers
(Rλ), normalized shock thickness and Kolmogorov length scale, shock regime Donzis
(2012b). Conditions for vanished regimes (marked with *) are computed at the
upstream minimum for pressure as that for R11 disappears in this regime.

Sources M Rλ Mt Method

Lee et al. (1993) 1.05-1.20 12-20 0.0567-0.11 Shock-resolving
Hannappel & Friedrich (1995) 2.0 6.67 0.17 Shock-capturing
Barre et al. (1996) 3.0 15 0.011 Experiment
Lee et al. (1997) 1.5-3.0 15.7-19.7 0.09-0.11 Shock-capturing
Mahesh et al. (1997) 1.3 19.1 0.14 Shock-capturing
Jamme et al. (2002) 1.2-1.5 5-6 0.173 Shock-resolving
Larsson & Lele (2009) 1.3-6.0 40 0.16-0.38 Shock-capturing
Larsson et al. (2013) 1.5 73 0.22 Shock-capturing
Ryu & Livescu (2014) 1.1-2.2 10-45 0.02-0.27 Shock-resolving
Tanaka et al. (2018) 1.1-1.5 18 2.96E-4 Shock-capturing
Boukharfane et al. (2018) 1.7-2.3 21 0.17 Shock-capturing

Table II.3: STI data from other simulations and experiments.

39



gradients are largest (inside the viscous shock). In fact, this is a very strict resolu-

tion criterion but necessary for well-resolved shock-resolving simulations. In figure

II.6, we show the typical behavior of the amplification factor of streamwise velocity,

G = R11,2/R11,1 and Θ ≡ (〈θ2s〉s/〈θs〉2s−1)1/2 where θs is the instantaneous dilatation

∂ui/∂xi when its magnitude is largest (that is inside the shock) as the ratio of shock

thickness to grid spacing is increased. The conditions are M = 1.2, Mt = 0.21 and

Rλ ≈ 25. We see that beyond δl/∆x ≈ 4.5, changes in these quantities are within 2%

and are thus considered grid converged. Similar results have been observed for the

other conditions in our database. At the same time, resolution should be fine enough

to resolve turbulence. We have found (Jagannathan & Donzis, 2016) that a resolu-

tion of η/∆x ≈ 0.5 is sufficient in isotropic turbulence to capture even fourth order

moments of velocity gradients at the conditions presented here. From tables II.1 and

II.2 we can see that resolving the shock wave provides a stricter resolution criterion.

Thus simulations with δl/∆x & 4.5 are considered well resolved. In the table we also

include 〈δt〉, the average thickness of the shock when turbulence is present (Donzis,

2012b) which is here computed as (〈u2〉−〈u1〉)/(∂〈u〉/∂x)max. As expected and con-

sistent with theoretical predictions (Donzis, 2012b), the difference between δl and

〈δt〉 increases with Mt. We do note that these definitions are estimates based on the

maximum gradient at the shock and upon inspection represent only a fraction of the

actual spatial extent occupied by the shock. In fact, even for the most stringent con-

dition, at least 20 grid points are located between x1 and x2 (see figure II.3). This is

generally consistent with Ryu & Livescu (2014) who found that 12 grid points across

the shock resulted in grid-converged results. As mentioned above, however, this is

for the most stringent cases and, as seen in the tables, most simulations have a larger
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Figure II.6: Grid-independence test with different δl/∆x at M = 1.1, Mt = 0.21 and
Rλ ≈ 25 for (a) amplification factor and (b) rms-to-mean dilatation. The dashed
line represents δl/∆x = 4.5.

number of grid points in the shock region.

Upstream of the shock, the flow is supersonic. The hyperbolic nature of the

governing equations in this condition results in characteristics that can only prop-

agate downstream. On the other hand, the flow behind the shock is subsonic and

characteristics can propagate both upstream and downstream. Thus, non-physical

features of the flow downstream of the shock can affect the interaction. To ensure the

sponges downstream of the shock have negligible effect on the interaction, we have

conducted simulations with varying distance between the shock and the sponges, ∆

(see figure II.1). The results are seen in figure II.7 where we show the distribution

of R11/R11,1 at M = 1.1, Mt = 0.22 and Rλ ≈ 10 with different values of ∆. Shock

drifting effect is observed at ∆ = 0.5π for which the location of the shock differs to

others. While the differences in this plot seem small, one would like to evaluate the

effect on the actual quantities of interest here. Thus, similar to the tests assessing

small-scale resolution described above, we assessed the effect of ∆ on amplification

factors and dilatation at the shock. The results are seen in figure II.8 where we

present G and Θ for different values of ∆. We can see that differences in this quan-
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Figure II.7: Distribution of R11 at M = 1.2, Mt = 0.23 and Rλ ≈ 10 with ∆ = 0.5π
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tities for ∆ & π are negligibly small. While data with ∆ = 0.5π is also close, as a

conservative measure especially at high Mt, we have used ∆ = π in all our simula-

tions. For reference, we mention that this distance corresponds to ∆ ≈ 2.2L where

L is the integral scale of the incoming turbulence.
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III. TURBULENT SHOCK JUMPS OF

THERMODYNAMIC VARIABLES

III.A Theoretical Background: Quasi-equilibrium Assumption and Trun-

cated Integrals

Available results in the literature clearly show that characteristics of STI de-

pend critically on, for example, the strength of turbulence (Andreopoulos et al.,

2000) which is not captured by LIA. An alternative view has been more recently put

forward (Donzis, 2012b), in which it was assumed, that the shock, locally, adjusts in-

stantaneously to local flow conditions. This was referred to as the quasi-equilibrium

assumption. If conditions are such that QE is satisfied, the shock surface can be

treated as a collection of infinitesimal laminar shocks at different conditions. For

QE to be valid, the time scale associated with the relaxation of the shock to a new

incoming condition should be much shorter than changes in upstream conditions pro-

duced by the turbulence. The estimation and comparison of these two time scales is

presented next.

ρ+ δρ

u+ δu

c+ δc

p+ δp

✲
w
✲

ρ

u

c

p

✲

Figure III.1: Perturbations in a flow with a moving wave

44



Consider a flow flied without any perturbation in the beginning as shown at the

right hand side of figure III.1. From the left, perturbations travel at a speed w to

the right, the conservation of mass at the downstream yields

ρδu+ δρ(u− w) = 0. (III.1)

According to momentum conservation, we can obtain the pressure perturation as

δp = −ρ(u− w)δu. (III.2)

Substituting Eq. (III.1) into Eq. (III.2) to eliminate δu, the speed of the traveling

wave is obtained as

w = u± c (III.3)

where c =
»
δp/δρ. This equation shows that the wave travels at the speed of sound

relative to the flow. The plus-minus sign depends on the direction of the wave. If

the wave is right-running, the speed would be u + c, and the speed would be u − c

for left-running waves.

If the flow is isentropic, thermodynamic quantities are related as p ∼ ργ ∼

T γ/(γ−1). With the speed of sound c =
√
γRT , we can then write

dp

p
= γ

dρ

ρ
=

γ

γ − 1

dT

T
=

2γ

γ − 1

dc

c
. (III.4)

Using Eq. (III.2) and Eq. (III.4), we can obtain the change of speed of sound with
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respect to flow velocity,

δc

δu
= ±γ − 1

2
. (III.5)

Let us consider the velocity slope, ∂u/∂x, to be a measure of wave form and how

such quantity changes at a given point of the wave. To obtain the evolution of this

velocity derivative, we turn to the Euler equation

∂u

∂t
= −u

∂u

∂x
− 1

ρ

∂p

∂x
. (III.6)

which, with Eq. (III.4) and Eq. (III.5), can be written as

∂u

∂t
= −(u± c)

∂u

∂x
. (III.7)

By taking the spatial derivative of Eq. (III.7), the time derivative of velocity gradient

is written as

∂ux

∂t
= ±γ + 1

2
u2
x − (u± c)uxx. (III.8)

where for simplicity in notation, subscript represent derivatives (e.g. ux = ∂u/∂x).

Since ux depends on both time and space, we can write

dux

dt
=

∂ux

∂t
+

dx

dt

∂ux

∂x
(III.9)

where dx/dt = u± c is the traveling speed of the wave. Finally, by substituting Eq.

(III.8) into Eq. (III.9), we can obtain the velocity derivative in a wave as

dux

dt
= ±γ + 1

2
u2
x. (III.10)
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Now consider a one-dimensional shock wave with a Mach number, M . If the

Mach number of the shock wave changes from M at t1 to M +m at t2 = t1 + ∆ts,

we can easily obtain

∆ts =
2

γ + 1

î
ux(t2)

−1 − ux(t1)
−1
ó

(III.11)

from Eq. (III.10). In general, the maximum negative gradient of velocity is consid-

ered the center of the shock. According to Taylor’s weak shock theory, the velocity

gradient, ux of the shock at t1 can be expressed as

ux(t1) = − ρc2

2(γ + 1)µk1

Ç
M − 1

M

å2

, (III.12)

Using the same method, we can also obtain the velocity gradient at t2 as well.

Applying Eq. (III.11) at t1 and t2 and then substituting into Eq. (III.12) yields

∆ts =
4D

c2

[Ç
M − 1

M

å2

−
Ç
M +m− 1

M +m

å2
]

. (III.13)

Eq. (III.13) represents the time for a shock to change from M to M +m. With the

equation expanded as a Taylor series in m and only the dominant terms included,

the time scale can be written as

∆ts ≈
4µk1
ρc2

g1(M)m (III.14)

where g1(M) = M(M2 +1)/(M2 − 1)3. By definition, Mach number fluctuation can

be correlated with longitudinal structure function by m =
»
DL

u (r)/c where DL
u refers

to a second order longitudinal velocity structure function. In isotropic turbulence,

47



classical theory shows that the second order structure function are

DL
u (r) = r2

〈Ç
∂u1

∂x1

å2
〉

=
r2ǫ

15ν
. (III.15)

Finally, the required time for a shock to change from one state to another one would

be

∆ts ≈
4µk1
ρc3

g1(M)

√

r2ǫ

15ν
. (III.16)

As the shock condition changes from M to M + m, the fluids would move a

distance from x to x+ r correspondingly. Then the time for turbulent flows to move

a distance r would be

∆tt =
r

U
(III.17)

where ∆tt represents the time for turbulence to change correspondingly with the

shock and U is the mean flow velocity.

As QE dictates that ∆ts ≪ ∆tt, we proceed to compare these two quantities.

Using the well-known relation ǫ = νu2/15λ2, the ratio of the two time scales from

the shock and turbulence defined in Donzis (2012b) would become

(III.18)

Kt ≡
∆ts
∆tt

=
4µk1
ρc3

g1(M)

√

r2ǫ

15ν

U

r

=
4k1
15

µu

ρc2λ
g2(M)

where g2 = g1(M)M and O(4k1/15) ∼ 1. A good approximation for g2 is 1/∆M2
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(Donzis, 2012a). Using this result in Eq. (III.18), we can finally get

Kt ≈ K2 (III.19)

where K was previously discussed in §I.B and it represents the ratio of laminar shock

thickness to Kolmogorov length scale. QE is only valid when Kt ≪ 1. This condition

is satisfied by most STI database in the literature, including present studies.

We have showed that QE is justified when K ≪ 1 which is satisfied for virtually

all cases available in the literature. The main analytical advantage of QE is that it

provides a framework in which well-known laminar results can be used to analytically

compute mean variables in STI. For example, in Donzis (2012b) we derived statistics

of the dilatation at the shock (Θ) which compared very well with available numerical

data in the literature. Furthermore, the analysis yielded a dependence on a new

non-dimensional parameter (Mt/∆M) which was found to provide a much better

collapse of the data than what had been proposed before (M2
t /(M

2 − 1)).

In this section we use QE to provide analytical results for thermodynamic jumps

across a turbulent shock and generalize previous results on the statistics of the dilata-

tion at the shock. In particular, we are interested in STI when turbulence is strong.

In this context, we first introduce a generalization of the analysis (Donzis, 2012b)

which requires a redefinition of integrals to compute statistical moments across planes

parallel to the shock surface.

Consider a laminar shock and a quantity q that depends on the upstream Mach

number, M , that is q = q(M). Under QE, one can write q as a function of the local

instantaneous Mach number, that is q = q(M +m) where m is the fluctuating Mach
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number. In general, the n-th order moment of q is given by the integral

(III.20)〈qn〉 =
∫ ∞

−∞
qn(M +m)fm(m)dm

where fm(m) is the p.d.f. of m.

However, the actual functional form of q(M + m) may depend on whether the

flow is supersonic or subsonic. For example, in locations where the flow is supersonic

upstream of the mean location of the shock, the pressure will change according to the

Rankine-Hugoniot relations. However, if the flow is subsonic (due to strong negative

m fluctuations), then Rankine-Hugoniot relations are invalid. This, as we argued in

Donzis (2012b) creates holes in the shock surface.

Upstream of the shock (x1) the instantaneous Mach number is given by M +m.

For the flow to be supersonic one needs M+m > 1 or, in terms of ∆M = M−1, one

needs m > −∆M . Similarly subsonic regions correspond to fluctuations that satisfy

m < −∆M . Thus, we split the integral in Eq. (III.20) as

(III.21)〈qn〉 =
∫ ∞

−∆M
(q>)nfm(m)dm+

∫ −∆M

−∞
(q<)nfm(m)dm.

where q> and q< are the functional form of q in supersonic and subsonic regions,

respectively. For short, the supersonic and subsonic integrals will be denoted by

〈qn〉> and 〈qn〉<, respectively, that is

〈qn〉 = 〈qn〉> + 〈qn〉<. (III.22)

One can, for example, compute moments of the fluctuating Mach number itself,

i.e. q = m, for which supersonic and subsonic expressions are the same (q> = q<).
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In this case we have:

〈m0〉> =
∫ ∞

−∆M
fm(m)dm (III.23a)

〈m〉> =
∫ ∞

−∆M
mfm(m)dm (III.23b)

〈m2〉> =
∫ ∞

−∆M
m2fm(m)dm (III.23c)

〈m0〉< =
∫ −∆M

−∞
fm(m)dm (III.23d)

〈m〉< =
∫ −∆M

−∞
mfm(m)dm (III.23e)

〈m2〉< =
∫ −∆M

−∞
m2fm(m)dm. (III.23f)

where we also introduce the zeroth-order moment for conciseness in notation in what

follows. Obviously, 〈m0〉 = 1 and 〈m〉=0. Also note that by definition we can write

the turbulent Mach number as:

Mt =
√
3〈m2〉1/2 =

√
3
Å∫ ∞

−∞
m2fm(m)dm

ã1/2
. (III.24)

It has been known for some time that the velocity field in isotropic turbulence

is generally well represented by a normal distribution, that is, it obeys Gaussian

statistics (Batchelor, 1953; Monin & Yaglom, 1975b). This is indeed the case for

our data for both IT and SDT as can be seen in figure III.2(a) where we show even

moments of the streamwise velocity component from our DNS database. Gaussian

values are included as horizontal dashed lines for reference. We can also see a slight

sub-Gaussian behavior for very high orders which has indeed been observed in the

tails of velocity p.d.f.s before (Noullez et al., 1997; Jimenez, 1998). In any case,

51



0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

(a)

K

(b)

K

Figure III.2: Even moments of (a) velocity fluctuation 〈u′n〉/〈u′2〉n/2 and (b) Mach
number fluctuation 〈mn〉/〈m2〉n/2 as function of K at location 1 for all the simula-
tions in tables II.1 and II.2: M = 1.1 (circles), M = 1.2 (squares), and M = 1.4
(diamonds). Open and closed symbols are for IT and SDT simulations. From bottom
to top n = 4, 6, and 8. Dashed lines correspond to Gaussian values at 3, 15 and 105,
respectively.

our results will rely on at most second order statistics of m for which a Gaussian

behavior is an excellent approximation. The same conclusion is also applicable to

Mach number fluctuations as shown in figure III.2(b).

For reference, the first few truncated moments of m for a Gaussian distribution

are shown in table III.1 where Eq. (III.24) has been used to write results in terms of

∆M and Mt. Note that the second and fifth rows (〈m0〉> and 〈m0〉<) represent the

probability of finding—or fraction of the shock area with—supersonic and subsonic

regions, respectively. In fact, in Donzis (2012b) we argued that, consistent with QE,

holes in the shocks are caused by locally subsonic conditions. Then 〈m0〉< would

represent the fraction of the shock with subsonic regions and holes. This analytical

form is shown in figure III.3 as a solid line. One can see that the subsonic fraction

upstream of the shock is negligible for Mt/∆M . 0.6 but grows quickly with Mt/∆M

beyond that. Thus, one expects to observe holes at Mt/∆M & 0.6 (Donzis, 2012b)

in what is now called the broken regime. This criterion has indeed been supported
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»
3
2π
e
− 3m2
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〈m0〉> 1
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erf(
»
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Mt

)

〈m〉> Mt√
6π
e
− 3

2

∆M2

M2
t

〈m2〉> M2
t

6
− ∆MMt√

6π
e
− 3

2

∆M2

M2
t +

M2
t

6
erf(
»

3
2
∆M
Mt

)

〈m0〉< 1
2
− 1

2
erf(
»

3
2
∆M
Mt

)

〈m〉< - Mt√
6π
e
− 3

2

∆M2

M2
t

〈m2〉< M2
t

6
+ ∆MMt√

6π
e
− 3

2

∆M2

M2
t − M2

t

6
erf(
»

3
2
∆M
Mt

)

Table III.1: Low order moments of m for a Gaussian distribution.

by recent DNS data (Larsson & Lele, 2009). In the figure we also include results

from our own DNS taken as the fraction of subsonic regions observed at x = x1.

Excellent agreement is observed which supports both the Gaussian assumption for

m as well as the criterion Mt/∆M = 0.6 to delineate the boundary between wrinkled

and broken regimes. The last column in tables II.1 and II.2 indicates the regime of

the interaction based on this criterion.

III.B Turbulence Shock Jumps of Thermodynamic Quantities

The Rankine-Hugoniot (RH) relations are analytical solutions of the conservation

equations that relate upstream and downstream conditions of an one-dimensional

steady shock in a laminar flow. These are commonly referred to as jump conditions

and are a function of the upstream mean flow Mach number M alone. In turbulent

flows, fluctuations upstream of the shock can modify jumps, an effect that is more

prominent as the strength of turbulence increases (Larsson et al., 2013). This can be

seen in figure III.4 where we plot plane averages of pressure and density along the
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Figure III.3: Probability of subsonic regions upstream of the shock. Solid line:
theoretical Ps = P (m < −∆M) with Gaussian p.d.f. for m. Symbols for DNS data
at Rλ ≈ 5 (stars), Rλ ≈ 10 (circles), Rλ ≈ 25 (squares), Rλ ≈ 45 (diamonds), and
Rλ ≈ 65 (plus signs). Open and closed symbols are for IT and SDT simulations,
respectively. Gray dashed line at Mt/∆M = 0.6 for reference.

streamwise direction for different values of Mt. It is clear that as Mt increases the

jump weakens compared to the laminar RH jump (horizontal dotted lines) at a fixed

M = 1.2. More generally, these results demonstrate that thermodynamic jumps

across a normal shock depend not only on the mean flow but also on the turbulent

fluctuations. This effect cannot be captured by classical theories such as LIA where

the only parameter governing the interaction is M . Our objective here is to obtain

analytical solutions for shock jumps of thermodynamic variables that can account

for the effects of turbulence. The derivations below will rely on the QE assumption.

Consider first the ratio of mean density upstream and downstream of the shock,

that is, 〈ρ2′〉/〈ρ1〉. To compute this ratio we will obtain 〈ρ1〉 and 〈ρ2′〉 in turn. We

first note that in general the mean density ahead of a shock depends on the levels

of fluctuations. A convenient way to account for this is to write the instantaneous
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Figure III.4: (a) Pressure and (b) density profile of normal shocks interacting with
isotropic turbulence at M = 1.2, Rλ ≈ 25 and Mt = 0.12 (solid), 0.21 (dashed), 0.32
(dashed-dotted) and 0.44 (dotted). Gray lines correspond to the laminar inviscid
limit, namely, RH jumps.

density upstream of the shock in terms of stagnation conditions,

(III.25)ρ1 =

ñ
γ − 1

2
(M +m)2 + 1

ô− 1

γ−1

ρ01

where subscript 0 indicates a stagnation property. Note that Eq. (III.25) is generally

valid as stagnation properties can be thought of as a reference state when the flow

is brought to rest isentropically even if this does not actually happen. Also note

that stagnation properties can be different at different locations and different times.

However, if fluctuations are isentropic, then ρ01 would be a constant across a plane

parallel to the shock (over which averages are taken) independent of local Mach

number fluctuations. This is in fact a very reasonable approximation for fluctuations

not very far from the mean (Donzis & Jagannathan, 2013). Even if it is not strictly

constant, one can also expand the stagnation density in series and if fluctuations are

small, one can discard higher order terms and obtain Eq. (III.25) with ρ01 being the

first term in the expansion. In the derivation that follows we will thus assume ρ01 to

be a constant.
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Expanding Eq. (III.25)) in Taylor series around the mean Mach number yields:

(III.26)ρ1 = ρ1|m=0 +

Ç
∂ρ1
∂m

å

m=0

m+
1

2

Ç
∂2ρ1
∂m2

å

m=0

m2 + . . . .

The average can then be computed by

(III.27)〈ρ1〉 =
∫ ∞

−∞
ρ1fm(m)dm.

Since the integral in this case are over the entire probability space of m, the zeroth-

order moment of m would be unity, the first-order moment would be zero and the

second-order moment would be M2
t /3 regardless of the specific velocity distribution.

Combining Eqs. (III.25), (III.26) and (III.27) and a Gaussian fm(m) (see table III.1)

we can obtain the final form for the mean upstream density:

(III.28)〈ρ1〉 =M
−1

γ−1ρ01 +
1

12
M

−2γ+1

γ−1

î
(γ + 1)M2 − 2

ó
ρ01M

2
t

where, for simplicity in notation, we have defined M ≡ (γ − 1)M2/2 + 1. The

first term in Eq. (III.28) corresponds to the laminar contribution while the second

term corresponds to turbulence effects which depend explicitly on both M and Mt.

Clearly, as M → ∞ or Mt → 0, the second term vanishes, as expected.

Under the QE assumption, the density immediately downstream of the shock (i.e.

location 2′) will be given by RH expressions using the local Mach number, that is

ρ>2′ =
(γ + 1)(M +m)2

(γ − 1)(M +m)2 + 2
ρ1 (III.29)

The superscript > has been added to emphasize that shock relations are valid only

for supersonic regions. Using Eq. (III.25), the expression becomes:

ρ>2′ =

ñ
(γ + 1)(M +m)2

(γ − 1)(M +m)2 + 2

ô ñ
γ − 1

2
(M +m)2 − 1

ô− 1

γ−1

ρ01. (III.30)
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In subsonic regions this expression is clearly invalid and, thus, averages need to be

taken using the split form in Eq. (III.22). For subsonic regions, where shock holes

appear, one can assume that variables will approximately retain their upstream value

considering the shock thickness is relatively small compared to typical turbulence

length scales. That is, ρ<2′ ≈ ρ1. This assumption is indeed supported by observations

of instantaneous density profiles in the broken regime (e.g. Larsson & Lele, 2009).

Hence, the average downstream density is given by:

(III.31)〈ρ2′〉 = 〈ρ>2′〉> + 〈ρ1〉< .

Again, using Taylor series for Eq.(III.30) and substituting into Eq.(III.31) one can

integrate the expressions analytically with fm(m) Gaussian, to obtain

(III.32)

〈ρ2′〉 =
ñ

(γ + 1)M2

(γ − 1)M2 + 2

ô
M

−1

γ−1ρ01〈m0〉>

− γ + 1

2
M(M2 − 2)M

−2γ+1

γ−1 ρ01〈m〉>

+
γ + 1

8
M

−3γ+2

γ−1

î
(γ + 1)M4 − (6γ + 4)M2 + 4

ó
ρ01〈m2〉>

+M
−1

γ−1ρ01〈m0〉< −MM
−γ

γ−1ρ01〈m〉<

+
1

4
M

−3γ+2

γ−1

î
(γ + 1)M2 − 2

ó
ρ01〈m2〉<

which, though very complicated, provides an analytical closed form for the mean

density downstream of a shock as a function of both M and Mt.

Thus the density jump across a shock in a turbulent flow with mean Mach number

M and turbulent mach number Mt can be written as

〈ρ2′〉
〈ρ1〉

= gρ(M,Mt) (III.33)

where gρ(M,Mt) is the ratio of Eq. (III.32) and Eq. (III.25).
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Figure III.5: Mean density jumps from IT (squares) and SDT (circle) simulations at
M = 1.1 (dark), 1.2 (medium) and 1.4 (light). Other symbols are for Larsson & Lele
(2009) (▽), and Larsson et al. (2013) (⊳). Solid lines correspond to the analytical
solution Eq. (III.33) at M = 1.1, 1.2, 1.28, 1.4, 1.5 and 1.87 (bottom to top). Gray
dashed line at Mt/∆M = 0.6 separates the wrinkled (W) and broken (B) regimes.
Vanished regime lines at Rλ ≈ 5 (V5) and Rλ ≈ 65 (V65) also included as gray dashed
lines.

In figure III.5 we show 〈ρ2′〉/〈ρ1〉 from DNS data as a function of Mt along with

Eq. (III.33). We see very good agreement between DNS data from various sources

(symbols) and the theoretical prediction (solid lines). As expected, laminar condi-

tions are recovered as the turbulent Mach number decreases which is seen as solid

lines approach their asymptotic RH value at Mt → 0. It is interesting to note that the

effect of turbulent fluctuations depend on the mean Mach number, M . In particular,

stronger turbulence effects are observed at higher M . This suggests an interaction

between means and fluctuations which is not accounted for in classical theories such

as LIA. For relatively high M , an increase in turbulence intensity measured by Mt,

results in weakened jumps relative to the laminar situation. Weaker jumps have been

observed in simulations before (Larsson et al., 2013) though theoretical predictions
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using RDT (Lele, 1992b) for example, were argued (Larsson et al., 2013) to remain

only qualitatively consistent with the data. The quantitative agreement between Eq.

(III.33) and data observed in figure III.5, thus, provides support to the adequacy of

the QE assumption to capture the two-way coupling which effects changes in mean

jumps.

We also see that there is a qualitative change in the effect of turbulence as M

decreases. For relatively weak shocks (low M) the theory in fact predicts stronger

shock jumps as turbulence intensity increases. Our DNS data do indeed show a

consistent, though small, increase with Mt. This low-M conditions may be important

in situations around transients crossing sonic conditions such as bodies, vanes, or

blades accelerating to supersonic speeds or decelerating to subsonic speeds. At M ≈

1.2, jumps appear to be only weakly affected by turbulence with jumps remaining

fairly constant with Mt. This transition M , however, is not general and depends on

the value of γ. We do note that the conditions under which mean jumps are larger

than in a laminar shock at the same M correspond to weak shocks with very intense

turbulence, very close to the so-called vanished regime (discussed below and in §IV)

which may be challenging to generate reliably and stably in controlled experiments.

In figure III.5 we also show a (dashed) line at constant Mt/∆M = 0.6 which

separates the wrinkled (denoted W in the figure) and broken (denoted B) regimes

(Donzis, 2012b). Conditions to the left of the WB line correspond to wrinkled in-

teractions where the planar shock retains its structure and is only mildly distorted

by the relatively weak incoming turbulent fluctuations. To the right of that line, the

interaction is in the broken regime where holes appear across the shock. At even

higher turbulent intensities we find (to be discussed more in §III) that turbulence
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alters the shock significantly in such a way that Reynolds stresses undergo approx-

imately a classical turbulent decay through the nominal position of the shock and

no local extrema at x1 or x2 (figure II.3a) forms. In other words, the effect of the

shock on the turbulence vanishes. We thus call this the vanished regime, which we

find emerges for interactions with K & 1.0, or Mt/∆M & R
1/2
λ . Lines marking the

vanished regime in figure III.5 would then depend on Rλ. For simplicity thus, we

include only V lines at the lowest (5) and highest (65) Reynolds numbers in our

database with intermediate cases laying between these lines. In the vanished regime,

characterized by strong three-dimensional distortion of the shock wave due to very

intense turbulence fluctuations, it is not expected that fundamental assumptions be-

hind QE will hold. This may explain the discrepancy seen between theory and DNS

data for high-Mt low-M interactions (close to the V lines) in figure III.5.

Following the same procedure described above, one can obtain expressions for

〈p1〉, 〈p2′〉, 〈T1〉 and 〈T2′〉 as well. Similar to density Eq. (III.25), the expressions for

upstream pressure and temperature are given by:

p1 =

ñ
γ − 1

2
(M +m)2 + 1

ô− γ

γ−1

p01 (III.34a)

T1 =

ñ
γ − 1

2
(M +m)2 − 1

ô−1

T01. (III.34b)

Under QE, thermodynamic variables downstream of the shock will be given by
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RH expressions in supersonic regions:

p>2′ =

ñ
2γ

γ − 1
(M +m)2 − γ − 1

γ + 1

ô ñ
γ − 1

2
(M +m)2

ô− γ

γ−1

p01 (III.35a)

T>
2′ =

ñ
2γ

γ + 1
((M +m)2 − 1) + 1

ô ñ
(γ − 1)(M +m)2 + 2

(γ + 1)(M +m)2

ô

ñ
γ − 1

2
(M +m)2 − 1

ô−1

T01

(III.35b)

while in subsonic regions we have p<2′ ≈ p1 and T<
2′ ≈ T1.

These four expressions are now expanded around their respective mean as

q = q|m=0 +

Ç
∂q

∂m

å

m=0

m+
1

2

Ç
∂2q

∂m2

å

m=0

m2 + . . . (III.36)

where q = p1, p
>
2′ , T1, or T>

2′ .

For upstream quantities (〈p1〉 and 〈T1〉) the averages are computed using complete

integrals against the p.d.f. of m. For downstream quantities (〈p2′〉 and 〈T2′〉) one

needs to split integrals as in (III.31) to distinguish subsonic from supersonic regions:

〈p1〉 =
∫ ∞

−∞
p1fm(m)dm (III.37a)

〈p2′〉 =
∫ ∞

−∆M
p>2′fm(m)dm+

∫ −∆M

−∞
p1fm(m)dm (III.37b)

〈T1〉 =
∫ ∞

−∞
T1fm(m)dm (III.37c)

〈T2′〉 =
∫ ∞

−∆M
T>
2′ fm(m)dm+

∫ −∆M

−∞
T1fm(m)dm. (III.37d)

Upon integration aided by the forms in Table III.1, the final expressions of mean
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pressure and temperature are

〈p1〉 = M

−γ

γ−1p01 +
γ

12
M

−3γ+2

γ−1

î
(3γ − 1)M2 − 2

ó
p01M

2
t (III.38a)

〈p2′〉 =
ñ

2γ

γ + 1
M2 − γ − 1

γ + 1

ô
M

−γ

γ−1p01〈m0〉> (III.38b)

+
γM

γ + 1

Ä
−2M2 + γ + 3

ä
M

−2γ+1

γ−1 p01〈m〉>

+
γ

4(γ + 1)
M

−3γ+2

γ−1

î
(2γ + 2)M4 − (3γ2 + 8γ + 9)M2 + (2γ + 6)

ó
p01〈m2〉>

+M
−γ

γ−1p01〈m0〉< − γMM
−2γ+1

γ−1 p01〈m〉<

+
γ

4
M

−3γ+2

γ−1

î
(3γ − 1)M2 − 2

ó
p01〈m2〉< (III.38c)

〈T1〉 = M

−1T01 +
γ − 1

12
M

î
(3γ − 3)M2 − 2

ó
T01M

2
t (III.38d)

〈T2′〉 =
ñ

2γ

γ + 1
(M2 − 1) + 1

ô ñ
(γ − 1)M2 + 2

(γ + 1)M2

ô
M

−1T01〈m0〉>

+
4(γ − 1)

(γ + 1)2M3
T01〈m〉> − 6(γ − 1)

(γ + 1)2M4
T01〈m2〉>

+M−1T01〈m0〉< − (γ − 1)MM−2T01〈m〉<

+
γ − 1

4
M

−3
î
3(γ − 1)M2 − 2

ó
T01〈m2〉<, (III.38e)

where, as in the main text, we have defined M = (γ − 1)M2/2 + 1 for convenience.

The final result is simplified as

〈p2′〉
〈p1〉

= gp(M,Mt) (III.39)

〈T2′〉
〈T1〉

= gT (M,Mt). (III.40)

The ratio of the corresponding expressions yield the expressions of thermody-
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Figure III.6: Mean pressure and temperature jumps from IT (squares) and SDT
(circles) simulations, Lee et al. (1993) (⊲) and Larsson et al. (2013) (⊳). Solid lines
correspond to the analytical solution (III.38) at M = 1.1, 1.2, 1.4, and 1.5 (bottom
to top). Gray dashed line at Mt/∆M = 0.6 separates the wrinkled (W) and broken
(B) regimes. Vanished regime lines at Rλ ≈ 5 (V5) and Rλ ≈ 65 (V65) also included
as gray dashed lines.

namic shock jumps denoted in Eq. (III.33), Eq. (III.39) and Eq. (III.40).

The comparison between DNS data and Eq. (III.39) and Eq. (III.40) is shown

in figure III.6. Again, good agreements are observed at a range of Mt. While the

behavior of pressure is very similar to that of density we see that that of temperature

is not. In fact, trends appear inverted: at low M effects are stronger and jumps

become larger as Mt increases. At high M , effects are weaker and there is a slight

decrease in jumps as Mt increases.

It is interesting that while it has been argued in the literature that stronger

turbulence leads to weakened shock jumps (Lele, 1992a), the data presented here

suggest a more complex interaction. In particular, whether turbulence weakens or

strengthens shock jumps depends on the specific combination of Mt, and M . The

theoretical results here can, in fact, provide the necessary guidance to understand this
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observation. Consider the relative change of the density jump 〈ρ2′〉/〈ρ1〉 = gρ(M,Mt)

with respect to the laminar RH jump, gRH
ρ (M):

Rρ(M,Mt) =
gρ(M,Mt)− gRH

ρ (M)

gRH
ρ (M)

(III.41)

This function, which with Eq. (III.33) is known analytically, provides direct infor-

mation of the effect of turbulence on the jumps of mean thermodynamic quantities.

This is shown in figure III.7(a) where we can now clearly see that the effect of tur-

bulence on jumps depends on both M and Mt. In general for low M , an increase

of turbulence intensity (Mt) leads to stronger shocks (Rρ(M,Mt) > 0) relative to a

laminar shock at the same M . However, as M increases Rρ(M,Mt) changes sign and

jumps become weaker. At higher M , Rρ(M,Mt) decrease monotonically towards zero

from below indicating a vanishing turbulence effect as M → ∞. A similar general

behavior is observed for the similarly defined Rp(M,Mt) and RT (M,Mt) shown in

figure III.7.

Two characteristic Mach numbers can now be identified for Rρ(M,Mt). First,

we identify Mρ
cr(Mt) as the critical Mach number at which Rρ(M,Mt) changes sign.

This can be readily found by solving Rρ(M,Mt) = 0 numerically for fixed Mt. The

result is shown in figure III.8(a) along with the critical Mach numbers for pressure

and temperature. We see that, while qualitatively similar, the critical Mach number

is numerically different for ρ, p and T . Conditions below and above the correspond-

ing Mcr(Mt) lines represent stronger and weaker shock jumps respectively for the

different thermodynamic variables. We can also see that the critical Mach number

appears mainly in the broken regime (between the W-B and V5 lines).
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Figure III.7: Relative departures from laminar RH jumps for (a) density Rρ(M,Mt),
(b) pressure Rp(M,Mt), and (c) temperature RT (M,Mt) at Mt = 0.1, 0.3, 0.5, and
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gray dashed lines.
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sure (X = p, dashed), and temperature (X = T , dashed-dotted). Gray dashed
line at Mt/∆M = 0.6 separates the wrinkled (W) and broken (B) regimes. Vanished
regime lines at Rλ ≈ 5 (V5) and Rλ ≈ 65 (V65) also included as gray dashed lines. (b)
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An interesting prediction by the theory is the existence of conditions at which

pressure and density jumps are weakened by turbulence (M > Mρ
cr and M > Mp

cr)

while temperature jumps are strengthened (M < MT
cr). This is indeed supported by

our DNS data at Mt = 0.39 and M = 1.2 where temperature experiences an increase

stronger than RH while pressure and density experience a weaker-than-RH increase

across the shock. This is seen in figure III.9(a) where we plot DNS data for this case

along with RH jumps for this condition. In figure III.9(b) we show a condition where

all thermodynamic variables experience a stronger-than-RH jump due to turbulence.

A second characteristic Mach number is the location of the minimum observed

for given Mt in figure III.7. This corresponds to the condition at which the largest

turbulent effects are observed, and are denoted by Mρ
m(Mt), M

p
m(Mt), and MT

m(Mt)

for density, pressure and temperature, respectively. These can be obtained by solving

∂Rρ(M,Mt)/∂M = 0 and similar equations for density and pressure. The result is
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grey dashed lines indicate the location of x2′ .

shown in the inset of figure III.8(a). Mm(Mt) also is mainly in the broken regime

though the three thermodynamic quantities lie close to each other and to the W-B

line. However, for higher Mt we see MT
m(Mt) grows substantially indicating that the

strongest turbulence effect on temperature moves to higher values of M .

The analysis here also suggests that, for a fixed Mt, there is a bound on how

much a shock can be weakened by turbulence. This is given by the minimum value of

Rρ(M,Mt) (Rρ,m for short), which occurs at the second characteristic Mach number,

that is Rρ,m ≡ Rρ(M
ρ
m(Mt),Mt). This is shown in figure III.8(b) where we see

that pressure jumps can be of the order of 30% weaker at high Mt. Weakening of

temperature jumps however, are much smaller, staying below ∼ 5% for the Mach

numbers studied here. The Mach number at which this maximum effect is realized

can be obtained from figure III.7 or the full analytical expressions.

As a good agreement is obtained by comparing the analytical solutions to the

DNS data, we expect that our solutions approach to laminar values at Mt → ∞. In

laminar supersonic flows, density jump is solely dependent on M . With increasing M ,
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Figure III.10: Theoretical solution of density jump from Eq. (III.33) in terms of M
and Mt.

the density jump would saturate and become a constant, (γ+1)/(γ−1), in hypersonic

flows. Though we have shown that turbulence modifies the shock jumps, previous

discussion also mentioned that this turbulent effects would gradually disappear with

M . This implies that our derived equations would approach to laminar flows in

hypersonic condition. Figure III.10 shows the density jumps from Eq. (III.33) in

terms of M and Mt. At relatively weak shocks, an evident Mt dependence is observed.

But such dependence quickly vanishes when the flows transition from supersonic to

hypersonic. Our solution of density jump shows that the jump would saturate at

hypersonic limit. This saturation verifies that turbulence effects become negligible

at high M and the solution predicts similar laminar results.

Finally, we turn to entropy which is also expected to contain both laminar and

turbulent contributions. In general the entropy change as a perfect gas moves from

a thermodynamic state A to another one B can be written as ∆s = Cp ln(TB/TA)−

R ln(pB/pA). In a laminar shock, the states A and B correspond to the upstream

and downstream locations, respectively. In a turbulent flow, as before, one can use
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QE to obtain the mean entropy jump across a shock as:

〈∆s〉 = 〈∆s<〉< + 〈∆s>〉> (III.42)

For supersonic regions we have

(III.43)∆s > = Cp(lnT2′ − lnT1)−R(ln p2′ − ln p1),

for which the different terms can be computed as before. The logarithm of the

instantaneous temperature and pressure in terms of M and m are

ln p1 = ln

Ññ
γ − 1

2
(M + m̃)2 + 1

ô− γ

γ−1

p01

é
(III.44a)

ln p2′ = ln

Ññ
2γ

γ − 1
(M + m̃)2 − γ − 1

γ + 1

ô ñ
γ − 1

2
(M + m̃)2

ô− γ

γ−1

p01

é
(III.44b)

lnT1 = ln

(ñ
γ − 1

2
(M +m)2 + 1

ô−1

T01

)

(III.44c)

lnT2′ = ln

Çñ
2γ

γ + 1
((M +m)2 − 1) + 1

ô

ñ
(γ − 1)(M +m)2 + 2

(γ + 1)(M +m)2

ô ñ
γ − 1

2
(M + m̃)2 − 1

ô−1

T01

å
(III.44d)
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which upon expanding in Taylor series and averaging leads to:

〈ln p1〉> = ln
(

M

− γ

γ−1

)

+
γ

12

î
(γ − 1)M2 − 2

ó
M

−2M2
t + ln p01 (III.45a)

〈ln p2′〉> = ln

Çñ
2γ

γ + 1
M2 − γ − 1

γ + 1

ô
M

−γ

γ−1

å
〈m0〉>

+
γM (−2M2 + γ + 3)

2γM2 − γ + 1
M

−1〈m̃〉>

γ

[

−M−2 +
M

−1

2
+

4− 4γ

(−2γM2 + γ − 1)2
− 2

(2γM2 − γ + 1)

]

〈m̃2〉>

+ ln
(

M

− γ

γ−1

)

〈m̃0〉< − γMM−1〈m̃〉<

+
γ

12

î
(γ − 1)M2 − 2

ó
M

−2〈m̃2〉< + ln p01 (III.45b)

〈lnT1〉> = ln
Ä
M

−1
ä
+

(γ − 1) [(γ − 1)M2 − 2]

3 [(γ − 1)M2 + 2]
M2

t + lnT01 (III.45c)

〈lnT2′〉> = ln

Çñ
2γ

γ + 1
(M2 − 1) + 1

ô ñ
(γ − 1)M2 + 2

(γ + 1)M2

ô
M

−1

å
〈m0〉>

+
2(γ − 1)

2γM3 − γM +M
〈m̃〉> − (γ − 1)[γ(6M2 − 1) + 1]

(2γM3 − γM +M)2
〈m̃2〉>

+ ln
Ä
M

−1
ä
〈m̃0〉< − −2(γ − 1)M

2 + (γ − 1)M2
〈m̃〉<

+
(γ − 1) [(γ − 1)M2 − 2]

2M2
〈m̃2〉< + lnT01. (III.45d)

Finally, the averaged entropy jump at supersonic regions is obtained from Eq.

(III.45),

(III.46)〈∆s>〉 > = [Cp(〈lnT2′〉> − 〈lnT1〉>)−R(〈ln p2′〉> − 〈ln p1〉>)] 〈m0〉>,

For subsonic regions where there is no shock, the entropy increase will be solely

due to the dissipative nature of turbulence. Obukhov (1949) showed that entropy

generation due to turbulent fluctuations is proportional to the temperature variance.

Specifically he showed that when the flow decays from a state characterized by a

temperature variance 〈T ′2〉, the entropy increase when fluctuations have decayed to
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zero is 〈∆s〉 ≈ Cp〈T ′2〉/〈T 〉2. In the present cases, turbulence will not be completely

dissipated as it crosses the shock region and reaches x2′ . However, it is still expected

that the entropy increase will be proportional to the variance of temperature of the

incoming flow. Furthermore, this variance can be written in terms of the turbulent

Mach number as 〈T ′2〉/〈T 〉2 ≈ (A2/9)(γ − 1)2M4
t (Donzis & Jagannathan, 2013).

Thus, by taking conditional averages for the subsonic regions one can expect

〈∆s<〉< = αsCp(γ − 1)2M4
t 〈m0〉<, (III.47)

where all prefactors are absorbed in the constant αs.

Finally, with (III.46) and (III.47) we can obtain the entropy jump across a tur-

bulent shock wave:

〈∆s〉
Cp

= gs(M,Mt). (III.48)

The DNS data of entropy jump across the shock along with the theoretical predic-

tion Eq. (III.48) are shown in figure III.11. The comparison shows a good agreement

though there are some scatters in the data. At very low Mt, the change of entropy is

due entirely to the well known laminar jumps (Thompson, 1984). As Mt increases,

we see a substantial increase in entropy production by both DNS and the theoretical

prediction Eq. (III.48).

The theoretical result approaches an asymptotic M4
t at high Mt indicating that

turbulent entropy generation replaces the shock contribution and becomes the domi-

nant mechanism. Note that the supersonic regions also contains “turbulence effects”:

this is seen, for example, from the second term in Eq. (III.45c) which vanishes as the
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Figure III.11: Mean entropy increase from IT (�) and SDT ( ) simulations. Solid
lines correspond to the analytical solution (III.48) at M = 1.1, 1.2, 1.4, and 1.5
(bottom to top) with αs = 1.176. Gray dashed line at Mt/∆M = 0.6 separates the
wrinkled (W) and broken (B) regimes. Vanished regime lines at Rλ ≈ 5 (V5) and
Rλ ≈ 65 (V65) also included as gray dashed lines.

incoming flow fluctuations weakens (Mt → 0). However, the asymptotic behavior

of these terms is a weaker power law than M4
t . Furthermore, the entropy increase

through shock holes is independent of the mean Mach number as it only reflects

entropy production due to turbulent dissipation. Thus, the observed decreasing gap

between curves at different M as Mt increases is also supportive of an increasingly

dominant contribution from turbulent decay.

To further verify our solution of Eq. (III.48), we have to assure that entropy

jump does not violate the second laws of thermodynamics. Since both shock waves

and turbulence are highly dissipative phenomena, the entropy jumps in STI should

always be greater than zero. Figure III.12 shows the derived entropy jumps from

Eq. (III.48) at wide ranges of M and Mt. Regardless the conditions of the flow,

our solution always satisfies the second law of thermodynamics. Figure III.12 also

indicates that at low M , the entropy jump can change several orders depends on the
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and SDT (circle) simulations at M = 1.1 (dark), 1.2 (medium) and 1.4 (light). Solid
lines correspond to the isentropic value, 1.4.

turbulent intensity. However, such dependence disappears at high M .

From the analytical solutions and DNS data, the entropy jumps show no depen-

dence on Rλ. In both supersonic and subsonic formulations of the entropy jump,

the flows are assumed isentropic and the effects of irreversible process on entropy is

considered negligible. This assumption is verified by examining the relation

p′

〈p〉 = γt
ρ′

〈ρ〉 =
γt

γt − 1

T ′

〈T 〉 (III.49)

where γt is a ploytropic exponent. For a valid isentropic assumption, γt would be
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equal to γ = 1.4. Figure III.13 shows that, despite some scatter, the flows upstream

and downstream of the shock are very close to isentropic condition. Though there are

irreversible dissipations inside the shock, our DNS data suggests that such viscous

contribution is small. Thus, we obtain a good agreement between present simulations

and theoretical solutions which show no Rλ effects on entropy jump as well as other

thermodynamic variables.

III.C Summary

We conclude this section with a few remarks about the generality of the results

presented here. First, we note that there seems to be a negligible Reynolds number

effect for mean jumps. This may not be completely unexpected since RH jumps can

be shown to be the same in viscous or inviscid flows—molecular transport properties

(viscosity and thermal conductivity) only determine the structure of the shock (Zel-

dovich & Raizer, 2002). Thus, the sole dependence on M and Mt in Eq. (III.33)-Eq.

(III.40) is indeed a very general form under QE for jumps of mean thermodynamic

variables. This is also an important result from the point of view of assumptions

behind theoretical models. For example, in LIA, the problem setup is such that the

mean properties downstream of the shock are uniquely determined by RH jumps

using only mean upstream conditions. Fluctuations are then solved independently

superimposed on this mean field. However, as we showed above using DNS data, even

mean properties depend on both ∆M and Mt. This effect needs to be incorporated

if models are to capture STI with relatively strong turbulence. Second, we note that

there is little difference between the jumps observed for isotropic and anisotropic

turbulence in IT and SDT simulations, respectively. This suggests that the QE as-
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sumption, with its implication of a one-dimensional locally laminar shock governed

by the upstream streamwise Mach number, seems to provide an accurate description

even at relatively high turbulence intensities (though not perhaps in the vanished

regime). Finally, we stress that conclusions here result from calculating quantities

at x2′ which can be argued to be still unaffected by turbulent mixing downstream of

the shock. At x2, however, quantities are expected to be affected by turbulence pro-

cesses and indeed Reynolds number effects have been observed (Andreopoulos et al.,

2000; Donzis, 2012a). These observations are consistent with separate regions, one

where the flow is dominated by “shock effects” (x < x2′), and another one where it

is dominated by “turbulence effects” (x > x2). The region x2′ < x < x2 can then be

thought of as a transition region where the fully developed incoming turbulence has

been deeply distorted by the shock and is evolving towards its fully developed state,

which is achieved at x2. Beyond this point a traditional turbulence decay is observed.

Thus, while anisotropy may not play a major role in determining mean thermody-

namic jumps for x < x2′ (as the data above suggests), it will in regions affected

(x2′ < x < x2) or dominated (x > x2) by turbulence processes (Ryu & Livescu, 2014;

Livescu & Ryu, 2016). We stress though that, while our data support this picture, it

is unclear to what degree the flow will consist of “pure” regions dominated exclusively

by one of these processes. Detailed investigations of this conceptual picture and the

relative dominance of different process in each region is worth pursuing, but beyond

the objectives here.
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IV. SHOCK STRUCTURE

IV.A Scaling of Rms-to-mean Shock Dilatation

The effects of turbulence on shock characteristics have been studied theoreti-

cally in the literature (Ribner, 1954a,b; Williams & Howe, 1973; Zank et al., 2002;

Wouchuk et al., 2009) under different sets of assumptions. Experimental (Hesselink

& Sturtevant, 1988) and numerical observations (Lee et al., 1993; Larsson & Lele,

2009), have also observed strong modification of the shock due to turbulence fluctu-

ations. These investigations helped identified two regimes in the interaction which

result from different levels of turbulence intensity. These are the so-called wrinkled

and the broken regimes respectively. The former corresponds to a interaction in

which the shock retains its structure as a sharp gradient over a weakly modified

uniform shock plane. The latter corresponds to a strongly modified shock plane

with “holes” through which properties may change smoothly or have multiple peaks

(Hesselink & Sturtevant, 1988; Lee et al., 1993).

The determination of the regimes has been traditionally done using visual in-

spection of visualizations from simulations. In Donzis (2012b) we proposed a specific

mechanism leading to broken shocks based on hole creations due to the appearance

of subsonic regions ahead of the shock. This led to the prediction Mt/∆M = 0.6

as the condition dividing wrinkled and broken regimes (see W-B line in figures III.5

and III.6 and more detailed discussion later on in this section) which has since, been

supported by DNS data (Larsson et al., 2013).

A quantitative metric that has been used to characterize inhomogeneities in the
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structure of the shock is the rms-to-mean dilatation at the shock (Lee et al., 1993;

Larsson & Lele, 2009)

Θ =

Ç〈θ2s〉s
〈θs〉2s

− 1

å1/2

(IV.1)

where θs is the dilatation at the shock location which is identified as the largest

negative value of dilation along the streamwise direction x for a given location (y, z).

That is θs(y, z) = minxθ(x, y, z). Note that since the location where θ attains its

minimum is, in general, different for different locations (y, z), the averages in Eq.

(IV.1) are not over planes at fixed x, but instead over all θs(y, z)—we use the ad-

ditional subscript s in 〈·〉s, to differentiate it from plane averages 〈·〉. DNS data

presented below is also time averaged.

To estimate Θ, M2
t /(M

2−1) was first being used in the discussion by (Lee et al.,

1993). As shown in figure IV.1(a), this parameter only captures the trend of Θ

qualitatively leaving the data scattered in broken regime. Following Donzis (2012b),

one can write the maximum negative dilatation at the shock as θs ≈ [u]/δt where [u]

is the velocity change across the shock and δt the shock thickness which, to leading

order, can be written as (ρc/µ)[u](∆M +m). Using unconditional averages over the

entire surface and assuming [u] is, to leading order, not affected by fluctuations, QE

leads to 〈θs〉s ∼ (〈ρ1〉〈c1〉/〈µ1〉)[u]∆M and 〈θ2s〉s ∼ (〈ρ1〉〈c1〉/〈µ1〉)2[u]2(∆M+M2
t /3)

which, when used in Eq. (IV.1), leads to:

Θ ≈ 1√
3

Mt

∆M
. (IV.2)

This has been shown to provide good collapse of the existing data (Donzis, 2012b;
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Figure IV.1: Rms-to-mean dilatation at the shock plotted as a function of (a)
Mt/(M

2 − 1) and (b) Mt/∆M . Dash-dotted lines is Eq. (IV.2) and solid lines is
best fit with e1 = 0.502 and e2 = 0.114. Vertical gray dashed line at Mt/∆M = 0.6
for reference. Symbols are: Jamme et al. (2002)(×), Larsson & Lele (2009)(▽) and
Boukharfane et al. (2018)(⊳). Reprinted from (Donzis, 2012b).

Boukharfane et al., 2018). However, Eq. (IV.2) is expected to provides an accurate

description of the interaction only when the incoming turbulence is relatively weak.

This is indeed the case as seen in figure IV.1(b), where we show Θ in terms of Mt/∆M

with the available data in the literature. The dash-dotted line is Eq. (IV.2) while

the solid line contains the next order term in the expansion (Donzis, 2012b), that is

Θ ≈ e1Mt/∆M + e2(Mt/∆M)3 where e1 and e2 are fitting constants. There is good

agreement between the data and the theory in the wrinkled regime (Mt/∆M . 0.6)

consistent with previous studies (Donzis, 2012b; Boukharfane et al., 2018).
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With much stronger turbulence presented in our simulations, shock structure is

discussed with extended range of Mt/∆M . Figure IV.2 shows the trend of Θ with

present DNS data along with other existing data. In wrinkled regime, the data

agrees with the theories in Donzis (2012b) very well. As Mt/∆M increases, however,

departures are apparent with two interesting features. First we see that, in spite of

significant scatter, Θ seems to approach an asymptotic state at high Mt/∆M with a

value dependent on the Reynolds number. We call this value Θ∞. Second, DNS data

departs from the QE prediction at higher Mt/∆M when Rλ is higher. This effect

does not appear to be due to the increase of holes in the shock since figure III.3 shows

that the fraction of subsonic regions does not depend on Rλ. A potential explanation

for this effect, then, is that at low Reynolds numbers, the stronger viscous effects can

enhance transverse diffusion of momentum which would make the 1D local behavior

assumption, and thus QE, less applicable. However, these observations require more

data at a range of parameters to quantify the departures from the QE prediction and

assess the origin of the change in value of Mt/∆M with Rλ at which QE predictions

deteriorate.

IV.B A New Regime: Vanished Shocks

Before we discuss the asymptotic value Θ∞, it is instructive to see the structure

of the flow, in particular dilatation, as it crosses the shock. In figure IV.3 we show,

for three different cases, plane-averaged dilatation along the streamwise direction

(dark line) with a set of instantaneous dilatation profiles at some arbitrary locations

(light gray lines). In part (a) of the figure we see a wrinkled case (though close to

broken limit) with a very strong mean dilatation comprised of similar instantaneous
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Figure IV.2: Rms-to-mean dilatation at the shock for Rλ ≈ 5 (red stars), Rλ ≈ 10
(green circles), Rλ ≈ 25 (blue squares), Rλ ≈ 45 (magenta diamonds), Rλ ≈ 65 (cyan
plusses). Open and closed symbols are for IT and SDT simulations, resepctively.
Dash-dotted lines is Eq. (IV.2) and solid lines is best fit with e1 = 0.577 and
e2 = 0.114. Vertical gray dashed line at Mt/∆M = 0.6 for reference. Horizontal
dashed lines: average of DNS data at high Mt/∆M for Rλ ≈ 5, 10, 25, 45 and
65 from bottom to top. Other symbols: Jamme et al. (2002)(×), Larsson & Lele
(2009)(▽) and Boukharfane et al. (2018)(⊳).

profiles. At higher Mt/∆M in the broken regime (part b) we also see a strong peak

of mean dilatation at the shock, though the peak is spatially broader, consistent, as

mentioned in previous sections, with theoretical predictions (Donzis, 2012b). Indi-

vidual dilatation profiles, however, display a wider range of behaviors: some have the

same qualitative peak while others present multiple peaks or a very broad smooth

variation (Lee et al., 1993; Larsson & Lele, 2009). At even higher values of Mt/∆M

(part c) individual profiles show very large fluctuations upstream and downstream

of the shock comparable to the mean (dark line). It is interesting to note that while

fluctuations in this case are of the same order as the mean, the latter still shows the

same peak as, though much broader than, in the wrinkled regime.

Broad dilatations with multiple peaks distinguish broken shocks from wrinkled

shocks. But a broken shock is still identifiable from a dominant peak standing out
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Figure IV.4: One instantaneous dilatation normalized by laminar condition (θl) at
M = 1.1, Rλ ≈ 10, Mt = 0.34. The dashed line is the location of the shock from
min(∂u/∂x).
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from others. At much higher Mt/∆M , such as shown in figure IV.3(c), several

similar peaks are observed in dilatations which results in a challenge of pinpointing

the location of shock. Since a shock wave is a phenomenon with very small length

scale, accurate measurement of shock location is crucial to analyze its characteristics.

A method is implemented in present simulations to obtain minimum dilatation inside

the shock. In the beginning, we obtain the location of minimum streamwise velocity

gradient at each line along the mean flow direction. This location is considered the

shock location which is the dashed line in figure IV.4. As shown in the figure, there

are two peaks along a dilatation line and neither of them are fairly close to the

shock. To proceed, we choose the dilatation peak closest to the shock as θs and

apply the same method to θ2s . Overall, this method successfully captures the local

dilatations and shows consistent Mt/∆M dependence with little scatter. We note

that the mislocation between streamwise velocity gradient and dilatation peak in

figure IV.4 implies a strong transverse motions which is beyond this work.

Typical distributions of Reynolds stresses and mean pressure are shown in fig-

ure IV.5 at similar conditions. In part (a) we see that, consistent with observations in

the literature, the downstream peak of R11 at x2 decreases with Mt. As Mt increases

further, we observe both the peaks upstream and downstream of the shock (x1 and

x2, respectively) vanish. We term this, then, the vanished regime. Clearly in this

regime, it is not possible to compute amplification factors since no upstream and

downstream locations can be identified unambiguously. In fact, Reynolds stresses

undergo a classical turbulent decay. It is interesting that mean quantities such as

mean pressure (part c) or mean velocity retain the typical qualitative behavior of a

shock. While these mean gradients may lead to production by mean shear in the
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Reynolds stress budget, because of the short residence time within the shock region,

they cannot, on average, counteract the viscous decay.

Furthermore, since in the vanished regime R11 experiences a monotonic decay

across the nominal shock and no x1 location can be identified, it is also not possible

to determine Rλ, Mt, or ∆M upstream of the shock as in wrinkled or broken cases.

Alternatively, one can estimate the conditions for the appearance of the vanished

regime by assessing the limit at which local extrema vanishes for R11. For example,

for Rλ ≈ 5, 10 and 25, we find that the vanished regime appears at Mt/∆M ≈ 2.14,

3.4 and 4.4, respectively. In these three cases, K is found to be very close to 1.0.

This is, in fact, not unexpected. As we show below, the amplification factor for R11

shows a universal behavior with K for relatively high K. In particular, it decreases

with K and reach values around 0.8 at K ≈ 1. Beyond this value of K no local

extrema are observed and amplification factors cannot be obtained.

A plausible explanation for the emergence of the vanished regime is that dissi-

pative effects are stronger than production mechanisms. If transport terms as well

as pressure effects in the budget equation for R11 are not taken into account, the

condition for shocks in the vanished regime would be ǫ/P & 1. We have indeed

verified that vanished shocks are observed if and only if ǫ/P ≥ 1.5. This supports

the idea that a larger dissipation than required for equilibrium is responsible for the

dissapearanse of the local extrema for R11.

It is naturally of interest to determine whether this condition is met from the

governing parameters. Using classical scaling relations we can estimate the dissipa-

tion at the shock as ǫ ∼ νR11/λ
2 and production as P ∼ R11[u]/δ. This ratio can

83



-1 0 1
0.5

1

1.5

2

-1 0 1
0.5

1

1.5

2

-1 0 1
0.9

1

1.1

1.2

1.3

1.4

-1 0 1
0.9

1

1.1

1.2

1.3

1.4

(a)

R11

R11,1

x/L

(b)

R11

R11,1

x/L

(c)

〈p〉
〈p1〉

x/L

(d)

〈p〉
〈p1〉

x/L

Figure IV.5: Distributions of R11 at M = 1.1, (a) Rλ ≈ 10 and Mt = 0.05 (solid),
Mt = 0.14 (dashed) and Mt = 0.34 (dash-dotted) and (b) Rλ ≈ 25 and Mt = 0.22
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be, after some manipulation be written as

ǫ

P

∣

∣

∣

∣

∣

shock

∼ Mt

R
3/2
λ

∣

∣

∣

∣

∣

shock

KM

M2 − 1

∣

∣

∣

∣

∣

x1

. (IV.3)

which contains both upstream conditions as well as those inside the shock. While

preliminary results suggest that this expression can indeed predict the ratio ap-

proximately, more work is needed to relate all the quantities involved to upstream

conditions exclusively. This is part of future work.

IV.C Rms-to-mean Dilatation Beyond Wrinkled Shocks

We now move back to the asymptotic value Θ∞. As Mt/∆M increases, increas-

ingly large areas of the shock are subsonic and present holes. However, it is unclear

what the value of θs is across holes. Furthermore, as turbulence becomes more in-

tense, the flow will experience stronger locally three-dimensional effects which will

favor strong mixing in all directions and thus weaken the applicability of QE. Ac-

cording to the definition of Θ one searches for the largest negative dilatation around

the location of the shock along x for a given (y, z) location. When turbulence is

strong, however, while the mean dilatation 〈θ〉 still shows a typical behavior (negli-

gible values far from the shock and a negative peak at the shock), the behavior at

different (y, z) locations is very different. This is clear as one compares the three

panels in figure IV.3. In the limit of very intense turbulence, one would expect Θ to

be essentially dominated by turbulence statistics.

Thus, we will estimate the asymptotic behavior of Θ as one in which turbulence

dominates the averages. In this case we can use known scaling laws for velocity

gradients. However, Θ is based on the average of the minimum dilatation close to
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the average location of the shock. Note that while the mean dilatation in isotropic

turbulence is zero, the average of minimum dilatation across an arbitrary plane is

not. Thus, here we make the additional assumption that these values are, to first

approximation, proportional to the average magnitude of those gradients. Moments

of velocity gradients are known to scale as power laws with the Reynolds number

(Monin & Yaglom, 1975b) which can be written as 〈|∂u/∂x|n〉 = Cn(u1,rms/L)
nR2ρn

λ

where Cn are flow-dependent constants and ρn are the so-called scaling exponents.

While these power laws have been historically believed to hold only for high Reynolds

numbers, recent work suggests that their applicability extends to rather low Reynolds

numbers (Schumacher et al., 2007, 2014; Yakhot & Donzis, 2017) and thus expected

to apply, at least approximately, to our present conditions. We then estimate Θ∞,

when turbulence dominates, as

Θ∞ ≈
Ç〈|∂u/∂x|2〉
〈|∂u/∂x|〉2 − 1

å1/2

≈ c1
(

c2R
2(b2−2b1)
λ − 1

)1/2
, (IV.4)

where all order-unity prefactors have been absorbed in the constants c1 and c2.

The exponents have been studied extensively and are relatively well known (e.g.,

Schumacher et al., 2007; Yakhot & Donzis, 2018) with values b2 = 1 and b1 = 0.46.

In figure IV.6 we show Θ∞ from DNS along with Eq. (IV.4) with c1 = 1.756

and c2 = 0.8217 obtained as best-fit coefficient indeed of order-unity. The good

agreement between theory and DNS data supports the idea of Θ being dominated

by turbulence rather than the shock at those conditions. At the same time from

figure III.3 we see that even for Mt/∆M ≈ 3 the subsonic regions are only about

30% of the total shock area. Thus, the dominance of turbulence appears to stem
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Figure IV.6: Asymptotic value of Θ as a function of Rλ. Different symbols represent
the average of DNS data at a fixed Rλ in the asymptotic state (see text). Symbols
as in figure IV.2. Solid line is Eq. (IV.4) with c1 = 1.756 and c2 = 0.8217.

from strong turbulent mixing across and after the weak shock.

IV.D Truncated Integrals on Dilatation

With the successful implementation of truncated integrals on turbulent shock

jumps, one would expect that the same method also applies to shock structure. If

truncated integrals using classical theories from turbulence and shock waves can

capture Θ, we can present Θ as a function of flow conditions. Such function can

reveal the mechanisms that dominate the shock waves transitioning between different

regimes. However, several attempts trying to repeat the same implementation from

shock jumps have failed to provide accurate prediction of Θ beyond wrinkled regime.

The failure comes from the discrepancies between the DNS data and the solutions at

high Mt/∆M . Here, we will show the main two methods that we have tried before.

Similar to the steps of deriving turbulent shock jumps, the dilatation on the shock

front comprises two parts, supersonic and subsonic flows. In the supersonic regions,
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Taylor’s weak shock theory indicates that

θ>s ∼ k1[u]
ρc

µ
(∆M +m). (IV.5)

For the subsonic regions, though the exact function of the θ at subsonic regions is

unclear, we assume it is linearly correlated to the first moment in the supersonic

regions as

θ< = αθ〈θs〉> (IV.6)

by a coefficient αθ where 〈θs〉> is the averaged first moment of dilatation in the

supersonic regions. By combining Eq. (IV.5) and Eq. (IV.6) and taking integral

against the p.d.f. of m, the first moment of dilatation is given by

(IV.7)
〈θs〉s =

∫ ∞

−∆M
k1[u]

ρc

µ
(∆M +m)fm(m)dm+ αθ〈θs〉>s

∫ −∆M

−∞
fm(m)dm

= k1[u](
ρc

µ
)
Ä
∆M〈m0〉> + 〈m〉>

ä Ä
1 + αθs〈m0〉<

ä
.

Similar to the first moment, the second moment of dilatation can be given as

(IV.8)
〈θ2s〉s =

∫ ∞

−∆M
(k1[u]

ρc

µ
)2(∆M +m)2fm(m)dm+ βθ〈θs〉>

∫ −∆M

−∞
fm(m)dm

= (k1[u]
ρc

µ
)2
Ä
∆M2〈m0〉> + 2∆M〈m〉> + 〈m2〉>

ä Ä
1 + βθ〈m0〉<

ä
.

By substituting Eq. (IV.7) and Eq. (IV.8) into Eq. (IV.1), we can obtain

Θ =

[

(∆M2〈m0〉> + 2∆M〈m〉> + 〈m2〉>) (1 + βθ〈m0〉<)
(∆M〈m0〉> + 〈m〉>)2 (1 + αθs〈m0〉<)2

− 1

]
1

2

. (IV.9)

Though the equation of rms-to-mean dilatation becomes much more complicated

with truncated integrals, Eq. (IV.9) shows that Θ is still a function of Mt/∆M .
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Figure IV.7: Rms-to-mean dilatation at the shock with (a) linear correlation be-
tween and the supersonic and subsonic regions with αθ = (2.5, 0.6, 0.05, 0.01, 0) and
βθ = (0.01, 0.025, 0.5, 3, 4) and (b) dissipative anomaly for the subsonic regions with
αθ = (5, 2, 0.05, 0) and βθ = (0.01, 0.1, 1.5, 10000). Same colors and symbols as in
figure IV.2.

Since viscous effects modifies the dilatation profile, the Rλ dependence discussed

previously should reflects on the values of αθ and βθ. Figure IV.7(a) shows the

prediction of Eq. (IV.9) with different αθ and βθ. Though Eq. (IV.9) captures Θ

at low Mt/∆M , large quantitative difference appears when the shock becomes bro-

ken. In addition, the asymptotic states from DNS data are not predicted by Eq.

(IV.9). Instead, the theoretical solutions from linear correlation suggests the values

of rms-to-mean dilatation would continue growing with Mt/∆M . The discrepancies

between the analytical prediction and the simulations implies that when a shock be-

comes broken there exists a strong non-linear effect between supersonic and subsonic

regions. Therefore, a simple linear correlation between the dilatations at supersonic

and subsonic regions cannot accurately predict Θ.

An alternative for the linear correlation is dissipative anomaly. Dissipative anomaly

suggests that dissipation, ǫ, would eventually be independent of Rλ at very high Rλ

and proportional to time derivative of turbulent kinetic energy, K. Figure IV.8 shows

the estimate of Rλ dependence compared to DNS data at x1 (Donzis et al., 2005).
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The Rλ scaling is accurately predicted over a wide range of conditions with little

scatter of SDT cases. Such good agreement suggests that dissipative anomaly may

be a good approach to study the change of dilataion. If QE is valid, we can assume

that dK/dt ≈ du
′2
1 /dt, which is equal to u

′3
1 /L11 where K is the turbulent kinetic en-

ergy and L11 is the longitudinal integral length scale. On the other hand, in isotropic

turbulence a good approximation for instantaneous dissipation is ǫ = 15νθ2s . There-

fore, we can obtain an expression for the second order moment in subsonic regions

as

θ2< = fRL
u

′2

L2
(IV.10)

where f is a function from dissipative anomaly (Donzis et al., 2005) and RL is the

Reynolds number at dissipation scale. To obtain a similar form like 〈θs〉s, the second

order moment is rearranged as

θ2< = f

ñ
k1[u]

Ç
ρc

µ

åô2 RL

k2
1[u]

2

µ2u2

ρ2c2L2
. (IV.11)

For a weak laminar shock, velocity change can be approximated as [u] ≈ c∆M

(Thompson, 1984). Also, by turbulence scaling we have RL ≈ R2
λ. Finally, the

second order moment of dilatation at the holes is expressed as

θ2< = f

ñ
k1[u]

Ç
ρc

µ

åô2 M4
t

k2
1R

2
λ∆M2

. (IV.12)

Again, using truncated integrals to include both the weak shock theory and dissipa-
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Figure IV.8: Normalized dissipation rate from Donzis et al. (2005) (solid) and present
simulations at x1. Red circles correspond to M = 1.1, blue squares to M = 1.2
and green diamonds to M = 1.4. Open and closed symbols are for IT and SDT
simulations, respectively.

tive anomaly, the first and the second moment of dilataion are expressed as

〈θs〉s =
ñ
k1[u]

ρc

µ

ô ñ
∫ ∞

−∆M
(∆M +m)fm(m)dm+ αθf

1

2
M2

t

k1Rλ∆M

∫ −∆M

−∞
fm(m)dm

ô

=

ñ
k1[u]

ρc

µ

ô ñ
∆M〈m0〉> + 〈m0〉> + αθf

1

2
M2

t

k1Rλ∆M
〈m0〉<

ô

(IV.13)

and

〈θ2s〉s =
ñ
k1[u]

ρc

µ

ô2 ñ∫ ∞

−∆M
(∆M +m)2fm(m)dm+ βθf

M4
t

k2
1R

2
λ∆M2

∫ −∆M

−∞
fm(m)dm

ô

=

ñ
k1[u]

ρc

µ

ô2 ñ
∆M2〈m0〉> + 2∆M〈m〉> + 〈m2〉> + βθf

M4
t

k2
1R

2
λ∆M2

〈m0〉<
ô

(IV.14)

where αθ and βθ are coefficients for best fitting of DNS data.

By substituting Eq. (IV.13) and Eq. (IV.14) into Eq. (IV.1), we can obtain

rms-to-mean dilatation from weak shock theory and dissipative anomaly as

(IV.15)Θ =







∆M2〈m0〉> + 2∆M〈m〉> + 〈m2〉> + βθf
M4

t

k2
1
R2

λ
∆M2 〈m0〉<

(

∆M〈m0〉> + 〈m0〉> + αθf
1

2
M2

t

k1Rλ∆M
〈m0〉<

)2 − 1







1

2

.
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One main difference between the form from dissipative anomaly and the linear

correlation is that Θ obtained from dissipative anomaly shows a dependence on

Rλ. This seems to imply that dissipative anomaly can better capture the trend of

dilatation in subsonic regions. However, figure IV.7(b) still shows a big discrepancy

between Eq. (IV.15) and DNS data beyond wrinkled regime regardless the values of

αθ and βθ.

The use of dissipative anomaly on predicting Θ relies on a classical theory of dis-

sipation, ǫ = 15νθs. This equation only works for isotropic turbulence. Anisotropic

turbulence should result in a different coefficient whose value depends on the level

of anisotropy. In the following section §V.A, we will show that turbulence inside the

shock is significantly anisotropic. Under such circumstances, the accuracy of pre-

dicting dilatation is compromised. In addition, dissipation given in classical theory

is obtained from the averaged velocity gradient rather than the average of maximum

gradients which is what has been applied in Θ. Such little difference may lead to a

considerable difference. To accurately capture the trend of Θ, one needs to pinpoint

the local shock dilatation rather than obtain the dilatation from an averaged manner.

Our studies clearly show that this concern in averaging methods cannot be fixed by

changing the coefficients, αθ and βθ. Further investigation is required to obtain a

proper expression of dilataion in subsonic regions.

IV.E Summary

A very good agreement between DNS data and weak shock theory is obtained

from the rms-to-mean dilatation in wrinkled regime. For broken shocks, Θ tends to

approaches to a asymptotic state that is dependent on Rλ. These asymptotic states
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are successfully captured by classical results of velocity gradients. Gaussian distri-

bution of Mach number fluctuations suggest that the probability of holes on shock

is subjected to Mach numbers only. The observed dependence on Rλ at asymp-

totic states indicates a strong transverse diffusion in the shock Wrinkled and broken

regimes are the two traditional categories for shock waves in turbulent flows. In

broken regime, smooth distribution of dilatation with multiple peaks distinguishes

the shocks from wrinkled regime. But local shock wave is still easily identifiable from

one dominant peak stands out from others. With increasing Mt/∆M , it becomes

difficult to identify the shock when multiple similar peaks appears in dilatation pro-

files. Accompany with this is a monotonic decay in R11 across the shock without any

peaks in its evolution. These unprecedented phenomena are proposed as vanished

shock. Such behaviors in dilatation and R11 are observed universally at K ≈ 1 which

is the condition attributed to the criterion of vanished regime. Further investigations

are required to understand the mechanisms resulting in vanished shocks.
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V. TURBULENCE AMPLIFICATION

As we have shown, turbulent flows can significantly affect jumps in thermody-

namic variables as well as statistical features of the shock structure. Simultaneously,

the occurrence of a shock also affects the characteristics of turbulent flows. As the

flow passes through a stationary shock, the shock compression triggers turbulent

production which further leads to complicated developments of pressure work, vis-

cous dissipation and turbulent transport. In general, most turbulent quantities are

increased after the mean flow leaves the shock, except length scales. This turbulence

amplification has became a major topic in STI.

A good understanding of turbulence amplification provides essential information

of the postshock flows. In a supersonic or hypersonic flight, a shock wave is generated

at the front of an airfoil, followed by a boundary layer along the wing. A good

example is given in Figure V.1 in which a wave rider is presented in a hypersonic

flow tested inside a wind tunnel. As shown in the figure, there are two evident Mach

lines far away from the wave rider with boundary layers developed very close to the

surface. Though many boundary layer theories provide accurate predictions of the

flows, these theories do not applied to the leading edge in general. To further improve

the performance of airfoils, one need know the flow conditions of the leading edge.

This depends on the studies of how turbulence is modified by the shock. Detailed

discussion of the amplification factors is given here.
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Figure V.1: A wave rider in hypersonic flight with M = 6. Visible Mach lines and
boundary layers are shown. Courtesy of Prof. Bowersox.

V.A Reynolds Stresses

Velocity fluctuations are very straightforward indicators of turbulent conditions.

How Reynolds stresses are modified as the flow passes through a shock has been

widely studied (Ribner, 1954b; Agui et al., 2005). In particular, it has been found

that velocity fluctuations are amplified across the shock.

The distributions of R11 with different Mt are shown in Figure V.2(a). As dis-

cussed in §II.D, a monotonic viscous decay is observed upstream of x1 and down-

stream of x2. These two regions are dominated by turbulence processes. The figure

also shows that different Mt result in different peaks suggesting a dependence on

turbulent conditions. As discussed in §IV, shock holes appear as we increase Mt for

fixed M . The occurrence of holes results in a classical turbulent decay as the flow

passes through shock region. In this case, the local turbulence loses energy to inter-

nal energy without being amplified. Therefore, increasing turbulent intensity leads
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(dotted).

to smaller turbulent amplification and possibly attenuation. Figure V.2(b) shows

the R22 distributions under the same conditions. Relative to R11, R22 has a much

smaller peak inside the shock and the postshock peak disappears. For a plane shock

wave normal to the streamwise direction, the turbulent production only contributes

to the streamwise stress. The transverse components would later receive the energy

through energy redistribution. As the amplification of R11 decreases with Mt, the

energy that R22 receives also decreases. To further understand how energy is trans-

ferred between components, we present anisotropy distributions in figure V.2(c) via

the ratio of R11 and R22. The figure shows that the flow is isotropic before the shock

but becomes highly anisotropic after shock compression. Such anisotropy persists in

the postshock evolution and the flow does not return to isotropy for the length of the
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simulation domain. Similar postshock anisotropy has also been reported by other

investigations (Larsson & Lele, 2009; Larsson et al., 2013; Ryu & Livescu, 2014) with

similar values, 1.2 − 1.5. Larsson et al. (2013) shows that the postshock anisotropy

from DNS is significantly higher than from LIA. This implies that the generation

of anisotropic turbulence comes from non-linear processes. Overall, amplification of

Reynolds stresses is most evident in the streamwise component due to shock com-

pression. Therefore, the discussion that follows of amplification factors will focus on

the change of R11.

A useful quantity to characterize the changes of velocity fluctuaionts is the so-

called amplification factor, G ≡ R11,2/R11,1 where subscript 1 and 2 stand for up-

stream and downstream of the shock as defined previously. Note that in the inviscid

laminar case flow variables remain constant downstream of the shock. Therefore,

downstream values can be measured in principle anywhere downstream of the shock.

In turbulent flows, however, this is not the case due to energy exchanges of both

inviscid and viscous nature. Thus, comparison between DNS data and inviscid the-

ories such as LIA requires the identification of a specific location downstream of the

shock. It is common to take x2 (figure II.3a) as this location (Donzis 2012a and

references therein; Ryu & Livescu 2014; Boukharfane et al. 2018). The main ratio-

nale behind selecting this location is that, as discussed in §II.D, the flow undergoes

a viscous decay beyond that location at which inviscid assumptions are less justified.

Locations upstream from this point may be only weakly affected by viscous effects.

Here will follow this convention and use x2. We note, however, that other methods

have also been examined (e.g. Larsson & Lele, 2009, where Reynolds stresses were

extrapolated to the average shock location).
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Substantial work has been devoted to test LIA (Lee et al., 1993; Mahesh et al.,

1997; Lee et al., 1997; Agui et al., 2005; Larsson & Lele, 2009; Larsson et al., 2013;

Ryu & Livescu, 2014; Quadros et al., 2016a). A general observation from all these

studies is that LIA becomes more applicable as the flow parameters approach the ap-

propriate conditions, that is when the shock can be approximated as a discontinuity

and when the incoming flow is at low Mt and high Rλ. However, when data available

in the literature is examined collectively, it is clear that there are both turbulent

Mach number as well as Reynolds number effects (Andreopoulos et al., 2000; Donzis,

2012a). To account for this, in Donzis (2012a) we proposed an alternative parameter

to characterize the interaction (K) defined as the ratio of the shock thickness to the

Kolmogorov length scales, K ≡ δl/η where δl is the laminar shock thickness at the

mean Mach number, M . As K decreases, the shock becomes increasingly smaller rel-

ative to turbulence scales. One would, then, expect the interaction to approach the

conditions in which LIA is applicable, that is when the shock is a discontinuity inter-

acting with very weak turbulence (low Mt and high Rλ). Indeed, recent well-resolved

simulations (Ryu & Livescu, 2014) support this limiting expectation. Our interest

here, however, is in the case of finite Mt and Rλ where both parameters play a role.

Using classical scaling arguments, one can also write K = Mt/R
1/2
λ ∆M (Donzis,

2012a), an expression that was also used in other contexts to assess resolution in

DNS (Moin & Mahesh, 1998).

Figure V.3 shows the amplification factor G for all the DNS database presented

here (in color) along with all amplification factors available in the literature. In part

(a) of the figure, we show G as a function of ∆M , the only parameter that controls

the interaction within the LIA theory. (Details on LIA are provided in the Appendix
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§A.) Wide differences are seen between the LIA prediction (solid line) and data. As

pointed out before (Donzis, 2012a) these departures are systematic in Rλ and Mt but

disappear when data are plotted against K. This is shown in figure V.3(b) from which

we see a high degree of collapse of the new and earlier data onto a single curve at high

K which is well represented by a power law of the form G ≈ 0.75K−1/4 proposed in

Donzis (2012a). As pointed out above, as K → 0, one expects to recover conditions

in which LIA applies. Ryu & Livescu (2014), using well-resolved DNS data, indeed

observed this trend. Thus, data suggest a universal behavior of amplification factors

K, with a Mach-number-dependent asymptotic state as K → 0. At high K, the

amplification factor is seen to go below unity, a possibility suggested before (Donzis,

2012a), which represent turbulence attenuation as it crosses the shock. Beyond

K ≈ 1.0, amplification factors cannot be defined as the extrema at x1 and x2 vanish,

marking the beginning of the vanished regime.

This transition between scaling laws based on different non-dimensional groups

in particular limits is indeed observed in diverse physical phenomena from equations

of states near the critical point (Widom, 1965) to flows in rough pipes (Goldenfeld,

2006). In the latter, Goldenfeld studied the transition from the well-known power-law

dependence of the friction coefficient on the Reynolds number to a Reynolds-number-

independent scaling law on the ratio of roughness to pipe diameter. In such cases,

the dependence on two parameters can be cast in terms of a reduced parameter

under which data are observed to collapse into a single universal curve. The data in

figure V.3(b) is very suggestive of such a behavior with a transition from K to M as

K → 0. Thus we start by considering the general relation G = f1(K,∆M) for some

unknown function f1 and its observed limiting behavior. At high values of K we

99



10
-1

10
0

10
1

0.8

1

1.2

1.4

1.6

1.8

10
-4

10
-3

10
-2

10
-1

10
0

0.8

1

1.2

1.4

1.6

1.8

(a)

∆M

G

G ∼ ∆M1/6

❄

(b)

K

G

G ∼ K−1/4 ✲

Figure V.3: (a) Collection of amplification factors of streamwise velocity as a function
of ∆M along with LIA prediction (Ribner, 1954b). (b) Same data as a function of

K = Mt/(R
1/2
λ ∆M). Horizontal dashed lines: LIA prediction for M = 1.1, 1.2,

1.3, 1.4, 1.5 and 1.8 from bottom to top. In both figures red circles correspond
to M = 1.1, blue squares to M = 1.2 and green diamonds to M = 1.4. Open
and closed symbols are for IT and SDT simulations, resepctively. Other symbols:
Lee et al. (1993, 1997) (⊲), Hannappel & Friedrich (1995) (+), Barre et al. (1996)
(⊳), Mahesh et al. (1997) (△), Jamme et al. (2002) (×), Larsson & Lele (2009) and
Larsson et al. (2013) (▽), Ryu & Livescu (2014) (+×, grey levels for M = 1.1, M = 1.2
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(2018) (⋆, grey levels for M = 1.1, M = 1.3 and M = 1.5 from light to dark).
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observe a K−1/4 scaling; at low values of K, G tends to LIA. Note that this imposes

significant constraints in the functional form for f1. For simplicity in the analysis we

consider the behavior for M . 2 where the LIA solution can be approximated as a

power law of the form ∆M1/6 as shown in figure V.3(a) with a dashed line. Following

Widom (1965), we now propose the following scaling relation:

G = K−1/4f2(K
α∆M), (V.1)

where α is an exponent to be determined by specific limits. Note that this is essen-

tially a case of incomplete similarity also justified from renormalization group theory

(Barenblatt, 2003) in which universality is revealed only under a suitable combina-

tion of the original governing non-dimensional parameters, though this combination

cannot be obtained on dimensional grounds alone. However, consistency with the

∆M1/6 asymptotic behavior requires that f2(x) ∼ x1/6 as x → 0 and, simultaneously,

the K dependency must disappear. It is easy to see that G will become independent

of K in that limit if α = 3/2. The final result is then

G = K−1/4f2(K
3/2∆M). (V.2)

The implication of the scaling proposed in (V.2) is that while the phenomenon de-

pends on the two parameters K and ∆M at two different limiting conditions, a col-

lapse on a universal curve will emerge if one plots G/K−1/4 as a function of K2/3∆M .

This is indeed the case as seen in figure V.4 where we show data at M < 2, the con-

dition at which the scaling argument applies. We can see that, for example, the
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data from Ryu & Livescu (2014) which departs from K scaling at different ∆M

(figure V.3b) collapse onto the line with a slope of 1/6. This low K behavior is

readily understood by recalling that f2(x) ∼ x1/6 at small x which corresponds to

G ∼ ∆M1/6. At high K, G ∼ K−1/4 which under the normalization in the plot is

seen as a horizontal line. Given the number and variety of data sources and flow

conditions collected here combined with the lack of systematic trends with Reynolds,

turbulent and mean Mach numbers individually, the collapse of the data is deemed

very satisfactory. This is especially so when one compares with figure V.3(a).

The transition from K-scaling to M -scaling, reminiscent of critical phenomena

as noted above, allows us also to determine the combination of parameters at which

it occurs. From figure V.4, we observe that this transition happens at K3/2∆M ≈

0.0055. Explicitly, we can then write

Ktr ≈
0.03

∆M2/3
. (V.3)

which is found to be consistent with the data in figure V.3(b), especially those of Ryu

& Livescu (2014) which clearly show the transition. We also point out that (V.3)

provides a precise meaning to the distinction between low-K and high-K interac-

tions, a classification that was put forth only in qualitative terms (Donzis, 2012a):

amplification factors at K < Ktr could be well represented by LIA; amplification fac-

tors at K > Ktr scale as G ≈ 0.75K−1/4. From figure V.4 we see that the majority

of the data in the literature with M < 2 correspond to high-K interactions.

We close this section by noting that the amplification factor shows no systematic

difference between the two types of mechanisms used to generate turbulence here,
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namely, IT and SDT as described in §II.B. Since the former is statistically isotropic

while the latter is not with longitudinal stresses R11 up to 64% larger than trans-

verse stresses R22 (table II.2), data suggest that amplification of turbulence in the

streamwise direction may be dominated by one-dimensional processes in that direc-

tion. This is consistent with the discussion in §III.B in which it was argued that the

dynamics in the region upstream of x2′ is mainly determined by shock effects in QE.

Fully developed turbulence, on the other hand, is attained only at x2 beyond which

well-known return-to-isotropy processes (not accounted for in LIA) are expected to

operate at relatively long time scales (Larsson & Lele, 2009; Larsson et al., 2013;

Ryu & Livescu, 2014; Livescu & Ryu, 2016). In light of these observations, it may

not be entirely surprising the virtually undetectable dependence of G on anisotropy

in the incoming turbulence.

V.B Enstrophy

In shock-turbulence interactions, the shock virtually modifies all turbulent prop-

erties in the flow. For example, there has been interest in understanding changes
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in vorticity statistics as a result of such interaction (Truesdell, 1952; Andreopoulos

et al., 2000). As turbulence goes through a shock, the compression imposed on the

Reynolds stresses modifies other turbulent properties accordingly. However, as pre-

sented in figure II.4, Ω22 shows a totally different distribution from R11 indicating

there exist different mechanisms that dominate vorticity. As a result, the amplifi-

cation of enstrophy will be obtained from different locations, x1Ω22
and x2′

Ω22
, rather

than the traditional ones.

The distributions of Ω11 and Ω22 are given in figure V.5 with different Mt. We can

see from part (a) that the streamwise vorticity is barely amplified by the shock. Ω22,

on the other hand, shows evident amplifications from shock compression, and such

amplification decreases with Mt. Compred to R11, postshock vorticity experiences
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a monotonic decay (without a peak). The pressure effects on rII postshock peaks

are negligible in Ω22 Another feature in enstrophy is that the postshock evolutions

return to isotrophy in the far field. So far, the dominant mechanism in enstrophy

is still a topic of debate, the theoretical work (Truesdell, 1952) suggested that the

baroclinic effect contributes the most, another one (Lee et al., 1993) proposed that

vorticity-compression dominates, and Sinha (2012) concluded that both baroclinic

effect and vorticity-compression are important. Further investigations with detailed

budget studies are needed for understanding the evolution of enstrophy, especially

the phenomenon of far-field isotropy. Since Ω22 is much more amplified than Ω11,

further discussion would focus on the transverse components.

Similar to R11, many efforts are made to understand the amplification of Ω22

through LIA. However, the LIA prediction of Ω22 has not been systematically com-

pared to DNS data in the literature. In figure V.6(a), we present the amplification of

Ω22 across the shock from present simulations as well as other data available in the

literature, and compare them to LIA (Details on LIA results for enstrophy can be

found in Appendix §A.) The figure shows that LIA only captures the trend of trend

in the data with low turbulence intensities. At higher intensities, the amplification

of Ω22 decreases and cannot be accurately quantified by M . As previously discussed,

K scaling has successfully characterized the trend of R11 under strong turbulence

at which discrepancy appear between LIA and DNS. Such method is also applied

to Ω22, the amplification is presented against K in figure V.6(b). The figure shows

a power law of GΩ22
at high K, specifically GΩ22

≈ 0.75K−0.75. Compared to the

power law of R11, the exponent coefficient of GΩ22
is larger indicateing that Ω22 is

more sensitive to the interactions. At low K by which shock wave dominates, the
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change of enstrophy shows a clear M dependence which is predicted by LIA. The

horizontal dashed lines in figure V.6(a) are the estimates from LIA (Wouchuk et al.,

2009) which seem to be the asymptotic states for GΩ22
as M → 0.

In figure figure V.6, GΩ22
shows a transition of two scaling laws, M and K, just

like R11. Similar work is carried out to obtain an universal scaling. Thus, we start

by again considering GΩ22
= f3(K,∆M) with an unknown function f3. At high K

we observe GΩ22
∼ K−0.75 while GΩ22

approaches to LIA at low K. As shown in

figure V.6(a), an good approoximation of LIA is found, GΩ22
∼ ∆M4/5, at a range

of 1.2 . M . 3.5. Therefore, the analysis of universal scaling focuses on the DNS

data within this range. By repeating the same method in §V.A, we can obtain an

universal scaling for GΩ22
as

GΩ22
= K−3/4f4(K

15/16∆M) (V.4)

where f4 is an unknown function of K15/16∆M .

Eq. (V.4) suggests an universal scaling betwen GΩ22
K3/4 and K15/16∆M . Such

scaling law is presented in figure V.7. A very good collapse of GΩ22
is obtained

through the new scaling at a wide range of K. The transition of GΩ22
from K-

scaling to M -scaling allows us to identify the change of dominant mechanism. From

figure V.7, such transition occurs at K15/16∆M ≈ 0.07, and therfore, transitional K

is given as

KΩ,tr ≈
0.0586

∆M15/16
. (V.5)

The transitional condition proposed here is consistent with the data in figure V.6(b).
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For K < KΩ,tr, the trend of GΩ22
can be well-captured by LIA while GΩ22

∼ K−3/4

at K > KΩ,tr.

In this section, we have compared GΩ22
from DNS and LIA. An systematic trend

of Rλ and Mt are observed just as those in R11. K-scaling is shown to characterize

GΩ22
at high K. By combining M -scaling and K-sacling, an univesal scaling is

proposed and capture the transition. Similar to R11, the effects of anisotropy in

turbulence on the amplification are negligible.

V.C Kolmogorov Length Scale and Viscous Dissipation

Energy cascade in turbulence are dictated by viscous dissipation from the large

eddies down to the smallest eddies. During the process of cascade, large eddies break

down to smaller ones and lose energy to temperature. Classical turbulence theory has

indicated that the smallest eddies are described by the Kolmogorov length scale at

which most dissipation takes place. Increasing turbulence intensity would intensify

the dissipation and the flow, in response, would further develop much smaller eddies.

Just like the shock thickness indicates a clear condition of the shock, Kolmogorov
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scales tell us essential information of energy spectrum and the overall conditions

of the turbulence. Since shock thickness is generally smaller than turbulent length

scales, the two-way coupling between the shock and the turbulence should begins at

the small eddies at which the eddies’ scales are close to δl. By studying the change

of Kolmogorov length scale and dissipation in STI, we can better understand how

turbulence evolves through the shock and how energy transfer changes during the

interactions. In §II.D, Figure II.4 has shown that x1η and x1ǫ agree well with the

conventional x1. So do x2′η and x2′ǫ agree well with x2′ . Therefore, in this section we

will continue using the conventional locations, x1 and x2′ , in the discussions of η and

ǫ.

Figure V.8 shows the distributions of Kolmogorov length scale at different Mt.

Due to viscous decay at the upstream, the values of η increase toward x1. Inside the

shock, the shock compression transfers energy into turbulence resulting in significant

reduction of η. After turbulence leaves the shock at x2′ the flows are once again sub-

jected to dissipation, and thus, postshock η immediately increases. A clear trend of

Mt is observed in the distributions, higher Mt leads to smaller peak inside the shock.

The reasonable explanation for this is shock waves are weakened by turbulence, and

thus, weaker shocks lead to smaller turbulent production.

Contrary to η, the distributions of ǫ show exactly opposite trend in figure V.9.

Viscous decay causes the decrease of ǫ while shock compression results in a peak

inside the shock. Higher the Mt smaller the peak is due to weakened shock by

the turbulence. Compared to the values of the peak in η, much stronger peaks are

observed in ǫ. This comes from the scaling law that ǫ ∼ µω2 while η ∼ ω1/2.

Some attempts were made to quantify the amplification of η and ǫ in the litera-
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ture. Larsson & Lele (2009) and Larsson et al. (2013) proposed that the change of η

is a function of M based on RH relations and RDT. But the observed discrepancies

between DNS data and the theory suggeste a systmatic trend of other mechanisms

that the amplification depends on. In Sinha (2012); Vemula & Sinha (2017), the am-

plification of ǫ was discussed. A clear discrepancy was also observed between DNS

data and LIA. Though new turbulence models proposed in the Vemula & Sinha

(2017) improve the estimate, the discussions only focused on the trend of M without

exploring the change of turbulent states. Overall, there still lacks a good method

to quantify the amplification of Kolmogorov length scale and viscous dissipation in

the literature. Since K has successfully characterized R11 and Ω22, same method is

repeated in the hope of a good scaling. However, there exists some scatter when Gη

and Gǫ are plotted against K. Compared to R11 and Ω22, η and ǫ are quantities in

small scales while both Reynolds stresses and vorticies are intermediate scales. Such

difference may suggest the conditions on which K is applicable. Further investigatins

are required to capture the scaling for Kolmogorov length scale and dissipation.

V.D Mass Flux Variance

Flow compressibility is associated with the density changes which in general can

be characterized by the mean Mach number. In a turbulent flow, thus, we expect

the local mass flux, (ρu1)
′2, to present fluctuations due to fluctuations in both den-

sity and velocity. When such a turbulent flow approaches a stationary shock wave,

fluctuations in mass flux are expected to be affected in vicinity of the shock. Such

variation of mass flux in return indicates the effects of compressibility generated by

both the turbulence and the shock.
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Figure V.10 shows the normalized distributions of J11 at different Mt. We can

clearly see that the variation of mass flux share a very similar distribution with

the transverse components of enstrophy. Such similarity also exists in transverse

components mass flux which are not shown here. After a monotonic decay in the

upstream, J11 is amplified by shock compression, followed by another monotonic

decay in postshock evolution. The postshock peak observed in R11 does not exist

in both Ω22 and J11. A close look of the figure reveals that the amplification of

J11 is much higher than R11 and Ω22. Such strong amplification implies different

mechanisms dominate the evolution that have not been discussed before.

The amplification of J11 are measured from x1J11
and x2′

J11
which are the local

minimum and maximum. Figure V.11 shows the amplification across the shock.

Similar to R11 and Ω22, a very good collapse is obtained by plotting J11 against K.

A scaling law of GJ11 ≈ 0.77K−3/4 is observed at high K. With decreasing K, J11

from different M seem to approach to different asymptotic values as K → 0. These

asymptotes suggest a M -scaling. However, the variation of mass flux has never been
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discussed in STI and there is no related works in LIA. Based on such circumstances,

an universal scaling for J11 is currently unavailable and the transition between M -

scaling and K-scaling is pending for further investigations. The distributions of J11

and Ω22 are very similar, one difference between the two is there seems to exist

another asymptotic state of J11 at high K as shown in figure V.11. Though shock

compression would eventually be surpassed by turbulent motions at high K and the

amplification under this condition would be dominated by viscosity. Such conditions

requires deeper discussion on the evolution of J11 and dominant budgets.

Flow statistics provided by experiments are important to verify the numerical

results. However, unlink simulations, accurate measurements are usually restricted

to limited variables, such as J11. In STI, accurate measurements relies on pinpointing

the quantities of interest along the steamwise direction, which is very difficult due to

small shock thickness. Such strict requirement makes experimental data very limited.

In light of this situation, the following discussion intends to further experimental
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measurements.

Considering the fluctuations in turbulence, it is difficult to measure the related

length scales. However, other scales, such as laminar shock thickness and mean

free path, pose less challenge since their values only depend on the mean flows.

Laminar shock thickness is given as δl = 2k1µ/(ρc∆M) while mean free path is

Λ = 2/3k1µ/(ρc), which can also be written as Λ = ∆Mδl/3 (Thompson, 1984).

Figure V.12 shows the J11 with normalization of laminar shock thickness and mean

free path. In part (a), the figure shows that turbulence has made the shock thicker

more than tenfold. The location of x2′
J11

in which downsteam maximum is measured

is ten to thirty times of δl away from the shock. Such turbulent thickening is also

observed in part (b) with normalization of mean free path. The figure shows that

the turbulent shock can be five hundred times of a mean free path, and x2′
J11

is

two hundreds to five hundreds downstream of mean free path from the shock. In

figure V.13, we present the the distance from x1 to x2′
J11

. In general, we see that x2′
J11

is further downstream than x2′
R11

regardless of the turbulence conditions. Since δl

and Λ are both quantities that depends on the mean flow conditions, the systematic
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Figure V.13: Location of maximum J11 downstream of the shock (x2′J11
) relative to

x1 normalized by (a) laminar shock thickness and (b) mean free path with M = 1.1
(circles), M = 1.2 (squares) and M = 1.4 (daimonds). Dashed lines with slope for
reference. Different tones of grays represent different values of Rλ.

change of x2′
J11

cannot be accurately estimated as we can see there is some scatter

of the data. Attempts of presenting the distance with Mt/∆M and K are made but

a consistent trend has not been obtained. Further investigations are encouraged.

V.E Thermodynamic Quantities

An important feature of compressible turbulence comes from the fluctuations in

thermodynamic variables. Such fluctuations play a crucial role in energy transfer,

flow compressibility, thermal equilibrium, among other things. From the derivation

of turbulent shock jumps in §III.B, we have shown that the nonlinearity in thermo-

dynamic variables can significantly modify the stationary state of the flow. Thus, a

discussion of thermodynamic fluctuations are given here.

Traditionally, thermodynamic fluctuations are normalized by their corresponding

ensemble averages (Lee et al., 1993; Donzis & Jagannathan, 2013). Since isentropic

relations are satisfied in general as discussed in §III.B, the conventional normaliza-

tions of different variables are correlated by the ploytropic exponent as shown in

Eq. (III.49). Present studies propose a normalization by upstream fluctuations as
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1.2, Rλ ≈ 25 and Mt = 0.12 (solid), 0.21 (dashed), 0.32 (dash-dotted) and 0.44
(dotted).

shown in Figure V.14. The presented distributions are density, pressure and tem-

perature, respectively. A detailed comparison reveals that different thermodynamic

fluctuations share very similar distributions. Such similarity was also reported in the

corresponding p.d.f. and skewness by Donzis & Jagannathan (2013). These pheno-

mana suggest a very strong correlation between the three variables. It also implies

that if a thermodynamic state is given, the following change of the state can be

estimated by just one variable. Though there are different mechanisms involved in

each variable, there may exist mutual terms that dominates the evolutions. Finally,

We note here that a good scaling of thermodynamic amplification was not obtained

by K from present simulations. Further studies of the corresponding budgets are

required for deeper discussion.
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V.F Summary

Turbulence amplification due to shock compression is studied by analyzing the

quantities of interest across the shock. A clear K-scaling is found in many vari-

ables, such as Reynolds stresses, enstrophy and the mass fluxes at strong turbulence.

Meanwhile, M -scaling is observed as K → 0 from LIA. In light of the two scaling

laws, an universal scaling is proposed along with a transitional K that distinguish

the two laws. The observed K dependence shows a dominant role of Reynolds num-

ber. However, a good collapse by K-scaling was not found in the amplification of

Kolmogorov length scale, viscous dissipation and thermodynamic variables. Since

both Kolmogorov length scale and dissipation are quantities in small eddies very dif-

ferent from Reynolds stresses for example. Such difference in scales implies different

mechanisms are involved that play a role in the processes.
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VI. CONCLUSIONS AND FUTURE WORK

VI.A Conclusions

The presence of shock waves is a distinguishing feature of supersonic/hypersonic

flows. Understanding the processes in which turbulence interacts with a shock is

fundamentally important to engineering application of compressible turbulence. The

main challenge of studying this topic comes from the two-way coupling between the

shock and turbulence which occurs at a wide range of scales in time and space.

In this work, the studies focus on the canonical interaction of turbulent flows and a

stationary normal shock. An inhouse compressible turbulence code is developed with

high-fidelity method for simulating a shock in a numerical domain. To understand

the generality of STI, both isotropic and anisotropic turbulence were simulated by

different methods. A large STI database with one of the highest resolutions in the

literature is built with a wide range of Rλ (5− 65) and Mt (0.02− 0.54), along with

various values of M (1.1 − 1.4) to thoroughly study the systematic change in the

shock and turbulence.

Theoretical work applying to turbulent shocks is formulated assuming quasi-

equilibrium. Under such an assumption, the shock responds instantaneously to lo-

cal changes in upstream conditions due to turbulent fluctuations. The shock can,

therefore, be quantified based on laminar theories and the statistical description of

turbulence. When turbulent fluctuations are strong enough, the flow can become

subsonic and significant changes are expected in the local behavior at the shock lo-

cation. Different formula are adopted to characterize the flows in supersonic and
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subsonic regions. Finally, the solutions of turbulent shock jumps are expressed in

terms of M and Mt compared to RH jumps which depend solely on M . Our simula-

tions and other data in the literature agree well with the theoretical predictions and

we argued that while Rλ does not appear in the final expressions, this may indeed be

justified from the analysis of the governing equations in the one-dimensional limit.

The effect of anisotropy in the incoming turbulence also appears to be negligible on

mean jumps, again supporting the basic tenets behind QE. The analytical results

apply well both in the wrinkled and broken regimes due to the different treatments

of supersonic and subsonic regions ahead of the shock. This is accounted for by

recognizing that the relation between downstream and upstream variables depends

on whether the flow is supersonic or subsonic locally: RH conditions only apply to

the former. Interestingly, though, departures from RH jumps of mean variables are

seen even in the wrinkled regime due to the non-linear functional form of RH jumps

which, when averaged, result in values different than RH jumps using mean proper-

ties ahead of the shock. Note that this effect is missing when linearized RH jumps

are used in theories such as LIA. Furthermore, in the latter, mean properties are

considered known boundary conditions to the problem at the mean Mach number

M . Our results, consistent with other DNS in the literature, do not support this

assumption which may be, in part, responsible for LIA being unable to capture the

observed behavior beyond weak fluctuations. This change in mean properties has

also relevance for practical applications where shock stabilization in a turbulent en-

vironment is critical such as flows in supersonic nozzles or in scramjet engines. It

can also provide guidance in designing stationary STI experiments and simulations

as an incorrect back pressure will lead to drifting shocks.
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The theoretical results based on QE were further found to provide quantitative

predictive capabilities. For example, we found that turbulence can weaken (as argued

before in the literature) but can also strengthen the shock jumps depending on a

critical Mach number Mcr defined here which in turns depend on the intensity of

turbulent fluctuations through Mt. For M < Mcr, jumps are stronger than in laminar

flows at the same M ; for M > Mcr jumps are weaker. Furthermore, we found that

density, pressure and temperature present different critical Mach numbers giving

raise to conditions in which temperature jumps are larger than RH while density

and pressure jumps are weaker than RH. These predictions have indeed been verified

with our DNS data here. Entropy, on the other hand, shows a distinct feature of

monotonic increase without critical Mach number. Such change is found dominated

mostly by turbulence intensities in agreement with weak shock theory.

Thus we conclude that collectively the data support QE as a good approxima-

tion which leads to analytical results for density, pressure, temperature and entropy,

consistent with the available data. In fact, it is interesting to observe how well it

performs even with highly broken shocks where three-dimensional effects could play

a role. We also note that QE is not expected to be accurate for variables at locations

beyond x2′ where turbulent—as opposed to shock—processes dominate the dynam-

ics. It is also unclear whether derivations under QE are applicable to, e.g., variances

of thermodynamic quantities. This is part of ongoing efforts.

While shock jumps are modified by turbulence, the structure of the shock is also

changed accordingly. This is quantified by studying the rms-to-mean dilatation on

the shock. Present simulations showed a dependence of Mt/∆M of dilatation in

wrinkled regime consistent with the theory proposed previously. Departures of DNS
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data from the theory were seen for Mt/∆M & 0.6 where stronger turbulent effects

create increasingly large areas with holes. At much higher Mt/∆M , an asymptotic

value of Θ was observed which depends on Rλ. This was explained by the fact

that at high turbulence intensities, transverse diffusion becomes important to which

dilatation is subjected to. Thus classical results on turbulence gradients were used

to obtain Θ∞ as Mt/∆M → ∞ which exhibits quantitative agreement with DNS

data. Traditionally, the category for shock structure depends on visual inspection. In

wrinkled regime, each local dilatation line shows a clear sharp peak resulting from the

shock. Such peaks become smooth in broken regime but still prominent compared to

other minor peaks generated from the turbulence. As turbulent intensity continues

increasing, the interactions would eventually be dominated by turbulent motions.

Under this circumstances, the dilatation no long shows a dominant shock peak.

Rather, multiple similar peaks appear in dilatation. In the meanwhile, Reynolds

stresses show pure viscous decay across the shock. Vanished shock is proposed for

these phenomena which happen at K ≈ 1.

Finally, we presented results on turbulence amplification due to the shock. The

amplification in STI was widely studied by focusing on various variables of turbu-

lence, hydrodynamics and thermodynamics. The previously proposed parameter K

(= δl/η) was used on this quantitative assessment. A large collection of results in

the literature, and our simulations was presented. The new simulations in this stud-

ies covered a wide range of parameters and extended the results in the literature to

interactions at much higher K. The amplification factor that measures the change of

streamwise Reynolds stress across a shock was shown to be characterized by K when

the turbulence is strong. The factor decreases with K as shock compression dimin-
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ishes by turbulent motions. At limiting cases K → 0, the factor shows a M -scaling.

Such dependence on two parameters in two different limits was suggested to resemble

Widom scaling in critical phenomena. In the present context, its application leads

to universality of the form GK1/4 = f2(K
3/2∆M) which indeed collapses all the data

with no systematic trend observed against any other governing parameter. This led to

a transition criterion (Ktr ≈ 0.03/∆M2/3) between low-K and high-K interactions

which separates interactions on which LIA applies and when G ∼ K−1/4 applies,

respectively. Similar phenomena were found in the amplification of transverse en-

strophy where the amplifications are captured by K and M at different conditions.

A universal scaling is proposed thereafter with the form GΩ22
K3/4 = f4(K

15/16∆M).

Although the amplification of streamwise mass flux also shows a K-scaling at high

turbulence intensities, the lack of discussion in LIA has hindered deeper discussion

of a universal scaling. Similar K-scaling was not found in the amplifications of Kol-

mogorov length scale, viscous dissipation and thermodynamic variables. Compared

to Reynolds stresses and enstrophy, both Kolmogorov length scale and dissipation

are much smaller quantities. Such differences in scales implies different processes

are involved in each variable. The thermodynamic fluctuations normalized by up-

stream values showed extremely similar distributions which has never been reported.

The resemblance implies that the changes of thermodynamic variables are highly

correlated, and the interactions are in thermodynamic equilibrium in general. The

surprising results warrant further investigations for this topic.
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VI.B Future Work

In this section, we proposed possible research topics that can be extended from

the present studies.

• Analytical solutions have successfully estimated the thermodynamic jumps in

turbulent shock waves. With accurate estimation, one must understand the

dominant mechanisms by which the turbulent jumps are dominated. The non-

monotonic trends in some quantities implies complex processes involved. In

addition, different variables show transition from greater-than-RH jumps to

weaker jumps at different conditions. These trends imply very complicated

dependece on shock waves and turbulence at different regimes. It is encouraged

to explore the mechanisms that dominate the shock jumps.

• The change of shock structure has been captured by Mach numbers in wrinkled

regime. For the dilatation in broken shocks, the asymtotic states are captured

by Reynolds number at very strong turbulence. Meanwhile, the transition

between the two regimes depends on both the shock waves and turbulence and

has not been captured yet. The systematic trend of dilatation in broken regime

is still unclear because of insufficient understanding of velocity dilatation in

turbulence. Further investigations on the velocity derivatives in turbulence are

required to understand the local dilatation that turbulence dominates. That

gives us a comprehensive understanding of the processes in subsonic regions.

• The theoretical work in present studies relies heavily on QE. With increasing

turbulence intensities, QE would be eventually invalid. Its validity is actually

challenged by few cases in present simulations in which discrepancies are ob-
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served between the data and the proposed predictions. Plausible explanation

for the discrepancies is that transverse dissipation becomes evident and inter-

actions between the infinitesimal laminar shocks occur subjected to viscosity.

Such effects of transverse diffusion was actually seen in the dilatation that DNS

data depart ealier from the presented theory with lower Reynolds number. To

further describe the turbulent shock beyond the conditions on which QE is

inapplicable, a good description of shock-shock interactions is inevitable.

• Systematic trends of ampifications across the shock in various quantities on

Rλ and Mt are discussed. Good prediction of Reynolds stresses, enstrophy

and mass fluxes are obtained by K. However, quantities in small scales and

thermodynamic fluctuations show different trends that are still elusive. Further

efforts are needed to conclusively establish scaling laws for Kolmogorov length

scale, viscous dissipation and thermodynamic variables.
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APPENDIX A

EXPLICIT SOLUTIONS OF LIA

A breakthrough in the theoretical study of STI was LIA (Ribner, 1954a,b; Moore,

1954) in which it is assumed an inviscid flow, and linear superposition of perturba-

tions. LIA was found accurate at moderately low Mach number and weak turbulence

(Lee et al., 1993; Larsson & Lele, 2009; Ryu & Livescu, 2014). With increasing tur-

bulent fluctuations, discrepancy between LIA and DNS data appears. Nevertheless,

LIA provides analytical predictions in STI that can indeed account for e.g. turbulence

amplification. The rest of the section focuses on the amplification of other quantities

that can be derived within LIA. For more details about LIA, readers are referred to

Wouchuk et al. (2009) in which explicit expressions of turbulence amplification are

provided.

In figure A.1 we show the general setup. Upstream of the shock turbulence

is assumed to be incompressible. The normal shock travels through the domain

ρ2 + δρ2

p2 + δp2

c2

∇ · δ ~u2 6= 0

∇× δ ~u2 6= 0

✲

shock

w
✲

ρ1

p1

c1

∇ · δ ~u1 = 0

∇× δ ~u1 6= 0

✲

Figure A.1: A normal shock wave travels from the left to the right at a speed w.
The flow at the upstream is assumed incompressible while the downstream consists
of solenoidal and dilatational motions.
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at a speed w, and interacts with the upstream turbulence creating a downstream

turbulence with different characteristics. The subscript 1 refers to the quantities

upstream of the shock, subscript 2 refers to the quantities downstream of the shock,

and δ means perturbations. Before interacting with the shock, the upstream fields

consist of rotational motions only. As the shock passes through the domain, it

modifies the original velocities and generates dilatational motions. Without proof,

the amplification factor can be expressed as

(A.1)
G =

δu2
2x

δu2
1x

= Arot
3D(M) + Aac

3D(M)

= Al
3D(M) + As

3D(M) + Aac
3D(M)

where the subscript 3D indicates the upcoming flow is three-dimensional, superscript

rot and ac stand for solenoidal and acoustic contributions, and superscript l and s

represent the amplification from long and short wavelength, respectively. For the

solenoidal motions, LIA separates the wavelength into long wavelength (ζ0 < 1) and

short ones (ζ0 > 1) where ζ0 is a dimensionless frequency that takes account of the

periodicity of the upstream velocity field

ζ0 =
RM2»
1−M2

2

kx
ky

. (A.2)

M2 is the downstream Mach number obtained from RH relations, R is the RH jump

for density, and kx and ky are the longitudinal and transverse wave numbers. Short

wavelength is the waves that run downstream with constant amplitude while the

waves with long wavelength emitted from the shock decay exponentially relative to

the shock position. The amplifications from the long and short wavelength are given
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as

Al
3D =

1

2

∫ 1

0

|Ql
rot|2M4R2

√
M2 − 1

[RM2 + (M2 − 1)ζ20 ]
5/2

dζ0 (A.3)

and

As
3D =

1

2

∫ ∞

1

|Qs
rot|2M4R2

√
M2 − 1

[RM2 + (M2 − 1)ζ20 ]
5/2

dζ0. (A.4)

Ql
rot and Qs

rot are the amplitudes of downstream velocities associated with the long

and short wavelength, respectively,

|Ql
rot|2=

Ω2
12Ω1Ω2elr + Ω2

2(e
2
lr + e2li)

(

1 +
1−M2

2

M2
2

ζ20
)2 (A.5)

and

|Qs
rot|2=

Ω2
12Ω1Ω2es + Ω2

2e
2
s

(

1 +
1−M2

2

M2
2

ζ20
)2 (A.6)

where Ω1 quantifies the amplification of the upstream vorticity and Ω2 comes from

shock oscillations due to upstream perturbations. The two terms are given as

Ω1 =
(γ + 1)M2

(γ − 1)M2 + 2
+

M2 − 1

M2
ζ20 (A.7)

and

Ω2 =
(M2 − 1)

√
2γM2 − γ + 1

M2[(γ − 1)M2 + 2]3/2
(A.8)

where the coefficients are

elr =
2M2M2[M

2 − (M2 + 1)ζ20 ]α0

4M4M2
2 ζ

2
0 (1− ζ20 ) + [M2 − (M2 + 1)ζ20 ]

2
, (A.9)
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eli =
4M4M2

2 ζ0
»
1− ζ20αv

4M4M2
2 ζ

2
0 (1− ζ20 ) + [M2 − (M2 + 1)ζ20 ]

2
, (A.10)

es =
2M2M2αv

4M4M2
2 ζ

2
0 (1− ζ20 ) + [M2 − (M2 + 1)ζ20 ]

2
, (A.11)

and

αv =
2

γ + 1

Ç
M2 − 1

M
ζ21 − 1

å
. (A.12)

Finally, the acoustic contribution Aac
3D accounts for acoustic motions generated

by the shock and is given as

Aac
3D =

1

2

∫ ∞

1

|Qac|2M4R2
√
M2 − 1

[RM2 + (M2 − 1)ζ20 ]
5/2

dζ0 (A.13)

where

Qac =





M2ζ0 −
»
ζ20 − 1

ζ0 −M2

»
ζ20 − 1





2

e2s (A.14)

Given from Eq. (A.1) to Eq. (A.14), the amplification factor is a function that

depends solely on the mean Mach number, M .

Similar to Reynolds stresses, the amplification of vorticity is defined as the vor-

ticity ratio at x2 and x1 which consists of the long and short wavelength parts

(A.15)

GΩ22
=

δω2
2z

δω2
1z

=
∫ 1

0

î
Ω2

1 + Ω2
2(e

2
lr + e2li) + 2Ω1Ω2elr

ó
sin5 θdζ0

+
∫ ∞

1

î
Ω2

1 + Ω2
2e

2
s + 2Ω1Ω2es

ó
sin5 θdζ0

where the first term on the right hand side comes from the long wavelength while

the second term is the contribution from the short wave length. θ = kx/ky is the

incidence angle that defines a set of upstream waves with different directions with
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respect to the shock. Each term also takes account of the amplification of upstream

vorticity and shock oscillations. The amplification of vorticity can be written as a

function of M as well.

A main conclusion for all LIA predictions is that turbulence amplification is

completely quantified by the single parameter M . Such dependence is consistent with

the assumptions behind the analyses, namely, inviscid flows and weak perturbations.

These assumptions are reasonable with low turbulence intensities as observed in the

good agreement between DNS data and LIA (Larsson & Lele, 2009; Ryu & Livescu,

2014).
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