
AN ANOMALY DETECTION FRAMEWORK FOR HETEROGENEOUS AND STREAMING

DATA

A Thesis

by

DONGHWA SHIN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Xia Hu
Committee Members, James Caverlee

Tie Liu
Head of Department, Dilma Da Silva

December 2018

Major Subject: Computer Science

Copyright 2018 Donghwa Shin

ABSTRACT

Anomaly detection has become one of the most important research areas due to its wide range

of use such as abnormal behavior detection in network traffic, disease detection in MRI images,

and fraud detection in credit card transactions. In many real-world anomaly detection problems,

we face heterogeneous data comprising different types of attributes including categorical and con-

tinuous attributes. The heterogeneity of data makes it really difficult to compare data instances.

Furthermore, the behaviors of data may change over time in streaming environments. Finally, it

is hard to get the labels of data since we get too many data per day to manually classify them.

To tackle these challenges, in the paper, we propose an anomaly detection framework for hetero-

geneous and streaming data. By introducing our own distance metric for categorical features and

using an ensemble of two outlier detection methods, we effectively deal with both heterogeneous

and streaming data. Furthermore, the ensemble model keeps updating its backend information dur-

ing classification tasks so as to adapt to changing data behaviors. The framework, also, provides

the interpretation of detected outliers in order to reduce the effort of human experts to get labeled

data. Finally, we train a supervised machine learning algorithm using the feedback from human

experts for anomaly detection tasks. Our experiment results show the efficacy of the proposed

framework.

ii

ACKNOWLEDGMENTS

I truly appreciate my advisor, Dr. Xia Hu, for his support, guidance, and encouragement

throughout the course of my research. I would also like to thank my committee members, Dr.

James Caverlee and Dr. Tie Liu for their guidance and valuable comments on the research. Fur-

thermore, I would like to thank all DATA lab members. It was a wonderful experience and so much

fun working with such a great group of people. Finally, my deepest gratitude goes to my family

for their support all through these years.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Xia Hu and James

Caverlee of the Department of Computer Science and Engineering and Professor Tie Liu of the

Department of Electrical and Computer Engineering. All work for the thesis was completed inde-

pendently by the student.

Funding Sources

Graduate study was supported by a teaching assistantship from the Department of Computer

Science and Engineering.

iv

NOMENCLATURE

CE Clustering Estimation

kNNa k-Nearest Neighbor Approximation

iForest Isolation Forest

HSTrees Hafl-Space Trees

LOF Local Outlier Factor

RNN Replicator Neural Network

ROC Receiver Operating Characteristics

AUC Area Under the (ROC) Curve

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION. 1

2. RELATED WORK . 5

2.1 Anomaly Detection . 5
2.2 Heterogeneous Data . 5
2.3 Streaming Data . 6
2.4 Ensemble Methods . 6
2.5 Interpretable Methods . 7
2.6 Similarity Measures for Categorical Features . 7

3. ANOMALY DETECTION FRAMEWORK. 9

3.1 Outlier Detection Methods. 9
3.1.1 Clustering Estimation . 10
3.1.2 k-Nearest Neighbor Approximation . 11

3.2 Update Backend Information . 12
3.3 Distance Metric for Categorical Attributes . 14
3.4 Outlier Ensembles . 16
3.5 Classification By Human Experts With Outlier Interpretation . 17

3.5.1 Interpretation of Outliers . 17
3.6 Supervised Anomaly Detection . 19

4. EXPERIMENTS . 21

4.1 Dataset . 21

vi

4.2 Experiment Setup . 22
4.3 Evaluation on Heterogeneous Data. 22
4.4 Evaluation on Streaming Data . 23
4.5 Evaluation on Outlier Interpretation. 24
4.6 Framework Evaluation . 25

5. CONCLUSION AND FUTURE WORK . 30

REFERENCES . 31

vii

LIST OF FIGURES

FIGURE Page

1.1 Input data example in the area of computer networks . 1

1.2 The architecture of the proposed framework . 3

3.1 Two separate backend information; we use the old backend information for classi-
fication tasks and apply the CE method to save latest data information. 13

3.2 Replacement of the backend information; when the number of instances in the
latest backend exceeds a predefined threshold, we replace the old backend with the
latest one. 14

3.3 The architecture of a neural network used in Phase 3 . 19

4.1 Examples of the interpretation results on the NSL-KDD dataset; the bar graphs
show the feature importance scores for each attribute of normal instances. As you
see the figures, the scores are well distributed over features. This is because normal
instances do not have specific anomalous attributes. 27

4.2 Examples of the interpretation results on the NSL-KDD dataset; the top figure
shows the feature importance scores for each attribute of a detected outlier, and
the bottom figure shows a scatter plot of the first and second most anomalous at-
tributes, srv_count and srv_rerror_rate based on the feature importance scores. In
the scatter plot, red points represent abnormal instances, and blue points represent
normal instances. The red point marked with the red circle refers to the detected
outlier. 28

4.3 Examples of the interpretation results on the NSL-KDD dataset; the top figure
shows the feature importance scores for each attribute of a detected outlier, and
the bottom figure shows a scatter plot of the first and second most anomalous at-
tributes, dst_bytes and num_compromised based on the feature importance scores.
In the scatter plot, red points represent abnormal instances, and blue points rep-
resent normal instances. The red point marked with the red circle refers to the
detected outlier.. 29

viii

LIST OF TABLES

TABLE Page

3.1 Notations used in the paper . 9

3.2 Categorical values and their frequencies of protocol_type and service categories 15

4.1 Datasets used for the experiments . 21

4.2 Experiment results on static heterogeneous datasets . 23

4.3 Experiment results on streaming datasets . 24

4.4 Experiment results for the supervised model in Phase 3 . 25

ix

1. INTRODUCTION

Discovering unexpected patterns or behaviors (aka anomalies, outliers, novelties, and excep-

tions) [1] in data has been essential because it has a wide range of use. For example, our credit

cards sometimes get frozen when we travel somewhere or spend too much money since credit card

companies think that these behaviors do not match the previous records of our transactions. In the

area of computer networks, we also can find anomalous packets, which can be either an attack or

some kind of failure. This problem is getting important since these anomalous behaviors or patters

are often associated with a huge financial loss. Due to the importance of anomaly detection, there

have been a lot of studies on it [1, 2], but this is still an open problem.

When we closer look at real-world datasets, they generally consist of different types of at-

tributes including continuous, categorical, and binary attributes. This is where one of the major

difficulties of anomaly detection comes from: heterogeneous data. Figure 1.1 shows an example

of heterogeneous data in computer networks.

Figure 1.1: Input data example in the area of computer networks

1

In the example data, the features are of different types. For example, time, user_id, src_ip,

and protocol are categorical features, src_byte is a continuous feature, and logged_in is a binary

feature. Since each categorical feature can have different number of categorical values and all of

the features are heterogeneous, it is really hard to measure the distance or similarity between two

data instances. For example, what is the distance between the TCP and UDP protocols? Also, in

streaming environments like computer network or credit card transaction example, the behaviors or

distributions of data may change over time. What if a person living in Texas got a job in a different

city of state and moved there? The pattern of credit card transactions of that person is going to

totally change and credit card companies will get a lot of false alarms. In computer networks,

attackers keep changing their behaviors so that they can prevent their anomalous behaviors from

being detected by anomaly detection algorithms. This problem is also called concept drift and

outlier detection algorithms for streaming data should be able to deal with this problem. Finally,

it costs a lot of time and money to get the ground truth (labels) of data since we get very large

amount of data everyday. Thus, we should assume that the ground truth of data is not available for

anomaly detection tasks.

To tackle the aforementioned challenges, we propose an anomaly detection framework for

heterogeneous and streaming data. Our strategies to deal with the challenges are motivated by

previous work on anomaly detection. First of all, ensemble analysis has been overlooked for a long

time because of the unsupervised nature of anomaly detection problems. By using an ensemble, we

expect to achieve the diversity of detected outliers since each outlier detection algorithm reacts to

categorical features differently. Also, we propose a distance metric for categorical features in order

to make sure the ensemble model handles categorical features well. Second, outlier interpretation

is very helpful for human experts to check whether detected outliers are really anomalous or not.

Thus, we provide the interpretation of detected outliers to reduce the effort of human experts to

get labels of data. Next, we enhance existing outlier detection methods so that they update their

backend information regularly and can deal with concept drift issue. Finally, anomalies are not

necessarily bad or malicious. Let me give you the credit card transaction example, again. In that

2

example, the credit card user just moved to other place, which is not a malicious activity, but just

a less frequent activity. We do not want this kind of activities to be detected by our methods

since these outliers increase false positives, which would cause the distrust on our framework. To

address this problem, we use a supervised anomaly detection model along with the ensemble of

unsupervised outlier detection methods.

Figure 1.2: The architecture of the proposed framework

The architecture of the proposed anomaly detection framework is illustrated in Figure 1.2. With

these motivations, we build our framework having three phases. In the first phase, we detect suspi-

cious records (outliers1) in streaming data by using an ensemble of two outlier detection methods.

These methods are enhanced to update their backend information and deal with concept drift issue.

We also introduce our own distance metric for categorical features so we can reasonably com-

pute the distance between two heterogeneous data instances. In the second phase, the framework

provides the interpretation of detected outliers in order to help human experts check whether the

outliers are really anomalous or not and create the ground truth for the next phase. Finally, we

1In this paper, the terms outliers and anomalies are interchangeable.

3

use a supervised anomaly detection model, which is a feed-forward neural network, and train this

model using the ground truth from the previous phase to reduce false positives. Our feed-forward

neural network has an embedding layer for categorical features in data to better deal with hetero-

geneous data unlike other conventional supervised machine learning algorithms. This supervised

model is simply used for binary classification tasks. Our framework has the following advantages

over conventional anomaly detection methods:

• The framework can handle heterogeneous data by using an ensemble of outlier detection

algorithms and our own distance metric for categorical attributes.

• The framework reduces the effort of human experts to classify anomalies by providing the

outlier interpretation based on clusters and nearest neighbors.

• The framework can adapt to changing data behaviors in streaming data by updating its back-

end information in real time.

• The framework reduces false positives as much as possible by using a supervised model and

the feedback from human experts.

4

2. RELATED WORK

2.1 Anomaly Detection

A large number of studies on anomaly detection have been conducted, resulting in various

techniques to address the problem. Scholkopf et al. [3] proposed Support Vector Machines with

one-class setting for outlier detection. Some works try to detect outliers using density-based ap-

proach [4, 5] and clustering-based method [6, 7, 8, 9]. Traditional nearest neighbor-based tech-

niques have also been applied for outlier detection by [7, 10, 11]. Because of the characteristics

of anomaly detection, some methods have been developed for specific purpose such as detecting

outliers in attributed networks [12, 13].

With the recent success of neural networks, they have been used to capture anomalies in a

unsupervised fashion. Hawkins et al. proposed Replicator Neural Networks (RNNs) for one-class

anomaly detection and they are conceptually the same as autoencoders [14]. The RNNs try to

learn input patterns and to reproduce them. The reconstruction error computed by subtracting

the reconstructed output from an input instance is used as an anomaly score. Some recent works

take advantage of deep architectures [15, 16, 17], showing that deep architectures can be used for

unsupervised anomaly detection.

2.2 Heterogeneous Data

Not much of work on heterogeneous data exist since most of traditional outlier detection meth-

ods focus on numerical attributes [1]. Otey et al. [18] proposed a distributed outlier detection

method for heterogeneous and streaming data. This method captures dependencies among features

of data so that they effectively compute the distance between two data points. The problem of this

model is that it shows bad performance when data has only numerical attributes [18].

When it comes to categorical attributes, many existing models are probability based due to its

discrete nature of data [19, 20]. One of interesting studies on categorial features is COMPREX pro-

posed by Akoglu et al. [21]. Anomalies are detected by this model if they have high compression

5

cost when compressing them. Chen et al. recently introduced a model addressing the problem

of heterogeneous categorical data by finding pairwise interactions between categorical attributes

using embeddings of them [22]. These models, however, can deal with only categorical attributes.

2.3 Streaming Data

Most studies on anomaly detection in streaming environments have been conducted in signal

processing [23, 24, 25], which means they use only numerical data. The model introduced by Otey

et al. [18] can deal with streaming data, but as we discussed above its performance deteriorates

when using datasets with only numerical attributes. Tan et al. proposed Streaming Half-Space

Trees in order to address the problem of concept drift and memory requirement [26], but the study

solely focuses on numerical data like other traditional methods.

2.4 Ensemble Methods

Ensemble analysis has received considerable attention for supervised machine learning meth-

ods due to its ability to boost a collection of algorithms. Following the trend, ensemble methods

for outlier detection also have been studied but in a limited way because of the unsupervised nature

of the problem [27, 2].

One of the well-known ensemble methods for outlier detection is Local Outlier Factor (LOF) [4].

The LOF method computes LOF values within a range of values of k, referring to the number of

neighbors of a data instance. By taking the maximum of all the LOF values, they get an anomaly

score for each instance. Isolation Forest proposed by [28] is an ensemble of isolation trees, which

try to isolate each data instance from the rest of data instances. If a data point has a shorter path in

a forest of such trees, then the point is highly likely to be anomalous. Recently, Chen et al. [29]

introduced RandNet, employing autoencoder ensembles, to detect outliers. They could achieve the

improved diversity and reduced training time by making autoencoders in RandNet have different

structures and connection densities.

6

2.5 Interpretable Methods

The interpretation of outliers is important considering what we can benefit from it: interpre-

tation (1) can help non-experts in a certain area look into results effectively and (2) reduce the

effort of human experts and engineers analyzing results. Some works provide the interpretation

of outliers by selecting features with which outlier detection methods find outliers most effec-

tively [30, 31, 32]. There exist a general framework to explain classification results provided by

any machine learning classifiers [33] and framework built for outlier interpretation [34].

2.6 Similarity Measures for Categorical Features

For measuring the distance or similarity between categorical attributes, the measure called the

overlap measure [35] is the simplest and most widely used. In this measure, we just assign a value

of 1 if two categorical values are same and assign a value of 0 if not. Although it does not depend

on the ordering of categorical data, this measure is still too simplistic since it does not take into

account other information which we can extract from categorical attributes such as the frequency

information for each category.

By making use of these kinds of information, a lot of similarity or distance measure for cate-

gorical data have been proposed. Eskin et al. introduced a data-dependent normalization kernel

along with their anomaly detection algorithms in [7]. In this kernel, the distance between two

categorical data is
∑

2
|fi|2 if two values of fi are different, where fi is i-th feature in data. This

kernel gives more weight to attributes that take small values when computing distances. The in-

verse occurrence frequency derived from the inverse document frequency in information retrieval

can also be used for a distance measure for categorical features. Each categorical value has a value

of log(N
freq(fi)

), where N is the number of instances in data, freq(f) is the number of occurrences

of the feature f in data, and fi is i-th feature in data. Other than these methods, probability-based

measures [36, 37, 38] and measures based on information theory [39, 40] have been proposed due

to its discrete nature.

There exists a very helpful survey conducted by Boriah et al. explaining 14 similarity mea-

7

sures for categorical data [41]. They revisited traditional techniques of the similarity measures

for categorical data, proposed 6 variants of the existing methods, and perform experiments in the

context of outlier detection. Their experiment results show that the performance of the similar-

ity measures highly depends on datasets since different datasets have different characteristics of

categorical attributes.

8

3. ANOMALY DETECTION FRAMEWORK

In this section, we propose an anomaly detection framework for heterogeneous and streaming

data in order to tackle the challenges we discussed earlier: (1) heterogeneous data (2) concept drift

issue in streaming data (3) no labeled data (4) not malicious anomalies. The framework has three

phases to detect anomalies in streaming data and we explain each phase in detail as follows. The

notations used in this paper are listed in Table 3.1.

Notation Definition
D training dataset
xi a data instance
xij an attribute value of xi

w the width of a cluster
k the number of nearest neighbors
C a set of clusters
c a cluster ∈ C

d(xi, xj) the distance between xi and xj

df (xi, xj) the feature distance for the feature f
Kxi

a set of k-nearest neighbors of xi

s(xi) the outlier score of xi

Table 3.1: Notations used in the paper

3.1 Outlier Detection Methods

We selected two existing outlier detection algorithms from different outlier detection categories

based on [1, 2]. The two selected methods are the Clustering Estimation (CE) and the k-Nearest

Neighbor Approximation (kNNa) introduced by Eskin et al. [7]. The rationale behind selecting

these two algorithms is, first of all, they are very simple and intuitive so we are able to provide

the interpretation of results very easily. Second, they use the same backend information, which

is the cluster information, so only one training is required for both methods. Furthermore, when

9

updating our backend information to deal with concept drift problem, we do not need to consider

two different backend information for each method because we only have one backend information.

Finally, they are computationally efficient so they are suitable for streaming data. We explain how

each algorithm works and how we enhance them below.

3.1.1 Clustering Estimation

This method is also called fixed-width clustering [7]. It clusters data based on the fixed-width

w of a cluster, which is a hyperparameter. The procedure of this algorithm is as follows. The

method iterates all point in training data and it tries to find the closest cluster to each point. After

finding the closest cluster to a point, the method checks if the point is within the closest cluster

based on the fixed-width w. If the point is within the closest cluster, then the point is added to the

cluster. If not, the point will be the center of a new cluster. Formally we describe the procedure as:

for each instance xi, xi is added to the closest cluster c ∈ C to xi if d(xi, c) ≤ w. If d(xi, c) > w,

then xi becomes the center of a new cluster. Algorithm 1 illustrates the pseudocode for the CE.

Algorithm 1: Clustering Estimation algorithm
1 Let C be an empty set;
2 for each record in training data do
3 Find the closest cluster c to the current record xi;
4 if d(xi, c) ≤ w then
5 c := c ∪ {xi};
6 else
7 makeNewCluster(C, xi);
8 end
9 end

10 return C

The time complexity of this method for clustering (training) is O(n|C|), where n is the number

of instances in a given training dataset D. Since the number of clusters is typically much less than

the number of instances in training data, we can cluster training data very efficiently. The outlier

10

score s(xi) for a new instance xi is the inverse of the size of the closest cluster to xi if xi is within

the cluster c and is formally defined as:

s(xi) =

1
|c| , if d(xi, c) ≤ w

1, otherwise
(3.1)

where w is the predefined cluster width, c is the closest cluster to xi and c ∈ C, which is a set

of clusters. For outlier detection, we train the model with training data, which means that we get

clusters C based on the training dataset. After training, we evaluate a new instance xi in streaming

data by finding the closest cluster c to xi and computing the outlier score of xi. Computing the

outlier score of an instance takes O(|C|) time since we find the closest cluster to the instance. The

higher score an instance has, the more outlying it is.

3.1.2 k-Nearest Neighbor Approximation

As the name of the method suggests, it finds k-nearest neighbors of an instance to detect anoma-

lies. We modified the original algorithm in [7] to make it more simple and efficient. Here is how

it works. First of all, we apply the Clustering Estimation algorithm to get our backend cluster in-

formation C. We find the closest cluster c to a new instance xi from streaming data, which means

that we compute argminc∈C d(xi, c), and then add all instances in c to a set Kxi
if |c| ≤ k - |Kxi

|.

After that, we find the second closest cluster and do the same process. If the condition is not met,

then randomly pick k - |Kxi
| number of instances in c and add them to Kxi

. Algorithm 2 shows

the pseudocode for the kNNa.

The time complexity of this method for training is the same as that of the CE since the training

process is the same and it only takes O(|C|) when finding k-nearest neighbors for a single instance.

The outlier score s(xi) for a new instance xi is the sum of the distances between xi and each

instance in Kxi
and is formally defined as:

s(xi) =
∑
y∈Kxi

d(xi, y) (3.2)

11

Algorithm 2: k-Nearest Neighbor Approximation algorithm
1 Let C be the result of the CE algorithm;
2 Let Cchecked be an empty set;
3 Let xi be a new instance from streaming data;
4 Let Kxi

be an empty set;
5 while |Kxi

| < k do
6 Find the closest cluster c ∈ C - Cchecked to xi;
7 if |Kxi

| + |c| ≤ k then
8 Kxi

:= Kxi
∪ { all points ∈ c };

9 else
10 P := k - |Kxi

| points picked from c at random;
11 Kxi

:= Kxi
∪ P;

12 end
13 Cchecked := Cchecked ∪ {c}
14 end
15 return Kxi

For outlier detection, we train the model with training data by using the CE to get clusters C. After

that, we find k-nearest neighbors of a new instance xi in streaming data using this method and

compute the outlier score of xi. The higher score an instance has, the more outlying it is.

3.2 Update Backend Information

To deal with concept drift, we update our backend cluster information by adopting the idea

used for the Streaming HS trees [26]. The Steaming HS trees maintain two separate backend

information. At first, one called reference window is created using training data and the other

called latest window is created using streaming data (latest data). The reference window is used

for classification task when they get a new data instance and they save this instance to the latest

window for future use. After getting enough information about streaming data, they replace the

reference window with the latest window. By doing so, they can adapt to changing data behaviors

in streaming environments.

Thanks to the characteristic of the clustering algorithm that we use, we can adopt this idea. As a

new data instance arrives, we can apply the CE method to cluster streaming data. This process takes

12

only O(|C|) time, where |C| is the number of clusters, so we can efficiently do this in streaming

environments. At the same time, we do the classification task for the new data instance by using

our original backend information based on training data. The classification task also takes O(|C|)

time as we discussed in the earlier sections. Thus, we are able to not only classify a new data

instance but also use it for clustering in streaming environments. Figure 3.1 and 3.2 illustrate how

this process works.

Figure 3.1: Two separate backend information; we use the old backend information for classifica-
tion tasks and apply the CE method to save latest data information.

We have two separate backend cluster information as the Streaming HS trees do: one that

we call old backend information based on training data and the other that we call latest backend

information based on streaming data. When we get a new data instance, the outlier score of the

new instance is computed using the old backend information based on training data. With the

new data instance, we also apply the CE method to the latest backend information for clustering

task. We keep doing this process until the number of instances in the latest backend reaches a

predefined threshold. After that point, we replace the old backend information with the latest

backend information. By doing so, we expect to deal with concept drift issue.

13

Figure 3.2: Replacement of the backend information; when the number of instances in the latest
backend exceeds a predefined threshold, we replace the old backend with the latest one.

3.3 Distance Metric for Categorical Attributes

It is hard to compute the distance between two categorical instances since categorical data

cannot be ordered in most cases. For example, we cannot say that udp is greater that tcp or http

is less than smtp. Due to this issue, we usually apply one-hot encoding where each category

is translated to an one-hot vector corresponding its categorical value or use Hamming distance,

which is the number of categories which have different categorical values between two instances.

However, these techniques do not take into account the data distribution so it is unlikely that these

are helpful for anomaly detection tasks. Table 3.2 shows an example of categorical values and their

frequencies of protocol_type and service categories.

According to a survey on similarity measure for categorical data, introduced by Boriah et

al. [41], we cannot choose a single measure as the best one for categorical data since the per-

formance of similarity and distance measure depends on datasets. However, some of them show

consistently better performance on the benchmark datasets that they used and they are in com-

mon in terms of the use of the frequency information for each category. They give higher weight

on infrequent values if two values are different. We intend to adopt this concept along with the

data-dependent normalization kernel proposed in [7] to introduce a new distance metric for our

14

protocol_type service
Value Frequency Value Frequency

tcp 20,526
http 8,003

private 4,351

udp 3,011
smtp 1,449

ftp_data 1,396

icmp 1,655
telnet 483
other 1,944

Table 3.2: Categorical values and their frequencies of protocol_type and service categories

framework.

The first thing we need to consider is the number of possible categorical values for each cat-

egory, which is called arity . The reason is that the importance of the value difference between

a category having 3 possible values and a category having 6 possible values should be differenti-

ated. Let me take an example of Table 3.2. The value difference of protocol_type should be more

weighted than that of service because the value difference of attributes that take many values is

more like a marginal difference than that of attributes that take small number of values.

Second, we also need to consider the frequency of each categorical value since in outlier detec-

tion tasks the less frequent value is considered anomalous. In Table 3.2, for example, the distance

between “http” and “smtp” should be greater than that between “smtp” and “ftp_data” considering

the frequency gap. With these in mind, we define the distance d(xi, xj) and the feature distance

df (xi, xj) between xi and xj as follows:

dfcat(xi, xj) =

log(1+|freq(fxi)−freq(fxj)|)

arity(f)
, if fxi

6= fxj

0, otherwise
(3.3)

dfnum(xi, xj) = (fxi
− fxj

)2 (3.4)

15

df (xi, xj) =

dfcat(xi, xj), if f ∈ Fcat

dfnum(xi, xj), if f ∈ Fnum

(3.5)

d(xi, xj) =

√∑
f∈F

df (xi, xj) (3.6)

where F is a set of attributes of data, Fcat is a set of categorical features ∈ F , Fnum is a set

of numerical features ∈ F , f is an attribute ∈ F , fxi
is an attribute value of xi for the attribute

f , freq(fxi
) is the number of occurrences of fxi

in training data, and artiy(f) is the number of

possible attribute values of the feature f . By using these distance metrics, we can compute the

distance between <tcp, http> and <udp, private> as log(1 + |20, 526 − 3, 011|)/3 + log(1 +

|8, 003− 4, 351|)/6 equal to 4.6242, which ls greater than the distance between <tcp, smtp> and

<udp, ftp_data> equal to 3.9218.

3.4 Outlier Ensembles

Ensemble methods in outlier detection areas have not been studied very well due to the fact that

the ground truth of data is not available [27, 2]. Because of this constraint, we are not able to adopt

ensemble techniques used in supervised settings such as boosting. In order to achieve the diversity

of detected outliers and higher performance of our framework, we intend to combine the afore-

mentioned outlier detection methods altogether. Since all of these algorithms are unsupervised and

different types of models, it is hard to combine outlier scores provided by them. We have two

major issues for the ensemble process according to [27, 2], normalization and combination issues.

The normalization issues arise from the fact that outlier scores from different methods cannot

be directly compared since different algorithms use different scales of outlier scores. For example

an outlier score from the CE method is computed based on a cluster size, but an outlier score from

the kNNa is computed based on the nearest neighbors of a detected outlier. Outlier scores from

CE ranges from 0 to 1, but those from the kNNa ranges from 0 to some number that we do not

16

know. Normalizing these scores could solve this issue, but streaming data make this worse since it

is difficult to normalize outlier scores in streaming data environments.

Even if we can normalize these scores, all of the scores should be combined in some ways

after the normalization process. How we combine these scores also affects the performance of the

ensemble, which makes this problem difficult. To avoid these issues, we use the majority voting

ensemble by setting a score threshold for each outlier detection method. In majority voting, each

method classifies a new data instance and the majority opinion of the methods that we have would

be our classification result. Since our framework has only two outlier detection methods, a new

data instance is classified as an anomaly if both methods agree on that. The framework is a general

framework where users can add their custom outlier detection methods to the ensemble. Thus, if

users added their custom model to the ensemble, then a classification result would be made based

on the result of the majority of the methods. Furthermore, the framework provides the confidence

that represents the result of a majority voting. For example, if 4 methods out of 5 agree that a

new instance is an anomaly, then the new instance would be classified as an anomaly with the

confidence of 80%.

3.5 Classification By Human Experts With Outlier Interpretation

In Phase 2, human experts check whether detected outliers in the previous phase are really

anomalous or not. In order to facilitate this work, we provide the interpretation of detected outliers

based on clusters and nearest neighbors information. What we would like in this phase is to provide

the interpretation of a new instance as soon as we classify it since the framework is working in

streaming environments. Due to this constraint, we are not able to use the existing interpretation

methods for the framework. Now, we introduce our interpretation method for streaming data.

3.5.1 Interpretation of Outliers

Our strategy is to find features that make detected outliers anomalous, which is a traditional

approach for machine learning interpretation [30, 31, 32]. Since we have the cluster information

of training data and nearest neighbors of detected outliers, we utilize this information to achieve

17

the interpretation of detected outliers. We define the feature importance score of each feature for a

detected outlier o based on our backend cluster information and k-nearest neighbors of o as follows.

sf (o) =
∑
c∈C

|c|df (o, c) +
∑
y∈Ko

df (o, y) (3.7)

where Ko is a set of nearest neighbors of a detected outlier o and y is an instance ∈ Ko. The

first term is computed based on the cluster information and the nearest neighbors of o are used

to compute the second term. The intuition behind these terms is that (1) the smaller clusters,

the more anomalous and (2) the nearest neighbors of o are the most relevant information of it

because o is classified as an outlier based on them. Thus, we give more weights to large clusters

using the size of clusters so that points in large clusters (i.e., normal clusters) have more impact

on computing the feature importance score. If some attribute value of o is different from that of

points in large clusters, then the feature importance score of that attribute would be high. Also,

the nearest neighbors of o are used to classify a detected outlier o so we already know the nearest

neighbors of it. Because of this fact, we can save time to find the nearest neighbors of a detected

outlier. With the nearest neighbors of o, we compute the feature importance score by summing up

the feature distance between o and each instance of its nearest neighbors for each attribute. We

can think of the first term in Equation 3.7 as the global interpretation because we basically use all

of information in training data. On the other hand, we can think of the second term as the local

interpretation since the nearest neighbors of o are the local information of detected outliers. By

incorporating the local information (i.e., nearest neighbor information) with the global information

(i.e., cluster information), we expect to provide reasonable interpretations of detected outliers.

With the help of outlier interpretation, human experts could identify “actual” anomalies in de-

tected outliers more easily. After the classification tasks by human experts, they provide a feedback

(i.e., ground truth) containing abnormal instances to the next phase. The rest of the data that are

not classified as anomalies are considered normal.

18

3.6 Supervised Anomaly Detection

Outliers are obviously different from normal instances but they might not be bad or malicious.

In order to distinguish not-malicious outliers from malicious outliers, we use a supervised anomaly

detection approach in Phase 3. For this task, a feed-forward neural network is used. Figure 3.3

shows the architecture of the feed-forward neural network used in our framework.

Figure 3.3: The architecture of a neural network used in Phase 3

The neural network has a embedding layer to better deal with categorical data, but numerical

data are directly used. After the embedding layer, we concatenate numerical data and embeddings

for categorical data. On top of concatenated vectors, we have three ReLU layers. As for the

output layer, the sigmoid function is used as the activation function. The model can be replaced

with traditional supervised machine learning algorithms, but they should be able to handle both

heterogeneous and streaming data. For example, a logistic regression model may not be suitable

for this task since the model cannot deal with heterogeneous data.

The procedure of this phase is as follows. First, we get the feedback from human experts in

Phase 2. With the feedback, we train our supervised model. If the amount of data in the feedback

is not enough, we wait for another feedback and accumulate the feedbacks so that we can train

19

the model properly. Our ultimate goal is to skip the first and second phase and just to use the

supervised model for anomaly detection tasks. Users of the framework may continue to use the

first two phases when too many false positives occur due to concept drift or other reasons.

20

4. EXPERIMENTS

By performing experiments on real world datasets, we show the efficacy of our proposed frame-

work. We would like to answer the following questions in this section: (1) Can the framework deal

with heterogeneous data? (2) Can the framework handle concept drift? (3) Are interpretation re-

sults reliable? (4) Can the framework reduce false positives? To answer the first question, we

evaluate our ensemble model by using two types of datasets: one with only numerical features and

the other with all features. For the evaluation on streaming data, we follow the experiment setup

in [26] to simulate changing data behaviors. We show some examples of the interpretation results

of detected outliers for the evaluation on outlier interpretation. Finally, we simulate each phase in

the framework to evaluate the whole framework.

4.1 Dataset

For our experiments, we use two network intrusion detection datasets: NSL-KDD [42] and

UNSW-NB15 [43]. The NSL-KDD dataset is introduced to improve problems that the KDD-

CUP99 dataset [44] originally has such as a lot of redundant instances. It has 24 types of attacks

in the training set and additional 14 types of attacks in the test set, which are not available in the

training set. The UNSW-NB15 contains 9 types of attacks in both the training and test sets. Both

datasets have real normal activities along with synthetic attack behaviors and consist of different

types of attributes. Table 4.1 illustrates the details of the datasets.

Datasets # Instances
Attributes

Anomaly class
Numerical Categorical Binary

NSL-KDD 125,973+22,544 32 3 6 attacks (24+14 types)
UNSW-NB15 175,341+82,332 37 3 2 attacks (9 types)

Table 4.1: Datasets used for the experiments

21

We do not use the cross-validation technique, but only use the given training and test sets. This

is because the datasets are very sensitive to the number of attacks and types of attacks in training

and test sets. The datasets are designed considering these issues and we would not be able to

measure the performances of our framework and a baseline method If we use the cross-validation

technique.

4.2 Experiment Setup

We randomly removed most of abnormal instances in the training data so that they contain

about 1% of anomalies and 99% of normal instances, which is a more realistic setting than the

original datasets. Even though the ground truth labels of the datasets are available, they are not

used during training the ensemble model in Phase 1, but used solely for evaluation. As our baseline,

we use Isolation Forest [28], which is one of the state of the art outlier detection methods. The

Isolation Forest consists of isolation trees, which try to isolate each data instance from the rest of

the data. Since outliers are different and a few, it is easier to isolate outliers than normal instances.

Therefore, if an instance has shorter path length in isolation trees, then it is likely to be an outlier.

Since the Isolation Forest is not designed for streaming data, we expect that the model shows bad

performance in our simulated streaming environment.

As for the preprocessing of data, we standardize numerical attributes in our training data. Based

on the mean and standard deviation of the training data, an incoming instance in streaming data is

standardized. Categorical attributes are handled with our distance metric that we introduced in this

paper. The mean and standard deviation information are updated when the backend information of

the framework is updated.

4.3 Evaluation on Heterogeneous Data

In this experiment, we evaluate the ability of our framework to deal with heterogeneous data.

Two types of datasets are used to see if the framework and the baseline can handle heterogeneous

data well: one with only numerical features and the other with all features. We expect that if one

can deal with heterogeneous data well, then the performance would increase. Table 4.2 shows the

22

experiment results and AUC (Area Under Curve) values are reported as the evaluation metric.

AUC NSL-KDD UNSW-NB15
Isolation Forest (numerical only) 0.9033 0.7877

Ensemble (numerical only) 0.8871 0.7913
Isolation Forest (numerical+categorical) 0.8975 0.7824

Ensemble (numerical+categorical) 0.8938 0.8023

Table 4.2: Experiment results on static heterogeneous datasets

The ensemble model could show comparable performance with the baseline on NSL-KDD

dataset in both cases where the dataset has only numerical attributes and all features. However,

the performance of the Isolation Forest deteriorates when categorical attributes are added to the

dataset, but the performance of the ensemble model increases as we expected. On the UNSW-

NB15 dataset, the ensemble model constantly outperforms the baseline method and the perfor-

mance of the ensemble increases when categorical features are used along with numerical features.

However, the baseline on the dataset with only numerical features shows slightly worse perfor-

mance than on the dataset with all features. The experiment results are consistent with our expec-

tation that it can deal with heterogeneous data as the ensemble model shows better performance on

the datasets with all features.

4.4 Evaluation on Streaming Data

In order to evaluate the ability of our framework to handle the concept drift issue, we simulate

changing data behaviors by following the experiment setup in [26]; we train our ensemble model

using data only with smtp protocol, and then test the ensemble model using data with smtp pro-

tocol followed by http protocol. As the network protocol changes in the dataset, we expect the

concept drift would occur. Table 4.3 shows the experiment results and AUC values are reported as

the evaluation metric.

Surprisingly, both the Isolation Forest and the ensemble without updating performs quite well

23

AUC
smtp+http

NSL-KDD UNSW-NB15
Isolation Forest 0.9284 0.5308

Ensemble (no update) 0.9148 0.4940
Ensemble (update) 0.9403 0.8840

Table 4.3: Experiment results on streaming datasets

on the NSL-KDD dataset. We speculate that the protocol change was not able to change data

distributions using the NSL-KDD dataset. However, the ensemble with updating shows the best

performance over the other models. On the UNSW-NB15 dataset, the ensemble model with up-

dating performs really well, but the others show very bad performance as we expected. It shows

that the ensemble with updating could adapt to changing data distributions and the other models

are not able to deal with the concept drift since they are originally designed to detect anomalies in

static datasets.

4.5 Evaluation on Outlier Interpretation

To verify that our interpretation of detected outliers are reliable, we show the interpretation

results for both normal and abnormal instances in Figure 4.1, 4.2,and 4.3. In the bar graphs showing

the feature importance scores, y-axis represents the feature importance score for each attribute and

x-axis represents attributes in data.

As you see the bar graphs in Figure 4.1, the feature importance scores are almost uniformly

distributed over features compared to the bar graphs of abnormal instances in Figure 4.2 and 4.3

since normal instances do not have specific anomalous attributes. Most of the feature importance

scores of abnormal instances are very low and a few of them stand out. We could find the first and

second most anomalous attributes based on the scores at the top in Figure 4.2 and 4.3 and further

analyze the results by using scatter plots. In each scatter plot, there is a red point marked with a

red circle and it represents a detected outlier used in each example. In Figure 4.2 example, the

two anomalous attributes are srv_count and srv_rerror_rate and data instances are shown using

24

these two attributes at the bottom of the figure. As you see the scatter plot, we are, indeed, able to

distinguish most of abnormal instances from normal instances by using only these two attributes.

In Figure 4.3 example, the two anomalous attributes are dst_bytes and num_compromised and data

instances are shown using these two attributes at the bottom of the figure as we did above. Unlike

the previous example, we are able to distinguish all of abnormal instances from normal instances

by using only these two attributes as you see the scatter plot.

4.6 Framework Evaluation

The purpose of this experiment is to evaluate the whole framework. For this experiment, we

divide the test dataset into 5 batches. After that, we detect outliers in a single batch and a feedback

is created based on the ground truth to simulate the classification by human experts. Our supervised

model is trained with the feedback and tested with the last batch (fifth batch), which is only used

for evaluating the supervised model. We keep doing this process until the 4th batch. In summary,

we detect suspicious records (i.e., outliers) in the first 4 batches in turn, and then we train the

supervised model with the feedback from each batch. In this experiment, we report the values of

precision, recall, and F1 score shown in Table 4.4.

Batch
NSL-KDD UNSW-NB15

Precision Recall F1 Precision Recall F1

1st Batch
Ensemble 0.89 0.73 0.80 0.76 0.70 0.73

Supervised 0.89 0.75 0.82 0.98 0.65 0.78

2nd Batch
Ensemble 0.90 0.73 0.81 0.77 0.69 0.73

Supervised 0.91 0.78 0.84 0.97 0.67 0.79

3rd Batch
Ensemble 0.89 0.72 0.80 0.78 0.71 0.74

Supervised 0.92 0.79 0.85 0.96 0.71 0.82

4th Batch
Ensemble 0.90 0.74 0.81 0.77 0.70 0.73

Supervised 0.94 0.79 0.85 0.97 0.73 0.83

Table 4.4: Experiment results for the supervised model in Phase 3

In Table 4.4, the results of the ensemble model are based on each batch. For example, the first

25

batch is used to provide the result of the ensemble on the first batch. However, the result of the

supervised model is provided based on the last batch (the fifth batch). As you see the table, the

results of the ensemble are consistent over the batches, so we could tell the ensemble is stable to

detect outliers. As for the supervised model, the performance gets better as we accumulate the

feedbacks. We would like to remind you that the reason why we use the supervised model in

the last phase is to reduce false positives, especially from outliers that are different from normal

instances but not malicious. The precision values increase without the decrease of the recall values

on the NSL-KDD dataset. Even though the precision values decrease by 0.01 to 0.02 as we get

more feedbacks, the F1 values increase on the UNSW-NB15 dataset. You may notice that the

precision values on the UNSW-NB15 dataset are higher than those on the NSL-KDD dataset. We

speculate that this may arise from the fact that the UNSW-NB15 dataset has less number of attack

types so there is a chance that the supervised model is overfitted to some attack patterns. Overall,

these results are consistent with our expectation that the supervised model could take advantage of

accumulated feedbacks.

26

Figure 4.1: Examples of the interpretation results on the NSL-KDD dataset; the bar graphs show
the feature importance scores for each attribute of normal instances. As you see the figures, the
scores are well distributed over features. This is because normal instances do not have specific
anomalous attributes.

27

Figure 4.2: Examples of the interpretation results on the NSL-KDD dataset; the top figure shows
the feature importance scores for each attribute of a detected outlier, and the bottom figure shows a
scatter plot of the first and second most anomalous attributes, srv_count and srv_rerror_rate based
on the feature importance scores. In the scatter plot, red points represent abnormal instances, and
blue points represent normal instances. The red point marked with the red circle refers to the
detected outlier.

28

Figure 4.3: Examples of the interpretation results on the NSL-KDD dataset; the top figure shows
the feature importance scores for each attribute of a detected outlier, and the bottom figure shows
a scatter plot of the first and second most anomalous attributes, dst_bytes and num_compromised
based on the feature importance scores. In the scatter plot, red points represent abnormal instances,
and blue points represent normal instances. The red point marked with the red circle refers to the
detected outlier.

29

5. CONCLUSION AND FUTURE WORK

In this paper, we propose an anomaly detection framework for heterogeneous and streaming

data. The framework was able to handle heterogeneous data and achieve comparable performance

with the state of the art baseline method on the network intrusion detection datasets using an en-

semble of two outlier detection algorithms and our distance metric for categorical attributes. These

methods are enhanced to update the backend cluster information so that they could adapt to chang-

ing data behaviors (concept drift). In the second phase of the framework, outlier interpretation

is provided to help human experts to check whether detected outliers are really anomalous and

we have shown that interpretation results are reasonable, giving the interpretation examples. Fi-

nally, the supervised machine learning algorithm was trained with the feedbacks from Phase 2 and

successfully reduced false positives with accumulated anomaly information.

The work can be extended by trying parameter optimization techniques based on the predefined

contamination ratio (outlier ratio) since we have a score threshold for each method to tune. Using

different supervised models which can handle heterogeneous and streaming data such as Hoeffding

Trees [45] and Wide & Deep Learning model [46] might help the framework. Finally, it would be

very helpful to analyze detected outliers and the interpretation of them if we had the graphical

interface of the framework.

30

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing

surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] C. C. Aggarwal, “Outlier analysis,” in Data mining, pp. 237–263, Springer, 2015.

[3] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt, “Support

vector method for novelty detection,” in Advances in neural information processing systems,

pp. 582–588, 2000.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based local

outliers,” in ACM sigmod record, vol. 29, pp. 93–104, ACM, 2000.

[5] J. Tang, Z. Chen, A. Fu, and D. Cheung, “Enhancing effectiveness of outlier detections for

low density patterns,” Advances in Knowledge Discovery and Data Mining, pp. 535–548,

2002.

[6] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data using clustering,”

in In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001,

Citeseer, 2001.

[7] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for un-

supervised anomaly detection: Detecting intrusions in unlabeled data,” Applications of data

mining in computer security, vol. 6, pp. 77–102, 2002.

[8] P. K. Chan, M. V. Mahoney, and M. H. Arshad, “A machine learning approach to anomaly

detection,” tech. rep., 2003.

[9] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern Recognition

Letters, vol. 24, no. 9, pp. 1641–1650, 2003.

31

[10] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional spaces,” in European

Conference on Principles of Data Mining and Knowledge Discovery, pp. 15–27, Springer,

2002.

[11] J. Zhang and H. Wang, “Detecting outlying subspaces for high-dimensional data: the new

task, algorithms, and performance,” Knowledge and information systems, vol. 10, no. 3,

pp. 333–355, 2006.

[12] N. Liu, X. Huang, and X. Hu, “Accelerated local anomaly detection via resolving attributed

networks,”

[13] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly detection in at-

tributed networks,” IJCAI?17, 2017.

[14] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using replicator neural

networks,” in DaWaK, vol. 2454, pp. 170–180, Springer, 2002.

[15] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured energy based models for anomaly

detection,” in International Conference on Machine Learning, pp. 1100–1109, 2016.

[16] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 665–674, ACM, 2017.

[17] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoen-

coding gaussian mixture model for unsupervised anomaly detection,” 2018.

[18] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed outlier detection in mixed-

attribute data sets,” Data mining and knowledge discovery, vol. 12, no. 2-3, pp. 203–228,

2006.

[19] K. Das and J. Schneider, “Detecting anomalous records in categorical datasets,” in Proceed-

ings of the 13th ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 220–229, ACM, 2007.

32

[20] K. Das, J. Schneider, and D. B. Neill, “Anomaly pattern detection in categorical datasets,”

in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 169–176, ACM, 2008.

[21] L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos, “Fast and reliable anomaly detection in

categorical data,” in Proceedings of the 21st ACM international conference on Information

and knowledge management, pp. 415–424, ACM, 2012.

[22] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity embedding-based anomaly

detection for heterogeneous categorical events,” in Proceedings of the Twenty-Fifth Interna-

tional Joint Conference on Artificial Intelligence, pp. 1396–1403, 2016.

[23] R. M. Tallam, T. G. Habetler, and R. G. Harley, “Self-commissioning training algorithms for

neural networks with applications to electric machine fault diagnostics,” IEEE Transactions

on Power Electronics, vol. 17, no. 6, pp. 1089–1095, 2002.

[24] M. Davy, F. Desobry, A. Gretton, and C. Doncarli, “An online support vector machine for

abnormal events detection,” Signal processing, vol. 86, no. 8, pp. 2009–2025, 2006.

[25] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, “Online

outlier detection in sensor data using non-parametric models,” in Proceedings of the 32nd

international conference on Very large data bases, pp. 187–198, VLDB Endowment, 2006.

[26] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for streaming data,” in IJCAI

Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1511, 2011.

[27] C. C. Aggarwal, “Outlier ensembles: position paper,” ACM SIGKDD Explorations Newslet-

ter, vol. 14, no. 2, pp. 49–58, 2013.

[28] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Data Mining, 2008. ICDM’08.

Eighth IEEE International Conference on, pp. 413–422, IEEE, 2008.

[29] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with autoencoder ensem-

bles,” in Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 90–98,

SIAM, 2017.

33

[30] E. M. Knorr and R. T. Ng, “Finding intensional knowledge of distance-based outliers,” in

VLDB, vol. 99, pp. 211–222, 1999.

[31] B. Micenková, X.-H. Dang, I. Assent, and R. T. Ng, “Explaining outliers by subspace separa-

bility,” in Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp. 518–527,

IEEE, 2013.

[32] N. X. Vinh, J. Chan, S. Romano, J. Bailey, C. Leckie, K. Ramamohanarao, and J. Pei, “Dis-

covering outlying aspects in large datasets,” Data Mining and Knowledge Discovery, vol. 30,

no. 6, pp. 1520–1555, 2016.

[33] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the predictions

of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 1135–1144, ACM, 2016.

[34] N. Liu, D. Shin, and X. Hu, “Contextual outlier interpretation,” in Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence, 2018.

[35] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Communications of the ACM,

vol. 29, no. 12, pp. 1213–1228, 1986.

[36] D. W. Goodall, “A new similarity index based on probability,” Biometrics, pp. 882–907, 1966.

[37] E. Smirnov, “On exact methods in systematics,” Systematic Biology, vol. 17, no. 1, pp. 1–13,

1968.

[38] M. R. Anderberg, “Cluster analysis for applications,” tech. rep., Office of the Assistant for

Study Support Kirtland AFB N MEX, 1973.

[39] D. Lin et al., “An information-theoretic definition of similarity.,” in Icml, vol. 98, pp. 296–

304, Citeseer, 1998.

[40] T. Burnaby, “On a method for character weighting a similarity coefficient, employing the

concept of information,” Journal of the International Association for Mathematical Geology,

vol. 2, no. 1, pp. 25–38, 1970.

34

[41] S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A compara-

tive evaluation,” in Proceedings of the 2008 SIAM International Conference on Data Mining,

pp. 243–254, SIAM, 2008.

[42] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd cup 99

data set,” in Computational Intelligence for Security and Defense Applications, 2009. CISDA

2009. IEEE Symposium on, pp. 1–6, IEEE, 2009.

[43] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion de-

tection systems (unsw-nb15 network data set),” in Military Communications and Information

Systems Conference (MilCIS), 2015, pp. 1–6, IEEE, 2015.

[44] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017.

[45] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings of the sixth

ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 71–

80, ACM, 2000.

[46] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-

rado, W. Chai, M. Ispir, et al., “Wide & deep learning for recommender systems,” in Pro-

ceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10, ACM,

2016.

35

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	RELATED WORK
	Anomaly Detection
	Heterogeneous Data
	Streaming Data
	Ensemble Methods
	Interpretable Methods
	Similarity Measures for Categorical Features

	ANOMALY DETECTION FRAMEWORK
	Outlier Detection Methods
	Clustering Estimation
	k-Nearest Neighbor Approximation

	Update Backend Information
	Distance Metric for Categorical Attributes
	Outlier Ensembles
	Classification By Human Experts With Outlier Interpretation
	Interpretation of Outliers

	Supervised Anomaly Detection

	EXPERIMENTS
	Dataset
	Experiment Setup
	Evaluation on Heterogeneous Data
	Evaluation on Streaming Data
	Evaluation on Outlier Interpretation
	Framework Evaluation

	CONCLUSION AND FUTURE WORK
	REFERENCES

