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ABSTRACT 

 

Use of the pressure derivative for pressure transient test analysis has been a crucial tool in the 

analysis of reservoir and well performance data since it was formally proposed by Bourdet, Ayoub, 

and Pirard in 1989.  Despite the diagnostic advantage of using the pressure derivative for well test 

interpretation, the key drawback of the pressure derivative is its calculation. Bourdet et al. 

proposed a simple and very consistent numerical method to calculate the pressure derivative.  This 

method is based on a weighted central-difference scheme.  The so-called "Bourdet" algorithm is 

the most common pressure derivative calculation used in the petroleum literature.  Even with its 

wide acceptance, the Bourdet pressure derivative calculation method has limitations, particularly 

for noisy data. 

The goal of this work is to provide an alternate derivative calculation to the Bourdet method.  The 

method we propose is Tikhonov Regularization. Tikhonov Regularization can be regarded as 

regression with the addition of a penalty term.  The goal is to balance between goodness-of-fit and 

the roughness of fitted data to calculate a smooth derivative function from the result of 

regularization.  In contrast to the Bourdet method, the regularization parameter can be calculated 

mathematically by generalized cross-validation and does not require manual manipulation from 

the analyst to determine the optimum regularization value.  

This study includes the development and implementation of the Tikhonov Regularization method 

in order to calculate the pressure derivative using the MATLAB software program.  We studied 

the effectiveness of the Tikhonov Regularization method for calculating the pressure derivative as 

compared to the Bourdet algorithm from this developed module.  The effectiveness of derivative 

calculation is validated using both synthetic pressure data and field pressure data. We employ the 
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Root-Mean-Square (RMS) and Mean-Absolute-Error (MAE) as statistical measures of 

effectiveness.  

Our results show that the Tikhonov Regularization method yields a significantly better derivative 

calculation than Bourdet method in all the cases in this study, particularly those cases with elevated 

levels of noise.  Based on the results obtained in this study, we propose that the Tikhonov 

Regularization method should be used to calculate the pressure derivative for data cases exhibiting 

high levels of noise.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Objectives  

The overall objectives of this work are: 

● To validate the applicability of computing the pressure derivative by use of a regularization 

method (in particular, the Tikhonov Regularization Method). 

● To compare the results of computing the pressure derivative function using the Tikhonov 

Regularization Method as compared to the Bourdet pressure derivative method, specifically 

for different levels of noise in the raw data. 

● To apply the Tikhonov Regularization Method to pressure transient test and rate transient (i.e., 

production) data. 

1.2 Statement of the Problem 

1.2.1. Pressure Derivative 

Reservoir pressure information has long been crucial for the diagnosis and analysis of well 

performance.  Pressure data have been used to evaluate reservoir potential — which includes the 

amount of hydrocarbons in-place, the flow potential, and properties of the reservoir.  Static 

pressure data (spot measurements) are used to estimate hydrocarbon volume in-place by material-

balance methods. Dynamic (continuous) pressure data are used to assess reservoir properties; 

including properties such as permeability, skin, and reservoir boundaries.   

 

Historically, pressure transient analysis methods relied on plots of pressure or pressure drop data 

as functions of time.  Such methods include the classic Horner plot (Horner 1951) and various 

"type curves" (e.g., Earlougher and Kersch 1974), but these methods suffer from the difficulty of 
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interpreting low resolution features in pressure and pressure drop data for the purpose of 

identifying specific flow regimes. 

 

Bourdet, Ayoub, and Pirard (1989) formally proposed the pressure derivative to interpret and 

analyze pressure transient test data (instead of using pressure and pressure drop data).  The 

"pressure derivative" as used in reservoir engineering is the derivative of pressure with respect to 

natural logarithm of time or logarithm of superposition time.  The key advantage of the pressure 

derivative is ability to distinguish specific flow regimes, in general using the log-log plot.  The 

major limitation of using the "pressure derivative" is the presence of data noise in the pressure 

data, where the effect of this noise is amplified by the differentiation process.  The purpose of this 

work is to consider methods to develop a smooth pressure signal suitable for differentiation.  

 

1.2.2. Bourdet Pressure Derivative Calculation 

In order to utilize the pressure derivative plot, Bourdet et al. also proposed an algorithm to calculate 

pressure derivative from the base pressure (or pressure drop) data.  The algorithm utilizes a simple 

weighted central difference derivative calculation which can be written mathematically as: 

  ................................................................................. (1) 

 

Bourdet algorithm is considered simple to implement but it has several limitation (Lane, Lee, and 

Watson 1991).  

1. Bourdet et al. commented that the phenomena known as "end effects" can have a corruptive 

influence on the weighted difference formula (Eq. 1). This happens when calculating 

derivative at the data near starting or ending endpoints.  A "pseudo-right" formulation is 
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proposed which uses the last point that meets the criteria ∆𝑋ଵ,ଶ ≥ 𝐿 to represent the interval 

at the end of data range.    

2. The weighted difference pressure derivative calculation does not tolerate the presence of 

large "gaps" in the data function.  Pressure data with large gaps often yield distorted 

pressure derivative functions that do not represent the underlying reservoir behavior. 

3. Using a value of the spacing/smoothing factor (L) that is too small will yield a noisy 

derivative trend (the limit of a small value of L is a simple central difference), and the result 

of using an L-value that is too large is an "over-smoothed" pressure derivative function 

which does not give appropriate resolution to effects related to reservoir behavior. 
 

The determination of an optimum L-value for the Bourdet derivative calculation is a practical 

challenge that has no simple solution.  The most common range 0.1 < L < 0.3 (where L is the 

fraction of a logarithm cycle) (Cheng, Lee, and McVay 2005), but the actual value used in analysis 

depends on the judgement of the analyst.  Using a non-optimal L-value for the Bourdet derivative 

calculation can result in misleading shapes for pressure derivative curve, which in turn leads to the 

wrong interpretation of flow regimes. 

 

To optimize the L-value, several strategies have been proposed.  Cheng et al. (2005) suggested the 

use of the fast Fourier transform to evaluate pressure data in the frequency domain.  We generally 

assume that the spectral energy of the mid- and high frequency ranges represents the noise in 

pressure data while the data in the low frequency range is the actual signature.  In concept, the 

optimum L-value is that value which dampens the spectral energy in the mid- and high frequency 

ranges, yet has minimal impact on the low frequency range.  However, there is no mathematical 

basis for how the noise can be fully suppressed, nor what level of noise is acceptable in the low 

frequency range.  In short, the final judgement for the optimum L-value is at the discretion of the 

analyst. 
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1.2.3. Derivative Calculation by Tikhonov Regularization 

The mathematical concept of regularization is the use of an additional term to optimize the solution 

— there are many classes of regularization in optimization problems.  This research focuses on the 

method called Tikhonov Regularization.  It is also known as "ridge regression" or "penalized least 

squares" (Stickel 2010).   

 

In its simplest form, the regularization process can be viewed as regression with the addition of 

penalty term.  Considering the normal regression concept, the goal is obtaining a fitted data trend 

with minimum deviation of the model to the measured data.  This is called goodness-of-fit. 

Regularization adds the penalty term to the objective function for normal regression.  In the case 

of Tikhonov regularization, this regularization or penalty term is roughness, where roughness is 

how smooth is the trend or, in other words, how fast the trend changes. Functions that have high 

roughness change rapidly when the independent variable changes.  Mathematically, the rate of 

change is the derivative of function.  Roughness in the Tikhonov regularization process is 

represented by a quadratic term in the derivative formulation.  The derivative used in regularization 

can be of any order, but the most common formulation found in the literature is the second order 

derivative as this represents the curvature of the function. 

 

Stickel (2010) demonstrates the mathematical formalization of Tikhonov regularization as follows: 

Goodness-of-fit is defined as: 

  

Roughness is defined as: 

     
NX

x

dxxyxy
1
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Where: 

  

Based on definition of the goodness-of-fit and roughness, the regularization objective function in 

linear algebra form is given as 

  

 

Where and  are the integration matrix.  These matrices can be based on any integration rule 

in the literature such as the trapezoidal rule.  The  matrix is the finite-difference differentiation 

matrix.  The parameter 𝜆 is regularization parameter.  This is the trade-off between goodness-of-

fit and roughness when the analyst performs data analysis.  The higher value of the regularization 

parameter () yields a fitted data trend that is smoother.  This is analogous to the L-parameter in 

the Bourdet derivative calculation.  The goal in data analysis using Tikhonov regularization is to 

obtain the fitted data trend, 𝑦ො, that minimizes 𝑄 for a given case of 𝜆. 

 

 is defined as the fitted data trend that minimizes 𝑄 — thus we obtain: 

  ........................................................................................... (2) 

The derivative of fitted/smoothed data can be calculated using:  

  ........................................................................................................................... (3) 

The detailed derivation of Tikhonov regularization procedure is found in Appendix A. 
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The result of the derivative calculation depends significantly on the regularization parameter.  

Selecting the optimum value of 𝜆 is critical to obtaining an appropriate and representative 

derivative calculation.  There are many approaches that can be used to select the optimum value 

of 𝜆 — e.g., trial and error (the same as for the Bourdet method) or something more statistically 

based such as generalized cross-validation (Eilers 2003, Lubansky et al. 2006, Stickel 2010). 

 

For a given dataset of 𝑁 pairs, the concept of this method is to calculate a smooth trend of data for 

specified 𝜆.  In each calculation, one of data points is removed from the calculation and the 

estimated for that data point is compared to the actual value.  The summation of variance of each 

calculation for a given -value is obtained and defined as 𝑉 ஼௏.  The -value that minimizes 𝑉 ஼௏ 

is the optimum value for data smoothing by regularization (i.e., opt), derived from the generalized 

cross-validation process.  

 

The direct calculation of opt is an expensive calculation — however; there is analytical solution 

for determining 𝑉 ஼௏(𝜆) based on Eq.4.  (Eilers 2003, Lubansky et al. 2006, Stickel 2010). 

  ......................................................................................... (4) 

Where: 

  

A few comments regarding Tikhonov regularization as compared to the Bourdet method:  

1. The end effect in the Tikhonov regularization method is less than that observed for the 

Bourdet method as the Bourdet method requires a specified minimum distance in terms of 

a fraction of a log cycle, and the regularization approach does not have such limitations.  
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2. The Tikhonov regularization method utilizes a functional form to represent the smoothed 

data and as such, data "gaps" have less (or little) impact on the computed pressure and 

pressure derivative trends. 
 

To our knowledge, the Tikhonov regularization method has not been reference or used in the 

petroleum engineering literature.  One of the most common references for the use of the Tikhonov 

regularization method is in Chemistry where it is used to smooth, diagnose, and analyze 

experimental data.  In our present work, we seek to validate/demonstrate the Tikhonov 

regularization method using pressure (and pressure drop) data for the purpose of diagnostic 

analysis of pressure transient data.  As a process, we will compare results from the Bourdet and 

Tikhonov regularization methods.  We also discuss the implementation of the Tikhonov 

regularization method in MATLAB. 

 

1.3 Pressure Transient Basic Concept and Dimensionless Variables 

The concept of pressure transient analysis and dimensionless variables are applied throughout this 

thesis. In fact, they are fundamental concept which requires the development of numerical analysis 

in this work. We summarize the background in this section for completeness. 

1.3.1. Pressure Drawdown Test 

The fundamental concept of pressure drawdown test is based on constant terminal rate solution. 

This solution describes how bottom hole flowing pressure of the well changes with time when the 

well is produced with constant rate.  The situation of pressure drawdown test is illustrated in Fig.  

1. 
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Fig.  1 — Pressure drawdown test; (a) constant production rate (b) Bottom hole Flowing 
pressure (Reprinted from Dake, 1978) 

 

The mathematical detail behind constant production rate solution will be discussed in literature 

review section. Based on the plot of pressure with time, flow behavior can be divided into three 

periods which are transient flow, late transient flow and semi-steady state. Transient flow period 

is the duration that pressure response from the reservoir is not impacted from boundary condition. 

When boundary condition fully dominates the pressure response, the pressure response becomes 

semi-steady state meaning that the rate of pressure change is constant.  With known analytical 

solution of pressure as function of time, the pressure measurement from pressure drawdown test 

can be used to analyze and obtain reservoir properties such as permeability.  

1.3.2. Dimensionless Variables 

Dimensionless variables are often used to express analytical solution in petroleum engineering 

literature due to its convenience. Unit of each variable has no impact in mathematical analysis 
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when dimensionless variable is used. The most common dimensionless variables found in 

petroleum engineering literature are following. 

Dimensionless radius: Dr . 

 D
w

r
r

r
  

Dimensionless time: Dt . 

 2D
t w

kt
t

c r
  

Dimensionless pressure: Dp . 

  2
D i

kh
p p p

q




   

The dimensionless variables presented here are general form with consistent units. The author 

notes that there are many forms of dimensionless variables in petroleum engineering literature. 

Some of dimensionless variable have constant factor multiplied to the group of variables to adjust 

for units such as field units. In addition, in some development, the definition of dimensionless 

variables can be changed corresponding to physical model such as in fracture well.  

1.3.3. Superposition Theorem 

Definition of superposition theorem  can be described as any sum of individual solutions of a 

second order linear differential equation is also a solution of the equation (Dake 1978). Since 

reservoir fluid flow solution falls into this category, we can apply this theorem to solve fluid flow 

problem in reservoir. In practice, we can consider situation in Fig.  2 as example. A well is 

produced at sequence of constant production rate. To determine bottomhole flowing pressure at 
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time nt , we do not have to develop new flow solution to this specific problem. The superposition 

theorem can be applied to consider the well which is first produced at rate 1q for duration nt . After 

that, the well is produced at 2 1q q for duration 1nt t . This method can be applied until the 

analysis reach last step of production rate. Then, the overall effect of production rate can be linearly 

summed to obtain bottomhole flowing pressure at time nt .  

 

Fig.  2 — Production history of a well with multiple constant production rate and pressure 
and function of time (Reprinted from Dake, 1978) 

 

1.3.4. Pressure Build Up Test 

Pressure build up is likely to be most common pressure transient test method (Dake 1978). The 

production rate and pressure response of pressure build up test is illustrated in Fig.  3. 
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Fig.  3 — Pressure build up test; (a) production rate (b) Bottom hole pressure (Reprinted 
from Dake, 1978) 

 

In pressure build up test, the well had been put on production for a period and then shut in. Pressure 

response during shut in period is used for reservoir properties analysis. Superposition theorem is 

applied in this case since the situation can be regarded as multiple production rate. When the well 

is shut in, production rate is zero. 
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CHAPTER II 

LITERATURE REVIEW 

 

The purpose of this chapter is to provide a brief concept of pressure transient analysis, pressure 

transient analysis development history including application of pressure derivative in the analysis, 

and available methods of pressure derivative calculation in petroleum engineering literature.  

2.1 Pressure Transient Analysis History 

Pressure transient testing involves the introduction of changes into the reservoirs via one or more 

wells and observe how the reservoirs react to the perturbation. Typically, the changes introduced 

into the system is production or injection rate and transient pressure is monitored. The result from 

the test is then matched with engineering model to interpret the desired result. Generally, the 

objectives of pressure transient test are determination of reservoir and well properties. These 

properties can be obtained quantitatively from the test. They include permeability or conductivity 

of the reservoir within the drainage area of the tested wells, average reservoir pressure, conditions 

of wellbore and near wellbore region (skin), and reservoir configuration within drainage area 

(shape and size). 

Pressure transient analysis study field began in 1930s (Ramey 1982). Moore (1933) published the 

article about determination of reservoir permeability from pressure transient data. The article is 

considered one of the first publication in the field of pressure transient analysis.  

Van Everdingen and Hurst (1949) published the article regarding the solution to diffusivity 

equation in Eq.55 for unsteady state flow in the reservoir. 

 

2

2
1p p p

r r tr
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 
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The authors proposed the solutions for two inner boundary conditions in the article which are the 

constant terminal pressure case and the constant terminal rate case. In constant terminal pressure 

case, the pressure at inner boundary is assumed to be constant when time is more than zero and 

the solution seeks the rate as function of time. Constant terminal rate case, on the other hand, the 

fluid rate is assumed to be constant and the solution seeks pressure as function of time. For outer 

boundary conditions, the author considered the cases for infinite reservoir, constant pressure 

boundary, and no flow boundary.  

With the help of Laplace transformation to solve the partial differential equation, the solutions for 

each case are obtained. For the case of constant terminal rate condition and infinite acting reservoir, 

the solution in is in Eq.6.  

  
       

   

2

1 0 0 1

2 2 2
1 10

1
2

,

Du t
D

D D D

e J u Y ur J u Y u
p r t du

u J u Y u



       

  
 ....................... (6) 

With the assumption of line source inner boundary condition and large time approximation, Eq.6 

can be simplified to be Eq.7 or Eq.8 where  1Dr  . 

 
1 1

2 4D
D

p Ei
t

 
   

 
 ..................................................................................................... (7) 

  1
log 0.809007

2D Dp t   ......................................................................................... (8) 

The original purpose of the article is estimating the water influx into reservoir for material balance 

calculation. However, Eq.8 shows that by plotting bottomhole pressure versus time when the well 

is produced at constant rate, straight line would be obtain on semi-log scale.  Based on this trend, 

reservoir properties can be calculated. The application of this equation becomes the fundamental 
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knowledge in reservoir pressure transient analysis. The detail analysis of each solutions can be 

found in original article including the solutions for other cases. 

Van Everdingen and Hurst also explored the concept which is later known as wellbore storage. 

They incoporated the effect of liquid produced from well annulus into pressure drawdown analsis. 

The term in Eq.999 describes the production rate that is impacted from liquid in annulus and is 

used to correct the production rate in pressure drawdown test where C  is the volume of fluid 

unloaded from the annulus per unit bottomhole pressure per thickness of the reservoir. 

   d p
q t C

dt


   ............................................................................................................... (9) 

Horner (1951) published the study relating to pressure build up analysis. The study indicates that 

build up pressure should be plot with logarithm of ratio of time. The ratio of time is defined as 

total producing duration plus shut in duration divided by shut in duration. The plot produces 

straight line and the slope can be related to reservoir permeability. 

Van Everdingen (1953) introduced the concept of skin. Skin effect was defined as additional 

pressure drop in the vicinity area surrounding the wellbore due to a reduction in permeability. 

Permeability reduction can be a result of drilling, completion and production operations. This 

concept was used to explain additional pressure drop when the analysis such as pressure build up 

plot cannot explain the additional pressure drop around wellbore when the pressure trend is 

calculated from known reservoir properties. Pressure drop from skin is quantified in term of 

dimensionless pressure drop by Eq.10. 

 
141.2

skin
qB

p s
kh


   .................................................................................................... (10) 
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The literature of pressure transient analysis continued expanding during this point in time. 

However, the development was centered around the concept mentioned earlier. The analysis is 

mainly based on semi log straight line of pressure plot with function of time. The analytical 

equations were developed based on diffusivity equation, wellbore storage and skin concept to 

determined desired reservoir properties.  

Despite its benefits, straight line plot has one major drawback which is the distortion of the plot 

from wellbore storage and skin effect. In some cases, the correct straight-line period cannot be 

identified or the information from early time in the test cannot be used. Type curve matching 

method for pressure transient analysis was developed to overcome this issue. 

Ramey (1970) introduced the log-log type curve with the concept behind from definition of 

dimensionless time ( Dt ) and dimensionless pressure ( Dp ) in field unit.  

 2

0.00264
D

t w

kt
t

c r
  ............................................................................................................. (11) 
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By taking logarithm of dimensionless time and dimension pressure, we obtain 
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Eq.11 - 14 indicates that log-log plot of dimension pressure versus dimensionless time and plot of 

real pressure and time have the same shape with constant difference between two coordinates. The 

difference can be used to calculate reservoir properties. 

There are many type curves developed in the literature, but they are all based on this concept. The 

factors that greatly impact the shape of type curve is wellbore storage and skin. Agarwal, Al-

Hussainy, and Ramey (1970) established the log-log type curve between dimensionless pressure 

and dimensionless time. The curves are generated from analytical solution for constant rate 

drawdown test. Each curve represents one pair of dimensionless wellbore storage and skin factor.  

McKinley (1971) published type curve for pressure build up test. The curve is generated from 

finite different model combined with analytical solution. In this type curve, shut in time is plotted 

against pressure build up group which is defined as 
ହ.଺ଵ஼∆௣

஻௤
 .  For each curve, the value is calculated 

for specific value of transmissivity group which is defined as 
௞௛

ହ.଺ଵఓ஼
 . The skin factor is assumed 

to be zero for this type curve. 

Earlougher et al. (1974) proposed the plot of type curve between 
௣ವ஼ವ

௧ವ
 and 

ଵ

଴.଴଴଴ଶଽହ

௧ವ

஼ವ
. The 

equations used for type curve generation are the same as Agarwal et al. However, they are plotted 

with different group of dimensionless variables. In addition, Earlougher et al. grouped the 

dimensionless wellbore storage and skin factor together as one dimensionless variable. Each curve 

is created for group of 𝐶஽𝑒ଶ௦.  Since skin factor is in the form of dimensionless pressure, total 

dimensionless pressure is the linear sum of Eq. 8 and skin factor. Eq. 8 can be written as Eq. 15 to 

consider of pressure drop from skin. Therefore, each curve that has same value of 𝐶஽𝑒ଶ௦ can be 

group together based on   Eq. 15. 
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 
 ........................................................... (15) 

Gringarten et al. (1979) published the new type curve. It is plotted between 𝑝஽ and 
௧ವ

஼ವ
. The type 

curve is also calculated from the same analytical solution as Agarwal et al.’s. Each curve is also 

characterized by 𝐶஽𝑒ଶ௦.   

 

Fig.  4 — Type-curve for wellbore storage and skin effect (Reprinted from Gringarten et al., 1979) 
 

Despite its benefit of analyzing short term well test by considering wellbore storage and skin effect, 

defining the correct portion of pressure plot to match with type curve is still challenging. Bourdet 

et al. (1989) published the new article recommending new interpretation method to use pressure 

derivative instead of pressure to analyze pressure transient test. Pressure derivative is a derivative 
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of pressure with respect to natural logarithm of time or superposition time. When pressure 

derivative is used to generate type curve, the signature of different flow regime is amplified. Thus, 

it is more convenient to match the pressure transient test result with type curve.  

2.2 Pressure Derivative 

Bourdet et al. (1989) defined pressure derivative as derivative of pressure with respect to natural 

logarithm of time or superposition time. In dimensionless term, it can be written as Eq.16 where 

'Dp  is pressure derivative.  

 '
ln

D D
D D

D D

dp dp
p t

d t dt
   ............................................................................................... (16) 

Taking Eq. 8 as example for infinite acting reservoir case, the pressure derivative can be written 

as  

  1
' log 0.809007 0.5

2D D D
D

d
p t t

dt
     

 ........................................................... (17) 

Eq. 17 shows that plot of pressure derivative on log-log scale result in constant value at 0.5 for 

infinite acting flow regime. Comparing to pressure plot on log-log scale, the infinite acting flow 

regime would be straight line. The beginning of straight line period on log-log plot is typically 

difficult to be identified. With the assist of pressure derivative plot, it is more convenient to identify 

the flow regime since it is constant value. Pressure derivative plot also exhibits unique 

characteristic for other flow regimes resulting from well and reservoir physical configuration. This 

leads to key benefit of applying both pressure and pressure derivative plots in pressure transient 

analysis to identify correct reservoir behavior. 
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Bourdet et al. (1989) also generated the new type curve based on pressure derivative plot. It is 

plotted between 
௧ವ

஼ವ

ௗ௣ವ

ௗ௧ವ
 which is pressure derivative and 

௧ವ

஼ವ
. Each curve is also characterized by 

𝐶஽𝑒ଶ௦. The type curve is shown in Fig.  5. 

 

 Fig.  5 — Derivative type curve for homogeneous reservoir (Reprinted from Bourdet et al., 1989) 
 

2.3 Pressure Derivative Calculation 

Pressure derivative has one main limitation which is the difficulty of derivative calculation from 

pressure measurement. The pressure measurement is always associated with noise. Differentiation 

process increases the noise to signal ratio. This can cause the challenge in analysis since it can 

distort the shape of pressure derivative plot.  
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Bourdet et al. also proposed an algorithm to calculate pressure derivative from pressure data.  The 

algorithm utilizes central difference derivative calculation at point i and weighted average by 

distance of point i from  𝑋ଵ and 𝑋ଶ where 𝑋ଵ is the point before 𝑋௜ and 𝑋ଶ is the point next to 𝑋௜. 

𝑋௜ represents natural logarithm of time function.  This can be written mathematically in Eq. 1. 

which is re-written here. 

  

Bourdet pointed out that when consecutive points are used for Eq. 1 calculation, derivative points 

become noisy and cannot be used for interpretation. It is proposed to consider the points further 

away from 𝑋௜ with minimum distance of 𝐿. This can reduce noise effect to derivative calculation. 

Therefore, Eq. 1 is used for ∆𝑋ଵ,ଶ ≥ 𝐿. This method is illustrated in Fig.  6. 

 

Fig.  6 — Bourdet differentiation algorithm (Reprinted from Bourdet et al., 1989) 
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Lane et al. (1991) proposed alternative method to calculate pressure derivative from measured 

pressure data. They pointed out that Bourdet algorithm is considered simple to implement but it 

has several limitations. 

1. It is pointed out by Bourdet et al. for the phenomena called end effects. This happens when 

calculating derivative at the data near early time or late time that cannot satisfy ∆𝑋ଵ,ଶ ≥ 𝐿 

condition. "Pseudo right" is used as a solution for end effect. It uses the last point that meet 

the criteria ∆𝑋ଵ,ଶ ≥ 𝐿 to represent the remaining interval closer to the end of data range.    

2. The pressure derivative calculation considers only local value of data. This creates problem 

when there is missing data or data with wide gap. The shape such as peak of the trend can 

be distorted. 

3.  Pressure derivative calculated from this method can still be noisy even after high value of 

smoothing factor (𝐿). If 𝐿 value is increased too high, it can result in distorted shape of 

pressure derivative trend. Some characteristic necessary for analysis can be missing. 

Lane et al. proposed to use spline approximation to calculate pressure derivative as alternative for 

Bourdet method. Spline is a combination of piecewise polynomial function with every two 

consecutive segments intersecting smoothly. The connected point between two segments is called 

knot. There are many classes of spline functions. The most common one is called B splines which 

are the combination of linearly independent spline element. For a defined domain 𝑎 ≤ 𝑋 ≤ 𝑏 with 

k interior knots at location 𝑋 = 𝑦௝ for j = 1, 2, …k, the B splines function  S X  can be defined 

in Eq. 18. 

    
1

,
m k

m
j j

j

S X C B X



  y  .......................................................................................... (18) 
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Where m  is order of B splines function, jC  is spline coefficient, and  y  is a vector containing 

locations of knots. The order of B splines depends on chosen degree of polynomial where order of 

the splines is one plus polynomial degree.
m
jB  can be determined by specifying m and y . 

To fit splines function to measured pressure data, the order of splines function and locations of 

knots must be specified. Spline coefficient, jC , can be determined from least square method 

represented in Eq. 19. 

   2

1

argmin
,

pn

j i i j
j i

C p S X C
C





     ......................................................................... (19) 

jC
 is optimum value of spline coefficient that minimize the least square error between measured 

pressure data and splines fitted pressure function.   pn  is number of pressure points available. Since 

order of splines and knot location and number must be specified to evaluate Eq. 19, finding 

absolute minimum of this equation is difficult and depends largely on initial guess.  

Lane et al. recommended that quartic splines (m = 5) is appropriate for well test pressure data since 

second derivative of quartic spline is parabolic function which provides smoothness in type curve 

matching. The authors also provided algorithm to determine optimum knot locations and number. 

To find optimum knot locations and number, iterative evaluation of Eq. 19 is performed starting 

from one knot. The knots are added by one at a time. Statistical F test is applied to determine if 

knot adding should be stopped. The authors noted that using statistical F test is not mathematically 

rigorous, but it is sufficient for pressure derivative analysis. Two examples of pressure derivative 

analysis were evaluated by splines method and Bourdet method. The authors showed that splines 

method has better result for pressure derivative calculation. 
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Escobar, Navarrete, and Losada (2004) evaluated performance of different algorithms to calculate 

pressure derivative. The algorithms include Bourdet, Clark and Van Golf-Racht, Simons, Horne, 

Spline, and Polynomial. The article did not discuss any detail of each method used in evaluation. 

The authors applied each algorithm to calculate pressure derivative from synthetic data and noise 

based on eight different petroleum engineering solution. They concluded that Spline algorithm is 

the best method for pressure derivative calculation. 

Cheng et al. (2005) studied the method to determine optimum window size to calculate pressure 

derivative by Bourdet method (𝐿 value). There is no common method to determined optimum 𝐿 

value for Bourdet pressure derivative calculation although it is standard method for pressure 

transient analysis. Analysts often use the range between 0.1 to 0.3 log cycle for the calculation. 

Cheng et al. proposed to use fast Fourier transform to evaluate pressure data in frequency domain 

to determine optimum level of smoothing. Fast Fourier transform of  x t  that is function of time 

can be defined in Eq.20 and it can be inversed back from frequency domain to time domain by Eq. 

21. 

      2i ftx f x t e dt






   ............................................................................................ (20) 

      2i ftx t x f e df




   ............................................................................................... (21) 

  x f  is Fourier transform of  x t . Since pressure data is measured as discrete points, Eq.20 and 

Eq. 21 must be modified for discrete data. Fourier transform for discrete data is shown in Eq. 22 

and Inverse Fourier transform is shown in Eq. 23. 
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In discrete Fourier transform equations, N is number of data points, n is time index (

0,1, 2, ... 1n N  ), k is frequency index ( 0,1, 2, ..., 1k N  ), t is time interval between 

data points, and  f is frequency interval ( 1/f N t   ). When data is transferred to frequency 

domain, they become complex number which can be represented as magnitude and phase in polar 

coordinate form.  

Cheng et al. defined two parameters to determine optimum L value in frequency domain which 

are total energy factor ( 1I ) in Eq. 24 and low-frequency deviation factor ( 2I ) in Eq. 25. 
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  j L
x f is magnitude of pressure derivative calculated by specified L value and transformed to 

frequency domain of frequency component j. / 2N  is the Nyquist frequency which is the highest 

frequency component of the wave form. s is the frequency index that define low frequency 

location. This can be determined graphically to determine the frequency index that pressure 

derivative in frequency domain starts to oscillate.  
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Eq. 24 and Eq. 25 development is based on the concept that spectral energy of mid- and high 

frequency range representing the noise in pressure data while the value in low frequency range is 

actual information. The optimum 𝐿 value is the value that damps the spectral energy in mid- and 

high frequency range the most with minimum impacts to low frequency range. Total spectral 

energy is represented by Eq. 24 and the impact to low frequency range is represented by Eq. 25. 

By calculating pressure derivative at various Bourdet Lvalues, the relationship between 1I , 2I

and L can be established. This is illustrated in Fig.  7. Analysts can determine optimum Lby 

considering the value that significantly reduces total energy factor but not significantly increases 

low-frequency deviation factor.  

Veneruso and Spath (2006) published the article regarding digital pressure derivative calculation. 

The concept of this method is fundamentally the same as Cheng et al.’s. Pressure derivative is 

transformed into frequency domain and filtered to determine useful information from noise 

component. 

 

Fig.  7 — Optimum Bourdet Lvalue determination  (Reprinted from Cheng et al., 2005) 



 

26 

 

2.4  Tikhonov Regularization 

Eilers (2003) introduced new method to calculate smoothed trend from experimental data in 

Chemistry literature. His method was called discrete penalized least square method. The author 

proposed this method as alternative to Savitzy-Golay smoother (SGS) which is common method 

for data smoothing in Chemistry circle. Eilers described the algorithm to calculate smoothed data 

trend as the compromise between data fidelity and roughness of fitted data.  Fidelity is how good 

the smoothed data fitted with experimental data. Roughness of fitted data is how smooth the curve 

is. The objective of penalized least square method is minimizing both values with specified factors 

to each term. The factors in the calculation can be determined by many methods including analyst 

judgement. Eilers proposed to use generalized cross-validation method to determine optimum 

value of these factors for smoothing. Although Eilers called this method penalized least square, it 

is conceptually the same as Tikhonov Regularization. To author of this work’s knowledge, this 

was the first time Tikhonov Regularization introduced to scientific literature outside Statistics and 

Mathematics literature. Mathematical detail development of the algorithm will be discussed in next 

section. 

Lubansky et al. (2006) published the article about computing derivative of experimental data. The 

authors proposed to use Tikhonov Regularization for derivative calculation. In this work, same 

mathematical concept is applied to interpret experimental data as in Eilers’ work. However, 

Tikhonov Regularization application is extended from smoothing data trend to include derivative 

calculation. Lubansly et al. compared the result between derivative calculated from Tikhonov 

Regularization and Savitzy-Golay method with many data sets. The examples include both 

synthetic data and experimental data. They showed that Tikhonov Regularization can provide 

reliable derivative calculation. 
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Stickel (2010) published the article regarding data smoothing and derivative calculation by 

Tikhonov Regularization. He described regularization as regression with the addition of penalty 

term. Considering normal regression concept, the goal is obtaining the fitted data trend with 

minimum deviation of fitted data from measured data. This is called goodness-of-fit which is same 

as data fidelity described by Eilers.  Regularization adds the penalty term to that objective of 

normal regression. In the case of Tikhonov regularization, this regularization or penalty term is 

roughness. Roughness is how smooth is the trend or, in other words, how fast the trend changes. 

Functions that have high roughness change rapidly when independent variable changes. 

Mathematically, the rate of change is derivative of function. Roughness in Tikhonov regularization 

is represented by quadratic term of derivative. The derivative used in this regularization can be 

any order but the most common found in literature is second order derivative since it represents 

the curvature of the function. 

Stickel demonstrated the mathematical formalization of Tikhonov regularization per following. 

Goodness-of-fit is defined as 

  

Roughness is defined as 

  

where 
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Based on definition of goodness-of-fit and roughness, the regularization objective function in 

linear algebra form as 

  

 

and  are integration matrix. They can be based on any integration rule in the literature such as 

trapezoidal rule.  is finite difference differentiation matrix. The parameter 𝜆 is regularization 

parameter. This is the trade-off between goodness-of-fit and roughness when the analyst performs 

data analysis. The higher value of regularization parameter would give the fitted data trend that is 

smoother. This is like 𝐿 value in Bourdet derivative calculation. The goal in data analysis is to 

obtain the fitted data trend, 𝑦ො, that minimize 𝑄 for a given case of 𝜆. Note that this mathematical 

concept is the same as application in Eilers’ and Lubansky et al.’s works. 

 

Define  as the fitted data trend that minimize 𝑄 and we obtain 

  

Then, the derivative of fitted smoothed data can be calculated from  

  

The detail derivation of Tikhonov regularization can be found in Appendix A. 

The result of derivative calculation depends greatly on regularization parameter. As you can 

observe that the regularization parameter is an analogy to  𝐿 in Bourdet method. Selecting optimum 

value of 𝜆 is critical to obtain good result of derivative calculation. There are many methods to 

select optimum value of 𝜆. This can be trial and error same as Bourdet method. However, the most 

common method to determine optimum regularization parameter is generalized cross-validation 

(Eilers 2003, Lubansky et al. 2006, Stickel 2010). 
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For the dataset of 𝑁 pairs, the concept of this method is calculating 𝑁 smooth trend of data for 

specified 𝜆. In each calculation, one of data point is left out. The calculated data point at the left-

out position is then compared to the actual left-out data. The summation of variance of each 

calculation for given 𝜆 is obtained and defined as 𝑉 ஼௏. The 𝜆 that minimizes 𝑉 ஼௏ is the optimum 

value for data smoothing by regularization (𝜆௢௣௧) based on generalized cross-validation.  

 

The direct calculation of 𝜆௢௣௧ is calculation expensive. However, there is analytical solution for 

determining 𝑉 ஼௏(𝜆) based on Eq.4 which is rewritten below  (Eilers 2003, Lubansky et al. 2006, 

Stickel 2010). The optimum 𝜆 is the one that minimize 𝑉 ஼௏ which can be calculated numerically.   
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CHAPTER III 

TIKHONOV REGULARIZATION IMPLEMENTATION AND VALIDATION 

 

3.1 Implementation Work Flow 

In this section, we present our workflow to implement Tikhonov regularization. The 

implementation is performed in MATLAB.  

1. Data input into MATLAB.  The input data includes independent and dependent variables 

from measurements.  The only requirement is that the independent variable must be 

monotonic.  Time-series analyses involves time as the independent variable and in physical 

processes, time is always increasing — hence this condition satisfies the regularization 

requirement.  For this work, the spacing of independent variable (time) does not need to be 

equal (i.e., this approach permits unequally (even randomly) spaced measurements). 

2. Differentiation matrix and anti-differentiation matrix construction.  The differentiation 

matrix which is specified as 𝐷 in the objective function is constructed based on a matrix of 

finite-differences.  The input for the construction of matrix 𝐷 is based on the independent 

variable vector obtained from step 1.  The anti-differentiation matrix which is specified as 

𝐵 (and 𝐵෨ ) is also constructed from the independent variable vector.  In this work, we apply 

the trapezoidal rule to create the anti-differentiation matrix.  The mathematical detail for 

differentiation and antidifferentiation matrix is discussed in Appendix B.  

3. Evaluation of the optimum regularization parameter.  The evaluation is performed based 

on Eq. 4 and the objective of this evaluation is to find the value of 𝜆 which minimizes 𝑉 ஼௏. 

We use the built-in MATLAB function "fminbnd" to evaluate the optimum value of the 

regularization parameter.  

4. Evaluation of Results.  We apply Eq. 5 to evaluate a smoothed data trend from the original 

data.  Using the smoothed data trend, we then calculate the derivative of data from 

differentiation matrix. 
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3.2 Validation Work Flow 

The next objective is to validate the applicability of estimating the derivative function using the 

Tikhonov regularization method and comparing its effectiveness to the Bourdet method.  We then 

provide the workflow to compare the Tikhonov regularization and Bourdet derivative methods.  

Our approach is straightforward — we first apply these methods to synthetic data where we add 

Gaussian error in various quantities to the exact solution.  Once we are satisfied that the workflow 

is appropriate for synthetic data, we then apply this workflow to field data (short-term, high 

frequency pressure transient data and long-term, low frequency production data).  This provides 

both a concept validation using the synthetic data and a practical application using the field data.  

3.2.1. Synthetic Data Evaluation 

In this section, we develop the following work flow to compare the performance of the Tikhonov 

regularization method and Bourdet pressure derivative calculation as applied to synthetic data (i.e., 

an exact/known solution where Gaussian data noise has been added). 

1. Select analytical solutions computed the pressure and pressure derivative trends. The 

selected solutions include 

a. A vertical well in an infinite-acting reservoir with wellbore storage and skin (IARF) 

b. A vertical well in an infinite-acting without wellbore storage and skin in naturally 

fractured/dual porosity reservoir system (DUAL) 

c. A vertical well with a single vertical fracture having infinite fracture conductivity 

in an infinite-acting reservoir without wellbore storage and skin (HF). 

The analytical solutions used in this work are discussed in detail in Appendix C. 

2. Add Gaussian (random) noise to the calculated analytical pressure trend.  The noise has 

normal (Gaussian) distribution with standard deviations of 0.1%, 1.0%, and 5.0%. 
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3. Calculate pressure derivative from noisy synthetic pressure trends using the Tikhonov 

regularization and Bourdet methods.  The regularization parameter is estimated using a 

generalized cross-validation method (as discussed above).  Several values of the Bourdet 

L-parameter used to assess the most appropriate value for a given case.  In this work, we 

have used L = 0.1, 0.2, 0.3, and 0.4. 

4. Determine the statistical deviation of the numerically calculated pressure derivative 

(𝑦௖௔௟௖௨௟௔௧௘ௗ) to analytical solution (𝑦௘௫௔௖௧).  For this we use the standard measures of Root-

Mean-Square (RMS) and Mean-Absolute-Error (MAE) to assess the "goodness-of-fit."  

RMS and MAE are defined per following where 𝑁 is number of data points.  Lower values 

of 𝑅𝑀𝑆 and 𝑀𝐴𝐸 imply better matches of calculated and exact results. 

 

   

3.2.2. Field Data Evaluation 

In this section we elaborate on our strategy to assess the comparison of the Tikhonov regularization 

method to the Bourdet method for the purpose of estimating the derivative function of "field data" 

(i.e., actual measurements).  The key difference in this evaluation compared to our synthetic data 

evaluation is the fact that we do not know the true derivative, so we must rely more on the 

smoothness and shape of the derivative curves, as opposed to some sort of quantitative statistical 

measure.  We recognize that considering "qualitative" factors such as "smoothness" and "shape" 

are subjective, but we believe that these factors are relevant, particularly in a practical sense. 
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Intuitively, we consider the Tikhonov regularization derivative function to be the "benchmark," 

and we then compare the Bourdet derivatives computed using various L-parameters to assess the 

"best" Bourdet derivative function.  As comment, we find that we must use higher values of the L-

parameter (e.g., L = 0.3 or 0.4) for synthetic cases with high levels of noise and for the field data 

cases selected for this work.  The pressure transient and production data analysis literature 

generally recommends 0.15 < L < 0.25 for most field data cases, so our observation of the need for 

0.30 < L < 0.4 could be (and probably is) due to the high level of noise in our synthetic and field 

data cases. 

 

Our methodology for the evaluation of the field data cases is as follows: 

1. Select a particular set of field data, for this work we have: 

a. Pressure build-up test data 

b. Oscillating surface pressure data from pressure fall-off test 

c. Rate-transient (production) data for an oil well 

A library of all of the data used in this study can be found in Appendix D. 

2. Calculate pressure derivative field data by the Tikhonov regularization method and the 

Bourdet method.  As prescribed earlier in this work, the Tikhonov regularization parameter 

is calculated from the generalized cross-validation method.  Bourdet L-values of 0.1, 0.2, 

0.3, and 0.4 are used for the Bourdet derivative calculation. 

3. Determine the optimum Bourdet L-parameter by using the RMS and MAE statistical 

measures, with the Tikhonov regularization derivative as the benchmark. 
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CHAPTER IV 

EVALUATION RESULT 

 

4.1 Synthetic Data Evaluation Result 

4.1.1.  A vertical well in an infinite-acting reservoir with wellbore storage and skin (IARF) 

This case considers infinite-acting radial flow (IARF) with wellbore storage and zero skin effects 

as a test case.  In particular, selected dimensionless wellbore storage case of CD = 1x104 (which is 

on the lower end of the spectrum, but still provides all flow regimes of interest for our consideration 

(i.e., wellbore storage domination, wellbore storage/transition, and infinite-acting radial flow)). 

 

We have used the following cases of Gaussian noise — standard deviation of 0.1% (Fig. 8), 1.0% 

(Fig. 9), and 5.0% (Fig. 10).  In each case we used both the Tikhonov regularization method (with 

-value indicated) and the Bourdet method (L-value indicated) value which provides the best RMS 

and MAE.  For each case, the derivative computed using the Tikhonov regularization method 

yields the best results based on the RMS and MAE criteria (see Tables 1 and 2). 

 

For the 0.1% noise case, both the Tikhonov regularization and Bourdet methods capture the 

important features in the pressure derivative trend — i.e., the wellbore storage and infinite-acting 

radial flow regimes.  In general, we observe that the derivative computed using the Bourdet 

algorithm exhibits more noise compared to the regularization method, and in particular; for 1.0% 

and 5.0% noise cases, the Bourdet method does not capture the infinite-acting radial flow regime 

(very noisy derivative).  In comparison, the Tikhonov regularization method works well for all 

cases, clearly indicating the infinite-acting radial flow regime. 
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Fig. 8 — Pressure and pressure derivative plot for a vertical well in an infinite-acting reservoir 
with wellbore storage and skin case with noise (standard deviation — 0.1%). 

 

 

 

Fig. 9 — Pressure and pressure derivative plot for a vertical well in an infinite-acting reservoir 
with wellbore storage and skin case with noise (standard deviation — 1%). 
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Fig. 10 — Pressure and pressure derivative plot for a vertical well in an infinite-acting reservoir 
with wellbore storage and skin case with noise (standard deviation — 5%). 

 
4.1.2.  A vertical well in an infinite-acting without wellbore storage and skin in naturally 

fractured/dual porosity reservoir system (DUAL) 
 
This section considers the case of the naturally-fractured/dual porosity reservoir — specifically 

the case of pseudosteady-state interporosity flow — where the storativity parameter (𝜔) is 0.01 

and the interporosity flow coefficient (𝜆௙) is 5x10-6.  These cases also consider the same levels of 

noise as previous cases with a standard deviation of noise at 0.1% (Fig. 14), 1.0% (Fig. 15), and 

5.0% (Fig. 16).  In each of these cases the best Bourdet L-value in terms of RMS and MAE is 0.4; 

and each case the Tikhonov regularization method yields the best results.  The RMS and MAE 

results are summarized in Tables 1 and 2). 

 

For both the 0.1% and 1.0% noise cases, both the Tikhonov regularization and Bourdet methods 

capture the "transition" between fracture-dominated flow and "system" flow observed for the 

naturally-fractured/dual porosity reservoir model.  As would be expected due to the strong 
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character of the derivative in the "transition" regime, the derivative computed using the Bourdet 

method is significantly affected by data noise than the Tikhonov regularization method.  In 

particular, for 1.0% noise case, the Bourdet pressure derivative signature is only "qualitatively" 

indicative of the dual porosity reservoir model, and for the 5.0% noise case, the Bourdet pressure 

derivative signature does not (even remotely) capture the shape of the dual porosity reservoir 

model.  In fact, for the 5.0% noise case, the Bourdet pressure derivative could be misinterpreted 

as infinite-acting radial flow (i.e., no naturally-fractured/dual porosity reservoir effects).  By 

comparison, the pressure derivative obtained using the Tikhonov regularization method provides 

an acceptable level of clarity for all cases of data noise. 

 

 

 

 

Fig. 11 — Pressure and pressure derivative plot for a vertical well in an infinite-acting without 
wellbore storage and skin in naturally fractured reservoir system case with noise 
(standard deviation at 0.1%). 
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Fig. 12 — Pressure and pressure derivative plot for a vertical well in an infinite-acting without 
wellbore storage and skin in naturally fractured reservoir system case with noise 
(standard deviation at 1.0%). 

 

 

 

Fig. 13 — Pressure and pressure derivative plot for a vertical well in an infinite-acting without 
wellbore storage and skin in naturally fractured reservoir system case with noise 
(standard deviation at 1.0%). 
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4.1.3.  A vertical well with a single vertical fracture having infinite fracture conductivity 
in an infinite-acting reservoir without wellbore storage and skin (HF). 

 
The last analytical/synthetic case is that of a well with a single vertical fracture having infinite 

fracture conductivity in an infinite acting reservoir.  This case is similar to the first case, but 

without wellbore storage and with a "negative" skin.  There are 3 flow regimes — formation linear 

flow, transition, and infinite-acting radial flow.  We again consider the 3 noise cases — i.e., the 

0.1%, 1.0% and 5.0% standard deviation cases and the results for these cases are shown in Figs. 

14-16, respectively.  The Tikhonov regularization method yields the best performance for each 

case and in this case the "best" Bourdet L-parameter is 0.4.  The RMS and MAE results are 

summarized in Tables 1 and 2. 

 

Relative to the Bourdet algorithm, in all the cases we can observe the formation linear flow regime 

at early times, but for the 5.0% standard deviation noise case the Bourdet derivative signature is 

"qualitative" at best, particularly at early times.  We can also observe the transition to radial flow 

in all cases, but again, the Bourdet derivative signature is challenging and begins to diverge for the 

5.0% noise case.  Lastly, for the infinite-acting radial flow cases we note that the Bourdet algorithm 

performs well for the 0.1% noise case, acceptably for the 1.0% noise case, but unacceptably for 

the 5.0% noise case. 

 

In contrast, the Tikhonov regularization method produces excellent pressure derivative results for 

the 0.1 and 1.0% error cases, and very good/excellent results for the 5.0% cases.  There can be no 

doubt that the Tikhonov regularization method holds significant promise as a diagnostic tool based 

on these synthetic cases. 
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Fig. 14 — Pressure and pressure derivative plot for a hydraulically fractured vertical well with an 
infinite fracture conductivity in an infinite-acting reservoir without wellbore storage 
and skin case with noise standard deviation at 0.1% 

 

 

 

Fig. 15 — Pressure and pressure derivative plot for a hydraulically fractured vertical well with an 
infinite fracture conductivity in an infinite-acting reservoir without wellbore storage and 
skin case with noise standard deviation at 1.0% 
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Fig. 16 — Pressure and pressure derivative plot for a hydraulically fractured vertical well with an 
infinite fracture conductivity in an infinite-acting reservoir without wellbore storage 
and skin case with noise standard deviation at 5.0% 

 

As shown in Figs. 8-16, the Tikhonov regularization method for estimating the pressure derivative 

clearly outperforms the traditional Bourdet (weighted-difference) derivative method.  It is certainly 

fair to state that for cases of low Gaussian noise, the Bourdet algorithm produces results which are 

comparable to the Tikhonov regularization method, and such performance ensures that the Bourdet 

algorithm should (and will) continue to be used.  The question of implementation for a particular 

algorithm comes next — the Tikhonov regularization method is "self-optimizing," but the Bourdet 

algorithm must be optimized by the user.  When the exact solution is known, as for the cases in 

this section, the Bourdet algorithm could be tested "statistically" (as we have done) to estimate the 

optimum Bourdet L-parameter.  However; for applications to field data, the Bourdet L-parameter 

must be determined "qualitatively" from observations of the derivative trend for a given L-value. 
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Ultimately, the fact that there is no way to quantitatively optimize the Bourdet L-parameter in 

practice imposes a practical constraint on the Bourdet algorithm.  As a conclusion, we must state 

that the Tikhonov regularization method is more robust and more rigorous in a statistical sense, 

and hence, should be the preferred derivative algorithm. 

 

Table 1 — Root-Mean-Square (RMS) error estimated using the Bourdet and the Tikhonov 
Regularization pressure derivative calculations compared to the exact 
derivation solution 

 

Solution 

Noise 
SD 
(%) 

Root-Mean-Square (RMS) Error 
Regularization 

Parameter L = 0.1 L = 0.2 L = 0.3 L = 0.4 Regularization 

IARF 
0.1 0.0381 0.0196 0.0143 0.0143 0.0025 0.0011 
1.0 0.3625 0.1791 0.1315 0.0975 0.0168 0.0101 
5.0 1.8500 0.9382 0.6300 0.4808 0.0518 0.1001 

DUAL 
0.1 0.0370 0.0194 0.0133 0.0104 0.0022 0.0101 
1.0 0.3663 0.1936 0.1309 0.0998 0.0088 0.0186 
5.0 1.9638 1.0805 0.7019 0.5499 0.0272 0.1337 

HF 
0.1 0.0268 0.0137 0.0099 0.0076 0.0019 0.0101 
1.0 0.2662 0.1350 0.0916 0.0718 0.0038 0.0455 
5.0 1.2498 0.6874 0.4620 0.3649 0.0091 0.1241 

 

Table 2 — Mean Absolute Error (MAE) error estimated using the Bourdet and the 
Tikhonov Regularization pressure derivative calculations compared to the exact 
derivation solution 

 

Solution 

Noise 
SD 
(%) 

Maximum Average Error (MAE) (percent) 
Regularization 

Parameter L = 0.1 L = 0.2 L = 0.3 L = 0.4 Regularization 

IARF 
0.1 3.5570 2.0548 2.0490 2.6197 0.4152 0.0011 
1.0 33.598 16.618 12.367 9.8347 2.0796 0.0101 
5.0 171.64 88.145 59.293 45.163 8.8911 0.1001 

DUAL 
0.1 21.728 10.905 7.4448 5.6734 0.7176 0.0101 
1.0 210.69 110.90 73.397 54.061 4.4667 0.0186 
5.0 1052.8 590.04 379.07 299.93 8.2279 0.1337 

HF 
0.1 3.6748 1.8320 1.3402 1.0842 0.4441 0.0101 
1.0 36.127 18.412 12.217 9.5205 1.0598 0.0455 
5.0 171.85 91.849 61.158 48.174 2.2892 0.1241 
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4.2 Field Data Evaluation Result 

4.2.1.  Data Case — Bourdet Pressure Build-Up Data 

In this part, we obtain the data from the Bourdet et al. publication (Table 2 — SPE-12777).  This 

is the case of a pressure build up for a fissured (naturally-fractured) reservoir. Superposition time 

is required to analyze pressure build up and it can be calculated in Eq. 26. 

 
1 1

sup 1
1 1 1

1
ln ln ln

n n

i i j
n n i j

t q q t t t
q q

 


  

  
        

     
   ............................... (26) 

Where: 

supt is superposition time 

iq is historical production rate, 

jt  is historical production period for each production rate, and 

t is shut in duration. 

For this case, Bourdet et al. used L = 0.1 in the "Bourdet" derivative algorithm and presented the 

data derivative curve onto the "type curve" for a dual porosity reservoir system. Their work is 

shown in Fig. 17 (which is Fig. 13 in their original publication).  The model responses are 

represented by lines on Fig. 17 and the data are presented as symbols. 
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Fig. 17 — Bourdet pressure build up analysis in fissured reservoir (Reprinted from 
Bourdet et al., 1989) 

 

In this work we use the Tikhonov regularization method for the calculation of the pressure 

derivative function (see Fig. 18 with the Bourdet pressure derivative as shown on this plot for 

comparison).  The Tikhonov regularization parameter value (0.0578) is obtained from generalized-

cross-validation; and for comparison, we use the same L-parameter (0.1) as used in the original 

Bourdet publication. 

 

In reviewing the derivative trends shown in Fig. 18, we observe that the "regularization" derivative 

is a bit "wavy" but we believe this is due to the spacing and sparsity of the data in the case given 

by Bourdet.  We note that the regularization and Bourdet derivatives compare very well, and that 

the regularization derivative has a very strong signature at late times (total system radial flow).  

We also observe that the regularization derivative does not "dip" as lowly the pressure derivative 

from the Bourdet algorithm, but we also note a sparsity of data at these times so this deeper "dip" 

of the Bourdet derivative could be an artifact of sparse data in that region.   
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Fig. 18 — Bourdet pressure build up analysis in fissured reservoir using regularization 
 

4.2.2.  Data Case — Oscillating Surface Pressure Data from a Pressure Fall-Off Test 

In this field data example, we consider the analysis of a pressure fall-off test with only surface 

pressure data where these data are impacted by atmospheric (surface) temperature change (these 

data are courtesy of Reservoir Development Company/ DFITpro.com and were provided by Dr. 

David Craig).  The surface temperature affects the wellhead pressure gauge, resulting in oscillatory 

pressure measurements (the cycles of oscillation have a period of one day because of temperature 

changes during the day and night time). 

 

As comment, such behavior is fairly common with surface pressure gauges, and the pressure 

derivative in such cases often amplifies these oscillations.  The pressure trend for this case is shown 

in "full view" in Fig. 19 and in a "zoom view" (of the oscillatory behavior) in Fig. 20. 
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Fig. 19 — Oscillating surface pressure data from fall off test 
 

 

 

Fig. 20 — Oscillating surface pressure data from fall off test – late time 
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As with the other field data cases, we first compute the pressure derivatives using the Bourdet 

algorithm and again we test a range of the Bourdet "L-parameter" values (specifically we used L 

= 0.1, 0.2, 0.3, and 0.4; and we selected L = 0.4 as our final value based (qualitatively) on shape 

of the pressure derivative curve and as this value has the lowest RMS value compared to the 

Tikhonov regularization method).  We then compute the pressure derivative using the Tikhonov 

regularization method (regularization parameter = 0.0101) and all of the pressure derivative trends 

are shown in Fig. 21.  As comment, the derivatives computed using the Tikhonov regularization 

method and the Bourdet algorithm compare very well for this case, despite the temperature induced 

oscillations in the surface pressure data. 

 

 

 

Fig. 21 — Pressure derivative from oscillating surface pressure data from fall off test 
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4.2.3.  Rate Transient (Production) Data for an Oil Well 

In this field data case we apply the Tikhonov regularization method and the Bourdet derivative 

algorithm to the production history of an oil well (these data are courtesy of Reservoir 

Development Company/DFITpro.com and were provided by Dr. David Craig).  Historically, the 

analysis of production data is very challenging, particularly for the estimating derivative functions.  

As such, this case should be considered an extreme example for the calculation of the derivative 

function. 

 

The data for this case consists of production rates and flowing pressures for an oil well with just 

under 2 years of production history (713 days).  In this case we will use the rate normalized 

pressure drop (i.e., p/q) instead of pressure to account for the variations in flowrate.  The same 

procedures as in previous cases will also be used here — specifically the calculation of the pressure 

derivative function using the Tikhonov regularization method and the Bourdet derivative 

algorithm.  The p/q and p/q-derivative functions are plotted in Fig. 22.  Similar to previous 

cases, the selected Bourdet L-parameter is 0.4 and the regularization parameter for Tikhonov 

regularization method is 0.0079. 

 

In consideration of the relatively poor performance of the functions shown in Fig. 22, it was 

decided to attempt an "over-regularization" case (i.e., using a very high value of the regularization 

parameter), In Fig. 23 we present the data and derivative functions computed using a regularization 

parameter value of 999.514. 

 

In order to address the relatively poor performance of the derivative algorithms for this case, we 

manually removed the outlier data points — specifically those points on days 20, 21, 22, 23, 143, 

and 337.  We then performed the derivative calculations for these data and the results are presented 
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in Fig. 24.  In this case the Tikhonov regularization parameter is 0.0079 and the Bourdet L-

parameter is 0.4.  As can be seen in x, the performance of the derivative functions are significantly 

improved and are suitable for diagnostic analyses (i.e., identification of flow regimes).  The 

statistical measures for this case are: RMS = 4.112 psi/STBOD and MAE = 41.68%.  As 

mentioned, this is an extreme case — production data are notoriously prone to data noise.  Given 

the performance of the Tikhonov regularization method for this case, we believe that these results 

provide a proof, at least in concept, of the use of the Tikhonov regularization method to estimate 

derivative functions for cases with large/very large volumes of data noise. 

 

 

 

Fig. 22 — Rate transient analysis using a small value of the regularization parameter. 
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Fig. 23 — Rate transient analysis using a large value of the regularization parameter. 
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Fig. 24 — Rate transient analysis using data without outlier 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE EFFORT 

 

5.1 Summary 

In this work, we investigate the use of the Tikhonov Regularization method to estimate the 

derivative for noisy data using an application of this method developed in MATLAB.  We  note 

that our implementation of the Tikhonov Regularization method is based on the work of  Eilers 

(2003), Lubansky et al. (2006), and Stickel (2010).  The Tikhonov regularization provides a 

minimization of goodness-of-fit and roughness at the same time.  The regularization objective 

function in linear algebra form can be written as: 

  

By solving objective function, we obtain the fitted data trend as follows: 

  

For this work, the smoothness criteria is determined using an optimization process based on the 

generalized cross-validation method, which we believe provides the least bias for the Tikhonov 

Regularization method. 

 

We demonstrate the Tikhonov Regularization method by using the exact solutions for several 

classic solutions in reservoir engineering (for simplicity, we have only considered the transient 

flow portion of these solutions).  In particular, the case of a unfractured vertical well in an infinite-

acting reservoir with wellbore storage and skin effects (i.e., IARF), an unfractured vertical well in 

an infinite-acting reservoir without wellbore storage and skin effects in a naturally fractured/dual 

porosity reservoir system (i.e., DUAL), and the case of a vertical well with a single (hydraulically 
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created) vertical fracture of infinite fracture conductivity in an infinite-acting reservoir without 

wellbore storage and skin effects (i.e., HF). 

 

For each solution we have generated a series of typical scenarios and have added Gaussian noise 

to these solutions as a means of testing the Tikhonov Regularization method and the Bourdet 

method to estimate the pressure derivative function from the analytical solutions with noise added.  

The "synthetic noise" has a (Gaussian) normal distribution with standard deviation at 0.1, 1.0 and 

5.0 percent for each case.  At low (0.1 percent) and medium (1.0 percent) noise levels, both the 

regularization method and the Bourdet method successfully extract the pressure derivative function 

(these results are compared to the analytical pressure derivative solution).  However; we do note 

that for all cases, the Tikhonov Regularization method provides more robust (i.e., accurate) 

estimates of the pressure derivative than the Bourdet method (which is the industry standard 

algorithm).  

 

For the case with the highest level of noise in this work (i.e., standard deviation = 5.0 percent), the 

Bourdet derivative method fails to yield the shape of pressure derivative response (much less 

accurate estimates).  In contrast, the Tikhonov Regularization provides a remarkably accurate 

pressure derivative profile in terms of both "shape" and the accuracy of the computed derivative 

values. 

 

We also implemented the Tikhonov regularization process on multiple field data cases. These 

cases include both pressure transient test and rate transient test. For pressure transient analysis, 

regularization has better performance comparing to Bourdet method. For the rate transient data 

case, we had to filter the outlying data points prior to calculating the pressure derivative in order 

to obtain a derivative trend that has the fidelity to provide a good diagnostic signature. 
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Given the results of our work, it would be tempting to simply give preference to the Tikhonov 

Regularization method — however; we believe that a comparative methodology that includes the 

Bourdet method will be useful for estimating the pressure derivative response.  We have only 

considered the case of Gaussian (or normally distributed) noise, there could be cases of data bias 

and/or non-Gaussian types of noise which may adversely affect the utility of the Tikhonov 

Regularization method.  It would not be an overstatement for us to comment that we are genuinely 

surprised at the robustness of the Tikhonov Regularization method, and to suggest that algorithms 

such as this should be routinely utilized for reservoir engineering applications. 

5.2 Conclusions 

The following conclusions have been derived in this work. 

● The Tikhonov Regularization method is applicable to petroleum engineering applications. 

The method is proven using cases of synthetic and field data.  

● The Tikhonov Regularization method has statistically better performance with regard to 

obtaining the pressure derivative function compared to Bourdet method especially for cases 

with high levels of data noise.  The RMS and MAE statistical measures are used to assess 

the comparative performance of these algorithms. 

● The Tikhonov Regularization method can be applied to pressure transient analysis and rate 

transient analysis.  Practically-speaking, for pressure transient data there is typically not a 

high level of data noise.  In the case of production data, elevated levels of noise (and outliers) 

are quite common.  Outlier filtering is necessary for the interpretation of production data. 
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5.3 Recommendations for Future Effort 

● Other classes of regularization such as total variation regularization (TVR) are possibly 

suited to this purpose.  The primary limitation of the TVR method is the requirement for 

evenly-spaced data in order to calculate the pressure derivative function. 

● Extension of testing of these algorithms to other types of noise is warranted.  In particular, 

we have only considered Gaussian noise in our present work.  Other types of data noise 

should be considered. 
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NOMENCLATURE 

 

Field Variables (Mathematics) 

jC  = spline coefficient 

d = derivative order 

f  = frequency 

i = data index 

1I  = total energy factor  

2I  = low-frequency deviation factor 

L = minimum distance between derivative point for Bourdet pressure derivative 

N = number of data pairs 

Q = objective function 

S = splines function 

VGCV = generalized cross-validation variance 

x = independent variable 

x  = Fourier transform of x 

X = natural logarithm of time 

y = dependent variable 

   = smoothed dependent variable 

   = smoothed dependent variable that minimize objective function (solution) 

RMS = Root-Mean-Square 

MAE = Mean-Absolute-Error 

ŷ

*ŷ
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 = regularization parameter 

 = optimum regularization parameter 

B,  = integral matrix 

D = finite-difference matrix 

f = independent variable matrix 

M = mapping matrix 

W = weighting matrix for goodness-of-fit 

U = weighting matrix for roughness 

 

Field Variables: 

B = formation volume factor 

C = wellbore storage coefficient 

ct = total system compressibility 

h = pay thickness 

k = permeability 

p = pressure 

pi = initial reservoir pressure 

pwf = flowing bottom hole pressure 

q = flow rate 

r = radius 

wr  = wellbore radius 

s = skin 

t = time 



opt

B
~



 

58 

 

 = porosity 

 = viscosity 

IARF = Case of a vertical well in an infinite-acting reservoir with wellbore storage and skin 

DUAL = Case of a vertical well in an infinite-acting without wellbore storage and skin in 

naturally fractured reservoir system 

HF = Case of a hydraulically fractured vertical well with an infinite fracture conductivity 

in an infinite-acting reservoir without wellbore storage and skin 

 

Dimensionless Variables: 

DC  = dimensionless wellbore storage coefficient 

Dp  = dimensionless pressure 

Dr  = dimensionless radius 

Dt  = dimensionless time 

 

Mathematical Functions: 

Ei = Exponential integral 

J0 = Bessel function of the first kind of 0th order 

J1 = Bessel function of the first kind of 1st order 

Y0 = Bessel function of the second kind of 0th order 

Y1 = Bessel function of the second kind of 1st order 




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APPENDIX A 

DERIVATION OF TIKHONOV REGULARIZATION 

 

The Tikhonov regularization method is derived in this Appendix: 

Mathematical Formalism 

 

Stickel (2010) provides the derivation of Tikhonov Regularization considering sequence of data 

pairs: 

 for   

 for   

  

 

We assume that there exists a function 𝑦(𝑥) that exactly describes the relationship between x and 

y.  The goal of this analysis is to estimate 𝑦(𝑥) from available data where we define 𝑦ො(𝑥) as a 

smooth approximation of 𝑦(𝑥).  For this work, the goodness-of-fit can be defined as prescribed in 

Eq.  A.1.  

 

 ............................................................................................................ (A.1) 

 

The "roughness" term is defined as shown in Eq. A.2.  

 

 ...................................................................................................................... (A.2)  

 

where 
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The "roughness" term indicates how smooth the data trend 𝑦ො(𝑥) would be — in theory, a second 

derivative provides the curvature of the trend.  By limiting the roughness value to a small value, 

the fitted curve should be smooth.  In the regularization process, the objective is to minimize both 

the goodness-of-fit and the roughness simultaneously.  Such a condition can be achieved with 

compromise between the goodness-of-fit and the roughness.  To determine the optimum solution, 

weighting factors must be used. The objective function for regularization (𝑄(𝑦ො)) is defined by Eq. 

A.3. 

 

 ...................................................................... (A.3)  

 

𝜆 is the weighting factor multiplied by the roughness term — and  is called the regularization 

parameter.  The smaller the value of the regularization parameter yields a smooth trend 𝑦ො(𝑥) that 

is closer to the data function 𝑦(𝑥), while larger -values yield 𝑦ො(𝑥) trends that are very smooth, 

but these trends can (and likely will) lie far from the data function trend, 𝑦(𝑥). 

 

The solution of desired smooth trend (𝑦ො(𝑥)) is one that minimizes 𝑄(𝑦ො) for a given -value, this 

trend is defined as 𝑦ො∗and is obtained as follows: 

 

 ............................................................................................................ (A.4)  

 

As this data analysis procedure involves discrete data points, Eqs. A.1 to A.4 can be rewritten into 

a linear algebra (i.e., matrix) format.  The derivative and integral of any function  in the form of 

column vector can be numerically approximated by the following expressions: 
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The matrix  is a finite-difference approximation for derivatives of the order d, and the term 

is the integral matrix.  Both  and  can be developed using any numerical approximation 

rules.  To smooth the data trend, simple forward or backward differences (for the derivatives) and 

the trapezoidal rule (for the integrals) are sufficient.  The detail of these numerical methods can be 

found in Appendix B.  Based on numerical approximation, Eq. A.3 can be written as  

 

 .............................................................................. (A.5)  

 

The matrix  can be any order but the superscript (d) is dropped out for convenience. has the 

size of 𝑁 − 𝑑 𝑥 1. Thus  must have the dimension of 𝑁 − 𝑑 𝑥 𝑁 − 𝑑.  In writing Eq. A.5, there 

is no requirement that the 𝑥-values must be equally-spaced.  However, the values of 𝑥 must be in 

monotonic order.  

 

In some cases, the analyst may wish to process the data prior to performing regression. This can 

happen when there are too many or too few data points.  The original data set of 𝑁 pairs can be 

mapped to 𝑁෡ pairs of processed data.  This can be performed by any interpolation or extrapolation 

method.  In linear algebra form, the mapping matrix 𝑴 can be multiplied by 𝑦ො to map the values 

to desired 𝑦 points.  This is written as: 

 

 ................................................................................ (A.6)  

 

In addition to data mapping, some cases will require different weighting in different sections of a 

given data trend.  For example, the trend requires better goodness-of-fit at low values of 𝑥 but it 
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requires smoother curve at large values of 𝑥.  This can be achieved by modifying matrix and  

to have different weighting at different values of 𝑥.  Hence the objective function can be written 

in general form as 

 

 ............................................................................... (A.7)  

 

where and are modified and  matrices used to provide variable data weighting. When 

there is no data mapping or data weighting requirements, 𝑴 = 𝑰, 𝑾 = 𝑩, 𝒂𝒏𝒅 𝑼 = 𝑩෩ , and Eq. 

A.7 simply reduces to Eq. A.5. 

 

Analytical Solution 

 

The objective is to find 𝑦ො∗ such that 𝑄 in Eq. A.7 minimized.  This can be achieved by taking the 

derivative of 𝑄 with respect to 𝑦ො and finding 𝑦ො =  𝑦ො∗ such that 
ௗொ

ௗ௬ො
 equals zero. 

 

From Eq. A.7, we obtain: 

 

 

 

Setting  for 𝑦ො =  𝑦ො∗, we have: 
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Generalized Cross-Validation 

As one can suspect, determining the regularization parameter (𝜆) is one of the key challenges for 

data smoothing.  The optimal -value can, and obviously should vary between different data sets.  

The order of the regularization parameter can range from 10-10 to 1010 (Leong Yeow, C. Ko, and 

P. P. Tang 2000, Lubansky et al. 2006, Stickel 2010). Choosing the appropriate regularization 

parameter can be achieved by several methods (Boyd and Vandenberghe 2003, Eilers 2003, 

Lubansky et al. 2006, Stickel 2010, Wang, Jia, and Cheng 2002).  The most basic approach is 

simple trial and error.  The value of regularization parameter () can be changed until the desired 

trend is obtained.  However, this approach has two significant disadvantages. First, the process of 

trial and error is tedious, and the result of the desired trend is subjective.  The second disadvantage 

is that trial and error can result in bias. 

 

Another approach could be for the analyst to introduce a mathematically controlled process to 

determine 𝜆 such as something that optimizes the standard deviation of 𝑦ො − 𝑦 — e.g., the optimum 

𝜆  should yield the minimum value of the standard deviation.  For reference, the most common 

method for determining regularization parameter is generalized cross-validation.  Generalized 

cross-validation is based on "leaving-out-one" principle (Wahba 1990).  The concept of this 

method is calculating 𝑁 smooth trend of data for specified 𝜆. In each calculation, a single data 

point is removed and the calculated data point at the omitted position is then compared to the actual 

removed/omitted data point.  The summation of variance of each calculation for given 𝜆 is obtained 

and defined as 𝑉 ஼௏. The 𝜆-value that minimizes 𝑉 ஼௏ is the optimum value for data smoothing by 

regularization (𝜆௢௣௧) based on generalized cross-validation.  
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The direct calculation of 𝜆௢௣௧ can be tedious.  However, there is an analytical solution for 

determining 𝑉 ஼௏(𝜆) based on Eq. A.10 (Eilers 2003, Lubansky et al. 2006, Stickel 2010). 

 

 .............................................................................. (A.10) 

 

Where: 

 

 

 

Combining Eq. A.9 and A.10, the value of 𝜆௢௣௧ can be calculated numerically.  

 

References 

Boyd, S. and Vandenberghe, L. 2003. Convex Optimization. Cambridge, U.K, Cambridge 
University Press. (Reprint). 

Eilers, P. H. 2003. A perfect smoother. Analytical chemistry 75 (14) 3631-3636. 
Leong Yeow, Y., C. Ko, W. and P. P. Tang, P. 2000. Solving the Inverse Problem of Couette 

Viscometry by Tikhonov Regularization. Journal of Rheology 44 (6), 1335-1351. 
Lubansky, A., Yeow, Y. L., Leong, Y. K. et al. 2006. A general method of computing the 

derivative of experimental data. AIChE journal 52 (1) 323-332. 
Stickel, J. J. 2010. Data smoothing and numerical differentiation by a regularization method. 

Computers & chemical engineering 34 (4) 467-475. 
Wahba, G. 1990. Spline Models for Observational Data: Spline Models for Observational Data, 

PA:SIAM (Reprint). 
Wang, Y. B., Jia, X. Z. and Cheng, J. 2002. A numerical differentiation method and its application 

to reconstruction of discontinuity. Inverse Problems 18 (6) 1461-1476. 

Nomenclature 

 

d = derivative order 

i = data index 

N = number of data pairs 

     
  21

ˆˆ

Ntr

N
V

T

sGCV
/H

/yyMyyM **






 
 

1

2

11

















s

d

T

TT
s

T

N

tr

δλ

DD

WMUDDWMMMH



 

68 

 

Q = objective function 

VGCV = generalized cross-validation variance 

x = independent variable 

y = dependent variable 

   = smoothed dependent variable 

   = smoothed dependent variable that minimize objective function (solution) 

 = regularization parameter 

 = optimum regularization parameter 

B,  = integral matrix 

D(d) = finite-difference matrix 

f = independent variable matrix 

M = mapping matrix 

W = weighting matrix for goodness-of-fit 

U = weighting matrix for roughness 

ŷ
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APPENDIX B 

NUMERICAL DERIVATIVE AND INTEGRAL FORMULATIONS 

 

The formulas for numerical derivatives and integrals are presented below: 

 

Numerical Derivatives 

 

Given the set of pair of data per following 

 for   

 for   

  

 

Numerical derivatives can be calculated by finite-difference method in Eq. B.1. 

 

..................................................................................................... (B.1)  

 

In matrix notation forms, Eq. B.1 can be shown as 

 

 

 

Apply Eq. B.1 again for second derivative, obtain 

 

 

 

In matrix notation forms, obtain 
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By repeating the same steps, we obtain 

 

 ........................................................................... (B.2)  

 

where  and  are ceiling and flooring operations. 

 

In matrix notation form, we obtain 
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where and . 

 

Numerical Integrals 

Given the set of pair of data per following 

 

 for   

 for   

  

 

By trapezoidal rule, we obtain 
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........................................................................................................ (B.4)  

 

Note that the ½ factor is included in . 
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Nomenclature 

 

d = derivative order 

f = dependent variable 

x = independent variable 

B = integral matrix 

D(d) = finite-difference matrix 

f = independent variable matrix 

f(d) = derivative of order dth of independent variable matrix 

V(d) = finite-difference matrix 
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APPENDIX C 

TRANSIENT FLOW SOLUTIONS USED IN THIS STUDY 

 

The constant rate transient flow solutions used in this this study are summarized below. 

 

Vertical Well — Infinite-Acting Reservoir: 

(With wellbore storage and skin effects (IARF)) 

 

 ........ (C.1)  

 

.............. (C.2)  

 

Where the dimensionless variables for this case are defined in terms of field units as: 

 

 
 

 

 

Vertical Well — Infinite-Acting, Naturally-Fractured/Dual Porosity Reservoir: 

(No wellbore storage or skin effects (dual porosity - DUAL)) 

 

 .......................................... (C.3)  

 

........................................................... (C.4)  

 

Where the dimensionless variables for this case are defined in terms of field units as: 
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Vertical Well with an Infinite Conductivity Vertical Fracture — Infinite-Acting Reservoir: 

(No wellbore storage or skin effects (HF)) 

 

 .................... (C.5)  

 

 ............................................................ (C.6)  

 

Where the dimensionless variables for this case are defined in terms of field units as: 

 

 
 

 

 

( =0 for uniform-flux and =0.732 for infinite conductivity) 
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APPENDIX D 

SUMMARY OF FIELD DATA USED IN THIS STUDY 

 

In this appendix, we summarize the data that we use in field data evaluation. There are three cases  

a. Bourdet pressure build up data 

b. Oscillating surface pressure data from fall off test 

c. Rate transient data for oil well 

For Bourdet pressure build up data, we use the data from Table 2 in SPE-12777-PA article 

(Bourdet et al. 1989). Since it can be found in original publication, we will not show the data in 

this work. For oscillating surface pressure data from fall off test case, the data is obtained from 

pressure gauge which has 1 second frequency. Publishing all the data here is not possible due to 

number of data points. It will be provided as separate data file attached to this thesis. 

The last case of rate transient data for oil well consists of production data for 713 days. This data 

is courtesy of Reservoir Development Company/DFITpro.com and provided by Dr. David P. 

Craig. It is shown in Table D. 1. 

Table D. 1 — Rate transient data for oil well 
 

Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

0 475.0759 3394.2058  357 176.0707 2914.0441 
1 412.5517 3359.6605  358 146.8300 2877.5676 
2 526.5517 3611.7370  359 218.2652 2973.4417 
3 638.0690 3664.8700  360 206.0666 2890.4483 
4 444.4138 3617.1284  361 211.7866 2875.0133 
5 548.2759 3612.3887  362 218.7734 2910.7790 
6 685.6552 3614.7671  363 219.2331 2868.9953 
7 552.4138 3618.4917  364 209.6910 2872.2639 
8 628.1379 3614.8697  365 115.9186 2898.8601 
9 496.1379 3637.1077  366 317.9745 3217.9806 

10 485.7931 3664.1574  367 213.7845 2940.6430 
11 663.3103 3663.9225  368 198.0569 2953.1207 
12 549.1034 3668.4727  369 199.4121 2980.6498 
13 711.7241 3665.4194  370 207.8435 3039.0205 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

14 482.8965 3568.6268  371 193.6510 3045.7587 
15 648.8276 3562.5784  372 196.7293 2836.9302 
16 788.6897 3566.7850  373 196.2541 3030.4818 
17 783.7241 3520.4028  374 189.2672 3050.1509 
18 758.4828 3494.9050  375 193.3079 2911.2032 
19 438.2414 3468.7497  376 204.4797 2893.5192 
20 179.5862 3458.2458  377 199.3735 2852.8253 
21 1.0000 3456.1237  378 206.4876 2868.8626 
22 1.0000 3455.0434  379 197.4121 2850.4021 
23 168.5517 3455.0434  380 188.6797 2758.4696 
24 461.4483 3587.7315  381 188.2648 2900.8120 
25 451.3103 3627.9435  382 185.1248 3063.3280 
26 477.4138 3614.5602  383 193.2028 2878.8449 
27 590.6207 3588.7940  384 177.2745 2884.7722 
28 722.4483 3574.3176  385 193.5434 3055.6333 
29 711.3448 3528.4283  386 166.3624 2869.1474 
30 811.7931 3489.5805  387 154.3883 3152.3039 
31 824.9310 3415.7532  388 189.5517 3037.6935 
32 825.6552 3400.9882  389 132.3710 2906.4172 
33 757.8966 3386.8149  390 184.5945 2938.3489 
34 779.2759 3355.1602  391 159.3214 2934.0004 
35 422.6897 3346.7205  392 186.4314 2917.7425 
36 525.3103 3391.0053  393 190.0193 2861.2412 
37 513.1724 3389.2206  394 173.3465 3045.5384 
38 513.7931 3388.9322  395 169.5910 2907.6350 
39 511.0690 3407.2011  396 184.6645 2895.6994 
40 506.7586 3418.2914  397 189.2545 2895.4039 
41 509.1034 3411.0925  398 172.9666 2909.2160 
42 509.6552 3407.0910  399 185.6979 2892.5880 
43 512.2069 3398.9912  400 177.3741 3021.9652 
44 517.7586 3411.2200  401 183.9328 2858.2197 
45 519.2414 3412.3651  402 138.7179 2830.2750 
46 478.5862 3422.5402  403 178.1910 2879.9845 
47 481.7586 3402.3372  404 184.6283 2921.3348 
48 481.1724 3426.7446  405 180.9635 2795.0110 
49 490.0690 3431.8010  406 159.1372 2865.6137 
50 486.4483 3395.4969  407 187.2400 2875.1683 
51 483.3103 3396.4290  408 180.1438 2886.2197 
52 466.8966 3434.8906  409 162.1259 2858.5988 
53 486.3448 3418.3037  410 182.4741 2883.7126 
54 486.0345 3417.7221  411 180.3090 2892.3412 
55 465.6207 3450.1594  412 180.0148 3020.1632 
56 439.0345 3438.5542  413 174.4969 2830.2301 
57 459.9655 3474.4811  414 179.1255 2864.9574 
58 543.0345 3484.0481  415 178.0107 3020.6075 
59 510.9310 3478.8727  416 179.3693 2970.3937 
60 464.7586 3487.2238  417 170.3607 2826.1414 
61 507.6207 3500.3682  418 180.1379 2967.2819 
62 497.7931 3497.2814  419 179.0938 2788.1901 
63 554.4138 3478.8103  420 180.3331 2929.5059 
64 574.0690 3510.5728  421 189.5817 2919.4952 
65 546.6897 3504.9900  422 169.8621 3006.5227 
66 477.4138 3489.0984  423 174.8690 2840.1620 
67 554.0690 3398.2546  424 162.9969 2995.8684 
68 542.5172 3388.9105  425 179.9069 2990.0365 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

69 509.4138 3454.5320  426 173.5266 2772.8794 
70 496.4138 3469.9572  427 166.5397 2849.8835 
71 509.7586 3463.5741  428 174.9479 2840.7067 
72 461.0690 3419.2746  429 169.4886 2859.7109 
73 509.0690 3425.2745  430 171.1907 2842.6060 
74 449.4483 3434.4675  431 183.0341 2845.0732 
75 473.7241 3411.8432  432 172.4469 2884.7639 
76 499.2759 3364.7025  433 160.0624 2865.9842 
77 478.6897 3387.5942  434 168.6424 2878.2163 
78 480.7241 3390.1698  435 162.7876 2865.1155 
79 351.9655 3405.4273  436 154.9928 2818.8318 
80 466.9310 3398.7916  437 172.1990 2827.1578 
81 429.5862 3373.6820  438 140.9235 2970.3266 
82 472.7586 3354.6308  439 161.2169 2905.7823 
83 502.4483 3357.5804  440 174.6869 2840.8840 
84 452.4483 3385.6391  441 173.4669 2858.7697 
85 455.1379 3383.5114  442 176.3200 2884.1945 
86 454.9310 3352.1242  443 168.9569 2863.2246 
87 490.7931 3358.2064  444 199.2910 2807.3358 
88 463.3103 3370.1574  445 179.3100 2807.6934 
89 435.4483 3362.4451  446 173.3834 2746.4421 
90 451.1379 3363.8815  447 177.8845 2938.6481 
91 417.5862 3363.1972  448 181.0455 2811.9901 
92 453.7241 3373.6602  449 207.1448 2775.3436 
93 447.5862 3338.9052  450 200.1286 2804.7503 
94 419.7586 3350.9486  451 175.0803 2928.7077 
95 464.5862 3349.3584  452 189.3997 2811.4879 
96 347.6552 3353.3431  453 192.8176 2822.5234 
97 453.1724 3355.1016  454 195.6183 2879.8641 
98 428.3448 3332.8059  455 172.9917 2770.4915 
99 418.0000 3353.5909  456 169.1421 2769.9900 
100 423.0345 3250.8812  457 165.0272 2830.2274 
101 419.5172 3289.5568  458 192.9652 2802.5053 
102 417.8276 3304.7088  459 177.1959 2790.0870 
103 415.4828 3281.3317  460 185.6962 2789.9017 
104 391.5862 3292.4493  461 177.6072 2806.8242 
105 389.7241 3314.3076  462 189.8790 2798.4417 
106 412.8621 3348.7691  463 164.2524 2811.0789 
107 376.3448 3337.0458  464 156.7100 2795.0140 
108 394.5172 3350.5463  465 192.4369 2744.5555 
109 382.3448 3343.7883  466 207.3438 2914.9706 
110 360.6552 3336.4550  467 150.4014 2813.0508 
111 388.8276 3283.2872  468 142.4807 2740.7520 
112 381.1379 3269.5981  469 179.0997 2808.8210 
113 375.1379 3322.2274  470 173.4435 2783.9712 
114 376.4483 3284.5666  471 175.0386 2797.8115 
115 377.2759 3336.3448  472 182.7938 2853.4094 
116 363.2759 3291.7110  473 178.1776 2797.2154 
117 369.0690 3308.7069  474 160.5710 2750.8740 
118 340.2069 3256.0320  475 183.1469 2763.4283 
119 407.7241 3297.1367  476 169.6872 2800.2514 
120 347.1034 3291.2800  477 168.2721 2779.7677 
121 378.1034 3271.8816  478 184.6172 2784.4290 
122 373.5862 3247.0617  479 168.7707 2827.1302 
123 396.9310 3272.3575  480 171.0238 2804.1797 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

124 337.1379 3252.4957  481 154.6083 2787.9622 
125 257.0345 3237.1915  482 186.7693 2874.6521 
126 246.4828 3255.2386  483 165.7462 2837.0824 
127 302.6024 3282.5020  484 156.0869 2812.4343 
128 357.7638 3264.5339  485 178.5545 2850.9786 
129 321.7828 3253.1473  486 169.1400 2762.6896 
130 311.1379 3246.2544  487 172.5993 2765.5031 
131 267.2234 3225.2858  488 187.2490 2693.1277 
132 280.6683 3252.1542  489 147.8562 2797.6145 
133 246.8376 3214.1203  490 156.7697 2794.8460 
134 223.9972 3223.2873  491 158.2755 2700.4445 
135 227.8428 3268.1727  492 147.3138 2870.7238 
136 398.2307 3189.7902  493 153.7310 2876.4466 
137 243.9528 3231.3613  494 165.3283 2777.6161 
138 310.9886 3213.9462  495 135.8169 2783.3449 
139 295.4866 3243.1748  496 154.8145 2795.9069 
140 338.3562 3226.6635  497 153.1290 2732.4956 
141 144.3759 3226.5504  498 153.5903 2774.2193 
142 89.9603 3204.8572  499 152.6903 2800.0473 
143 13.2359 3194.5592  500 148.8879 2711.1751 
144 267.6617 3197.7909  501 151.2631 2817.9854 
145 298.4359 3191.4937  502 149.1259 2767.5412 
146 367.5227 3190.0959  503 150.5035 2776.8662 
147 309.1493 3166.0412  504 149.4966 2830.5008 
148 314.6983 3195.6183  505 145.9983 2762.1405 
149 232.0524 3182.7970  506 152.9224 2777.5411 
150 336.9466 3169.6207  507 140.0217 2841.3793 
151 309.8965 3171.8912  508 152.7972 2865.5290 
152 306.0528 3169.7055  509 142.2662 2833.4412 
153 325.2221 3203.1157  510 138.7117 2809.9825 
154 318.2155 3189.6033  511 150.0334 2772.4471 
155 321.1397 3175.5399  512 144.6728 2789.1495 
156 318.9338 3173.9523  513 142.5710 2795.1733 
157 315.6283 3187.1732  514 140.3748 2824.5788 
158 324.2507 3171.4237  515 152.7172 2855.8446 
159 333.7734 3202.4870  516 150.2541 2893.8793 
160 332.8862 3193.5765  517 147.9448 2719.6906 
161 324.8859 3215.9974  518 145.4100 2769.0209 
162 301.3224 3158.9062  519 138.0876 2813.6354 
163 303.0452 3158.5251  520 137.2238 2807.0239 
164 307.8652 3169.9420  521 136.6472 2883.2328 
165 308.1059 3187.4614  522 138.1341 2902.4813 
166 300.7783 3139.7927  523 135.7841 2763.2075 
167 305.2576 3148.5177  524 139.8417 2774.8715 
168 302.8214 3162.8852  525 140.8297 2926.2930 
169 300.5110 3168.6583  526 138.8790 2797.6992 
170 303.0703 3132.4566  527 144.5993 2801.3048 
171 302.8914 3156.5712  528 162.7172 2714.8404 
172 305.9148 3127.4936  529 158.0793 2803.1746 
173 289.3052 3160.5688  530 162.3290 2724.8002 
174 295.5117 3149.8443  531 158.6541 2787.9893 
175 294.2645 3155.0610  532 161.4717 2891.6162 
176 292.3945 3134.6869  533 154.9514 2684.1015 
177 295.2914 3132.9201  534 160.2465 2718.9190 
178 288.7038 3145.4040  535 162.9872 2875.0680 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

179 289.4641 3130.0687  536 155.6969 2740.7695 
180 285.7710 3142.5198  537 156.5855 2895.7743 
181 281.6583 3136.8845  538 158.1507 2813.0405 
182 290.6614 3134.3836  539 148.4945 2803.7178 
183 282.5307 3130.3323  540 145.6807 2745.1793 
184 279.5334 3133.3498  541 139.0583 2748.6578 
185 286.2690 3119.3499  542 143.8283 2874.6251 
186 277.7210 3117.9363  543 146.5024 2807.5478 
187 284.0607 3096.1652  544 143.7400 2722.2314 
188 282.7714 3130.8116  545 147.5652 2897.5339 
189 279.6907 3130.4467  546 155.6962 2726.6892 
190 277.2483 3113.8835  547 146.7100 2806.1420 
191 286.3845 3125.9432  548 153.3507 2757.7922 
192 290.2610 3133.9871  549 145.8869 2751.8896 
193 282.2138 3148.1212  550 152.5652 2728.8919 
194 268.0941 3136.7192  551 138.9314 2885.1322 
195 271.7241 3122.7809  552 147.2862 2728.8259 
196 274.9366 3122.8334  553 143.8724 2745.6379 
197 271.6200 3135.5646  554 148.9862 2860.3141 
198 275.8583 3142.4878  555 143.1997 2740.9733 
199 256.0145 3106.4974  556 139.1831 2894.6037 
200 261.7914 3097.4905  557 143.4345 2740.5327 
201 266.1583 3099.4321  558 144.7493 2739.5206 
202 270.2576 3105.4213  559 124.5186 2739.5328 
203 266.1145 3095.0087  560 145.8152 2761.4461 
204 267.0648 3121.5937  561 141.0955 2761.6354 
205 259.1807 3107.7623  562 141.1134 2759.2613 
206 269.3793 3101.0220  563 143.1593 2896.3367 
207 264.6255 3115.7044  564 144.6338 2774.8283 
208 261.5834 3117.1508  565 169.5276 2891.1210 
209 255.3552 3097.1010  566 130.2172 2761.8808 
210 255.7455 3126.5546  567 120.3617 2791.7656 
211 258.2352 3079.0931  568 117.8966 2761.1878 
212 255.5445 3098.3349  569 133.5628 2874.3253 
213 257.2159 3090.9668  570 141.5383 2750.3036 
214 263.7859 3098.6663  571 131.0679 2772.8211 
215 260.7610 3118.5314  572 147.5466 2719.5139 
216 221.7055 3105.3446  573 136.8738 2720.3701 
217 256.1721 3094.1100  574 135.8810 2720.2692 
218 257.1345 3100.5123  575 143.6721 2718.8593 
219 265.8097 3103.7789  576 148.8021 2727.5829 
220 271.3497 3102.6307  577 127.1786 2727.6315 
221 250.3107 3104.1035  578 143.4162 2741.4812 
222 270.1697 3111.8377  579 159.4917 2717.7542 
223 243.8007 3100.9449  580 125.7531 2727.0446 
224 245.8024 3085.1022  581 146.2072 2740.2939 
225 265.0772 3113.8705  582 126.1245 2710.7645 
226 252.2097 3100.6379  583 151.2634 2747.5532 
227 249.2410 3089.2938  584 150.3624 2738.8900 
228 248.7990 3090.6461  585 134.9914 2756.8873 
229 255.3214 3076.6789  586 189.4779 2756.7428 
230 252.0407 3101.8933  587 80.9824 2719.5421 
231 240.0328 3074.8623  588 111.9021 2725.0159 
232 248.7279 3086.4450  589 126.8117 2740.3089 
233 251.1110 3076.4441  590 125.6262 2738.9024 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

234 238.3472 3056.3395  591 128.2917 2751.4015 
235 239.7234 3057.7951  592 125.9452 2744.8735 
236 249.6217 3067.0076  593 158.3914 2744.8537 
237 251.9090 3040.2570  594 127.0217 2750.3064 
238 237.2186 3055.7707  595 123.6962 2750.0133 
239 249.1404 3069.7713  596 131.9700 2715.7091 
240 244.9283 3093.0850  597 125.5948 2746.0799 
241 242.5645 3098.1522  598 130.6548 2926.7503 
242 247.4983 3062.2755  599 136.3238 2742.7985 
243 240.3748 3073.2850  600 144.9907 2738.4006 
244 253.3645 3065.8569  601 132.9338 2942.1921 
245 243.3252 3069.5212  602 143.9565 2942.0816 
246 244.7404 3074.0423  603 143.8493 2724.4263 
247 244.3552 3068.8239  604 144.8972 2728.1776 
248 236.9752 3068.2390  605 119.0441 2778.5826 
249 271.6790 3060.5741  606 113.0200 2725.3864 
250 190.3469 3069.6689  607 137.2659 2799.6937 
251 241.5017 3088.9487  608 138.3234 2799.8913 
252 254.4000 3084.1360  609 126.9414 2794.5210 
253 241.6186 3050.9124  610 139.2641 2773.9795 
254 234.1248 3061.9171  611 137.8824 2793.0188 
255 247.8448 3057.3928  612 129.7724 2869.7100 
256 238.4362 3070.4930  613 132.1224 2748.0441 
257 241.1183 3047.7873  614 124.8431 2746.0812 
258 241.1972 3062.0223  615 133.7914 2792.1899 
259 238.3310 3057.3650  616 130.0521 2740.8319 
260 231.2224 3044.4086  617 144.6779 2932.7373 
261 236.3079 3055.1357  618 131.1314 2924.3624 
262 236.1252 3046.2436  619 131.1438 2930.8821 
263 233.1321 3055.0908  620 128.9838 2922.0189 
264 230.2110 3045.3864  621 132.1941 2922.0007 
265 239.4100 3035.9161  622 130.5224 2881.7927 
266 223.7997 3052.5709  623 124.4445 2881.7788 
267 289.0648 3043.1653  624 122.6459 2777.3495 
268 299.9028 2983.8796  625 120.7338 2777.3348 
269 283.9672 2983.5791  626 124.6600 2864.7831 
270 281.8159 2968.0727  627 123.3007 2864.8149 
271 276.4234 2984.2383  628 123.9341 2939.0879 
272 276.4955 2958.9894  629 130.0928 2942.1284 
273 269.9607 2963.5320  630 128.2545 2942.1802 
274 270.8183 2961.6952  631 122.0976 2921.9945 
275 271.2366 2958.3268  632 121.1879 2889.4048 
276 272.4548 2954.1373  633 121.7117 2889.3975 
277 271.6076 2959.6337  634 124.2866 2766.3370 
278 261.1859 2967.0751  635 120.9366 2794.9929 
279 256.3259 2959.1154  636 132.7103 2799.9886 
280 270.1921 2948.6799  637 112.3724 2788.2843 
281 260.7334 2971.8298  638 60.5276 2788.1215 
282 200.1659 2966.3387  639 42.0231 2787.8326 
283 280.0903 2980.6762  640 93.1114 2866.9490 
284 276.1972 2941.9137  641 119.3576 2871.9428 
285 254.6221 2951.2973  642 122.3083 2991.9641 
286 43.3145 2958.9114  643 136.4162 2974.6305 
287 211.1965 2617.5423  644 94.8269 2974.7489 
288 243.8490 3013.6697  645 108.6652 2947.6350 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

289 312.0169 3310.1326  646 103.4845 2788.9117 
290 245.9969 2968.9791  647 110.4803 2796.2370 
291 249.1224 3193.6399  648 108.9255 2824.6700 
292 257.3728 2950.7905  649 104.9955 2989.3220 
293 261.3455 2945.4252  650 139.9979 2826.1514 
294 262.3376 2955.3905  651 114.6031 2786.4808 
295 260.2976 2950.6283  652 115.9697 2965.5909 
296 243.3766 2971.5763  653 122.9176 2860.7798 
297 262.6224 3105.5732  654 128.4169 2774.9982 
298 240.5276 3000.7333  655 122.4628 2806.7057 
299 244.0945 3019.9892  656 106.5169 2927.6619 
300 247.3528 2940.2318  657 120.6193 2925.3218 
301 233.9669 3088.2921  658 129.1928 2813.8881 
302 246.3021 2936.4906  659 117.6572 2947.8863 
303 139.5421 2943.2969  660 128.1462 2950.7056 
304 236.8490 3039.9927  661 115.8976 2891.6768 
305 250.6728 2932.0985  662 118.4676 2825.8730 
306 236.8583 2936.4811  663 120.3331 2790.5055 
307 246.7097 2816.2449  664 123.4531 2809.6809 
308 242.7786 2935.7242  665 113.7845 2938.6308 
309 257.5059 2930.6593  666 141.5983 2786.9679 
310 239.3335 2934.8237  667 106.3645 2936.6901 
311 231.1159 2928.5149  668 124.6345 2851.2559 
312 228.0414 2936.6858  669 111.8310 2965.2109 
313 232.7924 2958.7858  670 115.5476 2801.3183 
314 230.4452 3069.0096  671 129.4221 2796.5580 
315 214.5676 2911.8384  672 120.5472 2814.1854 
316 126.8283 2918.2729  673 116.4441 2887.1805 
317 228.5803 2974.3113  674 141.2507 2797.2692 
318 230.3141 2940.7258  675 112.7103 2797.4786 
319 237.1310 2979.2006  676 119.7776 2813.9405 
320 231.5490 2975.4551  677 118.3014 2810.9523 
321 220.1159 2822.4688  678 117.2490 2944.8747 
322 242.8245 2926.9738  679 116.2038 2773.0848 
323 184.3617 2932.9927  680 124.3562 2781.2573 
324 220.5321 2984.5674  681 117.7452 2795.2283 
325 227.2476 2933.2749  682 110.8741 2916.6625 
326 229.8766 2922.6363  683 111.3893 2808.2015 
327 223.7000 2919.6458  684 110.0093 2806.8068 
328 231.2076 2921.8963  685 107.6776 2806.7969 
329 224.9848 2917.3306  686 116.6262 2822.3130 
330 225.9272 2923.5435  687 117.2800 2785.3452 
331 213.8621 2913.6423  688 110.4748 2785.3502 
332 215.4635 2961.8590  689 118.1962 2785.2998 
333 178.0221 2969.6893  690 113.5810 2810.3585 
334 188.4472 3032.1226  691 112.8221 2936.4563 
335 179.8624 3214.4019  692 110.1328 2936.4508 
336 86.2497 2976.8296  693 117.8728 2811.3500 
337 1.0000 3268.2178  694 109.5266 2811.4073 
338 173.6659 3274.4412  695 119.7890 2817.5405 
339 231.9507 3065.3658  696 114.4548 2806.8697 
340 230.2569 2985.4023  697 109.1266 2807.8806 
341 217.1772 2957.7669  698 111.4766 2800.2475 
342 218.3241 2920.1708  699 115.7917 2800.2643 
343 224.7103 2944.0840  700 113.6897 2773.8908 
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Time (days) 
Production rate 

(STB/d) 
Flowing pressure 

(psi) 
 Time (days) 

Production rate 
(STB/d) 

Flowing pressure 
(psi) 

344 214.7379 2925.0578  701 110.0466 2791.6333 
345 227.0696 2943.2231  702 104.2524 2844.5099 
346 223.4472 2902.8151  703 113.1690 2797.8755 
347 217.9841 2903.9287  704 106.4500 2797.9389 
348 223.5193 2904.0917  705 100.0897 2796.7265 
349 203.3131 2903.3487  706 103.7228 2797.9707 
350 212.6231 2913.0070  707 108.5214 2811.6622 
351 215.3659 2904.1454  708 99.9334 2811.6956 
352 213.9090 2885.0493  709 108.1779 2772.8398 
353 231.4752 2901.3592  710 105.8003 2797.9028 
354 208.9248 2850.2575  711 100.7879 2824.7487 
355 229.7183 2885.3146  712 114.0659 2828.5726 
356 220.8593 2877.5416  713 110.1783 2799.3543 
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APPENDIX E 

SYNTHETIC DATA EVALUATION RESULT 

 

This appendix presents the plots for every case of synthetic data analyzed in this study. There are 

three analytical solutions used to generate synthetic pressure response in this study which are  

a. A vertical well in an infinite-acting reservoir with wellbore storage and skin (IARF) 

b. A vertical well in an infinite-acting without wellbore storage and skin in naturally 

fractured reservoir system (dual porosity - DUAL) 

c. A hydraulically fractured vertical well with an infinite fracture conductivity in an 

infinite-acting reservoir without wellbore storage and skin (HF). 

For each analytical solution, we study three cases of noise including noise standard deviation at 

0.1%, 1.0% and 5.0%. We calculate pressure derivative by Tikhonov regularization and Bourdet 

method for each case. Bourdet L values are value between 0.1, 0.2, 0.3 and 0.4 for each case. 

Therefore, there are total 36 cases of synthetic data evaluation in this study. 

A vertical well in an infinite-acting reservoir with wellbore storage and skin (IARF) 

The result for a vertical well in an infinite-acting reservoir with wellbore storage and skin is shown 

in Fig. E. 1 to Fig. E. 12. 
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Fig. E. 1 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
0.1%. Bourdet L value = 0.1. 

 



 

84 

 

 

Fig. E. 2 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
0.1%. Bourdet L value = 0.2. 
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Fig. E. 3 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
0.1%. Bourdet L value = 0.3. 
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Fig. E. 4 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
0.1%. Bourdet L value = 0.4. 
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Fig. E. 5 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
1.0%. Bourdet L value = 0.1. 

 
. 
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Fig. E. 6 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
1.0%. Bourdet L value = 0.2. 
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Fig. E. 7 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
1.0%. Bourdet L value = 0.3. 
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Fig. E. 8 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
1.0%. Bourdet L value = 0.4. 



 

91 

 

 

Fig. E. 9 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
5.0%. Bourdet L value = 0.1. 
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Fig. E. 10 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
5.0%. Bourdet L value = 0.2. 
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Fig. E. 11 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
5.0%. Bourdet L value = 0.3. 
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Fig. E. 12 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
reservoir with wellbore storage and skin case with noise standard deviation at 
5.0%. Bourdet L value = 0.4. 

 

A vertical well in an infinite-acting without wellbore storage and skin in naturally fractured 

reservoir system (dual porosity - DUAL) 

The result for a vertical well in an infinite-acting without wellbore storage and skin in naturally 

fractured reservoir system is shown in Fig. E. 13 to Fig. E. 24. 



 

95 

 

 

Fig. E. 13 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 0.1%. Bourdet L value = 0.1. 
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Fig. E. 14 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 0.1%. Bourdet L value = 0.2. 
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Fig. E. 15 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 0.1%. Bourdet L value = 0.3. 
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Fig. E. 16 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 0.1%. Bourdet L value = 0.4. 
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Fig. E. 17 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 1.0%. Bourdet L value = 0.1. 
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Fig. E. 18 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 1.0%. Bourdet L value = 0.2. 
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Fig. E. 19 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 1.0%. Bourdet L value = 0.3. 
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Fig. E. 20 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 1.0%. Bourdet L value = 0.4. 
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Fig. E. 21 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 5.0%. Bourdet L value = 0.1. 
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Fig. E. 22 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 5.0%. Bourdet L value = 0.2. 
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Fig. E. 23 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 5.0%. Bourdet L value = 0.3. 
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Fig. E. 24 — Pressure and pressure derivative plot for a vertical well in an infinite-acting  
without wellbore storage and skin in naturally fractured reservoir system case 
with noise standard deviation at 5.0%. Bourdet L value = 0.4. 

 

A hydraulically fractured vertical well with an infinite fracture conductivity in an infinite-acting 

reservoir without wellbore storage and skin (HF) 

The result for a hydraulically fractured vertical well with an infinite fracture conductivity in an 

infinite-acting reservoir without wellbore storage and skin is shown in Fig. 25 to Fig. E. 36. 
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Fig. E. 25 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 0.1%. Bourdet L 
value = 0.1. 
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Fig. E. 26 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 0.1%. Bourdet L 
value = 0.2. 
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Fig. E. 27 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 0.1%. Bourdet L 
value = 0.3. 
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Fig. E. 28 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 0.1%. Bourdet L 
value = 0.4. 



 

111 

 

 

Fig. E. 29 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 1.0%. Bourdet L 
value = 0.1. 
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Fig. E. 30 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  

with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 1.0%. Bourdet L 
value = 0.2. 
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Fig. E. 31 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 1.0%. Bourdet L 
value = 0.3. 



 

114 

 

 

Fig. E. 32 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 1.0%. Bourdet L 
value = 0.4. 
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Fig. E. 33 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 5.0%. Bourdet L 
value = 0.1. 
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Fig. E. 34 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 5.0%. Bourdet L 
value = 0.2. 
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Fig. E. 35 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 5.0%. Bourdet L 
value = 0.3. 
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Fig. E. 36 — Pressure and pressure derivative plot for a hydraulically fractured vertical well  
with an infinite fracture conductivity in an infinite-acting reservoir without 
wellbore storage and skin case with noise standard deviation at 5.0%. Bourdet L 
value = 0.4. 

 

 

 


