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ABSTRACT 

 

It is common practice to base decisions related to reservoir development and 

operations on reservoir models. Keeping these models updated and adequately quantifying 

subsurface uncertainty is critical for generating reliable forecasts, making optimal 

decisions and assessing risks. This dissertation presents an approach for continuous data 

assimilation and uncertainty quantification of reservoir models using a two-level update 

method: (1) data assimilation using Ensemble Kalman Filter (EnKF); and (2) two-stage 

Markov-Chain Monte Carlo (MCMC). In comparison with previous combined EnKF-

MCMC work, in this approach the likelihood function is calculated exactly rather than 

approximately to ensure robust sampling of the posterior distribution. Additionally, a 

filtering stage is introduced at the MCMC level to reduce the computational cost while 

maintaining the necessary assumptions for accurate sampling. Further, reduced 

parameterization methods are utilized to improve covariance estimation and reduce 

computational overhead. 

In the first level, an ensemble of model parameters and their associated dynamic 

variables is updated by frequently assimilating measured well data using EnKF. In the 

second level, at a lower frequency, MCMC is used to sample the posterior distribution of 

model parameters conditioned to all well measurements available from the beginning of 

the first assimilation cycle to the current time. The information obtained at the first level 

is utilized in two ways. First, the posterior covariance estimated from the EnKF update is 

used to propose new states (containing both parameters and dynamic variables) in the 
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MCMC chain. Second, the likelihood function is approximated at the first stage of MCMC 

using Peaceman equations and the proposed state. Only when a state is accepted at the 

first stage is reservoir simulation used to evaluate the likelihood function at the second 

stage of MCMC.  

This approach was tested using two synthetic reservoir simulation experiments: a 

1-D, single-phase heterogeneous case and a 2-D, two-phase channelized characterization 

case. The results demonstrate an improvement in posterior sampling (more samples with 

higher values of posterior density) over EnKF and standard MCMC random-walk 

perturbation methods. Additionally, efficiency of the sampling process is enhanced 

(smaller burn-in size and higher acceptance ratios) at a reduced computational cost. 

Finally, production forecast distributions generated using this approach show continuous 

improvement (narrow down and shift toward the true solutions) as more data are 

assimilated.  

The approach outlined in the paper can be used by operators to quantify uncertainty 

in production forecasts. Additionally, the multi-level approach provides operational 

advantage in that short-term and long-term operational decisions can be made based on 

high-frequency assimilation cycles and lower-frequency updates, respectively.  
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1. INTRODUCTION*  

 

In the petroleum industry, reservoir management is the discipline concerned with 

maximizing the value of a petroleum asset. The main function of reservoir management is 

to make a set of decisions that define an operation plan—such as drive mechanism, size 

and configuration of surface facilities, well placement, and choke settings—that aims to 

maximize a hierarchy of stated objectives—such as production schedule, rate plateaus, 

hydrocarbon recovery, and net present value (NPV) (Gringarten 1998; Almohammadi 

2013). Reservoir engineers implement this operational strategy, run surveillance programs 

to monitor the performance of the field, and make necessary adjustments to the operational 

plan. The quality of reservoir management is often determined by how well these 

objectives are met. Often, reservoir simulation is used to investigate a set of possible 

alternatives for an operational plan and select the most optimal plan.∗ 

Nonetheless, model-based optimization of reservoir models is not trivial. It usually 

involves large-scale models, complex physical processes and a coupled model 

optimization and parameter estimation problem (i.e., inverse modeling). The optimization 

part of the problem involves a multitude of decision variables with many alternatives, such 

                                                 
∗ Part of this section (portions of pages 4-7) is reprinted from my master’s thesis 

(Almohammadi, H.H.S. 2013. Continuous Model Updating and Forecasting for a 

Naturally Fractured Reservoir, Texas A&M University). Copyright [2013] by Hisham 

Hassan S. Almohammadi. 



 

2 

 

as choice of drive mechanism; number, location, orientation and configuration of infill 

wells; well choke settings; and surface facility configuration and settings.  The 

optimization problem is also complicated by multiple objectives, such as meeting short-

term production schedules, reducing water-cut, maintaining reservoir pressure, 

maximizing overall field recovery, and maximizing NPV. Furthermore, optimizations are 

performed over varying time-scales. 

The parameter estimation problem involves parameterization of reservoir 

characterization and searching a huge, multi-dimensional parameter space for a set of 

reservoir models that reproduce the historical performance of the field, within an 

acceptable margin of error, constrained by some preconceptions of geological and 

reservoir engineering parameters. 

Historically, the industry has implemented simplistic models to describe 

uncertainty in forecasting and optimizing reservoir performance, often ignoring 

uncertainty altogether. In most cases, the estimation problem is handled by manual tuning 

of reservoir parameters to approximately reproduce observed reservoir measurements. 

These efforts are often subjective, based on expert judgment of the reservoir engineer, and 

largely ignore uncertainty quantification. Then, “history-matched” models are used to 

select an optimal plan by investigating a limited number of alternatives put forth based on 

some preconceived engineering intuition. Again, limited attention is given to quantifying 

the impact of uncertainty on forecasted reservoir performance. This plan is then updated 

periodically or reactively in the same manner. 
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It has been demonstrated that ignoring or underestimating uncertainty can result in 

suboptimal decisions and huge disappointments (Brashear et al. 2001; McVay and 

Dossary 2012). Additionally, a significant body of research demonstrates that closed-loop 

reservoir-management (CLRM) is a better strategy than reactive or periodic reservoir 

management (Brouwer et al. 2004; Chen et al. 2011; Foss and Jensen 2011; Jansen et al. 

2008; Jansen et al. 2009; Saputelli et al. 2005; Sarma et al. 2005; Wang et al. 2009). 

CLRM is a strategy in which reservoir models and uncertainties are continuously and 

systematically conditioned to newly measured data. Then, optimal configurations are 

selected using the recently updated models. Specifically, research verifies that 

implementing CLRM strategy yields better reservoir characterization estimates and higher 

objective-function values. 

This research focuses on the continuous-model-updating and uncertainty-

quantification parts of the CLRM process. Optimization of reservoir performance will not 

be addressed in this work. A major requirement for any practical implementation of 

CLRM in real applications is algorithms that are capable of delivering updated models 

that accurately characterize reservoir description uncertainties in a timely manner, 

consistent with the operational and decision cycles. The efficiency and accuracy of such 

algorithms are challenged by the size, complexity, and uncertainties associated with the 

description of reservoir models. The need for such algorithms is of vital importance to the 

development of CLRM. Continuous-model-updating and uncertainty quantification 

continue to be subjects of rapidly growing research.  
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1.1 Background and Motivation 

This section provides a brief background of the evolution of reservoir management 

in the petroleum industry, and the emergence of the closed-loop paradigm. It also 

discusses the value of assessing uncertainty to the decision-making process in the 

petroleum industry. Finally, the motivation behind this research is highlighted. 

1.1.1 Reservoir Management 

Reservoir management is a process that involves the utilization of data, 

mathematical modeling, and expertise, in order to determine a set of decisions and 

operational controls that optimize reservoir profitability or some other stated objective. 

The process also includes the execution of the production plan and the monitoring of 

reservoir response (Gringarten 1998; Saputelli et al. 2005).  

Historically, reservoir management has been associated with reservoir and 

production engineering. The need for integration between geoscience and engineering 

disciplines for improved reservoir management was recognized as early as the 1970s. In 

1977,  Halbouty stated “It is the duty and responsibility of industry managers to encourage 

full coordination of geologists, geophysicists, and petroleum engineers to advance 

petroleum exploration, development, and production” (Halbouty 1977). The concept of asset 

teams was introduced in the 1980s. Asset teams did not start to show success until the 1990s, 

when advancements in software and computing power allowed for some level of integration 

between team members. In the late 1990s formalized processes were developed to standardize 

asset teams’ workflow and assure quality (Elrafie et al. 2007). 
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Recent technology advances have allowed for real-time remote monitoring and control 

of well and field production. Such capabilities enable continuous and automatic fine-tuning of 

production controls to optimize project economics and stated well or reservoir performance 

objectives. Remotely activated sub-surface valves on “smart wells” are becoming fairly 

common technology in the oil industry, as they are used to optimize the production and 

injection of fluids from different pay zones and remotely monitor multiphase flow meters and 

pressure gauges. 

Smart field technology, with all its capabilities, gives rise to a new concept of 

reservoir management. CLRM or Real Time Asset Management (RTAM) is a reservoir 

management process that utilizes real-time monitoring capabilities, model updating 

algorithms, and model-based optimization algorithms in a closed loop, to continuously 

and systematically control production in order to optimize stated objectives such as NPV 

or hydrocarbon recovery. This breakthrough technology promises substantial benefits to 

the oil industry, such as higher amount of hydrocarbon recoveries, improved project life-

cycle value, and better utilization of human resources. Although this approach is not 

practically feasible yet, it is receiving rapidly growing attention from both industry and 

academia. 

1.1.2 Value of Assessing Uncertainty 

Capen (1976) demonstrated more than thirty years ago that people tend to 

significantly underestimate uncertainty. He suggested that a better understanding of 

uncertainty would have a significant beneficial effect on risk assessment and profits. In 

their analysis of financial performance of the oil and gas industry, Brashear et al. (2001) 
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noted that during the 1980s and the 1990s the return on net assets by the largest U.S.-based 

companies in the exploration and production sector was seven percent on average for 

projects that were selected with a hurdle rate of 15 percent and financed with capital that 

costs 9 to 12 percent on average. They attributed this underperformance of the oil and gas 

industry, at least partially, to the use of deterministic methods to estimate project value. 

“When compared to the ‘full’ recognition of uncertainties, dependencies, and risk, ranking 

by deterministic estimates of project value—by far today’s widely used approach—was 

found to overstate expected value by a factor greater than two, to ignore critical risks, and 

to select a portfolio of projects with a lower return and higher, uncompensated risk than 

were possible if full uncertainty had been recognized,” the authors state. 

Dossary and McVay (2012) performed a quantitative study to measure the value 

of assessing uncertainty. In this work, the authors performed portfolio optimization 

simulations, where estimates of NPV were calculated with inherent overconfidence 

(underestimation of uncertainty) and directional bias (optimism or pessimism). Next, they 

calculated expected disappointment, which is the difference between the value a company 

estimates and the actual realized value (where decisions are made based on biased 

estimates, but actual values are based on the true distribution assuming no overconfidence 

or bias). The results of their simulations show that expected disappointment ranges from 

about 30 percent for moderate amounts of overconfidence and bias to 100 percent for high 

degrees of bias and overconfidence. 

Both references cited above hint to the fact that optimal decision-making in the oil 

and gas industry is not realized by the transition from conventional deterministic 
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approaches to simplified approximation of uncertainty, but rather by full assessment of 

uncertainty. Brashear et al. (2001) stated that such “short cut” approximations of 

uncertainty can result in significant overestimation of expected values and 

underestimation of risk, even with the simplest possible projects. It is clear that the task of 

performing full assessment of uncertainty in the oil and gas industry is not trivial. Even 

for a simple project, the number of uncertainties is substantial, ranging from subsurface 

uncertainties of reservoir description to uncertainties related to project execution (e.g., 

cost of material, delays, change of regulations), and even uncertainties related to the global 

market of energy as they impact demand, supply, and pricing. Clearly, quantifying 

uncertainty is a challenging problem that involves a wide range of disciplines, such as 

geology, geophysics, petroleum engineering, project management, statistics, and 

economics. This thesis will attempt to address only the impact of subsurface reservoir-

description uncertainty on forecasted reservoir performance. 

1.1.3 Motivation 

This research is motivated by ideas from optimal control theory and estimation 

theory, in particular, their applications in CLRM. A significant amount of research 

demonstrates the advantage of closed-loop strategy of reservoir management in increasing 

hydrocarbon recoveries and maximizing NPVs, when compared to reactive or periodic 

strategies (Brouwer et al. 2004; Sarma et al., 2005; Chen et al., 2009; Jansen et al., 2009; 

Wang et al., 2009; Foss and Jensen, 2011). 

It has also been highlighted that underestimating uncertainty in the decision-

making process can lead to great disappointments and underperformance.  
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In addition, it can be argued that a continuous approach to model updating can lead 

to better estimates of reservoir parameters as time progresses. When compared to a one-

time study approach, more time and computer power can be allocated to exploration of 

the parameter space. Moreover, in an environment where continuous production forecasts 

are provided, measures of bias and overestimation can be generated. Consequently, a 

mechanism to calibrate uncertainties could be developed to provide better estimates of 

future production forecasts (McVay et al. 2005). 

This research focuses on the model updating and uncertainty quantification 

element of the CLRM process. Despite the great improvements it is hypothesized to 

deliver to reservoir management, research in CLRM is still in its infancy. Continuous 

model updating algorithms that are efficient enough to meet operational requirements, yet 

still provide reliable estimates and uncertainty characterization of reservoir parameters 

and forecasted output, remains to be a major area of research. 

 

1.2 Status of the Problem 

The first application of continuous model updating in reservoir engineering, to the 

best of my knowledge, was the work of Naevdal et al. (2002), in which an Ensemble 

Kalman Filter (EnKF) was used to update an ensemble of near-well models representing 

geological uncertainty through continuous data assimilation. Since then, EnKFs have been 

used rapidly in synthesized data assimilation experiments to improve some model 

parameter estimates, mainly permeability, and predict reservoir performance. The results 

of this work show continuously improving parameter-estimate and forecast quality, as 
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validated by a case of already known geology, i.e., “truth case” (Brouwer et al. 2004; 

Jansen et al. 2008; Jansen et al. 2009; Lorentzen et al. 2009; Naevdal et al. 2005; Wang 

et al. 2009).  

The attractiveness of EnKF as a data assimilation tool arises from its simplicity of 

implementation, low computational cost, and data-management efficiency. However, 

there are many reservations about its application in reservoir model updating. Aanonsen 

et al. (2009) provided a comprehensive review of the literature on EnKF in which authors 

discuss several issues that might hinder the accuracy of its application in reservoir 

engineering, such as dependency on initial ensemble, deficiency in approximating the 

covariance matrix, weakness in handling non-Gaussian prior distributions, and strongly 

non-linear physical processes. Emerick and Reynolds (2011) summarized the 

requirements for EnKF to represent a correct posterior distribution as the following: 

(1) Gaussian prior model for the state vectors, (2) linear relation between predicted data 

and the state vector, (3) Gaussian measurement errors that are uncorrelated in time, 

(4) dynamic systems that represent a first-order Markov process, and (5) ensemble sizes 

that approach infinity. Clearly, these requirements either do not apply or are not feasible 

in the case of modeling fluid flow in porous media. Several suggestions to handle such 

limitations in EnKF are proposed in the literature. Examples are the use of 

parameterization (Chen et al. 2009; Gu and Oliver 2005; Jafarpour and McLaughlin 

2009b; Metropolis et al. 1953) to handle non-Gaussian states, iterative EnKF (Gu and 

Oliver 2007; Li and Reynolds 2007; Lorentzen and Naevdal 2011; Metropolis et al. 1953; 

Reynolds et al. 2006) to handle non-linearity, the use of square-root filters to reduce 
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sampling errors (Evensen 2009), and covariance localization to reduce spurious 

correlations (Emerick and Reynolds 2011). The use of EnKF for reservoir model updating 

is still a subject of ongoing research.  

A different approach to the problem is continuously (i.e., using the entire life-time 

of the field rather than a one-time study) solving the inverse problem using either 

stochastic optimization or Bayesian inversion methods. In both stochastic optimization 

and Bayesian inversion methods, all the available measurements are used to solve the 

inverse problem. The difference between the two methods (stochastic and Bayesian) is 

that, in the stochastic method, quantification of uncertainty is based on statistical analysis 

of a number of models with equal or similar objective function values, while in the 

Bayesian method quantification of uncertainty arises naturally because the solution to the 

inverse problem is a probability density function. One example of the application of 

stochastic methods in continuous model updating is the work of Holmes et al. (2007) in 

which Genetic Algorithms (GA) were used to continuously generate history-matched 

models over time, incorporating new well and production data as they become available. 

These models are then used to generate an evolving distribution of forecasted output—for 

example, cumulative oil production. The authors tested their approach on a live field by 

providing real-time probabilistic forecasts of production. Sarma et al. (2005) proposed a 

procedure in which two sub-processes are used every time data are assimilated: (1) model 

updating by means of gradient-based techniques, and (2) model approximation and 

uncertainty propagation. The authors argue that using approximate models generates 

reasonable results with substantial increase of process efficiency. It is not clear, though, if 
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decoupling model updating and uncertainty propagation would result in a reliable and 

representative quantification of uncertainty, especially when local optimization techniques 

are used for model updating. Additionally, it is not shown if using an approximate model 

for reservoir performance would continue to provide adequate results when larger and 

more complex models are used. An example of continuous MCMC inversion method is 

the work of Liu and McVay (2010). Results of this study show improvement in parameter 

estimation as more data are assimilated and a distribution of forecasted output that 

continuously narrows over time and with means approaching the “truth case.”  

Although more computationally intensive than EnKF, MCMC inversion methods 

produce correct sampling of the posterior as the limit of iterations approaches infinity. 

Additionally, because reservoir simulation models are used to calculate updated model 

states (compared to estimating updated model states using the EnKF update equation), and 

because reservoir description does not change recursively within one sampled realization, 

as in the case of EnKF, MCMC methods produce results that are physically consistent. It 

can be argued that when implemented in continuous operation, in contrast to one-time-

study settings, the computational cost associated with such methods becomes less 

significant as the run requirement is spread over a long period of time.  

MCMC, with the Metropolis-Hasting (M-H) algorithm, in particular, has been 

applied in reservoir engineering to condition reservoir description to production data. In 

its standard application, a Markov chain is generated by iteratively sampling new states 

from a “proposal distribution” and evaluating them using reservoir simulation. The M-H 

algorithm is then used to determine whether the new state should be accepted in the chain. 
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It can be shown theoretically that a stationary MCMC chain generates valid samples from 

the posterior distribution (i.e., distribution of reservoir parameters conditioned to dynamic 

data). The attractiveness of MCMC M-H arises from the fact that it does not require 

knowledge of the normalization constant of the posterior distribution. The main 

disadvantage is that it is highly computationally expensive, because it requires running the 

forward model (i.e., reservoir simulation) each time a new state is evaluated. Generally, 

the research concerning the use of MCMC in relation to the reservoir modeling inverse 

problem can be categorized in two groups: (1) methods that aim to improve proposal 

selection and, consequently, increase the acceptance rate—hence improve efficiency, and 

(2) methods that aim to approximate or reduce the cost of running the forward model. One 

approach to improve proposal selection is to use algorithms that use previously accepted 

states to “tune” the proposal distribution, such as Adaptive Proposal (AP), Adaptive 

Metropolis (AM), and Adaptive Genetic MCMC (Floris et al. 2001; Haario et al. 1999, 

2001; Holden 1998). Another approach is the use of gradients or sensitivities in proposal 

selection (Ma et al. 2008; Oliver et al. 1997). The second group of methods usually involve 

an intermediate step where the full reservoir simulation is replaced by an up-scaled 

representation (i.e., flow up-scaling or spatial up-scaling) or approximated using gradient 

or sensitivity calculation (Efendiev et al. 2005; Ma et al. 2008).  

Emerick and Reynolds (2011) suggested a combined EnKF-MCMC approach that 

aims to take advantage of the computational efficiency of the EnKF and robustness of 

MCMC. In this work, EnKF is performed first. Next, the final updated ensemble is re-run 

using the reservoir simulator from the initial time-step until the end time of the 
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assimilation experiment. Then, model parameters and time-dependent model states (i.e., 

grid-cell pressures and saturations) for all ensemble members are collected in one 

augmented matrix. Finally, several MCMC chains are generated using a proposal selection 

based on the augmented matrix (using a square-root filter). Since sampling the proposal 

density, in this case, produces realizations that contain both model parameters and model 

states, the measured well response can be directly calculated using Peaceman equations 

(Peaceman 1978). Hence, the likelihood function can be approximated without the need 

to run the simulation. Additionally, the authors retain only the last sample in each MCMC 

chain to reduce convergence issues and dependency on initial guess. 

Although this combined EnKF-MCMC process significantly reduces 

computational requirements, when compared to those of the standard MCMC, it is not 

clear if the method used to approximate the likelihood results in valid sampling of the 

posterior. Using this approximation implicitly assumes that the relationship between 

model parameters and time-dependent model states is approximately linear and can be 

described by a joint Gaussian distribution. This is a strong assumption to maintain when 

dealing with reservoir simulation models. 

Most of the research using Bayesian inversion methods in reservoir simulation 

ignores the continuous nature of data assimilation in petroleum reservoirs. As more 

measured data becomes available, the definition of the posterior density function changes 

with time. This makes statistical inference and uncertainty quantification more 

challenging because resulting samples are associated with different posteriors. 

Additionally, to be implemented as a part of CLRM strategy, a proposed method needs to 
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be compatible with the operational cycle in the field (i.e., should be capable of generating 

updated models and uncertainty quantification at a frequency that is suitable for decision-

making). 

In summary, the success of any continuous-model updating part of CLRM strategy 

depends on its ability to provide reasonably accurate parameter estimation and 

characterization of uncertainty, as well as adapt to the nature of decision-cycle frequency. 

While a combined EnKF-MCMC approach seems to be a promising starting point to 

pursue such a strategy, there is a need to extend previous work to ensure valid posterior 

sampling. Additionally, more effort should be exerted to make the process more 

computationally efficient and accommodating of operational needs.  

 

1.3 Research Objectives 

The objective of this research is to develop and test a multi-level continuous-

model-updating and uncertainty quantification procedure using EnKF and MCMC that 

satisfies the following requirements: 

• Takes advantage of the efficiency of EnKF without compromising the accuracy 

of MCMC sampling at the second level. 

• Is flexible enough to be easily integrated in CLRM strategy. 

• Provides reliable model updates and forecasts in a timely manner that is 

consistent with operation needs and decision-making processes.  
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1.4 Remainder of the Dissertation 

This remainder of this dissertation is divided into six sections. These sections are 

organized as follows. Section 2 summarizes and discusses existing approaches to solving 

the inverse problem in reservoir simulation. It also provides the theoretical and 

mathematical background for the methods used in this research. Section 3 explains the 

methodology of this research and presents the new procedure developed for multi-level 

EnKF and two-stage MCMC continuous model updating and uncertainty quantification. 

In Section 4, multi-level EnKF and one-stage MCMC sampling is tested on a small 1-D, 

single-phase problem to assess the proposal distribution based on the EnKF posterior 

covariance and its impact on MCMC posterior sampling.  In Section 5, the multi-level 

EnKF and two-stage MCMC continuous model updating algorithm is tested on a 2-D, 

two-phase channelized reservoir. The resulting estimates of model parameters and 

production forecasts are presented and analyzed. Section 6 discusses the results of this 

research. Section 7 summarizes the conclusions of this work and provides 

recommendations for future work. 
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2. SOLUTION TO THE INVERSE PROBLEM 

 

 In most cases, many parameters used in reservoir modeling are not known exactly. 

Examples of such parameters include initial reservoir properties such as fluid contacts, 

pressures, and saturations; geological description parameters such as porosity and 

permeability; or properties of reservoir fluids. Some prior knowledge of such parameters 

might exist from geological conceptualization and the analysis of static data (e.g., core, 

logs, and seismic). Dynamic data, such as measured well pressures and flow rates, are 

often integrated with reservoir models to improve the estimates of these parameters. In 

doing so, reservoir models are calibrated to approximately reproduce the actual observed 

measurements. This provides some level of confidence in forecasts generated with such 

models. This process is often called history matching or the inverse problem in reservoir 

simulation. 

Because the number of parameters that must be estimated in the inverse problem 

is often much larger than the available measured date, the problem is characterized as 

being ill-posed or underdetermined (Backus and Gilbert 1967; Oliver et al. 2008). 

Consequently, the inverse problem could have more than one mathematical solution. 

Additionally, because the relationship between model parameters and observed 

measurements is nonlinear, the problem requires an iterative solution.  

This chapter summarizes and discusses the major approaches to solving the inverse 

problem in the petroleum literature. More attention is dedicated to explaining Ensemble 
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Kalman Filter (EnKF) and Markov-Chain Monte Carlo (MCMC) as they are major 

components in this research.  

The first two sections address gradient-based and global search methods. Then, the 

Bayesian approach to the inverse problem is introduced. MCMC methods are then 

presented and explained. Next, a brief description and summary of recursive methods and 

EnKF is given. Finally, parameterization methods are introduced and summarized. 

 

2.1 Gradient-Based Minimization Methods 

In this group of methods, parameter estimation is obtained by iteratively searching 

for a vector of model parameters 𝜃𝜃 that minimizes an objective function 𝑂𝑂(𝜃𝜃). The 

objective function usually involves a least-squares term, and it could also include some 

other regularization terms or prior terms (Eq. 1). 

 𝑂𝑂(𝜃𝜃) = (𝑔𝑔(𝜃𝜃) − 𝑑𝑑obs)𝑇𝑇𝐶𝐶𝐷𝐷−1(𝑔𝑔(𝜃𝜃) − 𝑑𝑑obs) (1) 

Here,  𝑔𝑔(𝜃𝜃) is the response of the model at a certain value of the parameter 𝜃𝜃, 𝑑𝑑obs is a 

vector of noisy observed measurements, and 𝐶𝐶𝐷𝐷 is the covariance of the measurement 

errors.  

Many minimization algorithms are used in the literature, such as Gauss-Newton, 

Levenberg-Marquardt, Broyden-Fletcher-Goldfarb-Shanno (BFGS), and low-memory 

BFGS (LBFGS). Although they differ in details, the algorithms usually solve the 

minimization problem by evaluating the gradient of the objective function (Eq. 2).  

 𝛻𝛻𝛻𝛻(𝜃𝜃) = 2 𝐶𝐶𝐷𝐷−1 (𝑔𝑔(𝜃𝜃) − 𝑑𝑑obs)𝛻𝛻𝛻𝛻(𝜃𝜃) (2) 
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At each iteration, a new parameter value is suggested by solving a linear equation 

that usually involves evaluating the gradient and the Hessian matrix, 𝐻𝐻(∙), evaluated at 

the previous iteration following some form of Newton’s method (Eqs. 3 and 4).  

 𝐻𝐻�𝜃𝜃ℓ �𝛿𝛿𝜃𝜃ℓ+1  = −𝛻𝛻𝛻𝛻(𝜃𝜃ℓ ) (3) 

 𝜃𝜃ℓ+1 = 𝜃𝜃ℓ + 𝛿𝛿𝜃𝜃ℓ+1  (4) 

After a number of iterations, the solution might converge to a minimum. 

Evaluating the gradient usually requires the calculation of the sensitivity coefficients, 

𝛻𝛻𝛻𝛻(𝜃𝜃), at each iteration, which could be quite expensive. Often adjoint methods are used 

to calculate the sensitivity coefficients, which are less computationally demanding than 

the standard perturbation method. 

One main concern with gradient-based methods is that they might not converge to 

global minima. Additionally, because the goal is, generally, finding a single solution, 

uncertainty quantification is limited to the characterization of uncertainty around this one 

solution.  

 

2.2 Global Search Methods 

The goal of global search methods is to find global minima. In general, these 

methods are stochastic in nature, and include a variety of approaches. Some global search 

methods do not require the calculation of gradients. Those that do require the calculation 

of gradients are combined with elements of randomness. Some global search methods are 

population or ensemble based and utilize concepts from genetics or social behavior such 

as mutations and evolution to find solutions (e.g., Genetic Algorithms (GA) and Particle 
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Swarm Optimization (PSO)). In general, global search methods include two features: 

(1) exploration, in which the parameter space is searched in order to find promising 

regions of the objective function; (2) exploitation, in which the search is refined in an area 

of potential solution. Because these methods search for solutions by attempting to explore 

the entire parameter space, they usually come with high computational cost. When such 

methods are used, statistical inference and uncertainty quantification is often based on a 

set of a limited number of solutions with equal or similar objective function values. 

 

2.3 Bayesian Formulation to the Inverse Problem  

In the Bayesian approach to the inverse problem, the parameter being estimated is 

treated as a random variable. The formulation starts with assigning a probability density 

function, 𝜋𝜋(𝜃𝜃), which represents the prior knowledge of the parameter 𝜃𝜃. Then, when a 

data set 𝑦𝑦 that relates to the parameter 𝜃𝜃 by a function 𝑓𝑓𝜃𝜃(𝑦𝑦) is observed, a posterior 

distribution can be calculated by Bayes’ rule (Eq. 5). This distribution combines prior 

knowledge and knowledge derived from data and theory. The likelihood function 𝑓𝑓𝜃𝜃(𝑦𝑦) 

evaluates the likelihood of observing the data set 𝑦𝑦 for a given value of the parameter 𝜃𝜃, 

i.e., 𝑝𝑝(𝑦𝑦|𝜃𝜃). 

 𝜋𝜋(𝜃𝜃|𝑦𝑦) = 𝑓𝑓(𝑦𝑦,𝜃𝜃)
𝑚𝑚(𝑦𝑦) = 𝑓𝑓𝜃𝜃(𝑦𝑦)𝜋𝜋(𝜃𝜃)

∫ 𝑓𝑓𝜃𝜃(𝑦𝑦)𝜋𝜋(𝜃𝜃)𝑑𝑑𝑑𝑑𝛺𝛺
  (5) 

Sampling directly from the posterior distribution requires the calculation of the 

marginal distribution of the data in the denominator of Eq. 5. Usually, this integral cannot 

be calculated analytically, especially for high-dimensional, non-linear problems. When 
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the distribution cannot be sampled directly and cannot be easily approximated, indirect 

iterative methods such as MCMC are used. 

 

2.4 Markov-Chain Monte Carlo  

 In this class of methods, the aim is to generate a Markov chain with a specific 

target density (i.e., posterior density). As the name implies, properties of Markov theory 

are combined with Monte Carlo simulations; any statistical measure of interest to a 

random variable 𝜃𝜃 can be obtained by randomly sampling the corresponding density 

function. Combining these two elements makes it possible to sample the posterior 

distribution through an iterative process, even when the samples are not independent (i.e., 

exhibit some level of auto-correlation). In the following subsections, Markov chain theory 

in the context of Bayesian statistics is introduced. Then, M-H and randomized maximum 

likelihood (RML) samplers are introduced and discussed. 

2.4.1 Markov Chain 

A Markov chain is a sequence of random variables generated by a Markov process. 

A Markov process is a process where the conditional probability of the current state of the 

system, 𝑋𝑋𝑛𝑛+1, depends only on the previous state of the system, 𝑋𝑋𝑛𝑛, rather than the entire 

history of the system,  (𝑋𝑋0, … ,𝑋𝑋𝑛𝑛), as in Eq. 6. 

 𝑃𝑃�𝑋𝑋𝑛𝑛+1 = 𝑠𝑠𝑗𝑗�𝑋𝑋0 = 𝑠𝑠𝑘𝑘, … ,𝑋𝑋𝑛𝑛 = 𝑠𝑠𝑖𝑖  � = 𝑃𝑃�𝑋𝑋𝑛𝑛+1 = 𝑠𝑠𝑗𝑗�𝑋𝑋𝑛𝑛 = 𝑠𝑠𝑖𝑖 �  (6) 

Each Markov chain is defined by its transition probability function: 

 𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖 → 𝑗𝑗) = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑠𝑠𝑗𝑗│𝑋𝑋𝑛𝑛 = 𝑠𝑠𝑖𝑖 )  (7) 
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The transition probability function defines the probability of transitioning from a 

given state 𝑖𝑖 to another state 𝑗𝑗 at a single step. The chain produced by such a Markov 

process is said to be invariant (stationary) for the transition kernel 𝑃𝑃 if 

 𝑃𝑃(𝑌𝑌) = ∫ 𝑃𝑃(𝑋𝑋,𝑌𝑌)𝑃𝑃(𝑋𝑋)𝑑𝑑𝑑𝑑. (8) 

Under mild regularity conditions, namely irreducibility and aperiodicity, the chain 

converges to an invariant distribution. Consequently, it must be possible to move from 

any state to any other state in the domain of the target distribution (i.e., irreducibility). 

Additionally, the chain does not move deterministically with a fixed length between 

certain states (i.e., aperiodicity). A Markov chain can be shown to be invariant if it satisfies 

the detailed-balance or reversibility condition, 

 𝑃𝑃(𝑋𝑋,𝑌𝑌)𝑃𝑃(𝑋𝑋) = 𝑃𝑃(𝑌𝑌,𝑋𝑋)𝑃𝑃(𝑌𝑌). (9) 

The samples generated by a Markov chain are, by definition, not independent, but 

rather have some measure of auto-correlation. However, the pointwise ergodic theorem 

(also called the law of large numbers for Markov chains) states that for a sufficient number 

of samples, the statistics obtained from the chain represents the statistics of the target 

distribution (Jackman 2009b).  

2.4.2 Metropolis-Hasting 

The Metropolis-Hasting algorithm samples a Markov chain. It was originally 

proposed by Metropolis et al. (1953), and extended by Hastings (1970). Chib and 

Greenberg (1995) provide a detailed review of the algorithm, including the complete 

mathematical background. The algorithm can be summarized by the following steps: 

1. Initialize by drawing a random sample 𝜃𝜃0. 
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2. Sample a proposed state 𝜃𝜃∗ using a specified proposal or jumping 

distribution, 𝑞𝑞𝑡𝑡(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗). 

3. Calculate the acceptance ratio 𝛼𝛼, 

 𝛼𝛼(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗ ) = min
 
�1, 𝜋𝜋(𝜃𝜃∗ )

𝜋𝜋(𝜃𝜃𝑡𝑡−1 )
𝑞𝑞𝑡𝑡 (𝜃𝜃∗,𝜃𝜃𝑡𝑡−1 ) 
 𝑞𝑞𝑡𝑡 (𝜃𝜃𝑡𝑡−1,𝜃𝜃∗ ) 

�. (10) 

4. The proposed state is then accepted with probability equal to 𝛼𝛼 and rejected 

with a probability equal to 1 − 𝛼𝛼 

• If the proposed state is accepted (i.e., 𝛼𝛼 > 𝑈𝑈 ~ Unif (0,1)), then 

𝜃𝜃𝑡𝑡 = 𝜃𝜃∗. 

• Otherwise, 𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑡𝑡−1. 

5. Repeat steps 2 to 4 until a sufficient number of samples is obtained. 

The 𝜋𝜋(∙) in Eq. 10 is the posterior density function evaluated at either the current 

state or the proposed state. Because only the ratio of the posterior densities is calculated, 

it is not necessary to explicitly calculate the marginal distribution of the data—the integral 

in the denominator of Eq. 5, as it cancels out. According to the acceptance ratio (Eq. 10), 

the acceptance of a proposed state relies heavily on the ratio of its density to the current 

state in the chain. Consider the original case developed by Metropolis et al. (1953), in 

which the proposal distribution is symmetric (i.e., probabilities of jumping forward—from 

the current state to the proposed state, and jumping backward—from the proposed state to 

the current state, are equal, and the ratio of proposals is simply unity). If the proposed state 

increases the density of the posterior, then the ratio is larger than one, and the proposal is 

accepted. If the proposed state decreases the density of the posterior, then the ratio is less 

than one and the proposal is accepted with a probability equal to the acceptance ratio. In 
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other words, proposals having posterior densities larger than that of the current state are 

accepted. Proposals having posterior densities smaller than that of the current state are 

accepted with probabilities proportional to the reduction of the posterior density relative 

to the current state.  

The transition probability (i.e., transition kernel) for the Markov chain generated 

by the Metropolis-Hasting algorithm is (Chib and Greenberg 1995): 

 𝑃𝑃(𝜃𝜃𝑡𝑡−1,𝜃𝜃𝑡𝑡) =  𝑞𝑞𝑡𝑡(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗)  𝛼𝛼(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗) + 𝑟𝑟(𝜃𝜃𝑡𝑡−1)𝛿𝛿𝜃𝜃𝑡𝑡−1 (11) 

where 𝑟𝑟(𝜃𝜃𝑡𝑡−1) is the marginal distribution at 𝜃𝜃𝑡𝑡−1: 

 𝑟𝑟(𝜃𝜃𝑡𝑡−1) = 1 − ∫ 𝑞𝑞𝑡𝑡(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗) 𝛼𝛼(𝜃𝜃𝑡𝑡−1,𝜃𝜃∗) 𝑑𝑑𝑑𝑑 (12) 

It is worth noting that the transition probability depends only on the current state 

of the chain and not the entire history. A proof that the Metropolis-Hasting transition 

probability (Eq. 11) satisfies the detailed balance or reversibility condition is provided in 

Appendix A.1. 

Having established the theoretical foundation of the Metropolis-Hasting algorithm, 

several issues related to the application of the algorithm are discussed in the following 

subsections—in particular, proposal density selection, chain mixing, convergence 

diagnostics, and improved forms of MCMC in reservoir simulation.  

2.4.2.1 Proposal Density Selection 

The M-H proposal density function can have many forms. Two important groups 

of proposal densities are random-walk perturbation and independent proposals. In the 

random-walk methods, the proposal is calculated by randomly perturbing the current state. 

Usually, a random perturbation variable is drawn from a Gaussian or uniform distribution 
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with a zero mean and added to the current state. In the independent methods, the proposal 

calculation does not depend on the current state. Ma et al. (2008) used a Langevin proposal 

calculated by adding a term that contains the gradient of the posterior evaluated at the 

current state, and a random perturbation term drawn from a Gaussian distribution. The 

covariance of the proposal density is an important parameter that affects convergence and 

chain mixing. A convenient form used for random-walk methods is the negative of the 

inverse of the Hessian matrix evaluated at the current state (i.e., maximum likelihood 

estimate (MLE), see (Jackman 2009a)). This is, however, extremely computationally 

intensive for most engineering problems.  

2.4.2.2 Chain Mixing 

Theoretically, a Markov chain sampled using the M-H algorithm converges to a 

unique and invariant (stationary) distribution, the target distribution, regardless of the 

choice of the proposal distribution. In practice, the choice of the proposal distribution is 

very influential on the performance of the chain, as it controls how long it takes for the 

chain to reach a stationary distribution (i.e., “burn-in” period), how well the chain covers 

the regions of the target distribution (i.e., chain mixing) and the acceptance rate (i.e., the 

rate at which proposed samples are accepted) (Chib and Greenberg 1995).  

The variance or the spread of the proposal is a key element that affects the 

performance of the chain. When the variance is large, the size of the jump from the current 

state to the proposed state is large, and the proposal is less likely to be accepted. As a 

result, the current state is repeated in the sequence, the acceptance rate drops, and the chain 

takes much longer to cover all the regions of the target distribution. If the spread is too 
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small, the size of the jump is small, and the proposal is more likely to be accepted. 

Consequently, the acceptance rate increases, but small regions of the target distribution 

are being visited. In both cases, the chain is said to be poorly-mixed, and high auto-

correlation between samples are expected because either repetition in the case of low 

acceptance rate, or the samples are in close proximity to each other—as in the case of high 

acceptance rate. Although, from a computational perspective it is advantageous to have a 

higher acceptance rate, it should not come at the cost of chain mixing. In practice, the 

variance of the proposal is used as a tuning parameter to achieve a good balance between 

acceptance ratio and chain mixing. Some research suggests that if both the proposal and 

the target distributions are Gaussian, the variance should be tuned to achieve acceptance 

ratios of approximately 0.45 in one-dimensional cases and 0.23 as the number of 

dimensions approaches infinity (Chib and Greenberg 1995). 

2.4.2.3 Convergence Diagnostics 

Both the number of iterations that are needed for the chain to converge to the target 

distribution, and the number of iterations that are necessary, thereafter, to provide accurate 

estimates, are determined empirically (Chib and Greenberg 1995). Many different 

methods and approaches have been developed to test for convergence. The most common 

ones are described in this section.  

The most common approach uses time-series plots. In such plots, a scalar estimate 

of interest is monitored. Examples of such estimates include model parameters, functions 

of model parameters, predicted future values, or values of the logarithm of the posterior 

density (Gelman et al. 2013). When the trace is moved from an initial value and appears 
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to have converged or settled around a certain value, it may be concluded that all members 

preceding this point are burn-in. However, there is no guarantee that the actual burn-in 

period would be much higher than that indicated by the trace (Walsh 2004). At least, time-

series trace plots are useful in determining the minimum number of members that may be 

considered as burn-in.  

Another approach, suggested by Gelman and Rubin (1992), is to run multiple 

chains and compare the variability within and between chains to gain information about 

convergence and stationarity. The authors argue that one cannot determine for any 

particular problem if a single chain has converged. It is only through running multiple 

chains that one can make inferences about sampling variability. In this work, a starting 

distribution that approximates the target distribution is first defined to obtain multiple 

starting values. Then, multiple sequences are run, and inferences from those sequences are 

obtained to estimate the target distribution. Geyer (1992), on the other hand, argues that 

inferences should be made based on one long Markov chain. He claims that similarities 

between multiple shorter chains do not necessarily imply convergence, and may, quite 

possibly, be induced by the experiment design. He concludes that the only value of 

multiple chain diagnostics is to signify the need for more runs when disagreement between 

chains is present. 

Running one long Markov chain reduces dependency on the initial model. On the 

other hand, running several independent shorter sequences reduces the risk of bias on a 

slowly mixing chain with variability that is less than actual. Liu and Oliver (2003) 

addressed this debate using a small 1-D single-phase black-oil model, which, 
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unfortunately, did not contribute much to the resolution of this matter. Their results verify 

that (1) running shorter independent chains results in large differences of the means of 

individual chains, suggesting strong dependency on initial model, and (2) running longer 

chains results in slow mixing, suggesting less than actual variability.  

Even after removing the burn-in period, adjacent members in the chain are 

expected to be positively correlated. This correlation can be quantified using an 

autocorrelation function (Walsh 2004). The correlation between members could introduce 

bias in estimating the target distribution when the sample size is not large enough to offset 

such effect. Walsh (2004) suggests the use of two time-series analysis plots: (1) the serial 

autocorrelation as a function of time lag, and (2) partial autocorrelation as a function of 

time lag. The author argues that these plots help underline correlation structure in the chain 

that is not as obvious when only looking at the time-series plot. 

One simple and effective way to test for stationarity is suggested by Geweke 

(1992). This test suggests splitting the chain into two subsamples after discarding the burn-

in period. If the chain is stationary, both subsamples should have similar means. A 

modified z-test can be done on both subsamples. Typically, values greater than two 

indicate that the mean is still drifting, and the distribution has not yet converged. 

Raftery and Lewis (1992) introduced another method that determines how many 

initial runs should be discarded, the total chain length, and what thinning ratio (i.e., only 

retain every kth element in the chain to offset autocorrelation) should be applied to the 

chain values. In their method, the problem is formulated by calculating a quantile of the 

posterior function with a certain specified accuracy. The chain is run for an initial number 
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of iterations. Then, using those iterations, specified quantile, and required accuracy, the 

number of burn-in runs and the total number of additional runs can be calculated. 

Oliver et al. (2008, 145) state that in the case of a linear forward model, the 

minimum of the objective function follows a 𝜒𝜒2 distribution with degrees of freedom equal 

to half the number of observations, 𝑁𝑁𝑑𝑑/2. The authors also claim that this result reasonably 

applies to nonlinear cases. They suggest the use of a region of five standard deviations 

from the mean as a measure of the quality of Maximum a Posteriori (MAP) estimate, 

 𝑁𝑁𝑑𝑑 − 5�2𝑁𝑁𝑑𝑑   ≤ 2 𝑂𝑂(𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀)   ≤ 𝑁𝑁𝑑𝑑 + 5�2𝑁𝑁𝑑𝑑   (13) 

In the context of Bayesian methods, this identifies a point of reference to where 

the mode of the posterior lies. This also serves to indicate that the chain is sampling regions 

of high posterior probability or, perhaps, is either in transition or stuck in regions of low 

posterior probability. 

2.4.2.4 Improved Forms of MCMC in Reservoir Simulation 

Typical application of MCMC in reservoir engineering problems requires reservoir 

simulation to be run every time a candidate model is proposed in order to evaluate the 

likelihood part of the posterior function. Additionally, an initial sample of reservoir 

simulation models (usually hundreds and sometimes thousands) is considered burn-in and 

thus, is discarded. Even after the chain is stabilized, only accepted models are used for 

analysis; usually less than half of the reservoir simulation models are accepted.  

Several modifications to the standard MCMC application have been proposed to 

make the process more efficient. They may be categorized into two approaches: 

(1) methods that aim to improve the proposal selection step of MCMC, and, hence, 
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increase the acceptance rate and reduce the burn-in period without sacrificing chain 

mixing quality, and (2) methods that do not require running a full reservoir simulation to 

evaluate the likelihood of either all proposals or, at least, some of them.  

One approach to improve proposal selection are algorithms that use previously 

accepted states to “tune” the proposal distribution, such as Adaptive Proposal (AP), 

Adaptive Metropolis (AM), and Adaptive Genetic MCMC (Floris et al. 2001; Haario et al. 

1999, 2001; Holden 1998). Another approach is the use of gradients or sensitivities in 

proposal selection (Efendiev et al. 2005; Ma et al. 2008). Emerick and Reynolds (2010, 

2011) suggested a proposal selection approach based on an ensemble of realizations 

updated using EnKF.  

The second group of methods usually involve an intermediate step where the full 

reservoir simulation is replaced by an up-scaled representation (i.e., flow up-scaling or 

spatial up-scaling), or approximated using gradient or sensitivity calculations (Efendiev 

et al. 2005; Ma et al. 2008). Another approach to approximating the forward model is by 

statistically estimating gridblock parameters and dynamic variables, and calculating 

forecasted well output using Peaceman equations (Emerick and Reynolds 2011).  

2.4.3 Randomized Maximum Likelihood  

Randomized maximum likelihood (RML) is a variation of the M-H algorithm 

introduced by Oliver et al. (1996). It can be shown that for a linear problem, RML 

accurately samples the posterior distribution. The algorithm can be summarized by the 

following steps: 
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1. Draw an unconditional pair of model parameters (𝜃𝜃𝑠𝑠) and perturbed 

observations (𝑑𝑑obs,𝑠𝑠) from a joint Gaussian distribution. 

2. Find 𝜃𝜃 = 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 that minimizes the distance between the points (𝜃𝜃𝑠𝑠,𝑑𝑑obs,𝑠𝑠) 

and �𝜃𝜃,𝑔𝑔(𝜃𝜃)�. 

3. Use M-H criteria to either accept or reject the proposal from step 2. 

 𝛼𝛼(𝜃𝜃𝑡𝑡−1,𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐) = min
 
�1, 𝜋𝜋(𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐)

𝜋𝜋(𝜃𝜃𝑡𝑡−1)
 𝑞𝑞𝑡𝑡(𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐,𝜃𝜃𝑡𝑡−1)
 𝑞𝑞𝑡𝑡(𝜃𝜃𝑡𝑡−1,𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 )

� (14) 

4. Go back to step 1 and continue until a sufficient number of samples are 

generated. 

Because a minimization problem is used to obtain the proposal 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐, no analytical 

form is available to define the proposal density 𝑞𝑞𝑡𝑡(∙). Theoretically, the calculation of the 

proposal at 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 involves an integration over the space of perturbed measurements and the 

calculation of the Jacobian of 𝜃𝜃𝑠𝑠 to 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 (see Oliver et al. 1996). This cannot be calculated 

for most nonlinear problems. As an approximation, it is suggested that either all proposed 

states are accepted (i.e., implicitly making the assumption that 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 is sufficiently close to 

𝜃𝜃𝑠𝑠), or dropping the ratio of proposal densities in Eq. 10 (i.e., implicitly making the 

assumption that the proposal densities are symmetric). Ma et al. (2008) provides an 

analysis of the RML method and suggests that assumptions made in the nonlinear case 

could be easily violated.  
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2.5 Sequential Updating Methods (Recursive) 

In these methods, reservoir parameters and states (e.g., gridblock pressures and 

saturations) are updated whenever new measurements become available. The new 

estimate is a function of both the previous estimate and recently observed measurements. 

A Bayesian formulation can be developed, using a set of observations 𝑑𝑑𝑡𝑡 for recursively 

estimating a vector of parameters 𝑚𝑚 and a vector representing the states of the model at 

specific times 𝑋𝑋𝑡𝑡, as illustrated in Fig. 1. 

 

 

 
Fig. 1—Discretization in time to illustrate the process of recursive methods in 
updating model parameters and states, as newly observed measurements are 

assimilated. 
 

 

Using Markov assumptions for the states (Eq. 15), and assuming that observations 

at a particular time 𝑡𝑡𝑛𝑛 are related only to current estimates of model states and parameters 

(Eq. 16), the joint probability function of model parameters and model states is calculated 

using Eq. 17. 

 𝑋𝑋𝑡𝑡𝑖𝑖 = 𝑔𝑔�𝑋𝑋𝑡𝑡𝑖𝑖−1,𝑚𝑚� (15) 

 𝑑𝑑𝑡𝑡𝑖𝑖 = ℎ�𝑋𝑋𝑡𝑡𝑖𝑖,𝑚𝑚� (16) 
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 𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛,𝑚𝑚) ∝ 𝑓𝑓(𝑚𝑚)∏ 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖−1,𝑚𝑚)𝑛𝑛
𝑖𝑖=1  (17) 

Assuming measurement errors that are not correlated in time and using conditional 

probability rules (Eq. 18), the probability of the joint distribution of model parameters and 

states conditioned on all observed measurements available is calculated using Eq. 19. 

 (𝑑𝑑obs|𝑋𝑋1, … ,𝑋𝑋𝑛𝑛,𝑚𝑚) ∝ ∏ 𝑓𝑓�𝑑𝑑obs,𝑖𝑖�𝑋𝑋𝑖𝑖,𝑚𝑚�𝑛𝑛
𝑖𝑖=1  (18) 

 
𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛,𝑚𝑚|𝑑𝑑obs)
        ∝ 𝑓𝑓(𝑚𝑚)∏ 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖−1,𝑚𝑚)𝑛𝑛

𝑖𝑖=1 ∏ 𝑓𝑓�𝑑𝑑obs,𝑖𝑖�𝑋𝑋𝑖𝑖,𝑚𝑚�𝑛𝑛
𝑖𝑖=1

 (19) 

Equation 19 may, alternatively, be expressed as: 

𝑓𝑓�𝑋𝑋1, … ,𝑋𝑋𝑛𝑛,𝑚𝑚�𝑑𝑑obs,1, … ,𝑑𝑑obs,𝑛𝑛�
        ∝ 𝑓𝑓�𝑋𝑋1, … ,𝑋𝑋𝑝𝑝,𝑚𝑚�𝑑𝑑obs,1, … ,𝑑𝑑obs,𝑝𝑝�𝑓𝑓�𝑋𝑋𝑛𝑛�𝑋𝑋𝑝𝑝,𝑚𝑚�𝑓𝑓�𝑑𝑑obs,𝑛𝑛�𝑋𝑋𝑛𝑛,𝑚𝑚�

 (20) 

In Eq. 20, the posterior density of the joint distribution of model states and 

parameters is expressed as the product of three functions: (1) estimate of the joint 

distribution from the previous time step, 𝑝𝑝, (i.e., prior); (2) the forecast of model states 

from the previous time step to the current time step; and (3) the conditioning on newly 

observed measurements (i.e., update step).  

A classical approach to sequential updating in linear problems is the Kalman Filter 

(KF). EnKF is an extended version of KF designed for large and non-linear problems. 

Both methods are presented in the following subsections. 

2.5.1 Kalman Filter 

Kalman (1960) developed a theory for optimal estimation of the states of a linear 

model by recursively assimilating noisy measurements that are linearly related to the 

states. The estimate is derived to satisfy unbiasedness and minimum squared error (MSE) 
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conditions, assuming measurement noises that are uncorrelated in time, and assuming that 

measurement noise and model noise are independent. The KF method is summarized 

concisely by Aanonsen et al. (2009). First, a model with a state vector 𝑥𝑥𝑡𝑡 that is related 

linearly only to the states of the model at the previous time step (i.e., Markov assumptions) 

is assumed (Eq. 21). 

 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 (21) 

Here, 𝑤𝑤𝑡𝑡 is a modeling error with an expectation of zero. Also, 𝑑𝑑𝑡𝑡 is a vector of noisy 

observed measurements that is linearly related to the states of the model, 

 𝑑𝑑𝑡𝑡 = 𝐻𝐻𝑥𝑥𝑡𝑡 + 𝑣𝑣𝑡𝑡 (22) 

Then, forecast estimates for the states at time 𝑡𝑡 are only linearly dependent on the updated 

estimate from the previous time step (Eq. 23). 

 𝑥𝑥𝑡𝑡
𝑓𝑓 = 𝐴𝐴𝑥𝑥𝑡𝑡−1𝑢𝑢  (23) 

Here, the superscripts 𝑓𝑓 and 𝑢𝑢 denote the forecast and the update estimates, respectively. 

Also, the forecast of the error covariance is a linear function of the updated error 

covariance from the previous time step (Eq. 24). 

 𝐶𝐶𝑥𝑥𝑡𝑡
𝑓𝑓 = 𝐴𝐴𝐶𝐶𝑥𝑥𝑡𝑡−1

𝑢𝑢 𝐴𝐴𝑇𝑇 + 𝐶𝐶𝜖𝜖 (24) 

Here, 𝐶𝐶𝜖𝜖 is a diagonal covariance matrix of model noise (i.e., non-correlated modeling 

errors). After assimilating a newly observed set of measurements, 𝑑𝑑obs,𝑡𝑡, the updated state 

estimate is calculated using (Eq. 25). 

 𝑥𝑥𝑡𝑡𝑢𝑢 = 𝑥𝑥𝑡𝑡
𝑓𝑓 + 𝐾𝐾𝑡𝑡�𝑑𝑑obs,𝑡𝑡 − 𝐻𝐻𝑥𝑥𝑡𝑡

𝑓𝑓� (25) 

Where 𝐾𝐾𝑡𝑡 is the Kalman gain, 
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 𝐾𝐾𝑡𝑡 = 𝐶𝐶𝑥𝑥𝑡𝑡
𝑓𝑓 𝐻𝐻𝑇𝑇�𝐻𝐻𝐶𝐶𝑥𝑥𝑡𝑡

𝑓𝑓 𝐻𝐻𝑇𝑇 + 𝐶𝐶𝑑𝑑𝑡𝑡�
−1

 (26) 

Finally, the updated error covariance is calculated using: 

 𝐶𝐶𝑥𝑥𝑡𝑡
𝑢𝑢 = 𝐶𝐶𝑥𝑥𝑡𝑡

𝑓𝑓 − 𝐾𝐾𝑡𝑡𝐻𝐻𝐶𝐶𝑥𝑥𝑡𝑡
𝑓𝑓  (27) 

This may, alternatively, be expressed using the identity matrix I, 

 𝐶𝐶𝑥𝑥𝑡𝑡
𝑢𝑢 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡𝐻𝐻)𝐶𝐶𝑥𝑥𝑡𝑡

𝑓𝑓  (28) 

Eq. 28 describes the updated estimate as a linearly weighted average of the forecast 

estimate and information derived from observations. Eqs. 25 and 26 imply that during the 

forecast step, the error covariance increases (i.e., uncertainty around the estimate) by an 

amount that depends on the model noise covariance. After conditioning on the data, the 

error covariance decreases by an amount proportional to the Kalman gain (i.e., information 

obtained from the data). This means that the more noise there is around measurements, the 

less the Kalman gain, resulting in smaller improvement in estimation after assimilating 

the data (and vice versa).  

Also, KF is a second order update. Although no Gaussianity assumptions are made 

in the derivation of the estimate, the update is only optimal if the underlying distribution 

is Gaussian. For any other distribution, the estimate is accurate only up to the second 

moment. For asymmetric distributions and distributions that are far from Gaussian, the 

first two moments might not be sufficient to characterize the distribution.  

2.5.2 Ensemble Kalman Filter 

 EnKF was introduced by Evensen (1994) and is used extensively in weather 

forecasting. This method was first applied to reservoir engineering by Naevdal et al. 

(2002), who demonstrated its effectiveness in estimating permeability in the neighborhood 
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of a well using pressure measurements. In this method, an ensemble of models is used, 

and the model and measurement equations are not assumed to be linear (Eqs. 29  and 30). 

 𝑥𝑥𝑡𝑡
𝑓𝑓,𝑗𝑗 = 𝑓𝑓�𝑥𝑥𝑡𝑡−1

𝑢𝑢,𝑗𝑗 ,𝑚𝑚𝑡𝑡−1
𝑢𝑢,𝑗𝑗 � (29) 

 𝑑𝑑𝑡𝑡
𝑓𝑓,𝑗𝑗 = 𝑔𝑔�𝑥𝑥𝑡𝑡

𝑓𝑓,𝑗𝑗,𝑚𝑚𝑡𝑡−1
𝑢𝑢,𝑗𝑗 � (30) 

Here, the superscript 𝑗𝑗 denotes a particular member of an ensemble of size 𝑁𝑁e. 

Additionally, we define an augmented vector 𝑦𝑦𝑡𝑡
𝑓𝑓,𝑗𝑗 that hosts the parameters, states, and 

forecasted model response (Eq. 31). 

 𝑦𝑦𝑡𝑡
𝑓𝑓,𝑗𝑗 ≡ �

𝑚𝑚𝑡𝑡
𝑓𝑓,𝑗𝑗

𝑥𝑥𝑡𝑡
𝑓𝑓,𝑗𝑗

𝑑𝑑𝑡𝑡
𝑓𝑓,𝑗𝑗
� (31) 

Adding the model response to the augmented state/parameter vector is a useful trick that 

allows the requirement of linear relationship between states and measurements to be 

removed (Eq. 32). 

 𝑑𝑑𝑡𝑡
𝑓𝑓,𝑗𝑗 = 𝐻𝐻𝑦𝑦𝑡𝑡

𝑓𝑓,𝑗𝑗 (32) 

Here 𝐻𝐻 is a matrix that contains only zeroes and ones. Kalman gain is then defined in 

terms of the ensemble estimates of the error covariance and measurements covariance 

(Eq. 33). 

 𝐾𝐾𝑡𝑡 = �𝐶𝐶𝑦𝑦𝑡𝑡
𝑓𝑓 ��������𝐻𝐻𝑇𝑇 �𝐻𝐻�𝐶𝐶𝑦𝑦𝑡𝑡

𝑓𝑓 �������� 𝐻𝐻𝑇𝑇 + �𝐶𝐶𝑑𝑑𝑡𝑡�
��������

−1
 (33) 

This may, alternatively, be expressed in terms of the covariance operator, 

 𝐾𝐾𝑡𝑡 = cov(𝑦𝑦𝑡𝑡,𝑑𝑑𝑡𝑡) �cov(𝑑𝑑𝑡𝑡,𝑑𝑑𝑡𝑡) + �𝐶𝐶𝑑𝑑𝑡𝑡�
��������

−1
 (34) 

Finally, the updated augmented state/parameter vector is calculated using: 
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 𝑦𝑦𝑡𝑡
𝑢𝑢,𝑗𝑗 = 𝑦𝑦𝑡𝑡

𝑓𝑓,𝑗𝑗 + 𝐾𝐾𝑡𝑡�𝑑𝑑obs,𝑡𝑡
𝑗𝑗 − 𝐻𝐻𝑦𝑦𝑡𝑡

𝑓𝑓,𝑗𝑗� (35) 

It is worth mentioning that EnKF uses an ensemble of observed measurements, usually 

constructed by sampling a distribution with the actual observed measurements as the mean 

and some defined measurement error. The use of an ensemble-based representation for 

measurements is necessary to insure correct updated error covariance (Evensen 2009, 42). 

In deriving the EnKF, there are no explicit assumptions about linearity or 

Gaussianity. Instead of linearly updating the mean and covariance estimates, those 

quantities are estimated using the updated ensemble members. Evensen (2009, 41-44) 

demonstrates that in the limit of an infinite ensemble, EnKF converges to the KF solution. 

This means for a joint Gaussian prior and a linear model, the EnKF samples the posterior 

correctly. In the case of a non-linear model, the forecast step is performed assuming full 

non-linearity, and the update step is a second-order weighted product of the forecast error 

covariance and measurement mismatch. Li and Reynolds (2007) show that for EnKF to 

sample the posterior correctly, the joint distribution at the update step is required to be 

Gaussian. This implies that the relationship between 𝑚𝑚, 𝑥𝑥, and 𝑑𝑑 must be approximately 

linear. Clearly, this is a strong assumption.  

One limitation of the EnKF approach is dependency on the initial ensemble. It is 

clear that any solution that is produced by the update lies in the subspace spanned by prior 

realizations. Thus, if the initial ensemble is limiting or does not correctly represent the 

prior, the results might be compromised. Evensen (2009, 165-168) suggests the use of an 

improved sampling strategy: first, a large number of realizations is sampled; then, the 
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initial ensemble is selected as the vectors corresponding to the leading singular values 

from the decomposition of the covariance matrix.  

The standard applications of EnKF use an ensemble of perturbed measurements. 

This could introduce additional sampling errors. One way to handle this is to use square-

root filters, thereby avoiding the use of perturbed measurements. Rather, the ensemble 

mean is updated separately using the means of the forecast ensemble and the observed 

measurements in Eq. 35. Then, an expression of the updated error covariance using the 

forecast ensemble is calculated, avoiding the use of perturbed measurements. See 

Aanonsen et al. (2009) and Evensen (2009, 197-203). 

Additionally, because of the limited number of ensemble members, the updates 

might introduce artificial correlations between variables that would otherwise be 

uncorrelated. In such cases, covariance localization is performed. Several approaches to 

covariance localization are presented in the literature (Aanonsen et al. 2009), including 

distance-based methods, sensitivity-based methods, and methods that combine ensemble 

and spatial estimation. 

Some state variables (e.g., water saturation at the location of the front) can have 

extremely non-Gaussian distributions. Additionally, the update step can result in non-

physical values for the states. One simple solution to this problem is to truncate the 

distribution at its limit values. Other solutions use parameterization, forcing the states to 

be more Gaussian. Two examples are the use of saturation arrival time (Chen et al. 2009) 

to replace water saturation, and the use of discrete cosine transform (DCT) to 
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reparametrize the model parameter and state variables (Jafarpour and McLaughlin 2009a, 

2009b).  

Iterative methods are used to handle strong non-linearity and unphysical state 

values. Each member of the ensemble undergoes a minimization problem with respect to 

both its forecast value and new measurements. Refer to the literature for a few examples:  

Gu and Oliver (2007); Li and Reynolds (2007); and Reynolds et al. (2006), wherein RML 

is performed in the update step.  

Two issues that arise when EnKF is used to update reservoir simulation models is 

lack of consistency and material balance errors. Because the updating process accounts 

for an evolving geological description, forecasts made using the final ensemble might not 

be consistent with forecasts derived from more simplistic models that use the same 

geological description for the entire run. Also, because the forecasted values of the states 

are changed during the update step of EnKF, and some values might be truncated, mass 

balance might not be maintained. In such cases, it is common to rerun the final ensemble 

from time zero to eliminate consistency issues and material balance errors. 

Despite its limitations, EnKF is a promising model updating and data assimilation 

technique in reservoir management. The feature of not requiring the models to be run from 

time zero is particularly attractive. Since its introduction to the reservoir engineering 

literature in 2002, EnKF continues to be a subject of rapidly growing research. 
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2.6 Parameterization 

The major goal of parameterization methods in the context of the inverse problem 

is to reduce the number of parameters. Advantages of a smaller parameter space include a 

better-posed problem, less redundancy (i.e., exploit correlations), and less computational 

overhead. Two major approaches to parameterization in reservoir simulation are spatial 

and linear transformation methods. 

In the first approach, spatial upscaling or coarsening of grid-cells are usually 

performed. One basic approach is to uniformly merge a number of grid-cells to form 

coarser grid-cells. In some of these methods, the basis of upscaling is geological similarity. 

Other methods use an adaptive approach where finer grid-cells are used in different 

regions/clusters to include a more detailed geological description. Usually, a prior 

knowledge of the geology or information from the history-match gradient, e.g., gradzone 

method (Bissell 1994), is used to define the clusters where refinement is needed. 

In the second approach, a linear mapping between the parameters at the original 

domain and some reduced codomain is applied. The goal of this method is to construct a 

set of mapping vectors Φ such that some of the weights 𝛼𝛼 corresponding to these vectors 

are equal to or nearly equal to zero (Eq. 36). 

 𝑚𝑚[𝑁𝑁×1] = ∑ 𝜙𝜙𝑖𝑖𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 ≈ ∑ 𝜙𝜙𝑖𝑖𝛼𝛼𝑖𝑖𝑘𝑘

𝑖𝑖=1        𝑘𝑘 < 𝑁𝑁  (36) 

Eq. 36 describes a linear mapping constructed so that the weights of columns (𝑘𝑘 +

1, … ,𝑁𝑁) are negligible, so that the number of parameters is effectively reduced to 𝑘𝑘 

parameters. The inverse problem is then solved with respect to 𝛼𝛼. When an estimate of the 

parameter at the reduced space is generated, the inverse of this mapping is used to return 
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to the original domain. Linear transformation methods use a variety of approaches for 

calculating the linear mapping, Φ. 

One common approach is the Karhunen-Loeve (K-L) linear transform, which uses 

Principal Component Analysis (PCA) to construct the transformation matrix. In this 

approach, the eigenvalue decomposition of the covariance matrix is used, and only the 

vectors corresponding to the leading eigenvalues are retained. 

 𝑚𝑚 = Φ √𝜆𝜆  𝛼𝛼 + 𝑚𝑚�  (37) 

Here, Φ is the matrix corresponding to the leading singular vectors, √𝜆𝜆 is the diagonal 

matrix corresponding to the square-root of the leading singular values of the covariance 

matrix, and 𝛼𝛼 is a random Gaussian variable with a mean of zero and unit variance. 

Because the parameterization is covariance dependent, prior knowledge of the true 

covariance matrix or a good approximation thereof is required. (This is not a requirement 

in most parameterization schemes.) The accuracy of the parameterization depends on how 

well the covariance matrix can be approximated using prior information.  

Another method is the Gradual Deformation Method (GDM) (Hu 2000). In this 

method, a new realization is generated by linearly combining 𝑘𝑘 realizations using the 

relationship: 

 𝑚𝑚 = 𝑚𝑚� + 𝑟𝑟𝑘𝑘 𝛼𝛼    (38) 

Here 𝑟𝑟𝑘𝑘 is a matrix with column representing the residual of prior realizations with respect 

to the mean, and 𝛼𝛼 is vector of variance normalizing constants defined by the relationship: 
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 𝑎𝑎𝑖𝑖 = �
∏ cos�𝑡𝑡𝑗𝑗�𝑘𝑘
𝑗𝑗=1 ,                   𝑖𝑖 = 0

sin(𝑡𝑡𝑖𝑖)∏ cos�𝑡𝑡𝑗𝑗�𝑘𝑘
𝑗𝑗=𝑖𝑖+1 , 𝑖𝑖 = 1, . . ,𝑘𝑘 − 1

sin(𝑡𝑡𝑖𝑖),                               𝑖𝑖 = 𝑘𝑘
 (39) 

Here, (𝑡𝑡0, … , 𝑡𝑡𝑚𝑚) are random variables drawn from a uniform distribution defined on 

[−𝜋𝜋,𝜋𝜋]. As in K-L, any new realization is sampled from the subspace spanned by the 𝑘𝑘 

prior realizations. Accurate GDM parameterization depends on how well these 

realizations cover the parameter space. 

Jafarpour and McLaughlin (2009b) introduced the Discrete Cosine Transform 

(DCT) to the inverse problem in reservoir simulation. In DCT, an orthonormal set of basis 

functions is used to perform the mapping (Eq. 40). 

 𝜙𝜙𝑖𝑖,𝑗𝑗 = cos �𝜋𝜋(2𝑗𝑗+1)𝑖𝑖
2𝑗𝑗

� (40) 

The advantage of DCT, when compared to K-L and GDM, is that it is data independent 

(i.e., no approximation of the covariance or prior realization is required). The number of 

basis vectors are chosen according to the required resolution. DCT can achieve up to 95% 

reduction in the number of parameters and still provide a reasonably good approximation. 

Additionally, prior information regarding the orientation and direction of some geological 

features may be incorporated to improve basis function selection and the quality of 

approximation (Jafarpour and McLaughlin 2009b).  
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3. MULTI-LEVEL CONTINUOUS MODEL UPDATING AND UNCERTAINTY 

QUANTIFICATION USING ENKF/TWO-STAGE MCMC: METHODOLOGY AND 

ALGORITHM 

 

In this section, the multi-level continuous model updating and uncertainty 

quantification procedure using EnKF/two-stage MCMC is presented. The procedure is 

composed of two major levels. In the first level, recursive updating is performed using 

EnKF at a higher frequency. After a specified number of assimilation cycles, the second 

level is reached and model updating is performed using a two-stage MCMC approach and 

utilizing the entire available production history at the time (i.e., non-recursive).  

Adopting this multi-level approach takes advantage of the computational 

efficiency of EnKF and the robustness of MCMC. In this procedure, the posterior 

covariance estimated at the end of the first level is used in the proposal selection at the 

MCMC level. Additionally, because the EnKF posterior covariance includes both model 

parameters and states, it can be used to approximate reservoir response at the first stage of 

MCMC, which can significantly improve efficiency by reducing simulation run 

requirements.  

This procedure differs from the Emerick and Reynolds (2011) combined EnKF-

MCMC approach in the way the likelihood function is handled. In the multi-level 

EnKF/two-stage MCMC, the likelihood function is calculated exactly rather than 

approximated. To reduce the computational cost associated with the exact evaluation of 

the likelihood, a filter stage of MCMC is introduced where the likelihood function is 
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approximated using information obtained from the posterior covariance. Doing so 

preserves the requirements of generating valid samples through MCMC while capitalizing 

on the information obtained during the EnKF level to guide the proposal selection and to 

evaluate the proposals at the filter stage. 

This multi-level approach mimics the multi-level nature of the production and 

decision cycles in the actual field production environment. By adopting this approach, the 

operators are provided with models that are updated rapidly and can be used in short-term 

decision and operation cycles. A more rigorous model update and uncertainty 

characterization is available at a lower frequency and can be used in longer-term decision 

and operation cycles.  

 

3.1 The General Workflow 

As shown in Fig. 2, this workflow is composed of two major levels: EnKF level, 

and two-stage MCMC level. In the first level, the updated ensemble from the previous 

assimilation cycle is forecasted to the end of the current assimilation cycle using reservoir 

simulation. Then, observed measurements are used to update the ensemble—as described 

in the EnKF approach (Eqs. 29–35). This process continues recursively until a specified 

number of assimilation cycles is achieved. In the second level, two-stage MCMC is 

performed. Before the MCMC chain is initialized, a matrix, 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓
, collecting the 

parameters and the states (from the first assimilation cycle, 𝑡𝑡1, up to current assimilation 

cycle, 𝑡𝑡𝑓𝑓) for all the ensemble members is assembled (Eq. 41). 
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 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 = �𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓
1 … 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓

𝑁𝑁e � =

⎣
⎢
⎢
⎢
⎡𝑚𝑚𝑡𝑡𝑓𝑓

1 … 𝑚𝑚𝑡𝑡𝑓𝑓
𝑁𝑁e

𝑋𝑋𝑡𝑡1
1 … 𝑋𝑋𝑡𝑡1

𝑁𝑁e

⋮ … ⋮
𝑋𝑋𝑡𝑡𝑓𝑓
1 … 𝑋𝑋𝑡𝑡𝑓𝑓

𝑁𝑁e
⎦
⎥
⎥
⎥
⎤

 (41) 

In Eq. 41, 𝑚𝑚 is a column that contains model parameters, 𝑋𝑋 is a column that 

contains model states (e.g., gridblock pressures and saturations), the subscripts denote the 

time-step, and the superscripts denote the ensemble member. The covariance matrix is 

then calculated using Eq. 42. 

 𝐶𝐶𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓
=

∆𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 ∆𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 
𝑇𝑇

𝑁𝑁𝑒𝑒−1
 (42) 
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Fig. 2—The general workflow of the multi-level continuous model updating the 
uncertainty quantification procedure. 
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Here, ∆𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓  is a matrix with columns that contain the residuals of the columns of 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 

around the column mean of 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 (Eq. 43). 

 ∆𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 = 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓 − 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓
������  (43) 

In the equation above, 𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓
������ is a matrix with each column containing the column mean of 

𝑌𝑌𝑡𝑡1,𝑡𝑡𝑓𝑓. The covariance matrix calculated in Eq. 42 is used to propose samples in the MCMC 

level. 

As shown in Fig. 3, the two-stage MCMC process starts with drawing a random 

realization from the proposal distribution (Eq. 44). 

 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓 
(0) = 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓������� + 𝐶𝐶𝑌𝑌

1
2
𝑡𝑡1,𝑡𝑡𝑓𝑓

 𝑧̂𝑧 (44) 

Here, 𝐶𝐶𝑌𝑌
1
2
𝑡𝑡1,𝑡𝑡𝑓𝑓

 is the square-root of the covariance matrix, and 𝑧̂𝑧 is a Gaussian random 

variable with a mean of zero and some variance. Then, the sampled realization is run using 

the ECLIPSE® reservoir simulator and the exact likelihood is calculated using Eq. 45. 

 𝐿𝐿�𝑚𝑚(0)� = exp �− 1
2
�𝑔𝑔�𝑚𝑚(0)� − 𝑑𝑑obs�

𝑇𝑇
𝐶𝐶𝐷𝐷−1�𝑔𝑔�𝑚𝑚(0)� − 𝑑𝑑obs�� (45) 

Here, 𝑔𝑔�𝑚𝑚(0)� is the predicted well measurements (e.g., well bottom-hole pressures (BHP) 

and rates) calculated using both reservoir simulation and 𝑚𝑚(0). The posterior function is 

evaluated using Eq. 46. 

𝜋𝜋�𝑚𝑚(0)� = exp �− 1
2
��𝑚𝑚(0) −𝑚𝑚𝑜𝑜�

𝑇𝑇
𝐶𝐶𝑀𝑀−1�𝑚𝑚(0) −𝑚𝑚𝑜𝑜� +  �𝑔𝑔�𝑚𝑚(0)� −

𝑑𝑑obs�
𝑇𝑇
𝐶𝐶𝐷𝐷−1�𝑔𝑔�𝑚𝑚(0)� − 𝑑𝑑obs��� (46) 
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Fig. 3—Two-stage MCMC workflow using EnKF-based proposal density and 
Peaceman equations. 
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Then, this initial sample is perturbed using the covariance square-root (Eq. 47). 

 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓 
(𝑘𝑘) = 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓 

(𝑘𝑘−1) + 𝐶𝐶𝑌𝑌
1
2
𝑡𝑡1,𝑡𝑡𝑓𝑓

𝑧̂𝑧 (47) 

Peaceman equations (Peaceman 1978) are used to directly calculate well profiles using the 

model parameters and states at well locations, 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓 
(𝑘𝑘) │wells. The approximate likelihood is 

then calculated using Eq. 48. 

 𝐿𝐿∗�𝑚𝑚(𝑘𝑘)� = exp �− 1
2
�𝑔𝑔∗�𝑚𝑚(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� − 𝑑𝑑obs�

𝑇𝑇
𝐶𝐶𝐷𝐷−1�𝑔𝑔∗�𝑚𝑚(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� −

𝑑𝑑obs��  (48) 

Here, 𝑔𝑔∗(∙) is the well profiles calculated by Peaceman equations. The approximate 

posterior is calculated using Eq. 49. 

 𝜋𝜋∗�𝑚𝑚(𝑘𝑘)� = exp �− 1
2
��𝑚𝑚(𝑘𝑘) −𝑚𝑚𝑜𝑜�

𝑇𝑇
𝐶𝐶𝑀𝑀−1�𝑚𝑚(𝑘𝑘) −𝑚𝑚𝑜𝑜� +

 �𝑔𝑔∗�𝑚𝑚(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� − 𝑑𝑑obs�
𝑇𝑇
𝐶𝐶𝐷𝐷−1�𝑔𝑔∗�𝑚𝑚(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� − 𝑑𝑑obs��� (49) 

The acceptance ratio at the first stage of MCMC is then calculated according to 

Metropolis-Hasting algorithm (Eq. 50Error! Reference source not found.). 

 𝛼𝛼 = min�1,
𝜋𝜋∗�𝑚𝑚(𝑘𝑘)�
𝜋𝜋∗(𝑚𝑚(𝑘𝑘−1))

� (50) 

If the proposed sample is rejected, then the sample is discarded, and the current accepted 

sample in the chain is perturbed again. If the proposed sample is accepted, it enters the 

second stage of MCMC. In the second stage of MCMC, the proposed sample is run using 

ECLIPSE® and the exact likelihood and posterior are calculated. The two-stage 

Metropolis-Hasting acceptance ratio (refer to Appendix A.2) is calculated using Eq. 51. 

 𝛽𝛽 = min
 
�1, 𝜋𝜋�𝑚𝑚(𝑘𝑘)�

𝜋𝜋�𝑚𝑚(𝑘𝑘−1)�
𝜋𝜋∗�𝑚𝑚(𝑘𝑘−1)�
𝜋𝜋∗�𝑚𝑚(𝑘𝑘)�

� (51) 
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If the proposed sample is accepted at the second stage, it is added to the chain. If the 

sample is rejected at the second stage, the current accepted sample is repeated in the chain, 

and the process goes back to perturbation at the first stage. When the chain converges and 

enough samples are collected, the MCMC level terminates, and the process goes back to 

the EnKF level again.  

 

3.2 The Algorithm 

• First level 

1. Perform the forecast step of EnKF on the initial ensemble by forecasting 

each member of the initial ensemble to the end of the first assimilation 

cycle using ECLIPSE® reservoir simulator. 

2. Collect model states and parameters, as well as forecasted model response 

for the entire ensemble. 

3. Perform the update step of EnKF using the observed measurements. 

4. Store the updated model states and parameters.  

5. Initialize the ensemble for the next assimilation cycle using the updated 

model parameters and states. 

6. Repeat until a specified number of assimilation cycles are reached, and then 

enter the second level. 

• Second level 

1. Construct the cumulative ensemble (Eq. 41). 
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2. Calculate the covariance matrix and the square-root of the covariance 

matrix (Eqs. 42 Error! Reference source not found.and 43). 

3. Initialize the two-stage MCMC by drawing a random realization (Eq. 44), 

run the sample using ECLIPSE®, calculate the exact likelihood (Eq. 45) 

and the exact posterior (Eq. 46). 

4. Perturb using the square-root of the covariance matrix (Eq. 47). 

5. Calculate predicted well measurements using 𝑦𝑦𝑡𝑡1,𝑡𝑡𝑓𝑓 
(𝑘𝑘) │wells and Peaceman 

equations. 

6. Calculate the approximate likelihood and posterior (Eqs. 48 and 49). 

7. Calculate the Metropolis-Hasting acceptance probability (Eq. Error! 

Reference source not found.). 

8. If the proposal is rejected, return to step 4. If the proposal is accepted, enter 

the second stage of MCMC. 

9. Run the proposal using ECLIPSE®. 

10. Calculate the exact likelihood and posterior. 

11. Calculate the two-stage Metropolis-Hasting acceptance probability 

(Eq. 51). 

12. If the proposal is rejected at the second stage, repeat the current accepted 

sample in the chain and return to step 4. If the proposal is accepted, save 

the sample in the chain and return to step 4. 

13. Continue until the chain reaches stationarity and the desired number of 

samples are being collected. 
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14. Exit the second level, and return to the first level. 
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4. MULTI-LEVEL ENKF/ONE-STAGE MCMC SAMPLING: 1-D SINGLE-PHASE 

TEST PROBLEM 

 

In this section, multi-level EnKF/one-stage MCMC sampling approach is used to 

investigate the impact of using EnKF posterior covariance in the proposal selection of 

MCMC on the accuracy of sampling and efficiency of the process.   

Here, the multi-level algorithm (Fig. 2) is applied only one time (i.e., not 

continuously), and without the use of a two-stage approach in the MCMC level, to sample 

the posterior of a relatively small 1-D single-phase test problem conditioned to 18 pressure 

measurements.    

First, two long chains are generated using standard random-walk perturbation to 

establish a posterior distribution that can be used as a reference case. Analysis of the 

statistics within and across the two chains are used to assess convergence and stationarity 

of this posterior distribution. Then, a chain generated by the multi-level approach is 

compared to this reference posterior. To assess only the impact of the multi-level approach 

on chain convergence and mixing, the scaling factor of the proposal is kept the same for 

all the chains. Assessment of the multi-level sampling accuracy and improvement in 

efficiency is provided.  

The relatively small size of the simulation model (20 gridblocks) and small total 

simulation time (0.1 days) make it feasible to run extremely long chains (close to one 

million iterations) and allow for more thorough investigation of convergence, stationarity, 

chain-mixing and dependence on initial guess.  
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The following subsections explain the simulation model and the prior used in this 

problem. It also presents and discusses the results of the EnKF updating case, the reference 

case, and the multi-level EnKF/one-stage MCMC sampling algorithm. 

 

4.1 Simulation Model Description and Prior Definition 

4.1.1 Simulation Model 

The simulation model constructed for this work is adopted from Liu and Oliver 

(2003). The 1-D mode is discretized into 20 Cartesian gridblocks. Each gridblock is 

50×50×50 ft3. The flow is single phase with an oil viscosity of 1 cp. The initial reservoir 

pressure is 3500 psi, the initial water saturation is 0.1. The porosity at the initial pressure 

is 0.25 and the rock compressibility is 3x10-6 psi-1. The total simulation time is 0.1 hours 

discretized over six time steps. 

Three wells are modeled and located at gridblocks 7, 13, and 18. The well located 

in gridblock 13 is an oil producer operated with a constant rate of 4000 bpd. The other two 

wells are observation wells.  

A true synthetic permeability field (Fig. 4) is used to generate pressure data (Fig. 

5). Gaussian noise was added to the true pressure drop data with a standard deviation of 

0.5 psi. 
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Fig. 4—True permeability field for the 1-D single-phase test problem showing well 

locations. 
 

 

 
Fig. 5—Pressure drop measurements for the truth case of the 1-D single-phase test 

problem (without noise). 
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4.1.2 Prior Distribution 

The prior distribution of log-permeability field, 𝑚𝑚, is assumed to be a multivariate 

Gaussian distribution with a mean of 4.5 and an exponential covariance, 𝐶𝐶𝑀𝑀, with a range 

of 175 ft.  Fig. 6 shows the initial ensemble of permeability for 500 realizations, sampled 

from the prior distribution. Fig. 7 shows the standard deviations for the gridblock 

permeability values estimated from the initial ensemble. The values range from 100 to 

400 mD.  

 

 

 
Fig. 6—Initial ensemble for the test problem showing the 500 initial realizations 
(cyan), the mean realization of the initial ensemble (black) and true permeability 

field (red). 
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Fig. 7—Standard deviation values for the permeability field of the initial ensemble 

for the test problem. 
 

 

4.2 EnKF Updating Case 

Fig. 8 shows the permeability fields for the EnKF realizations across the six 

updates. The plots show continuous narrowing down of the range of the permeability 

realizations around the true realization as more data are assimilated. Also, the mean error 

estimate (i.e., the difference between the mean realization and the true realization) 

continues to reduce, particularly at and close to the location of the producer well.  

Fig. 9 shows, in general, a continuous decline for the standard deviation estimates 

of the gridblock permeability values as more data are assimilated. The decline in standard 

deviation is more prominent at the location of the producer well. This is because the 
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correlation between the observed data and the permeability value is the strongest where 

the producer well is located. 

Fig. 10 shows the posterior objective function values calculated for the final 

ensemble, updated by EnKF algorithm for the test problem. The values show a mean of 

14,193 and a standard deviation of 20,091. The minimum of the objective function values 

is 413, and the maximum is 265,637. The prior term of this objective function shows 

values that range from close to zero to approximately 60 with a mean close to 18. The 

small contribution of the prior term in the calculation of the posterior indicates that the 

posterior function values are driven mostly by the likelihood term, the observed data 

mismatch.  
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Fig. 8—Permeability fields for the updated ensembles using EnKF showing the 
ensemble realizations (cyan), mean ensemble realization (black) and the true 

realization (red): 1st update (top left), 2nd update (middle left), 3rd update (bottom 
left), 4th update (top right), 5th update (middle right) and 6th update (bottom right). 
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Fig. 9—Standard deviation values for the permeability field for the updated 

ensembles using EnKF: 1st update (top left), 2nd update (middle left), 3rd update 
(bottom left), 4th update (top right), 5th update (middle right) and 6th update 

(bottom right). 
 



 

60 

 

 
Fig. 10—Posterior objective function values (red) and prior term values (blue) for 

the final ensemble generated by EnKF for the test problem. 
 

 

4.3 Standard Random-Walk Perturbation Case 

Two long chains are generated using the standard MCMC random-walk 

perturbation sampler. Convergence and stationarity is assessed by comparing statistical 

estimates within and across the two chains. The posterior generated by this standard 

method is used as a reference case for the posterior obtained using the multi-level 

EnKF/one-stage MCMC sampling.  
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4.3.1 Proposal Density 

Proposals are generated by random-walk perturbation. A multivariate random variable 𝑧̂𝑧 

is drawn from a Gaussian distribution with a mean of zero and a covariance equal to the 

prior covariance multiplied by a scaling factor 𝜎𝜎2 (Eqs. 52 and 53). 

 𝑚𝑚∗ = 𝑚𝑚𝑘𝑘 + 𝑧̂𝑧 (52) 

 𝑧̂𝑧  ~  𝑁𝑁(0,𝐶𝐶𝑀𝑀 𝜎𝜎2) (53) 

After several trial and error iterations to tune the scaling factor to achieve a well-mixed 

chain, the scaling factor was chosen to be (0.005)2.  

4.3.2 Convergence Diagnostics 

Fig. 11 shows the objective function values for the two long standard random-walk 

perturbation chains. For the first chain, the objective function curves continue to decline 

for the first 150,000 iterations until it appears to settle down. After 150,000 iterations until 

the end of the chain at around 400,000 iterations, the objective function curves appear to 

be stationary with values constrained between 20 and 40, approximately. Although the 

second chain is not as long as the first chain (currently at 60,000 iterations), it does not 

show signs of convergence. On the contrary, it continues to show a trend suggesting the 

chain is still in transitionary behavior. Fig. 12 shows a comparison of the objective 

function values for the two chains using box plots. The plot also illustrates that the second 

chain has higher values of the posterior and appears to be in a transient phase. Because the 

second chain has not been run long enough—at least not as long as the first chain, no 

conclusion about the stationarity of the first chain can be drawn at this point.  
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Fig. 11—Posterior objective function values for the two standard random-walk 

perturbation chains, chain 1 (black) and chain 2 (yellow), of the test problem, all 
iterations (top) and excluding burn-in iterations (bottom). 
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Fig. 12—Box plot for the objective function values of the two long standard 

random-walk perturbation chains for the test problem showing the 50th percentile 
(red line), 25th and 75th percentiles (blue box), the minimum and maximum (black 

lines). 
 

 

Later, these results will be compared to the multi-level case and more discussion about 

stationarity and chain mixing will be provided. 

4.3.3 Posterior Results 

Fig. 13 shows posterior samples of the permeability fields, sampled using the 

standard random-walk perturbation algorithm. The results of both chains do not seem to 

bracket the true solution, which might be an indication of poor mixing, or that the chain 

has not yet converged. Fig. 14 shows the mean log-permeability values for the two chains 

including uncertainty bars—each uncertainty bar has a length of two standard deviations. 
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Although the means and standard deviations of two chains do not appear to be similar, 

more iterations should be added to the second chain to draw meaningful conclusions with 

regard to this plot. 

 

  

 

Fig. 13—Permeability fields for the test problem sampled using the standard 
MCMC random-walk perturbation algorithm: chain 1 (black), chain 2 (blue) and 

true permeability field (red). 
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Fig. 14—Mean realization of the log-permeability field for the test problem using 
the standard MCMC random-walk perturbation algorithm including uncertainty 

bars: chain 1 (black) and chain 2 (blue). 
 

 

4.4 Multi-Level EnKF/One-Stage MCMC Case 

The posterior covariance generated by EnKF updating, including only the log-

permeability parameters, is used in the proposal selection at the MCMC level. The 

posterior distribution generated by this method is compared to the posteriors obtained 

through the standard random-walk perturbation method. Assessment of the accuracy of 

this sampling method and improvement in efficiency is provided. 
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4.4.1 Proposal Density 

The covariance of the log-permeability realizations for the EnKF updated 

ensemble after the sixth assimilation cycle is calculated, 𝐶𝐶𝑀𝑀,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Proposals at the MCMC 

chain are generated by adding a random variable 𝛽̂𝛽 drawn from a Gaussian distribution 

with a zero mean and a covariance equal to 𝐶𝐶𝑀𝑀,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 multiplied by the same scaling factor 

𝜎𝜎2. 

 𝑚𝑚∗ = 𝑚𝑚𝑘𝑘 +  𝛽̂𝛽 (54) 

  𝛽̂𝛽   ~  𝑁𝑁�0,𝐶𝐶𝑀𝑀,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝜎𝜎2� (55) 

 

4.4.2 Comparison to Standard Random-Walk Case 

Fig. 15 shows a comparison of the posterior objective function values for the multi-

level case with values for the standard random-walk perturbation case. The plot shows 

that using the multi-level case improves the posterior objective function value of the first 

guess, from a value with a magnitude of 107or higher in the case of standard random-walk 

perturbation to a value with a magnitude of 104 in the multi-level case. Furthermore, Fig. 

15Fig. 15 shows a much faster convergence rate for the multi-level case, when compared 

to the standard random-walk perturbation case. While it took more than 100,000 iterations 

for the standard random-walk perturbation case to reach an objective function value of 30, 

it took less than 5,000 iterations for the multi-level case to converge to values even less 

than that (around 20). Even after running the standard case for over 350,000 iterations, the 

objective function values were not as low as those achieved after only 5,000 iterations 

using the multi-level. This suggests that using EnKF updated realization to guide the 
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proposal selection in MCMC leads to better selection of the initial guess, faster 

convergence rate, and a smaller burn-in size. 

 
Fig. 15—Posterior objective function value comparison between the two standard 

random-walk perturbation chains (dashed black and blue curves) and MCMC with 
EnKF based proposal (solid red). 

 

 

 Fig. 16 shows a comparison between the objective function values for the two 

standard random-walk perturbation runs after eliminating the first 40,000 iterations, and a 

multi-level run after eliminating the first 5,000 iterations. Even with a much smaller 

number of iterations, the multi-level case reaches objective function values lower than 

those obtained by the standard random-walk perturbation case. This suggests that using 

the multi-level approach could significantly improve chain mixing and speed up 

convergence. It also shows that, even for a relatively small problem, the standard case 
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requires a significantly larger number of iterations to transition to the posterior 

distribution. In fact, Liu and Oliver (2003) showed that for a similar engineering problem, 

it would require over a million iterations to be able to estimate the posterior reliably.  

 

 
Fig. 16—Comparing the last 100 thousand iterations of the posterior objective 

function values for the two standard random-walk perturbation chains to the last 
50 thousand iterations of the MCMC with EnKF based proposal. 

 

 

Fig. 17 shows a box-plot comparison for the objective function values for the two 

standard random-walk perturbation chains and a multi-level chain. The multi-level case 

generated a chain where the majority of the objective function values are lower than both 

standard random-walk perturbation cases.  These plots reiterate the above conclusions and 

show that the sampling obtained by the standard case, even with substantially larger 
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sample size, is of lower quality (i.e., sampling from regions with higher values of the 

posterior objective function which corresponds to lower posterior probability) than 

sampling obtained by the multi-level case. 

 

 
Fig. 17—Box plot comparison for the objective function values of the two standard 

random-walk perturbation chains (1 and 2) and the multi-level chain (3) after 
eliminating burn-in iterations showing the 50th percentile (red lines), 25th and 75th 

percentiles (blue box), the minimum and maximum (black lines). 
 

 

Fig. 18 compares the acceptance ratio curves (the cumulative sum of accepted iterations 

divided by the number of iterations) for two standard random-walk perturbation chains 

and a multi-level chain. The multi-level chain shows an improvement in the acceptance 
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ratio to a more desirable value of approximately 0.25, suggesting improvement in chain 

mixing and sampling efficiency. 

 

 
Fig. 18—Comparison of the acceptance ratio curves for the two standard random-
walk perturbation chains (dashed black and dashed blue) and the multi-level chain 

(solid red). 
 

 

4.4.3 Posterior Results 

Fig. 19 shows the posterior permeability realizations sampled using the two 

standard random-walk perturbation chains and the multi-level chain. The multi-level case, 

in contrast to the standard case (Fig. 13), brackets the true solution. Also, when compared 

to the EnKF cases (Fig. 8), the multi-level case shows reduction in the uncertainty of the 

permeability field (i.e., the realizations have less spread), as well as improved values of 
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the posterior objective function (Fig. 18). This is indicative of better sampling of the 

posterior distribution. 

 

 
Fig. 19—Comparing the posterior permeability realizations sampled using the two 
standard random-walk perturbation chains (black and blue), the multi-level chain 

(green), and the true permeability field (red). 
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5. MULTI-LEVEL CONTINUOUS MODEL UPDATING AND UNCERTAINTY 

QUANTIFICATION USING ENKF/TWO-STAGE MCMC: 2-D CHANNELIZED 

RESERVOIR WATER FLOODING PROBLEM 

 

In this section, the continuous multi-level model updating and uncertainty 

quantification algorithm (Sec. 3.2) is applied in a 2-D synthetic channelized-reservoir 

water-flooding experiment. Results obtained by the proposed algorithm are compared to 

results of EnKF, the standard random-walk perturbation algorithm, and multi-level cases 

using EnKF/one-stage MCMC. Estimates of the posterior permeability field generated by 

these methods are compared and analyzed, in reference to the true permeability field. Also, 

uncertainty quantification of the forecasted production is provided and assessed. 

Additionally, convergence, chain mixing and efficiency improvement in the proposed 

method are discussed.  

The following subsections present the reservoir model, initial ensemble, the true 

synthetic realization, observed measurements and the parameterization used in this work. 

Then, EnKF results are provided. This is followed by presenting the results and analysis 

of the continuous multi-level approach using one-stage and two-stage MCMC.   

   

5.1 Simulation Model Description 

The reservoir simulation model used in this section was originally developed by 

Brouwer et al. (2004), and later studied by Sarma et al. (2005) and Jafarpour and 

McLaughlin (2009b). The 2-D model is discretized into a 45-by-45 Cartesian grid. Each 
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gridblock is 35×35×35 ft3. The initial reservoir pressure is 3000 psi, and the initial water 

saturation is 0.1. The porosity is 0.2 and is homogeneous. The rock compressibility is 

3×10-6 psi-1. The flow is two-phase with both oil and water viscosities of 1 cp. Fluid 

densities are 45 and 63 lb/cu-ft for oil and water, respectively. Capillary forces are 

neglected. The relative permeability data are provided below (Fig. 20). 

 

 
 
Fig. 20—Relative permeability data showing water relative permeability (blue) and 

oil relative permeability (brown). 
 

 

Two horizontal wells, each with 45 well ports, are modeled. Each well is divided 

into three groups of 15 well ports. The injector well is located at the left side of the 

reservoir while the producer is located at the right side of the reservoir. The total 

simulation time is 1080 days. Time is discretized into 12 intervals of 90 days. A total of 
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one pore volume (PV) is injected into the reservoir during the simulation. The production 

is controlled by a BHP specified for each of the producer’s well ports. 

Each group of well ports shares the same BHP control (Table 1). The injection is 

controlled by a target rate specified for each of the injector’s well ports. In each time 

interval, one-twelfth PV is injected. The injection volume is allocated among the three 

groups of the injector well. The rate allocated for each group is divided equally among the 

15 well ports of that specific group (Table 2). 

 

Table 1—BHP controls for the well ports of the producer well. 
Time (days) Group 1 BHP (psi) Group 2 BHP (psi) Group 3 BHP (psi) 

0 – 90 2990 2990 2990 

90 – 180 2990 2990 2990 

180 – 270 2990 3000 2990 

270 – 360  2990 3000 2990 

360 – 450  2990 3000 2990 

450 – 540  2990 3000 2990 

540 – 630  3000 2990 3000 

630 – 720  3000 2990 3000 

720 – 810  2990 2990 2990 

810 – 900  2990 2990 2990 

900 – 990  3000 2990 3000 

990 – 1080  3000 2990 3000 
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Table 2—Injection rate control for the well ports of the injector well. 
Time (days) Group 1 (bpd) Group 2 (bpd) Group 3 (bpd) 

0 – 90 942 942 942 

90 – 180 942 942 942 

180 – 270 1414 0 1414 

270 – 360  1414 0 1414 

360 – 450  0 2827 0 

450 – 540  0 2827 0 

540 – 630  1414 0 1414 

630 – 720  1414 0 1414 

720 – 810  942 942 942 

810 – 900  942 942 942 

900 – 990  0 2827 0 

990 – 1080  0 2827 0 

 

 

5.2 Initial Ensemble 

The initial ensemble is created following the procedure by Jafarpour and 

McLaughlin (2009b). A training image (Fig. 21) is used to generate channelized reservoir 

realizations. Single Normal Equation (SNESIM) algorithm (Strebelle 2002; Strebelle and 

Journel 2001) in the SGeMS® package is used to generate 300 permeability fields. Two 

facies are modeled: channel (10,000 mD) and non-channel (500 mD) with a target 

marginal distribution of 30% for channel and 70% for the non-channel categories. Three 

multigrid template levels are used in the sequential simulation process (Strebelle 2002) to 

generate the initial ensemble. Fig. 22 shows examples of the realizations of the initial 

ensemble.  
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Fig. 21—Training image for the channelized reservoir description: channel (red) 

and non-channel (blue). 
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Fig. 22—Example members of the initial ensemble: channel (red) and non-channel 

(blue). 
 

 

5.3 True Synthetic Realization and Observed Measurements 

A true synthetic permeability field (Fig. 23) is used to generate observed injector 

well-portal BHPs and producer well-portal rate measurements. The true synthetic 

permeability field is composed of approximately 60% non-channel facies and 40% 

channel facies. The true synthetic reservoir performance is shown in Fig. 24 and 25 and 

compared to the reservoir performance of all the members of the initial ensemble.  
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Fig. 23—True synthetic permeability field showing channel (red) and non-channel 

(blue) features. 
 

 

 

 
Fig. 24—Oil production rate (left) and cumulative oil production (right) profiles for 

the true synthetic case (red), initial ensemble members (cyan) and the average of 
the initial ensemble member profiles (blue). 
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Fig. 25—Producer water cut (left) and cumulative water production (right) profiles 
for the true synthetic case (red), initial ensemble members (cyan) and the average 

of the initial ensemble member profiles (blue). 
 

 

At the end of each of the 12 time steps corresponding to the assimilation cycles, 

135 true well-portal measurements are generated: 45 portal BHP at the injector well, 45 

portal oil production rate and 45 portal water production rate at the producer well. The 

total number of measurements is 1620. An ensemble (300 realizations) of observed 

measurements are generated by randomly adding Gaussian noise to true well portal 

production rates with a standard deviation of 20 bpd and true well portal BHP with a 

standard deviation of 20 psi. The covariance, 𝐶𝐶𝑑𝑑���, estimated from these measurement 

realizations are used in the EnKF experiment (Eq. 34).  

 

5.4 Parameterization 

2-D DCT algorithm (Jain 1989) is used to parameterize the log-permeability, 

pressure and water saturation fields. Using this parameterization, each of the log-
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permeability, pressure and water saturation vectors is reduced from a length of 2025 

(45×45) to a length of 100 (10×10) (Eq. 56).  

𝛼𝛼𝑘𝑘1,𝑘𝑘2 = 𝑐𝑐𝑘𝑘1𝑐𝑐𝑘𝑘2  ∑ ∑ 𝑚𝑚𝑛𝑛1,𝑛𝑛2
𝑁𝑁2−1
𝑛𝑛2=0 cos 𝜋𝜋(2𝑛𝑛1+1)𝑘𝑘1

2𝑁𝑁1
 cos 𝜋𝜋(2𝑛𝑛2+1)𝑘𝑘2

2𝑁𝑁2
𝑁𝑁1−1
𝑛𝑛1=0  (56) 

In the equation above, 𝛼𝛼𝑘𝑘1,𝑘𝑘2 is the reduced parameter corresponding to the 𝑘𝑘1 row and 

the 𝑘𝑘2 column in the reduced domain, 𝑚𝑚𝑛𝑛1,𝑛𝑛2 is the parameter corresponding to 𝑛𝑛1 row 

and 𝑛𝑛2 column in the original domain, 𝑁𝑁1 and 𝑁𝑁2 are the number of rows and columns in 

the original domain, and 𝑐𝑐𝑘𝑘1 and 𝑐𝑐𝑘𝑘2 are coefficients calculated using Eqs. 57 and 58. 

 𝑐𝑐𝑘𝑘1 = �

1
�𝑁𝑁1

                   ,𝑘𝑘1 = 0

√2
�𝑁𝑁1

 ,1 ≤ 𝑘𝑘1 < 𝑁𝑁1 − 1
 (57) 

 𝑐𝑐𝑘𝑘2 = �

1
�𝑁𝑁2

                   ,𝑘𝑘2 = 0

√2
�𝑁𝑁2

 ,1 ≤ 𝑘𝑘2 < 𝑁𝑁2 − 1
 (58) 

The reduced parameterization of the log-permeability field is used in all EnKF/MCMC 

applications, while the reduced parameterization of the pressure and water saturation fields 

are used only in the update step of the EnKF algorithm and in the first MCMC stage of 

the multi-level EnKF/two-stage MCMC sampling. The inverse transformation from the 

reduced to the original domain can be calculated using Eq. 59. 

𝑚𝑚𝑛𝑛1,𝑛𝑛2 =  ∑ ∑ 𝑐𝑐𝑘𝑘1𝑐𝑐𝑘𝑘2
𝑁𝑁2−1
𝑘𝑘2=0

𝑁𝑁1−1
𝑘𝑘1=0 𝛼𝛼𝑘𝑘1,𝑘𝑘2 cos 𝜋𝜋(2𝑛𝑛1+1)𝑘𝑘1

2𝑁𝑁1
cos 𝜋𝜋(2𝑛𝑛2+1)𝑘𝑘2

2𝑁𝑁2
 (59) 

To ensure the update step in EnKF does not result in non-physical water saturation values 

(i.e., smaller than zero or more than one), the inverse of the error function is used to 

transform the water saturation field before it is parameterized using 2-D DCT. The 

transformation and inverse transformation are given by Eqs. 60 and 61. 
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 𝑆𝑆𝑤𝑤∗ = erf -1(2𝑆𝑆𝑤𝑤 − 1) (60) 

 𝑆𝑆𝑤𝑤 = 1
2

 erf (𝑆𝑆𝑤𝑤∗ + 1) (61) 

 

5.5 EnKF 

Two EnKF experiments were conducted: one with 2-D DCT parameterization and 

one without any parameterization. In the case with 2-D DCT parameterization, the 

augmented parameter-state vector, 𝑦𝑦𝑡𝑡, at each time step has a length of 435: 100 reduced 

parameters for the log-permeability field, 100 reduced parameters for the pressure field, 

100 reduced parameters for the water saturation field, and 135 predicted well 

measurements. The forecast covariance matrix, 𝐶𝐶𝑦𝑦𝑡𝑡
𝑓𝑓����, has a size of 435 by 435. In the case 

with no parameterization, the augmented parameter-state vector, 𝑦𝑦𝑡𝑡, at each time step 

would have a length of 6210: 2025 log-permeability values, 2025 gridblock pressure 

values, 2025 gridblock water saturation values, and 135 predicted well measurements. The 

forecast covariance matrix, 𝐶𝐶𝑦𝑦𝑡𝑡
𝑓𝑓����, has a size of 6210 by 6210. 

In this subsection, EnKF posterior estimates of the log-permeability field for the 

two experiments are compared and analyzed, in reference to the true log-permeability 

field. Also, EnKF posterior estimates of the water saturation field are presented and 

compared with the true water saturation fields. Finally, production forecasts using the 

parameterized case are provided.    

Fig. 26 presents the mean of the EnKF updated log-permeability realizations for 

the DCT parameterized case and the no-parameterization case. Comparing the results with 
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the true synthetic permeability show that both cases were capable of capturing the general 

trend and orientation of the channels as early as the first update. The main geological 

features continue to get more defined as the models are updated and more observed data 

are assimilated. It is also noticeable that the means do not significantly change between 

the 10th update (30 months) and the 12th update (36 months). The estimates generated by 

the DCT case are smoother than the case with no parameterization. This is a feature of the 

DCT parameterization. Fig. 27 shows that the estimated errors (true log-permeability 

minus the mean estimate) continue to reduce, in general, as the models get updated. Both 

cases appear to capture the log-permeability values in the mid-channels more accurately, 

i.e., smaller error estimates. The EnKF posterior estimates for the permeability field is 

continuous (i.e., in contrast to the discrete, channel and non-channel realizations of the 

true field and initial ensemble). While the EnKF is capturing the location and the general 

trend of these channels, the permeability distribution inside the channels are more 

continuous than the true case. This explains how the mean error estimates inside the 

channels are the lowest in the middle, positive from the middle outward (i.e., EnKF 

estimates are underestimating the permeability values) and negative around the edges of 

the channels (i.e., the EnKF overestimating the permeability values). The estimates 

generated by the parameterized case are found to be slightly less accurate than estimates 

generated with no parameterization, especially at later updates. This could be due to the 

smoothing effect DCT imposes on the log-permeability field. 
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Fig. 26—Log-permeability fields for the ensemble mean of EnKF no-

parametrization case (left column) and DCT parameterization case (right column) 
for the initial ensemble (1st row), at the end of the 1st assimilation cycle (2nd row), 

2nd assimilation cycle (3rd row), 10th assimilation cycle (4th row) and 12th 
assimilation cycle (5th row). 
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Fig. 28 presents standard deviation maps for log-permeability fields of the EnKF 

realizations. Clearly, as model updating progresses, the uncertainty (i.e., standard 

deviation) continues to reduce. It is worth noting that uncertainty reduces first around the 

wells and continues to diminish along the flow paths. This is because at earlier times, the 

log-permeability values of the gridblocks closer to the wells are more correlated with 

observed measurements than other areas of the reservoir. Then, as time progresses, the 

correlation seems to follow the orientation of the flow paths in the reservoir. The maps 

also show that there is no noticeable uncertainty reduction between the last two 

assimilation cycles.  
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Fig. 27—The mean error estimate of the log-permeability fields for EnKF no-

parameterization case (left column) and DCT parameterization case (right column) 
for the initial ensemble (1st row), at the end of the 1st assimilation cycle (2nd row), 

2nd assimilation cycle (3rd row), 10th assimilation cycle (4th row) and 12th 
assimilation cycle (5th row). 
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Fig. 28—Standard deviation of log-permeability fields of the EnKF realizations 
with no parameterization (left column) and with DCT parameterization (right 

column) for the initial ensemble (1st row), at the end of the 1st assimilation cycle (2nd 
row), 2nd assimilation cycle (3rd row), 10th assimilation cycle (4th row) and 12th 

assimilation cycle (5th row). 
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Fig. 29 compares the true oil saturation maps to the ensemble mean of both the no-

parameterization case and the DCT case. The maps show that both cases can capture the 

overall flow patterns, channel locations and orientations. The EnKF mean estimates are 

smoother (i.e., no sharp edge features) than the true case. This is a result of averaging of 

many saturation field realizations. 

 

 
Fig. 29—Oil saturation maps for the true realization (top row), mean of the no-

parameterization ensemble (middle row) and mean of the DCT ensemble (bottom 
row) at the end of the 1st assimilation cycle (1st column), 2nd assimilation cycle (2nd 

column), 10th assimilation cycle (3rd column) and 12th assimilation cycle (4th 
column). 

 
 

Fig. 30–32 compare the ensemble of production forecasts obtained through EnKF 

without parameterization to the ones obtained by running the initial ensemble without 

model updating (open loop). The plots show that EnKF updating narrows the range of 

forecasts significantly and drives the distribution close to the truth case. 
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Fig. 33 shows the changes in the log-permeability fields as models continue to be 

updated through EnKF without parameterization. The plots show that log-permeability 

fields begin to change at the first update. Over time, the vertical patterns begin to break 

down, which more accurately models the overall flow patterns. Finally, all cases capture 

the two main horizontal channels connecting the injector and the producer. The differences 

between the final realizations seem to be in the width of channels, and the variation of log-

permeability values within the channels and in the no-channel areas. 

 

 

 
Fig. 30—Cumulative oil production showing open loop runs (cyan), the mean of 

open loop runs (blue), updated EnKF realizations (grey), the mean of EnKF 
realizations (black) and the truth case (red). 
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Fig. 31—Cumulative water production showing open loop runs (cyan), the mean of 

open loop runs (blue), updated EnKF realizations (grey), the mean of EnKF 
realizations (black) and the truth case (red). 

 

 

 
Fig. 32—Water cut showing open loop runs (cyan), the mean of open loop runs 

(blue), updated EnKF realizations (grey), the mean of EnKF realizations (black) 
and the truth case (red). 
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Fig. 33—Log-permeability fields (log-mD) for four members of the EnKF showing 

initial ensemble realizations (top row), realizations after the 1st update (middle row) 
and realizations after the last update (bottom row). 

 

 

5.6 Continuous Multi-Level Cases Using EnKF/One-Stage MCMC 

In this subsection, the EnKF posterior covariance of the log-permeability field is 

used to define the proposal density for MCMC. Four MCMC chains are presented: the 

first is based on the third update of the EnKF, i.e., conditioned to all observed 

measurements available at the end of the third assimilation cycle (270 days), the second is 

based on the sixth update of EnKF, i.e., conditioned to all observed measurements 

available at the end of the sixth assimilation cycle (540 days), the third is based on the 

ninth update of the EnKF, i.e., conditioned to all observed measurements available at the 

end of the sixth assimilation cycle (810 days),  and the fourth is based on the twelfth update 
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of the EnKF, i.e., conditioned to all observed measurements available at the end of the 

sixth assimilation cycle (1080 days). Each chain of MCMC consists of 500 iterations. In 

all these chains, the covariance of the proposal distribution is estimated from the updated 

EnKF realizations. ECLIPSE® is used to run the proposed realizations. The likelihood 

function is evaluated exactly using reservoir simulation output.  

These chains are generated to be compared to the multi-level EnKF/two-stage 

MCMC results in the following section. Acceptance ratio curves and objective function 

values generated using this method (i.e., using exact likelihood function evaluation) will 

form a basis for evaluating the efficiency and sampling validity for the EnKF/two-stage 

MCMC method.  

Additionally, a comparison between a chain generated by the multi-level/one-stage 

MCMC method and standard random-walk perturbation method is presented. This 

comparison demonstrates the improvements in efficiency and sampling quality, if any, 

resulting from using the EnKF posterior covariance to form the proposal density of 

MCMC.  

Posterior estimates of the log-permeability field for the four chains are presented 

and discussed. Convergence diagnostics such as acceptance ratio and objective function 

curves are presented and compared to the standard random-walk perturbation case. 

Additionally, the forecasted reservoir performance resulting from this experiment is 

shown and compared to both open-loop (i.e., running the prior realizations without 

conditioning on observed measurements) and EnKF cases.  
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5.6.1 Posterior Results at 270 Days 

Fig. 34 presents the mean, mean error (true realization minus the mean estimate), 

and standard deviation estimates for the log-permeability field of the initial ensemble, the 

ensemble obtained at the end of EnKF third assimilation cycle (9 months) and the posterior 

samples obtained by MCMC with a proposal based on EnKF log-permeability posterior 

covariance. It also shows the true synthetic saturation field, the saturation field obtained 

by running a reservoir simulation for the mean EnKF realization, and the saturation field 

of the mean one-stage MCMC case, at 270 days. The mean and mean error estimates of 

both the EnKF and the one-stage MCMC cases show improvement in capturing the trend 

and the orientation of the main two channels in the field, when compared to the initial 

ensemble. The mean error estimates show that both the EnKF and the one-stage MCMC 

log-permeability estimates are, generally, more accurate in the regions close to the wells 

and least accurate in the unswept regions in the middle of the field. Thus, the log-

permeability values in the regions close to the wells and in the swept regions are more 

resolved by the observed measurement information. 
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Fig. 34—The log-permeability (log-mD) fields of the mean realization (1st row), the 

mean error estimates of the log-permeability (log-mD) fields of the mean realization 
(2nd row) and the standard deviation of the log-permeability (log-mD) field (3rd 

row) among all realizations of the initial ensemble (1st column), EnKF realizations 
(2nd column) and the one-stage MCMC realizations (3rd column) after the 3rd 

update (9 months). Oil saturation maps at 270 days (4th row) for the true realization 
(1st column), EnKF ensemble mean (2nd column) and the mean of one-stage MCMC 

(3rd column). 
 

 

Additionally, the mean error maps show the log-permeability estimates along the 

middle of the two channels to be more accurate than estimates near the edges of the 

channels. This is because both methods tend to smooth out the log-permeability values 
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rather than produce a sharp edge, as in the true log-permeability field. The standard 

deviation estimates for both cases show significant reduction over the initial ensemble. 

The standard deviation estimates of the EnKF are the smallest along the producer well 

(right side). This is because the amount of information obtained from the portals of the 

producer well is twice the amount of information obtained from the injector wells—90 

data points per assimilation cycle for the producer well compared to 45 data points per 

assimilation cycle for the injector well. The standard deviation estimates closer to the wells 

and along the channels appear to be smaller than in unswept areas of the reservoir. While 

the mean and error estimates for both EnKF and one-stage MCMC cases look fairly 

similar, the standard deviation estimates for the MCMC case are smaller than those of 

EnKF. This could be due to one of two reasons: (1) the actual variability of the MCMC 

posterior is less than that of EnKF due to improved sampling, or (2) the variability 

produced by the MCMC chain is less than actual variability due to convergence or mixing 

issues. The convergence and mixing of the MCMC chains is discussed in more detail later 

in this section. The mean oil saturation maps show that both cases are capturing the general 

trend of the flood paths along the field and approximating the water front reasonably well. 

Estimates for the mean oil saturation field appear to be smoother than the true oil saturation 

field. This is due to both the effect of averaging an ensemble of oil saturation maps and 

the variability of log-permeability values within the channels for the EnKF and the one-

stage MCMC cases. 
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5.6.2 Posterior Results at 540 Days 

Fig. 35 compares the mean, error, standard deviation estimates and oil saturation 

maps at the end on ninth assimilation cycle (18 months). The mean estimate maps for both 

cases show the two channels to be more connected than the results obtained at 270 days. 

In general, the mean error estimates have improved, when compared to previous estimates. 

The MCMC error estimates are slightly better than the EnKF estimates, especially inside 

the channels. The standard deviation estimates show a clear reduction over previous 

estimates. This is more prominent in the regions adjacent to the two wells and along the 

two channels, as the flood front continues to advance, and parameter values in these areas 

become more resolved by the newly observed measurements. The MCMC standard 

deviation estimates are shown to be significantly less than those for EnKF. The same 

analysis made previously in this regard applies here as well. The oil saturation maps 

continue to show that both cases are approximating the flood front and the flow paths quite 

reasonably. 
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Fig. 35—The log-permeability (log-mD) field of the mean realization (1st row), the 

mean error estimates of the log-permeability (log-mD) field of the mean realization 
(2nd row) and the standard deviation of the log-permeability (log-mD) field (3rd 

row) among all realizations of the initial ensemble (1st column), EnKF realizations 
(2nd column) and the one-stage MCMC realizations (3rd column) after the 6th 

update (18 months). Oil saturation maps at 540 days (4th row) for the true 
realization (1st column), EnKF ensemble mean (2nd column) and the mean of one-

stage MCMC (3rd column). 
 

 

 

 

 



 

97 

 

5.6.3 Posterior Results at 810 Days 

Fig. 36 compares the mean, error, standard deviation estimates and oil saturation 

maps at the end of the ninth assimilation cycle (27 months). The mean estimates for both 

EnKF and one-stage MCMC cases show the channels becoming more defined and 

continuous. The mean error estimates for both cases are fairly similar to the previous 

estimates, at 540 days. The standard deviation estimates for both cases are smaller than 

those obtained previously. Overall, the incremental changes in the estimates over the 

previous update at 540 days are smaller than the changes that took place between the initial 

ensembles and the previous estimates, at 270 days and 540 days. Because smaller changes 

in flow patterns inside the reservoir have occurred since the previous update, the newly 

observed data contributes less to resolving the uncertain parameters.  
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Fig. 36— The log-permeability (log-mD) field of the mean realization (1st row), the 
mean error estimates of the log-permeability (log-mD) field of the mean realization 

(2nd row) and the standard deviation of the log-permeability (log-mD) field (3rd 
row) among all realizations of the initial ensemble (1st column), EnKF realizations 

(2nd column) and the one-stage MCMC realizations (3rd column)  after the 9th 
update (27 months). Oil saturation maps at 810 days (4th row) for the true 

realization (1st column), EnKF ensemble mean (2nd column) and the mean of one-
stage MCMC (3rd column). 
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5.6.4 Posterior Results at 1080 Days 

Fig. 37 compares the mean, error, standard deviation estimates and oil saturation 

maps at the end of the twelfth assimilation cycle (36 months). The mean estimates for both 

cases become even more defined and continuous. The error estimates look fairly similar, 

in general, although they appear to get larger in the middle of the field, in the unswept oil 

areas. This could be indicative of a spurious correlation effect produced by EnKF 

updating. Because the correlation between log-permeability values in the unswept oil 

zones and the observed measurements is weak, more noise accumulates with time and 

leads to deterioration of the estimates in these regions. The oil saturation maps show small 

changes from the maps obtained at 810 days, which suggests that no major changes 

occurred in the flow patterns of the field. This explains the small changes in the posterior 

estimates from the previous ones at 810 days.  
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Fig. 37— The log-permeability (log-mD) field of the mean realization (1st row), the 
error in the log-permeability (log-mD) field of the mean realization (2nd row) and 
the standard deviation of the log-permeability (log-mD) field (3rd row) among all 

realizations of the initial ensemble (1st column), EnKF realizations (2nd column) and 
the one-stage MCMC realizations (3rd column)  after the 12th update (36 months). 

Oil saturation maps at 1080 days (4th row) for the true realization (1st column), 
EnKF ensemble mean (2nd column) and the mean of one-stage MCMC (3rd column). 
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5.6.5 Convergence and Chain-Mixing Analysis 

Fig. 38 shows the acceptance ratio curves for the four continuous multi-level 

EnKF/one-stage MCMC chains (run in series of 500 iterations per chain). The curves seem 

to converge to values in the range of 0.18 to 0.28. This is a desirable range for a chain 

mixing quality (see Sec. 2.4.2.2). 

 

 

 
Fig. 38—Acceptance ratios for the four continuous multi-level EnKF/one-stage 

MCMC chains.  
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Fig. 39 shows the posterior objective function normalized by the number of 

measurement data points for the four continuous multi-level EnKF/one-stage MCMC 

chains (run in series of 500 iterations per chain). The values continue to decline, indicating 

better matches to the observed data and higher probability of posterior. However, the 

curves do not show stationary behavior—they continue to decline and do not settle around 

a constant value, suggesting more runs need to be generated to reach convergence. Also, 

this probably suggests that posterior estimates obtained by the MCMC chains, presented 

in the subsections above, show less than actual variability, and more runs are required to 

reach regions of higher posterior probability.   

 

 

 
Fig. 39—Normalized objective functions for the four multi-level EnKF/one-stage 

MCMC experiments. 
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5.6.6 Comparison of Production Profiles 

Fig. 40–42 compare production profiles of the MCMC with EnKF-based proposal 

runs to those for open loop (running the initial ensemble without model updating) and 

EnKF runs. The MCMC runs narrow the ranges obtained by EnKF updates even further. 

The mean of MCMC is slightly closer to the true case than the mean of EnKF.  

 

 
Fig. 40— Cumulative oil production showing the open loop runs (cyan), the mean 
of open loop runs (dashed blue), EnKF final updated ensemble (green), mean of 

EnKF final updated ensemble (dashed green), multi-level EnKF/one-stage MCMC 
realizations (grey), the mean of multi-level EnKF/one-stage MCMC (black) and the 

truth case (red). 
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Fig. 41— Oil production rate showing the open loop runs (cyan), the mean of open 
loop runs (dashed blue), EnKF final updated ensemble (green), mean of EnKF final 
updated ensemble (dashed green), multi-level EnKF/one-stage MCMC realizations 
(grey), the mean of multi-level EnKF/one-stage MCMC (black) and the truth case 

(red). 
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Fig. 42—Water cut showing the open loop runs (cyan), the mean of open loop runs 
(dashed blue), EnKF final updated ensemble (green), mean of EnKF final updated 
ensemble (dashed green), multi-level EnKF/one-stage MCMC realizations (grey), 
the mean of multi-level EnKF/one-stage MCMC (black) and the truth case (red). 

 

 

5.6.7 Comparison to Standard Random-Walk Case  

Fig. 43 and 44 compare acceptance ratio curves and objective function values, 

respectively, for a standard random-walk perturbation case and a multi-level EnKF/one-

stage MCMC case. Both cases include all the observed measurements, up to 1080 days, 

in the evaluation of the likelihood function. The standard random-walk case appears to 

stabilize at very low acceptance ratio values, less than 0.05, with higher objective function 

values, indicating poor-mixing and sampling of low posterior probability models. The 
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multi-level EnKF/one-stage MCMC case appears to stabilize at acceptance ratio values 

around 0.19. This is close to the range suggested for a well-mixed chain (see Sec. 2.4.2.2). 

 

 
Fig. 43— Acceptance ratios for standard MCMC experiment (dashed black) and 

multi-level EnKF/one-stage MCMC (red). 
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Fig. 44— Objective function for standard MCMC experiment (dashed black) and 

multi-level EnKF/one-stage MCMC (red). 
 

 

5.7 Continuous Multi-Level Case Using EnKF/Two-Stage MCMC  

In this subsection, the continuous multi-level model updating and uncertainty 

quantification algorithm using EnKF/two-stage MCMC (see Sec. 3.2 and Fig. 2–3) is 

tested on the 2-D channelized water flooding problem. The results of the experiment—

estimates of the posterior log-permeability field and production forecast—are presented 

and compared to results obtained by EnKF and the multi-level EnKF/one-stage MCMC. 

Analysis of the results is provided, and an assessment of improvements in estimation and 

efficiency is presented. 
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In this experiment, the first level consists of assimilation cycles of 90 days. Each 

cycle is followed by EnKF update. After three first-level assimilation cycles (270 days), a 

two-stage MCMC chain is run using the cumulative covariance calculated at the end of 

the first level. This results in four MCMC chains at 270, 540, 810, and 1080 days.   

The following subsections present the results generated by these four MCMC 

chains. For each of the four chains, posterior estimates are presented. Additionally, 

efficiency measures are provided and compared to the multi-level EnKF/one-stage 

MCMC case. This is followed by analysis of the forecasted production profiles generated 

by these chains. Finally, a discussion of the posterior estimates of the log-permeability 

field and the uncertainty quantification of the production forecast is provided. 

5.7.1 Posterior Results at 270 Days 

Fig. 45 compares acceptance ratio curves of the multi-level EnKF/one-stage 

MCMC and multi-level EnKF/two-stage MCMC. The comparison shows that at the same 

level of proposal variance, the two-stage approach results in acceptance ratios (0.5) that 

are more than double those for the one-stage process (0.2). This allows—for the same 

number of iterations—more accepted samples to be included in the chain without 

compromising chain mixing (i.e., the size of the jump in the proposal is maintained). Thus, 

the effective sample size increases. 
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Fig. 45—Comparing the acceptance ratio curves for the multi-level EnKF and 

MCMC cases at the 3rd assimilation cycle (270 days): one-stage MCMC (black) and 
two-stage MCMC (red). 

 

 

Fig. 46 compares the posterior objective function values for the members of the 

ensemble updated by EnKF at the end of the third assimilation cycle (270 days), the chain 

generated using the multi-level EnKF/one-stage MCMC method, and the chain generated 

using the multi-level EnKF/two-stage MCMC method. The comparison shows that both 

multi-level cases have lower values of the posterior objective function than the EnKF case 

(i.e., samples from regions of higher posterior probability). 

 



 

110 

 

 
Fig. 46—Comparing the posterior objective function values at the 3rd assimilation 

cycle (270 days) for the EnKF case (black circles), multi-level EnKF/one-stage 
MCMC case (blue dashed line) and the multi-level EnKF/two-stage MCMC case 

(red solid line). 
 

 

Fig. 47 shows the box plots for the objective function values generated by the two-

stage MCMC chain at 270 days (first and second half of the chain), after discarding a burn-

in size of 1,000 iterations. Because the two halves of the chain show similar values of the 

main quantiles, this could be an indication that the chain is stationary. As discussed 

previously (see Sec. 2.4.2.3), this does not guarantee that the chain is, in fact, stationary 

or well-mixed. 
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Fig. 47—Box plot for the objective function values for the 1st and the 2nd halves of 

the two-stage MCMC chain at 270 days (after discarding burn-in): the 50th 
percentile (red line), 25th and 75th percentiles (blue box), the minimum and 

maximum (black lines). 
 

 

Fig. 48 and 49 compare oil production rate and water cut forecasts generated by 

running the reservoir simulator to the end of the total simulation time (1080 days) for the 

following cases: initial ensemble realizations (open-loop), ensemble generated by EnKF 

at the end of the third assimilation cycle, and realizations generated by the multi-level 

EnKF/two-stage MCMC sampling. The comparisons show that all cases bracket the true 

case during the history period. At the prediction period, the EnKF and the multi-level 

realizations seem to bracket the true case for a portion of the prediction period, up to 450 
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days. Both EnKF and the multi-level cases are shown to have similar mean realizations 

while the multi-level range seems to be slightly narrower than EnKF. Although the EnKF 

and multi-level forecasts do not bracket the true oil production rate at later times, the 

means of these realizations is closer to the truth case than the open-loop case. Because the 

true realization is bracketed by the prior realizations and is also favored by the observed 

measurement (i.e., maximizes the likelihood function), this indicates that both EnKF and 

multi-level EnKF/two-stage MCMC methods have not sampled all regions of the posterior 

distribution and, thus, are underestimating the posterior uncertainty.  
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Fig. 48—Oil production rate prediction after the 3rd assimilation cycle: the open-
loop prediction (cyan), prediction based on EnKF update (light green), prediction 

based on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the 
open-loop predictions (blue), the mean of the EnKF predictions (green), the mean 
of the multi-level EnKF, two-stage MCMC (black) and the true realization (red). 

The history period is represented by dashed lines, and the prediction period is 
represented by solid lines, while the vertical dashed line represents the end of 

history period. 
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Fig. 49—Water cut prediction after the 3rd assimilation cycle: the open-loop 

prediction (cyan), prediction based on EnKF update (light green), prediction based 
on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the open-loop 

predictions (blue), the mean of the EnKF predictions (green), the mean of the 
multi-level EnKF/two-stage MCMC (black), and the true realization (red). The 

history period represented by dashed lines and prediction period represented by 
solid lines and the vertical dashed line represents the end of history period. 

 

 

Fig. 50 and 51 compare cumulative oil and cumulative water production forecasts 

for the same cases mentioned in the previous paragraph. The cumulative production 

forecasts share the same characteristics as oil-production-rate and water-cut forecasts 

described in the previous paragraph. Compared to the rate and water-cut plots, cumulative 

plots show that the range of the profiles increases as time advances. This is due to the 
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cumulative nature of the curves—differences add up over time and become more 

pronounced at later times. 

 

 
Fig. 50—Cumulative oil production prediction after the 3rd assimilation cycle: the 

open-loop prediction (cyan), prediction based on EnKF update (light green), 
prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), and the true realization 

(red). The history period represented by dashed lines and prediction period 
represented by solid lines and the vertical dashed line represents the end of history 

period. 
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Fig. 51—Cumulative water production prediction after the 3rd assimilation cycle: 
the open-loop prediction (cyan), prediction based on EnKF update (light green), 

prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), and the true realization 

(red). The history period represented by dashed lines and prediction period 
represented by solid lines and the vertical dashed line represents the end of history 

period. 
 

 

Fig. 52 and 53 compare cumulative oil production and cumulative water 

production, respectively, at the end of the total simulation time (1080 days) forecasted at 

the end of the third assimilation cycle (270 days) for the initial ensemble realizations 

(open-loop), EnKF updated realizations and the realizations generated by the multi-level 

EnKF/two-stage MCMC sampling. Although both EnKF and multi-level cases show 
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narrower 100% ranges than the open-loop case, they do not quite bracket the true solution. 

In this case, it is clear that the uncertainty of the posterior is underestimated. The number 

of iterations (6000) was apparently not sufficient to fully sample the posterior distribution 

at this updating, in the multi-level case. This is discussed further in Sec. 6.5.  

 

 
Fig. 52—Box plots for cumulative oil production at the end of the total simulation 
time (1080 days) forecasted at the end of the 3rd assimilation cycle (270 days): 50th 

percentile (red line), 25th and 75th percentiles (blue box), the minimum and 
maximum (black lines) and the true case (green dashed line). 
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Fig. 53—Box plots for cumulative water production at the end of the total 

simulation time (1080 days) forecasted at the end of the 3rd assimilation cycle (270 
days): 50th percentile (red line), 25th and 75th percentiles (blue box), the minimum 

and maximum (black lines) and the true case (green dashed line). 
 

 

 

 

 

 

 

 

 



 

119 

 

5.7.2 Posterior Results at 540 Days 

Fig. 54 and 55 compare the acceptance ratio curves and objective function values 

of the multi-level EnKF/one-stage MCMC and multi-level EnKF/two-stage MCMC. The 

same conclusions made in the previous section seem to hold here, as well.   

 

 
Fig. 54—Comparing the acceptance ratio curves for the multi-level EnKF/MCMC 

cases at the 6th assimilation cycle (540 days): one-stage MCMC (black) and two-
stage MCMC (red). 
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Fig. 55—Comparing the posterior objective function values at the 6th assimilation 

cycle (540 days) for the EnKF case (black circles), multi-level EnKF/one-stage 
MCMC case (blue dashed line), and the multi-level EnKF/two-stage MCMC case 

(red solid line). 
 

 

As in the previous section, Fig. 56 shows box plots for the objective function 

values of the two halves of the chain generated by the two-stage MCMC at 540 days, after 

discarding a burn-in size of 1,000 iterations. Here, the main quantiles do not look 

significantly different (less than 5% difference). Again, this does not guarantee 

stationarity, but could be used as an indication that the chain could be stationary. 

 



 

121 

 

 
Fig. 56—Box plot for the objective function values for the 1st (1) and the 2nd (2) 

halves of the two-stage MCMC chain at 540 days: 50th percentile (red line), 25th and 
75th percentiles (blue box), the minimum and maximum (black lines) and the true 

case (green dashed line). 
 

 

As in the previous section, Fig. 57-60 compares the oil production rate, water cut 

and cumulative production forecasts. Like the results in the previous section, while the 

results seem to indicate an underestimation of the posterior uncertainty, the means of both 

EnKF and the multi-level case appear to be similar, while the multi-level range seems to 

be slightly narrower than EnKF.  
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Fig. 57—Oil production rate prediction after the 6th assimilation cycle: the open-
loop prediction (cyan), prediction based on EnKF update (light green), prediction 

based on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the 
open-loop predictions (blue), the mean of the EnKF predictions (green), the mean 
of the multi-level EnKF/two-stage MCMC (black), true case (red), history period 
represented by dashed lines and prediction period represented by solid lines and 

the vertical dashed line represents the end of history period. 
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Fig. 58—Water cut prediction after the 6th  assimilation cycle: the open-loop 

prediction (cyan), prediction based on EnKF update (light green), prediction based 
on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the open-loop 

predictions (blue), the mean of the EnKF predictions (green), the mean of the 
multi-level EnKF/two-stage MCMC (black), true case (red), history period 

represented by dashed lines and prediction period represented by solid lines and 
the vertical dashed line represents the end of history period. 
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Fig. 59—Cumulative oil production prediction after the 6th assimilation cycle: the 

open-loop prediction (cyan), prediction based on EnKF update (light green), 
prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), true case (red), history 

period represented by dashed lines and prediction period represented by solid lines 
and the vertical dashed line represents the end of history period. 
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Fig. 60—Cumulative water production prediction after the 6th assimilation cycle: 
the open-loop prediction (cyan), prediction based on EnKF update (light green), 

prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), true case (red), history 

period represented by dashed lines and prediction period represented by solid lines 
and the vertical dashed line represents the end of history period. 

 

 

A comparison of the cumulative production forecasts (Fig. 61 and 62) show that 

the posterior estimates by both EnKF and the multi-level case still mildly underestimate 

the uncertainty. The multi-level case still shows a narrower range than EnKF and with it 

main quartiles shifting more toward the true solution.   
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Fig. 61—Box plots for cumulative oil production at the end of the total simulation 
time (1080 days) forecasted at the end of the 6th assimilation cycle (540 days): 50th 

percentile (red line), 25th and 75th percentiles (blue box), the minimum and 
maximum (black lines) and the true case (green dashed line). 
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Fig. 62—Box plots for cumulative water production at the end of the total 

simulation time (1080 days) forecasted at the end of the 6th assimilation cycle (540 
days): 50th percentile (red line), 25th and 75th percentiles (blue box), the minimum 

and maximum (black lines) and the true case (green dashed line). 
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5.7.3 Posterior Results at 810 Days 

As in the previous sections, Fig. 63 show higher acceptance ratios in the case of 

multi-level/two-stage MCMC. However, Fig. 64 show clear signs of non-stationarity, 

suggesting more iterations should be generated or proposal variance should be increased 

to generate a better-mixed chain. This could also be indicative of deteriorating EnKF 

posterior covariance due to spurious correlation as discussed in Sec. 5.6.3. Fig. 65 supports 

the fact that the chain is not stationary.  

 

 
Fig. 63—Comparing the acceptance ratio curves for the multi-level EnKF and 

MCMC cases at the 9th assimilation cycle (810 days): one-stage MCMC (black) and 
two-stage MCMC (red). 
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Fig. 64—Comparing the posterior objective function values at the 9th assimilation 

cycle (810 days) for the EnKF case (black circles), multi-level EnKF/one-stage 
MCMC case (blue dashed line) and the multi-level EnKF/two-stage MCMC case 

(red solid line). 
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Fig. 65—Box plot for the objective function values for the 1st and the 2nd halves of 
the two-stage MCMC chain at 810 days): 50th percentile (red line), 25th and 75th 

percentiles (blue box), the minimum and maximum (black lines) and the true case 
(green dashed line). 

 

 

Fig. 66-69 show that the production forecasts at 810 days appear similar to those 

in the previous sections. The ranges appear even narrower and the means are further closer 

to the truth case.  
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Fig. 66—Oil production rate prediction after the 9th assimilation cycle: the open-
loop prediction (cyan), prediction based on EnKF update (light green), prediction 

based on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the 
open-loop predictions (blue), the mean of the EnKF predictions (green), the mean 
of the multi-level EnKF/two-stage MCMC (black), true case (red), history period 
represented by dashed lines and prediction period represented by solid lines and 

the vertical dashed line represents the end of history period. 
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Fig. 67—Water cut prediction after the 9th  assimilation cycle: the open-loop 

prediction (cyan), prediction based on EnKF update (light green), prediction based 
on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the open-loop 

predictions (blue), the mean of the EnKF predictions (green), the mean of the 
multi-level EnKF/two-stage MCMC (black), true case (red), history period 

represented by dashed lines and prediction period represented by solid lines and 
the vertical dashed line represents the end of history period. 
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Fig. 68—Cumulative oil production prediction after the 9th assimilation cycle: the 

open-loop prediction (cyan), prediction based on EnKF update (light green), 
prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), true case (red), history 

period represented by dashed lines and prediction period represented by solid lines 
and the vertical dashed line represents the end of history period. 
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Fig. 69--Cumulative oil production prediction after the 9th assimilation cycle: the 

open-loop prediction (cyan), prediction based on EnKF update (light green), 
prediction based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop predictions (blue), the mean of the EnKF predictions (green), the 
mean of the multi-level EnKF/two-stage MCMC (black), true case (red), history 

period represented by dashed lines and prediction period represented by solid lines 
and the vertical dashed line represents the end of history period. 

 

 

At 810 days, the box plots of the cumulative production forecasts (Fig. 70 and 71) 

comparing the prior realizations, EnKF and the multi-level case show that the multi-level 

case is bracketing the true solution while the EnKF is not. While this does not necessarily 

mean that there is no underestimation of the forecasted production uncertainty, it shows 

improvement in the estimation as more observed measurements are assimilated.  
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Fig. 70—Box plots for cumulative oil production at the end of the total simulation 
time (1080 days) forecasted at the end of the 9th assimilation cycle (810 days): 50th 

percentile (red line), 25th and 75th percentiles (blue box), the minimum and 
maximum percentiles (black lines) and the true case (green dashed line). 
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Fig. 71—Box plots for cumulative oil production at the end of the total simulation 
time (1080 days) forecasted at the end of the 9th assimilation cycle (810 days): 50th 

percentile (red line), 25th and 75th percentiles (blue box), the minimum and 
maximum percentiles (black lines) and the true case (green dashed line). 
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5.7.4 Posterior Results at 1080 Days 

At this point of the experiment, all observed measurements are assimilated and no 

further production forecasts are made. As in the previous section, (Fig. 72-74) show that 

while acceptance ratio is increased, the chain does not appear to be stationary. As 

discussed, this could be indicative of deteriorating EnKF posterior covariance.  

 

 

 
Fig. 72—Comparing the acceptance ratio curves for the multi-level EnKF and 

MCMC cases at the 12th assimilation cycle (1080 days): one-stage MCMC (black) 
and two-stage MCMC (red). 
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Fig. 73—Comparing the posterior objective function values at the 12th assimilation 

cycle (1080 days) for the EnKF case (black circles), multi-level EnKF/one-stage 
MCMC case (blue dashed line), and the multi-level EnKF/two-stage MCMC case 

(red solid line). 
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Fig. 74—Box plot for the objective function values for the 1st and the 2nd halves of 
the two-stage MCMC chain at 1080 days: 50th percentile (red line), 25th and 75th 

percentiles (blue box), the minimum and maximum percentiles (black lines) and the 
true case (green dashed line). 

 

 

The estimated production profiles at 1080 days (Fig. 75-78) provides similar 

conclusions as in the previous section. The ranges are becoming narrower as more 

observed measurements are assimilated and the means are getting closer to the true 

solution.  
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Fig. 75—Oil production rate estimates after the 12th assimilation cycle: the open-
loop estimates (cyan), estimates based on EnKF update (light green), estimates 
based on multi-level EnKF/two-stage MCMC sampling (grey), the mean of the 

open-loop distribution (blue), the mean of the EnKF distribution (green), the mean 
of the multi-level EnKF/two-stage MCMC (black) and the true case (red). 

 

 



 

141 

 

 
Fig. 76—Water cut estimates after the 12th assimilation cycle: the open-loop 

estimates (cyan), estimates based on EnKF update (light green), estimates based on 
multi-level EnKF/two-stage MCMC sampling (grey), the mean of the open-loop 
distribution (blue), the mean of the EnKF distribution (green), the mean of the 

multi-level EnKF/two-stage MCMC (black) and the true case (red).  
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Fig. 77—Cumulative oil production estimates after the 12th assimilation cycle: the 

open-loop estimates (cyan), estimates based on EnKF update (light green), 
estimates based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 
of the open-loop distribution (blue), the mean of the EnKF distribution (green), the 

mean of the multi-level EnKF/two-stage MCMC (black) and the true case (red). 
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Fig. 78—Cumulative water production estimates after the 12th assimilation cycle: 

the open-loop estimates (cyan), estimates based on EnKF update (light green), 
estimates based on multi-level EnKF/two-stage MCMC sampling (grey), the mean 

of the open-loop distribution (blue), the mean of the EnKF  (green), the mean of the 
multi-level EnKF/two-stage MCMC (black) and the true case (red).  

 

 

As in the previous section, the estimated cumulative production (Fig. 79 and 80) 

show the multi-level case to bracket the true solution while the EnKF does not. Although 

the experiment has reached its end and there are no more forecasts, these results show an 

improvement in the estimation of the uncertainty of production profiles as more data are 

assimilated. It also suggests that the multi-level algorithm is improving the estimation of 

EnKF.  
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Fig. 79—Box plots for cumulative oil production at the end of the total simulation 

time (1080 days) estimated at the end of the 12th assimilation cycle (1080 days): 50th 
percentile (red line), 25th and 75th percentiles (blue box), the minimum and 
maximum percentiles (black lines) and the true case (green dashed line). 
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Fig. 80—Box plots for cumulative water production at the end of the total 

simulation time (1080 days) estimated at the end of the 12th assimilation cycle (1080 
days): 50th percentile (red line), 25th and 75th percentiles (blue box), the minimum 

and maximum percentiles (black lines) and the true case (green dashed line). 
 

 

5.7.5 Comparison of Results 

In this section, results of the four EnKF/two-stage MCMC chains presented earlier 

are compared to EnKF in terms of estimates of the posterior permeability field and 

estimates of the production forecasts. 

5.7.5.1 Permeability Field Posterior Estimates 

Fig. 81 and 82 show the mean estimates and the mean error estimates after the 

third, sixth, ninth and twelfth assimilation cycles for EnKF updating and multi-level 
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EnKF/two-stage MCMC sampling.  As mentioned earlier, the mean estimates capture the 

general trend and orientation of the two channels as early as the first update. The rates of 

change in the mean estimates drop quickly with time. In fact, the last two updates of EnKF 

and EnKF/two-stage MCMC show very close mean estimates.  

The mean error estimates (Fig. 82) show reduction in error initially when 

compared with the initial ensemble (Fig. 34), particularly around the main two channels. 

The most noticeable difference in the mean error estimation between the EnKF case and 

the MCMC cases is found in the middle of the log-permeability field (i.e., the unswept 

region of the field). Because there is no strong correlation between the gridblock 

permeability values in this region and observed measurements, the effect of spurious 

correlations accumulates and the EnKF estimate errors become more pronounced. The use 

of MCMC at the second level seems to improve the estimation in this area. This suggests 

that using MCMC sampling can help remedy the effects of spurious correlations that might 

be observed when EnKF updating is used. 
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Fig. 81—The posterior mean estimates for the log-permeability field (log-mD) for 
the EnKF updates (top row) and the multi-level EnKF/two-stage MCMC (bottom 

row) at the end of the 3rd (1st column), 6th (2nd column), 9th (3rd column) and 12th (4th 
column) assimilation cycles. 
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Fig. 82—The posterior mean error estimates for the log-permeability field (log-mD) 

for the EnKF updates (1st row) and the multi-level EnKF/two-stage MCMC 
(bottom row) at the end of the 3rd (1st column), 6th (2nd column), 9th (3rd column) and 

12th (4th column) assimilation cycles. 
 

 

 

Fig. 83 presents the standard deviation estimates for the gridblock log-

permeability values at the end of the third, sixth, ninth and twelfth assimilation cycles for 

EnKF updating and multi-level/two-stage MCMC sampling. The maps show continuous 

reduction in uncertainty as more data are assimilated. The locations where most of the 

uncertainty reduction occurs correlates with where the data are located (i.e., horizontal 

wells along the left and right edges of the field) and along the flow paths of the field (i.e., 

along the channels). Also, the standard deviations at the right edge (i.e., along the producer 
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well) are less than the left edge. This is because the amount of the data collected from the 

producer is twice that collected from the injector. The MCMC cases show more reduction 

in uncertainty compared to the EnKF cases, particularly in the middle, unswept region of 

the model.  

 

 

 
Fig. 83—The posterior standard deviation estimates for the log-permeability field 

(log-mD) for the EnKF updates (1st row), multi-level EnKF/one-stage MCMC 
(middle row), and the multi-level EnKF/two-stage MCMC (bottom row) at the end 

of the 3rd (1st column), 6th (2nd column), 9th (3rd column) and 12th (4th column) 
assimilation cycles 
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5.7.5.2 Production Forecast Estimates 

Fig. 84 and 85 compares the distribution of cumulative oil and water production 

generated by the initial ensemble (open-loop), updated models after the third assimilation 

cycle (270 days of production), updated models after the sixth assimilation cycle (540 

days of production), updated models after the ninth assimilation cycle (810 days of 

production), and updated models after the twelfth assimilation cycle (1080 days). The 

figures show that the true solution is bracketed by the initial ensemble (open-loop case) of 

cumulative oil and water production, although the uncertainty is large. The distribution 

range decreases significantly at the third and sixth assimilation cycles. Then, it does not 

appear to change significantly after that. Although the true solution is not bracketed at the 

third assimilation cycle, the distribution keeps shifting toward the direction of the true 

solution as more data are assimilated. As mentioned in previous sections, the fact that the 

true solution is not bracketed by the distribution is indicative of underestimation of 

uncertainty. This indicates that number of samples generated was not large enough to 

cover the entire space of the posterior density function. This is a result of the large 

dimensionality of the posterior function and the complex nature of the inverse problem in 

reservoir simulation (i.e., involves solving a system of highly non-linear flow equations). 

Also, bracketing the true solution at later times does not necessarily mean absence of bias 

or overconfidence in the estimation. Nevertheless, it indicates that uncertainty estimation 

improves as more data are assimilated.  

It is also worth noting here that one should not make conclusions regarding the 

quality of posterior estimation in the inverse problem in reservoir simulation solely by 
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comparing production forecasts. The solution of the inverse problem lies in the parameter 

space (e.g., the permeability field in this experiment). Production forecasts are also 

strongly influenced by the control input of the problem. For example, the comparison of 

production forecasts could change significantly (although all methods are using the same 

prior and likelihood definitions) if a new well is simulated in the unswept oil zones (middle 

of the field) in the example provided in this section due to differences in the estimated 

permeability field in this region (Figs. 81-83). 

 

 
Fig. 84—Forecasted cumulative oil production at the end of the total simulation 

time using multi-level EnKF/two-stage MCMC sampling at different assimilation 
cycles: 50th percentile (red line), 25th and 75th percentiles (blue box), the minimum 

and maximum percentiles (black lines) and the true case (green dashed line). 
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Fig. 85—Forecasted cumulative water production at the end of the total simulation 
time using multi-level EnKF/two-stage MCMC sampling at different assimilation 
cycles: 50th percentile (red line), 25th and 75th percentiles (blue box), the minimum 

and maximum percentiles (black lines) and the true case (green dashed line). 
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6. DISCUSSION OF RESULTS 

 

It is well established (Sec. 1.1.3) that CLRM approach is a better fit to the problem 

of maximizing the overall value of a petroleum asset than a reactive or periodic approach. 

Research suggests that utilizing a closed-loop approach can achieve better recoveries and 

increase NPVs of petroleum assets. A major requirement to any CLRM strategy is a 

continuous-model-updating-and-uncertainty-quantification procedure that can provide 

reliable estimates of the model parameters. It is equally important that this procedure is 

computationally feasible and can be adapted to the operations and decision cycles. These 

requirements are addressed well by combining elements of EnKF for computational 

efficiency and MCMC methods for sampling robustness. 

In this section, issues related to the implementation of this method are discussed. 

The following subsections address the capability of EnKF to handle channelized reservoir 

characterization, underestimation of EnKF posterior covariance, the differences between 

the combined EnKF-MCMC approach (Emerick and Reynolds 2011) and the new multi-

level EnKF-MCMC approach introduced in this dissertation, the benefits of utilizing the 

continuous modeling approach, and implementation of the proposed procedure as part of 

a CLRM strategy. 
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6.1 EnKF Posterior Estimates for Channelized Reservoir Characterization 

Some of the previous work that implemented EnKF in a channelized reservoir 

characterization (two-facies system) were capable of capturing the major trends in 

permeability fairly quickly (Brouwer et al. 2004; Jafarpour and McLaughlin 2009b). 

Emerick and Reynolds (2011) showed that even when EnKF estimates appear reasonable, 

history matches obtained with EnKF are worse than those obtained by gradient methods 

or MCMC. In this work, results are consistent with these conclusions (refer to Figs. 46, 

55, 64 and 73 for objective-function comparison and Fig. 82 for mean-error-estimate 

comparison). 

Fig. 86 shows the initial and final (after EnKF updating) log-permeability field for 

a random initial realization (R10). The maps show that EnKF changed the log-

permeability field and reoriented the channels in the true direction, thus indicating that 

EnKF is capable of handling complex geological descriptions, as in this case of 

channelized reservoir characterization.  
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Fig. 86—Initial (left) and final (right) log-permeability field (log-mD) for a random 
initial realization (R10) with gridblock A (left on the map), gridblock B (center of 
the map), and gridblock C (upper right on the map) outlined (bold black square). 

 

 

The histograms in Fig. 87 quantify distributions of log-permeability fields for the 

R10 prior realization after the first, second, fourth, sixth, eighth, tenth, and twelfth updates. 

The histograms show that, initially, 60% of the permeability field for this realization is in 

the non-channel facies (6 log-mD) while 40% is in the channel facies (9 log-mD). It is 

worth noting that the true distribution is also composed of 60% non-channel facies and 

40% channel facies while the initial ensemble is, on average, 70% non-channel facies and 

30% channel facies. After the parameterization and during the EnKF updating process, the 

permeability values for the R10 prior realization get more dispersed. Although the later 

distributions do not honor the bi-modal 60%-non-channel/40%-channel true distribution, 

on the other hand, the histograms do not follow a Gaussian trend that averages out channel 

and non-channel facies either. 
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Fig. 88 shows the changes in the log-permeability values for gridblocks A, B, and 

C, outlined in Fig. 86. In the initial ensemble, the permeability field is composed of two 

discrete values: 6 log-mD for the no-channel facies and 9 log-mD for the channel facies. 

Gridblock A starts in the no-channel facies at a value of approximately 6 log-mD and 

during updating continues to be in the no-channel facies, ending with a value slightly less 

than 6 log-mD (true value is 6 log-mD). Gridblock B starts in the channel facies at a value 

of approximately 9 log-mD and during updating gradually changes to the no-channel 

facies at a value slightly larger than 6 log-mD (true value is 6 log-mD). Gridblock C starts 

in the no-channel facies at a value of approximately 6 log-mD and during updating 

changes to the channel facies, ending with a value of approximately 8 log-mD (true value 

is 9 log-mD). The values obtained by EnKF updating for these three gridblocks reasonably 

agree with the values at their respective locations on the true permeability field (Fig. 23). 
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Fig. 87—Histograms showing the distribution of the log-permeability field for the 

R10 realization at the initial, 1st update, 2nd update, 4th update, 6th update, 8th 
update, 10th update and 12th update. 
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Fig. 88—Log-permeability updates for gridblock A (black), gridblock B (blue), and 

gridblock C (green) of realization R10. 
 

 

 

Fig. 89 presents the log-permeability histograms for the three gridblocks (A, B, 

and C) outlined in Fig. 86 across all realizations for the initial ensemble, the ensemble 

after the first update, and the ensemble after the last update. All the histograms show, 

initially, a distribution that approximately matches the distribution of the facies at the 

training image—30% channel and 70% no-channel facies. At the first update, the 

distribution is more spread with a peak close to the no-channel value. Later on, the 

distribution narrows down and shifts toward one of the two main facies’ values. The 
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distribution of the last update for these gridblocks is in accordance with their locations on 

or off the channels in reference to the true permeability field. 

 

 

 
Fig. 89—Histograms for the log-permeability field of gridblocks A, B, and C across 
all realizations for the initial ensemble (blue), 1st update (brown) and final update 

(yellow). 
 

  

6.2 Underestimation of EnKF Posterior Covariance 

In the multi-level EnKF-MCMC approach, the covariance of the EnKF posterior 

is used to propose new realizations. This means that any proposed sample for MCMC lies 

in the space spanned by the EnKF posterior covariance or, in other words, any proposed 

realization is a linear combination of the EnKF updated ensemble. This implies that if the 

variability in the ensemble realizations updated through EnKF is less than the actual 

variability (i.e., the covariance matrix is underestimating the uncertainty), this would 

negatively impact the posterior distribution of the multi-level method. This also highlights 

the dependency of this process on the initial ensemble. 

The MCMC M-H algorithm is known, theoretically, to sample the posterior 

correctly as the number of iterations approaches infinity. In our application, it is not 
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feasible to perform such a test and compare to MCMC sampling using EnKF posterior 

covariance. In this work, using EnKF posterior covariance at the MCMC level has shown 

an improvement in the sampling quality over EnKF and standard MCMC random-walk 

perturbation methods. This is illustrated by the reduction in the posterior objective 

function values (Figs. 15, 16, 44, 46, 55, 64 and 73) and reduction in the mean error 

estimates of the posterior relative to the truth case (Figs. 19, 34, 35, 36, 37 and 82).  

This is not to suggest that the multi-level EnKF-MCMC approach samples the 

posterior exactly and produces variability that represents the actual posterior variability. 

Clearly, the requirements to estimate the posterior exactly using MCMC (i.e., generating 

a chain with the number of iterations approaching infinity) cannot be satisfied in practical 

applications. In fact, Fig. 84 shows that, even after 6000 iterations, the uncertainty of the 

sampled distribution at 270 days is underestimated (i.e., the true solution is not bracketed). 

However, as mentioned above, the results show only that the multi-level EnKF-MCMC 

approach used here improves the posterior estimation relative to EnKF and standard 

MCMC random-walk perturbation methods with a fewer number of iterations.  

 

6.3 Combined EnKF-MCMC vs. Multi-Level EnKF-MCMC Approach 

In the combined EnKF-MCMC approach proposed by Emerick and Reynolds 

(2010,2011), MCMC posterior sampling is based on an approximated likelihood function. 

The approximation uses estimated model parameters and states (e.g., gridblock pressures 

and saturations) to calculate observed measurements rather than actual reservoir 

simulation output. The estimation of model parameters and states are produced by 
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sampling a joint Gaussian distribution. By doing so, it is implicitly assumed that the 

relationship between model parameters and states is approximately linear. This is a strong 

assumption to maintain when dealing with reservoir simulation models. Although the 

sampled realizations are later re-run using reservoir simulation to generate accurate well 

profiles, the fact remains that these realizations were sampled using an approximated 

evaluation of the likelihood function. This approximation impacts the quality of the 

estimated posterior and may introduce biases and underestimation of uncertainty in the 

sampling process.   

In the multi-level approach proposed here, EnKF is used to define the proposal 

distribution of MCMC rather than using a proposal distribution that is based on random-

walk perturbation methods. Also, the approximated evaluation of the likelihood function 

is used only in the first stage of MCMC (i.e., filtering stage), while an exact calculation of 

the likelihood function is used in the second stage. Both measures (i.e., using EnKF-

generated posterior for the proposal distribution and approximating the likelihood function 

at the first stage of MCMC) do not violate any of the assumptions required to accurately 

sample the posterior distribution. In fact, it can be shown that the two-stage Metropolis-

Hasting algorithm used in this research does not violate the reversibility condition required 

for MCMC to generate accurate sampling (Appendix A.2).   

It is worth noting that this method of approximating the likelihood function at the 

first stage of MCMC, although theoretically sound, can greatly affect the proposal 

distribution. Effectively, if the approximation of the likelihood function is not accurate 

enough, the resulting two-stage proposal distribution will be negatively affected and might 
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significantly increase burn-in size, slow down convergence rate and result in a poorly-

mixed chain. On the contrary, if the approximation is reasonably accurate, the resulting 

two-stage proposal distribution improves and can lead to smaller burn-in size, better chain-

mixing and higher acceptance rates. 

It is difficult to tell beforehand if such an approximation would be accurate enough 

or result in a better choice of proposal. Multi-level one-stage and two-stage chains can be 

compared, and if the approximation is shown to produce better results, then the two-stage 

approach can be used. 

 

6.4 Benefits of Using the Continuous Approach 

As been previously stated, solving the inverse problem in a continuous manner, as 

opposed to one-time studies, allocates more computing time to investigating the parameter 

space and can lead to improved sampling of the posterior. One main challenge to this 

concept, however, is that the definition of the posterior changes every time new 

measurements are observed. Theoretically, the posterior distribution from an update can 

be used as the new prior distribution for the subsequent update. Because of the high 

dimensionality and non-linearity of the inverse problem in reservoir simulation, the form 

of the posterior distribution is not known and the number of samples collected are not 

sufficient to fully characterize the distribution. As mentioned earlier, Fig. 84 clearly shows 

that the posterior is underestimated at 270 days—it is not bracketing the true solution (i.e., 

the true solution is outside the P0-P100 ranges). This means that this posterior effectively 

associates a probability of zero to the true solution. Now, if this posterior was used to 
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define the prior for the next assimilation cycle, the resulting posterior will be guaranteed 

to not bracket the true solution because the prior distribution assigns a probability of zero 

to the truth case. Consequently, using a posterior distribution estimated in this way to 

define the prior for the succeeding update can lead to invalid posterior sampling, major 

biases and underestimation of uncertainty.  

To fully realize the benefits of the continuous approach, a way must be found to 

combine samples associated with different posteriors and still produce sound statistical 

inference. Although the issue of changing posterior definitions was not addressed, this 

research utilized and benefited from the continuous approach in the following ways: 

• The EnKF posterior covariance, which is being updated continuously and 

incorporates all the information contained in the observed measurements, 

is used to guide the search within the parameter space.  

• Because of the multi-level approach implemented here, the MCMC 

sampling can be spread over a longer period of time (i.e., while EnKF is 

used on to perform updates on high frequency cycles). Consequently, 

more iterations can be performed, and improved estimates can be 

realized. 

 

6.5 Estimated Production Forecast 

The production forecast distributions generated by this approach continue to 

narrow and shift toward the true solution as more observations are assimilated. Although 

this is an indication that estimates of production forecasts are improving, it does not 
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guarantee unbiasedness nor full estimation of uncertainty. In fact, Figs. 84 and 85 show 

clearly that the update at 270 days is underestimating the uncertainty of the posterior 

because the truth case is not bracketed by the estimated forecast distributions (i.e., P0-

P100 ranges). This suggests that at this earlier stage of the model updating process, 6000 

iterations did not produce a chain that is mixed enough to fully estimate the posterior 

distribution. The estimation can be improved by running the chain longer or improving 

the EnKF covariance estimation (i.e., proposal distribution).  

Because using this approach generates multiple distributions of production 

forecasts over time, the relationship between these forecasts and actual field production 

can be examined. Biases and underestimation of uncertainty in production forecasts can 

then be measured (Alarfaj and McVay 2016). Further, external calibration methods can be 

used to improve these estimates (McVay et al. 2005). 

 

6.6 Multi-Level EnKF-MCMC Operational Advantage 

The advantage of this multi-level EnKF-MCMC approach over most other 

methods in the literature is that it provides two levels of updating and uncertainty 

quantification. The first level is more frequent but less rigorous, and the second level is 

less frequent but more robust. Models produced by the EnKF first-level updating can be 

used to optimize oil production rate, maintain production schedule, or reduce water cut in 

the short-term by investigating BHP configuration or water injection allocation. The 

MCMC second-level updates can be used to optimize overall recovery or increase NPV 

by investigating drive mechanisms or infill drilling 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary of Conclusions 

• Using an EnKF posterior covariance in the proposal selection of MCMC  

significantly reduced the burn-in size, increased the convergence rate and 

improved chain mixing, in comparison to the standard MCMC random-walk 

perturbation method. Consequently, this allows for sampling from regions of 

higher probability and covers more of the posterior distribution (i.e., improves 

posterior sampling) at a lower computational cost. 

• Using a two-stage approach to multi-level EnKF-MCMC sampling leads to 

significant increase of the acceptance rate at the same level of proposal variance. 

This leads to increased efficiency of the process and enlarges the effective sample 

size, as wider regions of the posterior are visited at the same number of iterations, 

without compromising chain mixing. 

• Although both EnKF and multi-level EnKF-MCMC methods generated forecast 

distributions that narrow and shift toward the true solution as more data are 

assimilated, the multi-level approach produced narrower distributions and 

improved the production forecast estimation, relative to EnKF (i.e., shifted more 

toward the true solution and in some instances bracketed the true solution when 

EnKF did not). 

• The Multi-Level EnKF/Two-Stage MCMC approach proposed in this dissertation 

is not guaranteed to fully sample the posterior distribution. In fact, it 
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underestimated the uncertainty in some cases. Results suggest, however, that as 

more data are assimilated, the posterior estimation improves and brackets the true 

solution.  

 

7.2 Recommendations for Future Work 

Additional areas for improvement to this work should focus on utilizing the Multi-

Level EnKF/Two-Stage MCMC procedure in the CLRM approach and testing the 

application of this method in real-time applications. Some of these areas for improvement 

include: 

1. Integrating this procedure with multi-level optimization algorithms to 

produce a full CLRM approach.  

2. Testing this procedure in real-field applications. 

3. Investigating ways to improve posterior estimation and reduce or 

eliminate underestimation of uncertainty. Examples of possible areas to 

improve posterior estimation are: 

• Improving the EnKF covariance estimation and creation of the 

initial ensemble (i.e., proposal distribution).  

• Optimizing proposal tuning parameters (e.g., covariance scaling 

factor) to speed up convergence and reduce burn-in size. 

• Testing this algorithm with alternative ways of approximating the 

likelihood function at the first stage of MCMC. In particular, 
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approximations based on streamlines sensitivity calculation or 

reduced-order methods seem to be promising to investigate.  

4. Testing this procedure on different reservoir characterization problems. 

5. Assessing the biases and quantification of the uncertainty in production 

forecasts, and using external calibration methods to improve estimates of 

production forecasts. 
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NOMENCLATURE 

 

𝐴𝐴   Transition matrix 

AM  Adaptive Metropolis 

AP  Adaptive Proposal 

BFGS  Broyden-Fletcher-Goldfarb-Shanno 

bpd  Barrel per day 

BHP  Bottom hole pressure 

𝐶𝐶  Covariance 

𝑑𝑑obs  Observed measurements vector 

CLRM  Closed-loop reservoir management 

DCT  Discrete cosine transform 

EnKF  Ensemble Kalman-filter 

erf  Error function 

𝑓𝑓𝜃𝜃(𝑦𝑦)  Likelihood function 

𝑓𝑓(𝑦𝑦,𝜃𝜃)  Joint probability function for the data and uncertainty parameter 

GA  Genetic algorithms 

𝑔𝑔(𝜃𝜃)  Reservoir response 

𝐼𝐼   Identity matrix 

𝑘𝑘  Number of reduced dimensions 

𝐾𝐾  Kalman gain 

𝐻𝐻(∙)  Hessian matrix  
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𝐿𝐿(∙)  Likelihood function 

LBFGS Low-memory Broyden-Fletcher-Goldfarb-Shanno 

𝑚𝑚  Model parameters 

𝑚𝑚(𝑦𝑦)  Marginal distribution of the data 

MAP  Maximum a posteriori 

MCMC Markov chain Monte Carlo 

M-H  Metropolis-Hasting algorithm 

𝑁𝑁  Full number of dimensions 

𝑁𝑁d  Number of data points 

NPV  Net present value 

𝑂𝑂(∙)  Objective function value 

psi  pounds per square inch 

PSO  Particle Swarm Optimization 

PV  Pore volume 

𝑃𝑃(𝑋𝑋,𝑌𝑌) Transition probability from X to Y 

𝑞𝑞(. , . )  Proposal density 

𝑟𝑟(. )  Marginal distribution 

RML  Randomized maximum likelihood 

SNESIM Single normal equation algorithm 

stb  Stock tank barrel 

𝑆𝑆𝑤𝑤  Water saturation 

𝑆𝑆𝑤𝑤∗   Transformed water saturation 
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𝑈𝑈  Uniform distribution 

𝑣𝑣  Measurement error 

𝑤𝑤  Model error 

𝑦𝑦   Augmented parameter-state vector 

𝑋𝑋  State 

𝑧̂𝑧  Random Gaussian variable 

𝛼𝛼(. , . )  Acceptance ratio 

𝜃𝜃  Uncertainty parameter vector 

𝜃𝜃∗  Proposed sample vector 

𝜋𝜋(∙)  Probability density function 

𝜎𝜎2  Scaling factor 

Φ  Transformation matrix 

𝛻𝛻𝛻𝛻(∙)  Sensitivity coefficients  

𝛻𝛻𝛻𝛻(∙)  Gradient of the objective function 

𝛿𝛿  Delta function 

Subscripts 

𝐷𝐷   Observed measurement 

𝑛𝑛  Assimilation cycle number 

𝑀𝑀  Model parameters 

𝑡𝑡  Time step 

𝑥𝑥  State 

𝜖𝜖  Model error 
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Superscripts 

𝑓𝑓  Forecast step 

𝑗𝑗  Ensemble member 

𝑢𝑢  Update step 

ℓ  Optimization iteration 
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APPENDIX A 

A.1 Metropolis-Hasting Transition Kernel Satisfying Reversibility Condition 

The M-H acceptance probability is defined by Eq. 62. 

 𝛼𝛼(𝑥𝑥,𝑦𝑦) = min
 
�1, 𝑝𝑝(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)

𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)� (62) 

There are three cases to consider, Eqs. 63–65. 

 𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (63) 

 𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) > 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (64) 

 𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) < 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (65) 

If the equality in Eq. 63 holds, then: 

 𝛼𝛼(𝑥𝑥,𝑦𝑦) = 𝛼𝛼(𝑦𝑦, 𝑥𝑥) = 1 (66) 

   𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑥𝑥,𝑦𝑦)𝛼𝛼(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) (67) 

 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) = 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝛼𝛼(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (68) 

 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (69) 

If the inequality in Eq. 64 holds, then: 

   𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥)   > 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (70) 

 𝛼𝛼(𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)
𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦) (71) 

 𝛼𝛼(𝑦𝑦, 𝑥𝑥) = 1 (72) 

   𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑥𝑥,𝑦𝑦) 𝑝𝑝(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)
𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (73) 

 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) = 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (74) 

 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (75) 

If the inequality in Eq. 65 holds, then: 
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   𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) < 𝑞𝑞(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (76) 

 𝛼𝛼(𝑥𝑥,𝑦𝑦) = 1  (77) 

 𝛼𝛼(𝑦𝑦, 𝑥𝑥) = 𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥) (78) 

   𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) (79) 

 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) = 𝑞𝑞(𝑦𝑦, 𝑥𝑥) 𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)  𝑝𝑝(𝑦𝑦) = 𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦) (80) 

 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) = 𝑃𝑃(𝑦𝑦, 𝑥𝑥)𝑝𝑝(𝑦𝑦) (81) 

Eqs. 69, 75, and 81 prove that for all cases, the M-H acceptance ratio satisfies the 

reversibility condition. 

 

A.2 Derivation for Two-Stage Metropolis-Hasting Acceptance Ratio 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = 𝛼𝛼(𝑦𝑦, 𝑥𝑥)𝑞𝑞(𝑦𝑦, 𝑥𝑥) (82) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = min
 
�1, 𝜋𝜋

∗(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)
𝜋𝜋∗(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)� 𝑞𝑞(𝑦𝑦, 𝑥𝑥) (83) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = min
 
�𝑞𝑞(𝑦𝑦, 𝑥𝑥), 𝜋𝜋

∗(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)
𝜋𝜋∗(𝑦𝑦) � (84) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = 1
𝜋𝜋∗(𝑦𝑦) min

 
�𝜋𝜋∗(𝑦𝑦)𝑞𝑞(𝑦𝑦, 𝑥𝑥),𝜋𝜋∗(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)�  (85) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = 𝜋𝜋∗(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦)
𝜋𝜋∗(𝑦𝑦) min

 
�𝜋𝜋

∗(𝑦𝑦)𝑞𝑞(𝑦𝑦,𝑥𝑥)
𝜋𝜋∗(𝑥𝑥)𝑞𝑞(𝑥𝑥,𝑦𝑦) ,  1� (86) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = 𝜋𝜋∗(𝑥𝑥)
𝜋𝜋∗(𝑦𝑦)𝑞𝑞(𝑥𝑥,𝑦𝑦)𝛼𝛼(𝑥𝑥,𝑦𝑦) = 𝜋𝜋∗(𝑥𝑥)

𝜋𝜋∗(𝑦𝑦)𝑄𝑄(𝑥𝑥, 𝑦𝑦) (87) 

 𝑄𝑄(𝑦𝑦, 𝑥𝑥) = 𝜋𝜋∗(𝑥𝑥)
𝜋𝜋∗(𝑦𝑦)𝑄𝑄(𝑥𝑥,𝑦𝑦) (88) 

 𝑄𝑄(𝑦𝑦,𝑥𝑥)
𝑄𝑄(𝑥𝑥,𝑦𝑦) = 𝜋𝜋∗(𝑥𝑥)

𝜋𝜋∗(𝑦𝑦) (89) 

 𝜌𝜌(𝑥𝑥, 𝑦𝑦) = min
 
�1, 𝜋𝜋(𝑦𝑦)𝜋𝜋∗(𝑥𝑥)

𝜋𝜋(𝑥𝑥)𝜋𝜋∗(𝑦𝑦)� (90) 
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