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ABSTRACT 

To enable higher fidelity studies of laminated and 3D textile composites, a scalable finite 

element framework was developed for predicting the performance of fiber/matrix composites 

across scales.  Effective design paradigms and lessons learned are presented.  Using the 

developed framework, new insights into the behavior of laminated and woven composites 

were discovered. 

For a [0/90]s and [±45/0/90]s laminated composite, the classical free-edge problem was 

revisited with the heterogeneous microstructure directly modeled, which showed that the 

local heterogeneity greatly affects the predicted stresses along the ply interface.  Accounting 

for the microscale heterogeneity removed the singularity at the ply interface and 

dramatically reduced the predicted interlaminar stresses near a free-edge.  However, the 

heterogeneous microstructure was also shown to induce a complex stress distribution away 

from the free-edge due to the interaction of fibers near the ply interface, since close fibers 

were shown to induce compressive stress concentrations.  The fiber arrangement had a 

significant effect on the local stresses, with a more uniform fiber arrangement resulting in 

lower peak stresses.  Finally, the region needed to accurately predict the microscale stresses 

near the ply interface was shown to be much smaller then entire ply. 

For two types of orthogonally woven textile composites, nonidealized textile models were 

created and subjected to a variety of loads, providing insight into how load is distributed 

throughout the complex tow architecture and the locations of critical stresses.  By 

comparing the stresses of a textile model with and without binders, the binders were shown 
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to greatly affect the distributions of stress a tensile load but not in-plane shear.  Variations 

in the local fiber volume fraction within the tows were shown to significantly affect the 

magnitude of critical stress concentrations but did not change where the critical stresses 

occurred. Finally, accounting for plasticity in the neat matrix pocket of the textile was 

shown to only affect the localized region near where binders traverse the thickness of the 

textile. 
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1  INTRODUCTION  

1.1 Overview of Problem 

The design of high-performance, composite materials is crucial to creating 

transformative capabilities in the aerospace industry.  A computational framework that 

allows the design from the microscale, where fibers and matrix are modeled discretely, to 

achieve performance at larger scales would expedite the discovery, design and insertion of 

entirely new materials.  Though the computational resources available to researchers 

continues to increase, most computational tools used today do not leverage the large, 

parallel architectures of modern supercomputers, except for tools that rely on explicit 

methods, which introduce many challenges and uncertainties.  The design of multifunctional 

materials in particular has the chance to transform the industry but also hinges on the 

ability to predict the effect of microstructural changes on the response at higher scales.  

Composites with microvascular networks could allow self-healing by transporting reacting 

materials to cracks to form a structural resin or active cooling by pumping a coolant through 

the material. [1] [2] [3]  Microvascular networks also have the potential to create embedded, 

tunable antennas within a structure [4], increasing the response of shape memory polymer 

structures [5].  Manipulating fluids inside microvascular channels via microscale valves, 

mixing chambers, and other components have many potential applications, such as chemical 

synthesis, and has been developed into a distinct field, microfluidics. [6]  Embedded sensing 

fibers within a composite offers the ability to sense deformation and damage in real-time. 
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[1] [2]  Shape memory materials have the potential of constituting morphing structures 

without the need of discrete actuators, saving cost and weight and creating a possibility for 

many new technologies. [2] [3]  Each of these applications have been proposed and studied 

to some extent by researchers, but the technologies are still far from being integrated into 

commercial aerospace products, aside from a few research collaborations.  Additionally, 

these technologies often rely on more complex composite designs that lack a clear length-

scale separation.  One such type of complex composite is three-dimensional (3D) textiles, 

which offer a unique potential for multifunctionality by allowing functional constituents to 

be woven directly into the fabric before the matrix is added.  The ability to predict the 

response of complex composites with high fidelity is crucial to enabling and accelerating the 

development of transformative materials. 

For both laminated and woven composites, a deeper understanding of where stress 

concentrations develop and the causes behind them is needed before functional constituents 

can be effectively integrated.  Laminated composites exhibit many different types of failure 

modes, ranging from intra-ply cracking to delamination.  The stresses near a free-edge are 

known to be critical and can induce free-edge delaminations, so it is important to understand 

the effect of the free-edge in order to accurately predict failure of laminated composites.  

The effect of the free-edge has been studied by numerous researchers for many years, 

However, researchers have almost always modeled the fiber/matrix plies as transversely 

isotropic, homogeneous materials because of the complexity of creating a suitable mesh for 

directly modeling the heterogeneous microstructure, the computational expense of analyzing 
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such a model, and the relatively few computational tools capable of leveraging large, parallel 

computing architectures.  Treating each ply as a homogeneous, transversely isotropic 

material neglects the local effects of stiff fibers in a relatively soft matrix.  Due to the much 

smaller scale of an individual fiber compared to that of a ply, the perturbation in the stress 

field due to the actual heterogeneity will remain localized to a small region, but if the aim 

of an analysis is to predict when a ply crack or delamination will initiate, then local stress 

concentrations can be very significant. 

Two-dimensional textile composites have been routinely used within the aerospace 

industry, but 3D textiles have received a much slower adoption due to their challenging 

characterization and manufacturing.  Three dimensional textiles use through thickness tows 

that tie the layers together to offer increased toughness, out-of-plane properties, and impact 

resistance.  Three-dimensional woven composites have been used for some applications, such 

as blade containment systems and body armor, and they offer the potential for 

multifunctional applications, such as integrating active cooling, self-healing, or a tunable 

antenna into the material. [1] [2] [4] [7]  However, the complex geometry makes it difficult 

to create realistic textile models and the resulting models typically require significant 

computational resources.  Consequently, relatively few works in the literature have focused 

on predicting the stresses within 3D textiles.  To study where stress concentrations develop 

under different loads and how load is transferred within the complex tow architectures of 

3D textiles, a scalable finite element framework that leverages modern parallel computing 

resources is required. 
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For both laminated and textile composites, a new depth of understanding is needed to 

guide the future of composite design.  For laminated composites, more insight into the 

stresses that develop at the microscale in critical situations should be pursued in order to 

realize how damage initiates at the microscale and grows across scales.  On the other hand, 

3D textile composites have been studied far less exhaustively as laminated composites due 

to the complex tow architecture.  Significant research is still needed among the community 

to understand where damage will initiate at the microscale and what modeling details are 

important   However, conventional finite element codes that do not leverage high-

performance computing (HPC) resources will be insufficient to provide the desired insight. 

1.2 Current State of the Art 

For many years, researchers have used classical laminate theories, finite difference 

models, and finite element analysis (FEA) to characterize the effect of the free-edge for 

various types of layups with great success. [8] [9] [10]  The effects of the stacking sequence 

and ply thickness have been studied thoroughly.  However, researchers have almost always 

modeled the fiber/matrix plies as transversely isotropic, homogeneous materials.  Some 

researchers have employed multiscale strategies to capture the effects of fibers in critical 

regions. [11] [12]  In addition, some previous studies, have modeled discrete fibers near the 

free-edge, but relatively few fibers (approximately 10 fibers) were considered due to the 

prohibitive computational challenges. [13] [14] 

The analysis of 3D textiles presents many challenges.  Realistic models are difficult to 

create due to the complex tow architecture, meshes are often large and require significant 
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computational resources, and stresses within the textiles are complex, making visualization 

and communication difficult.  Consequently, there are relatively few works in the literature 

on the topic compared to 2D textiles. 

Textile models can be divided into two categories: idealized and nonidealized.  For 

idealized models, the tow paths and cross-sections are specified without any need for 

analysis.  For nonidealized models, tow paths and cross-sections are specified a priori 

without any need for simulating a change in the tow geometry.  This results in very straight 

tows, such as the example shown in Figure 1.1. 

 

 
Figure 1.1. Example of an idealized textile model using TexGen 

Over the last decade, researchers have developed numerous different techniques for 

creating 3D textile models.  Among the tools for creating idealized 3D textile models, 

TexGen is a very popular tool created by Lin et. al. for creating idealized textile models.  

The tool uses spline interpolations through control points for the tow paths and assumes 

the tows have an idealized cross-sectional shape. [15]   Lomov et. al. developed another 
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widely used tool called WiseTex.  The tows have an idealized cross-section, but the tow 

paths are modified from an initial idealized path such that the deformational energy within 

the tows is minimized, which captures some of the realism of tow paths within 3D textiles. 

[16]  Finally, Potter et. al. proposed a method for creating voxel meshes for idealized tow 

architectures. [17] 

 Among the methods for creating nonidealized 3D textile models, three categories of 

strategies exist among researchers.  The most popular strategy is the digital element 

method.  The strategy relies on having multiple digital chains per a tow, similar to fibers 

within a tow but with less than 100 digital chains.  Using a combination of elastic and 

contact analyses, the processing a 3D textile preform undergoes is simulated using virtual 

molds and tows modeled using the digital chains.  This strategy began with Wang and Sun 

in 2000 when they published Ref. [18].  Since then, a several researchers have developed the 

concept in tools for creating nonidealized 3D textile models.  Two very similar tools were 

created: Virtual Textile Morphology Suite (VTMS) and Digital Fabric Mechanics Analyzer 

(DFMA).  DFMA focuses on fabrics that do not have a matrix surrounding the tows, though 

it is more robust for creating fabric architectures. [19] [20]  However, Drach et. al. developed 

an in-house method for removing interpenetrations between tows and creating a conforming 

mesh for the matrix. [21]  The Air Force Research Lab (AFRL) developed VTMS for 

modeling composite materials. [19] [22] VTMS simulates the effects of processing on the tow 

geometry, creates surface representations of the tows, and utilizes a mesh independent 

method to predict the response of the textile model.  The mesh independent method was 
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developed so that meshes of each constituent did not have to be compatible and could even 

overlap.   Both VTMS and DFMA model the digital chains as rigid spheres connected by 

pins to elastic rod elements.  The rod elements can carry load axially, while interpenetration 

is not allowed between rigid spheres.  Aside from those, Green et. al. developed a similar 

digital element approach using beam elements instead of elastic rods with spheres. [23]  

Diverging from the digital chain methodology, Wintiba et. al. developed a method for 

creating nonidealized textile models with periodic geometry by modifying the cross-sections 

of idealized tows where interpenetrations occur.  The geometry is “tensioned” to force tows 

to move during the analysis and create contact. [24]  Finally, Stig et al. modeled the yarns 

as inflatable tubes.  The yarns are initially shrunk and then re-inflated during a contact 

analysis, causing the tow cross-sections to deform. [25]  It should be noted that DFMA and 

VTMS are the only tools in the open literature that attempt to simulate the processing a 

textile preform undergoes. 

Using the methods described to create 3D textile models, researchers have employed 

finite element analysis to predict the response of 3D textiles for over a decade, beginning in 

the mid-1990’s. [26]  As researchers created more realistic models of the tow architecture, 

the ability to predict useful mesoscale properties from the models became a reality.  In 2011, 

Prodromou et. al. developed a method of cells approach to predicting the mescoscale 

mechanical properties of 3D textiles. [27]  In 2013, Hallal et. al. reviewed the available 

literature and showed that the numerical methods at the time provided promising tools for 

predicting the elastic moduli between 6% for most types of 3D textiles. [28] 
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More recently, researchers have started to use textile models to predict elastic properties 

and strengths for the textile composites.  Dai and Cunningham used a relatively simple, 

idealized unit-cell with up to 120,000 elements.  The model was used within a mosaic macro 

model to predict the strength of a textile panel with a hole.  The simulates predicted the 

strength with 20% and predicted a similar progression of damage to those observed in 

experiments. [29]  Saleh et. al. used an idealized textile model to predict the progression of 

damage under tensile loads along the x- and y-directions.  The model was shown to match 

mesoscale quantities within 10% and qualitatively predicted a realistic progression of 

damage within each type of tow.  For tension along the warps, they predicted that damage 

initiates in the binders where they bend begin to traverse the thickness, but critical damage 

quickly develops within the wefts.  Within the experiments conducted, the progression of 

damage for an orthogonally woven textile under tension along the warps was: initial damage 

near binders where they begin or end to traverse through the textile thickness, matrix 

cracking in the tows perpendicular to the load, then finally delamination right before fiber 

breakage. [30]  Green et. al. used a voxel continuum damage approach to predicting the 

damage with 3D woven composites.  The results showed that waviness within the tows, 

even within the nominally straight warps and wefts, significantly affected the results.  The 

models were created using their digital element method. [31]   

In 2014, Drach et. al. created the most refined textile models, which remains the most 

refined models in the open literature until this work.  The most refined mesh in the study 

had 3.2 million nodes.  A series of meshes were created, and the elastic moduli of the textile 
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were predicted.  It was shown that the predictions changed up to 10% when the mesh was 

refined from 500k nodes to over 3.2 million  It was unclear if convergence for the elastic 

moduli was achieved with the 3.2 million node mesh, but it remains the highest standard 

for a high-fidelity model and highlighted the need for more refined meshes [21]  In 2017, 

Shreyas Joglekar and Mark Pankow predicted the kinking of a orthogonally woven 

composite under compressive loads.  An eigenvalue analysis was used to predict the buckling 

load for a textile model consisting of 300,000 linear tetrahedral elements.  The predicted 

buckling load using an idealized and nonidealized textile model, created using TexGen and 

DFMA respectively, were compared to experimental results.  A comparison of the tow 

architecture showed that the DFMA model had greater similarity to actual specimen, and 

the prediction of the buckling load was significantly more accurate when using the 

nonidealized model. [32]  Finally, Drach et. al. predicted the progression of damage during 

curing within a orthogonally woven composite and compared four common failure criterion 

for the matrix.  The study showed that a parabolic criterion was most suitable for the epoxy 

matrix at predicting realistic damage within the matrix.  DFMA was used to create realistic 

textile models, and an in-house MATLAB code was used to remove interpenetrations 

between tows before a mesh for the matrix was created.  The results were compared to an 

actual IM7/RTM6 and showed good agreement when an appropriate failure criterion was 

used. [33] 

A very recent review of 3D textile by Saleh and Soutis showed that the community has 

focused on through thickness properties of 3D textiles but the in-plane properties remain 
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not well understood.  The review considered three different categories of weaves: orthogonal, 

layer to layer, and angle interlock.  Most the literature addressing in-plane properties 

focused on the tensile properties, leaving a gap of knowledge for textiles under in-plane 

shear loads.  In general, it was shown that the orthogonal and angle interlock textiles 

exhibited improved delamination resistance compared to layer to layer textiles. [34]  Also 

very recently, Huang reviewed the current literature for the prediction of mechanical 

properties of 3D textiles.  The review highlighted that there is a lack of literature addressing 

textiles with z-pinning, such as orthogonally woven composites, under in-plane shear loads. 

[35] 

From the mid-1990’s the community has progressed to be able to predict mesoscale 

properties, such as elastic moduli and tensile strengths, within 10%.  However, a study of 

3D textiles under in-plane loads and a detailed investigation of the stress distributions with 

the 3D textiles is lacking in the body of literature.  No published work has rigorously 

investigated the locations of stress concentrations and how load is distributed within the 

textile composite, but these insights will be necessary to effectively integrate multifunctional 

constituents and design better performing 3D textile composites.  

 

1.3 Strategy 

This work relies on the development of a finite element framework that leverages HPC 

resources to investigate fiber/matrix composites with greater detail than the current state 

of the art.  A suite of preprocessing tools that leverage a combination of novel algorithms 
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and third-party tools was developed to create complex microscale models with random fiber 

arrangements, models of laminated composites with the heterogeneous microstructure 

directly modeled within the plies, and nonidealized 3D textile models.  Since the meshes for 

these models can easily have more than 30 million nodes, a scalable finite element code was 

developed to predict the response of linear and nonlinear materials.  The analysis of large 

models creates the challenge of storing large amounts of data from the distributed analyses. 

Consequently, a new file format was designed to store the data needed to describe the mesh, 

local coordinate systems, and a variety of field data types.  Finally, a collection of Python 

scripts and a custom plugin for ParaView, allowing ParaView to efficiently read the newly 

developed file format in parallel, were developed to enable the visualization of the complex 

finite element data. 

Leveraging this new finite element framework, both laminated and woven composites 

will be investigated with greater detail than past studies.  The heterogeneous fiber/matrix 

microstructure within a laminated composite is directly modeled for two types of laminated 

composite layups: a crossply [0/90]s layup and quasi-isotropic [±45/0/90]s layup..  

Simulating the laminate under uniaxial tension, the effect of discrete fibers on the stresses 

along the ply interface close to the free-edge is explored.  The model with the heterogeneous 

microstructure directly modeled is also compared to the classical case where each ply is 

treated as a homogeneous material to highlight the differences that emerge when the 

heterogeneous microstructure is considered. 
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The finite element framework is used to explore the behavior of orthogonally woven 

composites under different in-plane loads using nonidealized textile models.  Two types 

textiles are considered, a thin 1x1 orthogonal weave, which is a relatively simple 3D textile, 

and a thicker 2x2 orthogonal weave, which is more realistic to the 3D textiles used in 

industry.  The aim is to provide insight into how load is transferred throughout the complex 

tow architecture, locations of critical stress, the role of the binders, and the effect of several 

modeling parameters. 
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2 ANALYSIS FRAMEWORK 

2.1 Overview 

Predicting the behavior of fiber/matrix composites presents difficult challenges at several 

lengths scales.  At the microscale, fibers and matrix must be accounted for discretely, but 

since the microstructure is random, a valid model can become large enough to challenge a 

typical workstation.  However, to better understand the distribution of possible responses 

within a composite, an ensemble of fiber/matrix models should be considered, which 

increases the computational demands of a microscale study significantly.  At the mesoscale, 

laminated composites have historically been treated as homogeneous materials, which works 

well if the purpose of a simulation is to investigate the mesoscale response.  However, if 

localized phenomena, such as damage, or small region on the scale of a fiber diameter, such 

as free-edge stresses, are of interest, then the microscale must be considered.  When the 

laminated composite is modeled as a homogeneous material, a typical workstation might 

suffice for an analysis, but when the individual fibers are discretely modeled within a 

laminate composite, the simulation requires the use of high-performance computing.  

Finally, three-dimensional textile composites exhibit a complex geometry.  The textile 

models require large meshes and produce large amounts of output for post-processing.  All 

of these challenges create the need for a robust, scalable analysis framework.  An effective 

analysis framework should leverage computational resources ranging from a single 

workstation to a large supercomputer, provide a toolset for efficiently creating models of 

fiber/matrix composites at the micro- and mesoscales, automate many tasks via scripts to 
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allow parametric studies or Monte-Carlo simulations, and include a toolset for visualizing 

the data resulting from large analyses. 

This chapter proposes an analysis framework designed for the analysis of fiber/matrix 

composites, delineates the underlying algorithms, and highlights any third-party tools that 

are particularly useful.  The proposed framework provides the tools necessary to study 

laminated and textile composites at the micro- and mesoscales.  Unlike much of the work 

in the literature, most of the tools were developed in-house as part of this doctoral work.  

The decision to develop such a broad set of tools was based on the limitations of commercial 

software.  The complexities of three-dimensional textiles and scale of computational 

resources required for many of the analyses required the development of a FEA framework 

capable of leveraging HPC systems.  Figure 2.1 provides an overview of the analysis 

framework, indicating components that are third-party libraries and components developed 

to support this work.  In the architecture diagram, a component with any part on top of a 

component in next lower level depends on the component from the lower level.  For example, 

Beta2 depends on the BetaMesh, Sparse Math, and Dense Math libraries.  Some of these 

components will be referenced throughout this chapter, but implementation details is 

outside the scope of this manuscript.  This chapter discussing the analysis framework is 

divided into two sections.  The first section discusses the preprocessing framework, 

consisting of new algorithms and third-party tools, used the microscale fiber/matrix models, 

laminate composite models with the heterogeneous microstructure directly modeled, and 

the 3D textile models.  The next chapter provides a discussion of the development of the 
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scalable finite element framework used in this work, focusing on highlighting the challenges 

of distributed computing, lessons learned throughout the development, and effective design 

paradigms.  

 

 
Figure 2.1. Overview of analysis framework architecture (blue components 
indicate third-party libraries and maroon components indicate the ones 
developed) 

2.2 Preprocessing 

This section describes the algorithms and tools used to create the finite element models 

of unidirectional, laminated, and 3D woven textile composites.  The first subsection 

describes the algorithms for creating and meshing random fiber arrangements needed for 

microscale analyses.  Though these types of models have been created by other researchers 

for years, this work proposes a more general model generation technique, capable of creating 

complex RVE shapes.  The second section presents the algorithms for creating the multiscale 

laminated composite models with discretely modeled fibers in the 00 and 900 plies.  The 

third section outlines the suite of tools and algorithms used to create 3D textile models with 



 

16 

 

non-idealized geometry.  Finally, the last section will share lessons learned, including 

proposed improvements of the preprocessing tools and strategies found to be particularly 

effective. 

2.2.1 Fiber/Matrix Models 

For years, many researchers have successfully created fiber/matrix models with random 

fiber arrangements.  Some focus on statistically matching the arrangement observed in 

actual specimen, while other focus on efficiently creating random arrangements.  However, 

all the existing methods have focused on square or rectangular RVE’s.  There are several 

reasons one might want to generalize the algorithms for a non-rectangular shape.  For 

example, in Ref. [36], it was shown that square RVE’s of random fiber/matrix composites 

tend towards transverse isotropy as the number of fibers in the periodic RVE increases, but 

as expected, in the limit of RVE sizes, the effective properties derived from the square RVEs 

were unable to result in transversely isotropic properties.  Other RVE shapes will result in 

effective properties that approach exact transversely isotropy as the number of fibers 

increases, such as hexagonally shaped RVEs.  Another possible reason, beyond the scope of 

the current work, is to allow the simulation of actual tow cross-sections at the microscale 

within a multiscale analysis, capturing the finite boundaries of the tow cross-sectional shape. 

This work proposes a more general set of algorithms for generating 2D random 

fiber/matrix models for any closed shape.  The discussion will be limited to 2D models, 

though it could be extended to 3D models in a straightforward manner.  The strategy can 

be divided into the two algorithms: one for generating the fiber arrangements and one for 
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meshing the fiber arrangements.  Each of the algorithms will be described in the following 

two sections respectively.  

Algorithm for Creating Fiber Arrangements 

The algorithm for creating random fiber arrangements can be divided into three steps: 

1. Specification of RVE boundaries 

2. Initial placement of fibers 

3. Iterative removal of overlap between fibers 

The boundaries of the RVE are defined by a list of points that are connected by straight 

boundary segments going counter-clockwise around the closed RVE shape.  The direction 

is important because the outward and inward normal vectors for each boundary segment 

will be inferred from the connectivity.  This work will assume faceted geometry because it 

simplifies the triangulation of the closed area in step 2 and the collision detection during 

step 3.  Given this assumption, exactly two points will define each boundary segment. 

Each boundary segment can be designated as one of three types: finite, symmetric, and 

periodic.  A finite boundary does not allow fibers to cross during iterations.  A symmetric 

boundary forces a fiber to either directly lie on the boundary, which cuts the fiber in half, 

or not cross the boundary at all, so symmetry can be preserved.  A periodic boundary 

requires a pair of boundary segments and allows a fiber to cross one boundary segment with 

the remaining part of the fiber appearing at the other boundary segment in the pair.  Figure 

2.2 shows an example of fibers crossing periodic boundaries within a periodic square RVE. 

To ensure that periodicity is possible for a pair of boundary segments, it is useful to identify 
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matching boundary segments.  Boundary segments 𝜈𝜈 and 𝑛𝑛 are a matching pair only if the 

lengths of the two segments are equal within numerical tolerance, which is covered by the 

next condition but provides an efficient initial check, and if |(𝒑𝒑1𝑚𝑚 − 𝒑𝒑0𝑛𝑛) − (𝒑𝒑0𝑚𝑚 − 𝒑𝒑1𝑛𝑛)| < 𝜀𝜀, 

where 𝒑𝒑𝑖𝑖
𝑗𝑗 is the coordinate of point 𝑖𝑖 of segment 𝑗𝑗 and 𝜀𝜀 is the numerical tolerance used to 

test if two vectors are equivalent.  Refer to Figure 2.3 for an illustration of identifying 

matching pairs.  It should be noted that all boundary segments having a matching pair is 

not sufficient for periodicity of the RVE, consider an octagonal RVE.  However, some models 

may only have periodicity in one direction, such a small periodic slice of a unidirectional 

lamina with the entire thickness modeled.   Once the boundary type for each segment has 

been specified, step 2 begins. 
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Figure 2.2. Example of 5 fibers within a periodic square RVE, showing copies 
of fibers that cross periodic boundaries 

 
Figure 2.3. Identification of periodic pairs of boundary segments 

Creating the initial placement of fibers, step 2, generally results in overlapping of fibers.  

Though the fibers can overlap at this point, the initial fiber arrangement should satisfy the 

boundaries of the RVE, which will depend on the boundary type of each segment.  Figure 

2.4 shows the flow chart of step 2, including illustrations of some of the substeps for a 

hexagonal RVE with 8 fibers. 
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𝒗𝒗1𝑚𝑚𝑛𝑛 = 𝒑𝒑0𝑛𝑛 − 𝒑𝒑1𝑚𝑚 

𝒗𝒗0𝑚𝑚𝑛𝑛 = 𝒑𝒑1𝑛𝑛 − 𝒑𝒑0𝑚𝑚 
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1. |𝒗𝒗0𝑚𝑚𝑛𝑛| − |𝒗𝒗1𝑚𝑚𝑛𝑛| < 𝜀𝜀 
2. |𝒗𝒗1𝑚𝑚𝑛𝑛 − 𝒗𝒗0𝑚𝑚𝑛𝑛| < 𝜀𝜀 
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Figure 2.4. Flow chart of procedure for initially placing fibers (step 2) with 
illustrations for a hexagonal RVE with 8 fibers (shown on the right) 
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First, the boundary segments are used to create a constrained Delaunay triangulation 

of the RVE domain.  While Delaunay triangulation is a method for creating triangles 

meeting the Delaunay condition given a set of points, constrained Delaunay triangulation 

is an extension of Delaunay triangulation that ensures the triangulation includes specified 

edges, which in this case is the RVE boundary segments.  The triangulation of the RVE 

domain is then used when placing the fibers within the RVE.  For each fiber, a random 

triangle is chosen, weighted by the area triangles so that large triangles have a higher 

likelihood of being chosen.  This is done by creating a random value between 0 and the area 

of the RVE, 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅, for each fiber.  To determine which triangle each fiber should be placed 

within, the range of values between 0 and 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 are discretized based on the area of each 

triangle, see Figure 2.4 for an example.  With a triangle randomly chosen for each fiber, 

each fiber is randomly placed within the respective triangle.  For fiber 𝑖𝑖  in triangle 𝑗𝑗, the 

coordinate of the center of the fiber, 𝒄𝒄𝑖𝑖, is given by Eqn. (2.1), where 𝑟𝑟 and 𝑎𝑎 are two 

random numbers between 0 and 1 and 𝒒𝒒0
𝑗𝑗 , 𝒒𝒒1

𝑗𝑗, and 𝒒𝒒2
𝑗𝑗  are the three vertex coordinates of 

triangle 𝑗𝑗. 

 

 𝒄𝒄𝑖𝑖 = �1 − √𝑟𝑟�𝒒𝒒0
𝑗𝑗 + √𝑟𝑟(1 − 𝑎𝑎)𝒒𝒒1

𝑗𝑗 + √𝑟𝑟𝑎𝑎𝒒𝒒2
𝑗𝑗  (2.1) 
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With each fiber randomly placed within the RVE, fibers near the boundary of the RVE 

might not satisfy the requirement of a nearby boundary segment. So, each fiber is adjusted 

to conform to the RVE boundaries, which will be one of three cases: 

1. If the fiber crosses a finite boundary, the fiber is moved along the inward normal of 

the boundary segment so that the fiber no longer crosses the boundary. 

2. If the fiber crosses a symmetric boundary, the fiber is moved to lie perfectly on the 

boundary if it is closer than 𝑟𝑟𝑖𝑖
2
; otherwise, the fiber is moved away from the boundary 

segment along the inward normal of the boundary segment such that any overlap is 

removed. 

3. If the fiber is near a periodic boundary, a periodic copy is created on the other side 

of the periodic pair of boundary segments.  If a fiber is near or crosses two periodic 

boundary segments, an extra periodic copy of the fiber should be created along the 

sum of the two periodicity vectors, refer to Figure 2.2 and Figure 2.5. 
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a) Periodic pairs of boundary 
segments and their periodicity 
vectors, 𝑞𝑞𝑖𝑖 

b) Creating a periodic copy of 
a fiber crossing one periodic 
boundary 

c) Creating periodic copies of a 
fiber crossing two periodic 
boundaries 

Figure 2.5. Creating periodic copies of fibers near or crossing a periodic 
boundary segment 

 

Once the fibers have been randomly placed within the RVE, any overlap between fibers 

must be removed.  Step 3 involves an iterative procedure proposed by Ross McLendon in 

Ref. [37].  The iterative procedure used in this work is largely unchanged from the method 

proposed in Ref. [37].  Figure 2.6 shows the flow chart for the procedure used to remove the 

overlap between fibers. 

To begin, given a cutoff distance for detecting neighboring fibers, 𝑑𝑑𝑛𝑛, the neighbors 

closer than 𝑑𝑑𝑛𝑛 of each fiber are identified using a k-d tree search.  This avoids having to 

check if each fiber overlaps every other fiber in the RVE during the iterations, which would 

be an 𝑛𝑛2 problem. 
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Figure 2.6. Flow chart of procedure for removing fiber overlap (step 3) 
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Next, for each fiber, the distance between the fiber and its neighbors is checked to ensure 

that the fibers are far enough apart.  The minimum distance between two fibers, 𝑖𝑖 and 𝑗𝑗, is 

given by 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑗𝑗 + 𝑑𝑑𝑠𝑠, where 𝑟𝑟𝑖𝑖 is the radius of fiber 𝑖𝑖, 𝑟𝑟𝑗𝑗 is the radius of fiber 𝑗𝑗, and 

𝑑𝑑𝑠𝑠 is the minimum space required between fibers.  Specifying a minimum space that must 

exist between fibers effectively controls how random the realization will become.  As the 

minimum space between fibers increases, the fiber arrangement tends toward hexagonal 

packing, though it is prohibitive to precisely create hexagonal packing from an initial 

random placement of fibers.  It is convenient to propose a minimum spacing fraction, 𝜉𝜉, 

that is the distance required between fibers divided by the average of the radii of the two 

fibers.  One value of 𝜉𝜉 will be specified for an entire fiber arrangement, while the minimum 

distance between two fibers is given by 𝑑𝑑𝑠𝑠 =
�𝑟𝑟𝑖𝑖+𝑟𝑟𝑗𝑗�

2
𝜉𝜉.  If two fibers are too close to each 

other, both fibers are moved apart from each along a line through the fiber centers. 

Once each fiber is far enough away from its neighbors, the fibers are adjusted to conform 

to the RVE boundaries, using the same method in step 2.  Fibers crossing finite or symmetric 

boundary segments are adjusted to lie within the RVE, and where needed, periodic copies 

of fibers that cross periodic boundary segments are created.  If an iteration occurs were no 

overlap between fibers exists, then the final fiber arrangement is determined. 

Algorithm for Meshing Fiber Arrangements 

The previous section discussed the method for creating the arrangement of fibers, which 

includes the RVE boundaries, fiber radii, and fiber centers.  To create a valid mesh for 

FEA, a mesh for the RVE is needed.  There are many third-party meshing libraries that do 
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a great job at creating quality meshes given a boundary mesh, but a boundary mesh must 

be created for the basic geometry first.  The algorithm for creating the boundary and area 

meshes can be divided into four steps: 

1. Creation of boundary mesh for each fiber 

2. Creation of boundary mesh for the RVE boundaries 

3. Constrained Delaunay triangulation of fibers and matrix 

4. Adjustment of mesh to conform to each fiber’s circular boundary 

For the first step of the algorithm, creating a boundary mesh for fibers that do not cross 

a boundary of the RVE is straightforward.  Points placed around the circumference of the 

fiber and line elements connecting the points create a faceted closed circle.  However, for a 

fiber crossing a periodic or symmetric boundary, the step becomes more complex.  Recall 

that during initial placement and the iterative removal of overlap between the fibers, fiber 

can cross periodic boundaries, but periodic copies of the fibers are made.  It is common for 

either the original fiber or the periodic copy of the fiber to get pushed outside the RVE 

during iterations.  Boundary meshes must still be created for fibers that barely cross a 

periodic boundary segment. 

Figure 2.7 provides illustrations of the procedure for creating a boundary mesh for fibers 

that cross boundary segments.  First, the intersections of the fiber with any boundary 

segments are determined, requiring a line segment-circle intersection calculation, see Figure 

2.7a.  Next, the triangulation of the RVE domain from the previous algorithm is used to 

test if the fiber center lies within the RVE.  If the fiber center does not lie within any 
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triangles and there are no intersections between the fiber and any boundaries, the fiber is 

thrown out.  If the fiber lies within the RVE domain or intersects a boundary, then a surface 

mesh is needed for at least part of the fiber.  Like before, points are initially evenly placed 

around the circumference of the fiber, refer to Figure 2.7b.  This work used 20 points to 

start with.  Points that are very close to the intersection between a fiber and RVE boundary 

are removed, refer to Figure 2.7c.  At this point, a list of points around the fiber, including 

any intersections with RVE boundaries has been determined, which are then sorted going 

counter-clockwise around the fiber, refer to Figure 2.7d.  If two intersection points lie next 

to each other without another point between them, one is added.  An example of this is 

shown in Figure 2.7e with the addition of point 1 for the lower fiber.  As illustrated in 

Figure 2.7g, any points lying outside the RVE domain are removed, see Figure 2.7f.  If more 

than one point remains, line segments are created between each point, except when two 

intersection points are next to each other in the list of points, since this part of the boundary 

mesh will be taken care of in step 2 when the RVE boundary is meshed. 
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Figure 2.7. Illustration of procedure for creating boundary mesh for fibers that 
cross periodic boundary segments 

Next is step 2, which is creating the boundary mesh for the RVE boundaries.  Line 

elements are created through each point on the RVE boundary, including any intersection 

points created during step 1.  To make this efficient, each intersection between a fiber and 

boundary segment in step 1 should be tracked.  Once the boundary mesh of the fibers and 

RVE boundary have been created, a third-party meshing library is used to create the mesh 

of the domain.  For this work, a library called Triangle was used. [38]  Finally, any new 
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nodes in the resulting mesh that lie on line elements that defined the boundary of a fiber 

should be moved to lie on the fiber circumference.  If quadratic triangles are used for the 

FEA analysis, then the mesh closely captures the circular shape of the fibers.  Figure 2.8 

shows a typical mesh of a periodic hexagonal RVE with 25 fibers. 

 

 
Figure 2.8. Typical mesh of a periodic hexagonal RVE with 25 fibers and a fiber 
volume fraction of 40% 

 

2.2.2 Multiscale Laminated Composite Models 

Researchers have used various approaches to predict the behavior of materials across 

scales.  Some used a surrogate microscale model at each quadrature point, referred to as the 

𝐹𝐹𝐸𝐸2 method, while others use complex shape functions that can better capture the response 
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of the underlying microstructure.  As computational resources have increased, it is possible 

to consider much larger models, provided that this analysis framework can exploit HPC 

resources.  Instead of modeling a lamina as a homogeneous material or employing reduced 

order models to capture the response of the microstructure, this work will revisit the free-

edge problem using a multiscale model that directly models the random fiber/matrix 

microstructure of a laminated composite. 

In this work, the 0-90 ply interface is the focus of the free-edge analyses.  To study the 

effect of the heterogeneous microstructure on the stresses that develop along the ply 

interface near the free-edge, the fibers and matrix of the 00 and 900 plies will be modeled 

discretely.  The method proposed herein is limited to discretely modeling the 00 and 900 

plies.  Studies requiring discretely modeled plies with different orientations will require a 

more complex meshing strategy than used herein. 

Even with increasing HPC resources, the entire domain of a typical composite specimen 

is prohibitively large for directly modeling the fibers and matrix, but a much smaller unit 

cell can be considered that is representative of the entire specimen.  For a free-edge analysis, 

it is important that the width of the model is large enough so that the free-edge effect on 

one side of the specimen does not affect the stress state on other side.  For this work, models 

will be wider than 10 ply thicknesses.  However, in the direction of the uniaxial load, the 

model can be much smaller. 

To begin, fiber/matrix cross-sections are created for the 00 and 900 plies.  The method 

for creating fiber/matrix models discussed in the last section is used to make the cross-
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sections.  The cross-sections are translated and rotated to be where the respective ply will 

exist, and then the cross-sections are extruded in such a way to keep the nodes along the 

ply interface compatible, refer to Figure 2.9. 

 

 

 
Figure 2.9. Extrusion of ply cross-sections to create volume mesh of 00 and 900 
plies in a crossply laminate 

 

Plies away from the interface of interest can be modeled as a homogeneous material, 

which does not require as refined of mesh as those used for the discretely modeled plies.  

However, a ply modeled as a homogeneous material that is connected to a discretely modeled 

ply requires a transition mesh, transitioning from the small element size of the discretely 

modeled ply to a larger element size.  For the other homogeneous plies, a structured mesh 

can be used. 
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For discretely modeled plies, quadratic wedges elements are used, since the triangle 

fiber/matrix meshes are extruded to create the volume meshes for the laminae.  In the 

structured meshes, quadratic hexahedral elements are used.  Consequently, the transition 

mesh must connect to quadratic quadrilateral faces.  Within the transition mesh, quadratic 

pyramid elements are used to change from quadrilateral faces to triangle faces.  Then, 

tetrahedral elements are created, using a general tetrahedral mesh library, TetGen, between 

the pyramid elements to form the rest of the transition mesh. [39]  Figure 2.10 shows an 

illustrative example of a transition mesh between two hexahedral meshes with different 

refinements.. 

 

Figure 2.10. Illustrative model with refined mesh layer, coarser mesh layer, and 
a transition mesh layer, which uses pyramid and tetrahedral elements 
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For more realistic example, Figure 2.11 shows a model for a [±45/0/90]s laminated 

composite with both heterogeneous and homogeneous plies within the same multiscale 

model.  The +450 ply, the top ply, is modeled using a structured mesh of hexahedral 

elements.  The -450 ply, the second ply from the top, is modeled using a combination of 

pyramid and tetrahedral elements.  Finally, the 00 and 900 plies are modeled as discrete 

fibers and matrix using wedge elements. 

 
Figure 2.11. A multiscale model for a [±45/0/90]s laminated composite with 
mixed heterogeneous and homogeneous plies (top two plies are clipped to show 
interior mesh refinement) 
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2.2.3 Three-Dimensional Textile Models 

Though researchers have extensively studied two-dimensional textiles, simulating the 

behavior of three-dimensional textiles has received less attention due to the complex 

geometry and need for large meshes.  Several tools exist that can create 3D textile models, 

which can be separated into two categories: idealized and non-idealized.  Two tools specialize 

in creating non-idealized textile geometries: Virtual Textile Morphology Suite (VTMS) and 

Digital Fabric Mechanics Analyzer (DFMA).  DFMA focuses on fabrics that do not have a 

matrix surrounding the tows, though it is more robust for creating fabric architectures. [19] 

[20]  The Air Force Research Lab (AFRL) developed VTMS for modeling composite 

materials. [19] [22] VTMS simulates the effects of processing on the tow geometry, creates 

surface representations of the tows, and utilizes a mesh independent method to predict the 

response of the textile model.  The mesh independent method was developed so that meshes 

of each constituent did not have to be compatible and could even overlap.  This introduces 

error near the interfaces tow-matrix interfaces, which are regions of great interest when 

predicting damage.  Since this work utilizes a standard FEA formulation, conforming meshes 

of the matrix and tows without interpenetrations is necessary, but VTMS is not capable of 

creating the compatible meshes.  Consequently, this work will use VTMS to create non-

idealized geometry for orthogonally woven textiles, but an in-house tool will use the 

geometry to create a finite element mesh of the textile composite.  Figure 2.12 shows an 

overview of the process used to create 3D textile models. 
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Figure 2.12. Overview of process used to create 3D textile models 

 

Using VTMS to Create Non-Idealized Geometries for 3D Textiles 

VTMS models the effects of processing through the use of “digital chains”, which consist 

of rigid spheres connected by pins to elastic rod elements.  The rod elements can carry load 

axially, while interpenetration is not allowed between rigid spheres.  When any two rigid 

spheres very come close to each other, a very stiff contact element is created between them 

to prevent the interpenetration.  If enough rigid spheres are used along the digital chain, a 

single digital chain resembles the behavior of a solid fiber, except that the digital chain does 

not have a bending stiffness like an actual fiber.  Ideally, a digital chain should be used for 
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each fiber within the tow, but this is currently computationally prohibitive.  Although 

VTMS can use multiple digital chains to represent each tow, it is more computationally 

efficient to start with a single digital chain for each tow.  The process to create the textile 

model involves several steps, and each digital chain representing a two will be replaced with 

multiple digital chains at a later step. 

To begin, a weave pattern is specified in VTMS, and the initial tow geometry results in 

a lot of space between digital chains, as shown in Figure 2.13.  The space between digital 

chains is removed during the relaxation steps.  Since contact is only enforced for the rigid 

spheres, it is important to ensure that the rod elements are short enough to prevent digital 

chains from passing through each other during relaxation steps.  However, it is also 

important to make the elastic rod elements long enough to prevent the rigid spheres within 

a single digital chain from touching each other, which would result in numerical instability.  

For this work, the length of the rod elements divided by the diameter of the rigid spheres 

were specified to be 0.6.  An example of a digital chain that represents one of the binders 

is shown in Figure 2.14.  Unfortunately, the spheres are not plotted to scale within VTMS, 

so the spheres in Figure 2.14 are not shown to scale. 
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Figure 2.13. Initial configuration of orthogonally woven textile 

 

 

Figure 2.14. Mesh of a digital chain that represents a binder (spheres are not 
to scale) 
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A relaxation step is fundamentally an elasticity and contact analysis.  The rod elements 

of the digital chains expand or contract, and contact is modeled between the rigid spheres.  

Before the relaxation, the ends of the digital chains are fixed, and a tensile prestress is 

specified within each digital chain, which will encourage the rod elements to contract.  

During a relaxation step, the prestress within the digital chains will cause the digital chain 

to move by itself, even without contact with another digital chain.  The motion of the 

digital chains is reduced via a damping factor, which the user must control.  For the first 

relaxation steps, a small damping factor is needed to prevent digital chains from moving 

too far.  After much of the space has been removed between fibers, a larger damping factor 

can be used.  Actual textiles do not exhibit nearly as much space between tows as the model 

shown in Figure 2.13.  So, to encourage the digital chains to move towards the midplane of 

the model, the ends of the digital chains were modified outside of VTMS.  VTMS can output 

the fabric geometry to a file between each step.   So, a Python script was developed to 

move the ends of the digital chains to the midplane, and the modified fabric was imported 

back into VTMS.  An example of model with the ends of the digital chains moved to the 

midplane is shown in Figure 2.15.  Relaxation steps with just tension in the digital chains 

will consolidate the textile some in the out-of-plane direction, though not enough to create 

a realistic geometry. 
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Figure 2.15. Configuration after ends of digital chains have been moved towards 
the midplane 

 

In addition to the tension within the digital chains causing the digital chains to move, 

rigid or flexible molds can be used to compact the model in the out-of-plane direction during 

relaxation steps to yield a more realistic textile geometry.  Figure 2.16 shows an example 

of a textile model with rigid planes used for compaction.  Multiple relaxation steps are 

required to remove the unrealistic space between the digital chains.  Typically, 10 to 20 

relaxation steps are required for an orthogonally woven model with 5 weft layers.  Thicker 

models require more relaxation steps to remove the space between digital chains.  Figure 

2.17 shows a textile model after several relaxation steps. 
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Figure 2.16. Textile model with rigid planes for compaction during relaxation 
steps 

 
Figure 2.17. Textile model using one digital chain per a tow after several 
relaxation steps 
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After the textile model with one digital chain per a tow resembles a realistic textile more 

closely, each digital chain is replaced with multiple digital chains.  When only one digital 

chain is used per a tow, the cross-section of a tow cannot deform and remains circular, but 

when multiple digital chains are used to represent a tow, the tow cross-section is defined by 

the collection digital chains and can therefore deform as the digital chains move relative to 

each other.  As the model size or number of digital chains increases, it quickly becomes 

computationally expensive, so a compromise is needed between fidelity and computational 

cost.  For the 2x2 orthogonal weave shown in the preceding figures, 10 digital chains per a 

tow were used, and each relaxation step required about an hour on an overclocked Intel 

Core i7-5820k processor with overclocked DDR4 RAM at a frequency of 2800 MHz. 

 

 
Figure 2.18. Textile model with 10 digital chains per a tow 
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When multiple digital chains are used per a tow, the number of contact elements 

increases nonlinearly.  As a result, the elasticity and contact problems become much more 

complicated and expensive.  To ensure digital chains do not pass through each other during 

a relaxation step, the rigid planes must be moved in smaller increments and the damping 

factor, which reduces how much the geometry changes during a relaxation step, must be 

carefully chosen.  As a result, when multiple digital chains are used per a tow, more 

relaxation steps are required than when one digital chain is used per a tow. 

Removing the unrealistic space between tows near the midplane was one of the major 

challenges in generating relatively thick 3D textile models in VTMS.  As the rigid planes 

compact the textile model, the cross-sections of the outer layers of tows deform significantly 

before the space between tows is removed.  This issue exists because contact is the 

mechanism used for removing the space between tows.  Compaction of the model is to some 

extent realistic, but an actual specimen is compacted starting with an initial state that does 

not have large amounts of space between tows.  For future studies, a different approach is 

needed for removing the space between tows before compaction is simulated.  However, 

with the current features of VTMS, a tedious work around was partially successful.  

Typically, just the ends of the digital chains are fixed during relaxation steps, but VTMS 

allows the user to specify the displacements of all the nodes within a digital chain.  So, tows 

can be specified not to move, while a rigid plane compacts specific layers at a time.  The 

digital chains with specified zero displacements are still considered for contact, so digital 

chains that can move do not pass through others. By specifying the digital chain within 
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selected tows to have zero displacements, a few layers of tows can be compacted at a time, 

which will remove the space between tows near the midplane without as much unrealistic 

deformation in the cross-sections of the outer tows.  Figure 2.19 shows the textile model 

after the warps and wefts have been compacted, while every node in the binders were 

specified to have zero displacements. 

 

 

 

 
Figure 2.19. Textile model after relaxation and compaction of warps and wefts 
(every node within the binders were specified to have zero displacement) 

 

After all of the warps and wefts have been incrementally compacted, the displacements 

in the warps and wefts are specified to be zero, and the binders are allowed to move.  A 

Region A 
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large tension is specified for the binders to remove the excessive slack.  During this step, 

the rigid planes are not used to compact the textile.  Figure 2.20 shows the textile model 

after multiple relaxation steps.  Recall that the elastic rod elements of a digital chain may 

shorten in length during the relaxation steps due to the tensile prestress.  The rod elements 

can shrink significantly during this step due to large amounts of slack in the binders, see 

Region A in Figure 2.19.  Because of this, each digital chain within the binders must be 

remeshed between relaxation steps to ensure the elastic rods are not so short that rigid 

spheres within the same digital chain come into contact with each other, which would cause 

numerical instability. 

 

 

 
Figure 2.20. Textile model after relaxation of all digital chains (no compaction 
through rigid planes yet) 
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Finally, only the ends of each digital chain in the textile model are fixed, and rigid 

planar molds are used to compact the textile.  This results in flatting of the binders on the 

outside of weave, where the rigid planes come into contact with the digital chains, as shown 

in Figure 2.21.  For the textile model shown, more than three days of wall-time was required 

to perform all the relaxation steps. 

 

 
Figure 2.21. Textile model after compaction of all digital chains using rigid 
planes 

 

The next step to create a finite model for a textile composite is to create a surface 

representation of each tow.  To create a surface for a tow, cross-sections are determined 

along the path of the tow by fitting a spline around the bundle of digital chains that 

represent the tow.  However, a few issues emerged when a creating the surfaces of the tows.  
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First, VTMS failed to create some cross-sections, resulting in gaps along the tow path and 

extreme distortion near the ends of the tows, as shown in Figure 2.22. 

 

 
Figure 2.22. Surface for a binder tow with extreme distortion and gaps 

 

To alleviate the distortion near the ends to the tows, a Python script was developed to 

clip the digital chains.  The result is shown in Figure 2.23.  However, VTMS still failed to 

produce some cross-sections, resulting in gaps in the tow surfaces, even after the digital 

chains were clipped, as shown in Figure 2.24.  Refining the number of cross-sections created 

for tows with discontinuous surfaces fixed the issue. 

 

Extreme distortion 

Gap 
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Figure 2.23. Textile model with digital chains clipped to smaller region to avoid 
surface meshing issues 

 
Figure 2.24. Surface for a binder tow after clipping the digital chains with a gap 
within the surface 

Gap 

Rough texture 
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The second issue encountered when creating the tow surfaces was unrealistic rough 

texture in the tow surface, which is also shown in Figure 2.24.  When VTMS creates the 

cross-sections, a spline is fit around the bundle of digital chains that define the tow.  The 

minimum radius of curvature for the spline is the radius of one of the digital chains by 

default, resulting in a greatly textured surface for the tow.  By request, AFRL added an 

option to control the minimum radius of curve of the splines.  By specifying a large minimum 

radius of curvature (called the magnification factor under “Dial” settings in VTMS), the 

tow surfaces were much smoother, though some perturbations remained, as shown Figure 

2.25. 

 

Figure 2.25. Tow surface using splines with a minimum radius of curvature 10x 
that of the digital chains 
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By clipping the digital chains, modifying the number of cross-sections created for each 

tow, and increasing the minimum radius of curvature used for the splines that defined the 

tow cross-sections, smooth surface representations of the tow geometry were created, as 

shown in Figure 2.26.  The next steps would be clip the tow surfaces down to the analysis 

region, create a volume mesh for each tow, and create a compatible mesh for the matrix 

that surrounds the tows.  However, generating the volume meshes that can be used for 

standard FEA requires that there are no interpenetrations between tows.  Unfortunately, 

the contact problem with digital chains only approximates the tow surfaces.  Consequently, 

many interpenetrations typically exist between the tow surfaces.  VTMS includes a method 

for removing interpenetrations, but the algorithm is not precise enough to allow the creation 

of a conforming, non-intersecting volume mesh for each tow.  Consequently, to remove the 

interpenetrations, the cross-sections for each tow are shrunk towards the centroid by a small 

amount, referred to as compensation within VTMS, resulting in some matrix material 

between each tow and its neighboring tows.  The tow surfaces after compensation is shown 

in Figure 2.27.  This removes many of the interpenetrations, but some very small 

interpenetrating areas typically still exist.  The remaining interpenetrations were addressed 

by manually moving some tows after the next step of clipping the geometry down to the 

analysis region. 
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Figure 2.26. Tow surfaces based on the group of digital chains used for each 
tow 

 

 
Figure 2.27. Tow surfaces after cross-sections are contracted 
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Next, the tows are clipped in-plane down to the analysis region, as shown in Figure 2.28.  

It should be noted that it is important to specify a tight tolerance for the clipping of the 

tows within VTMS.  Otherwise, the nodes on clip planes will not lie precisely enough on 

the respective clip plane.   

 

 
Figure 2.28. Tow surface clipped down to the analysis region 

 

When VTMS creates the clipped tows, the surfaces are closed on all sides and described 

by a surface mesh of general polygons.  Some polygons on the boundary of the clip region 

can have over a thousand sides and be quite complex, but most are faceted triangles and 

quadrilaterals.  The in-house tool takes the surface geometry in this state, and creates the 

finite element model, but a few issues persist that require manual modification of the tow 

surfaces.  Some interpenetrations typically occur where binders cross over wefts, and a 

significant amount of space between tows near the midplane is created when the tow cross-
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sections are shrunk, as shown in Figure 2.29a.  Tows are manually moved around to remove 

interpenetrations remaining interpenetrations and more evenly distribute the tows through 

the thickness of the model, as shown Figure 2.29.  To manually rearrange the tows, 

translations were specified for single or even groups of tows. 

 

 

 
a) Before moving 

 
b) After moving 

Figure 2.29. Clipped tow surfaces before and after manual adjustment 
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Creating a Finite Element Model from VTMS Tow Geometry 

Using the tow surfaces clipped down to the analysis region that VTMS creates, an in-

house tool was developed to create the finite element model.  The algorithm for creating 

the final finite element model can be divided into five steps: 

1. Creation of surface meshes for the tows 

2. Creation of a surface mesh for the matrix that is compatible with the tow surface 

meshes 

3. Creation of a volume mesh for the matrix 

4. Creation of volume meshes for the tows and determination of local data, such as 

the local coordinate systems and local fiber volume fraction 

5. Consolidation of volume meshes and final modifications 

Step 1: Creation of Surface Meshes for the Tows 

The surface description of the tows that VTMS produces is a faceted, polygonal surface 

mesh.  Some polygons have over a thousand edges, and some of the edges in the surface 

mesh can be very short.  The polygonal surfaces could directly be given to third-party 

tetrahedral meshing library, like TetGen, but the volume mesh ends up having excessive 

refinement in some areas. [39]  Third party meshing libraries do not typically coarsen the 

surface elements of the input, so TetGen creates very refined regions near surface elements 

with unusually small edges.  Instead, a more uniform surface mesh for the tows was created 

from the polygonal surface mesh that VTMS creates. 
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VTMS writes clipped tow (.ctw) files that contain a description of the tows.  The in-

house code extracts the polygons and list of points that define the path of the tow, called 

medials, which are the centroids of the tow cross-sections, and stores the information within 

a data structure.  The medials will be sued to define tow path, but VTMS sometimes fails 

to calculate the centroid of some cross-sections, resulting in “-1.#IND00000” in place of a 

number within the file.  It is important to filter these medials out. 

After all the .ctw files have been read, the polygons that lie on the in-plane boundaries 

of the textile model are identified, and the nodes are adjusted to lie exactly on the extent 

of the mesh, removing any numerical error in the coordinates.  Steps later in this process 

depend on the boundary nodes exactly lying on the clipping plane.  VTMS uses a coordinate 

system where the y-axis is the out-of-plane direction of the textile, but the out-of-plane 

direction is typically the z-axis in the literature, so the tow surface and medial coordinate 

are rotated.  Next, the tow surfaces and medials are scaled so that the thickness of the 

textile model is a more realistic value.  The textile model of the 2x2 orthogonal weave in 

this work is assumed to be 5.25 mm thick.  Finally, all the surface meshes are translated so 

that the minimum coordinate in the textile mesh will lie at the origin. 

At this point the surface mesh for each tow is modified so that the edge lengths are 

more uniform and every surface element is a triangle instead of a general polygon.  The 

processes illustrated for a very simple mesh of rectangles in Figure 2.30.  First, any edges 

that are less than ¼ of the average edge length are collapsed, resulting the two nodes being 

combined.  This can result in polygons with less than three edges, which are removed.  
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When an edge is removed, the nodes are combined into one, but special care must be taken 

to ensure that if one or both of the two nodes lie on the boundary of the textile then the 

node lying on the fewest boundary planes is the one removed.  For example, if one node lies 

on the 𝜎𝜎 = 0 and 𝜎𝜎 = 0 planes and another lies on the 𝜎𝜎 = 0 plane, then the node lying on 

the 𝜎𝜎 = 0 plane should be the one removed.  See parts a and b of Figure 2.30 for an 

illustration of the approach.  This strategy ensures that the boundary of the textile remains 

exactly planar. 

After the short edges are removed, the unusually long edges are refined.  Recall the goal 

is create a surface mesh with a more uniform mesh refinement.  Edges larger than four 

standard deviations from the average edge length are subdivided into the edge length 

divided by the average edge length (rounded to the nearest integer) smaller edges.  Refer 

to parts c and d of Figure 2.30. 
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a) Initial polygon mesh with long and short 
edge lengths 
 

 
b) Mesh after first short edge is collapsed, 
bottom-left node is kept since it lies on more 
boundaries 

 
c) Mesh after all short edges have been 
collapsed 

 
d) Mesh after long edges have been refined 

Figure 2.30. Illustration of modification of polygonal meshes by collapsing short 
edges and refining long edges  
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The final step for creating the tow surface meshes is replacing the polygon elements with 

a submesh composed of triangles.  The polygons created by VTMS are faceted, so all of the 

nodes in an element lie in the same plane, within numerical error.  So, Triangle is used to 

create the triangle submesh that will replace the polygon.  Since the polygon edges have 

been modified to be more uniform at this point, Triangle is only allowed to add nodes within 

the closed domain and not along any edges of the polygon.  For the model in this work, the 

maximum area a single triangle can have was specified to be 1.4�̅�𝑎2, where �̅�𝑎 is the average 

edge length of the polygon.  As mentioned before, some polygons can have over a thousand 

edges.  The largest polygons in the surface meshes exist where a binder was cut by a clipping 

plane in VTMS.  Figure 2.31 shows a triangle submesh for one of these polygons.  
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a) A large polygon from where a binder is cut by the textile boundary containing over a thousand 
edges 

 
b) Closeup of a triangle submesh for highlighted red region of the polygon in part a  

Figure 2.31. Submesh of large polygon from the surface of a binder tow that 
was cut by the clipping plane in VTMS 

 

Once each polygon is replaced with the triangle submesh and duplicate nodes have been 

removed, the tow surface meshes are complete.  Figure 2.32 shows the final surface mesh 

for one of the binders cut by a clipping plane within VTMS.  This procedure results in a 
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significantly more uniform mesh refinement for the surface meshes, which allows quality 

volume meshes to be easily created. 

 

 

 

Figure 2.32. Final surface mesh for a binder tow that was cut by the clipping 
plane in VTMS 

 

Step 2: Creation of a Surface Mesh for the Matrix 

Standard FEA requires a compatible mesh for all constituents.  To create a surface mesh 

that is compatible with the tow surface meshes, a surface mesh for each boundary face of 

the textile model is created, excluding regions where the tows intersect the textile boundary 
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since these regions are already meshed.  To create a mesh for one of the boundaries of the 

textile model, the elements of the tow surface meshes that lie on the boundary are identified.  

Next, the all edges of those elements that are sheared by two elements are removed. which 

leaves the edges that define the intersection of the tow and the boundary of the textile 

model.  Next, any isolated edges or nodes in the tow surface meshes (those not part of 

elements that lie on the boundary) that touch the textile model boundary are found. Finally, 

edges along the outside of the textile model boundary are created.  Combining all the nodes 

and edges discussed in this paragraph and specifying where tows intersect the boundary to 

be holes, a triangle mesh is created for the boundary of the textile model.  Figure 2.33 shows 

a mesh created for the boundary of the textile model that is normal to the y-axis with the 

most positive y-value. 
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a) Mesh of entire textile model boundary 

 
b) Mesh of region highlighted in part a 

Figure 2.33. Mesh of textile model boundary that is normal to the y-axis 

 

Next, a copy of the tow surface meshes is created and elements that lie on the textile 

boundary removed, as shown in Figure 2.34.  The outward normal of all elements in the 



 

62 

 

copy of tow surface meshes is reversed, so that the outward normal of the surface points 

away from the matrix volume to be meshed.  This is important since TetGen requires that 

the surface elements’ normal vectors point outward from the volume to be meshed.  The 

surface mesh of the neat matrix is created by combining the mesh of the textile boundaries 

and the modified copy of the tow surfaces.  Figure 2.35 shows the surface of the neat matrix 

pocket of a 3D textile.  In the figure, the surface of each tow is colored differently to clearly 

show that the matrix surface is compatible with the surfaces of the tows. 

 

 

 
Figure 2.34. Surface meshes of tows without elements that lie on the textile 
boundaries 
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Figure 2.35. Surface mesh of the neat matrix pocket of a 3D textile (the surface 
of each tow is colored differently for clarity) 

 

Step 3: Creating of a Volume Mesh for the Matrix 

With a quality surface mesh for the matrix, creating a quality tetrahedral volume mesh 

becomes easy using TetGen.  Due to the large textile files, it would be relatively expensive 

to use the command line TetGen program.  In this work, the native C++ library for TetGen 

was used so that that file I/O could be avoided.  TetGen includes a data structure to store 

the meshing flags for the native interface.  Regarding a detail that is not well documented, 

it is important to ensure the “object” flag is set to tetgen::tetgenbehavior::POLY; otherwise, 
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the volume mesh will fail to stay inside the complex closed surface mesh.  Additionally, the 

quality of the tetrahedral mesh heavily relies on the “minratio” and “mindihedral” flags.  

For the meshes used in this work, 1.1 and 14 were used respectively. 

Step 4: Creation of Volume Meshes for the Tows and Determination of Local Data 

This step begins with creating tetrahedral volume meshes for the tows.  For this work, 

TetGen was used to create the volume mesh with the same parameters as described in step 

3.  The resulting volume meshes exhibited nearly uniform refinement within each tow, 

though the elements within binders were smaller than the elements within the warps and 

wefts, as shown in Figure 2.36.  This was largely due to the higher number of cross-sections 

needed for the binders than the warps and wefts to avoid gaps within the surfaces, which 

was described earlier in the chapter.  Because there were more cross-sections, a finer surface 

mesh was created, which led to a finer volume mesh.  The binders are expected to experience 

complex stress states, so the increase mesh refinement may be justified, though no studies 

were conducted to determine an optimal refinement for each tow. 

  

 



 

65 

 

 
a) Warp 

 
b) Binder 

Figure 2.36. Clipped view of a typical warp and binder tow showing the interior 
mesh refinement of each (shown at same scale) 

 

After the volume meshes are created for the tows, the local material coordinate system 

and local fiber volume fraction is determined.  The local material coordinate system within 

the tows is calculated for each node in the volume meshes, while the local fiber volume 

fraction is calculated per element basis.  To define the fiber direction within a tow, a 

piecewise cubic spline is fit to the medials (area centroids of each cross-section VTMS 

created), and the tangent of the spline is assumed to be the direction aligned with fibers in 

the tow.  For each node within the tows, the local x-axis is determined by finding the closest 
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point on the spline of the tow path and using the unit tangent vector as the direction of 

the local x-axis.  The local y-axis is assigned to be parallel to the cross product of a vector 

parallel to the global z-axis and the local x-axis.  The local z-axis is defined by the cross 

product of the local x and y-axes, which define a right-handed coordinate system. 

To assign the local fiber volume fraction, the cross-sectional area is calculated at 1000  

sampled points along the tow’s path and are compared to a nominal cross-sectional area.  

The nominal cross-sectional area of a tow is given by its volume divided by its length, �̅�𝐴𝑖𝑖 =

𝐿𝐿𝑖𝑖/𝑉𝑉𝑖𝑖 .  The volume of each tow is calculated by summing the volume of each element within 

the tow, which will be denoted by 𝑉𝑉𝑖𝑖 for tow 𝑖𝑖.  The length of each tow, 𝐿𝐿𝑖𝑖, is calculated 

using the sum of the distance between the medials.   

Let 𝑡𝑡 be a parametric coordinate along the tow path that goes from 0, at one end of a 

tow, to 1, at the other end of the tow. The medials are fit using a spline as a function of 𝑡𝑡. 

Next, the cross-sectional area is computed at 1000 sample points along the tow path, and 

the cross-sectional area, 𝐴𝐴, is fit using a spline as a function of 𝑡𝑡.  Given a nominal fiber 

volume fraction for the tows, 𝑉𝑉�𝑓𝑓, the local fiber volume fraction for a position along the tow 

path is given by Eqn. (2.2), where 𝑉𝑉𝑓𝑓(𝑡𝑡) is the local fiber volume fraction as function of the 

parametric coordinate, 𝑡𝑡, and 𝐴𝐴(𝑡𝑡) is the cross-sectional area at 𝑡𝑡. 

 

 𝑉𝑉𝑓𝑓(𝑡𝑡) =
𝐴𝐴(𝑡𝑡)
�̅�𝐴𝑖𝑖

𝑉𝑉�𝑓𝑓 (2.2) 
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The local volume fraction is computed at 1000 discrete samples along the tow path, and 

a spline fit of the local volume fraction as a function of 𝑡𝑡 is also created.  Given a (x, y, z) 

coordinate, the closest point on the tow path can be determined, along with the 

corresponding value of 𝑡𝑡.  It should be noted that determining the value of 𝑡𝑡 for a point on 

the tow path closest to another point requires a iterative solution, and the bisection method 

was used in this work to solve for 𝑡𝑡.  For each element in a tow, the local fiber volume 

fraction is determined by computing the centroid of the element, finding 𝑡𝑡 at the closest 

point on the spline of the tow path, and calculating the fiber volume fraction at that value 

of 𝑡𝑡 using the spline fit.  Figure 2.37 shows the local fiber volume fraction within the tows 

for an orthogonally woven textile with a nominal fiber volume fraction of 0.6.  Since the 

cross-sections of the tows can deform significantly when VTMS simulates the relaxation and 

compaction of the tows, the local fiber volume fraction can vary significantly throughout 

the tows.  The impact of the variation of fiber volume fraction is evaluated later in this 

work. 
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Figure 2.37. Contours of local fiber volume fraction in the tows with a nominal 
fiber volume fraction of 0.6 

Step 5: Consolidation of volume meshes and final modifications 

For the final step of creating the 3D textile models, the volume meshes of the tows and 

neat matrix are combined, duplicate nodes are removed, linear tetrahedrals are replaced 

with quadratic tetrahedrals, the mesh is divided into partitions for distributed computing, 

and the files are written in an in-house file format described later in this chapter. 

2.2.4 Lessons Learned 

A framework was developed to create fiber/matrix models with varying shapes and 

boundary types, multiscale laminate composite models, and non-idealized 3D textile models.  

Many lessons were learned from developing the framework, and this section describes some 

that may help other researchers developing similar tools. 
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First, regarding third-party libraries, several libraries were invaluable in this framework.  

Triangle and TetGen both provided great performance and integrated easily into the code.  

More general meshing libraries that create quality quadrilateral and hexahedral meshes 

would be a very nice addition, but few existing tools offer a C++ API and many require 

licensing.  Two k-d tree libraries were used in the code to efficiently conduct spatial searches: 

libkdtree++ and nanoflann. [40] [41]  They each take very different approaches to the data 

structures.  Using a self-contained approach, libkdtree++ stores pointers to the objects 

(whether it be nodes, elements, etc.) within its own data structure and requires an accessor 

to get the coordinate of the object.  It provides methods for finding other objects within a 

specified distance or the nearest objects to a given object.  However, a limitation was 

discovered.  The library threw exceptions when many objects were clustered in several 

different very small areas.  If the objects were spaced out well, libkdtree++ required 

relatively little interface code and performed well.  On the other hand, nanoflann builds a 

k-d tree on top of an existing vector of objects, and it does not modify the underlying vector.  

Building the k-d tree index information was expensive, and the templates used by nanoflann 

became quite complicated with already heavily templated classes within this framework.  

However, it was very memory efficient and fast once the index information was constructed.  

If objects are often inserted within an algorithm requiring k-d searches, then libkdtree++ 

is the way to go.  If the objects are not inserted and the coordinates of the objects do not 

change when k-d searches are needed, then nanoflann seems the best choice. 
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Second, embracing generic coding for the mesh storage, geometry information, and 

algorithms that operate on meshes saved a lot of development time.  Admittedly, templating 

within C++ can become quite verbose; so, the components of a framework that utilize 

numerous template should be selected carefully.  Very few templates were used in other 

parts of the framework as whole, but the entire preprocessing code was based on C++ 

templates, allowing the finite element analysis and postprocessing codes to use the same 

code to store and manipulate the geometry, and perhaps most helpful, unified all the I/O 

algorithms for serial and distributed systems. 

Third, creating Python bindings for all the preprocessing C++ code resulted in a 

convenient framework for creating very complicated models through scripting.  Different 

Python scripts could create different types of models, whether it be fiber/matrix models, 

laminate composite models, or textile models.  The Python scripts were organized into 

modules and then into a package.  Providing the native libraries allowed other parts of the 

finite element and postprocessing C++ code to reuse a lot of the preprocessing code, while 

the Python package provided a more expressive way of creating models.  The strategy 

worked quite well. 

Finally, many issues were discovered with VTMS when creating large 3D textile models.  

The tools had not been tested for thick textile models before, and it was shown that relying 

on the build-in contact analyses to remove a lot of space between tows resulted in extreme 

deformation of the tow cross-sections before the space near the midplane was removed.  

Additionally, the user was required to guide VTMS through many of the steps and make 
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informed choices for many parameters.  Because of this, the tool exhibited a steep learning 

curve to effectively utilize, and many work arounds were needed for existing issues.  Another 

issue was the existence of interpenetrations between tows.  Since contact is only modeled 

between the rigid spheres, interpenetrations between tows is inevitable when the textile is 

significantly compacted.  Shrinking the tows worked, but unrealistic amounts of matrix 

resulted between tows.  A more accurate approach to the contact problem or a method for 

creating compatible meshes between interpenetrating tows is needed.  It should be noted 

that a third-party mesh boolean library, called Cork, was tested for removing the 

interpenetrating region between tows, but excessive refinement was created where tows 

interpenetrated near the textile boundaries. [42]  Creating non-idealized textile models has 

come a long way in the last decade, but several issues make the tools very difficult to use 

for creating relatively thick textile composite models. 

2.3 Development of a Scalable Finite Element Framework 

The finite element software, called Beta2, was developed to be a scalable, extensible 

FEA framework.  Predicting the performance of composite materials across scales requires 

significant computational resources.  However, most of the commercial FEA programs used 

today does not scale to distributed systems for implicit analyses.  Some leverage distributed 

computing for explicit analyses, but explicit analyses introduce other challenges, including 

smaller timesteps as the mesh refinement increases.  For analyses of composites that include 

regions at the microscale, elements are often on the scale of hundreds of nanometers.  If the 

aim is to predict the quasi-static response, then the number of timesteps becomes 
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prohibitive.  Explicit methods are often adapted for distributed computing because they do 

not require solving a global system of equations, which is required for implicit methods.  

The FEA code developed for this work leverages third-party libraries for sparse linear 

algebra operations, including solving the system of linear equations, but distributed 

computing creates many other challenges than simply solving the equations.  Supporting 

distributed computing affects: 

• Creating large finite element models 

• Processing input scripts 

• Storing and reading the mesh (nodes, element connectivities, etc.) 

• Storing global matrices and vectors 

• Computing typical matrix-matrix, matrix-vector, and vector-vector operations 

between global matrices and vectors 

• Assembling element matrices and vectors into the global system of equations 

• Enforcing boundary conditions 

• Solving the global system of equations 

• Computing volume average and other model level quantities 

• Writing the output data 

• Visualizing the results 

This list is not exhaustive, but it highlights most of the components of a finite element 

framework that requires modification due to distributed computing.  Some processes are 

not directly affected but are instead affected by the increase in model size that comes with 
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scalability.  For the types of analyses used in this work, FEA models typically contained 

less than a million degrees of freedom (DoFs) before distributed computing, but this work 

uses models with 50 to 100 million DoFs.  Some analyses model nonlinear behavior, requiring 

many solves and easily result in over a 100 GB of data for a single nonlinear analysis.  The 

larger models posed new challenges and required the development of several tools.  This 

section aims to discuss the lessons learned, including successful and unsuccessful design 

patterns, from developing a scalable FEA framework. 

2.3.1 History of the FEA Code 

A FEA code, called Beta, had been developed over numerous years with the effort of 

various students and researchers within the research group of Dr. John Whitcomb at Texas 

A&M University.  The FEA code for this work, Beta2, borrows many concepts and 

algorithms from its predecessor, but the entire code was rewritten to use modern C++ 

design, templates, exceptions, improve encapsulation, and support distributed computing.  

Before Beta2, an intermediate, proof of concept version of Beta was developed to leverage 

HPC.  Due to the amount of code in Beta, some of the challenges required fundamental 

design changes that were not anticipated before the development of the intermediate 

version.  After many fundamental issues persisted, the version was completely scrapped a 

year later.  However, many lessons were learned from the development, and Beta2 was 

developed guided by a better understanding of what design patterns worked. 
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2.3.2 Mesh Partitioning 

In a distributed analysis, it is important to identify which MPI rank is responsible for 

calculations and output of a specific node or element.  In this work, a partition will refer to 

a fictitious subdomain of the analysis region, and the subdivision is purely for computational 

purposes.  A single partition may or may not contain several constituents and can be 

arbitrary in shape, though it is computationally efficient to minimize size of the inter-

partition boundaries.  Continuous Galerkin fields are maintained across inter-partition 

boundaries, so partitioning an analysis region does not introduce any additional error.  

PETSc requires a continuous range of equations to be owned by an MPI rank.  Since DoFs 

are typically nodal quantities in structural FEA, it logically follows that each node should 

be owned by exactly one MPI rank. Which MPI rank owns an element is less important, 

except for visualization or if elemental DoFs are introduced, as is common in computational 

fluid dynamics (CFD).  None of the constitutive laws in this work require non-local 

calculations, so an MPI rank only requires the elements that include an owned node to 

assemble its respective rows of the global matrix.  This fundamentally means that if three 

nodes within an element are owned by three different ranks then the element stiffness matrix 

is computed on all three ranks, since each rank would only assemble the terms for the DoFs 

it owns.  This approach has the benefit of requiring no communication between ranks during 

assembly, but it also means that redundant computations are taking place. 

However, it should be noted that there is another philosophy.  Ownership could be on 

an element basis.  This means that each element stiffness matrix is only assembled once, 
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but extra communication between ranks is required once assembly is complete.  PETSc still 

requires each DoF to be owned by only rank, so several ranks may be computing terms that 

should appear in the row of equations owned by only one of the ranks.  The ranks that 

computed terms that appear in a row they do not own must communicate the terms to rank 

that is responsible for the row in the system of equations.  PETSc takes care of most of the 

communication, but it is unclear which method is more efficient.  If it is cheap to compute 

the stiffness matrix for an element, then it may be more efficient for ownership to be on a 

nodal basis.  If the constitutive model requires significant computation, then the 

communication cost of terms that are not owned by each rank to the respective owner is 

likely to become more efficient.  Benchmarks were not performed in this work to suggest 

when one becomes more efficient. 

  For a distributed analysis, the decision was made that partitioning should be done 

before the analysis as part of the preprocessing.  This makes load balancing more difficult, 

since the load on each rank must be estimated a priori, but it simplifies the code for the 

analysis, since the MPI rank that owns a node or element does not change throughout the 

analysis.  New DoFs can be added during the analysis, but it does require reallocation of 

the global matrices and vectors.  For a linear elastic analysis with 60 million DoFs, the time 

spent to solve the system of equations typically requires between 3 to 5 times longer than 

the time needed to allocate and assemble the system of equations.  Though reallocation and 

assembly does have a cost, it is less significant than solving the system of equations.  

Consequently, strategies that improve the performance of the solver or several parts of the 
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process at once should be pursued first.  Sometimes Metis/ParMetis was used to partition 

the mesh, but out of convenience, the mesh was often divided into rectangular, structured 

partitions. This caused some ranks to have about twice as many owned DoFs as other ranks, 

due to nonuniformity in the tetrahedral meshes.  By more intelligently partitioning of the 

mesh could offer a significant speedup. 

More intelligent static load balancing, which is done a priori, would be very useful, but 

it should be noted that dynamic load balancing, which occurs multiple times during the 

analysis, introduces a subtle issue.  Dynamic load balancing can probably improve the 

performance of progressive damage analyses, since the calculation of stiffness matrices for 

elements exhibiting plasticity or damage may become more expensive and damage tends to 

localize.  However, if visualization typically requires plotting quantities over the time of the 

analysis, then the mesh must be read and the data structures used to store the data must 

be reallocated every timestep.  So dynamic load balancing may improve the time required 

for the analysis at the expense of visualization performance. 

2.3.3 Sparse Storage and Solvers 

Several different C++ libraries provide a suite of solvers and storage classes.  The three 

most popular are Intel’s Math Kernel Library (MKL), PETSc, and Trilinos.   The main 

offering of MKL is an optimized implementation of Pardiso, a direct sparse solver.  Direct 

solvers do not scale as well as iterative solvers, but they offer a robust method for solving 

symmetric, unsymmetric, and even indeterminant systems of equations.  In this work, 
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MKL’s Pardiso provided a reliable tool for determining appropriate tolerances for the 

iterative solvers, but it was not used for problems with more than 1 million DoFs. 

Both PETSc and Trilinos offer a wide variety of solvers and preconditioners.  Trilinos 

focuses on providing many components relevant to solving partial differential equations, 

including a lot more than just the storage and linear solvers.  PETSc focuses more tightly 

on the storage and solvers.  For this work, PETSc was chosen for its tighter scope.  However, 

one issue to be aware of with PETSc is the changing interface.  With each release, some 

function calls change, requiring some minor modifications to a code that uses PETSc with 

each upgrade.  Visual Studio was used for the development of the framework, though the 

analyses were typically run on a Unix or Linux HPC system.  It can be very difficult to 

compile PETSc on Windows with the dependencies and packages needed.  Though success 

was found, researchers should be aware that the large sparse libraries can be difficult to 

compile on Windows.  On the other hand, being able to use the Visual Studio debugger for 

small distributed analyses proved to be invaluable. 

For linear elastic analyses, an additive Schwarz preconditioner was used with a conjugate 

gradient (CG) solver.  The global stiffness matrix remains symmetric, which the CG solver 

leverages to offer good performance.  For analyses with plasticity, the global stiffness matrix 

may not be symmetric, due to the non-associative flow rule discussed in the next chapter.  

Consequently, an additive Schwarz preconditioner was used with a bi-conjugate gradient 

stabilized (BiCGStab) solver.  Other preconditioners, such as block factorization or 
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algebraic multigrid may offer improved performance, but they both require more parameters 

to tune and information about the problem. 

Since several types of math libraries were used, it was important to maintain 

encapsulation of the sparse math routines from the rest of the FEA. To provide the most 

flexibility, a very thin interface was created, wrapping the sparse math libraries.  Matrices 

and vectors had an integer ID, and calls to a sparse math routine from the FEA code 

required passing the ID’s of the containers to use in the operation.  This design pattern was 

found to be difficult to maintain.  It was too easy for a developer to pass the ID for the 

wrong global container.  To solve this issue, a class was developed to manage the global 

container ID’s and required a strongly typed enumeration in the FEA code in place of an 

ID.  For example, solving the class 𝐾𝐾𝑞𝑞 = 𝐹𝐹 system of equations for linear elasticity looks 

like: 

 

This approach made it very clear to a reader which containers were being used in a 

sparse matrix operation, but the class needed to translate the strongly typed enumerations 

into an integer is unnecessary.  If the sparse math library was revamped, the vector and 

matrix enum types should be given as templates to the sparse math interface, and containers 

could be identified by the enumerations directly.  Even with a verbose interface, this 

approach allowed several implementations of the sparse math libraries without a single 

change to the FEA code, and it opens the possibility of assembling and solving the global 

equations->Solve(glContainers.get(GlobalMatrixID::ElasticityStiffness), 
   glContainers.get(GlobalVectorID::RHS), 
   glContainers.get(GlobalVectorID::Displacement)); 
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systems using very different computational architectures, such as general-purpose 

computing on graphics cards (GPGPU) or coprocessor cards.  Implementing either of these 

would require no changes outside the sparse math library implementation, though CPUs 

would still be computing the element matrices and vectors to assemble. 

There are two types of calls that must be added in the FEA part of the code to make 

this design paradigm possible.  First, the sparse library does not know when element-to-

global assembly ends.  It can detect when one begins (an assembly call is made since the 

end of a previous one), but a call is needed to indicate to the sparse math library that all 

the element matrices and vectors have been passed off for assembly.  This is important since 

PETSc and other distributed libraries require post-assembly operations.  The second type 

of call is updating the ghost values, which are the terms in the global vectors that are 

needed by an MPI rank but are not owned.  Ghost values are often needed for the solution 

and incremental solution vectors to allow the elements to compute their stiffness matrix or 

stress state.  Currently, the FEA code must let the sparse math library know to update the 

ghost values before it asks for parts of the solution vector that it may not own.  However, 

with a more intelligent way of managing the global containers within the sparse math 

library, the FEA part of the code should not have to make this call.  The sparse library 

could keep track of what ghost values it already has available, which containers have been 

modified, and communicate to other MPI ranks when a value is requested that it does not 

own or have an updated value available.  It should be noted that the ghost values an MPI 
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rank could need is determined based on connectivity when the non-zeros are specified in the 

global matrix. 

2.3.4 Boundary Conditions and Multipoint Constraints 

In micromechanical analyses, multi-point constraints (MPCs), which are linear 

additional equations that relate a degree-of-freedom (DoF) to other DoFs, are very useful 

for imposing periodic boundary conditions.  Many recent finite element codes use Lagrange 

multipliers or a constraint matrix to enforce multi-point constraints, which are both 

straightforward approaches.  However, these approaches have a performance cost compared 

to directly modifying the global system of equations to account for the additional equations, 

since they make matrix-vector operations more expensive for the solver.  This work employs 

a less popular methodology of enforcing MPCs.  Additional equations are directly 

incorporated into the global system of equations during assembly.  The method makes 

assembling element matrices and vectors into the global matrices and vectors more 

complicated but offers good performance and a single interface for all boundary conditions, 

including MPCs.  A method was developed by Clint Chapman and improved by Ross 

McLendon for imposing multi-point constraints within a centralized finite element code. 

[37] [43]  However, the problem becomes much more complex in a distributed computing 

framework, and significant development was needed to generalize the approach for 

distributed computing.  The effort to generalize the method was successful, but it is unclear 

if the complexities and maintainability of the code outweigh the performance benefit.  A 

description of the algorithms developed for a generalized incorporation of additional 
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equations within a distributed computing architecture is not provided within this 

manuscript. 

2.3.5 Distributed Data Storage and Output 

One of the issues encountered with distributed computing was the scale of data.  Some 

plasticity/damage analyses required 200 GB of binary data for a single analysis.  Generally, 

several different types of loads are considered, each requiring a separate analysis.  If the 

effect of even one parameter is investigated, the amount of data can become quite large, 

and a method for efficiently storing, reading, and writing distributed data becomes a critical 

component in the framework.  Within a distributed system, the data must be read in parallel 

to avoid every processor having to read the entire data set for a very small relevant subset 

of the data.  Additionally, a method for storing several types of data was needed, including 

nodal, element, nodal by element (quantities extrapolated to the nodes within an element), 

and quadrature data.  Several types of existing file formats were evaluated, but no file 

format was found that could both store all the types of data required and had a performant, 

open C++ library to interface with files using the format.  Consequently, a new file format 

and I/O library was developed for the finite element data: the partitioned finite element 

compound (PFEC) file format. 

The PFEC file format groups the data for each partition of the mesh and relies on a 

hierarchy of lookup tables to efficiently transverse the data.  The data from all the partitions 

are stored within the same file.  This decision was made because of typical file quotas on 

HPC systems.  If a file was output for each partition at each time step, then around 10k 
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files would be typically be needed for a progressive damage analysis, but the HPC system 

used in this work limited users to 200k files total.  During output, each process computes 

the space needed for the data that it is about to write, the root process allocates a blank 

file through the file system and writes the lookup tables, and then each process writes its 

data to the respective locations within the files.  A meta file uses JSON to describe the 

collection of files created for a single analysis and what data exists within each.  The output 

for a 60 million DoF analysis with flags to output all the relevant fields, except quadrature 

data, is typically between 30 and 40 GB per an output time step.  Including the time to 

calculate derived quantities, the total time required to generated and write the output data 

requires just over two minutes with this approach.  ASCII would have resulted in 

prohibitively large files for the precision needed and required much longer to read and write.  

HDF5 was considered as the backbone of the new file format, but it requires rectangular 

datasets and the C API is rather complex.  With nodal by element and quadrature data, 

the number of values per an entry varies.  So, a new, simple file format was developed 

instead.  A capable file format and I/O interface is a necessity for a distributed FEA 

framework. 

2.3.6 Custom Reader for ParaView 

Visualizing datasets as large as 50 GB per a time step requires a sophisticated 

visualization tool.  Especially for 3D textile models, it is very difficult to anticipate what 

types of plots will be useful to understand and communicate what is occurring within the 

material.  Consequently, exploratory visualization was very important, and ParaView 
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provided everything that was needed.  However, importing the data into ParaView was a 

challenge, since an the PFEC file format was used and ParaView does not natively support 

nodal by element data. 

ParaView expects each data array to be either a nodal or elemental field.  Nodal by 

element and quadrature data must be averaged at nodes before ParaView can display the 

data.  However, the derived data, such as stress and strain, should not be averaged along 

constituent interfaces.  A strategy tried early on was converting the data from PFEC to the 

binary VTU format.  If each constituent in each partition had its own VTU file, then 

ParaView organized the data as a multiblock dataset and correctly displayed the 

appropriate discontinuities across constituent interfaces.  However, this approach resulted 

in far too many files and was inconvenient due to the need for several file formats. 

A much cleaner approach was to implement a custom reader for ParaView, but some 

unanticipated challenges arose.  First, a competent knowledge of the VTK framework and 

ParaView pipeline is prerequisite for writing a plugin for ParaView.  Initially, minimal 

documentation and examples existed, though the documentation has improved some since.  

Second, readers can be compiled in different ways depending on the operating system, but 

both methods require compiling the ParaView source.  On Windows, the ParaView code 

base can be compiled into libraries, and as long as the CMake build is kept intact, the 

reader can be compiled into a DLL on other machines without needing to recompile the 

ParaView source.  The DLL can be distributed to other Windows machines to use with the 

official ParaView binaries, but the DLL of the reader can only be loaded into the version 
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ParaView that matches the libraries that the reader was built against.  If there is a version 

mismatch, ParaView will typically give a non-sensical error when loading the DLL.  When 

a new version of ParaView is released, the ParaView source must be rebuilt before the 

reader can be updated for the new ParaView version. 

An alternative method works for both Windows and Linux systems.  The ParaView 

source can be built along with the reader source to create a binary of ParaView with the 

reader built in.  However, it can be inconvenient to compile ParaView with all of the 

relevant packages, such as QT, MPI, and Python, each time a new version is released.  This 

is unfortunately, the only viable strategy on Linux. 

Since ParaView does not handle nodal by element or quadrature data, the reader had 

to compute the data at the nodes and perform the averaging internally.  A multiblock data 

set was created within the reader with the structure shown in Figure 2.38.  The strategy 

worked well within ParaView, and most filters that are prepackaged into ParaView worked 

with the multiblock data set when ghost cells were used.  The averaging can be expensive 

for large models, so a postprocessing utility was developed to break up PFEC mesh and 

data files, so that one constituent exists per a partition and data is pre-averaged before 

being read into ParaView.  The resulting files were quicker to read into ParaView, since 

most of the processing is already completed outside of the reader.  In hindsight, it would be 

helpful to design the PFEC file format to mimic the structure required by ParaView.  

Averaging the data would still need to be done, but the change would have simplified reader 

significantly. 
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Figure 2.38. Structure of multiblock data set within ParaView 

 

2.3.7 Python Script Framework for Postprocessing 

To create the model, run the analyses, and post-process the data, an expressive high-

level scripting interface was needed.  This work used over 1000 analyses, which would be 

impractical to work with without automation.  Additionally, many more figures than those 

used in this work needed to be created to provide insight into the locations of stress 

concentrations for a variety of models and configurations.  By generating standard figures 

with an automated framework, the researchers focus could be on gaining the insight and 

creating figures to communicate the insights effectively. 

A Python package, named pybeta, was developed to provide most of the preprocessing 

and postprocessing functionality.  This Python package allowed many versatile libraries to 
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be used, such as NumPy, SciPy, and Matplotlib.  The package was separated into five 

modules: 

• mesh: Python wrappers for BetaMesh 

• fiber_matrix: scripts for creating finite element models for fiber/matrix RVEs with 

general shapes, including a GUI for creating models 

• analysis: scripts for managing ensembles of finite element analyses (very useful for 

ensembles of fiber/matrix analyses) 

• utility: general utilities 

• visualization: scripts for creating line plots, setting up ParaView visualizations, or 

creating complex animations in ParaView 
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3 THEORY 

This chapter is divided in to three sections.  The first section provides an overview of 

the classical finite element method, which is used in this work.  Next, the theory for a 

plasticity model used to study the effect of accounting for plasticity within the neat matrix 

pocket is presented.  Finally, the theory for using the finite element method predict the 

response of nonlinear materials is discussed. 

3.1 Overview of Finite Element Method 

This section provides a high-level derivation of the finite element method used in this 

work. First, the kinematics for the infinitesimal strain tensor are derived, followed by a brief 

description of Cauchy’s law.  Next, the conservation of linear and angular momentum are 

used to derive the governing equation and its weak form.  An overview of linear elastic 

constitutive laws are provided.  Finally, the classical finite element method is derived for 

linear elastic materials. 

3.1.1 Kinematics 

The Eulerian and Lagrangian descriptions are two ways of expressing the coordinates of 

a material.  In the Eulerian description, properties are measured at fixed spatial coordinates, 

though the material may move.  In the Lagrangian description, properties are measured at 

material points, which requires tracking how the material has moved from a reference 

configuration.  Typically, an Eulerian description is adopted in the field of fluid mechanics, 

since tracking the movement of every fluid particle quickly becomes computational 

prohibitive.  A Lagrangian description is usually used in the solid mechanics field, which 
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results in a mesh that deforms with the material.  In the Lagrangian description, it is useful 

distinguish between the undeformed and deformed configurations, as illustrated in Figure 

3.1.  Let 𝑋𝑋𝑖𝑖 be the 𝑖𝑖𝑡𝑡ℎ component of the coordinate for a material point before deformation 

occurs, and let 𝜎𝜎𝑖𝑖 be the 𝑖𝑖𝑡𝑡ℎ component of the coordinate for a material point after 

experiencing deformation.  There exists a function, which will be denoted by 𝜒𝜒, that 

relations the undeformed configuration to the deformed configuration, as expressed in 

Equation (3.1). 

 

 𝜎𝜎𝑖𝑖 = 𝜒𝜒(𝑋𝑋𝑖𝑖 , 𝑡𝑡) (3.1) 
 

 
Figure 3.1. Illustration of the undeformed and deformed configurations 
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The displacement is defined as the difference between the deformed and undeformed 

configurations.  In the Lagrangian description, Equation (3.2) expresses the displacement 

in terms of the undeformed coordinate and mapping function, 𝜒𝜒.   

 

 𝑢𝑢𝑖𝑖(𝑋𝑋𝑖𝑖, 𝑡𝑡) = 𝜒𝜒(𝑋𝑋𝑖𝑖 , 𝑡𝑡) − 𝑋𝑋𝑖𝑖 (3.2) 
 

Displacement has units of length, but it is more useful to develop a unitless measure of 

deformation.  The deformation gradient as defined by Equation (3.3) offers a unitless 

measure of deformation.  It noted that 𝛿𝛿𝑖𝑖𝑓𝑓 is the Kronecker delta.  However, the tensor is 

generally nonsymmetric.  More conveniently, the tensor can be made symmetric by 

multiplying with the transpose, forming the right Cauchy-Green deformation tensor, 𝐶𝐶𝑖𝑖𝑗𝑗, 

which mathematically written in Equation (3.4).  Finally, the Green-Lagrange strain tensor 

is defined in Equation (3.5). 

 

 𝐹𝐹𝑖𝑖𝑗𝑗 =
𝜕𝜕𝜎𝜎𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

=
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

+ 𝛿𝛿𝑖𝑖𝑗𝑗 (3.3) 

 

 𝐶𝐶𝑖𝑖𝑗𝑗 = 𝐹𝐹𝑘𝑘𝑖𝑖𝐹𝐹𝑘𝑘𝑗𝑗 =
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑋𝑋𝑖𝑖

+
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑋𝑋𝑖𝑖

+ 𝛿𝛿𝑖𝑖𝑗𝑗 (3.4) 

 

 𝐸𝐸𝑖𝑖𝑗𝑗 =
1
2 �
𝐶𝐶𝑖𝑖𝑗𝑗 − 𝛿𝛿𝑖𝑖𝑗𝑗� =

1
2 �

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑋𝑋𝑖𝑖

+
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑋𝑋𝑖𝑖

� (3.5) 
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Removing the second order term yields the linearized Green-Lagrange strain tensor, and 

assuming that 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

≈ 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 finally results in the linearized infinitesimal strain tensor, 𝜀𝜀, as 

shown in Equation (3.6).  With these assumptions, the infinitesimal strain tensor becomes 

equivalent in the Eulerian and Lagrangian descriptions, and at this point, 𝜎𝜎𝑖𝑖 will be used 

as the coordinate system. 

 

 𝜀𝜀𝑖𝑖𝑗𝑗 =
1
2�

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑋𝑋𝑖𝑖

� (3.6) 

 

 

3.1.2 Cauchy’s Law 

Traction, also known as the stress vector, is defined on a plane by the force, 𝑓𝑓, divided 

by area, 𝐴𝐴.  Cauchy’s law relates the traction to a quantity known as the Cauchy stress 

tensor, 𝛔𝛔, as shown in Equation (3.7), where 𝑛𝑛 is the unit vector normal to the plane. The 

Cauchy stress tensor is defined in the deformed configuration, and it is a measure of the 

force in the deformed configuration divided by the deformed area at a point.  However, 

when infinitesimal strain is valid, the force and area remain approximately unchanged when 

switching between the deformed and undeformed configurations. This work only considers 

infinitesimal strains, so the Cauchy stress tensor is equivalent to other stress measures and 

will be referred to as simply the stress tensor. 
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 𝑡𝑡𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑗𝑗𝑛𝑛𝑗𝑗 (3.7) 

 

3.1.3 Conservation Equations 

The balance of linear momentum requires that the rate of change of linear momentum 

equals the forces acting on a material of volume 𝑉𝑉.  The balance of linear moment is given 

in Equation (3.8), where 𝑡𝑡 is the traction, 𝑎𝑎 is the body force, 𝜌𝜌 is the density, and 𝒗𝒗 is the 

velocity.  Using Cauchy’s law, shown in Equation (3.7), and the divergence theorem, the 

equation can be expressed as shown in Equation (3.9). Finally, using Reynold’s transport 

theorem and the fact that the equation must hold for any arbitrary volume, the balance of 

linear momentum can be written in the useful form shown in Equation (3.10). 

 

 �𝑡𝑡𝑖𝑖𝑑𝑑𝐴𝐴 + �𝜌𝜌𝑎𝑎𝑖𝑖𝑑𝑑𝑉𝑉 =
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜌𝜌𝜎𝜎𝑖𝑖𝑑𝑑𝑉𝑉 (3.8) 

 ��
𝜕𝜕𝜎𝜎𝑗𝑗𝑖𝑖
𝜕𝜕𝜎𝜎𝑗𝑗

+ 𝜌𝜌𝑎𝑎𝑖𝑖� 𝑑𝑑𝑉𝑉 =
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜌𝜌𝜎𝜎𝑖𝑖𝑑𝑑𝑉𝑉 (3.9) 

 
𝜕𝜕𝜎𝜎𝑗𝑗𝑖𝑖
𝜕𝜕𝜎𝜎𝑗𝑗

+ 𝜌𝜌𝑎𝑎𝑖𝑖 = 𝜌𝜌𝑎𝑎𝑖𝑖 (3.10) 

 

Similarly, the balance of angular momentum requires that the rate of change of angular 

momentum equals the moments acting on the material.  This can written in tensor notation 

as shown in Equation (3.11), but it is more convenient to express the equation in indicial 

notation as shown in Equation (3.12).  Using Cauchy’s law, the product rule, and the 
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Reynold’s transport theorem, the equation becomes Equation (3.13).  Rearranging the 

equation as shown in Equation (3.14), it becomes clear that the right hand side is zero by 

the balance of linear of momentum, refer to Equation (3.10). 

 

 �𝐱𝐱 × 𝐭𝐭𝑑𝑑𝑑𝑑 + �𝐱𝐱 × 𝜌𝜌𝐛𝐛𝑑𝑑𝑉𝑉 =
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐱𝐱 × 𝜌𝜌𝐯𝐯𝑑𝑑𝑉𝑉 (3.11) 

 �𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑡𝑡𝑘𝑘𝑑𝑑𝑑𝑑 + �𝜌𝜌𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑎𝑎𝑘𝑘𝑑𝑑𝑉𝑉 =
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜌𝜌𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝜎𝜎𝑘𝑘𝑑𝑑𝑉𝑉 (3.12) 

 ��𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘 �𝛿𝛿𝑗𝑗𝑚𝑚𝜎𝜎𝑚𝑚𝑘𝑘 + 𝜎𝜎𝑗𝑗
𝜕𝜕𝜎𝜎𝑚𝑚𝑘𝑘
𝜕𝜕𝜎𝜎𝑚𝑚

� + 𝜌𝜌𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑎𝑎𝑘𝑘� 𝑑𝑑𝑉𝑉 = �𝜌𝜌𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑎𝑎𝑘𝑘𝑑𝑑𝑉𝑉 (3.13) 

 

�𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝛿𝛿𝑗𝑗𝑚𝑚𝜎𝜎𝑚𝑚𝑘𝑘𝑑𝑑𝑉𝑉 = �𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗 �𝜌𝜌𝑎𝑎𝑘𝑘 −
𝜕𝜕𝜎𝜎𝑚𝑚𝑘𝑘
𝜕𝜕𝜎𝜎𝑚𝑚

− 𝜌𝜌𝑎𝑎𝑘𝑘� 𝑑𝑑𝑉𝑉 

 
(3.14) 

 

Using the conservation of linear momentum, the conservation of angular momentum is 

shown in Equation (3.11).  Since the equation must hold for any volume, the integrand 

must be equal to 0.  Using this and the identity 𝜀𝜀𝑖𝑖𝑚𝑚𝑛𝑛𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘 = 𝛿𝛿𝑚𝑚𝑗𝑗𝛿𝛿𝑛𝑛𝑘𝑘 − 𝛿𝛿𝑛𝑛𝑗𝑗𝛿𝛿𝑚𝑚𝑘𝑘, it can be 

shown that the stress tensor is symmetric, as shown in Equation (3.12). 

 

 �𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝛿𝛿𝑗𝑗𝑚𝑚𝜎𝜎𝑚𝑚𝑘𝑘𝑑𝑑𝑉𝑉 = �𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑘𝑘𝑑𝑑𝑉𝑉 = 0 (3.15) 

 𝜖𝜖𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑗𝑗𝑘𝑘 = 𝜎𝜎𝑗𝑗𝑘𝑘 − 𝜎𝜎𝑘𝑘𝑗𝑗 = 0 (3.16) 
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3.1.4 Weak Form Derivation 

The governing equation shown in Equation (3.10) was derived from the conservation of 

linear momentum, but a different form is needed to numerically solve the system of 

equations.  This work focuses on the static equilibrium solution, so the governing equation 

becomes Equation (3.17).  Using the principle of virtual work, the equation is multiplied by 

a variation of the displacement and integrated over the volume, as shown in Equation 

(3.18). 

 

 
𝜕𝜕𝜎𝜎𝑗𝑗𝑖𝑖
𝜕𝜕𝜎𝜎𝑖𝑖

+ 𝜌𝜌𝑎𝑎𝑖𝑖 = 0 (3.17) 

 �𝛿𝛿𝑢𝑢𝑖𝑖 �
𝜕𝜕𝜎𝜎𝑗𝑗𝑖𝑖
𝜕𝜕𝜎𝜎𝑖𝑖

+ 𝜌𝜌𝑎𝑎𝑖𝑖� 𝑑𝑑𝑉𝑉 = 0 (3.18) 

 

To avoid including a derivative of the stress tensor, the first term is first integrated by 

parts to yield Equation (3.19).  Next, the divergence theorem is used to manipulate the first 

term, which results in Equation (3.20). 

 

 

 ��
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑗𝑗𝑖𝑖
𝜕𝜕𝜎𝜎𝑖𝑖

− 𝜎𝜎𝑗𝑗𝑖𝑖𝛿𝛿
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎𝑖𝑖

+ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌𝑎𝑎𝑖𝑖� 𝑑𝑑𝑉𝑉 = 0 (3.19) 

 �𝑢𝑢𝑖𝑖𝜎𝜎𝑗𝑗𝑖𝑖𝑛𝑛𝑗𝑗𝑑𝑑𝐴𝐴 + ��𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌𝑎𝑎𝑖𝑖 − 𝜎𝜎𝑗𝑗𝑖𝑖𝛿𝛿
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎𝑖𝑖

� 𝑑𝑑𝑉𝑉 = 0 (3.20) 
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Finally, the weak form given in can be obtained by leveraging the definition of the 

infinitesimal strain tensor and the symmetry of the stress tensor.  The weak form of the 

governing equation is shown in Equation (3.21). 

 

 �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖𝑑𝑑𝐴𝐴 + ��𝜌𝜌𝑎𝑎𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑗𝑗𝛿𝛿𝜀𝜀𝑖𝑖𝑗𝑗�𝑑𝑑𝑉𝑉 = 0 (3.21) 

 

3.1.5 Constitutive Laws 

Hooke proposed that in a continuous media stress is linearly related to strain. The 

relationship can be described by a 4th order tensor, 𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖, known as the stiffness matrix, as 

shown in Equation (3.22).  I should be noted and emphasized here that the stress is linearly 

related to the elastic part of the strain tensor.  If no eigenstrains exist, such as plastic strain, 

thermal expansion, moisture expansion, etc., then the strain tensor is equivalent to the 

elastic strain.  For the this section, the strain tensor will be in place of elastic strain, but in 

the last section of this chapter, this restriction will be removed.  The constitutive 

relationship can be inverted, and the matrix relating strain to stress, 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖, is known as the 

compliance matrix, which is shown in Equation (3.23). 

 

 𝜎𝜎𝑖𝑖𝑗𝑗 = 𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖𝜀𝜀𝑘𝑘𝑖𝑖 
(3.22) 

 𝜀𝜀𝑖𝑖𝑗𝑗 = 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖𝜎𝜎𝑘𝑘𝑖𝑖  (3.23) 
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The strain and stress tensors have already been shown to be symmetric. Consequently, 

the constitutive matrix exhibits some symmetries.  It follows that 𝐶𝐶𝑗𝑗𝑖𝑖𝑘𝑘𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 =

𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖, due to the symmetry of the stress and strain tensors.  These relations are often referred 

to as minor symmetries, and they result in a reduction from 81 unique constants to only 36 

unique constants. Finally, the stress can be expressed as a partial derivative of the strain 

energy density, 𝑈𝑈, with respect to the strain, as shown in Equation (3.24). This leads to a 

symmetry of the stiffness matrix as shown in Equation (3.25), known as major symmetry, 

further reducing the number of unique constants from 36 to 21. 

 

 
𝜎𝜎𝑖𝑖𝑗𝑗 =

𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

 (3.24) 

 𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖 =
𝜕𝜕2𝑈𝑈

𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝜀𝜀𝑘𝑘𝑖𝑖
= 𝐶𝐶𝑘𝑘𝑖𝑖𝑖𝑖𝑗𝑗 (3.25) 

 

Because of the symmetries, Hooke’s law can be written in a contracted notation, as 

shown in Equation (3.26).  In contracted notation, the engineering strain is used by 

convention, which means the shear terms, 𝜀𝜀4, 𝜀𝜀5, and 𝜀𝜀6 are twice the tensorial shear strains.  

In indicial notation, the equation simply becomes 𝜎𝜎𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑗𝑗𝜀𝜀𝑗𝑗. Note that the stiffness matrix 

is still symmetric even in the contracted notation, 𝐶𝐶𝑖𝑖𝑗𝑗 = 𝐶𝐶𝑗𝑗𝑖𝑖.  The order of stresses and 

strains in the contracted notation is arbitrary, but the order used must be consistent. The 

finite element code used for this work uses the order of (11, 22, 33, 12, 23, 13), which is not 

as common as Voigt’s notation of (11, 22, 33, 23, 13, 12).  The relations between the 
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contracted and tensorial stresses and strains are shown in Equations (3.27) and (3.28), 

respectively. 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
𝜎𝜎4
𝜎𝜎5
𝜎𝜎6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 𝐶𝐶14 𝐶𝐶15 𝐶𝐶16
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23 𝐶𝐶24 𝑐𝑐25 𝐶𝐶26
𝐶𝐶13 𝐶𝐶23 𝐶𝐶33 𝐶𝐶34 𝐶𝐶35 𝐶𝐶36
𝐶𝐶14 𝐶𝐶24 𝐶𝐶34 𝐶𝐶44 𝐶𝐶45 𝐶𝐶46
𝐶𝐶15 𝐶𝐶25 𝐶𝐶35 𝐶𝐶45 𝐶𝐶55 𝐶𝐶56
𝐶𝐶16 𝐶𝐶26 𝐶𝐶36 𝐶𝐶46 𝐶𝐶56 𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

⋅

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝜀𝜀4
𝜀𝜀5
𝜀𝜀6⎦
⎥
⎥
⎥
⎥
⎤

 (3.26) 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
𝜎𝜎4
𝜎𝜎5
𝜎𝜎6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33
𝜎𝜎12
𝜎𝜎23
𝜎𝜎13⎦

⎥
⎥
⎥
⎥
⎤

 (3.27) 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝜀𝜀4
𝜀𝜀5
𝜀𝜀6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

2𝜀𝜀12
2𝜀𝜀23
2𝜀𝜀13⎦

⎥
⎥
⎥
⎥
⎤

 (3.28) 

 

Many materials exhibit a mirror or rotational symmetry, which reduce the number of 

unique constants needed to characterize the constitutive relationship.  An isotropic exhibits 

mirror symmetry about every plane and rotational symmetry about every axis, reducing the 

number of unique parameters to two.  Though there are only two parameters needed to 

express the constitutive relationship of an isotropic material, the compliance matrix is often 

written in terms of three engineering constants that have a physical interpretation.  The 

Young’s modulus relates the extensional deformation to the normal stress and is denoted 

by 𝐸𝐸.  The shear modulus relates the shear deformation to the shear stresses and is denoted 
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by 𝐺𝐺.  Finally, the Poisson’s ratio relates the transverse and normal deformation and is 

denoted by 𝜈𝜈.  For anisotropic media, more constants are required and the subscripts for 𝐸𝐸, 

𝐺𝐺, and 𝜈𝜈 indicate the direction and plane in which the respective property is measured. 

An orthotropic material has no rotational symmetries but has three orthogonal planes 

of symmetry, namely the x-y, y-z, and x-z planes.  The compliance matrix of an orthotropic 

material can be expressed in terms of the engineering constants as shown in Equation (3.29). 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11

𝜀𝜀22

𝜀𝜀33

2𝜀𝜀12

2𝜀𝜀23

2𝜀𝜀13⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸11

−
𝜈𝜈21
𝐸𝐸22

−
𝜈𝜈31
𝐸𝐸33

0 0 0

−
𝜈𝜈12
𝐸𝐸11

1
𝐸𝐸22

−
𝜈𝜈32
𝐸𝐸33

0 0 0

−
𝜈𝜈13
𝐸𝐸11

−
𝜈𝜈23
𝐸𝐸22

1
𝐸𝐸33

0 0 0

0 0 0
1
𝐺𝐺12

0 0

0 0 0 0
1
𝐺𝐺23

0

0 0 0 0 0
1
𝐺𝐺13⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11

𝜎𝜎22

𝜎𝜎33

𝜎𝜎12

𝜎𝜎23

𝜎𝜎13⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(3.29) 

A transversely isotropic material has the symmetries exhibited by an orthotropic 

material plus a rotational symmetry about the x-axis.  This type of material is of particular 

interest of this work since the carbon fibers are will be assumed to be transversely isotropic. 

The direction along the fiber axis is referred to as the longitudinal direction, and the 

directions perpendicular to the fiber axis are referred to as the transverse direction.  

Conveniently, the compliance matrix of a transversely isotropic material can be expressed 
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in terms of the engineering constants as shown in Equation (3.30), since 𝜈𝜈23 = 𝜈𝜈32, 𝐸𝐸22 =

𝐸𝐸33, and 𝐺𝐺12 = 𝐺𝐺13.  However, it should be noted that only five unique constants are needed 

to characterize the material. 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11

𝜀𝜀22

𝜀𝜀33

2𝜀𝜀12

2𝜀𝜀23

2𝜀𝜀13⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸11

−
𝜈𝜈21
𝐸𝐸22

−
𝜈𝜈21
𝐸𝐸22

0 0 0

−
𝜈𝜈12
𝐸𝐸11

1
𝐸𝐸22

−
𝜈𝜈23
𝐸𝐸22

0 0 0

−
𝜈𝜈12
𝐸𝐸11

−
𝜈𝜈23
𝐸𝐸22

1
𝐸𝐸22

0 0 0

0 0 0
1
𝐺𝐺12

0 0

0 0 0 0
2(1 + 𝜈𝜈23)

𝐸𝐸22
0

0 0 0 0 0
1
𝐺𝐺12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11

𝜎𝜎22

𝜎𝜎33

𝜎𝜎12

𝜎𝜎23

𝜎𝜎13⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.30) 

 

3.1.6 Finite Element Method 

The finite element method (FEM) was been developed by a series of many researchers 

to numerically solve partial differential equations.  The method has been extensively used 

to solve the variational form of the governing equation shown in Equation (3.21).  FEM 

relies on discretizing the domain into a collection of smaller domains, known as finite 

elements, which consist of a connected set of nodes.  The displacements within a finite 

element are approximated using a set of interpolation functions, 𝜓𝜓.  Within conventional 

FEM, one interpolation function exists per a node within a finite element.  Each function 

has a value of 1 at the location of the respective node within the element and has a value 
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of 0 at the other nodal locations.  Mathematically, this can be written as shown in Equation 

(3.31), where 𝜓𝜓𝑖𝑖 is the interpolation function associated with node 𝑖𝑖 and 𝐱𝐱𝑗𝑗 is the coordinate 

of node 𝑗𝑗 .  Furthermore, the value of all of the interpolation functions sum to 1 at every 

value within the element, as expressed in Equation (3.32), where 𝑛𝑛 is the number of nodes 

in the element.  This property is known as the partition of unity.  It should be noted that 

variations of the finite element method has been developed, and some of these methods rely 

on interpolation functions that do not satisfy one or both of the properties shown in 

Equations (3.31) and (3.32).  These methods are known as extended finite element methods 

(X-FEM).  The work herein uses a conventional FEA formulation. 

 

 𝜓𝜓𝑖𝑖(𝐱𝐱𝑗𝑗) = 𝛿𝛿𝑖𝑖𝑗𝑗 (3.31) 

 �𝜓𝜓𝑖𝑖(𝜎𝜎)
𝑛𝑛

𝑖𝑖

= 1 (3.32) 

 

The interpolation functions are used to interpolate the value of quantifies that are known 

at the nodes to any location within the element.  The displacement at a position within the 

element, 𝐱𝐱, is approximated by Equation (3.33), where subscripts indicate the component 

of the displacement vector and superscripts indicate the corresponding node.  Similarly, the 

variation of the displacement, 𝛿𝛿𝑢𝑢, at a position within the element is approximated by 

Equation (3.34). 
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𝑢𝑢𝑖𝑖(𝐱𝐱) ≈�𝜓𝜓𝑘𝑘(𝐱𝐱)𝑢𝑢𝑖𝑖𝑘𝑘

𝑛𝑛

𝑘𝑘

 (3.33) 

 
𝛿𝛿𝑢𝑢𝑖𝑖(𝐱𝐱) ≈�𝜓𝜓𝑘𝑘(𝐱𝐱)𝛿𝛿𝑢𝑢𝑖𝑖𝑘𝑘

𝑛𝑛

𝑘𝑘

 

 

(3.34) 

For conciseness, it is convenient to organize the nodal displacements within the element 

as a vector, 𝒒𝒒.  Terms are organized first by component then by node.  Equation (3.35) 

shows the terms in vector 𝒒𝒒 for a 3D problem, which requires three components of 

displacement.  This allows the variation of the displacement to be written in terms of the 

vector 𝒒𝒒 more compactly as shown in Equation (3.36).  Similarly, Equation (3.37) shows 

the variation of the strain in terms of the nodal displacement vector, 𝒒𝒒, using contracted 

notation. 

 

 𝒒𝒒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑢𝑢0

0

𝑢𝑢10

𝑢𝑢20
⋮
𝑢𝑢0𝑛𝑛

𝑢𝑢1𝑛𝑛
𝑢𝑢2𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.35) 

 
𝛿𝛿𝑢𝑢𝑖𝑖(𝐱𝐱) =

𝜕𝜕𝑢𝑢𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝛿𝛿𝑞𝑞𝑘𝑘 (3.36) 

 𝛿𝛿εi(𝐱𝐱) =
𝜕𝜕𝜀𝜀𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝛿𝛿𝑞𝑞𝑘𝑘 (3.37) 
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It is convenient to express the derivative of the strain tensor with respect to the nodal 

displacements as a matrix, 𝐵𝐵𝑖𝑖𝑗𝑗.  Equation (3.38) shows the terms within the matrix.  With 

the formation of the B matrix, the strain and the variation of the strain can conveniently 

be written as shown in Equations (3.39) and (3.40), respectively. 

 

𝐵𝐵𝑖𝑖𝑗𝑗(𝐱𝐱) =
𝜕𝜕𝜀𝜀𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝜓𝜓

1(𝐱𝐱)
𝜕𝜕𝜎𝜎1

0 0 . . .
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎1

0 0

0
𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎2

0 . . . 0
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎2

0

0 0
𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎3

. . . 0 0
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎3

𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎1

𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎2

0 . . .
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎1

𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎2

0

0
𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎2

𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎3

. . . 0
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎2

𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎3

𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎1

0
𝜕𝜕𝜓𝜓1(𝐱𝐱)
𝜕𝜕𝜎𝜎3

. . .
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎1

0
𝜕𝜕𝜓𝜓𝑛𝑛(𝐱𝐱)
𝜕𝜕𝜎𝜎3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.38) 

 εi(𝐱𝐱) = 𝐵𝐵𝑖𝑖𝑖𝑖(𝐱𝐱)𝑞𝑞𝑘𝑘 (3.39) 

 𝛿𝛿εi(𝐱𝐱) = 𝐵𝐵𝑖𝑖𝑖𝑖(𝐱𝐱)𝛿𝛿𝑞𝑞𝑘𝑘 (3.40) 

 

Using these expressions for strains and the constitutive law, the weak form of the 

governing equation can be written as shown in Equation (3.41).  The variation of the nodal 

displacements, 𝛿𝛿𝑞𝑞𝑘𝑘, can be factored out of the integrals, since it is the nodal displacements 

and not a function of position.  Since 𝛿𝛿𝑞𝑞𝑘𝑘 is arbitrary, the integrals must equal zero.  

Equation (3.42) shows the equation after terms have been rearranged and 𝛿𝛿𝑞𝑞𝑘𝑘 has been 

factored out of the integrals. 
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 �𝑡𝑡𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝛿𝛿𝑞𝑞𝑘𝑘𝑑𝑑𝐴𝐴 + ��𝜌𝜌𝑎𝑎𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝛿𝛿𝑞𝑞𝑘𝑘 − 𝐶𝐶𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗𝜈𝜈(𝐱𝐱)𝑞𝑞𝑚𝑚𝐵𝐵𝑖𝑖𝑖𝑖(𝐱𝐱)𝛿𝛿𝑞𝑞𝑘𝑘�𝑑𝑑𝑉𝑉 = 0 (3.41) 

 �𝐵𝐵𝑖𝑖𝑖𝑖(𝐱𝐱)𝐶𝐶𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗𝜈𝜈(𝐱𝐱)𝑑𝑑𝑉𝑉 𝑞𝑞𝑚𝑚 = �𝑡𝑡𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝑑𝑑𝐴𝐴 + �𝜌𝜌𝑎𝑎𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑘𝑘

𝑑𝑑𝑉𝑉 (3.42) 

 

Recall that this equation must hold for each finite element, so the integrals are over the 

domain of the finite element.  The left-hand side of the equation forms a matrix, which is 

conventionally referred to as the stiffness matrix.  The right-hand side of the equation forms 

a vector, known as the force vector.  The stiffness matrix and force vector are 

mathematically written in Equations (3.43) and (3.44), respectively.  

 

 𝐾𝐾𝑖𝑖𝑗𝑗 = �𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)𝐶𝐶𝑚𝑚𝑛𝑛𝐵𝐵𝑛𝑛𝑗𝑗(𝐱𝐱)𝑑𝑑𝑉𝑉 (3.43) 

 𝐹𝐹𝑖𝑖 = �𝑡𝑡𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

𝑑𝑑𝐴𝐴 + �𝜌𝜌𝑎𝑎𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

𝑑𝑑𝑉𝑉 (3.44) 

 

This arrangement of terms results in a classical system of linear equations.  Finally, 

Equation (3.45) expresses the system of equations for solving for the mechanical response 

of a solid material. 

 

 𝐾𝐾𝑖𝑖𝑗𝑗𝑞𝑞𝑗𝑗 = 𝐹𝐹𝑖𝑖  (3.45) 
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The displacements across element boundaries are held as continuous.  Consequently, a 

global system of equations can be formed by adding all the element contributions.  By 

solving the global system of equations, the displacements at every node in the mesh 

determined.  With the displacements, the strain and stress within the element can be 

calculated using Equation (3.39) and the constitutive law. 

3.2 Plasticity Model 

Plastic deformation generally refers to permanent deformation within a material.  

Permanent deformation will cause a material to not recover its original shape after an 

applied load is removed.  Some materials have a greater propensity to experience plastic 

deformation than others.  Within the context of this work, carbon fibers and the epoxy 

matrix behave very differently outside the linear regime.  Under longitudinal tension, carbon 

fibers behave linearly just before the point of fracture.  On the other hand, an epoxy matrix 

exhibits significant permanent deformation before fracture occurs. 

Figure 3.2 shows an illustration of a nonlinear stress-strain curve.  Until point A, the 

stress-strain relationship is linear.  The stress where the elastic regime ends and plastic 

deformation begins is referred to as the yield stress, 𝜎𝜎𝑦𝑦.  From A to B, plastic deformation 

is accumulated as yield occurs, but unloading still occurs elastically, as illustrated from 

point B.  Additionally, the strain can be separated into two components: the plastic strain, 

𝜀𝜀𝑝𝑝, and the elastic strain 𝜀𝜀𝑒𝑒.  From point A to B, the change in stress decreases as the strain 

increases, which is referred to as strain hardening.  From point B to C, the stress decreases 
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as the strain increases, which is an instability and referred to as strain softening.  From 

point C to D, strain hardening continues until fracture, denoted by “x” at point D. 

 
Figure 3.2. General stress-strain curve exhibiting nonlinearities 

A plasticity model is meant to capture the nonlinear behavior before fracture occurs.  

Generally, the evolution of plastic deformation in epoxy resins depends on the rate of load 

and temperature.  This work is limited to quasi-static loads at a single temperature, so a 

rate-independent plasticity model will be used.  Additionally, many types of polymers, 

including thermoset epoxy resins, exhibit strain softening under a variety of loads, but the 

phenomenon is most pronounced under compressive loads. [44] [45]  However, capturing the 

strain softening introduces several additional complexities, so this work will assume that 

only strain hardening occurs. 

A rate-independent plasticity model can be divided into three components: 
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1. Yield criterion, which indicates when yielding should occur 

2. Hardening laws, which define how the parameters of the yield criterion evolve as 

plastic deformation accumulates 

3. Flow rule, which defines how plastic strain evolves during yielding 

Each of these components must be defined for a plasticity model.  The functions used 

for each component can vary significantly depending on the material.  This work will 

consider a model developed by Melro et. al.. [46] [47]  It is a relatively simple rate-

independent, pressure-dependent plasticity model developed specifically for epoxy resin 

systems. 

3.2.1 Yield Criterion 

Many different yield criteria have been proposed by researchers over the years.  One of 

the most famous being the Von Mises criterion, as shown in Equation (3.46), where 𝑓𝑓 is the 

yield function and 𝐽𝐽2 is the second invariant of the deviatoric stress tensor. [48]  Equation 

(3.47) shows 𝐽𝐽2 in terms of the components of the stress tensor.  Yielding occurs when the 

yield function reaches 0., which occurs when 𝐽𝐽2 reaches one third of the square of the yield 

stress.  It makes no distinction between tensile and compressive strengths and does not 

include a pressure dependent term.  However, the yield criterion has been widely used 

successfully for ductile metals. 

 

 𝑓𝑓�𝝈𝝈,𝜎𝜎𝑦𝑦� = 3𝐽𝐽2 − 𝜎𝜎𝑦𝑦2 = 0 (3.46) 
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 𝐽𝐽2 =
1
6
�(𝜎𝜎11 − 𝜎𝜎22)2 + (𝜎𝜎22 − 𝜎𝜎33)2 + (𝜎𝜎33 − 𝜎𝜎11)2 + 6(𝜎𝜎122 + 𝜎𝜎232 + 𝜎𝜎132 )� (3.47) 

 

Due to the pressure sensitivity exhibited by epoxy resins, Melro et. al. proposed a 

paraboloidal yield criterion that included a pressure dependent term, based on the 

paraboloidal yield criterion proposed by Tschoegl. [46] [49]  The yield criterion is written in 

Equation (3.46), where 𝐼𝐼1 is the first invariant of the stress tensor, 𝜎𝜎𝑡𝑡 is the tensile yield 

strength, and 𝜎𝜎𝑐𝑐 is the compressive yield strength.  The first invariant of the stress tensor 

is simply given by 𝐼𝐼1 = 𝜎𝜎11 + 𝜎𝜎22 + 𝜎𝜎33.  It should be noted that yielding will occur when 

𝑓𝑓 = 0, but the yield strengths can evolve as plastic strain accumulates. 

  

 𝑓𝑓(𝝈𝝈,𝜎𝜎𝑐𝑐,𝜎𝜎𝑡𝑡) = 6𝐽𝐽2 + 2𝐼𝐼𝑖𝑖(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑡𝑡) − 2𝜎𝜎𝑐𝑐𝜎𝜎𝑡𝑡 = 0 (3.48) 

 

Figure 3.3 shows a typical yield surface using the criterion given by Equation (3.46).  

The surface is plotted in principle stress space, and the hydrostatic axis lies along the line 

𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎3.  It is important to note that the surface is symmetric about the hydrostatic 

axis and smooth, which are two properties that will simplify the computational 

implementation. 
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Figure 3.3. Two views of a typical paraboloidal yield surface given by Equation 
(3.46) 

3.2.2 Hardening Laws 

The yield criterion indicates when yielding will occur, but the parameters in the yield 

function are often not constant.  As plastic strain accumulates, the stress required to cause 

further plastic deformation in the material can change, refer to the region between points 

A and B in Figure 3.2.  There are two common categories of hardening: isotropic and 

kinematic.  Considering surface in stress space defined by 𝑓𝑓 = 0, isotropic hardening grows 

the surface, while kinematic hardening translates the surface.  If the material experiences 

proportional loading, then isotropic and kinematic hardening give the same stress-strain 

response.  However, when the proportions of stress components change, then the two types 

of hardening behave differently.  In reality, a material exhibits both types of hardening.  

However, the analyses in this work focus on proportional load paths for the models, and 

though the local material may experience non-proportional loading, the degree of non-
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proportionality should be relatively small.  Consequently, only isotropic hardening will be 

considered in this work. 

Ideally, careful experimental tests should inform the selection of hardening parameters.  

In general, the hardening law can simply be a spline fit of discrete experimental data.  

However, experimental data was not readily available for the epoxy resin systems considered 

in this work.  Consequently, a simple power law will be used for isotropic hardening of the 

tensile and compressive strengths as a function of the effective plastic strain, 𝜀𝜀𝑒𝑒
𝑝𝑝.  The 

effective plastic strain is a measure of the accumulated plastic strain.  The effective plastic 

strain cannot decrease throughout any loading history, and it is defined incrementally, 

taking the history of plastic strain into account.  Consider the case where a material is 

yielded in tension.  If the loading is reversed and the material is yielded in compression, 

then the plastic strain tensor may be reduced, but the effective plastic strain continues to 

increase.  The increment of effective plastic strain is defined in terms of the increment of 

plastic strain as shown in Equation (3.49), where 𝑖𝑖 is the constant that results in 𝜀𝜀𝑒𝑒
𝑝𝑝 = 𝜀𝜀11

𝑝𝑝  

under uniaxial load along the x-axis.  Equation (3.50) shows the value of 𝑖𝑖 for the yield 

function shown in Equation (3.46), where 𝜈𝜈𝑝𝑝 is the plastic Poisson ratio. 

 

 Δ𝜀𝜀𝑒𝑒
𝑝𝑝 = �𝑖𝑖Δ𝜀𝜀𝑖𝑖𝑗𝑗

𝑝𝑝Δ𝜀𝜀𝑖𝑖𝑗𝑗
𝑝𝑝  (3.49) 

 
𝑖𝑖 =

1
1 + 2𝜈𝜈𝑝𝑝2

 
(3.50) 
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The hardening laws used in this work take the form that is shown in Equations (3.51) 

and (3.52), where 𝜎𝜎𝑐𝑐0 and 𝜎𝜎𝑡𝑡0 are the compressive and tensile yield strengths before any 

yielding occurs, 𝐻𝐻𝑐𝑐 and 𝐻𝐻𝑡𝑡 are the compressive and tensile hardening moduli, and 𝑛𝑛𝑐𝑐 and 

𝑛𝑛𝑡𝑡 are the compressive and tensile hardening exponents.   

 

 𝜎𝜎𝑐𝑐 = 𝜎𝜎𝑐𝑐0 + 𝐻𝐻𝑐𝑐�𝜀𝜀𝑒𝑒
𝑝𝑝�

𝜂𝜂𝑐𝑐 (3.51) 

 𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑡𝑡0 + 𝐻𝐻𝑡𝑡�𝜀𝜀𝑒𝑒
𝑝𝑝�

𝜂𝜂𝑡𝑡 (3.52) 

 

3.2.3 Flow Rule 

The flow rule determines how the plastic strain tensor will evolve during yielding.  It is 

useful to propose that the instantaneous rate of change in plastic strain is equal to the rate 

of change of a plastic multiplier, �̇�𝛾, times a flow tensor, 𝑁𝑁.  The flow tensor indicates the 

proportionality of how each component of the plastic strain will change, while the rate of 

change of the plastic multiplier indicates how fast the plastic strain will change. 

 �̇�𝜺𝑝𝑝 = �̇�𝛾𝑵𝑵 (3.53) 

 

For associate flow rules, the flow tensor is simply the derivative of the yield function 

with respect to the stress tensor, 𝝈𝝈.  However, this would result in an unrealistic volumetric 

change during yielding when the yield function contains a pressure-dependent term. [46]  

Consequently, the flow rule will be based on a second potential, 𝑔𝑔, called the flow potential.  

When the flow potential does not equal the yield function, the flow rule is called non-
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associative.  Equation (3.54) shows the flow potential, 𝑔𝑔, proposed by Melro et. al., where 

𝛼𝛼 is a material constant. 

 

 𝑔𝑔(𝝈𝝈) = 3𝐽𝐽2 +
𝛼𝛼
9
𝐼𝐼12 (3.54) 

 

The material parameter 𝛼𝛼 is not independent and can be related to 𝜈𝜈𝑝𝑝.  It should the 

value that results in the proper volumetric deformation during yielding due to a uniaxial 

tensile load.  The derivation can be found in Ref. [46], but the result in given in Equation 

(3.55). 

 

 𝛼𝛼 =
9
2

1 − 2𝜈𝜈𝑝𝑝
1 + 𝜈𝜈𝑝𝑝

 (3.55) 

 

Using the flow potential in Equation (3.54), the incremental form of the flow rule can 

be written as shown in Equation (3.56), where 𝑺𝑺 is the deviatoric stress tensor and 𝑰𝑰 is the 

identity tensor. 

 Δ𝜺𝜺𝑝𝑝 = Δ𝛾𝛾
𝜕𝜕𝑔𝑔
𝜕𝜕𝝈𝝈

= Δ𝛾𝛾 �3𝑺𝑺 +
2
9
𝛼𝛼𝐼𝐼1𝑰𝑰� (3.56) 

 

3.2.4 Return Mapping 

With the yield criterion, hardening laws, and flow rule, the elastoplastic response of the 

material can be fully defined.  Inside the elastic regime, the response of the material is 
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linear, but in the plastic regime, the set of equations become nonlinear.  The equations 

would be prohibitive to solve analytically except for very simple cases.  Consequently, a 

numerical method must be used to solve the nonlinear equation. 

Solving the nonlinear equation can be framed as a nonlinear optimization problem 

subject to three constraints, also referred to as Karush-Kuhn-Tucker conditions.  The first 

constraint is that the rate of change of the plastic multiplier is nonnegative.  This results 

from the choice to have the flow tensor, 𝑵𝑵, account for the direction of plastic flow and 

have the plastic multiplier determine the magnitude of the plastic strain to be created.  The 

second condition is that the yield function must always remain non-positive.  Yielding occurs 

when 𝑓𝑓 = 0, and the material behaves elastically inside the yield surface, 𝑓𝑓 < 0.  Finally, 

the third condition is that the plastic strain can only be created when the yield surfaces is 

reached.  These three conditions can mathematically be written as: 

 

 �̇�𝛾 ≥ 0 𝑓𝑓 ≤ 0 �̇�𝛾𝑓𝑓 = 0 (3.57) 

 

Many researchers have proposed methods for solve the nonlinear equation, but the most 

popular category of methods is return mapping algorithms. [50]  A return mapping 

algorithm relies on predicting the next stress state given a strain increment and, if the 

predicted stress state is outside the yield surface, correcting the stress state until it returns 

to the yield surface, hence the term return mapping. 
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Most methods use an elastic predictor, but how the stress state is corrected depends on 

the method.  The two most widely used return mapping algorithms are the closest point 

projection method (CPPM) and the convex cutting plane algorithm (CPA).  The difference 

between the two method lies in how the flow tensor is updated.  During the correction steps, 

the CPPM uses the normal to the surface that the stress is being corrected to as the 

direction, whereas the CPA uses the normal to the surface the stress is being corrected from 

as the direction.  The CCPM has been shown to outperform the CPA method, but the CPA 

method is easier to implement for complex plasticity models. [51]  These methods work well 

for a wide range of plasticity models. 

However, when a non-associative flow rule is used, then the normal of the yield surface, 

𝑓𝑓, is not used.  Instead, the normal of the surface formed by the flow potential, 𝑔𝑔, is used.  

In general, this can introduce many complications, but fortunately, the flow potential and 

yield surface are both fully differentiable, symmetric about the hydrostatic axis, and 

paraboloidal in shape, refer to Figure 3.3.  Due to these properties, the return mapping path 

occurs in a plane that includes the elastic predictor stress state and the hydrostatic axis. 

Figure 3.4 shows an illustrative example for the CCPM and CPA when an associative 

flow rule is used and for a return mapping when a non-associative flow rule is used.  The 

increment in strain is used to determine the elastic predictor, and the corrections occur 

along different paths depending on the return mapping algorithm used.  It is important to 

note that the three cases may not result in the same 𝜎𝜎𝑛𝑛+1.   
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Figure 3.4. Illustrative comparison of return mapping algorithms 

Using the discrete form of the plasticity equations, this relatively simple model becomes 

a single nonlinear equation as a function of Δ𝛾𝛾.  Many researchers, including Melro et. al., 

have used the Newton-Raphson method to solve the return mapping problem.  

Fundamentally, the aim is to find the root of the yield function, 𝑓𝑓(𝝈𝝈,𝜎𝜎𝑐𝑐,𝜎𝜎𝑡𝑡), given an elastic 

predictor.  However, recall that 𝜎𝜎𝑐𝑐 and 𝜎𝜎𝑡𝑡 are a function of the effective plastic strain, 𝜀𝜀𝑒𝑒
𝑝𝑝, 

as shown in the hardening laws.  The procedure is as follows: 

1. Begin with a guess for Δ𝛾𝛾 

2. Calculate Δ𝜀𝜀𝑒𝑒
𝑝𝑝 

3. Update the hardened yield strengths, 𝜎𝜎𝑐𝑐 and 𝜎𝜎𝑡𝑡 

4. Calculate 𝑓𝑓 

5. Calculate 𝜕𝜕𝑓𝑓
∂Δ𝛾𝛾
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6. Calculate the next guess for Δ𝛾𝛾𝑖𝑖+1 = Δ𝛾𝛾𝑖𝑖 − 𝑓𝑓𝑖𝑖 �
𝜕𝜕𝑓𝑓
∂Δ𝛾𝛾

�
𝑖𝑖
�
−1

 

7. Repeat steps 2-6 until 𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓) ≤ 𝑡𝑡𝑡𝑡𝑡𝑡 

The derivation for the relevant equations are given concisely in Ref. [46], but the final 

equations are provided here in Equations (3.58)-(3.64). 

 

Step 2: Δεe
p = Δ𝛾𝛾√𝑖𝑖𝐴𝐴 (3.58) 

Step 2: 𝐴𝐴 =
18𝐽𝐽2𝑡𝑡𝑟𝑟

(1 + 6𝐺𝐺Δ𝛾𝛾)2 +
4𝛼𝛼2(𝐼𝐼1𝑡𝑡𝑟𝑟)2

27(1 + 2𝐾𝐾𝛼𝛼Δ𝛾𝛾)2 (3.59) 

Step 4: 𝑓𝑓 =
6𝐽𝐽2𝑡𝑡𝑟𝑟

(1 + 6𝐺𝐺Δ𝛾𝛾)2 +
2𝐼𝐼1𝑡𝑡𝑟𝑟

1 + 2𝐾𝐾𝛼𝛼Δ𝛾𝛾
(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑡𝑡) − 2𝜎𝜎𝑐𝑐𝜎𝜎𝑡𝑡 (3.60) 

Step 5: 

𝜕𝜕𝑓𝑓
∂Δ𝛾𝛾

= −
72𝐺𝐺𝐽𝐽2𝑡𝑡𝑟𝑟

(1 + 6𝐺𝐺Δ𝛾𝛾)3 −
4𝐾𝐾𝛼𝛼𝐼𝐼1𝑡𝑡𝑟𝑟

(1 + 2𝐾𝐾𝛼𝛼Δ𝛾𝛾)2
(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑡𝑡)

+
2𝐼𝐼1𝑡𝑡𝑟𝑟

1 + 2𝐾𝐾𝛼𝛼Δ𝛾𝛾
�
𝜕𝜕𝜎𝜎𝑐𝑐
𝜕𝜕Δ𝛾𝛾

−
𝜕𝜕𝜎𝜎𝑡𝑡
𝜕𝜕Δ𝛾𝛾

� − 2 �𝜎𝜎𝑡𝑡
𝜕𝜕𝜎𝜎𝑐𝑐
𝜕𝜕Δ𝛾𝛾

+ 𝜎𝜎𝑐𝑐
𝜕𝜕𝜎𝜎𝑡𝑡
𝜕𝜕Δ𝛾𝛾

� 
(3.61) 

Step 5: 
∂σc
∂Δ𝛾𝛾

=
∂σc
∂Δεe

p
∂Δεe

p

∂Δ𝛾𝛾
= 𝜂𝜂𝑐𝑐𝐻𝐻𝑐𝑐�εe

p�
𝜂𝜂𝑐𝑐−1 ∂Δεe

p

∂Δ𝛾𝛾
 (3.62) 

Step 5: 
∂σ𝑡𝑡
∂Δ𝛾𝛾

=
∂σ𝑡𝑡
∂Δεe

p
∂Δεe

p

∂Δ𝛾𝛾
= 𝜂𝜂𝑡𝑡𝐻𝐻𝑡𝑡�εe

p�
𝜂𝜂𝑡𝑡−1 ∂Δεe

p

∂Δ𝛾𝛾
 (3.63) 

Step 5: 
∂Δεe

p

∂Δ𝛾𝛾
= √𝑖𝑖𝐴𝐴 −

Δ𝛾𝛾√𝑖𝑖
2√𝐴𝐴

�
216𝐺𝐺𝐽𝐽2𝑡𝑡𝑟𝑟

(1 + 6𝐺𝐺Δ𝛾𝛾)3 +
16𝛼𝛼3𝐾𝐾𝐼𝐼1𝑡𝑡𝑟𝑟

27(1 + 2𝐾𝐾𝛼𝛼Δ𝛾𝛾)3� (3.64) 

 

To clarify the relation between the solution of the nonlinear equation and the return 

mapping sequence, Figure 3.5 shows a typical 𝑓𝑓 vs Δ𝛾𝛾 curve along with an illustration of 
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the return mapping sequence in the plane that contains the elastic predictor and the 

hydrostatic axis.  Recall that Newton-Raphson iteration is used to solve for Δ𝛾𝛾 such that 

𝑓𝑓 = 0, which is point B in Figure 3.5.  Because the function changes so rapidly near Δ𝛾𝛾 =

0, the number of iterations required to reach convergence greatly depends on the initial 

guess.  Additionally, an initial guess for Δ𝛾𝛾 beyond the solution will result in the next guess 

for Δγ being negative without modification during the Newton-Raphson iterations, refer to 

points C and D in Figure 3.5.  Since a negative plastic multiplier is not permissible, the 

previous guess for Δ𝛾𝛾 is reduced by a factor of 4 if the next guess would be negative. 
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a) 𝑓𝑓 vs Δ𝛾𝛾 plot 

 
b) Illustration relating points from 𝑓𝑓 vs Δ𝛾𝛾 plot to the return mapping with the yield surfaces 

Figure 3.5. Typical 𝒇𝒇 vs. 𝚫𝚫𝜸𝜸 curve for a load step the results in the elastic 
predictor lying outside the yield surface 

 

It should be noted that some complications can occur for some hardening laws.  For 

example, consider the two cases in Table 3.1 where the compressive and tensile hardening 
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parameters differ.  In case 1, the tensile and compressive hardening moduli are the same, 

but the hardening exponents differ.  In case 2, the hardening exponents are the same, but 

the hardening moduli differ.  For both cases, a local maximum appears in the 𝑓𝑓 vs Δ𝛾𝛾 curve, 

as shown in Figure 3.6.  The presence of a local maximum can result in divergence for the 

Newton-Raphson method.  During the sequence of corrections, if a guess places Δ𝛾𝛾 on the 

left side of the local maximum, the algorithm will drive Δ𝛾𝛾 towards 0, which does not satisfy 

𝑓𝑓 = 0.  In this work, the hardening parameters are chosen arbitrarily due to a lack of 

available experimental data.  So, the same parameters will be used for tensile and 

compressive hardening.  However, future work employing more complex hardening laws 

should expect to require a more powerful nonlinear solver than the Newton-Raphson 

method. 

 

Table 3.1. Stress invariants and material properties that illustrate local minima 

 Case 1 Case 2 
𝐼𝐼1 28.7e7 -3.54e8 
𝐽𝐽2 3.19e13 1.50e16 
𝐸𝐸 3.72 GPa 
𝜈𝜈 0.35 
𝜎𝜎𝑐𝑐0 60 MPa 
𝜎𝜎𝑡𝑡0 20 MPa 
𝐻𝐻𝑐𝑐 160 MPa 70 MPa 
𝜂𝜂𝑐𝑐 0.1 0.2 
𝐻𝐻𝑡𝑡 160 MPa 
𝜂𝜂𝑡𝑡 0.2 
𝜈𝜈𝑝𝑝 0.3 
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a) 𝑓𝑓 vs Δ𝛾𝛾 for case 1 (𝜂𝜂𝑐𝑐 ≠ 𝜂𝜂𝑡𝑡) 

 
b)  𝑓𝑓 vs Δ𝛾𝛾 for case 2 (𝐻𝐻𝑐𝑐 ≠ 𝐻𝐻𝑡𝑡) 

Figure 3.6. 𝒇𝒇 vs 𝚫𝚫𝜸𝜸 for two cases that exhibit local maxima 
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3.3 Nonlinear Solution Method 

In a simulation with a plastic material, the global system of equations becomes nonlinear.  

For each load increment, the system of equations becomes implicitly dependent on the 

displacement vector, since the stress is a nonlinear function of strain in a plastic material.  

Consequently, a global iteration strategy is needed to determine the displacement vector 

that satisfies equilibrium. 

The governing equation in Equation (3.21) still holds, but the derivation of the finite 

element method must be modified to allow for a nonlinear constitutive law.  The only term 

affected by introducing plasticity is the stress-strain relation.  First consider a decomposition 

of the strain tensor into its elastic and plastic parts.  Using contracted notation, Equation 

(3.65) relates the strain tensor, sometimes called the total strain tensor, to its elastic and 

plastic parts, 𝜀𝜀𝑖𝑖𝑗𝑗𝑒𝑒  and 𝜀𝜀𝑖𝑖𝑗𝑗
𝑝𝑝  respectively.  In light of this relation, it is important to recall that 

the stress is linearly related only to elastic part of the strain via a stiffness tensor, as shown 

in Equation (3.66).  The plastic strain evolves as yielding occurs via the plasticity model 

discussed in the last section. 

 

 𝜀𝜀𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑒𝑒 − 𝜀𝜀𝑖𝑖
𝑝𝑝 (3.65) 

 𝜎𝜎𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑗𝑗𝜀𝜀𝑗𝑗𝑒𝑒 = 𝐶𝐶𝑖𝑖𝑗𝑗�𝜀𝜀𝑗𝑗 − 𝜀𝜀𝑗𝑗
𝑝𝑝� (3.66) 
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When the strain tensor is equivalent to the elastic strain, the finite element method led 

to Equation (3.42).  However, the presence of plastic strain introduces an extra term into 

the volume integral, resulting in Equation (3.67). 

 

 
��𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)𝐶𝐶𝑚𝑚𝑛𝑛𝐵𝐵𝑛𝑛𝑗𝑗(𝐱𝐱)𝑞𝑞𝑗𝑗 − 𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)𝐶𝐶𝑚𝑚𝑛𝑛𝜀𝜀𝑛𝑛

𝑝𝑝�𝑑𝑑𝑉𝑉

= �𝑡𝑡𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

𝑑𝑑𝐴𝐴 + �𝜌𝜌𝑎𝑎𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

 𝑑𝑑𝑉𝑉 
(3.67) 

 

With this new nonlinear term, the classical 𝐾𝐾𝑞𝑞 = 𝐹𝐹 form becomes less useful.  Instead, 

a Newton-Raphson iterative solve will be used to determine an increment of the 

displacements for each load step.  First, it is useful to introduce a residual vector, 𝑅𝑅𝑖𝑖, which 

will be the difference between the right-hand side and left-hand side of Equation (3.67).  

However, the left-hand side can be manipulated to give a simpler form.  Equation (3.68) 

shows the simplified form for the residual vector, which is fundamentally the difference 

between the externally applied loads and the internal forces.  For equilibrium to be 

maintained, the residual must be zero. 

 

 𝑅𝑅𝑖𝑖 = �𝑡𝑡𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

𝑑𝑑𝐴𝐴 + �𝜌𝜌𝑎𝑎𝑚𝑚
𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

 𝑑𝑑𝑉𝑉 − �𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)𝜎𝜎𝑚𝑚 𝑑𝑑𝑉𝑉 (3.68) 
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The residual can be expressed in terms of a Taylor series, as shown in Equation (3.69), 

where 𝑅𝑅𝐼𝐼(𝒒𝒒) indicates the residual vector evaluated with the nodal displacement vector q.  

The Newton-Raphson method relies on the truncation of the high-order terms, which 

linearizes the residual function.  Since the aim is to determine displacements that result in 

a residual vector that is zero, 𝑅𝑅𝑖𝑖(𝒒𝒒 + 𝚫𝚫𝒒𝒒) = 0, the equation becomes as shown in Equation 

(3.70). 

 

 𝑅𝑅𝑖𝑖(𝒒𝒒 + 𝚫𝚫𝒒𝒒) = 𝑅𝑅𝑖𝑖(𝒒𝒒) +
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗

Δ𝑞𝑞𝑗𝑗 +
𝜕𝜕2𝑅𝑅𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗2

Δ𝑞𝑞𝑗𝑗2 + ⋯ (3.69) 

 −
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗

Δ𝑞𝑞𝑗𝑗 = 𝑅𝑅𝑖𝑖(𝒒𝒒) (3.70) 

 

In this form, Newton-Raphson iterations can be used to iteratively correct the 

displacement vector until the residual becomes close enough to zero.  However, the 

derivative of the residual in terms of the displacements must first be defined.  Using the 

form of the residual vector given Equation (3.68), it is important to recognize that the first 

two terms are independent of the nodal displacement vector.  Recall that 𝜕𝜕𝑢𝑢𝑚𝑚(𝐱𝐱)
𝜕𝜕𝑞𝑞𝑖𝑖

 is a matrix 

of shape functions evaluated at x, and 𝐵𝐵𝑚𝑚𝑖𝑖 is independent of the nodal displacement vector, 

as it is a matrix of derivatives of the shape function with respect to the coordinates.  

Consequently, the derivative of the residual vector becomes Equation (3.71).  Plugging 

Equation (3.71) back into Equation (3.70) yields a system of linear equations and reveals 

the tangent stiffness matrix, 𝐾𝐾𝑖𝑖𝑗𝑗𝑡𝑡𝑡𝑡𝑛𝑛 . 
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𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗

= −�𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)
𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝑞𝑞𝑗𝑗

 𝑑𝑑𝑉𝑉 = −�𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)
𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝜀𝜀𝑛𝑛

𝜕𝜕𝜀𝜀𝑛𝑛
𝜕𝜕𝑞𝑞𝑗𝑗

 𝑑𝑑𝑉𝑉

= −�𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)
𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝜀𝜀𝑛𝑛

𝐵𝐵𝑛𝑛𝑗𝑗(𝐱𝐱) 𝑑𝑑𝑉𝑉 
(3.71) 

 �𝐵𝐵𝜈𝜈𝑖𝑖(𝐱𝐱)
𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝜀𝜀𝑛𝑛

𝐵𝐵𝑛𝑛𝑗𝑗(𝐱𝐱) 𝑑𝑑𝑉𝑉 Δ𝑞𝑞𝑗𝑗 = 𝐾𝐾𝑖𝑖𝑗𝑗𝑡𝑡𝑡𝑡𝑛𝑛Δ𝑞𝑞𝑗𝑗 = 𝑅𝑅𝑖𝑖(𝒒𝒒) (3.72) 

 

Now the algorithm becomes: 

1. Provide an initial estimate for 𝑞𝑞𝑖𝑖 

2. Calculate 𝑅𝑅𝑖𝑖(𝒒𝒒) 

3. Check convergence (if the residual is small enough then the algorithm is done) 

4. Form 𝐾𝐾𝑖𝑖𝑗𝑗𝑡𝑡𝑡𝑡𝑛𝑛 

5. Solve for Δ𝑞𝑞𝑖𝑖 

6. Update the estimate for the displacement vector 𝑞𝑞𝑖𝑖𝑛𝑛+1 = 𝑞𝑞𝑖𝑖𝑛𝑛 + Δ𝑞𝑞𝑖𝑖 

7. Repeat steps 2-6 until convergence is reached 

 

In step 1, the initial estimate can be calculated in many ways.  The Newton-Method is 

known to have trouble when the residual vector has local minima, which was explored in 

Ref. [52] for cohesive zone models.  So, it is important to have a good initial estimate for 

𝑞𝑞𝑖𝑖.  This work will begin with an estimate based on solving Equation (3.72) with the residual 

calculated using the displacement vector from the previous load step, which is zero for the 

first load step.  After a few initial load increments, the initial estimate for 𝑞𝑞𝑖𝑖 will be based 
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on a linear extrapolation.  Let 𝑡𝑡 − 1 be the pseudo time of the previous load step, and 𝑡𝑡 be 

current pseudo time. The increment of the displacement for the last time step is given by 

Δ𝑞𝑞𝑖𝑖𝑡𝑡−1 = 𝑞𝑞𝑖𝑖𝑡𝑡−1 − 𝑞𝑞𝑖𝑖𝑡𝑡−2.  Suppose the applied loads are scaled according to a load factor, 𝐿𝐿, 

and the change in the load factor is similarly given by Δ𝐿𝐿𝑡𝑡−1 = 𝐿𝐿𝑡𝑡−1 − 𝐿𝐿𝑡𝑡−2.  Then as long 

as the proportionality of the loads remains constant between the last load increment and 

the current load increment, the estimate for 𝑞𝑞𝑖𝑖 can be given by the extrapolation shown in 

Equation (3.73). 

 

 𝑞𝑞𝑖𝑖𝑡𝑡 = 𝑞𝑞𝑖𝑖𝑡𝑡−1 +
Δ𝑞𝑞𝑖𝑖𝑡𝑡−1

Δ𝐿𝐿𝑡𝑡−1
Δ𝐿𝐿𝑡𝑡 (3.73) 

 

It should be noted that if the proportionality of the load changes from the previous load 

increment to the current load increment, then the estimate for 𝑞𝑞𝑖𝑖 should be based on a 

tangent solution, which requires a linear solve. However, this work only considers 

proportional loading, and this strategy removed the need to perform a linear solve for most 

of the time steps in the analysis, greatly speeding up the analyses. 

In step 2, convergence is assessed based on a relative L2-norm, which is given by the 

L2-norm of the residual divided by the L2-norm of the internal forces.  When the relative 

L2-norm became smaller than the tolerance for the analysis, 1e-6 in this work, then the 

solution was considered converged. 

Finally, to form the tangent matrix, the derivative of the stress with respect to the total 

strain is required.  For a linear elastic material, the derivative is simply the linear stiffness 



 

124 

 

matrix, 𝐶𝐶𝑖𝑖𝑗𝑗.  However, for a plastic material, the derivation for the term can be quite 

involved.  Melro et. al. provides an expression for the term in Refs. [46] and [47].  However, 

the tangent stiffness did not result in acceptable convergence when plastic strain began to 

accumulate.  Recently, van der Meer discovered some important terms were missing and 

proposed an improved formulation in Ref. [53].  The formulation was implemented in Beta2, 

but the iterations sometimes diverged.  An independent derivation was developed for the 

model described in this chapter.  However, it differed from the other two derivations 

mentioned and sometimes resulted in divergence.  Unfortunately, this may be a problem 

with the implementation or the derivation of the tangent stiffness.  However, the tangent 

stiffness could be calculated using a finite difference approach by perturbing each component 

of the strain tensor by a very small amount, 1e-7 in this work, and calculating the change 

in stress for each perturbation.  After significant optimizations in the code, this method 

performed efficiently and resulted in stable convergence for all cases considered.  The 

approach may be slightly slower than directly computing the tangent stiffness, but it does 

not require anything other than the calculating the stress given the strain. 

It should be noted that each Newton-Raphson solution typically requires several 

solutions to a linear set of equations when the materials begin to yield.  Additionally, 

multiple load increments will be needed to keep the solution stable.  Consequently, the time 

required for a plasticity analysis can increase significantly. 
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4 MICROSCALE ANALYSES OF UNIDIRECTIONAL FIBER/MATRIX 

COMPOSITES 

4.1 Overview 

The overall aim of this work is to predict the response of composite materials across 

scales.  In the case of laminated composites, the heterogeneous microstructure of the plies 

near the interface of interest will be directly modeled, which directly captures the microscale 

response within a mesoscale analysis.  Plies that are away from the interface of interest will 

be modeled as a homogeneous material, but these ply-level properties can be experimentally 

measured.  However, in the case of three-dimensional textiles, the nonidealized textile 

models result in a varying cross-sectional area along the path of the tow.  In reality, the 

area of fiber in every cross-section of a tow remains approximately constant, but the local 

fiber volume fraction can change significantly, refer to Figure 2.37.  To investigate the effect 

of the variation of the local fiber volume fraction on the stress distributions within 3D 

textiles, a relationship between the fiber volume fraction and material properties is needed.  

Supporting the study of 3D textiles that is presented in a later chapter, this chapter 

investigates the dependence of mesoscale linear elastic properties for unidirectional fiber-

matrix composites on the fiber volume fraction. 

There are a variety of analytical homogenization methods and FEM models with simple 

fiber arrangements that could be used to predict the effective properties, but accounting of 

the randomness of the heterogeneous microstructure has been shown to significantly affect 

the predicted effective properties, especially the predicted shear moduli and Poisson’s ratios. 
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[36] [47] [37]  However, accounting for the randomness of the fiber arrangements requires 

an ensemble of models to understand the distribution of effective properties.  This work 

investigates the effect of fiber volume fraction on the effective properties used at the 

mesoscale by using an ensemble of random fiber/matrix RVEs for each fiber volume fraction 

considered.  The mean effective properties from each ensemble are fit using a cubic spline.  

In a later chapter, the spline will be used at the mesoscale to interpolate the effective 

properties for each element in the tows of a 3D textile model. 

The first section of this chapter provides the relevant background information.  This is 

followed by a parametric study of the effect of the fiber volume fraction on the effective 

stiffness matrix for different fiber arrangements.  Next, the results from the study are used 

to develop a mesoscale constitutive law.  Finally, a summary of the microscale analyses is 

provided.  

4.2 Background 

This section begins with a description of the strategy for creating the random RVEs, 

the number of fiber arrangements in each ensemble, and the range of fiber volume fractions 

considered.  Next, the meshes used for the fiber/matrix RVEs are briefly presented.  Then, 

a detailed explanation of the periodic boundary conditions are provided, followed by the 

assumed microscale constituent properties.  Finally, the method used to calculate the 

effective properties is discussed. 
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4.2.1 Random Fiber/Matrix RVEs 

Historically, random fiber/matrix RVE have been generated with square shapes. [36] 

[37] [47]  Researchers have developed several computational methods for generating the 

random fiber arrangements, and the square shape makes the implementation of an 

algorithms relatively simple.  One popular method is to perturb a periodic arrangement of 

fibers, which has the advantage of successfully creating very high fiber volume fractions if 

a hexagonal packing is perturbed. [54] [55] [56]  However, highly random fiber arrangements 

are not possible at low fiber volume fractions. Another method that is common in the recent 

literature is to randomly place fibers within the RVE and remove the overlap between them 

through an iterative contact algorithm. [57] [36] [58] [37] [47]  It has been noted in Ref. [47] 

and [37] that the method performs well for fiber volume fractions up to 65%.  The method 

was initially attempted for the fiber volume fractions considered in this work, which ranges 

from 40% to 80%, but the method failed to remove the overlap between fibers for some 

initial arrangements of fibers above 70% fiber volume fraction.  The percentage of 

arrangements that failed in an ensemble increased as the fiber volume fraction increased.  

At 80% fiber volume fraction, it was very difficult to successfully create a nonoverlapping 

fiber arrangement, much less an ensemble of fiber arrangements.  The underlying issue is 

that the maximum packing within a square RVE shape is lower than the 90.7% theoretical 

limit for hexagonal packing.  Consequently, arrangements of fibers within a square RVE are 

more likely to lock up during the iterative removal of overlap between fibers. 
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To allow the reliable generation of random RVEs with high fiber volume fractions, the 

RVE shape, RVE size, and number of fibers should be selected such that a hexagonal close 

packing is possible.  This maximizes the theoretical packing limit for the RVE and decreases 

the probability of locking to occur.  It should also be noted that a periodic square RVE 

shape cannot result in transversely isotropic properties, since it is incapable of allowing a 

rotational symmetry that exists in transversely isotropic materials.  Ref. [36] showed that 

as the number of fiber arrangements in an ensemble increases, the mean effective properties 

approaches tends towards orthotropy but not transverse isotropy.  For the limit to correctly 

be transverse isotropy, an RVE shape that allows transverse isotropy must be used. 

Figure 4.1 shows the first three hexagonally shaped RVEs in the series that allow 

hexagonal close packing.  Note that the RVE boundaries cut through the fibers.  The 

number of fibers within each RVE, 𝑁𝑁𝑓𝑓𝑖𝑖𝑓𝑓𝑒𝑒𝑟𝑟𝑠𝑠, is given by Equation (4.1), and the side length 

of the hexagonal RVE, 𝑎𝑎, is given by Equation (4.2), where 𝐿𝐿 is the level shown in Figure 

4.1, 𝑟𝑟 is the average radius of the fibers, and 𝑉𝑉𝑓𝑓 is the fiber volume fraction.  The process 

for creating the hexagonal RVEs was discussed in chapter 2 of this manuscript.  For this 

study, hexagonal RVEs with 25 fibers, which is level 3 in Figure 4.1, and a constant fiber 

radius of 5𝑒𝑒-6 𝜈𝜈 are used.  It should be noted that Gherissi et. al. studied the variation of 

the fiber volume fraction within the cross-sections of tows in order to predict the size of 

RVE necessary to predict statistically significant properties for the tows.  The study showed 

that an RVE with 15 fibers was appropriate, which this work exceeds. [59] 
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Figure 4.1. RVE sizes that allow hexagonal packing 

 

 𝑁𝑁𝑓𝑓𝑖𝑖𝑓𝑓𝑒𝑒𝑟𝑟𝑠𝑠 = 3𝐿𝐿 + 6�𝑖𝑖
𝐿𝐿−1

𝑖𝑖=0

 (4.1) 

 𝑎𝑎 = 𝐿𝐿�
2𝜋𝜋𝑟𝑟2

√3𝑉𝑉𝑓𝑓
 (4.2) 

 

Since the fiber arrangements are random, an ensemble of models is used for each fiber 

volume fraction considered to capture the distribution of properties.  In Ref. [36], the 

average engineering properties were plotted as a function of the number of fiber 

arrangements in the ensemble for a carbon fiber/epoxy matrix composite system.  It was 

shown that the average properties of an ensemble with 50 random fiber arrangements 
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differed from a reference ensemble, which contained 500 fiber arrangements, by less than 

2%.  It should be noted that guidelines given in Ref. [36] for the number of fiber 

arraignments were in the context of inverse analyses.  In an inverse analysis, the lamina 

level properties must be predicted quite accurately to accurately determine the constituent 

properties.  Since this work does not conduct an inverse analysis, 50 random fiber 

arrangements were considered for each fiber volume fraction.  Based on the range of 

predicted fiber volume fractions in the simulated 3D textile model, shown in Figure 2.37, 

18 ensembles were created for fiber volume fractions ranging from 40% to 80%.  Figure 4.2 

provides two example RVEs for 40%, 60%, and 80% fiber volume fraction.  As shown in 

the figure, the amount of randomness that can occur in the fiber arrangements decreases as 

the fiber volume fraction increases towards the hexagonal close packing limit. 
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a) 40% 𝑉𝑉𝑓𝑓 

  
b) 60% 𝑉𝑉𝑓𝑓 
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c) 80% 𝑉𝑉𝑓𝑓 

Figure 4.2. Two random fiber arrangements for three selected fiber volume 
fractions, 𝑽𝑽𝒇𝒇 

4.2.2 RVE Meshes 

The 2D random fiber arrangements were meshed using quadratic triangle elements.  

Nodes were moved to conform to the circular fiber boundaries, and a higher mesh refinement 

was used in regions where fibers came close.  Figure 4.3 shows a typical triangle mesh for a 

random fiber/matrix RVE with 60% fiber volume fraction.  Though the 2D meshes could 

be directly used in a quasi-3D analysis to predict the 3D effective stiffness matrix, it was 

more convenient to use 3D meshes with the finite element framework used in this work.  

Consequently, the 2D meshes were extruded to create 3D meshes consisting of quadratic 

wedge elements.  Conventionally, lamina properties are given where 𝜎𝜎1 indicates the fiber 

direction, so the meshes were rotated so that the fibers were aligned 𝜎𝜎1-axis. 
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Figure 4.3. Mesh used for left fiber arrangement with 60% 𝑽𝑽𝒇𝒇 in Figure 4.2 

4.2.3 Periodic Boundary Conditions 

The fiber/matrix RVEs were generated to be geometrically periodic, and the mesh was 

generated to place nodes along the boundaries periodically, so it is possible to exactly impose 

periodic boundary conditions.  Periodic boundary conditions for the unit cell are concisely 

expressed in terms of the displacements along the unit cell boundaries in Equation (4.3) 

using indicial notation.  Repeated indices imply summation, and 𝑑𝑑𝑘𝑘 is a vector of periodicity 

that starts at some boundary coordinate 𝜎𝜎𝑗𝑗 in one unit-cell and ends at the equivalent point 

the next unit cell. 
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 𝑢𝑢𝑖𝑖�𝜎𝜎𝑗𝑗 + 𝑑𝑑𝑗𝑗� = 𝑢𝑢𝑖𝑖�𝜎𝜎𝑗𝑗� + 〈
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎𝑘𝑘

〉 𝑑𝑑𝑘𝑘 (4.3) 

 

For hexagonally shaped RVEs, the boundary conditions are explicitly given in Equations 

(4.4)-(4.6).  The coordinate system and the parameters are defined in Figure 4.4.  Equation 

(4.4) gives the conditions for periodicity, and Equations (4.5) and (4.6) are used to prevent 

rigid body motion. 

 

 

𝑢𝑢𝑖𝑖𝑡𝑡�(𝜎𝜎1,𝜎𝜎2, 𝜎𝜎3) = 𝑢𝑢𝑖𝑖𝑡𝑡(𝜎𝜎1, 𝜎𝜎2 −𝜈𝜈, 𝜎𝜎3 − 𝑛𝑛) + �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎2

�𝜈𝜈 + �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎3

� 𝑛𝑛 

𝑢𝑢𝑖𝑖𝑓𝑓
�(𝜎𝜎1, 𝜎𝜎2, 𝜎𝜎3) = 𝑢𝑢𝑖𝑖𝑡𝑡(𝜎𝜎1, 𝜎𝜎2 − 𝜈𝜈, 𝜎𝜎3 + 𝑛𝑛) + �

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎2

�𝜈𝜈 − �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎3

� 𝑛𝑛 
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𝜕𝜕𝑢𝑢𝑖𝑖
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𝜕𝜕𝑢𝑢𝑖𝑖
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(4.4) 

 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎𝑗𝑗

� = �
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝜎𝜎𝑖𝑖

� (4.5) 

 𝑢𝑢𝑖𝑖(0,0,0) = 0 (4.6) 
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Figure 4.4. Dimension of hexagonal RVE relevant to periodic boundary 
conditions 

4.2.4 Microscale Constituent Properties 

Fibers and matrix were modeled discretely and assumed to be IM7 graphite fibers and 

5220-4 epoxy matrix respectively.  The properties for the epoxy matrix was taken from Ref. 

[60].  However, it was shown in Ref. [36] that the fiber properties need to be inversely 

determined if the effective properties are to accurately represent the homogenized 

microstructure.  In Ref. [36], the apparent fiber properties were inversely determined using 

the effective ply properties and matrix properties in Ref. [60].  Those same apparent fiber 

properties determined in Ref. [36] were used in this paper, so that homogenizing random 

fiber/matrix models of unidirectional composites results in the effective properties in Ref. 

[60].  For this study, the constituent materials were assumed to be linearly elastic.  Table 

5.2 summaries the properties used for the fibers and matrix. 
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Table 4.1. Material properties for microscale study 

IM7 Graphite Fibers [36]  5220-4 Epoxy Matrix [60] 
𝐸𝐸1
𝑓𝑓 (GPa) 276  𝐸𝐸𝑚𝑚 (GPa) 3.45 

𝐸𝐸2
𝑓𝑓, 𝐸𝐸3

𝑓𝑓 (GPa) 26.0  𝐺𝐺𝑚𝑚 (GPa) 1.278 
𝐺𝐺12
𝑓𝑓 , 𝐺𝐺13

𝑓𝑓  (GPa) 20.7  𝜈𝜈𝑚𝑚 0.35 
𝐺𝐺23
𝑓𝑓  (GPa) 7.55    

𝜈𝜈12
𝑓𝑓 , 𝜈𝜈13

𝑓𝑓  0.292    
 

4.2.5 Calculation of Homogenized Stiffness Matrix 

The heterogenous microscale RVEs were assumed to be infinitely repeating using 

periodic boundary conditions.  The mean-field properties, also referred to as the effective or 

homogenized properties, of a material consisting of the repeated RVE are determined using 

the volume average stress and volume average strain under a variety of loads.  In an analysis 

with a length scale larger than the RVE size, the unidirectional composite can be treated 

as a homogeneous material with the effective properties determined from the RVE analyses 

with little error introduced. 

The effective stiffness matrix, which relates the volume average stress to the volume 

average strain, is determined by specifying only one volume average strain component at a 

time to be non-zero and calculating the volume average stresses.  Consequently, the full 

effective stiffness matrix requires six load configurations.  Each term of the effective stiffness 

matrix, �̃�𝐶𝑖𝑖𝑗𝑗, is calculated using Equation (4.7), where Δ〈𝜎𝜎𝑖𝑖〉 is the change in volume average 

stress from a zero volume average strain state and 〈𝜀𝜀𝑗𝑗〉 is the volume average strain.  Since 
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no thermal or moisture effects were considered, zero volume average strain results in zero 

volume average stress for these analyses.  A component of volume average strain can be 

imposed by specifying the respective volume average displacement gradient in the periodic 

boundary conditions. 

 

 �̃�𝐶𝑖𝑖𝑗𝑗 =
Δ〈𝜎𝜎𝑖𝑖〉
〈𝜀𝜀𝑗𝑗〉

 (4.7) 

 

4.3 Effect of Fiber Volume Fraction on the Effective Stiffness Matrix 

Since each different random fiber arrangement will result in a different effective stiffness 

matrix, an ensemble of fiber arrangements have a distribution of effective stiffness matrices.  

A Python script was written to run the various cases, read the output data, and store the 

effective stiffness matrix of each RVE for each fiber volume fraction considered.  No 

assumption about isotropy was made and the effective properties were generally anisotropic 

In general, the effective stiffness matrix has 21 unique terms.  The terms of a linear 

elastic stiffness matrix can be divided into three groups: normal terms, normal-shear 

coupling terms, which capture normal stresses that occur for an applied shear strain and 

vice versa, and shear terms.  For an orthotropic material, which exhibits three planes of 

symmetry, all normal-shear coupling terms and off-diagonal shear terms are zero.  A uniform 

arrangement of fibers, such as square or hexagonal packing, exhibits orthotropic effective 

properties, due to mirror symmetries about three planes. However, with random fiber 

arrangements, the material is expected to be anisotropic.  Because the 2D fiber arrangement 
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is extruded, the only symmetry will be a mirror symmetry about the x-y plane, resulting in 

what is classified as a monoclinic material.  The stiffness matrix of a monoclinic material 

with a mirror symmetry about the y-z plane will have the form shown in Equation (4.8).  

Note that there are 13 unique terms in the stiffness matrix of a monoclinic material. 

 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33
𝜎𝜎12
𝜎𝜎23
𝜎𝜎13⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 0 𝐶𝐶15 0

 𝐶𝐶22 𝐶𝐶23 0 𝐶𝐶25 0
  C33 0 𝐶𝐶35 0
   𝐶𝐶44 0 𝐶𝐶46
 sym   𝐶𝐶55 0
     𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

⋅

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

2𝜀𝜀12
2𝜀𝜀23
2𝜀𝜀13⎦

⎥
⎥
⎥
⎥
⎤

 (4.8) 

 

Figure 4.5 shows the distributions of normal terms in the effective stiffness matrices as 

a function of fiber volume fraction.  Error bars indicate ±1 standard deviation.  It is widely 

known that 𝐶𝐶11, which is the diagonal stiffness term in the direction of the fibers, follows a 

rule of mixtures quite well.  So, as expected, 𝐶𝐶11 exhibits a linear dependence on the fiber 

volume fraction and very little variation between fiber arrangements, as shown in Figure 

4.5a.  The coefficient of variation, which is the standard deviation divided by the mean, 

remained below 0.03% for all fiber volume fractions considered. 

Unidirectional composites are typically treated as transversely isotropic materials.  The 

assumptions made for the fiber/matrix models only assume a monoclinic material, and it is 

expected that many of the fiber arrangements do not exhibit transverse isotropy.  However, 

if a sufficient number of different fiber arrangements is considered, the mean properties 

should tend towards transverse isotropy.  Figure 4.5b and Figure 4.5c show the pairs of 
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normal terms that should be equal for a transversely isotropic material, namely 𝐶𝐶22-𝐶𝐶33 and 

𝐶𝐶12-𝐶𝐶13.  As expected, the stiffness terms are not linear with respect to the volume fraction.  

The coefficient of variation for these terms was significantly higher than the coefficient of 

variation for 𝐶𝐶11.  𝐶𝐶22 and 𝐶𝐶33 had a maximum coefficient of variation of 2.8%, while 𝐶𝐶12 

and 𝐶𝐶13 had a maximum coefficient of variation of 1.7%.  For the volume fractions 

considered, the mean of the distributions for 𝐶𝐶22 and 𝐶𝐶33 differed at most by 1.2%, while 

𝐶𝐶12 and 𝐶𝐶13 differed at most by 0.73%.  The mean effective properties did not exhibit 

transverse isotropy, but it is expected that the mean properties will become more 

transversely isotropic with more fiber arrangements in the ensemble or larger RVE sizes.  
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a) 𝐶𝐶11 

 
b) 𝐶𝐶22 and 𝐶𝐶33 
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c) 𝐶𝐶12 and 𝐶𝐶13 

 
d) 𝐶𝐶23 

Figure 4.5. Mean effective normal stiffness terms as a function of fiber volume 
fraction with error bars indicating ±1 standard deviation 
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For a material that exhibits mirror symmetries about three planes, the normal-shear 

coupling terms become zero.  Due to the general lack of symmetry about the x-y and x-z 

planes for random fiber arrangements, 𝐶𝐶15, 𝐶𝐶25, and 𝐶𝐶35 are expected to be non-zero for a 

random fiber arrangement.  However, if a sufficient number of fiber arrangements are 

considered, then the mean value of the normal-shear coupling terms are expected to tend 

towards zero, though the standard deviation may be quite large.  Figure 4.6 shows the mean 

effective shear-normal coupling stiffness terms as a function of fiber volume fraction with 

error bars indicating ±1 standard deviation.  The mean of all three non-zero normal-shear 

coupling terms remained between -3.8e7 and 4e7 Pa, which is about two orders of magnitude 

smaller than the smallest term on the diagonal of the effective stiffness matrix.  However, 

the terms exhibited a significant standard deviation for every fiber volume fraction 

considered.  The fiber volume fraction did not seem to affect the standard deviation 

significantly.  The range of standard deviations for 𝐶𝐶15 remained between 4.8e7 and 9.2e7.  

The range of standard deviations for 𝐶𝐶25 remained between 9.1e7 and 1.9e8.  Finally, the 

range of standard deviations for 𝐶𝐶35 remained between 7.7e7 and 1.6e8.  Note that the 

magnitude for the standard deviation is much larger than the mean.  However, the standard 

deviation of these coupling terms remained less than 5% of any of the mean of the normal 

stiffness terms. 
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a) 𝐶𝐶15 

 
b) 𝐶𝐶25 
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c) 𝐶𝐶35 

Figure 4.6. Mean effective shear-normal coupling stiffness terms as a function 
of fiber volume fraction with error bars indicating ±1 standard deviation 

Figure 4.7 shows the mean effective shear stiffness terms as a function of fiber volume 

fraction with error bars indicating ±1 standard deviation.  As shown in Figure 4.7a, the 

longitudinal shear terms, 𝐶𝐶44 and 𝐶𝐶66, exhibited a nonlinear relationship with the fiber 

volume fraction and larger standard deviations than the normal stiffness terms shown in 

Figure 4.5.  The coefficient of variance for both terms ranged from 2.1% to 7.3%.  For a 

transversely isotropic material, 𝐶𝐶44 and 𝐶𝐶66 should be equal, but for the ensembles 

considered, the mean value of 𝐶𝐶44 and 𝐶𝐶66 differed by at most 3%, which is less than 

coefficients of variance for the terms.  The in-plane shear stiffness term exhibited smaller 

standard deviations than the longitudinal terms, as shown in Figure 4.7b, with a coefficient 
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of variance of at most 2.2%.  𝐶𝐶46 is related to a coupling between the two directions of 

longitudinal shear, and the term is exactly zero for an orthotopic material.  Similar to the 

shear-normal coupling terms, the mean value of 𝐶𝐶46 was quite small, but the standard 

deviation of the terms was significantly larger than the mean value.  The standard deviation 

of 𝐶𝐶46 ranged from 1.3e8 to 2.7e8, making 𝐶𝐶46 the term with the largest standard deviations 

in the effective stiffness matrix.  Since the terms along the diagonal of effective stiffness 

matrix increase with increasing fiber volume fraction, due to the stiff properties of the fiber 

relative to the epoxy matrix, the longitudinal shear coupling is less significant for larger 

fiber volume fractions.  For the low fiber volume fractions considered, the standard deviation 

of 𝐶𝐶46 was about 5% of the longitudinal stiffness terms.  With such a low magnitude relative 

to the diagonal shear stiffness terms, the different fiber arrangements did not exhibit a 

significant longitudinal shear coupling. 
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a) 𝐶𝐶44 and 𝐶𝐶66 

 
b) 𝐶𝐶55 



 

147 

 

 
c) 𝐶𝐶46 

Figure 4.7. Mean effective shear stiffness terms as a function of fiber volume 
fraction with error bars indicating ±1 standard deviation 

 

4.4 Development of a Mesoscale Constitutive Law  

To use the effective properties of the ensembles of fiber arrangements at the mesoscale, 

a model must be developed that can provide the stiffness matrix for each quadrature point 

in a mesoscale analysis.  In this work, the local fiber volume fraction is predicted for each 

element of the 3D textile models based on the change in cross-sectional area.  A constitutive 

law was developed in the FEA framework that takes a list of effective stiffness matrices at 

discrete fiber volume fractions, fits each term using a cubic spline, and provides the 

interpolated stiffness matrix for any given volume fraction within the range of discrete fiber 
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volume fractions.  The mean effective stiffness matrix for each volume fraction considered 

could be directly used at the mesoscale with this strategy.  The properties were relatively 

close to transversely isotropic.  However, the effect of locally anisotropic properties has not 

be explored.  So, to avoid introducing more parameters in the textile analyses, the mean 

effective stiffness matrix for each ensemble will be modified to be exactly transversely 

isotropic, and each term as a function of fiber volume fraction will be smoothed. 

4.4.1 Forcing Transverse Isotropy 

To force the mean effective stiffness matrix for each fiber volume fraction to exhibit 

transverse isotropy, several terms were modified.  First, the non-zero coupling terms, which 

are 𝐶𝐶15, 𝐶𝐶25, 𝐶𝐶35, and 𝐶𝐶46, were assumed to be zero.  Second, 𝐶𝐶22 and 𝐶𝐶33 were set to be 

average of the two terms, so they had the same value.  Likewise, the same was done to the 

𝐶𝐶12 and 𝐶𝐶13 pair of terms and the 𝐶𝐶44 and 𝐶𝐶66 pair of terms.   Lastly, the isotropic 

relationship between 𝐸𝐸22, 𝜈𝜈23, and 𝐺𝐺23 was enforced, which is given in Equation (4.9).  To 

enforce Equation (4.9), each mean effective stiffness matrix was inverted after the terms 

discussed in the previous two steps were modified, then the shear term of the compliance 

matrix, 𝑑𝑑46, was modified.  The modified compliance matrix was then inverted back to 

result in the transversely isotropic stiffness matrix. 

 

 𝐺𝐺23 =
𝐸𝐸22

2(1 + 𝜈𝜈23) (4.9) 

   



 

149 

 

Figure 4.8 shows the mean Young's and shear moduli as a function of fiber volume 

fraction after transverse isotropy was enforced with errors bars indicating ±1 standard 

deviation.  As expected, the longitudinal Young’s modulus varied linearly with respect to 

the fiber volume fraction with little variation.  The transverse Young’s modulus and 

longitudinal shear modulus both varied nonlinearly with respect to the fiber volume fraction.  

The shear modulus exhibited the largest standard deviations of the three moduli.  

Considering the distributions of the effective stiffness matrices, the distributions of moduli 

were as expected. 
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a) Longitudinal Young’s modulus, 𝐸𝐸11 

 
b) Transverse Young’s Modulus, 𝐸𝐸22 = 𝐸𝐸33 
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c) Longitudinal shear modulus, 𝐺𝐺12 = 𝐺𝐺13 

Figure 4.8. Mean Young's and shear moduli as a function of fiber volume 
fraction after transverse isotropy has been enforced with errors bars indicating 
±1 standard deviation 

Figure 4.9 shows the mean Poisson’s ratios as a function of fiber volume fraction after 

transverse isotropy has been enforced with error bars indicating ±1 standard deviation.  

The major longitudinal Poisson’s ratio, 𝜈𝜈12, decreased almost linearly with an increasing 

fiber volume fraction, and the standard deviation decreased with an increasing fiber volume 

fraction.  Though the minor longitudinal Poisson’s ratio, 𝜈𝜈21, can be computed from 𝜈𝜈12, 

𝐸𝐸22, and 𝐸𝐸11, Figure 4.9b shows the nonlinear dependence of 𝜈𝜈21 on the fiber volume fraction 

and large standard deviations.  As shown in Figure 4.9c, the in-plane Poisson’s ratio 𝜈𝜈23, 

varied nonlinearly as a function of the fiber volume fraction and exhibited large standard 

deviations within the fiber arrangements. 
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a) Major longitudinal Poisson’s ratio 𝜈𝜈12 = 𝜈𝜈13 

 
b) Minor longitudinal Poisson’s ratio ν21 = 𝜈𝜈31 
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c) In-plane Poisson’s ratio 𝜈𝜈23 = 𝜈𝜈32 

Figure 4.9. Mean Poisson’s ratios as a function of fiber volume fraction after 
transverse isotropy has been enforced with error bars indicating ±1 standard 
deviation 

4.4.2 Smoothing 

Most of the engineering properties seemed to vary relatively smoothly as a function of 

the fiber volume fraction, but 𝜈𝜈23 exhibited an irregular variation.  To avoid any 

irregularities in the properties evaluated at the mesoscale, the nonzero mean effective 

stiffness terms were fit using a cubic polynomial.  At the mesoscale, the effective stiffness 

matrix for each element in the tows was created using the cubic polynomial fits.  Figure 

4.10 shows the cubic fit for each nonzero term of the stiffness matrix. 
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a) 𝐶𝐶11 

 
b) 𝐶𝐶22 = 𝐶𝐶33 
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c) 𝐶𝐶12 = 𝐶𝐶13 

 
d) 𝐶𝐶23 
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e) 𝐶𝐶44 = 𝐶𝐶66 

 
f) 𝐶𝐶55 

Figure 4.10. Cubic fit of nonzero effective stiffness terms 
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4.5 Summary 

Within multiscale analyses, the microscale can be accounted for directly by modeling 

the heterogeneous microstructure within a mesoscale analysis or by using reduced order 

models.  If local phenomena on the length scale smaller than a microscale RVE are of 

interest, then mean field homogenization can may introduce significant error, but mean field 

homogenization techniques have been proven to be very useful.  Both strategies are used 

within this manuscript, but the 3D textiles used exhibited a significant variation of the 

cross-sectional area along tow paths, which would cause a variation in the local fiber volume 

fraction.  It is computationally prohibitive to model each fiber within the tow directly, and  

a single ensemble of fiber/matrix RVEs is insufficient to prefect the mesoscale properties if 

the variation of fiber volume fraction is to be captured.  A strategy for capturing the effect 

of changing local fiber volume fractions was proposed based on spline fits of the mean 

properties from multiple ensembles of fiber arrangements, each representing a particular 

fiber volume fraction. 

The hexagonally shaped RVEs successfully allowed the reliable generation of fiber 

arrangements with relatively high fiber volume fractions.  The FEA analyses did show that 

random fiber arrangements can exhibit couplings that do not exist for orthotropic isotropic 

materials, but the effect is expected to be on the order of 5% based on the standard deviation 

of the coupling terms compared to the diagonal stiffness terms.  Though the mean properties 

did not exhibit transverse isotropy exactly, terms that would be equal were within 3% of 
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each other, and terms that would be zero were less than 5% of the diagonal terms.  Larger 

RVEs and more fiber arrangements are expected to tend toward transverse isotropy. 

Though this work uses the mean effective properties as a function of fiber volume 

fraction at the mesoscale, the standard deviation of the effective properties could be used 

when computing the local stiffness matrix by randomly selecting each stiffness term from a 

statistical distribution.  This strategy would account for the microscale anisotropy at the 

next scale.  Since this work focuses on the elastic response within the tows of the 3D models, 

the local anisotropy would have relatively little effect on the predicted stress distributions 

within the textile.  However, the local anisotropy might become important within 

progressive analyses, since damage is such a local phenomenon, and the subject warrants 

future study. 

The use of Monte Carlo simulations of random fiber/matrix RVEs to predict statistically 

significant properties to be used at the mesoscale is not new.  However, this work proposes 

a method for generating random fiber/matrix RVEs that is valid for a much wider range of 

volume fractions and uses many ensembles of fiber arrangements to develop a constitutive 

law that will be used to account for the variation of the local fiber volume fraction in 3D 

textile models. 
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5 BRIDGING THE MICROSCALE AND MESOSCALE: REVISITING THE 

CLASSICAL FREE-EDGE PROBLEM* 

5.1 Overview 

For many years, researchers have used classical laminate theories, finite difference 

models, and finite element analysis (FEA) to characterize the effect of the free-edge for 

various types of layups with great success. [8] [9] [10]  However, researchers have almost 

always modeled the fiber/matrix plies as transversely isotropic, homogeneous materials 

which neglects the local effects of stiff fibers in a relatively soft matrix.  Due to the much 

smaller scale of an individual fiber compared to that of a ply, the perturbation in the stress 

field due to the actual heterogeneity will remain localized to a small region, but if the aim 

of an analysis is to predict when a ply crack or delamination will initiate, then local stress 

concentrations can be very significant.  Some previous studies, have modeled discrete fibers 

near the free-edge, but relatively few fibers (approximately 10 fibers) were considered due 

to the prohibitive computational challenges. [13] [14] 

With the finite element framework developed or this work and the computational 

resource available through the Texas A&M University’s Supercomputing Center, the 

accuracy of approximating a ply as a homogenous material will be evaluated by directly 

modeling the heterogeneous microstructure within a section of a composite laminate.  A 

                                      

* Parts of this material originally appeared in the Journal of Composite Materials published by Sage 
Publications and the Proceedings of the 21st International Conference on Composite Materials.  It is 
reprinted here with permission of the publisher. 
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much larger section of the microstructure is modeled at the microscale than has been done 

previously.  Even with the increase in computational power, a thin-ply laminated composite 

will be considered due to a limitation of computational resources. 

This chapter aims to investigate the effect of discrete fibers on the stresses along the ply 

interface close to the free-edge.  The case where the heterogenous fiber/matrix 

microstructure is directly modeled will be compared to the case where each ply is treated 

as a homogeneous material.  Two types of laminated composite layups will be considered: 

a crossply [0/90]s layup and quasi-isotropic [±45/0/90]s layup. 

This chapter begins with a section that describes the composite laminates and the 

smaller analysis regions considered, the finite element model used for the analysis of the 

laminated composite, and the material properties used.  Next, the results are divided into 

two section.  The first results section investigates the effect of heterogeneity on the 

microscale stresses near a free-edge, the effect of fiber arrangement, and the interaction 

between fibers near the ply interface in a crossply [0/90]s laminate.  The second results 

section studies a quasi-isotropic [±45/0/90]s laminate, exploring the effect of the 

heterogeneous microstructure and evaluating the effect of only considering a smaller 

microscale region.  Finally, a summary of the results is provided, including suggestions for 

future studies. 
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5.2 Configurations 

The following sections describe the composite laminate and the analysis region, the finite 

element model (including simplified models for investing the interaction of fibers), and the 

fiber and matrix properties and the homogenized properties for a lamina. 

5.2.1 Composite Laminates and Analysis Region 

Two types of laminated composites, [0/90]s and [±45/0/90]s, under uniaxial tension 

were modeled to understand the interlaminar stresses that develop near the free-edge. The 

[0/90]s laminate was selected because it is the simplest laminate that exhibits free-edge 

stresses, while the [±45/0/90]s laminate is often used in the industry.  The domain of a 

typical composite specimen is prohibitively large for directly modeling the fibers and matrix, 

but a much smaller unit cell can be considered that is representative of the entire specimen.  

For the coordinate system shown in Figure 5.1, the laminate is assumed to be symmetric 

about the 𝜎𝜎 = 0 and 𝜎𝜎 = 0 planes.  It should be noted that the [±45/0/90]s laminate is not 

actually symmetric about the 𝜎𝜎 = 0 plane due to the ±45 plies, but the error is believed to 

be insignificant.  Due to these assumed symmetries, one quarter of the specimen can be 

considered.  Even with high-performance computing resources, there are limitations to the 

size of model.  Along the x-axis, a relatively small slice of the laminate was modeled, but 

this is believed to have an insignificant effect a fiber diameter away from the boundaries 

normal to the x-axis.  Because of these approximations, the analysis region for each type of 

laminate is reduced to that shown in Figure 5.1. 
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The boundary conditions applied to the analysis region for each of the two configurations 

are shown in Figure 5.2.  Any boundary conditions not explicitly shown in Figure 5.2 are 

zero-traction conditions.  The applied displacement, 𝑈𝑈0, is chosen such that the model 

experiences 1% volume average strain in the x-direction.  The analysis region of both 

laminates had a full width of about 11.5 ply thicknesses.  The laminate [0/90]s had a full 

height of 4 plies, while the [±45/0/90]s laminate had a full height of 8 plies, but as 

mentioned earlier, only half of the width and height will be modeled herein.  The dimensions 

[0/90]s analysis region as labelled in Figure 5.1a are as follows: 𝐿𝐿 = 2.88𝑒𝑒-4 𝜈𝜈, 𝑊𝑊 =

5.24𝑒𝑒-5 𝜈𝜈, and 𝐻𝐻 = 1𝑒𝑒-4 𝜈𝜈.  The dimensions for the [±45/0/90]s analysis region as labelled 

in Figure 5.1b are as follows: 𝐿𝐿 = 4.36𝑒𝑒-4 𝜈𝜈, 𝑊𝑊 = 3.05𝑒𝑒-5 𝜈𝜈, and 𝐻𝐻 = 3𝑒𝑒-4 𝜈𝜈.  Carbon 

fibers were assumed to have a diameter of 5 𝜇𝜇𝜈𝜈 and volume fraction of 60%.  The analysis 

region chosen results in 550 fibers in the 00 ply for both types of laminates. 
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a) [0/90]s 

 
b) [±45/0/90]s 

Figure 5.1. Laminated composite under uniaxial tension in direction of red 
arrows and the analysis region modeled 
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a) [0/90]s 

 
b) [±45/0/90]s 

Figure 5.2. Boundary conditions for analysis region shown in Figure 5.1 

5.2.2 Finite Element Model 

This section starts with a description of the finite element model used for the 

unidirectional 00 and 900 plies that are modeled at the microscale.  Next, the finite element 

models used for the [0/90]s and [±45/0/90]s laminates are presented.  To allow the 

investigation of the effect of the microscale region size, a series of finite element models for 
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the [±45/0/90]s laminate, each with a different microscale region, is described.  Finally, a 

simple two fiber model is given for investigating the interaction of fibers near the interface.  

Unidirectional Ply Model with Heterogeneous Microstructure 

This work used randomly generated fiber arrangements to represent the cross-sections 

of each ply.  The arrangements of fibers were created by randomly positioning fibers within 

the cross-sections and iteratively adjusting fiber positions to remove any spatial interference.  

The algorithm for generating the fiber arrangements is described in an earlier chapter of 

this manuscript.  For this study, a fiber volume fraction, 𝑉𝑉𝑓𝑓, of 60% was assumed for each 

ply.  For the 00 ply, which has fibers aligned with the x-axis, the random arrangement was 

generated for the y-z cross section, which is shown in Figure 5.1b.  For this cross-section, 

the ply boundaries were assumed to be planar and fibers were not allowed to touch the top 

and bottom boundaries normal to the z-axis during the generation of the random 

arrangement.  For the 900 ply, which has fibers parallel to the y-axis, the random 

arrangement was generated for the x-z cross-section, while not allowing fibers to touch the 

top edge normal to the z-axis.  However, the ply was assumed to be symmetric about 𝜎𝜎 = 0, 

so fibers could either touch or cross exactly halfway to maintain a symmetry of the 

geometry.  This is not completely realistic, since fibers can physically cross the mid-plane, 

resulting in no perfect symmetry about the mid-plane, but assuming that the laminate was 

symmetric about the mid-plane allowed half of the entire laminate thickness to be modeled.   

For the [0/90]s laminate, two random fiber arrangements were considered to investigate 

the effect of fiber arrangements, which are shown in Figure 5.3.  Realization A was generated 
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with fibers being at least 3% of a fiber radius away from another fiber, while the fibers in 

Realization B were specified to be at least 13% of a fiber radius away from another fiber.  

Once the geometry was created, a conforming quadratic triangle mesh was generated using 

a third-party library called Triangle. [38] 

 

 
a) Fiber arrangement A 

 
b) Fiber arrangement B 

Figure 5.3. Two randomly generated fiber arrangements with different spacing 
between fibers used to investigate the effect of fiber arrangement 

Laminated Composite Model 

Although a [±45/0/90]s laminate is considered, only the 00 and 900 plies are modeled at 

the microscale since the 0-90 and 90-90 interfaces are the focus of this paper.  To create a 

mesh for the 00 and 900 plies, the 2D cross-sectional meshes composed of quadratic triangles 

were extruded in such a way as to create a compatible mesh at the 0-90 ply interface, 

resulting in a 3D mesh of quadratic wedge elements for the 00 and 900 plies.   

For the [0/90]s laminate, meshes for the two fiber arrangements shown Figure 5.4 was 

created by extruding the individual ply meshes in such a way to maintain compatibility at 

the ply interface. It was assumed that the fibers are straight.  The mesh for arrangements 
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A and B contained about 14 million and 10 million nodes respectively and about 5.5 million 

and 3.8 million elements respectively.  To compare the heterogeneous model to a 

homogeneous model, the free-edge behavior using homogenized laminae was also calculated. 

The mesh used for the homogeneous case was made of 20-node hexahedral elements and 

contained about 240,000 nodes. This mesh was selected for convenience in comparing the 

heterogenous and homogenized model predictions. If computational efficiency had been an 

issue, a much smaller quasi-3D model would have been used. [61] 

 

 

 

Figure 5.4. Mesh used for a [0/90]s laminate, highlighting the mesh refinement 

 

For the [±45/0/90]s laminate, a 3D mesh was created first for the 00 and 900 plies, 

followed by creating meshes for the +450 and -450 plies.  The same technique was used to to 

create the meshes for the 00 and 900 plies.  For the +450 ply, which is the outermost ply of 

the laminate, a structured mesh of quadratic hexahedron elements was used.  The number 
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of elements in the x, y, and z directions were 10, 50, and 6 respectively.  The mesh can be 

coarse since the +450 ply is far away from the ply interfaces of interest and is included 

primarily to create a high Poisson’s ratio.  A mesh for the -450 ply must transition from the 

very fine mesh of the 900 ply to the coarse refinement of the +450 ply.  Consequently, a 

combination of quadratic pyramid and tetrahedral elements were used to create a mesh to 

transition between the disparate mesh refinements of the neighboring plies.   The mesh was 

generated using an in-house mesh generation software and TetGen.  A more detailed 

description of how the models were created is provided earlier in the manuscript in chapter 

2.  The total number of elements within each ply is shown in Table 5.1.  The mesh for the 

laminate is shown in Figure 5.5.  To illustrate the interior refinement of the tetrahedral 

mesh, half of the ±450 plies are cut away in the figure.  Additionally, the mesh refinement 

for the 00 and 900 plies are shown in a zoomed in view for a small region for clarity. 
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Figure 5.5. Mesh used for a [±45/0/90]s laminate, highlighting the mesh 
refinement 

Table 5.1. Number of elements within each ply of the [±45/0/90]s model 

Ply # of Elements 
+450  3,000 
-450 1,076,784 
00 15,141,140 
900 6,539,604 

 

Models Used for the Investigation of the Effect of the Microscale Region Size 

For the [±45/0/90]s laminate, several cases will be considered with varying sizes of 

microscale regions for the 00 and 900 plies to provide insight into what size of a region should 

be modeled at the microscale to accurately predict interlaminar stresses near a free-edge.  

In future studies, much coarser meshes should be used for areas outside the microscale 

region.  However, for convenience, the same mesh will be used in this study, and the material 
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properties of the elements will be changed from the fibers and matrix properties to the set 

of homogeneous properties used to model the plies at the mesoscale.  To compare a model 

where fibers are modeled discretely to the classical homogeneous case, the same mesh 

described in the previous section was also used for the classical homogeneous case.  The 

mesh is far more refined than necessary to accurately predict stresses for the classical 

homogeneous case, but using the same mesh is convenient for comparing models.  For this 

study, the microscale region of 00 and 900 plies was reduced in the z- and y-directions, 

leaving the region near the 0-90 interface and free edge as discrete fibers and matrix.  First, 

a microscale region that extends 25% and 10% of the ply thickness from the 0-90 ply 

interface will be considered. The two cases are shown in Figure 5.6.  Next, the model with 

a microscale region of 10% of the ply-thickness in the z-direction, shown in Figure 5.6, was 

used as the starting point, and the microscale region is reduced in the y-direction, leaving 

one- and two-ply thicknesses from the free edge modeled as discrete fibers and matrix.  Both 

models are shown in Figure 5.7. 

 

 
Figure 5.6. Model of a [±45/0/90]s laminate with 25% (left) and 10% (right) of 
the 00 and 900 plies modeled at the microscale 

Homogenized 
00 plies 

Homogenized 
900 plies 
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Figure 5.7. Model of a [±45/0/90]s laminate with only two (left) and one (right) 
ply thicknesses from the free-edge of the 00 and 900 plies modeled at the 
microscale 

 
Simplified Models for Investigation of Fiber Interaction 

It is known from 2D analyses of fiber/matrix composites that fibers in close proximity 

can interact to create stress concentrations. [58]  It is expected that along the ply interfaces 

of a laminated composite, a similar phenomenon can occur, but it is difficult to investigate 

the interaction of fibers with a very large finite element model like the one described in the 

previous section.  Consequently, two simplified models will be used.  First, a periodic RVE 

of a single fiber embedded in matrix, which is shown in Figure 5.8a and results in a square 

fiber arrangement, will be used study the interaction of fibers in a unidirectional laminate.  

Second, a periodic RVE of two crossing fibers within matrix, which is shown in Figure 5.8b, 

will be used to study the interaction of fibers in a situation closer to a cross-ply laminate. 

Homogenized 
00 plies 

Homogenized 
900 plies 
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a) Periodic 2D RVE for unidirectional lamina 

 
a) Periodic 3D RVE with crossing fibers 

Figure 5.8. Simplified models for studying interaction between fibers 

 

The simplified periodic fiber/matrix RVEs were generated to be geometrically periodic, 

and the mesh was generated to place nodes along the boundaries periodically, so it is possible 

to exactly impose periodic boundary conditions.  Periodic boundary conditions for the unit 

cell are concisely expressed in terms of the displacements along the unit cell boundaries in 

Equation (5.1) using indicial notation.  Repeated indices imply summation, and dk is a 

vector of periodicity that starts at some boundary coordinate xj in one unit-cell and ends at 

the equivalent point the next unit cell.  A more detailed description of periodic boundary 

conditions can be found in Refs. [58]  and [36] .  
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 𝑢𝑢𝑖𝑖�𝜎𝜎𝑗𝑗 + 𝑑𝑑𝑗𝑗� = 𝑢𝑢𝑖𝑖�𝜎𝜎𝑗𝑗� + 〈
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜎𝜎𝑘𝑘

〉 𝑑𝑑𝑘𝑘 (5.1) 

 

 

5.2.3 Material Properties 

Two approximations were used for the unidirectional laminae in these studies.  For the 

model using homogeneous orthotropic properties for the plies, properties were taken from 

Ref. [60].  In the microscale region, fibers and matrix were modeled discretely and assumed 

to be IM7 graphite fibers and 5220-4 epoxy matrix respectively.  The properties for the 

epoxy matrix was taken from Ref. [60].  However, it was shown in Ref. [36] that the fiber 

properties need to be inversely determined if the effective properties are to accurately 

represent the homogenized microstructure.  In Ref. [36], the apparent fiber properties were 

inversely determined using the effective ply properties and matrix properties in Ref. [60].  

Those same apparent fiber properties determined in Ref. [36] were used in this paper, so 

that homogenizing unidirectional laminae modeled as discrete fibers and matrix results in 

the effective properties in Ref. [60].  For all cases, the materials were assumed to remain 

linearly elastic.  Table 5.2 summaries the properties used for the fibers, matrix, and 

homogenized plies. 
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Table 5.2. Material properties for free-edge study 

IM7 Graphite Fibers [36]  5220-4 Epoxy Matrix [60] 
𝐸𝐸1
𝑓𝑓 (GPa) 276  𝐸𝐸𝑚𝑚 (GPa) 3.45 

𝐸𝐸2
𝑓𝑓, 𝐸𝐸3

𝑓𝑓 (GPa) 26.0  𝐺𝐺𝑚𝑚 (GPa) 1.278 
𝐺𝐺12
𝑓𝑓 , 𝐺𝐺13

𝑓𝑓  (GPa) 20.7  𝜈𝜈𝑚𝑚 0.35 
𝐺𝐺23
𝑓𝑓  (GPa) 7.55    

𝜈𝜈12
𝑓𝑓 , 𝜈𝜈13

𝑓𝑓  0.292    
 

Effective IM7/5220-4 Lamina [60] 
𝐸𝐸1 (GPa) 165.5 
𝐸𝐸2, 𝐸𝐸3 (GPa) 10.34 
𝐺𝐺12, 𝐺𝐺12 (GPa) 5.792 
𝐺𝐺23 (GPa) 3.315 
𝜈𝜈12, 𝜈𝜈13 0.31 
𝜈𝜈23 0.56 

 

 

5.3 Free-Edge Analysis of a [0/90]s Crossply Laminate 

This section investigates the effect of modeling the heterogeneous microstructure for a 

cross-ply laminate subjected to uniaxial tension in the 00 direction.  This section begins with 

a comparison of the deformed cross-section shapes for the heterogeneous and homogeneous 

models.  Next, the interlaminar normal stress distributions are compared, followed by a 

comparison of the interlaminar shear stress distributions. The effects of the discrete fibers 

and the free-edge are separated, providing an understanding of each and their contribution 

to the overall behavior.  Next, the effect of fiber arrangement is investigated by comparing 

the interlaminar normal stresses for two different fiber arrangements.  Finally, the section 
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ends with simplified studies on the effect of the matrix Poisson’s ratio and the interaction 

between neighboring fibers with the aim to help explain the behavior observed in the other 

sections. 

5.3.1 Comparison of Deformed Cross-Sections 

Figure 5.9a shows the deformed y-z cross-section at 𝜎𝜎 = 0 for the heterogeneous model, 

with an outline showing the deformed boundaries of the homogeneous model.  The deformed 

cross-sections in Figure 5.9 were exaggerated by 43x to clearly illustrate the differences, 

since the applied 1% strain results in very small displacements.  The deformed shape was 

quite similar for the two models.  The largest displacement in the y-direction for the 

homogeneous model was 11% less than that of the heterogeneous model and occurred at the 

top left corner of Figure 5.9a.  This means the effective properties used for the homogeneous 

model are not exactly representative of the heterogeneous microstructure.  This is not 

surprising, since the fiber and matrix properties were chosen such that, for a periodic quasi-

3D RVE, the effective properties based on the volume average stress-strain curves matched 

the lamina properties that were experimentally measured in Ref. [60].  However, each ply 

considered in this paper has a finite thickness.  As a result, the 00 ply is only periodic along 

the x-axis, and the effective properties may not be as representative of this finite case as 

they are representative of the infinite periodic array considered in Ref. [36].  This 

discrepancy concerning using effective properties based on an infinite domain for an analysis 

of a finite domain contributes to the difference between the deformed cross-sections in 

Figure 5.9a.  However, there is also the issue of the fiber volume fraction not being uniform 
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within the 00 ply, which can be observed in Figure 5.9a. The non-uniform fiber volume 

fraction also contributes to difference between the two displacement fields, but it is difficult 

to separate these two effects. 

At the microscale, there were some notable differences between the two deformed shapes, 

but these differences were due to the perturbations caused by the discrete modeling of the 

heterogeneous microstructure.  Along the top edge of Figure 5.9a, some of these 

perturbations can be observed, which are highlighted in Figure 5.9b. 

 

 

 
a)  Deformed discrete fiber/matrix case with outline showing deformed homogenized case (43x 
displacement magnification) 

 
b) Deformed section along top edge of figure above showing local perturbations 

Figure 5.9. Deformed y-z cross-section at x = 0 
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5.3.2 Interlaminar Normal Stress 

The effect of the free-edge on the interlaminar stresses has been extensively studied 

using homogenized plies, but this paper directly models the fiber/matrix microstructure 

models within the plies.  For the homogeneous model under uniaxial extension, 𝜎𝜎𝑧𝑧𝑧𝑧 is the 

only significant interlaminar stress along the 90-90 ply interface, while 𝜎𝜎𝑧𝑧𝑧𝑧 and 𝜎𝜎𝑦𝑦𝑧𝑧 are both 

significant along the 0-90 ply interface. However, where fibers and matrix are modeled, 𝜎𝜎𝑥𝑥𝑧𝑧 

is not necessarily small. 

Figure 5.10 shows contours for 𝜎𝜎𝑧𝑧𝑧𝑧 along the 0-90 and 90-90 ply interfaces.  To showcase 

the differences, a small region of the interface near the free-edge is shaded as a solid color, 

displaced in the z-direction in proportion to the magnitude of 𝜎𝜎𝑧𝑧𝑧𝑧, and compared to the case 

where plies are modeled using a homogeneous material, which is shown as a line.  The 

clearest difference is along the 0-90 interface near the free-edge, where the homogeneous 

model predicts a very large normal stress due to a singularity, while the heterogeneous 

model predicts a much lower stress.  In the homogeneous model, a combination of the free-

edge and material discontinuity at the ply interface creates a singularity, where 

𝜎𝜎𝑧𝑧𝑧𝑧 �𝜎𝜎,𝜎𝜎, 𝐻𝐻
2
� →  ∞ as 𝜎𝜎 → 𝐿𝐿.  However, 𝜎𝜎𝑧𝑧𝑧𝑧 cannot reach infinity in the finite element model 

and reaches a finite maximum value that is dependent on the mesh refinement.  In the 

heterogeneous model, there is no such singularity at the ply interface, since there is only 

matrix material at the intersection of the free-edge and ply interface.  Furthermore, the 

maximum stress along the ply interface in the heterogeneous model does not occur at the 

free-edge, but rather slightly away from it, where there is a matrix pocket. 
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There are two mechanisms contributing to the large difference of stress distributions for 

the two models.  First, there is a local effect of the heterogeneous microstructure.  The 

fibers near the ply interface and the large mismatch between fiber and matrix properties 

create a non-zero 𝜎𝜎𝑧𝑧𝑧𝑧 even far away from the free-edge.  The effect of fibers on the 

interlaminar normal stress can be seen along the entire ply interface in Figure 5.10.  By 

contrast, the homogeneous model predicts that 𝜎𝜎𝑧𝑧𝑧𝑧 �𝜎𝜎, 𝜎𝜎, 𝐻𝐻
2
� goes to zero far away from the 

free-edge.  Second, there is the effect of the free-edge that occurs at a larger scale than 

individual fibers.  The free-edge still affects the interlaminar stresses, even if it no longer 

introduces a singularity at the ply interface for the heterogeneous model.  It is beneficial to 

separate these two factors to understand the importance of each, which is done in a later 

section. 

Comparing Figure 5.10a and b shows that when modeling the heterogeneous 

microstructure, 𝜎𝜎𝑧𝑧𝑧𝑧 varies more sharply and reaches greater extrema for the 90-90 interface 

than the 0-90 interface.  However, this is the opposite relationship that is predicted by the 

homogenous model, which predicts a much higher stress along the 0-90 interface due to the 

singularity.  The reason for the heterogeneous model predicting a higher stress at along the 

90-90 interface can be attributed to how fibers and matrix interact.  Along the 0-90 

interface, fibers are not allowed to cross the ply boundary in the method used to generate 

the random fiber arrangement.  The fibers from each ply still interact with each other to 

create a complex stress distribution, but due to the distance between fibers, the interaction 

is weaker.  Along the 90-90 interface, fibers can cross the boundary in the method used in 
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this paper, resulting in fibers that are very close to each other on the interface and a greater 

range of stresses.  Additionally, there is a difference at the free-edge.  When fibers and 

matrix are modeled discretely, there will exist a singularity at the intersection of the free-

edge and fiber/matrix interfaces.  Along the 90-90 ply interface, fiber/matrix interfaces 

intersect the free-edge, while fiber/matrix interfaces are further away from the 0-90 ply 

interface. 

Qualitatively, Figure 5.10 shows that the normal interlaminar stresses are very different 

for the two models, but it is difficult to compare the plots quantitatively.  To look at the 

differences more carefully, the interlaminar normal stress is plotted from the free-edge to 

the mid-plane along four paths for the heterogenous model.  For the homogeneous model, 

there is no variation along the x-direction.  For this discussion, the comparison will be 

limited to the 0-90 ply interface.   
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a) 0-90 ply interface 

 
b) 90-90 ply interface 

Figure 5.10. 𝝈𝝈𝒛𝒛𝒛𝒛 contours for the ply interfaces (a region that is half a ply 
thickness from the free-edge and two fiber diameters from the edge of the model 
in the x-direction is deformed in proportion to 𝝈𝝈𝒛𝒛𝒛𝒛) 

 

Figure 5.11 shows the interlaminar normal stress as a function of the distance from the 

free-edge normalized by the ply thickness, which will be denoted 𝑑𝑑.  Note that 𝑑𝑑 is a unitless 

quantity.  Four evenly spaced paths along the interface were considered parallel to the y-

axis, which are illustrated in Figure 5.11. The normalized distance from the free-edge is 
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calculated by the equation below, where 𝐿𝐿 and 𝐻𝐻 are dimensions of the model shown in 

Figure 5.1b. 

 

𝑑𝑑 =
2(𝐿𝐿 − 𝜎𝜎)

𝐻𝐻
 (1) 

 

The homogeneous model exhibits the singularity at the free-edge as mentioned earlier.  

As the distance from the free-edge increases, there is a sharp decrease in 𝜎𝜎𝑧𝑧𝑧𝑧 for about 1 ply 

thickness from the free-edge and then it increases to approach 0.  For the heterogeneous 

model, the stress along all four paths considered generally tends to decrease until about 1 

ply thickness from the free-edge, but there are also significant oscillations and 𝜎𝜎𝑧𝑧𝑧𝑧 drops 

significantly at the free-edge.  Based on the results in Figure 5.11, the paths can be grouped 

into two categories.  The two paths nearest to a 900 fiber (1 and 2) had similar stresses, and 

the two paths closer to matrix pockets (3 and 4) had similar stress distributions.  However, 

there is a large difference in 𝜎𝜎𝑧𝑧𝑧𝑧 between these two categories.  An important difference 

between the heterogeneous and homogenized models occurs right at the free-edge.  The 

homogeneous model exhibits a singularity, while the discrete case decreases locally to a 

finite value, since there is no material discontinuity at the ply interface. 
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Figure 5.11. 0-90 interlaminar normal stress plotted along lines parallel to the 
y-axis versus the distance from the free-edge normalized by the ply thickness 

 

5.3.3 Interlaminar Shear Stress 

A comparison of the interlaminar shear stress, 𝜎𝜎𝑦𝑦𝑧𝑧, along the 0-90 ply interface for the 

heterogeneous and homogeneous models is shown in Figure 5.12.  Compared to the predicted 

interlaminar normal stress shown in the previous section, both models predicted a more 

similar distribution of interlaminar shear stress.  The shear stress becomes more severe 

within a fiber diameter of the free edge and then trends towards zero away from the free-

edge.  Like 𝜎𝜎𝑧𝑧𝑧𝑧, the heterogeneous model predicts an oscillation of 𝜎𝜎𝑦𝑦𝑧𝑧 due to the interaction 

of fibers near the ply interface, but the smaller oscillations indicate that the 00 fibers had a 

smaller effect on 𝜎𝜎𝑦𝑦𝑧𝑧 than 𝜎𝜎𝑧𝑧𝑧𝑧.  Additionally, the distributions of 𝜎𝜎𝑦𝑦𝑧𝑧 along all four of the 

paths considered were more similar than for 𝜎𝜎𝑧𝑧𝑧𝑧, indicating that the 900 fibers have less of 

an effect on 𝜎𝜎𝑦𝑦𝑧𝑧 than 𝜎𝜎𝑧𝑧𝑧𝑧.  For 𝜎𝜎𝑧𝑧𝑧𝑧, the stress became more compressive when fibers came 
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in proximity to each other.  However, Figure 5.12b shows that 𝜎𝜎𝑦𝑦𝑧𝑧 becomes less severe 

directly above a 00 fiber, but shear stress concentrations form near the sides of 00 fibers, 

shown by the peaks before and after each 00 fiber near the interface.  Though the 

heterogenous microstructure does affect the predicted interlaminar shear stress, the effect 

is much less than observed for the interlaminar normal stress. 

 

 

 
a) Predicted 𝜎𝜎𝑦𝑦𝑧𝑧 for the entire half-width of the laminate 

 
 

b)  Predicted 𝜎𝜎𝑦𝑦𝑧𝑧 within one ply-
thickness of the free-edge 

Figure 5.12. 0-90 interlaminar shear stress plotted along lines parallel to the y-
axis versus the distance from the free-edge normalized by the ply thickness 
(positions of 00 fibers near the ply interface are shown using circles) 

 

5.3.4 Separation of the Effect of the Free-Edge and Heterogeneity 

As mentioned before, there are two effects contributing to the complex stress 

distributions for the heterogeneous model.  First, the presence of free-edge will perturb the 

stresses in the material close to it.  Second, the interactions of the 00 and 900 fibers near the 
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ply interface will cause perturbations of the stresses, even if the material is away from the 

free-edge.  To isolate the effect of the free-edge, superposition will be used.  The effect of 

the free-edge will be the response shown in Figures 5 and 6 minus the response of the 

material if it was away from the free edge, which will be referred to as the interior response.  

To predict the interior response, a different set of boundary conditions are applied to the 

model to make the material near 𝜎𝜎 = 𝐿𝐿 be far from a free-edge.  Instead of the 𝜎𝜎 = 𝐿𝐿 plane 

being the free-edge, the 𝜎𝜎 = 0 will be free, and the 𝜎𝜎 = 𝐿𝐿 face will become a plane of 

symmetry.  The stresses within three ply thicknesses of the 𝜎𝜎 = 𝐿𝐿 will be assumed to be 

minimally affected by the free-edge, leaving the effect of the discrete fibers. 

Figure 7 shows the normal stresses for the interior response.  Like before, paths near a 

900 fiber, namely 1 and 2, exhibited very similar stress distributions that were compressive 

in contrast to the tensile values near matrix-rich regions, namely 3 and 4.  Furthermore, 

the troughs of the stress oscillations closely align with 00 fiber positions, which indicates 

that when fibers in both plies lie close to each other, a compressive stress state is formed.  

This is a similar trend to one observed in 2D fiber/matrix analyses of random RVEs.  

McLendon et. al. observed that compressive stresses form when fibers come close together 

in a uniaxial lamina under tension. [58]  Similarly, a compressive effect is caused by fibers 

being close on each side of the ply interface, when the laminate is subjected to a tensile 

load.  This behavior is important to consider if the strength of laminates near critical areas, 

such as a free-edge, is to be optimized. 
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Figure 5.7. 𝝈𝝈𝒛𝒛𝒛𝒛 for interior effect using heterogeneous model 

 

Since linear elasticity is assumed in this paper, superposition can be used to isolate the 

effect of the free-edge by subtracting the response in interior response in Figure 7 from the 

response in Figure 6.  Figure 8 shows the isolated free-edge effect along the 0-90 interface 

compared to the response of the homogeneous model, as well as 00 fiber positions.  Figure 8 

may be viewed as a fairer comparison of the predicted free-edge effects.  With the free-edge 

effect isolated, the stress distribution for the two models match much better.  There is still 

a significant difference very close to the free-edge due to the stress singularity in the 

homogenous model, as shown in Figure 8b, but the stress distributions are quite similar 

about 10% of a ply thickness away from the free-edge and further.  There are still oscillations 

in 𝜎𝜎𝑧𝑧𝑧𝑧 for the heterogeneous model indicating that the 00 fibers near the interface affect the 
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stresses induced by the free-edge.  However, there is very little difference between the four 

paths considered, except very close to the free-edge. 

Figure 5.12 shows that the range of stresses due to the free-edge effect is almost the 

same as the range of stresses in the interior due to interacting fibers. However, it should be 

remembered that the analysis region, shown in Figure 5.3, corresponds to a lamina thickness 

of 0.05 𝜈𝜈𝜈𝜈, which would be used for a thin-ply laminate.  Plies that are more often used 

in industry are twice as thick. The severity and extent of free-edge stresses is dependent on 

the ply thickness and layup.  Also, a [0/90]s laminate is not expected to exhibit a severe 

free-edge effect compared to some thicker laminates, such as a [±45/0/90]s laminate.  Such 

laminates should be examined in futures studies.  

 

 
a) Free-edge effect within 3 ply thicknesses of the free-

edge in addition to 00 fiber positions 

 
b) Within 15% of a ply-thickness from 
the free-edge (zoom-in of dotted box in 

part a) 
Figure 5.8. 𝝈𝝈𝒛𝒛𝒛𝒛 for free-edge effect using the homogeneous and heterogeneous 
models 
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5.3.5 Effect of Fiber Arrangement 

The fiber arrangement used for the previous results in this paper contains a lot of 

variation ((see realization A in Figure 5.3a).  To study the effect of fiber arrangement, a 

more uniform fiber arrangement, as shown in Figure 5.3b, was considered and the 

interlaminar stresses for the two models were compared.  Figure 5.13 shows the interlaminar 

normal stress, 𝜎𝜎𝑧𝑧𝑧𝑧, for both realizations.  The stress distributions were quite similar, and 

the largest difference occurred where a large matrix pocket existed in realization A.  Overall, 

the variation of 𝜎𝜎𝑧𝑧𝑧𝑧 was more severe for realization A, due to the sometimes larger and 

smaller spacing between fibers than realization B.  Similarly, Figure 5.14 shows the 

interlaminar shear stress, 𝜎𝜎𝑦𝑦𝑧𝑧, for both realizations, which also showed that realization A 

exhibits more variation of 𝜎𝜎𝑦𝑦𝑧𝑧 due to the more varied microstructure.  Though the trends 

are the very similar, randomness in the microstructure can causes relatively large differences 

in the interlaminar stresses.  
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Figure 5.13. 𝝈𝝈𝒛𝒛𝒛𝒛 for both realizations in Figure 5.3 for a near-fiber and matrix-
rich path 

 

 
Figure 5.14. 𝝈𝝈𝒚𝒚𝒛𝒛 for both realizations in Figure 5.3 for a near-fiber and matrix-
rich path 
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5.3.6 Interaction Between Fibers and the Effect of 𝝂𝝂𝒎𝒎 

In the previous sections, it was shown that the heterogeneous microstructure led to 

complex stress distributions.  It was observed in this paper and Refs. [58] and [62] that 

compressive stress concentrations form when fibers get close to each other.  This section 

aims to explain the cause of the observed behavior.  First, consider a 00 unidirectional 

composite modeled as an infinite array of fibers in a square arrangement, see Figure 5.8a, 

under uniaxial tension.  For an applied strain of 1% along the fiber direction, Figure 5.15 

shows the normal and shear stress distributions using the properties shown in Table 5.2, 

which were based on values in the literature.  The non-zero stresses in Figure 5.15 are the 

result of the mismatch of the Poisson’s ratios between the fibers and matrix.  The important 

Poisson’s ratios to compare for this case are 𝜈𝜈12
𝑓𝑓 , 𝜈𝜈13

𝑓𝑓 , since the tensile load is aligned with 

the fiber direction, and 𝜈𝜈𝑚𝑚.  However, the fibers are assumed to be transversely isotropic, 

so 𝜈𝜈12
𝑓𝑓 = 𝜈𝜈13

𝑓𝑓 , so this discussion will only refer to 𝜈𝜈12
𝑓𝑓 .  When 𝜈𝜈𝑚𝑚 > 𝜈𝜈12

𝑓𝑓 , the effective 𝜈𝜈𝑥𝑥𝑧𝑧 of 

the lamina is greater than 𝜈𝜈12
𝑓𝑓 , which means that the fibers will not contract transversely 

as much as the volume average of the lamina.  This causes a compressive stress in the radial 

direction of the fiber and a tensile stress in the tangential direction, which can be observed 

in Figure 5.15a.  As load is transferred between the tensile and compressive regions, shear 

stresses form as shown in Figure 5.15b.  However, if 𝜈𝜈𝑚𝑚 was changed to be 0.292, the same 

value as 𝜈𝜈12
𝑓𝑓 , then 𝜎𝜎𝑥𝑥𝑥𝑥 would be the only non-zero stress component.  Additionally, it should 

be noted that if 𝜈𝜈12
𝑓𝑓 > 𝜈𝜈𝑚𝑚 then the sign of the stresses in Figure 5.15 will be reversed.  When 

there is a Poisson’s ratio mismatch, stresses will develop even if the fiber is far away from 



 

190 

 

another fiber, but as fibers get close, more severe stresses develop, which explains the 

observation in Ref. [58]. 

 

 
a) Normal stress, 𝜎𝜎𝑧𝑧𝑧𝑧 

 
b) In-plane shear stress, 𝜎𝜎𝑦𝑦𝑧𝑧 

Figure 5.15. Stress distribution for a single fiber RVE subjected uniaxial 1% 
strain in x-direction using properties in Table 5.2 

 

In a [0/90]s cross-ply under tension in the 00 direction, the 900 ply will primarily 

experience tension in the transverse direction, and similar to a ply under longitudinal 

tension, the Poisson’s ratio significantly affects the stresses that will develop.  For the 

properties in Table 5.2 and the case of transverse tension, the matrix will take most of the 

deformation in the loading direction, 𝑢𝑢𝑦𝑦, since 𝐸𝐸𝑚𝑚 is much lower than 𝐸𝐸2
𝑓𝑓.  If the positive-

z plane of the RVE was left unconstrained, deformation along the y-axis will induce a 

displacement in the z-direction due to the Poisson effect, and since most of the deformation 

along the y-axis will occur in the matrix region, a much larger displacement in the z-

direction will develop in the matrix region, as shown in Figure 5.16a.  However, when 
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periodic boundary conditions are applied, the neighboring RVE’s constrain the z-

displacement, which develops tensile stresses in the matrix regions between fibers along the 

y-axis and compressive stresses between fibers along the z-axis, as shown in Figure 5.16b.  

Though it is not shown here, as the Poisson’s ratios of the fibers and matrix, 𝜈𝜈23
𝑓𝑓  and 𝜈𝜈𝑚𝑚, 

are reduced, 𝜎𝜎𝑧𝑧𝑧𝑧 is also reduced. 

 

 
a) Z-displacement for case where top of RVE is 
unconstrained (deformation magnified by 10x) 

 
b) Distribution of 𝜎𝜎𝑧𝑧𝑧𝑧 for case where RVE is 
periodic 

Figure 5.16. A single fiber RVE subjected to 1% strain in transverse y-direction 
using the properties in  Table 5.2 for two different cases 

 

Understanding the effect of Poisson’s ratio and interaction of fibers for a unidirectional 

lamina under longitudinal and transverse tension help provide insight into the interlaminar 

stresses that develop in a cross-ply laminate under uniaxial tension.  For a cross-ply laminate 

under tension in the 00 direction, there are three mechanisms that develop stresses along 

the ply interface.  First, significant 𝜎𝜎𝑧𝑧𝑧𝑧 and 𝜎𝜎𝑦𝑦𝑧𝑧  stresses will develop in the 00 plies due to 
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a mismatch between 𝜈𝜈𝑚𝑚 and 𝜈𝜈12
𝑓𝑓 .  Second, significant 𝜎𝜎𝑧𝑧𝑧𝑧 stresses will develop in the 900 ply 

due to the Poisson effect, and the magnitude of the stress is dependent on primarily 𝜈𝜈𝑚𝑚 and 

secondarily 𝜈𝜈23
𝑓𝑓 .  The stress decreases as the Poisson’s ratios decrease.  Third, interlaminar 

shear stresses will develop as load is being transferred between the 00 and 900 plies, due to 

the large mismatch of Poisson’s ratios for the two plies. 

For the properties in Table 5.2, 𝜈𝜈𝑚𝑚 > 𝜈𝜈12
𝑓𝑓 , so along the ply interface, 𝜎𝜎𝑧𝑧𝑧𝑧 will be 

compressive near 00 fibers.  Additionally, 𝜈𝜈𝑚𝑚 and 𝜈𝜈23
𝑓𝑓  are relatively large, so strong 

compressive stresses form along the ply interface near 900 fibers.  This behavior is illustrated 

in Figure 5.17.  However, the compressive contribution from the 00 ply would be reduced 

significantly if 𝜈𝜈𝑚𝑚 = 𝜈𝜈12
𝑓𝑓 , and the compressive contribution from the 900 ply would be 

reduced if 𝜈𝜈𝑚𝑚 was reduced.  Furthermore, the contribution from the 00 ply to the 

interlaminar normal stress would be tensile if 𝜈𝜈𝑚𝑚 < 𝜈𝜈12
𝑓𝑓 .  Without modifying the fiber 

properties, there is an optimal 𝜈𝜈𝑚𝑚 between 𝜈𝜈12
𝑓𝑓  and 0.0 that minimizes the peak stresses.  

Figure 5.18 shows the effect of reducing of the Poisson’s ratio of the matrix for the case 

where 𝜈𝜈𝑚𝑚 = 0.16 and 𝐺𝐺𝑚𝑚 = 1.49 𝐺𝐺𝑃𝑃𝑎𝑎, to maintain isotropy.  The interlaminar normal stress 

is reduced significantly by reducing 𝜈𝜈𝑚𝑚, but the interlaminar shear stress remains significant 

due to load being transferred between the 00 and 900 plies.  However, it should be noted 

that it is unlikely that an epoxy matrix can be manufactured with such a small value of 𝜈𝜈𝑚𝑚 

as 0.16.  Typically, fillers, such as nanoinclusions or polymer nanofibers, are added to epoxy 

resins to modify the properties, but it has not been shown in the literature that a Poisson 

ratio of 0.16 for the matrix is possible with an epoxy system. 
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a) Distribution of 𝜎𝜎𝑧𝑧𝑧𝑧 

 
b) Distribution of 𝜎𝜎𝑦𝑦𝑧𝑧 

Figure 5.17. Stress distribution for RVE of two crossing fibers subjected uniaxial 
1% strain in x-direction using properties in Table 5.2 

 

 
a) Distribution of 𝜎𝜎𝑧𝑧𝑧𝑧 

 
b) Distribution of 𝜎𝜎𝑦𝑦𝑧𝑧 

Figure 5.18. Stress distribution for RVE of two crossing fibers subjected uniaxial 
1% strain in x-direction setting 𝝂𝝂𝒎𝒎 = 𝟎𝟎.𝟏𝟏𝟏𝟏 (𝑮𝑮𝒎𝒎 changes to maintain isotropy) 
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The cross-ply laminate considered in this paper has a more complex fiber arrangement, 

a finite thickness, and a free-edge effect, so it expected that changing 𝜈𝜈𝑚𝑚 will not have as 

significant an effect as for the periodic square arrangement shown in Figure 5.18.  To clearly 

illustrate the effect of reducing 𝜈𝜈𝑚𝑚 for the cross-ply laminate, Figure 5.19 shows the 

interlaminar normal stress with 𝜈𝜈𝑚𝑚 = 0.16.  As expected, reducing 𝜈𝜈𝑚𝑚 significantly reduces 

the effect of heterogeneity, which can be more clearly observed in regions away from the 

free-edge.  It should be noted that the optimal 𝜈𝜈𝑚𝑚 for the periodic square fiber arrangement 

is probably not the optimal 𝜈𝜈𝑚𝑚 for the cross-ply laminate, due to the differences mentioned 

earlier.  Optimization studies are needed to understand what set of microscale properties 

would result in the maximum reduction in the extreme stresses in both plies.  

 

 
Figure 5.19. Comparison of 𝝈𝝈𝒛𝒛𝒛𝒛 along 0-90 interface for two different values of 
𝝂𝝂𝒎𝒎 (region far from free edge is deformed proportional to 𝝈𝝈𝒛𝒛𝒛𝒛 to illustrate 
difference) 
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5.3.7 Summary 

The classical free-edge problem was revisited for a crossply laminate with more detail 

than has been done before in the literature, and the predictions of a heterogeneous model, 

which models the fibers and matrix discretely, was compared to the predictions of a 

homogeneous model, which models each ply as a homogenous material.  A few fiber 

diameters from the free-edge, the trend of the interlaminar normal and shear stresses along 

the ply interface were similar between the two models.  However, the interaction of fibers 

near the ply interface caused significant local differences, due to compressive stress 

concentrations that developed when fibers came close to each other, and very different 

stresses close to the free-edge, as expected, due the singularity at the intersection of the 

free-edge and 0/90 ply interface for the homogenous model.  The effect of the free-edge and 

heterogeneity were separated.  With the free-edge effect isolated, predictions between the 

models matched well, expect for within a few fiber diameters of the free-edge.  Isolating the 

effect of heterogeneity showed that fibers and matrix pockets significantly affect the stress 

state at the microscale.  A comparison of the predicted interlaminar stresses for highly 

random and more uniform fiber arrangement showed that the fiber arrangement can 

significantly affect the local stresses and the peak stresses are reduced when the 

microstructure is more ordered.  By investigating a set of more simple problems, it was 

shown that the effect of heterogeneity for a cross-ply laminate under uniaxial tension 

primarily depends on the Poisson’s ratios.  For a graphite fiber and epoxy matrix composite, 
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there is a value of 𝜈𝜈𝑚𝑚 between 0 and 𝜈𝜈12
𝑓𝑓  that reduces the effect of heterogeneity and 

minimizes the peak local interlaminar stresses. 

This study focused on the simplest layup possible, a crossply laminate, but the laminate 

is known to exhibit a small free-edge effect.  Insights into the effect of microscale 

heterogeneity on the local stresses near a free-edge were discovered, and but the next section 

considers a more realistic quasi-isotropic layup, which is known to exhibit a more 

pronounced free-edge effect. 

5.4 Free-Edge Analysis of a [±45/0/90]s Crossply Laminate 

This section explores the effect of microscale heterogeneity on stresses near a free-edge 

in a quasi-isotropic [±45/0/90]s laminate and assesses the microscale region size needed to 

accurately predict the stresses near the free-edge.  The results can be separated into three 

primary sections.  First, the effect of modeling discrete fibers and matrix is investigated by 

comparing a model where the entire 00 and 900 plies are modeled as discrete fibers and 

matrix to a classical homogeneous model, which treats all plies as homogeneous materials.  

This is followed by two sections that explore the effect of reducing the size of the microscale 

region in the 00 and 900 plies, first in the direction normal to the ply interface and followed 

by the direction normal to the free-edge. 

5.4.1 Effect of Modeling Discrete Fibers and Matrix 

Several models with varying sizes of microscale regions are considered in this paper.  

This section focuses on comparing a classical homogeneous model, where all plies are treated 

as a homogeneous, orthotropic material, to a model where the microstructure of the 00 and 



 

197 

 

900 plies are discretely modeled with a random fiber arrangement.  In both cases, the ±450 

plies are treated as a homogeneous material, since the stresses along the 0-90 and 90-90 

interfaces are the focus of this paper. 

Figure 5.20 shows the deformed y-z cross-section at 𝜎𝜎 = 𝑊𝑊/2  for the case where the 00 

and 900 plies are modeled as discrete fibers and matrix, along with an outline showing the 

deformed boundary of the classical homogeneous model.  The deformation was exaggerated 

by 20x to clearly illustrate the differences, since the applied 1% strain results in very small 

displacements.  The y and z components of displacements along the boundary of the cross-

sections matched well and differed at most by 6%.  The largest differences along the 

boundary were along the free-edge in the top three plies. 
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Figure 5.20. Deformed discrete fiber/matrix case with outline showing deformed 
classical homogeneous model (20x displacement magnification) 

 

For the classical homogeneous model under uniaxial extension, 𝜎𝜎𝑧𝑧𝑧𝑧 is the only significant 

interlaminar stress along the 90-90 ply interface, while 𝜎𝜎𝑧𝑧𝑧𝑧 and 𝜎𝜎𝑦𝑦𝑧𝑧 are both significant along 

the 0-90 ply interface. However, where fibers and matrix are modeled discretely, 𝜎𝜎𝑥𝑥𝑧𝑧 is not 

necessarily small.  This study will limit the scope of the discussion to the interlaminar 

normal stress, 𝜎𝜎𝑧𝑧𝑧𝑧, along the ply interfaces since it is known that this layup experiences 

predominantly mode I failure.  Fig. 6a shows contours for 𝜎𝜎𝑧𝑧𝑧𝑧 for the entire 0-90 and 90-90 

ply interfaces.  The complex stress pattern was due to the interactions of fibers near the 
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interface.  As noted in Refs. [58] and [62], compressive stresses form when fibers come into 

close proximity.  Ref. [62] also observed that tensile stress concentrations form near matrix 

pockets.  Consequently, along the 0-90 ply interface, the interaction of 00 and 900 fibers 

created a variation of 𝜎𝜎𝑧𝑧𝑧𝑧 in two directions, while 𝜎𝜎𝑧𝑧𝑧𝑧 along the 90-90 ply interface exhibited 

variation in only one direction due to the microstructure.   In addition to the effect of the 

heterogeneous microstructure, the mismatch of effective Poisson’s ratios between plies 

caused an elevated 𝜎𝜎𝑧𝑧𝑧𝑧 near the free-edge.  Qualitatively, Figure 5.21a shows that the free-

edge has a noticeable effect further into the laminate along the 90-90 ply interface.  Figure 

5.21b focuses on the stresses near the free-edge.  In the figure, the surface of the ply interface 

is warped proportional to 𝜎𝜎𝑧𝑧𝑧𝑧, and the stress for the classical homogeneous model is shown 

as a solid line.  The classical homogeneous model captures the trend that the stresses 

increase near the free-edge, but does not capture the significant variation due to the 

microstructure.  Figure 5.21b highlights the more complex stress pattern along the 0-90 ply 

interface due to the interaction of fibers and shows that the stress at the free-edge is higher 

for the 0-90 interface than for the 90-90 interface. 
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a) Comparison of 𝝈𝝈𝒛𝒛𝒛𝒛 contours for the 0-90 and 90-90 ply interfaces for the model where fibers and 
matrix are discretely modeled 

 
b) Comparison of 𝝈𝝈𝒛𝒛𝒛𝒛 near the free-edge along the 0-90 and 90-90 ply interfaces (surfaces are 
deformed proportional to 𝝈𝝈𝒛𝒛𝒛𝒛) along with the response of the classical homogeneous model 

Figure 5.21. Comparison of 𝝈𝝈𝒛𝒛𝒛𝒛 at the 0-90 and 90-90 ply interfaces 

Because the peak stress is higher and the stress field more complex for the 0-90 ply 

interface, this study limits further investigation of the effect of modeling the discrete 

microstructure to the 0-90 ply interface.  For a more quantitative comparison, 𝜎𝜎𝑧𝑧𝑧𝑧 along the 
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0-90 ply interface is compared for several paths chosen that are parallel to the y-axis. Ref. 

[62] showed that 𝜎𝜎𝑧𝑧𝑧𝑧 varies very differently paths chosen near a fiber versus a matrix pocket.  

Consequently, two paths were considered: one near a 900 fiber (at 𝜎𝜎 = 2𝑒𝑒-5 𝜈𝜈) and one near 

a matrix rich region in the 900 ply (at 𝜎𝜎 = 1.1𝑒𝑒-5 𝜈𝜈).  The locations of these two paths are 

illustrated in Figure 5.22. 

 

 

 
Figure 5.22. Illustration of two paths used for line plots of stress along the 0-90 
interface 

Figure 5.23 shows 𝜎𝜎𝑧𝑧𝑧𝑧 along the two paths in Figure 5.22 for the case where the 

microstructure of the 00 and 900 plies is modeled discretely in addition to 𝜎𝜎𝑧𝑧𝑧𝑧 for the classical 

homogeneous model.  For the path near a 900 fiber, the peak 𝜎𝜎𝑧𝑧𝑧𝑧 occurred at the free-edge, 

while the maximum stress for the matrix-rich path occurred about two fiber diameters from 
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the free-edge due to a matrix pocket in the 00 ply.  The peak 𝜎𝜎𝑧𝑧𝑧𝑧 was much higher for the 

near-fiber path, but the average 𝜎𝜎𝑧𝑧𝑧𝑧 the matrix-rich path was higher over the width of the 

specimen.  For both paths, 𝜎𝜎𝑧𝑧𝑧𝑧 exhibited significant oscillations due to interaction between 

00 and 900 fibers.  The valleys of the oscillations corresponded to centers of 00 fibers, which 

is related to the tendency of fibers in close proximity to cause a compressive stress as noted 

earlier. 

Figure 5.24 shows the same data as Figure 5.23 but for a region near the free-edge.  The 

figure shows that 𝜎𝜎𝑧𝑧𝑧𝑧 increased near the free-edge for the near-fiber path, while the stress 

decreased near the free-edge for the matrix-rich path.  This difference was likely due to a 

nearby singularity at the intersection of the fiber/matrix interface and free-edge.  For the 

near-fiber path, a singularity was close to the ply 0-90 interface, which caused an elevated 

stress.  On the other hand, the matrix-rich path experienced a peak stress a few fiber 

diameters away from the free edge, where there was a large matrix pocket in the 00 ply for 

the RVE considered.  For some values of 𝜎𝜎, 𝜎𝜎𝑧𝑧𝑧𝑧 was a different sign and more than 200% 

different between the two paths considered.  Though displacements along the boundary of 

the model matched well, the stresses along the ply interfaces differed significantly when 

fibers and matrix were modeled discretely. 
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Figure 5.23. 𝝈𝝈𝒛𝒛𝒛𝒛 along selected paths vs. the distance from the free-edge 
normalized by the ply thickness for the case where the microstructure of the 00 
and 900 plies is modeled discretely 

 
Figure 5.24. 𝝈𝝈𝒛𝒛𝒛𝒛 along selected paths from Figure 5.23 shown for half a ply-
thickness from the free-edge 
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5.4.2 Reducing the Microscale Region Normal to the Ply Interface 

In the previous section, the entire 00 and 900 plies were modeled at the microscale, but 

this section investigates the effect of reducing the microscale region in the 00 and 900 plies 

in the direction normal to the ply interface, which is along the z-axis.  For the region of the 

00 and 900 plies modeled at the mesoscale, homogeneous, orthotropic properties are used.    

The reference model contains several types of error, but the difference between models with 

a reduced microscale region and the reference model represents an additional error due to 

reducing the microscale region.  Two cases with reduced microscale regions are compared 

to the case where the entire 00 and 900 plies are modeled using discrete fibers and matrix.  

In one case, 25% of the plies are modeled at the microscale, and in the other, only 10% of 

the plies are modeled at the microscale.  Figure 5.6 shows both models. 

Figure 5.25 shows 𝜎𝜎𝑧𝑧𝑧𝑧 along the 0-90 ply interface as a function of the normalized 

distance from the free edge for both paths shown in Figure 5.22 and all three models 

considered.  For any point with a |𝜎𝜎𝑧𝑧𝑧𝑧| greater than 30% of the peak 𝜎𝜎𝑧𝑧𝑧𝑧 along the matrix-

rich path, reducing the microscale region to 25% of the ply thickness resulted in a maximum 

error of about 20% for the near-fiber path and 10% for the matrix-rich path, and reducing 

the microscale region to 10% of the ply thickness resulted in a maximum error of about 38% 

for the near-fiber path and 20% for the matrix-rich path.  However, no locations with a 

relatively large error were near the locations of peak stress.  Comparing only the peak stress 

for each path, reducing the microscale region to 25% of the ply-thickness introduced about 
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1% error, while reducing the microscale region to 10% of the ply-thickness introduced about 

6% error. 

 

 
a) Near-fiber path 

 
b) Matrix-rich path 

Figure 5.25. 𝝈𝝈𝒛𝒛𝒛𝒛 plotted along paths parallel to the y-axis versus the distance 
from the free-edge normalized by the ply thickness for several sizes of microscale 
regions 
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5.4.3 Reducing the Microscale Region Normal to the Free-Edge 

The previous section explored reducing the microscale region in the 00 and 900 plies in 

the direction normal to the ply interface, but this section investigates reducing the 

microscale in the direction normal to the free-edge, which is along the y-axis.  The model 

from the previous section with 10% of the ply-thickness modeled at the microscale was used 

as the base-line, which is shown in Figure 5.6, and the microscale region was reduced in the 

y-direction to one- and two- ply thicknesses from the free-edge.  Figure 5.7 shows both 

configurations. 

Figure 5.26 shows 𝜎𝜎𝑧𝑧𝑧𝑧 along the 0-90 ply interface as a function of the normalized 

distance from the free edge for both paths shown in Figure 5.22 and all three models 

considered.  As expected, 𝜎𝜎𝑧𝑧𝑧𝑧 quickly dropped to zero where homogeneous properties are 

used for the 00 and 900 plies.  About two fiber diameters from the transition of modeling 

fibers and matrix discrete to using homogeneous properties, 𝜎𝜎𝑧𝑧𝑧𝑧 matched quite well.  For 

any point within 75% of a ply-thickness from the free-edge, 𝜎𝜎𝑧𝑧𝑧𝑧 differed from the baseline 

about the same amount for either case, with a maximum error of about 8% for the near-

fiber path and about 9% for the matrix-rich path.  However, when the microscale region 

was reduced to two or one ply-thickness from the free-edge, the peak 𝜎𝜎𝑧𝑧𝑧𝑧 only differed from 

the baseline by 3% or less. 
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a) Near-fiber path 

 
b) Matrix-rich path 

Figure 5.26. 𝝈𝝈𝒛𝒛𝒛𝒛 plotted along paths parallel to the y-axis versus the distance 
from the free-edge normalized by the ply thickness for several sizes of microscale 
regions 

5.4.4 Summary 

Modeling the heterogeneous microstructure of a [±45/0/90]s laminate under uniaxial 

extension had a very significant effect on the predicted interlaminar normal stress along the 

0-90 and 90-90 ply interfaces.  The interlaminar normal stress varied differently along the 

ply interface from the free-edge depending on whether the path chosen was near a 900 fiber 

or a matrix-rich region of the 900 ply.  For a path near a fiber, the peak stress occurred at 

the free-edge, but for a path near a matrix-rich region, the peak stress occurred near a 

matrix pocket in the 00 ply, which was about two fiber diameters away from the free-edge.  

The displacements along the boundary of the model closely matched those between the two 

models, but the interlaminar normal stress predictions were very different. 
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To allow smaller, more efficient models for future studies, the effect of reducing the 

region modeled at the microscale was investigated.  The microscale region was reduced in 

the direction normal to the ply interface to 25% and 10% of the ply-thickness, which caused 

a maximum of 38% and 20% error respectively for any point with a significant stress value 

and 1% and 6% error respectively for the peak stresses.  Reducing the microscale region in 

the direction normal to the free-edge to be one and two ply-thickness in size did not have 

a significant effect on the predicted interlaminar normal stress at points within 75% of a 

ply-thickness of the free-edge.  Although some error is introduced, only modeling a small 

region of the plies as discrete fibers and matrix can drastically reduce the size of the mesh 

and the computational costs. 

5.5 Conclusions 

With growing computational resources available to researchers, composite materials can 

be investigated with far more detail than possible in the past.  New capabilities open up 

the study of novel materials, but it also allows researchers to understand the accuracy and 

limitations of assumptions that were necessary for past decades.  This chapter revisited the 

classical free-edge problem, which has been exhaustively studied at the mesoscale, with far 

more detail than done before.  Accounting for the microscale heterogeneity removed the 

singularity at the ply interface and was shown to dramatically affect the predicted 

interlaminar stresses near a free-edge.  The heterogeneous microstructure was shown to also 

affect the stresses away from the free-edge.  The fiber arrangement had an effect on the 

local stresses, and the more uniform fiber arrangement resulted in lower peak stresses.  
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Additionally, the interaction of fibers lead to compressive stress concentrations, indicating 

that matrix rich regions should be avoided near the ply interface to lower the tendency for 

delamination.  Finally, the region needed to accurately predict the microscale stresses near 

the ply interface was shown to be much smaller then entire ply.  Fortunately, future studies 

can leverage much smaller meshes, allowing larger regions of the laminate or more complex 

layups to be modeled. 

For analyses focused on mesoscale phenomena, treating the plies as homogeneous 

materials has been shown to work well by many other researchers.  However, if microscale 

phenomena are important, the heterogenous microstructure must be modeled discretely.  

Many open questions remain for the community on the subject of free-edge induced 

delaminations, such as understanding where the microscale damage initiates and how it 

propagates.  The layups of laminates have been tailored to mitigate the chances of 

delaminations, but a deeper understanding will be needed to tailor the microstructure.  

Future studies should explore the effect of plasticity in the matrix near the free-edge and 

predict the progression of fiber/matrix debonding and matrix damage. 
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6 PREDICTING THE PERFORMANCE OF 3D TEXTILES AT THE MESOSCALE* 

6.1 Overview 

Two-dimensional (2D) fiber/matrix composites, such as laminated composites or 2D 

textiles, have been extensively studied and routinely used within the aerospace industry.  

However, three-dimensional (3D) textiles have not achieved the ubiquity of 2D composites, 

despite several key advantages.  Three-dimensional textiles offer improved out-of-plane 

properties and significantly improved impact resistance over traditional 2D composites, and 

the 3D architectures of tows allow complex shapes to be manufactured.  Additionally, 3D 

woven composites provide the potential for many multifunctional materials, since functional 

constituents can be woven into the fabric. 

The adoption of 3D textiles has been slowed by complex manufacturing techniques and 

limited ability to predict performance.  The complex geometry makes it difficult to create 

realistic textile models and a valid mesh for finite element analysis (FEA).  Additionally, 

the resulting system of equations can be relatively expensive to solve due to the large 

number of degrees of freedom required.  Consequently, 3D textiles have been studied with 

less rigor than 2D composites, and the relatively few works in the literature that do 

investigate 3D textiles provide limited insight into the complex stress states within the 

material under static and quasi-static loads.  Much of the literature focuses on the dynamic 

                                      

* Parts of this material originally appeared in the Proceedings of the American Society for Composites: 
Thirty-second Technical Conference, 2017. Lancaster, PA: DEStech Publications, Inc. and the Proceedings 
of the 21st International Conference on Composite Materials.  It is reprinted here with permission of the 
publisher. 
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response due to ballistic loads, since 3D textiles are often used for body armor.  Furthermore, 

most works have assumed that the tow architecture has an idealized shape and path, 

neglecting the complex tow architecture of realistic composites. 

This chapter aims to explore the behavior of orthogonally woven composites under 

different in-plane loads with greater detail than done in the past.  The deeper investigation 

provides insight into how load is distributed throughout the complex tow architecture, 

locations of critical stress when the material is subjected to different loads, the role of the 

binders, and the effect of several modeling parameters.  Nonidealized textile models were 

created by simulating the processing using VTMS and meshing the resulting tow geometry 

using the algorithm described in chapter 2.  Two types textiles are considered, a thin 1x1 

orthogonal weave, which is a relatively simple 3D textile, and a thicker 2x2 orthogonal 

weave, which is more realistic to the 3D textiles used in industry.  The next section provides 

a description of the two types of textiles.  After that, the investigation for each of the two 

types of weaves is given in the next two sections, respectively.  A summary of the relevant 

results is provided within each section, but the final section of this chapter provides 

conclusions from both studies and highlights remaining open questions for future work. 

6.2 Configurations 

Two types of orthogonally woven textiles are considered in this chapter.  This section 

begins with a description of the textile geometry for each type of textile, followed by a 

presentation of the meshes created for each textile geometry.  Next, the boundary conditions 

for several load configurations is discussed.  The following section describes how the analysis 
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region is clipped down to a subregion for one of the textile types to avoid boundary effects 

during visualization and postprocessing.  Finally, the material properties used for each type 

of textile are provided. 

6.2.1 Textile Geometry 

Two types of orthogonally woven textile composites are considered in this chapter.  

Orthogonally woven textiles consist of layers of warps and wefts with binder tows weaving 

through the entire thickness.  Binder traverse through the thickness of the textile and travel 

generally in the x-direction.  Warps are relatively straight tows that are approximately 

aligned with the x-axis, and wefts are relatively straight tows that are approximately aligned 

with the y-axis.  In a 1x1 orthogonal weave, the binder crosses one weft at the top and 

bottom of the textile before traversing through the thickness of the textile, while in a 2x2 

orthogonal weave, the binder crosses two wefts before traversing the thickness.  Figure 6.1 

shows an example of the both types of textile architectures.  Without the binders, the warps 

and wefts are similar to a crossply laminate but with some space in between tows.  The 

binders provide the 3D component and provide the improved out-of-plane properties, 

including delamination resistance. 

The 1x1 orthogonal weave was considered due to the relative simplicity of the tow 

architecture.  The model contained three rows of wefts and two rows of warps, which is thin 

compared to a system for a practical application.  The binders were assumed to have about 

the same cross-sectional area as the warps and wefts.  This results in a higher binder volume 

fraction than most textiles in use.  Due to the simplicity, the transfer of load is easier to 
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understand, making the 1x1 orthogonal weave a logical starting point for a detailed analysis 

of 3D textile composites.  The 2x2 orthogonal weave provides a more realistic tow 

architecture with five rows of wefts and four rows of warps.  The binders were about 3.5% 

of the volume, while the warps and wefts composed 17.2% and 20.9% of the volume 

respectively.  The simulated textile had many similarities to the textile manufactured by 

T.E.A.M. Inc. and studied by Pankow et. al. in Refs. [63] and [64]. 
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a) 1x1 orthogonal weave 

 
b) 2x2 orthogonal weave 

Figure 6.1. Illustration of two types of orthogonally woven textiles considered 
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A software tool called VTMS was used to create the geometry. [22]  The Air Force 

Research Lab (AFRL) developed VTMS for modeling the effects of processing on the tow 

geometry, allowing the generation of realistic textile models.  It models the effects of 

processing using “digital chains”, which consist of rigid spheres connected by elastic rod 

elements.  Ideally, a digital chain should be used for each fiber within the tow, but this is 

currently computationally prohibitive.  Initially, the digital chains have too much space 

between them.  The displacements at the ends of the digital chains are specified to be zero, 

and a contact analysis is used to solve for the final configuration.  During the contact 

analysis, a tension is specified within the digital chains and a pair of rigid planes is used to 

compress the top and bottom of the model.  The contact analysis prevents overlap between 

the rigid spheres of the digital chains, and tension in the chains encourages them to move 

towards the midplane.  It is useful to begin with one digital chain per a tow until much of 

the unrealistic space between the tows is removed, and afterwards, the single digital chains 

are replaced with more digital chains.  Each single digital chain was replaced with ten 

digital chains in this study.  With multiple digital chains per a tow, the cross-section of the 

tows can deform during the contact analyses.  When the compaction is completed, cross-

sectional profiles are created along each tow path by fitting a closed spline around the 

bundle of digital chains that define the tow cross-section for each sample point along the 

tow path.  Typically, 200 to 500 cross-sectional profiles are sampled for each tow.  Once a 

solid geometry has been created for each tow, there are small interpenetrations between the 

tows, which are removed by adjusting the geometry of each tow. The algorithm used in 
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VTMS to remove interpenetrations is not precise enough to allow the creation of a 

conforming, non-intersecting volume mesh for each tow.  Consequently, the cross-sections 

for each tow are shrunk towards the centroid by a small amount, resulting in some matrix 

material between each tow.  For the final steps in VTMS, the surface geometry of each tow 

is discretized and clipped to a smaller region to avoid the spurious effects near the edges of 

the initial model.  Refer to chapter 2 for a much more detailed account of how the textile 

models were created. 

Figure 6.2a shows a typical final model with the matrix, along with the dimensions of 

the model.  Figure 6.2b shows the tow architecture more clearly by removing the matrix 

and highlights the variation of cross-section shapes within the tows.  Due to the compact 

algorithm used by VTMS, the outermost tows experience more deformation than the tows 

nearest the midplane, which is shown in Figure 6.2b.  The extra deformation of the 

outermost tows is reduced by compacting one layer at a time, but the outermost tows will 

still experience more deformation than the interior tows.  Creating realistic 3D textile 

models remains an important challenge for the research community.  Tools like VTMS and 

a very similar software called DFMA provide a method for producing non-idealized textile 

geometries, which is a step in the right direction, but significant work remains to ensure 

that the geometries closely resemble physical specimens. 
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a) Entire analysis region 

 

b) Analysis region with the matrix removed to show tows 

Figure 6.2. Dimensions of 3D textile model (units shown in meters) 

 

x y 

z 

𝑊𝑊 = 11.4𝜈𝜈𝜈𝜈 𝐿𝐿 = 13.4𝜈𝜈𝜈𝜈 

𝐻𝐻 = 5.26𝜈𝜈𝜈𝜈 
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6.2.2 Textile Meshes 

This work used a standard FEA formulation as described in chapter 3, which requires a 

conforming mesh.  The VTMS software includes meshing for the independent mesh method 

[65], but the resulting mesh is not usable herein because it is nonconforming.  Instead, an 

in-house tool was used to create refined surface meshes of the tow geometries.  It should be 

noted that the surface geometry information that is taken from VTMS is faceted, resulting 

in unrealistic sharp corners between facets.  Ideally, the faceted geometry should be 

smoothed to avoid unrealistic stress concentrations in the matrix material at the sharp 

corners, but this is not done in this study.  At the level of mesh refinement used in this 

study, it is not clear whether the faceted geometry has a significant effect.  The surface 

meshes were then used to create volume meshes of the tows and matrix using quadratic 

tetrahedrals, leveraging the general tetrahedral meshing library TetGen [39].  The algorithm 

used to create a conforming quadratic tetrahedral mesh for the tows and matrix from the 

tow geometry provided by VTMS is described in much greater detail in chapter 2 of this 

manuscript.   

The in-house meshing tool used a cubic spline fit of the tow centroids to define each tow 

path.  The material coordinate system is determined at each node within a tow mesh by 

finding the closest point on the spline of the tow path and using the tangent vector of the 

spline as the fiber direction, which defines the local x-axis.  The local y-axis is assigned to 

be parallel to the cross product between the global z-axis and the tangent vector.  The final 

local z-axis is defined by the cross product of the local x and y-axes, which defines a right-
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handed coordinate system.  For the analysis of the 1x1 orthogonal weave, tow paths were 

assumed to be 2D, neglecting the variation of the tow path in 3rd dimension.  However, the 

in-house tool was enhanced to use general 3D splines to fit the tow paths for the study of 

the 2x2 orthogonal weave. 

For the 1x1 orthogonal weave, the effect of mesh refinement is explored.  The same 

geometry was used within VTMS to generate a sequence of three increasingly refined surface 

geometries, and from those surface geometries, a sequence of FEA meshes were generated.  

Some information about the sequence of meshes is shown in Table 6.1.  It should be noted 

that because of the complex geometry, as the surface geometry from VTMS is refined the 

volume of the tows change, which is why the tow volume fraction changes for the meshes 

in Table 6.1.  Figure 6.3 shows the sequence of meshes used for the 1x1 orthogonal weave.  

As Figure 6.3 reveals, the element size within the mesh was not uniform, with higher 

refinement existing very near the boundaries of the constituents, which is not ideal but is 

the result of the particular method used to generate the mesh.  The mesh shown in Figure 

6.3c is more refined than the majority of 3D textile studies in the literature and is close to 

the same refinement of the most refined models in the literature, such as those found in 

Ref. [21]. 
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Table 6.1. Basic statistics of the meshes used in the study 

Mesh # Nodes # Elements Tow Volume Fraction 

Coarse 61,906 42,306 53.9% 

Medium 374,473 266,129 56.1% 

Refined 1,962,148 1,436,552 56.7% 
 

 

 

 
a) Coarse mesh 

 
b) Medium mesh 

 
c) Refined mesh 

 
Figure 6.3. Clipped region of unit-cell showing the mesh refinement of 1x1 
orthogonal weave 

The mesh used for the 2x2 orthogonal weave was much larger due to the more complex 

tow architecture and larger analysis region.  Figure 6.4 shows the typical mesh refinement.  

Tows generally have 5 to 10 quadratic tetrahedrals through the thickness of the tows.  A 

higher mesh refinement exists near binder tows.  The final mesh used for this paper consists 



 

221 

 

of 20 million nodes and 15 million quadratic tetrahedrals.  It should be noted that the 

surface geometry that is taken from VTMS is faceted, resulting in unrealistic sharp corners 

between facets.  Ideally, the faceted geometry should be smoothed to avoid unrealistic stress 

concentrations near sharp corners, but this is not done in this study.  At the level of mesh 

refinement used in this study, it is not clear whether the faceted geometry has a significant 

effect.  

 

 

Figure 6.4. Illustration of mesh refinement for 2x2 orthogonal weave 

6.2.3 Boundary Conditions 

Ideally, periodic boundary conditions would be applied to the textile unit-cell, but the 

geometry from VTMS is not periodic since it creates a model by virtually simulating textile 

processing.  Consequently, simple boundary conditions are used.  Three faces of the analysis 

region (the 𝜎𝜎 = 0,𝜎𝜎 = 0, and 𝜎𝜎 = 0 planes) are assumed to be planes of symmetry.  Refer 

to the coordinate system in Figure 6.2a.  This results in the following boundary conditions: 
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𝑢𝑢(0,𝜎𝜎, 𝜎𝜎) = 0, 𝜎𝜎(𝜎𝜎, 0, 𝜎𝜎) = 0, and 𝑤𝑤(𝜎𝜎,𝜎𝜎, 0) = 0.  In addition to these boundary conditions, 

several additional boundary conditions impose the load depending on the configuration, 

which differs for the two types of textiles considered  

For the 1x1 orthogonal weave, uniaxial tension along the global x-axis was the only load 

considered.  To impose this boundary condition, the x-direction displacement on the 𝜎𝜎 = 𝐿𝐿 

face of the unit cell was specified such that the unit cell experienced 1% strain, where 𝐿𝐿 is 

the in-plane dimension of the unit-cell.  Figure 6.5 illustrates the boundary conditions used 

for the 1x1 orthogonal weave.  The remaining two planes are traction free.  These boundary 

conditions imply that the specimen is infinitely long but very thin and narrow. 

  

 
Figure 6.5. Boundary conditions used for 1x1 orthogonal weave 

For the 2x2 orthogonal weave, three loading configurations are considered: uniaxial 

tension along the global x-axis, uniaxial tension along the global y-axis, and in-plane shear.  

𝑢𝑢(𝜎𝜎 = 𝐿𝐿,𝜎𝜎, 𝜎𝜎) = 𝑈𝑈0 
x 

z 

y 

Planes of symmetry: 
𝜎𝜎 = 0 
𝜎𝜎 = 0 
𝜎𝜎 = 0 
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The loading consists of specified displacements to result in a 1% volume average strain.  

Specifically, this requires 𝑢𝑢(13.4 𝜈𝜈𝜈𝜈,𝜎𝜎, 𝜎𝜎) = 0.134 𝜈𝜈𝜈𝜈 for tension along the x-axis, 

𝜎𝜎(𝜎𝜎,𝜎𝜎 = 11.4 𝜈𝜈𝜈𝜈, 𝜎𝜎) = 0.114 𝜈𝜈𝜈𝜈 for tension along the y-axis, and 𝑢𝑢(𝜎𝜎,𝜎𝜎 = 11.4 𝜈𝜈𝜈𝜈, 𝜎𝜎) =

0.114 𝜈𝜈𝜈𝜈 and 𝜎𝜎(13.4 𝜈𝜈𝜈𝜈,𝜎𝜎, 𝜎𝜎) = 0.134 𝜈𝜈𝜈𝜈 for in-plane shear.  All other boundaries are 

traction free. 

6.2.4 Clipped Analysis Region 

As mentioned before, simple boundary conditions are used since the textile geometry 

lacks periodicity.  However, the boundary conditions enforce the boundaries of the textile 

to remain planar, which is expected to induce artifacts near the textile boundaries.  Though 

this issue is not addressed for the simple 1x1 orthogonal weave study, a strategy is adopted 

for the more realistic 2x2 orthogonal weave study to reduce the boundary effects.  A larger 

section of the textile is modeled, the simple boundary conditions are applied to the larger 

analysis region, and a subregion is used for post-processing to reduce artifacts due to the 

boundary conditions.  Figure 6.6 shows the full analysis region and the subset of the region 

used for post-processing.  The clipped region used for post-processing is only approximately 

a full unit-cell, since the textile geometry is non-periodic.  The in-plane boundaries the of 

the clipped analysis region are not planar since the tetrahedral elements are not cut by the 

clipping process.  Any element with a node within the clipped analysis region is kept, while 

all others are removed, resulting in a rough surface on each clip plane, which can be observed 

in Figure 6.6b or Figure 6.6c. 
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Figure 6.6. Illustration of the full analysis region and clipped region used for 
post-processing 

 

6.2.5 Variation of Cross-Sectional Area 

Each tow within VTMS will have a different total volume and a variation of the cross-

sectional area along the tow path.  This is due to a combination of several factors, including 

unrealistic space left between the digital chains that was not completely removed during 

the iterative relaxation process, the way the cross-sectional profiles for each tow are 

generated from the bundle of digital chains, the interpolation of cross-sectional profiles along 

the tow path, and the method used for the removal of interpenetrations between tows. 

a) Full analysis region with yellow dashes 

     

b) Clipped analysis region 

c) Clipped analysis region 
with matrix removed 
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For real textile composites, there is a variation of the cross-sectional area, but this is 

due to the variation in the amount of matrix material forced out of parts of the tows during 

the manufacturing process.  The same number of fibers should exist at any cross-section 

along a tow (except for a few broken fibers), so a variation of cross-sectional area would 

cause a change in the fiber volume fraction.  Within VTMS, the variation of cross-sectional 

area that is caused by the creation of the cross-section profiles and subsequent interpolation 

along the tow path is not physical in any way.  However, the locations where the cross-

sectional area varies due to the removal of interpenetrations might correlate to areas where 

matrix is forced out of the tow during the manufacturing process, but there is no reason to 

expect the magnitude of the variation to match those seen in actual textile composites.  

Furthermore, the variation of the cross-sectional area would result in a variation of the 

material properties along the tow path, since the fiber volume fraction is changing. These 

concerns should be kept in mind for the future development of textile modeling tools if 

accurate textile composite models are to be achieved. 

For the 1x1 orthogonal weave, a constant set of homogenized tow properties is used for 

the tows, but the effect of accounting for the variation in the local fiber volume fraction is 

explored for the 2x2 orthogonal weave.  Though the variation of the local fiber volume 

fraction is not accounted for the 1x1 orthogonal weave, the study of the 1x1 orthogonal 

weave does explore the variation of the cross-sectional area and how the changing cross-

sectional areas relate to the distribution of stresses within each tow.  To quantify the 

variation of the cross-sectional area of each tow, it is useful to define a nominal cross-
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sectional area.  The volume of each tow is calculated by summing the volume of each 

element within the tow, which will be denoted by 𝑉𝑉𝑖𝑖 for tow 𝑖𝑖.  The length of each tow, 𝐿𝐿𝑖𝑖, 

is using the cubic spline used to fit the tow path.  The normalized tow length, 𝐿𝐿�𝑖𝑖, is defined 

to be the actual tow length divided by the side length of the unit-cell, which is a 

characteristic length for the textile. 

Since there are sixteen tows within the model used for the 1x1 orthogonal weave, it is 

helpful to breakdown the tows by type (binders, warps, and wefts), row (in-plane), and 

layer (out-of-plane and relative to the analysis region) to help with the discussion of 

particular tows.  In the results sections, each type of tow is discussed separately.  However, 

within the plots, the row will be identified by color, and the layer will be identified by line 

style.  This categorization of tows is shown in Figure 6.7.  Using this method of 

categorization, Table 6.2 shows the normalized tow lengths for each tow in the unit-cell. 
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a) Binder Tows 

 
b) Warp Tows 

 
c) Weft Tows and Coordinate Axes 

Figure 6.7. Illustration of tow positions and color scheme used in this paper 

 

Table 6.2. Normalized length, 𝑳𝑳�, of tows by type, row, and layer 
  a) Binders         b) Warps               c) Wefts 

 

 

Finally, the nominal cross-sectional area for each tow, �̅�𝐴𝑖𝑖, can be defined by the volume 

of the tow divided by the tow length and is given by Equation (6.1(6.1), where 𝑖𝑖 is a free 
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Second Row 
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index corresponding to the tow and 𝑉𝑉𝑖𝑖 is the volume of the respective tow.  The nominal 

cross-sectional area for each tow can be non-dimensionalized based on the size of the unit-

cell using the Equation (6.2), where 𝑉𝑉𝑖𝑖 is the volume of tow 𝑖𝑖 , 𝑉𝑉 is the volume of the unit-

cell, and 𝐿𝐿�𝑖𝑖 is the normalized tow length.  Table 6.3 shows the normalized cross-sectional 

area for each of the tows within the textile. 

 

 �̅�𝐴𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝐿𝐿𝑖𝑖

 (6.1) 

 �̂�𝐴𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝑉𝑉

1
𝐿𝐿�𝑖𝑖

 (6.2) 

 

Table 6.3. Normalized nominal cross-sectional area, 𝑨𝑨�, of tows by type, row, 
and layer 

a) Binders        b) Warps  c) Wefts 
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6.2.6 Material Properties 

For the 1x1 orthogonal weave, the material properties for both constituents were taken 

from Ref. [66], which used an analytical homogenization scheme to predict the properties of 

the tows based on the measured properties of the matrix and graphite fibers.  The matrix 

was assumed to be isotropic with the values: 𝐸𝐸 = 2.9 𝐺𝐺𝑃𝑃𝑎𝑎 and 𝜈𝜈 = 0.3.  The tows were 

assumed to be homogenous and transversely isotropic with the values: 𝐸𝐸11 = 221.4 𝐺𝐺𝑃𝑃𝑎𝑎, 

𝐸𝐸22 = 𝐸𝐸33 = 12.6 𝐺𝐺𝑃𝑃𝑎𝑎, 𝐺𝐺12 = 𝐺𝐺13 = 7.4 𝐺𝐺𝑃𝑃𝑎𝑎, 𝜈𝜈12 = 𝜈𝜈13 = 0.34, and 𝜈𝜈23 = 0.32.  For this 

initial study of a 1x1 orthogonal weave, linear elasticity was assumed. 

For the 2x2 orthogonal weave study, the tows are assumed to consist of IM7 graphite 

fiber and 5220-4 epoxy resin.  In chapter 4 of this manuscript, multiple ensembles of random 

fiber/matrix models were used to predict the effective tow properties for different fiber 

volume fractions, and a constitutive model that is a function of the fiber volume fraction 

was developed, allowing the effective tow properties to be evaluated for fiber volume 

fractions between 40% and 80%.  Chapter 4 contains plots of the engineering properties and 

effective stiffness matrix terms as a function of volume fraction for the constitutive model 

for a IM7/5220-4 material system.  The study of a 2x2 orthogonal weave utilizes the 

developed constitutive model to study the effect of accounting for the variation of local fiber 

volume fraction on the locations and severity of stress concentrations. 

Ideally, the strengths would be based on a series of experiments or microscale damage 

analyses.  However, for this paper, the strengths will be assumed to be the same as the tows 

tested in Ref. [31] and are shown in Table 6.4.  It should be noted that the strengths will 
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not be used to predict the progression of damage in the studies of this chapter.  Instead, 

the strengths are used to assess the severity of stress concentrations, allowing a quantitative 

comparison of different stress states by dividing each component of stress in the local 

coordinate system by the respective assumed strength. 

Table 6.4.  Assumed tow strengths, taken from Ref. [31] 

Warps and Wefts  Binders 
𝑋𝑋11 3234 MPa  𝑋𝑋11 2678 MPa 

𝑋𝑋22 = 𝑋𝑋33 36.4 MPa  𝑋𝑋22 = 𝑋𝑋33 36.4 MPa 
𝑋𝑋12 = 𝑋𝑋13 53.8 MPa  𝑋𝑋12 = 𝑋𝑋13 53.8 MPa 

𝑋𝑋23 61.5 MPa  𝑋𝑋23 61.5 MPa 
 

6.3 Analysis of a 1x1 Orthogonal Weave 

This study investigates a simple 1x1 orthogonally woven textile, where the binders cross 

one weft at the top and bottom of the textile before traversing through the thickness of the 

textile.  The aim is to explore how load is distributed throughout a orthogonally woven 

textile, investigate the effect of mesh refinement, and quantify the variation of the tow 

architecture and how it relates to locations of stress concentrations.  The findings are used 

to guide the study of a 2x2 orthogonal weave later in this chapter. 

The study of the 1x1 orthogonal weave is broken up into four sections.  The first section 

focuses on the effect of mesh refinement on the predicted volume average stresses within 

the tows.  Next, the stress distributions within the tows are explored and the effect of mesh 

refinement is quantified.  The last two results sections investigate the most refined model 

with greater detail.  The third section characterizes the tow architecture, including how the 
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cross-sectional area of the tows change throughout the model, while the last results section 

presents the average stresses along the tow paths and correlates the locations of high stresses 

with patterns in the weave geometry.  In the final section of the 1x1 orthogonal wave study, 

a summary of the results is given. 

6.3.1 Volume Average Stresses 

The volume average stresses within each constituent provide an initial measure of mesh 

convergence and insight into how load is transferred within the textile.  Table 6.5 shows 

each component of the volume average stresses in the material coordinate system within 

each constituent for the refined mesh. The stresses in the material coordinate system are 

denoted by 𝜎𝜎𝑖𝑖𝑗𝑗′ .  For the two coarser meshes, the percent difference from the volume average 

stress of the refined mesh is shown. 

Table 6.5 can be used to understand the convergence of the three meshes, but it should 

be noted that the convergence includes convergence of geometry as well as mesh refinement.  

The geometry changes with increasing mesh refinement because the geometry can be 

captured more accurately with additional elements.  Unfortunately, for this paper, there 

was no method implemented for separating these two effects. 

For the normal stress along the fiber direction, 𝜎𝜎𝑥𝑥𝑥𝑥′ , the coarse mesh predicted a volume 

average value within 6% for the binders and warps, which are both nominally along the 

direction of the applied load.  The wefts experience a compressive stress in the fiber direction 

since they run transverse to the applied load and oppose the Poisson contraction of the unit 

cell.  For 𝜎𝜎𝑥𝑥𝑥𝑥′  in the wefts, the coarse mesh predicted a volume average stress that was 
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22.5% larger than the value predicted by the refined mesh.  For the transverse normal 

stresses, 𝜎𝜎𝑦𝑦𝑦𝑦′  and 𝜎𝜎𝑧𝑧𝑧𝑧′ , within each tow, the medium and coarse mesh predicted a volume 

average stress that was close to the value predicted by the refined mesh, remaining within 

6%.  The coarse and medium meshes ranged from moderately under predicting to severely 

over predicting the volume average normal stresses.  However, the coarse and medium 

meshes generally under predicted the volume average shear stresses for all three types of 

tows.  The volume average shear stresses was close to zero, which would result in a large 

percent difference of the volume average shear stresses between the different meshes.  

Consequently, the volume average of the absolute value of shear stresses is used for 

comparing the meshes. The coarse mesh predicted volume average shear stresses up to 18% 

lower than the refined much, while the medium mesh differed from the refined mesh by less 

than 6%.  Although the predictions appear to be converging, the refined mesh cannot be 

said to be converged, and even more refined meshes are needed to determine the converged 

values precisely.  These results for volume average stresses highlights the need for careful 

mesh refinement in 3D textile models. 
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Table 6.5. Volume average stresses (in the material coordinate system) in each 
type of tow for the different meshes 

Tow Type Mesh 〈𝝈𝝈𝒙𝒙𝒙𝒙′ 〉 〈𝝈𝝈𝒚𝒚𝒚𝒚′ 〉 〈𝝈𝝈𝒛𝒛𝒛𝒛′ 〉 〈�𝝈𝝈𝒙𝒙𝒚𝒚′ �〉* 〈�𝝈𝝈𝒚𝒚𝒛𝒛′ �〉* 〈|𝝈𝝈𝒙𝒙𝒛𝒛′ |〉* 

Binders 
Coarse -1.1% -6.0% -3.2% -17.7% -3.7% -4.4% 

Medium 0.5% -1.8% -0.8% -5.9% -0.1% -0.8% 
Refined 2.37e8 -5.70e6 2.96e7 4.77e6 8.17e6 3.90e7 

Warps 
Coarse 5.6% -3.8% 23.1% -17.4% -3.3% -4.0% 

Medium 1.6% -0.7% 16.2% -5.8% 0.0% -0.7% 
Refined 1.57e9 8.19e6 -1.77e6 3.06e6 5.25e6 2.51e7 

Wefts 
Coarse 22.5% -3.5% -1.6% -16.2% -1.9% -2.6% 

Medium 7.6% -0.5% 0.6% -5.4% 0.4% -0.3% 
Refined -9.23e6 7.54e7 -2.20e7 2.08e6 3.57e6 1.70e7 

* Note: volume average shear stresses were calculated using the absolute value of the stress, since the volume average 
shear stress would be close to zero. 

 

In addition to convergence, the volume average stresses shown in Table 6.5 indicate how 

load is transferred within the textile.  Since the warps are aligned with the load direction, 

they experience the highest level of stress, as expected.  In the material coordinate system 

of the warps, the local z-axis generally aligns with the global z-axis, which is out of plane 

of the textile.  Consequently, the local x- and y-axes generally align within the plane of the 

textile.  Table 6.5 shows that the warps experience tension in the two in-plane directions 

and compression out of plane.  In the warps, the fibers align with the applied load, so the 

tension along the local x-axis is expected.  Regarding the tension within the warps in the 

direction transverse to the fibers and in the plane of the textile (local y-axis), the unit cell 

contracts due to the Poisson effect, but the wefts are stiffer than the other constituents in 

the transverse in-plane direction and have a smaller Poisson’s ratio.  Consequently, the 

wefts experience compression while the warps experience tension.  The compression in the 

out of plane direction is due to the binders trying to straighten due to the applied 
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extensional load in the direction of the binder’s undulation.  The binders interlock with the 

wefts and compress the warps and wefts, while the binders experience a tensile stress out of 

plane.  This was confirmed by calculating the volume average stress within the binders in 

the global z-direction, which was indeed tensile.  Additionally, in a study not shown in this 

paper, the binders were replaced by matrix. For that case, the warps experience tension 

instead of compression in the out of plane direction, indicating it is the binders trying to 

straighten that leads to the compressive stresses in the warps.  It is important to remember 

that the volume average stress in the entire unit cell is zero except in the direction of the 

applied load. 

Additionally, the warps experience relatively large shear stresses in every component.  

Since the warps are carrying most of the load in the direction of the applied load and matrix 

pockets exist in regions of the textile, the load is generally distributed to the neighboring 

tows through shear stresses. 

Since the wefts lie transverse to the direction of the applied load, they experience a 

relatively high 𝜎𝜎𝑦𝑦𝑦𝑦′ .  The compressive stresses for the other two normal components were 

discussed earlier.  Of the three types of tows, the wefts generally experienced a less severe 

volume average shear stress. 

6.3.2 Stress Distribution within Tows 

This section investigates the stress distribution of the most severe stress component 

within each type of tow. Though accurate strengths were not available for the particular 

material system assumed in this paper, the relatively strengths for the six components of 
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stress were assumed to be the same as for the material system in Ref. [31].  The strengths 

will not be used herein to predict failure, but rather, they will only be used to select the 

most severe stress component to investigate for each type of tow.  To select the most severe 

component of stress, the maximum value for each component of stress was compared against 

the allowable stress. 

Binders 

For the binders, 𝜎𝜎𝑧𝑧𝑧𝑧′  was clearly the most severe component of stress.  Figure 6.8 shows 

the percentage of the constituent within various stress ranges for each of the mesh 

refinements.  From the column plot in Figure 6.8, even the coarsest mesh (green bars) 

captures the amount of material at relatively low stresses well.  However, it poorly predicts 

the material at severe tensile and compressive stresses.  The binders experience a tensile 𝜎𝜎𝑧𝑧𝑧𝑧′  

on average, as shown in the figure and Table 6.5, but locally, the stress varies from severe 

compressive to severe tensile stresses.  In the contour plots in Figure 6.8 and subsequent 

figures, the color mapping is centered on the volume average stress within the constituent, 

which means that shades of red indicate a stress larger than the volume average, shades of 

blue indicate a stress lower than the volume average, and gray indicates a stress near the 

volume average.  The binders experience compression where they cross over or under a weft, 

very near the area of contact between the two tows. A typical location is labeled A in Figure 

6.8.  Compressive stresses develop in these regions because the binders want to straighten 

out but are resisted by the wefts.  Consequently, compressive stresses form where the binder 

presses against the wefts.  However, within the matrix rich regions that lie between the 
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rows of wefts, the binders generally experience a tensile 𝜎𝜎𝑧𝑧𝑧𝑧′ , as shown in region B of Figure 

6.8.  In these regions, the local z-axis is nearly parallel to the global x-axis, which is the 

direction of the applied tensile load. Therefore, the binders experience a tensile 𝜎𝜎𝑧𝑧𝑧𝑧′  in these 

matrix rich regions. 

 
Figure 6.8. Distribution of 𝝈𝝈𝒛𝒛𝒛𝒛′  within binders for the different mesh refinements 
with images showing material below 0 Pa or above 3.6e7 Pa.  For the contour 
plots, gray indicates a stress near the volume average in the constituent, while 
red and blue indicates a stress higher or lower respectively. 

 
Figure 6.8 focused on the entire distribution of 𝜎𝜎𝑧𝑧𝑧𝑧′ , but the highest stresses are of critical 

importance to understand where damage might initiate.  A large tensile 𝜎𝜎𝑧𝑧𝑧𝑧′  tends to cause 

matrix cracks within the tow.  Because of this concern, it is important to consider the 
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highest stresses.  Figure 6.9 shows the stress distribution and locations of the material within 

the tow with a 𝜎𝜎𝑧𝑧𝑧𝑧′  higher than 8e7 Pa.  Data labels are shown for the refined mesh, since 

the volume percentage in the last seven bins are difficult to compare due to the very small 

values.  Concerning convergence, the coarse mesh does a very poor job at predicting any 

material at these high stress levels and only predicted that the stress levels of the first two 

bins are reached.  The medium mesh somewhat captures the stress distribution for the first 

four bins, but it fails to predict any material reaches the stress levels of the last five bins.  

As expected, increasing mesh refinement seems to be headed towards convergence, but even 

further mesh refinement is needed to know if the converged maximum stress is reached with 

the refined mesh used in this study.  The location of the highest 𝜎𝜎𝑧𝑧𝑧𝑧′  in the binders is of 

interest since damage is likely to initiate at those concentrations.  The contour plot in 

Figure 6.9 shows the material with a 𝜎𝜎𝑧𝑧𝑧𝑧′  higher than 8e7 Pa.  The highest values generally 

exist in the matrix rich regions between rows of wefts, as shown in the contour plot in 

Figure 6.9.  However, many of the locations of high stresses also lie near relatively sharp 

edges of the tow.  Because of the nature of the geometry generation algorithm in VTMS, 

each tow’s surface geometry is faceted, not smooth.  These artifacts can cause higher stresses 

where the facets form sharp edges, but further study is needed to quantify the effect of the 

faceted surfaces.  Additionally, the smallest stress concentration regions can fit within a 

sphere that has a diameter that is 1/100th of a tow thickness or less, which is much less 

than a fiber diameter.  Even if the model converges at a higher refinement, at that scale, 

the heterogeneous microstructure of the tow would need to be considered. 
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Figure 6.9. Distribution of 𝝈𝝈𝒛𝒛𝒛𝒛′  at high stress levels within the binders for the 
different mesh refinements with an image showing material above 8e7 Pa. 

Warps 

Using the same methodology as described in the beginning of the previous section, the 

longitudinal shear stress was selected as the most severe stress component for the warps.  

The magnitude of the stress along the fiber direction was very high, but the tensile strength 

of tows along the fiber direction is often at least an order of magnitude greater than the 

shear and transverse tensile strengths.  Of the different types of tows, the warps experiences 

stress that were least severe compared to the allowable stresses.   

The stress by volume histogram is not shown for all values of 𝜎𝜎𝑥𝑥𝑧𝑧′  in this paper, but the 

data showed that all three meshes predicted very similar distributions for low levels of 



 

239 

 

stress.  However, the high stresses are of much greater interest.  Since this paper is concerned 

with the severity of the shear stress, the sign is not important for this discussion, so the 

absolute value of the shear stresses will be shown.  Figure 6.10 shows the percentage of the 

warp that reach stresses larger than 1.76e8 Pa.  A relatively large range of stresses is shown 

in Figure 6.10, and since the coarser mesh under predicts the amount of volume at the very 

high stresses, it over predicts the amount of material at a lower stress, represented by the 

first bin.  The coarse mesh poorly predicts the stress distribution for the last eight bins.  

The medium mesh seems to capture the trend well until the last three or four bins.  As with 

𝜎𝜎𝑧𝑧𝑧𝑧′  in the binders, the maximum stress in the constituent continues to increase as the mesh 

is refined.  It is unclear if the refined model has reached sufficient convergence. 

 
Figure 6.10. Distribution of 𝝈𝝈𝒙𝒙𝒛𝒛′  at high stresses within the warps for different 
mesh refinements 
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The location of the high shear stresses provide insight into where damage might occur 

within the warps, though an accurate location of damage initiation cannot be determined 

without a progressive failure analysis since damage in other constituents will affect the 

stress distribution in this constituent.  Figure 6.11 shows contours for the portion of warps 

with magnitudes of 𝜎𝜎𝑥𝑥𝑧𝑧′  higher than 8e7 Pa, which includes a wider range of stresses than 

what is shown in the histogram of Figure 6.10.  Since the warps generally align with the 

global coordinate system, the local x-axis is generally along the loading direction and the 

local z-axis is generally out of plane.  Considering this, it seems that load is being transferred 

in the matrix rich regions to the neighboring binders, which have their greatest out of plane 

component in the same regions, since the concentrations all remain close to the area where 

the binders cross the warp paths, as shown in Figure 6.11a.  Additionally, the shear stress 

concentrations are generally closer to the midplane of the unit cell, as shown in Figure 6.11c 

and Figure 6.11d.  However, the high stress seems very localized to the outermost region of 

the tow, as shown in Figure 6.11c. 
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a) Isometric view 

 
b) View of x-y plane 

 

 
c) View of y-z plane 

 
d) View of x-z plane (binders omitted 

for clarity) 
 

Figure 6.11. contours for regions of the warps with 𝒂𝒂𝒂𝒂𝒂𝒂(𝝈𝝈𝒙𝒙𝒛𝒛′ ) > 𝟖𝟖𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂.  Binders 
and wefts are shown for context.  The entire warps are also overlaid as a semi-
transparent gray solid for context. 

 
Wefts 

Since the fibers run transverse to the applied load for the wefts, the transverse normal 

stress 𝜎𝜎𝑦𝑦𝑦𝑦′  for the wefts reached high values, and the allowable for this component of stress 

wefts orthogonal tows 
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will be significantly less than the allowable in the direction of the fibers.  Consequently, 𝜎𝜎𝑦𝑦𝑦𝑦′  

was the most severe of all the stresses within any type of tow by a large margin. 

Figure 6.12 shows a histogram of the amount of material in the wefts within various 

bins of values for 𝜎𝜎𝑦𝑦𝑦𝑦′ .  A significant percentage of the material experiences relatively high 

tensile stresses; however, the tows do not carry that load evenly.  The middle layer of wefts 

carries substantially more of the load than the top and bottom layers, as shown in Figure 

6.12b.  This is due to the middle layer of wefts being surrounded by two layers of warps, 

which are carrying most of the load within the textile for the applied load considered in this 

paper.  Whereas, the top and bottom layers of wefts have less avenues for load to be 

transferred to them with only one nearby layer of warps, and thereby experience lower 𝜎𝜎𝑦𝑦𝑦𝑦′ . 
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Figure 6.12. Distribution of 𝝈𝝈𝒚𝒚𝒚𝒚′  within the wefts.  For the contour plots, gray 
indicates a stress near the volume average, while red and blue indicates a value 
greater or less than the volume average respectively. 

 
The locations of the highest stress concentrations are important, since damage will likely 

initiate in these locations.  To investigate where damage might occur, the material 

experiencing a value of 𝜎𝜎𝑦𝑦𝑦𝑦′  higher than 1.27e8 Pa, which includes the last five bins shown 

in Figure 6.12, is shown in Figure 6.13.  Since there is a pattern of locations for these 

concentrations, Figure 6.13a only shows half the unit cell and illustrates two key views that 

show the locations well.  The material within the respective bounding boxes in Figure 6.13a 

is shown in Figures 8b and 8c, which allows a clear view of the stress concentrations.   
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Figure 6.13 shows that even though the middle layer of wefts experiences much higher 

stresses on average, as shown in Figure 6.12b, all three layers through the thickness of the 

textile experience significant stress concentrations.  In the top and bottom layers, stress 

concentrations occur just before and after a weft crosses an binder, near the outermost edges 

of the tow cross-section.  One such location is highlighted as region A in Figure 6.13b.  In 

the middle layer, stress concentrations occur in the regions where an binder reaches its peak 

or trough.  One such location is highlighted as region B in Figure 6.13b.  This leaves a 

matrix rich region in the center of the textile away from the binder, as shown in Figure 

6.13b and Figure 6.13c, and as a result, the wefts carry more of the load locally in the 

absence of other fiber reinforced constituents nearby. 

For the uniaxial extension considered in this paper, it seems that damage will develop 

initially within all three layers of wefts.  However, the middle layer of wefts will likely 

experience a more rapid progression of damage since the average stress in the layer is 

significantly higher than the other two. 
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a) Half of the unit-cell and illustration of views 

 
b) View 1 

 
c) View 2 

Figure 6.13. Regions of highest 𝝈𝝈𝒚𝒚𝒚𝒚′  (highlighted in red) within the wefts 

6.3.3 Characterization of Tow Architecture 

As described in an earlier section concerning the configurations, the cross-section of the 

tow can vary along the tow path for the models generated by VTMS, due to a variety of 

reasons mentioned earlier.  This first section aims to quantify and investigate this variation 

to characterize the tow architecture.  The variation of the cross-sectional area is quantified 

as the difference between the actual cross-sectional area and the nominal value calculated 

using Equation (6.1).  For each type of tow the variation of the cross-sections will be plotted 

and compared to understand where within the unit-cell that variations occur and how 

similar the tows are within each type. 

View 1 

View 2 

Arrows indicate 

   A 

B 
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Binders 

Figure 6.14 shows the variation of the cross-sectional area for the binders.  The paths of 

the binders are also shown for context of where variations occur within the textile.  It should 

be noted that the horizontal axis of the plot is the curvilinear distance along the tow path, 

𝑎𝑎, normalized by the total length of the tow, not the Cartesian coordinate.  For Figure 6.14 

and the subsequent figures shown in this paper, the color indicates the row of the tow within 

the unit-cell.  Refer to Figure 6.7 for the location of these tows. 

The 1x1 orthogonal weave considered is composed of layers of tows nominally parallel 

to the x- and y-axes and binders that interlock with the outer layers of wefts.  In the regions 

where the binders interlock with the wefts, the cross-sectional areas were the smallest.  

Conversely, the largest cross-sectional areas occur in the matrix pocket between rows of 

wefts.  During the generation of the geometry within VTMS, the digital chains within each 

bundle, which represents a tow, begin very spaced out.  Tension is applied to each chain 

and an out-of-plane force compresses the unit-cell to arrive at a relaxed configuration.  By 

visual inspection of the user, it was observed that more space between digital chains 

remained after the iterative relaxation process in regions where tows do not come in direct 

contact.  Additionally, interpenetrations between the tows occur where the tows come in 

direct contact, and the method used for removing the interpenetrations results in the 

removal of some volume of the tows in these regions.  The locations of cross-sectional area 

extrema are related to these steps of the VTMS process for creating the textile geometry. 
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There are some differences in the variations observed for the three binders in the unit-

cell, but the trends are similar.  The cross-sectional areas along the binder paths varied 

within -6.8% and 5.3% of the nominal values.  Individual fibers have approximately the 

same cross-sectional area regardless of the weaving process, so a variation in the cross-

sectional area will result in a change in the local fiber volume fraction.  From the smallest 

cross-sectional area to the largest area, the fiber volume fraction would decrease by 11.5%, 

which is a significant change in the fiber volume fraction and would result in a very 

significant change in the elastic properties.  This study did not account for effect on the 

material properties, but this result shows that the effect is significant and should be 

accounted for in future studies. 

In addition to the high amplitude changes in cross-sectional area, there are smaller 

variations of the cross-sectional area with a much higher frequency.  These variations are 

due to a number of factors, including possible error from fitting the chains to obtain the 

cross-sectional profile, interpolating the profiles, and the two factors already discussed 

involving removal of interpenetrations and the space between digital chains.  This paper 

does not separate these effects, but understanding what causes these variations is important 

for creating realistic geometries. 
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Figure 6.14. Variation of the cross-sectional area for the binders (tow paths 
shown for context) 

Warps 

Figure 6.15 shows the variation of the cross-sectional area along key regions labelled for 

context of where the variations occur.  The positions of the tows are identified using the 

row and layer numbers (see Figure 6.7).  The warps exhibited more variation in the cross-

sectional area than the binders, varying between -7.92% and 10.08% of the nominal values.  

This range of variation in the cross-sectional area would result in a 16.4% change in the 

local fiber volume fraction.  The peaks in Figure 6.15 correspond to matrix rich regions in 

the unit-cell between rows of wefts, and the valleys correspond to regions where the warps 

cross wefts.  Much like the observations for the binders, the digital chains within the fiber 

bundles had more space between them in the matrix rich regions, resulting in a larger cross-

sectional area.  In addition to less space existing between the digital chains where the warps 
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come into contact with the wefts, interpenetrations between the tows occurred in these 

regions resulting in volume being removed from the tows.  For these two reasons, the cross-

sectional area was significantly lower where the warps cross the wefts.  Though the locations 

of reduced cross-sectional area might correlate to the characteristics of a physical textile 

composite, the magnitude of variation of the cross-sectional areas is likely much larger than 

what would be observed in an actual textile.  Detailed experimental measurements are 

obviously needed. 

 

 
Figure 6.15. Variation of the cross-sectional area for the warps along with a 
view of unit-cell aligned with horizontal axis of plot for context 

Wefts 

For this type of tow architecture, the wefts can be separated into two groups: the middle 

layer of the analysis region and the outer layers of the analysis region.  Within the weave, 

binders interlock with the two outer layers of tows, and since the binders undulate in two 
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alternating phases, which can be seen in Figure 6.16, all of the wefts will experience a similar 

response along the tow paths in one of two phases.  The first row and third row of the top 

layer have similar tow paths to the middle row of the bottom layer, while the first row and 

third row of the bottom layer have similar tow paths to the middle row of the top layer.  

Between those two groups, the phases differ by half the length of the unit-cell, 0.5𝐿𝐿.  Both 

outer layers of wefts experience a significant undulation due to the interlocking of binders. 

The middle layer of wefts in the analysis region experiences relatively little undulation 

since they are not directly in contact with an binder, which is shown in Figure 6.16.  As the 

binders try to straighten out during the generation of the tow geometry in VTMS, the wefts 

in the middle layer of the analysis region tend to flatten out.  However, all three tows in 

the middle layer will experience a similar variation of the cross-sectional area in the same 

phase. 

Using this information, the variation of the cross-sectional area is plotted for the two 

groups of tows, adjusting for the different phases in the outer layers.  For every one of the 

tows in the outer layer, the cross-sectional area is plotted for half the length of the unit-cell 

starting at the center of when a binder crosses a weft.  The paths for two of the wefts are 

illustrated by the arrows in Figure 6.16b and can be separated three sections: a region where 

the binder crosses the weft path, labeled A in Figure 6.16a; a region where the warp crosses 

the weft path, labeled B in Figure 6.16a; and finally, a matrix rich region, labeled C in 

Figure 6.16a.   
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a) y-z plane  

b) Isometric view 
Figure 6.16. Views of wefts colored by row with labelled regions of interest 
(warps are shown with 30% opacity for context) 

 
 

 
Figure 6.17. Variation of cross-sectional area for outer layers of wefts plotted 
vs. the distance from the center of a binder crossing normalized by the length 
of the unit-cell 
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Figure 6.17 shows the variation of the cross-sectional area for the outer layers of the 

wefts along the paths described, which adjusts for differences in phase.  The positions of 

the tows given the row and layer denoted in the plot can be found in Figure 6.7.  It should 

be noted that Figure 6.17 will contain two paths for each tow, both starting from an binder 

crossing.  The variation of the cross-sectional area is greater than the variation seen in the 

orthogonal and warps, falling between −13% and 18% of the nominal values, which would 

result in a 26.3% change in the fiber volume fraction.  For the tow on the first row and 

bottom layer, the region closest to the origin of the unit-cell significantly differed in cross-

sectional area than the other tows, but this is the outlier and the region closest to the origin.  

The cause for this deviation is unclear.  Other than this region and particular tow, the 

variation of the cross-sectional area for all tows remained within ± 5%.  The lowest cross-

sectional areas lie in regions where the binders interlock with the wefts, and the largest 

cross-sectional areas lie within the matrix rich regions.  Where the warps cross the wefts, 

the cross-sectional area is between the values for the other two regions. 

Figure 6.18 shows the variation of the cross-sectional area for the middle layer of wefts.  

In the middle layer of tows, an binder comes close from the top or bottom (alternating every 

L/2), and the undulation experienced by the tow on the second row will be out of phase by 

L/2 compared to the other two.  However, the effect of binder being nearby on the cross-

sectional area should be the same whether it lies above or below the middle layer weft.  

Therefore, even though the phase of undulation is different, there should be no difference 

in the variation of the cross-sectional area.  Figure 6.18 shows that the general trends are 



 

253 

 

similar between all three middle layer of tows, but there are some large differences in the 

magnitude of variation.  Even the first and third rows, which experienced the most similar 

tow paths of the three, had differences of up to 8%.  The largest difference between any of 

the three was about 10%.   

 

 
Figure 6.18. Variation of the cross-sectional area for the middle layer of wefts 

Overall, the cross-sectional areas varied between -11.3% and 12.3% for the middle layer 

of y-direction of tows.  With the exception of the one outlier in Figure 6.17, the middle 

layer of wefts experience about the same change in cross-sectional area as the outer layers 

of wefts, despite the fact that they were relatively straight compared to the outer layers.  

The amount of undulation does not seem to be important when considering how much the 

cross-sectional area varies.  Considering the cross-sectional area for all the categories of 

tows, the middle layer of wefts exhibited the largest variations and difference between each 

other. 
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6.3.4 Average Stresses Along Tow Paths 

A few sections earlier, the most severe stress components for each type of tow (binder, 

warp, and weft) were identified for the 1x1 orthogonally woven textile model.  The most 

severe component of stress was identified for each type by comparing the extrema of each 

stress component to a set of assumed strengths.  Since damage will generally initiate due to 

the most severe stress relative to the respective strength of the material, this component of 

stress is important for understanding where damage will occur within the textile and this 

information can ultimately be used to design a textile to delay the onset of damage.  For 

each type of tow, this section presents the most severe component of stress along the tow 

path averaged over the cross-sectional area at each point.  Stresses are reported in the 

material coordinate system, denoted by 𝜎𝜎𝑖𝑖𝑗𝑗′ , since failure typically occurs according to modes 

that correspond to the local material coordinate axes. 

Binders 

In the binders, 𝜎𝜎𝑧𝑧𝑧𝑧′  was the most severe component of stress, which would initiate 

transverse matrix cracking.  Figure 6.19 plots the stress averaged over the cross-section 

along the tow path for each binder and shows the tow paths for context of where peaks 

occur.  Since symmetry was assumed on the bottom plane of the unit-cell and the top plane 

was left free, the difference in the phase of undulation makes a difference for stresses, unlike 

the cross-sectional area.  In the figure, there are four curves shown, three of which show the 

average stresses for each of the binders, while the fourth line (dotted) shows the stresses for 

the binder in the second row after adjusting for the difference in phase  After adjusting for 
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the phase difference, the stress distribution matched strikingly well for all the tows, despite 

the first and third row of tows being cut longitudinally by boundaries of the unit-cell. 

The highest average stress occurred in the matrix rich regions between rows of wefts, 

which are labelled as A and B in Figure 6.20.  It was shown in Ref. [67] that the highest 

stress concentrations occur within this matrix rich region, but Figure 6.19 shows that not 

only do the highest stress concentrations occur in the matrix rich region but also the largest 

average stresses.  The smaller peaks in Figure 6.19 correlate well with the points where the 

binders start or finish to cross wefts, such as the two positions referred to as C in Figure 

6.20.  The highest stress concentrations observed in Ref. [67] occurred near these smaller 

peaks, but this paper shows that the highest average stress occur in the middle of the matrix 

rich regions, not where the binder begins or finishes crossing a weft.  This model treats the 

tows as homogeneous material as an approximation, so stresses within the very small 

volumes at the highest stresses cannot be accurately predicted without modeling the fibers 

discretely.  Unfortunately, modeling each fiber within the textile unit-cell would be 

computationally prohibitive.  It is very possible that any noticeable damage at the mesoscale 

will occur where the average stresses are the highest, not necessarily where the point-wise 

stresses are highest. 
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Figure 6.19. 𝝈𝝈𝒛𝒛𝒛𝒛′   averaged over the cross-section within the binders plotted along 
the tow paths 

 

 

 
Figure 6.20. Illustration of regions of interest for binders 

A B 
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Warps 

In the warps, 𝜎𝜎𝑥𝑥𝑧𝑧′  was the most severe component of stress.  Figure 6.21 plots 𝜎𝜎𝑥𝑥𝑧𝑧′  

averaged over the cross-section along the tow path for each of the warps.  Figure 6.21 shows 

that the wavelength of changes in the shear stress is much shorter than the size of the unit-

cell.  Key segments along the tow paths are labelled to provide some context of where the 

variations occur, and there is no obvious correlation between the location of peak shear 

stresses and the surrounding tow geometry. 

It may be helpful to remember that the boundary condition applied at 𝜎𝜎 𝐿𝐿� = 0 results in 

a zero 𝜎𝜎𝑥𝑥𝑧𝑧′ , if the material and global coordinate systems align.  The stress value is not quite 

zero due to a slight misalignment between the two coordinate systems.  On the right side 

at 𝜎𝜎 𝐿𝐿� = 1, the global shear stress 𝜎𝜎𝑥𝑥𝑧𝑧 was zero, but the stress in the material coordinate 

system was notably different because the local coordinate system did not align well with 

the global at this point.  In VTMS, a larger section of the textile is generated and clipped 

down to the unit-cell seen in this work, and the warps did not flatten out well in this region. 

However, there does not seem to be a correlation between the peak average stresses and 

the surrounding tows or matrix pockets, Figure 6.22 shows the tow path for one of the 

warps, revealing that the dominant wavelength in Figure 6.21 matches well with the 

wavelength of tow undulation.  The vertical gridlines align between the two plots, allowing 

a direct comparison.  The average shear stress appears to have several frequencies in the 

variation, and though the larger variations at low frequencies seems to be heavily influenced 
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by variations in the tow path, it is still unclear what causes the smaller variations at high 

frequencies. 

 

 
Figure 6.21. 𝝈𝝈𝒙𝒙𝒛𝒛′  averaged over the cross-section within the warps 

 

 
Figure 6.22. Piecewise cubic spline fit for the path of the warp on the first row 
and top layer 
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Since 𝜎𝜎𝑥𝑥𝑧𝑧′  is the most severe component of stress for the warps and most sensitive to the 

tow path, the assumption that the tow paths remain approximately 2D appears poor.  The 

in-plane undulation of the centroid has a magnitude that is twice that of the out-of-plane 

undulation. 

Wefts 

In the wefts, 𝜎𝜎𝑦𝑦𝑦𝑦′  was the most severe component of stress, which also generally aligns 

with the direction of the applied load.  Figure 6.23 plots the average transverse stress along 

the tow path for the outer layer of wefts, after adjusting for differences in the phase of tow 

undulation.  The trends matched well between all of the outer tows, with no two tows 

differing by more than 4e6 Pa.  The largest stress occurs where the weft crosses an warp, 

labeled as B in Figure 6.16a.  The warps are carrying the most load in the direction of this 

stress component, so it makes sense that the most load is transferred where the warp comes 

in the closes proximity.  It seems that the average stresses experienced in the outer layers 

of wefts is largely unaffected by their row or layer but rather dependent on the location 

relative to the orthogonal and warps. 
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Figure 6.23. Average transverse normal stress within the outer layers of wefts 

Figure 6.24 shows the average 𝜎𝜎𝑦𝑦𝑦𝑦′  along the tow path for the middle layer of wefts.  

Unlike the outer layers of tows, the largest average stress occurred near the matrix pockets 

between where the warps cross the wefts, see Figure 6.16d.  Additionally, the middle layer 

of wefts experienced much higher average stresses than the outer layer of wefts.  In Ref. 

[67], it was observed that stress concentrations occurred in all three layers, but the peak 

average stress in the middle layer of weft is about 34% higher than the peak value in the 

outer layers.  The observed concentrations were so small in size that the heterogeneous 

microstructure should be taken into account, so the average stresses might be a more reliable 

predictor of where noticeable damage will occur at the mesoscale. 
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Figure 6.24. Average transverse normal stress within the middle layer of wefts 

6.3.5 Locations of Critical Stress in the Matrix 

In the previous sections, it shown was shown that the most severe stress concentrations 

within the binders and wefts occurred where binders come close to the wefts and the most 

severe stress concentrations within the warps occurred in the gaps between wefts.  In the 

model used in this work, some matrix lies between tows throughout the textile model, since 

the tows were shrunk to remove overlap between tows.  Therefore, the stress concentrations 

within the matrix unsurprisingly occurred near the severe stress concentrations in the tows, 

as load is transferred from one tow to another.  Figure 6.25 shows the volume of matrix 

with a von Mises stress, 𝜎𝜎𝑚𝑚𝑚𝑚, greater than 80 MPa with contours of 𝜎𝜎𝑚𝑚𝑚𝑚.  The wefts and 

warps are only shown for half of the unit-cell to show the locations of stress concentrations 

in the matrix, but the warps are shown semi-transparently in the other half of the unit-cell 

for context.  Figure 6.25a highlights that the stress concentrations within the matrix occurs 
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where warps and wefts come close to binders.  Where warps come close to binders, a severe 

𝜎𝜎𝑥𝑥𝑧𝑧′  was observed in a previous section, and the transfer of load through shear between 

warps and binders in this region caused the most severe 𝜎𝜎𝑚𝑚𝑚𝑚 concentration in the matrix, 

as shown in Figure 6.25a.  It was shown in a previous section that a severe 𝜎𝜎𝑦𝑦𝑦𝑦′  formed in 

the wefts near binder crossings, but the precise location depended on the layer of wefts.  For 

the middle layer of wefts, the 𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations formed where the weft came closest to the 

binder, and Figure 6.25a shows that stress concentrations occurred in the matrix at these 

locations, such as point A in the figure.  In the top and bottom layers, the 𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations 

in the wefts occurred just before and after the weft crosses the binder, and Figure 6.25a  

also shows that stress concentrations occurred in the matrix at these locations, such as point 

B in the figure. 

Figure 6.25b and Figure 6.25c shows that the majority of highly stressed matrix material 

lies between the rows of wefts.  Between the rows of wefts, there is a lower volume fraction 

of tows.  Since tension along the global x-axis was considered for this study, the textile can 

be conceptually divided along the x-axis into sections with alternating higher and lower tow 

volume fractions.  The sections with higher and lower tow volume fractions experience the 

tensile load in series, so it is expected that the matrix will generally carry more load in 

sections with a lower tow volume fraction.  However, the locations of the most severe stress 

concentrations in the matrix occurred specifically where load is transferred between tows 

near stress concentrations in the tows, but it should be noted that the matrix between all 

of the tows is a result of shrinking all of the tows to remove interpenetrations. 



 

263 

 

 

 
a) View highlighting locations of stress concentrations in the matrix near warps and wefts 

 
b) x-z view 

 
c) x-y view 

Figure 6.25. Volume of mesh with 𝝈𝝈𝒗𝒗𝒎𝒎 > 80 MPa shown with contours of 𝝈𝝈𝒗𝒗𝒎𝒎.  
Warps, wefts, and binders are shown as solid dark gray, gold, and teal 
respectively. 
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6.3.6 Summary 

The stresses within an 1x1 orthogonal weave were investigated using a nonidealized 

finite element model.  The effect of mesh refinement on the volume average stresses and 

distributions of stresses was studied.  A much higher refinement than what is typically used 

in the literature was considered, and yet, mesh convergence was probably not be reached.   

The coarse and medium meshes, which are closer to meshes usually seen in the literature, 

capture the stress distributions away from the stress concentrations, but the predictions are 

poor near the stress concentrations.  For one of the volume average stresses, the coarse 

mesh exhibited a 23% error compared to the refined mesh, which is quite large for a volume 

averaged quantity.  The medium mesh performed better, only differing by 7% or less for 

the volume average stresses. 

Using the most refined model, some insight was gained into understanding the location 

and component of stress that will likely initiate damage.  Within the tows, the transverse 

normal stress in the wefts, 𝜎𝜎𝑦𝑦𝑦𝑦′ , was the most severe, indicating matrix cracking within the 

wefts would likely be the initial damage within the textile.  The load was not distributed 

evenly among the wefts, with the middle layer of tows carrying more load than the top and 

bottom layers, but severe 𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations occurred in all the layers.  Within the warps, 

the longitudinal shear stress, 𝜎𝜎𝑥𝑥𝑧𝑧′ , was the most severe, and within the binders, the 

transverse normal stress, 𝜎𝜎𝑧𝑧𝑧𝑧′ , was the most severe.  However, the failure modes of these 

tows are difficult to predict without a progressive damage analysis, since damage in the 

wefts could significantly change the stress distribution within the other constituents.   
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Because of the complexity of the composite, the study included an evaluation of the 

geometry generated by VTMS, with a particular focus on the cross-sectional area variation.  

The cross-sectional area of the tows varied significantly along the tow paths, with the wefts 

exhibiting the most variation.  The variation of cross-sectional area would result in up to a 

26% change in the fiber volume fraction.  The effect of the local fiber fraction variation was 

not addressed in this study but will be explored for the 2x2 orthogonal weave. 

In the binders, the peak average 𝜎𝜎𝑧𝑧𝑧𝑧′  occurred near the matrix rich regions between the 

rows of wefts.  In the warps, the average 𝜎𝜎𝑥𝑥𝑧𝑧′  appeared sensitive to the undulation of the 

tow path.  This study assumed that the tow paths were approximately 2D, but the in-plane 

undulation of the tow path was twice the out of plane, which highlights the importance of 

capturing the 3D nature of the tow paths.  For the wefts, the location of the peak average 

𝜎𝜎𝑦𝑦𝑦𝑦′  depended on the layer considered.  For all outer layers of wefts, the distributions of 

cross-sectional averaged 𝜎𝜎𝑦𝑦𝑦𝑦′  were similar, and the largest values occurred where warps cross 

the weft paths.  On the other hand, the middle layer of wefts experienced the largest cross-

sectionally averaged stress near the matrix rich regions between the rows of warps.  Even 

though stress concentrations were observed in all three layers, the magnitude of the peak 

cross-sectionally averaged stress in the middle layer was 34% higher than the peak average 

stress in the outer of layers of wefts.  It is unclear if damage would initiate near the small 

stress concentrations or where the cross-sectionally average stress is maximum.  Finally, the 

stress concentrations within the matrix occurred near the stress concentrations in the tows, 

but this may be an artifact of some matrix material existing between the tows throughout 



 

266 

 

the model to avoid interpenetrations.  Creating realistic models and understanding the 

connections between the tow architecture and the distribution of stress is critical to 

designing better 3D textile composites, and this study was an early effort. 

6.4 Analysis of a 2x2 Orthogonal Weave 

This study investigates a 2x2 orthogonally woven textile, where the binders cross two 

wefts at the top and bottom of the textile before traversing through the thickness.  The aim 

is to explore the locations of critical stress concentrations for a variety of loads and assess 

the effect of modeling the variation of fiber volume fraction in the tows and plasticity in 

the matrix. 

The study of the 1x1 orthogonal weave in the last section used a model that was thinner 

than the textiles often used in industry, and the boundary conditions likely introduced 

artifacts, even in the interior of the model.  However, the study showed the importance of 

accounting for the 3D nature of the tow paths when determining the local material 

properties and the need to assess the effect of a variation of the local fiber volume fraction.  

Guided by these conclusions, this study considers a more realistic 3D textile and explores 

the response under a variety of loads with greater detail.  The study of the 2x2 orthogonal 

weave is broken up into four results sections.  The first section characterizes the tow 

architecture, and the second section investigates the stress distributions within the tows for 

three load configurations.  The third section explores the effect of the binders by replacing 

the binders with matrix material and observing how the stress distributions change.  Finally, 
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the last section investigates the effect of modeling the variation of the fiber volume fraction 

and plasticity in the matrix on the locations and severity of stress concentrations. 

Throughout this study, stresses in the global coordinate system are denoted as 𝜎𝜎𝑖𝑖𝑗𝑗, while 

stresses in the local coordinate system are denoted by a prime, 𝜎𝜎𝑖𝑖𝑗𝑗′ .  To assess the severity 

of stresses within the tows, components of stress in the local coordinate system are 

normalized by a nominal strength, which are given in Table 6.4, to yield a normalized stress, 

which is denoted by a hat, 𝜎𝜎�𝑖𝑖𝑗𝑗′ .   

6.4.1 Characterization of Tow Architecture 

Since the textile geometry is the result of simulated processing, the cross-section of the 

tows can vary along the tow paths due to a variety of reasons.  During compaction, the 

cross-sectional area is likely to be reduced where tows contact other tows.  Additionally, 

the shape of the tows can vary significantly when it changes direction, such as when the 

binder begins or ends traveling through the thickness of the textile.  Characterizing the 

variation of the cross-sections of the tows is a first step toward understanding how closely 

the model resembles actual specimens.  This section quantifies the variation of cross-

sectional area and explains how aspects of VTMS’s method for creating textile models led 

to the variations. 

For the model considered in this paper, adjacent binders have a different phase of 

undulation through the textile, but every fourth binder has the same phase.  Every other 

binder will traverse through the thickness of the textile at the same gap between weft tows, 

and so a pair of such binders is more likely to have similar cross-sectional areas.  Figure 
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6.26 shows the variation of the cross-sectional area of the first and third binder, which are 

shaded in the figure as green and purple and labeled 1 and 3.  During compaction, the cross-

sectional area is reduced where tows come into contact, but the binders do not come into 

significant contact with other tows where the binders are midway through the thickness of 

the textile. Consequently, the cross-sectional area at the midpoint through the thickness 

remains almost unchanged throughout the compaction process and is maximum.  The 

minimum occurs where the binders transition to and from traveling through the thickness.  

The low cross-sectional area at these points are due to several factors, such as the lower 

radius of curvature and the tension in the binders causing the binders to strongly contact 

neighboring wefts.  Additionally, it was observed that digital chains tend to pass through 

each other in these regions, resulting in significant tow interpenetrations.  It is unclear 

which factors are most significant, but the cross-sectional area decreases by 19% to 24% as 

the binders transition into traveling through the thickness, such as at point A in Figure 

6.26.  Where the binders are on the top or bottom of the textile, the cross-sectional area 

varies by at most 18%.  It is unclear if this much variation is realistic or merely an artifact 

of the method used by VTMS to create the textile geometry. 
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Figure 6.26. Variation of the cross-sectional area in the first and third binders 

 

Figure 6.27 shows the variation of the cross-sectional area in the warp tows.  Figure 

6.27a shows that the cross-sectional area for the inner two layers of warps (green) remains 

relatively constant, varying at most by 4.5%.  However, Figure 6.27b shows that the warps 

on the top (purple) and bottom (green) of the textile experience significant changes in cross-
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sectional area.  There are two types of variation of interest.  One type of variation is that 

the cross-sectional area of a single tow changes along the tow path, which for the outer 

layer of warps is at most 11%.  Another type of variation is that the cross-sectional area 

varies between tows in the same layer, which is at most 15% for the model presented in this 

paper.  Both types of variations will exist in actual specimens, but comparisons to MicroCT 

scans would be needed to quantify the accuracy of the model geometry.  However, these 

results do show that the cross-sectional area of tows in a model created by VTMS largely 

depend on the distance from the boundaries where the compaction planes contact the model.  

The deformation due to the rigid planes at the top and bottom boundaries does not cause 

significant deformation well into the interior of the model.  Tows near the boundaries will 

be highly deformed, while tows in the interior will experience little deformation.  The 

variation of the cross-sectional area in the wefts were not shown for conciseness, but they 

follow the same trend.  The outermost layers varied by up to 26%, while the innermost 

layer varied by less than 2%. 
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a) Interior warp tows 

 
b) Top and bottom layers of warps 

Figure 6.27. Variation of the cross-sectional area in the warps 
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6.4.2 Critical Stresses Under In-Plane Loads Assuming 60% 𝑉𝑉𝑓𝑓 in Tows 

The 2x2 orthogonally woven textile model was subjected to three types of load: uniaxial 

tension along the global x-axis, uniaxial tension along the global y-axis, and in-plane shear.  

For each load configuration, this section aims to investigate the locations of stress 

concentrations and explore the local load transfer that caused the concentrations. However, 

it should be noted that this section assumes the tows remain linear elastic, so the behavior 

of progressive damage cannot be understood from these results.   

Uniaxial Tension Along X-Axis 

Figure 6.28 shows the three most severe normalized stresses within the clipped analysis 

region for an applied volume average strain along the global x-axis, 〈𝜀𝜀𝑥𝑥𝑥𝑥〉, of 1%.  The 

stresses shown are in the local coordinate system, and each stress component is normalized 

by the respective strength shown in Table 6.4, which provides a measure of the severity of 

each stress component and is denoted by 𝜎𝜎�𝑖𝑖𝑗𝑗′ .  A larger 𝜎𝜎�𝑖𝑖𝑗𝑗′  indicates a more severe 𝜎𝜎𝑖𝑖𝑗𝑗′ .  For 

tension along the x-axis, the wefts and binders experience the most severe stresses.  The 

binders experience a severe 𝜎𝜎𝑧𝑧𝑧𝑧′  and 𝜎𝜎𝑥𝑥𝑧𝑧′ , as shown in Figure 6.28b and Figure 6.28c 

respectively.  The severe 𝜎𝜎𝑧𝑧𝑧𝑧′  occurs where the binders travel through the thickness of the 

textile model, as shown in Figure 6.28b.  
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a) 𝜎𝜎�𝑦𝑦𝑦𝑦′  

 
b) 𝜎𝜎�𝑧𝑧𝑧𝑧′  

 
c) 𝜎𝜎�𝑥𝑥𝑧𝑧′  

Figure 6.28. Contours of three most severe stress components in the local 
coordinate system normalized by the respective strength for uniaxial tension 
along the global x-axis 
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To show the locations of 𝜎𝜎𝑧𝑧𝑧𝑧′  concentrations more clearly, Figure 6.29 shows 𝜎𝜎�𝑧𝑧𝑧𝑧′  within 

an 𝜎𝜎-𝜎𝜎 slice of one of the binders.  In this region, the local z-axis almost aligns with the 

global x-axis, which is the direction of the applied load, refer to Figure 6.29b.  Additionally, 

there are no wefts in the region where the binders travel through the thickness of the textile.  

Consequently, the binders take on much of the load via tension along the local z-axis. The 

peak stresses occur where wefts are nearby to transfer the load to the binders.  This 

component of stress will likely cause transverse matrix cracking within the binders. 

 

 

a) Location of x-z cross-section 

 

b) Normalized transverse normal stress 𝜎𝜎�𝑧𝑧𝑧𝑧′  
Figure 6.29. 𝝈𝝈�𝒛𝒛𝒛𝒛′  contours for an x-z cross-section of a selected binder illustrating 
locations of severe 𝝈𝝈𝒛𝒛𝒛𝒛′  in binders 
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In addition to the severe transverse tension as they traverse the thickness of the textile, 

the binders experience a severe shear stress, 𝜎𝜎𝑥𝑥𝑧𝑧′ , where they begin and finish traveling 

through the thickness of the textile, as shown in Figure 6.28c.  The shear stress develops to 

maintain equilibrium as the binders shift between carrying a significant amount of load at 

the top and bottom of the textile, where the fibers of the binders are aligned with the load 

direction, to carrying much less load as they travel through the thickness of the textile. 

Though the binders experience severe stresses, the wefts experience the most severe 

stress, namely 𝜎𝜎�𝑦𝑦𝑦𝑦′ , within the textile, as shown in Figure 6.28a.   For the wefts, the local 

y-axis is closely aligned with the global x-axis, which is the direction of the applied load for 

this configuration, so it is expected that the transverse tension in the wefts will be severe.  

However, the severity of the transverse tension varies dramatically depending on the 

location within the wefts.  Figure 6.30 shows the local and global stress components of 

interest for an x-z cross-section centered on a binder tow, which is the same location 

illustrated in Figure 6.29a.  Figure 6.30a shows the 𝜎𝜎�𝑦𝑦𝑦𝑦′  contours in the wefts and binder in 

the x-z cross-section.  In most locations within the wefts, 𝜎𝜎�𝑦𝑦𝑦𝑦′  remains between 2 and 3.  At 

some points when the wefts come close to a binder, 𝜎𝜎�𝑦𝑦𝑦𝑦′  reaches values near 4.5, such as 

point A in Figure 6.30a, but at other points near a weft tow, no stress concentration occurs, 

such as point B in Figure 6.30a.  The common factor for areas of elevated stress is a sharp 

cross-sectional shape of the weft.  When the cross-section is similar to a rectangle with 

rounded corners, there is no significant stress concentration, but when the cross-section 

comes to sharper point, a significant stress concentration occurs.  The sensitivity of stress 
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concentrations to the tow cross-sectional shape emphasizes the importance of creating 

textile models with realistic tow geometries.   

There is one situation where the tow shape is less prone to cause a stress concentration 

for this configuration: where a binder crosses over a weft tow.  In this region, 𝜎𝜎�𝑦𝑦𝑦𝑦′  in the 

weft drops to about 0, such as point C in Figure 6.30a.  The drop in transverse tension is 

due to a compressive 𝜎𝜎𝑥𝑥𝑥𝑥  (global) in the region where a binder crosses the wefts at the top 

or bottom of the textile, such as region D highlighted in Figure 6.30b.  The compressive 

stress forms as load is transferred to or from the binder via shear, since the binder is orders 

of magnitude stiffer in the global x-direction than the surrounding material at the top and 

bottom. 

It should be noted that the locations of stress concentrations for the 1x1 orthogonal 

weave differed from the 2x2 orthogonal weave.  For the 1x1 orthogonal weave, stress 

concentrations occurred in all layers of the wefts, but the middle layer of wefts carried more 

of the load than the top and bottom layers.  However, for the 2x2 orthogonal weave, the 

top and bottom layers of wefts carried more load, and severe stress concentrations were 

limited to the top and bottom layers.  For the 2x2 orthogonal weave, the binders remain 

aligned with the load direction for more of the tow path in the 2x2 orthogonal weave, since 

they cross two wefts instead of one before traversing the thickness of the textile, which 

causes the binders to carry more of the load than in the 1x1 orthogonal weave.  Since the 

binders transfer load to the top and bottom layers of wefts, the top and bottom layers 

experience more severe stresses than the middle layers. 
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a) Local normalized transverse normal stress 𝜎𝜎�𝑦𝑦𝑦𝑦′  

 
b) Global 𝜎𝜎𝑥𝑥𝑥𝑥 

 
Figure 6.30. An x-z cross-section illustrating locations of severe 𝝈𝝈�𝒚𝒚𝒚𝒚′  in wefts 

 

Since the matrix is isotropic, the von Mises stress, denoted by 𝜎𝜎𝑚𝑚𝑚𝑚, is often used as 

scalar measure of the stress, and 𝜎𝜎𝑚𝑚𝑚𝑚 will be used herein to explore the stress concentrations 

within the matrix.  However, it should be noted that plastic deformation in the matrix is 

often dependent on the pressure, so the von Mises stress cannot be directly used to assess 

possible yielding. 

Figure 6.31 shows the volume of matrix (shaded as yellow) with a von Mises stress 

higher than 80 MPa.  The figure clearly shows that the volume of matrix with a von Mises 

stress higher than 80 MPa is limited to regions where binders begin or end traversing 

through the thickness of the textile.  However, the stress concentrations only occur on the 

outside of the binders, refer to Figure 6.31.  Earlier in this section, Figure 6.30b showed 
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that the binders carry a significant amount of the applied load when the they align with 

the load direction at the top and bottom of the textile, see the region just above the label 

D in the figure.  However, when the binders begin to traverse the thickness, the load is 

transferred to the wefts, see location A in Figure 6.30a.  The transfer of load from the binder 

to the wefts when the binder begins or ends traversing the thickness of the textile causes 

the stress concentrations in the matrix, as shown in Figure 6.30b.  Figure 6.32, shows 𝜎𝜎𝑚𝑚𝑚𝑚 

contours for a x-z cross-section centered on one of the binders, which highlights that the 

locations of severe 𝜎𝜎𝑚𝑚𝑚𝑚 in the matrix occurs at the same location of 𝜎𝜎𝑥𝑥𝑥𝑥 concentrations that 

were observed in Figure 6.30b. 

 

 
Figure 6.31. Volume of matrix with a 𝝈𝝈𝒗𝒗𝒎𝒎 > 𝟖𝟖𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂 (shown in yellow) with 
binders and clipped warps/wefts 
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Figure 6.32. Contours of the von Mises stress, 𝝈𝝈𝒗𝒗𝒎𝒎, within the matrix for a slice 
that highlights the location of critical 𝝈𝝈𝒗𝒗𝒎𝒎 

Uniaxial Tension Along Y-Axis 

Figure 6.33 shows three most severe normalized stresses within the clipped analysis 

region for an applied volume average strain along the global y-axis, 〈𝜀𝜀𝑦𝑦𝑦𝑦〉, of 1%.  Again, 

the normalized stresses shown are in the local coordinate system.  Overall, Figure 6.33 shows 

that the warps and binders experience severe transverse tension (𝜎𝜎�𝑦𝑦𝑦𝑦′ ), while the wefts 

experience severe longitudinal shear (𝜎𝜎�𝑥𝑥𝑦𝑦′  and 𝜎𝜎�𝑥𝑥𝑧𝑧′ ). 

The most severe stress in the textile is 𝜎𝜎�𝑦𝑦𝑦𝑦′  in the binders and warps.  For both types of 

tows, the local y-axis is closely aligned with the global y-axis, which is the direction of the 

load for this configuration.  To illustrate where the peak stresses occur in the textile, Figure 

6.34 shows 𝜎𝜎�𝑦𝑦𝑦𝑦′  for one binder and row of warp tows, along with the local coordinate system 
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for a point in the binder.  The figure shows that the stress concentrations form where warps 

and binders come closest, such as point A in Figure 6.34.  Additionally, stress concentrations 

form where the binder begins or ends traveling through the thickness of the textile, such as 

points B in Figure 6.34.  

In summary, the transverse normal stress 𝜎𝜎�𝑦𝑦𝑦𝑦′  was the most severe component for both 

tensile load configurations.  In both cases, the peak 𝜎𝜎�𝑦𝑦𝑦𝑦′  occurred within the tows that are 

perpendicular to the load.  However, when the load is along the global x-axis, the stress 

concentrations only form within the wefts, but when the load is along the y-axis, the stress 

concentrations form within the binders and warps.  Additionally, the stress concentrations 

are more severe for the case of tension along the x-axis. 
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a) Normalized transverse normal stress 𝜎𝜎�𝑦𝑦𝑦𝑦′  

 
b) Normalized longitudinal shear stress 𝜎𝜎�𝑥𝑥𝑦𝑦′  

 
c) Normalized longitudinal shear stress 𝜎𝜎�𝑥𝑥𝑧𝑧′  

Figure 6.33. Contours of each stress component in the local coordinate system 
normalized by the respective strength for the case of uniaxial tension along the 
global y-axis 
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Figure 6.34. 𝝈𝝈�𝒚𝒚𝒚𝒚′  for a selected binder and row of warp tows 

The second most severe type of stress in the textile is the longitudinal shear stresses, 

𝜎𝜎�𝑥𝑥𝑦𝑦′  and 𝜎𝜎�𝑥𝑥𝑧𝑧′ , within the wefts.  To more clearly show the locations of severe shear stress, 

Figure 6.35 shows the magnitude of the normalized longitudinal shear stress, 𝜎𝜎�𝑠𝑠′ =

�𝜎𝜎�𝑥𝑥𝑦𝑦′2 + 𝜎𝜎�𝑥𝑥𝑧𝑧′2�
1/2

 , for the volume of wefts with a value of 𝜎𝜎�𝑠𝑠′ > 1.2.  The entire weft tows are 

shown semi-transparently for context of where stress concentrations occur.  Figure 6.35 

shows that the severe shear stresses in the wefts occur in the top and bottom layers of tows 

and near locations where binders cross the wefts.  It should be noted that the stress 

concentrations do not occur uniformly throughout the model due to variations in the textile 

geometry and mesh refinement. 

y
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a) orthogonal view 

 

b) x-y view 

     

c) y-z view 
Figure 6.35. Magnitude of normalized longitudinal shear stress, 𝝈𝝈�𝒂𝒂′ =
�𝝈𝝈�𝒙𝒙𝒚𝒚′𝟐𝟐 + 𝝈𝝈�𝒙𝒙𝒛𝒛′𝟐𝟐 �

𝟏𝟏/𝟐𝟐, for the volume of wefts with a value of 𝝈𝝈�𝒂𝒂′ > 𝟏𝟏.𝟐𝟐 (entire weft 
surfaces are shown as semi-transparent) 

 

In summary, the second most severe stress for both tensile load configurations was the 

longitudinal shear stress, but the locations of severe shear stress differed for the two types 

of loads.  When the load was along the global x-axis, the severe shear stresses developed in 
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the binders, but when the load was along the global y-axis, the severe shear stresses 

developed in the wefts.  This indicates that the progression of damage might depend on the 

direction of load relative to the binders’ paths. 

Recall Figure 6.31 where the volume of matrix with a 𝜎𝜎𝑚𝑚𝑚𝑚 above 80 MPa was shown for 

uniaxial tension along the x-axis.  Figure 6.36 shows the volume of the matrix with a 𝜎𝜎𝑚𝑚𝑚𝑚 

above 80 MPa for uniaxial tension along the y-axis.  First, it is clear that the volume of 

matrix at such a high stress level is significantly smaller for tension along the y-axis then 

tension along the x-axis.  However, the locations of these high stresses were similar between 

the two loads.  In both cases, the matrix with the highest stresses occurred where in regions 

surrounding where binders begin or end traversing the thickness of the textile. 

 

 
Figure 6.36. Volume of matrix with a 𝝈𝝈𝒗𝒗𝒎𝒎 > 𝟖𝟖𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂 (shown in yellow) with 
binders and clipped warps/wefts 
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To understand where a larger percentage of the matrix at high stresses exists, Figure 

6.37 shows the volume of matrix with a 𝜎𝜎𝑚𝑚𝑚𝑚 over a lower threshold, 60 MPa.  With the 

threshold lower, some differences between tension along the x-axis and tension along the y-

axis become clear.  Instead of the high stresses localizing around the where binders begin or 

end traversing the textile thickness as observed for tension along the x-axis, high stresses 

occur in many more locations for tension along the y-axis, usually between rows of wefts.  

However, the stress concentrations are limited to regions near binders, just before or after 

a binder for a path along the y-axis.  The reason for this concentration is similar to the 

explanation given for the matrix stress centration for tension along the x-axis.  The 

transverse Young’s modulus of the binders, 𝐸𝐸22, is significantly larger than the Young’s 

modulus of the matrix.  So the binders are taking up much of the load in the region between 

rows of warps and between rows of wefts, see locations of peak stress in the binder shown 

in Figure 6.34 for an example.  As load is transferred from the binders to neighboring wefts, 

the matrix experiences a stress concentration. 



 

286 

 

 
a) Orthogonal view 

 
b) Top-down view 

 
c) View along y-axis 

Figure 6.37. Volume of matrix with a 𝝈𝝈𝒗𝒗𝒎𝒎 > 𝟏𝟏𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂 (shown in yellow) with 
binders and clipped warps/wefts 

 

Considering the peak stresses occur near the edges of binders, Figure 6.38 shows contours 

of 𝜎𝜎𝑚𝑚𝑚𝑚 for slice near one of the binders, refer to Figure 6.38a for the location of the slice.  

Figure 6.38b shows that the stresses generally become elevated between rows of wefts, with 
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peak stresses occurring near binders between rows of wefts, which has been discussed.  

However, Figure 6.38b shows that the stress in the matrix at the bottom of the textile is 

modestly smaller than stresses near the top of the textile.  This could be in part due to the 

free surface at the top of the textile and in part due to the irregularly shaped tows near the 

top of the textile.  It is unclear which of these two factors is more important. 

 

 
a) Orthogonal view of model 
showing where slice is taken 

b) x-z slice 

Figure 6.38. Contours of the von Mises stress, 𝝈𝝈𝒗𝒗𝒎𝒎, within the matrix for a slice 
that highlights the location of critical 𝝈𝝈𝒗𝒗𝒎𝒎 

In-Plane Shear 

Figure 6.39 shows three most severe normalized stresses within the clipped analysis 

region for an applied volume average in-plain engineering shear strain, 〈𝜀𝜀4〉, of 1%.  Note 

that the engineering shear strain is twice that of the tensorial value, 〈𝜀𝜀𝑥𝑥𝑦𝑦〉.  Again, the 

normalized stresses shown are in the local coordinate system.  Overall, Figure 6.39 shows 
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that the all three types of tows experience a severe longitudinal shear strain (𝜎𝜎�𝑥𝑥𝑦𝑦′ ).  However, 

only the binders experience a severe transverse shear stress (𝜎𝜎�𝑦𝑦𝑧𝑧′ ). 

Considering the lower longitudinal shear strength of the tows compared to their 

longitudinal tensile strength, it is expected that the tows would experience a severe 

longitudinal shear stress when the textile is subjected to an in-plane shear load.  Figure 

6.39a shows that the warps and wefts both experience similar high values of 𝜎𝜎�𝑥𝑥𝑦𝑦′  but with 

opposite sign.  To highlight the locations of high 𝜎𝜎�𝑥𝑥𝑦𝑦′  within the warps and wefts, Figure 

6.40 shows contours of 𝜎𝜎�𝑥𝑥𝑦𝑦′  for two longitudinal slices along the tows.  The warps experienced 

an elevated stress between rows of wefts, and similarly, the wefts experienced an elevated 

stress between rows of warps.  In the gaps between rows of warps or wefts, there is a lower 

tow volume fraction, and since the matrix has a much lower shear stiffness, the tows carry 

more of the load.  Figure 6.41 shows that the binders experience an elevated 𝜎𝜎�𝑥𝑥𝑦𝑦′  along the 

top and bottom of the textile.  In these regions, the binders behave much like warps with 

the fibers aligned with the global x-axis.  Near where the binders begin or end traversing 

the textile thickness, the longitudinal shear stress decreases, and as shown in Figure 6.39b 

the binders begin to experience a critical 𝜎𝜎�𝑦𝑦𝑧𝑧′ . 
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a) 𝜎𝜎�𝑥𝑥𝑦𝑦′  

 
b) 𝜎𝜎�𝑦𝑦𝑧𝑧′  

 
c) 𝜎𝜎�𝑦𝑦𝑦𝑦′  

Figure 6.39. Contours of three most severe stress components in the local 
coordinate system normalized by the respective strength for in-plane shear 
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a) Warps 

 
b) Wefts 

Figure 6.40. Contours of 𝝈𝝈�𝒙𝒙𝒚𝒚′  within warps and wefts showing locations of 
elevated stress 
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Figure 6.41. Contours of 𝝈𝝈�𝒙𝒙𝒚𝒚′  within binders showing locations of elevated stress 

 

As discussed, the binder experiences a critical longitudinal shear stress along the top 

and bottom of the textile, but Figure 6.42 shows that the binders experience a critical 𝜎𝜎�𝑦𝑦𝒛𝒛′  

as they traverse through the thickness of the textile.  As they traverse the thickness, the 

local z- and y-axes align approximately align with the global x- and y-axes, respectively.  

Additionally, there transverse shear modulus of the tows, 𝐺𝐺23, is much higher than the shear 

modulus of the matrix, so the binders carry more of the load in this region. 
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a) Location of slice b) Location of peak 𝜎𝜎�𝑦𝑦𝑧𝑧′   

Figure 6.42. Contours of 𝝈𝝈�𝒚𝒚𝒛𝒛′  within the binders showing locations of elevated 
stress 

Figure 6.39c showed that severe 𝜎𝜎�𝑦𝑦𝑦𝑦′  concentrations occurred in the wefts, but Figure 

6.43 shows that severe 𝜎𝜎�𝑦𝑦𝑦𝑦′  concentrations also occurs within the binders as they transverse 

through the thickness of the textile and within the warps.  For all three types of tows, the 

concentrations occur where another tow comes close.  Due to the in-plane shear load, the 

tows pivot around each other, creating a tensile stress on one side of the contact and a 

compressive stress on the other side of the contact.  For the wefts, it occurs where binders 

cross over the outer layer of wefts, as shown in Figure 6.43a.  For the warps, it occurs where 

binders come close while traversing the thickness of the textile, as shown in Figure 6.43b. 
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a) Peak 𝜎𝜎𝑦𝑦𝑦𝑦′  in wefts 

 

 
b) Peak 𝜎𝜎𝑦𝑦𝑦𝑦′  in binders and warps (too fix the orientation thing on left and solid color weft) 

Figure 6.43. Contours of 𝝈𝝈�𝒚𝒚𝒚𝒚′  within all three types of tows showing the locations 
of stress concentrations 



 

294 

 

Similar to what was shown for the other two load configurations, Figure 6.44 shows the 

volume of the matrix with a 𝜎𝜎𝑚𝑚𝑚𝑚 above 80 MPa.  A greater volume of the matrix experienced 

stress above the threshold than the tensile loads discussed previously.  The volume of matrix 

at a high stress was limited to the gap between the warps, regardless of whether a binder 

traversed the through the thickness within the gap.  If a binder lies within the gap, the 

severe shear stress in the binder, 𝜎𝜎𝑦𝑦𝑧𝑧, is transferred to the surrounding warps and wefts 

through the matrix.  When there is no binder traversing the thickness, the matrix 

experiences a high stress as the shear stress is transferred from one row of warps to another 

and one row of wefts to another.  To support this explanation of load transfer, Figure 6.45 

shows that the von Mises stress peaks precisely where the binder comes close to the warps 

and wefts.  Additionally, the right gap of Figure 6.45b shows the elevated stress in the gap 

between rows of wefts and warps where a binder does not traverse the thickness.   
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a) Orthogonal view 

 
c) View along z-axis 

 
b) View along x-axis 

Figure 6.44. Volume of matrix with a 𝝈𝝈𝒗𝒗𝒎𝒎 > 𝟖𝟖𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂 (shown in red) with a clipped 
section of the tows (shown in gray) for in-plane shear 
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a) Slice along length of a binder 

 
b) Slice perpendicular to binders 

Figure 6.45. Contours of the von Mises stress, 𝝈𝝈𝒗𝒗𝒎𝒎, within the matrix for twp 
slice that highlights the location of critical 𝝈𝝈𝒗𝒗𝒎𝒎 
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Where load is transferred to and from the binders to neighboring warps and wefts, the 

cause for the stress contractions can be explained through load transfer.  However, Figure 

6.46 shows that the cross-sectional shape may be important for the magnitude the stress 

concentration reaches.  The matrix experience much more severe stress concentrations near 

weft cross-sections that come to a shaper point.  An example of this is shown in Figure 

6.46c. This highlights an artifact of faceted tow surfaces. 

  

 
a) Illustration of slice location b) Contours for slice shown in part a 

 
c) Zoom-in of region boxed in part b 

Figure 6.46. Contours of the von Mises stress, 𝝈𝝈𝒗𝒗𝒎𝒎, showing stress 
concentrations near the edges of wefts 
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6.4.3 Effect of Binders 

Within the complex architecture of the 3D textile, the binders bind the layers of the 

warps and wefts and have been shown to have a significant effect on the damage resistance 

of the textile, especially to delamination.  However, in the discussion of local stress states, 

there are several factors to consider, including the existence of the binders and waviness in 

the tows.  The binders can carry load within the textile, possibly affecting the locations of 

the stress concentrations due to the redistribution of load.  To understand the effect binders 

have on the locations of stress concentrations, this section considers the cases where the 

binders are assumed to be matrix material instead of orthotropic tows.  It should be noted 

the tow geometry remains unchanged, so the effect of the tows on the tow geometry still 

exists, leaving waviness in the warps and wefts. 

Uniaxial Tension Along X-Axis 

Under uniaxial tension along the x-axis, the transverse tensile stress, 𝜎𝜎𝑦𝑦𝑦𝑦′ , in the wefts 

was shown to be the most severe component of stress within the textile.  When the binders 

were replaced with matrix material, the 𝜎𝜎𝑥𝑥𝑥𝑥′  within the warps increased slightly, and 𝜎𝜎𝑦𝑦𝑦𝑦′  

within the wefts decreased significantly.  Figure 6.47 shows a comparison of the 𝜎𝜎�𝑦𝑦𝑦𝑦′  contours 

showing effect of binders for tension along x-axis.  The peak stress in the wefts decreased 

by about 50%.   When the binders were replaced with matrix, the distribution of stress 

within the textile changed dramatically, with the warps carry a very large amount of the 

load and resulted in 𝜎𝜎𝑥𝑥𝑥𝑥′  in the warps becoming the most severe stress.  Additionally, the 
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other stress components investigated when the binders included, 𝜎𝜎𝑧𝑧𝑧𝑧′  and 𝜎𝜎𝑥𝑥𝑧𝑧′ , become far 

less significant. 

 

 
Figure 6.47. Comparison of 𝝈𝝈�𝒚𝒚𝒚𝒚′  (𝝈𝝈𝒚𝒚𝒚𝒚′  normalized by the respective strength) 
contours showing effect of binders for tension along x-axis 

 

Figure 6.48 shows the top-down view of the warps with contours for 𝜎𝜎𝑥𝑥𝑥𝑥′  after the binders 

has been replaced with matrix.  The figure shows that the longitudinal stress varies 

significantly, due to the waviness in the warps.  Because the longitudinal stiffness of the 

tows is so much larger than the transverse stiffness, the predicted longitudinal stress is very 

sensitive to waviness in the tows aligned with the load direction.  This highlights the 

importance of accounting for tow waviness within the complex tow architecture of 3D 

textiles. 
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Figure 6.48. View along z-axis of warps with contours for 𝝈𝝈𝒙𝒙𝒙𝒙′  

In-Plane Shear 

Under in-plane shear, the longitudinal shear stress, 𝜎𝜎𝑥𝑥𝑦𝑦′ , in the warps and wefts was 

shown to be the most severe component of stress.  When the binders were removed and 

replaced with matrix material, the magnitude of 𝜎𝜎𝑥𝑥𝑦𝑦′  at the locations of highest stress 

decreased by 23%,, and the locations of 𝜎𝜎𝑥𝑥𝑦𝑦′  concentrations remained the unaffected.  To 

illustrate that eh locations of critical stress remain unchanged, Figure 6.49 shows a 

comparison of 𝜎𝜎𝑥𝑥𝑦𝑦′  contours for slices within the wefts and warps for the results shown in 

Figure 6.40 (left) and the case of the binders replaced with matrix (right). 
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a) Warps 

 
b) Wefts  

Figure 6.49. Comparison of 𝝈𝝈𝒙𝒙𝒚𝒚′  contours for slices within the wefts and warps 
for the results shown in Figure 6.40 (left) and the case of the binders replaced 
with matrix (right) 
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Based on Figure 6.39c, the 𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations could be due to either the waviness or 

the redistribution of load by the binders.  Figure 6.50 shows that the elevated stresses 

remain in the wefts after the binders have been removed, but the magnitude of 𝜎𝜎𝑦𝑦𝑦𝑦′  does 

significantly decrease.  The highest values of 𝜎𝜎𝑦𝑦𝑦𝑦′  occurred near the location of binders 

crossed the wefts when binders were included, and these concentrations are significantly 

reduced when the binders are removed.  Across the rest of the wefts, the elevated stress 

remain when the binders were replaced with matrix.  Figure 6.51 shows that the locations 

of elevated 𝜎𝜎𝑦𝑦𝑦𝑦′  occur due to waviness in the wefts.  The waviness in the tow paths would 

be ignored by idealized models, which reinforces the merit of nonidealized 3D textile models 

due to the complex tow architectures. 

 

 
Figure 6.50. Comparison of 𝝈𝝈�𝒚𝒚𝒚𝒚′  (𝝈𝝈𝒚𝒚𝒚𝒚′  normalized by the respective strength) 
contours showing effect of binders for in in-plane shear 
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Figure 6.51. Top-down view of 𝝈𝝈�𝒚𝒚𝒚𝒚′  contours illustrating the effect of tow 
waviness on the observed stress concentrations 

 

6.4.4 Effect of Modeling Parameters for Uniaxial Tension Along X-Axis 

There are many different model parameters that could be changed in these studies.  This 

section explore the effect of considering two: accounting for the variation of the fiber volume 

fraction within the tows and accounting for plasticity in the matrix.  In the previous results 

of this chapter, uniaxial tension along the x-axis was shown to result in the most critical 

stresses at an applied 1% for the configurations considered.  Consequently, tension along 

the x-axis configuration was selected for this section. 
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Effect of Modeling the Variation of Local Fiber Volume Fraction 

As discussed in chapter 2, the digital chain method used within VTMS to create the 

nonidealized textile models resulted in a tow architecture with significant variation in the 

cross-sectional areas along the tow paths.  In reality, tows experience some amount of 

variation in the cross-sections, but about the same number of fibers exist for any slice, which 

causes the fiber volume fraction to vary along the tow path.  The range of variation of 

cross-sectional area in the model indicated that the variation of fiber volume fraction could 

be significant.  In the previous sections, the fiber volume fraction was assumed to be a 

constant 60%.  The effect of accounting for the variation of the fiber volume fraction will 

be assessed in this section using the distribution of 𝑉𝑉𝑓𝑓 shown in Figure 6.52, which was 

calculated using the variation of the cross-sectional area using a method discussed in chapter 

2.   It should be noted that the fiber volume fractions were determined on an element basis, 

so one value of 𝑉𝑉𝑓𝑓 will be used for all quadrature points within an element.   

In chapter 4, a series of many microscale analyses were used to characterize how the 

elastic properties of the tows vary with respect to the fiber volume fraction.  The result of 

that work was a constitutive law based on spline fits of the mean effective properties for 18 

discrete volume fractions.  The properties exhibited some anisotropy and variation, which 

is expected with random fiber arrangements, but the mean properties were smooth and 

forced to be transversely isotropic to avoid introducing more complicity, since the effect of 

local anisotropy within tows has not been well characterized.  Using the spline fits of the 
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smooth effective properties, the linear elastic stiffness matrix can be created for each element 

within the tows using given the local 𝑉𝑉𝑓𝑓. 

 

 

 

Figure 6.52. Contours of local fiber volume fraction in the tows with a nominal 
fiber volume fraction of 0.6 

Figure 6.53 shows a side-by-side comparison of the 𝜎𝜎𝑦𝑦𝑦𝑦′  contours for the cases where a 

constant 𝑉𝑉𝑓𝑓 (left) and the varying 𝑉𝑉𝑓𝑓 (right) is used.  The figure shows that accounting for 

the variation of the local 𝑉𝑉𝑓𝑓 within the tows results in a significantly larger region of severe 

𝜎𝜎𝑦𝑦𝑦𝑦′  within the tows.  Recalling the contours in Figure 6.52, the locations of the worsened 

stress highlighted in Figure 6.53 occurs where the weft has a higher 𝑉𝑉𝑓𝑓.  The higher 𝑉𝑉𝑓𝑓 
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causes the transverse stiffness of the wefts to increase locally, leading to the stiffer region 

carrying more of the load.  Figure 6.54 shows contours of the percent change of 𝜎𝜎𝑦𝑦𝑦𝑦′  within 

the wefts for regions with a 𝜎𝜎𝑦𝑦𝑦𝑦′  higher than 40 MPa.  Other regions, including two binders 

for context, are shown in black.  The threshold was chosen to avoid a misleading plot due 

to large percent changes in regions near zero stress.  The figure shows that there is a 20% 

increase in the magnitude of the stress in the region experiencing a severe 𝜎𝜎𝑦𝑦𝑦𝑦′ .  Since the 

locations of the most severe stress concentrations in the model increased by 20% when the 

variation of the fiber volume fraction was accounted for, it could be important to account 

for the variation of 𝑉𝑉𝑓𝑓 if the local stresses or progression of damage are to be accurately 

predicted. 

 

 
a) Constant 𝑉𝑉𝑓𝑓 of 60% b) Varying 𝑉𝑉𝑓𝑓 

Figure 6.53. Comparison of 𝝈𝝈�𝒚𝒚𝒚𝒚′  (𝝈𝝈𝒚𝒚𝒚𝒚′  normalized by the respective strength) 
contours between the two cases where tows have a constant and varying fiber 
volume fraction 
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Figure 6.54. Contours of the percent change of 𝝈𝝈𝒚𝒚𝒚𝒚′  for the volume experiencing 
a 𝝈𝝈𝒚𝒚𝒚𝒚′ > 𝟒𝟒𝟎𝟎 𝑴𝑴𝑷𝑷𝒂𝒂 (all other region, including two binders for context, are shown 
in black) 

Figure 6.55 shows a side-by-side comparison of the 𝜎𝜎𝑧𝑧𝑧𝑧′  contours for the cases where a 

constant 𝑉𝑉𝑓𝑓 is used and the varying 𝑉𝑉𝑓𝑓 is accounted for.  Unlike, 𝜎𝜎𝑦𝑦𝑦𝑦′ , the figure shows that 

accounting for the local variation of 𝑉𝑉𝑓𝑓 results in no noticeable change in the contours.  

Similarly, Figure 6.56 shows a side-by-side comparison of the contours for a slice of the 

binders containing the peak 𝜎𝜎𝑧𝑧𝑧𝑧′  stresses.  Some very small difference can be observed, but 

the contours remain almost unchanged due to account for the variation of 𝑉𝑉𝑓𝑓.   To quantify 

the change in 𝜎𝜎𝑧𝑧𝑧𝑧′  Figure 6.57 shows the percent change for the volume of the binders 

experiencing a 𝜎𝜎𝑧𝑧𝑧𝑧′  higher than 40 MPa, with the remaining volume shown as black.  Where 

the peak 𝜎𝜎𝑧𝑧𝑧𝑧′  stresses occur, there is about a 5% difference, and the region of with an 
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evaluated 𝜎𝜎𝑧𝑧𝑧𝑧′  changed between 5% and 10%.  Accounting for the local variation of 𝑉𝑉𝑓𝑓 had 

a much less significant effect on 𝜎𝜎𝑧𝑧𝑧𝑧′  as 𝜎𝜎𝑦𝑦𝑦𝑦′ , which was the most severe component of stress. 

 

 

a) Constant 𝑉𝑉𝑓𝑓 of 60% b) Varying 𝑉𝑉𝑓𝑓 
Figure 6.55. Comparison of 𝝈𝝈�𝒛𝒛𝒛𝒛′  (𝝈𝝈𝒛𝒛𝒛𝒛′  normalized by the respective strength) 
contours for the two cases where tows have a constant and varying fiber volume 
fraction 

 
a) Constant 𝑉𝑉𝑓𝑓 of 60% b) Varying 𝑉𝑉𝑓𝑓 

Figure 6.56. Comparison of 𝝈𝝈�𝒛𝒛𝒛𝒛′  contours for an x-z cross-section of a selected 
binder for the two cases where tows have a constant and varying fiber volume 
fraction 
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Figure 6.57. Contours of the percent change of 𝝈𝝈𝒛𝒛𝒛𝒛′  for the volume experiencing 
a 𝝈𝝈𝒛𝒛𝒛𝒛′ > 𝟒𝟒𝟎𝟎 𝑴𝑴𝑷𝑷𝒂𝒂 (all other region are shown in black) 

Within the matrix, accounting for the variation of 𝑉𝑉𝑓𝑓 within the twos had no significant 

effect on the regions experiencing high stress.  To illustrate the non-effect, Figure 6.58 shows 

a side-by-side comparison of the volume of matrix with a 𝜎𝜎𝑚𝑚𝑚𝑚 greater than 80 MPa, which 

shows no discernable difference. 
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a) Constant 𝑉𝑉𝑓𝑓 of 60% b) Varying 𝑉𝑉𝑓𝑓 
Figure 6.58. Comparison of volume of matrix with a 𝝈𝝈𝒗𝒗𝒎𝒎 > 𝟖𝟖𝟖𝟖𝟖𝟖 𝑷𝑷𝒂𝒂 (shown in 
yellow) with binders and clipped warps/wefts for the two cases where tows have 
a constant and varying fiber volume fraction 

Effect of Plasticity in the Matrix 

In the previous linear elastic analyses, plasticity in the matrix was ignored.  For tension 

along the x-axis, the locations stress concentrations in the matrix occurred in the same 

locations of severe 𝜎𝜎𝑥𝑥𝑧𝑧′  in the binders and near the areas in the wefts with a severe 𝜎𝜎𝑦𝑦𝑦𝑦′ .  

Plastic deformation within the matrix may lead to a relaxation of the stress at these critical 

locations. To study the effect of plasticity in matrix on the severe stresses within the tows, 

a model with a parabolic yield criterion and a strain hardening law, which is described in 

chapter 3, was used.  For this study of the effect of plasticity in the matrix, the matrix in 

the neat matrix pocket of the textile was assumed to be an 8552 epoxy resin with the assume 

properties shown in Table 6.6. 
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Table 6.6.  Assumed elastic and plastic properties for neat matrix pocket of 
textile 

Elastic Properties  Plastic Properties 
𝐸𝐸 4.7 GPa  𝜈𝜈𝑝𝑝 0.3 
𝜈𝜈 0.35  𝜎𝜎𝑦𝑦𝑡𝑡 65 MPa 
   𝜎𝜎𝑦𝑦𝑐𝑐 120 MPa 
   𝐻𝐻𝐶𝐶 = 𝐻𝐻𝑇𝑇 200 MPa 
   𝜂𝜂𝐶𝐶 = 𝜂𝜂𝑇𝑇 0.2 

 

For the case of tension along the x-axis resulting in a 1% volume average strain, 〈𝜀𝜀𝑥𝑥𝑥𝑥〉, 

Figure 6.59 shows contours of the effective plastic strain in the matrix, which shows that 

most of the plastic deformation occurs where binders begin or end traversing through the 

thickness of the textile.  As expected, the locations of plastic deformation match well with 

the regions of the matrix experiencing high stress in linear analysis, see Figure 6.31.  Figure 

6.60 shows the contours of the effective plastic strain for a x-z cross-section centered on a 

binder, the same location used in Figure 6.32.  The figures shows that most of the plastic 

deformation occurs very close to the binder, which experiences about 1% effective plastic 

strain.  Considering the boundaries result in a 1% volume average strain, 1% effective plastic 

strain locally indicates significant localization of strain. 
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Figure 6.59. Contours of the effective plastic strain in the matrix (binders shown 
in gray) 
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Figure 6.60. Contours of effective plastic strain in matrix for an x-z cross-section 
centered on a binder 

 

To understand if the plastic deformation affects the locations of severe stress in the tows, 

Figure 6.61b shows the percent change of 𝜎𝜎𝑦𝑦𝑦𝑦′  within the tow for a selected region shown in 

Figure 6.61a.  As Figure 6.61a shows, the critical locations of 𝜎𝜎𝑦𝑦𝑦𝑦′  occur with the wefts, but 

the wefts experience no significant change in 𝜎𝜎𝑦𝑦𝑦𝑦′  when plastic deformation occurs.  Since 

the effective plastic strain is so localized to the binders, which was shown in .  Figure 6.60, 

the stress concentrations in the wefts remain unaffected.  

Similarly, Figure 6.62 shows the percent change for 𝜎𝜎𝑥𝑥𝑧𝑧′  from when linear elasticity is 

assumed to the case with plasticity modeled.  Since the plastic deformation localizes near 

locations of severe 𝜎𝜎𝑥𝑥𝑧𝑧′ , 𝜎𝜎𝑥𝑥𝑧𝑧′  is reduced by a modest 3% at the stress concentrations. 
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a) Contours of severe 𝜎𝜎𝑦𝑦𝑦𝑦′  in the tows (Figure 
6.28a) 

b) Percent change of 𝜎𝜎𝑦𝑦𝑦𝑦′  in the tows 

Figure 6.61. Contours of the percent change of 𝝈𝝈𝒚𝒚𝒚𝒚′  between the case when 
plasticity in the matrix pocket is modeled and linear elasticity is assumed for a 
selected region 

 
a) Contours of severe 𝜎𝜎𝑥𝑥𝑧𝑧′  in the tows (Figure 
6.28c) 

b) Percent change of 𝜎𝜎𝑥𝑥𝑧𝑧′  in the tows 

Figure 6.62. Contours of the percent change of 𝝈𝝈𝒙𝒙𝒛𝒛′  between the case when 
plasticity in the matrix pocket is modeled and linear elasticity is assumed for a 
selected region 
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6.4.5 Summary 

Leveraging the newly developed finite element framework, a 2x2 orthogonal weave was 

studied using a large non-idealized 3D textile model.  Due to the complexity of 3D textiles, 

the geometry of the model was characterized by quantifying the variation in the cross-

sectional area along the tow paths.  It was shown that the cross-sectional area in tows near 

the top and bottom boundary of the model exhibited large amounts of variation up to 26%.  

On the other hand, tows near the middle of the weave exhibit relatively little variation.  In 

reality, tows experience some amount of variation in the cross-sections, but about the same 

number of fibers exist for any slice, which causes the fiber volume fraction to vary along 

the tow path.  The range of variation of cross-sectional area in the model indicated that the 

variation of fiber volume fraction could significantly affect the locations of stress 

concentrations.  

The locations of severe stresses were investigated for three configurations: uniaxial 

tension along the global x-axis and uniaxial tension along the global y-axis, and in-plane 

shear.  Under tension in the x-direction, the wefts experienced the most severe stress in the 

textile, exhibiting a high transverse tension along the local y-axis, 𝜎𝜎𝑦𝑦𝑦𝑦′ .  The severe 𝜎𝜎𝑦𝑦𝑦𝑦′  will 

likely lead to initial matrix cracking in the wefts.  It is important to note that the largest 

𝜎𝜎𝑦𝑦𝑦𝑦′  in the wefts developed when wefts came close to a binder and the cross-sectional shape 

of the weft came to a sharp corner.  The sensitivity of the stress concentrations to the tow 

shape highlight the need to create textile models with realistic tow architectures if the 

progression of damage is to be accurately predicted.  Additionally, the binders exhibited a 
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severe transverse tension and longitudinal shear, namely 𝜎𝜎𝑧𝑧𝑧𝑧′  and 𝜎𝜎𝑥𝑥𝑧𝑧′ , near where they 

traverse through the thickness of the textile.  Within the matrix, a severe von Mises stress 

developed where the binder begins or ends traversing the thickness of the textile, near the 

location of the severe 𝜎𝜎𝑥𝑥𝑧𝑧′  in the binders.  Consequently, the matrix could plastically deform 

in this region, relieving some of the shear stress in the binders.  However, unless matrix 

cracking in the wefts relieves the 𝜎𝜎𝑧𝑧𝑧𝑧′  concentrations in the binders, the binders are likely to 

experience matrix cracking early in the progression of damage within the textile. 

For the case of uniaxial tension along the global y-axis, transverse tension, 𝜎𝜎𝑦𝑦𝑦𝑦′  in the 

warps and binders was the most severe type of stress in the textile.  This is very similar to 

the previous configuration, though the severe stress is in different types of tows.  Similarly, 

transverse matrix cracking is likely to occur in the binders and warps initially.  However, 

the second most severe type of stress is very different from the previous configuration.  

When the load is transverse to the binders, a severe longitudinal shear stress develops in 

the wefts.  Though the initial type of damage expected matches for the tension along the 

x- and y-directions, namely transverse matrix cracking, the next most severe types of stress 

were fundamentally different between the two cases due to the presence of binders.  Without 

the binders, the severe shear stress is not expected to develop, showcasing the need for 

understanding what role binders play in distributing load within complex 3D textile 

geometries.  The stress within the matrix was shown to be less critical for the case of tension 

along the y-axis compared to tension along the x-axis.  
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For the case of in-plane shear, severe shear stresses developed within the tows, as 

expected.  The initial damage within the textile is likely to be within all three types of tows 

due to the longitudinal shear stress, 𝜎𝜎𝑥𝑥𝑧𝑧′ . All three types of tows were shown to also 

experience severe transverse normal stresses where tows tend to pivot around each other as 

the textile undergoes shear deformation.  However, the stress concentrations were quite 

small and localized.  Within the gaps between warps and wefts, the binders were shown to 

experience a severe transverse shear stress, 𝜎𝜎𝑦𝑦𝑧𝑧′ , and the matrix was shown to experience a 

high level of von Mises stress, 𝜎𝜎𝑚𝑚𝑚𝑚.  The matrix is likely to plastically deform in this region, 

which may reduce the 𝜎𝜎𝑦𝑦𝑧𝑧′  concentration in the binders. 

To gain insight into the how binders redistribute the load and contribute to stress 

concentrations within the textile, the binders were replaced with matrix material and the 

stress distributions were compared to the case where the binders were included.  Under 

tension along the x-axis, which is aligned with the warp tows, the stress concentrations 

within the wefts, which was the most severe component of stress, were reduced significantly.  

It was shown that the binders transferred the load from the warps to the wefts, creating 

the severe 𝜎𝜎𝑦𝑦𝑦𝑦′  within the wefts.  Additionally, the warps exhibited a significant variation 

of stress within the tows, which is due to the waviness of the tow.  Thought the warps are 

nominally straight, the simulated processing of the 3D tow architecture resulted in waviness 

within the warp tows.  Since the longitudinal modulus is much higher than the transverse 

modulus, the stresses within the warps were very sensitive to small changes in the fiber 

direction.  Under in-plane shear, the binders had significantly less of an effect on the stress 
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distribution.  The most critical stress concentrations remained in the same locations with 

or without the binders.  However, the results showed that the waviness within the wefts 

significantly affected the local stresses along the tow paths under the in-plane shear.  From 

experiments, it has been shown that binder delay the onset of delamination, so it is likely 

that binders have a greater effect during the later stages of the progression of damage. 

Due to the large variation of the cross-sectional area of the tows of the textile model, 

the effect of accounting for the variation of the local fiber volume fraction was investigated.  

It was shown that accounting for a varying 𝑉𝑉𝑓𝑓 noticeably affected the 𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations 

within the wefts, which was the most severe stress.  Consequently, ignoring this feature of 

textile models will likely lead to an over prediction of the initial damage within the textile. 

However, the varying 𝑉𝑉𝐹𝐹 had little effect on the severe stresses within the binders (5% to 

10%) and no noticeable effect on stresses within the matrix. 

A plasticity model was used to study the effect of plastic deformation in the matrix on 

the stress concentrations within the tows.  Though up to 1% effective plastic strain is 

predicted near the locations where binders begin or end traversing the textile thickness, the 

𝜎𝜎𝑦𝑦𝑦𝑦′  concentrations within the wefts remained unaffected, due to how plastic deformation 

localized to small regions. However, the plastic deformation did lower the 𝜎𝜎𝑥𝑥𝑧𝑧′  concentrations 

within the binders, but only by 3%. 

6.5 Conclusions 

Creating realistic 3D textile models and predicting the response of the textiles with high-

fidelity remains a challenge for the community, but this work took a step forward.  The 
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study of a 1x1 orthogonal weave highlighted the importance of accounting for the 3D nature 

of the tow paths when determining the local material properties, considering a larger 

analysis region to avoid artifacts due to boundary conditions, using significantly refined 

meshes, and the need to assess the effect of a variation of the local fiber volume fraction.  

Guided by these conclusions, the study of a 2x2 orthogonal weave used a more refined mesh 

and modeled a larger region of the textile, providing more detail than any study in the 

existing literature. 

The locations and severity of stress concentrations within the textile for three types in-

plane loads were assed, highlighting the complex stress states that develop within the tow 

architecture.  Based on the linear elastic analyses, failure within the textile is predicted to 

occur primarily within the warps and wefts for the in-plane loads considered.  However, the 

binders were shown to have a significant effect on the stress distributions.  In the case of 

uniaxial tension along the x-axis, the binders worsened regions of critical stress within the 

wefts and slightly reduced the stress within the warps.  Therefore, it is expected that the 

binders actually expedite transverse microcracking within the wefts, but it might slightly 

delay the onset of fiber breakage within the warps. The binders had a less significant effect 

for the case of in-plane shear, though it should be noted that they likely become significant 

as damage progresses.  When the binders were replaced with matrix, the waviness of the 

tows were shown to greatly affect the local stress distributions, highlighting the importance 

of more accurate nonidealized textile models.  The variation of the cross-sectional area in 

the tows was shown to be significant for predicting the stresses within the 3D textile models 
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used, but accounting for the variation of the local fiber volume fraction did not change the 

locations of critical stresses.  If a study aims to predict the strength of a textile, the variation 

of the fiber volume fraction will be important to consider, though it should be noted that 

most important effect may be how the tow strengths vary with local fiber fraction, which 

was not addressed in this study.  Accounting for plasticity in the matrix did affect some of 

the stress concentrations in the tows by up to 3%, but the most severe stresses remained 

unaffected. 

For all configurations considered in this study, it was shown that the shape of tows can 

be important, the faceted surfaces of the tows in the models introduced severe stress 

concentrations, and adequate mesh refinement remains a challenge even with HPC 

resources.  Further investigation will be needed with very large models to determine the 

converged stress state when tows are modeled as homogeneous textiles.  However, due to 

the very small volumes of material experiencing the extreme stresses, it is unclear at this 

point if treating the tows as homogeneous orthotropic materials is valid, especially near the 

surfaces of the tows.  This work has pushed the state of the art for modeling 3D textiles, 

but as effort is given to more accurately predict the response within 3D textiles, many new 

challenges are introduced.  Fortunately, with growing computational resources, it is 

becoming possible to address these complications if the finite element framework used by 

researchers continues to evolve. 
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7 CONCLUSIONS 

Using a scalable finite element framework that was developed for the multiscale 

investigation of fiber/matrix composites, new insights into the behavior of laminated and 

woven composites were discovered.  For two types of laminated composites, the classical 

free-edge problem was revisited with the heterogeneous microstructure directly modeled.  

For two types of orthogonally woven textile composites, nonidealized textile models under 

a variety of configurations were simulated, providing insight into how load is distributed 

throughout the complex tow architecture, locations of critical stresses, and the effect of 

several modeling parameters.  These studies have showcased the advantage of leveraging 

high-performance computing to predict the response of fiber/matrix materials and provided 

a step towards designing next generation composites, such as multifunctional materials, 

from the microscale up possible. 

This work began with the development of the finite element framework, which made the 

studies of laminated and woven composites possible.  To create the finite element models, 

new algorithms were developed.  A method for creating random fiber matrix RVEs with 

more general shapes was developed, which allowed random fiber arrangements with higher 

fiber volume fractions to be reliably generated.  The method also provides the capability to 

generate microscale models of complex regions within larger models, such as the cross-

section of a tow.  Leveraging the fiber/matrix model generation tool and third-party 

libraries, a tool was developed for creating laminate composite models where the 

heterogeneous microstructures of any 00 and 900 plies within the layup can be modeled 
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directly.   For textile composites, a combination of VTMS and newly developed algorithms 

allowed the creation of nonidealized 3D textile models.  A description of these preprocessing 

tools was provided in this manuscript.  To allow the finite element analysis of the large 

laminated and textile models, a new finite element code was developed.  A description of 

the details of the architecture and implementation was outside of the scope of this 

manuscript, but effective design paradigms, useful third-party libraries, and lessons learned 

for the development of a FEA code that leverages HPC were discussed.  To enable the 

visualization of the large models, a combination of a new file format, a custom ParaView 

plugin for reading the data in parallel, and a Python script framework for post-processing 

the data were developed.  Unfortunately, all of the developments could not be discussed in 

detail in this manuscript, but the aim of this manuscript was to document what is required 

to create a scalable FEA framework for the prediction of fiber/matrix composites and 

provide insights to guide the future development of similar frameworks. 

Within multiscale analyses, the microscale can be accounted for directly by modeling 

the heterogeneous microstructure within a mesoscale analysis or by using reduced order 

models.  Both strategies are used within this manuscript.  It was observed that the 

nonidealized 3D textile models created by the preprocessing tools exhibited a significant 

variation of the cross-sectional area along tow paths.  Within a carbon fiber composite, the 

area of carbon fibers remains relatively constant throughout a tow, so significant changes 

in the cross-sectional areas indicates that the fiber volume fraction varies significantly.  A 

strategy for capturing the effect of varying local fiber volume fractions was proposed based 
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on spline fits of the mean properties from multiple ensembles of fiber arrangements, each 

representing a particular fiber volume fraction.  The newly developed method for creating 

fiber/matrix RVEs allowed periodic hexagonally shaped RVEs with random fiber 

arrangements to be generated for relatively high fiber volume fractions.  Using mean-field 

homogenization of 18 ensembles each with 50 different fiber arrangements under 6 different 

load configurations, distributions of effective properties for a range of fiber volume fractions 

were calculated.  Using the mean effective properties of each ensemble, a constitutive law 

that is a function of the fiber volume fraction was developed.  Enabled by the framework, 

the process of predicting the mesoscale properties as a function of volume fraction was 

completely automated given the constituent properties.  The constitutive law was later used 

to account for the variation of the local fiber volume fraction in 3D textile models, creating 

a multiscale method of accounting for the underlying microstructure of the tows.  This 

strategy worked well for this problem and is expected to be useful for many other material 

properties, such as thermal conductivity and moisture absorption. 

The classical free-edge problem, which has been exhaustively studied at the mesoscale, 

was revisited with far more detail than done before by directly modeling the heterogeneous 

microstructure of the plies.  Accounting for the microscale heterogeneity removed the 

singularity at the ply interface and was shown to dramatically affect the predicted 

interlaminar stresses near a free-edge.  The heterogeneous microstructure was shown to also 

affect the stresses away from the free-edge.  The fiber arrangement affected the local stresses, 

and it was shown that a more uniform fiber arrangement results in lower peak stresses.  The 
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microscale Poisson’s ratios in the matrix and fibers were shown to significantly affect how 

the stress fields near several fibers interact.  For typical constituent properties, the 

interaction of fibers lead to compressive stress concentrations.  The results indicate that 

matrix rich regions should be avoided near the ply interface to lower the tendency for 

delamination.  Though direct simulation of the microstructure provides the highest fidelity 

possible within a finite element analysis, it is impractical to use the large models to study 

the effect of microstructural parameters.  Consequently, the region needed to accurately 

predict the microscale stresses near the ply interface was investigated and shown to be much 

smaller then entire ply. 

For two different orthogonally woven composites, the locations of critical stress 

concentrations and the distribution of stresses were investigated, providing a more detailed 

understanding of how load is transferred throughout the complex tow architecture.  The 

study highlighted the importance of mesh refinement, showing the most refined meshes in 

the literature are not sufficient to accurately predict local stresses.  For the largest models 

in this study, the locations of critical stress under the different loads qualitatively matched 

the locations of damage expected for the orthogonal tow architecture.  The binders were 

shown to significantly affect the distribution of load when the textile experience tensile loads 

along the warp direction.  Under in-plane shear, a smaller effect was observed, but the 

binders are expected to become more significant as damage progresses based on experiments.  

However, waviness in the tows due to the presence of binders was shown to be significant 

for both tension along the warps and in-plane shear, indicating the importance of an realistic 



 

325 

 

textile models.  Accounting for variation in the tow volume fraction was shown to increase 

the stresses in critical regions.  Therefore, it is expected that accounting for this detail is 

very important for progressive damage analyses if the tows exhibit significant variation of 

the cross-sections.  Though the region of matrix at a high stress occurred near some stress 

concentrations within the tows, modeling the plasticity within the matrix did not 

significantly affect the stresses within the tows due to how the plastic deformation localized 

to small regions. 

The studies presented in this manuscript have revealed some new insights into the 

distributions of stress within fiber/matrix composites, but they also highlighted many open 

questions that require future research.  For the subject of free-edge induced delaminations, 

the layups of laminates have been tailored to mitigate the chances of delaminations in the 

past, but a deeper understanding of where the microscale damage initiates and how it 

propagates will be needed to tailor the microstructure and effectively integrate functional 

constituents.  Compressive stress concentrations form where fibers come close to each other, 

so the critical stresses in the regions between plies occurs near matrix pockets.  However, 

the fiber/matrix interface is known to be a critical location for damage to initiate in 

fiber/matrix composites.   Future studies should explore whether delaminations initiate in 

the matrix pockets away from fibers or along the fiber/matrix interfaces by predicting the 

progression of fiber/matrix debonding and matrix damage.  Future work should also explore 

the effect of plasticity in the matrix near the free-edge, since accounting for plasticity may 

significantly change the locations of stress concentrations. 
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For predicting the response of 3D textiles, the literature should consider more refined 

meshes if the locations of stress concentrations are going to be accurately predicted, 

highlighting the need to leverage HPC.  Variations of cross-sectional area and waviness in 

the tow architecture was shown to significantly affect the predicted stresses within the tows, 

but detailed studies are needed to quantify how realistic the nonidealized models are to 

actual specimens.  A qualitative comparison is often provided in the literature, but due to 

the sensitivity of the stresses to the tow architecture, it will be important to quantify how 

well the models compare to reality.  This study investigated the stresses that develop within 

a 3D textile with greater detail than has been done before, but significant insight will be 

needed to guide the optimization of textile architectures and the effective integration of 

functional constituents for the next generation of advanced fiber/matrix composites. 
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