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ABSTRACT 

Many unconventional shale applications in the oil and gas industry require coupling of 

reservoir fluid flow with geomechanics simulations for a holistic study of formation stability. Since 

traditional reservoir simulation packages normally do not fully support geomechanical effects 

resulting from pore pressure change and varying stress states, finite difference flow simulators 

which handle multi-phase regimes with varying fluid saturations need to be supplemented with 

finite element analysis software applications that include geomechanics capabilities but might be 

limited to single phase fluid flow regimes. The general theme in events leading to induced 

seismicity from human interaction with the environment involves pore pressure, strain change, 

total stress and effective stress variations in a reservoir system with underlying faults, undergoing 

fluid injection and extraction. The objective of the current research study is to couple fluid flow 

with geomechanical effects to model pore pressure, stress variations and strain change using 

commercially available finite element analysis in Abaqus and finite difference analysis in CMG 

for comparison. Reservoir material properties and output strain results from both CMG and 

Abaqus coupled models are used to calculate induced seismic moments during unbalanced waste 

water injection and brine production in a reservoir system with an underlying fault. Results suggest 

that a combination of fluid flow and geomechanics can have an impact on induced seismicity. Near 

fault basement strain change depends more on production pattern compared to injection pattern 

variations as more compaction occurs. Unbalanced target formation injection-production activity 

can lead to increased strain change and seismicity in the basement. Induced seismicity is more 

related to strain change as opposed to pore pressure change for the cases studied here. 
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NOMENCLATURE 

𝜙° Angle of internal friction 

𝑢𝑎 Average pressure in non-wetting fluid 

𝑢𝑤 Average pressure in wetting fluid 

𝛼 Biot coefficient (Biot Number) 

𝐵 Body force 

𝑏 Body force per unit mass of fluid 

𝑓 Body force per unit volume 

𝐾 Bulk modulus (incompressibility) 

𝑉𝑏 Bulk volume 

𝜎⃗ Cauchy stress tensor 

𝜇 Coefficient of friction 

𝑆𝑜 Cohesion 

𝜌 Density 

𝑢 Displacement 

𝜎𝑛
′  Effective normal stress 

𝜏𝑛
′  Effective shear stress 

𝜎⃗′ Effective stress tensor 

𝐽 Elastic volume ratio 

𝑐𝑓 Fluid compressibility 

 



 

 

vii 

 

 

𝑝 Fluid pressure  

𝑉⃗⃗𝑤 Fluid velocity 

𝐹 Force 

𝐵 Formation volume factor 

𝐹𝑟 Frictional reaction force 

𝑔 Gravitational constant 

Ҡ Hydraulic conductivity 

𝐼 Identity matrix 

𝑁𝑁, 𝐵𝑁 Lagrangian interpolation functions 

𝐿 Longitudinal lateral length 

𝜎𝑚
′  Mean effective stress 

𝑓𝑁 Normal force 

𝑁𝑛 Number of grids in the nth direction 

𝑘 Permeability 

𝑣 Poisson ratio 

𝛿𝑃𝑤 Pore pressure variational field test function 

𝜙 Porosity 

𝜙∗ Reservoir porosity (coupling term) 

𝑐𝑅 Rock compressibility 

𝜒 Saturation  
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𝑀𝑜 Seismic moment intensity 

𝑀𝑤 Seismic moment magnitude 

𝑀⃗⃗⃗𝑝𝑞 Seismic moment tensor 

𝛾𝑆𝑖𝑗
 Shear strain 

𝑞 Source sink term 

𝑔 Specific gravity 

𝜖 Strain 

∆𝑒𝑟𝑠 Strain change 

𝜎 Stress 

⫾𝑓,𝑅,𝑀,𝑒,𝑖   Subscripts: fluid, rock, matrix, element, initial 

𝜐 Superficial velocity 

𝐴 Surface area 

𝑡 Surface tractions tensor per unit area 

𝐶 Tangential stiffness tensor 

𝑡 Time 

𝑛𝑓 Total wetting fluid volume (free +trapped) per unit volume in current config 

𝑇 Traction or tractive force 

𝑛⃗⃗ Unit normal 

𝛽 Velocity coefficient 
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𝛿𝜀 Virtual rate of deformation 

𝛿v⃗⃗ Virtual velocity field 

𝜇𝑓 Viscosity of fluid 

𝑒 Void ratio 

𝑉 Volume  

𝑛𝑡 Volume ratio of trapped fluid at a point 

𝑛𝑤 Volume ratio of free wetting fluid 

𝑄 ̇⃗⃗ ⃗⃗  Volumetric flow rate per unit area of a particular wetting fluid 

𝜖𝑣 Volumetric strain 

𝐸 Young’s modulus 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Many unconventional shale applications in the oil and gas industry require coupling of 

reservoir fluid flow with geomechanics simulations for a holistic study of pore pressure, stress 

variations and strain change which affect formation stability. In order to understand the complex 

phenomena associated with Induced seismic activity, the combination of reservoir fluid flow with 

stress models are necessary, especially in unconventional applications that involved fluid 

extraction and injection. Common problems that can be examined with the help of geomechanics 

include subsidence, reservoir compaction drive, casing failure, wellbore stability, sand production, 

fault activation, and pore collapse failure among others. Seismic data available from the Berkeley 

Seismology Lab suggests that there has been a recent increase in seismic activity in the US mid-

western states like Oklahoma, and Texas among others. The hockey stick curve in Fig. 1 illustrates 

the increase in recorded seismic activity of seismic moment magnitude,𝑀 ≥  3, from 1973 −

2016. As indicated by the red portion of the curve, the last seven years have seen an enormous 

increase in recorded seismic events in US mid-western states. Most of these recorded seismic 

activities are attributed to human activities. Since traditional reservoir simulation packages 

normally do not fully support geomechanical effects resulting from pore pressure change and 

varying stress states, finite difference fluid flow simulators which handle multi-phase regimes with 

varying fluid saturations need to be supplemented with finite element analysis software 

applications that include geomechanics capabilities but might be limited to single phase fluid flow 
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regimes. The combination of reservoir fluid flow with stress models can help to better explain 

energy development processes and phenomena that involve fluid extraction and injection.  

 

 

Fig. 1– Seismicity Increase in Mid-Western States (Adapted from Rubinstein, 2015) 
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1.2 Background 

Induced seismicity can be defined as low magnitude earthquakes and tremors observed 

along a fault system as a result of human activity which alter the stress-strain response of the earth 

crust. Human activities which could alter stress-strain response include: waste water injection into 

deep disposal wells, CO2 injection during storage in carbon capture sequestration, geothermal 

energy development, and other energy technologies that require fluid injection and extraction from 

deep within the earth’s crust. Changes in loading conditions such as fluid-pressure diffusion, 

gravitational loading or poro-thermo-elastic effects on a pre-existing underlying fault can lead to 

induced seismicity. Fig. 2 below illustrates the effects of fluid injection and withdrawal on nearby 

faults which can trigger induced seismicity (United States Geological Survey, USGS 2015). On 

the left side portion of the figure below, direct loading by fluid injection near a fault in a high 

permeability region increases the pore pressure which leads to stress alteration. On the right side 

portion of the figure, an indirect loading from the changes in the solid stress due to fluid injection 

and extraction lead to near fault stress change. These stress alteration mechanisms could lead to 

sudden movement along the fault slip thereby inducing seismic activity. 
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Fig. 2 – Effects of Fluid Injection and Withdrawal on Nearby Faults  

(Adapted from Rubinstein, 2015) 

 

Water column changes in large deep artificial lakes can induce pore pressure and total stress 

increase thereby yielding effective stress variations on underlying faults resulting in earthquakes 

(Simpson et al., 1988). Post mining voids in rock can collapse or alter the natural rock force 

balance, produce seismic waves and in some cases reactivate existing faults causing minor 

earthquakes (Redmayne 1988). Injection of large volumes of produced water (high saline fluid 

from oil and gas wells) into waste disposal wells increases the subsurface pore pressure and has 

been identified as a trigger for fault slips resulting in earthquakes (Frohlich et al., 2009). Gonzalez 

et al., (2012) illustrate how changes in crustal stress response due to large scale extraction of 

groundwater can trigger earthquakes as in the case of the 2011 Lorca earthquake. The general 

theme in events leading to induced seismicity from human interaction with the environment 

involves pore pressure, strain change, total stress and effective stress variations in a reservoir 

system with underlying faults, undergoing fluid injection and extraction. A coupled fluid flow with 
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Geomechanics model is necessary to fully capture stress, strain response and resultant induced 

seismicity. Geomechanical analysis of fluid injection and seismic fault slip by (Fan et al., 2016) 

show that low fault permeability favors fault reactivation which is also sensitive to fault 

orientation, stress state, reservoir permeability and results indicate injection-induced fault slip 

plausible for Timpson 𝑀𝑤 4.8 earthquake sequence. (Hornbach et al., 2015) used pore pressure 

modeling studies to indicate brine production and waste water disposal as likely cause for a series 

of seismic events recorded along a fault system near Azle, Texas. However, in the Azle case, 

Geomechanics and seismic moment magnitude were not included. Coupled fluid flow with 

geomechanics techniques are necessary for problems that involve compaction drive, subsidence, 

gas hydrate deposits, well failure, geothermal and shale/ tight gas reservoirs among others. 

 

1.3 Research Objectives 

The objective of the current research study is to couple fluid flow with Geomechanical 

effects to model pore pressure, strain change using commercially available finite element analysis 

in Abaqus and finite difference analysis in CMG for comparison. Reservoir material properties 

and output strain results from both CMG and Abaqus coupled models are used to calculate induced 

seismic moments during unbalanced waste water injection and brine production in a reservoir 

system with an underlying fault. The test models used for this study in Abaqus and CMG are 

developed with a similar reservoir grid structure and setup to the Azle case assuming one injection 

and one production well and a uniform single block in the y direction. Strain change in the 

basement formation are investigated in response to unbalanced production-injection patterns in a 

nearby target formation. 



 

6 

 

 

CHAPTER II  

COUPLED FLUID FLOW WITH GEOMECHANICS METHODOLOGY 

2.1 Governing Geomechanics Equations 

In terms of geomechanics, fundamental properties including stress(𝜎), strain (𝜖) and 

displacement (𝑢) are commonly used. The traction or tractive force (𝑇) used to generate motion 

between a body and a tangential surface through the use of dry friction or the shear force of a 

surface can be defined as force (∆𝐹) per unit area ( ∆𝐴). 

 
   0

 lim  
A

F
T

A 

 
  

 
 

(1) 

Assuming 𝑛⃗  is the unit normal vector to the area, the stress tensor (𝜎  ) can be defined in terms of 

the traction force as follows: 

   .  T n   
(2) 

The stress tensor components in matrix form are written as follows: 

 

11 12 13

21 22 23

31 32 33

ij

  

    

  

 
 

 
 
  

 
(3) 

Where the subscripts 𝑖 𝑎𝑛𝑑 𝑗 for 𝜎𝑖𝑗 refers to the traction acting on the surface perpendicular to the 

𝑖 axis while the direction of the traction is in the 𝑗 direction. The effective stress (𝜎′) commonly 

referred to as the average normal force per unit area transmitted from grain to grain is defined as 

follows: 

 ' t pI     
(4) 
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The above assumes a compressive positive sign convention where 𝜎𝑡 is the total stress, 𝐼 is the 

identity matrix, 𝑝 is the pore pressure, and 𝛼 is the biot number (coefficient or constant) which is 

a factor describing the form of fluid-solid coupling ranging from rock porosity 𝜙 to 1 based on the 

bulk modulus (𝐾). This is because, theoretically, the lower and upper limits of the drained bulk 

modulus are 0 and (1 − 𝜙)𝐾𝑠𝑜𝑙𝑖𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 respectively (Fjaer et al., 1992). 

  1  drained

solid material

K

K
    

(5) 

In unconsolidated (weak) rock, the biot constant approximately approaches unity whereas in 

consolidated (solid) rock, the biot constant approximately approaches the rock porosity. The 

drained bulk modulus is always less than the solid material bulk modulus. Drained conditions 

apply when the total stress is entirely supported by a solid framework such that the pressure 

remains constant as fluid is allowed to escape a system while loading. On the other hand, undrained 

conditions apply when the total stress is supported partial both by a solid framework and by a fluid. 

The mean effective stress (𝜎𝑚′ ) is defined as a function of the principal effective stress 

components in each coordinate direction: 

  ' ' ' ' '

11 22 33

1 1
   

3 3
m ii         

(6) 

The principal effective stress occurs when the traction force is parallel to the unit normal vector. 

The above mean effective stress expression assumes no shear stresses occur and the maximum 

principal stress corresponds to 𝜎11
′  while the minimum principal stress corresponds to 𝜎33

′  .   

The displacement of a body can be described by the change in body shape and location from a 

reference configuration (initial body state) to a deformed configuration (current body state) as a 
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result of the forces acting on it. The displacement can be considered in terms of the sum of 

deformation caused by stress change and deformation due to rigid body motion (translation or 

rotation). The displacement vector, 𝑢⃗ =  𝑓(𝑥 , 𝑡) is a function space and time (𝑡) such that the 

position of the particle can be described by a vector in space,  1 2 3, ,x x x x  for the corresponding

 1 2 3, ,u u u u .  

The strain is measure for the deformation observed in a material which can be normal or shear 

strains. The normal strain is defined as the change in length per unit length while the shear strain 

is defined as the change in angle between two original orthogonal directions. Rigorously, the 

normal strain, assuming only translation, can be derived by geometric relations by considering 

limit of the ratio of the change in dimension to original dimension of a simple square strip element 

as follows: 

 
*

*
* * *

* *
**

   0
* *

  lim
x

du
x x x

dx du

x dx 

  
     

   
 
  
 

ò  
(7) 

Where ∗= 1,2, 𝑜𝑟 3  is the axis direction of interest, 𝑢  here is a simple linear axial displacement 

function and 𝑥  is the position vector component of the square strip point in space. Using the same 

logic for all normal directions, the normal strain components become: 

 
31 2

11 22 33

1 2 3

;  ;
dudu du

dx dx dx
  ò ò ò  

(8) 
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Similarly, the shear strain (𝛾𝑠), accounting for rotation, can be derived by geometric relations by 

considering limit of the angle between two original orthogonal directions for a simple square strip 

element as follows: 

 
,      0

  lim  
2 2ij

i j

j i
ji

j ji i
s

x x
i j j i

du du
xx

dx udx u

x x x x

 


  

    
                         
  

  

 
(9) 

Where the subscripts 𝑖 𝑎𝑛𝑑 𝑗 for 𝛾𝑠𝑖𝑗
 refers to the shear acting on the surface perpendicular to the 

𝑖 axis while the direction of the shear is in the 𝑗 direction. 𝑢  remains the simple linear axial 

displacement function and 𝑥  remains the position vector component of the square strip point in 

space. Using the same logic for all strain directions, the shear strain components become: 

 

1 2
12 12 21

2 1

31
13 13 31

3 1

32
23 23 32

3 2

1 1
     

2 2

1 1
     

2 2

1 1
     

2 2

u u

x x

uu

x x

uu

x x







  
    

  

 
    

  

 
    

  

ò ò

ò ò

ò ò

 
(10) 

Then, the strain tensor 𝜖  components in matrix form assuming symmetry is written as follows: 

 

31 1 2 1

1 2 1 3 1

11 12 13

31 2 2 2
21 22 23

2 1 2 3 2

31 32 33

3 3 31 2

3 1 3 2 3

1 1
   

2 2

1 1
   

2 2

1 1
   

2 2

ij

udu u u u

dx x x x x

uu u du u

x x dx x x

u u duu u

x x x x dx

      
    

      
         

                
     

    
      

ò ò ò

ò ò ò ò ò

ò ò ò






 
 
 
 
 



 
(11) 
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The volumetric strain is the ratio of the change in current bulk volume (𝑉𝑏)  to initial bulk volume 

(𝑉𝑏
𝑖) which is therefore: 

 11 22 33 
i

b b
v i

b

V V

V


   ò ò ò ò  

(12) 

Assuming a homogenous, isotropic and symmetric system, the geomechanical formulation begins 

with the classic force equilibrium equation which postulates that the sum of all normal, shear and 

body forces should equal zero. 

 . 0B    
(13) 

Where 𝜎⃗ represents the total stress tensor acting one direction and 𝐵 represents the body forces 

due to gravity acting in the opposite direction with respect to total stresses. The strain tensor (𝜖 ) 

is defined as occurring due to deformations in the length and shape of a body according to the 

following kinematic strain-displacement equation approximated from the Green-lagrange 

infinitesimal strain tensor: 

  
1

2

T
u u    

 
ò  

(14) 

Where 𝑢 is the displacement vector which locates a rock particle in space connecting the position 

of the particle in a reference Cartesian coordinate system to its new position in a deformed 

Cartesian coordinate system. The strain is considered small and much less than 1. The 

constitutive stress-strain relationship applies as follows: 

 : α p IC  ò  (15) 
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Where 𝐶  is the tangential stiffness tensor, 𝛼 is the biot coefficient, 𝑝 is the fluid pressure and 𝐼 is 

the identity matrix. The above expression neglects the contribution from the thermo-elastic- 

temperature term and only considers the pore pressure contribution. By substituting and combining 

the force equilibrium, kinematic-strain displacement and constitutive stress-strain relationships, a 

solution can be obtained and implemented as the final geomechanics solution for a deformable 

medium. 

   1
: α p I+ g
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T
C u u 
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       
  

 
(16) 

Once again, the above solution does not account for energy conservation because the reservoir 

temperature variation in this study is assumed to be insignificant. The tangential stiffness tensor 

can be expressed in various forms. One common form is expressed as a function of the Young’s 

Modulus and the Poisson’s ratio as follows: 
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The biot coefficient can be obtained as a function of the tangential stiffness tensor, poison’s ratio, 

and Young modulus of the rock matrix as follows: 

 
 3 1 21
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(18) 

For a 1D problem, the tangential stiffness tensor simply becomes the same value as the Young’s 

Modulus. Given the applied body force alongside other input parameters, the displacement, strain 

tensor and stress tensor components can be calculated. 

Basic input materials properties involved in this study include: Young’s Modulus(𝐸), 

Poisson’s ratio(𝑣), bulk modulus(𝐾), and angle of internal friction(𝜙°). The Young’s Modulus is 

a ratio of the extension in a material under the influence of laterally (diameter direction for 

cylindrical rods) unrestricted axial tension. By the Hooke’s Law definition, the Youngs Modulus 

is a ratio between the stress and lateral strain: 

 
/  

 
/  longitudinal
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E
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
 

ò
 

(19) 

Where 𝐹, 𝐴, 𝐿 are the force, surface area, and longitudinal lateral length respectively. The Poisson’s 

ratio is defined as the ratio of lateral contraction to longitudinal extension strains. 
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(20) 

Where the negative sign is indicative of the contraction which occurs in the lateral direction. The 

bulk modulus (𝐾) is the defined as the ratio of the hydrostatic pressure to the volumetric strain: 
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By substituting, the above material equations into one another, a convenient expression which 

summarizes the relationship among the Young Modulus, Elastic Modulus, and Poisson ratio is 

given by: 
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(22) 
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2.2 Coupled Fluid Flow with Geomechanics Approach 

In this chapter, various coupling techniques are outlined and the need for a fully coupled 

or equivalent fluid flow with geomechanics model is explained in detail. Before discussing the 

various coupling methods and the reasons for the method of choice, a brief overview of the basic 

equations for porous media fluid flow is outlined. The basic equations for porous media fluid flow 

consists of Darcy’s Law, mass conservation (material balance), energy conservation as well as the 

equations of state equations which describe the fluid characteristics. Darcy’s law which relates the 

apparent superficial velocity (𝜐) to the fluid pressure (𝑝) is given by: 

  
f

k
p


   

(23) 

Where 𝜇𝑓, 𝑘 are fluid viscosity and permeability respectively. The above version of Darcy’s law 

assumes a non-Darcy coefficient (𝛿) of 1 for fluids deviating from ideal conditions. The simplified 

material balance (continuity) equation for a single phase fluid assumed in this case is given by: 

 
 

    q
t





  


 (24) 

The above assumes a homogenous and isotropic reservoir system, neglecting the effect of gravity 

with constant reservoir and fluid properties. For a slightly compressible fluid, the reservoir fluid 

density (𝜌) and formation volume factor (𝐵𝑓) can be described as functions of fluid pressure at a 

current and initial states as well as fluid compressibility. 

  1i f ic p p        
(25) 
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If the rock is assumed to be slightly compressible rock, then the porosity varies with pressure. 

Hence the rock compressibility (𝑐𝑅) is given by: 
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 (27) 

The fluid flow equations can then be solve by conventional flow simulators. However, 

conventional flow simulators typically assume that the porous media grid is does not deform which 

is rigorously not the case in reality. This implies that for a grid cell with fixed bulk volume, 

conventional flow simulators ignore any bulk medium movement that accompanies rock expansion 

and contraction whereas geomechanical simulators do account for the porous media deformation 

to some extent (Denney et al 2006). The conservation principle needs to be modified in order to 

account for deformations. The formulation here assumes that the simulator grid is attached and 

deforms with the porous medium such that the previously definition bulk volume and volumetric 

strain apply equally to all grid cells in the simulated system.  

The conservation of fluid in a deformable porous medium (Tran et al 2005) is given by: 

     1  .  .f v f f f

k
p b Q

t
   



 
             

ò  
(28) 

Where 𝜌𝑓 is the fluid density, 𝜖𝑣 is the volumetric strain, 𝑏 is the body force per unit mass of fluid, 

𝑘 is the permeability, 𝜇𝑓 is the fluid viscosity, 𝑄𝑓 is the flow rate of fluid at source or sink location, 
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and  𝜙 =
𝑉𝑝

𝑉𝑏
 is the true porosity (Settari et al 1998) defined as the ratio of the current pore volume 

to the current bulk volume.  

The volumetric strain defined in the altered mass conservation flow equation allows the 

conservation principle to account for the changes in the porous media bulk volume. In order to 

incorporate the porous media deformation into a conventional simulator, Tran et. al (2005) propose 

a “reservoir porosity” term (𝜙∗) which is a function of the volumetric strain to replace the true 

porosity in the altered mass conservation principle equation. 

  * 1 v  ò  
(29) 

Therefore the altered mass conservation equations which can be implemented as the final fluid 

flow equation in a conventional simulator becomes: 
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(30) 

The above expression now accounts for the porous media deformation by virtue of the reservoir 

porosity term which acts as the link (coupling parameter) between the fluid flow and geomechanics 

equations in CMG. 

In a similar fashion, the energy conservation principle for a reservoir system with time variant 

temperatures can be described as a function of the reservoir porosity term. 

    * *    1  .  .  .  κ Tf f r r f f f h

f

k
U U p b H Q

t
     



 
                 

 
(31) 

Where 𝑄ℎ is the heat loss/gain, 𝑇 is the temperature, 𝜅 is the thermal conductivity, 𝜌 is density 

while 𝑈𝑓 and 𝑈𝑟 are the fluid and rock enthalpies respectively. However, in this study the energy 
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conservation principle is not employed because it is assumed that temperature changes over time 

are insignificant which may not necessarily be the case in reality. Several numerical methods for 

coupling geomechanics to fluid flow have been proposed in the literature. The most common 

coupling methods include: Explicit (One-way) coupling, Iterative (Two-way) coupling, and Fully 

coupled (Fully implicit) methods in increasing order of rigor. These methods are henceforth 

described from a reservoir geomechanics engineering perspective. The explicit coupling method 

involves solving the reservoir module equations and then using fluid flow results to solve the 

equations in the geomechanics module without feedback to the reservoir module. The explicit 

coupling approach can be viewed as a special case of the iterative coupling method because the 

reservoir flow remains unaffected by the geomechanical response since there is no feedback from 

the geomechanical module returning to the reservoir module. The transfer of information from the 

reservoir to geomechanics modules in the explicit approach is only via the fluid pressure because 

the fluid flow calculations are independent of the geomechanics response during the simulation. 

However, a change in the initial reservoir flow variables will change the geomechanics variables. 

The explicitly coupled approach is useful for example in a simple empirical compaction model 

where observed fluid pressure is matched to field data and then a separate geomechanics module 

is then used to calculate field deformation.  Fig. 3 summarizes the workflow for the explicitly 

coupled approach. A disadvantage of explicit coupling is stability and accuracy issues as a result 

of imposed time step restrictions. 
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Fig. 3 – Explicit (One-Way) Coupling Schematic 

 

The iteratively coupling method involves solving the geomechanics equations immediately after 

the reservoir equations and then exchanging results back and forth via a coupling parameter until 

the simulation is complete. The advantage of the iteratively coupled approach is widely used for 

modularity and flexibility because the coupling between the reservoir and geomechanics module 

subroutines can be done without considerably modifying both codes. In terms of modularity, for 

example, the fluid flow and geomechanics modules can be discretized in different ways including 

finite difference volume based grids and finite element nodal-based grids. However, for large 

complex difficult problems, the iterative coupling method may require a large number of iterations 

due to convergence rate issues with non-linear iterations.  Here, the transfer of information back 

and forth between the reservoir simulator fluid flow module and the geomechanics simulator 

module is made possible by the previously discussed “reservoir porosity” coupling parameter,𝜙∗, 

and fluid pressure. Changes in permeability with stress and strain can be measured by laboratory 

experiments and determined as a function of porosity or volumetric strain or mean stress. The 
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absolute permeability due to shearing can be defined as a function of volumetric strain from (Li et 

al., 2006) as follows: 

  0 1ln /  n vk k C ò  
(32) 

Where 𝑘 and 𝑘0 are respectively the permeability at the current sheared and initial conditions, 𝜖𝑣 is 

the volumetric strain, and 𝐶𝑛1  is a constant known as the Touhidi-Baghini parameter which can 

be determined as described in Appendix A. Fig. 4 summarizes the workflow for the iteratively 

coupled approach. The subscripts 𝑛  refers to the time step. Additional Newtonian coupling 

iterations can be used to refine the geomechanics response of the next time step. The coupling 

parameter is updated at the end of the geomechanical module calculations for each time step in 

such a manner that the conservation principle remains satisfied.  

 

Fig. 4 – Iterative (Two-Way) Coupling Schematic 
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The fully coupled method has the most rigor and involves solving the reservoir and geomechanics 

equations simultaneously for fluid flow (pressure, temperature, saturations, composition) and 

deformation (displacement, strain, stress) variables. The coupling parameters between the fluid 

flow simulator module and the geomechanics module are solved at each time step and compared 

to the next time step until the difference is neglible or below a defined threshold (porosity for 

CMG) and (void ratio for Abaqus). Although, the fully coupled approach is more stable, reliable 

due to its rigor and suitable convergence for non-linear iterations, it is computationally expensive, 

requires more code development and is not always used for non-linear, large scale simulation 

problems. Fig. 5 summarizes the fully coupled strategy. 

 

Fig. 5 – Fully Coupled Schematic  
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Other less common coupling strategies are loosely (pseudo) coupled and co-simulation strategies. 

The coupling between the reservoir and geomechanics module in the loosely coupled approach is 

resolved only after a certain number of time steps to save computational cost but is less reliable 

(Dean et al 2006). For the co-simulation strategy, results from a reservoir simulator (e.g Eclipse) 

are imported into another simulator for the subsequent geomechanical computations (e.g Abaqus 

2014 documentation). In this study, the coupling strategy between reservoir and geomechanics 

module is the iteratively coupled approach for CMG and the fully coupled approach for Abaqus. 

CMG employs a sequentially iterative coupling (Two-Way) strategy. The pressure output from the 

reservoir module is sent to the geomechanics module. In the geomechanics module, the computed 

displacement, stress and strain are then used to determine the new pore compressibility and 

absolute permeability. Fluid flow and geomechanics are solved sequentially, update each other 

and coupled iteratively. This iteration between the reservoir and stress solution is performed until 

updated pore volume and permeability in both fluid flow and geomechanics models are similar. 

When iterative coupling converges, the results are sometimes similar to that of a fully coupled 

model if both techniques use sufficiently tight convergence tolerances for iterations (Dean et al). 

Changes in porosity involve fluid compressibility and geomechanical parameters such as Young’s 

Modulus (𝐸) , Poisson’s ratio (𝑣) and the Biot Coeffient (𝛼).  

Table 1 summarizes the key features of the main coupling strategies discussed based on literature 

(Minkoff et al., 2003; Tran et al., 2004, 2005; Dean et al., 2006; Jha et al., 2007; Abaqus 2014). 

Coupling formulation and discretization details for CMG and Abaqus are provided in Appendix A 

and B respectively. 
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Table 1 – Summary of Fluid Flow and Geomechanics Coupling Strategies 

METHODS RIGOR COMPUTATIONAL 

COST 

FLEXIBILITY TRANSFER 

PARAMETER 

STABILITY 

One-Way Low Low Medium Fluid pressure Low 

Two-Way Medium Medium High Porosity Medium 

Fully  

Coupled 

High High Low Void Ratio High 

Loosely  

Coupled 

Low Low Medium Fluid Pressure Medium 

 

The second commercial software used for geomechanics- fluid flow coupling is Abaqus which is 

a general finite element package used to numerically solve partial differential equations. The 

coupled pore fluid diffusion and stress analysis method is performed in Abaqus using the 8-node 

trilinear displacement and pore pressure (C3D8P) finite elements. In Abaqus, the fundamental 

geomechanics equations are solved iteratively at all the nodes of an element size. For coupled 

diffusion-displacement problems in Abaqus Standard, care was taken when choosing the units of 

the problem for consistency. This is because the coupled equations may be numerically ill-

conditioned if the choice of units are mixed thereby causing the output values generated by 

equations from two different fields to differ by many orders of magnitude. The International 

System of units (SI) were used for all Abaqus inputs in this study. In Abaqus, porous media is 

modeled approximately by attaching the finite element mesh to the solid phase such that fluid can 

flow through this mesh. The model uses a continuity equation for the mass of wetting fluid per 

unit volume of the medium and the mechanical part of this model is based on the effective stress 

principle. The finite element formulation details used in Abaqus can be found in the theory guide 

of the Abaqus user documentation (Version 6.14, SIMULIA 2014) and is available online using a 
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valid license. Here, only a concise summary of the fundamental equations from the theory guide 

are discussed. Abaqus uses the engineering sign convention for stresses which identifies 

compressive stress as negative and tensile stress as positive. This sign convention is opposite of 

the geoscience sign convention used in CMG. According to the Abaqus documentation theory 

guide, the effective stress is given by the following general form: 

     1w au u I        
(33) 

Where 𝜒 represents the saturation of the system, 𝑢𝑤 is the average pressure stress in the wetting 

liquid, and 𝑢𝑎 is the average pressure stress in the other non-wetting fluid (for unsaturated cases). 

For a fully saturated system, 𝜒 = 1 and assuming that 𝑢𝑎 is negligible, the above effective stress 

becomes: 

    wu I     
(34) 

The above expression is similar to the Terzaghi effective stress definition used in CMG with the 

exception of the sign convention. In Abaqus compressive stress is negative while in CMG 

compressive stress is positive. Input parameters used in the Abaqus for modeling coupled fluid 

flow with stress in poroelastic media include: mass density, bulk modulus of fluid and solid grain, 

hydraulic conductivity, void ratio, logarithmic bulk modulus, poisson’s ratio, specific weight of 

the wetting liquid, and flow rate among others. The void ratio (𝑒) is defined as a function of 

porosity (𝜙): 
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In the Abaqus documentation theory guide, the elastic portion of the volume ratio between the 

reference and current state (𝐽𝑒𝑙) is defined as follows: 

 ln 1
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(36) 

Where 𝑒𝑖 is the initial void ratio, 𝜎𝑡
𝑒𝑙 is the elastic tensile stress limit, 𝜎𝑚and 𝜎𝑚𝑖

 are the mean 

and initial mean stresses and 𝜅 is the logarithmic bulk modulus. Assuming 𝜎𝑡
𝑒𝑙 ≫ 𝜎𝑚𝑖

 and 

𝜎𝑡
𝑒𝑙 ≫ 𝜎𝑚, the logarithmic bulk modulus is given by: 
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(37) 

Where 𝐾𝑑 is the drained bulk modulus is expressed as a function of the Young’s modulus and the 

passion ratio: 
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The shear modulus (𝐺) can be expressed as a function of drained modulus or Young modulus as 

follows: 
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(39) 

The discretized equilibrium statement for a porous medium is defined in Abaqus by the 

principle of virtual work for the volume under consideration in its current configuration at a given 

time. The upper case superscript notation,𝑁, in the equations below signifies the discretization of 

for the finite element model approximated by interpolation functions (N⃗⃗⃗
𝑁
, 𝛽𝑁) using the 

Lagrangian framework. 
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Where 𝛾𝑤 is the specific gravity of the wetting fluid, 𝜎⃗ is the Cauchy stress tensor, 𝑡 are the surface 

tractions tensor per unit area, 𝑛𝑓 is the total volume of wetting fluid (free plus trapped) per unit 

volume in the current configuration, 𝑓 is the body force per unit volume (𝑉) while 𝛿v⃗⃗  and 𝛿𝜀 are 

respectively the virtual velocity field and the virtual rate of deformation both of which are a 

function of the Lagrangian framework interpolation functions (N⃗⃗⃗
𝑁
,

N ). The virtual work 

principle with assumed independent incremental virtual velocity field, 𝛿v, can then be expressed 

more familiarly as a balance between internal and external acting force arrays such that the virtual 

velocity field cancels out as seen below: 
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(41) 

The continuity equation, required to equate the rate of increase of in the fluid mass stored at a node 

to the rate of mass of fluid flowing into the node within a given time increment, is integrated in 

time using the backward Euler approximation. This equation is satisfied approximately in the finite 

element model by using excess wetting liquid pressure (𝑃𝑤) as the nodal variable interpolated over 
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the elements. The total derivative of the integrated variational form of the continuity statement 

with respect to the nodal variables is required for the newton iterations employed for solving non-

linear, coupled, equilibrium equations. For a relatively incompressible wetting liquid in a porous 

medium, the continuity equation in terms of the finite element approximation variational form 

equates the time rate of change of a given mass of wetting fluid to the addition of fluid mass across 

the surface. 
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(42) 

The nodal continuity statement by virtue of the divergence theorem for an arbitrary volume, can 

be written as: 
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 


  
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(43) 

Where 𝑉𝑤⃗⃗⃗⃗⃗ is the average velocity of the wetting fluid relative to the solid phase (seepage velocity), 

𝐽 is the ratio of the fluid volume in the current configuration to the fluid volume in the reference 

configuration,  𝑛⃗⃗ is the outward normal to the surface (𝑆), 𝜌𝑤 is the density of the wetting fluid, 

𝑛𝑤 and 𝑛𝑡 are the volume ratio of free wetting fluid and the volume ratio of trapped fluid at a point. 

Rewriting the above expression in the weak form, and employing an arbitrary continuous wetting 

fluid pore pressure variational field test function (𝛿𝑃𝑤), Abaqus solves the continuity statement 

normalized with the wetting fluid density at a reference state (𝜌𝑤
𝑖 ) by integrating approximately 

in time using the backward Euler formula: 
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(44) 

The discretized equilibrium equations together with the continuity formulation for a wetting fluid 

in a porous media described above both define the state of the porous medium (Abaqus 2014 

guide).   

The constitutive behavior of the pore fluid flow is governed by Darcy’s law which is considered a 

linearized version of Forchheimer’s law for fluid flow at low velocity. Permeability in Abaqus 

Standard Analysis is defined from the relationship between porous media volumetric flow rate per 

unit area of a particular wetting fluid and the gradient of the effective fluid pressure. For a coupled 

pore fluid diffusion and stress analysis, Abaqus defines the permeability in general as a function 

of fluid flow velocity according to Forchheimer’s law. According to Forchheimer’s law, high flow 

velocities can reduce the effective permeability and lead to a choked pore fluid flow. At low fluid 

flow velocities, Forchheimer’s law becomes a good approximation of the well-known 

aforementioned Darcy flow. For pore fluid flow, Forchheimer’s law can be written as follows: 

  1 . .s w
w w w

w

k P
Q V V k

x
 



 
    

 
 

(45) 

Where 𝑄 ̇⃗⃗ ⃗⃗  is the volumetric flow rate per unit area of a particular wetting fluid, 𝑉𝑤⃗⃗⃗⃗⃗ is the fluid 

velocity, 𝛽 is a velocity coefficient, 𝑘 and 𝑘𝑠 are the permeability of a fully saturated medium and 

dependence of permeability on the saturation of the wetting fluid (𝑘𝑠|𝑠=1 = 1 ) , while 𝑃𝑤 and 𝛾𝑤 

are the wetting fluid pore pressure in spatial coordinate 𝑥⃗ and specific weight respectively. The 
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permeability in this study is isotropic and can be given as a function of void ratio. The hydraulic 

conductivity- permeability relationship is defined in general as: 

 
Ҡ =

𝑘𝑠

(1 + 𝛽√𝑉𝑤⃗⃗⃗⃗⃗. 𝑉𝑤⃗⃗⃗⃗⃗)

𝑘 

(46) 

For Darcy flow at low velocities, the velocity coefficient is approximately zero. The general 

Forchheimer’s law can be re-written in terms of the hydraulic conductivity as follows: 

 𝑄⃗⃗̇ = −
Ҡ

𝛾𝑤
(
𝜕𝑃𝑤

𝜕𝑥⃗
− 𝛾𝑤) 

(47) 

For soils consolidation problems like the one in this study, the fully saturated permeability is given 

as a function of void ratio. Comparing the above Forchheimer expression at low pore fluid flow 

velocities in relation to the Darcy Law, a simplified expression for the hydraulic conductivity-

permeability relationship can be obtained. The hydraulic conductivity (Ҡ), the term through which 

permeability is defined in Abaqus, is then defined as a function of permeability (𝑘). 

 Ҡ =
𝛾𝑤 𝑘

𝜇
=

𝜌𝑤𝑔 𝑘

𝜇
 

(48) 

Where 𝛾𝑤and 𝜌𝑤 is the specific weight and density of the wetting fluid, 𝜇 is the fluid viscosity, 𝑔 

is the gravitational constant while 𝑘 is the permeability of the rock. A Steady state analysis method 

using the “soils” keyword is used for the coupled pore pressure effective stress analysis. This 

assumes that there are no transient effects in the wetting liquid equation because the steady state 

solution corresponds to constant wetting liquid velocities and constant volume of the wetting fluid 

per unit volume of the continuum. Pore fluid flow in Abaqus is prescribed as a node-based seepage 

flow directly in consolidation analysis using the “cflow” keyword to apply a concentrated fluid 
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flow at the node. Combining the force equilibrium, constitutive relationship, kinematic strain 

displacement yields the geomechanics solution solved in Abaqus using the finite element method 

and in CMG using finite difference method. Abaqus uses a stabilized finite element iteratively 

coupled model which when converges yields the same result as a fully coupled model. However 

in CMG, which uses the finite difference method, these equations are solved only at the center of 

an element of the same size. A stabilized iteratively coupled fluid flow with geomechanics model 

when converged is in some cases analogous to a fully coupled model approach. Pore pressure, 

stress variations and strain changes are compared between a finite element method model in 

Abaqus and a finite difference method model in CMG. The resulting seismic moment magnitudes 

are calculated from both models and compared. Further coupling details in CMG versus Abaqus 

are beyond the scope of the thesis. However, more details can be found in the Denney (2006) and 

Abaqus 2014 manual respectively in the references. 
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2.3 Abaqus and CMG Comparison 

The Abaqus and CMG simplified test models in this study are developed towards 

eventually achieving a practical Azle field case study with a similar reservoir grid structure and 

geomechanical setup (Hornbach et al., 2015). The two dimensional test models currently assume 

one injection and one production well evenly spaced in the target formation. A 62 × 1 × 22 

centered Cartesian grid with uniform single block in the y direction is used to represent 10 × 10 ×

10 𝐾𝑚 formation with five layers. The six formation zones from top to bottom, each with different 

geomechanical properties, are the Overburden, reservoir layers “A”, “B”, and target zone “C”, as 

well as Upper and Lower Basements. The models assume single phase fluid flow in and out of the 

target formation referred to as “C”. A vertically staggered fault geometry is used in the model. The 

basement formation is the zone of interest for investigating strain change. Table 2 below 

summarizes the general properties of the test models developed. Fig. 6 and Fig. 7 respectively 

illustrate the overall CMG and Abaqus models (not shown to scale).  

Table 2 – General Reservoir Test Model Summary 

 

 

 

Fluid Flow 

 

Size (𝑥, 𝑦, 𝑧) [𝑘𝑚] 10𝑥10𝑥8 

Center Grid Dimension N_x=62 ; N_y=1 ; N_z=22 

6 Zones (Top-Down) 
Overburden, Reservoir Layers [“A”, “B”, and 

target zone “C”], Upper and Lower Basements 

Flow system Single Phase 

Reservoir properties (k,𝜙..) 
Global Heterogeneous (Homogeneous by 

zone) 

Production Two Unbalanced injector/Producer in “C” 

 

Geomechanics 

Failure criteria Staggered vertical Fault 

Fault Mohr-Coulomb 

Seismic moment 

magnitude 
In- house codes 
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Fig. 6 – CMG Test Model with 3D View (Left) and Vertical Cross Section View (Right) 

 

 

Fig. 7 – Abaqus Test Model With 3D View (Left) and Vertical Cross Section View (Right) 

 

 

For a simple homogenous case, the following geomechanical inputs were provided to both Abaqus 

and CMG models as shown in Table 3 below. This setup is for a scenario where much of the fluid 

flow is constrained within the target “C” formation with constant properties across formation zones 

and within the staggered fault. Reservoir properties for the test models were adapted from 
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(Hornbach et al., 2015) and Texas Rail Road Commission database (TRC 2015a, 2015b) while 

geomechanical properties were adapted from (Snee and Zoback 2016) and (Wang 2000). 

 

Table 3 – Geomechanical Inputs for Case Study 

 Overburden “A” “B” “C” Basement Fault Reference 

Permeability 

(md) 
0 0 0 30 0 0 

Simplified 

Hornbach et 

al. 2015; 

TRC 2015a; 

TRC 2015b; 
Porosity 0.055 0.055 0.055 0.05 0.055 0.05 

Pore Pressure 11.2 kPa/m Test Model 

Vertical Effective  

Stress 
14.5 kPa/m 

Test Model 

Minimum 

Effective 

Horizontal Stress 

4.5 kPa/m 

𝐴𝜙 
=  (𝑠2 − 𝑠3)/(𝑠1
− 𝑠3) 

0.27 

Direction of 

Horizontal Stress 
N26.2E 

Young’s 

Modulus (kPa) 
6e7 6.0e7 6e7 6e7 6e7 2e7 

Adapted from 

Wang 2000  

Poisson’s Ratio 0.2 0.2 0.2 0.2 0.2 0.2 

Cohesion (kPa) 2.0e4 2.0e4 2.0e4 2.0e4 2.0e4 1.5e3 

Friction Angle 

(Deg) 
30 30 30 30 30 30 
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Fig. 8 and Fig. 9 show the comparison on stress and strain output results between Abaqus and 

CMG (not shown to scale). It is important to note that compressive stress is negative in Abaqus 

but positive in CMG. As seen from the results, the stress distribution are similar and are of the 

same order of magnitude. 

 

 

Fig. 8 – Compressive Normal Stress (Abaqus vs CMG) 

 

 

Fig. 9 – Normal Strain (Abaqus vs CMG) 
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Although the strains are of the same of order of magnitude between Abaqus and CMG and suggests 

an agreement between Abaqus and CMG, there is a slight difference in the normal strain output 

from both models due to differences in the numerical methods between the two commercial 

applications. Abaqus computes the strain values at nodes representing an element using the finite 

element method (nodal-based output) while CMG computes the strain value at the center of an 

element using the finite difference method (volume-based output). In this study, the nodal values 

for an element in Abaqus are averaged to yield a single value for the element via post processing 

codes in order to have a fair (apples to apples) comparison. 

The basement strain change, target zone average pressure in fault vicinity and basement 

induced seismic moments are compared for a given balanced versus unbalanced scenario. Fig. 10 

shows the results comparing the balanced versus unbalanced scenario. The term unbalanced in this 

study refers to any scenario where the fluid production rate is greater than the injection rate and 

when the pore volumes on either side of the fault are unequal. For the unbalanced case here, the 

production rate (833.34
𝑚3

𝑑𝑎𝑦
 ) is twice the injection rate (416.67

𝑚3

𝑑𝑎𝑦
 ) and there are more pore 

volumes on the left-hand injector side of the fault compared to the right-hand producer side of the 

fault. For the balanced case, the production and injection rates are equal (416.67
𝑚3

𝑑𝑎𝑦
 ) while the 

pore volumes on either side of the fault are also equal. The fault permeability (3𝑒−3 𝑚𝑑 ) is four 

orders of magnitude less than the target zone permeability(30 𝑚𝑑 ) to signify a barrier to flow. 

The blue lines indicate the balanced case results while the orange lines indicate the unbalanced 

case results. Results show that there is more pressure decline, increase in strain change and increase 
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in seismic moments for unbalanced production-injection activity. As suggested by the results, 

unbalanced conditions lead to more strain change and induced seismicity. 

 

 

 

Fig. 10 – Balanced vs Unbalanced Scenario 
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CHAPTER III  

UNBALANCED LOADING CASE STUDY 

3.1 Unbalanced Case Study 

An unbalanced waste water injection well and brine production well case study in a 

reservoir system with underlying fault is examined using test models to observe the strain change 

using both finite element and finite difference methods. Fig. 11 below shows the strain change 

over a time frame of 300 days at the middle (5771 𝑚), and bottom (7752 𝑚) portions of the 

basement using in Abaqus and CMG. The producing well operated at a rate of 800
𝑚3

𝑑𝑎𝑦
 while the 

injection well operated at a rate of 400
𝑚3

𝑑𝑎𝑦
. 

 

Fig. 11 – Strain Change Comparison due to Unbalanced Loading (Abaqus vs CMG) 
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Overall, a similar trend is observed in strain change between Abaqus and CMG. However, CMG 

absolute strain change results slightly differ and under estimate the strain change results from 

Abaqus. This slight discrepancy is suggested to be due to differences in the discretization because 

the finite element approach in Abaqus solves the equilibrium and fluid flow system of equations 

simultaneously at all the nodes of a given element whereas finite difference approach in CMG 

sequentially solve these equilibrium and fluid flow equations as an average over the given element. 

According to Wang (2000), poroelastic coupling in the finite element framework can produce non-

monotonic pore pressure behavior following undrained loading and this can affect strain change 

especially at early times. A stress free boundary indicates that poroelastic stresses are due to non-

linear pore pressure distribution effects for the classic example of the hydrostatic loading of a 

rectangular plate. This non-monotonic pore pressure behavior due to poroelastic coupling is known 

as the Mandel-Cryer phenomenon described in chapter four. It is important to note that during 

simulation period, initial instabilities in the iteratively coupled method in Abaqus can yield a non-

smooth strain response at early times. Results suggest that unbalanced injection-production 

activity in the target formation can lead to increased strain change and induced seismicity in the 

reservoir basement due to pore pressure change. In the next section, a sensitivity study is conducted 

in CMG to examine the effect of various production and injection flow patterns on the strain 

change before more unbalanced case studies are compared between Abaqus and CMG. 
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3.2 Strain Change Response to Flow Patterns 

The strain change output in the reservoir basement is compared for different scenarios of 

varying production-injection rate flow patterns over a five year period. The volumes for 

cumulative production and cumulative injection over the total simulated time period are 1.5 ×

106 𝑚3 and 7.5 × 105 𝑚3 respectively. Table 4 summarizes all five different production-injection 

pattern scenarios. Beginning from a base case constant production rate and constant injection rate, 

the production or injection rates are linearly increased or decreased while the other rate is held 

constant. 

Table 4 – Varying Production-Injection Pattern Scenario Summary 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Injection 

Pattern 
Constant Constant Constant 

Linearly 

increasing 

Linearly 

decreasing 

Production 

Pattern 
Constant 

Linearly 

increasing 

Linearly 

decreasing 
Constant Constant 

 

Fig. 12 through Fig. 16 illustrate the corresponding flow rate and cumulative volume progression 

for each of the five scenarios. The production rates and cumulative production volumes are 

indicated in blue while the injection rates and cumulative injection volumes are indicated in red. 

For each of these scenarios, the basement strain change as a result of the activity in the target, “C”, 

formation is observed over a period of over five years. 
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Fig. 12 – Scenario 1 (Constant Production and Injection Rates) 

 

 
Fig. 13 – Scenario 2 (Increasing Production and Constant Injection Rates) 

 

 
Fig. 14 – Scenario 3 (Decreasing Production and Constant Injection Rates) 
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Fig. 15 – Scenario 4 (Constant Production and Increasing Injection Rates) 

 

 

 Fig. 16 – Scenario 5 (Constant Production and Decreasing Injection Rates) 

In scenario 1 (base case), the production and injection rates are held at a constant rate 800
𝑚3

𝑑𝑎𝑦
 of 

and 400
𝑚3

𝑑𝑎𝑦
 respectively. In scenario 2, the injection rate is held constant at 400

𝑚3

𝑑𝑎𝑦
 while the 

production rate is linearly increased from 13.888
𝑚3

𝑑𝑎𝑦
 to a maximum of 1.625 × 103 𝑚3

𝑑𝑎𝑦
 over the 

five year timeframe. In scenario 3, the production rate is held constant at 800
𝑚3

𝑑𝑎𝑦
 while the 
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injection rate is linearly decreasing from a maximum of 1.625 × 103 𝑚3

𝑑𝑎𝑦
 to a minimum of 

41.666
𝑚3

𝑑𝑎𝑦
 over the five year timeframe. In scenario 4, the production rate is held constant at 

400
𝑚3

𝑑𝑎𝑦
 while the injection rate is linearly increasing from a minimum of 6.944

𝑚3

𝑑𝑎𝑦
 to a maximum 

of 8.125 × 102 𝑚3

𝑑𝑎𝑦
 over the five year timeframe. In scenario 5, the production rate is held constant 

at 800
𝑚3

𝑑𝑎𝑦
 while the injection rate is linearly decreasing from a maximum of 8.125 × 102 𝑚3

𝑑𝑎𝑦
 to 

a minimum of 20.833
𝑚3

𝑑𝑎𝑦
 over the five year timeframe. For each of these scenarios, the strain 

change response relative to the base case is observed for scenarios 2 and 3 in Fig. 17 and for 

scenarios 4 and 5 in Fig. 18 below:  

Fig. 17 – Strain Change Comparison (Varying Production Rates- Scenarios 2 and 3) 
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Fig. 18– Strain Change Comparison (Varying Injection- Scenarios 4 and 5) 

The strain change follows a similar trend to the cumulative production volume for scenarios 2 and 

3 where the production rate is linearly increased and decreased respectively with a constant 

injection rate. When the production rate is linearly increasing, the cumulative production volume 

and strain change follow a similar concave up trend as shown in green. On the other hand, when 

the production rate is linearly decreasing, the cumulative production volume and strain change 

follow a similar concave down trend over time as shown by the magenta curve. A similar trend 

applies for scenarios 4 and 5 where the injection rate is linearly increased and decreased 

respectively with a constant production rate. When the injection rate is linearly increasing, the 

cumulative injection volume and strain change follow a similar concave up trend as show in grey. 

On the other hand, when the injection rate is linearly decreasing, the cumulative injection volume 

and strain change follow a similar concave down trend shown in brown. However, the strain 

change due to varying injection rate is not as significant as compared to the strain change due to 

varying production rate. This suggests that the strain change in the basement near the fault zone is 

highly dependent on varying production pattern than injection pattern as a result of more 
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compaction. The effect of production induced compaction is more pronounced because the fault is 

closer to the producer than the injector and more fluid is effectively produced than injected. The 

target formation region on the injection side has more pore volume than the target formation region 

on the production side. This explains why the strain change will be more dependent on the 

production pattern relative to the injection pattern. 
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3.3 Induced Seismicity  

A fundamental parameter for describing the strength of earthquakes is the seismic moment 

which can range from the order of relatively small (1012) to relatively large (1030). Rutqvist et al., 

2013 used the seismic moment tensor to model seismicity induced by fault activation. After the 

Mohr Coulomb failure criteria is satisfied, plasticity effects kick in pose elasticity. Using strain 

change from Geomechanics simulation results, cell volume and geomechanical properties, the 

seismic moment tensor can be determined. Fault activated induced seismicity can be defined using 

the seismic moment tensor,𝑀⃗⃗⃗𝑝𝑞, which is a function of the tangential stiffness tensor,𝐶𝑝𝑞𝑟𝑠,  and 

strain change,∆𝜖𝑟𝑠, product summed over the Volume,𝑉, of the fault zone of interest (Aki and 

Richards, 2002) as follows: 

   .  pq pqrs rs

V

M C dV  ò  
(49) 

The seismic moment intensity,𝑀𝑜, is defined as the 𝐿2 norm of the seismic moment tensor: 

 
2

 
L

o pqM M  
(50) 

The Kanamori correlation (Kanamori 1977) is used to convert the seismic moment intensity,𝑀𝑜 

into the dimensionless seismic moment magnitude,𝑀𝑤 which is more frequently used to report the 

magnitude of seismic activity. 
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4.667
1.5

o
w
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M


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(51) 
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CHAPTER IV  

SENSITIVITY ANALYSIS OF RESERVOIR AND GEOMECHANICAL PROPERTIES 

4.1 Failure Criterion and Mechanics-Geomechanics Analogy 

In this work, the yield criterion describing the fault slip and activation is the Mohr Coulomb 

failure criterion. The Mohr Coulomb criteria is selected as the failure criteria which indicates the 

onset of yielding in the rock material. This criteria describes the shear-normal stress relationship 

and the conditions that favor fault slip and fault activation. For this failure criterion, the failure 

envelop is defined by a straight line indicating the onset of yielding. The effective shear stress is 

defined by a linear function of angle of internal friction with the effective normal stress as the 

slope and the cohesion as the intercept. Fig. 19 shows a graphical representation of the Mohr 

Coulomb criterion using Mohr Circle.  

 

Fig. 19 – Mohr Coulomb Failure Criteria Illustration 
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The Mohr Coulomb envelope as defined by the red line is a linear expression of the effective shear 

stress (𝜏′) as a function of the effective normal stress (𝜎𝑛′) such that 𝑆𝑜 is the cohesion of the rock 

material and 𝜙° is the angle of internal friction as follows: 

 
'

o nτ S σ  tan     
(52) 

The friction angle or angle of internal friction (𝜙°) is the maximum oblique angle between the 

normal and resultant stresses acting on a surface within a porous media. Typical values for the 

internal friction angle range from 30° − 45° and tan(𝜙) ranges from 0.6 − 1.0 (Zoback 2007, 

Reservoir Geomechanics). The rock material cohesion is usually described in the range of 0 −

6 𝑀𝑃𝑎 (Fan et al., 2016; Rutqvist et al., 2013). The Mohr Circles (semi-circles) represent the stress 

state and defines the normal and shear stresses on a given 3D plane at a given instance. The 

minimum and maximum points where the semi-circles intersect the effective normal stress axis 

are respectively referred to as the minimum (𝜎3) and maximum effective (𝜎1) stresses. Shear 

failure occurs when the current stress state, which defines the normal and shear stress on a given 

plane, satisfies the linear Mohr-Coulomb failure envelop line shown in red. A graphical approach 

can be used to analyze fault slip and fault activation conditions. Given a particular stress state, 

fluid flow and geomechanical effects can be observed as the Mohr circle is displaced. For instance, 

given stress state 1, indicated by the black semi-circle in Fig. 19, if the pore pressure increases, the 

Mohr circle shift leftwards along the effective normal stress axis to the stress state 2, indicated by 

the green circle while maintaining the same radius. The increase in pore pressure leads to a 

decrease in the effective normal stress due to fluid flow effects. Also, if the effective maximum 

normal stress  (𝜎1) increases, more compression is observed in the rock and the stress state grows 
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from state 1 to state 3, indicated by the blue circle, with increased circle radius. The increase in 

compaction occurs due to geomechanical effects. If the stress state at the fault is analogous to stress 

states 2 and 3 where the Mohr circle is substantially close to the failure envelop, the fault is said 

to be critically stressed. 

In classical mechanics, consider the problem of a simple block on an inclined plane 

subjected to an applied load as shown below in Fig. 20. A free body diagram of the block 

illustrating all the external forces acting on it will include the applied load, body force 

(gravitational), and a frictional reaction force. Coulomb’s friction law gives the frictional reaction 

force to be less than or equal to the product of the block’s coefficient of friction  tan    

relative to the inclined plane and the normal force  Nf  acting perpendicular to the block in 

contact with the inclined plane .  

 
R Nf f   

(53) 

For this simple mechanical system to maintain equilibrium, the downward force (𝑓𝐷⃗⃗⃗⃗ )  should 

always be equal to the reaction force (𝑓𝑅⃗⃗  ⃗) along the inclined plane according to the principle of 

conservation. 

 
D Rf f  

(54) 
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Fig. 20 – Classic Mechanics System 

 

If the system is disturbed such that the normal force decreases, for a given constant downward 

force of the block along the inclined plane, then the frictional reaction force will decrease. When 

this reaction force declines below the constant downward force, the block will slide or slip down 

the inclined plane. We can say that a failure has occurred in the system.  

Now consider a similar analog to geomechanics. The total overburden pressure (𝑃𝑂𝑉𝐵) at a given 

depth is the summation of the fluid pressure (𝑃𝑓) and the grain pressure (𝑃𝑁) at that depth. The 

grain pressure and overbudden pressure from geomechanics can be considered respectively 

analogous to the normal force and downward force from classical geomechanics.  

 OVB f NP P P   
(55) 



 

49 

 

 

 

Fig. 21 – Geomechanics System Analogy 

 

Consider the case where the overburden pressure is constant. If the fluid pressure at a given depth 

increases due to injection activity near a fault reservoir region, the normal expectation is that the 

grain pressure decreases to maintain equilibrium. As the grain pressure at the same given depth 

decreases, the friction with which the grains are held together reduces and slippage failure occurs 

in the system. However, if the fluid pressure decreases due to production activity as illustrated in 

Fig. 21, the grain pressure should increase to maintain equilibrium and there should be no slip. 

However, the above described scenario does not apply for the case of unbalanced production-

injection activity considered in this study. It will be observed that as the fluid pressure decreases, 

due to more production activity, another factor at play can cause fault slip failure to occur which 

happens to be the strain change in this study. 
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4.2 Production-Injection Ratio Effect on Basement Strain Change and Induced Seismicity 

The sensitivity of reservoir and geomechanical properties to strain change will be studied here. 

Previous work within the Texas A&M MCERI research group on a model similar to the Azle field 

case suggests that seismic events in the reservoir basement are not necessarily entirely caused by 

increase in pore pressure (Chen et al., 2018). The effect of change in the production to injection 

ratios on the basement strain at a depth of 7752 𝑚 over a five year was investigated. The base 

injection rate was set at 416.67
𝑚3

𝑑𝑎𝑦
 throughout the production-injection operations in the target 

“C” formation. For the base case, the production rate was set equal to the injection rate. The 

production rate was set to two times, five times and ten times the injection rate while the basement 

strain change and corresponding pore pressure changes were observed. Fig. 22 through Fig. 25 

below show the basement strain change, induced seismicity and the corresponding pore pressure 

changes at the end of simulation as the ratio of production rate to injection rate was increased. As 

the rate of production to injection ratio was increased, more compaction occurred in the target “C” 

formation, and the strain change increased monotonically with a larger pore pressure difference at 

the end of the five year period. Although the fluid pressure continued to decline as the ratio of 

production to injection activity was increased, the induced seismic moment magnitude continued 

to increase (indicating more likelihood of fault slip failure) due to increasing strain change. The 

larger pressure change in the case of ratios 5 and 10 is because the stress change is too large due 

to exaggeration of the ratio of rates for a quasistatic geomechanic model simulation in CMG. The 

average pressure decline and effective normal stress increase in the base case where the production 

and injection rate are equal occur as a result of the placement of the fault barrier which has a much 
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smaller permeability relative to the entire target “C” formation. The pore volumes on both sides of 

the fault are different. The injection region (left) of the fault has more pore volume than the 

production region (right) of the fault within the target formation. On average within the target 

formation, the pressure decrease due to production from a relatively small pore volume should be 

more than the pressure increase due to injection into a relatively large pore volume. Hence, more 

pressure drop will be observed near the fault on average even for the same production and injection 

rates applied in the base case. A view of the pore pressure map within the target formation shown 

in Fig. 22 confirms the reason for the average pressure decline in the base case. 

 

 

 

 

 

 

 

 

 

 



 

52 

 

 

 

 

 

Fig. 22 – Basement Strain Change, Induced Seismicity, Stress, and Pressure for Ratio:1  
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Fig. 23– Basement Strain Change, Induced Seismicity, Stress, and Pressure for Ratio: 2  
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Fig. 24 – Basement Strain Change, Induced Seismicity, Stress, and Pressure for Ratio: 5  
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Fig. 25 – Basement Strain Change, Induced Seismicity, Stress, and Pressure for Ratio: 10  



 

56 

 

 

Similar unbalanced cases were reproduced in Abaqus to study the production-injection ratio 

change effects on strain change and seismicity for comparison. The same setup from CMG was 

replicated in Abaqus, as closely as possible within the limits of software capability and flexibility, 

to compare the basement strain change, induced seismicity, and average pressure within the 

vicinity of the fault. Fig. 26 through Fig. 28 below compare the basement strain change, induced 

seismicity and the corresponding pore pressure changes between Abaqus and CMG at the end of 

simulation as the ratio of production rate to injection rate was increased. As the rate of production 

to injection ratio was increased, more compaction occurred in the target “C” formation, and the 

strain change increased monotonically with a larger pore pressure difference at the end of the five 

year period. For the base case in Fig. 26, there is a decline in the average pore pressure because 

the fault which is closer to the producer has a much smaller permeability compared to the 

permeability of the entire target formation and there is consequently less pore volume on the right 

producer region compared to the left injector region within the target formation. Abaqus and CMG 

pore pressure, basement strain change and induced seismicity results are fairly similar in the base 

case.  
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Fig. 26 – ABQ vs CMG: Basement Strain Change, Induced Seismicity, Pressure at Ratio: 1 

 

 

Fig. 27 –ABQ vs CMG:Basement Strain Change, Induced Seismicity, Pressure at Ratio: 1.5  
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Fig. 28 – ABQ vs CMG: Basement Strain Change, Induced Seismicity, Pressure at Ratio: 2  

 

  

For the unbalanced cases in Fig. 27 and Fig. 28, a similar trend is observed for the basement strain 

change and induced seismicity in both Abaqus and CMG. The average pore pressure response near 

the fault as indicated by the accompanied pressure maps in Abaqus drops faster than in CMG due 

to the location of the well. The production and injection wells are placed at the cell center in CMG 

versus placed at a corner node on the corresponding production or injection cell. Even though both 

models show the same trend in pore pressure, basement strain change, and induced seismicity, as 

the ratio of production to injection rate increases, the Abaqus and CMG results (especially pore 

pressure) become less similar. This difference is partly due to fault representation discrepancy 

between both simulators and because the difference between cell volume-based output (CMG) and 

nodal-based output (Abaqus) become more pronounced with increasing ratio. The rise in pore 

pressure above the undrained initial value at early times, before the onset of decline, for the 
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unbalanced cases in Fig. 27 and Fig. 28 could occur as a result of stress transfer to the cell interior, 

otherwise known as the Mandel-Cryer phenomenon. This phenomenon has been explained by 

Wang (2000) using a canonical demonstration of how finite element poroelastic coupling can 

produce non-monotonic pore pressure behavior following undrained conditions in hydrostatic 

loading at the center of a long rectangular plate sandwiched within two rigid bodies. For the 

example of the hydrostatic loading of a plate, contraction of the drained edges (due to pore pressure 

dissipation) induce an additional pore pressure build up in the interior of the plate according to the 

principle of strain compatibility. This causes the pore pressure increase above an undrained value 

for small dimensionless times (early times) before pore pressure decline eventually occurs. 

However, in this current study, the portion of the fault in target zone “C” was removed to test if 

fault representation disparity between Abaqus and CMG had any impact on the basement strain 

change, induced seismicity and pore pressure sensitivity study. As seen in Fig. 29 through Fig. 31, 

when the fault is removed from the target zone “C” for the same sensitivity study of the basement 

strain, induced seismicity and pore pressure conducted from Fig. 26 through Fig. 28, a better match 

is observed in pore pressure change, strain change and induced seismicity between Abaqus and 

CMG results. This suggests that the difference in fault representation between Abaqus (nodal-

based) and CMG (cell-based) is a possible source for the discrepancy in pore pressure (average 

near the vicinity of the fault), strain change and induced seismic sensitivity results between both 

simulators. Note that if the average pressure for the entire target formation “C” is compared 

between Abaqus and CMG when the fault is removed, a similar pressure decline trend is expected 

from both simulators as the ratio of production to injection rate increases. Hence, the difference in 

the local average pressure near the vicinity of the fault between Abaqus and CMG, when the fault 
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is present in the target formation is due to local transients as suggested by Mandel-Cryer effect. 

This idea requires more investigation to arrive at a conclusive assertion. 

 

 

Fig. 29 – ABQ vs CMG (No Fault): Strain Change, Seismicity, Pressure at Ratio: 1  
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Fig. 30 – ABQ vs CMG (No Fault): Strain Change, Seismicity, Pressure at Ratio: 1.5  

 

 

Fig. 31 – ABQ vs CMG (No Fault): Strain Change, Seismicity, Pressure at Ratio: 2  
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4.3 Fault Permeability Effects on Basement Strain Change 

The effect of fault permeability on the pore pressure distribution and strain change will be 

examined to observe stability in the presence and absence of a fault. The effect of reservoir 

injection layer permeability on pore pressure distribution near the vicinity of the wells will be 

examined over time for different reservoir target formation properties admissible in the test 

models. Consider the base case, where the same injection and production rates of 416.67
𝑚3

𝑑𝑎𝑦
 flow 

through the “C” formation, while all properties remain constant. The fault permeability was varied 

from a strong barrier of 3 × 10−3 𝑚𝑑 to a porous weak fault of 30 𝑚𝑑. Fig. 32 through Fig. 36 

show the basement strain change at depth 7752 𝑚 and corresponding pore pressure change at the 

end of a five year period in the “C” target formation as a result of increasing fault permeability. 

As the fault permeability is increased by one order of magnitude per scenario below, increasing 

communication occurs between the injection and production sections of the “C” target formation 

and steady state conditions are approached. The pressure difference gets smaller as the fault 

permeability increases and the strain change diminishes over time and stabilizes to a flat horizontal 

line when enough leakage occurs and steady state is reached. This happens when the fault 

permeability has reached the permeability of the target “C” formation. 
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Fig. 32 – Strain Change and Pore Pressure Change for fault permeability: 𝒌𝒇 = 𝟎. 𝟎𝟎𝟑 𝒎𝒅  

 

 

Fig. 33 – Strain Change and Pore Pressure Change for fault permeability: 𝒌𝒇 = 𝟎. 𝟎𝟑 𝒎𝒅  
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Fig. 34 – Strain Change and Pore Pressure Change for fault permeability: 𝒌𝒇 = 𝟎. 𝟑 𝒎𝒅  

 

 

 

Fig. 35 – Strain Change and Pore Pressure Change for fault permeability: 𝒌𝒇 = 𝟑 𝒎𝒅  
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Fig. 36 – Strain Change and Pore Pressure Change for fault permeability: 𝒌𝒇 = 𝟑𝟎 𝒎𝒅  
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Coupled fluid flow with geomechanics is necessary for complex stability phenomena. 

Results suggest that a combination of fluid flow and geomechanical effects can have an impact on 

basement strain change and induced seismicity. The specific conclusions from this research can 

be summarized as follows. Coupled fluid flow and geomechanical formulations have been 

reviewed. Results from two commercial simulators using the finite difference versus finite element 

approach were compared to show that both fluid flow and geomechanical properties can have an 

impact on basement strain change and induced seismicity. Results suggest that the discrepancy in 

pore pressure, strain change and induced seismic moment sensitivity studies between Abaqus and 

CMG results in this work are due to fault representation differences. Varying the production-

injection activity scenario has implications on basement strain change, target zone average 

pressure (near fault vicinity), and induced seismic activity. Near fault basement strain change 

depends more on production pattern variation compared to injection pattern variation as more 

compaction occurs. Unbalanced target formation Injection-production activity can lead to 

increased strain change and seismicity in the basement. Results show that the strain change and 

induced seismicity in the reservoir basement increase as the ratio of target formation  production 

to injection  rate increases. Induced seismicity is more related to strain change as opposed to only 

pore pressure change.  
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5.2 Recommendations 

Coupled fluid flow with geomechanics simulation is necessary for proper modeling of hydro-

mechanical processes in the oil and gas industry such as waste water injection. The Abaqus and 

CMG test models used in this study are a simplification of the Azle case study assuming a one 

injection and one production well with a single element block in the y direction. The next step in 

the possible expansion of this research work is to look at compaction failure as a result of an 

increase in maximum principal stress. An extension of the working Abaqus and CMG test models 

to a full scale Azle field case with two injectors and seventy producers in order to account for the 

more complex geomechanics effects in an unbalanced injection-production study can be 

attempted. However, there is a challenge with realizing a full scale Azle model in Abaqus due to 

the difficulty and tedious nature in precise definition of multiple wells and the absence of the 

ability to specify well completion and operation schedule when compared to CMG. Another way 

to approach the development of coupled model for induced seismicity study is to develop a 

simulation code from scratch based on the fundamental equations, discretization and coupling 

techniques for flexibility. However, this approach is much more time consuming and requires a 

deeper undersanding of the finite element and finite difference discretization methods. The goal 

for the full scale Azle study is to further illustrate the necessity for coupled poroelastic model to 

explain complex geomechanics interaction in the reservoir basement and induced seismicity due 

to an unbalanced production-injection operations in areas with underlying fault systems. The 

overall significance and value of this research project to the industry is to provide a basic idea of 

reservoir geomechanics implications as well as guidance on best practices regarding waste water 

injection especially in areas with previous seismic history. 
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APPENDIX A 

CMG FORMULATION DETAILS 

A.1 Fluid Flow 

CMG employs the finite difference approach for sequentially solving the fluid flow 

equations and then the geomechanics equations via discretized newton iterations. Darcy’s law 

relates the apparent superficial fluid velocity (𝜐 =
𝑞

𝐴
) to the fluid potential(Φ). 

  
f

q k

A 
   (A.1) 

Where the fluid potential is given by 

 p z    (A.2) 

For the 2D case considered in this study, only the contribution of fluid pressure is considered for 

the flow potential. Darcy’s law simplifies to becomes 

  
f
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   (A.3) 

The above version of Darcy’s law assumes a non-Darcy coefficient of 1 for fluids deviating from 

ideal conditions. 

The governing conservation equation for a single-phase flow in general is given as follows: 
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 (A.4) 

The above assumes a homogenous and isotropic reservoir system, neglecting the effect of gravity 

with constant reservoir and fluid properties. For a slightly compressible fluid, the reservoir fluid 
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density (𝜌) and formation volume factor (𝐵𝑓) can be described as functions of fluid pressure at a 

current and initial states as well as fluid compressibility. 

  1i f ic p p        (A.5) 
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For slightly compressible rock, then the porosity varies with pressure. Hence the rock 

compressibility (𝑐𝑅) is given by: 
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(A.7) 

The conservation principle needs to be modified in order to account for deformations. Assuming 

that the simulator grid is attached to and deforms with the porous medium such that the bulk 

volume and volumetric strain apply equally to all grid cells in the simulated system. The altered 

conservation of fluid in a deformable porous medium (Denney et al 2006) is given by: 

     1  .  .f v f f f

f

k
p b Q

t
   



 
              

ò  (A.8) 

Where 𝜌𝑓 is the fluid density, 𝜖𝑣 is the volumetric strain, 𝑏 is the body force per unit mass of fluid, 

𝑘 is the permeability, 𝜇𝑓 is the fluid viscosity, 𝑄𝑓 is the flow rate of fluid at source or sink location, 

and  𝜙 =
𝑉𝑝

𝑉𝑏
 is the true porosity (Settari et al 1998) defined as the ratio of the current pore volume 

to the current bulk volume. The volumetric strain defined in the altered mass conservation flow 

equation allows the conservation principle to account for the changes in the porous media bulk 
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volume. In order to incorporate the porous media deformation into a conventional simulator, 

Denney et. al (2006) propose a “reservoir porosity” term (𝜙∗) which is a function of the volumetric 

strain to replace the true porosity in the altered mass conservation principle equation. 

  * 1 v  ò  (A.9) 

Therefore the altered mass conservation equations which can be implemented as the final fluid 

flow equation in a conventional simulator becomes: 
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 (A.10) 

The above expression now accounts for the porous media deformation by virtue of the reservoir 

porosity term which acts as the link (coupling parameter) between the fluid flow and geomechanics 

equations in CMG. 

In a similar fashion, the energy conservation principle for a reservoir system with time variant 

temperatures can be described as a function of the reservoir porosity term. 
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 (A.11) 

Where 𝑄ℎ is the heat loss/gain, 𝑇 is the temperature, 𝜅 is the thermal conductivity, 𝜌 is density 

while 𝑈𝑓 and 𝑈𝑟 are the fluid and rock enthalpies respectively. However, in this study the energy 

conservation principle is not employed because it is assumed that temperature changes over time 

are insignificant which may not necessarily be the case in reality. 
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A.2 Geomechanics 

Assuming a homogenous, isotropic and symmetric material with a very small strain 

compared to unity, the geomechanical force equilibrium equation states that the gradient of the 

total stress tensor is balanced by the sum of all the body force which accounts for gravity. 

 . 0B    (A.12) 

The kinematic strain-displacement relationship, which is approximated from the Green-Lagrange 

infinitesimal strain tensor, is given by 
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ò  (A.13) 

From the concept of effective stress, the constitutive stress-strain relationship applies 

 : α p IC  ò  (A.14) 

Where the tangential stiffness tensor is given by 

 
 

  

   

   

   

 

 

 

 

 

 

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0 0

0

1 1

1 1

1 11

1 21 1 2

2 1

1 2

2 1

1

0 0 0 0

2
0 0 0 0

2 1
0

v v

v v

v vE v
C

vv v

v

v

v

v

v

v v

v v

v v

 

 

 


 









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







 (A.15) 

 



 

75 

 

 

Substituting the kinematic strain-displacement relationship and the constitutive stress-strain 

relationship into the geomechanics force equilibrium equations, the final geomechanics combined 

formulation becomes 

   1
: α p I+ g

2

T
C u u 
  

       
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 (A.16) 

According to the CMG STARS solution guideline manual, given an applied force, the 

displacement equation is first solved to obtain displacements. Results go into the kinematic strain-

displacement relationship to obtain the stress tensor after which the constitutive stress-strain 

relationship is employed to obtain the effective stress tensor. 

 

 

 

A.3 Two-Way Iterative Coupling Using Finite Difference Approach 

The two-way finite difference iteratively coupled strategy between CMG STARS and the 

geomechanics module is explored in SPE 97879 (Tran et. al 2004, 2005). However only parts 

pertinent to the coupled fluid flow-geomechanics formulation are provided within the context and 

scope of the current study. As discussed in Appendix A.1, the “reservoir porosity” coupling term 

(𝜙∗) which is a function of the volumetric strain, makes the two-way (sequential or iterative) 

coupling process possible. The linearized equivalent form for the discretization of the reservoir 

porosity two-way coupling term can be expressed as a function of formation compressibility 

coefficient (𝑐𝑛
𝑜) while accounting for the entire grid’s geomechanical response to pressure change 

calculated in the geomechanics module.  
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Where (𝑛) and (𝑛 + 1)  are the time step counter for the current and next time steps. 
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 (A.19) 

Where 𝛼 is the biot number, 𝜎𝑚 is the mean stress, 𝑐𝑏 is the bulk compressibility, 𝑐𝑟 is the 

solid rock compressibility, Г is the boundary constrained factor  while 𝑉𝐵 and 𝑉𝑃 are the current 

bulk volume and pore volumes respectively. It is important to note the temperature effects in the 

above compressiblity coefficient and discretized reservoir porosity formulation has been neglected 

within the scope of the current study and only pressure terms are included in the above 

discretization.  

The following formulation describes the process of updating permeability due to shearing. 

Changes in permeability with stress and strain can be measured by laboratory experiments and 

determined as a function of porosity or volumetric strain or mean stress. The absolute permeability 

due to shearing can be defined empirically as a function of volumetric strain from (Li et al., 2006) 

as follows: 

  0 1ln /  n vk k C ò  (A.20) 

Where 𝑘 and 𝑘0 are, respectively, the permeability at the current sheared and initial conditions and 

𝜖𝑣 is the volumetric strain. Li et al., 2006 derives the Touhidi-Baghini parameter (𝐶𝑛1) to yield:  
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 

 (A.21) 

𝑎 and 𝑏 are constants which are determined from experimental data. Assuming both constants are 

equal according to the Chardabella terms (𝑎 = 𝑏 = 𝐶𝑎𝑏), the empirical permeability relationship 

due to shearing can be written as: 

  
0

0ln /  ab
v

C
k k


 ò  (A.22) 

After discretization, the fluid flow equations can be partitioned as shown below 

     22 0 p D FluidFlB ow   (A.23) 

While the geomechanics equations are partitioned as 

     11 u E GeomechA anics   (A.24) 

Where 𝐴1 is the stiffness matrix and 𝐸1 is the load vector for the geomechanics part while 𝐵2  and 

𝐷2 are the transmissibility-accumulation and source-sink terms respectively for the fluid flow part. 

The final fluid flow and combined geomechanics equations are numerical solved by imposing time 

stepping on a grid to obtain the discrete pressure and displacement unknowns. In the iterative 

sequential (two-way) coupled approach, for a given tur porosity and volumetric strain values, the 

pressure for each grid cell is solved first from the final fluid flow equation before the displacement 

is solved from the geomechanics combined formulation. The conservation principle is inherently 

satisfied in the above two-way coupling approach because when the altered fluid flow equation 

converges, the current updated coupling parameter of the newton iteration (𝜙𝑘
∗) is equal to (𝜙𝑛+1

∗ ) 
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and hence the reservoir porosity is conserved (an update in geomechanics coefficients does not 

change the reservoir porosity or violate conservation principle). 

 The two-way iteratively coupled approach used is CMG is different from the fully coupled 

approach because the pressure and displacement unknown variables are solved separately with 

feedback, not simultaneously. The pressure solution from the fluid flow discretized module is fed 

into the discretized geomechanical module where the displacement solution is obtained. The 

iterative two-way coupling is made possible via the coupling parameter instead of a coupling from 

simultaneous discretized matrix equations as occurs in the fully coupled scenario. 
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APPENDIX B 

ABAQUS FORMULATION DETAILS 

B.1 Fluid Flow 

While the same fundamental fluid flow and geomechanics equations are solved in both 

Abaqus and CMG, the method of discretization and coupling are different. Abaqus employs the 

finite element method using gauss integration point formulation, interpolated shape functions, and 

backward Euler approximation to simultaneously solve a system of equations both pressure and 

displacement. However only parts pertinent to the coupled fluid flow-geomechanics formulation 

are provided within the context and scope of the current study. Another more general 

representation of the porous media fluid flow description (analogous to Darcy’s law) known as 

Forchheimer’s law is employed as illustrated in the Abaqus theory guide. According to 

Forchheimer’s law, high flow velocities can reduce the effective permeability and lead to a choked 

pore fluid flow. For pore fluid flow, Forchheimer’s law can be written as follows: 

  1 . .s w
w w w

w

k P
Q V V k

x
 



 
    

 
 (B.1) 

Where 𝑄 ̇⃗⃗ ⃗⃗  is the volumetric flow rate per unit area of a particular wetting fluid, 𝑉𝑤⃗⃗⃗⃗⃗ is the fluid 

velocity, 𝛽 is a velocity coefficient, 𝑘 and 𝑘𝑠 are the permeability of a fully saturated medium and 

dependence of permeability on the saturation of the wetting fluid (𝑘𝑠|𝑠=1 = 1 ) , while 𝑃𝑤 and 𝛾𝑤 

are the wetting fluid pore pressure in spatial coordinate 𝑥⃗ and specific weight respectively. At low 

fluid flow velocities (𝛽 = 0), Forchheimer’s law becomes a good approximation of the well-

known aforementioned Darcy flow. 
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 𝑄⃗⃗̇ = −
Ҡ

𝛾𝑤
(
𝜕𝑃𝑤

𝜕𝑥⃗
− 𝛾𝑤) (B.2) 

Where Ҡ is the hydraulic conductivity,  𝛾𝑤and 𝜌𝑤 are the specific weight and density of the wetting 

fluid, 𝜇𝑓 is the fluid viscosity, 𝑔 is the gravitational constant while 𝑘 is the permeability of the 

rock. For soils consolidation problems like the one in this study, the fully saturated permeability 

is given as a function of void ratio. Comparing the above Forchheimer expression at low pore fluid 

flow velocities in relation to the Darcy Law, a simplified expression for the hydraulic conductivity-

permeability relationship can be obtained. The hydraulic conductivity (Ҡ), the term through which 

permeability is defined in Abaqus, is then defined as a function of permeability(𝑘).  

 Ҡ =
𝛾𝑤 𝑘

𝜇𝑓
=

𝜌𝑤𝑔 𝑘

𝜇𝑓
 (B.3) 

The final Forchheimer law form equivalent to Darcy’s law is given by 

 𝑄⃗⃗̇ = −Ҡ(∇𝐻) (B.4) 

Where 𝐻 is the dimensionless head.  

The continuity equation, required to equate the rate of increase of in the fluid mass stored at a node 

to the rate of mass of fluid flowing into the node within a given time increment, is integrated in 

time using the backward Euler approximation. This equation is satisfied approximately in the finite 

element model by using excess wetting liquid pressure (𝑃𝑤) as the nodal variable interpolated over 

the elements. The total derivative of the integrated variational form of the continuity statement 

with respect to the nodal variables is required for the newton iterations employed for solving non-

linear, coupled, equilibrium equations.  
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For a relatively incompressible wetting liquid in a porous medium, the continuity equation in terms 

of the finite element approximation variational form equates the time rate of change of a given 

mass of wetting fluid to the addition of fluid mass across the surface.  

     
1

    · w w t w w w

V S

d
J n n dV n n V dS

J dt
      (B.5) 

The nodal continuity statement by virtue of the divergence theorem for an arbitrary volume, can 

be written as: 

     
1

    0w w t w w w

d
J n n n V

J dt x
 


  


 (B.6) 

Where 𝑉𝑤⃗⃗⃗⃗⃗ is the average velocity of the wetting fluid relative to the solid phase (seepage velocity), 

𝐽 is the ratio of the fluid volume in the current configuration to the fluid volume in the reference 

configuration,  𝑛⃗⃗ is the outward normal to the surface (𝑆), 𝜌𝑤 is the density of the wetting fluid, 

𝑛𝑤 and 𝑛𝑡 are the volume ratio of free wetting fluid and the volume ratio of trapped fluid at a point. 

Rewriting the above expression in the weak form, and employing an arbitrary continuous wetting 

fluid pore pressure variational field test function (𝛿𝑃𝑤), Abaqus solves the continuity statement 

normalized with the wetting fluid density at a reference state (𝜌𝑤
𝑖 ) by integrating approximately 

in time using the backward Euler formula: 

 

   
1

   

·  0

w w w w
w w t w t w wi i i

w w wV t

w
w w wi
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P
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t P n n V dS
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
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




     
       

     

 
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 





 (B.7) 
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The discretized equilibrium equations together with the continuity formulation for a wetting fluid 

in a porous media described above both define the state of the porous medium (Abaqus 2014 

guide).   

The same governing conservation equation for a single-phase flow assuming a liquid with small 

compressibility (𝑐𝑓) applies.  

 
 

   q
t





  


         P   (B.8) 

 
 f ic p p

ie 
    (B.9) 

However, the discretization approach for the finite element method is different from the finite 

difference method employed as shall be seen shortly.  Assuming general natural boundary 

conditions 
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
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 (B.10) 

Where Ω is the entire model domain, while Γ1 and Γ2 are the boundary regions where the flow rate 

and pressure boundary conditions are respectively defined. Discretization of the fluid flow 

equation by applying the concept of the Galerkin orthogonality using the residual method with a 

transposed arbitrary weight functions (𝑤) yields 

  
 

   
1 2

  0
poreT T T

V
w q d w q q d w p p d

t


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 

 
           
 
 

    (B.11) 
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Assuming that the unknown variable is the pressure, then the pressure boundary integral on the 

boundary region is satisfied  
2

0Tw p p d


 
   

 
 
 . 

Let the arbitrary weight function be replaced by finite element shape functions as follows: 

 
w N

w B



 
 (B.12) 

Hence, the Galerkin orthogonality for the fluid flow formulation in term of pore volume (𝑉𝑝𝑜𝑟𝑒) 

becomes: 
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 (B.13) 

The discretization of the pore volume rate of change term 
 poreT

V
N d

t

  
   

  
  

  above can be 

obtained in a variety of ways. For this study, it is obtained according with the small liquid 

compressibility assumption and by the chain rule according to the following formulation 

   poreT T T

pore pore f

VP
N V d N V c d N d

t t t
  

   
          

    (B.14) 

For isotropic problems, the pore volume (𝑉𝑝𝑜𝑟𝑒) itself is defined as follows: 
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The pore volume discretization then becomes 
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(B.16) 

By the Gauss divergence theorem, in terms of the unit normal (𝑛⃗⃗), chain rule and substituting in 

the descritized pore volume term, the discretized fluid flow equation is transformed to become: 
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 (B.17) 

Where 𝜌𝑉𝑝𝑜𝑟𝑒𝑐𝑓𝛩
 is evaluated at the element center. The displacement,(

𝜕𝑢

𝜕𝑡
)
𝑒
= 𝑢̇𝑒, and 

pressure, (
𝜕𝑃

𝜕𝑡
)
𝑒
= 𝑃̇𝑒,partial derivatives are evaluated at the nodal point and can be moved outside 

of the intergrals while the transmissibility term evaluated upstream(𝑢𝑝), 𝑇 =
𝜌𝑘𝛿𝐾

𝜇
, for stability 
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and is introduced for convenience. The pressure is implicitly evaluated. Therefore, the final 

discretized form of the fluid flow equations in the finite element framework becomes: 
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 (B.18) 

Since the volume of integration of the source and sink terms are simply production and injection 

from fluid wells, the line integration approximation applies such that 

 
T TN qd N qdl             (B.19) 

In customary matrix form, the final discretized form of the fluid flow equations within the 

Lagrange finite element framework becomes: 
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(B.21) 

Where 𝐾̅ is the transmissibility-pore volume term, 𝑆 is the compressibility-pore volume term, 

while 𝐹𝑞
𝑒 and 𝐹𝑄

𝑒 sink-source well and boundary terms respectively. 
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B.2 Geomechanics 

Assuming a homogenous, isotropic and symmetric material with a very small strain 

compared to unity, the geomechanical force equilibrium equation states that the gradient of the 

total stress tensor is balanced by the sum of all the body force which accounts for gravity. 

 . 0B    (B.22) 

The discretized equilibrium statement for a porous medium is defined in Abaqus by the principle 

of virtual work for the volume under consideration in its current configuration at a given time.  
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Where 𝛾𝑤 is the specific gravity of the wetting fluid, 𝜎⃗ is the Cauchy stress, 𝑡 are the surface 

tractions per unit area (𝑆), 𝑛𝑓 is the total volume of wetting fluid (free plus trapped) per unit 

volume in the current configuration, 𝑓 is the body force per unit volume (𝑉) while 𝛿v⃗⃗  and 𝛿𝜀 are 

respectively the virtual velocity field and the virtual rate of deformation both of which are a 

function of the Lagrangian framework interpolation function (N⃗⃗⃗
𝑁
). The most general statement of 

the virtual work principle with assumed independent incremental virtual velocity field, 𝛿v, can 

then be expressed more familiarly as a balance between internal (𝐼𝑁) and external (𝑃𝑁) acting 

force arrays such that the virtual velocity field cancels out as seen below: 
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(B.24) 

For this study, the virtual work principle can be applied such that for a body in equilibrium with 

gravitational body forces and applied forces, the sum of energy of the applied loads due to external 

work (𝛿𝑊) and the strain energy stored (𝛿𝑈) during the virtual displacement of the domain should 

sum up to zero.  

 0W U    (B.25) 

Using the same shape functions as done in the fluid flow module,(𝑁 𝑎𝑛𝑑 𝐵), of the Lagrangian 

finite element framework, the displacement (𝑢), strain (𝜀) and net stress (𝜎𝑛𝑒𝑡) are discretized as 

follows: 
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Where 
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Considering a virtual displacement at the (𝛿𝑢𝑒) nodes, the work done (𝛿𝑊) due to external surface 

stress (𝑇) and the strain energy (𝛿𝑈) stored in the entire domain become 
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Hence for equilibrium in terms of the introduced shape functions 
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Therefore, the final discretized form of the geomechanics equations in the finite element 

framework becomes: 
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In customary matrix form, the final discretized form of the geomechanics equations within the 

Lagrange finite element framework for a master element ( 𝑒)becomes: 
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Where 𝐾𝑒 is the bulk stiffness term, 𝐻𝑒 matrix (effective) stiffness term, while 𝐹𝑒 and 𝑇𝑒 body 

force and nodal traction force load terms respectively. When the above fundamental geomechanics 

elasticity equations are assembled for all the finite elements in the domain, a set of linear equations 

can be solved with respect to the nodal displacements. 
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B.3 Fully Coupled Coupling Using Finite Element Approach 

The fully coupled finite element coupled strategy in Abaqus is detailed in various literature. 

An extensive Lagrange finite element formulation can be found in the course material for “finite 

element method for geomechanics problems in oil industries” at Texas A&M University (Morita 

2015). Abaqus employs the finite element method using gauss integration point formulation, 

interpolated shape functions, and backward Euler approximation to simultaneously solve a system 

of equations both pressure and displacement. However, only parts pertinent to the coupled fluid 

flow-geomechanics formulation conducted in this study are provided within the context and scope 

of the current study. It is important to note the temperature effects have been neglected within the 

scope of the current study and only pressure terms are included in the above discretization.  The 

discretized final system of equations for the fluid flow and geomechanics are fully coupled and 

numerical solved simultaneously by imposing time stepping on a grid to obtain the discrete 

pressure and displacement unknowns as shown below 
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Where the matrix coefficients from the fluid flow and geomechanics formulation are derived in 

Appendix B.1 and B.2. The fully coupled approach used in Abaqus is different from the two-way 

iteratively coupled approach because the pressure and displacement unknown variables are solved 

simultaneously using discretized matrix equations instead of a two-way feedback approach. A fully 

coupled solution is achieved through 𝐾̅𝑒 and 𝐾 along the coupling term diagonal. 
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APPENDIX C  

UNIT CONVERSION- CMG VS ABAQUS 

C.1 Unit Tables 

Care must be taken when working with input values and units across different softwares. 

In general CMG uses field units. However, there are a few exceptions where SI units are used as 

is the case for temperature and flowrate as stated in the simulation manuals. For coupled diffusion-

displacement problems in Abaqus Standard, care was taken when choosing the units of the problem 

for consistency. This is because the coupled equations may be numerically ill-conditioned if the 

choice of units are mixed thereby causing the output values generated by equations from two 

different fields to differ by many orders of magnitude. In general, the International System of units 

(SI) were used for all Abaqus inputs in this study. Fig C.1 below summarizes a few of the key unit 

conversion factors and tables which are relevant for the study in this thesis. 

 

Fig. C.1 – Conversion Factor and Unit Tables Summary 
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C.2 Hydraulic Conductivity-Permeability Sample Conversion 

A good example of when care of unit consistency must be exercised is the conversion 

between permeability in CMG to the hydraulic conductivity in Abaqus. As seen in chapter 2, 

Forchheimer’s law is a more general form of a more specific Darcy’s law (low velocity flow only) 

which describes porous media fluid flow. Fig C.2 compares the similarities between both porous 

media fluid flow laws and the connection between hydraulic conductivity and permeability. 

Forchheimer equations are on the left while Darcy’s law equations are on the right side of the 

figure below. 

 

Fig. C.2 – Forchheimer-Darcy Law Comparison 
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Fig C.3 below illustrates the correct unit conversion in detail which comes from comparison 

between the Forchheimer and Darcy laws for porous media fluid flow. The conversion factors for 

the respective units are summarized in Fig C.1 

 

Fig. C.3 – Hydraulic Conductivity- Permeability Conversion 

 


