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ABSTRACT

The complexity of computation hardware has increased at an unprecedented rate for

the last few decades. On the computer chip level, we have entered the era of multi/many-

core processors made of billions of transistors. With transistor budget of this scale, many

functions are integrated into a single chip. As such, chips today consist of many hetero-

geneous cores with intensive interaction among these cores. On the circuit level, with the

end of Dennard scaling, continuously shrinking process technology has imposed a grand

challenge on power density. The variation of circuit further exacerbated the problem by

consuming a substantial time margin. On the system level, the rise of Warehouse Scale

Computers and Data Centers have put resource management into new perspective. The

ability of dynamically provision computation resource in these gigantic systems is crucial

to their performance. In this thesis, three different resource management algorithms are

discussed. The first algorithm assigns adaptivity resource to circuit blocks with a con-

straint on the overhead. The adaptivity improves resilience of the circuit to variation in a

cost-effective way. The second algorithm manages the link bandwidth resource in applica-

tion specific Networks-on-Chip. Quality-of-Service is guaranteed for time-critical traffic

in the algorithm with an emphasis on power. The third algorithm manages the computation

resource of the data center with precaution on the ill states of the system. Q-learning is em-

ployed to meet the dynamic nature of the system and Linear Temporal Logic is leveraged

as a tool to describe temporal constraints. All three algorithms are evaluated by various

experiments. The experimental results are compared to several previous work and show

the advantage of our methods.

ii



DEDICATION

To my family.

iii



ACKNOWLEDGMENTS

It has been a long way in pursuit of a doctoral degree. In the years I spent in Texas

A&M, there were times of exuberance, disappointment, frustration, and ecstasy. Along

the way I received great help from many people, some I am close with, some I admire and

look up to, and some I do not even know the name of.

First and foremost, I want to thank my advisor, Professor Jiang Hu, for being a great

guidance in research and in life. His tolerant attitude, strong work ethic and high standards

for himself are true examples of what a professional should be like.

I would also like to express my gratitude for Jiafan Wang, Yiren Shen and Gongming

Yang. There were many bumps and obstacles during the projects we worked together.

They showed great patience and worked hard in the process.

I met many friends in Mathworks, Natick where I spent half a year doing my intern-

ship. I want to thank my manager Andy Bartlett for giving me the opportunity. I had

many inspiring discussions with my colleague Evangelous Denaxas. And many of my

best memories there are with Weijia Zhang, who is always up for the bigger challenge.

Lastly, I need to thank my family and Dr. Yining Huang for their support. They always

bring up the best of me.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Professor

Jiang Hu [advisor], Professor Paul Gratz and Professor Shuguang Cui of the Department

of Electrical & Computer Engineering and Professor Dilma Da Silva of the Department of

Computer Science & Engineering.

The experiments presented in section 1 were conducted in collaboration with Jiafan

Wang of the Department of Electrical & Computer Engineering and were published in

2015 in an article listed in the Biographical Sketch.

All other work conducted for the thesis (or) dissertation was completed by the student

independently.

Funding Sources

Graduate study was supported by research funding from Semiconductor Research Cor-

poration.

v



NOMENCLATURE

LR Lagrangian Relaxation

ABB Adaptive Body Bias

FBB Forward Body Bias

DAG Directed Acyclic Graph

SSTA Statistical Static Timing Analysis

PCA Principal Component Analysis

NoC Networks-on-Chip

QoS Quality-of-Service

GS Guaranteed Service

BE Best Effort

TDM Time Division Multiplexing

SAT Boolean Satisfiability

ILP Integer Linear Programming

CNF Conjunctive Normal Form

LTL Linear Temporal Logic

MDP Markov Decision Process

AP Atomic Proposition

DRA Deterministic Rabin Automaton

DoD Depth of Discharge

DRF Dominant Resource Fairness

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. RESOURCE MANAGEMENT IN COMPUTER HARDWARE . . . . . . . . . 1

1.1 Resource Management in Different Scope . . . . . . . . . . . . . . . . . 1
1.2 An Algorithmic Approach . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. OPTIMIZATION FOR ADAPTIVE CIRCUIT . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Lagrange Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Gate Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Variation Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Adaptive Body Biasing . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Static Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Placement and Clustering . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Gate Implementation Selection . . . . . . . . . . . . . . . . . . . 16
2.4.3 Adaptivity Assignment . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Collaborative Gate Implementation Selection and Adaptivity As-

signment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.5 Overview of Adaptivity Assignment Algorithm . . . . . . . . . . . . . . 19
2.5.1 Lagrange Primal Problem: Gate Implementation Selection . . . . 20
2.5.2 Statistical Static Timing Analysis . . . . . . . . . . . . . . . . . . 21
2.5.3 Lagrange Dual Problem . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Adaptivity Assignment Algorithm . . . . . . . . . . . . . . . . . . . . . 24
2.7 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. POWER EFFICIENT QUALITY-OF-SERVICE FOR APPLICATION SPECIFIC
NETWORK-ON-CHIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 NoC Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Router Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Power Efficient QoS . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Boolean-Satisfiability-based Method . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Boolean Satisfiability Problem . . . . . . . . . . . . . . . . . . . 40
3.4.2 Candidate Path Generation . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 SAT Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 In-order Flits Delivery . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Integer Linear-Programming-based Method . . . . . . . . . . . . . . . . 44
3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 48

4. MODEL CHECKING BASED RESOURCE MANAGEMENT IN DATA CEN-
TER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Deterministic Rabin Automaton . . . . . . . . . . . . . . . . . . 57
4.3.3 LTL Constrained MDP . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 LTL-based Resource Management . . . . . . . . . . . . . . . . . . . . . 60
4.5 Power Capping in Distributed UPS Data Center . . . . . . . . . . . . . . 62

4.5.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 LTL Constrained Power Capping . . . . . . . . . . . . . . . . . . 64
4.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



4.6 Fair Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.1 Emulation Platform . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Conventional Job Schedulers . . . . . . . . . . . . . . . . . . . . 76
4.6.3 F+LTL Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



LIST OF FIGURES

FIGURE Page

1.1 Resource management in multiple level. . . . . . . . . . . . . . . . . . . 2

2.1 An example of adaptive circuit through body biasing. . . . . . . . . . . . 5

2.2 Timing constraint of circuit design. . . . . . . . . . . . . . . . . . . . . . 10

2.3 Correlation matrix is defined to model the variation. . . . . . . . . . . . . 11

2.4 Body biasing a transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 An example for Static Timing Analysis. . . . . . . . . . . . . . . . . . . 14

2.6 Overview of algorithm flow. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 An example of dynamic programming algorithm. . . . . . . . . . . . . . 20

2.8 An example of SSTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Power/area-timing tradeoff for circuit c7552. . . . . . . . . . . . . . . . . 30

2.10 Power/area vs. granularity for circuit fft. . . . . . . . . . . . . . . . . . . 31

3.1 Networks on Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Common NoC topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 The layout of an NoC packet. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Router Microarchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 (a) Physical graph; (b) Resource graph. . . . . . . . . . . . . . . . . . . . 38

3.6 A valid flit route that respects the injection time and latency constraint . . 39

3.7 Algorithm of candidate paths generation. . . . . . . . . . . . . . . . . . . 41

3.8 The maximal number of packets can be routed. Cases 1-5: 6 × 6 mesh;
cases 6-10: random topology. . . . . . . . . . . . . . . . . . . . . . . . . 45

x



3.9 Normalized energy comparison for multimedia SoC cases. . . . . . . . . 51

3.10 Energy-latency tradeoff of 3 different cases. . . . . . . . . . . . . . . . . 51

4.1 (a) Single battery is depleted yet no need to cap power demand. (b) A static
formulation: xi and yi are power provided by the power grid and battery,
respectively. Pi are the server power consumption. Ei are the energy left
in batteries. ε is a short time horizon starting from the current moment. (c)
A Linear Temporal Logic formulation: the LTL constraint is transformed
to a state machine that runs dynamically alongside the system. . . . . . . 53

4.2 An overview of LTL-based resources management. . . . . . . . . . . . . 60

4.3 Two power architecture of data centers. . . . . . . . . . . . . . . . . . . . 62

4.4 Battery life deteriorates substantially for deeper discharge cycles. . . . . . 63

4.5 DRA Γφ for power capping constraint. . . . . . . . . . . . . . . . . . . . 67

4.6 Simulation of 10-day trace. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Power demand for peak at 1320 minute with (a) F , (b) ClustCtrl, (c)
F + LTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 F + LTL and hard bounding method on a particular rack with heteroge-
nous job distribution. (a) Power capping by F + LTL. (b) Power capping
is not exerted for hard bounding method and a high battery depletion time
ensues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Modulate n to adjust battery life to a desired level. . . . . . . . . . . . . . 74

4.10 200 MapReduce jobs are randomly assigned to 11 users. The job submis-
sion lasts for 2 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 The height of the last bar shows the average performance. The evenness
of the bars indicates the resource allocation fairness. Max-throughput and
DRF schedulers are on the extremes of the performance-fairness tradeoff.
LTL falls in-between. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Performance-fairness tradeoff of DRF, 5 LTL and 2 IPM schedulers. . . . 79

4.13 Max-throughput vs. round-robin. Round-Robin scheduler enforces max-
min fairness with a throughput degradation (20%). . . . . . . . . . . . . . 82

xi



4.14 The max-throughput scheduler is augmented with starvation-free LTL con-
straint φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.15 Throughput-fairiness trade-off by modulating m. A continuous trade-off
curve is achieved between max-throughput scheduler (diamonds) and round-
robin scheduler (circles). . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



LIST OF TABLES

TABLE Page

2.1 Naïve method with only forward body bias (FBB). Power overhead, total
area overhead, number of adaptive blocks% are denoted by ∆W (µW ),
∆A (unit), #B, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Our method with only forward body bias (FBB). Gate area overhead% is
denoted by ∆Ag (unit). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Naïve method with forward body bias and reverse body bias (ABB). Power
overhead, total area overhead, number of adaptive blocks% are denoted by
∆W (µW ), ∆A (unit), #B, respectively. . . . . . . . . . . . . . . . . . 28

2.4 Our method with forward body bias and reverse body bias (ABB). Gate
area overhead% is denoted by ∆Ag (unit). . . . . . . . . . . . . . . . . . 29

3.1 Experimental results on 144 cases with timeout limit as 4 hours. The run-
time T is for only the successful runs. . . . . . . . . . . . . . . . . . . . 43

3.2 Main results for TGFF cases. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Optimality test on small TGFF cases. . . . . . . . . . . . . . . . . . . . . 50

4.1 LTL syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 LTL constrained power capping summary. . . . . . . . . . . . . . . . . . 64

4.3 Simulation and design parameters. . . . . . . . . . . . . . . . . . . . . . 68

4.4 Run time of PRISM model checker. . . . . . . . . . . . . . . . . . . . . 68

4.5 Overall result of the 10-day trace. BatDepTime is the total amount of time
rack batteries are depleted and records hazardous status of the datacenter. 70

4.6 Deterioration of hard bounding method with heterogeneous job distribution. 72

4.7 Increase power budget to achieve the same AvgDoD as F + LTL. . . . . 74

xiii



4.8 Schedulers of different turn-around time and fairness. Jain’s index = 1 is
the most fair case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



1. RESOURCE MANAGEMENT IN COMPUTER HARDWARE

1.1 Resource Management in Different Scope

As the scale of computation system grows, proper resource management is becoming a

crucial part to wield the power of computer hardware. Some examples of the resources to

be allocated and provisioned are memory, cpu time, power budget and network bandwidth.

These resources are usually competed for among instances in a large distributed system.

For example, a data center may have more than 10K servers running collaborative tasks

to perform a single big data analysis job. The servers are not homogenous because the

hardwares are usually replaced batch by batch in a three-year rotation. So the performance

and power profile of the servers may vary by a large extent inside the data center. In

addition, the power supply network forms a hierarchical architecture. Power budget is

split among different domains, racks and ultimately server machines. The complexity

of resource management is well demonstrated considering the power capping problem in

presence of server heterogeneity, location and power supply architecture.

In addition, resource management exists in various level of the system. Take power

management as an example. In the data center level, the voltage and frequency of pro-

cessors can be tuned down and servers can be put into sleep state by the power manager.

In the chip level, part of the circuit that is not essential to the overall performance can

be downsized to save power. The nature of the power management in different level is

also very different. Power consumption of a data center is highly dynamic because of the

workload fluctuation. A proper power manager should adapt its strategy, for example the

power budget allocation, in the run time. The time scale for such adaptation is in hours,

days or even months. In contrast, the computer chips cannot be altered after manufacture.

Power management in this scale is mostly in the design time.

1



Figure 1.1: Resource management in multiple level.
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What makes the problem more complex is the other design goals that are intertwined

with the power management. For instance, to combat variation in the circuit, the ability to

adapt to these variations needs to be added to the circuit. Adaptivity and power is inter-

twined because the power reduction techniques usually squeeze the safety work margin of

the digital circuit, thus increases the need of adaptivity. In network resource management,

power reduction can only be considered when the Quality-of-Services is not hurt. In the

design of a power management policy, these other design goals should also be taken into

account.

1.2 An Algorithmic Approach

In this dissertation, we study the resource management algorithms in different level

of the computing hardware. In section 2, a Lagrangian-Relaxation-based algorithm is de-

signed to optimize the gate implementation of the circuit. The algorithm minimizes the

circuit power consumption and leaves a sufficient safety margin to combat variation for the

circuit with adaptivity injected. The algorithm is run in design time with a probabilistic

modeling of how much variation the circuit may suffer in the run time. In section 3, we

look at the opportunity to tailor a Network-on-Chip specifically for a priori knowledge of

the traffic pattern. We show the possibility to configure the packet routing and link band-

width using a power-aware algorithm. With the help of proper network resource manage-

ment, Quality-of-Service can be achieved in a power efficient manner. In the last section,

we propose a way to enhance conventional resource managers with new design goals and

constraints. The method is based on Q-learning and Linear Temporal Logic (LTL). LTL is

used to formulate desired property of the system and then transformed into a state machine

running alongside the original resource manager. The state machine warns the original re-

source manager about potential violations of the desired property. Our experiments show

the method attains better tradeoff compared to existing methods.

3



2. OPTIMIZATION FOR ADAPTIVE CIRCUIT∗

2.1 Introduction

Since the invention of silicon-based Integrated Circuit (IC), the density of transistors

on a chip has grown exponentially over the years. In 1997, the Intel Pentium II processor

is made of 7.5 million transistors with 350nm technology. Less than twenty years later,

the 22-core Xeon Broadwell-E5 processor registered a transistor count of 7.2 billions with

14nm technology. As the process technology of digital circuit approaches the fundamental

physical limit, this trend is unlikely to continue. Nevertheless, the integration density of

modern IC has brought up great challenges in chip design. One of these challenges is the

effect of variation.

Variation is the difference in the attributes of transistors such as length, width and ox-

ide thickness. Variation is introduced when the chips are fabricated or in use. Sources of

variation include manufacture process [1], device aging [2] and thermal fluctuations [3].

Process variation is the result of imperfections in the manufacturing process. These im-

perfections include the diffraction of light used in lithography, the variation in thickness

when the gate oxide is grown, and the random fluctuation in the number of impurity atoms

doped into the channel region of a transistor. Device aging causes the wear-out effect of

Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI), hence degrades the

speed of transistors unevenly throughout the lifetime of the aging circuit. The temperature

fluctuations of a chip may come from the ambient temperature change or the power dissi-

pation of the circuit itself. An increase in temperature typically causes a decline of carrier

mobility and an increase of interconnect resistance, hence slows down the circuit.
∗Part of this section is reprinted with permission from H. He, J. Wang, and J. Hu, “Collaborative gate implementation selection and 

adaptivity assignment for robust combinational circuits”, in Low Power Electronics and Design, 2015 IEEE/ACM International 
Symposium on, 2015.
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Because of the dwindling process technology, the variation of digital circuits has a

higher and higher impact on the overall circuit. This imposes a big threat to the perfor-

mance as well as the efficiency of the circuit. To compensate for the potential loss in the

speed of transistors, digital designs often have to target for the worst degree of variation

expected. Consequently, the transistors will be over-sized for the typical case, and thus

consume more power and die area.

Adaptive circuit has been recognized as a power-efficient technology to overcome var-

ious variation throughout the entire life of hardware chips. Adaptive circuit contains varia-

tion sensors and tuning units in addition to the original circuit. The power and performance

tradeoff of the circuit is tuned to compensate the variation after manufacture. Because of

the existence of this post-silicon tuning mechanism, the chip design no longer has to tackle

the worst-case scenario. Various tuning mechanism are proposed, such as body biasing [1],

voltage adaptation [4], circuit reconfiguration [5].

Figure 2.1: An example of adaptive circuit through body biasing.
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The effectiveness and overhead of adaptive circuit relies largely on its granularity, or

the amount of circuit that is tuned together. With fine-grained adaptivity [4, 6], the circuit

is able to adjust itself for fine level of variation, but large area overhead is incurred (50%

area overhead for voltage interpolation [7] and 20% in [5, 6]). In contrast, coarse-grained

adaptivity is applied to the entire die uniformly and is mostly for inter-die variations only.

So it has relatively small overhead (0.2% reported in [8]).

The granularity problem limits the application of adaptive circuits. Coarse-grained

adaptive circuit must adapt to the worse-case variation across the die, therefore it may

either boost up the not-so-bad parts, causing unnecessary power increase, or miss the

opportunity to save power in those parts. The fine-grained adaptivity has the ability to

pinpoint the right tuning for circuit blocks of hundreds or thousands of gates. However

without a careful design, the area overhead of the additional adaptivity logic could easily

out shadow its benefits.

In this work, we develop a general algorithm to optimize the adaptive circuit design

with overhead control. Evidently, variation must be accounted and this makes the opti-

mization problem rather difficult. We make use of Lagrangian relaxation (LR) that solves

a multi-objective problem in two layers – subproblem and dual problem. The subproblem

is focused on solution search for the weighted multiple objectives while the dual problem

employs variability-aware models to guide the tradeoff among multiple objectives. As

such, accurate models are used in a lightweight manner without causing too long runtime.

Our work provides a relatively complete adaptivity assignment solution for general

adaptive circuit designs while the works of [9,10] focus on clustering and ABB. Compared

to [11], which is restricted to linear, continuous models, our work is a discrete approach

and compatible with realistic models in industry. Moreover, area overhead is explicitly

handled in our work but neglected in [11]. Experimental results show that our method

usually reduces adaptivity overhead by more than a half compared to a naïve approach.
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When gate area is counted together, our method often reduces the overall overhead by

more than 70%.

2.2 Related Work

In adaptive VLSI circuits, power/performance is tuned by body bias [1], voltage adap-

tation [4], circuit reconfiguration [5] or a combination of them. The purpose of the adjust-

ment is to compensate performance variability due to manufacturing process variations,

device aging, thermal fluctuations, etc.

The effectiveness as well as overhead of adaptive design highly depend on its granu-

larity. Coarse-grained adaptivity, such as uniform adaptivity for an entire processor core,

has relatively small amortized overhead (0.2% reported in [8]). However, coarse-grained

adaptivity is mostly for compensating inter-die variations. When intra-die variations are

more pronounced [12], fine-grained adaptivity [4,6] (in blocks of hundreds or thousands of

gates) brings significantly more power savings. Evidently, fine-grained adaptivity tends to

entail large overhead of sensors, voltage regulators and control circuits (50% area overhead

for voltage interpolation [7] and 20% in [5, 6]).

Obviously, one prefers the power savings from fine-grained adaptivity but not its large

overhead. The adaptivity overhead has been mentioned in several previous works [5–7],

however, it has rarely been a main emphasis. The objective of [9, 10] is to minimize the

overhead of adaptive body bias (ABB), but it assumes ABB is applied to all clusters. An-

other work [13] restricts variation sensors only at timing critical paths so that the overhead

is not excessively large. However, it does not consider control or voltage generation over-

head.

Adaptive design is highly related with conventional circuit optimization. A joint design-

time and post-silicon tuning optimization algorithm is proposed in [11]. It assumes that

gate size can be continuously changed while most of modern designs are based on highly
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discrete cell libraries. Variability-aware discrete gate sizing is discussed in [14,15]. These

works are focused on how to propagate statistical timing information during sizing without

much emphasis on the optimization aspect.

2.3 Background

2.3.1 Lagrange Relaxation

Lagrange relaxation is a mathematical optimization framework that converts a difficult

constrained optimization problem to a simpler relaxed formulation. By solving this relaxed

formulation, it is possible to obtain an approximation to the optimal solution of the original

problem. When the problem has a certain structure, it can be proven that the solution of

the Lagrange relaxation problem is actually optimal.

In the most general form, an optimization problem solves

minx f(x)

s.t. gi(x) ≤ 0

hj(x) = 0

(2.1)

The problem has an objective function f(·), several inequality constraints gi(·) and

several equality constraints hj(·). Lagrange relaxation of the problem is

maxu≥0,v minx Lu,v(x)

Lu,v(x) = f(x) +
∑
i

uigi(x) +
∑
j

vjhj(x)
(2.2)

The Lagrange function Lu,v(x) can be viewed as a relaxation of the original problem.

Instead of having hard equality and inequality constraints, the Lagrange relaxation allows

constraint violations but penalizes the constraint violations in the objective. minx Lu,v(x)

is called the primal problem, and maxu≥0,vD(u, v) = maxu≥0,v minx Lu,v(x) is called
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the dual problem. u, v are called dual variables or Lagrange multipliers. Note the range of

the dual variables for inequality constraint is the half space u ≥ 0.

Lu,v(x) has several interesting characteristics. Firstly, it is a linear function of dual

variables u and v. This means minx Lu,v(x) is concave with respect to u, v. Secondly,

the original problem can be viewed as a min-max problem

minx maxu≥0,v Lu,v(x)

Lu,v(x) = f(x) +
∑
i

uigi(x) +
∑
j

vjhj(x)
(2.3)

If gi(x) ≤ 0 and hj(x) = 0, then the maximizer of Lu,v(x) is ui = 0. Otherwise,

maxu≥0,vLu,v(x) =∞ because either a coefficient of ui is positive, or a coefficient of vj is

non-zero. So the minimization over x in the front will ensure the former condition is met,

which means feasibility of the equality and inequality constraints. As such, the Lagrange

relaxation swaps the minimization and the maximization operation. It can be shown the

min-max problem (original problem) is equivalent to the max-min problem (Lagrange

relaxation) when f, gi, hj are all convex functions.

2.3.2 Gate Sizing

Gate sizing is a well-studied topic in physical design of digital circuits. The input for

the gate sizing process is a circuit with timing requirements. The algorithm adjusts the

gate sizes to increase its power efficiency and to satisfy the timing constraint of the circuit.

Specifically, the circuit under design is represented as a Directed Acyclic Graph (DAG).

The primary inputs of the circuit are the nodes in the graph without fanin. The primary

outputs of the circuit are the nodes without fanout. The timing requirements are the signal

arrival time a on the primary inputs and required arrival time q on the primary outputs. The

timing requirement is that all signals that arrives at the primary inputs at a are transmitted

to primary outputs no later than q.
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Figure 2.2: Timing constraint of circuit design.

Each gate has a discrete number of size options 1×, 2×, .... The size option has an

effect on the power consumption as well as the gate delay. Gate sizing corresponds to the

problem to find a size option for each gate such that the timing constraint is respected and

the total circuit power is minimized.

2.3.3 Variation Modelling

There are two primary types of variations present in the circuit design. The first is inter-

die variation, in which all devices in the chip shift towards the same variation but different

chips bear different variations. The other is intra-die variation, in which the variation’s

impact on the same chip is not uniform. The intra-die variation can cause the components

of the chip design to diverge from the design specifications. This poses a threat to the

functionality and performance of the chips. For example, the timing profile of a computer

chip may become different from the critical path analysis in the design time. In contrast,

the inter-die variation is relatively easier to compensate because it is uniform across the

10



entire chip.

Figure 2.3: Correlation matrix is defined to model the variation.

There can be multiple sources for the intra-die variation such as the variations in chan-

nel length and gate oxide thickness. The variations from different sources are usually

assumed statistically independent. For example, the delay of a single gate d is calculated

as the Taylor expansion

d = d0 +
∑
i

∂d

∂pi
∆pi (2.4)

where pi denotes a single source of variation, ∂d
∂pi

is the derivative of the delay model with
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respect to pi, d0 is the nominal delay.

Note variation ∆pi in quation 2.4 is actually a function of gate position (x, y). The

intra-die variation ∆pi(x, y) is often modeled as a multivariate Gaussian vector over the

spatial location of the 2D circuit [16] [17]. Suppose a circuit is partitioned into 4 blocks,

we can define the correlation of each pair of blocks in a 4×4 matrix Σ. The delay variation

of the gates in each block then follows δdelay ∼ N(0,Σ).

2.3.4 Adaptive Body Biasing

Figure 2.4: Body biasing a transistor.

Figure 2.4 shows the cross section through a MOSFET transistor. Body biasing is

a technology to apply voltage to the substrate of the device. Reverse body biasing, i.e.

applying a negative biasing voltage, is often used to reduce leakage power of the transistor.

The bias voltage Vbs affects both the delay and the leakage power of the transistor.
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Vth = Vth0 + γ(
√

2φF + Vbs −
√

2φF )

Pleakage = VddIsubn + |Vbs|(Ijn + Ibn)

Isubn =
W

L
IS[1− e−

Vdd
VT ]e

−
Vth+Voff

nVT

d =
d0

(Vdd − Vth)α

(2.5)

Pleakage is the leakage power. d is the gate delay. Vdd is the power supply voltage. Isubn

is the sub threshold leakage current. Vth0, γ, φF , Ijn, Ibn.IS, VT ,W, L, Voff , d0, α are de-

vice parameters or empirical constants. It is shown in [9] that Pleakage can be approximated

by a quadratic function of Vbs and d by a linear function.

2.3.5 Static Timing Analysis

Static Timing Analysis (STA) is a tool to analyze the timing of the combinational

circuit in design time. The input of STA is the circuit topology, delays of gates in the

circuit, arrival time a and required arrival time q in the primary inputs and outputs of the

circuit. Figure 2.5 shows the a simple example of STA. Each node in the figure represents

a gate and the delay is given by d. The results of STA are the arrival time a and required

arrival time q on each gate (gates that are not primary inputs or primary outputs).

The arrival time a is calculated by a forward traversal of the circuit graph. The arrival

time at the output of a gate is given by ag = maxi∈fanin(g)(ai + dg). That is, the arrival

time is the worst case arrival time of its fanins plus the gate delay. The arrival time shows

when a signal will propagate to the gate in the worst case. Similarly, the required arrival

time is calculated by a backward traversal. The required arrival time at the input of a gate

is given by qg = mini∈fanout(g)(qi)− dg. The required arrival time shows the time before

which a signal must arrive at the point. Once the arrival time and required arrival time are

obtained for every point in the graph, the slack is calculated as q − a. It shows the how

tight the timing requirement is at that point.
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Figure 2.5: An example for Static Timing Analysis.

2.4 Problem Formulation

The input to our algorithm is a placed combinational circuit, timing constraints and

adaptivity clusters. The combinational circuit can be viewed as a DAG. The nodes in

this graph correspond to digital gates in the combinational circuit. The edges represent

wire connections among gates. A combinational circuit has a set of primary inputs and

outputs, through which the signals flow in and out of the circuit of interest. For all the

primary inputs, the arrival time ai of signals are specified. For all the primary outputs, the

required arrival time qj are specified. Timing constraint is the requirement that the longest

time needed for a signal to propagate from input i to output j is less than qj − ai. In

addition, we assume the circuit has been clustered into a set of blocks B = {B1, B2, ...}.

These blocks are the candidates to which the algorithm will assign adaptivity. If a block

is assigned with adaptivity, the full set of variation sensor, tuning unit and control policy
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implementation will be added to the design for the selected block. Once a tuning level (the

voltage of body-biasing, the power supply of a dual Vdd gate, etc.) is set by the tuning

unit, all gates in the same block will be affected. Note our algorithm decides whether to

assign adaptivity to each block in the design time, but the tuning level is determined by

the variations of the circuit and set in run time. The optimization objective and constraints

include power, timing, robustness to variations and area overhead.

2.4.1 Placement and Clustering

To find the appropriate clustering for a combinational circuit is a non-trivial task. Sev-

eral aspects need to be taken into consideration. First of all, the variation of the clustered

gates should be statistically correlated, since these gates are tuned together. The gates on

the same signal path, for example, have correlated aging effect because they are usually

turned on and off together. Secondly, gates in a circuit are not equally important for the

timing constraint of the whole circuit. When variation is not present, timing of a digi-

tal circuit is determined by a set of critical paths. In the event of variation, path delay

is a random variable, so the non-critical paths in the nominal sense may become critical.

However the gates still impose an uneven impact to the final timing. As such, we want to

make the cluster contain the most impactful gates. In addition, to properly implement the

tuning mechanism by circuit, it is often required for the gates in a cluster to be placed in a

contiguous region.

In our experiment, we only use the spatial location of the placed gates to form the

clusters B = {B1, B2, ...}. However, several work [9] [18] have been published on the

clustering and placement of adaptive circuit. These more sophisticated algorithms can be

easily incorporated into our adaptivity assignment method.
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2.4.2 Gate Implementation Selection

Gate implementation selection is closely coupled with adaptivity assignment problem,

therefore our method performs a joint optimization of the two tasks. Gate implementation

selection is a well-studied area in physical design of digital circuit. After the logic de-

sign of a digital circuit is finalized, the physical implementation of the gates in the circuit

plays an important role on the correctness metric (e.g. timing) as well as the efficiency

metric (e.g. power). Since the major concern of circuit variation is on the timing of the

circuit, it is possible to rely solely on the gate implementation selection to combat the vari-

ation. However, this approach would be inefficient in the sense that all the manufactured

chips must be designed to handle the worst-case variation, while only a small fraction will

actually experience the worst-case variation. With the option to make part of the circuit

adaptive, this worst-case oriented design can be avoid. Since adaptivity itself also incur

an implementation cost, we rely on the algorithm to determine the right trade-off between

adaptivity and gate implementation selection.

In our work, we consider two kinds of gate implementation options: gate size and

threshold voltage. The larger size a gate is implemented in circuit, the faster the gate is

and the more die area it consumes. Similarly, a decrease in the threshold voltage of a gate

will cause an increase in speed as well as leakage power consumption.

Apart from gate size and threshold voltage, we consider the case of Adaptive Body

Biasing (ABB). The adaptive circuit tunes the biasing voltage of the circuit blocks to

compensate for variation. The power and delay model for a single gate v is
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powerv(Vth, Xsize, Vbias) ≈ leakagevVth,Xsize ∗ quadratic(Vbias)

+ αV 2
ddf

∑
u∈fanout(v)

Cu
Vth,Xsize

delayv(Vth, Xsize, Vbias) ≈ linear(Vbias) ∗Rv
Vth,Xsize

∗
∑

u∈fanout(v)

Cu
Vth,Xsize

(2.6)

In equation 2.6, Xsize denotes the size of the gate, Vth denotes the threshold voltage, Vbias

denotes the body biasing voltage level. leakageVth,Xsize ,RVth,Xsize ,CVth,Xsize are the leak-

age power, output resistance and input capacitance of a gate, respectively. These param-

eters for available Vth, Xsize can be found in a standard cell library. Previous work [9]

shows the effect of body biasing on power can be accurately approximated by a quadratic

function quadratic (Vbias) and the effect on delay by linear (Vbias).

2.4.3 Adaptivity Assignment

For each block B = {B1, B2, ...}, the 0-1 decision variable Φ(Bi) chooses whether the

block should become adaptive. If the block is adaptive, the tuning mechanism can offset

the body biasing level of the block to one of several discrete options V 1
bias, V

2
bias, ..., V

n
bias.

The body biasing voltage affects the power and delay of the circuit as formulated in 2.6.

An adaptive block enables the optimization to choose smaller size and higher threshold

voltage implementation for the gates, and thus reduce the average-case power consump-

tion. However, it also pays an area overhead for implementing the tuning mechanism in

circuit. We approximates these overhead using a linear function.

A(Bi) = k
∑
v∈Bi

Areav + b (2.7)
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2.4.4 Collaborative Gate Implementation Selection and Adaptivity Assignment

We formulate the gate implementation selection and adaptivity assignment problem as

a joint optimization.

min EVbias(power(
~ξ, Vbias))

subject to maxVbiasP(av + delayv(~ξ, Vbias) + δdelayv < au) > probability limit

A(G) =
∑
i

A(Bi)ΦBi < overhead limit

(2.8)

We let ~ξ = (Vth, Xsize) for simple notation. G is the circuit. av is the signal arrival time

of gate v. av for the primary inputs and outputs are constants obtained from the design. av

for the intermediate nodes are variables set by the optimization.

In this formulation, the objective is set to minimize the expected power consumption

of the circuit. The expectation is over the body biasing level Vbias tuned by the adaptive

circuit. Because the variation is random, the tuning level Vbias is also random. To calculate

EVbias(power(
~ξ, Vbias)), the probability of each tuning level is required. We assume a

monotonic relation between the minimum slack of the circuit and the tuning level. The

probability is calculated by quantizing the distribution of the minimum slack in the circuit.

EVbias(power(
~ξ, Vbias)) =

∑
i

P(V i
bias ∗ power(~ξ, V i

bias)

P(V i
bias) = P(li < min slack < hi)

(2.9)

The timing constraint asserts the gate needs to be fast enough to propagate signal from

v to u, when the tuning level Vbias is set to the the highest compensating level. Because

the variation δdelay is Gaussian, we can easily translate the probability limit to a variance

limit. For example, 99.7% probability means the gate delay must have at least 3 standard

deviation slack.
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2.5 Overview of Adaptivity Assignment Algorithm

Gate implementation 
selection

Initialization

Lagrangian 

subproblem

Adaptivity assignment

Lagrangian 

dual problem

Timing analysis

Figure 2.6: Overview of algorithm flow.

The overall algorithm is shown in figure 2.6. The algorithm iterates between gate im-

plementation selection and adaptivity assignment. The gate implementation selection part

is handled by Lagrangian relaxation (LR). Its formulation is to minimize power dissipation

subject to timing constraints with consideration of variations. Area is not explicitly in the

formulation as power and area are correlated in gate sizing. By solving the problem in two

layers of Lagrangian subproblem and dual problem, the calls to SSTA can be restricted to

the dual problem part. Then, the subproblem can be solved using simple models while the

overall solution quality is not compromised due to the SSTA guidance in solving the dual

problem. The problem size of adaptivity assignment is significantly smaller and allows

SSTA to be called more frequently. Therefore, the adaptivity assignment is solved by a

sensitivity-based heuristic.
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2.5.1 Lagrange Primal Problem: Gate Implementation Selection

The primal problem follows the standard Lagrangian Relaxation framework. The con-

strained optimization problem described in 2.8 is transformed to an unconstrained primal

problem. In this step, the adaptivity assignment is fixed. This means whether a block has

adaptivity is known for the primal problem.

min L~µ(~ξ) = E(power(~ξ)) +
∑
v

µv(delayv(~ξ) + δdelayv) (2.10)

where ~µ is the Lagrangian dual variables, ~ξ is the decision variables for gate size and

threshold voltage [19]. powerv(·) is the power model of an individual gate. delayv(·) is

the delay model of the gate v.

The objective is a weighted sum of power consumption and timing constraint, the La-

grangian dual problem is responsible for finding the optimal weights µv to balance power

and speed. Because the problem is combinatorial, we employ a dynamic-programming-

based previous work [20] to solve it. Here we use a simple example to show the algorithm.

Figure 2.7: An example of dynamic programming algorithm.

Figure 2.7 shows a simple circuit of 3 gates. The algorithm starts from the primary
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outputs and work its way back in reverse topological order. The NOT gate has 3 options

for gate implementation and the OR gate has 2 options. Each option achieves a different

trade-off between the power consumption and the speed of the gate. Because the NOT

gate and the OR gate are only examined individually at this stage, it is not possible to tell

which option is better. So all options are kept in the gates. In the next stage, the upstream

AND gate is examined. A cross product of the options of its fan-out gates is performed.

This includes all possible combination of gate implementation of two branches of the

AND gate. Then, the algorithm carries out a pruning operation on the 6 cross product

options. An option is said to be “inferior” if both the weighted objective and the input

capacitance are larger than the other option. The weighted objective indicates the power

and speed cost of downstream gates. The input capacitance determines the option’s effect

on upstream gates. After the pruning operation, only the options that are in the Pareto

frontier of upstream-downstream tradeoff are kept.

2.5.2 Statistical Static Timing Analysis

Static Timing Analysis (STA) is widely adopted to analyze the timing aspect of digital

circuit. In essence, STA finds the worst-case signal arrival time of a gate’s inputs, and

add the delay of the gate itself. When large variation is present, the gate delay becomes

a random variable. More importantly, the delay of different gates are correlated because

the variation is correlated. A proper timing analysis is supposed to represent and calculate

the correlation among gates in the circuit. To this end, several Statistical Static Timing

Analysis (SSTA) methods are proposed. In this work, we use a previous work [17] to

perform SSTA for the circuit under design.

The work in [17] models the spatial correlation of variation as a Gaussian multivariate

function. The circuit is first partitioned into blocks L1, L2, ..., Ln and a n × n correlation

matrix Σ is specified. Σ captures the correlation of any two blocks. Then a Principal
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Component Analysis (PCA) is performed. The result of PCA enables the representation

of gate delay variation in the form

delayv = d+
∑
i

kiεi (2.11)

where d is the nominal delay that is calculated through the same procedure as STA, ki

are the PCA coefficients and εi are standard Gaussian variables εi ∼ N(0, 1) that are

independent with each other.

The power of this representation lies in its ability to compute correlation quickly. For

example, if gate A has delay dA + 3ε1 − 2ε2 and gate B has delay dB + 2ε1 + 2ε2, then

corr(A,B) = E[(3ε1 − 2ε2) ∗ (2ε1 + 2ε2)] = E[6ε21 − 4ε22] = 2.

Figure 2.8: An example of SSTA.

Again we use an example to show how SSTA works. Figure 2.8 is an example of
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circuit broken into 4 blocks. After performing PCA on the correlation matrix of the 4

blocks, we obtain the variational delay of gate A,B,C,D,E in terms of two independent

Gaussian variables ε1 and ε2. Note gate D and E have the same variation because they are

in the same block. We assume gate A and B are the primary inputs that input signals arrive

at time 0. Then the signal arrival time at the output of each gate αA, αB, αC , αD, αE can

be calculated by performing a topological order traversal of the graph. For single input

gates, the variation on its output is the sum of variation on its input and the variation of the

gate delay. Hence the output variation is still Gaussian. When a gate has multiple inputs,

a MAX(·) operation is applied, and the output variation is no long Gaussian. But we can

calculate a linear approximation [17] of the resulting variation such that the computation

is tractable.

From SSTA we can also obtain the distribution of timing slack (the slack of the gate

delay beyond which the circuit will fail). Timing yield of a circuit is the probability that

any gate in the circuit has a negative slack.

2.5.3 Lagrange Dual Problem

The dual problem solves µu,v in equation 2.10. It is well known the dual problem

max~µ D~µ = max~µ min~ξ L~µ(~ξ) (2.12)

is a concave problem, and a subgradient for µv is

∂D~µ
∂µv

= delayv(~ξ) (2.13)

We use subgradient ascent to update µv at each inner iteration of figure 2.6.
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Algorithm 1 Sensitivity-based adaptivity assignment.
Require: Circuit G composed by blocks B = {B1, B2, ...}

1: Timing yield constraint Υ
2: Adaptivity area constraint Ω
3: Perform statistical static timing analysis
4: while (true) do
5: if Y (G) < Υ then
6: mode← timing B∗ ← {Bi|Φ(Bi) = 0}
7: else
8: mode← overhead B∗ ← {Bi|Φ(Bi) = 1}
9: end if

10: α← A(G) > Ω ? 1 : 0 ; // A(G): area overhead
11: B∗ ← arg maxB∈B∗ θ(B)
12: Φ(B∗)← Φ(B∗) ? 0 : 1 ; // Trial adaptivity change
13: perform SSTA, obtain Y ∗(G) and A∗(G)
14: if mode == timing and Y ∗(G) > Y (G) then
15: continue
16: end if
17: if mode == overhead then
18: if α and A∗(G) < A(G) then
19: continue
20: end if
21: if (power reduced) and A∗(G) ≤ Ω then
22: continue
23: end if
24: end if
25: Φ(B∗)← Φ(B∗) ? 0 : 1 ; // Undo adaptivity change
26: end while

2.6 Adaptivity Assignment Algorithm

Our algorithm iteratively assigns or deassigns adaptivity for a block. Depending on if

timing yield Y (G) evaluated by an SSTA, each iteration may be in either timing mode or

overhead mode. If Y (G) < Υ, the timing mode tries to add adaptivity to improve circuit

robustness. If Y (G) ≥ Υ, the overhead mode attempts to remove adaptivity from a block

to reduce power and area overhead.
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Timing mode sensitivity θt(B) for a block B is defined by

θt(B) =
∑
g∈B

∆delay(g) ·
√
ψt(g)

∆delay(g) = (dg(φ0)−
max∑
i=1

PB(φi) · dg(φi))
(2.14)

where dg(φi) is the gate g delay with adaptivity level φi and PB(φi) is the probability

that block B operates with adaptivity level φi. The number of timing critical paths ψt(g)

passing through g is defined by

ψt(g) =
∑

u∈fanin(g),fanout(g)

 1 if s̃(u) ≤ 0.5s̃min

0 otherwise
(2.15)

where s̃(u) is the slack at node u and s̃min is the minimum slack over the entire circuit.

The tilde here indicates that they are mean plus certain σ (standard deviation) value.

The overhead mode sensitivity θo(B) is defined by

θo(B) =

∑
g∈B ∆W (g) +WB∑

g∈B ∆delay(g) ·
√
ψo(g)

∆W (g) = (
max∑
i=1

PB(φi) · wg(φi)− wg(φ0))

(2.16)

where wg(φi) is the power dissipation of gate g when it is at adaptivity level φi and WB

is the adaptivity power overhead for block B. The number of timing critical paths ψo(g)

passing through g in the overhead mode is defined by

ψo(g) =
∑

u∈fanin(g),fanout(g)

 1 if s̃(u) ≤ 1.5s̃min

0 otherwise
(2.17)
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In timing (overhead) mode, the block B∗ without (with) adaptivity and the maximum

θt (θo) is selected. A trial adaptivity change is made for B∗ based on the sensitivity. Then,

we consider if to commit this trial change according to SSTA, area and power analysis. In

timing mode, the commitment is based on timing yield improvement. In overhead mode,

we first check adaptivity area overhead, which has a hard constraint. If the constraint is

not satisfied and the area is reduced, then the change is committed. The third case for com-

mitment is when power dissipation is reduced. The iteration continues as long as we see

improvements on either of these three cases, and terminates when no such improvement is

obtained. The pseudo code for this heuristic is given in Algorithm 0.

2.7 Experiment Result

Table 2.1: Naïve method with only forward body bias (FBB). Power overhead, total area
overhead, number of adaptive blocks% are denoted by ∆W (µW ), ∆A (unit), #B, re-
spectively.

Baseline Naïve
Circuit #gates |B| Yield Yield ∆W ∆A/#B CPU (s)
c432 171 4 94.9% 99.3% 6564 707/4 1
c499 218 5 91.6% 97.7% 10975 1433/5 1
c880 383 5 96.3% 98.9% 5123 809/4 1
c1355 562 4 88.8% 99.9% 26442 1587/4 2
c1908 972 6 75.9% 99.9% 19049 1380/4 4
c2670 1287 5 94.6% 98.2% 6156 947/2 5
c3540 1705 5 73.6% 99.9% 21952 1759/4 8
c5315 2351 6 90.9% 99.8% 29364 2602/4 10
c6288 2416 6 93.9% 99.9% 50323 1931/2 11
c7552 3625 5 41.8% 99.9% 42878 3291/4 18

usb_phy 609 6 88.0% 99.3% 1729 518/2 2
edit_dist 130661 29 81.3% 99.9% 15460 24640/5 804

fft 32281 20 81.2% 99.1% 194576 15742/5 310
cordic 41601 20 73.9% 99.5% 443511 22618/10 493

des_perf 112644 22 83.5% 99.2% 204159 43608/6 750
matrix_mult 155325 20 44.0% 99.1% 1382050 78028/14 1378

Average 80.8% 99.3% 153769 12600/4.9 237
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Table 2.2: Our method with only forward body bias (FBB). Gate area overhead% is de-
noted by ∆Ag (unit).

Baseline Ours
Circuit #gates |B| Yield Yield ∆W ∆A/#B ∆Ag CPU (s)
c432 171 4 94.9% 99.9% 2524 323/1 7% 1
c499 218 5 91.6% 99.9% 3688 355/2 -26% 3
c880 383 5 96.3% 99.3% 1790 504/1 14% 3
c1355 562 4 88.8% 99.4% 12922 388/2 -17% 5
c1908 972 6 75.9% 99.8% 9162 762/2 -5% 9
c2670 1287 5 94.6% 99.1% 544 176/1 -7% 12
c3540 1705 5 73.6% 99.6% 13924 603/2 -13% 16
c5315 2351 6 90.9% 99.2% 3350 293/1 0% 24
c6288 2416 6 93.9% 98.9% 10549 1248/1 4% 24
c7552 3625 5 41.8% 99.9% 20053 404/3 -16% 40

usb_phy 609 6 88.0% 99.3% 779 167/1 -3.9% 6
edit_dist 130661 29 81.3% 99.3% 4430 7781/2 0% 1937

fft 32281 20 81.2% 99.2% 32167 10376/3 0% 759
cordic 41601 20 73.9% 99.1% 146446 9590/4 0% 1141

des_perf 112644 22 83.5% 99.4% 5726 15060/2 0% 1795
matrix_mult 155325 20 44.0% 99.0% -200650 -47184/6 -15% 3193

Average 80.8% 99.4% 4213 15/2.1 -4.9% 561
% difference vs. naïve = (ours−naïve)

abs(naïve) -97.3% -99.8%/-57.1%

To the best of our knowledge, there is no previous work on joint gate implementation

selection and adaptivity assignment with consideration of overhead control. Therefore, we

compare with the following approaches.

• Baseline. Variability-aware gate implementation selection without adaptivity. This

is to emulate conventional non-adaptive designs.

• Naïve adaptivity assignment. If only forward body bias (FBB) is considered, adap-

tivity is assigned to any block that has negative slack in terms of mean plus certain σ

value. This is to emulate what designers may do for adaptive circuit design without

adaptivity optimization tools. In ABB where both FBB and reverse body bias are

allowed, the naïve method simply assigns adaptivity for all blocks. Actually this is
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Table 2.3: Naïve method with forward body bias and reverse body bias (ABB). Power
overhead, total area overhead, number of adaptive blocks% are denoted by ∆W (µW ),
∆A (unit), #B, respectively.

Baseline Naïve
Circuit #gates |B| Yield Yield ∆W ∆A/#B CPU (s)
c432 171 4 99.7% 99.5% 1857 689/4 1
c499 218 5 99.9% 99.9% 664 1358/5 1
c880 383 6 99.9% 99.6% 1452 921/6 1
c1355 562 4 99.8% 99.1% 271 1354/4 2
c1908 972 6 99.5% 99.2% 2623 1550/6 4
c2670 1287 5 99.9% 99.9% -435 1543/5 5
c3540 1705 5 99.9% 99.7% -1481 1821/5 7
c5315 2351 6 99.9% 99.9% -3949 2668/6 10
c6288 2416 6 99.9% 99.9% -8302 2175/6 11
c7552 3625 5 99.9% 99.9% -3307 3103/5 17

usb_phy 609 6 99.2% 99.2% 1529 1174/6 2
edit_dist 130661 29 99.3% 99.3% -217934 72890/29 788

fft 32281 20 99.8% 99.7% -137438 41061/20 297
cordic 41601 20 99.5% 99.3% -160335 43106/20 488

des_perf 112644 22 99.4% 99.4% -204797 67013/22 734
matrix_mult 155325 20 99.0% 99.3% -287264 90859/20 1336

Average 99.6% 99.6% -63550 20830/10.5 232

the approach of [9].

In the experiments, gates are modeled by RC switches and the Elmore delay model is

employed. We extend a previous SSTA work [17] to perform timing analysis and estimate

timing yield. We consider gate length variations with standard deviation σ being 5% of

nominal value, and gate width variations with σ of 2.7% of nominal width. We use adaptive

body bias (ABB) [1, 9] as adaptivity. The power model, including dynamic and leakage

power, and impact of ABB on delay and power are based on [9]. The adaptivity area

overhead includes two parts. Per-adaptive-gate area increase due to manufacturing process

requirement is derived from [9]. Per-block overhead due to sensor, tuning circuits and

routing of several control signal lines is estimated according to [1]. The experiments are

performed on ISCAS85 and ISPD13 [21] benchmark circuits. The circuits are placed by
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Table 2.4: Our method with forward body bias and reverse body bias (ABB). Gate area
overhead% is denoted by ∆Ag (unit).

Baseline Ours
Circuit #gates |B| Yield Yield ∆W ∆A/#B ∆Ag CPU (s)
c432 171 4 99.7% 99.3% 0 0/0 0% 2
c499 218 5 99.9% 99.1% 0 0/0 0% 3
c880 383 6 99.9% 99.0% -71 -43/0 -3% 3
c1355 562 4 99.8% 99.1% 0 0/0 0% 5
c1908 972 6 99.5% 99.1% 0 0/0 0% 9
c2670 1287 5 99.9% 99.7% -562 458/1 0% 12
c3540 1705 5 99.9% 99.5% -1378 522/1 -2% 16
c5315 2351 6 99.9% 99.8% 0 0/0 0% 24
c6288 2416 6 99.9% 99.9% -7791 -1595/1 -29% 25
c7552 3625 5 99.9% 99.9% -6316 925/2 -9% 40

usb_phy 609 6 99.2% 99.4% -628 246/1 0% 5
edit_dist 130661 29 99.3% 99.4% -175907 56604/19 0% 2093

fft 32281 20 99.8% 99.5% -91955 22368/9 0% 824
cordic 41601 20 99.5% 99.3% -63189 -1050/6 -7% 1121

des_perf 112644 22 99.4% 99.3% -79359 19979/3 0% 1805
matrix_mult 155325 20 99.0% 99.3% -213180 -2734/7 -9% 3203

Average 99.6% 99.4% -40021 5980/3.1 -3.7% 574
% difference vs. naïve = (ours−naïve)

abs(naïve) 37.0% -71.3%/-70.5%

FengShui [22] and clustered as elaborated in section 3.1.

The first experiment is to evaluate the effectiveness of our approach for forward body

bias (FBB)-only and ABB, which allows both forward and reverse body bias (RBB). Rel-

atively tight timing constraints are applied to FBB cases as FBB is mostly for timing

improvement. The ABB cases have relatively loose timing constraints to see the effect

of RBB on leakage power reduction. The results are shown in Table 2.1∼2.4. In all ta-

bles, the number of gates and blocks of each circuit are displayed in the second and third

column. The fourth column is for timing yield of the baseline, where no adaptivity is

applied. Columns 5-8 provide results from the naïve method or our method. For each

method, we examine the power overhead ∆W , number of adaptive block #B and total

area overhead ∆A w.r.t. baseline in addition to timing yield and CPU runtime. For our
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method, we also show the gate area overhead ∆Ag. All area numbers are presented in the

unit of ISPD13 [21] cell library. All overheads are with respect to the baseline results. We

also show the average results and the percentage difference of our method versus the naïve

approach.

For the cases of FBB, our methods can reduce power and area overhead by around

100% compared with the naïve approach. Due to the collaboration between gate imple-

mentation selection and adaptivity assignment, our method often reduces gate area from

the baseline. Of course, both methods can largely fix the timing problem from the base-

line. In the ABB cases, our method causes 71% less area overhead than the naïve method.

It has 37% less power savings than the naïve method, but the power savings compared to

the baseline is still significant.

Figure 2.9: Power/area-timing tradeoff for circuit c7552.

The second experiment is to investigate the power/area versus timing tradeoff of our

approach. We alter the required arrival time on the primary outputs of C7552, and observe
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the area and power resulted from our algorithm. The result in Figure 3.10 shows that area

and power increase with increasingly tight timing constraint as expected.

In the last experiment, we vary the number of adaptivity blocks |B| of ISPD13 circuit

fft and examine the effect on power and area overhead. The results from our method are

plotted in Figure 2.10. When the granularity is too coarse, each block is relatively large

and must involve nodes of different timing behaviors. The adaptive tuning in this case must

be targeted toward the worst case gates and unnecessary power and area overhead are paid

on non-critical gates. When the adaptivity is too fine-grained, the per-block overhead due

to sensors, control and tuning circuits becomes very large. Therefore, there is sweet spot

for adaptivity granularity.

Figure 2.10: Power/area vs. granularity for circuit fft.
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3. POWER EFFICIENT QUALITY-OF-SERVICE FOR APPLICATION SPECIFIC

NETWORK-ON-CHIPS∗

3.1 Introduction

As the degree of chip integration grows, the demand for on-chip communication band-

width also increases. Networks-on-Chip (NoC) has received a great deal of research at-

tention [23] as a scalable substitute to the conventional bus architecture. A critical part

of NoC design is Quality of Service (QoS), which is usually categorized into guaranteed

service (GS) and best-efforts service (BE). Though guaranteed service is typically more

difficult to achieve, many embedded System-on-Chips are application-specific and there-

fore their communication patterns are by and large traceable. In such scenarios, one can

characterize the communication requests and reserve NoC bandwidth for them at design-

time, so as to provide guaranteed service.

NoC communication bandwidth is embodied by packet/flit routing, which identifies

links that constitutes a connection, and time slot assignment at these links [23] [24]. In

early works like [25] [26], packet routing and time slot assignment are performed sepa-

rately. The work of [27] couples the two parts together, but applies exhaustive search on

the routing part, which is too expensive, and a greedy heuristic on the time slot assignment,

which provides very little assurance on solution quality.

The operations of Multi-Processor System-on-Chip (MPSoC) can often be character-

ized by multiple user-cases. For example, a smart phone SoC performs voice calls, mes-

saging, and video streaming for different user-cases. Each user-case has a different traffic

pattern on NoC. This application-specific nature, as opposed to the largely random traffic
∗Part of this section is reprinted with permission from G. Yang, H. He, and J. Hu, “Resource allocation algorithms for guaranteed 

service in application-specific NoCs”, in Proceedings of the IEEE International Conference on Computer Design, 2013 and H. He, G. 
Yang, and J. Hu, “Algorithms for power-efficient qos in application specific Network-on-Chips,” in Low Power Electronics and 
Design, IEEE/ACM International Symposium on, 2014.
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Figure 3.1: Networks on Chip.

in chip multiprocessors, allows guaranteed service to be obtained by reserving resources

at design time [25–30]. The resources include both physical ones - links along a packet

routing path, and temporal ones - time slots at each link, i.e., the resource allocation is

based on Time Division Multiplexing (TDM). Many works [25–30] take this approach,

but pay almost no attention on the power issue. The work in [31] solves task mapping and

scheduling problem under fixed routing and fixed link/buffer capacity. As such, the role of

NoC in [31] is more of online optimization than design space exploration.

We first show a path-based boolean Satisfiability (SAT) formulation for the time slot

assignment problem alone without link/buffer capacity optimization. The path-based SAT

formulation is very straightforward and light-weighted. The formulation is then fed to a

highly scalable SAT solver to generate the time slots. Then, we propose a design-time
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algorithm of simultaneous packet routing, time slot assignment and link/buffer capacity

optimization for guaranteed service. Distinguished from the previous works [25–30], we

minimize the total of dynamic energy, which depends on packet routing, and static energy,

which is decided by link capacity and buffer size. This method follows an Integer Lin-

ear Programming (ILP) formulation, which has substantially lower computation cost than

conventional edge-based ILP formulation [29]. Our ILP technique permits multi-route

and in-order delivery [28]. Since flit-level static scheduling and routing has been shown

feasible in Æthereal network [28] and FPGA [29], we focus on algorithmic techniques

instead of hardware implementation. For comparison, we extend two previous works with

related but different goals. One is the NoC capacity optimization algorithm [32], which

is an iterative greedy heuristic, and the other is bandwidth allocation algorithm for only

QoS [29], which is a conventional edge-based ILP approach. Experimental results show

that our technique significantly outperforms iterative greedy heuristic and is dramatically

faster than edge-based ILP.

3.2 Background

3.2.1 NoC Topology

Figure 3.2: Common NoC topologies.
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Figure 3.2 shows several common topologies of NoC. These topologies differ in node

degree, diameter (the maximum shortest path between any two nodes), link complexity

and bisection width (the bandwidth available if the network is broken into two partitions

of the same size). It is also possible to design an application-specific topology for better

hardware efficiency and performance.

3.2.2 Packet Format

As in the computer networks, the message in NoC is transmitted by packets. Each

packet consists of one or multiple flits. A flit is the minimum unit transmitted from a

router to another router. During the transmission, the flits in a packet might spread in

different routers. Figure 3.3 shows an example of packet layout. The packet contains a

header flit, 3 payload flits and a tail flit. Which type of flit is indicated by the first two bits

of a 32-bit flit. The header flit may contain information such as the destination router.

Figure 3.3: The layout of an NoC packet.

3.2.3 Router Design

Three architecture of NoC routers are shown in figure 3.4. In the event of a network

congestion, flits are saved in the buffer inside the NoC routers. The buffers can either be
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at the input port, the output port, or shared among all the ports. In our formulation, the

buffer capacity is also deemed as a decision variable for power efficiency optimization.

Figure 3.4: Router Microarchitecture.

3.3 Problem Formulation

3.3.1 Power Efficient QoS

The problem inputs include a set of user-cases on a fixed NoC topology. In each user-

case, every guaranteed service (GS) packet has a specified injection time and a latency

constraint. Additionally, there is the minimum bandwidth required for overall best ef-

fort (BE) packets. In a router, BE buffers and GS buffers are separated. This is because

otherwise BE flits may block GS flits for an arbitrarily long time. Time on each link/buffer

is divided into slots that can be assigned to different flits, i.e., it is a time division multi-

plexing (TDM) system.

For each GS packet/flit, the decisions are to find routing path in terms of links/buffers,

and time slots along the path†. Additionally, a lumped sum of BE bandwidth is reserved,

†The flit level static scheduling and routing is demonstrated to be feasible in Æthereal network [28] and FPGA [29].
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and link/buffer capacities are also decided like in [32]. The objective is to minimize the

average power consumption among all user-cases.

When there is no resource contention in the network, a flit is routed along the shortest

path without buffering. In the presence of congestion, in contrast, the algorithm can choose

among the following three options: (1) increasing link capacity, (2) waiting in a buffer and

(3) routing detour. Options (1) and (2) increase static energy while option (3) causes more

dynamic energy. The trade-off among these options depends on the traffic pattern and the

hardware parameters of the NoC. Hence we rely on the algorithm to determine the best

configuration. The problem formulation is given as follows.

PEQoS (Power-Efficient QoS): Given an NoC topology, a set of traffic user-cases,

find routing paths and time slot assignment for each GS flit, and decide link and GS buffer

capacity such that the weighted average of power consumption among all user-cases is

minimized, every GS packet satisfies its latency constraint and sufficient link bandwidth

remains for BE packets.

The weighing factors for user-cases are design parameters. For example, they can be

the estimated probabilities of individual user-cases. Customers can also decide how much

link bandwidth should be kept for BE packets, which are routed in a distributed manner.

In contrast, GS packets employ source routing. Since the TDM switchings are determined

at design time, deadlock can be easily avoided for GS packets like in [28, 29]. As GS

buffers are separated from BE buffers, there will be no deadlock between GS and BE

packets. Our techniques can be applied to various NoC topologies, from regular mesh to

customized topology. We also allow flits of the same packet to take different routes as long

as the in-order delivery constraint is satisfied.
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3.3.2 Graph Model

The physical and temporal resources of an NoC can be described in a unified graph

model, where solving PEQoS is equivalent to finding a path for every flit. We first define

physical graph G(V,EL, EB), which does not contain temporal information. It has a set

of nodes V , each of which represents a router, and two sets of edges, EL for links and EB

indicating buffers. An example is shown in Figure 3.5(a), where dashed edges are for EB.
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Figure 3.5: (a) Physical graph; (b) Resource graph.

In a resource graph, temporal resource is embraced by duplicating physical nodes along

the time axis and connecting nodes at different time planes with edges. This is illustrated

in Figure 3.5(b), where two adjacent time planes are separated by one clock cycle. If

the latency of a link is m clock cycles, the corresponding edge spans m + 1 time planes.

To limit the graph size, we assume that the traffic pattern repeat itself in the periodic

windows. This assumption is reasonable if the window size is sufficiently large [28, 30].
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In a resource graph G(V , EL, EB), a node v ∈ V is duplicated into v0, v1, ..., vΨ ∈ V at time

plane 0, 1, ...,Ψ, where Ψ is the window size. Any time τ corresponds to kΨ + τ , where k

is an integer. An edge elapsing through two adjacent windows wraps around in the graph

[28, 30]. For example, an edge starting from vΨ
i ∈ V may end at v1

j ∈ V . The time range

for a packet ready to inject can be modeled by a super source node like S in Figure 3.5(b).

The deadline for a flit can be enforced by super target node. In Figure 3.5(b), the super

target node T requires that the corresponding flit must arrive physical node c by time 3.

Edges EL and EB correspond to links and buffers, respectively.

Figure 3.6: A valid flit route that respects the injection time and latency constraint

Figure 3.6 shows the correspondence between injection time and latency constraint. A

flit is available at time T = 1 and must be delivered before time T = 3. The supersource

that represents this flit is connected to all the time instances of the injection node after

T = 1. Similarly, the supersink admits routes from all the time instances of the destination
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node after T = 3. As such, any path from the supersource to the supersink is a valid time

slot allocation for the flit of interest.

3.4 Boolean-Satisfiability-based Method

3.4.1 Boolean Satisfiability Problem

Given a Boolean function f(x0, x1, · · · , xn), Boolean Satisfiability (SAT) is the prob-

lem of finding a binary value for every variable x0, x1, · · · , xn such that f is evaluated to

be true. In spite that SAT is a well-known NP-complete problem, there are solvers that

can efficiently solve problems of moderate size.

For a SAT solver, it is usually required that the Boolean function is in the Conjunc-

tive Normal Form (CNF). CNF represents a boolean function as a conjunction (AND) of

clauses, and each clause is a disjunction (OR) of variables. Mathematically, if we denote

AND as multiplication and OR as addition,

f(x0, x1, · · · , xn) =
∏
k

∑
i∈Sk

xi (3.1)

where Sk are some subsets of 0, 1, · · · , n

Because SAT is a satisfiability problem instead of an optimization problem, in this

section we explore a restricted version of PEQoS problem described in section 3.3. Here

we assume link/buffer capacity is fixed and only one user-case exists. For each user-case,

our algorithm finds a valid time slot allocation that satisfies the latency constraint.

3.4.2 Candidate Path Generation

There are two significantly different approaches for the SAT formulation of the prob-

lem: Edge-Based where a decision variable xe,i ∈ {0, 1} indicates if an edge e ∈ E is

utilized by a data flit φi; and Path-Based where a decision variable xp,i ∈ {0, 1} tells if a

path p in the resource graph is selected to be used by flit φi.
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The edge-based formulation is computationally expensive in that it multiplies the num-

ber of decision variables by the number of flits, while the path-based formulation requires

a premise that a set of candidate paths Pi are pre-selected. We propose a simple yet effec-

tive algorithm that generates candidate paths and its pseudo code is shown in Figure 3.7.

For each flit φi the algorithm iteratively generates a shortest path on G using the Dijkstra’s

algorithm (step 5), and adds this path into the candidate set (step 6). The key part is that

an edge weight is increased by a small amount if the path passes through this edge (step

7-8). Consequently, the path search in later iterations attempts to avoid using previously

used edges, and therefore the generated paths are diversified.

Procedure: CandidatePathGeneration(G,Φ, k, δ)
Input: Resource graph G

A set of flits Φ = {φ1, φ2, · · · }
Output: A set of paths Pi for each φi ∈ Φ
1. For each flit φi ∈ Φ
2. Pi ← ∅
3. Initialize weight for each edge ej ∈ E
4. Repeat for up to k iterations
5. Find a shortest path p on G for φi
6. Pi ← Pi ∪ {p}
7. For each edge e ∈ p
8. Increase weight of e by δ

Figure 3.7: Algorithm of candidate paths generation.

Note the candidate path selection is performed on the resource graph rather than the

physical graph. Each path corresponds a time slot allocation for transmitting a flit from

source to sink.
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3.4.3 SAT Formulation

Once a diversified set of candidate paths are generated, each path is associated with a

decision boolean variable xp. xp = 1 means the candidate path is selected for flit trans-

portation. To ensure a valid time slot allocation, we enforce two kinds of constraints in our

formulation:

(a) the edge capacity constraints

For each edge e ∈ E , we have the following CNF to enforce its capacity constraint:

∏
pi 6=pj ,e∈pi,e∈pj

(x̄pi + x̄pj) (3.2)

where pi and pj are two distinctive paths passing through e. Each disjunction clause (x̄pi +

x̄pj) implies that at most one path is selected between pi and pj . The conjunction of all

such clauses ensures that this condition is true for all pairs of paths that going through

edge e.

(b) the demand constraints

The idea of formulating the demand constraint is based on similar idea. For each flit

φi, we enforce ∏
pj ,pk∈Pi, pj 6=pk

(x̄pj + x̄pk) ·
∑
pj∈Pi

xpj (3.3)

where Pi is the set of candidate paths for flit φi. The disjunction clause
∑
pj∈Pi

xpj requires

that at least 1 candidate path is selected. The remaining part of expression (3.3) enforces

that at most 1 path is selected.

3.4.4 In-order Flits Delivery

When multiple flits come from the same packet, it is sometimes required in NoC that

the order in which the flits are received is the same as the order in which they are sent. In
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our formulation discussed above, the path length is not considered when the SAT solver

searches for a solution. Therefore, we need additional constraint to guarantee in-order

delivery.

Consider a set of flits {φ1, φ2, · · · } that belong to the same packet, and their indices

indicate the injection order. Each flit φi is associated with a super target Ti. Each super

target Ti has multiple incident edges eτTi , e
τ+1
Ti

, ..., where τ represents a time instant. Now

we introduce an indicator variable yτTi ∈ {0, 1} to tell if edge eτTi is utilized. It is defined

by

yτTi =
∑

p∈Pi, eτTi∈p

xp (3.4)

If flit φi arrives at time τ , which means yτTi = 1, we require that flit φi+1 must arrive at

τ + 1, i.e., yτ+1
Ti+1

= 1. For each pair of consecutive flits φi and φi+1, we add the following

clause

yτTi + yτ+1
Ti+1

(3.5)

3.4.5 Experiment Result

Table 3.1: Experimental results on 144 cases with timeout limit as 4 hours. The runtime
T is for only the successful runs.

Previous work [27] SAT-based (Section 3.4)
Cases # packets Success T Timeout Success T Timeout

Mesh 6× 6 25 - 90 20.0% 11s 64.0% 76.0% 2s 24.0%
Mesh 8× 8 30 - 160 23.1% 1s 73.1% 69.2% 6s 30.8%

Mesh 10× 10 35 - 250 18.2% 4s 72.7% 59.1% 28s 40.9%
Random 36 25 - 110 20.8% 1s 79.2% 75.0% 3s 25.0%
Random 64 30 - 270 17.4% 1s 82.6% 82.6% 25s 17.4%

Random 100 35 - 450 16.7% 1s 83.3% 83.3% 101s 16.7%
Average 19.3% 3s 75.8% 74.2% 28s 25.8%
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The SAT problems are solved by zChaff (http://www.princeton.edu/˜chaff/zchaff.html).

We also implemented the method of [27] for comparison. The leftmost column of Table 3.1

tells the types of testcases. For example, Mesh 6 × 6 is a 36 node mesh and Random 64

is a 64 node randomly generated topolgy. For each type of topology, we tested over 20

cases with different amount of requests, and from uniform to bursty injection patterns. The

ranges of the number of packets for each time period are listed in column 2 of Table 3.1.

In each case, about 85% packets are single-flit and 15% packets are multi-flits.

The main results for the 144 cases are shown in Table 3.1. Column 3 and 6 display

the success rate for [27] and our SAT-based methods, respectively. The success rate is the

percentage of testcases whose all flits are successfully routed. Our methods can averagely

improve the success rate to 67% and 74% respectively, compared to the 19% from [27].

The average runtime of successful runs are displayed in column 4 and 7. We set a timeout

limit of 4 hours, beyond which a run is counted as a failure. Column 5 and 8 indicate the

percentage of cases where the timeout occurs. Although the method of [27] is fast on the

successful runs, it runs longer than 4 hours in about 76% of the cases.

Stress tests are further performed for our SAT-based method and the previous work [27].

In a stress test, the number of packets |R| is increased to the point a method fails to find

any feasible solution. The stress test results are displayed in Figure 3.8. The first 5 cases

are 6× 6 meshes and the other 5 cases are in random topologies of 30 physical nodes. The

bar graph shows that the SAT-based methods can find solutions for twice as many cases

as [27].

3.5 Integer Linear-Programming-based Method

In this section, we discuss the details of solving PEQoS problem with Integer Linear

Programming. The proposed method optimizes the power consumption of NoC commu-

nication and guarantees the QoS of GS traffic at the same time. The design time algorithm
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Figure 3.8: The maximal number of packets can be routed. Cases 1-5: 6 × 6 mesh; cases
6-10: random topology.

not only decides the exact time slot reservation for GS traffic with known pattern, but also

provides guidance to the right amount of link capacity and buffer size in the network. It

also take into consideration multiple user-cases of the NoC.

3.5.1 Problem Formulation

Integer Linear Programming has been applied to solve NoC QoS before [29]. In their

approaches, the binary decision variables are defined to indicate if edges in the resource

graph are selected to transport flits. Such formulation guarantees that optimal solution is

in the search space. However, such approach does not scale well with problem size and

can be applied at only very small cases in practice.

∑
ef∈incident(v)

xef = 0,∀f ∈ F, v ∈ V (flow conservation)

∑
f∈F

xef ≤ Ce,∀e ∈ E(capacity)
(3.6)
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Equation 3.6 shows the constraints of edge-based formulation. xef denotes the amount

of flow (0-1 variable in our application) on edge e ∈ E and flit f ∈ F . Flow conservation

constraint asserts that the number of flits entering an internal node v is equal to the number

of flits exiting v. Capacity constraints enforces the bandwidth limit of a physical link. As

it can be seen from equation 3.6, the number of decision variables is |F | × |E|. Note |E|

is the number of edges in the resource graph, which is multiple times of the number of

physical links because of time domain duplication. Even though edge-based formulation

captures all possible routes of transmitting a set of flits F , the problem size is very large

for big graph.

We propose a path-based ILP formulation, where a decision variable tells if to select a

path in the resource graph for a flit. This approach requires that a set of candidate paths

are generated for each flit in advance. Since it is not practical to include all possible

paths in this set, there is no guarantee for optimality. However, by carefully generating

the candidates, one can attain near optimal solutions with much better scalability than the

edge-based ILP method.

We describe the path-based ILP formulation followed by an introduction to the can-

didate paths generation. An MPSoC design has a set ofM user-cases. In each user-case

µ ∈ M, there is a set of packet requests per time window and each packet is composed

by one or multiple flits. To simplify the description without loss of generality, we specify

the requests in flits, i.e., a set of flit requests Φµ for each user-case µ per time window.

A set of candidate paths Pi = {pi,1, pi,2, ...} on G are found for flit φi, and each of the

paths has a variable xi,j ∈ {0, 1} indicating if path pi,j is selected. Each link l ∈ EL has a

variable capacity yl telling how many flits it can simultaneously transport. Similarly, each

buffer b ∈ EB has capacity zb, which is the number of flits it can accommodate. Dynamic

energy for a time window in user-case µ is represented by ∆µ. The static energies per time

window for unit link and buffer capacity are denoted by εl and εb, respectively. We use
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φi ≺ φj to indicate that φi is injected into the network earlier than φj and they belong to

the same packet. The ILP formulation is as follows.

Min
∑

µ∈M ωµ∆µ +
∑

l∈EL εlyl +
∑

b∈EB εbzb (3.7)

s.t. ∆µ =
∑

φi∈Φµ

∑
pi,j∈Pi δi,jxi,j (3.8)∑

pi,j∈Pi xi,j = 1, ∀φi ∈ Φµ, ∀µ ∈M (3.9)∑
el∈pi,j xi,j ≤ yl ≤ Ul, ∀el ∈ EL, ∀µ ∈M (3.10)∑
eb∈pi,j xi,j ≤ zb ≤ Ub, ∀eb ∈ EB, ∀µ ∈M (3.11)∑

pi,j∈Pi |pi,j|xi,j ≤
∑

pk,q∈Pk |pk,q|xk,q,∀φi ≺ φk (3.12)

Ψyl −
∑

el∈El,∈pi,j xi,j ≥ βl, ∀l ∈ EL (3.13)

xi,j ∈ {0, 1}, ∀xi,j (3.14)

yl, zb ∈ Z∗, ∀yl, zb (3.15)

The objective (3.7) is to minimize total energy consumption per time window. The

first term is in (3.7) is a weighted average of dynamic energy among all user-cases. The

weighting factors ωµ are user specified parameters, and can be obtained by system level

characterization. The dynamic energy of each user-case is defined by constraint (3.8).

The dynamic energy of propagating flit φi through path pi,j is represented by δi,j . The

second (third) term in (3.7) is for the static energy of all links (buffers). Constraint (3.9)

enforces that one and only one path is selected for each flit. Constraints (3.10) and (3.11)

ensure that each link/buffer capacity does not exceed certain bound Ul/Ub. In (3.12), |pi,j|

means the path length in term of clock cycles for path pi,j . Then, this is the constraint for

in-order delivery. The last significant constraint (3.13) is to make sure at least βl bandwidth

is left for BE flits at link l per time window.

Now we discuss the candidate paths generation. The candidate paths should all satisfy
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latency constraints and consist of short paths so as to increase the chance of low dynamic

energy solutions. To this end, we first generate all the paths that has minimum number of

hops, which can be found by Breadth First Search. In addition, the candidate paths for a

flit need to be diversified so that contention with other flits can be easily avoided. Thus,

we also generate candidate paths by the same method as [30]. For each flit, our method

iteratively performs the shortest path algorithm on the resource graph and the result is

added to the candidate path set. At the end of each iteration, the cost of each edge along

this path is increased by a fixed amount so that later iterations attempt to circumvent these

edges and thereby improve path diversity.

After the candidate path generation, the ILP formulation is fed to a ILP solver which

tries to optimize it and may use different algorithms such as Branch and Bound and Cutting

Plane Method.

3.5.2 Experimental Results

In the experiment, we attempt to evaluate the effectiveness of our techniques by com-

paring with extensions of two related but different works. One is the iterative greedy

method for NoC capacity optimization [32] and the other is the conventional edge-based

ILP, which is recently used [29] in NoC QoS without considering power dissipation.

The comparisons are conducted on two types of testcases. One is random bench-

marks generated by TGFF [33], which has been employed in many other NoC works

such as [31, 34]. The other is a more realistic benchmark developed for multimedia SoC

in the NaNoC project (http://www.nanoc-project.eu). The energy dissipation, including

both dynamic and static energy, is estimated by ORION3.0 [35] based on 65nm tech-

nology. All methods are implemented and simulated with C/C++ and ILP is solved by

LPSolve (http://lpsolve.sourceforge.net/). The experiment is performed on AMD Opteron

processor with 2.2GHz frequency and Linux operating system.
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Table 3.2: Main results for TGFF cases.
Iterative Greedy Path-Based ILP

Testcases cases Total |V| |M| Energy Runtime Enery Runtime
Group 1 9 1250-1500 1,5 459 161s 324 288s
Group 2 14 2000-2250 3,10 299 224s 222 1022s
Group 3 12 2400-2500 3,5 375 320s 273 2047s
Group 4 14 3000-3200 5,8,15 235 233s 177 1642s
Group 5 10 4800 10, 15 146 188s 116 2961s
Group 6 10 5000 8, 10 220 192s 151 5239s
Group 7 5 6400 8 266 529s 208 3817s
Group 8 9 7200-7500 12, 15 178 329s 141 5439s

Normalized sum 83 1 1 0.75 10.3

The first experiment is on 83 TGFF cases and the results are summarized in Table 3.2.

To save space, the results are presented in 8 groups and the second column tells the number

of cases in each group. The third column lists the total number of nodes |V| for the resource

graphs of all user-cases in one testcase. Please note |V| = |V | · Ψ · |M|, where |V | is the

number of physical nodes and takes value of 10, 16 or 25 for each case. The number of

user-cases |M| is in the fourth column. Please note that the runtime also depends on the

number of flits in addition to |V|. Each packet contains 1-3 flits and the latency across

each link can be 1 or 2 clock cycles. The energy and computation runtime results are

shown in the right six columns. As the energy is a weighted average among all user-cases,

it does not necessarily grow with the total |V|. The last line indicates that our path-based

ILP can reduce energy dissipation by 25% compared to extension of [32]. Among these

cases, 10% − 60% bandwidth is allocated to GS packets and the others are to be used by

BE packets. Please note that the greedy heuristic terminates when it gets stuck at a local

optima, hence further iterations would not improve its results.

In the second experiment, we compare our path-based ILP with optimal edge-based

ILP solutions. Since the edge-based ILP is very slow, this part of experiment is carried out
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Table 3.3: Optimality test on small TGFF cases.
Total Edge-ILP (Optimal) Path-Based ILP
|V| Energy Runtime Energy Runtime

Case 1 216 3.18 466 3.23 <1
Case 2 220 1.81 249 1.81 <1
Case 3 240 1.59 18 1.59 <1
Case 4 250 2.67 3009 2.71 <1
Case 5 288 2.80 279 2.84 <1
Case 6 288 3.13 1179 3.17 <1
Case 7 300 2.29 5769 2.34 <1
Case 8 312 2.93 6934 2.93 <1
Case 9 405 2.14 2807 2.14 <1

Normalized Ave. 1 2301 1.01 1

only on small cases. The results are displayed in Table 3.3. One can see that our technique

is only 1% worse than the optimal but over 2000X faster than the edge-based ILP. In a

small example, our path-based ILP entails about 1K variables while the edge-based ILP

requires 54K variables. This explains why the path-based ILP is much faster.

The multimedia SoC case (http://www.nanoc-project.eu) has 25 cores and 8 user-cases.

The NoC topology of 10 router nodes and traffic patterns are given. We vary the latency

constraints and window size to obtain 9 variants of this case. The energy comparison

among different techniques for these cases are depicted in Figure 3.9. Compared to the

iterative greedy heuristic, our path-based ILP algorithm achieves energy reduction of 15%.

The runtime of our path-based ILP is actually less than the greedy heuristic in these cases.

In the last part of the experiment, we examine the energy-latency tradeoff that can be

obtained by our technique. For three TGFF cases, we vary the latency constraints and

observe the impact on energy consumption. Figure 3.10 exhibits the results from our path-

based ILP. Its horizontal axis indicates normalized packet latency and the vertical axis is

normalized energy dissipation. The curves show a few small kinks because the problem is

non-convex and our technique cannot guarantee the optimality. The overall trend of these
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Figure 3.9: Normalized energy comparison for multimedia SoC cases.

curves does provide tradeoff between energy and latency.

Figure 3.10: Energy-latency tradeoff of 3 different cases.
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4. MODEL CHECKING BASED RESOURCE MANAGEMENT IN DATA CENTER

4.1 Introduction

As the size of datacenters reaches 30K servers/10MW scale and beyond, resource

management becomes an increasingly complex task. A proper resource manager, for

example, provisions and de-provisions the computing hardware to match the workload

changes [36], adjusts the effort of cooling equipments according to the dynamic thermal

environment [37], and migrates computation in the event of a hardware failure. Moreover,

the intricate interplay among these design goals often entails a joint optimization instead

of a divide-and-conquer approach [38]. In such complex systems, to design and validate a

resource manager that complies with all the goals, which often conflict with each other, is

tricky yet important.

Take power management as an example. In contrast to a large, centralized Uninter-

ruptible Power Supply (UPS) system, modern datacenters adopt a number of small UPS

in the rack or server level [39] to push Power Usage Effectiveness (PUE) close to 1. This

distributed UPS system is more scalable and efficient in terms of the power delivery loss,

but increases the complication for power capping to prevent overdrawing batteries, which

escalates the risk of server failure and shortens battery life. In a distributed UPS system, a

single depleted battery does not entail the power demand to be capped even if the datacen-

ter is experiencing a power peak (figure 4.1.a). The restriction to battery use conflicts with

the goal of maintaining high system performance. It is possible to formulate the datacenter

power distribution problem with static linear constraints (figure 4.1.b), but the formulation

is only valid for a small horizon as the server power consumption and battery energy level

are highly dynamic in nature.

To address scenarios where static constraints are not sufficient, we propose to enhance

52



Figure 4.1: (a) Single battery is depleted yet no need to cap power demand. (b) A static
formulation: xi and yi are power provided by the power grid and battery, respectively.
Pi are the server power consumption. Ei are the energy left in batteries. ε is a short
time horizon starting from the current moment. (c) A Linear Temporal Logic formulation:
the LTL constraint is transformed to a state machine that runs dynamically alongside the
system.

datacenter resource management with Linear Temporal Logic (LTL) constraint. LTL is

a form of property description used in model checking, which is a formal verification

technique [40]. For the example in figure 4.1.c, LTL can describe the constraint that a
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battery can be discharged to supply a rack only when it has been recently charged for

sufficiently long time. The LTL constraint is then transformed to a state machine that runs

dynamically alongside the datacenter’s resource management policy to monitor the battery

conditions. Our approach is based on the recent theory of Markov Decision Process (MDP)

control synthesis with LTL constrains [41]. It bears several advantages:

1) Our method provides a framework for considering subtle or complex constraints in

datacenter resource management. It helps to resolve conflicting objectives under compli-

cated system interactions.

2) Our method allows the consideration of property checking constraints to be directly

augmented with almost any conventional management scheme, rather than radically alter-

ing conventional methods.

3) Although our method is based on the control synthesis theory [41], we make a sig-

nificant improvement to avoid the state explosion problem in [41]. In [41], the learning

and decision-making operate on the same state space, which is the cross product of the

underlying MDP states and the automaton states arising from LTL constraints. In contrast,

the learning in our method is solely upon the automaton state space. Our decision-making

operates on the MDP states and the automaton states in tandem. As such, the state explo-

sion problem is largely avoided.

We apply this methodology in two resource management scenarios: power capping

in a distributed UPS datacenter and fair scheduling in a multi-tenant cloud service. In

the first scenario, our method caps the power demand to improve the availability of UPS

batteries should a power outage occur. The scale of the system under test is so large that the

previous model checking method [42] is no longer applicable. The experimental results

show our approach reduces the battery unavailability time by half and maintains the power

efficiency level. In the second scenario, we implemented a MapReduce job scheduler that

balances throughput and fairness among users. The emulation on Amazon AWS shows
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the degree of fairness can be tuned by the LTL formulation in contrast to several Hadoop

schedulers. And a better tuning range is achieved with LTL over a previous work.

4.2 Related Work

The application of model checking in resource management problems has been ex-

plored in a number of previous literature. Johnson et al. [43] proposed an offline verifi-

cation framework. In this framework, design changes can be made incrementally if the

desired properties are not satisfied. Bersani et al. [44] showed the feasibility of formal-

izing elasticity, Quality-of-Service (QoS) and several correctness properties for resource

management in Timed Constraint Linear Temporal Logic, an extension of LTL. However,

their method is also offline and works on the system trace.

Techniques that adopt model checking online have also been proposed. Calinescu et

al. [45] designed an autonomic manager to ensure QoS in a service-based system. The

autonomic manager uses PRISM [46] model checker tool to experiment on a Markov

Chain system model and a set of QoS requirements encoded in Probabilistic Computation

Tree Logic. An optimization is then conducted to choose the best control parameters from

those tested during the experiments. The procedure described in [45] is more of a trial-and-

error approach than one with theoretical guarantees like our method. Gounaris et al. [42]

applied the model checking policy synthesis technique [40] to the resource provisioning

problem in the cloud. The synthesis is performed also by PRISM, which only supports

“reachability” constraints rather than the full power of LTL. In their work, the system is

explicitly modeled as a MDP and the resource manager is the policy synthesized. However,

many realistic design goals are hard to optimize by a pure MDP controller because of the

state space explosion problem, especially when the states are continuous. In contrast, our

method allows the engineers to develop and curtail their resource manager for the specific

goals of their application. Our method focuses only on the correctness properties that can

55



be added on top of the existing resource manager.

In addition, practically all the previous work require precise modeling of the system.

This is difficult for highly dynamic systems such as datacenters. Reinforcement learn-

ing (section 4.3.4) is well-known for the ability to work without models. Theoretical study

on adopting reinforcement learning in online model checking problem has been docu-

mented [41]. However, we did not find such combination of reinforcement learning and

model checking in the resource management literature.

4.3 Background

This section discusses the Linear Temporal Logic (section 4.3.1) and the LTL con-

strained Markov Decision Process control policy synthesis (section 4.3.3), which is the

foundation of our approach. This theory supports the integration of any LTL constraints

into a system MDP model. It is much more powerful than the “reachability” constraints

that the previous work [42] [45] is based on. The synthesis method is performed offline

and requires precise modeling of the system. More specifically, it requires explicit val-

ues for a transition probability matrix P , which is hard to estimate in large systems. This

requirement can be avoided by reinforcement learning (section 4.3.4).

4.3.1 Linear Temporal Logic

An LTL expression describes the temporal properties of a discrete time system. LTL

expressions consist of a set of boolean variables APs (termed as atomic propositions in

model checking) and operators that assemble the APs to form complex semantics. APs are

usually observable conditions of interest drawn from the system, for instance a = “power

demand<power budget”. A list of operators is given in table 4.1. A system is said to

satisfy LTL expression φ if φ is true since time 0. For example, GFma indicates that power

demand<power budget cannot be false for more than m ticks since the system starts.
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operator semantic example
&, ‖, ! and,or,not !a is true at time t iff a is false at t
X next Xa is true at time t iff a is true at t+1
G always Ga is true iff a is true for [0,∞)

F eventually
Fa is true at time t iff a is true

for some h > t

U until
aUb is true at time t iff a remains true

for [t, h) and b is true at time h
Um m-until aUmb = a&(Xa)&(XXa)...(XXX︸ ︷︷ ︸

m

b) *

Fm m-eventually Fma = a‖(Xa)‖(XXa)...(XXX︸ ︷︷ ︸
m

a) *

* X is the “next” defined in the third row.

Table 4.1: LTL syntax.

4.3.2 Deterministic Rabin Automaton

To formally verify an LTL expression φ, φ is transformed to a Deterministic Rabin

Automaton (DRA) [47].

A DRA is a tuple Γφ = (T,AP, δ, Rej) where T is the state space, δ : T × AP → T

is the deterministic state transition function, Rej = {(Yi ⊆ T )|0 < i ≤ k} are sets of

rejection states, which will be elaborated later.

The state space T of DRA is automatically generated. DRA performs state transitions

based on the observed APs and δ. It can be shown that the LTL expression φ is true if and

only if ∃(Yi) ∈ Rej, Yi is visited finitely often [40] (actually there are also accepting sets,

but omitting them do not affect our results). Without loss of generality, we assume k = 1

hereafter. Two features of DRA make it ideal for verification purpose. Firstly, the state

transition is deterministic. More importantly, with a DRA running alongside the original

system it is possible to verify the LTL properties on the fly.
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4.3.3 LTL Constrained MDP

Previous work [41] [48] shows that if we can model a system by Markov Decision

Process, it is possible to embed a Deterministic Rabin Automaton (equivalent to an LTL

constraint) into the MDP. Then a control policy that observes the LTL constraint can be

synthesized offline. Here we briefly introduce the basic concepts and main results in [41]

[48].

A labeled MDP is a tuple M = (S,A, PM ,L) where S is the state space, A is a set of

actions, PM : S×A×S → [0, 1] is the probability transition matrix, and L : S×A→ 2AP

labels the states by the APs that are true. A control policy π : S → A is a look-up table

that holds the right action to take in each state.

Here S encodes the status of the system such as “server utilization” and should not

be confused with the state space T of DRA. A encodes the decisions made in resource

management like turning off a server or scheduling a task. P gives a probability to every

state transition s ∈ S a∈A−−→ s′ ∈ S. L indicates whether a condition (AP) is true given the

system status S.

To synthesize a control policy that conforms to an LTL expression φ, the system MDP

model M and DRA Γφ are first combined together as a product MDP. The product MDP

between a labeled MDP M = (S,A, PM ,L) and a DRA Γφ = (T,AP, δ, Rej) is defined

as a tuple Mφ = (S × T,A, P,W ) where

P (s× t, a, s′ × t′) =

 PM(s, a, s′) if t′ = δ(t,L(s))

0 otherwise

W : S × T → R is a penalty function defined by

W (s, t) =

 Constant > 0 if t ∈ Y (Rej)

0 otherwise

In essence, the product MDP Mφ runs the DRA Γφ in parallel with the system model

M. Mφ extracts interesting conditions AP = L(s) from the system state s and feeds AP
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to DRA Γφ. Γφ is given a penalty for the “bad” states Y (Rej). The following theorem

holds for product MDP:

Theorem 1. Given MDP M and a LTL induced DRA Γφ, if there exists a control policy

π : S → A that satisfies φ with probability 1, then any policy synthesis algorithm that

minimizes the expected total penalty of the product MDP Mφ will find such a policy.

A complete proof can be found in [41]. Intuitively, if the penalty given to the “bad”

states is large enough, the algorithm that minimize expected total penalty would avoid

these states as much as possible. Consequently, the target LTL φ is respected.

4.3.4 Q-learning

Q-learning [49] is a reinforcement learning-based algorithm to find φ-compatible pol-

icy π in Theorem 1. The core idea of Q-learning is to keep track of the historical total

penalty Q : S × T × A → R. This Q table records the total penalty seen after making

decision a ∈ A at state s × t, or “the penalty of increasing the power demand when the

power budget is violated” translating to a datacenter example.

Q-learning updates the Q table when it observes the system made a state transition

s× t a∈A−−→ s′ × t′ and was penalized c.

Q(s, t, a) = (1− η)Q(s, t, a) + η(c+minb∈AQ(s′, t′, b)) (4.1)

where 0 < η < 1 controls the learning rate.

Once the Q table is obtained, the control policy can be derived:

π(s, t) = argmina∈AQ(s, t, a) (4.2)

A major advantage of Q-learning is that it does not require the probability transition

matrix PM . In our method, the system designer determines the penalty of immediately
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“bad” states Y (Rej) and Q-learning serves to “spread” the penalty to other states. By

equation (4.1), the more frequently a state can transit into an immediately “bad” state, the

higher its penalty is. However, the Q table has |S|× |T |× |A| entries, which can be a huge

number in a complex system. Learning for a huge state space is usually impractical. We

show in section 4.4 this can be reduced to |T | × |A|.

4.4 LTL-based Resource Management

Figure 4.2: An overview of LTL-based resources management.

The framework of our method is depicted in figure 4.2. The input of our method

is an LTL expression that formulates the desired constraints of the system. The output

of our method is the DRA and a learned penalty function that can be combined with

a conventional resource manager. The decisions of the enhanced resource manager are

made by optimizing the summation of the penalty and the cost function F (s, a) of the

conventional resource manager.

Our method is split into the design time phase and the run time phase. In design time,

the desired correctness property is formulated in an LTL expression φ and then transformed

to a DRA Γφ = (T,AP, δ, Rej). This transformation is well studied in the model checking

theory [47].
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The run time phase starts with a learning period where a penalty functionQ : T×A→

[0,∞) is trained. This is a major distinction over Theorem 1 of previous work [41]: the

penalty functionQ is created on the space T×A. In contrast, Theorem 1 dictates a table of

S×T ×A→ R. The system state space S for datacenter resource management problems

can easily explode to hundreds of thousands, but the DRA state space T is usually limited.

The reason our approach removes S is intuitive. In the previous work [42], the synthe-

sized policy not only needs to observe the correctness constraints but also has to optimize

the other design goals (efficiency, fault-tolerance, etc.). Therefore system states S is in-

dispensable for the decision making. In our method, the conventional resource manager

F (s, a) is responsible for the other design goals. The learning phase merely seeks to mea-

sure the level of emergency of the LTL violations. Therefore DRA state space T suffices.

The constant c in algorithm 2 is the immediate penalty of violating φ, a parameter set

by system designer. A history of system trace (ti, ai) is used as the input. ti is the DRA

state and ai is the decision made by the conventional resource manager without LTL.

Algorithm 2 learning algorithm
Require: DRA Γφ = (T,AP, δ, Rej), learning rate η, constant c > 0, trace

(t0, a0), (t1, a1), ..., (tn, an).
1: Q(t, a)← 0, i← 0
2: for all i < n do
3: p← ti+1 ∈ Y (Rej)?c : 0
4: Q(ti, ai)← (1− η) ∗Q(ti, ai) + η ∗ (maxb∈A(Q(ti+1, b)) + p)
5: end for
6: return Penalty function Q

After the learning phase is completed, the penalty function Q is added to the cost func-

tion of the conventional resource management algorithm F (s, a) (equation (4.3)). Many

resource management algorithms are in the form of or can be translated to minimizing a
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carefully designed cost function [50] [51] [52]. During normal operation, the penalty mag-

nitude is close to zero and thus has no impact on the resource manager. When the DRA

is heading towards a “bad” state, the penalty begins to add bias to the resource manager.

Parameter λ is a weighing factor between F and Q.

mina∈AF (s, a) + λQ(t, a) (4.3)

4.5 Power Capping in Distributed UPS Data Center

In this section we apply our method to the power capping problem in distributed UPS

data centers.

4.5.1 The Problem

Figure 4.3: Two power architecture of data centers.

Traditionally the UPS system is placed on the top level of the warehouse scale data

center (figure 4.3). Its sole purpose is to provide power during transition from external

power grid to internal diesel generator should a power outage occur. The centralized UPS

system has a poor scalability and requires an AC-DC-AC conversion, which can have a
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low efficiency (88% reported in [53]). This double conversion stage can be removed if the

UPS system is distributed in server or rack level. The distributed UPS system is adopted

in the leading data center designs including Google [54] and Facebook [55]. Further-

more, the distributed UPS system can be leveraged as an energy buffer for effective power

capping [39]. The UPS batteries provide additional power during the power peaks and are

recharged in the power valley. The power management infrastructure can thus cap the total

power drawn from the grid without slowing down or shutting off the server machines.

Despite its advantages, distributed UPS system brings up one problem for power cap-

ping and management: it is harder to guarantee the high availability of UPS system. The

problem actually is two-fold.

• Firstly, it is not straightforward to determine when and where to cap the power

demand so that the batteries are not overdrawn.

• Secondly, the frequent discharge of UPS battery deteriorates the battery’s lifetime

and this rate of deterioration is non-uniform among distributed batteries.

Figure 4.4: Battery life deteriorates substantially for deeper discharge cycles.
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Depth of Discharge (DoD) is a term that refers to the designed maximum percentage

of battery capacity drained at a discharge cycle. The battery life, usually measured in the

number of recharge cycles, deteriorates 100 times faster in large DoDs(figure 4.4). Even

if only a single battery fails when it should provide power for an outage or a power peak,

the consequence can be disastrous.

4.5.2 LTL Constrained Power Capping

Table 4.2 summarizes a power manager designed with our methodology.

field value description

LTL φ
G[(trueUk+nd) power peak⇒
‖Fk(rUntrue)] battery recently charged

d ∈ AP boolean
cluster power demand

< cluster-level budget

r ∈ AP boolean
p% of racks: rack power demand

< rack-level budget

s
cpuReq, memReq, cpu & mem request of queued jobs
cpuUtil, memUtil cpu & mem utilization of servers

L (d, r) = L(s) sum up server power to get d, r
a booleans turn off servers

Table 4.2: LTL constrained power capping summary.

We assume an existing power efficiency server manager F that determines which

servers are left ON to accommodate the current workload. The cost function of F :
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S × A→ [0,∞) is designed as:

cpuD(s) =
∑
i∈DC

cpuUtili ∗mipsi +
∑

j∈ShedQ

cpuReqj

memD(s) =
∑
i∈DC

memUtili ∗memi +
∑

j∈ShedQ

memReqj

F (s, a) = wcpu ∗max(0, cpuD(s)−
∑
i∈a

mipsi)

+wmem ∗max(0,memD(s)−
∑
i∈a

memi)

(4.4)

where DC is the datacenter, SchedQ is the scheduling queue, wcpu and wmem are weights

for cpu and memory resources, cpuReqj and memReqj are the resource request from the

jobs in the scheduling queue, cpuUtili and memUtili are cpu and memory utilization

of individual servers. cpuReqj , memReqj , cpuUtili, memUtili are the observed system

states that the conventional resource manager bases its decision on. mipsi and memi are

cpu and memory capacities of server i, they capture the hardware heterogeneity of the

datacenter. The power consumption of a server is calculated by the power model in table

4.3. cpuD andmemD sum up the cpu and memory demand of executing workload and re-

sources requests in the scheduling queue.
∑

i∈amipsi and
∑

i∈amemi are the aggregated

computation resources supply after turning off servers indicated by a. By minimizing F ,

server manager merely strives to promote power efficiency: it turns off as much servers as

possible before computation resources are insufficient for the workload. In a real datacen-

ter, server manager needs to take into account additional factors such as thermal variation.

However, it requires little change for our algorithm to work with more sophisticated re-

source manager.

We further assume a per-rack UPS system as in [55]. The LTL formula φ is designed

to impose the following property: power peak ⇒ p% rack-level batteries are recently
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charged. In φ, only p% instead of 100% of the rack-level batteries are required to be

charged. This is because the cluster-level power budget is shared by all racks in the data-

center, one insufficiently charged battery does not entail power capping (figure 4.1).

More specifically, at any time t, if cluster-level power demand>cluster-level bud-

get (power peak), then rack-level power demand<rack-level budget (enable recharge) in

time span [h− n, h] for at least p% of all racks where t− k < h < t.

The equivalent LTL formula φ for this property is G[(trueUk+nd)‖Fk(rUntrue)]. φ is

built on two system conditions (AP): d = “cluster-level power demand<budget”, and r =

“rack-level power demand<budget”. (trueUk+nd) states that it is not a power peak in k+n

time. Fk(rUntrue) dictates a continuous charging period of length n within k time. d and

r are extracted from system states s by label function L, and drive DRA Γφ = (T,AP, δ)

through state transition table t = δ(t, d, r). Note the batteries are required to be charged

continuously.

A DRA that corresponds to φ is generated through an implementation of [47]. The

DRA Γφ is shown in figure 4.5. The states are arranged in an n× k matrix. The grey scale

of the circle indicates the emergency of constraint violation and will later be learned by

the penalty Q. Thin arrows in the graph indicates the state transitions that deteriorate the

constraint and the thick arrows mean the contrary. A thin arrow transition is executed if

r = false and a thick arrow transition if r = true. The blue arrow is driven by d = true.

Now we inspect Γφ in greater detail and explain its logic. The first row of Γφ cor-

responds to the trace of a continuous peak !r !r ... !r︸ ︷︷ ︸
k

. At any time along this trace,

Γφ can break into charging mode if r = true. In charging mode (the columns), the state

records the charging length. If a power peak interrupts the charge, the state goes back

to the first row (the diagonal arrows). Otherwise it reaches the n-th row and stays there

until r = false again. d only comes into effect when Γφ is right before the constraint

violation (s1). It gives Γφ a second chance if the datacenter does not see a present power
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Figure 4.5: DRA Γφ for power capping constraint.

peak.

Even though Γφ has a clear semantic interpretation, it is generated by algorithms [47]

that are proven not to overlook any corner cases of the LTL constraint. This is the key idea

of LTL-based resource management.

4.5.3 Experimental Results

For our experiments, we developed a discrete event simulator for the datacenter trace

published by Google in 2011 [56]. The trace contains 12.5K heterogenous servers with

cpu and memory utilization data updated for every 5 minutes. We partition the servers in

306 racks assuming 42U racks and one UPS battery per rack. The UPS battery capacity is

set to 500ah [39], which can support the rack for 37.5 minutes if fully charged. The rack

can be powered either by the power grid or by the rack-level UPS battery. We measure the

performance loss by average scheduling delay of jobs during the power peak. Scheduling

delay has been a primary metric to measure performance in datacenters [57]. One reason

for choosing scheduling delay is that our traces include jobs that execute for months, so

other metrics such as job throughput and execution time are largely biased by these jobs.

Important simulation parameters are summarized in table 4.3.

Inability of Previous Model Checking Method

We first show that the previous model-checking-based approach can not handle prob-
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peak power 2.85MW
cluster-level power budget 2.43MW
capped power magnitude 14.7%

#servers 12551
#racks 306

rack-level power budget 8KW

power model (server is on)

Pi = Pcpu
mipsi

maxi∈DCmipsi
cpuUtili

+Pmem
memi

maxi∈DCmemi
memUtili

+Pidle(
wcpu

(wcpu+wmem)
mipsi

maxi∈DCmipsi

+ wmem
(wcpu+wmem)

memi
maxi∈DCmemi

)

Pidle/Pcpu/Pmem 175W/105W/70W [39]
Psleep (server is off) 30W [36]

wcpu / wmem
Pcpu

Pcpu+Pmem
/ Pmem
Pcpu+Pmem

simulated time ∼10 days
rack-level UPS battery 500 amp hour/12V [39]

UPS sustain time for outage 37.5 minutes when fully charged
server manager invocation every 5 minutes

k (history length) 60 minutes
n (recharge time) 30 minutes

p% (recharge percentage) 75%

Table 4.3: Simulation and design parameters.

lems of this scale. In the previous work [42] [45], PRISM [46] is extensively used as a

model checking tool and performs the core functionality in their methods. We formulated

an MDP model for the datacenter of varying size, and tested the runtime of a simple “reach-

ability” property (the only kind of properties supported for policy synthesis in PRISM).

As shown in table 4.4, even in the Monte-Carlo approximation mode, the model-checking-

based approach is too slow for online problems.

#servers 10 100 1000 5000
run time (s) 1.7 11.3 268.5 timeout (3h)

Table 4.4: Run time of PRISM model checker.
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Power Efficiency and Power Capping Trade-off

Figure 4.6: Simulation of 10-day trace.

An overview of the trace is shown in figure 4.6. We compare three strategies:

• F: a conventional server manager that optimizes power efficiency alone (equation

(4.4)).

• ClustCtrl: power capping server manager adapted from a previous work [39].

• F+LTL: power efficiency server manager F with power capping temporal LTL con-

straint.

In [39], the design of a 10MW datacenter of Google distributed UPS architecture is

explored. Several policies are described to utilize UPS battery during power peaks and
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shave the power profile of the datacenter. We adapt the best policy ClustCtrl in [39] for

power capping purpose. The strategy is described in algorithm 3. Note ClustCtrl ignores

the heterogeneity of server power consumption.

Algorithm 3 ClustCtrl Policy
Diff ← ClusterPower − PowerBudget

2: ∆Bats← |Diff |/AvgRackPower
if Diff ≥ 0 & ≥ ∆bats batteries available then

4: Enable ∆bats batteries
else if Diff ≥ 0 & < ∆bats batteries available then

6: Enable available batteries
Cap the most power demanding rack until Diff ≤ 0

8: else if ∆Bats ≥ 5 then
Disable and Recharge ∆bats batteries

10: end if

Table 4.5 shows the effect of the three methods throughout the 10-day trace. AvgPower

is the average power consumption over the 10 day period. BatDepTime is the total amount

of time the rack batteries are depleted. The number is aggregated over 306 racks and 10

days. It represents hazardous status of the datacenter. The SchedDelay column shows the

average scheduling delay. AvgDoD is the worst Depth of Discharge value experienced

throughout 10 days. It is the average value of 306 racks and reflects the battery usage of

all racks.

method AvgPower BatDepTime SchedDelay AvgDoD
F 2.23MW 7356min 315s 93%

ClustCtrl 2.43MW 3257min 342s 66%
F + LTL 2.22MW 3414min 351s 69%

Table 4.5: Overall result of the 10-day trace. BatDepTime is the total amount of time rack
batteries are depleted and records hazardous status of the datacenter.
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The efficiency only server manager F strives to boost energy efficiency without con-

sidering power capping necessity. Power capping reduces the battery depletion time by

half at the expense of larger power consumption. Because ClustCtrl will recharge bat-

teries when the power demand is below the power budget and discharge them when the

power demand is above the power budget, the average power consumption converges to

the power budget value. With LTL-enhanced server manager F , power capping decisions

from LTL do not interfere with power efficiency decisions of F unless it is necessary. The

performance loss of ClustCtrl and F + LTL due to power capping are comparable.

Figure 4.7: Power demand for peak at 1320 minute with (a) F , (b) ClustCtrl, (c) F +
LTL.
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We further show in detail the longest peak in the trace, the 6-hour period that starts at

1320 minute in figure 4.6. In case of ClustCtrl, power capping does not come into effect

until the last portion of the peak. In comparison, the LTL constrained server manager

identifies the emergency of power capping and creates deeper power valleys as the peak

proceeds.

F+Hard Bounding Method

Imposing a hard bound on the energy left in the UPS batteries is a simple strat-

egy to prevent overdrawn batteries without the ability to formulate temporal constraints,∑
i∈batteriesEnergyi < threshold. However, hard bounding does not deal with all possi-

ble use cases. In particular, servers in a datacenter have a very diverse power profile due to

hardware heterogeneity, workload fluctuation and task placement constraints [58]. These

heterogeneity is not captured by the hard bounding method as it treats all the batteries as

an aggregated entity. Note it is possible to enforce hard bound on the individual rack level,

however this approach suffers from the serious intra-rack coordination problem detailed

in [39].

load balance F + LTL F +HB
Homogeneous 872min 1113min
Heterogeneous 1180min 7499min

Table 4.6: Deterioration of hard bounding method with heterogeneous job distribution.

Table 4.6 shows another power peak from 1600 minute to 2400 minute. F +HB is the

power efficiency server manager with a hard bound (30% of the total capacity). We disturb

the load balancing in the original trace to generate a more heterogeneous job distribution

in the datacenter. It can be seen from table 4.6 that F +HB deteriorates by almost 7 fold

with heterogeneous job distribution.
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Figure 4.8: F + LTL and hard bounding method on a particular rack with heterogenous
job distribution. (a) Power capping by F + LTL. (b) Power capping is not exerted for
hard bounding method and a high battery depletion time ensues.

To explain the results above, we further analyze the power consumption of one partic-

ular rack in the datacenter in figure 4.8. Because of the heterogeneous job distribution, this

rack sees constant high power demand throughout the peak even though the cluster level

demand fluctuates around the power budget. For hard bounding method (figure 4.8.b),

power capping is not exerted because energy left in other rack batteries are still abundant.

This results in a high BatDepTime for the rack in question.

Effect of Power Budget

Power budget is an important design parameter that affects datacenter capital invest-

ment and power capping strategy. A low power budget downsizes the power infrastructure

and the supporting cooling equipment, at the cost of performance degradation and the

difficulty of power capping.

By increasing the power budget, it is always possible to lower the battery usage and

prevent low energy state. Table 4.7 shows the power budget increase needed to achieve the
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Power Budget 2433kw⇒2515kw
Discharge Energy 5582wh⇒4142wh

Depth of Discharge 93%⇒69%
Capital Increase $1.6million *

* assume $20 capital investment per
watt [39].

Table 4.7: Increase power budget to achieve the same AvgDoD as F + LTL.

same AvgDoD (69%) as the LTL constrained approach. This increase is further translated

into an additional capital investment of $1.6million.

Adjust Battery Life with Recharge Time

Figure 4.9: Modulate n to adjust battery life to a desired level.

We show that by changing the recharge time n, it is possible to tune the battery DoD.

Figure 4.9 contains energy loss curves for 6 different n in peak starting 1320min. The

history length k = 60 minutes and p = 100% remains constant in the experiment. Larger

values of n dictate longer recharge time and reduces the DoD. As can be seen in figure 4.9,
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DoD for the peak changes from 93% to 46% in response to n. This implies we can adjust

the average battery life to a desired level.

4.6 Fair Scheduling

In this section we show another application of our methodology. We assume a multi-

tenant cloud service that provides IT capacity to multiple users. The users submit their

jobs to the datacenter and wait for the execution results. We assume the users have the

same priority so the datacenter should serve them in a fair manner (For users with prior-

ity, our method can be adapted by adjusting the parameter in LTL for each user). From

the perspective of the datacenter, however, resources management seeks to maximize the

computation throughput. We design an experiment to demonstrate that:

• Conventional schedulers can be at two extreme ends of the performance-fairness

tradeoff;

• LTL can achieve a continuous tradeoff between performance and fairness.

4.6.1 Emulation Platform

In this experiment, we created a small cluster of 20 virtual cpus and 50 GB mem-

ory running hadoop 2.4.1 [59] on Amazon AWS cloud. We execute the 2010 Facebook

MapReduce trace [60] on this cluster to simulate a multi-tenant datacenter. To curb the

experiment time, we only run a 2-hour fragment of the 24-hour trace. The fragment con-

tains 200 MapReduce Jobs, the job submissions are shown in figure 4.10.a. We randomly

assign the MapReduce jobs to 10 of the users. Because the number of tasks and the shuffle

ratios of each job vary drastically, the workload of each user is very different. We found

amount of data written ≈ input splits · input shuffle ratio · (1 + output shuffle ratio) is a

good estimate of the workload. The workload estimate per user is shown in figure 4.10.b.

To make the problem more interesting, we also added a bursty user (user0) whose jobs are
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Figure 4.10: 200 MapReduce jobs are randomly assigned to 11 users. The job submission
lasts for 2 hours.

all heavy weight ones.

4.6.2 Conventional Job Schedulers

When the aggregated resource demand is below the total resource supply of the clus-

ter, all users’ demands are granted and the resource allocation is uneven. When multiple

users are competing for resource, a strictly fair scheduler should allocate equal amount of

resource to each user despite the variation in demands. In more rigid terms, a scheduler is

said to be max-min fair [61] if that the resource is allocated in infinitesimal pieces and the

user with the minimum allocation who is still demanding gets the next piece. The max-min

fairness metric only addresses the resource sharing problem, so it may result in a penalty

for throughput.

Conversely, a max-throughput scheduler prioritizes light weight jobs. When cluster

resource is released by a finishing job, the scheduler allocates the resource to a demanding

job whose resource request is lowest:
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minj∈SchedQF (j)

F (j) = ResourceRequestj (either cpu or memory)

(4.5)

The max-throughput scheduler maximizes the performance of the datacenter in terms

of throughput but ignores the fairness among users. As we will show, this could starve

some users of the cluster resource.

Hadoop has three embedded schedulers: capacity, fair share and dominant resource

fairness (DRF) [62] scheduler. Capacity scheduler manages multiple users by assigning a

fixed proportion of total resource to each user job queue. But this does not suggest each

user can only use resource below its share. An user queue is also allowed to seize the idle

resource beyond their assigned capacity. In contrast, fair share scheduler assigns weights

to users and determines the resource allocation according to the weight ratios. It approx-

imates max-min fairness when the weights are equal for all users. In this experiment we

set all the user queues to equal capacity share and equal weights. Fair share and capacity

scheduler consider only a single resource: memory, whereas DRF takes into account both

cpu and memory. The reasoning behind DRF is that jobs should be compared by their

“dominant resource share”, which is the bigger of the cpu percentage and the memory

percentage that a job wants to claim from a cluster. It is obvious that DRF is more fair

measure to compare a cpu-bound job with a memory-bound job.

4.6.3 F+LTL Scheduler

In addition, we designed an LTL expression to enforce “no starvation" constraint for all

users. Let boolean hi denote there is a queued job from user i. Let boolean pi denote that

a job from user i is dispatched. φ = (hi ⇒ GFmpi) = (!hi‖GFmpi) asserts if there are

jobs in queue from user i, then there must be at least a job from user i dispatched within m
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time. Following the procedure described in section 3, we transform φ into an DRA, train

its penalty function and add this penalty to the cost function F in equation (4.8).

4.6.4 Experimental Results

Performance-Fairness Tradeoff of Hadoop Schedulers

scheduler turn-around time(s) Jain’s index
Max Thrpt F 204(100%) 0.54

Capacity 234(115%) 0.40
F+LTL 271(133%) 0.75

Fair Share 316(155%) 0.81
DRF 333(163%) 0.82

Table 4.8: Schedulers of different turn-around time and fairness. Jain’s index = 1 is the
most fair case.

Table 4.8 shows the result of executing the 2-hour trace with LTL, three hadoop sched-

ulers and our implementation of max-throughput scheduler. The turn-around time is the

time from when a job is submitted to when it is finished, table 4.8 shows the average value

of the 200 jobs. To quantify the level of fairness, we use Jain’s fairness index [63] as a

metric. For n numbers x1, ..., xn, Jain’s index is calculated by
(
∑
j xj)

2

n·
∑
j x

2
j

. It attains the max-

imum value 1 when x1 = x2... = xn and the minimum 1
n

when xj = 0 for all but one xj .

We also show the scheduling delay and turn-around time of each user in figure 4.11.

Among the 5 schedulers, max-throughput scheduler and capacity scheduler have the

fastest throughput but the lowest fairness score. The unfairness is better illustrated by

the large variations in the heights of the bars in figure 4.11. To speed up the overall job

execution, the scheduling delay of the max-throughput scheduler for user0 increases by

2.6 times compared to that of DRF. In contrast, DRF is much more fair with an average

turn-around time of 332 seconds, 63% slower than the max-throughput scheduler. Fair
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Figure 4.11: The height of the last bar shows the average performance. The evenness of
the bars indicates the resource allocation fairness. Max-throughput and DRF schedulers
are on the extremes of the performance-fairness tradeoff. LTL falls in-between.

share scheduler achieves similar results as DRF. This is primarily because most of the

MapReduce jobs in the trace are cpu-bounded.

As is shown in table 4.8, the LTL scheduler achieves a balance between max-throughput

scheduler and DRF. In fact, figure 4.12 shows we can achieve a continuous trade-off by

changing the parameter m in the LTL expression.

Figure 4.12: Performance-fairness tradeoff of DRF, 5 LTL and 2 IPM schedulers.
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Comparison to Fairness Function Tuning

Despite max-min fairness, other less strict definitions of fairness such as α-fairness [64]

and proportional fairness [65] have also been proposed. Recently it is shown that many

notions of fairness including the above mentioned can be unified under a single family of

fairness functions [66]:

fβ,λ(x) = sign(1− β)

(
n∑
j=1

(
xj∑n
k=1 xk

)1−β
) 1

β

(
n∑
j=1

xj)
λ (4.6)

In equation (4.6), xj indicates the resource allocation of user j, λ is the efficiency

weight and β determines what kind of fairness notion is used. The term (
∑n

j=1 xj)
λ cap-

tures the efficiency of the allocation: the scheduler should maximize the total amount of

resource utilized
∑n

j=1 xj . The rest of the equation (4.6) evaluates the fairness of the al-

location. If we take λ = 1−β
β

, equation (4.6) reduces to α-fairness. If we take β → ∞,

equation (4.6) gives proportional fairness.

In this experiment, we take β = 2 as in the previous work [66]. Taking the derivative

of equation (4.6), we get

∂fλ(x)

∂xj
∝ (1 + 2λ)

∑
k

1

xk
x2
j −

∑
k

xk (4.7)

The fairness function (4.6) is convex, so we can employ interior point method with the

above gradient to optimize it. We implemented interior point method within the hadoop

framework. The results are shown in figure 4.12 as IPM0 and IPM100. These two points

correspond to two values, 0 and 100, for the efficiency weight 1 + 2λ. Figure 4.12 shows

the performance-fairness tradeoff that can be obtained by manipulating fairness function
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is limited. Notably, the LTL schedulers are located towards the northwest corner of the

figure 4.12, which is a direction with more fairness and less turn-around time.

4.6.5 Simulation Results

In this experiment we extract workload pattern from the 2010 Facebook MapReduce

trace [60]. We simulate 600 quad-core servers as G/M/c queues, the same model used

in [39]. The trace provides job submission time and job size for 5894 jobs in a 24 hour

period. Execution time for the tasks ranges from 10 minutes to an hour. The block size

for Hadoop MapReduce is set to 64MB, so we estimate number of tasks for each job as

taskQuantity = jobSize/64MB. We assume the jobs are submitted by 10 users, one

out of which has a bursty submission pattern. A max-throughput scheduler F selects next

job to dispatch in the scheduling queue by:

minj∈schedQF (j) = minj∈schedQtaskQuantityj (4.8)

The max-throughput scheduler prioritizes jobs of small sizes so that it maximizes the

throughput of task execution. But this strategy may hurt the fairness of resource allocation

and leave the bursty user in starvation. This is shown in figure 4.13. Figure 4.13.a displays

the pattern of job submissions for each user. Figure 4.13.b shows the cumulative amount

of jobs dispatched for max-throughput scheduler. Note the red line corresponds to the

bursty user and the quantity of dispatched jobs remains zero.

One way to attain max-min fairness is round-robin, which is shown in figure 4.13.

Round-robin scheduler enforces a tight form of fairness called max-min fairness [61]. The

numbers of cumulative dispatched jobs increase at the same rate for all the users. In our

experiment, the round-robin scheduler is 20% less efficient than max-throughput scheduler

in terms of throughput.

The result of F+LTL scheduler is shown in figure 4.14. It can be seen the bursty user

81



Figure 4.13: Max-throughput vs. round-robin. Round-Robin scheduler enforces max-min
fairness with a throughput degradation (20%).

is no longer starved but allocated less bandwidth than others.

In fact, we can achieve a continuous trade-off between max-throughput and round-

robin scheduler. In figure 4.15, the blue curve shows the average throughput (#jobs per

second) for all users. The green curve shows the percentage of the total dispatched jobs

that belong to the bursty user. Max-throughput scheduler achieves 3.5 tasks/s and 0% (star-

vation) in the graph (the diamonds). Round-robin scheduler achieves 2.8 tasks/s and

5.4% (the circles). By changing the parameter m, a designer can choose any operating

point suitable.
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Figure 4.14: The max-throughput scheduler is augmented with starvation-free LTL con-
straint φ.

Figure 4.15: Throughput-fairiness trade-off by modulating m. A continuous trade-off
curve is achieved between max-throughput scheduler (diamonds) and round-robin sched-
uler (circles).
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5. CONCLUSION

In this dissertation, we visited three resource management problems for computation

hardware. We first propose a methodology and algorithmic techniques for joint gate im-

plementation selection and adaptivity assignment of adaptive circuit design. Experimental

results show that our method can substantially reduce adaptivity overhead. Secondly, we

propose new algorithms for TDM-based NoC QoS with consideration of power-efficiency.

Our SAT approach solves QoS time slot allocation problem with 2× ∼ 3× success rates

compared to a previous work. Our path-based ILP approach further takes into considera-

tion the network link capacity and buffer size optimization. It provides solutions that cost

about 25% less energy dissipation than an iterative greedy heuristic and are near to the

optimal solutions, and is order of magnitude faster than the optimal method. In the third

scenario, we demonstrate a new framework of the resource management, which leverages

the expressiveness of Linear Temporal Logic in decision constraints and the LTL con-

straints is seamlessly integrated with conventional objectives through reinforcement learn-

ing. This new approach is validated for datacenter power management and multi-tenant

job scheduling. Simulations are performed on Google and Facebook traces with compar-

ison with previous works. The results show that our approach is superior in balancing

multiple conflicting objectives.
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