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ABSTRACT 

 

To put a computerized device under human control, various interface techniques 

have been commonly studied in the realm of Human Computer Interaction (HCI) design. 

What this dissertation focuses on is a myoelectric interface, which controls a device via 

neuromuscular electrical signals. Myoelectric interface has advanced by recognizing 

repeated patterns of the signal (pattern recognition-based myoelectric classification). 

However, when the myoelectric classification is used to extract multiple discrete states 

within limited muscle sites, there are robustness issues due to external conditions: limb 

position changes, electrode shifts, and skin condition changes. Examined in this 

dissertation is the robustness issue, or drop in the performance of the myoelectric 

classification when the limb position varies from the position where the system was 

trained.  

Two research goals outlined in this dissertation are to increase reliability of 

myoelectric system and to build a myoelectric HCI to manipulate a 6-DOF robot arm with 

a 1-DOF gripper. To tackle the robustness issue, the proposed method uses dynamic 

motions which change their poses and configuration over time. The method assumes that 

using dynamic motions is more reliable, vis-a-vis the robustness issues, than using static 

motions. The robustness of the method is evaluated by choosing the training sets and 

validation sets at different limb positions. Next, an HCI system manipulating a 6-DOF 

robot arm with a 1-DOF gripper is introduced. The HCI system includes an inertia 

measurement unit to measure the limb orientation, as well as EMG sensors to acquire 
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muscle force and to classify dynamic motions. Muscle force and the orientation of a 

forearm are used to generate velocity commands. Classified dynamic motions are used to 

change the manipulation modes. The performance of the myoelectric interface is measured 

in terms of real-time classification accuracy, path efficiency, and time-related measures. 

In conclusion, this dissertation proposes a reliable myoelectric classification and 

develops a myoelectric interface using the proposed classification method for an HCI 

application. The robustness of the proposed myoelectric classification is verified as 

compared to previous myoelectric classification approaches. The usability of the 

developed myoelectric interface is compared to a well-known interface. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Background  

As computer technology and robotics have become popular, the need for 

controlling robots or computerized devices intuitively and based on human intent has 

increased. As a result, various interface techniques recognizing human intent have been 

studied in the Human Computer Interaction (HCI) and Human Machine Interface (HMI) 

realms. Among many proposed approaches such as electroencephalography (EEG), 

vision, and inertial measurement, the recognition of human motion intent by using 

electromyographic (EMG) signals has been actively studied since EMG signals can 

represent human muscle activities quite well [1]. With this in mind, this dissertation 

focuses on myoelectric interface (or myoelectric control), which is a strategy to control a 

device via myoelectric signals generated when humans use gestures or move a limb can 

be used to: 1) to control powered prosthetics for amputees and robots based on human 

intent, and 2) to recognize human gestures for other applications.  

Myoelectric interface has advanced from simply using the amplitude of 

myoelectric signals (conventional myoelectric interface) to recognizing repeated patterns 

of the signal by using pattern analysis and machine learning techniques (pattern 

recognition-based (PR) myoelectric interface). A problem the conventional myoelectric 

interface has, however, is that the interface needs more muscle sites to augment 

controllable states. In order to solve this limitation, PR myoelectric interface classifies the 

myoelectric signal patterns that can identify certain gestures. Due to the development of 
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pattern analysis and machine learning techniques, PR myoelectric interface extracts more 

independent discrete states than the conventional myoelectric interface with limited 

muscle sites. Even though PR myoelectric interface enhances the scope of recognizable 

states, it is still not sufficiently robust due to external conditions: limb position changes, 

electrode shifts, and skin condition changes. 

1.1.1 Electromyogram 

Electromyogram (EMG) signal (or myoelectric signal) is an electrical signal 

superposing the motor unit action potentials (MUAP) caused from muscle contraction. An 

EMG signal has an amplitude between ±5 mV and the informative content ranges from 6 

to 500 Hz [2]. In general, an unprocessed EMG (or surface EMG) signal is called a raw 

EMG (or sEMG) signal. In general, the EMG signal can be used for controlling prosthetic 

devices, assisting rehabilitation tasks, and recognizing human motions in HCI applications 

because of its capability to represent the human motion intention [3-5]. Human motions 

mostly involve muscle contraction. The EMG signal is a suitable bio-signal source to stand 

for the muscle contraction. 

To use the EMG signal for prosthetic devices and rehabilitation tasks, finding a 

relationship between the EMG signal and muscular force is essential. In order to find the 

relationship between EMG signals and muscular forces, many signal processing methods 

have been studied. Well-known approaches are full-wave rectification, linear envelope, 

and root mean square (RMS) techniques [2]. Briefly speaking, the full-wave rectification 

converts all negative EMG signals to positive ones. The linear envelope technique passes 
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the raw EMG signal through a low-pass filter (typically 3~6 Hz) after full-wave 

rectification. RMS looks similar to the linear envelope, but RMS is more popular because 

of its inherent meaning (the power of the signal). The above techniques are widely used 

in conventional myoelectric interface methodologies. In myoelectric classification using 

pattern recognition, more features from the raw EMG signal are extracted and used. The 

brief explanation of EMG features used in the myoelectric classification can be found in 

the next section. 

In EMG signal processing, there still exist major issues: 1) crosstalk, 2) EMG 

changes with varying joint angles, 3) movements of the innervation zone with respect to 

the skin, 4) varying distance from newly recruited motor units to electrodes (biological 

tissues act as low-pass filters), and 5) difference in the relationship of the firing rate, EMG 

amplitude, and force. These are well-known reasons causing non-stationarity and wide-

variance of the EMG signals.  

Generally speaking, a skeletal muscle is a cluster of motor units and a motor unit 

is a set of muscle fibers that are connected to the same motor neuron. Based on the 

structure of the muscles, an electrode measuring the EMG signal cannot pick up just a 

motor unit action potential (MUAP) of a given motor unit at a certain muscle. MUAPs 

from surrounding active muscles are picked up together by the electrode. This is called 

cross-talk, which is a reason of the variation in EMG signals. Moreover, when a human 

moves, the pose, role, and status of muscles are also changed, these changes vary the EMG 

signal as well. Moreover, in a perspective of collecting EMG signals, electrodes are 

located on the skin surface. One fact related to this is that the skin and the muscles beneath 
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the skin are not fixed together. They move relative to each other when humans change 

their pose. This movement between the skin and the muscles affects the collected EMG 

signals.  

The other issues are related to the nature of the skeletal muscles in generating 

muscle forces. There are two ways to increase muscle force: recruiting more motor units 

(MU) and firing more stimulation, or action potentials (AP). When recruiting more MUs, 

the smallest MUs are firstly recruited and the largest MUs are lastly enrolled (referred to 

as the size principle) [6]. Moreover, newly required MUs can be recruited from different 

locations compared to the previous ones. In the way of generating more muscle force, the 

strength and frequency of EMG signals varies according to the distance between the newly 

recruited MUs and the electrode. Besides, the relationship between the firing rate-force 

and the EMG amplitude-force is variable. That means that EMG signals vary based on the 

location of MUs and the respective firing rate. 

The major issues noted above make EMG signal processing difficult. To tackle the 

difficulties, many approaches have been studied in the past. One approach is myoelectric 

classification using well-developed techniques in the computer science literature such as 

machine learning and pattern analysis.  

1.1.2 Myoelectric Classification 

The classification process of myoelectric signals to find particular gestures (or 

motions) is called myoelectric classification, and is the basis for myoelectric control (also 

known as myoelectric interface [7]). Roughly speaking, myoelectric control is a control 



 

5 

 

strategy using EMG signals to translate the human motion intent into pre-defined control 

commands. An EMG signal is a prominent bio-signal source to put a prosthesis or an 

exoskeleton under human control [3-5, 7] because EMG signals can represent the human 

movement intent originating in the brain. Well-known examples of myoelectric control 

using EMG signals are prosthetics for amputees [8-11], exoskeletons for rehabilitation 

tasks [12], and augmenting human power [13] in military and industrial setting.  

The early myoelectric control methods, called conventional myoelectric controls 

[5], have exploited the amplitude of the EMG signal to control one- or two- degrees of 

freedom prosthetic devices. Under conventional myoelectric control, large number of 

EMG electrodes are needed to improve the functionality of a prosthetic device. However, 

the number of electrodes is restricted because the area of human skin where electrodes can 

be attached is limited. One approach to solve this limitation is pattern recognition-based 

myoelectric control to find repeated patterns in the EMG signal [3, 4]. It increases the 

number of functions per electrode compared to conventional myoelectric control [3, 5].  

Pattern recognition-based myoelectric control works through pattern-based 

myoelectric classification (PMC). PMC is based on the assumption that each human 

motion has a highly-correlated, unique, and repeated pattern in the EMG signal [5]. 

Assuming this and using well-developed pattern recognition techniques, PMC extracts 

distinct EMG patterns in each motion and uses them as control commands.  

PMC generally consists of pre-processing, segmentation, feature extraction, 

dimension reduction, classification, post-processing, and command generation as 
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depicted in Figure 1. In pre-processing, raw EMG signals are filtered to reduce noise; 

generally, a notch filter is used for power-line noise (50 ~ 60 Hz), and low-pass and high-

pass filters are also used to remove movement artifacts and meaningless noise in high 

frequency ranges [2]. Segmentation is a process to make a segment, which is usually a 

10~300 millisecond time-window of the given EMG signal, to extract features. Feature 

extraction translates the EMG signals into features capable of distinguishing EMG 

patterns. Dimension reduction finds highly informative features in the broad feature space. 

This reduces the size of the feature space and can increase the performance of the 

classification process. Classification can be divided into two steps: training and 

prediction. In training, a classifier learns from training sets how to distinguish motion 

classes. During prediction, the trained classifier identifies the class of an input motion 

based on the knowledge obtained during the training process. Post-processing step usually 

generates commands for prosthetic robots or interfacing computers according to the class 

of input motion. 

 
Figure 1 Process diagram of pattern recognition-based myoelectric classification 

Feature extraction is a process to extract representative features from raw EMG 

signals because it is difficult to directly interpret the raw EMG signals for the purpose of 
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the classification. For this reason, a variety of features have been introduced. In general, 

features used in myoelectric classification are categorized into three groups: time domain 

(TD), frequency (or spectral) domain (FD), and time-frequency (or time-scale) domain 

(TFD) features [3, 7]. TD features are basically obtained from the amplitude of EMG 

signals such as integral of EMG (IEMG), wavelength (WL), variance (VAR), Mean 

Absolute Value (MAV), Zero Crossings (ZC), and Slope Sign Changes (SSC). An 

advantage of TD features is fast in calculation because of no need for mathematical 

transformation, but TD features are less robust to noise. On the contrary, FD features 

generally need Fourier transform to be calculated. Examples include cepstral coefficients, 

autoregressive coefficients (AR), and power spectral density (PSD). FD features are 

possibly used for muscle fatigue [14], EMG/force relations [15] and MU recruitment and 

firing pattern analysis [3]. A limitation of Fourier transform is that data after applying the 

transform does not indicate its temporal information even though the temporal information 

can be retrieved by inverse Fourier transform. To overcome this limitation, TFD features 

are calculated by using time-frequency analyses such as short time Fourier transform [16], 

wavelet transform [16, 17], wavelet packet transform [16], stationary wavelet transform 

[16], and empirical mode decomposition [18, 19]. Wavelet analysis and empirical mode 

decomposition can handle the non-stationary property of EMG and expand available 

feature spaces. 

Englehart and Hudgins [20] used four TD features (MAV, ZC, SSC, and WL) at 

each of four channels for a real-time multi-function myoelectric control. In [21], the 

authors tested the reliability of fifty EMG features with EMG datasets collected during 21 
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days. They mentioned that sample entropy (SampEn) outperformed other features when 

using a linear discriminant analysis classifier. The average classification accuracy was 

93.37%. Zhaojie, et al. [22] introduced the nonlinear features, DET (a predictability 

measure) and ENTR (a Shannon entropy of the frequency distribution). The authors 

compared the classification accuracies of the nonlinear features and other TD and FD 

features. The top accuracy was 96.7% when using Fuzzy Gaussian Mixture Model based 

classifier and a feature set associated with the Willison Amplitude (WAMP) and DET. 

With the increase of number of EMG electrodes and the dimension of features, the 

dimension reduction has become a necessary process to enhance the classification 

accuracy. Various dimension reduction techniques for myoelectric classification have 

been studied: principal components analysis (PCA), linear discriminant analysis (LDA), 

self-organizing feature map [23], and orthogonal fuzzy neighborhood discriminant 

analysis [24]. Chu, et al. [23] studied a linear-nonlinear feature projection using a 

collaboration of PCA and self-organizing feature map (SOFM) for dimensionality 

reduction and nonlinear mapping of the features. Khushaba, et al. [24] proposed an 

extension of LDA, called as orthogonal fuzzy neighborhood discriminant analysis 

(OFNDA). OFNDA used advantages of both of uncorrelated LDA (ULDA) and fuzzy 

LDA (FLDA) for the decorrelation of data and the maximum separation in a fuzzy manner. 

Phinyomark, et al. [25] compared the performance of PCA, LDA, ULDA, OFNDA, and 

orthogonal LDA (OLDA) in the myoelectric classification of eight upper-limb 

movements. They tested the five dimensionality reduction methods with seven different 

feature sets and concluded that ULDA, OLDA and OFNDA are suitable for myoelectric 
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classification. Khushaba and Kodagoda [26] proposed Mutual Components Analysis 

(MCA) to combine both feature selection and feature projection. MCA first removes noisy 

and redundant features before applying PCA. They tested MCA with EMG datasets 

including fifteen finger motions collected from eight human subjects. The results showed 

that MCA performs better than PCA. 

The classification process, undoubtedly, plays a crucial rule in myoelectric 

classification because its ability and capability is directly connected to the performance of 

myoelectric systems; the process starting with feature extraction and dimension reduction 

is completed via classification algorithms. For this reason, significant efforts have focused 

on classification algorithms. There are a number of studies related to classification 

algorithms for myoelectric systems: linear discriminant analysis [20, 27, 28][45], k-

nearest neighbors [29], multi-layer perceptrons [30], time-delayed neural network [20, 

31], extreme learning machine [32], fuzzy [33], fuzzy logic [34], adaptive neuro-fuzzy 

inference system [35] NEURO-fuzzy [36], fuzzy ARTMAP networks [37], fuzzy-

MINMAX networks [38], fuzzy Gaussian mixture models [22], wavelet neural network 

[39], hidden Markov models [40], Gaussian mixture models [41-43], and support vector 

machines [44, 45]. 

From the perspective of moving body parts for gestures, hand and wrist motions 

using major muscles, such as hand open/close, wrist flexion/extension, and forearm 

pronation/supination, were frequently used at the beginning stage in myoelectric 

classification because they are more convenient to detect the difference of EMG signal 

patterns. However, due to the need for more dexterity in myoelectric control, many finger 
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motion classification methods have focused on to increase the number of discriminable 

motions. Khushaba, et al. [46] classified 10 individual and combined finger motions with 

an average classification accuracy of about 90%. They used a post-processing, Bayesian 

data fusion, to enhance the classification accuracy. EMG datasets were collected from two 

electrodes located on a forearm from eight participants. Al-Timemy, et al. [47] used a 

combination of orthogonal fuzzy neighborhood discriminant analysis for dimensionality 

reduction and linear discriminant analysis for classification. The myoelectric classification 

method recognized fifteen finger motions at 98% accuracy with ten intact subjects and 

twelve finger motions at 90% accuracy with 6 amputated subjects. Tenore, et al. [30] 

discriminated 10 finger motions (individual flexion and extension of each finger) with 

over 90% accuracy in a transracial amputee. Moreover, they showed that there is no 

statistically significant difference (p<0.05) between a transracial amputee and five intact 

subjects.  

On the other hand, there are studies focusing on the classification of dynamic 

motions via myoelectric signals for the purpose of diversifying the motion type the 

myoelectric classification recognizes. With the perspective of Mitra and Acharya [48], 

gestures can be divided into two types: static motion and dynamic motion (see Figure 2). 

In general, a static motion has an invariant pose and configuration in time which means 

that it can be represented by relatively repeated and constant multi-dimensional EMG 

features with negligible changes in time (called hereafter a pattern). For example, “Hand 

Close” motion in Figure 2 (a) is a static motion because a formation of a hand and fingers 

is fixed and does not change in time. However, dynamic motions change their poses and 
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configurations over time. In Figure 2 (b), “Finger snapping” is an example of a dynamic 

motion; evidently, during a finger snapping motion, the fingers move and RMS values of 

EMG signals change in a noticeable manner. This means that a dynamic motion needs to 

be expressed by a temporal sequence of multi-dimensional EMG features that are changed 

during the motion (called hereafter a sequence). In myoelectric classification, a pattern 

(an EMG feature vector) is used to identify a static motion, whereas a sequence (a series 

of EMG feature vectors) represents a dynamic motion.  

 
Figure 2 (a) Static motion vs. (b) dynamic motion; Root Mean Square (RMS) in a static motion (Hand 

Close) is relatively steady, whereas RMS in a dynamic motion (Finger Snap) is changed over time. 
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To classify dynamic motions, there are vision-based [49], accelerometer-based 

[50, 51], and EMG-based [52] approaches, as well as their combinations. Shen, et al. [49] 

recognized dynamic hand gestures via a vision-based system. They used a template 

matching approach based on their proposed motion divergence fields, which is an image 

representation method using a gray-scale. Akl, et al. [50] recognized dynamic motions 

with a single 3-axis accelerometer. They generated each template of motions by 

employing dynamic time warping and affinity propagation. Wang, et al. [53] utilized a 

three-axis accelerometer, three sEMG sensors and a vision sensor to recognize dynamic 

hand motions. They used EMG signals for two purposes: 1) to identify the start and end 

of a motion by monitoring the intensity of EMG signals and 2) to classify four static 

motions as commonly done in myoelectric classification. The dynamic motions were 

determined by acceleration and visual trajectories. Wolf, et al. [54] developed the 

“BioSleeve” to interpret static and dynamic gestures using EMG sensors and an inertial 

measurement unit (IMU) sensor. In the classification of static gestures, the IMU was only 

exploited to figure out elevation angles of an arm. For the dynamic gesture classification, 

both IMU and EMG data were used via a dynamic programming technique. AbdelMaseeh, 

et al. [52] classified ten dynamic motions using only EMG signals. They used multi-

dimensional dynamic time warping (MD-DTW) to classify dynamic motions as finding 

the best match among all labeled trajectories from the training phase. Lu, et al. [55] also 

focused on the myoelectric classification of dynamic motions. They described time-

varying dynamic motions by using the expectation maximization and HMM. They 
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compared the performance of their proposed method with two classifiers (artificial neural 

network and support vector machine). 

1.1.3 Myoelectric Interface 

With wide-spreading computer technology, computerized devices and intelligent 

systems are right beside human life. In this circumstance, the need for interfacing devices 

conveniently and easily also has increased. To satisfy this need, numerous interfacing 

approaches in HCI have been studied. This dissertation focuses on myoelectric interface, 

which is an HCI strategy using myoelectric signals to transfer human intent to a device. 

Many studies have focused on myoelectric interface because myoelectric signal is suitable 

to represent human movements. There are several benefits of myoelectric interface: 1) 

human is more familiar with gestures, 2) there is no limitation for outdoor activities, 3) 

this is no interference when using a hand, and 4) information of muscle force can be used 

for other purpose. In general, human beings, especially, elderly persons and amputees, are 

more familiar with acting gestures than manipulating a joystick or a controller box with 

tens of buttons. Moreover, myoelectric interface has no limitation for outdoor activities 

compared to vision-based gesture recognition. Compared to vision-based systems, 

myoelectric interface is more suitable to recognize diverse and dexterous finger and hand 

motions because myoelectric interface is not affected by difficulties the vision-based 

systems have such as blocking fields of vision and various strengths of light. Although 

data gloves can recognize dexterous finger and hand motions, there is a challenge due to 

interference with hand movements and tactile feedback caused from the skin covered by 

the data gloves. However, myoelectric interface is free from hindering hand movements 
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and tactile feedback. This advantage is valuable for many applications. In addition, the 

information of muscle force estimated from EMG sensors is beneficial as well. The 

recognized muscle force can be used for more skillful and user-friendly applications.  

There are a number of studies related to myoelectric interface. Fukuda, et al. [42] 

developed an EMG teleoperation system consisted of a hand and wrist control part and an 

arm control part. The hand and wrist control part handled the end effector of a robot 

manipulator through myoelectric classification and the arm control part manipulated the 

arm section of the robot manipulator based on a three-dimensional position sensor. 

Artemiadis and Kyriakopoulos [56] proposed the switching regime (SR) model to 

manipulate a robot arm with adjusting the changes of EMG signals over time. The SR 

decoding model shifts to another decoding model that can express the relationship between 

changed EMG signals and arm motions. Xu, et al. [57] presents a sign language 

recognition system based on the data fusion of a three-axis accelerometer and multi-

channel EMG sensors. For the system, a decision tree and multi-stream hidden Markov 

models were utilized. Liu and Young [58] developed a myoelectric interface for a 6-DOF 

robot manipulator. The myoelectric interface used four EMG sensors and classified upper 

limb statuses by using empirical mode decomposition for the feature extraction and 

adaptive neuro-fuzzy inference system for the classification. Wolf, et al. [59] and Wolf, et 

al. [54], built the BioSleeve consisting of an IMU and 16 EMG sensors. In [59], they used 

the IMU sensor to determine the level of a forearm. The level information was used to 

increase the number of recognized gestures. They used hand gestures to manipulate two 

robot arms and two robot hands. In [54], the IMU information was used for classifying 



 

15 

 

dynamic motions. They basically recognized seventeen static and nine dynamic gestures. 

Min Kyu, et al. [60] manipulated a robot via IMU and sEMG sensors. They estimated 

human arm motions by using IMU to generate commands for an arm of the robot and 

determined hand postures and grasping force by using sEMG signals for a hand of the 

robot. Haque, et al. [61] proposed the “Myopoint” system that can replace the function of 

a computer mouse using IMU and EMG sensors by using a Myo™ armband. Georgi, et 

al. [62] worked on the session- and person-independent myoelectric classification. The 

authors used twelve gestures collected from five subjects during five sessions at different 

days and modeled each of gestures by using hidden Markov models (HMM) and Gaussian 

mixture models (GMM). The authors mentioned that the classification accuracy in 

session-independent was 97.8% and the accuracy in person-independent was 74.3%. 

1.1.4 Needs for Robustness in Pattern-based Myoelectric Classification 

PMC still has weaknesses to be commercially used although it has improved 

functionality of myoelectric systems compared to the conventional myoelectric 

approaches [5, 63]. In fact, a crucial weakness of PMC is lack of robustness against 

variations of EMG signals over time [4]. EMG signals can vary due to different reasons, 

such as electrode shift [64, 65], long-term use [21, 66-68], limb position change [69-71], 

fatigue [72], and skin condition [73]. This requires frequent re-calibrations of the classifier 

to perform properly. This cumbersome re-calibration task is a key factor that has prevented 

pervasive use of myoelectric devices [5]. The robustness issue of PMC should be 

addressed in order to decrease the gap between academic research and commercial uses. 

Without robustness, usability of myoelectric system will be limited. Farina, et al. [5] well 
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explained the needs for the reliability of myoelectric system in the variations of EMG 

signal patterns related to changing positions of electrodes caused by re-wearing, limb 

position changes (range of activities), electrode/skin impedance changes, and long-term 

use. 

To solve the robustness issues, numerous studied have been conducted. For the 

limb position changes, Scheme, et al. [74] and Fougner, et al. [70] used additional sensors 

(accelerometers) that have different modality from EMG sensors in order to take limb 

positions into account. Geng, et al. [69] proposed a cascade classification scheme using a 

position classifier and multiple motion classifiers in charge of different limb positions. 

Khushaba, et al. [71] developed robust myoelectric features that are invariant to the 

translation and scaling of EMG signals. They used the features to tackle unreliable issues 

caused from limb position changes. Masters, et al. [75] also tried to increase the 

classification accuracy due to limb position changes by training a classifier with data from 

different limb positions. Their approach needed no additional hardware and sensors. They 

tested four different configurations with an individual classifier (trained at a certain limb 

position), an aggregate classifier (trained by data collected from all limb position), and a 

position classifier (figure out a current limb position). Park, et al. [76] developed a 

proportional myoelectric interface that performed reliably with respect to arm position 

changes as estimating the likelihood of arm positions. 

For long-term uses, Phinyomark, et al. [21] benchmarked a group of EMG features 

in terms of their robustness. The result indicated that the sample entropy EMG feature 

(SampEn) showed the best performance with a linear discriminant analysis classifier. 
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Kaufmann, et al. [67] collected EMG signals of 10 motions during 21 days and used 5 

different classification methods. The result indicated that most of the classifiers needed 

re-training to prevent decreasing over time in the classification accuracy. Amsuss, et al. 

[68] recorded EMG patterns of 8 motions from 5 human subjects during 5 consecutive 

days. The authors concluded that the accuracy of myoelectric pattern classification 

decreased on the long term behavior. 

As far as electrode shift, muscle fatigue, and various muscle force levels, López, 

et al. [77] used two data fusion algorithms, Variance Weighted Average (VWA) and 

Decentralized Kalman Filter (DKF), to correct failures of a myoelectric control system 

caused from electrode shift and various noise sources. Tkach, et al. [78] investigated the 

stability of EMG features with respect to electrode shift, muscle fatigue, and various 

muscle contraction levels. They mentioned that the effect of muscle fatigue is less than 

the others (electrode shift and various muscle contraction levels). Tkach, et al. [79] 

measured the robustness of TD features in terms of force variations (low and high force 

levels), muscle fatigue, and electrode location shift. Young, et al. [64] and Young, et al. 

[80] compared the classification errors with respect to shifting electrodes, varying distance 

between positive and negative poles of bipolar channel sEMG sensors, and changing 

electrode size and orientation of electrode poles. Al-Timemy, et al. [81] also tested the 

robustness of EMG features with three different muscle force levels (low, medium, and 

high force levels). They stated that muscle force variation caused a degradation in the 

classification accuracy. In their result, TD features performed slightly better than AR 
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coefficients and RMS EMG features. In addition, when training a classifier with all force 

levels, the classification error dropped to about 17%. 

1.2 Objectives of the Dissertation 

Research goals in this dissertation are: 1) increasing the reliability of a myoelectric 

system by using dynamic motions and 2) building an HCI with a reliable myoelectric 

interface to manipulate a robot arm. To do this, the proposed myoelectric interface uses 

dynamic motion, which is a posture changing its shape, pose, and configuration over time. 

In general, a dynamic motion can be represented by a sequence of myoelectric signals 

during a certain period (usually, from the start of the motion to the end of it). Compared 

to dynamic motions, static motions such as “opened hand” and “closed hand” have no 

temporal information because they do not change their shapes and poses over time. This 

simplicity is an advantage when modeling static motions and a reason why the myoelectric 

interface has widely used static motions as recognizable gestures. The proposed approach 

assumes that using dynamic motions are more reliable when dealing with the robustness 

issue, particularly limb position changes, than using static motions. Some studies used 

dynamic motions to expand the variety of motions that can be recognized by myoelectric 

signals. However, to the author’s knowledge, previous studies have not used dynamic 

motions for limb position changes. 

In here, the term, reliability (or robustness) of myoelectric interface means that the 

interface recognizes human gestures without noticeable decrease in the classification 

accuracy against the non-stationary condition of myoelectric signals caused by the 

external condition changes. The term reliability (or robustness) is used widely in the 



 

19 

 

literature. The authors in [5] addressed the robustness issues of myoelectric control; that 

is, the myoelectric system needs to be robust to limb position, electrode/skin impedance 

changes, and changes in EMG signals over different days of use. The robustness of a 

myoelectric classification method is usually shown experimentally, not mathematically. 

For example, the authors in [70] used additional accelerometers to tackle reducing the 

performance of myoelectric classification when the limb position changes. They explained 

the robustness via classification accuracy of their methods. Furthermore, the authors in 

[71] proposed EMG features for the robustness of the myoelectric classification against 

the impact of changing limb positions. They also showed the robustness of the method 

through experimental results. 

Among many robustness issues, the dissertation mainly focuses on the limb 

position changes, which describes the drop in the performance of myoelectric 

classification when the limb position varies from a position where the system was 

previously trained. Lack of robustness related to the limb position changes is mainly 

caused by the discordance between what a classifier learned from the training sets and the 

actual EMG patterns in service. When the limb position varies from where a classifier was 

initially trained, the classification accuracy suffers due to this difference. The proposed 

method classifies dynamic motions with robustness to limb position changes. The 

robustness of the proposed method is evaluated by choosing the training sets and 

validation sets at different limb positions. 

As an application of the proposed myoelectric interface, an HCI system 

manipulating a 6-DOF robot arm with a 1-DOF gripper is introduced. The HCI system 
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includes an IMU sensor to measure limb orientation and eight EMG sensors to acquire 

muscle force and to classify dynamic motions. Varying muscle forces controls the 

activation modes (waiting for a dynamic motion and moving a robot arm). Gradients of a 

limb orientation give directions of movements to the robot arm. Classified dynamic 

motions are used to change the control states of the HCI system such as Arm mode 

(translation), Wrist mode (rotation), and Finger mode (gripper). Each dynamic motion is 

mapped to a specific function like buttons in a joystick. 

1.3 Organization of the Dissertation 

The subsequent chapters consist of an explanation and comparison of general 

pattern-based myoelectric classifications (Chapter II), robustness to the limb position 

changes in the proposed sequence-based myoelectric classification (Chapter III), the 

manipulation of a robot arm via IMU and EMG signals with the proposed myoelectric 

classification scheme (Chapter IV), and the summarization and conclusion of this 

dissertation (Chapter V).  

In Chapter II, the comparison of various methods for traditional myoelectric 

classification with finger and hand motions is presented. In Chapter III, the difference 

between dynamic and static motions is considered. Furthermore, the proposed sequence-

based myoelectric classification for classifying dynamic motions is presented and 

discussed. The robustness of the proposed myoelectric classification to the limb position 

changes was evaluated and compared to PMC. The static and dynamic motion sets were 

collected at four different limb positions. In Chapter IV, a myoelectric interface was 

developed to manipulate a 6-DOF robot arm (with a 1-DOF gripper). The proposed 
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sequence-based myoelectric classification was used to handle robot control modes. 

Muscle forces and the orientation of a forearm are used to generate movement commands 

for the robot arm. To measure the performance of the myoelectric interface, a predefined 

task was repeated with five participants. Finally, Chapter V concludes the dissertation with 

a brief summarization of the above works and recommendation for future research in this 

area. 
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CHAPTER II 

A PERFORMANCE COMPARISON OF CONVENTIONAL PATTERN-BASED 

MYOELECTRIC CLASSIFICATION* 

2.1 Introduction 

With increasing interests in human computer interaction, an approach using EMG 

signals has been widely studied because EMG signals account for human muscle 

activities. Several approaches, such as proportional control, threshold control, onset 

analysis, and finite state machines, have used EMG to reflect the human motion intents. 

Even though these approaches have worked properly on reflecting the human motion 

intent in their system, myoelectric pattern classification approaches, or pattern-based 

myoelectric classification (PMC), have been developed to extract more detailed 

information about the human motion intent from myoelectric signals [3]. Myoelectric 

classification is a way of classifying EMG signal patterns, which are correlated with 

particular human motions. Applications that can benefit from EMG pattern recognition 

include assistive robotics and artificial prosthetics to enhance the quality of life for 

amputees and the elderly [82]. 

The aim of this chapter is to compare well-known methods for feature extraction, 

dimension reduction, and classification in myoelectric classification to estimate the 

performance of the methods in myoelectric classification: real-time operation, acceptable 

                                                                                                                                                
* Reprinted with permission from “A Performance Comparison of EMG Classification Methods for Hand 

and Finger Motion” by Sungtae Shin, et al., 2014 Dynamic Systems and Control Conference (DSCC), 2014 

(Copyright ©  2014, ASME) 
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accuracy, and convenience of training procedures. For comparison, not only classification 

accuracy but also training time as well as validation time were considered as the 

performance evaluation criteria. For the purpose of generality, two published EMG 

datasets (hand and finger motions) were used. In addition, three feature extraction 

techniques (time domain, empirical mode decomposition, and discrete wavelet transform), 

two dimension-reduction methods (principal component analysis and linear discriminant 

analysis), and six classification algorithms (naïve Bayes, k-nearest neighbor, quadric 

discriminant analysis, multi-layer perceptrons, support vector machines, and extreme 

learning machines) were adopted in this chapter. 

2.2 Methods 

This section describes public gesture EMG datasets (hand & finger motion EMG 

datasets) to test the performance of methods used in the study. Moreover, the methods 

(feature extraction, dimensionality reduction, and classification techniques) are explained. 

2.2.1 EMG Gesture Datasets 

In order to evaluate the performance of methods used for PMC, two public EMG 

gesture datasets are chosen in this study. One includes 10 hand-motions and the other one 

contains 15 finger-motions, as detailed next. 

Hand Motion EMG Dataset (HED) 

The “10mov4chUntargetedForearm” dataset from BioPatRec [83] was chosen for 

hand-motion classifications. The dataset includes ten hand motion classes, shown in 

Figure 3, measured by four bipolar EMG electrodes, which were located around the 
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forearm. Each motion had a 3-second contraction time and a 3-second relaxation time, and 

was repeated three times. In total, twenty subjects participated in the process. 

 
Figure 3 Hand and wrist motions in BioPatRec dataset [83] 

Finger Motion EMG Dataset (FED) 

For finger-motion classifications, the Khushaba and Kodagoda dataset [26] was 

used. This dataset contains fifteen individual and combined finger motion classes 

measured by eight electrodes which were placed across the circumference of the forearm. 

These motions are depicted in Figure 4. Each motion was held for 20 seconds and recurred 

three times. The first 5-second data of each motion was used in our study. Eight subjects 

were involved in this dataset. 
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Figure 4 Fifteen finger motions in Khushaba and Kodagoda dataset [26] 

2.2.2 Feature Extraction 

This section introduces the methods of feature extraction studied in this work. 

Feature extraction has an important role in the performance of the classification algorithm. 

Strictly speaking, raw EMG signals appear noise-like; in fact, it is hard to capture 

meaningful features directly from the raw EMG signal. Feature extraction is a sort of 

translation process from raw EMG signals, which seem to be meaningless, to meaningful 

features, which represent the muscle activities. Therefore, extracting representative 

features helps to enhance the performance of the classification algorithm.  

Time-domain features were used to extract informative feature vectors from the 

EMG signals. In addition, signal analysis methods were used to expand the possible 

feature space (discrete wavelet transform and empirical mode decomposition). 
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Time Domain Features 

Eight different time-domain features were used here: Mean Absolute Value, Root 

Mean Square, Integrated EMG, Waveform Length, Zero Crossing, Slope Sign Change, 

Skewness, and sixth-order auto-regressive coefficients. Their equations are presented in 

Table 1. The dimension of the feature set is totally thirteen. This feature set will be called 

here as TDAR6. 

Table 1 Time domain features[84][84][84] 

Feature 

Extraction Name 
Definition 

Mean absolute 

value 
MAV =

1

𝑁
∑ |𝑥𝑖|

𝑁

𝑖=1
 

Root mean square RMS = √
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

Integrated EMG IEMG = ∑ |𝑥𝑖|
𝑁

𝑖=1
 

Waveform length WL = ∑ |𝑥𝑖+1−𝑥𝑖|
𝑁−1

𝑖=1
 

Zero crossing ZC = ∑ [𝑠𝑔𝑛(𝑥𝑖 × 𝑥𝑖+1) ∩ |𝑥𝑖 − 𝑥𝑖+1| ≥ 𝑡ℎ]
𝑁−1

𝑖=1
 

Slope sign change 
SSC = ∑ [𝑠𝑔𝑛((𝑥𝑖−𝑥𝑖+1) × (𝑥𝑖 − 𝑥𝑖+1))

𝑁−1

i=2
∩ (|𝑥𝑖 − 𝑥𝑖+1|

≥ 𝑡ℎ ∪ |𝑥𝑖 − 𝑥𝑖−1| ≥ 𝑡ℎ)] 

Skewness SKW =

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)3𝑛
𝑖=1

(
1
𝑁

∑ (𝑥𝑖 − 𝑥𝑖̅)2𝑛
𝑖=1 )

3
2

 (𝑥̅ is sample mean) 

Auto-regressive 

coefficients (𝑎𝑖) 
𝑥𝑘 = ∑ 𝑎𝑖𝑥𝑘−𝑖

𝑃

𝑖=1

+ 𝑒𝑘  

(𝑎𝑖: AR coefficients, 𝑒𝑘: an error term, 𝑃: the order of AR) 

N: the size of samples 

𝑡ℎ =  threshold  
𝑠𝑔𝑛(𝑥) = {

1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ
0, 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
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Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is a wavelet transform to deal with discrete 

data. Wavelet transform analyzes both time and frequency information of the given data 

(unlike Fourier transform which focuses on the frequency domain). This property offers a 

significant advantage for EMG signals because they are usually non-stationary, which 

means that their properties changes over time.  

In general, DWT decomposes a signal into a group of approximation coefficients 

and a group of detail coefficients, by using a low-pass filter and a high-pass filter, 

respectively, as shown in Figure 5. From each group of coefficients one can reconstruct 

the original signal by Inverse DWT.  

 
Figure 5 Schematic diagram of DWT (HPF: high pass filter, LDP: low pass filter, Dx: detail coefficients 

of level x, Ax: approximation coefficients of level x) 

D1

Input Signal

HPF

A1

LPF

D2

HPF

A2

LPF

Lv.1: Input Signal = D1 + A1

Lv.2: Input Signal = D1 + 
D2 + A2
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A fifth order Symlets wavelet with four decomposition levels (DL = 4) were used 

to analyze EMG signals. After the transformation, the last approximation coefficient, 

{cA4} , and four detail coefficients, {cD1, cD2, cD3, cD4} , were calculated. These five 

coefficients were separately reconstructed by inverse DWT. With the reconstructed signal 

set from the coefficients, X = {x𝑖 , 1 ≤ 𝑖 ≤ DL + 1} = {A4, D1, D2, D3, D4} , each 

reconstructed signal was used to extract a total of nine features (the eight time-domain 

features and Relative Signal Energy (RSE)). RSE is the ratio of energy of a signal at a 

certain frequency band to the total energy of the signal, and is inspired by the relative 

wavelet packet energy [85]. RSE is defined by: 

 RSE𝑖 =
∑ |x𝑖(k)|2

k

∑ ∑ |xn(k)|2
k

DL+1
n=1

 (1) 

where 𝑖  is the reconstructed signal index and k  is the number of samples of the 

reconstructed signal x𝑖. 

Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) [18] is also a tool to analyze non-

stationary signals. Input signals (X) can be decomposed by EMD into a group of intrinsic 

mode functions (IMFs) and a residue, as shown in Equation (2). These IMFs contain 

contents of the signal in different frequency bands. 

 X(t) = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝑡) + ∑ IMF𝑖(𝑡)
𝑛

𝑖=1
 (2) 

The EMD process produces IMFs in the ascending frequency order, which is called 

sifting. This process can be summarized as follows: 

1. Find all the local maxima and minima in the input signal. 
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2. Link all the local maxima as the upper envelope. 

3. Link all the local minima as the lower envelope. 

4. Calculate their mean between the upper envelope and the lower envelope. 

5. Subtract the mean (m) from the input signal (X). The result becomes an IMF as 

shown in Equation (3).  

6. For the next IMF, the mean m1(𝑡) becomes the next input signal. Now, repeating 

the above procedure with the next input signal, the next IMF can be calculated. 

7. This procedure will be stopped when the stoppage criterion (SD, Equation (4)) [18] 

is smaller than a pre-defined value. 

 X(t) − m1(𝑡) = IMF1(𝑡) (3) 

 SDk =
∑ |ℎ𝑘−1(𝑡) − ℎ𝑘(𝑡)|2𝑇

𝑡=0

∑ ℎ𝑘−1
2 (𝑡)𝑇

𝑡=0

 (4) 

In general, most valuable information in the EMG signal is located between 20Hz 

and 500Hz [86]. With this in mind, the first four IMFs and the residue were chosen to 

calculate features. The time-domain features and RSE were extracted from the IMFs and 

the residue, respectively. 

2.2.3 Dimension Reduction 

In order to increase the classification accuracy in the EMG pattern recognition, the 

number of EMG electrodes and the size of extracted features from raw EMG signals are 

usually increased. However, with increasing the size of the data, the computational time 

and power also increases. To remedy this problem, dimension reduction is indispensable 

in EMG pattern recognition.  
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In this study, two well-known and basic dimension reduction techniques, i.e., PCA 

[87] and LDA [88], also known as Fisher's linear discriminant, were adopted. In general, 

PCA maximizes the representation of data by maximizing the variance of the data. 

Likewise, LDA maximizes the separation of the data using the class label in a supervised 

learning manner, as shown in Figure 6. The classification accuracy results with dimension 

reduction were compared to the results without the dimension reduction. 

 
Figure 6 PCA vs. LDA 
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2.2.4 Classification  

In this study, six classification methods were chosen to classify EMG gesture. The 

six methods (Naïve Bayes, K-Nearest-Neighbor, Quadratic Discriminant Analysis, Multi-

Layer Perceptron, Support Vector Machine, and Extreme Learning Machines) are briefly 

explained next.  

Naïve Bayes 

Naïve Bayes (NB) is a statistical classifier using Bayes’ theorem with an 

assumption that random variables are statistically independent of each other. NB can be 

modeled as the posterior probability, p(C|X1, … , Xn) with a class variable C and input 

variables X1 through Xn. The posterior probability is proportional to the product of the 

prior probability, 𝑝(𝐶) , and the likelihood probabilities, ∏ 𝑝(𝑋𝑖|𝐶)𝑛
𝑖=1 , according to 

Bayes’ theorem and the independence assumption:  

 p(C|X1, … , Xn) =
𝑝(𝐶)𝑝(𝑋1, … , 𝑋𝑛|𝐶)

𝑝(𝑋1, … , 𝑋𝑛)
∝ 𝑝(𝐶) ∏ 𝑝(𝑋𝑖|𝐶)

𝑛

𝑖=1
 (5) 

NB finds the prior probabilities and the likelihood probabilities from training data during 

the training procedure. Then, for classification, NB decides a target class, which 

maximizes the posterior probability with input variables. 

K nearest neighbor 

K nearest neighbor (KNN) classifies input features as finding the K nearest neighbors 

from its repository and then, determining the appropriate class from among these 

neighbors. The schematic explanation of KNN is described well in Figure 7. Due to the 
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nature of KNN, it does not need training, but requires relatively more computational effort 

in the classification stage. For the studies, the k parameter was adopted as five by cross 

validation. 

 
Figure 7 KNN classification (k=3, the green cross is classified as a blue circle) 

Quadratic Discriminant Analysis 

Quadratic Discriminant Analysis (QDA) is a Gaussian model based statistical 

classification method. This means that QDA assumes all observations are normally 

distributed and these observations can be modeled as a Gaussian distribution with mean 

(µ) and covariance (Σ). Furthermore, QDA assumes that every class has a different mean 

and covariance. Then, a quadratic discriminant function can be expressed as Equation (6), 

where x is the input variable, μi is the mean of class i, Σi is the covariance of class i, P(ωi) 

is the prior probability of class i. 
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 gi(x) = −
1

2
(x − μi)

TΣi
−1(x − μi) −

1

2
log|Σi| + logP(ωi) (6) 

The discriminant function (DF) of an observation x within class i, gi(x), is calculated for 

all classes. The calculated DFs are used for the decision rule (assigning x to class i if 

gi(x) > gj(x) ∀j ≠ i ). 

Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) is a feedforward neural network having multiple 

layers (one input and one output layer, and one or more hidden layers) as shown in Figure 

8. Each perceptron (σ) is calculated by Equation (7), a weight from i to j (wij) and bias 

(b), activation function (ϕ). 

 yj = ϕ(∑ wij𝑥𝑖 + 𝑏
𝑖

) (7) 

Single-hidden layer feedforward network (SLFN), a type of MLP, was used for the 

experiment. The size of neurons in the hidden layer was 15 in this study. The size was 

determined by cross validation technique. For the activation function of the hidden and 

output layers, the tan-sigmoid function is chosen. Furthermore, Levenberg-Marquardt 

back-propagation algorithm was considered for the training of the network. 



 

34 

 

 
Figure 8 Multi-layer perceptron 

Support Vector Machine 

Support Vector Machine (SVM) is a discriminative model that generates 

hyperplanes based on support vectors to classify unobserved variables, as shown in Figure 

9. The goal of SVM is to maximize a margin, which defined as the distance between two 

hyperplanes. This optimization problem can be formulated as: 

 

LD(α) = ∑ αi

N

i=1
−

1

2
∑ ∑ αiαjyiyjk(xi, xj)

N

j=1

N

i=1
  

Subject to 0 ≤ αi ≤ C and ∑ αiyi

N

i=1
= 0 

(8) 

where α is the Lagrange multiplier, N is the number of samples, y is a class label (-1 or 

1), x is a feature vector, C is the soft margin parameter, which is the margin allowing a 

certain degree of misclassification in SVM, and k(∙) is the kernel function representing 

the nonlinearity. With an assumption that samples are normally distributed, Gaussian 
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Radial Basis Function (RBF) shown in Equation (9) was used as the kernel function, where 

γ is the parameter for adjusting RBF. 

 k(xi, xj) = exp (−γ‖xi − xj‖
2

) , for γ > 0 (9) 

To solve this optimization problem, libSVM package [89] was used. Basically, SVM find 

a hyperplane separating two classes (binary classification). However, this study focuses 

on a problem classifying multiple gestures (multiclass classification). To solve the 

multiclass classification problem via multiple binary classification approaches, one-

versus-the-rest approach [90] was implemented. The parameters, C (32) and γ (0.0313), 

were found by the grid search approach [89]. 

 
Figure 9 Support vector machine conceptual schema; the sold line is the optimal hyperplane separating 

two classes (solid circles and empty circles) with the maximum margin, and samples on the boundary 

hyperplanes (the dot lines) are called the support vectors (the bold circles).  



 

36 

 

Extreme Learning Machines 

Extreme Learning Machines (ELM), introduced by Huang [91], is a learning 

algorithm for single-hidden layer feedforward network (SLFN). Its distinguishable 

property is that it does not need to be trained iteratively unlike other gradient-based 

learning algorithms for multilayer perceptrons. This is an important advantage for real-

time operation.  

For given train sets T = {(𝐱1, 𝐲1), … , (𝐱𝑁 , 𝐲𝑁)}  where 𝐱i = [x𝑖1, … , x𝑖𝑛 ]T ∈ R𝑛 

and 𝐲𝑖 = [y𝑖1, … , y𝑖𝑚 ]T ∈ R𝑚, SLFN with the number of neurons in the hidden layer, L, 

can be expressed as: 

 ∑ 𝛃i𝑔(𝐰𝑖 ∙ 𝐱𝑗 + b𝑖) = 𝐲𝑗

𝐿

𝑖=1

, 𝑗 = 1, … , 𝑁 (10) 

where 𝐰𝑖 = [w𝑖1, … , w𝑖𝑛]T is the weight vector between the 𝑖th hidden node and the input 

nodes, 𝛃𝑖 = [β𝑖1, … , β𝑖𝑚]T  is the weight vector between the 𝑖 th hidden node and the 

output nodes, b𝑖 is the bias for the 𝑖th hidden node, and 𝑔(∙) is the activation function 

(e.g., sigmoid function). The number of neurons in the hidden layer, L, was 100 in this 

study and it was determined by cross validation technique. The polynomial form of 

Equation (10) can be rewritten in a matrix form: 

  



 

37 

 

 

𝐇𝛃 = 𝐘, 
where  
H(𝐰1, … , 𝐰𝐿 , b1, … , b𝐿 , 𝐱1, … , 𝐱𝑁) 

                  =  [
𝑔(𝐰1 ∙ 𝐱1 + b1) ⋯ 𝑔(𝐰𝐿 ∙ 𝐱1 + b𝐿)

⋮ ⋱ ⋮
𝑔(𝐰1 ∙ 𝐱𝑁 + b1) ⋯ 𝑔(𝐰𝐿 ∙ 𝐱N + b𝐿)

]

𝑁×𝐿

, 

 𝛃 = [
β1

T

⋮
β𝐿

T
]

𝐿×𝑚

, and 𝐘 = [
y1

T

⋮
y𝑁

T
]

𝑁×𝑚

 

(11) 

From this matrix notation, ELM algorithm trains the SLFN structure as follows: 

1. Assign randomly the hidden weights (𝐰𝑖) and the hidden node bias (b𝑖), i=1,…,L 

2. Calculate the hidden layer output matrix H 

3. Calculate the output weight matrix 𝛃̂ = 𝐇†𝐘 

4. Where H† is the Moore-Penrose generalized inverse of the hidden layer output 

matrix H. 

2.3 Results 

This section shows the evaluation results in terms of classification accuracy, 

training time, and classification (or prediction) time. For training and classification time, 

only the results of TDAR6 feature set are stated because TDAR6 feature set showed the 

best classification accuracy. The window size used in the segmentation is 256ms length 

and 128ms increment. Finally, statistical analysis of the results is described. The size of 

the training and test sets in the hand motion dataset were 440 and 220, respectively. In the 

finger motion dataset, the size of the training set was 1140, and the size of the test set was 

570. 
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2.3.1 Classification Accuracy 

The results in this section shows the classification accuracy of the myoelectric 

classification methods for the hand motion and the figure motion datasets. 

Hand Motion 

The effects of different dimension reductions and feature extractions in the hand 

motions are analyzed. The results of the dimension reduction methods with TDAR6 

feature set are depicted in Figure 10. The error bars in the figure display the standard 

deviation of the total 20 subjects with 3 trials of each hand motion. As one can see in the 

figure, LDA shows higher accuracies regardless of the classification methods. The highest 

accuracy in the results is 88.9% of NB with LDA. The lowest accuracy was 67.5% of 

QDA with No-DR (no dimension reduction). In SVM and MLP, the accuracy of both LDA 

and No-DR were similar. The other results indicated that PCA did not show better 

performance than No-DR. 

 
Figure 10 Classification accuracy of the BioPatRec hand motion dataset without DR 
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The results with the different feature extractions are displayed in Figure 11. In this 

figure, the results of applying LDA was only displayed because LDA outperformed PCA 

in the overall results. Moreover, MLP did not work without dimension reduction due to 

“out of memory” problem. As shown in Figure 11, TDAR6 were more accurate than EMD 

and DWT in the all results. The results of EMD and DWT were very similar. 

 
Figure 11 Classification accuracy of the BioPatRec hand motion dataset with LDA 

Finger Motion 

The results of dimension reductions and feature extractions in the finger motions 

were analyzed. Furthermore, the results were compared with the hand motion results. The 

effects of different dimension reduction methods can be seen in Figure 12. Much like the 

results of HED, LDA performed well in FED compared to PCA and No-DR. The results 

of LDA showed analogous accuracies regardless of the classification method. Although 

PCA showed similar accuracy results with the different classifiers, LDA was more 
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accurate than PCA. The results of No-DR seemed to depend on the classification method. 

Moreover, the classification accuracy of all classification methods with LDA were over 

80%. However, the accuracies of other methods were less than this except for SVM and 

MLP with No-DR. 

 
Figure 12 Classification accuracy of the Khushaba finger motion dataset without DR 

We can see the comparison of the different feature extraction schemes in Figure 

13. Similar to the hand motion results, TDAR6 achieved better results than EMD and 

DWT. One point to consider is that the results of the finger motions are more accurate 

than the results of the hand motions.  
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Figure 13 Classification accuracy of the Khushaba finger motion dataset with LDA 

2.3.2 Training Time 

This section discusses the training time of the myoelectric classification methods 

within the hand motion and the figure motion datasets. 

Hand Motion 

The training time of the hand motion studies with the TDAR6 feature set were 

evaluated to compare their performance for different classification methods and dimension 

reduction techniques. Here, we only considered TDAR6 feature set because it showed less 

computational effort and more accuracy in classification. The results are tabulated in Table 

2. As one can see, the training time with the dimension reductions were reduced 

considerably compared to No-DR because dimensionality reduction decreases the size of 

feature space a classifier needs to learn. Nevertheless, MLP needed the longest training 

time in all cases as it uses the time-consuming backpropagation training. The repeated 

backpropagation training needs more time to propagate training data over a multi-layer 
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neuron network. For this heavy training process, the dimensionality reduction narrowing 

searching scopes of the feature space plays a vital role in decreasing the training time of 

the MLP. Moreover, the advantage of using dimensionality reduction is also found in 

SVM. The reduced feature space is advantageous for solving the optimization problem of 

SVM in the training process.  

Table 2 Training time of the BioPatRec hand motion dataset with TDAR6 

Training Time  

(BPR/TDAR6/256ms) 

  DR 

  None PCA LDA 

C
la

ssifica
tio

n
 

NB 0.005s 0.003s 0.003s 

KNN 0.007s 0.007s 0.007s 

QDA 0.098s 0.083s 0.084s 

SVM 0.014s 0.006s 0.003s 

MLP 18.075s 2.612s 2.178s 

ELM 0.005s 0.005s 0.005s 
 

Finger Motion 

Table 3 shows the results of training time in finger motion studies according to the 

classification methods and the dimension reduction techniques. Because of the different 

sizes of training sets (the training size of the finger motions was about two times more 

than of the hand motions), their training time would not be same, but, their trend is co-

related. As one can see in the hand and finger motion studies, MLP and SVM need 

dimension reduction for practical real-time applications. Furthermore, LDA was more 

effective than PCA in SVM with regard to the training time. As described in Figure 6, 
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while PCA maximizes the variance of the data, LDA aims to maximize class-separability 

on a lower feature dimensional space. The pre-processed separation of data relaxes the 

complexity of the optimization problem of SVM. This causes to decrease the training time 

of SVM when using LDA compared to PCA. 

Table 3 Training time of the Khushaba finger motion dataset with TDAR6 

Training Time  

(Khu/TDAR6/256ms) 

  DR 

  None PCA LDA 

C
la

ssifica
tio

n
 

NB 0.011s 0.004s 0.004s 

KNN 0.007s 0.006s 0.006s 

QDA 0.241s 0.173s 0.173s 

SVM 0.191s 0.038s 0.014s 

MLP 366.271s 14.521s 30.086s 

ELM 0.007s 0.006s 0.006s 
 

2.3.3 Classification Time 

This section discusses the classification (prediction) time of the myoelectric 

classification methods within the hand motion and the figure motion datasets. 

Hand Motion 

The classification time of a classifier is the time needed for classifying the 

validation set. It is an important factor for real-time operation of a classifier. Table 4 

displays the results of the classification time of hand motions. From the results, the 

effectiveness of the dimension reduction could be verified to be similar to the training 
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cases. In addition, we can see that SVM with LDA showed better performance than with 

PCA. Moreover, NB and ELM resulted in faster classification times. All said, the 

classification time of MLP was the largest in all cases. The size of the validation set in 

HED was 220. 

Table 4 Classification time of the BioPatRec hand motion dataset with TDAR6 

Classification Time  

(BPR/TDAR6/256ms) 

  DR 

  None PCA LDA 

C
la

ssifica
tio

n
 

NB 0.005s 0.003s 0.004s 

KNN 0.006s 0.002s 0.002s 

QDA 0.004s 0.003s 0.003s 

SVM 0.005s 0.002s 0.001s 

MLP 0.006s 0.006s 0.006s 

ELM 0.001s 0.001s 0.001s 
 

Finger Motion 

The results of the classification time in the finger motions is presented in Table 5. 

The size of the validation set in FED was 570. There is no remarkable difference between 

the results of the hand and finger motions with regard to the classification time. The only 

difference is that the classification time of the finger motion is longer than of the hand 

motion because the number of the validation set of the finger motion is larger than of the 

hand motions. 
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Table 5 Classification time of the Khushaba finger motion dataset with TDAR6 

Classification Time  

(Khu/TDAR6/256ms) 

  DR 

  None PCA LDA 

C
la

ssifica
tio

n
 

NB 0.015s 0.006s 0.006s 

KNN 0.053s 0.012s 0.012s 

QDA 0.011s 0.005s 0.005s 

SVM 0.057s 0.020s 0.009s 

MLP 0.008s 0.006s 0.006s 

ELM 0.002s 0.002s 0.001s 
 

2.3.4 Statistical Analysis 

Statistical analysis is conducted to determine whether 1) the classification 

accuracies of classifiers in three cases of using No-DR, PCA, and LDA are significantly 

different; and 2) the computational times (training and classification times) of the three 

cases (using No-DR, PCA, and LDA) are significantly different. For statistical analysis of 

the results, one-way ANOVA (analysis of variance) was conducted in HED and FED. The 

null hypothesis {ℋ0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛} , which means that the population means, 

∀𝜇𝑖 for 1 ≤ 𝑖 ≤ 𝑛, of the results of 𝑛 different groups are the same, is rejected with 95% 

significance level (p-value < 0.05). 

First of all, the effect of dimension reduction in the classification accuracy was 

analyzed with TDAR6 feature set. The classification accuracies of the six classifiers (NB, 

KNN, QDA, SVM, MLP, and ELM) with No-DR are significantly different in the studies 

(p=0.0 (HED) and p=0.0 (FED)). With PCA, there are no significant differences (p=0.63 

(HED) and p=0.46 (FED)). With LDA, there are also no significant differences (p=0.56 
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(HED) and p=0.72 (FED)). This analysis means that all classification methods shows 

similar performance in the classification accuracy after applying dimensionality reduction. 

Next, for the analysis of the effect of dimension reduction in the computational 

times, the dimension reduction affects the computational times because it reduces the size 

of feature vectors that need computational calculations. However, the effect of using 

dimension reduction varies based on the characteristic of classification algorithm. 

Interestingly, NB, KNN, QDA, and ELM have no meaningful differences between the 

results of using LDA and PCA in HED and FED. NN has differences, but their tendencies 

in HED and FED are not consistent. However, SVM has a consistent trend in HED and 

FED; LDA outperformed PCA in all cases (the training and classification times in HED 

and FED). The training and classification times between PCA and LDA with SVM 

classifications have significant differences, as shown in Table 6. A possible explanation 

about this trend is that LDA projection makes the optimization problem of SVM easier 

than what PCA does because LDA projection maximizes class-separability on a lower 

feature dimensional space.  
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Table 6 Training and classification times of SVM and NN in HED and FED 

   SVM NN 

   No-DR PCA LDA No-DR PCA LDA 

H
an

d
 

Training 

Time 

Mean 14.4ms 6.0ms 3.4ms 18.075s 2.612s 2.178s 

Std 1.9ms 1.0ms 0.5ms 13.201s 1.218s 0.875s 

Classifica

tion Time 

Mean 5.3ms 1.9ms 1.0ms 6.2ms 6.1ms 6.2ms 

Std 0.7ms 0.4ms 0.0ms 0.4ms 0.2ms 0.5ms 

F
in

g
er 

Training 

Time 

Mean 190.5ms 37.9ms 13.5ms 366.27s 14.52s 30.09s 

Std 37.9ms 2.3ms 1.2ms 144.62s 7.15s 16.56s 

Classifica

tion Time 

Mean 57.0ms 19.9ms 9.0ms 7.8ms 6.1ms 6.0ms 

Std 6.1ms 1.0ms 0.8ms 0.7ms 0.4ms 0.0ms 
 

2.4 Discussion 

The aim of this chapter was to compare the performance of methods used for EMG 

pattern recognition. The basic belief is that we can identify proper methods for real-time 

applications from these comparisons. Many papers have showed their methods performed 

well with their datasets [30, 34, 40, 41, 44]. Nevertheless, we cannot be sure without 

having a comparison upon the same dataset how well these methods perform, and which 

methods we have to select for our application. A number of review papers [3, 63] have 

surveyed the classification accuracies of previous researches as a comparable factor. 

However, these did not consider practical performances such as real-time operation and 

short training for user-convenience. 

Considering only the classification accuracy is insufficient to analyze the 

performance of methods for the practical applications. To compare the performance of 

different methods, we chose three performance criteria: the classification accuracy, the 

training time, and the classification time. Because considering only the classification 
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accuracy seems to be insufficient to analyze the performance of methods for the practical 

applications. Among three main categories in the EMG pattern recognition such as feature 

extraction, dimension reduction, and classification, various methods used in the literature 

were considered in this study.  

In grouping weak-load classifiers (NB, KNN, QDA, and ELM) and heavy-load 

classifiers (SVM and MLP) in terms of the required computational power, one finding is 

that the heavy-load classifiers performed better in the classification accuracy than the 

weak-load classifiers in the results without dimension reduction but with the cost of 

computational time. However, with an appropriate DR, the weak-load classifiers 

performed better or equal to the heavy-load classifiers without the need to sacrifice 

computational time. This result seemed to show that DR methods are indispensable for 

EMG pattern recognition. This is why researchers have developed various DR methods 

[23, 24]. 

Moreover, LDA showed better performance in terms of classification accuracy 

than PCA because LDA maximizes the separation of classes in dimensionality reduction. 

However, in the results of computational times (both the training and classification times), 

NB, KNN, QDA, and ELM showed similar training and classification times, regardless of 

LDA and PCA. In contrast, when using SVM as a classifier, LDA outperformed PCA in 

both the training and classification times. A possible explanation of this result is that LDA 

makes optimization problems of SVM simpler. This advantage decreases the 

computational times of SVM. 
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In the study, two signal processing techniques, EMD [58] and DWT [17], were 

used to increase the number of EMG features. The improvement of the classification 

accuracy because of this increase was also examined.  The results showed that increasing 

the feature space did not improve the performance which means that the time domain 

features seems to be enough for EMG pattern recognition. In addition, statistical analysis 

showed that the EMD and DWT were not significantly different.  

2.5 Conclusion 

EMG pattern recognition technique has immeasurable potentials and numerous 

applications which can change our life style and assist disabled or elderly people who need 

assistive-robot technology for enhancing their activities of daily living. This chapter aimed 

to compare the performance of the well-known methods. This study categorized the 

methods in three different sections: feature extractions, dimension reductions, and 

classification algorithms. Furthermore, the performance of different combinations were 

evaluated by three performance criteria: classification accuracy, training time, and 

classification time. TDAR6 showed the best performance in terms of classification 

accuracy and computational efforts compared to other feature sets. Also, it is confirmed 

that a dimension reduction technique is necessary for the increased size of feature space 

and the augmented number of electrode channels. Another notable finding is that after 

applying dimension reduction, heavy-load algorithms do not have any benefits related to 

weak-load algorithms; in fact, the weak-load algorithms showed better 

training/classification time with similar classification accuracies compared to the heavy-

load algorithms. In conclusion, in a number of possible methods for EMG pattern 
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recognition, the weak-load classification algorithms, less-computational and less-complex 

features, and appropriate dimension reduction methods are suitable for the real 

application, rather than heavy, high computational approaches. 
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CHAPTER III 

ROBUSTNESS OF SEQUENCE RECOGNITION-BASED 

MYOELECTRIC CONTROL IN THE LIMB POSITION EFFECT* 

3.1 Introduction 

Myoelectric classification is a technique for discriminating a pattern of myoelectric 

signals caused by muscular movements. This technique has been widely used for 

manipulating prosthetic robots and interfacing a device for HCI. In fact, it is believed that 

myoelectric signal, also called electromyography (EMG) signal, is an appropriate bio-

signal to infer human gestures as it carries information of muscular activities causing 

human motions [1]. With well-developed pattern recognition techniques and an 

assumption that myoelectric signals produced by similar human muscular activities are 

similar as well [5], pattern-based myoelectric classification, PMC, has been able to 

classify human motions. However, there exists a robustness issue when a limb position is 

changed from where it was trained. This issues is called as the limb position effect or the 

limb position changes that decreases the classification accuracy [5]. 

In order to improve the robustness of myoelectric classification—especially, 

against the limb position effect—we employ dynamic motions. The hypothesis is that 

dynamic motions are more robust to the limb position effect than static motions. When the 

* Reprinted with permission from “Robustness of Using Dynamic Motions and Template Matching to the 
Limb Positon Effect in Myoelectric Classification” by Sungtae Shin, et al., ASME Journal of Dynamic 

Systems, Measurement, and Control, 2016 (Copyright © 2016, ASME) and “Myoelectric pattern recognition 

using dynamic motions with limb position changes” by Sungtae Shin, et al., 2016 American Control 

Conference (ACC), 2016 (Copyright ©  2016, IEEE) 
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limb position alters from where PMC was initially trained, patterns of static motions 

changes from what PMC remembers because the configuration of muscles is transformed 

as the limb position shifts. However, traits of relative events (peak, increment, and 

decrement) within a dynamic motion is less affected by the limb position changes because 

changing the configuration of muscles does not mean that the relative traits of a dynamic 

motion themselves change. 

PMC usually uses static motions because a static motion can easily express a 

pattern. However, we propose a myoelectric classification distinguishing dynamic 

motions with increasing robustness on limb position changes. It is hereafter called 

sequence-based myoelectric classification (SMC) for the comparison to PMC. The 

proposed method assumes that reliable information to the limb position effect can be 

extracted by comparing temporal sequences of EMG features of dynamic motions. 

Changing the limb position causes the shift of the baselines of EMG signals because the 

configuration of muscles is changed to keep the altered pose. However, specific relative 

traits identifying a dynamic motion in the temporal sequences are maintained even when 

the baselines of EMG signals are changed. In order to show the robustness of dynamic 

motions, the classification accuracies between SMC and PMC were compared when 

training sets and validation sets were chosen at different limb positions. Statistical analysis 

of Results section of this chapter shows that the classification accuracies of SMC with 

dynamic motions are significantly better than of PMC with static motions over all subjects. 

It is then concluded that SMC is more robust than PMC to the limb position changes. 
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Due to different attributes of static and dynamic motions, the classification of 

dynamic motions and the classification of static motions have to be separately dealt with. 

For example, to classify static motions, supervised learning methods for non-temporal 

pattern recognition such as Naïve Bayes, multilayer perceptron, and support vector 

machine can be exploited. On the other hand, temporal pattern recognition is needed to 

recognize dynamic motions because dynamic motions are represented by temporal 

sequences. For temporal pattern recognition, dynamic time warping with template 

matching, hidden Markov models, and time-delay neural network can be used. 

3.2 Methods 

In this section, a sequence-based myoelectric classification is proposed and its key 

processes (onset/offset detection, alignment, and template matching) are described. 

Furthermore, details for pattern-based myoelectric classification, which is compared with 

SMC in terms of robustness on limb position changes, are described. Experimental 

protocol and data collection are also explained. 

3.2.1 Pattern-based Myoelectric Classification 

For extracting features of static motions, eight statistics were used as described in 

Table 1. The total number of features for each segment was 13 (the first seven statistics 

plus six AR coefficients associated with 6th order autoregressive model). The window size 

for the segmentation was 200ms with 50% overlap. Fisher’s Linear Discriminant Analysis 

was applied to the extracted features from eight EMG channels to reduce dimensionality. 

For the classification of static hand motions, Naïve Bayes classifier was chosen. These 
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methods with the time domain features (Table 1) showed reasonable performance for PMC 

[84]. 

 
Figure 14 Pattern-based myoelectric classification (PMC) and the proposed sequence-based myoelectric 

classification (SMC) 

3.2.2 Proposed Sequence-based Myoelectric Classification 

The proposed SMC focuses on classifying dynamic motions. Similar to PMC, 

SMC uses pre-processing, segmentation, feature extraction, and post-processing. 

However, three processes are vital for the classification of dynamic motions: onset/offset 

detection, alignment, and template matching as shown in Figure 14 (b). Teager–Kaiser 

Energy Operator (TKEO) [92] was used to detect onset/offset (start and end points) of 

dynamic motions. Dynamic Time Warping (DTW) [93] was employed to align different 

time-length dynamic motions before the classification (Figure 15). Template matching 
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uses the Pearson product-moment correlation coefficient as a similarity metric to classify 

the dynamic motion.  

 
Figure 15 RMS values of two dynamic motions (the same motion class but different lengths) before and 

after alignment by DTW 

For feature extraction, seven features (MAV, RMS, IEMG, WL, ZC, SSC, and 

SKW) in Table 1 were used. At a preliminary test, classification accuracies of SMC with 

the seven features and with all eight features (including 6th order AR coefficients) were 

compared. However, there was no enhancement when using 6th order AR coefficients. 

The window size for the segmentation was 50ms with 50% overlap. We set a smaller 
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window size for SMC than PMC because SMC needs more detailed shapes of EMG 

feature vectors to distinguish a dynamic motion.  

Onset and Offset Detection 

Detecting the start and end of a motion is needed to classify dynamic motions. To 

do this, TKEO was used. TKEO has been widely employed for muscle activity detection 

[94-96] because of its ability to identify the amplitude and instantaneous frequency of 

EMG signals [92]. 

The discrete TKEO Ψd is defined for a discrete signal 𝐱(n) as: 

 Ψ
d

[𝐱(n)] = 𝐱2(n) − 𝐱(n + 1)𝐱(n − 1) (12) 

Means and standard deviations (SD) of TKEO of EMG signals at rest (for all EMG 

channels) were used to determine threshold values of each EMG channel, using: 

 TK𝑐ℎ(n) = Ψd[EMG𝑐ℎ(n)], 
Threshold𝑐ℎ = TK𝑐ℎ

̅̅ ̅̅ ̅̅ ̅ + ℎ × SD(TK𝑐ℎ) 
(13) 

Here, EMG𝑐ℎ(n) is a raw value of an EMG channel, 𝑐ℎ, at time n. TKcℎ
̅̅ ̅̅ ̅̅ ̅ is mean 

of signal TKcℎ and SD(TK𝑐ℎ) is standard deviation of signal TKcℎ. The factor h was set 

to 3 [2]. If TKEO values of all EMG channels are higher than threshold values and are 

kept for a certain period of time 𝜏, then we consider this point as an onset of motion. If 

TKEO values of all EMG channels stay below the threshold values for the time period 

of 𝜏, this point is considered as the offset of motion. In this study, 𝜏 was heuristically 

chosen as 300ms based on an acceptable motion detection delay (less than 1s in this study). 
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Alignment 

All dynamic motions have different time-lengths. In order to compare these 

dynamic motions in different lengths, a temporal alignment process is required. DTW [93] 

was used for this purpose. DTW is a distance function that estimates a minimal distance 

of two time sequences A ≔ (𝐚1, 𝐚2, … , 𝐚N) of length N ∈ ℕ and B ≔ (𝐛1, 𝐛2, … , 𝐛M) of 

length M ∈ ℕ after the optimal alignment of two sequences. DTW can also be used for the 

alignment of two different length sequences as depicted in Figure 15. The process is 

described below.  

A warping path W ≔ (w1, w2, … , wL) with wℓ = (nℓ, mℓ) for nℓ ∈ [1: N], mℓ ∈

[1: M], and ℓ ∈ [1: L], max(N, M) ≤ L < N + M has three conditions as follows: 

(i) Boundary condition: 

 w1 = (1,1) and wL = (N, M) (14) 

(ii) Monotonicity condition:  

 n1 ≤ n2 ≤ ⋯ ≤ nL and m1 ≤ m2 ≤ ⋯ ≤ mL (15) 

(iii) Step size condition: 

 wℓ+1 − wℓ ∈ {(1,0), (0,1), (1,1)} for ℓ ∈ [1: L − 1] (16) 

The total cost cW(A, B) of a warping path W between A and B can be defined as: 

 cW(A, B) ≔ ∑ 𝑑(𝐚nℓ
, 𝐛mℓ

)

𝐿

ℓ=1

 (17) 

The distance function 𝑑(𝐚, 𝐛)is a Euclidean distance defined as:  

 𝑑(𝐚, 𝐛) = ∑ √(a𝑖 − b𝑖)2

𝐾

𝑖=1

 (18) 
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Before calculating a Euclidean distance of multi-dimensional vectors, the normalization 

is required to offset different magnitude of each feature. In this study, z-score 

normalization was used. 

With an optimal warping path 𝑊∗  between A and B, DTW distance of A and 

B, dtw(A, B), is then defined as: 

 dtw(A, B) ≔ c𝑊∗(A, B) 
= min{cW(A, B)| W is a warping path} 

(19) 

In order to find an optimal warping path 𝑊∗ , DTW uses a dynamic programming 

technique [97] via accumulated cost matrix D ∈  ℝNxM defined by: 

 D(n, m) ≔ dtw(A(1: n), B(1: m)) (20) 

The accumulated cost matrix D can be calculated by: 

 D(n, m) = 𝑑(𝐱n, 𝐲m) + min {

D(n − 1, m − 1)

D(n − 1, m)

D(n, m − 1)
}  for  n ∈ [2: N], m

∈ [2: M] 

(21) 

with D(n,1)= ∑ d(xk,y
1
)n

k=1  for n∈[1:N], D(1,m)= ∑ d(x1,y
k
)m

k=1  for m∈[1:M].  From this 

iterative technique, an optimal warping path and DTW distance can be calculated in a time 

complexity of O(NM) [97]. 

Template Matching 

Template matching labels an input dynamic motion as matching a template 

predefined in the training phase. It finds the closest templates to the input dynamic motion 

by a similarity metric; in fact, this decision-making process is the same as 1-Nearest 

Neighbor (1NN) classification [98]. 
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Figure 16 Six templates of dynamic motions 

In the training section, a template of each dynamic motion was generated from a 

training set. To make the collected dynamic motions mutually comparable, training 

samples of a dynamic motion were aligned using DTW. After the alignment, mean feature 

profile of the aligned motion samples was calculated as a template. This process was 

repeated for all dynamic motions. The templates were used as representatives of each 

dynamic motion for the classification. Figure 16 instantiates templates of six dynamic 

motions. 

In the prediction section, after the alignment of a queried motion and the templates 

by DTW, a correlation coefficient, r, of the queried motion x and a template y is calculated 

as a similarity metric, defined by:  
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 r(𝐩, 𝐪) =
∑ (pi − p̅)(qi − q̅)n

i=1

√∑ (pi − p̅)2n
i=1 √∑ (qi − q̅)2n

i=1

 (22) 

Here, p̅ and q̅ are mean values of signals 𝐩 and q, respectively, and n is the length 

of signals. Correlation coefficient can compare the similarity of sequences of dynamic 

motions. 

A motion class of the queried motion was then decided by 1NN classification by: 

 Predicted Motion Class = arg max
𝑐

 r(Motionquery, Template𝑐) (23) 

Here, Template𝑐  is the template of dynamic motion c. Note that the more similar two 

signals are, the higher a correlation coefficient r is. Hence, Equation (23) compares the 

queried motion with six templates of dynamic motions and finds the most similar template 

as the predicted motion class for the queried motion. 

3.2.3 Data Collection 

For evaluating the performance of PMC and SMC, seven static motions and six 

dynamic motions (Figure 17) were collected at four different limb positions. For collecting 

EMG signals of motions, eight Trigno™ Wireless EMG sensors were located on upper 

limb muscles, as shown in Figure 18. Raw EMG signals were sampled at 2 kHz and 

filtered by a band-pass filter between 10-400 Hz. The hand motions were collected from 

eight subjects. The experiments were approved by the Texas A&M University Institutional 

Review Board and informed consent forms were signed by all subjects. 
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Figure 17 Static motions (left), the shape of a motion is unchanged over time; Dynamic motions (right), 

the shape of a motion is changed over time 

 
Figure 18 Location of surface EMG electrodes to collect EMG data 

Six dynamic motions were repeated 15 times with different time lengths (1-3 

seconds), whereas seven static motions were repeated 5 times, each held for 3 seconds. 

Note that SMC needs a whole dynamic motion as a training sample or a validation sample, 
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whereas, in PMC, plentiful training samples or validation samples can be extracted from 

a static motion by segmenting the same motion. In order to produce sufficient samples of 

SMC, dynamic motions were repeated. Furthermore, because SMC uses a feature profile, 

not a feature value, for training and validation, it needs more motion samples than PMC. 

 
Figure 19 Four different limb positions, 1) straight arm hanging at side (P1), 2) straight arm reaching 

forward (P2), 3) straight arm reaching up (P3), and 4) humerus hanging at side and forearm horizontal (P4) 

In order to collect static and dynamic motions at different poses, four upper limb 

positions were chosen as depicted in Figure 19. The positions are: (1) Straight arm hanging 

at side (or P1 for short), (2) Straight arm reaching forward (P2), (3) Straight arm reaching 

up (P3), and (4) Humerus hanging at side and forearm horizontal (P4). The dynamic and 

static motions at these limb positions were collected repeatedly to evaluate the robustness 

of PMC and SMC to the limb position effect. 
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3.3 Results 

In order to evaluate the proposed approach, classification accuracies of SMC and 

PMC with choosing training and validation sets at four different limb poses are compared. 

Furthermore, statistics of the experimental results are analyzed. 

3.3.1 Experimental Results 

To evaluate the classification accuracy of SMC, a 5-fold cross validation (CV) 

technique was chosen. Among 15 repeated samples of each dynamic motion, 12 were used 

for making a template of each dynamic motion for training, and the other 3 were used to 

validate the classification accuracy. Because there were five possible combinations to 

choose different training sets and validation sets, an average of the five iterations was 

chosen as the final classification accuracy.  

In the same manner, for estimating the classification accuracy of PMC, a 5-fold 

CV technique was also chosen. Four out of five repeated samples of each static motion 

were used for training and the other was used for validation. In total, a classifier was 

trained from 4 (repeated samples) x 7 (static motions) = 28 samples and was validated 

from 1 x 7 = 7 samples. This procedure also repeated 5 times with different training and 

validation sets.  
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Figure 20 Classification accuracy of Subject 5 (the best case); (a) SMC, (b) PMC. Standard deviations are 

in the parentheses. 50ms window size with 25ms overlap for dynamic motion and 200ms window size with 

100ms overlap for static motions were chosen. 
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Figure 21 Classification accuracy of Subject 7 (the worst case); (a) SMC, (b) PMC. Standard deviations 

are in the parentheses. 50ms window size with 25ms overlap for dynamic motion and 200ms window size 

and 100ms overlap for static motions were chosen. 
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In order to measure the robustness to the limb position effect, a limb position for 

extracting a training set and a different limb position for extracting a validation set were 

chosen. Figure 20 and Figure 21 show the classification accuracy for Subject 5 and Subject 

7, respectively, for both SMC and PMC schemes. Each cell in figures represents an 

experimental result with a pair of limb positions. The percent value in each cell is the 

average classification accuracy and the value in the parenthesis is SD from the 5-fold CV. 

For example, the cell (1, 1) at the left-top corner of Figure 20 (a) illustrates 100% 

classification accuracy with 0% SD when using a training set at the limb position P1 and 

a validation set at the same position. This case—the limb positions of training and 

validation sets are same—is called the same limb position. Otherwise, the limb positions 

of training and validation sets are different; this is called the different limb position. The 

color-codes display the classification accuracy of each cell ranging from 100% (black 

color) to 0% (white). Among eight subjects, Subject 5 showed the highest classification 

accuracy of SMC, and subject 7 showed the lowest.  

As shown in Figure 20, SMC and PMC worked properly with high classification 

accuracies (>90%) at the same limb position. However, SMC worked better at the different 

limb position than PMC; the classification accuracies of SMC at the different limb position 

were ranging from 88.89% to 100% while PMC showed the classification accuracy 

ranging from 50.1% to 88.42%. Even for subject 7 that had the lowest classification 

accuracy, SMC at the different limb position still shows better performances (from 76.67% 

to 56.67%) than PMC (from 73.36% to 44.02%).  
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3.3.2 Statistical Analysis 

In order to statistically validate the experimental results, t-test was used. There 

were three different conditions: hand motion types (static vs. dynamic), the number of 

features (single vs. multiple), and similarity metrics (normalized DTW distance vs. 

correlation coefficient). Each condition included twofold results at the same and different 

limb position. A particular point was that the first condition (different hand motion types) 

was analyzed by two-sample t-test because their results were independent; they resulted 

from PMC and SMC. The other two conditions were analyzed by a paired t-test. The 

significance level of all statistical analysis was set as 5% (p < 0.05).  

Table 7 represents the classification accuracy of both SMC and with training and 

validation sets came from the same limb position. SMC classified dynamic hand motions 

and PMC classified static hand motions. Based on the results of Table 7, the classification 

accuracies of SMC were greater or equal to of PMC at the same limb position. Table 7 

indicates that there was no significant difference in the classification accuracy between 

PMC and SMC except for Subject 2 and 6 from whom SMC showed significantly higher 

accuracies than PMC. 

Table 8 shows the classification accuracy of both SMC and PMC with training and 

validation sets came from different limb positions. The statistical results show that SMC 

significantly outperformed PMC from all subjects. This indicates that classifying dynamic 

motions is more robust to the limb position effect than PMC (classifying static motions). 
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Table 7 Classification accuracy with different motion types at the same limb position 

Subjec

t 

Classification Accuracy 

(standard deviation) Two-sample t 

test 

p value 

(<0.05) PMC (Static 

Motion) 

SMC (Dynamic 

Motion) 

1 97.97% (1.58%) 96.67% (1.81%) t(6) = 1.08 p = 0.322 

2 96.53% (0.84%) 98.89% (0.91%) t(6) = -3.81 p = 0.009 

3 99.70% (0.41%) 99.44% (0.64%) t(6) = 0.68 p = 0.524 

4 98.91% (1.56%) 99.17% (1.06%) t(6) = -0.27 p = 0.794 

5 97.82% (3.02%) 100.00% (0.00%) -a - 

6 97.77% (1.40%) 99.72% (0.56%) t(6) = -2.60 p = 0.040 

7 98.20% (1.74%) 95.28% (3.32%) t(6) = 1.56 p = 0.170 

8 98.93% (0.92%) 99.72% (0.56%) t(6) = -1.48 p = 0.190 
a. Some experiments resulted same classification accuracies during 5-fold CV like Subject 5. (As 

variance is ~0, t-test cannot be applied.) 

 

Table 8 Classification accuracy with different motion types at the different limb position 

Subjec

t 

Classification Accuracy 

(standard deviation) Two-sample t 

test 

p value 

(<0.05) PMC (Static 

Motion) 

SMC (Dynamic 

Motion) 

1 54.74% (17.43%) 75.28% (8.15%) t(22) = -3.70 p = 0.001 

2 56.48% (12.54%) 90.46% (4.28%) t(22) = -8.89 p = 0.000 

3 80.91% (8.01%) 89.35% (6.99%) t(22) = -2.75 p = 0.012 

4 77.15% (10.79%) 86.11% (6.57%) t(22) = -2.46 p = 0.022 

5 71.85% (12.62%) 97.59% (3.54%) t(22) = -6.80 p = 0.000 

6 64.65% (9.18%) 96.57% (3.62%) t(22) = -11.20 p = 0.000 

7 57.00% (10.49%) 67.59% (8.42%) t(22) = -2.73 p = 0.012 

8 70.57% (14.29%) 91.67% (9.73%) t(22) = -4.23 p = 0.000 
 

Table 9 and Table 10 represent the classification accuracies of the proposed SMC 

at the same limb position and at the different limb position, respectively, when using multi-

dimensional EMG features (7 time-domain features) and when using only RMS feature. 

According to the statistical analysis displayed in Table 9 (at the same limb position), there 
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was no significant difference between 7 time-domain features and only RMS feature. 

However, the statistical analysis for Subject 2,3,6,7, and 8 shown in Table 10 (at the 

different limb position) states that the classification accuracy of SMC with 7 time-domain 

features was significantly higher than with only RMS feature. This means that multi-

dimensional EMG features perform better for SMC at the different limb position. In 

addition, for no effect of using multi-dimensional EMG features at the same limb position, 

we can speculate that the classification accuracy was already enough high with using only 

RMS feature. 

Table 9 Classification accuracy with different feature sizes at the same limb position in SMC 

Subject 

Classification Accuracy 

(standard deviation) Paired t test 
p value 

(<0.05) 
RMS 7 Features 

1 96.11% (2.13%) 96.67% (1.81%) t(3) = -1.00 p = 0.391 

2 96.94% (3.19%) 98.89% (0.91%) t(3) = -1.48 p = 0.235 

3 98.61% (1.06%) 99.44% (0.64%) t(3) = -1.19 p = 0.319 

4 99.17% (1.06%) 99.17% (1.06%) t(3) = 0.00 p = 1.000 

5 100.00% (0.00%) 100.00% (0.00%) - - 

6 99.44% (0.64%) 99.72% (0.56%) t(3) = -1.00 p = 0.391 

7 93.89% (2.31%) 95.28% (3.32%) t(3) = -1.67 p = 0.194 

8 98.61% (1.40%) 99.72% (0.56%) t(3) = -2.45 p = 0.092 
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Table 10 Classification accuracy with different feature sizes at the different limb position in SMC 

Subject 

Classification Accuracy 

(standard deviation) Paired t test 
p value 

(<0.05) 
RMS 7 Features 

1 73.24% (5.98%) 75.28% (8.15%) t(11) = -1.51 p = 0.158 

2 86.67% (6.34%) 90.46% (4.28%) t(11) = -2.76 p = 0.019 

3 86.57% (6.20%) 89.35% (6.99%) t(11) = -3.74 p = 0.003 

4 84.91% (7.57%) 86.11% (6.57%) t(11) = -0.83 p = 0.422 

5 95.65% (6.74%) 97.59% (3.54%) t(11) = -1.69 p = 0.120 

6 93.15% (4.92%) 96.57% (3.62%) t(11) = -3.05 p = 0.011 

7 64.17% (10.12%) 67.59% (8.42%) t(11) = -3.46 p = 0.005 

8 85.19% (11.71%) 91.67% (9.73%) t(11) = -3.47 p = 0.005 
 

Likewise, the results shown in Table 11 and Table 12 represents the comparison 

of classification accuracy between when using the correlation coefficient and when using 

the normalized DTW as a similarity metric in template matching of SMC; at the same limb 

position and at the different limb position, respectively. At the same limb position (Table 

11), there was no significant difference except Subject 7 from whom using the correlation 

coefficient significantly performed better than using the normalized DTW. Moreover, at 

the different limb position (Table 12), there were significant improvements when using 

the correlation coefficient (for Subject 1, 2, 6, 7, and 8). The other subjects (Subject 3, 4, 

and 5) showed similar accuracies. It means that using the correlation coefficient performed 

better than or equal to using the normalized DTW for SMC regardless the limb position.  
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Table 11 Classification accuracy with different similarity metrics at the same limb position in SMC 

Subject 

Classification Accuracy 

(standard deviation) Paired t test 
p value 

(<0.05) 
Normalized DTW Corr. Coeff. 

1 94.44% (2.03%) 96.67% (1.81%) t(3) = -1.36 p = 0.267 

2 97.50% (3.67%) 98.89% (0.91%) t(3) = -0.78 p = 0.492 

3 99.17% (1.06%) 99.44% (0.64%) t(3) = -0.52 p = 0.638 

4 99.44% (1.11%) 99.17% (1.06%) t(3) = 0.29 p = 0.789 

5 100.00% (0.00%) 100.00% (0.00%) - - 

6 99.72% (0.56%) 99.72% (0.56%) - - 

7 85.83% (6.31%) 95.28% (3.32%) t(3) = -3.54 p = 0.038 

8 98.89% (2.22%) 99.72% (0.56%) t(3) = -1.00 p = 0.391 
 

Table 12 Classification accuracy with different similarity metrics at the different limb position in SMC 

Subject 

Classification Accuracy 

(standard deviation) Paired t test 
p value 

(<0.05) 
Normalized DTW Corr. Coeff. 

1 67.87% (7.98%) 75.28% (8.15%) t(11) = -4.90 p = 0.000 

2 87.50% (5.47%) 90.46% (4.28%) t(11) = -2.60 p = 0.025 

3 88.33% (8.17%) 89.35% (6.99%) t(11) = -0.90 p = 0.387 

4 85.93% (6.24%) 86.11% (6.57%) t(11) = -0.13 p = 0.900 

5 96.11% (5.75%) 97.59% (3.54%) t(11) = -1.39 p = 0.191 

6 95.09% (3.68%) 96.57% (3.62%) t(11) = -2.68 p = 0.021 

7 56.39% (7.51%) 67.59% (8.42%) t(11) = -6.27 p = 0.000 

8 85.65% (12.84%) 91.67% (9.73%) t(11) = -3.71 p = 0.003 
 

Statistical analysis of experimental results attested that SMC overall performed 

well with high accuracy, and was more robust to the limb position effect than PMC. 

Furthermore, using multi-dimensional EMG features and correlation coefficient in SMC 

were shown improvements compared to the case using only RMS feature and normalized 

DTW. However, there still exists a need to improve SMC over all subjects in terms of a 
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relatively-wide gap between the best case and the worst case, e.g., the classification 

accuracy from 67.6% to 97.6%. 

3.4 Discussion 

Myoelectric classification has been broadly studied for prosthetic and 

rehabilitation devices. A number of studies have been published to improve the 

performance of myoelectric classification. Pattern-based myoelectric classification is also 

one of these achievements. However, PMC still has drawbacks in terms of robustness and 

the discrepancy between the laboratory and real-life settings. In order to diminish the gap 

and increase the robustness, this study focused on using dynamic motions that has been 

less considered in the myoelectric classification literature. Basically, the assumption was 

that comparing the similarity of dynamic motions is more robust to the changes in EMG 

signals when moving a limb than comparing statistical measures (means and standard 

deviations) of static motions. Figure 22 describes this idea. The limb position change 

causes to alter the level and amplitude of RMS values of EMG signals. After the change, 

statistical values of the static motion are different, however, RMS profiles of the dynamic 

motion have similar shapes just with a slight shift. 
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Figure 22 (a) Static motion (Hand Closed) vs. (b) dynamic motion (Finger Snap) at the different limb 

position; after changing a limb position, the same static motions are totally different, however, the same 

dynamic motions keep their similar RMS profiles even their RMS values are slightly shifted. 

We proposed Sequence-based myoelectric classification to classify dynamic hand 

motions by comparing their profiles of EMG feature vectors (sequences). Furthermore, to 

evaluate the robustness to the limb position effect the classification accuracy of SMC was 

examined at different limb positions. The proposed approach seems to be similar to [52], 

however, there are distinct points: (1) correlation coefficient was used as a similarity 

metric between two temporal sequences compared to using normalized DTW distance in 

[52], (2) TKEO was adopted to improve the detection of onset and offset of EMG signals, 

and (3) multi-dimensional EMG features were used to increase the classification accuracy. 

This study showed the robustness to the limb position effect when using dynamic motions 

compared to using static motions. Despite several attempts to solve the limb position effect 

[69-71, 74, 75], to the authors’ knowledge the approach taken in this study, i.e., classifying 

dynamic motions to enhance the robustness of the myoelectric system, has not been tried 

before.  
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In addition, an advantage SMC have is its ability to increase the number of 

classifiable motions compared to PMC because of unlimited temporal information that 

dynamic motions have, but static motions do not. This means that the temporal 

characteristic of dynamic motions can be used to diversify discriminable motions, for 

example, differentiating a fast “wave” motion from a slow “wave” motion.  

A significant difference between myoelectric approaches, such as SMC proposed 

here, and non-myoelectric approaches (vision [99], accelerometer [100], and gyroscope 

[101]) for gesture recognition can be found at the form of gestures they are focusing on 

(hand movements themselves or trajectories of a hand in a 3D space). Non-myoelectric 

approaches usually track trajectories of a hand of a subject to recognize human gestures, 

but myoelectric approaches recognize hand movements because EMG signals can 

represent accurate wrist and finger motions. For example, if a subject draws a pre-defined 

trajectory (a circle, a triangle, or a rectangle) with his/her hand in front of a camera, a 

vision-based gesture recognition system will recognize it and then conduct a command 

associated with the recognized gesture. However, a myoelectric gesture recognition 

system can recognize wrist and finger movements such as snapping fingers and a 

beckoning palm.  

In terms of the workload and the size of space for gestures, myoelectric approach 

is preferable because it can recognize precise and concise gestures with small actions 

(finger and wrist movements). With the user’s perspective, repeated gestures with large 

movements can easily make users tired. Gestures (trajectories of a hand) for non-

myoelectric approaches relatively need long and large movements compared to finger and 
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wrist movements. This means that myoelectric approaches for gesture recognition are 

more convenient for users. 

3.5 Conclusion 

This chapter introduced the sequence-based myoelectric classification to classify 

dynamic hand motions. Also, it was examined at four different limb positions to show its 

robustness against the limb position effect compared to the pattern-based myoelectric 

classification. The robustness issues caused from limb position change, electrode shift, 

long-term use, fatigue, and skin condition are crucial for reliable uses in myoelectric 

classification systems. In order to enhance the reliability of the systems, this study 

considered classifying dynamic motions instead of static motions. It was shown that 

comparing the similarity of temporal sequences of dynamic motions is more robust to the 

changes of myoelectric signals than comparing constant values of static motions. This is 

based on the fact that each dynamic motion has its own temporal sequence which will be 

less affected by the limb position effect. 

In order to evaluate the robustness of dynamic and static motions, hand motions 

were collected at four different limb positions and used for training and validation sets. 

The experimental results showed that, for all eight subjects, dynamic motions had higher 

classification accuracy than static motions when training and validation sets were chosen 

from different limb positions. For example, Subject 5 showed 97.59% classification 

accuracy of dynamic hand motions at different limb positions, while the classification 

accuracy of static hand motions was 71.85%. 
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From the experimental results, we could confirm that the dynamic motions are 

more robust to the limb positions effect than the static motions. Even though the approach 

of classifying dynamic motions need to be improved further to increase the classification 

accuracy, we can highly expect a more robust performance of dynamic motions with issues 

such as long term use and skin condition. 
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CHAPTER IV 

REAL-TIME MYOELECTRIC INTERFACE USING DYNAMIC HAND GESTURES 

FOR A MULTIPLE-DOF ROBOT ARM 

4.1 Introduction 

The quality of human life keeps increasing via introducing computerized 

technologies ranging from smartphones to autonomous vehicles. There are uncountable 

examples of computerized technologies that support human life. With our reliance on the 

technology, humans want to communicate more intuitively with and to control more easily 

these devices. The needs have accelerated Human Computer Interaction studies. One 

approach in HCI, myoelectric interface, is the topic of this chapter. Myoelectric interface 

is an approach to send human intentions to computers, robots, and gaming devices by 

interpreting EMG signals generated by muscular activities. EMG signals represent 

electrical activities of muscles where electrodes are attached. Because all human 

movements involve muscular activities, the movements can be translated by 

understanding EMG signals well. 

Based on the needs of interfacing with the devices supporting human life, we 

propose a dexterous myoelectric interface to control a 6-DOF robot manipulator with a 1-

DOF gripper via the orientation of a forearm, muscle force, and dynamic hand motions 

via IMU and EMG signals. Orientation, angular velocities, and linear accelerations in a 

3D space of a forearm of a human operator are estimated by an IMU sensor. Muscle force 

and dynamic hand motions are recognized from EMG signals. In this research, orientation 

of a forearm of an operator and proportional muscle force are used to generate continuous 
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commands for the robot manipulator. Dynamic hand motions are classified to change 

manipulation modes. For example, a 6-DOF Kinova robot manipulator with a 1-DOF 

gripper needs mainly three manipulation modes: arm mode (translation), wrist mode 

(rotation), and finger mode (opening\closing a gripper). The dynamic hand motions are 

responsible for changing manipulation modes for the robot manipulator. Moreover, 

estimated muscle force is exploited to be aware of the activation of continuous commands 

as calculated from orientation of the IMU sensor.  

4.2 Methods 

In this study, a myoelectric interface using the dynamic motion classification 

introduced in the previous chapter is proposed. To estimate the performance of the 

proposed myoelectric interface, performance measures such as real-time classification 

accuracy, time-measures, and path efficiency are introduced. The performance measures 

of the myoelectric interface are compared to those of GUI button-based jog interface that 

is commonly used for controlling a robot manipulator in industrial and laboratorial 

applications. It is assumed here that the jog interface performs desirably in controlling a 

robot manipulator. The assumption is quite valid because numerous applications in the 

industries and researches have widely used this type of the jog interface. The performance 

of the proposed myoelectric can be relatively estimated by comparing it with the 

performance of the jog interface.  The proposed myoelectric interface, the jog interface, 

the experimental setup, and protocol details are described below. 
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4.2.1 Proposed Myoelectric Interface 

The aim of the proposed myoelectric interface is to control a robot manipulator via 

human gestures. Figure 23 shows a brief schema of the proposed myoelectric interface. In 

general, to control a robot manipulator, there are two types of commands: discrete 

commands to handle manipulation modes like the speed and movement type of the robot 

manipulator and continuous commands to represent velocity or position commands. 

Figure 23 represents discrete commands determined by classifying dynamic hand motions 

and continuous commands calculated from muscle force and orientation in a 3D space of 

a forearm. Each dynamic hand motion is used as an action to change states defined in a 

finite state machine. The muscle force activates/inactivates the interface system and the 

orientation (roll, pitch, and yaw) of a forearm generates 3-axis velocity commands. 

 
Figure 23 Schema of the proposed myoelectric interface 
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Definitions of a dynamic motion 

A dynamic motion may be defined as a motion changing its pose and orientation 

over time. In order to distinguish a dynamic motion in real-time, we define constraints of 

the dynamic motion. First, to detect the dynamic motion in real-time, the dynamic motion 

has rest-regions before and after the motion. Two rest-regions are called as the before-

rest-region and the after-rest-region as shown in Figure 24. The rest-region means that 

the mean of AVR RMS (average root mean square), μAVR RMS, and the standard deviation 

of AVR RMS, σAVR RMS, are under the rest thresholds, 𝜇𝑇𝐻𝑟𝑒𝑠𝑡 and 𝜎𝑇𝐻𝑟𝑒𝑠𝑡, respectively, 

during a rest time period (t𝑟𝑒𝑠𝑡). AVR RMS is defined by: 

 AVR RMS(𝑛) =  
1

𝑐ℎ
∑ RMS𝑖(𝑛)

𝑐ℎ

𝑖=1

 𝑓𝑜𝑟 sample index 𝑛 (24) 

μAVR RMS and σAVR RMS are calculated by: 

 μAVR RMS(𝑛) =  
1

𝑛
∑ AVR RMS(𝑛)

𝑛

𝑖=1

 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 𝑛𝑐  (25) 

 σAVR RMS(𝑛) =  √
1

𝑛
∑(AVR RMS(n) − μ)2

𝑛

𝑖=1

 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 𝑛𝑐 (26) 

If a rest-region is placed before the abrupt change point (n𝑐), or the start point of a dynamic 

motion, the rest-region is the before-rest-region. The after-rest-region is placed after the 

start point of a dynamic motion. Once an abrupt change is detected, the proposed algorithm 

identifies the zone before the abrupt change to find a before-rest-region. If the before-rest-

region exists, the proposed algorithm starts to find an after-rest-region. If an optimal 
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solution of the problem (27) is feasible, a before-rest-region exists and b is the starting 

point of a dynamic motion.  

 

maximize
𝑏

𝑏

subject to 𝑡𝑟𝑒𝑠𝑡 ≤ 𝑏 ≤ 𝑛𝑐

μAVR RMS(𝑏) < 𝜇𝑇𝐻𝑟𝑒𝑠𝑡

σAVR RMS(𝑏) < 𝜎𝑇𝐻𝑟𝑒𝑠𝑡

 (27) 

An after-rest-region exists as well, provided that an optimal solution of the problem (28) 

is a feasible solution.  

 

minimize
𝑐

𝑐

subject to 𝑛𝑐 + 𝑡𝐷𝑦𝑛𝑀𝑖𝑛 +  𝑡𝑟𝑒𝑠𝑡 ≤ 𝑐 ≤ 𝑛𝑐 + 𝑡𝐷𝑦𝑛𝑀𝑎𝑥

μAVR RMS(𝑐) < 𝜇𝑇𝐻𝑟𝑒𝑠𝑡

σAVR RMS(𝑐) < 𝜎𝑇𝐻𝑟𝑒𝑠𝑡

 (28) 

Note that the time length of the dynamic motion is limited to 𝑡𝐷𝑦𝑛𝑀𝑖𝑛  (1 second) to 

𝑡𝐷𝑦𝑛𝑀𝑎𝑥 (3 seconds). Figure 24 shows the ideal dynamic motion as described. 

 
Figure 24 An ideal dynamic motion 
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Processes of the proposed myoelectric interface 

The proposed myoelectric interface generates two types of commands: discrete 

and continuous. The discrete commands are used to change manipulation modes shown in 

Figure 25 for the robot manipulator. The manipulation modes are considered as a finite 

state machine to control a robot manipulator with multiple degrees of freedom. To 

generate discrete commands, dynamic hand motions are classified by the sequence-based 

myoelectric classification (SMC) described in Chapter 3. On the other hand, the 

continuous commands give variations ranging from zero to the maximum velocity in the 

robot movements. Muscle force and orientation (roll, pitch, and yaw) of a forearm of an 

operator are exploited to yield continuous commands. 

 
Figure 25 Manipulation modes described by a finite state machine in the proposed myoelectric interface. 

Each certain dynamic motion is responsible for changing a specific state; ‘finger snap’ dynamic motion 

changes moving states (between ‘Arm’ and ‘Finger’ mode), ‘palm beckon’ changes moving states (between 

‘Arm’ and ‘Wrist’ mode), and ‘Gun’ switches speed states between ‘Low’ and ‘High’. 
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The manipulation modes consist of two types; movement states and speed states. 

For the movement states, there are arm state for translation, wrist state for wrist rotation, 

and finger state for opening and closing of a gripper. For the speed states, high and low 

states exist. The maximum velocity of the continuous commands is the full speed of the 

preset maximum speed in the high state and it becomes the half speed (50%) of that in the 

low state. To control the manipulation modes, the proposed myoelectric interface uses 

three dynamic hand motions; Finger Snap (FS), Palm Beckon (PB), and Gun (GU) as 

shown in Figure 26. The FS motion changes states between the arm and finger states. The 

PB motion controls the arm and wrist states. The GU motion handles the speed states, both 

the high and low states. 

 
Figure 26 Three dynamic motion used in the proposed myoelectric interface; (a) Finger Snap, (b) Palm 

Beckon, and (c) Gun 
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To recognize the dynamic motions in real-time, the myoelectric interface has a 

process hereafter called Discrete Command Generator (DCG) shown in Figure 27. There 

are three main tasks in the DCG; 1) catching a dynamic motion (called as CDM process) 

in real-time, 2) classifying the caught dynamic motion into FS, PB, GU, and unknown 

motions, and 3) changing the manipulation modes by using the classified dynamic motion. 

The flowchart of the three tasks is described in Figure 27. In order to reduce the chance of 

mal-operations caused by classifying wrong dynamic motions, the unknown motion, 

which the classifier yields with low confidence, is introduced in the DCG. The unknown 

motion is determined by limiting the maximum correlation coefficient calculated by the 

sequence-based myoelectric classification, SMC. If the maximum correlation coefficient 

is under a pre-defined level (here 0.5 is chosen), the classified output of the SMC is stated 

as the unknown motion. 

 
Figure 27 A process of discrete command generator (DCG) 
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Another key process, called here Continuous Command Generator (CCG), in the 

proposed myoelectric interface is a process of generating continuous commands with 

information from the EMG and IMU sensors. Figure 28 shows the brief workflow of the 

process to generate continuous commands. In the process, RMS values from 8-EMG 

sensors are averaged to determine the muscle force in a proportional manner. The mean 

of the RMS values is then used to activate or inactivate the CCG process with hysteresis. 

If a mean RMS value is above the active line, the CCG is activated and if a mean RMS 

value is below the inactive line, the CCG is inactivated as shown in Figure 29. The 

hysteresis checks four states, activation/inactivation, positive trigger (states changing from 

inactivation to activation), and negative trigger (states changing from activation to 

inactivation). The CCG generates continuous commands only while it is activated. In the 

event of a positive trigger, the CCG remembers the roll, pitch, and yaw (RPY) at that time 

as the initial RPY to calculate changes of RPY in orientation compared to the initial RPY. 

The changes of RPY are used to generate continuous commands. In the event of a negative 

trigger, CCG stops the robot manipulator. A particular point in the processing of RPY 

from the IMU sensor is that raw RPYs have discontinuity caused from the indiscrimination 

of -180 and +180 degrees in the IMU sensor. The discontinuity is mediated before using 

the RPY for continuous commands. The IMU quantities (RPY) removing the discontinuity, 

IMU𝑛̂, are calculated by: 

 

IMU𝑛̂ = {

IMU𝑛 + 360° , 𝑖𝑓 ∆IMU𝑛 < −180° 𝑎𝑛𝑑 ∆sgn𝑛 ≠ 0
IMU𝑛 − 360° , 𝑖𝑓 ∆IMU𝑛 > 180° 𝑎𝑛𝑑 ∆sgn𝑛 ≠ 0

IMU𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29) 
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where sgn(∙) is a sign function, IMU𝑛 is one of measured IMU quantities (roll, pitch, and 

yaw) at the current time 𝑛, ∆IMUn= IMUn-IMUn-1, and ∆sgnn=sgn(IMUn)-sgn(IMUn-1). 

 
Figure 28 A process of continuous command generator (CCG) 

 
Figure 29 Hysteresis band check 

  



 

87 

 

Change-point Detection 

Change-point detection is a well-developed field to find whether observations of 

a random signal still keep following a distribution or an abrupt change has occurred after 

a certain point [102]. A well-known method in the change-point detection, cumulative 

summation (CUSUM) algorithm, is modified to detect the starting point of the dynamic 

motion among many possible abrupt changes in the mean RMS values of EMG signals in 

an online manner. This method is called catching-a-dynamic-motion (CDM) in the 

proposed myoelectric interface.  

Let 𝑋 = {𝑥1, … , 𝑥𝑛} be a discrete random signal with independent and identically 

distributed samples until the current time n. Each sample follows a probability density 

function (PDF), 𝑝(𝑥, 𝜃), with a deterministic parameter 𝜃. In order to determine whether 

an abrupt change at a time 𝑛𝑐 between the first time to the current time 𝑛 exists, there are 

two hypotheses, no change hypothesis (ℋ0) and one change at a time 𝑛𝑐 hypothesis (ℋ1). 

The PDF of 𝑋 under the ℋ0 hypothesis is given by: 

 𝑝𝑋|ℋ0
= ∏ 𝑝(𝑥𝑘, 𝜃0)

𝑛

𝑘=1

 (30) 

The PDF of X under the ℋ1 hypothesis is given by: 

 𝑝𝑋|ℋ1
= ∏ 𝑝(𝑥𝑘, 𝜃0)

𝑛𝑐−1

𝑘=1

∏ 𝑝(𝑥𝑘, 𝜃1)

𝑛

𝑘=𝑛𝑐

 (31) 

Based on setting the hypotheses, the CUSUM algorithm requires two calculation steps: 

detection step using the likelihood ratio test to decide whether the abrupt change has 

occurred and the estimation step using the maximum likelihood estimation for the PDF of 



 

88 

 

𝑋 under ℋ1 to find an estimated abrupt change time 𝑛𝑐̂. In the detection step, the log-

likelihood ratio 𝐿𝑋 is used: 

 𝐿𝑋(𝑛, 𝑛𝑐) = ln [
𝑝𝑋|ℋ1

(𝑛, 𝑛𝑐)

𝑝𝑋|ℋ0
(𝑛)

] = ∑ ln [
𝑝(𝑥𝑘, 𝜃1)

𝑝(𝑥𝑘, 𝜃0)
]

𝑛

𝑘=𝑛𝑐

 (32) 

With the definition of the log-likelihood ratio, the generalized log-likelihood ratio 𝐺𝑋 is 

defined by: 

 𝐺𝑋(𝑛) = max
1≤𝑛𝑐≤𝑛

𝐿𝑋(𝑛, 𝑛𝑐) = max
1≤𝑛𝑐≤𝑛

∑ ln [
𝑝(𝑥𝑘, 𝜃1)

𝑝(𝑥𝑘, 𝜃0)
]

𝑛

𝑘=𝑛𝑐

 (33) 

If 𝐺𝑋 > ℎ, ℋ1 is selected, otherwise ℋ0 is chosen, where h is a threshold parameter. Once 

an abrupt change is detected in the detection step, an estimated abrupt change time 𝑛𝑐̂ is 

calculated, which maximizes the PDF of 𝑋 under ℋ1 by: 

 

𝑛𝑐̂ = arg max
1≤𝑛𝑐≤𝑛

𝑝𝑋|ℋ1
(𝑛, 𝑛𝑐) = arg max

1≤𝑛𝑐≤𝑛
𝐿𝑋(𝑛, 𝑛𝑐) =

= arg max
1≤𝑛𝑐≤𝑛

∑ ln [
𝑝(𝑥𝑘, 𝜃1)

𝑝(𝑥𝑘, 𝜃0)
]

𝑛

𝑘=𝑛𝑐

 
(34) 

In order to write the steps above in a recursive form, the instantaneous log-

likelihood ratio at time n, 𝑠𝑛, and the cumulative sum of the instantaneous log-likelihood 

ratio, 𝑆𝑛, are defined by: 

 𝑠𝑛 = 𝐿𝑋(𝑛, 𝑛) = ln [
𝑝(𝑥𝑛, 𝜃1)

𝑝(𝑥𝑛, 𝜃0)
] (35) 

 𝑆𝑛 = ∑ 𝑠𝑘

𝑛

𝑘=0

= 𝑆𝑛−1 + 𝑠𝑛 (36) 

With the definition (36), the log-likelihood ratio defined in (32) can be written as: 

 𝐿𝑋(𝑛, 𝑛𝑐) = 𝑆𝑛 − 𝑆𝑛𝑐−1 (37) 

The generalized log-likelihood ratio is rewritten as: 
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 𝐺𝑋(𝑛) = sup{𝐺𝑋(𝑛 − 1) + 𝑠𝑛, 0} (38) 

The estimated abrupt change time is now calculated by: 

 𝑛𝑐̂ = arg max
1≤𝑛𝑐≤𝑛

𝑆𝑛𝑐−1 (39) 

More details about the CUSUM algorithm are available in [103]. 

In order to implement the DCG process in the proposed myoelectric interface, 

detecting a dynamic motion in real-time is a key task. Based on the change-point detection 

algorithm explained above, a pseudocode of the CDM process with an assumption that the 

samples 𝑥𝑛of AVR RMS values follow a Gaussian distribution is described in Table 13. 

By using CDM, change points that can be a possible starting point of the dynamic motion 

are detected. If a change point is detected, CDM looks for a before-rest-region prior to the 

change point. If CDM finds the before-rest-region, then it starts to find an after-rest-region 

of a dynamic motion while keeping watch to prevent infinite waiting for an after-rest-

region. In the definition of a dynamic motion in the proposed myoelectric interface, the 

minimum and maximum time lengths of the dynamic motion are set as 1 sec and 3 sec, 

respectively. If the time waiting for an after-rest-region is more than the maximum time 

length of the dynamic motion, the CDM cancels the wait for an after-rest-region. Or if the 

CDM finds an after-rest-region, it cuts a segment of EMG feature vectors calculated from 

the full-feature extraction block in DCG from the start to the end of the dynamic motion, 

and passes the segment to the dynamic motion classifier. 
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Table 13 Pseudocode of the catching-a-dynamic-motion (CDM) 
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Table 13 Continued 

 

4.2.2 GUI Button-based Jog Interface 

For comparison purposes, a GUI button-based jog interface was developed using 

Matlab (Figure 30). The jog interface has all the required functions to control the robot 

manipulator as the proposed myoelectric interface; three buttons that can control three 

movement states (arm, wrist, and finger states) and two speed states (high and low states); 
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and six buttons that can control the direction of the 3 DOFs for arm translation/wrist 

rotation (or 1 DOF for a gripper) at each movement state (positive and negative X, Y, and 

Z in the arm state, Theta X, Theta Y, and Theta Z in the wrist state, or opening and closing 

a gripper in the finger state). The “Go Origin” button moves the robot manipulator to the 

pre-defined starting position when it is pushed.  

 
Figure 30 GUI button-based jog interface made by Matlab GUI 
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4.2.3 Protocol of Experiments 

In order to estimate the performance of the proposed myoelectric interface and the 

GUI button-based jog interface, a pre-defined task, a go-and-pickup task, is repeated. This 

task consists of three sections: 1) approaching to the target object from a pre-defined start 

point to an object to grasp (Go motion), 2) grasping the object using the robot gripper 

(Grasp motion), and 3) picking up the object until the final goal (Pickup motion). The task 

takes approximately a minute and is repeated 30 times for evaluating the performance of 

both interfaces. Before starting the experiment, participants have to practice about 10 

minutes to become familiar with each of the interfaces. For the experiment, healthy intact 

participants (who had no diseases or disorders in hand gestures and were from 18 to 40 

years old) were recruited to be involved in the experiment. The experiments were 

approved by the Texas A&M University Institutional Review Board (IRB) and informed 

consent forms were signed by all participants. 

In the proposed myoelectric interface, a training procedure is necessary for the 

classifier to learn dynamic motions of a participant. To train the classifier, three dynamic 

motions (FS, PB, and GU) are repeated 3 times respectively. After the training, in order 

to validate the classifier performance (classification accuracy in real-time), a validation 

procedure repeating three dynamic motions 10 times each is carried out. This validation 

procedure is conducted before repeating the pre-defined task to determine the performance 

of DCG. The real-time classification accuracy is presented in the Results section of this 

chapter.  
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To measure the orientation of a forearm and myoelectric signals in the proposed 

myoelectric interface, a Myo armband designed by Thalmic Labs was used. The Myo 

armband includes eight EMG sensors and one IMU sensor. The sampling rates of the Myo 

armband are 200 Hz (for the EMG sensors) and 50 Hz (for the IMU sensor). The Myo 

armband was located on the forearm the participants preferred. For the robot manipulator 

in the experiment, a MICO robot arm produced by Kinova was used. The MICO robot 

arm includes 7 DOFs, 3 DOFs for a robot arm (arm translation), 3 DOFs for a robot wrist 

(wrist rotation), and 1 DOF for a gripper (open/close). The experimental setting is shown 

in Figure 31. 

 
Figure 31 Experimental setting for the myoelectric and jog interfaces 
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4.2.4 Performance Measures 

Real-time Classification Accuracy 

In order to estimate the performance of the dynamic hand motion classification in 

real-time, a validation task was performed. Each of the three dynamic motions was 

repeated 10 times, and the results were recorded. The number of target classes we 

performed is 3. However, the number of classified output classes is 4 because the classifier 

categorizes an incoming dynamic motion into 4 groups (three dynamic motions and an 

unknown motion). 

Time-Measures 

In order to estimate the performance of each interface, five time-measures are 

introduced: Experiment Time, Move Time, Stop Time, State-change Time, and Non-state-

change Time. Figure 32 shows a plot of normalized positions of the robot manipulator 

during a go-and-pickup task done by a subject. The positions are normalized by their mean 

values and standard deviations because only the moving states of the robot manipulator 

are important to define the time-measures. The experiment time is defined by a time period 

from starting a movement of the robot manipulator, (a), in Figure 32, to finishing a pickup 

motion, (f). The finishing time of a go-and-pickup task, (f), is defined as a time when the 

robot manipulator passes an empirically-determined goal position (0.15 m in Z-axis of a 

robot coordinate system) during a pickup motion after grasping the object. 
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Figure 32 Normalized position information of the robot arm; (a) start of an experiment, (b) start of 1st 

finger movement, (c) end of 1st finger movement, (d) start of 2nd finger movement, (e) end of 2nd finger 

movement, and (f) end of the experiment (Z-axis position is above 0.15 (m)) 

The other time-measures (move time, stop time, state-change time, and non-state-

change time) are defined with regard to the changes of the manipulation mode as shown 

in Figure 33. The moving time is the total time the robot manipulator moves during a task. 

It is simply calculated by summing up time periods of all moving states; (a), (b), (c), (d), 

(e), (f), (g), and (h) in Figure 33. The stop time is the total time when the robot manipulator 

is stopped and is calculated by subtracting the move time from the experiment time. The 

state-change time is the time spent to change the manipulation mode. The state-change 

time is calculated by summing up all time periods when the robot manipulator is stopped 

to change the manipulation mode as performing a dynamic motion; (A) and (B) in Figure 

33 are the time periods for the changes of the manipulation mode. The non-state-change 

time is easily calculated by subtracting the state-change time from the stopping time.  
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Figure 33 Changes of the manipulation mode over an experiment; (a), (b), (c), (d), (e), and (h) are time 

periods of moving the arm part; (f) and (g) are time periods of moving the finger part; (A) and  (B) are time 

periods of stopping the robot manipulator 

Path Efficiency 

In order to determine the performance of moving paths the robot manipulator 

follows to complete a go-and-pickup task via the different interfaces, a Path Efficiency is 

introduced [104]. The path efficiency is calculated by a ratio of the straight line between 

the start position of the robot manipulator and the position of the target object over an 

actual moving path of the robot manipulator to the target object. The path efficiency is 

defined by: 

 Path Efficiency (%) =
Dist𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡

Dist𝐴𝑐𝑡𝑢𝑎𝑙

× 100 (40) 
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As comparing path efficiencies of the myoelectric and jog interfaces, the similarity of 

moving paths that the robot manipulator moves is indirectly inferred. 

4.3 Results 

In the experiment, each human subject repeated the go-and-pickup task 30 times 

with the jog interface and the myoelectric interface, respectively. In total, seven human 

subjects participated in the experiment. In general, human beings have their own learning 

curve to adapt to an interface method [105]. With this tendency, lastly-and-well-performed 

10 trials among 30 trials are selected for the analysis of the time-measures and the path 

efficiency. 

4.3.1 Real-time Classification Accuracy 

In order to verify the performance of the discrete command generator, DCG, in 

real-time, before starting the experiments with the myoelectric interface, the real-time 

classification accuracy of DCG was tested. To do so, a total of 30 dynamic motions (10 

FSs, 10 PBs, and 10 GUs) were performed in real-time for each subject. 
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Figure 34 Confusion matrix of DCG in real-time 
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Figure 34 Continued 

Figure 34 shows the confusion matrices of DCG. The target class means the 

dynamic motion performed by a human subject, and the output class means the dynamic 

motion predicted from DCG, respectively. There are no unknown motions performed 

intentionally. Subjects 1, 3, and 5 showed 100% in the classification accuracy. Subjects 6 
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and 7 showed 96.7% with only a misclassification. The other subjects, Subject 2 and 4, 

showed 83.3% and 90%, respectively. The real-time classification accuracy of DCG can 

be affected by the proficiency of the human subjects. The effect of the classification 

accuracy of the DCG tested here can be verified from the number of unknown motions in 

Table 14 as well. 

Table 14 The number of unknown motions and average time of a dynamic motion during 30 tasks 

Subject 

No. 
# of Unknown Motions 

Average Time of a Dynamic 

Motion (Sec) 

1 3 2.09 s 

2 9 2.11 s 

3 2 2.03 s 

4 12 2.03 s 

5 2 2.08 s 

6 2 2.02 s 

7 1 2.04 s 
 

Table 14 shows the number of unknown motions during all 30 tasks in the proposed 

myoelectric interface. The number of the unknown motions is the total count of dynamic 

motions caught and classified as unknown (excluding, of course, the known motions: 

finger snap, palm beckon, and gun dynamic motions). Also, the average time length of a 

dynamic motion over all 30 tasks is calculated. In Table 14, the time length of a dynamic 

motion for all subjects is about 2 seconds. The numbers of unknown motions differ by 

subject because of the variance of their proficiency in executing dynamic motions. The 
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number of unknown motions is highly correlated to the real-time classification accuracy 

in Figure 34. 

4.3.2 Time-Measures 

A simple way to measure the performance of an interface method is to calculate 

the required time to finish a task by using that interface. To estimate the performance of 

the proposed myoelectric interface, the five time-measures are calculated from the 10 trials 

out of the total repeated go-and-pickup task (30 trials). Moreover, the performance of the 

myoelectric interface was compared with the performance of the well-known jog interface. 

The performance of the jog interface is the goal of the myoelectric interface because the 

jog interface has a simple and widely-used structure for controlling a robot manipulator. 

The five time-measures of the jog interface are calculated as well.  

The five time-measures (experiment time, move time, stop time, state-change time, 

and non-state-change time) of the proposed myoelectric interface and the jog interface are 

plotted for comparison in Figure 35. In general, there is a subject-dependent learning curve 

to be accustomed to the interfaces. In Figure 35, the red left bar (circle) of each time-

measure is the result of the proposed myoelectric interface and the blue right bar (triangle) 

of each time-measure is the result of the jog interface. The difference between the 

myoelectric and jog interfaces are calculated by subtracting the result of the jog interface 

from that of the myoelectric interface. 

From the results of all subjects, the experiment times of the jog interface shows 

that it outperforms of the myoelectric interface. The differences in the experiment time 



 

103 

 

range from 6.1s to 11.9s. The main cause of the difference in the experiment time come 

from the stop time; in fact, the difference in the move time is under 2 seconds. Most portion 

of the difference in the experiment time is caused from the stop time. The stop time 

includes the process of DCG and the time of acting dynamic motions. Therefore, the stop 

time of the myoelectric interface must be greater than that of the jog interface even if the 

myoelectric interface performs as good as it can.  

The stop time consists of the state-change time and the non-state-change time. The 

state-change time is a total time to change the manipulation mode. The non-state-change 

time is the time excluding the state-change time from the stop time; for example, the non-

state-change time includes a pause time to decide the next commands and a delay time to 

activate CCG as increasing the muscle force above the active line. Differences in the state-

change time between the myoelectric and jog interfaces range from 4.1s to 7.0s as shown 

in the Figure 35. Since at least two changes of the manipulation mode are needed to finish 

a go-and-pickup task, the myoelectric interface needs at least 4 seconds to perform two 

dynamic motions during a go-and-pickup task; as shown in Table 14, an action of a 

dynamic motion takes 2 seconds on average. From the results of the difference in the state-

change time, the myoelectric interface needs more time periods (0.1s to 3s) to handle the 

manipulation system than the jog interface except the time of acting a dynamic motion 

itself.  

To see details of the time-measures of each interface, the calculated time-measures 

when using the myoelectric and jog interfaces are tabulated in Table 15 and Table 16 each. 
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The mean values and the standard deviation (values in the parentheses) of each time-

measure are listed in the tables.  

Table 15 Time-measures of the proposed myoelectric interface; standard deviations (SD) are in the 

parentheses. 

Myoelectric Interface 

Subject 

No. 
Exp. Time Move Time Stop Time 

State-

Change 

Time 

Non-State-

Change 

Time 

1 
33.37s 

(2.14s) 

21.15s 

(0.97s) 

12.22s 

(2.12s) 

7.94s 

(2.12s) 

4.28s 

(1.75s) 

2 
37.72s 

(1.96s) 

22.55s 

(1.13s) 

15.16s 

(2.02s) 

9.98s 

(1.71s) 

5.19s 

(0.89s) 

3 
35.62s 

(3.77s) 

21.64s 

(1.53s) 

13.98s 

(3.10s) 

9.91s 

(2.32s) 

4.07s 

(2.09s) 

4 
34.64s 

(3.39s) 

22.54s 

(1.43s) 

12.10s 

(2.14s) 

6.18s 

(0.65s) 

5.92s 

(1.98s) 

5 
34.28s 

(1.60s) 

21.41s 

(1.24s) 

12.87s 

(1.60s) 

9.83s 

(1.74s) 

3.05s 

(0.84s) 

6 
32.57s 

(2.16s) 

22.31s 

(1.09s) 

10.26s 

(1.43s) 

6.38s 

(1.27s) 

3.88s 

(0.80s) 

7 
32.03s 

(2.11s) 

20.71s 

(0.76s) 

11.31s 

(1.77s) 

8.14s 

(1.12s) 

3.18s 

(0.89s) 
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Figure 35 Time-measure plots of myoelectric and jog interface (these plots were drawn from the 10 trials 

among 30 trials); the left bar (circle) of each time-measure is a result of the proposed myoelectric interface 

and the right bar (triangle) of each time-measure is a result of the jog interface. The error bar represents 

mean and standard deviation values of the 10 trials. The differences between the myoelectric and jog 

interface (Diff = Myo - Jog) are also displayed. 
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Table 16 Time-measures of the jog interface; SDs are in the parentheses. 

Jog Interface 

Subject 

No. 
Exp. Time Move Time Stop Time 

State-

Change 

Time 

Non-State-

Change 

Time 

1 
24.21s 

(1.65s) 

20.88s 

(1.27s) 

3.33s 

(0.64s) 

1.73s 

(0.68s) 

1.59s 

(0.94s) 

2 
25.83s 

(1.21s) 

20.49s 

(0.37s) 

5.33s 

(1.15s) 

3.01s 

(0.48s) 

2.33s 

(0.89s) 

3 
29.50s 

(3.95s) 

20.48s 

(0.46s) 

9.02s 

(4.25s) 

4.69s 

(1.56s) 

4.33s 

(3.07s) 

4 
26.18s 

(1.32s) 

21.55s 

(0.78s) 

4.62s 

(0.70s) 

2.03s 

(0.42s) 

2.59s 

(0.60s) 

5 
24.26s 

(1.94s) 

19.12s 

(0.56s) 

5.15s 

(1.74s) 

2.89s 

(0.70s) 

2.26s 

(1.41s) 

6 
25.37s 

(1.15s) 

21.81s 

(0.58s) 

3.56s 

(0.94s) 

1.79s 

(0.58s) 

1.77s 

(0.91s) 

7 
23.83s 

(0.95s) 

20.04s 

(0.49s) 

3.79s 

(0.75s) 

2.13s 

(0.46s) 

1.65s 

(0.59s) 
 

4.3.3 Path Efficiency 

To quantitatively compare the performance in movements of the end-effector when 

using the myoelectric and jog interfaces, the path efficiency is determined. Table 17 shows 

the path efficiencies of the myoelectric and jog interfaces. To statistically compare the 

path efficiencies of the myoelectric and jog interface, two-sample t-tests were performed. 

Except Subject 1, the path efficiencies of the other subjects show no statistically 

significant difference. The path efficiency is related to the length of the straight line 

between the start point and the position of the target object. The higher the path efficiency 

is, the shorter the end-effector travels to approach to the target object. From the 

experimental results of the path efficiency, Subjects 2 to 5 show that the traveling path 
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lengths of the myoelectric and jog interfaces are similar. In the case of Subject 1, the jog 

interface outperformed the myoelectric interface in the path efficiency.  

Table 17 Path efficiency 

Subject 

No. 

Path Eff. 

Myo 

Path Eff. 

Jog 
Welch’s t-test 

p value 

(p < 0.05) 

Mean Diff. 

(Myo - Jog) 

1 
44.54% 

(1.64%) 

46.19% 

(1.55%) 
t(18) = -2.31 0.03 -1.65% 

2 
44.19% 

(2.13%) 

44.71% 

(0.71%) 
t(11) = -0.73 0.48 -0.52% 

3 
44.56% 

(1.73%) 

45.14% 

(1.04%) 
t(15) = -0.91 0.38 -0.58% 

4 
44.88% 

(2.16%) 

45.96% 

(0.58%) 
t(10) = -1.53 0.16 -1.08% 

5 
49.15% 

(3.21%) 

48.87% 

(1.13%) 
t(11) = 0.26 0.80 0.27% 

6 
48.50% 

(2.52%) 

45.31% 

(0.32%) 
t(9) = 3.97 0.00 3.18% 

7 
46.05% 

(1.19%) 

47.36% 

(1.07%) 
t(18) = -2.58 0.02 -1.31% 

 

4.4 Discussion 

With increasing dependency on computerized devices in human life, the need for 

communicating intuitively with them is also growing. As an interface method between a 

human and a computerized device, a myoelectric interface using dynamic motions to 

control a 6-DOF robot manipulator with a 1-DOF gripper is proposed here. The 

myoelectric interface has useful advantages such as 1) more dexterous gestures with a 

hand and fingers, 2) no limitations for outdoor activities, 3) no interference when using a 

hand, and 4) continuous information in term of muscle force. These advantages can be 
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compared to vision-based gesture recognition, which is an active research topic for 

entertainment and surveillance. Recognition of dexterous finger and hand gestures and no 

limitation of locations for outdoor applications are potential advantages compared to 

vision-based approaches [106]. Based on the strong points of the myoelectric interface, 

the proposed myoelectric interface uses the sequence-based myoelectric classification to 

add the robustness with respect to the limb position changes. The proposed myoelectric 

interface focuses on controlling a robot manipulator in terms of translation, rotation, and 

opening/closing a gripper. The proposed myoelectric interface classifies dynamic motions 

to handle the manipulation mode, and uses orientation of a forearm and averaged muscle 

force to generate continuous commands. 

To estimate the performance of the proposed myoelectric interface, the five time-

measures, the path efficiency, and the real-time classification accuracy were calculated 

from the repeated go-and-pickup tasks. Also, in order to compare the results of the 

myoelectric interface with a well-known interface method in industry and laboratory 

related applications, the GUI button-based jog interface was developed using Matlab GUI 

software, and was used to perform the same go-and-pickup task repeatedly. The time-

measures and the path efficiencies of the two interfaces were compared. 

In terms of accurate real-time classification, DCG can efficiently classify dynamic 

hand motions in real-time with an average accuracy of 95.24%. In fact, there were cases 

that DCG missed a dynamic motion because of lack of proficiency of the human subjects 

in conducting the dynamic motion as described in the definition of a dynamic motion, i.e., 

not placing the before- and after-rest-regions and not generating an abrupt change at the 
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beginning of a dynamic motion. The missing rate is not examined here because the missing 

rate becomes negligible by practicing dynamic motions. 

According to the results of the path efficiency, Subjects 2, 3, 4, and 5 showed 

similar results, but the results of the other subjects, Subjects 1, 6, and 7, show that the 

myoelectric and jog interfaces performed differently in terms of the path efficiency. In the 

case of Subject 6, the myoelectric interface outperformed the jog interface by 3.18% in 

the path efficiency. However, in the cases of Subjects 1 and 7, the jog interface showed 

better performances of 1.65% and 1.31%, respectively. More than half of the subjects 

shows that the moving paths of the robot manipulator to complete the task by using the 

myoelectric and jog interfaces are similar. Although the results of the path efficiency from 

the other subjects (Subjects 1, 6, and 7) are different in the myoelectric and jog interfaces, 

Subject 6 shows that the myoelectric interface outperforms the jog interface, and Subjects 

1 and 7 show that the mean differences of the path efficiency between the myoelectric and 

jog interfaces are close to the standard deviation of their path efficiency results. Based on 

this tendency, these two different interface methods seem to have no difference in 

controlling a moving path of the robot manipulator even though they are slightly subject-

dependent. 

From the result of the time-measures, the experiment time shows the jog interface 

outperforms the myoelectric interface. This result was expected because conducting a 

dynamic motion needs more time than just pushing a button to change the manipulation 

mode. From the experimental results, performing a dynamic motion requires about 2 

seconds on average as shown in Table 14. Considering the length of the before- and after-
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rest-regions, the necessary time to change the manipulation mode once in the myoelectric 

interface is more than 3 seconds. In general, the manipulation mode is changed twice to 

complete the go-and-pickup task. As compared to the fact that pushing a button in the jog 

interface needs less than half a second, the myoelectric interface needs about 6 seconds 

more to finish the go-and-pickup task. The additionally-required time (about 6s) to change 

the manipulation modes in the myoelectric interface can explain the gap in the state-

change times of the myoelectric and jog interface. Even though the jog interface 

outperforms the myoelectric interface in the time-measures, if the advantages of the 

myoelectric interface are considered, the more-necessary time can be thought as a trade-

off. 

Reviewing previous studies related to the myoelectric interface shows that many 

studies used EMG sensors and additional sensors that have different modalities to EMG 

so as to classify dynamic motions [54, 57, 59, 62]. In [57], accelerometer and EMG sensors 

were used to recognize 72 Chinese Sign Language words. In [59], static finger and wrist 

motions were recognized by EMG signals. The IMU data augmented the number of 

recognizable gestures by discriminating the arm angles. In [54], the authors used both IMU 

and EMG sensors to recognize 9 dynamic motions. The discriminative feature vectors of 

combining the gyroscope, accelerometer, and EMG data over time are generated for each 

dynamic motion. In [62], IMU and EMG sensors were fused to classify 12 dynamic 

gestures, which were characterized by continuous density Hidden Markov Models and 

Gaussian Mixture Models.  
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Based on the circumstance of using myoelectric signals for HCI and gesture 

recognition in previous studies, the proposed myoelectric interface catches and classifies 

dynamic hand motions in real-time via only EMG signals. Moreover, by differentiating 

the gesture types (static and dynamic motions), the generating source of discrete and 

continuous commands can be separated. This is particularly convenient because users’ 

understanding of the interface system can be increased and possible confusions when 

generating the different types of commands can be prevented. Also, the robustness of the 

proposed myoelectric interface to the limb position changes is improved by using the 

sequence-based myoelectric classification (comparing the changes in temporal sequences 

of the feature vectors). In addition, an event-based control schema using dynamic motions 

as discrete commands can reduce the effort of using muscles for human operators 

compared to previous myoelectric interfaces using static gestures that are needed to be 

held in operation. 

The myoelectric interface has a huge potential for numerous HCI applications. In 

this study, a 6-DOF robot manipulator with a 1-DOF gripper was chosen as a target 

application. However, the myoelectric interface can be applied to a wide range of fields. 

For examples, Unmanned Ground Vehicle (UGV) and Unmanned Aerial Vehicle (UAV) 

are important supporting devices in military environments for surveillance and hazardous 

tasks. To control them, the characteristics of the myoelectric interface such as using 

familiar and dexterous hand gestures, no limitation for outdoor activities, and no 

interference when using a hand are advantageous in contrast to the data glove-based and 

vision-based systems [106]. Moreover, the drone industry is quite popular in personal 
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entertainment, i.e., selfie drones. With increasing usability of drones in human life, the 

ease of controlling a drone is also an interesting issue. In this circumstance, using everyday 

gestures to control a drone is quite convenient and practical. The myoelectric interface can 

be used to recognize regular gestures. In addition, for virtual reality (VR) and augmented 

reality (AR), interfacing techniques to connect humans and virtual environments are also 

significant. The proposed myoelectric interface can be used practically for VR and AR 

because the myoelectric interface does not limit human movements and working spaces. 

Besides, the proportional information coming from estimating muscle force magnifies the 

usability of the myoelectric interface compared to previous gesture-based interfacing 

systems using vision and acceleration measurement. 

4.5 Conclusion 

In this study, a myoelectric interface using dynamic motions is proposed. In 

Chapter III, we showed that the sequence-based myoelectric classification for dynamic 

motions is relatively robust to the limb position changes. With this advantage, we 

developed a myoelectric interface using the sequence-based myoelectric classification. 

The proposed myoelectric interface utilizes dynamic hand motions, muscle force, and 3-

axis orientation (roll, pitch, and yaw) to generate discrete and continuous commands for 

manipulating a 6-DOF robot manipulator.  

The performance of the myoelectric interface was estimated in carrying out a pre-

defined task that requires a participant to control a robot manipulator to approach an 

object, to grasp it, and to pick it up. The performance of the system is evaluated in terms 

of real-time classification accuracy, time-measures, and path efficiency. To compare with 
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the performance of the myoelectric interface, a well-known interface, the jog interface, 

used widely in industrial and laboratory settings is also applied.  

Based on the experimental results, the myoelectric interface needs more time to 

complete the task than the jog interface because of the processing time of catching and 

classifying dynamic motions and the time to execute the dynamic motion itself. However, 

the path efficiencies of the two interfaces are similar. Considering the benefits that 

myoelectric interface has such as using familiar and dexterous gestures, no limitations for 

outdoor activities, no interference when using a hand, and additional information (muscle 

force), the myoelectric interface shows a significant potential for human computer 

interaction applications. 
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CHAPTER V 

CONCLUSION AND FUTURE RESEARCH 

5.1 Summary of the Work 

Among many approaches in the Human Computer Interaction realm, this 

dissertation focuses on a myoelectric approach to recognize human gestures. There exist 

numerous advantages in the myoelectric approach compared to other gesture recognition 

methods such as using vision-based, accelerometer-based, and data-glove-based 

approaches. First of all, the myoelectric interface can recognize more dexterous finger and 

hand gestures than vision-based gesture recognition. Moreover, the myoelectric interface 

does not hinder hand movements and somatosensory systems (touch sensation) in contrast 

to the data-glove-based approach. The myoelectric interface, also, can be used in outdoor 

environments because myoelectric signals are not affected by lights and sound noises. 

Furthermore, the proportional information by varying the muscle force is valuable in terms 

of increasing the richness of usable resources for applications. 

Considering the benefits of the myoelectric interface, this dissertation proposed a 

sequence-based myoelectric classification scheme that is more robust to the limb position 

changes (Chapter 3), as well as a dexterous myoelectric interface to control a 6-DOF robot 

manipulator with a 1-DOF gripper (Chapter 4). The sequence-based myoelectric 

classification showed that comparing the similarity of temporal sequences of dynamic 

motions is more robust to changes resulting from the non-stationarity of myoelectric 

signals than comparing constant feature values static motions have. This is based on the 

fact that each dynamic motion has its own temporal sequence, which is less affected by 
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the limb position effect. Moreover, the proposed myoelectric interface generated discrete 

commands by catching and classifying dynamic motions in real-time and continuous 

commands by interpreting the orientation of a forearm and muscle force. The proposed 

myoelectric interface is a possible application of using the sequence-based myoelectric 

classification and can be used for numerous applications such as an HCI for translating 

human intentions to a device. 

5.2 Contributions of the Research 

This research mainly deals with using myoelectric signals for gesture recognition. 

The sequence-based myoelectric classification comes from the effort to reduce the effect 

of non-stationary characteristics of myoelectric signals caused by limb position changes. 

To accomplish that, the sequence-based myoelectric classification focuses on using 

dynamic motions and comparing the similarity of temporal sequences dynamic motions 

have. In addition, as an application of the proposed myoelectric classification, the 

myoelectric interface using the sequence-based myoelectric classification in real-time was 

introduced so as to control a 6-DOF robot manipulator with a 1-DOF gripper. The novel 

aspects of the sequence-based myoelectric classification and the proposed myoelectric 

interface are as follows:  

 The performances of various conventional pattern-based myoelectric classification 

approaches are evaluated in terms of classification accuracy, training time, and 

classification (prediction) time with public EMG datasets of hand and finger 

motions. 
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 The robustness of the limb position changes is improved in the proposed sequence-

based myoelectric classification (the changes in temporal sequences of feature 

vectors of dynamic motions are compared).  

 The improvement of the sequence-based myoelectric classification is verified by 

comparing the performance of a conventional pattern-based myoelectric 

classification using Naïve Bayesian classification and Fisher’s Linear 

Discriminant Analysis dimensionality reduction. The results of two approaches in 

the limb position changes are also statistically analyzed. 

 Dynamic hand motions are captured and classified in real-time via only EMG 

signals. The satisfactory real-time classification accuracy of the system is 

determined as a performance value. 

 A myoelectric interface system using EMG and IMU is developed as a Human 

Computer Interaction application. This system generates discrete and continuous 

commands for controlling a robot manipulator as well as includes advantages of 

myoelectric system such as 1) recognition of dexterous hand and finger gestures, 

2) availability in outdoor activities, 3) no interference in tactile sensitivity of a 

hand, and 4) continuous information of muscle force. 

 The performances of the proposed myoelectric interface and GUI button-based jog 

interface are compared by five time-measures and path efficiency in a quantitative 

manner. 
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5.3 Future Research Work 

In this dissertation, mainly two studies have been introduced: the myoelectric 

classification for dynamic motions and the myoelectric interface as an HCI scheme to 

control a robot manipulator. Based on the results described in the dissertation, there are 

possible future works as follow: 

 Improving the performance of the sequence-based myoelectric classification by 

applying advanced approaches, such as Hidden Markov Models and Deep Neural 

Networks, 

 Reducing the effect of subject dependency and sensor-position dependency, 

 Improving the process of generating continuous commands by using more than 

two IMUs to recognize moving trajectories of a forearm and an upper arm rather 

than using an IMU for roll, pitch, and yaw (orientation) of a forearm, 

 Considering muscle fatigue when estimating muscle force from RMG, 

 Increasing the number of recognizable dynamic motions, 

 Removing the mandatory existence of the before- and after-rest-regions to catch a 

dynamic motion in real-time, and 

 Applying the proposed myoelectric interface to other applications such as 

controlling drones and interfacing with VR.  

 Speeding up the real-time process using a fast processor such as GPU and FPGA. 
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