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ABSTRACT 

 

Polyurethane shape memory polymers (SMPs) have found a variety of uses in the 

medical industry in the form of self-tightening sutures, suture anchors, ligament fixation 

devices, vascular stents, and thrombectomy devices. New formulations of polyurethane 

SMP scaffolds are gaining significant interest for use in vascular embolization procedures. 

These scaffolds have demonstrated rapid time to occlusion, improved healing, and 

favorable biocompatibility, and they eliminate the need to implant multiple devices to 

achieve stable occlusion, significantly reducing procedure times and the total cost of 

treatment. Described here are various methods used to fabricate SMP scaffolds, 

indications for SMP scaffold embolization, advantages of using these scaffolds in 

embolization procedures, results seen in vivo and in vitro to verify the safety and efficacy 

of the SMP scaffolds, and future directions for SMP scaffolds that will propel the 

technology to significant use beyond vessel occlusion.  

The research described in this work resulted in the creation of novel embolic 

devices that have the potential to drastically reduce the cost of endovascular embolization 

procedures by reducing the number of devices required for treatment, radiation time, the 

need for repeat procedures, and the time to complete healing of the treated vessel. These 

devices also demonstrated resistance to undesired thromboembolism in vitro, while also 

exerting negligible radial force on the vessel endothelium to minimize the likelihood of 

vessel rupture or perforation. In vitro verification testing demonstrated that this device 

appears to be safe and effective for embolization within the peripheral vasculature. This 
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work also represented the first verification of the echogenicity of shape memory polymer 

foam devices in vitro. In addition, this research solidified the designation of polyurethane 

shape memory polymer foam as a platform technology that can be combined with other 

material systems to create shape memory occlusive devices with enhanced fluid uptake 

and bactericidal properties.  
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CHAPTER I  

INTRODUCTION* 

Researchers in the medical industry have been drawn to the advantages of shape 

memory materials, such as nitinol, since 1971. [1] Until the 1990s, commercially available 

shape memory materials used in the medical industry were limited to nickel–titanium, 

copper, and iron-alloy systems. [2] In 1985 Drs. Robert Ward and Judy Riffle of Thoratec 

Laboratories Corporation, Pleasanton, California, filed a patent titled “Method for making 

an article with shape-memory properties and some of the thus obtained articles,” which is 

one of the first descriptions of what is considered a shape memory polymer (SMP) today. 

In 1990 Dr Hayashi of Mitsubishi Heavy Industry, Japan, published his findings on one 

of the first commercial thermoplastic SMPs. [3] SMPs offer several advantages over 

traditional shape memory alloys (SMAs). For instance, SMPs can recover up to 400% 

plastic strain versus only 7–8% for SMAs, they typically cost approximately 10% of the 

cost of SMAs, SMPs can be fabricated with densities less than 1.25 g/cm3, they can be 

tuned to have a wide range of transition temperatures for numerous applications, and they 

have demonstrated biocompatibility in various applications. [4] Since the introduction of 

SMPs into the marketplace, they have continued to garner significant interest as highly 

advantageous materials for use in the medical industry.  

SMPs are capable of switching between a primary and a secondary shape on the                                             

input of an external stimulus, such as heat or UV light. [5, 6] These materials can be 

synthesized in their primary shape and programmed into an elongated or compact 

secondary shape via mechanical programming. The SMP maintains this secondary shape 

* Parts of this chapter are reprinted with permission from “Embolic Applications of Shape 

Memory Polyurethane Scaffolds” by Todd L. Landsman, Andrew C. Weems, Sayyeda M. 

Hasan, Robert S. Thompson, Thomas S. Wilson, Duncan J. Maitland, Advances in 

Polyurethane Biomaterials. Copyright (2016) Elsevier Ltd. 
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due to the switching segments that undergo thermal transitions during programming while 

the permanent shape is maintained by the net points of the polymer. [5, 6] Net points are 

physical or chemical cross-links that provide the shape memory effect (SME) for the 

polymer. 

SMPs can be fabricated using a variety of polymer systems, including poly(ɛ-

caprolactones), acrylates, polynorbornenes, cross-linked polyethylenes, poly(ether 

ketones), and polyurethanes. [7-12] From 2005 to 2015, polyurethane SMPs have garnered 

significant interest for use in implantable medical devices. This is primarily because they 

are easily manufactured in large quantities using conventional polymer fabrication 

techniques, their mechanical properties and transition temperatures are easily tuned to 

match specific applications, and they have demonstrated extensive biocompatibility. [4, 

13-15] These characteristics of polyurethanes have resulted in their implementation into 

the design and fabrication of numerous medical devices, such as thrombectomy devices, 

cardiovascular stents, self-tightening sutures, and kidney dialysis adapters. [16-19] 

However, perhaps the most intriguing technologies with the potential to compete with 

current FDA-approved devices are polyurethane SMP foams used in embolization 

procedures. The goal of embolization, current treatment methods, and how SMP foams 

can propel these procedures into a new realm of innovation will be discussed in Chapter 

II. This knowledge was used to design a novel peripheral embolization device that utilizes 

SMP foam technology. Chapter III details the in vitro verification of the safety and 

efficacy this device. Chapter IV investigates extending the use of SMP foams into 

composite devices that also act as a pharmaceutical release platform. This device 
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incorporated the enhanced swellability and antibacterial properties of an iodine-

complexed hydrogel, with the rapid hemostasis and large volume filling capacity of SMP 

foams to create a new generation of wound dressings to improve patient outcomes in 

civilian and combat trauma situations.  
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CHAPTER II  

EMBOLIC APPLICATIONS OF SHAPE MEMORY POLYURETHANE 

SCAFFOLDS* 

2.1 Introduction 

Researchers in the medical industry have been drawn to the advantages of shape 

memory materials, such as nitinol, since 1971. [1] Until the 1990s, commercially available 

shape memory materials used in the medical industry were limited to nickel–titanium, 

copper, and iron-alloy systems. [2] In 1985 Drs. Robert Ward and Judy Riffle of Thoratec 

Laboratories Corporation, Pleasanton, California, filed a patent titled “Method for making 

an article with shape-memory properties and some of the thus obtained articles,” which is 

one of the first descriptions of what is considered a shape memory polymer (SMP) today. 

In 1990 Dr Hayashi of Mitsubishi Heavy Industry, Japan, published his findings on one 

of the first commercial thermoplastic SMPs. [3] SMPs offer several advantages over 

traditional shape memory alloys (SMAs). For instance, SMPs can recover up to 400% 

plastic strain versus only 7–8% for SMAs, they typically cost approximately 10% of the 

cost of SMAs, SMPs can be fabricated with densities less than 1.25 g/cm3, they can be 

tuned to have a wide range of transition temperatures for numerous applications, and they 

have demonstrated biocompatibility in various applications. [4] Since the introduction of 

SMPs into the marketplace, they have continued to garner significant interest as highly 

advantageous materials for use in the medical industry. 

SMPs are capable of switching between a primary and a secondary shape on the 

input of an external stimulus, such as heat or UV light. [5, 6] These materials can be 

* Parts of this chapter are reprinted with permission from “Embolic Applications of Shape 

Memory Polyurethane Scaffolds” by Todd L. Landsman, Andrew C. Weems, Sayyeda M. 

Hasan, Robert S. Thompson, Thomas S. Wilson, Duncan J. Maitland, Advances in 

Polyurethane Biomaterials. Copyright (2016) Elsevier Ltd. 
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synthesized in their primary shape and programmed into an elongated or compact 

secondary shape via mechanical programming. The SMP maintains this secondary shape 

due to the switching segments that undergo thermal transitions during programming while 

the permanent shape is maintained by the net points of the polymer. [5, 6] Net points are 

physical or chemical cross-links that provide the shape memory effect (SME) for the 

polymer. 

SMPs can be fabricated using a variety of polymer systems, including poly(ɛ-

caprolactones), acrylates, polynorbornenes, cross-linked polyethylenes, poly(ether 

ketones), and polyurethanes. [7-12] From 2005 to 2015, polyurethane SMPs have garnered 

significant interest for use in implantable medical devices. This is primarily because they 

are easily manufactured in large quantities using conventional polymer fabrication 

techniques, their mechanical properties and transition temperatures are easily tuned to 

match specific applications, and they have demonstrated extensive biocompatibility. [4, 

13-15] These characteristics of polyurethanes have resulted in their implementation into 

the design and fabrication of numerous medical devices, such as thrombectomy devices, 

cardiovascular stents, self-tightening sutures, and kidney dialysis adapters. [16-19] 

However, perhaps the most intriguing technologies with the potential to compete with 

current FDA-approved devices are polyurethane SMP foams used in embolization 

procedures. The goal of embolization, current treatment methods, and how SMP foams 

can propel these procedures into a new realm of innovation will be discussed throughout 

this chapter. 
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2.1.1 Scaffold Fabrication Techniques 

Numerous fabrication techniques can be used to create porous SMP scaffolds. 

Each method varies in complexity and results in varying scaffold morphologies, as 

demonstrated in Figure 2.1. 

 

 
Figure 2.1: SEM image of polymer scaffolds synthesized via (a) solvent casting, [20] 

(b) gas blowing, (c) emulsion templating, [21] (d) particle leaching, [21] and (e) 

electrospinning. [6]   

 

The best-suited technique for fabricating a given scaffold depends on the intended 

application, the polymers being used in the fabrication, and the conditions under which 

the polymer solutions are cured and maintained. Some of these fabrication techniques 

include gas blowing, emulsion templating, particle leaching, and electrospinning. 

Although these are not the only methods that can be used to create a porous polyurethane 
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scaffold, they are the most widely utilized techniques in industry and academia. Each of 

these techniques will be described in detail in the following sections. 

2.1.1.1 Polymer Film Fabrication 

Each foaming technique begins with the preparation of a neat polymer solution. 

Neat polymer films can be developed by physical treatments such as annealing, elongating 

the polymer, or by solution casting. [22] Physical elongation of the polymer results in a 

change in the molecular structure of the polymer, while solution casting allows for the 

structure to develop at the same time as the membrane formation throughout the scaffold. 

[22] 

Neat polymer fabrication using solvent casting involves thin film formation by 

dissolving the polymer in an appropriate solvent, casting the polymer/solvent solution onto 

a solid substrate or mold, and then evaporating out the solvent. This process can result in 

a uniform, flat surface as shown in Figure 2.1(a). [22] However, solvent selection is an 

important parameter for controlling film morphology. Ohuno et al. synthesized poly(vinyl 

chloride) (PVC) films using different solvents and studied the effects of solvent blends on 

polymer morphology. Tetrahydrofuran (THF) is a good solvent for PVC; however, when 

water is added the solvent quality decreases, resulting in a decrease in the size of the 

polymer chains in solution. [22] Additionally, the crystallinity of the polymer may be 

disrupted with the use of poor or mixed solvents. 

Neat polymers have been used extensively for drug delivery applications and as 

biomaterials that promote cell adhesion. In fact, some of the earliest polymer scaffolds 

were simply films that promoted cell adhesion and growth. [23] Aljawish et al. synthesized 
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surface-modified chitosan films and studied the degree of protein adsorption and cell 

adhesion onto the substrate. Heterogeneous surface morphology of the films improved 

protein adsorption and subsequently resulted in favorable cell attachment and spreading. 

[24] Film thickness also played a role in increasing cell viability. It was discovered that 

thicker films resulted in better cell viability. [24] 

2.1.1.2 Gas Blowing 

Gas blowing has been a popular synthesis technique used for commercial 

manufacturing of polyurethane foams for years; however, its use in the biomedical 

engineering field has grown over the last few years. [21] Gas foaming allows nucleation 

and growth of gas bubbles that are dispersed within a polymer solution for the 

development of pores, as shown in Figure 2.1(b). [25] There are two ways to generate 

bubbles during gas blowing: chemical blowing and physical blowing. Chemical blowing 

requires a reaction between blowing agents for the generation of gas bubbles, while 

physical blowing agents can be mixed into the polymer to generate a gas–polymer mixture 

through vaporization. Gas bubbles nucleate, grow, and coalesce within the mixture 

resulting in pore development. Carbon dioxide (CO2) is a widely used blowing agent 

because of its moderate critical point, nonflammability, and lack of toxicity. [25, 26] CO2 

foaming occurs in two stages: the pressurization stage and the depressurization stage. A 

gas-saturated polymer phase must be generated followed by pore nucleation, growth, and 

coalescence. As the foam rises, the gas bubbles trapped in the foam mixture coalesce and 

the pores grow larger. The processes used in gas blowing are summarized in Figure 2.2. 
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Figure 2.2: Schematic of the steps involved in fabricating porous gas blown scaffolds.  

 

Stabilization of the porous structure can be achieved by chemical cross-linking of 

the polymer system during foaming, by phase separation, or by cooling it below its glass 

transition temperature. [27] For polyurethane foams, chain extension with water is 

effectively used to develop polyurethane ureas. [26] During the foaming step, water is 

reacted with isocyanate monomers to generate carbon dioxide, resulting in a porous 

material. Pore structure and interconnectivity can be controlled by varying foaming agent 

and its concentration in the polymer–gas mixture. [26, 28] A significant advantage of gas 

blowing is the lack of organic solvents used in the fabrication, which reduces scaffold 

toxicity for in vivo applications. [21] However, controlling pore sizes and connectivity 

can be very difficult when using this technique. [21] 

Gas blown polyurethane foams have a wide range of biomedical applications as 

tissue repair scaffolds. Spaans et al. developed biodegradable, biocompatible polyurethane 
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scaffolds for replacement and repair of the meniscus. The group utilized a 50/50 blend of 

poly(ε-caprolactone) and poly(l-lactide) for a soft segment, while 1,4-butane diisocyanate 

constituted the hard segment. [26] The scaffold was synthesized using a combination of 

CO2 gas blowing and chain extension using adipic acid. CO2 use resulted in 

interconnected macropores in the final scaffold while chain extension created smaller, 

homogeneous pores with interconnectivity. [26] 

2.1.1.3 Emulsion Templating 

Emulsion templating is a popular scaffold fabrication technique that was first 

utilized in the 1960s. [29] A diagram showing the steps involved in this fabrication 

technique is shown in Figure 2.3. This technique involves the use of two liquid phases, 

the external and the internal phase. [30] The external phase, also called the nondroplet 

phase, forms the solid polymeric scaffold while the internal phase, or the droplet phase, 

consists of oil or water droplets. [31] Simply put, the emulsion of oil in an 

aqueous/polymer phase allows for the development of a polymer shell around the oil 

droplets, resulting in a porous scaffold with controlled pore sizes (Figure 2.1(c)). 

Additional components such as surfactants and catalysts are added to stabilize the pores 

and speed up the reaction kinetics for scaffold synthesis. [30, 32] High internal phase 

emulsions (HIPEs) are a widely used type of emulsion templating for polymer scaffolds. 

[30] For this type of emulsion, the droplet phase consists of 70% of the volume of the 

emulsion and the resulting scaffold has small, interconnected pores. [30] A polymerized 

HIPE is often called a polyHIPE. To differentiate pore characterization from gas blowing 

techniques, the spherical cavities generated from the emulsion droplets are called voids. 
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[33] The voids normally have interconnected holes which are referred to as windows. 

Synthesis of a polyHIPE consists of mixing reactive monomers, catalysts, and surfactant 

while slowly adding the droplet phase. [33] Mixing is required to break up the formation 

of larger droplets due to phase separation. Once the nondroplet phase has cured, the 

resulting polyHIPE is washed and dried to remove the droplet phase. [33] 

 

 
Figure 2.3: Schematic of the emulsion templating process used for fabricating 

scaffolds. 

 

Void size can be controlled by altering the concentration and viscosity of the 

external phase and the volume of the internal phase. [29] Surfactant concentration also 

plays a major role in altering the polyHIPE morphology. [29] Yao et al. studied the effects 

of a triblock surfactant concentration on polyHIPE morphology. The void structure 

became more homogeneous and interconnected when surfactant concentration was 
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increased from 2% to 7% (v/v). [34] Increasing surfactant concentration allows thinning 

of the polymer films separating adjacent emulsion droplets, allowing for windows to 

develop in the void structure as the polymer cures. [33] However, one disadvantage of 

polyHIPEs is the large amount of droplet phase that is required during synthesis. [29] If 

the droplet phase is organic, further postfabrication cleaning of the scaffold is required to 

ensure removal of all organic solvents that might cause cell toxicity. 

Emulsion freeze drying is another form of emulsion templating that utilizes droplet 

formation from mixing two immiscible phases as well. [21] However, with emulsion 

freeze drying the droplet phase is normally water and the emulsion can be frozen quickly 

once homogeneous voids have been achieved. [21] The scaffold is then freeze-dried to 

remove the aqueous phase, leaving behind a porous polymer structure. One of the main 

advantages of this technique is the lack of organic solvents and minimizing the time-

consuming drying processes associated with polyHIPEs. [21] 

2.1.1.4 Particle Leaching 

Particle leaching involves dispersing solid particles into a polymer solution. [35] 

First, a polymer solution is synthesized at 5–20% concentration in an organic solvent. [36] 

Then the particles are added to the polymer solution before the solvent is evaporated via 

air drying, vacuum drying, or freeze drying to embed the solid particles within the polymer 

matrix. [37] After drying, the polymer/solid composite is immersed in water to dissolve 

the solid particles, leaving behind a porous polymer scaffold (Figure 2.1(d)). This process 

is summarized in Figure 2.4. Most particle leaching techniques utilize salts; however, 

sugar, ammonium chloride, sucrose, starch, paraffin, and gelatin particles have also been 
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reported in the literature. [21] Microspheres are preferred for salt leaching because they 

result in regular pore geometry that enhances the mechanical properties of the scaffold and 

improves fluid exchange and nutrient supply to cells. [21] 

 

 
Figure 2.4: Summary of the processes used in creating porous scaffolds by means of 

particle leaching.  

 

Scaffold porosity can be controlled by varying the particle concentration, while 

pore sizes depend on the size of the particles added to the polymer solution. [21, 38] If the 

particle concentration is insufficient, isolated pores will be generated as the polymer 



 

14 

 

surrounds each particle. Hariraksapitak et al. reported an increase in porosity with higher 

concentrations of particles (25× to 40×) due to the generation of more voids. However, 

pore sizes remained in the range of 200–400 μm as a result of the particle size utilized 

during scaffold synthesis, which indicates that particle size and shape are directly related 

to the pore size and geometry of the scaffold. [36] Increased particle loading can result in 

void formation within the scaffold, due to close packing, which will ultimately decrease 

the overall mechanical properties of the scaffold. [21] Hariraksapitak et al. evaluated 

compressive and tensile properties for scaffolds with varying porosity. It was reported that 

higher porosity scaffolds experienced a decrease in both compressive and tensile strength. 

[36] 

An advantage of using particle leaching is the ease of fabrication since no 

specialized equipment is required for scaffold synthesis. However, the difficulty 

associated with selecting particle type and size is a disadvantage, because attaining high 

porosity while maintaining adequate mechanical strength is a challenge. The ability to 

control and tune the porosity and interconnectivity of a scaffold is especially important for 

optimizing cell ingrowth and diffusion. [39] Another disadvantage of this technique is that 

it yields thin materials due to difficulties in leaching salt from large volumes. Organic 

solvents provide a means of removing salt, although residual solvent may affect cell 

growth and adhesion. 

2.1.1.5 Electrospinning 

Electrospinning is a unique scaffold fabrication technique that yields a porous, 

three-dimensional scaffold that mimics the extracellular matrix (Figure 2.1(e)). [40] This 
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process involves the use of a high voltage power supply applied to the polymer solution 

to induce jet formation. [40] The basic setup consists of a syringe with a feed pump, high 

voltage power supply to provide an electrical field, and grounded fiber collector, which is 

normally a metal plate or a rotating mandrel (Figure 2.5). [41] The electrical field 

generates a charged polymer jet which deforms uniaxially from the needle tip to the 

grounded collector. [42] During this process, the solvent evaporates, leaving behind dried 

polymer fibers that form the fibrous scaffold. 

 

 

Figure 2.5: Common electrospinning setup used in academia. [41]  

 

Electrospun scaffolds are continuous fibrous scaffolds that result from a polymer 

melt or solution and have fiber diameters ranging from micro to nanoscale. [40] 

Electrospinning can be utilized for a wide range of polymers and composite materials, 

making it a versatile, cost-effective technique for developing biomedical scaffolds with 

controlled production and easy scale-up. [40] This technique was first used in the 1990s 
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to develop polymer nanofibers and is currently popular for developing tissue engineering 

and drug delivery scaffolds. [41] A diagram of a typical electrospinning setup is shown in 

Figure 2.5. 

Polymer properties, such as viscosity, surface tension, and conductivity, play an 

important role in controlling the size, density, and morphology of the electrospun fibers. 

[40] Solution viscosity is dependent on the polymer molecular weight and degree of 

entanglements/cross-linking. [42] This affects the development of fibers versus droplets 

during jet formation, and the subsequent final scaffold could potentially have a 

combination of both. Lower viscosity solutions generally result in droplet formation while 

higher viscosity solutions may result in poor jet formation and an increase in fiber 

diameter. [42] Surface tension of the solution is directly related to the nature of the solvent. 

A lower surface tension solution may allow the utilization of lower electric fields for fiber 

formation. [40] However, this may change the solution viscosity and result in droplet 

formation in the scaffold. Conductivity of the solution is affected by the nature of the 

solvent and by the incorporation of inorganic salts. [40] Addition of salts, such as sodium 

chloride, will increase solution conductivity, which in turn increases its mobility under the 

electric field. [40] This provides greater elongations and thinner diameters of the resulting 

fibers. Fine-tuning the various parameters of the polymer solution can result in controlled 

fiber diameters of less than 300 nm for optimal cell infiltration and growth. [43] 
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2.2 Embolization and Occlusion 

2.2.1 Goal of Embolization 

In some circumstances blood flow through specific vascular pathways can cause 

potentially life-threatening complications. In these instances physicians rely on 

embolization devices to block blood flow to the region. Embolization is a technique in 

which a physician places a material within a cavity or blood vessel with the intent of 

completely occluding that region or diverting blood flow from that region. Oftentimes, 

endovascular embolization supplants highly invasive surgeries used to treat the same 

morbidity. This is primarily due to reduced treatment costs, recovery time, and patient 

discomfort, as well as improved clinical outcomes. [44, 45] This type of treatment is used 

for a wide variety of morbidities, such as arteriovenous malformations (AVM), 

aneurysms, venous insufficiency, and patent foramen ovale (PFO). [46-50] However, 

researchers and physicians continue to discover novel indications for endovascular 

embolization as catheterization technology evolves. 

2.2.2 Current Treatment Methods 

Although a number of different methodologies exist to exclude vessels from 

undesired blood flow, such as endovenous ablation, surgical ligation, and sclerotherapy, 

the following sections describe FDA-approved interventional embolic devices that are 

most similar to SMP foam scaffolds. 

2.2.2.1 Coiling 

Embolic coiling involves the placement of a fine coil in a vascular defect to 

generate and maintain a clot. Initially coils were composed of steel guidewires tipped with 
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cotton or wool strands that were navigated to the desired location through a catheter under 

fluoroscopy. This is still the standard procedure used today, but the design of the coils has 

experienced some changes. [51] The first modern coils were composed of a bare platinum 

coil and were developed as a method of retaining a clot that was formed by 

electrothrombosis, a process by which a positive charge is applied to a lead within the 

aneurysm that attracts negatively charged components of the blood, namely platelets, and 

forms a clot. Conveniently this same electric current could be used to detach the coil 

through electrolysis, making a very effective and simple delivery method. [52] Though 

some alternative detachment methods have been used, most of the variation in embolic 

coils comes from technologies developed to increase the volume filling and surface area 

properties of the devices through the addition of hydrogels or fibers, as shown below in 

Figure 2.6. [53-55] 
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Figure 2.6: (a) Original fibered coils with Dacron fibers attached at the proximal and 

distal ends of the coil, and (b) the newer style of fibered coils with Dacron fibers 

attached throughout the length of the coil. [55]  

 

Many coils still use a pushable design that allows them to be delivered using 

standard guidewires or custom pusher wires. The relative ease of use and low cost of these 

coils have made them the most popular type of coil in interventional radiology. Detachable 

coils are still the preferred method where precise positioning is critical for optimal filling, 

or when coil migration during the procedure is of serious concern. These coils are also 

typically used when a tortuous pathway may lead to an inability to advance the coil 

through the entirety of the catheter, which is the case in interventional procedures 

performed to treat intracranial aneurysms. [56, 57] Endovascular coiling is the most 
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widely used embolization method but it still has a number of complications. Coils can 

protrude or fully migrate into the parent vessel and potentially cause a thromboembolism, 

and the procedure itself is dangerous and can lead to aneurysm rupture. [58] 

Approximately 20% of aneurysms, particularly those with an internal diameter larger than 

25 mm or a neck diameter larger than 4 mm, will experience rebleeding due to coil 

compaction or device migration. [59] Coiling is typically not well suited for clotting in 

high flow areas or in areas where the coils could easily migrate. [53, 59, 60] 

2.2.2.2 Gelfoam® Plug 

Gelfoam®, a gelatin foam available in sheet or powder form that can be formed 

into a variety of shapes by an interventionalist, is often used off-label to completely 

occlude specific vessels, although it is not indicated specifically for intravascular 

embolization. [61] The foam can also be cut into fine segments and mixed with a diluted 

contrast agent to create a slurry that is injected into the target site, as shown in Figure 2.7. 
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Figure 2.7: A Gelfoam® pledget is shaved with a blade at a 45° angle, allowing the 

shavings to mix with a contrast agent to produce a slurry that is then injected to the 

target site. [62]  

 

The device functions as a physical barrier to prevent blood flow through the vessel, 

but due to the gelatinous and bioabsorbable nature of the foam on saturation, it does not 

provide a scaffold for clot formation and connective tissue ingrowth. [63] Gelfoam® 

treatments can lead to downstream embolization due to the nature of the particles and may 

have a connection with infections, potentially caused by air bubbles trapped in the 

materials during the mixing process used to prepare the foam. There are also issues with 

frequent recanalization of treated vessels because the gel is resorbable, and as such, the 

gel may be fully resorbed before stable fibrosis occurs. Gelfoam® use is often combined 

with embolic coils so that the gel creates the initial occlusion and the coils are implanted 

to retain the clot at the treatment region after the body begins resorbing the gelatin. [57, 

60] 

 



 

22 

 

2.2.2.3 Nitinol Mesh 

Nitinol mesh devices, the most notable of which is the Amplatzer Vascular Plug, 

are a family of endovascular embolization devices that take advantage of nitinol’s highly 

elastic nature to create multiple fine-meshed discs and ovoids that instantly expand on 

exiting the catheter. One such device is shown below in Figure 2.8. The goal of these 

devices is to provide a sufficiently fine mesh to create flow stagnation and recirculation 

zones in the device to activate thrombus formation. They have a cost advantage over 

embolic coils because only one device is used to occlude the target region. However, 

nitinol mesh devices typically do not create a stable thrombus as rapidly as coils. [57, 64] 

Newer nitinol mesh devices seek to combine the flexible, self-expanding nature of nitinol 

with thrombogenic, biocompatible materials like PTFE. One such device is the micro 

vascular plug system manufactured by Reverse Medical®. This device combines a stent-

like structure of nitinol completely covered with PTFE. [65] The inclusion of PTFE seeks 

to reduce the time to occlusion by forcing the blood flow through the significantly smaller 

pore sizes of the PTFE cover rather than the nitinol cage. 
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Figure 2.8: Image of an Amplatz® canine duct occluder (ACDO), which shows the 

fine nitinol wire mesh used as an embolic device to completely occlude patent ductus 

arteriosus (PDA) in dogs.  

 

2.2.2.4 Polyvinyl Alcohol Foam 

Polyvinyl alcohol (PVA) foams can have plastic memory capabilities similar to 

those of polyurethanes. [66] Currently PVA is mostly used as a foam in a method similar 

to that of Gelfoam®; it is typically packaged as particles produced from a foam sheet and 

sorted by size. Typical PVA particles are shown in Figure 2.9. PVA foam treatments 

consist of injecting hundreds to thousands of these particles into the treatment region 

where they adhere to the vessel wall and produce an inflammatory response resulting in 

fibrosis. The major issue faced with these PVA treatments is that they can aggregate in the 

catheter or clot downstream vessels and there have been reports of the foam migrating 

from the treatment region and causing a pulmonary embolism. [57, 67-69] 
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Figure 2.9: Optical microscopy image of unexpanded poly(vinyl acetate)/poly(vinyl 

alcohol) particles used for embolization in 20 wt% heptane. [70]  

 

2.2.3 Indications for Embolization 

2.2.3.1 Arteriovenous Malformations 

Vascular malformations, often described as a bag of worms, can occur throughout 

the body but are most prevalent in the central nervous system. There are many types of 

vascular malformations, but on their most basic level they are an abnormal connection 

between an artery and a vein that bypasses or “shunts” a capillary bed. [71] The 

differentiation in the cellular composition of AVMs varies from distinguishable arterial 

and venous portions to hyalinized thick and thin-walled portions with no discernable 

features specific to arteries or veins. [72] Though they are not neoplasms since they 

possess a nervous parenchyma between the vessels of the malformation, the endothelial 

cells of the AVM do express higher than normal levels of growth factors and growth factor 

receptors. [73, 74] These malformations are typically angiographically occult, meaning 
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that the whole vessel system does not always appear on an angiogram. A typical 

arteriogram of an AVM is shown below in Figure 2.10. This is because the radio-opaque 

dye used in angiography will follow the straighter, faster paths through the system rather 

than the more circuitous routes that make up the majority of the malformation. Bruits, 

unusual sounds in the vasculature caused by turbulence, can sometimes be detected in the 

presence of these malformations. [75] 

 

 
Figure 2.10: Selective vesicle arteriogram showing two right internal iliac arteries 

feeding an AVM and early drainage to the right internal iliac vein. The nidus of the 

AVM (black arrow), dilation of the draining vein (black arrowhead), and early 

drainage of iliac vein (thin black arrow) are shown. [76]  
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Although these formations are often asymptomatic, they may cause central 

nervous symptoms such as seizures and ischemia, among other conditions. Localized 

effects such as hearing and vision loss have also occurred. [77] Treatment for 

complications associated with AVMs is focused on treating the symptoms of the 

morbidity. Embolization and resection are used in cases where the physical presence of 

the AVM poses a concern, such as the structure contacting nerves or, in the presence of 

endothelium weakening or calcification, a potential for rupture. Treatment typically 

involves both embolization and resection, sometimes called skeletonization. Embolization 

is typically done preoperatively to lessen the risk of rupture during the resection procedure 

and is not usually used as a standalone treatment. [78, 79] 

2.2.3.2 Aneurysms 

In its simplest form an aneurysm is a dilation of a vessel, typically an artery, at a 

threshold diameter of about 1.5 times larger than the normal vessel. Abdominal aortic 

aneurysms (AAA) occur in 5–6% of men and 1–2% of women over the age of 65. The 

annual mortality rate associated with AAA rupture is approximately 13,000 deaths per 

year, but this is often thought to be an underestimation. [80-82] Intracranial aneurysms are 

the second most common aneurysm, occurring in 3% of the adult population, [83] 

followed by peripheral aneurysms. [84] Like vascular malformations, aneurysms are often 

asymptomatic but can present with ischemia or other symptoms stemming from increased 

pressure on the CNS. The most serious complications associated with aneurysms occur 

when they rupture. Loss of integrity in an intracranial aneurysm can lead to subarachnoid 

hemorrhage, which has a 30 day mortality rate of 45%, which is mild compared to the 
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90% mortality rate of a ruptured abdominal aortic aneurysm. [85-87] Treatment is 

indicated for intracranial aneurysms of any size if they are symptomatic, but oftentimes 

no intervention is recommended for aneurysms smaller than 10 mm due to a limited 

likelihood of rupture. The age of the patient is also a significant consideration in 

determining whether intervention is needed and whether the patient can withstand the 

trauma associated with surgical intervention. 

Currently embolic coils, such as those shown in Figure 2.11, are the standard 

treatment for virtually all aneurysms with the exception of AAAs. [86] Intervention is 

indicated for abdominal aortic aneurysms if it becomes symptomatic, once the diameter 

of the aneurysm has reached 5.5 cm, is 250% larger than the patient’s normal aortic 

diameter, or has a growth rate of greater than 1 cm per year. The predominant treatment 

for an AAA involves the placement of a branched graft spanning a length longer than the 

dilated portion of the aorta. Occasionally embolic devices are placed in the lumen between 

the vessel wall and the graft to prevent endoleak, a continued flow of blood into the 

aneurysm sac rather than through the graft that can potentially lead to aneurysm rupture. 

[87] 
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Figure 2.11: Image of a GDC® Ultrasoft detachable coil currently sold by Stryker 

Corporation. Each line on the scale in the background corresponds to 1 mm.  

 

2.2.3.3 Venous Insufficiency 

When venous valves are weakened and allow regurgitation of blood, there is an 

abrupt increase in venous pressure. [88-90] The increased pressure and resulting venous 

hypertension are the primary cause of chronic venous insufficiency (CVI). [90-93] The 

continued prevalence of hypertension leads to dilation of the incompetent veins, resulting 

in varicose veins like those shown in Figure 2.12, the most common manifestation of CVI. 

[88, 94, 95] If left untreated, CVI can cause dramatic cosmetic changes in skin, lower limb 

pain, edema, deep vein thrombosis, and ulcers. [95-100] Approximately 400,000–500,000 

Americans with CVI have or will develop venous ulcers, typically referred to as venous 

stasis ulcers. [101-103] Venous ulcers account for the majority of annual health care costs 

associated with CVI, which are more than 1 billion dollars in the United States and over 

650 million dollars in the United Kingdom. [104] The potential consequences of not 
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treating CVI in a timely manner have prompted physicians to adopt multiple treatment 

modalities. 

 

 
Figure 2.12: Pretreatment image of a patient with varicose veins as a result of CVI. 

[105]  

 

The current gold standard for treating CVI is endovenous ablation (EVA). [100] 

EVA makes use of a radiofrequency generator or laser energy to denude the endothelium 

of the target vessel and cause fibrous obliteration of the vessel lumen. [94, 100] Another 

common technique used to treat CVI is sclerotherapy, in which a liquid or foam detergent 

is injected into the vessel that chemically damages the endothelium and subsequently 
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causes fibrosis. [106] Both sclerotherapy and EVA have demonstrated usefulness in 

treating CVI; however, each treatment comes with its own drawbacks. More than 20% of 

patients receiving sclerotherapy have to undergo retreatment for recurrent varicose veins, 

which is greater than the retreatment rate of conventional surgical ligation and stripping 

procedures. [107, 108] In EVA procedures, multiple injections of local anesthesia are 

required, followed by injections of tumescent anesthesia. The anesthesia helps prevent 

pain caused by the laser heating, compresses the vein to make fibrous obliteration of the 

lumen easier, and also acts as a heat sink around the treatment vessel to minimize thermal 

damage to surrounding tissue. [109] The number of shots required for this form of 

treatment results in significant patient pain and discomfort, which is reported in 100% of 

cases. [100] Although the equipment used in endovenous ablation and the substances used 

in sclerotherapy continue to evolve, these issues still persist. 

2.2.3.4 Patent Foramen Ovale 

In utero, there are ostia that allow a patent connection between the left and right 

atria, which allows oxygenated blood from the maternal circulation to enter the left atrium 

of the fetus. This connection is known as the foramen ovale, and on the baby taking its 

first breath, the increased pressure in the left side of the heart permanently fuses the septum 

primum and septum secundum over the foramen ovale in 80% of cases. In the other 20% 

of cases, the septa do not completely occlude the foramen ovale, resulting in a condition 

known as a patent foramen ovale (PFO), which is demonstrated in Figure 2.13. [110] 

PFOs frequently go undiagnosed for a number of years since patients typically show no 

clinical symptoms. However, if steps are not taken to occlude the PFO, paradoxical 
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embolisms may occur where emboli from the peripheral veins enter the arterial circulation 

through the PFO shunt—a well-known cause of cryptogenic stroke. [111, 112] Studies 

have also shown that PFOs may be to blame for a large percentage of patients who 

experience migraines. In one study of 162 patients, 35% of individuals diagnosed with a 

PFO concurrently experienced frequent migraines. [113] 

 

 
Figure 2.13: Demonstration of the right to left shunt between the atria within the 

heart caused by a PFO, which can lead to paradoxical emboli and cryptogenic stroke. 

[114]  

 

To eliminate the risks associated with a PFO, physicians used to attempt surgical 

closure of the PFO, but this technique is virtually never used in current practice. [114, 

115] Instead, PFOs are now treated using a transcatheter approach in which an embolic 

device is placed between the atria to prevent blood flow from the right atrium directly into 

the left atrium. [116] This procedure has become known as the simplest procedure in 
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interventional cardiology, primarily due to the low incidence of surgical complications 

and the effectiveness of current devices. [117] Reisman et al. have demonstrated that PFO 

occlusion results in complete resolution of migraine symptoms in 56% of patients 1 year 

posttreatment, and patients reported having 80% fewer migraine episodes per month. 

[113] With regard to recurrent neurological events (RNE), such as cryptogenic stroke and 

transient ischemic attacks from paradoxical thromboembolisms, transcatheter 

embolization of the PFO resulted in an 84% reduction in RNE compared to medical 

treatment with only pharmaceuticals. [118] The benefits of PFO closure have illuminated 

the necessity for percutaneous stable occlusion of PFOs, especially in elderly patients who 

are more susceptible to peripheral thromboembolisms. 

One of the most widely used and successful devices for percutaneous PFO closure 

is the Amplatzer PFO Occluder (St. Jude Medical Inc., St. Paul, MN), which is a device 

consisting of two nitinol discs that contain a polypropylene mesh. [119] These types of 

devices have demonstrated complication rates of less than 5% and procedural success in 

100% of cases. [120] However, only 65% of the patients showed complete occlusion of 

the foramen ovale at 30 day follow-up. New generations of PFO closure devices could 

benefit from tissue scaffold technologies to allow rapid healing and tissue integration to 

achieve complete occlusion of PFOs at earlier time points. Another likely trend in future 

PFO devices is the use of biodegradable materials, which would allow treatment of 

younger patients since no permanent metallic structure would remain in the heart during 

its growth and development. The potential to treat patients earlier on would provide 
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preventative measures that would dramatically decrease the likelihood of cryptogenic 

stroke and transient ischemic attacks as a result of a PFO. 

2.3 Why Shape Memory Polymer Scaffolds? 

2.3.1 Biocompatibility 

Immediately on implantation and exposure of a material to the host, 

biocompatibility is primarily dependent on the material, as the cell–polymer and polymer–

protein interactions are the dominant causes of host response; after the material begins to 

degrade, biocompatibility becomes a function of the bulk material. Implant size, geometry, 

surface chemistry, roughness, surface energy, porosity, composition, sterility, and 

chemical composition are major factors in determining overall biocompatibility. [121] 

While many advances have been made to improve thromboresistance or to reduce 

inflammatory responses of implantable materials, there still exists a great need for 

understanding how and why the body responds to certain stimuli more intensely compared 

with others. [122] Without dealing with a specified definition of biocompatibility, several 

materials are presented that have been proven to be biocompatible. 

Polyhedral oligomeric silsesquioxane (POSS) core and poly(d,l-lactide) (PLA) 

were fabricated into PLA-grafted nanocomposites with shape memory capabilities and 

implanted into rats. The degradation rate was directly proportional to the length of the 

PLA segments. These materials exhibited mild inflammatory response on implantation, 

and a secondary acute response with degradation. At 1 year follow-up, the inflammatory 

response was resolved and no pathologic abnormalities were found in any organs. The 

results indicate that these materials have promise as scaffolds for tissue repair and medical 
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devices. [123] The use of POSS has also been proposed for nanocomposite films on 

metallic stents for prevention of late stage thrombosis. [124] 

SMP foams evaluated by Sokolowski using the Mitsubishi thermoplastic SMP 

composition have showed no cell lysis, cytotoxicity, or mutagenicity. They also showed 

good neointimal formation over the aneurysm neck when implanted as a potential 

aneurysm filling device, and explanted devices showed favorable ingrowth of cells. [125] 

In a similar study, polyurethane SMPs developed by Wilson et al. have demonstrated 

biocompatibility, with little variation seen between the thermoplastic and the thermoset 

compositions. Thermoplastic SMPs showed higher cytokine production compared with 

thermosets, but both compositions showed no contact activation, thrombin, or plasmin 

generation. [126, 127] SMP foams based on this composition have also shown excellent 

biocompatibility when tested using porcine models. These foams demonstrate very low 

inflammation response compared with FDA-approved silk and polypropylene sutures after 

4 weeks. The foams also have organized collagen throughout the entire volume of the 

foam, and the inflammatory response was substantially reduced compared with the suture 

materials. [50, 128] 

2.3.2 Thrombus Formation 

The mechanism of thrombus formation and the effects of polymer surfaces are 

briefly discussed here. [122, 129-131] Endothelial cells generally produce three 

thromboregulators: nitric oxide, prostacyclin, and ectonucleotides CD39. These products 

prevent thrombus formation until they are disrupted. When the endothelium is disrupted, 

tissue factors and collagen that are exposed to blood flow begin initiating thrombus 
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formation. This occurs due to the accumulation of activated platelets, a result of the 

exposed collagen, and the generation of thrombin, which simultaneously activates 

platelets and converts fibrinogen into a fibrin mesh. A number of other factors interact to 

allow for platelet adhesion to the injury site, with certain environmental or chemical 

conditions providing opportunities for either the collagen or the tissue factors dominating 

the pathway to cause thrombogenesis. Due to these redundancies in the pathway to 

clotting, this can provide difficulties in preventing clot formation. This also provides a 

beginning explanation for why prevention of thrombus formation on materials surface is 

so difficult, even with specialized coatings. [130] When a foreign surface comes into 

contact with blood, factor XII is converted into factor XIIa, which is a part of the intrinsic 

clotting system. Eventually, this results in factor X being cleaved into factor Xa, which 

will in turn cleave prothrombin into thrombin. Thrombin activates the monomer 

fibrinogen, which polymerizes into fibrin. Fibrin as a polymer is not completely stable 

until factor XIIIa is present to stabilize it. Additionally, as the clot is forming the matrix 

will be supported by platelets and fragments attaching to the polymer. The control 

mechanisms for clot formation include control of local flow, surface-mediated controlled 

release of catalyst, release of thrombus inhibitors (antithrombin III, tissue factor pathway 

inhibitor, etc.), and degrading coagulation factor release (fibrinolytic enzyme plasmin, 

which can degrade fibrinogen and fibrin, as well as inactivate cofactors V and VIII). In 

this way, blood flow normally does not cause significant clotting to occur until the tissue 

is damaged, but once damage is detected, clotting can rapidly occur. Due to this, the 

presence of certain material surfaces can cause continual clotting and result in eventual 
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failure of the device. By altering the surface chemistry or present local chemical factors 

near the material, these failures can be mitigated. Several research trends attempting this 

are presented as well. [132, 133] 

At the end of healing, fibrosis or fibrous encapsulation is the ideal response for an 

embolic device. The process begins with injury to the tissue and implantation of the 

material. Thrombi, or blood clots, begin to form immediately based on the processes 

previously described, over the course of minutes to hours. This is enhanced by changes in 

blood flow patterns, permeability of blood vessels, and composition of the fluid flowing 

through the area of interest. The thrombus matrix is composed primarily of fibrin, 

activated platelets, inflammatory cells, and endothelial cells. Platelets in the matrix release 

a series of factors that contribute to the recruitment of fibroblasts; monocytes and 

lymphocytes also assist in recruiting fibroblasts. The fibrin in the clot, which has 

fibronectin bound to it, is cross-linked by factor XII, and other adhesive factors provide a 

means for cell adhesion and proliferation into the clot. During acute inflammation 

primarily neutrophils are recruited to the site of device implantation, which will see the 

initiation of phagocytosis, recruitment and attachment of cells to the foreign material, and 

the release of degradation-inducing chemicals near the implant surface. This is followed 

by chronic inflammation, which involves the recruitment of monocytes, lymphocytes, and 

plasma cells; the other path is the formation of granulation tissue, which begins to occur 

within days after implantation with the recruitment and proliferation of fibroblasts into the 

target site. Granulation tissue contains vascular buds, which is recruited by the fibrin 

present in the thrombus. Collagen and proteoglycans begin to organize in the clot matrix 
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due to the fibroblasts. As granulation tissue progresses, collagen becomes the dominant 

tissue type present and begins to contract. Based on the chemical structure of the material 

and the protein adhesion to the material on implantation, the foreign body response will 

occur to varying degrees. The number of macrophages present at the site will depend on 

these factors, as well as the irritation that the material causes. Macrophage fusion into 

foreign body giant cells, along with remaining clot, will result in encapsulation of the 

material. The ideal final healing stage for embolic devices is fibrous encapsulation or full 

reintegration; passive surfaces will have very little or no encapsulation and so will be fully 

reintegrated into the host. Porous media are an excellent choice for resolutions that do not 

involve encapsulation, as the porous structure provides a matrix that allows for cellular 

infiltration and connective tissue proliferation throughout the entire device. [134, 135] 

Polyurethanes are a preferred material for blood contacting applications due to 

superior hemo- and biocompatibility, which are due to the surface properties, chemical 

structure, interfacial free energy, balance of hydrophobicity with hydrophilicity, and basic 

surface topography. All of these factors can be tailored in other polymer compositions 

using a variety of techniques to improve overall compatibility or to tailor the in vivo 

response to the material. In SMP foams, the scaffold morphology and porosity create areas 

of low blood shear rates and recirculation zones, which are necessary for rapid clotting. 

Figure 2.14 shows SMP foam threaded over nitinol and platinum coil devices that were 

delivered endovascularly to a porcine sidewall aneurysm. The explant of the devices 

showed organized, stable thrombus throughout the entire volume of treatment devices, 

which completely occluded the aneurysm. These porous media structures provide an 
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effective means of creating flow stasis, but then provide a structural entity to allow rapid 

cellular infiltration and swift reintegration of the tissue/material matrix with the 

surrounding tissue. [134] Even with the time required to achieve complete healing at the 

implantation site, faster stabilization of the clot will create superior clinical outcomes and 

shorter times until the patient is ambulatory without the risk of thromboembolism. 

 

 
Figure 2.14: Explanted SMP foam-over-coil devices that were delivered using a 

transcatheter approach to occlude a carotid porcine sidewall aneurysm. Explant 

occurred less than 2 h after treatment began. Visible throughout the volume of 

devices is stable thrombus formation.  

 

2.3.3 Recanalization 

One of the most concerning complications associated with vascular embolization 

is recanalization. Recanalization is the reestablishment of blood flow into a formerly 

occluded region. [136] This phenomenon destabilizes the occluded region and may lead 

to significant rebleeding at the treatment site. As a common metric used in describing the 
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efficacy of embolization techniques, recanalization is the primary reason for retreatment 

procedures. Recanalization rates as high as 34.3% have been recorded for endovascular 

aneurysm coiling. [137] This statistic highlights the need to continue improving 

embolization technologies to reduce the prevalence of recanalization. 

Experiments have shown that the size of the vascular anomaly being occluded, as 

well as the total volumetric filling of the embolic device, plays a critical role in the 

likelihood of recanalization. [138] Recanalization is thought to initiate in the first weeks 

after treatment. On observing fibrin matrix replacement with a collagen matrix, 

recanalization can no longer occur out to 3 months. [139, 140] However, until collagen 

replacement of the fibrin matrix, the potential for angiogenesis and the generation of 

microvessels that may cause recanalization exists. Some researchers have demonstrated 

the ability to prevent angiogenesis by using radiofrequency energy to completely denude 

the endothelium of the implantation site. [139] Although this method proved effective in 

preventing recanalization, concerns of thromboembolism, long-term efficacy, and overall 

clinical safety have prevented widespread adoption of this technique. 

In preliminary animal studies that sought to treat surgically induced carotid 

sidewall aneurysms in a porcine model, polyurethane SMP scaffolds proved to be highly 

advantageous materials to create long-term, stable occlusion without recanalization. [50] 

The histology performed in this study 90 days postimplantation demonstrated a mature 

endothelial layer completely isolating the aneurysm from the parent vessel, and dense 

connective tissue deposition throughout the entire volume of the device, as shown in 

Figure 2.15. 
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Figure 2.15: H&E stain of a porcine carotid sidewall aneurysm filled with a 

polyurethane SMP foam 90 days postimplantation demonstrating complete 

endothelialization across the aneurysm neck and 75% connective tissue within the 

aneurysm sac. [50]  

 

The organized collagen shown throughout the entire volume of the SMP scaffold 

and the neointimal layer across the aneurysm neck both support the notion that vascular 

anomalies treated with this material are highly unlikely to require retreatment as a result 

of recanalization. 

2.3.4 Endovascular Treatments 

SMP technology allows devices to be delivered through small catheters and then 

expand to fill large volumes. Non-SMP foams experience excessive friction when 

navigated through the catheter, whereas SMP foams can counteract this with the shape 

memory effect. It has been reported that when technologies like Gelfoam® are delivered 
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via catheter, it is possible that smaller particles of Gelfoam® embolize and flow 

downstream creating a thromboembolism. [57] This creates a potential problem for the 

physician since Gelfoam® is typically cut into numerous pieces before being delivered 

through a catheter. This methodology prompts the user to cut large enough sections to 

prevent embolizing downstream of the treatment region on ejecting the Gelfoam® from 

the catheter, but not large enough to cause excessive friction inside the catheter to prevent 

advancement to the desired location. 

A common problem with expandable implants that are delivered through catheters 

is failure to deliver the device if it expands too quickly and can no longer be advanced. 

Because of this complication, a working time must be defined. Working time is the amount 

of time from device introduction into the catheter to the time at which the device can no 

longer be retracted or advanced within the catheter. [141, 142] The first generation of 

HydroCoil® implants (MicroVention, Inc., Tustin, CA) was limited to a 5 min working 

time, which proved to be an insufficient amount of time to place the implant at the desired 

location within the neurovasculature. [141] Newer generations of hydrogel-containing 

coils, such as HydroSoft® (MicroVention, Inc., Tustin, CA), have at least 30 min of 

working time. As expandable implants, working time must also be considered when 

designing an SMP scaffold device that will be delivered via catheter. With a 100× volume 

expansion ratio, SMP foams can exert substantial frictional force on the inner lumen of 

the catheter if the working time is exceeded. This can lead to an inability to advance the 

device to the treatment region or improper placement of the device at the target region. 
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Despite the necessity to adhere to a defined working time when using SMP 

devices, they offer the enormous advantage of being able to crimp to a diameter of less 

than 1 mm, be delivered using a minimally invasive catheterization technique, and expand 

to a final diameter of 10 mm. To put this advantage in terms of surface area, a 1-cm-long 

SMP scaffold with a 10 mm diameter provides approximately 14,000 mm2 of surface area. 

A 1 cm length of a typical large bare metal coil used for peripheral occlusion provides 

approximately 40 mm2 of surface area. Both devices can be delivered through a typical 5 

French catheter, but the SMP foam device expands on deployment to provide three orders 

of magnitude greater surface area than the bare metal coil. It is well known that increased 

surface area of a procoagulant material results in increased activation of the clotting 

cascade, which means that an increase in surface area likely results in reduced time to 

occlusion for these embolic materials. [143] However, a direct comparison of acute time 

to occlusion has not yet been performed between embolic coils and SMP foams. 

2.4 The Future of Shape Memory Polymer Scaffolds 

2.4.1 Tissue Engineering Applications 

The shape memory behavior of an SMP makes it a very desirable material for use 

in biomedical applications. Thermally activated SMPs can be programmed and stored in 

a small secondary shape, and on introduction to the body and water plasticization, recover 

their large original shape. [144] This property of SMPs can be harnessed for minimally 

invasive surgery and tissue engineering scaffolds. [144] However, cell compatibility of an 

SMP biomaterial needs to be extensively understood to determine its feasibility as a short-

term or long-term implant and the impact of its SME on cells. 
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Studying the inflammatory response and biocompatibility of an SMP scaffold was 

conducted by Filion et al. This group developed SMPs with POSS nanoparticle cores as 

the net points and PLA with varying chain lengths as the switching segment. [145] SMP 

degradation and the in vivo inflammatory response were directly related. Longer PLA 

segments resulted in a more densely packed polymer chain structure that was less prone 

to hydrolysis. [145] This delayed degradation onset resulted in a late acute inflammatory 

response, which allowed for tunable degradation profiles that could be useful for 

numerous tissue engineering applications. [145] 

While biocompatibility studies are critical for using SMP as a biomaterial, cell 

adhesion and proliferation on the material also need to be understood. Davis et al. 

developed a thermoresponsive 2D cell culture system using the commercially available 

SMP Norland Optical Adhesive 63 (NOA-63, Norland Products, Cranbury, NJ, USA). 

This adhesive is a polyurethane that is end-linked with a thiol-based cross-linker using 

UV click chemistry. [146] The group observed changes in cell behavior as a result of 

surface shape memory. The substrates were synthesized in a flat topography but shape set 

so that the secondary shape contained grooves. Mouse embryonic fibroblasts were then 

seeded onto the grooved substrates. The cells became aligned in the grooved topography 

but scattered into random alignment after the substrate was actuated such that the 

topography returned to its flat, primary shape. Nevertheless, the cells maintained 95% 

viability and no detachment from the substrate was observed. [146] This work 

demonstrated the use of SMPs to control cell activity and their potential use as tissue 

engineering scaffolds. 
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Similarly, Neuss et al. studied different cellular interactions with oligo(ε-

caprolactone) dimethacrylate. The group utilized mouse fibroblasts, human mesenchymal 

stem cells, human omentum majus cells, and rat omentum majus cells for this study. [147] 

Overall, the cells maintained good viability and attachment over a time period of 3 weeks, 

supporting the SMP’s suitability for medical applications. [147] However, the thermal 

input and the shear forces necessary for shape change resulted in subconfluent and 

apoptotic regions. [147] These studies serve as a platform for the development and utility 

of SMP scaffolds for tissue engineering applications due to their biocompatibility and cell 

attachment/proliferation. Further investigations may explore whether the shape changing 

ability of SMPs can drive stem cells down specific lineages or express specific 

phenotypes. However, optimization of these materials needs to be conducted such that the 

transition temperature is close to physiological temperature, therefore minimizing adverse 

effects from overheating the surrounding tissue. 

2.4.2 Controlled Pharmaceutical Release 

One area where SMPs have a new frontier for innovation is in the design and 

fabrication of controlled release platforms for pharmaceuticals. Drug-eluting stents have 

shown reduced rates of restenosis in patients, generally through a polymer-coated stainless 

steel stent; the drug of choice is sirolimus or paclitaxel, which can limit migration of 

smooth muscle cells to reduce neointimal hyperplasia. Several good reviews of drug-

eluting stents cover topics in greater detail. [148-150] A brief overview of notable studies 

is presented here. A study by M.C. Chen demonstrated the viability of an SMP stent made 

from chitosan and epoxy with a heparin coating and sirolimus elution. The surface coating 
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reduced the platelet adhesion to the stent while providing a diffusion barrier for drug 

elution that allowed for a sustained release profile for the sirolimus. Significant reduction 

in neointimal formation was seen when implanted in rabbits compared with noneluting 

stents. [151] 

Another SMP system from star caprolactone cross-linked with hexamethylene 

diisocyanate that eluted theophylline was synthesized in the same pot as the drug, with up 

to 20% wt of the drug included in the polymers. This method was used to achieve sustained 

release for approximately 1 month without bolus release of the drug when tested in an in 

vitro setup. However, this method of drug loading altered the mechanical and shape 

memory properties of the material; 20% loading demonstrated decreasing elongation to 

break below 100% and sufficient rigidity to inhibit shape memory. At approximately 10% 

loading, there were no significant mechanical changes reported, and the shape fixity and 

recovery were approximately 99%. Loading of the drug into the polymer did not seem to 

alter the pore size of the material, as the release profiles were similar for 10% and 20% 

drug loading. [152] Salicylic acid and adipic acid were also used to produce a 

bioabsorbable polymer, with sirolimus included as a drug for elution. This stent 

demonstrated a reduction in angiographic stenosis compared with stents without the 

sirolimus. [153] It has been suggested the polymers used for drug elution stents may cause 

inflammation in proportion to the mass of the polymer present. It has been shown that the 

use of drug-eluting stents lengthen time to resolution of conditions, as fibrin thrombus is 

often found at time points greater than those seen in untreated arteries during restenosis 

therapies. Another avenue for the use of drug elution is in cellular migration and 
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proliferation. Gene suppression therapy has had some success in this regard, using 

rapamycin and paclitaxel, drugs which can act on a number of cellular targets as well as 

interrupt cell cycle progression. [154] 

The shape memory behavior of SMPs opens new doors for designing controlled 

release platforms in the pharmaceutical industry. The ability to actuate these polymers via 

light, heat, or magnetic energy offers the opportunity to implant an SMP containing a 

pharmaceutical reservoir and actuate the device using noninvasive means. On actuation, 

miniature SMP doors, latches, apertures, or pores could be opened without requiring the 

physician to break the patient’s skin. This technique could be used to administer multiple 

boluses of a drug while minimizing patient pain and potentially providing more targeted, 

local delivery of the drug. The actuation rate of SMPs is also highly tunable. This means 

that an SMP device loaded with a pharmaceutical agent could be delivered using a 

minimally invasive endovascular approach, and designed so that it only actuates and 

releases the pharmaceutical after a given duration of time when the device reaches a 

specific location in the vasculature. The potential for combining controlled release theories 

and SMP technology is virtually limitless, and this specialty is likely to be a very active 

area of research in the future. 

2.4.3 Degradable Shape Memory Polymer Scaffolds 

SMPs, like other polymers, can be biostable or degradable. A substantial amount 

of the work done on degradable SMP scaffolds has been performed by Langer or Lendlein, 

and is too great to be covered sufficiently here. [155-173] A small selection of their work, 

as well as that of several other significant findings as they relate to cardiovascular 
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applications, is presented. The Langer group developed a series of poly(polyol sebacate) 

SMPs, with tailorable transition temperatures between 7 and 40 °C. In vitro degradation 

and compatibility of these materials showed similar behavior to poly(lactide-co-glycolic 

acid). These materials would be ideal for a variety of medical devices, including surgical 

sutures to tighten at body temperature, cardiovascular stents to expand on arrival at the 

implant site, or other devices that require a transition at body temperature. [174] 

A very exciting application of biodegradable polymers is in the field of 

cardiovascular devices. Guglielmi detachable coils (GDCs) have been the interventional 

device of choice for intracranial aneurysm filling, but there are problems with healing and 

recanalization when using these devices. Murayama et al. developed a biodegradable 

polymer poly(glycolic-l-lactic acid) over a GDC coil and compared this device with 

standard GDCs in experimentally created aneurysms in porcine models. Despite having a 

lower packing density in the aneurysm sac after the implantation procedure, the 

biodegradable GDC hybrids demonstrated complete occlusion of the aneurysm, whereas 

standard GDCs did not. There was a distinct separation between the parent vessel and the 

hybrid coil-packed mass using angiography at 3 months, which was not visible when using 

standard GDCs, indicating improved healing response with the hybrids. Additionally, the 

hybrid-filled aneurysms were smaller and softer, similar to tissue, 3 months after the 

implantation. After 3 months, GDC-filled aneurysms were a hard, solid mass distinctly 

dissimilar from surrounding tissue. Finally, mildly organized connective tissue was 

present 2 weeks postimplantation, as well as only a mild immune response for hybrid coils. 
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Standard GDCs showed the same immune response, but no connective tissue organization. 

[175] 

Copolymers of lactide, glycolide, and caprolactone have been synthesized in block 

copolymer compositions that demonstrated shape memory while also possessing 

degradability. These materials showed rapid degradation rates in temperature-controlled 

PBS, with total mechanical property loss within 2 months based on molecular weight of 

the lactide and glycolide–caprolactone segments. For tissue scaffolds, this is ideal as the 

loss of mechanical properties could be tailored to allow for material degradation as 

connective tissue infiltrates the material. [176] 

Hyperbranched PCL as a soft segment and hard segment of poly((R)-3-

hydroxybutyrate-co-(R)-3-hydroxyvalerate) were compared with linear PCL-based SMPs. 

These polymers were poly(ester urethanes), using aromatic diisocyanates, showed good 

biocompatibility, and allowed for cellular attachment and growth on the surface. The use 

of these materials in stents was examined, showing quick recovery from the secondary 

shape to the original shape at body temperature, indicating good promise for these 

materials in stent applications. [177] Other compositions and composite materials have 

also shown a variety of degradation profiles, thermomechanical properties, and 

biocompatibilities. [177] Adding a degradation functionality to SMPs provides a means 

of developing minimally invasive tissue scaffolds and medical devices that do not require 

a second medical procedure for removal. As the presented works indicate, a wide variety 

of chemical compositions and properties can be obtained for SMPs, including the 

mechanism and rate of degradation. For cardiovascular applications, materials can be 
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produced that have tunable mechanical and thermal properties with selective coagulation 

and degradation times while promoting cellular ingrowth and proliferation. With SMPs, 

the promises made by tissue engineering, to provide methods for the body to heal and 

repair itself with minimal interference from external sources, are becoming realized. As 

this field progresses, healing responses and clinical outcomes for patients will begin to 

improve. 
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CHAPTER III  

DESIGN AND VERIFICATION OF A SHAPE MEMORY POLYMER PERIPHERAL 

OCCLUSION DEVICE 

3.1 Introduction 

In many cases of venous disease, blood flow through specific vessels can cause 

extreme pain and high rates of morbidity which greatly affect quality of life for thousands 

of patients every year. These morbidities include chronic venous insufficiency, pelvic 

congestion syndrome, varicoceles, and varicosities associated with portal vein 

hypertension. In each of these cases, incompetent venous valves are weakened and allow 

regurgitation of blood in peripheral vessels, causing a sudden rise in venous pressure and 

the subsequent formation of varicose veins. [88, 89, 178, 179] In these instances, 

physicians rely on peripheral occlusion devices to block or divert blood flow from the 

susceptible region and force blood flow through healthy vessels- significantly reducing 

the pain and risk of hemorrhage associated with varicosities. Fibered platinum coils, such 

as the Nester® Embolization Coils (Cook Medical, Inc., Bloomington, IN), are one 

common type of embolization device used to permanently occlude peripheral vessels. 

However, several coils are often required to achieve complete occlusion, and 

recanalization, or the recurrence of blood flow through a previously occluded vessel, that 

requires retreatment can occur in up to 20% of patients. [180] Additionally, complete 

thrombotic occlusion of the target vessel may not occur for up to 19 minutes after 

treatment with fibered coils, leading to increased procedural costs and radiation exposure. 

[181]  
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Hemorrhage as a result of traumatic vessel injury can also be managed using 

peripheral occlusion devices. In these instances, every minute required to achieve stable 

vessel occlusion may be critical to the patient’s survival. Therefore, the ideal peripheral 

occlusion device should minimize time to occlusion, require only one device to achieve 

stable vessel occlusion, minimize the potential for recanalization, and be delivered 

minimally invasively. To address the prolonged time to occlusion and the need to implant 

multiple devices, some physicians turn to embolic plugs, such as the AMPLATZERTM 

Vascular Plugs (AVP, St. Jude Medical, St. Paul, MN). These plugs provide a single 

device solution to achieve complete vessel occlusion. Embolic plugs typically consist of 

a fine nitinol mesh with or without a PTFE fabric incorporated into the structure. [182] 

However, vascular plugs may require up to 20 minutes for stable thrombus formation and 

they can typically only be used in vessels with limited tortuosity due to the stiffness of the 

devices. [183] The drawbacks of current coils and vascular plug devices highlight the need 

to continue improving on peripheral embolization technology. 

Shape memory polymer (SMP) foams have been thoroughly investigated as 

advantageous embolic devices for stabilizing porcine sidewall aneurysms and vascular 

anomalies. [184-187] Previously, the biocompatibility of SMP foams has been 

demonstrated in porcine models. [186, 188] In these studies, significant connective tissue 

infiltration was seen throughout the implant, which caused complete, stable occlusion of 

the treated aneurysms. Connective tissue deposition and scar formation is a critical step in 

preventing recanalization. [189, 190] The proposed SMP foams aim to minimize time to 

mature healing by providing a scaffold morphology that readily supports a healing 
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response involving the initial clotting of blood within the scaffold then, over time, 

replacement of the clot with mature connective tissue. With reduced time to mature 

healing, the risk of recanalization is significantly reduced. This, in turn, decreases the need 

for follow-up imaging and the overall cost of treatment. SMP foams also have the unique 

ability to be stored in a compressed geometry and subsequently expand to fill large 

volumes upon contact with circulating blood. [191] The shape memory capacity of these 

foams results in an ideal material for minimally invasive devices which provide limited 

friction during catheter delivery but are still capable of expanding up to ten times their 

crimped diameter to fill large volumes and create rapid occlusion of vessels with a single 

device. The affinity for rapid clot formation is primarily due to the high surface area and 

porous morphology of the foam that creates numerous recirculation and stagnation zones 

that activate rapid thrombosis. [185, 192] 

The following study consists of a series of in vitro tests aimed at verifying the 

safety and efficacy of a first-generation shape memory polymer peripheral embolization 

device (PED) used for arterial and venous occlusion in peripheral vessels accessible with 

a 4-6 Fr guide catheter. Material characterization was conducted on various SMP foam 

formulations to ensure the proposed formulation would remain crimped at room 

temperature but allow expansion when exposed to a 37°C aqueous environment. The 

shape recovery of the PED was also analyzed to ensure the foam expanded slowly enough 

to allow delivery to the treatment site via catheter. Mechanical analysis was conducted on 

the foam and coil anchor components of the device (Figure 3.1) to ensure the radial force 

of the device is unlikely to cause vessel perforation or rupture.  Then a temperature and 
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pressure-controlled flow system was used to test the device’s susceptibility to migration 

and undesired thromboembolism. The same flow system was used to perfuse bovine blood 

through SMP foam devices to investigate the distribution of fibrin and erythrocytes 

throughout the device over time and ensure that blood is able to penetrate throughout the 

foam volume. This is critical for ensuring there are no regions devoid of access to 

circulating blood which may delay healing in the treatment vessel and create a 

predisposition for recanalization after treatment. Finally, the device was delivered to a 

vascular phantom by a vascular surgeon and interventional radiologist under ultrasound 

guidance to determine the overall performance and echogenicity of the device, as 

researchers have investigated for other occlusive devices. [193, 194]   

 

 
Figure 3.1: Image of the crimped (A) and expanded (B) embodiment of the SMP 

peripheral occlusion device investigated within this study. The device consists of a 

distal platinum alloy coil anchor and a proximal length of SMP foam that is crimped 

for delivery through a guide catheter and subsequently undergoes up to 100X volume 

expansion to fill large volumes upon deployment. 
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3.2 Materials and Methods 

3.2.1 Foam Fabrication 

Each foam composition was fabricated using the three-step protocol described 

previously (Hasan et al., 2014). In short, isocyanate (NCO) prepolymers were synthesized 

with appropriate molar ratios of N,N,N’,N’-Tetrakis(2-hydroxypropyl)ethylenediamine 

(HPED, 99%; Sigma-Aldrich Inc., St. Louis, MO), triethanolamine (TEA, 98%; Sigma-

Aldrich Inc.), and hexamethylene diisocyanate (HDI, TCI America Inc., Portland, OR). 

The prepolymers were reacted for 2 days with a temperature ramp from room temperature 

to 50°C at a rate of 20°C/hr, held isothermally at 50°C for 16 hours, and passively allowed 

to cool back to room temperature. A hydroxyl (OH) mixture was blended with the 

remaining molar equivalents of HPED and TEA. This mixture also contained deionized 

(DI) water (> 17 M Ω cm purity; Millipore water purifier system; Millipore Inc.), and 

catalysts (T-131 and BL-22, Air Products and Chemicals, Inc., Allentown, PA). During 

the foaming step, the NCO prepolymer and the OH mixture were combined in a foaming 

cup along with surfactants (DC 198 and DC 5943, Air Products and Chemicals, Inc., 

Allentown, PA) and the physical blowing agent, Enovate 245fa (Honeywell International, 

Inc., Morristown, NJ). This solution was mixed in a FlackTek Speedmixer (FlackTek, Inc., 

Landrum, SC) and poured into a bucket to form a foam. The foam was cured at 60°C for 

5 minutes before passively cooling to room temperature for further processing. Various 

foam formulations and pore sizes were fabricated to create foams with differing crosslink 

densities, glass transition temperatures (Tg), rate of moisture plasticization, and 

subsequent foam expansion rate. Foam formulations are denoted as H20-H60, where the 
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numerical value appearing after “H” corresponds to the ratio of HPED to TEA equivalents 

in the polymer premix. Both foam formulation and pore size were used to control the 

expansion rate of the foams and the resultant working time.   

3.2.2 Foam Processing 

 After fabrication, foams were cut into blocks 2 cm thick, 7 cm long, and 6 cm wide. 

These blocks were then reticulated using the same method described previously. [186] In 

short, the foams were penetrated by a floating pin array while subjected to low amplitude, 

high frequency perturbations, which allowed the creation of pinholes in the foam pore 

membranes. These pinholes create interconnected pores throughout the foam which allow 

blood flow and eventual connective tissue deposition to penetrate throughout the entire 

device. After reticulation, the foams were cut with disposable biopsy punches (Sklar 

Surgical Instruments, West Chester, PA) for three different device sizes- 6, 8, and 12mm. 

These device sizes were used to enable delivery through 4, 5, and 6Fr catheters, 

respectively, and the ability to treat vessels with diameters between approximately 2-

11mm. After the foams were cut into their final geometry, they were cleaned to remove 

any plasticizers and unreacted monomers from the foams. Each cleaning cycle lasted 15 

minutes and was performed under sonication in a 40°C water bath. The first two cleaning 

cycles consisted of submerging the foams in 99% isopropyl alcohol (VWR, Radnor, PA). 

Then the foams were rinsed with reverse osmosis (RO) water before being cleaned in four 

cycles of Contrad 70 liquid detergent (Decon Labs, King of Prussia, PA). Each foam was 

then rinsed with RO water until no Contrad 70 residue was evident. Finally, the foams 

were cleaned for two cycles in RO water. After cleaning, the damp foams were frozen in 
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a -20°C freezer for 12 hours before freeze-drying in a FreeZone Freeze Dryer (Labconco, 

Kansas City, MO) for 24 hours.  

3.2.3 Material Analysis 

Differential Scanning Calorimetry (DSC) was used to assess the Tg of each foam 

formulation (H20-H60) through the use of a Q200 DSC (TA Instruments, New Castle, 

DE), to ensure the crimped devices would remain compressed at typical storage and 

shipping temperatures. The Tg was also analyzed to verify the tunability of the polymer 

chemistry, as a higher Tg corresponds to slower shape recovery. Four samples of each 

foam composition were analyzed using DSC, which provides a simple means of 

addressing any excessive expansion of the PED while still inside the delivery catheter. 

This premature expansion can occur as a result of foam contact with blood or saline that 

plasticizes the foam and depresses the Tg sufficiently to initiate foam expansion at body 

temperature. Every sample was weighed to ensure a mass of 3-10 mg, cooled -40°C, and 

heated at a rate of 10°C/min to 120°C. This cycle was repeated twice; the last heating 

cycle was used for quantification of the Tg for each foam formulation. The Tg was 

calculated using the half-height method in the TA Instruments software. 

3.2.4 Expansion Studies 

Expansion studies were conducted to ensure the foams do not undergo premature 

expansion within the delivery catheter, preventing the device from deploying properly at 

the target site. Expansion studies were conducted using a water bath heated to 37°C. 

Foams with pore sizes of approximately 0.5, 1.0, and 1.5 mm were crimped over a 0.010” 

nitinol wire using the SC250 Stent Crimper (Machine Solutions Inc., Flagstaff, AZ). 
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Samples were imaged before and after crimping using a Leica MZ16 Digital Video 

Microscope (Leica Microsystems, Wetzlar, Hesse, DEU) with a Jenoptik CF Scan Camera 

(Jenoptik AG, Jena, Thuringia, DEU) and loaded into a fixture which held the nitinol wire 

taut. The entire fixture was submerged in the heated water bath and imaged at 0.5, 1.0, 

1.5, and 2.0 minutes, as well as every minute thereafter until 10 minutes had elapsed. Each 

picture was then converted to a binary image and the 2-D projected surface area of the 

foam was calculated in each image using MATLAB (MathWorks, Inc., Natick, MA). The 

projected surface area at each time point was then divided by the length of the sample to 

obtain an average diameter of the foam at each time point. This analysis aids in 

determining which foam formulations and pore sizes will provide sufficient working time 

for physicians to deliver the devices before excessive foam expansion prevents advancing 

the device through the catheter.  

3.2.5 Device Fabrication 

Due to the low radial force of the SMP foams, a coil anchor is incorporated into 

the PED to enable implantation in both arteries and veins with minimal risk of device 

migration. To fabricate the coil anchors used for in vitro device verification tests, 0.018” 

diameter 90/10% platinum/iridium coils with an inner diameter of 0.010” were threaded 

over 0.005”, 0.006”, and 0.008” diameter superelastic nitinol wire for the 6, 8, and 12 mm 

PED devices, respectively. The coils were then wrapped around a stainless steel mandrel 

that had been machined to each device diameter and shape-set in a 550°C furnace for 15 

minutes. After 15 minutes, the mandrels were immediately quenched in room temperature 

water to set the final shape of the coil. The coils were removed from the mandrel and a 
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straight section of the coil was manually threaded through the center of the foam before 

crimping.  

3.2.6 Device Mechanical Analysis 

One critical design consideration for a peripheral occlusion device, to prevent 

vessel perforation or rupture, is to ensure the device does not exert radial forces in excess 

of the radial strength of the treatment region. To analyze variations in radial strength based 

on foam formulation and pore size, a J-Crimp Radial Compression Station (Blockwise 

Engineering LLC, Tempe, AZ) was used with an Instron Model 5966 Dual Column Test 

System (Illinois Tool Works Inc., Norwood, MA) to perform radial force measurements 

during foam expansion. For this test, foams were cut into cylinders 4, 6, 8, and 10 mm in 

diameter and 2 cm in length using biopsy punches. Samples were then crimped to 

approximately 1 mm in diameter using a SC250 Stent Crimper (Machine Solutions Inc., 

Flagstaff, AZ). The lumen of the J-Crimp compression station was adjusted such that the 

expanded diameters of the foam devices were 50% oversized to the lumen, the maximum 

percentage of oversizing indicated within the Instructions for Use (IFU) for other embolic 

plug devices like the AVP. Then, each sample was placed inside the J-Crimp compression 

station while heated to 100°C. Each sample was allowed to freely expand for 20 minutes 

within the compression station while the radial force of the device was monitored on the 

Instron.  

The radial stiffness of the PED anchor coil was also analyzed and compared to a 

14mm AVP and 16mm AVP II. The same J-Crimp Radial Compression Station was used 

for this analysis. To begin each test, the lumen of the J-Crimp was set to the expanded 
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diameter of the device of interest. Then the diameter of the J-Crimp was decreased at a 

rate of 10 mm/min until the expanded device diameter was 50% oversized to the J-Crimp 

diameter, again aligned with common sizing parameters detailed in the IFU for other 

embolic devices. The total radial force throughout device compression was continually 

recorded to determine the maximum force experienced during compression. The 

maximum force was then divided by the change in diameter to obtain the radial stiffness 

(k) of each device.  

In order to estimate the total surface area of devices in contact with the 

endothelium of the vessels, a 16mm AVP II and 8mm PED anchor coil were deployed into 

flexible polyvinyl chloride (PVC) tubing and imaged using the same Leica microscope 

previously implemented for expansion studies, in conjunction with ImageJ software, to 

estimate the total surface area of the flexible tubing that was deflected by the radial force 

of each respective device- providing an estimation of the total surface area of the devices 

contacting the vessel lumen. 

3.2.7 Device Migration and Unintended Thromboembolism 

A critical test that must be performed on a new peripheral occlusion device is one 

that verifies the device will not migrate or dislodge from the treatment region and create 

undesired thromboembolism. To monitor device stability, samples were delivered and 

analyzed in the flow loop shown in Figure 3.2 without the bypass pathway to force flow 

through a single vessel and represent the worst case scenario with no collateral vessels. 

Devices were delivered to the test section when the flow system was equilibrated at 

37±2°C. The test sections consisted of flexible PVC tubing (McMaster-Carr, Douglasville, 
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GA) 5, 7, and 10 mm in diameter for the 6, 8, and 12 mm PED, respectively. Each tubing 

size was chosen so that each device diameter would be approximately 20% oversized to 

the target vessel- the hypothesized lowest degree of device oversizing that would be 

indicated for the PED device. Due to limitations in commercial flexible PVC tubing sizes, 

the 8mm device was only oversized by 14% to the test section, providing a more rigorous 

stability test than the other device sizes.When the foams were fully expanded in the test 

section, Pump 1 was set to circulate a 36.7% (vol) glycerol-water mixture at room 

temperature through the lumen of the mock vein. This glycerol solution was used to ensure 

the inner diameter of the mock vein was lubricious and the circulating fluid matched the 

kinematic viscosity of blood. [195] The flow rate was then gradually ramped up in 

increments of approximately 20 mL/min while maintaining the pressure within the flow 

system at 207±52 mmHg. At each flow rate interval, the devices were imaged for 2 

minutes with a stationary Canon PowerShot SX230 HS Digital Camera (Canon U.S.A., 

Inc., Melville, NY) positioned above the test section  to monitor migration. Displacement 

of more than 1mm in 2 minutes was deemed a device failure.  The flow interval prior to 

the interval at which failure occurred was noted as the maximum flow rate for each device. 

This procedure was used for both PED and Cook coils.  

3.2.8 Blood Perfusion 

In order to monitor the degree of blood infiltration throughout the PED and 

investigate the potential for zones devoid of blood contact within the foam volume, bovine 

blood was incorporated into the flow system shown in Figure 3.2. Histology was 

subsequently performed on foam devices to verify blood infiltration throughout the foam. 
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The histological analysis was also used to investigate the affinity for fibrin deposition 

within the foam, which serves as a precursor to stable scar formation and the prevention 

of recanalization. To accomplish this, bovine blood was obtained as part of a tissue share 

program with the Rosenthal Meat Science and Technology Center at Texas A&M 

University in College Station, TX. All blood used in this study was obtained from animals 

euthanized for purposes unrelated to this research. Blood was collected immediately 

following sacrifice of the animals and citrated in a 5 gallon bucket containing 

approximately 2.1 liters of 3.2% sodium citrate to prevent clotting, as recommended by 

Adcock et al. [196] The 3.2% sodium citrate solution was prepared by mixing 2,103 mL 

of phosphate buffered saline (PBS) with a pH of 7.4 (Sigma-Aldrich Inc.) with 67.3 g of 

sodium citrate (Santa Cruz Biotechnology Inc., Dallas, TX). 

 

 
Figure 3.2: Schematic of flow system used for in vitro device stability and blood 

perfusion studies. Pump 1 is a peristaltic pump which circulates fluid through the 

test section, and Pump 2 is also a peristaltic pump which circulates heated water into 

the flow chamber surrounding the mock vein to maintain the test section in a 37°C 

aqueous environment. 
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Before perfusing blood through foam devices, Activated Clotting Time (ACT) 

tests were conducted using a Hemochron® 401 (International Technidyne Corporation, 

Edison, NJ) and kaolin-activated test vials (Accriva Diagnostics, Piscataway, NJ). ACT 

tests were conducted to determine the proper amount of 0.1 M calcium chloride (CaCl2, 

Flinn Scientific Inc., Batavia, IL) to add to the blood to restore the clotting capabilities of 

the blood. The target ACT value for the bovine blood was between 120 and 180 seconds 

to mimic normal, healthy ACT of cattle. [197] Various amounts of CaCl2 were added to 2 

mL of citrated blood in the kaolin-activated test vials until the ACT fell into the desired 

range. Ultimately, 105 µL of CaCl2 for every 1 mL of citrated blood resulted in an average 

ACT of 173 seconds. This ratio of CaCl2 to blood was used throughout the blood flow 

studies. All blood flow studies were conducted within 24 hours after blood collection, and 

less than six hours elapsed between the first and last flow study.  

To begin the blood flow studies, 37°C PBS was perfused through the flow system 

for ten minutes to prime the tubing and fittings.  The pressure relief valve proximal to the 

test section was set to approximately 8.7 psi (450 mmHg) to ensure all flow was forced 

through the test section until the fittings of the flow system were at risk of failure. This 

pressure setting served as a rigorous test of in vitro clotting of the device as flow would 

likely be diverted, thereby creating clinical occlusion, from the treatment vessel at much 

lower pressures in vivo. All tubing used in the flow loop was 1/4”ID x 3/8”OD S-50-HL 

Tygon®, an ISO 10993 certified, non-pyrogenic, non-hemolytic, non-toxic tubing 

commonly used in biologic applications. [198-200] While the flow system was primed, 

500 mL of citrated blood was warmed within a container inside a water bath until it 
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reached 37°C. When the flow system and blood had equilibrated at 37°C, 105 µL of CaCl2 

was added for every 1 mL of blood in the warmed container. The blood and CaCl2 was 

lightly stirred for 5 seconds before the inlet of peristaltic pump 1 was inserted into the 

blood container to begin perfusion through the flow system. Foams were perfused with 

blood for 30, 90, 150, 210, and 270 seconds at a flow rate of 40mL/min. Perfused blood 

was then captured in a waste container after exiting the test section so that it would not 

recirculate through the test system. At each time point, the tubing within the flow chamber 

was cut proximal and distal to the foam and quickly rinsed with PBS to remove any non-

adherent cells. Each sample was then fixed in formalin for 7 days. 

3.2.9 Histological Analysis 

  After fixation, each sample was transected perpendicular to the long axis at three 

points to obtain cross-sections through the sample from proximal, middle, and distal 

regions relative to the direction of flow. Each section was dehydrated in increasing 

concentrations of ethanol and cleared with Pro-Par Clearant (Anatech Ltd., Battle Creek, 

MI) using the Citadel 1000 Tissue Processor (Shandon Inc., Pittsburgh, PA). Samples 

were then infiltrated with and embedded in paraffin wax using the Citadel 1000 tissue 

processor and Tissue-Tek TEC III Tissue Embedder (Miles Laboratories Inc., Naperville, 

IL). Paraffin blocks were sectioned at 5μm thicknesses on a Microm HM355S Rotary 

Microtome (Thermo Fisher Scientific Inc., Waltham, MA), placed on the M7654-1 SP 

Tissue Flotation Bath (Cardinal Health, Dublin, OH) set to 45°C, floated onto glass slides, 

and dried in a Lipshaw Model 218 Slide Dryer (Shandon Inc., Pittsburgh, PA). Once slides 

were dry, they were deparaffinized with xylenes, rehydrated, and stained with 
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Hematoxylin and Eosin (H&E) and Phosphotungstic Acid Hematoxylin (PTAH). Slides 

were then imaged with a virtual microscope using a 40x objective (Olympus Corporation, 

Tokyo, JPN).  

To analyze the percent of fibrin coverage on each histology slide, Adobe 

Photoshop was used to isolate the fibrin, stained bluish purple by the phosphotungstic 

acid, from the erythrocytes and foam struts, stained pinkish red by the hematoxylin. When 

each stain was isolated, the slides were converted to binary images and analyzed for the 

surface area of pixels corresponding to each stain using ImageJ. H&E was used as a 

counterstain to aid in verifying the presence of fibrin and leukocytes.  

3.2.10 Ultrasound Investigation 

 Two physicians with over 15 years of experience in their respective fields 

performing various peripheral embolization procedures delivered the PED into the flow 

system shown in Figure 3.2, where a homemade ultrasound phantom was inserted in place 

of the mock vein. The ultrasound phantom was created by bringing 3 cups of water to a 

boil, mixing in nine 0.25 ounce packets of gelatin and 4 tablespoons of sugar free 

Metamucil, and pouring the mixture into a greased circular mold containing a ¼” PVC 

tube that would create a lumen through the phantom upon removal. The mold was placed 

in a refrigerator for 12 hours before the phantom was removed from the mold and placed 

into the flow system. While circulating the same 36.7% (vol) glycerol-water solution used 

for device migration studies through the vascular phantom, an M-Turbo® SonoSite 

ultrasound machine was used with a HFL38x planar probe (FUJIFILM SonoSite, Inc., 
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Bothell, WA) to image a device delivery procedure and analyze the efficacy and 

echogenicity of the PED.   

3.3 Results 

3.3.1 Material Analysis 

DSC was used to assess the ability to control the activation temperature of the 

proposed devices, which corresponds to the Tg of the materials under investigation. It is 

critical that the actuation temperature of these devices is greater than the temperature at 

which they are stored to prevent premature expansion of the foams. The Tg for all foam 

formulations ranged between 49 and 70°C. Figure 3.3 shows representative thermograms 

for each foam composition used in this study, where H20-H60 correspond to foam 

compositions with 20-60% molar equivalents of HPED. The thermograms demonstrate a 

single transition with no indication of a secondary transition, as well as a nearly linear 

relationship between increasing Tg as the ratio of HPED to TEA also increases. The 

average Tg found for each foam formulation and the corresponding standard deviations 

are shown in Table 3.1. 
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Figure 3.3: DSC thermograms showing increased glass transition temperatures with 

increasing ratios of HPED to TEA. 

 

Table 3.1: Average glass transition temperature and standard deviation for each 

foam formulation based on analysis of four samples of each foam formulation. 

 

 

Based on pilot expansion and delivery studies, devices fabricated using H20 and 

H30 formulations expanded too rapidly to allow delivery of devices via catheter. For this 

reason, only devices fabricated from H40, H50, and H60 foams were investigated further 

as potential foam formulations to incorporate into the peripheral occlusion device. Figure 

3.4 shows the results from the expansion studies conducted in 37°C water. As expected, 

there is a general trend of decreasing expansion rate, within the first three minutes of 
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submersion in 37°C water, as the crosslink density of the foam increases (higher HPED 

content). The first three minutes of exposure to aqueous environments is critical as the 

PED is designed to be delivered within three minutes after first contacting blood or saline.  

Pore size also had a dramatic effect on expansion rate, as shown in Figure 3.4, where 

expansion rate decreased as the pore size decreased due to increased foam density delaying 

water diffusion into the foam matrix. However, regardless of pore size and foam 

composition, all samples experienced 100% shape recovery in less than 20 minutes. 

 

 
Figure 3.4: Average expanded diameter of crimped 8mm foam cylinders with 0.5 mm 

pores (A), 1.0 mm pores (B), and 1.5 mm pores (C) at 30 second intervals after 

immersion in 37°C water (mean ± one standard deviation, n = 5). Foams 

demonstrated controllable expansion rates based on varying foam composition and 

pore size. Again for reference, H40, H50, and H60 refer to foam compositions with 

40%, 50%, and 60%, respectively, molar equivalents of HPED. 
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3.3.2 Device Mechanical Analysis 

 Radial force tests demonstrated that the radial force of foam devices consistently 

increased as the device diameter increases. The results for the radial force tests are 

summarized below in Table 3.2. These tests show the radial force of SMP foams with 

varied foam chemistries (H40, H50, H60). A pore size of 0.5 ± 0.1 mm was chosen for 

analysis of all chemistries after testing the radial force of foam samples with 0.5, 1, and 

1.5mm pore sizes, which revealed that foams with the smallest pore size exert the greatest 

radial force due to increased foam density. Constrained recovery tests demonstrated that 

the maximum force exerted on the vessel walls by foam expansion when the foam is 50% 

oversized to the target vessel is significantly lower than the 107 N of force required to 

rupture autologous veins commonly used in bypass procedures, if we assume a uniform 

cylindrical surface area of the foam. [201]  

 

Table 3.2: Maximum radial force (mean ± one standard deviation, n = 5) exerted by 

H40 (A), H50 (B), and H60 (C) foams during actuation when the foam expanded 

diameter is 50% oversized to the target vessel. Graph shows a positive relationship 

between device diameter and the maximum radial force of the foam. 
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The radial stiffness of each different sized anchor was compared to the stiffness of 

two vascular plugs currently on the market in Figure 3.5. During radial force testing to 

determine device stiffness values, the 8mm devices exerted an average maximum radial 

force of 4.0 N, while the AVP II exerted an average maximum radial force of 15.8 N when 

oversized by 50% to the target vessel. Microscopic imaging of the 8 mm PED anchor coil 

revealed that approximately 30% of the coil surface area is in contact with the vessel 

endothelium, which corresponds to 0.43 cm2 of surface area. Given the estimated surface 

area of coils in contact with the vessel lumen, the PED anchor would exert a pressure of 

approximately 700 mmHg on the vessel endothelium- less than half the pressure required 

to cause rupture in an autologous vein graft. [201] When a 16 mm AVP II was deployed 

within a flexible PVC tube with an inner diameter of 10 mm, it was estimated that 

approximately 0.85 cm2 of device surface area was in contact with the inner diameter of 

the tubing, resulting in a radial pressure of approximately 1,400 mmHg. Given the proven 

safety and efficacy of the AVP II device that led to its FDA approval, and the markedly 

reduced radial force and pressure exerted by the PED anchor, it is unlikely that the PED 

coil anchor would cause vessel rupture or perforation in vivo. Prior to verification tests, it 

was hypothesized that the coil anchor would account for the vast majority of the radial 

force exerted by the PED. Radial stiffness testing revealed that this was indeed the case, 

as demonstrated by a maximum radial force of less than 0.5 N for any foams tested.   
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Figure 3.5: Maximum radial stiffness (mean ± one standard deviation, n = 5) in N/mm 

of a 14 mm AVP and 16 mm AVP II (St. Jude Medical, Inc.) compared to platinum 

alloy coils fabricated within the Biomedical Device Laboratory (BDL) at Texas 

A&M. The maximum radial force was measured while each device was radial 

compressed until the lumen diameter corresponded to a vessel size for which each 

device is 50% oversized. The maximum radial force was then divided by the change 

in diameter to produce a device stiffness constant that enables estimations of the total 

radial force exerted by each device when implanted in any sized vessel. *p<0.05 vs. 

all other devices, and **p<0.05 vs. 14 mm AVP for a two-tail paired Student’s t-test. 

 

3.3.3 Device Migration and Unintended Thrombosis 

 To ensure the PED has a limited risk of migrating downstream and causing 

unintended thrombosis, studies were conducted in which the maximum flow rate was 

determined for each PED size for comparison to one of the market-leading embolic coils, 

Cook Medical’s Nester® Embolic Coil. Figure 3.6 summarizes the results from this 

analysis, which showed the PED can withstand equivalent or higher flow rates than 

Nester® coils. This analysis was also performed with only one Nester® coil within the 

mock vein, whereas at least three coils are typically implanted to achieve complete vessel 

occlusion in the clinic. [202] If three coils were implanted into the test section, the pressure 
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drop across the device mass would drastically increase, and the maximum flow rate for 

these coils would likely decrease further. 

 

 
Figure 3.6: Comparison of the maximum flow rate (mean ± one standard deviation, 

n = 3 for Nester® Coils and n = 4 for PED devices) commercial embolic coils and the 

PED technology under investigation can withstand without migrating downstream 

and causing undesired thromboembolism.  

  

3.3.4 In Vitro Clotting and Histological Analysis 

 During in vitro blood flow studies, complete occlusion of the foam device was 

observed at 270 seconds. Complete occlusion was evidenced by flow diverting through 

the pressure relief valve. At this point, the pressure within the vein model created by 

thrombus formation exceeded the pressure relief valve setting and flow was diverted 

through the bypass pathway. In order to show the most dramatic change in cellular 

deposition throughout the foam device, Figure 3.7 shows a histologic comparison 

between samples perfused with blood for 30 and 270 seconds. 
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Figure 3.7: Histology results showing foam samples perfused with blood for 30 sec in 

row A, and samples perfused for 270 sec in row B. Samples 1, 2, and 3 correspond to 

proximal, middle, and distal locations within the device, respectively. All samples 

were analyzed using a PTAH stain to highlight erythrocytes pinkish red and fibrin 

and leukocytes purple.   

 

Each image sequence shows blood is penetrating throughout the entire volume of 

the foam device, demonstrating the effectiveness of reticulation in creating interconnected 

pathways along the length of the device. After 30 seconds of blood perfusion, each cross 

section consists of primarily erythrocytes enmeshed in loose, interspersed fibrin. At 270 

seconds, approximately 50% of the proximal section of foam consisted of dense fibrin 

(Figure 3.8), which likely contributed to the complete vessel occlusion which occurred at 

this time point. 
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Figure 3.8: Average percentage of fibrin at proximal, middle, and distal locations 

within the SMP foam device perfused with bovine blood for varying durations of 

time. Percentage of fibrin quantified using colorimetric analysis. 

 

3.3.5 Ultrasound Investigation 

 When delivering the PED under ultrasound, both the SMP and platinum coil 

anchor provided sufficient echogenicity to allow visualization, as shown in Figure 3.9. 

Image A shows the platinum coil anchor exiting the catheter, and image B shows the 

foam’s natural echogenicity allowing easy device visualization. In image C a cross section 

of the vessel is shown with flow before foam expansion, as indicated by the blue and red 

colorations typical of flow when using Doppler ultrasound. [203] Flow stagnation and the 

reduction of flow beyond detectable limits are shown in image D, as indicated by the lack 

of color mapping within the image after foam expansion. This image also shows 

significant acoustic shadowing indicative of an acoustically dense material, providing 

further evidence that the PED is likely to cause rapid occlusion upon expansion in vivo. 
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This shadowing is the same phenomenon used by physicians to identify dense, calcified 

lesions within arteries with intravascular ultrasound (IVUS). [204] 

 

 
Figure 3.9: Doppler ultrasound images showing the catheter tip and coil anchor 

deployment (A), foam expansion and the parallel hyperechoic lines indicating the 

placement of the delivery sheath (B), a cross-sectional view of the mock vessel with 

flow (C), and a cross-sectional view of the vessel showing flow stagnation and 

significant acoustic shadowing after foam expansion (D). 

 

3.4 Discussion 

 Through the use of DSC, precise control of the actuation temperature of SMP 

foams by altering the ratio of HPED to TEA was verified, which has been demonstrated 

previously by Wilson et al. and Singhal et al. [191, 205] The increase in Tg as the amount 
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of HPED increases is a result of the increased crosslink density associated with additional 

HPED and the steric hindrance provided by the molecular structure of HPED which limits 

chain mobility. The values obtained in this study for the Tg of each formulation were 

slightly higher than reported by Singhal et al. [191] This is likely due to the extensive 

foam cleaning protocol incorporated into this study which removes any unreacted 

surfactants and catalysts that may have plasticized the previous samples. The ability to 

control the Tg of SMP foam devices is highly useful for controlling the actuation rate of 

the device when exposed to circulating blood. This provides a simple means of altering 

the expansion kinetics of the foam to satisfy the unique specifications required by 

clinicians for different device indications.   

 Since the activation of SMPs is entropy-driven and body temperature is lower than 

the Tg of each foam formulation, the polymers must experience plasticization in the blood 

or saline injection inside the delivery catheter in order to depress the Tg sufficiently to 

initiate expansion. Although the transition temperature of these foams are significantly 

greater than 37°C, the Tg of the foams is depressed to approximately 10°C when exposed 

to 100% humidity, as shown previously. [206] This transition temperature depression is 

what allows the foams to expand in the 37°C aqueous environment within the body. 

However, one potential complication of this actuation method is premature expansion of 

the foam within the delivery catheter and the inability to successfully deliver the implant. 

The expansion studies demonstrated the ability to tune the working time of the proposed 

device, defined as the point at which the expanded diameter of the foam is four times the 

inner diameter of the delivery catheter.  By altering the ratio of HPED to TEA during foam 
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fabrication and the foam pore size, devices can be fabricated with working times varying 

from one to five minutes, which is within the working time confines of the first hydrogel-

containing coils used in clinical embolization procedures. [207] 

 Konig et al. found the average burst pressure of human saphenous veins to be 

approximately 1,575 mmHg. [201] Based on this burst pressure and a PED 8 mm in 

diameter and 2 cm long device, the radial force of the foams must not exceed 107 N to 

prevent vessel rupture in the venous system. This maximum radial force assumes a 

uniform distribution of radial force exerted along the length and circumference of the 

device. Based on this information, radial force tests demonstrated that the SMP foams 

exert a radial force on the vessel wall that is drastically smaller than would be required for 

vessel rupture. This is also considering that the foams are oversized by 50% to the inner 

diameter of the vessel, which is the common sizing practice when selecting an 

appropriately sized vascular plug. [208, 209] This test demonstrated that the risk of 

rupturing the target vessel with this device as a result of foam expansion is extremely low, 

regardless of which foam formulation is used. The more likely device component to cause 

vessel perforation or rupture is the coil anchor. Although the radial force of the coil 

exceeds that of foam, it exerts nearly an order of magnitude less force than commercially 

available vascular plugs used for peripheral occlusion and less than 50% of the pressure 

required to rupture saphenous vein grafts, implicating that the risk of vessel rupture as a 

result of the coil anchor is also low.  

 In vitro blood perfusion studies and the subsequent histological analysis of SMP 

foam devices revealed that blood penetrated throughout the device. No foam sections 
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appeared to be devoid of thrombus deposition, and a dense fibrin mesh was clearly visible 

at proximal, middle, and distal locations of the device at the moment in which complete 

vessel occlusion occurred. Complete occlusion was witnessed after 270 seconds of blood 

perfusion through the device. The pressure setting used in this experiment (450 mmHg) 

served as a rigorous test of in vitro clotting of the device as flow would likely be diverted, 

thereby creating clinical occlusion, from the treatment vessel at much lower pressures in 

vivo. Considering the absence of tissue factor VII and any influence from the extrinsic 

clotting cascade on thrombus formation, complete occlusion in less than five minutes is a 

significant achievement; especially considering certain FDA-approved peripheral 

embolization devices may require more than 5 minutes to achieve vessel occlusion. [210, 

211] However, this clotting time may have been affected by clotting activation during 

blood collection, as well as activation of the clotting cascade from contact with the tubing 

and storage container in the flow system. In certain clinical settings, the time to occlusion 

would also likely be increased due to heparin administration.  

Although in vitro studies using animal blood cannot be directly correlated to 

clinical clotting times in humans, previous in vivo studies using the same SMP foam 

formulation as the devices investigated here demonstrated complete vessel occlusion in 

less than 90 seconds in a porcine model. [186] This finding was similar to the clotting 

times reported in porcine studies investigating the clotting efficacy of the AVP II; [212] 

indicating the SMP foam device under investigation would likely result in analogous 

occlusion times to the AVP II device.    
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3.5 Conclusions 

This research verified the mechanical properties of the shape memory polymer 

PED device are safe and unlikely to cause vessel perforation or rupture. At the same time, 

these studies demonstrated that the likelihood of device migration and undesired 

thromboembolism to be minimal. The PED accomplished this while also demonstrating a 

significant reduction in overall device stiffness compared to commercially available 

vascular plugs, which allows the PED to be delivered to tortuous vessels that may not be 

accessible using conventional embolic devices. The results of this work also verified the 

efficacy of the PED in causing complete vessel occlusion and encouraging rapid thrombus 

formation, as well as ease of visualization of the PED using ultrasound. However, the 

safety and efficacy of this device must also be verified through in vivo studies and 

extensive biocompatibility testing before it can be recommended for clinical use. 
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CHAPTER IV  

A SHAPE MEMORY FOAM COMPOSITE WITH ENHANCED FLUID UPTAKE 

AND BACTERICIDAL PROPERTIES AS A HEMOSTATIC AGENT 

4.1 Introduction 

Hemorrhage control remains a significant concern of military and civilian trauma 

centers across the world. Uncontrolled hemorrhage accounts for over 30% of trauma 

deaths world-wide and over half of these occur before emergency care can be reached. 

[213] Current hemostatic treatments often rely on compression wraps or gauze as the 

standard of care. These treatment options are effective in ceasing the hemorrhage but are 

often ineffective for deep wounds that are irregularly shaped and not amenable to 

tourniquet application. Newer treatment options include alginates, polymer sponges, 

chitosan, and gauze impregnated with procoagulants, such as zeolite and kaolin. [214, 215] 

However, these newer technologies focus primarily on acute cessation of blood flow, 

rather than long-term healing and infection prevention. The three primary wound dressing 

technologies employed in Iraq during Operation Iraqi Freedom were HemCon® (HemCon 

Medical Technologies, Inc., Portland, OR), QuikClot® (Z-Medica Corporation, 

Wallingford, CT), and CELOXTM (SAM Medical, Tualatin, OR). [216]  

HemCon® is a chitosan-based wafer which adheres to tissues upon contact with 

blood to effectively seal the wound boundary. This dressing has proven to be successful 

in establishing hemostasis in specific wounds, but the stiffness of the bandage makes 

packing small, narrow wounds very difficult. [217, 218]  CELOXTM is another chitosan-

based hemostat in which granules are poured or injected into the wound which gel together 
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upon contact with blood to provide a physical seal that promotes hemostasis. Although 

CELOXTM is often deployed in civilian and military trauma situations, re-bleeding and 

mortality rates of 25% and 13%, respectively, have been reported. [219] QuikClot® 

Combat Gauze is a device consisting of gauze impregnated with kaolin, an inorganic 

material that has demonstrated the ability to enhance blood coagulation without causing 

thermal injury to wound tissue. [220] However, re-bleeding rates as high as 37% have 

been reported for deep, narrow wounds treated with QuikClot® Combat Gauze. [221] 

Although each device has proven highly effective in preventing exsanguination in the 

battlefield, they have proven less useful for smaller, deep wounds incurred by small-

caliber firearms and improvised explosive devices. [216] Current dressings are also only 

indicated for a number of hours, and as such, require frequent changes to prevent bacterial 

and fungal infection. To address the risk of infection, the standard of care has become the 

use of a broad spectrum antibiotic regimen; however, bacterial and fungal resistance has 

forced a series of alternative antibiotics. [222] 

New hemostatic technologies, such as XStatTM (RevMedx, Inc., Wilsonville, OR) 

have demonstrated significantly improved time to hemostasis, ease of application, and 

survival rates compared to conventional hemostats. [223] The XStatTM device is an 

applicator filled with numerous compressed cellulose sponges that rapidly expand to fill 

and apply pressure to deep, non-compressible wounds. Despite the numerous advantages 

of the XStatTM technology, the nature of inserting approximately 92 miniature sponges 

into an open wound can lead to a 22-fold increase in device removal time compared to 

conventional gauze due to the need to remove each individual sponge from the wound 
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bed. [224] This may cause patient discomfort during prolonged device removal, as well as 

increased procedural time and costs. 

Shape memory polymer (SMP) foams have previously demonstrated exceptional 

biocompatibility and hemostatic properties in porcine aneurysms. [187, 188] In acute 

porcine studies, SMP foams have demonstrated hemostasis within an artery in less than 

90 seconds after device deployment, as determined by cessation of contrast flow past the 

device under x-ray. [225] The rapid hemostasis provided by the large surface area and 

porous morphology of the foams make them strong candidates for controlling hemorrhage. 

Furthermore, the ability of SMP foams to recover over >400% plastic strain during 

expansion would enable insertion of a small, crimped device into the wound that would 

rapidly expand upon contact with blood until the device is completely apposed to an 

irregular-shaped wound boundary, Figure 4.1. However, SMP foams have an inherently 

limited capacity for absorbing fluid. [206] In the realm of hemostatic wound dressings, 

the ability to absorb blood and wound fluid is critical for rapid hemostasis, wound healing, 

and preventing bacterial infection. [226]  
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Figure 4.1: Schematic of the envisioned delivery procedure for the hydrogel-SMP 

foam composite. The first step is to insert the crimped device into the wound (A). 

Then apply manual compression over the wound site to prevent the device from 

exiting the wound before expansion (B). Finally, the composite expands to completely 

fill and conform to the wound cavity and establish rapid blood clotting and 

hemostasis (C). 

 

In this study, an antimicrobial hydrogel coating was applied to the SMP foam to 

create a foam-hydrogel composite with enhanced fluid uptake. Specifically, the SMP foam 

was coated with an n-vinylpyrrolidone (NVP) and polyethylene glycol diacrylate 

(PEGDA) hydrogel. In addition to increasing the fluid uptake of the composite, the 

hydrogel is able to directly complex with iodine to form a povidone-iodine (PVP-I2) 

complex, which is one of the most widely used iodine antiseptics in surgical care. PVP-I2 

is a stable complex of polyvinylpyrrolidone (PVP) and elemental iodine that is used to kill 

a variety of viruses, bacteria, fungi, protozoa, and yeast, and there have been no 

documented cases of microbial resistance to PVP-I2. [227] The composite presented here 
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combines the volume filling and rapid hemostasis of SMP foams with the fluid uptake and 

bactericidal action of iodine-doped hydrogels to create a highly advantageous hemostatic 

wound dressing prototype. The primary goal of this study was to ensure that the 

advantageous characteristics of the hydrogel and SMP foams were successfully combined 

in the composite wound dressing.   

4.2 Materials and Methods 

4.2.1 Materials 

All chemicals were used as received and purchased from Sigma Aldrich 

(Milwaukee, WI) unless otherwise noted. Foams were fabricated using N,N,N′,N′-

Tetrakis(2-hydroxypropyl)ethylenediamine (HPED), 2,2′,2′′-nitrilotriethanol (TEA, 98%; 

Alfa Aesar Inc., Ward Hill, MA), 1,6-diisocyanatohexane (HDI;  TCI America Inc., 

Portland, OR), surfactants DC 198 and DC 5943 (Air Products and Chemicals, Inc., 

Allentown, PA), and deionized (DI) water (>17MΩ cm purity; Millipore water purifier 

system; Millipore Inc., Billerica, MA). The CellTiter 96® AQueous One Solution 

Proliferation Assay (Promega Corp., Madison, WI) was used for antibacterial studies to 

obtain a quantitative value for the absorbance of bacterial units after being cultured with 

iodine-containing hydrogel films.  

4.2.2 Hydrogel Preparation 

Polyethylene glycol diacrylate (PEGDA) was synthesized according to a method 

adapted from Hahn, et al. Briefly, 4 molar equivalents of acryloyl chloride were added 

dropwise to a solution of PEG (6 kDa; 1 molar equivalent) and triethylamine (2 molar 
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equivalents) in anhydrous dichloromethane (DCM) under nitrogen. After the addition was 

complete, the reaction was stirred for 24 hours. The resulting solution was washed with 

2M potassium bicarbonate (8 molar equivalents). The product was precipitated in cold 

diethyl ether, filtered, and dried under vacuum. FTIR spectroscopy and proton nuclear 

magnetic resonance (1H-NMR) spectroscopy were used to confirm functionalization of 

PEGDA. Control and functionalized polymers were solution cast directly onto KBr pellets 

to acquire transmission FTIR spectra using a Bruker ALPHA spectrometer. Successful 

acrylation was indicated by an ester peak at 1730 cm-1 and loss of the hydroxyl peak at 

3300 cm-1 in the spectra. Proton NMR spectra of control and functionalized polymers were 

recorded on Mercury 300 MHz spectrometer using a TMS/solvent signal as an internal 

reference. All syntheses resulted in percent conversions of hydroxyl to acrylate endgroups 

of greater than 90%. 1H NMR (CDCl3): 3.6 ppm (m, -OCH2CH2-), 4.3 ppm (t, -

CH2OCO-) 5.8 ppm (dd, CH=CH2), 6.1 and 6.4 ppm (dd, -CH=CH2).  

PEGDA-polyvinylpyrrolidone (PEG-PVP) hydrogels were prepared by dissolving 

PEGDA and N-vinylpyrrolidone (NVP) (1:96 molar ratio) to a 5 wt% solution in 

deionized water with a thermal initiator (1% azobisisobutyronitrile, AIBN). Hydrogels for 

bactericidal studies were fabricated by pipetting the precursor solution into a mold and 

heating to 70°C for 30 min. Iodine doping of hydrogels was conducted by placing hydrogel 

specimens in distilled water with 10 wt% elemental iodine for 2 hours at 50°C. Afterwards, 

the doped hydrogel specimens were rinsed three times with ethanol, three times with 

distilled water, and then placed under vacuum to dry prior to characterization. Raman 

spectroscopy was utilized to confirm successful iodine complexation with the PVP. 
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Raman spectra were recorded using a Thermo Scientific DXR Raman Microscope with a 

780 nm excitation laser (max power 24 mW, 830 lines/mm gratings). Control hydrogels 

(PEG-I2, PEG-PVP, PEG-PVP-I2 no heat) were also fabricated for comparison.  

4.2.3 Hydrogel Bactericidal Characterization 

 For bactericidal studies, Staphylococcus aureus USA 300 was cultured in tryptic 

soy broth overnight at 37°C while shaking at 220 RPM.  Cells were diluted 1:100 in fresh 

tryptic soy broth and cultured for 2 hours. Cut hydrogels (PEG-PVP, PEG-PVP-I2, 4 mm 

diameter) were placed in the bottom of 96 well plates. Gels were washed with 100 μL 

sterile water, 100 μL 70% ethanol, and 200 μL sterile water. 1x107 cells were added to 

each well in 100 μL media. Cells and gels were incubated for 1 hr at 37°C. After 

incubation, cell media was removed and the gels were washed with 100 μL sterile water. 

Next, 100 μL fresh tryptic soy broth was added to each well and viability assessed with 

the MTT assay. 20 μL/well CellTiter 96 Aqueous One tetrazolium reagent was added to 

each well and incubated for 4 hrs at 37°C. Absorbance was read at 490 nm per the 

manufacturer’s instructions.  In addition, bacterial suspensions from each well were 

diluted, plated, and counted for colony forming units after 18 hr incubation on tryptic soy 

broth agar plates.   

4.2.4 SMP Foam Synthesis and Processing 

 Polyurethane SMP foams were fabricated using a three-step gas blowing process 

that has been described previously. [191] In short, an isocyanate premix of HDI (63 wt%) 

was made with 39% hydroxyl groups consisting of HPED and TEA and allowed to cure 

for 2 days at 50°C. Then a second hydroxyl premix was made with the remaining 
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molecular equivalents of HPED and TEA. DI water was added to the hydroxyl premix to 

serve as a chemical blowing agent at 3 wt%. HPED and TEA concentrations for the foam 

were each 13 wt%. Surfactants DC 198 and DC 5943 were added to the hydroxyl premix 

at 4 wt% and 3 wt%, respectively. Catalysts T-131 and BL-22 (Air Products and 

Chemicals, Inc., Allentown, PA) were added to the reaction mixture at 0.3 wt% and 0.5 

wt%, respectively. Finally, the premixes were combined and mixed with a physical 

blowing agent, Enovate (4 pph). The resulting foam was cured for 20 minutes at 90°C, 

followed by a cold cure cycle of 24 hours at room temperature, after which the foam was 

processed to create interconnected pores and remove any residual unreacted species within 

the polymer. 

 The first processing step the foams undergo after curing is mechanical reticulation, 

a process described previously by which the residual thin membranes separating the pores 

of the foam are removed. [225] This results in interconnected pores and the ability for 

fluid to penetrate the entire volume of the foam. After reticulation, the foams were cut into 

cylinders 10 mm in diameter and 2 cm in length using a 10 mm biopsy punch and 

resistively-heated hot wire cutter. After reticulation and cutting to the desired geometry, 

the foam samples were extensively cleaned in a series of solutions while under sonication. 

This procedure included two 15 minute cycles in isopropyl alcohol (99.9% purity), four 

15 minute cycles in Contrad 70® (Decon Labs, Inc., King of Prussia, PA), and two 15 

minute cycles in reverse osmosis (RO) purified water. After all steps were completed, the 

foams were frozen in a -4°C freezer for 12 hours and subsequently freeze-dried to remove 

all moisture from the samples.   
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4.2.5 Composite Fabrication and Characterization 

SMP foams were placed in molds (10 mm diameter x 25 mm length) and PEG-

PVP precursor solutions were pipetted into the molds. A poragen mixture of dextran and 

saccharin was added to the hydrogel precursor solution (200 mg/mL) prior to addition to 

introduce pores into the hydrogel coating (particle size ~ 40-200 microns). Hydrogel-foam 

composites were cured at 70°C for 6 hours and the poragen leached out over the course of 

2 days in deionized water. The hydrogel-foam composites were then frozen at -20°C and 

lyophilized. Iodine doping of composites was conducted by placing hydrogel-foam 

composites in distilled water with 10 wt% elemental iodine for 6 hours at 70°C. 

Subsequently the iodine-doped composites were frozen at -20°C in the mold and then 

lyophilized. Water uptake was measured on composite specimens that were first dried 

under vacuum for 48 hours at 60°C and weighed to assess dry (polymer) mass (Wd). The 

composites were then swollen in RO water for 24 hours and weighed to determine the 

equilibrium swelling mass (Ws). The equilibrium mass swelling ratio, Q, was calculated 

using the following equation:  

Q =  
𝑊𝑠

𝑊𝑑
 (1) 

Excess fluid was removed from the exterior of each sample with a clean Kimwipe 

(Kimberly-Clark Worldwide, Inc., Roswell, GA) prior to weighing the specimen.   

  To determine whether the incorporation of hydrogel hindered the shape memory 

behavior of the foam, expansion studies were conducted to determine the shape recovery 

and expansion of the composites. To conduct these studies, the average composite 

diameters were measured before and after crimping using ImageJ software. Samples were 
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then submerged in 37°C water and imaged at 30 second intervals for a total of 15 minutes. 

Shape recovery was calculated according to the following equation used by Dr. Tao Xie: 

𝑆ℎ𝑎𝑝𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 % = 1 −  
𝐷𝑛−𝐷𝐸

𝐷𝑐−𝐷𝐸
 (2) 

where Dn is the diameter of the foam at a given time point during expansion, DE  is the 

diameter of the expanded device before crimping, and Dc is the crimped diameter of the 

device. [228] To measure the average diameter of each sample, the 2-D projected surface 

area of the foam at each time point was divided by the length of the sample. Images were 

captured at each time point using a Canon PowerShot SX230 HS (Canon USA, Inc., 

Melville, NY) digital camera. The volume expansion of each composite was also analyzed 

using equation 3 below: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 = (
𝐷𝑛

𝐷𝑐
)

2

 (3) 

Scanning electron microscopy (SEM) was used to assess the morphology of the 

wound dressing before and after hydrogel incorporation into the composite. To perform 

this analysis, uncoated SMP foams and iodine-doped composites were gold sputter-coated 

and placed on double-sided carbon tape for imaging in a NeoScope JCM5000 (Jeol USA, 

Inc., Peabody, MA) scanning electron microscope.  

The expansion force of composite devices was analyzed before and after the 

hydrogel coating was applied by following a method based on ISO 25539-2. For this test, 

devices were radially crimped to approximately 1.5 mm in diameter and placed between 

two compression platens within a waterproof environmental chamber attached to an 

Instron Model 5966 Dual Column Test System (Illinois Tool Works Inc., Norwood, MA). 



 

89 

 

A preload of approximately 0.15 N was applied to the crimped devices before the test was 

initiated. After preloading, 50°C water was added to the environmental chamber to initiate 

device expansion until the compression platens were completely submerged. The distance 

between the compression platens remained constant throughout the test, while the force 

exerted by the expanding device was continuously measured for 15 minutes. The 

buoyancy force exerted by the water on the compression platens was also measured using 

the same method with no device between the platens. The expansion forces reported for 

each device are the result of subtracting the buoyancy force from the raw force 

measurements.  

4.3 Results  

4.3.1 Iodine Doping 

Raman spectroscopy peaks indicated the presence of the antibacterial 

polyvinylpyrrolidone-iodine (PVP-I2) complex in the PEG based hydrogels, Figure 4.2.  

At lower wavenumbers, the generation of the PVP-I2 complex is visible at 112 cm-1. For 

PEG-PVP-I2 complexation without heating, the peak at 112 cm-1 is indicative of the v1 

vibrations of I3- complexed to PVP [21]. Upon exposure to heat, peak intensity increases 

and additional bands appeared around 145 cm-1 and 167 cm-1 that correspond to v2 

vibrations of I3- and I5-, respectively. [229] No iodine bands were visible for PEG-I2 which 

suggests the importance of the PVP to generate an antibacterial iodophor. Additionally, 

no bands were visible for the PEG:PVP copolymer at lower wavenumbers since C-C peaks 

of this polymer are generally identified using Fourier transform infrared spectroscopy at 

400 cm-1 and higher.  
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Figure 4.2: Raman spectra of iodide doped hydrogels under various conditions. 

Successful complex of PVP and iodide is indicated by the presence of a peak at 110 

cm-1. A control PEG-PVP gel with no iodide is shown to confirm the lack of 

convolution due to the chemical composition. PEG-I2 was run to confirm that the 

complex was due to the interactions with PVP. The heated PEG-PVP shows the 

greatest amount of iodide complexed to the gel. 

 

4.3.2 Bactericidal Properties  

Iodine-doped hydrogel specimens were cultured with Staphylococcus aureus USA 

300, a methicillin resistant strain, to determine the potential bactericidal properties of the 

composite. Log-phase bacterial suspensions (~1 x 107) were incubated with hydrogel 

specimens for 1 hr followed by quantification of bacterial viability and dilution plating of 

the bacterial suspension. An approximate 80% reduction in bacteria viability was observed 

after exposure to the iodine-doped hydrogel as compared to the positive control and the 

hydrogel without iodine doping, Figure 4.3. Results of dilution plating corroborated the 

viability assay (data not shown). The starting culture contained ~1 x 107 staphylococci, 
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which is equivalent to more than 1 x 108 bacteria per gram of tissue if we consider the 

hydrogel surface analogous to tissue. Previous studies have shown bacteria levels 

exceeding 1 x 105 colony forming units per gram of tissue dramatically increase the risk 

of infection and skin graft failure. [230, 231] Hence, the concentration of staphylococci 

used in these studies is representative of the bioburden typically found in wounds prone 

to infection and provides a rigorous test for efficacy. The rapid reduction of viable bacteria 

within an hour of exposure to the iodine-doped hydrogel indicates the potential 

bactericidal activity of the composites. 

 

 
Figure 4.3: Effect of the PEG-PVP hydrogel with and without iodine doping on 

growth of Staphylococcus aureus measured by the MTT assay in comparison to a 

positive control. Data shown as mean ± standard deviation. * denotes statistical 

significance (p ≤ 0.05) according to one-tailed Student’s t-test. 

 

 

 



 

92 

 

4.3.3 Composite Water Uptake 

The swelling ratios of the composites were analyzed to investigate the ability to 

absorb wound exudate that may lead to bacterial infection and prevent healing. [226] It 

was also hypothesized that a higher absorptive capacity of the wound dressing will 

concentrate clotting factors within the dressing and enhance the rate of hemostasis. [217] 

Figure 4.4 shows SEM images of the morphology of the wound dressing before and after 

the hydrogel coating is applied, which shows the extent to which the hydrogel coats the 

struts and membranes of the foam pores to allow for enhanced fluid absorption. With the 

incorporation of hydrogels into the wound dressing device, there was a 19X improvement 

in the swelling ratio of the hydrogel-foam composite as compared to the uncoated SMP 

foam, Figure 4.5. This increase in swelling ratio directly relates to potential wound fluid 

uptake of the device that is critical for its function as a hemostatic agent. 
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Figure 4.4: A) Image of uncoated SMP foam, hydrogel-foam composite, and iodine-

doped composite; B) SEM images of a SMP foam before (left) and after (right) 

hydrogel incorporation into the composite. After hydrogel incorporation, foam struts 

(solid arrow) are coated and hydrogel deposits (hollow arrow) are seen throughout 

the composite.   
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Figure 4.5: Average swelling ratio of the hydrogel-foam composite compared to 

uncoated SMP foams. The swelling ratio directly correlates to fluid uptake (mean ± 

standard deviation, n = 5). *denotes statistical significance, p ≤ 0.05 according to one-

tailed Student’s t-test. 

 

4.3.4 Shape Recovery and Expansion Ratio 

In order to ensure the composites retained the shape memory behavior of the SMP 

foams, expansion studies were conducted in 37°C water. The results from this analysis are 

shown in Figure 4.6(b). A typical crimped and expanded composite is shown in Figure 

4.6(a). The device would be delivered to the wound in the crimped state and would change 

shape to the expanded geometry upon contact with physiologic fluid at 37°C. This is 

possible because of the plasticization of the SMP foam upon contact with moisture, which 

reduces the transition temperature of the foam to approximately 10°C such that the shape 

memory effect will occur within the body. Expansion studies demonstrated that the 

composite devices retain the shape memory behavior of the SMP foams. After 15 minutes 

of exposure to 37°C water, the composites experienced an average shape recovery of 
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approximately 74%. Within this time frame the device diameter more than triples, 

resulting in more than a 1200% increase in device volume. The volume expansion of this 

device over short periods of time would allow for easy delivery into narrow, penetrating 

wounds, and subsequent expansion to completely fill abnormal wound boundaries with a 

single device.  

 

 

Figure 4.6: A) Representative image of the appearance of a dry, crimped composite 

(left) and a saturated composite (right). Scale bar is in centimeters. B) Volume 

expansion ratio and shape recovery analysis of the wound dressing composite after 

submersion in water at 37°C, (mean ± standard deviation, n = 5). 
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4.3.5 Expansion Force  

An important feature of devices used to treat penetrating wounds that are not 

amenable to tourniquet application is the ability to apply sufficient radial force to prevent 

exsanguination around the device and dislocation from the wound bed under physiologic 

blood flow and pressure. However, the device also should not impart excessive force that 

may cause damage to the surrounding tissue. The forces exerted by the composites during 

expansion in 50°C water are summarized in Figure 4.7. Force measurements 

demonstrated an approximate 20% increase in expansion force in the composites 

compared to uncoated foams. The average maximum expansion force for the composite 

device was 0.58 N. Assuming a uniform cylindrical surface area of the crimped device, 

this force equates to a pressure of approximately 6.12 kPa, which is roughly equivalent to 

the pressure exerted by gauze within a gelatin wound model. [224]  
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Figure 4.7: One dimensional force exerted by the hydrogel-foam composite and 

uncoated SMP foams during expansion in 50°C water. 

 

4.4 Discussion 

The ideal hemostat is capable of providing hemostasis after trauma to large vessels, 

requires no special preparation, is simple to apply, lightweight and durable, stable in 

extreme environments, causes no injury to surrounding tissues, and is inexpensive. [232] 

None of the dressings currently used in the field satisfy all of these criteria. The FDA 

approval of the XStat® (RevMedX, Wilsonville, OR) device in 2015 represents an 

exciting leap forward in addressing hemorrhage control with expandable devices. 

However, this device does not address potential infection issues and is only indicated for 

implantation for up to four hours. After this time, each of the individual sponges implanted 

into the body must be manually removed from the wound. The proposed SMP foam-
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hydrogel composite device is a promising technology that may achieve rapid hemostasis 

with a single device that is also antibacterial. The antibacterial properties of this device 

could drastically reduce the risk of infections incurred in the battlefield before topical 

disinfectants can be applied to the wound within a medical facility.  

The incorporation of hydrogels into the wound dressing allows this device to 

absorb substantially more fluid than standard surgical gauze and more fluid than many of 

the new hemostatic wound dressings under investigation. [224, 232] In future iterations, 

the swelling capacity of the composite can be improved further through incorporating a 

higher percentage of hydrogel into the composite, or investigating alternative 

superabsorbent hydrogel formulations. [233, 234] It is also possible that reduced weight 

percentages of PEGDA in the hydrogel precursor solution would further improve the 

swelling capacity of the wound dressing.  

Although current wound dressings incorporate chitosan for its hemostatic and 

antimicrobial effects, it is only effective against certain bacterial species and in specific 

pH environments. [235, 236] During this work, Raman spectroscopy revealed successful 

complexation of iodine into the composite to form the common surgical scrub PVP-I2, 

typically sold under the brand name Betadine® (Purdue Products L.P., Stamford, CT). 

There have been no reported instances of microbial resistance to PVP-I2, and as such, it 

makes an excellent broad spectrum antiseptic that has proven to be less of an irritant than 

pure iodine. [227] In antimicrobial studies investigating the effectiveness of the PVP-I2 

complexed hydrogel, there was approximately an 80% reduction in the viability of 

Staphylococcus aureus in direct contact with the hydrogel compared to the hydrogel 
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containing no iodophors. The antibacterial results demonstrated by this hydrogel system 

are equivalent to the results seen in other studies investigating the antibacterial properties 

of silver-containing hydrogels used in medical applications. [237, 238] A limitation of this 

study was that the bactericidal activity of the composite device was not assessed. It is 

likely that the kill zone would be smaller than that seen in this study due to the porous 

geometry of the device and specific regions of the device that would not be in contact with 

the bacteria in vitro. However, in vivo this would likely be overcome by the diffusion of 

unbound iodine from the device into the surrounding area within the wound.  

Expansion studies revealed that the composite device retained the shape memory 

behavior of the SMP foams. This allows the device to be delivered to a wound site in a 

small, crimped geometry and undergo more than 15X volume expansion to fill large 

volumes, which is more than five times greater volume expansion than new hemostatic 

wound dressings on the market. [223] The composites showed an average shape recovery 

of 74% after 15 minutes of immersion in 37°C water, which is slower shape recovery than 

previously demonstrated in the same composition of uncoated SMP foams. [239] When 

dry, the hydrogel acts as an additional moisture diffusion barrier that is likely the reason 

for delayed plasticization of the SMP foam and subsequent slower shape recovery. The 

large standard deviation during expansion studies is primarily attributable to the effects of 

the randomness in hydrogel orientation throughout the composite device. Agglomeration 

of the hydrogel in some samples at the periphery of the composite will slow the 

plasticization of the SMP foam and delay shape recovery compared to other samples. In 

order to increase the effectiveness of this device as a potential hemostat, future iterations 
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of this device will investigate means of enhancing the rate of composite expansion. One 

method to accomplish this would be to reduce the amount of hydrogel used in the 

composite.  However, this would coincidentally reduce the swelling capacity of the device. 

Another method to enhance the rate of expansion without affecting the swelling capacity 

of the device would be to isolate the hydrogel within the central core of the device so as 

to not cause any diffusive resistance at the periphery of the device. 

Analysis of the force exerted by the composite wound dressing demonstrated an 

average expansion force of 0.58 N, which is approximately 20% greater than the average 

expansion force of uncoated SMP foams. One of the limitations of the parallel plate 

analysis conducted is that it only evaluates the force at the points of the device in contact 

with the parallel plates and ignores the total radial force exerted by the device. According 

to previous studies, parallel plate evaluations of the radial force of stents are approximately 

10-14% of the total radial force. [240] With this understanding, the total radial expansion 

force of the composite may be up to 6 N- less than 20% of the radial force exerted by 

common vascular stents. [240] This is also assuming the wound being treated has the same 

diameter as the crimped device, which would likely not be the case. Given the generally 

accepted safety of stents and lack of adverse events related to vessel perforation, it is 

highly unlikely that the hydrogel-coated SMP foam composite would cause significant 

damage to the wound bed during expansion.      
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4.5 Conclusions 

In this feasibility study, we successfully created a hydrogel-coated SMP foam that 

retains the advantages of each respective material system to form a composite device for 

the treatment of traumatic hemorrhage. This technology is capable of absorbing more fluid 

than many new hemostatic wound dressings currently under investigation, can undergo up 

to 15X volume expansion upon contact with 37°C fluid to fill large volumes, and 

demonstrates antibacterial properties in vitro. This work resulted in an initial proof-of-

concept device that has shown highly valuable attributes for use as a hemostatic sponge. 

The composite studied here could lead to a vastly improved technology for treating 

hemorrhage in the battlefield and civilian trauma arena. Future studies using relevant 

animal models of hemorrhage will be used to further assess the potential of this device. 
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CHAPTER V  

CONCLUSIONS 

5.1 Summary  

This research thoroughly investigated and discussed the goal of embolization in 

various regions of the human vasculature, current treatment methodologies, and how SMP 

foams can improve current treatment methods. This work also discusses the projected 

future of embolic scaffolds and the direction in which research is likely to progress. The 

knowledge gained from extensive literature reviews of embolization technology and the 

associated indications led to the design, development, and verification of novel embolic 

technologies targeting the peripheral vasculature.   

The first investigation detailed within this work verified the mechanical properties 

of the shape memory polymer PED device are safe and unlikely to cause vessel perforation 

or rupture. At the same time, these studies demonstrated that the likelihood of device 

migration and undesired thromboembolism to be minimal. The PED accomplished this 

while also demonstrating a significant reduction in overall device stiffness compared to 

commercially available vascular plugs, which allows the PED to be delivered to tortuous 

vessels that may not be accessible using conventional embolic devices. The results of this 

work also verified the efficacy of the PED in causing complete vessel occlusion and 

encouraging rapid thrombus formation, as well as ease of visualization of the PED using 

ultrasound. However, the safety and efficacy of this device must also be verified through 

in vivo studies and extensive biocompatibility testing before it can be recommended for 

clinical use. 
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 After verifying the safety and efficacy of a device which incorporated unaltered 

SMP foam, the second investigation focused on creating a proof-of-concept SMP foam-

hydrogel composite device with enhanced fluid uptake and bactericidal properties. In this 

feasibility study, a hydrogel-coated SMP foam was successfully created that retains the 

advantages of each respective material system to form a composite device for the 

treatment of traumatic hemorrhage. This technology is capable of absorbing more fluid 

than many new hemostatic wound dressings currently under investigation, can undergo up 

to 15X volume expansion upon contact with 37°C fluid to fill large volumes, and 

demonstrates antibacterial properties in vitro. This work resulted in an initial proof-of-

concept device that has shown highly valuable attributes for use as a hemostatic sponge. 

The composite studied here could lead to a vastly improved technology for treating 

hemorrhage in the battlefield and civilian trauma arenas. Future studies using relevant 

animal models of hemorrhage will be used to further assess the potential of this device.  

5.2 Significance of Work 

 The research described in this work resulted in the creation of novel embolic 

devices that have the potential to drastically reduce the healthcare costs of endovascular 

embolization procedures by reducing the number of devices required for treatment, 

radiation time, the need for repeat procedures, and the time to complete healing of the 

treated vessel. In addition to the potential clinical impact of this research, there have also 

been a number of contributions to the scientific literature. 

 Within this work, numerous testing methodologies and test apparatuses were 

designed and fabricated for verification testing of novel embolic devices that utilize 
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polymeric material systems. Novel devices typically require custom testing procedures 

and apparatuses, and this work has made significant contributions to the design and 

fabrication of this type of equipment. This work also represents the first verification of the 

echogenicity of SMP foams, which presents opportunities for minimally invasive devices 

consistently entirely of foam without the need for radiopaque fillers or components. To 

the knowledge of the author, this work also represents the first instance of quantifying 

acute fibrin deposition in an embolic device. The ability to conduct in vitro flow studies 

with anticoagulated bovine blood was also investigated in this study, which provides a 

valuable tool for researchers interested in conducting blood contacting device research in 

vitro. 

 Finally, the work presented in Chapter IV represents a potential solution to 

persistent complications and shortcomings associated with commercial hemostatic wound 

dressings by providing rapid hemostasis in conjunction with inherent bactericidal 

properties. This research also solidified the ability to incorporate SMP foams with other 

material systems to create advantageous composite devices with shape memory behavior.    

5.3 Future Work  

 The research presented here provides significant building blocks for 

commercializing shape memory medical devices. Along these lines, the technology 

discussed in Chapter III is currently being pursued for commercialization by Shape 

Memory Medical, Inc. At the time of this manuscript, GLP large animal implant studies 

for the PED technology have already begun. In the coming weeks, GLP ISO 10993 testing 
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will also begin on the PED technology to verify the biocompatibility of the device. This 

will be the first SMP foam device submitted to the FDA for 510(k) clearance.  

 Future work on the composite SMP foam-hydrogel device will focus on enhancing 

the rate of expansion of the device without compromising its bactericidal properties. The 

hydrogel within the device acts as a diffusion barrier, which delays plasticization and the 

subsequent expansion of the SMP foam. However, for hemorrhagic applications, 

expansion time is critical to achieve rapid hemostasis. Isolating the hydrogel within the 

core of the device will be investigated as an effective means of decreasing the time to 

expansion, as well as the use of superabsorbent hydrogels.   
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