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ABSTRACT 

 

Subsurface flow in the unsaturated zone is an important component of the 

hydrologic cycle and plays a significant role in the water and energy balance through 

affecting various hydrological processes. Land surface models (LSMs) have been 

developed and extended during the past decades with various enhanced processes to 

understand and quantify the complex interaction between atmosphere and land surface 

systems. However, there are still critical deficiencies (e.g., simplified processes and 

parameterization) remaining in simulating land surface hydrology for land surface 

modeling. Thus, this dissertation focuses on understanding land surface processes 

from various land surface models and improving land surface processes and 

parameterization in land surface modeling in the unsaturated zone at various spatial 

scales.  

Two main approaches (Bayesian Model Averaging (BMA) based multi-model 

simulation and physically based hydrologic connectivity approach) to improve the 

land surface modeling predictability are presented in this dissertation. The BMA-

based multi-model simulation approach was developed to reflect the strengths of the 

models under various land surface wetness conditions and to quantify the model 

parameter and structural uncertainties. The physically-based hydrologic connectivity 

concept was proposed to characterize the subsurface flow variability based on 

spatially distributed patterns of wetness condition or physical controls (e.g., soil type, 

vegetation, topography). Hydrologic connectivity is an important concept for 
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understanding local processes in the context of catchment hydrology and defining 

flow path continuity in surface and subsurface flows. These approaches were applied 

in land surface modeling and tested in various hydro-climate regions and spatial scales 

showing significant improvement of modeling predictability. Based on the knowledge 

and experience gained from this dissertation, the proposed concepts will be useful to 

improve the hydrological model performance and better understand the subsurface 

flow variability in the unsaturated zone at various scales. 
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CHAPTER I  

GENERAL INTRODUCTION 

1.1 Problem Statement 

Subsurface flow in the unsaturated zone is an important hydrologic process and a 

key component of the water budget. Through its direct impacts on soil moisture, it can 

affect the water and energy fluxes at land surface and influence the regional climate and 

water cycle [Gochis and Chen, 2003; Kumar, 2004]. In particular, root zone soil 

moisture that is held in a shallow subsurface (unsaturated zone) plays a significant role 

in partitioning of precipitation to surface runoff versus infiltration and subsequently the 

infiltrated water to evapotranspiration versus recharge [Zhu and Mohanty, 2006]. Soil 

moisture information about the shallow subsurface can be obtained at various scales 

ranging from a local scale (in situ sampling) to a remote sensing scale (e.g., AMSR-E, 

SMOS, SMAP). Field observations (in situ) provide soil moisture profiles at a fine scale 

resolution but these are very sparse, while remotely sensed soil moisture products 

provide only near-surface soil moisture (1~5 cm) but enable us to estimate soil moisture 

of large areas. Various up- or down-scaling approaches have been developed to account 

for the discrepancy between spatial and temporal scales through hydrological modeling. 

Many hydrological models have been developed and widely used for root zone soil 

moisture predictions at various scales. However, these models still have limitations to 

accurately estimate root zone soil moisture due to uncertainties in their inherent model 

parameterization and structures. Furthermore, current hydrological models based on 



 

2 

 

simplified processes for subsurface flow cannot effectively account for catchment 

hydrologic characteristics and identify the spatially distributed soil moisture in complex 

heterogeneous landscapes. Hence, alternate methods are necessary to reduce errors due 

to the model parameterization and structural uncertainties in estimating effective root 

zone soil moisture. The simplified processes and parameterization in hydrological 

models also need to be improved to better understand spatially distributed patterns of 

subsurface flow in the unsaturated zone. 

1.2 Motivation 

Land surface hydrologic processes are important components in land surface 

modeling to understand and quantify the complex interaction between atmospheric and 

land surface systems. Land surface models (LSMs) have been developed and extended 

over past decades with various enhanced processes. However, there are still critical 

deficiencies remaining in simulating land surface hydrology for land surface modeling. 

It is necessary to explore several hydrological models widely used in land surface 

modeling to compare their characteristics in land surface processes, and then strengths of 

the models in estimating root zone soil moisture can be reflected through multi-model 

simulations.  

In addition, most of the land surface models have simplified processes for 

subsurface flow in the unsaturated zone. Particularly, they are neglecting the horizontal 

exchanges of water (lateral subsurface flow) at the grid or sub-grid scales, focusing only 

on the vertical exchanges of entities including water. A one-dimensional process cannot 
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properly capture the spatially distributed patterns of surface or subsurface flow in 

heterogeneous landscapes. Lateral subsurface flow should be considered in land surface 

modeling to successfully describe the spatial variability of subsurface flow in the 

unsaturated zone. Hydrologic connectivity is a promising concept for understanding 

local processes in the context of catchment hydrology. It is defined as flow path 

continuity in surface and subsurface flows and connectivity metrics for spatial 

distributed wetness patterns in complex landscapes. The concept of hydrologic 

connectivity can be used to understand spatial variability of subsurface flow and 

improve current subsurface flow processes and parameterization schemes in land surface 

modeling.  

1.3 Hypothesis 

The hypothesis of this study is that hydrological models have their own strengths 

for particular soil wetness conditions (e.g., wet, moderately wet, and dry conditions) in 

estimating effective root zone soil moisture dynamics. Hydrologic connectivity derived 

from soil wetness conditions and dominant physical controls (e.g., soil properties, 

topography, and vegetation) is useful to describe the spatial variability of subsurface 

flow in the unsaturated zone. 

1.4 Research Objectives  

The primary objective of this research is to improve subsurface flow 

predictability using land surface models in the unsaturated zone. Based on the above 
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hypothesis, modeling capabilities of various hydrological models were explored to 

identify their strengths under different wetness conditions. In addition, hydrologic 

connectivity based on surface wetness conditions and dominant physical controls was 

included in land surface modeling to enable better prediction of subsurface flow in the 

unsaturated zone.  

The research objectives are:  

 To develop a BMA(Bayesian Model Averaging)-based multi-model 

simulation approach based on the land surface wetness conditions, estimating 

effective soil moisture dynamics with a genetic algorithm scheme for soil 

hydraulic parameter optimization, and to evaluate various model parameters 

and structural uncertainties under various hydro-climatic conditions, 

 To develop better hydrologic understanding and modeling capability in 

complex landscapes using a connectivity-based lateral subsurface flow 

algorithm, and to demonstrate subsurface flow variability effectively using 

spatially distributed patterns of root zone wetness conditions and physical 

controls at field and sub-watershed scales, 

 To investigate the effects of mixed physical controls on soil moisture spatial 

variability in two different hydro-climate regions, to develop a physically-

based hydrologic connectivity algorithm to better understand catchment 

hydrologic characteristics and identify spatial patterns in soil moisture, and to 

improve parameterization of soil hydraulic properties using physically-based 
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hydrologic connectivity to better describe the soil moisture spatial variability 

in land surface modeling. 

  

In Chapter II, three hydrological models (i.e., Noah Land Surface Model, Noah 

LSM; Soil-Water-Atmosphere-Plant, SWAP; and Community Land Model, CLM) 

which have been widely used in modeling of land surface water and energy fluxes at 

various spatial scales were chosen to explore strengths and weaknesses of their model 

parameterization and structures in estimating near surface soil moisture dynamics. 

Genetic Algorithm (GA) and other evolutionary algorithms were used for parameter 

estimation in the hydrological models using inverse modeling, and a Bayesian technique 

(Bayesian Model Averaging (BMA) with condition-specific weights) was employed for 

evaluating the uncertainties in hydrologic predictions related to soil moisture and 

hydrologic fluxes. The BMA-based multi-model simulation approach based on various 

soil wetness conditions was developed to effectively reflect strengths of the models and 

to quantify model parameter and structural uncertainties. This approach was tested in 

two different hydro-climatic conditions (Little Washita (LW 13) site in Oklahoma (sub-

humid) and Walnut Gulch (WG 82) site in Arizona (semiarid)). Model simulations using 

the approach were validated with the in situ soil moisture measurements (0–5 cm) during 

the Southern Great Plains experiment 1997 (SGP97, day of year (DOY): 170–197) for 

the LW 13 site and Soil Moisture Experiment 2004 (SMEX04, DOY: 216–238) for the 

WG 82 site. 
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In Chapter III, the subsurface flow processes in land surface modeling (in CLM) 

was modified with a three-dimensional flow process based on Richards’ equation in the 

unsaturated zone to consider lateral flow process in the unsaturated zone. To investigate 

the impact of subsurface lateral flow and its connectivity on soil water storage three 

cases were designed including (1) complex surface topography only, (2) complex 

surface topography in upper soil layers and soil hydraulic properties with uniform 

anisotropy, and (3) complex surface topography and soil hydraulic properties with 

spatially varying anisotropy. The concept of hydrologic connectivity was employed to 

derive the spatially varying anisotropy which was used for estimating lateral hydraulic 

conductivity. Hydrologic connectivity was developed using spatial patterns of soil 

wetness conditions and physical controls (e.g., soil type, vegetation, topography) 

assuming that the variables have equal effects on the hydrological processes. The 

assumption may not be applicable into other landscapes, but it is difficult to identify 

their contributions to redistributing subsurface soil moisture because it can vary with 

complex landscape characteristics. In addition, the assumption was validated in this 

study. These cases were tested at two different scales (El-Reno site 5 (ER 5: field scale) 

and El-Reno sub-watershed (ER-sub: sub-watershed scale) located in the North 

Canadian River basin in Oklahoma). The proposed approach was validated with the 

daily in situ soil moisture (49 sampling points) measured in top 5 cm soil (18 June to 17 

July) and in depths of 0–15, 15–30, 30–45, 45–60, and 60–90 cm (6–15 July) during the 

Southern Great Plains experiment 1997 (SGP97) for the ER 5 site, and with 

Electronically Scanning Thin Array Radiometer (ESTAR) pixel-based (800 × 800 m) 
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near surface soil moisture products obtained during SGP97 (18 June to 17 July) for the 

ER-sub site. 

In Chapter IV, the hydrologic connectivity methodology developed in Chapter III 

was extended to consider the impact of mixed dominant physical controls based on their 

contribution ratios (no equal contribution) on soil moisture variability. The Bayesian 

averaging scheme was used to derive the contributing ratios of physical variables. The 

physically-based hydrologic connectivity algorithm was developed using indicator maps 

of mixed physical controls (based on the contributing ratios) and hydrologic connectivity 

functions for various thresholds. Soil hydraulic properties in land surface modeling were 

calibrated based on hydrologic connectivity to effectively reflect the spatial variability of 

subsurface flow. This approach was tested in two different hydro-climatic conditions 

(Little Washita (LW) watershed in Oklahoma (sub-humid) and Upper South Skunk (USS) 

watershed in IOWA (humid)). The proposed approach was validated with an 

Electronically Scanning Thin Array Radiometer (ESTAR) pixel-based (800 × 800 m) 

near surface soil moisture products obtained during SGP97 (June 18th – July 17th, 1997) 

for the LW watershed and Aircraft Polarimetric Scanning Radiometer (PSR) observed 

during SMEX02 (June 25th – July 12th, 2002) for the USS watershed. 

Chapter V summarizes the general conclusions obtained from the proposed 

approach in this research work. 
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CHAPTER II  

EFFECTIVE SOIL MOISTURE ESTIMATE AND ITS UNCERTAINTY USING 

MULTI-MODEL SIMULATION BASED ON BAYESIAN MODEL AVERAGING1 

 

2.1 Synopsis 

Various hydrological models have been developed for estimating root zone soil 

moisture dynamics. These models, however, incorporated their own parameterization 

approaches indicating that the output from the different model inherent structures might 

include uncertainties because we do not know which model structure is correct for 

describing the real system. More recently, multimodel approaches using a Bayesian 

Model Averaging (BMA) scheme have improved the overall predictive skill while 

individual models retain their own uncertainties for simulating soil moisture based on a 

single set of weights in modeling under different land surface wetness conditions (e.g., 

wet, moderately wet, and dry conditions). In order to overcome their limitations, we 

developed a BMA-based multimodel simulation approach using various soil wetness 

conditions for estimating effective surface soil moisture dynamics (0–5 cm) and 

quantifying uncertainties efficiently based on the land surface wetness conditions. The 

newly developed approach adapts three different hydrological models (i.e., Noah Land 

                                                 

1 Reprinted with permission from “Effective Soil Moisture Estimate and its Uncertainty 

using Multi-Model Simulation based on Bayesian Model Averaging” by Jonggun Kim, 

Binayak P. Mohanty, and Yongchl Shin (2015), J. Geophys. Res. Atmos., 120, 

doi:10.1002/2014JD022905, Copyright 2015 American Geophysical Union. 
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Surface Model, Noah LSM; Soil-Water-Atmosphere-Plant, SWAP; and Community 

Land Model, CLM) for simulating soil moisture. These models were integrated with a 

modified-microGA (advanced version of original Genetic Algorithm (GA)) to search for 

optimized soil parameters for each model. Soil moisture was simulated from the 

estimated soil parameters using the hydrological models in a forward mode. It was found 

that SWAP performed better than others during wet conditions, while Noah LSM and 

CLM showed good agreement with measurements during dry conditions. Thus, we 

inferred that performance of individual models with different model structures can be 

different with varying land surface wetness. Taking into account the effects of soil 

wetness on different model performances, we categorized soil moisture measurements 

and estimated different weights for each category using the BMA scheme. Effective 

surface soil moisture dynamics were obtained by aggregating multiple weighted soil 

moisture. Our findings demonstrated that the effective soil moisture estimates derived by 

this approach showed a better match with the measurements compared to the original 

models and single-weighted outputs. A multimodel simulation approach based on land 

surface wetness enhances the ability to predict reliable soil moisture dynamics and 

reflects the strengths of different hydrological models under various soil wetness 

conditions. 
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2.2 Introduction 

Soil moisture plays a key role in hydrologic processes such as soil water 

retention, infiltration, evapotranspiration, and groundwater recharge, which control 

water balance and land surface energy balance [Zhu and Mohanty, 2006; Brocca et al., 

2010; Leung et al., 2011]. Several hydrological models have been developed and used 

widely for soil moisture predictions including Noah Land Surface Model (Noah LSM) 

[Ek et al., 2003], Soil-Water-Atmosphere-Plant (SWAP) [Van Dam et al., 1997], 

Community Land Model (CLM) [Oleson et al., 2010], Variable Infiltration Capacity 

[Liang et al., 1994], and Mosaic Land Surface Model (Mosaic LSM) [Koster and Suarez, 

1996], among others. The Global Land Data Assimilation Systems use these 

hydrological models for validating pixel-scale soil moisture from satellite platforms and 

evaluating water/energy cycle and fluxes near the land surface [Liu et al., 2009]. The 

North American Land Data Assimilation System has monitored and predicted 

hydrological drought conditions using state variables (e.g., soil moisture dynamics, 

runoff, evaporation, etc.) estimated from various hydrological models [Ek et al., 2011]. 

However, these models incorporated with their own parameterization schemes and 

simplified processes might not consider adequately real-world conditions, indicating that 

each model has its own strengths and drawbacks for certain processes [Hsu et al., 2009]. 

Thus, inherent model structures might produce different model outputs and cause 

uncertainties due to different model structures and input parameters (i.e., atmospheric 

forcings, soil textures, vegetation covers, initial and bottom boundary conditions, etc.). 

Many stochastic techniques and methods have been developed and extended to 
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overcome the limitations of modeling. Genetic algorithms (GAs) [Holland, 1975], 

Shuffled Complex Evolution-University of Arizona (SCE-UA) [Duan et al., 1992], and 

Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 2001] have been applied in 

estimating effective model parameters. Bayesian Model Averaging (BMA) [Hoetting et 

al., 1999], Hydrological Uncertainty Processor [Krzysztofowicz, 1999; Krzysztofowicz 

and Kelly, 2000], Ensemble Model Output Statistics (E-MOS) [Gneiting et al., 2005], 

and Model Conditional Processor [Todini, 2008; Coccia and Todini, 2011] have been 

used to account for the model structural uncertainties. GAs have been used to minimize 

errors in searching optimized model parameters based on inversion model [Reed et al., 

2000; Ines and Mohanty, 2008, 2009; Zhang et al., 2009; Shin et al., 2012; Shin and 

Mohanty, 2013; Shin et al., 2013]. Zhang et al. [2008] integrated several global 

optimization algorithms (i.e., GA, SCE-UA, PSO, etc.) with Soil and Water Assessment 

Tool and compared their performances in calibrating model input parameters. They 

showed that GA found better optimized model parameters than others, although a large 

number of computational resources were required. Further, the near-surface [Ines and 

Mohanty, 2008] and layer-specific data assimilation [Shin et al., 2012] approaches using 

GA coupled with SWAP based on inversion model were developed for quantifying 

effective soil hydraulic properties in the homogeneous and heterogeneous soil profiles. 

Their findings indicated that the estimated effective soil parameters at the near-surface 

and subsurface layers can be adequately conditioned by GA. However, although model 

parameter uncertainties for a single model can be minimized by simulation-optimization 

schemes (e.g., GA-SWAP, etc.), bias due to different model structures still remain 



 

12 

 

(considerably) in model outputs [Hoetting et al., 1999; Georgakakos et al., 2004; Ajami 

et al., 2007]. A BMA scheme has been proposed to account for model structural 

uncertainties efficiently and improve predictive capabilities of different models through 

a weighted average of probability density functions (PDFs) of hydrological models 

[Hoetting et al., 1999]. Currently, the technique has been applied to multiple 

hydrological model simulations as averaging schemes and weather prediction models to 

create forecast ensembles [Raftery et al., 2005; Wöhling and Vrugt, 2008; Duan and 

Phillips, 2010; Wu et al., 2012]. BMA usually estimates a representative weight (a single 

set of weights) for individual PDF of each model over the training period and then in 

turn aggregates different model predictions based on the estimated weights indicating 

how each model contributes to the predictive skill [Ajami et al., 2007; Rojas et al., 2008; 

Tsai and Li, 2008; Zhang et al., 2009]. However, the weighted values can vary in the 

model performances during the training period because some hydrological models 

predict better outputs during the rainy period, while others perform better under the 

(relatively) dry condition [Radell and Rowe, 2008; Hsu et al., 2009]. In order to 

overcome these limitations, recent studies adopted the sliding window algorithm to 

obtain the weights of individual models optimally [Raftery et al., 2005; Vrugt and 

Robinson, 2007]. This approach assigns different weights to the models as the window 

slides over the training period. However, the strengths of hydrological models may not 

be adequately reflected by assigning different weights to the models during the training 

period across time. Thus, Duan et al. [2007] improved the BMA scheme for stream flow 

predictions using an alternative way that adopts multiple sets of weights to consider 
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different portions of the hydrograph instead of time-based weighting schemes. None of 

the previous studies, however, considered an approach of soil-wetness-based weighting 

scheme. Such a scheme may be more suitable for identifying soil moisture variability 

because soil moisture predictions from different hydrological models vary based on 

antecedent land surface wetness conditions (i.e., wet, moderately wet, and dry 

conditions). In this study, we explored a multiple-model simulation approach for 

estimating effective surface soil moisture dynamics (0–5 cm) and quantifying 

uncertainties due to different model parameters and structures. The objectives of this 

study are twofold: (1) to develop a BMA-based multimodel simulation approach based 

on the land surface wetness conditions in estimating effective soil moisture dynamics 

with a modified-microGA (Genetic Algorithm) for soil hydraulic parameter optimization 

and (2) to evaluate different model parameters and structural uncertainties under 

different hydroclimatic conditions. 

2.3 Methodology 

2.3.1. Bayesian Model Averaging Based Multimodel Simulation Approach 

We developed a multimodel simulation approach adapting various hydrological 

models based on a Bayesian Model Averaging (BMA) scheme for estimating effective 

surface (0–5 cm) soil moisture dynamics and quantifying uncertainties due to different 

model parameterizations and structures. Figure 2.1 shows the schematic diagram of our 

proposed approach. In this study, we adapted three different hydrological models (i.e., 

Noah Land Surface Model, Noah LSM; Community Land Model, CLM; and Soil-Water-
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Atmosphere-Plant, SWAP) for estimating surface soil moisture dynamics reflecting their 

inherent strengths. Noah LSM and CLM have been used extensively in evaluating 

water/energy cycles and fluxes including soil moisture prediction near the land surface 

as the dynamic land surface component of global climate modeling (e.g., Community 

Earth System Model and Weather Research and Forecasting), and SWAP also has been 

verified and used widely for predicting crop yields and soil moisture status in various 

studies [Oleson et al., 2008; Hong et al., 2009; Shin et al., 2012]. A modified-microGA 

was integrated with these models for searching optimized parameters of each 

hydrological model and quantifying the model parameter uncertainty. To quantify the 

model structural uncertainty, we employed the BMA scheme calculating different 

weights of simulated results based on output fitness values of individual models. The 

multimodel simulation approach based on the BMA scheme was evaluated under two 

different hydroclimatic conditions.  
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Figure 2. 1 Schematic diagram of the Bayesian Model Average (BMA) based multi-

model simulation approach. 

 

2.3.2. Characteristics of the Hydrological Models  

2.3.2.1. Noah Land Surface Model 

The original Noah Land Surface Model (Noah LSM v2.7.1) is an advanced 

version of the Oregon State University land model [Ek et al., 2003]. This model has been 

widely used in both coupled (integrated with other models) and uncoupled (stand-alone) 

modes for simulating water and energy fluxes at various spatial scales. In this study, we 

adapted the uncoupled mode as a one-dimensional (1-D), physically based model for 
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estimating the soil moisture dynamics at field scales. Noah LSM calculates the total 

evapotranspiration by summing the direct evaporation from top soil layer, canopy 

evaporation, and potential Penman-Monteith transpiration [Rosero et al., 2010]. The 

model has typically four soil layers with the thicknesses of 10, 30, 60, and 100 cm (total 

soil depth of 200 cm), but we changed top soil layer depth to 5 cm (while maintaining 

the same total root zone depth) to be compared to the soil moisture observation (top 5 

cm) in this study. It adapts a diffusion form of the Richards’ equation (equation (2.1)) for 

soil moisture estimation. Soil water retention and hydraulic conductivity and are 

calculated based on the Clapp and Hornberger [1978] equations (equations (2.2) and 

(2.3)), 
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where θ is the volumetric soil water content (cm3 cm-3), z is the soil depth (cm) taken 

positive upward, D(θ) is the soil water diffusivity (cm2 d-1) ( ( )K








), K(θ) is the 

unsaturated hydraulic conductivity (cm d-1), Q is a soil moisture sink term, which is the 

root water extraction rate by plants, ψ and ψsat are the soil matric potential and saturated 
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soil matric potential (cm), b is the curve fitting parameter related to the pore size 

distribution (-), and θsat and Ksat are the saturated soil moisture content (cm3 cm-3) and 

saturated hydraulic conductivity (cm d-1), respectively.  

Noah LSM has been enhanced to achieve better performance by incorporating 

complex canopy resistance, bare soil evaporation, surface runoff, and higher-order time 

integration schemes. Additional model processes and assumptions are provided in Table 

2.1 and by Ek et al. [2003]. The model has been tested and showed good performance in 

humid and temperate hydroclimate regions [Koren et al., 1999; Sridhar et al., 2002; Ek 

et al., 2003]. However, it still has limitations when applied to arid hydroclimate regions. 

The limitations might be caused by the assumption that latent heat flux associated 

strongly with evaporation and the distribution of soil moisture content is negligible in the 

top soil layer when the water content is lower than the wilting point (drying season) 

[Katata et al., 2007]. Also, the thickness of top soil layer (10 cm as a default) is thicker 

than those of other models (i.e., SWAP and CLM), which can lead to overestimations of 

soil moisture [Sahoo et al., 2008]. 
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Table 2. 1 Comparison of main characteristics of the three hydrological models. 

 Noah LSM SWAP CLM 

Default thickness 

of top soil layer 

10 cm 

(Total 4 layers) 

1 cm 

(Total 10 layers with 

small compartments) 

1.75 cm 

(Total 10 layers) 

Runoff scheme 
Simple Water Balance 

(SWB) model 

Horton and Dunne 

Overland flow 
TOPMODEL 

Soil hydraulic 

properties 
Clapp and Hornberger 

van Genuchten and 

Mualem 

Clapp and 

Hornberger 

Surface 

evaporation 

Penman potential 

evaporation 
Penman-Monteith 

Philip and De Vries 

diffusion model and 

BATS model 

Plant system 
Canopy resistance 

function 

Linear production 

function and 

WOFOST model 

Dynamic global 

vegetation model 

Bottom boundary 

condition 
Free drainage Free drainage 

Dynamic 

groundwater table 

(SIMGM) 

2.3.2.2 Soil-Water-Atmosphere-Plant (SWAP) Model 

Soil-Water-Atmosphere-Plant (SWAP) [Van Dam et al., 1997] has been used for 

simulating soil water flow between the soil, water, atmosphere, and plant systems 

[Agnese et al., 2007; Ying et al., 2011]. This model contains physical processes for soil 

water flow, potential and actual evapotranspiration, crop growth, and irrigation. Daily 

potential evapotranspiration is estimated using the Penman-Monteith method with daily 

meteorological data or crop factors (i.e., minimum resistance, leaf area index, and crop 

height), and the actual evapotranspiration rate can be calculated using the root water 

uptake reduction and maximum soil evaporation flux [Van Dam et al., 1997] (Table 2.1). 

This model simulates soil moisture dynamics in the soil profile using the mixed form 

Richards’ equation (equation (2.4)) and the soil hydraulic properties represented by the 
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analytical expression of Mualem and van Genuchten (equations (2.5) and (2.6)) [Mualem, 

1976; Van Genuchten, 1980], 
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where n (-), m (-), λ (-), and α (cm-1) are the empirical shape factors of the retention and 

conductivity functions, m=1-1/n, Se is the relative saturation (-), θres is the residual water 

content (cm3 cm-3), and θ(ψ) and K(ψ) are the water content (cm3 cm-3) and hydraulic 

conductivity (cm d-1) at matric potential ψ, respectively. 

SWAP simulates water flow, solute transport, heat flow, and crop growth 

simultaneously at field scales. In order to better simulate infiltration and evaporation 

fluxes in the vertical soil column, the soil profile (0–200 cm) was discretized in this 

study with finer intervals (1, 5, and 10 cm for the 1st –10th, 11th –20th, and 21st –32nd 

layers, respectively, except of 20 cm for the 33rd layer), especially for the soil surface 

(0–10 cm) where water content and pressure head gradients change sharply [Van Dam et 

al., 1997]. However, a key limitation of the SWAP model is that it does not consider the 
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regional groundwater hydrology and seasonal variation of boundary fluxes at the lower 

boundary [Kroes et al., 1998]. For the detailed information about SWAP readers can 

refer to Van Dam et al. [1997]. 

2.3.2.3 Community Land Model 

Community Land Model (CLM) [Oleson et al., 2010] is a land surface model 

that provides land surface forcing as the physical boundary for the atmospheric model in 

the Community Climate System Model. This model estimates bare soil evaporation 

based on the Philip and de Vries [1957] diffusion model and calculates transpiration 

using an aerodynamic approach of the Biosphere Atmosphere Transfer Scheme (BATS) 

model [Dickinson et al., 1993]. Other model processes are provided in Table 2.1. CLM 

has a 10 layered soil column with the fixed thickness of 1.75, 2.76, 4.55, 7.5, 12.36, 

20.38, 33.60, 55.39, 91.33, and 113.7 cm (total depth of 343 cm), and in this study 

averaged soil water content of the first two soil layers are used for comparison with the 

observations. The vertical soil water flow is solved by the modified Richards’ equation 

(equation (2.7)) [Zeng and Decker, 2009]. This equation is derived by subtracting the 

hydrostatic equilibrium soil moisture distribution from the original Richards’ equation 

for improving the mass conservative numerical scheme when the water table is within 

the soil column, 
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where ψe is the equilibrium soil matric potential (cm). The hydraulic conductivity is 

derived from Eq. (2.3), and equilibrium soil matric potential and equilibrium volumetric 

water content are shown in Eqs. (2.8 and 2.9) based on Clapp and Hornberger [1978],   
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where θe(z) is the equilibrium (e) volumetric water content (cm3 cm-3) at depth z 

(z▽ is the water table depth). 

In CLM, 10 soil layers discretized unevenly include a thin top soil layer (1.75 cm) 

needed to better simulate infiltration and evaporation fluxes [Sahoo et al., 2008]. 

Furthermore, CLM considers the variability in ground water table as the lower boundary 

condition using the SIMple Groundwater Model (SIMGM) [Niu et al., 2007]. A 

groundwater component is defined as an unconfined aquifer below the soil column (343 

cm). To obtain the water table depth, the model parameterizes groundwater discharge 

and recharge with various constants derived from sensitive analysis [Niu et al., 2007]. 

On the other hand, the model assumes that runoff generation is controlled by saturation 

area derived from topographic information and its parameterization is based on an 

exponential form, which is obtained from observations of the upper soil layers over 
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small watersheds. However, this runoff generation could be also driven by the 

relationship between rainfall intensity and soil infiltration capacity, especially in regions 

with thick soils or deep groundwater. The assumption of dominant topographic control 

might lead to erroneous simulations for the subsurface runoff [Li et al., 2011]. 

2.3.2.4 Soil Parameters of the Hydrological Models 

Parameter optimization using a modified-microGA was implemented to identify 

the soil hydraulic properties as unknown parameters whose variation has large effects on 

the model outputs [Musters et al., 2000; Hupet et al., 2002; Ritter et al., 2003]. Several 

major input parameters related to soil moisture dynamics were selected as shown in 

Table 2.2 (Noah LSM - θsat, Ksat, psisat (əψsat/əz), b, q; SWAP - θsat, Ksat, θres, α, n; CLM 

- θsat, Ksat, ψsat, b, WATDRY). Feasible ranges of the parameters (i.e., search spaces in a 

modified-microGA) for each model were defined based on literature related to the model 

parameter sensitivity and to accommodate a diversity of soils ranging from clay to sandy 

loam [Leij et al., 1999; Liu et al., 2004; Ines and Mohanty, 2008; Rosero et al., 2010; 

Shin, et al., 2012].  
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Table 2. 2 Summary of soil hydraulic parameters and its feasible ranges used in the 

modified-microGA for the three hydrological models. 

LSMs 
Parameters 

(p=pi=1,…,J) 
Descriptions Unit Min.a Max.a 

No. of 

bits 

Binaries 

(2L) 

SWAP 

(i=1) 

θsat Saturated water contents  cm3 cm-3 0.37 0.55 5 32 

Ksat Saturated hydraulic- conductivity  cm d-1 1.84 55.70 10 1,024 

θres Residual water contents  cm3 cm-3 0.06 0.16 7 128 

α Empirical shape parameter  cm-1 0.01 0.03 5 32 

n Empirical shape parameter - 1.20 1.61 6 64 

Noah 

LSM 

(i=2) 

θsat Saturated water contents  cm3 cm-3 0.35 0.55 5 32 

Ksat Saturated soil hydraulic-conductivity  cm d-1 8.64 86.4 6 64 

psisat Saturated soil matric potential (əψsat/əz) cm cm-1 0.10 0.65 6 64 

b Clapp-Hornberger b parameter - 4.00 10.00 6 64 

q Quartz content - 0.10 0.82 5 32 

CLM 

(i=3) 

θsat Saturated water contents cm3 cm-3 0.33 0.66 5 32 

Ksat Saturated soil hydraulic-conductivity  cm d-1 0.09 864 8 256 

ψsat Saturated soil matric potential  cm -75.00 -3.00 7 128 

b Clapp-Hornberger b parameter - 3.00 10.00 6 64 

WATDRY Soil water content (wilting point) - 0.02 0.30 5 32 

aFeasible ranges of the parameters [Liu et al., 2004; Ines and Mohanty, 2008; Rosero et 

al., 2010]. 

 

 

2.3.3 Modified-microGA (Genetic Algorithms) for Estimating Optimal 

Parameters and Their Uncertainty 

GAs are powerful algorithms based on the mechanics of nature (i.e., survival of 

the fittest mechanism) for searching optimal solutions from the unknown space [Holland, 

1975]. GAs are basically composed of the GA operators such as selection, crossover, 

and mutation. New GA algorithms have been developed to improve the searching ability 

and save the computational time. Krishnakumar [1989] developed the so-called 

microGA to allow more micro population restarts in order to overcome the relatively 
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poor exploitation characteristic of the original GA. The micro population restarts 

searching solutions at the search space when most of the new parameter sets through the 

GA operator in a generation are similar up to 90%. It allowed that the GA can find 

solutions more efficiently saving the computational time. Ines and Droogers [2002] 

modified the microGA (i.e., modified-microGA) to consider interjecting new genetic 

materials to the micro population adopting a creep mutation. The creep mutation 

operator suggested by Carroll [1998] alters the parameter sets to minimize the effect of 

perturbation included in the converged parameter sets. In this study, we used a modified-

microGA [Ines and Droogers, 2002] in searching the optimized soil parameters for the 

three selected hydrological models. The modified-microGA was integrated with the 

hydrological models to optimize each model input parameter sets, p = {pi=1,…,J}, as 

shown in Figure 2.1 based on the inversion model. The number of bits and binary used 

in the modified-microGA were decided by the degree of discrete divisions between the 

minimum and maximum values for each parameter range (Table 2.2). The objective 

(Z(p)) functions were formulated in equation (2.10), 
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where 
,

sim

i t  and 
obs

t are the simulated and observed surface soil moisture, respectively. 

For the parameter uncertainty analysis, we used the multipopulation with 

different random number seeds (-1000, -950, and -750) in the modified-microGA 
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process. After the given generations, the individual and average fitness of all the 

parameter sets (i.e., chromosomes) from the multiple populations were calculated. The 

parameter sets which have the fitness values above the average were then selected as the 

probable solutions. Further, we carried out the perturbation analysis in order to account 

for the variations of the model parameters estimating the approximated solutions (p′ ) for 

each parameter set (p). 

The perturbation analysis has been used to evaluate how variations of the model 

input parameters affect model outputs [de Kroon et al., 1986; Caswell, 2000; Benke et 

al., 2008]. The perturbed parameters were calculated as 

 

' (1 )Avg ix  p p   (2.11) 

 

where p and pAvg are the perturbed and averaged parameter set, 
2~ (0, )i ix Norm   is the 

normal random deviate with the mean and standard deviation calculated by the 

parameter sets selected (above the average fitness),   is the error term related to 

uncertain parameter (30% was applied in this study to account for the variations of the 

model parameters estimating the approximated solutions for each parameter sets). 

The surface soil moisture dynamics were simulated using the perturbed 

parameters, and their uncertainties with the ±95% confidence interval (PCI) were 

evaluated for each model. 
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2.3.4. Bayesian Model Averaging Scheme Based on the Land Surface Wetness 

Conditions and Model Structural Uncertainty 

The BMA scheme estimates weights for various model predictions based on their 

probabilistic likelihood measures [Raftery et al., 2005]. Here, the variable ‘y’ indicates 

the BMA prediction, namely predictive (weighted) soil moisture, and 
1,...,i Jf 

 is the 

individual model prediction (surface soil moisture dynamics) from the selected 

hydrological models (i=1,…,J) using the optimized parameters (section 2.3.3). The 

BMA posterior distribution of y given the model predictions can be formulated in Eq. 

(2.12) as following, 
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where the PDF, ( ( | )i iP f D ) is the posterior probability for model prediction given the 

training data (i.e., observations, D) and can be dealt with as weights (a single set of 

weights, iw ) defining the individual model’s relative contributions to the BMA 

prediction, and J is the number of hydrological models used (i.e., 3). The conditional 

PDF, ( ( | , )i iP y f D ) denotes the posterior distributions of y given model prediction and 

observations, which is approximated by a normal distribution with mean ( if ) and 

standard deviation (σi). The assumption of normal distribution could be inappropriate for 

soil moisture primarily driven by precipitation, while the gamma distribution is more 
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reasonable to represent the highly skewed predictive distribution of soil moisture 

(Sloughter et al., 2006). However, when we tested the two assumptions (normal and 

gamma distribution), the assumption of normality improved more the BMA method for 

soil moisture prediction. In the study of Vrugt and Robinson (2007), they also found an 

improvement of BMA method with the assumption of normal distribution for streamflow 

forecasting instead of the gamma distribution. The posterior mean (E) and variance (Var) 

of the BMA prediction (y) can be computed in Eqs. (2.13 and 2.14). 
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The BMA approach then estimates the weights and variances of simulated 

surface soil moisture dynamics from the three models. The variance of BMA prediction 

consists of the between-model variance and the within-model error variance in the BMA 

procedure. The values of iw  and 
2  were estimated by the maximum likelihood (L) as 

described in Eq. (2.15),  
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where T is the time domain. To find the maximum likelihood for the weights and 

variances, we used the DiffeRential Evolution Adaptive Metropolis – Markov Chain 

Monte Carlo (DREAM-MCMC) algorithm [Vrugt et al., 2009]. The BMA weights are 

highly correlated with the model performance indicating that higher weights are assigned 

to a model which performed better than others. This algorithm has been used for 

estimating the BMA parameters (weight and variance) and is unique in solving complex, 

multi-modal, and high-dimensional sampling problems [Vrugt et al., 2008, 2009]. Thus, 

we estimated the weights (a single set of weights) for different hydrological models 

using the DREAM-MCMC algorithm and the effective surface soil moisture dynamics 

were calculated by aggregating the three model outputs based on the estimated weights.  

Hydrological models can predict the hydrologic response well during the dry or wet 

season based on their own model parameters and structures [Hsu et al., 2009]. In order 

to reflect the strengths of individual models for certain land surface wetness conditions, 

we categorized soil moisture measurements based on the land surface wetness conditions 

(e.g., wet, moderately wet, and dry conditions, etc.) using the K-mean clustering 

algorithm [MacQueen, 1967]. Near surface soil moisture can involve several state 

variables of climate and physical properties (e.g., soil texture, vegetation cover, 

precipitation events, etc.) with respect to the wetness conditions so that the thresholds of 

wetness conditions can be identified using the measurements [Narasimhan et al., 2005; 

D’Odorico et al., 2007; Brocca et al., 2008]. Thus, the thresholds based on the soil 

moisture measurements can be also applicable to other locations having similar soil type, 

land cover, and hydro-climatic characteristics. The clustering algorithm determines the 
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land surface wetness conditions based on the degree of variability between available soil 

moisture measurements (note that the number of wetness conditions, G, was manually 

determined). Different weights ( 1,...,

1,...,

g G

i Jw 


, multiple sets of weights) of model outputs 

corresponding to the land surface wetness conditions were calculated by the BMA 

scheme (Eqs. 2.12-2.15), respectively. The estimated weights were assigned to the 

individual model output, and then the weighted soil moisture simulations were 

aggregated to estimate the effective surface soil moisture dynamics reducing error due to 

the model structural uncertainties. In this study, we evaluated the performance of BMA 

scheme using a single (S-BMA) and multiple (M-BMA) sets of weights in modeling. 

Then, we quantified the model structural uncertainties with the ±95 PCI estimated from 

the posterior distribution of the BMA parameters (i.e., weight and variance). 

2.3.5. Statistical Analysis 

Three performance criteria were selected to evaluate the performance of 

individual model predictions and of the multiple model simulation compared to the 

observations. They are Pearson’s correlation (R), Root Mean Square Error (RMSE), and 

Mean Absolute Error (MAE) as Eqs. (2.16, 2.17, and 2.18), 
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where 
sim

t  and 
obs

t  are the average of sim

t  and obs

t , respectively. 

 

2.3.6 Study Area and Description of Model Conditions 

In this study, the Little Washita (LW 13) site in Oklahoma (sub-humid) and 

Walnut Gulch (WG 82) site in Arizona (semi-arid) were selected for evaluating the 

model parameters and structural uncertainties under two different hydro-climatic 

conditions (Figure 2.2). The LW 13 site has a sub-humid climate with an average annual 

rainfall of approximately 750 mm with most precipitation during Spring and Fall. Daily-

mean maximum temperature is 30˚C in July with annual-mean temperature of 16˚C. The 

climate of WG 82 is semi-arid with an average annual rainfall of approximately 350 mm, 

which is mostly received from July to September. Daily-mean maximum temperature of 

35˚C occurs in June with annual-mean temperature of 17.7˚C. Both study sites have a 

native grass cover, and their soil types are silty loam and sandy loam for LW 13 and WG 

82, respectively. The three hydrological models require common weather data (i.e., 

precipitation, temperature, relative humidity, solar radiation, and wind speed) and Noah 

LSM and CLM additionally need the air pressure values. They were collected from the 
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USDA Agricultural Research Service (ARS 136) Micronet and the Oklahoma Mesonet 

weather stations (Ninnekah station) from January 1 to December 31, 1997 for the LW 13 

site. The weather datasets for the WG 82 site were obtained from the Arizona 

Meteorological Network [Keefer et al., 2009] and the Soil Climate Analysis Network 

(SCAN, Walnut Gulch #1) sites from January 1 to December 31, 2004.  

 

 

Figure 2. 2 Study sites; (a) Walnut Gulch (WG) 82 in Arizona, (b) Little Washita 

(LW) 13, and (c) SCAN 2023 in Oklahoma. 

 

 

We validated our approach with the in situ soil moisture measurements (0-5 cm) 

during the Southern Great Plains experiment 1997 (SGP97, DOY: 170 ~ 197) [Mohanty 

and Skaggs, 2001; Mohanty et al., 2002] for the LW 13 site and Soil Moisture 

Experiment 2004 (SMEX04, DOY: 216 ~ 238) [Jackson et al., 2009] for the WG 82 site. 

Here, we calibrated the multi-model approach using the measurements during the 
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simulation periods (DOY: 170 ~ 183 for LW 13 and DOY: 216 ~ 227 for WG 82), and 

the validations were conducted in the given periods (DOY: 184 ~ 197 for LW 13 and 

DOY: 228 ~ 238 for WG 82), respectively. These experiment data sets have been 

validated significantly and used widely in various studies, but the experiment periods are 

limited. Thus, we also tested our approach using longer data sets (April 1 to December 

31, 2011) measured at USDA-SCAN 2023 site (Figure 2.2) in Little Washita watershed, 

in the close proximity of LW13. The site is close to the LW 13 site having the same 

climate condition (sub-humid) and has a grass cover and silty clay soil. The weather data 

sets were collected from the SCAN 2023 site from January 1 to December 31, 2011.   

In order to reflect the impacts of various land surface wetness conditions in 

modeling as mentioned above, in situ measurements were categorized using the K-mean 

clustering algorithm at the LW 13 and WG 82 sites. Thresholds of the clustering ranges 

could be different with site conditions such as hydro-climates due to the different climate 

forcing and hydrologic responses which can influence the model performance. In order 

to determine the appropriate range of weight sets we tested several different weight sets 

(e.g., 2, 3, and 4 sets) clustered using K-mean algorithm for each site. Comparing the 

BMA predictions of each set to the measurements including at least 5 data in each class, 

we found the suitable sets of weights representing the highest correlation and reflecting 

the models’ characteristics properly discussed in section 2.3.2. The in situ data was then 

clustered into the three (G=3: wet, moderately wet, and dry conditions) and two (G=2: 

wet and dry conditions) classes for the LW (13 and SCAN 2023) and WG (82) sites, 

respectively. 
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Hydrological models have different initial and bottom boundary conditions due 

to their own structural characteristics. In the study sites, actual depth to the groundwater 

table was not available during the experiment periods, so we assumed that the bottom 

boundary condition is defined with free-drainage at 2 m depths from the soil surface for 

the Noah LSM and SWAP models, while the bottom boundary condition for CLM was 

decided with the water table dynamics calculated from aquifer water storage via the 

SIMGM [Niu et al., 2007] after spinning up the model. For the initial condition, the 

Noah LSM and CLM models performed a spinning up to initialize the soil profile. 

Uniform initial soil water pressure head distributions (h(z,t=0) = -100 and -500 cm for 

the LW (13 and SCAN 2023) and WG (82) sites indicating the shallow/deep 

groundwater levels, respectively) were used for the SWAP model. 

2.4 Results and Discussion 

2.4.1 Estimation of Optimized Model Parameters and Their Uncertainties 

The optimized model parameters and the uncertainties of each model were 

estimated using the modified-microGA under two different hydro-climatic regions. 

Figure 2.3 shows the probability distributions and their quantile box charts for the  
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estimated soil hydraulic parameters of each model using multiple random number seeds 

(i.e., -1000, -950, and -750) at the LW 13 site during the calibration period (DOY: 170 ~ 

183, 1997). The estimated parameters for individual models showed the unimodal 

distributions indicating a probable optimized parameter value. Further, some of the 

parameters represented discontinuous distributions because the modified-microGA 

searched for the possible parameter sets from the multi-population and different random 

number seeds exploring the complete search space. The optimized values for each model 

were used for evaluating the model parameter uncertainty, estimating the effective soil 

moisture dynamics for the study site. Based on these results, we found that the optimized 

soil hydraulic parameters (sat, b, sat, and Ksat) and their ranges (i.e., search spaces) for 

the three models showed differences under the same modeling conditions (i.e., 

atmospheric forcings, soils, vegetations, etc.). The discrepancy between the models may 

be attributed to different parameterizations and structures that can also provide different 

model performances.  
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Figure 2. 3 Probability distributions and quantile box plots of the searched soil 

parameters of the three hydrological models using the multiple random number 

seeds (i.e., -1000, -950, and -750) for the LW 13 site. 
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In order to quantify parameter uncertainties of each model, we generated ten 

perturbed parameter ensembles using the statistics (mean and standard deviation) of 

estimated parameters based on the multiple populations and random number seeds. Then, 

the surface (0-5 cm) soil moisture dynamics were simulated using the perturbed 

parameter ensembles for each model in a forward mode. Figure 2.4a-c present the 

comparison of in situ and simulated surface soil moisture dynamics and their uncertainty 

band for SWAP, Noah LSM, and CLM during the calibration and validation periods. 

The results showed very narrow uncertainty boundaries because the possible parameter 

sets searched by the modified-microGA using the different populations were very similar 

for the cases of SWAP and Noah LSM (Figures 2.4a and 2.4b). Some observations 

deviated from the narrow boundaries of the simulated soil moisture from SWAP and 

Noah LSM. It can be inferred that the single model could not predict properly for a 

certain period due to their model structural error.  
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Figure 2. 4 In situ and simulated surface soil moisture (0~5 cm) dynamics using the 

optimized soil parameters derived by the modified-microGA for (a) SWAP, (b) 

Noah LSM, and (c) CLM at the LW 13 site during calibration and validation 

periods. 
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Overall, however, three different models predicted the surface soil moisture 

dynamics well in comparison with the measurements (R: 0.742 ~ 0.850, RMSE: 0.042 ~ 

0.064, and MAE: 0.063 ~ 0.085 during the calibration period; R: 0.863 ~ 0.955, RMSE: 

0.028 ~ 0.062, MAE: 0.054 ~ 0.097 during the validation period). The SWAP model 

showed better performance than others at the LW 13 site during the calibration period, 

while CLM performed better during the validation period. On a closer view, the 

simulated surface soil moisture dynamics by SWAP matched well with the 

measurements during DOY 170 ~ 177 (volumetric water content above 0.280 m3 m-3), 

but the CLM results were identified better during DOY 177 ~ 190 (volumetric water 

content below 0.190 m3 m-3). Also, both Noah LSM and CLM performed well during 

DOY 192 ~ 197 (for volumetric water content 0.190 ~ 0.280 m3 m-3). The simulated 

surface soil moisture from SWAP was more sensitive to the precipitation which can be 

associated directly with the wet surface condition, compared to those of Noah-LSM and 

CLM, because of a thin top soil layer (1 cm) which can capture the dynamic change of 

surface soil moisture. Thus it showed rather good agreement with measurements than 

other models during wet condition (Figure 2.4a). In contrast, CLM showed poor 

performance during wet condition (Figure 2.4c). In CLM, the simulated surface soil 

moisture was underestimated due to the unreliable surface runoff generation and high  
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sensitivity of evaporation to precipitation. During the dry condition, CLM predicted the 

surface soil moisture well whereas Noah LSM somewhat overestimated the surface soil 

moisture. This may be attributed to the layer thickness of the models. The thicker top 

layer of Noah LSM holds more soil water after precipitation events than the thin soil 

layers of the other models (Figure 2.4b). These findings support those of Hsu et al. 

[2009] as they state that the performances of different models has their own strengths 

and weaknesses for certain processes, and we found that the performances of different 

hydrological models (Noah LSM, CLM, and SWAP) might vary based on the different 

land surface wetness conditions (e.g. wet, moderately wet, and dry conditions).  

Figure 2.5 shows the probability distributions of estimated effective soil 

hydraulic parameters based on the multiple random number seeds for the WG 82 site 

during the calibration period (DOY: 216 ~ 227, 2004). Most of the probability 

distributions were unimodal for the Noah LSM and CLM parameters, except q (in Noah 

LSM) and WATDRY (in CLM) variables.  
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Figure 2. 5 Probability distributions and quantile box plots of the searched soil 

parameters of the three hydrological models using the multiple random number 

seeds (i.e., -1000, -950, and -750) for the WG 82 site. 
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However, the model parameter distributions of SWAP have multiple modes 

indicating local minima that can be derived by the modified-microGA in the search 

space. Thus the local minima that significantly deviated from the referenced parameter 

ranges (UNSODA [Leij et al., 1999], Soil Survey [Wösten et al., 1994], Rosetta [Schaap 

et al., 1999], and Clapp and Hornberger table [Clapp and Hornberger, 1978]) of the 

sandy loam soil type (predominant at the WG 82 site) were excluded. Also, we found a 

response time lag of 1 day between observed precipitation and simulated soil moisture 

that could be attributed to the difference of actual measurement time during the day and 

model time steps (starting at 12 midnight) at the WG 82 site. Figures 2.6a-c show the 

comparison of measured and simulated surface soil moisture dynamics with ±95 PCI 

after a 1-day lag was corrected. The simulated soil moisture dynamics from the three 

models agreed well with the measurements.  
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Figure 2. 6 In situ and simulated surface soil moisture (0~5 cm) dynamics using the 

optimized soil parameters derived by the modified-microGA for (a) SWAP, (b) 

Noah LSM, and (c) CLM at the WG 82 site during calibration and validation 

periods. 
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Statistical analyses demonstrated that CLM performed better than others during 

the calibration and validation period as shown in the figures. The outputs of SWAP 

showed more uncertainties compared to the results of  the other two models under the 

prevailing condition (e.g. relatively small precipitation and high solar radiation) as 

shown in Figure 2.6 (DOY: 222 ~ 238). SWAP tends to overestimate the surface soil 

moisture when the soil is relatively dry along with small precipitation and high 

evapotranspiration rate estimated using Penman-Monteith method [Baroni and 

Tarantola, 2012]. We also found that the SWAP results matched the measurements 

during DOY 216 ~ 221 (above 0.125 m3 m-3, wet condition) with higher correlation 

(R=0.945) than others (R=0.911 for Noah LSM and R=0.889 for CLM) at the WG 82, 

while the CLM model identified better during the period of DOY 222 ~ 238 (below 

0.125 m3 m-3, dry condition). In general, CLM showed a good performance for this site 

considering the water table dynamics as a bottom boundary condition, but the model 

underestimated the surface soil moisture during wet conditions that can be associated to 

more moisture loss through evaporation. Noah LSM appeared to somewhat overestimate 

the surface soil moisture because of the thick top soil layer, but the model showed a 

similar tendency as CLM compared to the field observations (Figure 2.6b). Compared to 

the results at LW 13, the parameter uncertainty boundaries of each model were smaller, 

because of the low variability of surface soil moisture estimations. It may indicate that 

the relatively low rainfall amounts at the WG 82 site (semi-arid) cause the low surface 

soil moisture variability in modeling.  
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For the longer period simulation at SCAN 2023 site, the three models integrated 

with the modified-microGA predicted the surface soil moisture well representing a good 

agreement with the measurements (R: 0.75, RMSE: 0.052, and MAE: 0.039 for SWAP; 

R: 0.89, RMSE: 0.033, and MAE: 0.023 for Noah LSM; R: 0.78, RMSE: 0.046, and 

MAE: 0.035 for CLM). Yet the predictions from the models indicated different trends 

under the different land surface wetness conditions defined with the same thresholds of 

the LW 13 site (Figure 2.7). SWAP shows good response to precipitation events in 

predicting the surface soil moisture peaks better than others during the wet condition, 

whereas the simulated surface soil moisture decreased rapidly during the dry-down 

phase (i.e., moderately wet and dry conditions) after the precipitation event. On the other 

hand, CLM and Noah LSM showed best performance in moderately wet and dry 

condition, respectively. Evaporation in CLM is very sensitive to the precipitation on 

short time scale (the case of LW 13) so that the evaporation removes soil water from the 

top soil layer. This is the reason why CLM predicted well the low surface soil moisture 

during dry condition at the LW 13 site. In contrast, on long time scale, more soil water 

can be retained from previous precipitation events that may cause the overestimation of 

surface soil moisture. 
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Figure 2. 7 In situ and simulated surface soil moisture (0~5 cm) dynamics using the 

optimized soil parameters derived by the modified-microGA for SWAP, Noah LSM, 

and CLM at the SCAN 2023 site. 

 

 

Overall, the predicted surface soil moisture dynamics using the three models 

based on the optimized parameters derived by the modified-microGA matched well with 

the measurements in two different hydro-climatic regions. However, the measured soil 

moisture dynamics could not be captured adequately by the parameter uncertainty 

boundaries of SWAP and Noah LSM. Furthermore, the performances of different 

hydrological models in estimating the surface soil moisture showed different trends 

under various wetness conditions and different hydro-climatic conditions. It infers that 

uncertainties due to the different model structures are reflected significantly in model 

outputs. 
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2.4.2 Estimation of Effective Surface Soil Moisture and Its Uncertainty 

In order to reduce bias due to model structural uncertainties (i.e., different model 

parameterizations, governing equations, etc.) mentioned above, we assigned a single (S-

BMA) and multiple (M-BMA) sets of weights derived by the BMA scheme to the 

individual surface soil moisture predictions. A single set of weight (
1,...,i Jw 

) was 

estimated based on the simulation results from the three models for the LW 13 site 

during the whole simulation period as shown in Table 2.3.  

 

 

Table 2. 3 A single and multiple sets of the Bayesian Model Average (BMA) weights 

for the three hydrological models at the LW 13 site. 

BMA set 

Weights 

SWAP (i=1) Noah LSM (i=2) CLM (i=3) 

S-BMAa  (
1,...,i Jw 

) 0.291 0.005 0.704 

     

M-BMAb 

( 1,...,

1,...,

g G

i Jw 


) 

g=1 0.533 0.466 0.001 

g=2 0.001 0.293 0.706 

g=3 0.008 0.002 0.990 

S-BMAa means a single set of the weights for the three models (i=1,2,3). 

M-BMAb means multiple sets of the weights corresponding to three land surface wetness 

conditions (g=1,2,3 represent the wet, moderately wet, and dry conditions, respectively).  

 

Note that G and J are the number of land surface wetness conditions and hydrological 

models, respectively. 
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The highest weight (0.704) was assigned to CLM, which showed the best model 

performance (R: 0.837, RMSE: 0.047, MAE: 0.036) over the simulation period, while 

SWAP (R: 0.789, RMSE: 0.053, MAE: 0.044) and Noah LSM (R: 0.806, RMSE: 0.054, 

MAE: 0.046) had relatively lower weights of 0.291 and 0.005, respectively. The 

aggregated surface soil moisture dynamics using a single set of weights (R: 0.823, 

RMSE: 0.040, and MAE: 0.061) for the three models matched better with the 

measurements than SWAP and Noah LSM predictions in Figure 2.8.  

 

Figure 2. 8 In situ and simulated surface soil moisture using a single (S-BMA, 

dotted line) and multiple (M-BMA, black line) sets of the BMA weights and ±95 

PCI at the LW 13 site. 
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However, there was no significant improvement of the single-weighted 

prediction compared to CLM prediction. This was because the single-weighted based 

surface soil moisture dynamics were considerably biased towards the CLM results 

assigned with the highest weight uniformly along the whole period and did not reflect a 

good performance of other models during a certain condition (e.g. wet and moderately 

wet). As shown in Figure 2.4, the SWAP model performed better during DOY 170 ~ 177 

(defined as the wet condition), while Noah LSM and CLM predicted the surface soil 

moisture estimates better under the moderately wet and dry conditions, representing the 

advantages and disadvantages of each model structure. These findings demonstrated that 

we need to classify the simulation period for assigning different weights to the model 

predictions based on the land surface wetness conditions. For these reasons, we 

categorized the in situ measurements using the K-mean clustering algorithm as the wet 

(above 0.280 m3 m-3), moderately wet (0.190 ~ 0.280 m3 m-3), and dry (below 0.190 m3 

m-3) conditions, respectively. Then, we estimated multiple sets of the weight (i.e. 1

1,...,

g

i Jw 



-wet, 2

1,...,

g

i Jw 


-moderately wet, and 3

1,...,

g

i Jw 


-dry conditions) based on the categorized soil 

moisture measurements for the LW 13 site (see Table 2.3). The highest weight (0.533) 

was assigned to the SWAP results during the wet condition at the LW 13 site, while 

CLM had the highest weights (0.706 and 0.990) during the moderately wet and dry 

conditions, respectively. These multiple weight values can be seen as the performance of 

individual models based on the advantages of each model structure. The effective 

(multiple-weighted) surface soil moisture dynamics showed a better match with the 

measurements (R: 0.906, RMSE: 0.028, and MAE: 0.057) in Figure 2.8. Compared to 
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the single-weighted results (Figure 2.8), the BMA scheme based on the multiple sets of 

weight (based on wetness thresholds) also improved the surface soil moisture 

estimations and their uncertainties, especially on DOY 170-177. Thus, our findings 

demonstrated that the BMA-based multi-model simulation approach with multiple sets 

of weights is more suitable for addressing model structural uncertainties than those with 

a single set of weights.  

 

Table 2. 4 A single and multiple sets of the Bayesian Model Average (BMA) weights 

for the three hydrological models at the WG 82 site. 

BMA set 

Weights 

SWAP (i=1) Noah LSM (i=2) CLM (i=3) 

S-BMAa  (
1,...,i Jw 

) 0.001 0.053 0.946 

     

M-BMAb 

( 1,...,

1,...,

g G

i Jw 


) 

g=1 0.936 0.001 0.063 

g=2 0.002 0.002 0.996 

S-BMAa means a single set of the weights for the three models (i=1,2,3). 

M-BMAb means multiple sets of the weights corresponding to two land surface wetness 

conditions (g=1,2 represent the wet and dry conditions, respectively).  

 

Note that G and J are the number of land surface wetness conditions and hydrological 

models, respectively. 
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We estimated a single set of weights (
1,...,i Jw 

) for the whole simulation period for 

the WG 82 site as shown in Table 2.4. The highest weight value (0.946) was assigned to 

the CLM results that show the best prediction (R: 0.856, RMSE: 0.014, and MAE: 0.011) 

and then in turn the low weights of 0.001 and 0.053 were assigned to SWAP and Noah 

LSM, respectively. The aggregated (single-weighted) surface soil moisture dynamics 

agreed with the measurements, but they were also biased to the CLM results 

representing that the predictions have uncertainties during the wet period (DOY 216 ~ 

221, Figure 2.9) as shown in the results of LW 13 site.  

 

Figure 2. 9 In situ and simulated surface soil moisture using a single (S-BMA, 

dotted line) and multiple (M-BMA, black line) sets of the BMA weights and ±95 

PCI at the WG 82 site. 
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Thus, we categorized the simulation period into the two classes (i.e. wet and dry 

conditions) and estimated the two sets of the weight ( 1

1,...,

g

i Jw 


-wet and 2

1,...,

g

i Jw 


-dry 

conditions, see Table 2.4) for the WG 82 site. As shown in previous section, the 

simulated surface soil moisture dynamics from the SWAP model were closer to the 

measurements during the wet condition, while CLM performed better along the dry 

period. Thus the highest weight values (0.936 and 0.996 for the wet and dry conditions) 

were assigned to the results of SWAP and CLM models, respectively. The aggregated 

surface soil moisture dynamics using multiple sets of weights (R: 0.903, RMSE: 0.012, 

and MAE: 0.008) identified better with the measurements than the individual models and 

single-weighted results. Further, a poor performance due to the structural errors of single 

model could be compensated by good performances of other models indicating that the 

measured soil moisture data were mostly located within the ±95 PCI.  
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Table 2. 5 A single and multiple sets of the Bayesian Model Average (BMA) weights 

for the three hydrological models at the SCAN 2023 site. 

BMA set 

Weights 

SWAP (i=1) Noah LSM (i=2) CLM (i=3) 

S-BMAa  (
1,...,i Jw 

) 0.204 0.650 0.146 

     

M-BMAb 

( 1,...,

1,...,

g G

i Jw 


) 

g=1 0.592 0.406 0.002 

g=2 0.432 0.125 0.443 

g=3 0.001 0.934 0.065 

S-BMAa means a single set of the weights for the three models (i=1,2,3). 

M-BMAb means multiple sets of the weights corresponding to three land surface wetness 

conditions (g=1,2,3 represent the wet, moderately wet, and dry conditions, respectively).  

 

Note that G and J are the number of land surface wetness conditions and hydrological 

models, respectively. 

 

We also tested our proposed approach using long period data (DOY 91-365) at 

SCAN 2023 site. The long period soil moisture measurements were categorized into the 

three classes (wet, moderately wet, and dry conditions) by the same range of the wetness 

conditions for LW 13 and multiple sets of weights were estimated using the BMA 

scheme (Table 2.5). The highest weights were assigned to SWAP (0.592 for wet 

condition), CLM (0.443 for moderately wet), and Noah LSM (0.934 for dry condition), 

respectively. The surface soil moisture prediction based on the multiple sets of weights 

showed better improvement (R: 0.940, RMSE: 0.025, and MAE: 0.018) compared to the 

individual model performances and single-weighted prediction (Figure 2.10). 
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Figure 2. 10 In situ and simulated surface soil moisture using a single (S-BMA, 

dotted line) and multiple (M-BMA, black line) sets of the BMA weights and ±95 

PCI at the SCAN 2023 site. 

 

 

Based on these findings, we suggest that model structural uncertainties can be 

addressed by the BMA-based multi-model simulation approach using multiple sets of 

weight corresponding to soil wetness conditions for the two different study sites. 

2.5 Conclusions 

Soil moisture dynamics estimated by different hydrological models are affected 

by their own model parameters and structures. Without identifying these uncertainties, 

the robustness of model outputs from various hydrological models may be elusive. Our 

study was focused on improving parameter and structural uncertainties caused by 

different hydrological models in predicting surface soil moisture. In this study, we 

adapted three different hydrological models (i.e. Noah LSM, SWAP, and CLM) for 

estimating surface (0-5 cm) soil moisture integrated with a modified-microGA 

(advanced version of original genetic algorithm (GA)) to search optimized model 
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parameters for each model. Here, we simulated the surface soil moisture dynamics using 

the optimized soil parameters of each model in a forward mode. In order to address the 

effects of model structural uncertainties, we applied a Bayesian Model Averaging (BMA) 

scheme to the multi model outputs based on the land surface wetness conditions. By 

aggregating the weighted model outputs for each model, the newly developed approach 

estimates the effective surface soil moisture dynamics and quantifies model parameter 

and structural uncertainties. To test our approach, we selected the Little Washita (LW 13 

and SCAN 2023) in Oklahoma (sub-humid) and Walnut Gulch (WG 82) in Arizona 

(semi-arid) sites under the two different hydro-climatic conditions.  

For the uncertainty analysis of soil parameters, we used the multi-population for 

the modified-microGA process with different random number seeds (-1000, -950, and -

750). Overall, the estimated parameter distributions for individual models at the LW 13 

and WG 82 sites were unimodal which represent the optimized soil hydraulic parameters. 

However, the (common) optimized parameters of the three different models at the study 

sites had variations under the similar modeling conditions (i.e., atmospheric forcings, 

soils, vegetations, etc.) indicating that the individual model performances were affected 

by their own model parameterization and structural uncertainties. 

We derived the surface soil moisture dynamics from the estimated soil 

parameters using the three models. Mostly, the simulated results of each model matched 

well with the measurements, but the SWAP and Noah LSM results still had uncertainties 

showing that a few soil moisture measurements were out of the uncertainty bounds at the 

LW 13 and WG 82 sites. Furthermore, the outputs from the three hydrological models 
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showed different model performance under the land surface wetness (i.e., wet, 

moderately dry, and dry) conditions depending on their inherent model structures. In 

general, the SWAP model performed better than other models during the wet condition, 

while CLM and Noah LSM predicted better during the dry period. Thus, we applied the 

BMA scheme to assign a single or multiple sets (corresponding to various land surface 

wetness conditions) of weights to each model output for the two study sites. The results 

showed that the effective surface soil moisture estimates based on multiple sets of 

weights were more identifiable with the measurements compared to both the original 

model and single-weighted outputs. It suggests that each model’s limitations under 

certain wetness conditions or hydro-climatic conditions can be compensated by other 

model strengths. Based on these findings, our proposed methodology can be useful for 

predicting the effective surface soil moisture estimates and better addressing model 

parameter and structural uncertainties in soil moisture modeling. Further, this multi-

model simulation approach will be applicable to other locations for forecasting soil 

moisture dynamics effectively using multiple sets of weights derived properly based on 

wetness conditions or several climate and physical properties. 
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CHAPTER III  

INFLUENCE OF LATERAL SUBSURFACE FLOW AND CONNECTIVITY ON 

SOIL WATER STORAGE IN LAND SURFACE MODELING2 

3.1 Synopsis 

Lateral surface/subsurface flow and their connectivity play a significant role in 

redistributing soil water which has a direct effect on biological, chemical, and 

geomorphological processes in the root zone (~1m). However, most of the land surface 

models (LSMs) neglect the horizontal exchanges of water at the grid or subgrid scales, 

focusing only on the vertical exchanges of water as one-dimensional process. To develop 

better hydrologic understanding and modeling capability in complex landscapes, in this 

study we added connectivity-based lateral subsurface flow algorithms in the Community 

Land Model (CLM). To demonstrate the impact of lateral flow and connectivity on soil 

water storage we designed three cases including: (1) complex surface topography only, 

(2) complex surface topography in upper soil layers and soil hydraulic properties with 

uniform anisotropy and (3) complex surface topography and soil hydraulic properties 

with spatially-varying anisotropy. The connectivity was considered an indicator of the 

variation of anisotropy in case 3, which was created by wetness conditions or 

geophysical controls (e.g., soil type, NDVI, and topographic index). These cases were 

                                                 

2 Reprinted with permission from “Influence of lateral subsurface flow and connectivity 

on soil water storage in land surface modeling” by Jonggun Kim and Binayak P. 

Mohanty (2016), J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024067, Copyright 

2016 American Geophysical Union. 
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tested in two study sites (ER 5 field and ER-sub watershed in Oklahoma) comparing to 

the field (gravimetric and remote sensing) soil moisture observations. Through the 

analysis of spatial patterns and temporal dynamics of soil moisture predictions from the 

study cases, surface topography was found to be a crucial control in demonstrating the 

variation of near surface soil moisture, but not significantly affected the subsurface flow 

in deeper soil layers. In addition, we observed the best performance in case 3 

representing that the lateral connectivity can contribute effectively to quantify the 

anisotropy and redistributing soil water in the root zone. Hence, the approach with 

connectivity-based lateral subsurface flow was able to better characterize the spatially 

distributed patterns of subsurface flow and improve the simulation of the hydrologic 

cycle. 

3.2 Introduction 

Lateral surface/subsurface flow is an important hydrologic process and a key 

component of the water budget. Through its direct impacts on soil moisture, it can affect 

water and energy fluxes at the land surface and influence the regional climate and water 

cycle [Gochis and Chen, 2003; Kumar, 2004]. Further, the lateral flow and its 

connectivity play significant role in redistributing soil water which have a direct effect 

on biological, chemical, and geomorphologic processes in the root zone [Lu et al., 2011; 

Western et al., 2001]. In spite of the importance of lateral flow, most of the land surface 

models (LSMs: Community Land Model (CLM), Noah Land Surface Model (Noah 

LSM), Variable Infiltration Capacity (VIC), etc.) neglect the horizontal exchanges of 
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water at the grid or sub-grid scales, focusing only on the vertical exchanges of water as a 

one-dimensional process. Surface routing models (e.g., River Transport Model, RTM) 

are already included to reflect the lateral movement of surface water in land surface 

modeling, but the lateral subsurface flow is excluded because the models generally 

assume that lateral transfers of subsurface moisture are fairly marginal in soil water 

budgets of a regional scale. Recently, 3-D hydrological surface-subsurface models were 

developed by coupling LSMs with distributed hydrological models to account for 

interactions between atmospheric, hydrological, and ecological processes 

(CATHY/NoahMP [Niu et al., 2014] and PARFLOW/CLM [Maxwell and Miller, 2005]). 

Although these hydrological models include a process for the lateral subsurface flow, 

they still have limitations for deriving lateral hydraulic parameters (e.g., lateral hydraulic 

conductivity) that might be related to connected patterns of subsurface properties. 

Furthermore, spatial variability of soil moisture in the unsaturated zone cannot be 

described successfully without relevant understanding of how the subsurface flow is 

distributed or connected vertically or laterally in complex landscapes [Hatton, 1998; 

Zhang et al., 1999; Jana and Mohanty, 2012a,b,c; Shen et al., 2013]. More realistic 

understanding of surface and subsurface water movement at large scales can be resolved 

through a hyper-resolution land surface modeling that allows for better representation of 

spatially heterogeneous land surfaces [Wood et al., 2011]. Thus, the lateral subsurface 

flow should be accounted for in hydrological modeling, characterizing vertical and 

lateral flow components effectively in the unsaturated zone.  
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Various studies have been conducted to account for the lateral flow in the 

unsaturated soil. Zaslavsky and Sinai [1981] explained a theory of unsaturated lateral 

flow with the major causes such as soil surface slope, anisotropy, and layering. 

Famiglietti and Wood [1994] developed a land surface modeling approach based on the 

TOPMODEL framework to address the impact of topographic configuration on soil 

moisture heterogeneity at a watershed scale. They showed a significant role of the 

topographic control in development of soil moisture heterogeneity and improved the 

simulation of hydrologic cycle using the modeling approach. Chen and Kumar [2001] 

explored the role of the topographic control in the seasonal and inter-annual variations of 

energy and water balances using statistical moments of topographic wetness indices and 

observed an improvement of stream-flow predictions. Gravity and gradients in matric 

potential are also critical mechanisms in the unsaturated zone, causing soil water 

movements from high to low potential [McCord and Stephens, 1987; Jana and Mohanty, 

2012a,b,c]. Water moving vertically through a heterogeneous soil profile can be 

influenced by the heterogeneity of soil hydraulic properties between soil layers, which 

can cause lateral flow at the interface [Zhu and Lin, 2009]. In process-based SVAT 

(Soil-Vegetation-Atmosphere Transfer) models, soil hydraulic properties (e.g., saturated 

soil water content, soil matric potential, and saturated hydraulic conductivity) are critical 

inputs to account for water movement in soil. The soil hydraulic properties are normally 

derived using several empirical equations (e.g., van Genuchten, Cosby, and Clapp and 

Hornberger) according to soil texture. Among the soil properties, an estimation of lateral 

hydraulic conductivity is more challenging because of the lack of available information. 
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Thus, anisotropy has been used to derive the lateral hydraulic conductivities from the 

relationship between vertical and lateral permeability because soil behaves as an 

anisotropic medium which can cause lateral subsurface flow [Zaslavsky and Sinai, 1981; 

Wang et al., 2011]. In the previous studies related to soil anisotropy, statistical or 

empirical anisotropy ratios were used at various scales [Chen and Kumar, 2001; Kumar, 

2004; Assouline and Or, 2006; Maxwell and Kollet, 2008]. However, available 

experimental data and information for the anisotropy ratio in unsaturated soils might be 

limited to be applied in heterogeneous landscapes of large land areas. In order to 

overcome the limitations, the anisotropy ratio can be derived by spatially distributed 

patterns of wetness condition or its dominant physical controls such as soil texture, 

vegetation (NDVI), and topographic index (TI) to characterize the spatial pattern of 

subsurface flow in the unsaturated zone [Chen and Kumar, 2001].  

A hydrologic connectivity has been proposed to address not only hydrologic flow 

paths but also spatial patterns of soil moisture variability at a catchment scale [Western 

et al., 2001; Hwang et al., 2009; Gaur and Mohanty, 2015]. The lateral connectivity is 

critically important for representing connected pathways of runoff in the landscapes and 

understanding movements of surface/subsurface flow [Mueller et al., 2007; Smith et al., 

2010]. Jencso et al. [2009] derived hydrologic connectivity between catchment 

landscapes and channel networks to identify runoff source areas based on the 

topographic characteristics. Hwang et al. [2012] found significant relationships between 

annual hydrologic metrics (e.g., runoff and ET) and HVG (Hydrologic Vegetation 

Gradient) used as an indicator for lateral hydrologic connectivity at a watershed scale. 
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Lateral subsurface flow connectivity can be derived from spatially distributed patterns of 

wetness condition or dominant physical factors and used to quantify the spatially varied 

anisotropy ratios in heterogeneous landscapes. In this study, we explored the influences 

of lateral subsurface flow and its connectivity on soil water storage in the unsaturated 

zone using a land surface model (Community Land Model: CLM). None of previous 

studies have considered spatially varying anisotropy ratios derived from lateral 

connectivity to consider the lateral subsurface flow in hydrological modeling.  

Thus, the objectives of this study are: 1) to develop better hydrologic 

understanding and modeling capability in complex landscapes using a connectivity-

based lateral subsurface flow algorithm and 2) to demonstrate the subsurface flow 

variability effectively using spatially distributed patterns of root zone wetness conditions 

and its physical controls at field and sub-watershed scales. Although this study was 

focused on smaller scale hydrological processes compared to large scale climate models, 

it still can provide insights for large scale land surface modeling to enhance their 

capability. In this study, the concept of lateral flow was used for the unsaturated zone 

that can be governed by topography and gradients in matric potential. 

3.3 Methodology 

3.3.1 Study Area  

El-Reno site 5 (ER 5: field scale) and El-Reno sub-watershed (ER-sub: sub-

watershed scale) located in the North Canadian River basin in Oklahoma were selected 

to evaluate the proposed approach in this study (Figure 3.1). The ER 5 site (area: 0.8 km 
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× 0.8 km) is located within the ER-sub boundary (area: 27 km2). These sites have a sub-

humid climate with an average annual rainfall of approximately 805 mm. Daily-mean 

maximum temperature is 34˚C in July with annual-mean temperature of 15˚C. The 

topography of the ER 5 is generally flat with average slopes less than 4.0%, while the 

ER-sub site has a variety of slopes from 11.0% to 0.001%. The ER 5 site has a native 

grass with 1m root depth and mostly silty loam across the study domain. Vegetation in 

the ER-sub ranges from short and tall grasses (predominant) and forest in the north and 

central area to cropland in the south. Various soil types (e.g., silty loam (dominant), 

loam, and clay loam) are represented across the region.  

Our proposed approach was validated with daily in situ soil moisture (49 

sampling points) measured in the top 5 cm soil (June 18th – July 17th) and in depths of 0-

15, 15-30, 30-45, 45-60, and 60-90 cm (July 6th and July 15th) during the Southern Great 

Plains experiment 1997 (SGP97) [Mohanty et al., 2002] for the ER 5 site. Using a truck 

mounted Giddings probe, soil samples between the land surface and 90 cm depth were 

collected on a 7 × 7 square sampling grid (100 m spacing between sampling points) 

across the ER 5 field (Figure 3.1(a)). For the ER-sub site, we validated model 

predictions with Electronically Scanning Thin Array Radiometer (ESTAR) pixel-based 

(800 × 800 m) near surface soil moisture products [Jackson et al., 1999] obtained during 

Southern Great Plains Experiment 1997, SGP97 (June 18th – July 17th) (Figure 3.1(b)).  
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Figure 3. 1 Study sites for (a) El Reno 5 (ER 5) matching the ESTAR remote 

sensing footprint with multi-depth ground based soil water measurements using 

truck-mounted Giddings probe (100 m spacing) and (b) El Reno sub-watershed 

(ER-sub) in Oklahoma. 

 

 

3.3.2 Description of Model Condition and Forcing Data 

Community Land Model (CLM, Oleson et al., [2010]) serves as the dynamic 

land surface model component of Community Earth System Model (CESM, Oleson et 

al., [2010]), which consists of various processes such as biogeophysics, hydrologic cycle, 

biogeochemistry, and dynamic vegetation. The model can be run in offline mode with 
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prescribed forcing data or in a mode fully coupled to CESM with output from 

Community Atmosphere Model (CAM, Collins et al., [2006]) which is the atmospheric 

component of CESM. CLM simulates surface and subsurface runoff based on the simple 

TOPMODEL-based runoff model (SIMTOP) [Niu et al., 2005]. The model considers 

water table dynamics as the lower boundary using the SIMple Groundwater Model 

(SIMGM, Niu et al., [2007]). Bare soil evaporation is simulated based on the Philip and 

De Vries [1957] diffusion model, and transpiration process uses an aerodynamic 

approach based on the Biosphere Atmosphere Transfer Scheme (BATS) model 

[Dickinson et al., 1993] and a stomatal resistance from the LSM model [Bonan, 1996]. 

River Transport Model (RTM) is coupled to CLM for the runoff routing process over a 

domain [Oleson et al., 2010]. In this study, we used CLM4.0 and ran the model with 

RTM in offline mode. The soil column in CLM consists of ten soil layers with the 

thickness of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33 and 113.7 cm (total 

depth of 343 cm). Soil water flow in CLM is simulated by the modified one-dimensional 

(1-D) Richards’ equation [Zeng and Decker, 2009]. CLM has been enhanced to improve 

hydrological cycle (water balance), vegetation dynamics, and computational 

performance in the last decade. Nevertheless, the model still simplifies complex 

processes for the root zone soil hydrology considering only vertical flow using a 1-D 

Richards’s equation. In this study, we modified soil water flow process including a 

lateral flow component in the unsaturated zone to improve the model performance (as 

described in section 2.3). 



 

65 

 

We ran the model in offline mode with atmospheric forcing data (precipitation, 

temperature, specific humidity, wind speed, surface air pressure, and solar radiation) 

collected from North American Land Data Assimilation System (NLDAS) which were 

applied uniformly for the study sites. In this study, we generated model input at spatial 

resolutions of 50 m and 100 m for the ER 5 site and the ER-sub, respectively. As 

required input datasets, land cover, soil types with depth, and topographic information 

were obtained from NLCD (National Land Cover Database), SSURGO (Soil Survey 

Geographic database), and NED (National Elevation Dataset), respectively. The bottom 

boundary condition of the model is decided with the water table dynamics calculated 

from aquifer water storage via the SIMGM [Niu and Yang, 2007], and then the model 

performed a spinning up to initialize the soil profile for the initial condition. In CLM, 

soil hydraulic properties are determined based on percentages of clay and sand using an 

empirical equation developed by Clapp and Hornberger [1978]. However, CLM tend to 

simulate the soil moisture lower than the observations in this study because the 

parameters estimated from the model input (percentages of clay and sand) for the ER 5 

site deviated from the referenced parameter ranges (Clapp and Hornberger table) of silty 

loam soil (predominant in the ER 5 site). Thus, we adjusted the parameters (trial and 

error) to satisfy the possible ranges of parameters and applied in CLM and modified 

CLM. 

3.3.3 Lateral Subsurface Flow Process 

CLM (based on one-dimensional simulation) assumes that soil water drains only 

vertically to the water-table and there are no interactions between parallel soil columns. 
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To improve the simplified subsurface flow process in the unsaturated zone by CLM, we 

modified the one-dimensional vertical soil water flow with three-dimensional flow based 

on Richards’s equation to consider the lateral subsurface flow in the model. The three-

dimensional water flow can be expressed as follows, 
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where θ is the soil moisture content, t is time, q is the water flux in soil, Xc is {x,y,z}, x 

and y represent the horizontal directions, z represents the vertical direction, Q is a sink 

term (evapotranspiration (ET) loss), kXc is the unsaturated hydraulic conductivity in the 

direction Xc, ψ is the soil matric potential, ψE is the equilibrium (E) soil matric potential, 

which means there exists a constant hydraulic potential above the water table, when the 

water table is within the specified soil column/depth. 

 

To estimate soil moisture content at each layer, the model solves a numerical 

solution based on Eq. 3.1. A new lateral flow term (qh) is added into the numerical 

solution of the model, and then the fluxes are calculated at time n+1 as follows, 
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where Qh,i is a sink (e.g., ET loss), h and i represent the number of soil columns (i.e., x 

and y direction) and layers (i.e., z direction), respectively. 

 

The vertical and lateral fluxes in Eq. 3.2 are calculated as follows (Eqs. 3.3 and 3.4), 
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where kV and kH represent vertical and lateral hydraulic conductivity (LT-1), respectively.  

 

To investigate the influences of lateral subsurface flow and its connectivity on 

soil water storage we designed three cases (Figure 3.2). Case 1 is to determine the lateral 

subsurface flow by slope of surface topography for all soil layers. In case 2 and 3, the 

lateral subsurface flow is estimated by topography in the upper soil layers and 

heterogeneous hydraulic properties in the lower soil layers. One of the most challenging 

parameters in case 2 and 3 is lateral hydraulic conductivity (kH) which should be 
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identified appropriately to consider the lateral movement of soil water in the unsaturated 

zone. The term anisotropy was employed to derive the parameter (kH) using uniform and 

spatially-varying ratios (connectivity-based) for case 2 and 3, respectively. Detailed 

explanations for each case are discussed in the following sections. 

To evaluate the performance of modified model predictions for the study cases, 

we selected three performance criteria such as Pearson’s correlation (R), Root Mean 

Square Error (RMSE), and Mean Absolute Error (MAE). 

 

 
Figure 3. 2 Three study cases designed for the lateral subsurface flow process. 

Anisotropy (α) is used to derive the saturated hydraulic conductivity in vertical and 

lateral directions as uniform (case 2) or connectivity-based spatially-varying (case 3) 

ratio. 

 

 

3.3.3.1 Case 1: Topography 

Surface topographic configuration plays a significant role in determining the soil 

water flow vertically and laterally near the surface indicating that the changes of flow 
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direction based on the topography coincide with the changes in the rate of moisture 

content [Chen and Kumar, 2001; Fan et al., 2007]. Zaslavsky and Sinai [1981] 

developed a simple relationship between the vertical and lateral component of soil water 

movement using the slope of surface topography and found that the lateral component 

was proportional to the slope and the vertical component of flow. In case 1, we assumed 

that the lateral subsurface flow moves parallel to the slope of surface topography. The 

lateral flux (qh) can be estimated based on the relationship using surface slope as follows 

(Eq. 3.5), 
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where β is the slope angle. 

 

In addition, flow directions derived from digital elevation method (DEM) using a 

single-direction algorithm (D8) in GIS hydrologic modeling were included to determine 

the direction of flow out of each soil column. Thus, the soil water flow process in CLM 

was modified using Eq. 3.5 with surface slope and flow direction for all soil layers to 

evaluate the influence of surface topography on the lateral subsurface flow in the 

unsaturated zone (Figure 3.2 (case 1)).  
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3.3.3.2 Case 2: Topography and Heterogeneous Hydraulic Properties with Uniform 

Anisotropy 

Surface topography can be a dominant factor to determine the lateral component 

of subsurface flow near the slope surface, while the lateral subsurface flow in deep soil 

layers can be more influenced by heterogeneity of hydraulic properties [Lu et al., 2011]. 

Thus, the two hydrologic processes (surface topography for 1st to 3rd layers and 

heterogeneous hydraulic properties for 4th to 10th layers) were considered together in 

case 2 (Figure 3.2). To take into account the lateral subsurface flow based on 

heterogeneous hydraulic properties, vertical and lateral hydraulic conductivity must be 

determined across a domain. However, the lateral hydraulic conductivity for spatially 

heterogeneous landscapes is unavailable and difficult to measure, especially for large 

areas. Due to the limitations, an anisotropy ratio has been proposed to derive the 

saturated hydraulic conductivity in vertical and lateral directions that is defined as a 

directionally dependent property of soil [Chen and Kumar, 2001; Choi et al., 2007]. The 

lateral saturated hydraulic conductivity (Ks,H) for each soil layer can be derived by 

multiplying the vertical saturated hydraulic conductivity (Ks,V) with the anisotropy ratio 

(α) as,   

 

, ,( ) ( )s H s VK z K z   (3.6) 

 

The anisotropy ratio (α) can be obtained from published results or via model 

calibration through sensitivity analysis. In this study, we run the model adjusting the 
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anisotropy ratio by trial and error within the possible ranges from the literature [Chen 

and Kumar, 2001] that compared to the soil moisture measurements for each depth. In 

turn, the appropriate ratio selected was applied to estimate the lateral hydraulic 

conductivity uniformly across the study sites in the modified CLM model.  

 

3.3.3.3 Case 3: Topography and Heterogeneous Hydraulic Properties with 

Connectivity-based Spatially-varying Anisotropy 

In the previous section, the anisotropy ratio (α) was applied with a constant value 

across the whole domain. However, anisotropy can be varied for different directions in 

accordance with various landscape conditions such as soil, vegetation, and topography 

configuration [Chen and Kumar, 2001]. In case 3, we added a connectivity-based lateral 

subsurface flow algorithm in the subsurface process of CLM to quantify the spatially 

varying anisotropy ratio for the two study sites. Hydrologic connectivity is critically 

important for understanding spatial patterns of subsurface flow and can play a significant 

role in redistributing soil water in the unsaturated zone. It represents how a certain cell in 

a domain is connected to another cell through an indicator map. The indicator map (I) is 

used to identify the spatial patterns (connectivity) of the variable of interest (u, e.g., 

wetness condition or physical controls) above a threshold value (s) in the hydrologic 

connectivity process (Eq. 3.7). The connectivity is calculated based on the indicator map 

using the connectivity function (τ(d)) expressed as the probability that a certain cell (x) 

in a domain (X) is connected to another cell with a distance (x+d) in X (Eq. 3.8). 
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Spatially-varying anisotropy can be quantified using the lateral connectivity 

pattern derived by describing spatially distributed patterns of wetness conditions (e.g., 

soil moisture measurements) for the ER 5 site and various physical controls (e.g., soil 

type, vegetation, topography) for the ER-sub site.  

The connected patterns of wetness conditions above a certain threshold can be 

considered as preferred flow paths resulting from connected pixels or concentrated 

subsurface flow paths, assuming that higher wetness regions produce greater and faster 

flow in the unsaturated zone [Western et al., 2001]. For the ER 5 site, the near surface 

soil moisture (~ 5 cm) observed on 5 days (June 19th, 25th, July 2nd, 6th, and 12th in 1997) 

with no rainfall were used to investigate the spatial patterns of soil moisture (wetness) 

(Figure 3.3(a)). 
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Figure 3. 3 (a) In situ measurements at top 5 cm (pixel size: 100 × 100 m), (b) 

indicator maps for various thresholds of degree of soil wetness (θ/θs) on sampling 

dates, and (c) hydrologic connectivity for 5 sampling dates. Optimum threshold 

values for daily soil wetness were identified based on visual examination of the 

connectivity function vs. separation distance plots. Note that selected red boxes 

around indicator maps correspond to the optimum thresholds selected from the 

connectivity functions, representing distinct connected patterns on various 

sampling dates. 
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Table 3. 1 Thresholds of wetness (s) of the near surface soil moisture measurements 

for the ER 5 site. 

 Thresholds of wetness 

Date 30% 50% 70% 90% 

6 / 19 0.40 0.44 0.48 0.53 

6 / 25 0.23 0.29 0.35 0.41 

7 / 02 0.30 0.34 0.39 0.44 

7 / 06 0.31 0.35 0.38 0.42 

7 / 12 0.26 0.32 0.38 0.44 

 

 

Indicator maps (binary maps coded 0 or 1) for 4 different thresholds of wetness 

(30, 50, 70, and 90%) were then created using the soil moisture measurements indicating 

that pixels of soil moisture above the thresholds are assigned ‘1’ and others are assigned 

‘0’ as shown in Figure 3.3(b) and Table 1. Using the indicator maps representing various 

connected patterns of soil moisture, we calculated the hydrologic connectivity for each 

map to find an optimum threshold value (or indicator map) that reflects the soil moisture 

connectivity well for the ER 5 site (Figure 3(c)) following the analysis in Western et al. 

[2001] study. The selected indicator maps for the 5 days (red boxes in Figure 3.3(b)) 

were combined to consider the possible patterns from the different measurement days 

and determine how the lateral flow can be distributed across the domain. In turn, we 

derived spatially-varying anisotropy ratio maps in 8 directions through assigning the 

ratios ranging from 30 to 0.01 according to the combined indicator map ranging from 0 

to 5 (Figure 3.4).  
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Figure 3. 4 Spatially-varying anisotropy ratio maps (pixel size: 100 × 100 m) (in 8 

directions) derived from the connectivity patterns for the near surface soil layers 

(1st to 3rd) by combining optimum indicator maps for all sampling dates. Similar 

maps of the other layers (not shown) were derived from the soil moisture measured 

at deeper soils (up to 90cm). 

 

 

The possible ranges of the anisotropy ratio were obtained from the literature and 

the numerical experiments conducted in previous section for the study site. In general, 

hydraulic conductivity in lateral directions is higher than that in vertical directions, but 

this is not always true because the unsaturated zone is highly complex with various flow 

processes such as preferential flow (macropore flow) which might cause soil water 

movement quickly in vertical direction (α < 1) [Dabney and Selim, 1987]. The spatially-
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varying anisotropy ratio maps for the upper soil layers (1st to 3rd layers) were generated 

using the near surface soil moisture measurement. For the deep soil layers (4th ~ 10th), 

the anisotropy ratios were derived from the soil profile measurements (0-15, 15-30, 30-

45, 45-60, and 60-90 cm) in a similar way. However, the measurements for deep soil are 

available only for two days (July 6th and 15th) during the SGP 97 campaign period. Thus, 

indicator maps for 5 thresholds of wetness (40, 50, 60, 70, and 80%) were estimated 

(Table 3.2) and combined by adding their binary values to represent the spatially 

distributed soil moisture patterns and quantify the anisotropy ratios. The spatially-

varying anisotropy ratios were then estimated based on the combined map for each soil 

layer. Thus, the lateral component of subsurface flow was calculated using the 

anisotropy ratios in the modified CLM for the ER 5 site.  

 

Table 3. 2 Thresholds of wetness of the root zone soil moisture measurements with 

depth for the ER 5 site. 

 Thresholds of wetness 

Depth 40% 50% 60% 70% 80% 

0 – 15 0.35 0.38 0.41 0.45 0.48 

15 – 30 0.30 0.31 0.33 0.34 0.35 

30 – 45 0.21 0.24 0.27 0.29 0.32 

45 – 60 0.32 0.34 0.35 0.36 0.38 

60 – 90 0.25 0.27 0.30 0.32 0.34 
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In addition to the wetness condition (soil moisture), various physical controls 

such as soil, vegetation, and topographic configuration have been identified as dominant 

controls on the variability of soil moisture at watershed scales [Mohanty and Skaggs, 

2001; Joshi and Mohanty, 2010; Gaur and Mohanty, 2013]. These factors can be also 

used to describe how soil water flows and redistributes in heterogeneous landscapes with 

regard to the anisotropy. For example, the clay content in soil has a significant effect on 

anisotropy due to its low permeability retaining more water in soil. Root density in 

vegetation area could be also related to anisotropy in soil, leading to non-uniform lateral 

hydraulic conductivity [Yang and Musiake, 2003]. The spatial pattern of vegetation 

density within a watershed is a good estimator for spatial patterns of root zone moisture 

dynamics and lateral connectivity within watersheds [Hwang et al., 2009]. In this study, 

soil moisture measurements with depth are not available for the ER-sub site, hence we 

derived the subsurface connectivity patterns using the dominant physical controls 

(percentage of clay and sand, NDVI, and Topographic Index) for quantifying the 

anisotropy ratios (Figure 3.5(a)-(d)). 
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Figure 3. 5 Dominant physical controls ((a) NDVI, (b) %Clay, (c) %Sand, and (d) 

Topographic Index) and (e-f) their connectivity functions for the ER-sub site. 

Thresholds values for different physical controls were defined based on its range 

and numerical analyses. Optimum threshold values for individual physical controls 

were identified based on visual examination of the connectivity function vs. 

separation distance plots. 
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Recent studies explored the combined effects of topography and vegetation on 

connectivity of runoff source areas and shallow groundwater and showed the potential 

for improving the estimation of hydrologic connectivity [Mayor et al., 2008; Hwang et 

al., 2009; Emanuel et al., 2014]. Thus, we considered connected patterns of the 

combination of physical controls as landscape descriptors or potential predictors for 

redistribution of soil moisture in the unsaturated zone. Using the connectivity function, 

we found an optimum threshold for each variable reflecting connected patterns across 

the ER-sub site (Figure 3.5e-h) and generated their indicator maps using Eq. 3.8. In turn, 

the indicator maps for the physical controls were combined to reflect the effects of 

physical controls jointly on hydrological processes that represents unique configurations 

of the physical components like the concept of hydrological response units (HRUs) 

[Flügel, 1995] as expressed in Eq. 3.9. 

 

(% ) (% ) ( ) ( )CombinedMap I clay I sand I NDVI I TI     (3.9) 

 

where, I(%clay), I(%sand), I(NDVI), and I(TI) represent the indicator maps (binary maps) 

for the percentage of clay and sand, NDVI ((RNIR-Rred)/(RNIR+Rred)), and Topographic 

Index (TI, Ln(a / tanβ)), respectively, RNIR and Rred are the reflectance of Near InfraRed 

(NIR) radiation and visible red radiation, respectively, a represents the upslope area, and 

tanβ is the local down slope. The physical controls may not contribute equally to 

describing the soil moisture variability in the unsaturated zone, but in this study we 

assumed that the variables have equal effects on hydrological processes because it is 
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difficult to identify which physical control contributes more to the redistribution of 

subsurface soil moisture that can vary with complex landscape characteristics. The 

spatially-varying anisotropy ratio maps for each soil layer were then estimated for the 

ER-sub (Figure 3.6) and applied in the modified CLM model to estimate the lateral 

component of subsurface flow. 

 

 

Figure 3. 6 (a) Optimum indicator maps of various physical controls (NDVI, 

TI, %Clay, %Sand) for various soil layers (1st – 10th), (b) combined indicator maps 

for each soil layer, and (c) corresponding spatially-varying anisotropy ratio maps 

(pixel size: 100 × 100 m) at the ER-sub site. 
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3.4. Results and Discussion 

CLM was modified through three different cases designed in this study taking 

into account the effects of lateral subsurface flow and its connectivity on soil water 

storage in the unsaturated zone. In order to validate the proposed approach, the simulated 

near surface and root zone (up to 90 cm) soil moisture using the modified CLM model in 

the three cases were compared to that of original CLM model and observations at the 

two study sites (field and sub-watershed scale). 

 

3.4.1 Field Scale (El-Reno Site 5) 

Near surface and root zone soil moisture was simulated using the modified model 

including the lateral subsurface flow based on three different cases at the ER 5 site. 

Figure 3.7 shows the comparison of observed and simulated root zone soil moisture 

using the original model and modified model for the three cases with depth (0 ~ 15, 15 ~ 

30, 30 ~ 45, and 45 ~ 90 cm) on July 6th 1997. Although the study site has almost 

uniform land cover and soil type, the observations for all depths showed the variability 

in the soil moisture distribution that can be attributed to the influence of lateral 

subsurface flow (Figure 3.7(a)).  
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Figure 3. 7 Comparison of the root zone soil moisture of (a) ground observation 

(pixel size: 100 × 100 m), (b) original CLM model, and modified CLM model (pixel 

size: 50 × 50 m) through (c) case 1, (d) case 2, and (e) case 3 at the ER 5 site, and (f) 

differences between the original and modified CLM model of case 3. 

 

However, the original model output represented almost uniform patterns across 

the site because one-dimensional model estimates the root zone soil moisture identically 

under the same input data (e.g., vegetation and soil), ignoring the interactions between 

soil columns (Figure 3.7(b)). When we included the lateral flow component based on the 

slope, the modified model (case 1) showed spatially distributed soil moisture patterns 

indicating higher moisture content on the area of low elevation (Figure 3.7(c)). This was 

because the modified model simulated the root zone soil moisture considering that soil 

water flows from the upstream to the downstream according to the flow direction as the 

lateral subsurface flow.  
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Figure 3. 8 Comparison of the simulated root zone soil moisture using the original 

and modified model against the observations; (a) case 1, (b) case 2, and (c) case 3 in 

July 6th and (d) case 3 in July 15th for the ER 5 site. 

 

We also confirmed an improvement of describing the soil moisture variability 

with the lateral subsurface flow in Figure 3.8(a) which shows the comparisons of 

simulated root zone soil moisture using the original and modified model against the 

observations with depth. The original model showed the uniform patterns of root zone 

soil moisture across the domain, while the modified model (case 1) showed the variation 

in root zone soil moisture indicating small improvement compared to the original model, 
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especially at the depth of 0 ~ 30 cm. Based on the results of case 1, we found that the 

subsurface flow prediction can be improved by considering the lateral subsurface flow 

based on the topography, but there was still uncertainty  predicting the root zone soil 

moisture in deep soil layers (30 ~ 45 and 45 ~ 90 cm) causing overestimations for the 

study site. It can be inferred that considering the surface topography only is not enough 

to account for the root zone soil moisture variability in deep soil because surface and 

subsurface topography may differ and the lateral subsurface flow in deep soil layers may 

be governed more by heterogeneous hydraulic properties.  

In case 2, the lateral flow component was estimated by topography for the upper 

layer (1st to 3rd) and heterogeneous hydraulic properties with uniform anisotropy for the 

lower layers (4th to 10th) together. In this study, we performed the numerical experiments 

to find a proper (optimum) anisotropy ratio (α) within the possible range (0.01 ~ 30) for 

the study site. When the anisotropy ratio of 0.05 was applied, the model output (soil 

moisture with depth) was most similar to the observations through the numerical 

experiments for the ER 5 site. The ratio was applied uniformly across the domain to 

estimate the lateral hydraulic conductivity. The modified model (case 2) also predicted 

the root zone soil moisture better than the original model (Figure 3.7(d)). Figure 3.8(b) 

shows the predicted root zone soil moisture using the modified model against the multi-

depth ground-based observation for all the grid cells. The results of the case 2 were 

slightly improved than that of case 1 indicating that the average model predictions were 

closer to the observations. The root zone soil moisture predicted in case 1 (considering 

surface topography only) tend to be overestimated in all depths, while the modified 
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model including heterogeneous hydraulic properties with uniform anisotropy ratio 

showed better performance. This is because high moisture content in certain grid cells 

can be redistributed effectively into the neighboring cells depending on the 

heterogeneous hydraulic properties of soil as a lateral subsurface flow. Although case 2 

showed more improvement for predicting near surface soil moisture variability (0 ~ 30 

cm), it could not capture the soil moisture patterns in deep soil layers using the uniform 

anisotropy ratio (Figure 3.8(b)). In previous studies, an anisotropy ratio has been applied 

uniformly in a domain to calculate the lateral component of subsurface flow [Chen and 

Kumar, 2001; Kumar, 2004; Choi et al., 2007]. However, we found that the lateral flow 

component using the constant anisotropy ratio could not identify the subsurface flow 

successfully in deep soil at the ER 5 site.  

In order to overcome the limitations observed in case 1 and 2, the spatially-

varying anisotropy ratios were derived from the observed soil moisture patterns (wetness) 

through the hydrologic connectivity and the optimal thresholds. Figure 3.7(e) and 3.8(c) 

show the comparison of observed and simulated root zone soil moisture across the study 

site with depth for July 6th 1997. Compared to the case 1 and 2 with no connectivity, the 

results of the case 3 with connectivity presented better performances to predict the root 

zone soil moisture patterns within the domain, even showing improvement in deeper soil 

layers (30~45 and 45~90 cm). The improvement was also confirmed with a validation in 

July 15th 1997 (Figure 3.8(d)) representing better agreement with the variability of 

observations than the original model. It can be inferred that the lateral connectivity 

derived from the wetness conditions can describe the spatial patterns of subsurface flow 
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effectively with quantifying the spatially-varying anisotropy ratios. The lateral 

subsurface flow resulted in the differences between original and modified model 

prediction that might lead to affect the simulation of the hydrological cycle and various 

components significantly (Figure 3.7(f)). 

Furthermore, we compared the simulated near surface soil moisture dynamics 

using the case 3 (DOY 170 ~ 197) with in situ measurements. To compare the 

observation and simulation, soil moisture data across the domain was averaged to match 

the grid based predictions with point-scale observations. The modified model of case 3 

(R: 0.686, RMSE: 0.036, and MAE: 0.026) improved the near surface soil moisture 

predictions more than the original model (R: 0.383, RMSE: 0.056, and MAE: 0.044) 

(Figure 3.9). Based on these results for the ER 5 site, it was found that the lateral 

component of subsurface flow in the unsaturated zone is very important for predicting 

soil water storage successfully in land surface modeling and can be derived with the 

connectivity-based lateral subsurface flow algorithm. In addition, we can quantify the 

spatially-varying anisotropy ratios effectively and characterize the lateral subsurface 

flow variability using the connectivity patterns derived from wetness conditions and 

geophysical controls in the unsaturated zone. 
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Figure 3. 9 Comparison of observed and simulated (case 3) near surface soil 

moisture dynamics (top 5 cm) using original (dotted line) and modified model 

(black line) at the ER 5 site. 

 

3.4.2 Sub-watershed Scale (El-Reno Sub-watershed) 

As shown in the previous section (field scale), we confirmed that the modified 

model with subsurface connectivity (quantifying the spatially-varying anisotropy ratios) 

performed better at ER-sub site than the original model and the case with spatially 

uniform anisotropy ratio. Further, we validated the modified model (case 3) in the ER-

sub site located in North Canadian River basin to investigate the impacts of the lateral 

subsurface flow and its connectivity on water storage in soil at a much larger scale. The 

observed and predicted output was compared with their spatial patterns and temporal 

dynamics. 
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Figure 3. 10 Comparison of the root zone soil moisture (pixel size: 800 × 800 m) at 

various depths of (a) original model and (b) modified model (case 3), and (c) their 

differences for the ER-sub site. 
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Figure 3.10 presents the comparison of the simulated near surface and root zone 

soil moisture measured at discrete depths using the original and modified CLM model. 

Compared to the remotely sensed ESTAR observations (0 ~ 5cm), the original CLM 

model has a limitation in describing the soil moisture variability without lateral 

subsurface flow (Figure 3.10(a)). The model also tends to overestimate the soil moisture 

representing relatively uniform distribution in all layers and predicted identical soil 

water content in grid cells having the same soil type and vegetation due to the limitation 

of 1-D model. On the other hand, with the connectivity-based lateral subsurface flow the 

soil moisture prediction was improved representing spatially distributed patterns in all 

depths (Figure 3.10(b)). The connectivity with depth was derived from the combination 

of indicator maps (corresponding to their optimum thresholds selected using the 

connectivity function) of the dominant physical controls (% clay, % sand, NDVI, and 

TI). It was found that the connected pattern based on the various physical controls can 

provide significant hydrologic behaviors of subsurface flow to demonstrate the 

variability of subsurface flow and allow the model to redistribute soil water effectively at 

the ER-sub site (Figure 3.10(c)). To assess their similarity of spatial patterns 

quantitatively, the model output was compared to the observations through spatial 

moving window analysis which is useful to assess spatial patterns. Several different 

window sizes (1×1, 2×2, 3×3, and 4×4) were selected, and the average of model output 

within the moving window was used to measure the spatially distributed patterns. For 

1×1 window size, the results of the three model evaluation criteria (R, RMSE, and MAE) 

were too low, although the modified model showed better performances than the original 
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model (Original CLM model - R: 0.30, RMSE: 0.090, and MAE: 0.083; Modified CLM 

model - R: 0.33, RMSE: 0.076, and MAE: 0.066). This was because the low values of 

model evaluation criteria were affected by mismatch between the same grid cells, even 

though they could be in close agreement at coarser scale (with neighboring grid cells). 

As the window size increases, the similarity of modified model output increased 

showing improvements in the model prediction (Table 3.3).  

 

Table 3. 3 Comparison of spatial patterns of simulated near surface soil moisture 

using the original and modified model with various spatial moving window sizes. 

 

1 × 1 2 × 2 3 × 3 4 × 4 

R RMSE MAE R RMSE MAE R RMSE MAE R RMSE MAE 

Original 

CLM 
 

0.30 0.090 0.083 0.34 0.076 0.084 0.43 0.086 0.083 0.35 0.084 0.082 

Modified 

CLM 

(case 3) 

0.33 0.076 0.066 0.47 0.069 0.065 0.63 0.067 0.065 0.60 0.065 0.064 

 

 

Overall, the spatial patterns could not be matched exactly in fine scale, however, 

the model was able to describe the variability of soil moisture through the connectivity- 
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based lateral subsurface flow. As shown in Figure 3.11(a), the modified model showed 

better agreement with the ESTAR observations (R: 0.90, RMSE: 0.076, and MAE: 0.065) 

than the original model (R: 0.88, RMSE: 0.089, and MAE: 0.077). Though the 

comparison is based on average soil moisture, it can be inferred that the lateral 

subsurface flow based on connectivity between subgrid cells within a large grid cell 

could enhance the modeling skill at large scales. Furthermore, in order to demonstrate 

the spatial and temporal comparisons within the sub-watershed, we calculated the 

differences of R values of soil moisture dynamics between the original and modified 

model (Figure 3.11(b)) in all grid cells. The positive difference (+) mean that the 

modified model performed better than original model in the grid cell. The results in most 

of the grid cells showed that the modified model with the connectivity-based lateral 

subsurface flow can predict the soil water content better spatially and temporally in the 

ER-sub watershed.  

 



 

92 

 

 

Figure 3. 11 Comparison of the simulated near surface soil moisture for (a) the 

average within the ER-sub site against ESTAR observations and (b) the differences 

of R values for each grid cell. 

 

As shown in the comparison of spatial patterns and temporal dynamics of soil 

moisture prediction, there are differences between the model predictions with and 

without the lateral subsurface flow in land surface modeling, giving rise to the different 

soil water storage in the unsaturated zone (Figure 3.10(c)). In land surface modeling, soil 

moisture is an important component that affects considerably other components of the 

land surface water cycle (e.g., evapotranspiration, surface runoff, subsurface drainage, 

etc.) due to the interactions between them. The differences of soil moisture prediction 
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between the original and modified model led to significantly different surface runoff, 

subsurface drainage, and water storage (soil water + groundwater) (Figure 3.12).  

 

 

Figure 3. 12 Simulated evapotranspiration (ET), surface runoff, subsurface 

drainage, and water storage using the original and modified model (pixel size: 100 

× 100 m) at the ER-sub site. 
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3.5. Conclusions 

Most of the land surface models are one-dimensional which is not enough to 

explain the soil moisture variability in the root zone due to absence of interaction (lateral 

flow) between neighboring soil columns. There is a need to consider the lateral 

subsurface flow properly in hydrological modeling to account for spatially distributed 

soil moisture effectively and improve the prediction of subsurface redistribution of flow. 

Slope of surface topography and heterogeneity of hydraulic properties are considered to 

include the lateral subsurface flow in the unsaturated zone. One of the important factors 

is anisotropy ratio used for estimating the lateral hydraulic conductivity that varies 

spatially according to various landscape conditions such as wetness, soil, vegetation, and 

topographic configuration. The spatially-varying anisotropy ratios can be derived using a 

lateral connectivity pattern from wetness conditions and physical controls because the 

connectivity is a useful concept for understanding spatially distributed lateral subsurface 

flow and redistributing soil water in the unsaturated zone. In order to investigate the 

impacts of lateral subsurface flow and its connectivity on soil water storage, in this study 

we designed three cases (case 1 – surface topography; case 2 – topography and 

heterogeneous hydraulic properties with uniform anisotropy; case 3 – topography and 

heterogeneous hydraulic properties with spatially-varying anisotropy derived from 

connectivity patterns).  

In ER 5 field site, the model predictions in case 1 showed the similar patterns to 

the observed near surface soil moisture distribution, but could not successfully describe 

the root zone soil moisture patterns in deep soils. It suggests that the surface topography 
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may not contribute to the lateral subsurface flow in deep soil at the site. The modified 

model in the case 2 also performed better than that in the case 1 and original model 

representing a good agreement with the observations. Nevertheless, the case 2 with 

uniform anisotropy ratio could not still capture the soil moisture variability in deep soil. 

On the other hands, the model prediction in the case 3 using the spatially-varying 

anisotropy ratio derived from the connectivity showed more improvements in all soil 

layers. We found that the connectivity derived from the wetness conditions could 

characterize the spatial patterns of lateral subsurface flow effectively and quantify the 

spatially-varying anisotropy ratio properly.  

The modified CLM model with connectivity-based lateral subsurface flow (case 

3) was validated at a sub-watershed site (ER-sub). The connectivity patterns were 

developed using the spatial patterns of physical controls (e.g., %sand, %clay, NDVI, and 

TI) to quantify the spatially-varying anisotropy ratio in this ER-sub site. The modified 

CLM model improved further the soil moisture prediction than the original CLM model 

leading to significant differences in performance between the models.  

Based on these findings, we infer that the modified model with connectivity can 

characterize effectively the subsurface flow variability using spatially distributed 

patterns of wetness condition and physical controls. However, we also found limitations 

of the approach of deriving anisotropy ratio (α) and wetness connectivity due to their 

site-specific issue. The parameter and wetness connectivity obtained from combining 

indicator maps of various physical controls (assuming that the variables have equal 

effects on hydrological processes) may not be applicable in other sites such as forested 
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or low-lying areas. The limitations can be addressed to improve the applicability in 

future works by reflecting effectively site characteristics (dominant physical controls) in 

various landscapes and climate regions. Although this study has such limitations and was 

focused on relatively small-scale hydrological processes compared to large-scale climate 

models (e.g., 1 degree by 1 degree), these processes can be helpful to develop better 

understanding and modeling capability with the connectivity-based lateral subsurface 

flow in complex landscapes and allows for an improved simulation of the hydrologic 

cycle. 
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CHAPTER IV  

A PHYSICALLY-BASED HYDROLOGICAL CONNECTIVITY ALGORITHM FOR 

DESCRIBING SPATIAL PATTERNS OF SOIL MOISTURE IN THE 

UNSATURATED ZONE 

4.1 Synopsis 

Hydrologic connectivity has been proposed as an important concept for 

understanding local processes in the context of catchment hydrology. It can be useful for 

characterizing the soil moisture variability in complex heterogeneous landscapes. The 

current process-based hydrological models could not completely account for flow path 

continuity and soil moisture spatial distribution in the unsaturated zone. In this study, we 

developed a physically-based hydrologic connectivity algorithm based on dominant 

physical controls (e.g., topography, soil texture, vegetation) to better understand spatially 

distributed subsurface flow and improve the parameterization of soil hydraulic properties 

in hydrological modeling. We investigated the effects of mixed physical controls on soil 

moisture spatial variability and developed hydrologic connectivity using various 

thresholds. The connectivity was used for identifying the soil moisture variability and 

applied in a distributed land surface model (Community Land Model, CLM) for 

calibrating soil hydraulic properties and improving model performance for estimating 

spatially distributed soil moisture. The proposed concept was tested in two watersheds 

(Little Washita (LW) in Oklahoma and Upper South Skunk (USS) in Iowa) comparing 

estimated soil moisture with the airborne remote sensing data (Electronically Scanning 



 

98 

 

Thinned Array Radiometer (ESTAR) and Polarimetric Scanning Radiometer (PSR)). 

Our finding demonstrated that the spatial variations of soil moisture could be described 

well using physically-based hydrologic connectivity, and the land surface model 

performance was improved by using the calibrated (distributed) soil hydraulic 

parameters. In addition, we found that the calibrated soil hydraulic parameters 

significantly affect model outputs not only on the water cycle, but also on surface energy 

budgets. 

4.2 Introduction 

Recently advanced approaches to catchment dynamics have been proposed 

through the examination of catchments emergent properties (i.e., spatially connected 

patterns of flow paths or variable source areas) [Amoros and Bornette, 2002; Sivapalan, 

2005; McDonnell et al., 2007; Ali and Roy, 2009]. Hydrologic connectivity has been 

developed as an important concept for understanding local processes in the context of 

catchment hydrology and can be defined as connected pathways of surface and 

subsurface flow and spatial patterns of soil moisture [Western et al., 2001; Ali and Roy, 

2010; Jencso and McGlynn, 2011]. It can also provide a missing linkage for preferential 

flow inferred from unexpected water and chemical migration, which cannot be 

successfully accounted for through the current parameterization and process-based land 

surface modeling. Various connectivity metrics have been used in hydrology and 

ecology such as FRAGSTATS (e.g., cohesion, aggregation index, contagion, etc.) 

[McGarigal et al., 2002], semivariogram range [Western et al., 1998], gamma index 
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[Ricotta et al., 2000], directional connectivity index [Larsen et al., 2012], and integral 

connectivity scale [Western et al., 2001]. The connectivity metrics are useful to better 

understand catchment hydrologic characteristics and identify runoff source areas at the 

hill-slope scale. Several studies explored the combined effects of topography and 

vegetation on connectivity of runoff source areas and shallow groundwater and showed 

the potential for improving the estimation of hydrologic connectivity [Mayor et al., 2008; 

Hwang et al., 2009; Emanuel et al., 2014]. Jencso et al. [2009, 2010] derived the 

hydrologic connectivity between catchment landscapes and channel network to identify 

runoff source areas based on topographic characteristics. They explored the linkage 

between catchment structure and runoff characteristics and defined the connectivity from 

flow path continuity across hillslope, riparian, and stream (HRS) interfaces. Using this 

concept, Smith et al. [2013] developed the catchment connectivity model (CCM) to 

predict streamflow production using simulated hydrologic connectivity across HRS 

along a stream network. Western et al. [2004] demonstrated that saturation excess 

processes can be indicated by patterns of near surface soil moisture used for developing 

hydrologic connectivity using the integral connectivity scale technique. Based on these 

studies, hydrologic connectivity demonstrated significant hydrological behaviors using 

landscape information such as wetness condition, streamflow, and surface characteristics 

(e.g., topography and vegetation).  

In the past, soil moisture variability has been extensively studied at different 

spatial scales using in situ and remote sensing data in various hydroclimate regions, 

which is crucial for understanding hydrological processes and catchment characteristics 
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across scales [Gaur and Mohanty, 2016]. The spatial variability of soil moisture can be a 

critical factor to develop the hydrologic connectivity characterizing spatial patterns of 

surface and subsurface flow. However, soil moisture information is very limited in deep 

soils as well as near surface soils for large regions. Soil moisture varies across space and 

time according to geophysical parameters (i.e., physical controls) such as topography, 

soil properties, and vegetation characteristics. The physical controls play a significant 

role in characterizing the heterogeneous landscape in surface and subsurface hydrology 

[Famiglietti et al., 1999; Mohanty and Skaggs, 2001; Joshi and Mohanty, 2010]. Gaur 

and Mohanty [2013] explored the effects of physical controls on spatial patterns of soil 

moisture in humid and sub-humid climatic regions. They identified the dominant 

physical controls that strongly affect the soil moisture variability at various scales. 

Spatial patterns of soil moisture are dependent on a set of various (dynamic and static) 

physical controls which have been defined as precipitation, topography, soil, and 

vegetation. Thus, the spatial distribution of mixed physical controls can be considered to 

develop hydrologic connectivity as landscape descriptors or potential predictors for 

redistribution of surface and subsurface flow. Since precipitation and vegetation vary 

temporally, dynamic hydrologic connectivity can be also developed using the temporal 

aspect of physical controls. Recently, Kim and Mohanty [2016] developed the 

hydrologic connectivity algorithm for lateral subsurface flow processes based on the 

dominant physical controls to improve hydrological modeling at a sub-watershed scale. 

Their hydrologic connectivity based on the mixed physical controls (assuming that the 

variables have equal effects on hydrological processes) was successfully reflected to 
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account for subsurface lateral flow processes in land surface modeling. However, the 

equal contributions of different physical controls for describing the soil moisture 

variability may not be applicable in other regions or spatio-temporal scales, which may 

have different effects of dominant physical controls. Thus, it may be needed to 

investigate the effects of mixed (weighted) physical controls as well as the interactions 

between the controls on soil moisture distribution and subsurface flow.  

In addition to improving the process modeling, hydrologic connectivity can be 

employed for improvement of existing parameterizations (especially for soil hydraulic 

properties) in land surface modeling. Land surface models estimate soil water content in 

soil profiles based on soil hydraulic properties which directly influence water holding 

capacity in the unsaturated zone [Price et al, 2010]. In land surface modeling, soil 

hydraulic properties are typically derived from empirical equations as their default 

parameters such as the pedo-transfer function by Cosby et al. [1984]. Although model 

parameter calibration is critical for achieving accurate model output, most land surface 

models use a set of default or spatially uniform model parameters [Li et al., 2011]. The 

default soil hydraulic parameters derived empirically might not be enough to describe 

the soil moisture variability in spatially heterogeneous landscapes. Thus, in this study, 

we investigated the effects of mixed physical controls on soil moisture variability to 

develop physically based hydrologic connectivity and effectively calibrate the 

distributed soil hydraulic properties across large regions in land surface hydrological 

modeling.  
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The main objectives of this study are (1) to study spatially distributed patterns of 

physical controls which govern soil water redistribution in the unsaturated zone, (2) to 

develop a physically-based hydrological connectivity algorithm for better describing the 

spatial connection of subsurface flow in the unsaturated zone, and (3) to improve soil 

hydraulic parameterization schemes based on hydrologic connectivity in distributed 

hydrological modeling. 

4.3 Methodology 

4.3.1 Study Areas  

The Little Washita (LW) watershed in Oklahoma and Upper South Skunk (USS) 

watershed in Iowa were selected as the test sites for this study (Figure 4.1). The study 

sites have different hydro-climatic conditions and watershed characteristics (e.g., soil 

properties, land cover, topography). The LW watershed is classified as sub-humid 

climate with a mean annual rainfall of approximately 926 mm and temperature of 16°C. 

The LW region (area of about 600 km2) has rangeland and pastures dominated by 

patches of winter wheat and other crops, and soil textures ranging from fine sand to silty 

loam across the watershed. Several field campaigns were conducted in this watershed 

such as Washita ’94, Southern Great Plains 1997 (SGP97), Soil Moisture Experiments 

2003 (SMEX03), and Cloud Land Surface Interaction Campaign 2007 (CLASIC07).  

The climate of USS is humid with a mean annual rainfall of approximately 956 

mm and temperature of 10.7°C. The region (area of about 2000 km2) has mostly 

agricultural crops such as corn and soybean and mainly silty clay loam. The Soil 
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Moisture Experiments 2002 (SMEX02) and Soil Moisture Active Passive Vegetation 

Experiment 2012 (SMAPVEX12) field campaigns were conducted in this watershed. 

Our proposed approach was validated with Electronically Scanning Thin Array 

Radiometer (ESTAR) pixel-based (800 × 800 m) near surface soil moisture products 

[Jackson et al., 1999] obtained during SGP97 (June 18th – July 17th, 1997) for the LW 

watershed and Aircraft Polarimetric Scanning Radiometer (PSR, Bindlish and Jackson 

[2002]) observed during SMEX02 (June 25th – July 12th, 2002) for the USS watershed. 

To evaluate the performance of land surface model with and without the subsurface 

hydrologic connectivity for the study watersheds, we selected several pixels on 

connected and unconnected regions with different characteristics and complexities (e.g., 

soil type, land use, and topography) as shown in Table 4.1 (Figure 4.1). In addition, the 

model performances were compared at various extent scales to evaluate the spatial 

variability of soil moisture prediction for large regions within the watersheds.  
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Figure 4. 1 Study sites of (a) Little Washita (LW) in Oklahoma and (b) Upper 

South Skunk (USS) in IOWA. The pixels represent connected and unconnected 

regions selected for analysis. 
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Table 4. 1 Characteristics of selected pixels in the study sites. 

 LW USS 

Elevation  Soil texture Landuse Elevation  Soil texture Landuse 

Pixel 1 418 m Silty clay 

loam 

Crop 314 m Sandy clay 

loam 

Crop 

Pixel 2 338 m Loam Crop 294 m Loam Forest 

Pixel 3 391 m Sandy clay 

loam 

Forage 321 m Loam Crop 

Pixel 4 379 m Sandy clay 

loam 

Alfalfa 310 m Clay loam Grass 

Pixel 5 398 m Clay loam Pasture 311 m Loam Crop 

 

4.3.2 Land Surface Model (Community Land Model) 

Community Land Model (CLM) serves as the dynamic land surface model 

component of the Community Earth System Model (CESM, Oleson et al., [2010]). CLM 

consists of various processes such as biogeophysics, hydrologic cycle, biogeochemistry, 

and dynamic vegetation. The model estimates surface and subsurface runoff based on the 

simple TOPMODEL-based runoff (SIMTOP) [Niu et al., 2005]. The SIMple 

Groundwater Model (SIMGM, Niu et al., [2007]) is used for considering water table 
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dynamics as the lower boundary. Bare soil evaporation and plant transpiration are 

calculated using the Philip and De Vries [1957] diffusion model and an aerodynamic 

approach which is based on the Biosphere Atmosphere Transfer Scheme (BATS) model 

[Dickinson et al., 1993] and a stomatal resistance from the LSM model [Bonan, 1996]. 

CLM is coupled with the River Transport Model (RTM) for the runoff routing process 

[Oleson et al., 2010]. The soil profile is divided into ten soil layers with the fixed 

thickness of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33 and 113.7 cm (total 

depth of 343 cm). The soil water flow is solved by the modified Richards’ equation (4.1) 

[Zeng and Decker, 2009] which is derived by subtracting the hydrostatic equilibrium soil 

moisture distribution from the original Richards’ equation for improving the mass-

conservative numerical scheme when the water table is within the soil column,  

 

∂θ

∂t
=

∂

∂z
[𝐾 (

∂(−𝑒)

𝜕𝑧
)] − 𝑄  (4.1) 

 

where ψ and ψe are the soil matric potential and equilibrium soil matric potential (cm), z 

is soil depth (cm) taken positive upward, K is hydraulic conductivity(cm d-1), Q is a soil 

moisture sink term, which is the root water extraction rate by plants. The hydraulic 

conductivity, equilibrium soil matric potential, and equilibrium volumetric water content 

are shown in Eqs. (4.2)-(4.4) based on Clapp and Hornberger [1978],   

 

𝐾(𝜃) = 𝐾𝑠𝑎𝑡 (
𝜃

𝜃𝑠𝑎𝑡
)

2𝑏+3

  (4.2) 
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
𝑒

= 
𝑠𝑎𝑡

(
𝜃𝑒(𝑧)

𝜃𝑠𝑎𝑡
)

−𝑏

  (4.3) 

𝜃𝑒(𝑧) = 𝜃𝑠𝑎𝑡 (
𝑠𝑎𝑡+𝑧−𝑧

𝑠𝑎𝑡

)
−

1

𝑏
  (4.4) 

 

where K(θ) and Ksat are the unsaturated and saturated hydraulic conductivity (cm d-1), θ 

and θsat are the volumetric soil water content and saturated soil water content (cm3 cm-3), 

ψsat is the saturated soil matric potential (cm), θe(z) is the equilibrium (e) volumetric 

water content (cm3 cm-3) at depth z (z▽ is the water table depth), and b is the curve 

fitting parameter related to the pore size distribution (-), respectively. Primarily, the four 

soil hydraulic properties (θsat, Ksat, ψsat, b) are major input parameters for estimating soil 

moisture distribution in CLM [Huang et al., 2013]. These soil properties are calculated 

based on the work by Clapp and Hornberger [1978] and Cosby et al. [1984], which are 

determined according to percent sand and percent clay contents (Eqs. (4.5)-(4.8)) (called 

default parameters in this paper). The means and standard deviations of the parameters 

are available from Cosby et al. [1984] as shown in Table 4.2. 

 

𝜃𝑠𝑎𝑡 = 0.489 − 0.00126 × %𝑠𝑎𝑛𝑑  (4.5) 

𝑏 = 2.91 + 0.159 × %𝑐𝑙𝑎𝑦  (4.6) 


𝑠𝑎𝑡

= 10 × 10(1.88−0.0131×%𝑠𝑎𝑛𝑑)  (4.7) 

𝐾𝑠𝑎𝑡 = 0.0070556 × 10(−0.884+0.0153×%𝑠𝑎𝑛𝑑) (4.8) 

 

  



 

108 

 

Table 4. 2 Means and standard deviations for the four hydraulic parameters for 

various textural classes (from Table 3 in Cosby et al. [1984]). 

 b Log ψsat Log Ksat θsat 

Class Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Sandy loam 4.74 1.40 1.15 0.73 -0.13 0.67 43.4 8.8 

Sand 2.79 1.38 0.84 0.56 0.82 0.39 33.9 7.3 

Loamy sand 4.26 1.95 0.56 0.73 0.30 0.51 42.1 7.2 

Loam 5.25 1.66 1.55 0.66 -0.32 0.63 43.9 7.4 

Silty loam 5.33 1.72 1.88 0.38 -0.40 0.55 47.6 5.4 

Sandy clay loam 6.77 3.39 1.13 1.04 -0.20 0.54 40.4 4.8 

Clay loam 8.17 3.74 1.42 0.72 -0.46 0.59 46.5 5.4 

Silty clay loam 8.72 4.33 1.79 0.58 -0.54 0.61 46.4 4.6 

Sandy clay 10.73 1.54 0.99 0.56 0.01 0.33 40.6 3.2 

Silty clay 10.39 4.27 1.51 0.84 -0.72 0.69 46.8 6.2 

Light clay 11.55 3.93 1.67 0.59 -0.86 0.62 46.8 3.5 
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After investigating the effects of mixed physical controls on soil moisture 

variability, the soil hydraulic parameters were calibrated using the physically-based 

hydrologic connectivity algorithm developed in section 4.3.4 (Figure 4.2). To evaluate 

the land surface model performance, we compared the model outputs (e.g., soil water 

content, evapotranspiration, surface runoff, and water storage) estimated by using the 

default soil hydraulic parameters versus using the calibrated soil hydraulic parameters. 

We used CLM4.0 loosely coupled with RTM in an offline mode with 

atmospheric forcing data (precipitation, temperature, specific humidity, wind speed, 

surface air pressure, and solar radiation) collected from the USDA Agricultural Research 

Service (ARS) Micronet network for the LW watershed and SMEX02 Rain Gauge 

network for the USS watershed. To compare model predictions to the ESTAR and PSR 

soil moisture observations, model inputs for the two watersheds were generated at a 

spatial resolution of 800 m using land cover, soil types with depth, and topographic 

information obtained from NLCD (National Land Cover Database), SSURGO (Soil 

Survey Geographic database), and NED (National Elevation Dataset), respectively. 
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Figure 4. 2 Schematic diagram of information flow for developing connectivity 

index using Bayesian averaging of dominant physical controls and calibrating 

distributed soil hydraulic parameters. i is the calibrating factor for each 

parameter based on their standard deviation that is determined by the physically-

based hydrologic connectivity index. 
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4.3.3 Mixed Physical Controls in Complex Landscapes   

Kim and Mohanty [2016] developed hydrologic connectivity assuming that all 

physical controls are contributing equally to representing the soil moisture distribution in 

the unsaturated zone. However, that assumption has a limitation to be applied into other 

complex landscapes due to site-specific characteristics. In complex landscapes, spatial 

distribution of soil moisture varies and shifts with landscape characteristics such as 

spatial patterns of soils, vegetation, topography, and hydroclimates [Gaur and Mohanty, 

2013, 2016]. To better characterize the spatial variability of soil moisture, the total 

contribution of various physical controls and their interactions need to be accounted. In 

this study, dominant physical controls (i.e., soil texture (%clay and %sand), topography 

(Topographic Index (TI), Ln(a/tan)), and vegetation (Normalized Difference 

Vegetation Index (NDVI), (RNIR-Rred)/(RNIR+Rred)) were considered. RNIR and Rred are the 

reflectance of near infrared (NIR) radiation and visible red radiation, respectively; a 

represents the upslope area; and tanβ is the local downslope. Spatial data were collected 

from the Soil Survey (SSURGO), Landsat5 imagery, and USDA-NRCS Geospatial Data 

Gateway for the two watersheds (Figure 4.3). To effectively estimate the contributing 

ratios (weights) for the physical controls and their interactions, we used the Bayesian 

averaging scheme [Hoetting et al., 1999] that can provide proper weights that show how 

the controls contribute to describing the spatial variability of soil moisture (Eq. (4.9)).  

 

𝑃(𝑦|𝑥1, ⋯ 𝑥𝑖) = ∑ 𝑃𝑖
𝑗
𝑖=1 (𝑥𝑖|𝐷)𝑃𝑖(𝑦|𝑥𝑖 , 𝐷)  (4.9) 
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where y is the combined (weighted) physical controls, xi is the normalized physical 

controls (i=1,…,j), j is the number of physical controls and interaction terms used, PDF 

(Pi(xi|D)) is the posterior probability for physical controls given the normalized soil 

moisture measurements (D) and defined as contributing ratios (wi) of normalized 

physical controls (x1, x2, x3, x4 as %clay, %sand, NDVI, TI), the conditional PDF 

(Pi(y|xi,D)) represents the posterior distributions of y given physical controls and 

measurements. In this study, interaction terms were also considered to examine the joint 

effects of physical controls (e.g., x1•2, x1•3, x1•4, x2•3, x2•4, x3•4). The estimated contributing 

ratios were used to combine the dominant controls and to develop the hydrologic 

connectivity for the study watershed. 
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Figure 4. 3 Dominant physical controls (soil texture, vegetation, and topography) 

for the (a) LW and (b) USS watersheds (Spatial resolution of 800m). 

 

4.3.4 Development of Physically-based Hydrologic Connectivity  

By and large, hydrologic connectivity has been developed by patterns of wetness 

condition (e.g., soil moisture) or surface topography (e.g., contributing area) at a 

catchment scale [Western et al., 2001; Jencso and McGlynn, 2011]. However, 

information for surface wetness or root zone soil moisture is very sparse, and surface 

topography cannot sufficiently reflect the patterns of subsurface flow [Kim and Mohanty, 

2016]. Thus, we developed physically-based hydrologic connectivity using the mixed 

physical controls (i.e., %clay, %sand, NDVI, TI) to identify the spatial variation of soil 

moisture. Hydrologic connectivity shows how cells are connected to each other across a 
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domain under a certain threshold of interest variable. Among various connectivity 

metrics, we used the integral connectivity scale technique which was successfully tested 

in a previous study [Kim and Mohanty, 2016] to describe the soil moisture spatial 

variability. The indicator map (I) is used to describe the spatial patterns of interest 

variable (y, mixed physical controls) above a certain threshold (s) in the hydrologic 

connectivity process (Eq. (4.10)). Connectivity is calculated using the indicator map I(y) 

and the connectivity function (τ(d)) expressed as Eq. (4.11). 

 

𝐼(𝑦) = {
0     𝑖𝑓   𝑦 < 𝑠
1     𝑖𝑓   𝑦 ≥ 𝑠

  (4.10) 

𝜏(𝑑) = 𝑃(ℎ ↔ ℎ + 𝑑|ℎ, ℎ + 𝑑 ∈ 𝐻)  (4.11) 

 

where h is a certain cell in a domain (H), d is the distance between two cells. 

 

Indicator maps (I(y)) for various thresholds (0 ~ 100%) were created using a 

mixed physical controls map generated with the contributing ratios of different physical 

controls showing that pixels above the thresholds on the mixed controls map were 

assigned to “1” and others assigned to “0”. To consider various connected patterns of 

mixed physical controls, we selected 5 representative thresholds from the connectivity 

functions (τ(d)) that reflect the connectivity patterns well across the watershed (Figure 

4.4(a)) [Western et al., 2001; Kim and Mohanty, 2016]. In turn, the indicator maps for 

the 5 thresholds were chosen (Figure 4.4(b)). The physically-based hydrologic 

connectivity index was developed by integrating the indicator maps ranging from 1 to 5 
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(∑ 𝐼(𝑦)𝑠𝑖

5
𝑖=1 , si is the selected thresholds) (Figure 4.4(c)). Pixels of higher index 

represent fairly connected and higher wetness regions, while lower index pixels indicate 

unconnected and drier regions.  

 

 

Figure 4. 4 Physically-based Hydrologic connectivity: (a) connectivity functions 

(τ(d)) calculated using indicator maps (I(y)) of mixed physical controls, (b) 

indicator maps for 5 selected thresholds (si), and (c) physically-based hydrologic 

connectivity index map developed by integrating 5 indicator maps. 
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The connectivity index was developed for each soil layer of CLM using the 

collected soil information with depth, NDVI, and TI, and then used to calibrate soil 

hydraulic properties in land surface modeling. Cosby et al. [1984] developed a pedo-

transfer function for estimating soil hydraulic properties (θsat, Ksat, ψsat, b) through a 

regression analysis using mean values of soil samples for various soil texture classes. 

The pedo-transfer function has been applied in CLM to model the soil parameters as a 

set of default parameters. However, the default parameters might not be enough to 

successfully describe the soil moisture distribution in all areas/regions because they were 

derived from the texture-based mean values of soil samples collected across the 

conterminous U.S. Thus, in this study, we calibrated the parameters within their possible 

ranges (implying various characteristics of sample sites such as texture, topography, 

vegetation, among others) by accounting for their standard deviation obtained in Cosby 

et al. [1984] study (Table 4.2) (𝑃𝑖 = 𝑃𝑖,𝑑𝑒𝑓 ± 𝛼𝑖). Pi is the calibrated parameter set (θsat, 

ψsat, b, Ksat); Pi,def is the default parameter set; i is the calibrating factor for each 

parameter based on the standard deviation that is determined by the physically-based 

hydrologic connectivity index. The value of  is added to the default soil parameters of 

θsat, ψsat, and b and subtracted from the parameter of Ksat when the connectivity index is 

greater than 3 representing connected regions of physical controls and higher soil water 

content; on the contrary,  for other regions that have a connectivity index less than 3 

reverse operation is performed. The calibrated parameters based on physically-based 

hydrologic connectivity were applied in CLM to effectively predict spatially distributed 
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soil moisture. The model outputs using the default and calibrated parameters were 

compared to field observations. 

4.4. Results and Discussion 

In this study we investigated the effects of mixed dominant physical controls on 

soil moisture variability and developed the hydrologic connectivity algorithm to identify 

the spatial variations of soil moisture and improve the parameterization of soil hydraulic 

properties. The proposed approach was tested in two watersheds (LW and USS) and 

compared to airborne remote sensing near-surface soil moisture data (800 × 800 m). The 

physically-based hydrologic connectivity algorithm was applied to deeper soil layers as 

well as near surface soil layer. However, we compared to near-surface observations only 

because of the lack of soil moisture information for deeper soils at watershed scales. 

 

4.4.1 Effects of Mixed Physical Controls on Soil Moisture Variability 

The contributing ratios of the most dominant controls (up to 4) were derived 

using the Bayesian averaging scheme. Figure 4.5(a) and (b) shows the histograms of 

contributing ratios (w1, w2, w3, and w4) of the physical controls (e.g., %clay, %sand, 

NDVI, and TI) for the two study sites. For the LW watershed, NDVI (w3 of 

0.438), %clay (w1 of 0.326), and %sand (w2 of 0.235) represented higher contributions to 

soil moisture spatial distribution, while topography seldom contributes at the support 

scale of 800 × 800 m (Figure 4.5(a)).  
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Figure 4. 5 Contributing ratios (weights, wi) of physical controls ((a) for LW and (b) 

for USS) and mixed (weighted) physical controls maps ((c) for LW and (d) for USS). 

 

 

The spatial distributions of soil texture and NDVI showed distinctive patterns 

across this watershed indicating that left and right hand sides of the watershed have 

higher values of %clay and NDVI and lower values of %sand corresponding to higher 

soil water content from ESTAR measurements. We also explored the effects of 

interactions between the physical controls (%clay  %sand, NDVI  %clay, NDVI 
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 %sand, TI  %clay, TI  %sand, NDVI  TI) on the contributions to soil moisture spatial 

variability. It was found that no significant contributions of the interactions existed in 

this watershed. It can be inferred that mixed response of individual physical controls 

based on their contributing ratios can predict the spatial variation of soil moisture well 

describing the distinctive patterns of landscape at the LW watershed. In addition, the 

spatial variation of mixed physical controls (normalized) was compared to the variability 

of measured saturated hydraulic conductivity (Ksat) from soil samples collected during 

the SGP97 hydrology experiment across the LW watershed. When Ksat measurements 

were rearranged according to soil types (CL - Clay Loam; L - Loam; LS - Loamy Sand; 

S – Sand; SiL - Silty Loam; SL - Sandy Loam), it showed high variations even for the 

same soil types representing a similar tendency as the  variation of mixed physical 

controls with higher contribution of NDVI (Figure 4.6). This could be caused by other 

co-existing physical controls such as vegetation cover which may affect soil water flow, 

because of root distribution and organic matter content leading to different pore size 

distribution and water holding capacity in the unsaturated zone. 
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Figure 4. 6 Comparison of spatial variations of measured saturated hydraulic 

conductivity (Ksat) and normalized mixed physical controls (%clay, %sand, NDVI, 

TI) according to soil types across the LW watershed. (CL: Clay Loam, L: Loam, LS: 

Loamy Sand, S: Sand, SiL: Silty Loam, SL: Sandy Loam) 

 

 

For the USS watershed, we found that contributing ratios of the dominant 

controls estimated using the Bayesian averaging scheme tend to be biased toward soil 

texture (0.50 and 0.33 for %clay and %sand, respectively) with no significant 

contributions of NDVI and TI. As with the results of LW, the surface topography 

showed no valid contribution at this support scale (800 × 800 m). On the other hand, 

when the interaction terms between the dominant controls (%clay  %sand, NDVI 

 %clay, NDVI  %sand, TI  %clay, TI  %sand, NDVI  TI) were included to account for 

the dependency of the physical controls, the interactions of %clay  NDVI and %sand  

NDVI contributed significantly to the spatial distribution of soil moisture with resultant 

weights of 0.17 and 0.38, respectively (Figure 4.5(b)). It showed that NDVI influenced 

the description of the spatial variability of soil moisture as an interaction term with soil 

texture. In other words the mixed effects of interactions between physical controls as 
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well as the individual controls on soil moisture distribution can be a characteristic 

feature of larger and complex landscapes such as USS and LW watersheds. 

Thus, we mixed the spatial patterns of physical controls based on their 

contribution ratios (w1(%clay), w2(%sand), w3(NDVI), and w4(TI) for LW watershed; 

w1(%clay), w2(%sand), w3(NDVI  %clay), and w4(NDVI  %sand) for USS watershed) 

(Figure 4.5(c) and (d)), and developed hydrologic connectivity maps. 

 

 

4.4.2 Calibration of Soil Hydraulic Properties Based on Hydrologic Connectivity 

Since soil moisture measurements with depth are not available at watershed 

scales, the contributing ratios of physical controls derived from near surface soil 

moisture were applied to combine the physical controls maps for deeper soil layers. The 

mixed physical controls maps for soil layers were used to calculate connectivity 

functions under various thresholds. The 5 representative thresholds (50%, 55%, 58%, 

60%, and 70% for LW watershed and varying thresholds with depth for USS watershed) 

were found from connectivity functions for each soil layer that reflect connected patterns 

of the mixed physical controls well across the watersheds (Figure (4.7) and (4.8)). Using 

the 5 thresholds, the indicator maps were generated suggesting that the connectivity of 

mixed physical controls showed different patterns according to the thresholds which can 

reflect various spatial patterns of soil moisture in the unsaturated zone. In turn, the 

physically-based hydrologic connectivity index was developed by adding the indicator 

maps and quantifying the soil moisture variability. The hydrologic connectivity index 
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with soil depth was applied in calibrating the soil hydraulic properties in CLM, as 

depicted in Figure 4.2.  

 

 

Figure 4. 7 Connectivity functions for 5 representative thresholds for soil layers and 

connectivity index for the LW watershed. Pixels of higher index represent highly 

connected and higher wetness regions; lower index pixels indicate unconnected and 

drier regions. 
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Figure 4. 8 Connectivity functions for 5 representative thresholds for soil layers and 

connectivity index for the USS watershed. Pixels of higher index represent highly 

connected and higher wetness regions; lower index pixels indicate unconnected and 

drier regions. 
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To analyze the spatial distributions of default and calibrated soil parameters, we 

selected a region which has complex landscape with relatively uniform soil types and 

heterogeneous vegetation cover and topography in the LW watershed. Figure 4.9 shows 

the comparison of spatial distributions of default and calibrated soil parameters. The 

default parameters have relatively uniform distributions depending on soil texture only 

(%sand and %clay) leading to low variation in soil moisture prediction. This is because 

CLM predicts soil hydraulic parameters from soil textural class alone. On the contrary, 

the parameters calibrated based on the physically-based hydrologic connectivity index 

showed the spatially distributed patterns across the region. Furthermore, the variations of 

default and calibrated soil hydraulic parameters were compared according to soil texture 

(Figure 4.10). The soil hydraulic parameters were uniformly predicted for the identical 

soil texture in the current model, while the calibrated parameters showed variations in 

space as shown in comparison of measured Ksat and mixed physical controls in Figure 

4.6. Thus, the soil hydraulic parameters can be effectively calibrated using the 

hydrologic connectivity index to predict the variability of soil moisture in complex 

landscapes.  
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Figure 4. 9 (a) Dominant physical controls, (b) default and calibrated soil hydraulic 

parameters, and (c) soil moisture prediction in the current (CLM) and calibrated 

model for a selected region (800 × 800m resolution) in the LW watershed. 
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Figure 4. 10 Comparisons of default and calibrated soil parameters according to 

soil texture (%sand and %clay). θsat, Ksat, and b are estimated based on %Sand only; 

ψsat, is dependent on %Clay only in pedo-transfer function of CLM. 

 

 

4.4.3 Comparison of CLM Output Using Default and Calibrated Soil Parameters 

Model outputs (e.g., soil moisture, surface runoff, ET, and water storage) using 

the default and calibrated soil hydraulic properties were compared. Figure 4.11 shows 

the range of parameters based on their standard deviations in Cosby et al. [1984] study. 

The default and calibrated parameters were compared for the selected 5 pixels (Figure 

4.1) which have various soil texture classes (loam, sandy clay loam, clay loam, and silty 

clay loam) and different vegetation in the LW watershed. After calibrating the 

parameters based on the physically-based hydrologic connectivity index, the soil 
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parameters of b, θsat, and ψsat were found to be higher than the default parameters, and 

Ksat lower than its default values in pixels 1, 2, and 3 located on connected pixels in the 

connectivity index map. In contrast, it showed lower b, θsat, ψsat and higher Ksat for the 

calibrated parameters than those of the defaults in pixels 4 and 5 which are on 

unconnected pixels. Several default and calibrated parameters were out of the ranges of 

parameters because the parameters were estimated with the pedo-transfer function 

derived through a regression analysis using mean values of soil samples. Using the 

calibrated parameters, the model can estimate higher soil water content in connected 

regions and lower soil water content in unconnected regions describing the spatially 

distributed soil moisture well across the LW watershed. Corroborating these findings, an 

improvement can be found by comparison of soil moisture dynamics on the selected 

pixels (Figure 4.12 (a) and (b)). On pixels 1, 2, and 3 (connected pixels), the current 

model with the default parameters tended to underestimate the soil moisture dynamics, 

while the model simulation using the calibrated parameters showed good agreement with 

ESTAR measurements (correlation coefficient of 0.81, 0.72, and 0.91; RMSE of 0.028, 

0.054, and 0.029 in Figure 4.12(b)). On the other hand, the current model using the 

default parameters tended to overestimate the near surface soil moisture on pixels 4 and 

5 (unconnected pixels) compared to the measurements. Although there are some 

uncertainties, the model prediction could be improved using the calibrated soil hydraulic 

parameters which match better with the measurements (correlation coefficient of 0.60 

and 0.56; RMSE of 0.058 and 0.042 in Figure 4.12(b)) for the LW watershed.  
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Figure 4. 11 Comparison of default parameters and calibrated parameters on 5 

selected pixels for the LW watershed. The bar shows the ranges of parameters for 

11 soil texture classes obtained from Cosby et al. [1984]. 
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Figure 4. 12 (a) Comparisons of simulated and measured soil moisture dynamics on 

5 pixels selected on connected and unconnected regions and (b) Correlation and 

RMSE with ESTAR measurements for 5 pixels in the LW watershed. 

 

 

For the USS watershed, we compared the default and calibrated parameters on 

the selected 5 pixels (Figure 4.13), which were plotted on the ranges of parameters for 

various soil texture classes. As discussed above, after calibrating the parameters based  
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on the connectivity index it showed higher values of b, θsat, and ψsat, and lower Ksat on 

pixel 1 (Sand Clay Loam) and 5 (Loam) which are on connected pixels compared to the 

default parameters. On the other hand, lower values of b, θsat, and ψsat, and higher Ksat 

were assigned to the unconnected pixels (2 (Loam), 3 (Loam), and 4 (Clay Loam)). 

When we compared the simulated soil moisture dynamics using the default and 

calibrated parameters on the selected pixels, the improvement of model performance was 

found (Figure 4.14 (a)). Most of the pixels, except pixel 5, showed higher correlation 

with PSR measurements for the model output with the calibrated parameters, and RMSE 

was further reduced on all pixels (Figure 4.14(b)). Applying the calibrated parameters in 

land surface modeling, the parameters could make up for the default parameters’ 

weaknesses which include underestimating the soil moisture dynamics on the connected 

regions and overestimating on the unconnected regions. 
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Figure 4. 13 Comparison of default parameters and calibrated parameters on 5 

selected pixels for the USS watershed. The bar shows the ranges of parameters for 

11 soil texture classes obtained from Cosby et al. [1984]. 
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Figure 4. 14 (a) Comparisons of simulated and measured soil moisture dynamics on 

5 pixels selected on connected and unconnected regions and (b) Correlation and 

RMSE with ESTAR measurements for 5 pixels in the USS watershed. 

 

 

Figure 4.15 (a) and 4.16(a) show the comparisons of simulated near surface soil 

moisture and ESTAR measurement for the entire watersheds. The simulated soil 

moisture using the default parameters tends to be underestimated in wet regions 

(connected pixels) and overestimated in dry regions (unconnected pixels) that could not 

capture the variability of soil moisture due to the default soil parameters related to soil 

textural class alone in the watersheds. The calibrated model simulation matched well 

with the measurements (ESTAR and PSR) showing higher and lower soil water content 

on the connected and unconnected pixels, respectively. The spatial variability of soil 
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moisture prediction was compared at various extent scales. Table 3 shows the correlation 

coefficients and RMSE between measured soil moisture and model simulation (top 5cm) 

using the default and calibrated soil parameters for different extent scales within the 

watersheds. At all extent scales the calibrated model showed higher correlation 

coefficients (0.310 ~ 0.713 for LW and 0.400 ~ 0.712 for USS) and lower RMSE (0.016 

~ 0.048 for LW and 0.081 ~ 0.099 for USS) than that of the current model that 

represented improvements of model performance in space. Thus, the spatial variations of 

soil moisture can be properly described using soil parameters calibrated by physically-

based hydrologic connectivity. Consequentially, these differences between the current 

and calibrated models can lead to different model outputs (e.g., root zone soil moisture, 

evapotranspiration, surface runoff, and water storage) as shown in Figure 15 ((b) – (e)) 

and 16((b) – (d)) that could have important effects not only on water cycle, but also on 

surface energy budgets.  
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Table 4. 3 Correlation coefficients and RMSE between soil moisture measurements 

and simulations (top 5cm) using default and calibrated soil parameters for the two 

study sites. 
 LW USS 

2  7a 4  9a 8  13a 12  15a 24  4a 32  7a 36  11a 40  15a 

R 

Default 0.164 0.250 0.540 0.669 0.512 0.389 0.371 0.237 

Calibrated 0.310 0.452 0.674 0.713 0.712 0.587 0.488 0.400 

RMSE 

Default 0.048 0.047 0.051 0.050 0.128 0.123 0.115 0.102 

Calibrated 0.016 0.044 0.048 0.047 0.099 0.098 0.090 0.081 

a Number of pixels (extent scale) – 1.6  1.6 km resolution, extent scales were 

determined by the shape of watersheds.   
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Figure 4. 15 (a) Comparisons of measured and simulated soil moisture and (b)-(e) 

model outputs using default and calibrated parameters (evaporation, transpiration, 

surface runoff, and water storage) for the LW watershed. 
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Figure 4. 16 (a) Comparisons of measured and simulated soil moisture and (b)-(d) 

model outputs using default and calibrated parameters (ET, surface runoff, and 

water storage) for the USS watershed. 

 

 

Based on these findings, the physically-based hydrologic connectivity developed 

in this study helped to better understand the spatial variability of soil moisture in the 

unsaturated zone. Furthermore, the model performance using the calibrated soil 

hydraulic parameters  based on the connectivity index was improved compared to the 

model predictions using the default parameters. It can be inferred that soil hydraulic 
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parameters calibrated with physically-based hydrologic connectivity can efficiently 

reflect the variations of soil moisture in space in land surface modeling at regional scales. 

4.5. Conclusions 

In this study, we developed a physically-based hydrologic connectivity algorithm 

to better understand catchment hydrologic characteristics and identify the soil moisture 

variability. To develop hydrologic connectivity based on dominant physical controls, the 

effects of mixed physical controls (e.g., topography, soil texture, vegetation) jointly on 

soil moisture spatial distribution were investigated at two different hydroclimate regions 

(sub-humid and humid climate). Using the Bayesian averaging scheme, the contributing 

ratios of physical controls to soil moisture distribution were derived to combine the 

controls for the two study sites. In the LW site, soil texture (%clay and %sand) and 

vegetation (NDVI) showed higher contributions and no significant contributions of 

interactions between the controls existed. On the other hand, soil texture and the 

interactions between vegetation and soil texture represented valid contributions to spatial 

patterns of soil moisture in the USS site. We found that the contributing ratios of 

physical controls could be site-specific depending on landscape characteristics, and the 

interaction terms of physical controls could also affect soil moisture distribution. Based 

on the contributing ratios, the dominant physical controls were combined and used for 

developing hydrologic connectivity using the integral connectivity scale technique. In 

order to identify the connectivity, we generated indicator maps using various thresholds 

selected from the connectivity functions. In turn, the physically-based hydrologic 
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connectivity index was developed by aggregating the indicator maps representing the 

connected (wet regions) and unconnected (dry regions) patterns across the watersheds, 

which can properly describe the soil moisture spatial variability.  

The hydrologic connectivity index was applied in calibrating soil hydraulic 

properties (θsat, Ksat, ψsat, b) to improve the current parameterization in land surface 

modeling (CLM). When we compared the simulated soil moisture using the default and 

calibrated parameters to remote sensing measurements (ESTAR and PSR), the calibrated 

model simulation showed good agreement with the measurements. The simulated soil 

moisture dynamics on selected pixels were improved with the calibrated parameters 

indicating higher soil moisture prediction on the connected pixels and lower prediction 

on the unconnected pixels. Thus, using the physically-based hydrologic connectivity we 

could describe the spatial patterns of soil moisture and improve the current 

parameterization and model performance. Based on these results, the differences in 

model outputs using the default and calibrated soil parameters could have important 

effects not only on water cycle, but also on surface energy budgets. In general 

application, the physically-based hydrologic connectivity index can be applicable to 

other regions which have similar patterns of dominant physical controls for developing 

hydrologic connectivity using identical thresholds. For future work, since hydrologic 

connectivity patterns can vary with time, a dynamic connectivity index can be 

considered in the parameterization scheme to account for temporal variability of soil 

moisture in the unsaturated zone and improve model performance for long term 

simulation. 
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CHAPTER V  

GENERAL CONCLUSIONS 

 

The research in this dissertation was focused on improving hydrological model 

capabilities for better predictions of subsurface flow, especially soil water movement in 

the unsaturated zone at various spatial scales. Two main approaches (BMA-based multi-

model simulation approach and physically-based hydrologic connectivity approach) 

were developed by bringing together advanced techniques and promising hydrologic 

concepts.   

In past decade, many researchers have used a single hydrological model to 

simulate water and energy cycle. In Chapter II, strengths and weaknesses of hydrological 

models for near surface soil moisture predictions under various soil wetness conditions 

were investigated that caused by their inherent model parameterization and structures. 

Based on the finding in this research, hydrological modeling using a single model only is 

not enough to adequately describe real-world conditions (including all possible 

hydrological processes) that might cause uncertainties for a certain process and wetness 

condition. As shown in the results, the BMA-based multi-model simulation approach 

developed in this Chapter could reflect strengths of the models under various land 

surface wetness conditions and quantify the model structural uncertainties. Hence, the 

multi-model simulation approach can be useful to provide more robust and reliable 

model predictions than using a single model.  
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The physically-based hydrologic connectivity approach was introduced in 

Chapter III and IV to characterize the spatial variability of subsurface flow and improve 

subsurface flow processes and model parameterization in land surface modeling. In 

Chapter III, simplified processes of subsurface flow in land surface modeling were 

modified to include lateral subsurface flow processes based on complex topography and 

heterogeneous soil hydraulic properties. Hydrologic connectivity was used to derive 

spatially varying anisotropy for calculating lateral hydraulic conductivity that is the most 

challenging parameter in the lateral subsurface flow process. The modified land surface 

model was tested at field and sub-catchment scales. Results revealed that lateral 

subsurface flow plays an important role in redistributing soil water that might cause 

changes in the water and energy cycle, and hydrologic connectivity has the potential to 

effectively describe the lateral movement of subsurface flow. Furthermore, hydrologic 

connectivity can be derived from the combinations of dominant physical controls (e.g., 

soil properties, vegetation, topography), and it can be useful for characterizing the 

subsurface flow variability in the unsaturated zone. Based on these finding, a limitation 

of 1-dimentional land surface modeling can be overcome by considering the lateral 

subsurface flow component derived from the wetness- and physically-based hydrologic 

connectivity algorithm. 

A limitation of the above study is that dominant physical variables equally 

contribute to soil moisture variability for developing hydrologic connectivity. To 

overcome it, the impacts of mixed physical controls (based on their contribution ratios) 

on soil moisture variability were explored in complex landscapes in Chapter IV. The 
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physical controls and interaction terms between them differently contributed to 

describing the spatially distributed soil moisture according to watershed characteristics. 

Physically-based hydrologic connectivity was developed based on the contributing ratios 

of variables in two watersheds which have different hydro-climatic conditions and 

watershed characteristics. The hydrologic connectivity patterns could effectively 

characterize the spatial variability of soil moisture in complex heterogeneous landscapes. 

Furthermore, the approach was successfully applied in calibrating soil hydraulic 

parameters in land surface modeling to improve the current model parameterization and 

eventually to enhance the land surface model capability. Currently, calibrating 

distributed model parameters in large watersheds is still challenging due to its 

insufficient parameterization based on a pedo-transfer function. As finding in this study, 

the distributed model parameters can be successfully calibrated through the physically-

based hydrologic connectivity approach reflecting complex heterogeneous landscapes 

effectively. 

Currently, various hydrological models have been widely used in agricultural 

management practices, flood/drought prediction, and climate forecast modeling, among 

others with critical deficiencies remaining in simulating land surface hydrology. Based 

on the knowledge and findings of this study, the approaches proposed in this study can 

be helpful to develop better hydrologic understanding and modeling capability in 

complex landscapes. Although the modeling capability was enhanced in this research, 

some limitations still remain in land surface modeling such as parameter scaling issue 

and the impacts of lateral subsurface flow at large scales (e.g., regional or global). This 
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research was focused on improving modeling capability at field, sub-catchment, and 

watershed scales. In future work, the current study can be extended by understanding the 

impacts of lateral flow at large scales through exploring soil moisture dynamics obtained 

from satellite remote sensing products. Furthermore, the current model parameterization 

developed from a pedo-transfer function using soil samples collected at a local scale can 

be improved to be applied in large scale land surface modeling by using an up-scaling 

approach based on a similarity concept. This similarity concept has been widely applied 

to characterize the spatial variability of model parameters that is useful to upscale soil 

hydraulic parameters by understanding hydrologic similarity at different spatial scales. 

The physically-based hydrologic connectivity algorithm based on various physical 

controls (e.g., soil type, vegetation, topographic configuration) developed in this 

research can be used for deriving hydrologic similarity in complex heterogeneous 

landscapes with scales. Hence, land surface modeling capacity will be enhanced by 

characterizing the spatial variability of model parameters and calibrating model 

parameters using the promising concept at various spatial scales. 
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