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ABSTRACT

The recent development of metallic glasses has led to a growth in study and

innovation of the unique material properties these systems have to offer. In gen-

eral, metallic glasses offer high yield strength, great corrosion resistance and high-

elasticity. These properties, along with the ease of part creation through plastic-

forming, make it a desirable material for several different industry applications. For

the nuclear industry in particular, metallic glasses are being researched as coatings

for reactor vessels as well as coatings for fuel cladding for long term storage. However,

metallic glasses do have drawbacks. Metallic glasses are defined by their amorphous

structure, and as such have an undesirable brittle failure mode. The amorphous

structure is also a meta-stable structure and under several stimuli including high

heat, pressure shocks, irradiation and plastic deformation can cause crystallization

within the metallic glass. This crystallization does allow for some improvement in

ductility but reduces strength and corrosion resistance. The nuclear environment will

subject metallic glass to all of the aforementioned stimuli. It is therefore important

to know under what conditions crystallization will occur and the mechanism behind

the phase change in order for this material to be effectively implemented.

While crystallization under high heat and plastic deformation has been studied

extensively, crystallization from irradiation is an understudied field. This behav-

ior is difficult to describe and quantify due to its nuanced and unintuitive nature.

This body of work is aimed at more completely understanding the crystallization

and re-amorphization mechanisms in metallic glass due to ion bombardment. Thin

film samples and bulk ribbon samples were both subjected to a variety of ion bom-

bardment conditions. It was found that direct crystallization in thin film samples

ii



can be induced from irradiation induced excess free volume, while it can recover to

an amorphous state from rapid damage cascade quenching. In bulk studies, it was

found that the beam cannot induce direct crystallization, but can make a metallic

glass amorphous after it has been crystallized. These findings will help determine

the proper operation envelope for this material, so it can be used effectively in engi-

neering applications.
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1. INTRODUCTION

This chapter is intended to provide an overview of the characteristics of metallic

glass, motivations for its implementation in practical engineering applications and

issues preventing its current use. First, a description of the general system is pro-

vided to familiarize the reader with its properties. Next, the strengths of metallic

glass when compared to traditional materials are discussed in detail. Weaknesses of

metallic glass will then be addressed which provide motivation for the studies per-

formed in this dissertation. Finally a review of previously performed studies will be

given to provide the basis of the work performed here.

1.1 Metallic Glass: Overview

Metallic glass (MG) is a relatively newly discovered and novel material defined by

its metallic composition and amorphous atomic structure [5] [6]. Unlike most metal

alloys, which have a poly-crystalline structure, MG has no regular arrangement of its

atoms; rather they are spread randomly throughout the material. To produce this

material, a liquid pool of the desired composition must be made. Several heating

options are available for this, but all take place in an oxygen free environment. Next,

the liquid metal must be rapidly quenched. If the solidification is rapid enough, the

end result will be a metallic solid with the desired amorphous structure. If the cooling

rate is too slow, the results will be a traditional poly-crystalline material. An image

of metallic glass in ribbon and ingot form can be seen in Figure 1.1.

The composition of a metallic glass is very important. Several factors influence

the ability of a composition to form an amorphous microstructure. Each of these

factors help to frustrate crystal formation or expedite cooling, allowing for slower

cooling rates to be used to form the metallic glass.
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Figure 1.1: An image of a metallic glass ribbon, formed by the melt spinning process,
and a metallic glass rod, formed by casting. The pen is provided for size comparison.

First, good compounds for glass forming will typically have 4-5 primary elements.

This mix of different atoms will enhance the effectiveness of the other factors by

providing even more diversity.

In their pure forms, each of these elements should form a different crystal structure

(Ex. Body-centered, Face-centered, Hexagonal, ect.). With each of the elements

attempting to form different crystal structures, the atoms will have a difficult time

aligning and “choosing” a crystal lattice form.

It is also desired that these elements have a large atomic size mismatch. This

again makes it difficult for all of the elements to form a single crystal structure which

is a low energy state for all elements involved.

Lastly, if possible, the elements should have a negative enthalpy of mixing. This

characteristic helps solidify the mixture more quickly, effectively accelerating the

cooling process.

The different structures and large atomic size mismatch help frustrate crystal

formation. This allows the amorphous structure to be formed even with a slower
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cooling rate. The negative enthalpy of mixing helps cool the sample more rapidly,

helping solidification. A hypothetical time temperature transition (TTT) diagram

showing these enhancements from these factors can be seen in Figure 1.2.

Figure 1.2: Three hypothetical TTT diagrams showing the impact of various param-
eters affecting the glass forming ability.

All of these characteristics will determine at what rate the liquid metal needs

to be solidified in order to form an amorphous solid. This rate is known as the

critical cooling rate. A glass with a slow critical cooling rate is said to have good

glass forming ability. The glass forming ability of any compound being considered

for metallic glass is incredibly important since the maximum thickness of a metallic

glass component is ultimately limited by the critical cooling rate. A metallic glass

compound with very poor glass forming ability can only form very thin components,

as it must be cooled very rapidly. Conversely, compositions with a good glass forming

ability can be made into thick components, enhancing the practical useability.

An amorphous structure results in two primary microstructure characteristics
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which determine the compound’s mechanical behavior. First, there are no tradi-

tional crystalline defect structures such as interstitials, vacancies or dislocations.

Since there are no dislocations which can move, metallic glass has a distinct lack of

plasticity. This is similar in behavior to other non-metallic element based amorphous

materials. While there are no interstitials or vacancies, in the traditional sense, there

are areas of abnormally high or low packing densities. These defects will form the

nucleation sites for shear bands which will form whenever the metallic glass is loaded

past the elastic limit. Without any sort of grain boundaries, or crack tip deforming,

the shear bands will propagate through the material without any barrier, causing

catastrophic failure of the metallic glass.

Secondly, there are no grain boundaries. This is part of the reason shear bands

can propagate without restriction. The lack of grain boundaries also aids in the

inherent corrosion resistance of metallic glass. Corrosion normally occurs initially on

exposed grain boundaries since they are more susceptible to the corrosive agent[7].

1.1.1 Manufacturing

There are many ways to produce a metallic glass. Most methods initially start

with arc melting. In this process, an arc welder is used to flash melt and cool the stock

material. This is often the first step since the raw elemental stock is often difficult

to melt by conventional means. A pictorial representation of this process with the

end result can be seen in Figure 1.3. By melting the stock materials together, they

form a mixture which has a much lower melting temperature and is then easier to

melt by conventional resistive heaters for re-casting.

Once the stock has been made, several different methods can be used to form

the final desired shape. Tilt casting is a popular method of producing nearly any

shape of metallic glass desired. A diagram of this process can be seen in Figure 1.4.
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Figure 1.3: Pictorial diagram of metallic glass manufacturing by the arc discharge
method and an image of a final ingot. Image by: PNAS/Douglas Hofmann, Caltech

In this technique, the metallic glass stock material is first melted in a heated pool.

The molten material is then poured into an actively cooled mold, normally made of

copper (Cu), in order to remove heat and quench the material into its solid state as

quickly as possible. The solidified metallic glass can then be removed from the mold

and processed as needed. An example of a metallic glass rod formed by this method

can be seen in Figure 1.1.

A popular subset of casting is a process known as melt spinning[8]. Figure 1.5

provides a pictorial representation of this method. In this process the molten feed

material is poured directly onto a cooled spinning wheel. When the molten material

hits the wheel it solidifies extremely rapidly, forming metallic glass. This method is

very popular for producing samples for scientific research for several reasons. Samples

produced in this way have very uniform properties, and a very low percentage of

crystallinity. Melt-spinning provides extremely high cooling rates, so most metallic

glass compounds, even those with poor glass forming ability, can still be formed

using this method. Most scientific experiments also do not require large samples for

testing. The ribbon shape provides a large surface area with little overall volume,

allowing for large amounts of usable samples to be produced with a small amount of
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Figure 1.4: Pictorial diagram of metallic glass manufacture by tilt casting method

source material. A ribbon sample produced from this process can be seen in Figure

1.1.

Lastly, if finer control over the sample geometry is desired, metallic glasses can

also be formed by magnetron sputtering. Using a standard magnetron sputterer,

samples can be formed in thin layers. This method is advantageous since layer

thickness is able to be controlled on the order of nanometers, and thick layers of

alternating compositions can be formed. An example of a resulting structure formed

using this method can be seen in Figure 1.6.

In the studies performed here, both melt spun ribbon samples and magnetron

sputtered samples were used. In both cases the samples were determined to be
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Figure 1.5: Pictorial diagram of metallic glass manufacture by melt spinning

Figure 1.6: TEM image of a layered metallic glass specimen produced by magnetron
sputtering

completely amorphous before any testing began.
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1.1.2 Benefits

No matter how it is produced, the amorous structure of metallic glass comes with

some very beneficial properties which has driven research on these materials. MG’s

have a very high strength [9]. This strength not only comes from the bonds between

elements but their amorphous arrangement. The stress strain curve seen in Figure

1.7 is a clear illustration of this advantage. This high strength mainly comes from

the fact that there is no dislocation movement within the material. Since there are

no defects which will move easily with an applied strain, the atoms are frozen in

place, forced to hold onto their neighboring atoms until sufficient force is applied to

rend many atomic bonds at once.

Figure 1.7: A comparison plot of the compressive strain stress curves for a commer-
cially available metallic glass, Vitreloy, and its elemental components [1].

MG’s are also very corrosion resistant [10]. This is due to two factors. One is that

the highly variable composition of the metallic glass makes it very improbable that

a corroding agent will attack all of the elements. Secondly, the amorphous structure
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is naturally corrosion resistant. Upon forming, the metallic glass in general will have

a very smooth surface, free of sharp edges or cracks which are corrosion susceptible.

Also metallic glasses have no grain boundaries that can be exposed to the corrosive

agent. Grain boundaries are areas of very low packing density and high free surface

energy, which makes them susceptible to chemical corrosion[7]. Since metallic glass

only presents its bulk structure, it is more difficult for the corrosive agent to attack

the material.

These materials also have a higher fracture toughness than most ceramic materi-

als, which is their closest material counterpart [11] [8]. Fracture toughness is a very

important factor especially when dealing with brittle materials. In engineering ap-

plications a high fracture toughness can be the difference between a brittle material

failing catastrophically or staying structurally sound when it is struck or chipped.

In more ductile materials, fracture toughness is not a critical consideration since the

materials can stop crack propagation by crack tip blunting. However, in brittle ma-

terials, once a crack is formed, it cannot be stopped. The fact that metallic glasses

outperform ceramics in terms of fracture toughness makes it more desirable to be

used as a load bearing material.

When compared to ceramics, metallic glasses also have a much higher thermal

conductivity and can conduct electricity. While this is not a direct improvement

over ceramics, it does open the possibility of applications in places where ceramics

are either unusable or undesirable. For instance, a coating on a pipe that is heat

cycled will need to expand and contract with the pipe to avoid micro-crack formation.

Ceramics may have the corrosion resistance desired, but due to their low thermal

conductivity and low coefficient of thermal expansion, the coating will crack over time

exposing the pipe wall to the corrosive agent. Metallic glasses on the other hand,

have the corrosion resistance desired but also will stay close to the same temperature
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of the pipe, and expand and contract at the same rate. This greatly improves the

longevity of the metallic glass coating when compared to a ceramic option.

1.1.3 Motivation

While MG does have many desirable characteristics, it also has detriments which

have prevented its widespread use in engineering applications [12]. With their high

strength, MGs have very low ductility, also shown in Figure 1.7, resulting in a low

toughness [13]. This class of material is also very difficult to manufacture. Many

times, manufacturing thicknesses are limited by the critical cooling rate of the MG

[8]. Most research focuses on solving these two problems: improving the ductility of

MG without greatly sacrificing strength, and finding compositions of elements with

good glass forming abilities[14] [15].

However, there is another issue with MG that is of particular concern to the

field of nuclear engineering: its metastable state. When MG is formed by rapidly

quenching a liquid mixture into a solid, the atoms do not have time to find their lowest

energy configuration. This leaves them in the amorphous state which is at a higher

energy than the lower energy poly-crystalline state. While at many mild conditions

the amorphous structure is stable, there are several conditions under which the MG

will revert to a crystalline state. High temperatures, pressures, or irradiation can all

cause MG to crystallize [16] [17] [18]. Figure 1.8, acquired by Transmission Electron

Microscopy (TEM), shows a side by side comparison of the micro-structure of MG

before and after crystallization.

As can be seen in Figure 1.8, the transition from an amorphous to crystalline

structure results in a massive re-structuring of the atoms. This will result in atomic

segregation, a decrease in corrosion resistance, as well as reduction of the overall

strength of the material. This change is undesirable under most conditions as it will
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Figure 1.8: Two micrographs acquired by TEM of two MG specimens. One, com-
pletely amorphous, the other after undergoing complete crystallization. Both images
were taken using the dark field technique in order to highlight crystallinity in the
samples.

radically change the character of the material, more than likely making it unsuitable

for the original intended application.

1.2 Previous Works

While testing for heat and pressure conditions is relatively straightforward, the

response to irradiation is much more complex and nuanced [19]. Radiation response

is also a characteristic that will have widespread impact in the nuclear field. As such,

this body of work seeks to understand the radiation response of MG due to charged

particle bombardment.

This work is sorely needed as there is a distinct lack of research concerning the

effect of MeV level particle bombardment on metallic glass. This is a crucial subset

of radiation damage response as it is a very common type of damage event in a

fission or fusion type nuclear reactor. Studies outside of the advisers group so far

have used swift heavy ion bombardment in the hundreds of MeV to GeV range [20]

[21] or electron bombardment [22]. These experiments are able to answer some
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important questions about the fundamental responses of MG, however, they are

not a good representation of the types of damage expected in a reactor. These

studies are also primarily focused with either the changing magnetic behavior or the

effect of strong coulombic interactions on the viscous flow rate of MG. None of these

studies have a strong focus on the onset of phase changes within the MG or show

detailed changes of the internal structure. Characterization techniques primarily

use scanning electron microscope (SEM) with supplementary X-ray measurements.

Neither of these techniques give any detailed observation of the evolution of the

internal structure after bombardment. The conclusions gathered from these studies

are limited in the engineering context and the results gained are of little use to

understanding the mechanics of crystallization in MG.

For instance, Sorescu et al. [22]shows that under extremely intense low energy

electron bombardment, crystallization can occur. However, it is very likely that the

very high energy deposition rate caused crystallization in these samples simply due

to heating of the MG above its crystallization temperature.

Inside the advisers’ group, some previous experiments have been done regard-

ing MG crystallization due to ion bombardment. One such experiment shows that

crystallization may be caused by ion-induced segregation [17]. MG stability is very

reliant on composition. Changing the compositional makeup, even by a few atom

percent, can create an compound which is not able to maintain an amorphous state at

room temperature. The hypothesis given in this study is that ion-mixing may allow

certain elements to form compounds which more readily create a crystal structure.

TEM evidence is given to support the hypothesis.

It has also been shown in another study within the advisers group, that control-

ling the temperature of the substrate effects the resiliency of MG to crystallization

[23]. In this study, an ion milling machine, normally used for sample preparation, was
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the sample treatment tool. Ion energy as well as the substrate temperature were in-

vestigated. Crystallization is readily caused by ion milling under standard operating

conditions. However, it was observed that by reducing the energy of the bombarding

ion or lowering the substrate temperature using liquid nitrogen, crystallization can

be prevented.

These studies are a good starting point, but lack a breadth of knowledge in

order to truly determine the mechanics involved in the crystallization of MG. This

study of the MG response to irradiation is broken into three main categories based

upon the macroscopic sample geometry: thin film, layered structures, and bulk MG.

This categorical system rises naturally from the studies, as each system will require

unique sample preparation, treatment and characterization. Each study is aimed at

revealing a unique aspect of the crystallization/amorphization behavior.
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2. EXPERIMENTAL DATA ACQUISITION

All experimentation uses various scientific equipment and measurement tech-

niques to acquire information about the systems being studied. Knowledge of the

inherent strengths and flaws as well as the operational principles of each device and

technique used is extremely important in experimental design, and interpreting re-

sults. In completing this project, many unique and complex pieces of equipment and

measurement techniques were used. This section is aimed at explaining the relevant

details of each piece of equipment and the nuances of the techniques used.

2.1 Equipment

All equipment outlined in this section was chosen based on its strengths, weak-

nesses and availability to the researcher. In this section, the operating principles

will be described for each piece of equipment. The goal is to show how each piece

of equipment works which will help shed light on how physically each technique is

performed.

2.1.1 General IONEX 1.7 MV Tandem Accelerator

The 1.7 MV Tandem accelerator used for these experiments was made by the

General Ionex Corporation in 1983. To generate the ions used in the various experi-

ments, the accelerator has two different source heads which feed the main acceleration

column. After being accelerated by the main terminal voltage, the ions are directed

down a beam pipe to one of three target chambers where the ions will impinge upon

the target material. To describe this system in greater detail, it is convenient to

isolate the accelerator into three main sections: low energy, main acceleration col-

umn, and high energy. Each of these sections will be discussed in greater detail. An
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overview of the system showing all major beam optic components is shown in Figure

2.1.

Figure 2.1: A schematic showing the overall structure of the 1.7 MV Tandem accel-
erator

2.1.1.1 Low Energy

The low energy end of the accelerator is comprised of three main components:

a Source of Negative Ions by Cesium Sputtering (SNICS) source, a Duoplasmatron

source, and a low energy magnet. Each source is capable of producing ions and

accelerating them to a low energy to feed to the low energy magnet. That magnet is

then used to bend the ion beam into the main acceleration column. The low energy

end of the accelerator is kept at high vacuum by three 1000 l/s turbo pumps, each

backed by dual-stage rotary vane oil pump. Turbo pumps are used due to their ease

of use, fast pumping speeds, low contamination and small size profile. Oil pumps

are used at the low energy end due to their robust nature and high pumping speeds.

Since the turbo pumps at this end are ran continuously, oil contamination caused by

back streaming from the oil roughing pumps is not an issue.
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2.1.1.2 Low Energy: SNICS

The SNICS source uses a solid cathode as the source material for the ion beam

it produces. Extracting ions from a solid gives this source great flexibility as all

elements on the periodic table, with the exception of the noble gases, can be found

in a solid form. It is important to note that even elements not found as a solid in

pure form, such as hydrogen, can still be produced through the use of compounds

(ex. TiH). This source can be operated reliably for long periods of time with a very

stable beam current before any maintenance is required. A schematic of the source

displaying the beam optics and vacuum system components is shown in Figure 2.2.

This graphic may be useful to reference as the operation principles are described.

The operation principles of the source are quite interesting. The source is based

around sputtering using cesium (Cs). The cesium begins as a liquid in a reservoir

below the source head. This liquid is heated, causing some of the cesium to become

a vapor and travel up the chimney pipe. From here, some cesium will drift towards

the target cathode and condense on the surface, forming a thin layer of cesium. This

thin layer of cesium is important as it enhances the percentage of ions produced that

are negatively charged. While some cesium goes directly to the target cathode, most

of the cesium will travel into the ionizer chamber. In the ionizer chamber, a heated

coil, known as the ionizer, produces thermal electrons by being heated to a very

high temperature. The ionizer temperature is controlled by adjusting the amount of

electrical current that passes through it. These thermal electrons are accelerated by

the target voltage potential and are directed into long, spiraling paths by a static

magnetic field. The electrons, on their long path, have a good chance of colliding

with a cesium atom, causing it to lose an electron and become positively charged.

Cesium is very easily ionized, even by low energy electrons due to its extremely
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weak electronegativity. Weak electronegativity, along with its low melting point

and high atomic mass, is why this element is chosen as the sputtering species in this

source. The cesium, now positively charged, will be accelerated by the target voltage

into the cathode, depositing large mounts of energy in the near surface region and

causing target material to sputter off. The sputtered target material will have to

travel through the thin layer of cesium, which will easily give up an electron to the

target atoms. This effect will cause the majority of sputtered target atoms to become

negatively charged as they leave the cathode. These negatively charged ions are then

accelerated away, initially by the target voltage, and then by the extraction voltage.

After accelerating through the extraction voltage, the ions go through a focusing

element, an einzel lens. The beam at this point is very diffuse and this lens helps

focus the charged particles immediately after leaving the source head. The beam is

then given more energy as it passes through the pre-acceleration column. This will

add and additional 40-50 keV of energy to the beam. This extra energy is essential

later to resolve different elements after bending them through the low energy magnet.

Without the higher energy, many elements would be unable to be separated resulting

in a contaminated, multi-element, beam. After gaining energy through the pre-

acceleration column, the beam travels through a set of electrostatic deflection plates,

which help position the beam in the vertical direction. Next, the beam goes through

another focusing element, the grid lens, to the focus the beam one last time before

it is sent to the low energy magnet.

2.1.1.3 Low Energy: Duoplasmatron

The duoplasmatron source head is a gas-based source head, meaning that is uses

a gas feed as the source material to produce ions. This source head is a compliment

to the SNICS source head, since the Duoplasmatron can produce beams of noble
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Figure 2.2: A schematic operation of the internal structure and operation principles
of the SNICS ion source.

gas elements that the SNICS cannot. This source head in particular is optimized to

produce intense helium beams which can be used for implantation or lesser intensity

beams for ion beam analysis. Since it does not contain any cathode material or

sputtering element, the duoplasmatron can be used for a very long time before any

maintenance is required. A schematic diagram for this source head is provided in

Figure 2.3. This diagram may be useful as a reference in understanding the operating

principles of this ion source.

The ion beam begins as a gas which is fed into the source head through a leak

valve. This valve is specially designed to be able to feed in gas at a very low volumet-

ric flow rate into the source head chamber. This type of valve is needed due to the

sensitive nature of the high-vacuum environment. The source head chamber geome-

try is similar to a bottle, with the majority of the chamber being a constant diameter
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and one end of it pinched. The chamber walls are made of ferritic iron, so that they

transmit magnetic field lines from the electromagnet which surrounds the source

head chamber. Inside this bottle, a filament is heated in order to produce a wealth

of free thermal electrons. The filament in this case is a platinum gauze coated in a

material designed to enhance thermal electron emission. This setup creates the very

large number of free electrons required for the duoplasmatron to operate. The area

immediately surrounding the filament forms a diffuse plasma which is used mainly

to enhance the number of free electrons. These free electrons are confined along the

axis of the source head by the magnetic field, and then sharply concentrated near

the source exit by the convergence of the magnetic field lines along the geometry of

the source walls. The concentration of electrons, and the ionized gas forms a distinct

and very dense plasma region at the bottle exit, producing the second plasma that

the source head derives its name from. This dense plasma bubble is formed very

close to the extraction voltage which extracts positively charged ions from the dense

plasma.

The newly extracted beam is very poorly shaped, so it is immediately passed

through an einzel lens to help better define the beam. The beam at this point is

positively charged, however, since a tandem acceleration column is being used, the

beam entering the column must be negatively charged. To produce a negatively

charged beam, the positive beam from the source head is sent through a charge

exchange canal after the einzel lens. This canal is filled with sodium (Na), that is

heated until it is a liquid. The liquid sodium produces vapors which will interact

with the beam. Due to sodium’s low electronegativity, it will give up electrons to

the incoming positive beam relatively easily. If a positive ion collects two negative

charges in this process then it will become a negative ion. The probability of this

occurring is quite low, and the maximum efficiency for this process is close to 5%.

19



The remainder of the beam will either be neutralized or remain positive. The mixed

beam leaving the charge exchange canal is then sent to an electrostatic bending plate

which will bend the negative beam down the pre-acceleration column. Conversely,

the positive and neutral beam will be steered away, leaving only the usable negative

beam to continue. The negative beam will then travel down the pre-acceleration

column, gaining 40-50 keV of energy. It is vital that this beam be at a sufficient

energy to separate the different elemental species produced by the source head in

the low energy bending magnet. After the pre-acceleration column, the negatively

charged beam passes through a set of vertical electrostatic steering elements, and

then a grid lens for final focusing before entering the low-energy bending magnet.

Figure 2.3: A schematic of the internal structure and operation principles of the
Duoplasmatron ion source.
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2.1.1.4 Low Energy: Bending Magnet

The bending magnet at the low energy end is the last major component before

the beam is sent to the main acceleration column. It is extremely important to the

operation of the accelerator system and performs several functions. Firstly, without

a low energy magnet, this accelerator system could only have one source head. By

having this magnet, and being able to switch polarity, ion beams produced from

both the SNICS and duoplasmatron sources can be bent to travel down the main

acceleration column. This lends great flexibility in beam production and expands

the capability of the accelerator to a great degree. Similarly, the low energy magnet

provides the main horizontal direction control in the low energy system. Lastly, but

arguably most importantly, the low energy magnet performs a mass filtering function.

A schematic of the low energy magnet system is shown in Figure 2.4. This graphic

shows the beam passing through the magnet, illustrating the filtering mechanism of

the magnet.

All ions at this point in the system are coming out of the source heads with the

same energy. Neither source head can produce multiple charge state ions to any great

degree, so nearly all ions are single charged, giving them the same energy. Since ions

from the source head have the same energy, they will be bent to different angles

according to their mass. Lighter ions will bend to a greater degree than heavier ions

of the same energy, given the same magnetic field. This effect is used to purify the

ion species that enter the main acceleration column. This filtering function is vital

since both source heads produce beams with large amounts of impurity species. For

example, the duoplasmatron will produce large amounts of oxygen and nitrogen ions

from filament off-gassing and the SNICS source produces whatever elements are in

the cathode, which are often compounds. A common example is titanium hydride
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(TiH) in a copper (Cu) jacket which will produce Ti, Cu, H, and O in large quantities.

Many accelerator systems utilize a single bending magnet which must filter both

energy and mass. The problem with this setup is that many species will be separated

by a very small magnetic field setting, or be completely overlapping and indistin-

guishable from each other. However, in a tandem accelerator there are allowed to be

two bending magnets, as is the case here. This extra level of filtration ensures that

the correct element at the correct energy will be impinging upon the sample.

Figure 2.4: A schematic of the internal structure and operation principles of the low
energy “mass filtering” magnet. Particular emphasis is placed on beam separation
coming out of the duoplasmatron source, with common elements used as example
beams.

2.1.1.5 Main Acceleration Column

The main acceleration column is the heart of any accelerator system. In this area

the beam is exposed to very high voltages, resulting in the acceleration of the ions
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to their desired energy. The maximum terminal voltage is often the metric used to

define an accelerator system, such as the 1.7 MV tandem system being discussed in

this section. A schematic of the main acceleration column can be seen in Figure 2.5.

This graphic should aid in understanding the system as it is described in this section.

Figure 2.5: A schematic of the internal structure of the main acceleration tank.

The term “tandem” for this system is derived from the positioning of the two

acceleration columns that this setup contains. The columns are positioned such that

the beam passes through one column and then another. Such a configuration of any
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two objects is known as a “tandem” setup (Ex. Tandem bicycle). Each column is

a series of O-shaped metal plates separated by ceramic tubes and connected to its’

directly adjacent neighbors by a series of high-value resistors. Suspended between

these two columns is the nitrogen stripper canal where the vital charge-exchange

operation takes place. The accelerator produces a high voltage via a Cockcroft-

Walton ladder which is driven by a pentode-based push-pull AC circuit. This high

voltage is transferred to the beam at the stripper canal while the two supporting

acceleration columns are grounded at either end.

The high voltage applied at the stripper canal can be read in two different ways.

One way is remotely by a generating voltmeter (GVM). Another method is by mea-

surement of the voltage across the first few isolation plates, and then extrapolating

to the terminal voltage. With the exception of the push-pull circuit, all of the high

voltage generating equipment, stripper canal and two acceleration columns are en-

capsulated within an isolation tank approximately 3 ft in diameter filled to 100 psi

with sulfur hexaflouride (SF6). This insulating gas is used to prevent discharge to

ground, and is pressurized to a high value to increase the effectiveness and prevent

the encapsulating tank from being prohibitively large. All of this equipment works

together in order to perform the vital task of accelerating the ions provided from the

sources to a high-energy for use in scientific experiments.

The main acceleration column is kept under vacuum by turbo pumps at either

end. On the high energy end, a 1500 l/s turbo pump is used, backed by an oil-free

scroll pump. The low energy end is pumped primarily by one of the three 1000 l/s

turbo pumps mentioned in the low energy section. The higher-pumping speed turbo

is used at the high-energy end because it is more important to have a lower pressure

on the high energy end than the low energy end. This is to reduce the amount of

beam neutralization after the ions have been fully accelerated. The oil-free pump
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has been chosen for the high-energy end to mitigate the amount of oil contamination

on samples in any target chamber.

In order for this system to accelerate at all, there needs to be a charge exchange in

the middle of the two columns, otherwise any acceleration gained in the first column

will be canceled by the deceleration in the second column. The process starts at the

low energy end. The main acceleration column is given negatively charged ions from

either of the two source heads. These negative ions are attracted to the positively

biased terminal, accelerating along the first column. Once they reach the center they

enter the charge exchange canal, which has a relatively high pressure of nitrogen gas.

This gas is fed in at a very slow rate, controlled by a leak valve from outside the

tank. The negative ions will interact with this gas, which will strip electrons from

the ions. Many ions lose two or more electrons and become positive. These now

positive ions will be repulsed by the positive terminal voltage and accelerate away,

down the second beam tube, gathering even more energy.

This system, while complicated, does provide many benefits. First, this sys-

tem offers a safer alternative to single ended-air insulated machines. The system

high voltage is entirely contained within the isolation tank, rendering it incapable

of causing harm to any technicians or research scientists using the machine. This

setup is also convenient for producing high energy beams without an excessively high

terminal voltage. On this system, a single charged ion emerging from the main accel-

eration column has the same energy as a double charged ion would have on a single

ended machine with the same terminal voltage. This allows higher energies than is

possible with a single-ended machine of the same terminal voltage. The preferred

charge state, and therefore the energy can be optimized by controlling the level of

nitrogen gas in the stripper canal. For instance, if higher charge states are desired,

a heavier gas load can be used, enhancing the creation of multi-charge state ions.
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It should be noted that this charge state bias is performed without modification of

the source head parameters. The tandem setup is also easier to maintain. Since the

column is grounded at both ends, the source head systems can be located at ground

potential, making them much more accessible when compared to being located inside

the main isolation tank. This also greatly aids in source head testing, maintenance

and repair.

While the tandem column setup does have many advantages, it has a few disad-

vantages as well. First, ultimate beam currents are lower when compared to single

ended machines. This is inherent to the charge exchange process. The nitrogen strip-

ping canal will cause significant beam loss inherently in the process. For example,

for the General Ionex 1.7 MV tandem, a single charged helium (He) beam has about

a 30% transmission efficiency. This means that only ≈30% of the beam current that

enters the main acceleration column will come out of the other end as single charged

helium. This is one of the highest charge exchange efficiencies achievable. Heavier

ions have much worse efficiencies. Another commonly run beam in this accelerator

is double charged iron (Fe). For this beam, efficiencies are typically 10-15%. The

tandem column setup also has difficulty in running certain ion species. In order for

the tandem accelerator to produce a beam of a given element, the element must be

able to be negatively and positively charged relatively easily. This fact alone makes

it nearly impossible to run elements such as cesium (Cs) or krypton (Kr), both of

which cannot hold a negative charge long enough for them to be accelerated to the

terminal. This setup then limits the elements that are able to be produced by the

tandem accelerator compared to a single-ended system.
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2.1.1.6 High Energy

The high energy equipment encompasses all systems after the main acceleration

tank. This includes the high-energy beam optics and the various target chambers

located on the accelerator. The high energy beam optics are very important for

directing the beam as well as controlling its shape. After the beam traverses the

nitrogen stripper canal, located on the main acceleration column, it will become less

focused. This unfocused beam is then passed through a quadrupole focusing element

to shape the beam. Properly shaped, the beam continues to the high energy magnet

which directs the desired energy beam to the correct beam line. For the 1.7 MV

tandem there are three chambers available: the ion beam analysis (IBA) chamber,

the implantation chamber, and the channeling chamber. Each chamber is tailored

to perform certain tasks which will be discussed in their respective sections.

The high energy end is kept at high vacuum by a mixture of turbo pumps and ion

pumps. Each chamber is equipped with a 1000 l/s turbo pump backed by an oil-free

scroll pump. The turbo pumps are used here due to their A) very fast pumping

speed, which helps reduce chamber cycle time, B) their small size profile, which

reduces the amount of space required between beam lines and C) their inherent

cleanliness which, together with the oil-free scroll pump, helps reduce the amount

of sample contamination. The ion pumps are used on the beam lines for the ion

beam analysis chamber and the implantation chamber. These pumps are used since

they are very simple, require no backing pumps, can be left on indefinitely, and

provide very good beam line pressures. Beam line pressure is especially important

to keep low, since a poor beam line pressure will result in a large amount of beam

neutralization. The neutralization problem is especially pronounced in the beam line

since the beam path length within that section is quite high when compared with
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other zones, such as the chamber.

2.1.1.7 High Energy: Beam Optics

The beam is sent initially from the main acceleration column through an X-Y

focusing quadrupole. This element is designed to be able to focus a divergent beam

in the vertical and horizontal directions independently, resulting in not only a more

focused beam, but a beam with a controllable shape. After the beam has been

shaped by the quadrupole, it enters the high-energy bending magnet. This magnet,

like the low energy magnet, performs several important tasks. First, it is used to

direct the beam down the beam pipe to the chamber to be used for the experiment.

This magnet also performs the vital function of performing energy filtering of the

beam. Due to the creation of many charge states in the nitrogen stripper canal, the

beam emerges from the main acceleration column as a mixture of ions with different

charge states. Since the low energy magnet has already purified the beam down to a

single element, only the charge state, and therefore the ion energy, will differ between

elements. By altering the strength of the magnetic field, different charge states, and

therefore different energies, can be selected. It is important to note that the single

charged beam, even though it has the least energy, will require the highest magnetic

field to bend to a given angle. Multi-charged ions, even with their higher energy

are easier to bend since the multiple charge state will enhance the magnetic field’s

effect. With the beam energy now selected by the high energy magnet, it is sent to

a chamber to be used for experimentation. A schematic of the high energy beam

optics can be seen in Figure 2.6

2.1.1.8 High Energy: Ion Beam Analysis Chamber

The ion beam analysis chamber is able to hold multiple samples on a goniometer

to perform a wide variety of sample analysis techniques. The chamber setup on this
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Figure 2.6: A schematic representation of the magnet and focusing elements located
on the exit of the main acceleration column of the 1.7 MV tandem

accelerator is capable of performing Rutherford Back-Scattering (RBS) spectroscopy,

Particle-Induced X-ray Emission (PIXE), Elastic Recoil Detection (ERD), and Nu-

clear Reaction Analysis (NRA) types of experiments. All of these techniques are used

to determine very precisely the composition of the sample being analyzed. Each have

their own strengths and weaknesses, necessitating the use of all techniques to be able

to identify a wide variety of samples precisely. A schematic of this chamber, showing

the relative positions of various detectors is shown in Figure 2.7.

This chamber has been placed on the left hand side 30 degree beam line. This

angle was chosen in order to improve the beam energy resolution. A high magnet

bend angle will help ensure that only a beam of a precise energy, with very little vari-
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ation about that value, travels to the chamber. This is very important in being able

to reduce measurement spread, improving measurement resolution and sensitivity.

This angle is allowed since the ions used for analysis are typically very lightweight.

Hydrogen (H), helium (He) and in rare instances, carbon (C) or silicon (Si) are the

only beams that need to be sent to this chamber. Their low mass allows them to be

bent to a high angle without having to generate a prohibitively large magnetic field.

Figure 2.7: A schematic of the ion beam analysis chamber showing relative positions
of detectors.

2.1.1.9 High Energy: Implantation Chamber

Another chamber used frequently is the implantation chamber. This chamber

is equipped with a room temperature or heated stage, and is setup to perform a

uniform implantation on samples up to 15 x 15 mm in size. It does this by having a

set of raster coils located approximately 1 meter before the chamber. These coils are
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able to effectively scan a focused beam spot over the entire sample surface, resulting

in uniform depositions. The heated stage is capable of maintaining samples at a

temperature up to 600 ◦C for ion implantation at a high temperature. Due to this

high heat load in the chamber, a water-cooled shroud is installed around the heated

stage to help reduce the heating of the chamber. A schematic of the chamber, with

the heated stage displayed, is shown in Figure 2.8.

This chamber is installed on the left hand side, 11 degree beam line. This smaller

angle has been chosen to allow for heavier, higher energy ions to be implanted. For

example, many steels are irradiated at this facility. Iron (Fe) then is the ion of choice

to mitigate the amount of chemical changes that will occur within the steel. This

element helps produce good quality samples from experiments, however, it is a heavy

ion to bend in the high energy magnet. By reducing the angle required to bend the

ions, the magnet load can be reduced to a reasonable level. For this magnet setup,

30 amperes of current are typically required to be able to bend the iron beam to

the implantation chamber. By comparison, it would require nearly 90 amperes of

current to bend the same beam to the ion beam analysis chamber. This current draw

is prohibitively large, showing the importance of choosing a beam line with a small

bend angle.

2.1.1.10 High Energy: Channeling Chamber

The channeling chamber is used for one specific type of experiment: RBS chan-

neling. This is a specific type of RBS analysis that uses single crystal samples. The

chamber is equipped with a high-precision goniometer that is automatically con-

trolled through a custom-coded labview program. This goniometer is controlled to

precisely align the single crystal channeling axis with the beam. This allows ion

channeling to take place, allowing unique measurements to be made that can reveal
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Figure 2.8: A schematic of the implantation chamber showing stage geometry and
cooling shroud.

details about the internal structure of the sample. This chamber is separate from

the general IBA chamber due to the need to have the high-precision goniometer. A

schematic showing the chamber and beam line setup can be seen in Figure 2.9.

2.1.2 140 kV Implanter

The 140 kV implanter system is an accelerator put together from various parts

and is not from a specific company. It is a relatively simple, but robust system. A

schematic showing the overall structure can be seen in Figure 2.10. It has a single gas

source head which sits on the end of the primary acceleration column. This column
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Figure 2.9: A schematic representation of the channeling chamber showing goniome-
ter and detector positions.

is a relatively low voltage, and as such is air insulated. This system uses a single

magnet which bends the desired beam to a single end station. This system is best

segmented into three parts: the source, acceleration and filtering, and end station.

These parts will be discussed in more detail in separate sections.

2.1.2.1 Source

The source head for the 140 kV system is a gas fed source head capable of produc-

ing very high beam currents. The source head structure is a mostly closed cylinder

with a small opening at one end. Inside this cylinder is a tungsten filament. This

filament is heated to a very high temperature by passign electrical current through

it to generate free electrons. Gas is injected into this cavity, and due to the wealth

of electrons, forms a plasma. To form and sustain this plasma, there are two other
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Figure 2.10: A schematic representation of the 140 kV implanter.

elements that help confine and shape the plasma. First, the entire source head is

surrounded by an electromagnet. This magnet primarily confines the thermal elec-

trons, making them travel in a long spiral path, increasing the chances of the electron

interacting with a gas atom, and causing ionization. The second confinement ele-

ment is the anode. This element generates a bias between the cylindrical wall of the

source head cavity and the filament, the aperture plate and back wall of the source

head cavity, which are all held at local ground potential. The setup may be more

easily understood from close examination of the source head in Figure 2.11. This

voltage bias is designed to help confine the plasma that has been generated. This

enhances the amount of ions extracted from the plasma, as well as helps with the

beam shape. With the plasma generated in the source head cavity, the extraction

bias then extracts the positively charged ions from the source head. The beam then

immediately passes through a focusing lens to help correct for the beam shape. The

beam is now ready to enter the main acceleration column.
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Figure 2.11: A schematic representation of the 140 kV implanter’s gas source head.

2.1.2.2 Acceleration and Filtering

After the beam is produced and shaped by the source head, it immediately enters

the main acceleration column. The source end of the column is held at the operating

voltage, and the other end is grounded. This configuration is known as a single ended

accelerator, and, as mentioned before, is quite simple, robust and straightforward.

A diagram of the acceleration and magnetic filtering components of this accelerator

can be seen in Figure 2.12.

This accelerator design has the advantage of losing none of the beam in a charge

exchange process, and only requires a single acceleration column. The disadvantage

of this system is that the source and associated power supplies all have to be held at

the operating voltage. This accelerator has a relatively low terminal voltage, and so

is air insulated, making maintenance a relatively simple task. However, for higher
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Figure 2.12: A schematic representation of the 140 kV implanter’s main acceleration
column and ion filtering magnet

voltage systems which require an isolation tank around the source end, performing

any sort of work on the source head or supplies requires venting the tank and re-

filling it after the work has been completed. This process is time consuming and

must be undertaken with the utmost precaution as to keep the fill gas pure. This is

a major disadvantage for high voltage single-ended systems.

After the beam is accelerated through the main column, it is sent to a single

bending magnet. This magnet bends the beam to travel down the beam line to the

36



target chamber and provides the majority of the horizontal adjustment in the system.

This magnet has to filter the beam for both energy and mass simultaneously. This

is a simpler setup, but users must be very wary of closely spaced ion species, such as

oxygen and nitrogen beams, as well as beams that are unresolvable since they have

the same charge over mass ratio.

The source end of the accelerator is kept at high vacuum by a diffusion pump

backed by a mechanical oil pump. The diffusion pump is kept at ground potential,

directly after the main acceleration column, but before the bending magnet. This

setup has been chosen because the diffusion pump available for this system has a very

high pumping rate. This is needed due to the large gas load produced by the source

head while it is operation. The disadvantage of this pump is that it contaminates the

system with oil. The effect of this is partially mitigated by a water cooled collar at the

top of the diffusion pump. This disadvantage is acceptable since this diffusion pump

is located far from the target chamber and has a very low oil back-streaming rate

when the system is at operating pressure. This pump is backed by a high-throughput

mechanical oil pump in order to keep pace with the very large diffusion pump in use.

The mechanical pump has another advantage of a robust design that will operate

for decades with very little maintenance. An oil backing pump is acceptable even

though it back-streams oil for the same reasons as mentioned for the diffusion pump.

2.1.2.3 Target Chamber

Before the beam reaches the target chamber it must travel down the implantation

beam line. A diagram of the beam line and target chamber can be seen in Figure

2.13.

This beam line is equipped with a beam profile monitor and scanning coils. These

coils are used to raster the beam onto to a maximum 3 x 3 cm area. This large area is
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Figure 2.13: A schematic representation of the 140 kV accelerator implantation cham-
ber showing stage position and geometry

possible from the wide bore beam pipe diameter utilized on this beam line. This large

pipe is more challenging to pump to high vacuum but allows for large sample area

irradiations. The beam line is equipped with a small sized turbomolecular (turbo)

pump backed by an oil free scroll pump. This setup is used to reduce the amount of

oil contamination seen by the samples in the target chamber. A large sized pump is

not required since the diffusion pump is able to handle most of the gas load.

The target chamber equipped on this accelerator is used exclusively for implan-

tation. It is equipped with a heated stage which can achieve temperatures up to 800
◦C. This stage is flexible in position as it has 5 cm of travel, allowing for multiple

sample mountings and can be rotated to offer glancing angle irradiations. The stage

is also electrically isolated from ground, allowing a current integrator to be used for
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room temperature irradiations, providing precise dose measurements.

The chamber is kept at high vacuum by a cryo-pump. This pump was chosen

due to its very high pumping speed of most gasses, its very clean nature, and its

ability to achieve very good vacuum levels. The cryo-pump does have one serious

disadvantage in that it must be periodically regenerated. This is due to the nature

of the pump not exhausting gasses. The pump simply traps and stores gasses until

it is full. At that time the pump must be taken off line and allowed to heat up to let

the trapped gasses escape. The cryo-pump is not backed by a roughing pump since

it has no exhaust, however, the chamber must be still be taken to roughing vacuum

before the cryo-pump takes over. To perform this task, an oil-free scroll pump is

used to mitigate chamber contamination.

2.1.3 Electron-Beam Evaporator

The Electron-beam (E-beam) evaporator is a device used to very precisely deposit

a thin film of material onto a given substrate. The device consists of a few different

components housed inside a high-vacuum chamber. This chamber is kept at a high

vacuum by a turbo pump with a dual stage rotary vane oil pump backing it. The

high vacuum is required to maximize deposited film purity as well as allow the heat

source, a beam of low energy electrons, to function properly. Samples to be coated

are placed in the chamber on a platter located at the top of the chamber. The

platter face holding the samples faces downwards, so samples must be held in place

by adhesives, such as tape, or a clamp, several of which are available on the sample

platter. This platter is shielded by a movable shutter. Next to the platter is a

quartz crystal. This crystal is used to determine film thickness through vibrations.

As a film layer builds up on the face of this quartz, its overall mass will increase.

Then, similar to a pendulum, the frequency at which it oscillates will decrease. The
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measured decrease in frequency can then, knowing the density of the material being

deposited, be used to calculate the deposited thickness to a high precision. The

bottom of the chamber holds the heat source and deposition material. Both of these

are kept under a different protective shutter. A schematic of the system can be see

in Figure 2.14.

Figure 2.14: A schematic of a typical E-beam evaporator showing all critical compo-
nents.

To begin a deposition, both shutters are closed and the heat source begins melting

the material. The electron beam is initially set at at low power to try and evenly

heat the sample. After a user defined amount of time, the intensity of the electron

beam sharply increases, melting the near-surface material. Once the material has
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been determined to be adequately heated and the surface oxidation removed, the

shutter at the bottom of the chamber opens. With the bottom shutter open, the

vapors being produced by the melted material drift upwards and begins coating the

quartz thickness measurement device. While measuring the rate of deposition, the

heat source power is varied until the target deposition rate is reached. Once the

target deposition rate is correct, then the sample platter begins spinning and shutter

protecting the sample platter swings out of the way, beginning the deposition. The

platter is spun in order to increase uniformity of the deposited layer. When the

deposition is complete, the shutter at the top and bottom of the chamber close,

halting the deposition.

2.1.4 Tunneling Electron Microscopy (TEM)

The TEM is a powerful instrument which uses an electron beam to be able to

resolve micro and even nano-scale features from within a sample. To do this, the

TEM uses an electron beam which is focused and directed through the sample. As

the electrons pass through the sample, they are perturbed by the structure within.

The beam is then expanded on to a detector array which is able to record an image

of the resulting beam. This process is able to produce images of the interior of the

sample, showing features such as crystal grains, dislocation loops, voids, and other

microstructure features.

There are several important lenses and apertures which must work in concert to

achieve proper beam shape and placement. The important beam shaping features

of a TEM are outlined in Figure 2.15. For this study, diffraction patterns, bright

field imaging, and dark field imaging are all required in order to fully understand the

structure. The changes to the electron beam shape needed to achieve each of these

imaging modes can be seen in Figure 2.15.
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Figure 2.15: A schematic of the major components of a TEM. Also a diagram showing
the differences in beam manipulation required to achieve different imaging modes.

Diffraction patterns form the basis for the imaging capabilities for the TEM.

These patterns reveal a great deal about the overall or local structure of the sample,

depending on the level of focus achieved. For a completely amorphous sample, the

diffraction pattern will consist of the primary, or non-deflected beam, in the center

and a diffuse, uniform, ring surrounding it. This ring is often referred to as a “halo”

ring due to its resemblance to an angel’s halo in traditional christian mythology.

This pattern is formed since the amorphous structure tends to scatter the beam at
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the same angle and does not have a directional dependence. An example of this

structure can be seen in Figure 2.16A. For a single crystal sample, the diffraction

pattern formed will consist of a regular arrangement of dots, surrounding the main,

non-deflected beam. These dots are caused by the crystal structure preferentially

deflecting the beam into certain crystallographic directions. This makes the diffrac-

tion pattern very useful in determining the overall crystal structure as well as atomic

spacing between the atoms contained within the crystal structure. An example of a

single crystal diffraction pattern can be seen in Figure 2.16C. A poly-crystalline ma-

terial will contain many of these dot patterns superimposed on each other, around the

primary beam spot. An example of a polycrystalline material can be seen in Figure

2.16B. This happens since each of the crystals in the analysis beam will contribute to

the overall diffraction pattern. For the metallic glass, there will be a combination of

amorphous and polycrystalline structures leading to diffraction patterns which can

range from only having a diffuse halo ring in an amorphous sample, to a halo ring

plus some scattered points in a partially crystallized sample, to only having scattered

points in a fully crystallized sample. An examples of a partially crystalline diffraction

pattern can be seen in Figure 2.17.

Bright field imaging is the standard imaging mode when using a TEM. In this

mode, the image is created from the non-deflected electron signal by selecting the

main beam from the diffraction pattern. This mode of imaging will show overall

structures of the sample as well as give information about local sample density or

sharp changes in composition. An example of this type of image can be seen in

Figure 2.17.

Dark field imaging is a variant type of imaging which creates an image from the

deflected electron beam. This style of imaging is very important to theses studies

as it is very sensitive to crystallographic direction. By selecting only the deflected
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Figure 2.16: Examples of diffraction patterns from A) Amorphous carbon, B) Poly-
crystalline aluminum and C) Single crystal gold. Taken from Lobastov et.al [2]

Figure 2.17: Example micrographs showing the relationship and different capabilities
of bright field, dark field, and diffraction pattern images.

electrons, crystals with that preferred orientation will light up very brightly, while

crystals out of that direction will become very dark. Amorphous material shows up

as a uniform gray. Due to this strong contrast, this technique is most sensitive to
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crystallization and can reveal the presence of nano-crystals even when bright field

imaging and diffraction patterns appear to show a completely amorphous material.

An example of dark field imaging can be seen in Figure 2.17.

While, TEM is a power full analysis tool, it does require a sample to be electron

transparent. This means creating a sample that is 100-200 nm thick, which is quite

challenging. The three methods used to create samples for this study are outlined in

the following sections.

2.1.5 Focused Ion Beam (FIB)

The focused ion beam system is a relatively new tool in the suite of electron mi-

croscope characterization techniques. This instrument combines a traditional SEM

with a high-precision goniometer, sample manipulator, platinum (Pt) deposition sys-

tem and a well focused source of low-energy gallium (Ga) ions. Theses tools, when

used together, give unprecedented control for microstructure fabrication of various

types. By selectively sputtering the sample using the Ga beam, a variety of sample

shapes and sizes can be created with characteristic dimensions ranging from ≈50 nm

to ≈50 µm.

The FIB has many applications, but is commonly used to create micro-pillars

for mechanical testing or electron transparent films for TEM characterization. In

this study the FIB was used to create TEM ready specimens out of previously-

irradiated MG samples. The ability of the FIB to reliably create high-quality electron

transparent samples of various sizes from specific sites in the sample lends great

flexibility in TEM characterization. To produce these samples there are many steps

that have to be undertaken to ensure that the sample is made to the correct size

and is thin enough to be viewed easily in the TEM. A pictorial representation of the

process can be found in Figure 2.18.
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Figure 2.18: A pictorial representation of the lift-out process used to create electron-
transparent specimens from focused ion beam milling.

To begin, a suitable spot on the sample is found. Ideally, a flat area away from

any irregular features such as surface cracks, or obvious surface contamination. Next

a platinum “pillow” is deposited on top of the sample. This layer is deposited to

protect the sample surface from being etched away in the subsequent steps. Next,

two trenches are cut on either side of the deposited Pt pillow using the Ga beam. The

remaining material between the trenches will become the final electron-transparent
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sample. With the trenching complete, rough sample thinning is performed, making

the web of material thinner. After rough thinning has been completed, the Ga beam

is used to cut around the sample to nearly detach the sample from the substrate.

With the sample held on by only a small piece, a probe is brought over and welded to

the sample through Pt deposition. With the sample now firmly attached to the probe,

the Ga beam severs the remaining material holding the sample to the substrate. Next

the sample is moved to a copper grid on the probe. Pt is again used to weld the

sample to the grid, and the Ga beam is used to cut the probe from the sample after

it is properly attached. Finally, the Ga beam on a very low energy and intensity,

performs final thinning of the sample to make it electron transparent. The mounted

sample can then be removed from the FIB and analyzed using a TEM.

2.1.6 Twin-Jet Electropolisher

Thinning samples to use in a TEM is a challenging task. As such there are

many devices that have been developed to perform exactly that task. The Twin-Jet

electropolisher performs that task by spraying acid onto a sample and applying a

voltage to cause a controlled etching of the sample. In order to achieve consistent

etching and good performance, all elements of the polisher have to work in concert.

The main components of the electropolisher are the: tub, pump, sample holder,

electrode, power supply, laser and light sensing diode. The tub of the electropolisher

is a double-walled, air insulated, plastic tub which holds the acids used to perform the

etching. It is well insulated to aid in keeping the acids at a constant, low temperature.

The pump rests near the bottom of the tub and circulates the acids up into the

polishing head where they will react with the sample before traveling back down to

the tub. The polishing head contains the sample holder, electrode, laser and light

sensing diode and is the location where the actual polishing happens. The holder
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positions the sample in the proper position from the electrode which is fed by the

external power supply. Lastly, the laser and light sensing diode are held on opposite

sides of the sample.

To operate, the tub is first filled with acid and cooled using liquid nitrogen to the

appropriate temperature. The sample is then loaded into the holder and placed into

the polishing head. The power supply settings are adjusted by the user and then the

polishing begins. When the user starts the polish cycle, the pump runs first by itself

for a few seconds to allow for a good stream of acid to develop on the sample. Next,

a voltage is applied to the electrode and the laser turns on. At this point the power

supply will register a high current value as the sample begins to etch. The etching

process will continue until either the power supply is deactivated by the user, or

the light sensing diode registers laser light above the set threshold value, indicating

that the sample has thinned through. After the sample is removed, it is rinsed in

an acetone bath, then a De-Ionized (DI) water bath before inspection. A sample

with several small holes near the center of the material indicates that a high-quality

thinning has been achieved, giving a good chance of electron transparent regions.

2.1.7 Traditional TEM Sample Preparation

The very first forms of preparation used to produce electron transparent sam-

ples implemented a fairly straightforward, albeit difficult to perform, process. This

process requires three primary pieces of equipment: a standard flat grinding disc, a

precision dimpler and an ion mill. Example pictures of these three pieces of equip-

ment can be seen in Figure 2.19. To produce high quality samples using these three

pieces of equipment is quite challenging and requires lots of time, patience and ex-

pertise. However, this method of preparation is quite versatile and can be applied

to many samples that could not be prepared using FIB or electropolishing. A pic-
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torial representation of the process can be seen in Figure 2.20, and a more detailed

description of the process is continued in the next few paragraphs.

Figure 2.19: Images of the equipment used in traditional TEM sample preperation

To begin, the sample is cut into two pieces, and the faces of interest are glued

together. Next, this sandwiched sample is mounted onto a polishing rig and wet

sanded perpendicular to the surface using standard silicon carbide (SiC) based sand-

paper until it is around 1 mm thick. Next, the sandpaper is swapped for diamond

paper placed onto a smooth glass surface, and the sample is switched from the orig-

inal polishing rig to a high-precision grinding apparatus. The sample is then wet

sanded on the diamond paper on both sides to ensure that the two sanded surfaces

are nearly exactly parallel. This sanding is done until the sample is ≈300 µm thick.

Next, the sample is transferred to a dimpling machine. This machine uses a small

wheel to grind an impression into the sanded surface, centered about the glued sur-

faces of the sample. Initially a copper wheel is used with a small amount of abrasive

material, usually an alumina (Al2O3) slurry. This will quickly grind a depression into

the surface. After the depression is mostly made, the copper wheel is exchanged for

a cotton wheel. This wheel is coated with a finer abrasive material. The wheel then
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Figure 2.20: A pictorial representation of the sample evolution when using traditional
grinding, dimpling and ion milling to produce electron transparent samples.

continues deepening the depression until the sample reaches a thickness of around

20 µm in the center of the depression.

With the center of the depression adequately thinned, the sample is moved to

the ion milling machine. In this final step, the sample will be thinned to electron

transparency by using low energy argon (Ar) atoms to sputter the surface. Two

directly opposed beams of Ar are created which hit the sample at a glancing angle of

approximately 10◦. The sample is rotated during bombardment to ensure uniform

sputtering. This process is continued until the center of the sample is optically

transparent. At this point it is known that around the edges of the perceived hole,
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there will be wide electron transparent regions to be observed.

2.2 Techniques

2.2.1 TEM Sample Preparation

In the equipment section three different systems were discussed that were capable

of producing electron transparent samples: FIB, jet electropolishing and traditional

TEM preparation. Each technique was used in this study to fabricate specimens

based upon each samples’ unique properties and needs. A table outlining the tech-

niques strengths weaknesses and usage in this study are shown in Table 2.1.

Table 2.1: Comparison of the three different types of TEM sample preparation used
in this study

Preparation
method

Advantages Disadvantages Samples Produced

Focused Ion
Beam Milling

-High level of control
over lift out location

-incompatible with
insulating materials

All bulk studies spec-
imens

-fast fabrication time -Possible ion damage
-small observable
area

Jet Elec-
tropolishing

Large electron trans-
parent regions

Selective dissolution
may occur

All studies involving
thin films

-Very fast fabrication
time

-variable thickness
membranes

-damage free method -lack of depth control

Traditional
Preparation

-Compatible with
nearly all materials

-Slow preparation
time

Multi-layered sample
study

-Large observable re-
gions

-Potential damage
from: grinding, ion
milling
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For all bulk studies, FIB was used to prepare the sample. This method was

chosen as it can reliably produce samples quickly post-irradiation. Traditional TEM

preparation was not used due to the extremely difficultly presented by the sample’s

ribbon geometry. Jet electropolishing was also ruled out since it is only capable of

producing planar view samples, not a cross-sectional view as was needed in this case.

Jet electropolishing was able to be used for the thin film studies since the samples

were treated after the TEM preparation had been performed. This made the disad-

vantage of not knowing the depth of polish not important. In this case the variable

thickness aided in performing the experiment since the effect of various membrane

sizes could be observed.

Lastly, traditional TEM preparation techniques were used for the multi-layer

samples since heterogeneous two material structure was incompatible with jet elec-

tropolishing and one of the layers was an insulating material, making FIB a non-

viable method.

2.2.2 Ion Bombardment

It is important to discuss the parameters chosen to perform the ion bombardment

studies as this is the sample treatment used in all of these studies. Ion bombardment

is a very powerful tool in material analysis work, but it is not without its faults

and drawbacks which must be carefully considered before designing an experiment

or interpreting results.

2.2.2.1 Ion Selection

One of the major problems with ion bombardment is the fact that an actual atom

is being introduced into the sample when causing damage. This is not an issue when

damaging using electrons, photons or neutrons. From this, chemical changes can

occur in the sample. In some cases, such as doping silicon for microchip devices, this
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behavior is greatly desired. However, if ion damage is being used as a surrogate to

study radiation damage in general, these chemical changes are to be avoided as best

as possible. If an ion is not chosen properly, very extreme changes could occur which

could cloud the damage caused by the radiation interaction. In order to avoid this,

two types of ions can be chosen: Noble gases and self-ions.

Noble gas ions are perfect in that they do not form chemical bonds, therefore

new compound formation will not take place. They are ideal for cases where a small

change in composition could cause major issues or the sample has a heterogeneous

structure. However, noble gasses can cause compressive lattice strain, and in some

cases can move quite freely through the sample microstructure to create very large

void structures. Noble gasses then are best reserved for cases in which the ion will

likely pass completely through the zone of interest either depositing deeper or passing

entirely through the sample.

The other choice is a self-ion. In this case, the ion element is chosen to match a

major element in the sample of interest. For example, if a steel is being irradiated,

iron (Fe) is often chosen in order to minimize the compositional change within the

sample. While the entire sample is not composed of Fe, it is mostly made of that

element, meaning that injecting additional Fe will not cause major chemical changes.

This is not a perfect solution, but by performing calculations using the fluence and

penetration depth, the change in composition can be predicted. At that point it can

be determined whether or not the change is significant. For most irradiations the

change in composition will be negligible. Self-ions then are a great choice in many

cases where the sample is homogeneous, and void structures, or compressive strain

caused by a noble gas is undesirable. In this study, the self-ion in each case will be

given and the maximum change in composition will be provided if a self-ion is used.
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2.2.2.2 Depth and Damage Determinations

When using ion bombardment to study radiation damage it is important to con-

sider the fact that the damaging agent is a charged particle. Charged particles will

have a maximum range in a solid determined by the electronic and nuclear stopping

powers between the incident ion and the substrate. The interaction between the two

can be quite complex as both stopping powers will be effected by the instantaneous

speed of the ion relative to the substrate, the local substrate density and several

other factors which have a negligible contribution most of the time. Creating a de-

terministic or analytic method to calculate the resultant ion distribution and energy

deposition across a wide range of energies, ions and substrate compositions would be

extremely challenging. In this case a different approach must be taken.

One common and elegant solution to this problem is to use Monte Carlo methods.

The specific Monte Carlo code used to perform all depth calculations in this study

is the Stopping Range of Ions in Matter (SRIM)[24]. Developed by James Ziegler

and others, this code is considered to be accurate for a wide variety of compounds

and incident ion energies. This code provides usable results by giving the user the

average ion behavior as determined by simulating a large number of individual ion

events. A snapshot of the program interface and results can be seen in Figure 2.21.

An ion in the code begins at one edge of a simulated sample at the energy specified

by the user. It then travels into the sample losing energy as calculated by the

electronic stopping power. It will travel in a straight line until it interacts with a

nucleus and has a nuclear collision event. The distance traveled between events, as

well as the scattered angle and retained energy from the nuclear scattering event, is

determined by a statistical model developed by experimental testing combined with a

random number generator. Once enough events have been computed, the aggregate
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Figure 2.21: An image of the SRIM User interface and calculation screens for a
typical calculation in this body of work.

behavior can be determined to within a known statistical tolerance.

With the output from SRIM, an experimentalist can determine, with a reasonable

margin of error, the distribution of implanted ions as well as the damage distribution
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and magnitude. However, no simulation code is perfect, and all results must be taken

with caution. In the case of metallic glasses, this is doubly so.

The first issue is that SRIM must assume an atomic density. For metallic glasses

this can often be difficult to determine, and the density of the glass may in fact change

as the sample is bombarded due to phase changes or relaxation of the structure. This

will effect the true ion ranges achieved in the sample, however, this change will not

be reflected in the results given by SRIM.

The magnitude of displacements reported by SRIM will also be inaccurate. When

SRIM tallies a displacement event, it is assuming a value for the lattice binding energy

of the struck atom. In crystalline solids, this value can be well known, especially for

solids of only one element. However, in compounds these values are less well known,

and in amorphous materials the lattice binding energy can vary greatly. These values

are not very well known and will have a large impact on the magnitude of the dis-

placements caused. This inaccuracy should not, however, create large discrepancies

in the distribution of displacements.

2.2.2.3 Beam Energy

Beam energy is something that must be carefully considered before the start of

the irradiation. The beam energy will not only determine the ion range into the

sample but also the damage distribution and magnitude. A high energy ion will

penetrate further into the sample and will normally cause more damage. However,

the peak damage area will also be shifted away from the surface. This must be

considered carefully especially in cases where a surface layer is being studied for

damage tolerance. A higher energy ion will ensure that near surface doping effects

are negligible, however, having a lower energy ion will increase the damage per ion

caused in the near surface region. These two effects must be balanced according to
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the goals and sensitivity of the samples. SRIM is a very useful tool in determining

this parameter.

2.2.2.4 Beam Intensity

The intensity of the beam is also an important factor to consider, especially

for samples that are heat sensitive. Measured beam current for ion beams usually

ranges from a few nano-amperes to tens of micro-amperes. While this is a small

value for the current, it must be noted that the ions are at a very high energy and

are depositing all of that energy within a very small volume. In the experiments

here, the highest energy beams used only penetrate ≈2 µm. When this is taken into

consideration, the heating caused by the beam is very significant. The metallic glass

samples used in these experiments are heat sensitive, and so careful consideration

must be made when determining the acceptable beam current for all irradiations. In

some cases, such as in silicon (Si), altering the beam intensity while maintaining the

ultimate fluence will change the amount of damage caused in the specimen[25]. The

defect annealing time in metallic glass is not well understood, so in order to maintain

continuity between samples, a constant beam intensity should be kept. Therefore for

all experiments performed in this study the beam flux (number of ions/cm2-s) has

been kept constant unless otherwise noted.

2.2.2.5 Scan Pattern

Scan pattern is another factor which is important to consider. In order to main-

tain uniformity, most ion beam systems rely on scanning a focused beam spot over

the sample. By performing this scan, uniformity should be maintained, regardless

of the intensity profile for the focused beam spot. This is great for maintaining uni-

formity, however, this does create a pulsed beam effect. Since the spot will irradiate

one part of the sample, then move away for a period of time before returning to
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bombard that part of the sample, the damage rate in any particular spot will vary

on a time scale similar to that of the scan time. The time between bombardment can,

depending on the scan pattern used, also vary depending on the sample’s proximity

to the edge of the scan area. To solve this issue, a constant defocused beam can be

used.

The difference in the resulting microstructure can be effected greatly depending

on if a scanned beam or defocused beam is being used. This effect has been shown

to be quite real in pure iron (Fe) systems, where the amount of void swelling can

be altered significantly by the scan pattern chosen[26]. However, a defocused beam

cannot guarantee uniformity, causing problems in estimating dose to any particular

area. A way to split the difference then is to use a “wobble” beam. In this case, a

defocused beam is slightly scanned, but never to the extent where a large fraction of

the beam has been scanned off. By using this technique, the uniformity of the beam

deposition can be enhanced while maintaining a mostly constant beam intensity

across the sample. For all experiments here, a focused scanned beam was used. To

help with results consistency, all samples taken using the FIB method were taken

from the center of the sample.

2.2.2.6 Fluence

Lastly, ultimate fluence must be considered. Fluence is a difficult parameter to

predict since ion damage effects may take place at vastly different levels of damage.

Normally in theses cases, fluences points are selected not to be linearly increasing,

but increasing on a logarithmic base 10 scale. For example, instead of having points

taken at 2E15, 4E15, 6E15, and 8E15 ions/cm2, fluences would instead be taken

at 1E15, 1E16, 1E17 and 1E18 ions/cm2. In this way more of the microstructure

changes induced by the ion beam can be observed.
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3. ULTRA-THIN FILMS OF MG

In this chapter, a study is reviewed that explores the effect of free surfaces on

the crystallization resistance of metallic glasses. For electron-transparent films on

the order of 100 nm, it was found that after ion bombardment and heating, the

sample crystallized. Finite element analysis in an earlier study, however, showed that

crystallization from direct damage cascade heating is unlikely since the quench time

is many orders of magnitude faster than the critical cooling rate[4]. It is proposed

then that “vacancies” created by the ion bombardment built up over time into low

density zones, dubbed “excess free volume”. This excess free volume enhances atomic

mobility allowing for atomic level re-arrangement into the lower energy crystal state.

Alternatively, for ultra-thin films ≈10 nm in thickness, no crystallization was ob-

served even under the same treatment. The films in question stayed amorphous even

though they were subjected to the exact same conditions as the thicker films. These

observations, combined with Molecular dynamics (MD) simulations, indicate that

the free surface act as a defect sink for excess free volume. This removes the excess

free volume, hindering the atomic mobility of the atoms, preventing crystallization.

3.1 Experimental Design

The metallic glass used in this study is zirconium based. The specific composition

is: Zr50Cu35Al7Pd5Nb3. This metallic glass was chosen due to its availability and

ease of preparation via electropolishing. Twin jet electropolishing was used in this

case since it is a fast and effective way to produce electron transparent samples. More

details about twin jet electropolishing can be found in the equipment chapter. It also

produces variable film thicknesses which was of interest in this study. Differential

Scanning Calorimetry (DSC) was performed on this sample to determine its glass
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transition and crystallization temperature. Knowing these temperature points was

important in selecting the substrate temperatures that should be tested during ion

bombardment. The DSC curves for various heating rates can be seen in figure 3.1.

The lowest heating rate, 10 ◦C/min, will be used since it is closest to the steady-

state conditions. The glass transition temperature is 442 ◦C while the crystallization

temperature is 489 ◦C.

Figure 3.1: Plots of acquired DSC curves for Zr50 Cu35 Al7 Pd5 Nb3 MG ribbon.
Curves show distinct points for glass transition and crystallization temperatures.

The treatment of this metallic glass took place at the Argonne National Labs

(ANL) Intermediate Voltage Electron Microscope (IVEM) facility. This facility offers

a unique capability of in-situ TEM observation during heavy ion bombardment. This

allows a detailed look at not just the final results of the irradiation, but a detailed

look at the microstructure evolution when forming the final structure.
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For ion bombardment, a 1 MeV Kr beam was used. This beam was chosen due

to availability at the facility as well as to reduce the amount of chemical changes

in the samples. The discussion of ion choices and energies can also be found in the

equipment chapter. During irradiation the sample was observed using bright and

dark field TEM. Still images as well as videos were taken of the sample to see the

dynamic creation and annihilation of crystalline defects in the amorphous substrate.

The substrate temperature was also adjusted during irradiations to see the effect this

had on the radiation response.

3.2 Experimental Results

Initially, the sample was characterized before irradiation to ensured that the sam-

ple being used was fully amorphous. This ensures that any crystallization observed

came from the ion beam treatment and not the preparation from electropolishing.

An image of the sample pre-bombardment can be seen in Figure 3.2.

As can be seen by the micrographs and diffraction pattern, the sample is com-

pletely amorphous. Next the sample was heated and irradiated in steps in order to

see the effect on the sample. Figure 3.3 shows the heating and irradiation pattern

used for these observations as well as some select micrographs. As can be seen from

the figure, bombardment happened between the heating steps. The sample was ob-

served before and after heating to determine if the crystallization was due to the

increase in temperature or from ion bombardment. Figure 3.3 shows the final state

of the sample enlarged, which really captures the essence of the observations made.

From the micrographs, there are two distinct parts of the sample that show two

distinct behaviors. Electron Energy Loss Spectroscopy (EELS) was used to determine

the two sample thicknesses. The thicker regions were found to be 100 nm thick, while

the ultra-thin film is around 10 nm thick. Here it is shown that in the thicker part
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Figure 3.2: Image of the sample used in the ultra-thin MG studies. Composition:
Zr50 Cu35 Al7 Pd5 Nb3.

of the sample, there is a significant amount of crystallization. However, in the ultra-

thin film region there is no sign of crystallization. The diffraction pattern does show

some signs of crystallization, however, getting a small area selected for a diffraction

pattern is not possible. This makes the dark field micrographs more indicative of

the true sample structure. It is also important to note that the sample was heated

to be above its glass transition temperature and the ultra thin film region had still

not undergone crystallization.

3.2.1 Experimental Results: Discussion

From the observations made, it is quite interesting that the ultra-thin film stays

amorphous while the slightly thicker films undergo extensive crystallization. Previous

calculations were performed that showed the cooling rate at the center of the damage

cascade is orders of magnitude faster then the critical cooling rate for initially forming
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Figure 3.3: A) Plot of the temperature and fluence as a function of time experienced
by the ultra thin film specimen. Micrographs from select points are included to show
the phase evolution as a function of time. Composition: Zr50 Cu35 Al7 Pd5 Nb3. B)
Enlarged figure of the final state of the metallic glass after heating to 600 ◦C and ion
bombardment.

a metallic glass[4].

It is proposed that the increase in excess free volume helps promote atomic mo-
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bility, allowing stable crystal structures to form. This is created by the ion beam due

to a defect imbalance. The defect imbalance phenomena occurs with ion beams since

they create large amounts of vacancies in the near surface region. This phenomena

has been documented in simulations and its effect has been seen in other ion beam

related studies [3].For the samples used in this study, which are only around 100 nm

thick, there is then a large amount of vacancies caused. An example defect imbalance

curve can be seen in Figure 3.4.

Figure 3.4: Plot of the defect imbalance created in pure iron as a result of bombard-
ment by 3.5 MeV iron ions [3].

It is postulated that the free surfaces remove the excess free volume created by

ion bombardment. By removing this excess free volume, atomic mobility is limited,

preventing crystallization. In the ultra-thin region the surface effect is very strong,

preventing crystallization. However, in the thicker part of the sample, the surface

effect is weaker in the bulk of the film, allowing for crystallization to take place. This
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will be extremely difficult to directly observe experimentally, so a computational

method is employed.

3.2.1.1 Molecular Dynamics Simulations

Molecular dynamics simulations were undertaken in order to understand at an

atomic level the mechanisms behind the observations made at ANL. To perform this

simulation, an amorphous nickle thin film was produced. A liquid nickle system was

simulated, then the atoms were frozen in place at 0 K. This closely simulates the

actual process for forming a metallic glass, creating a good simulated sample to ex-

periment on. Next, a fraction of the atoms are randomly removed from the substrate.

This is to simulate the excess free volume created by ion bombardment. After these

atoms were removed, the system was allowed to relax, allowing observation of how

the excess free volume interacts with the free surfaces.

The results of this process can be seen in Figure 3.5. In the figure, all atoms that

are shown have an average bond length 2σ longer than the average bond length for

the system without excess free volume are highlighted.

As time passes, it can be seen that the excess free volume is eliminated nearly

completely, starting from the free surface and working into the bulk. This clearly

shows that the free surface acts as a sink for these defects. The thin film created in

this simulation is of the same size as the films in the experiment. Even though it is a

different material, this clearly shows that the removal of excess free volume through

a free surface is plausible.

3.3 Conclusions

In-situ observation of thin film metallic glass under ion bombardment revealed

that ultra-thin films on the order of 10 nm are highly resistant to crystallization both

from extreme heating and ion bombardment. Under the same conditions it was found
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Figure 3.5: Simulations perform to study the movement of excess free volume within
an amorphous film.

that slightly thicker films were found to crystallized. The mechanisms behind this

phenomena were then explored. From finite element analysis, it has been shown that

the crystallization is not likely caused by direct damage cascade heating, since the

quench time is far too quick. Instead it is proposed that the crystallization is caused

by a build up of excess free volume by ion bombardment. The introduced excess free

volume allows for increased atomic mobility, leading to atomic re-arrangement into
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more stable crystal structures. The crystallization resistance of the thin films then

comes from the removal of the excess free volume through the free surface.

To investigate this hypothesis, molecular dynamics simulations were performed

on an ultra-thin film metallic glass sample. These simulations showed that excess free

volume is readily removed via the free surface. From this study is it concluded that,

at least in thin films, ion-induced excess free volume in the metallic glass can lead

to crystallization. It was also shown that the metallic glass free surface is capable of

removing excess free volume which can enhance crystallization resistance.
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4. CRYSTALLIZATION AND RE-AMORPHIZATION IN THIN FILM MG

In this chapter, a study is performed that looks at the crystallization and re-

amorphization of metallic glasses. The metallic glass in question was held at a

constant temperature while being bombarded by heavy ions. In-situ TEM bright

field and dark field still shots were made of the sample before and after bombardment.

Videos of the evolving microstructure were taken using dark field imaging techniques.

In the videos, it is shown that there are crystals forming and disappearing in the

sample. This is evidence for both crystal formation and crystal destruction by ion

bombardment. The mechanisms behind this are explored.

4.1 Experimental Design

The metallic glass used in this study is zirconium based. The specific composition

is: Zr50Cu35Al7Pd5Nb3. This metallic glass was chosen due to its availability and

ease of preparation via electropolishing. Twin jet electropolishing was used in this

case since it is a fast and effective way to produce electron transparent samples. More

details about twin jet electropolishing can be found in the equipment chapter. DSC

was performed on this sample to determine its glass transition and crystallization

temperature. Knowing these temperature points was important in selecting the

substrate temperatures that should be tested during ion bombardment. The DSC

data can be found in Figure 3.1 on page 60. From the 10 C/min curve, it can be seen

that the glass transition temperature is 442 ◦C while the crystallization temperature

is 489 ◦C.

The treatment of this metallic glass took place at the ANL IVEM facility. This

facility offers a unique capability of in-situ TEM observation during heavy ion bom-

bardment. This allows not only a detailed look at the final results of the irradiation,
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but also at the microstructure evolution when forming the final structure.

For ion bombardment, a 1 MeV Kr beam was used. This beam was chosen due to

availability at the facility as well as to reduce the amount of chemical changes in the

samples. The discussion of ion choices and energies can be found in the equipment

chapter. Before and after irradiation still images of the sample were taken using

bright field and dark field TEM. During bombardment videos were taken in dark

field imaging mode in order to see microstructural evolution.

The sample used in this experiment was placed into the TEM hot stage and

elevated to 400 ◦C. At that point the irradiation began. The dark field videos were

invaluable in looking at the microstructural evolution in real time. In this mode

the crystalline defects in the sample show up as bright white spots, allowing for

easy identification against the mostly amorphous background which appeared as a

uniform dark gray.

4.2 Experimental Results

Initially, the sample was characterized before irradiation to ensure that the sample

being used was fully amorphous. This ensures that any crystallization observed came

from the ion beam treatment and not the preparation from electropolishing. An

image of the sample pre-bombardment can be seen in Figure 4.1 on page 70.

Next, the sample was heated up to temperature and the ion bombardment began.

A plot of the heating curve and fluence curve can be seen in Figure 4.2. During

bombardment, videos of the sample were taken using the dark field imaging technique

as to highlight crystal formation. The videos cannot be presented in this format,

however, some still images of the sample at different fluence points were taken. These

images showing the creation and destruction of some nano-crystals can be seen in

Figure 4.3.
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Figure 4.1: A micrograph showing the sample region of interest after heating but
before irradiation.

Since the images taken were using dark field technique, the crystal intensity is also

related to crystalline direction. Therefore, the crystal creation and re-amorphization

observed could be due instead to crystal rotation. It must be determined if the

crystals that are observed appearing and disappearing are actually doing do or simply

rotating. In order to determine which case was accurate, the density of nano-crystals

was recorded over a period of time.

Since the crystals are separated by amorphous zones, and by observing the diffrac-

tion pattern, it can be seen that the the nano-crystals are isotropically positioned.

That is, there is no preferred orientation for the nano-crystals. It is clear from the

presence of crystals that there is a creation mechanism at work. Therefore, if the
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Figure 4.2: Plot showing the heating and fluence history of the sample being analyzed
in this section.

crystals that are seen disappearing are simply rotating out of focus, it is expected

that the crystal density will constantly increase. However, if the crystals are in-

deed becoming re-amorphized then the crystal density over time could decrease, stay

constant or increase depending on the magnitude of the creation and destruction

mechanisms. If the crystal density is observed to be increasing then the results ill be

inconclusive, however, if the crystal density is constant or decreasing then it can be

said that the nano-crystals are being re-amorphized rather than just rotating.

The crystal density was recorded for a section of the sample. The results can be

seen in Figure 4.4. As can be seen from the figure, over a large range of fluences, the
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Figure 4.3: Still images from videos taken of the sample showing evolution of the
microstructure over time.

crystal density is staying constant. Since the crystals are isotropically distributed,

there must be a crystalline destruction mechanism.
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Figure 4.4: Plot showing the change in crystal density from a fluence of 4E14 to
5E14.

4.3 Results Discussion

The crystallization of thin film metallic glass has already been shown in the ultra-

thin films chapter to be most likely caused by the accumulation of excess free volume.

Nano-crystallization was also observed in that sample, however, re-amorphization

was not observed. An explanation must be given for the re-amorphization of the

nano-crystal structures. In this case it can be argued that the crystals are re-

amorphizing due to localized melting from the damage cascade. In a previous study

using finite element analysis, it was shown that in the core of the damage cascade,

the temperatures reached were easily high enough in order to cause localized melting
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[4]. It was also shown that the melted area solidified at a rate much higher than the

critical cooling rate initially required to cast the metallic glass. A figure showing the

results from the previous study are shown in Figure 4.5.

Figure 4.5: A) Plot showing the temperature evolution as a function of time in the
hottest part of the damage cascade. B) Image of the simulated damage cascade used
to derive the temperature plot. Taken from Meyers et. al [4].

This damage cascade induced melting and re-quenching is the proposed mecha-

nism by which the metallic glass re-gains its amorphous state. This effect is entirely

dependent on the beam which strengthens this argument based on the unchanging

density of the crystals as see in Figure 4.4. This indicates that the rate of creation
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of nano crystals by ion-beam induced excess free volume is in equilibrium with the

rate of crystal removal by damage cascade quenching. An equilibrium state such as

this would be difficult to achieve if there were two independent mechanisms at work.

It was also evident from observations, that when the sample was not being irradi-

ated, the microstructure did not evolve, indicating that both the crystal creation and

destruction cannot be caused by a heat effect alone.

4.4 Conclusions

From the observations made with this sample, ion bombardment provides both

a creation and a destruction mechanism for nano-crystals in a thin film amorphous

metallic glass. Video evidence suggests that the number of crystals which have been

formed by creation of excess free volume by ion bombardment saturates after a

certain time. This saturation suggests a destruction mechanism as well, which was

not observed in previous ultra-thin studies. Based on previous modeling research, the

destruction mechanism is postulated to be directly related to the core of a damage

cascade created by ion bombardment. Localized melting and rapid quenching occurs

in this region, which replicates on a very small scale the process used for initially

forming the metallic glass. The localized melting and rapid re-quenching is able to

re-amorphize crystalline structures that have formed within the film. Since both of

these effects are driven by ion bombardment, it implies that at a certain point the

effects will cancel out, leaving an equilibrium level of nano-crystals in the matrix.

This equilibrium state was observed in these samples, strengthening the argument

for a direct ion beam creation and destruction mechanism.
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5. LAYERED STRUCTURES

In this chapter, a layered structure consisting of an amorphous material, SiOC,

and a polycrystalline material, Fe, was irradiated to a high fluence by 120 keV He

ions in order to determine the radiation stability of the structure. It was found that

for a thin film structure with characteristic size ≈10 nm, the system was extremely

radiation tolerant, withstanding up to 20 DPA without major structural changes.

However, for a similar structure with a characteristic size of ≈50 nm, there were major

structural changes observed. This phenomena is similar to previous observations

using free surfaces in the ultra-thin film studies presented in chapter 3.

5.1 Experimental Design

The samples used in this experiment were produced using magnetron sputtering.

A Si wafer with a thermally grown SiO2 layer was used as the substrate. SiOC was

deposited on top of this substrate, proceeded by a layer of Fe of the same thickness.

This process was repeated until a layered structure of appreciable thickness was

produced on top of the Si wafer. This required more thin layers to achieve when

compared to the number of thick layers. Before irradiation a sample was made

electron transparent by traditional TEM sample preparation then observed under

TEM to ensure layer uniformity as well as confirm the amorphous nature of the

SiOC. An image showing both the thin and thick layer sample before irradiation can

be seen in Figure 5.1.

Next, the samples were irradiated using 120 keV He at room temperature. Helium

was chosen to reduce chemical changes. 120 keV was chosen due to instrumental

capability as well as for adequate range into the sample to reduce He deposition in

the layer of interest. The samples were irradiated to 5, 12.5 and 20 DPA. The fluence
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Figure 5.1: A micrograph showing the 10 nm and 50 nm samples before undergoing
ion bombardment

required to attain 1 DPA in the layer of interest was determined through SRIM to

be 4E16 ions/cm2. All irradiations took place at room temperature.

After bombardment, the samples were made electron transparent through tradi-

tional TEM sample grinding, dimpling and ion milling. This preparation method was

required as FIB cannot handle insulating materials, such as SiOC, and the layered

structure is incompatible with electropolishing. After thinning, the samples were

again observed under TEM to note any changes that occurred to the microstructure.

5.2 Experimental Results

As seen in Figure 5.1 the samples were originally very ordered and clean. The

SiOC layers have a very uniform color, indicating a good amorphous structure, and

the two layers are very distinct. Diffraction patterns to confirm the amorphous

nature of the SiOC directly were impossible to obtain due to the size of the films.

The diffraction pattern seen does have an amorphous ring and a scattering of spots.

It is thought, from the bright field and dark field observations that the spots in the
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diffraction patterns are a result of the polycrystalline Fe layer, while the diffuse ring

is produced by the amorphous layer of SiOC.

After the irradiation was completed, the samples were examined under TEM to

determine the microstructure changes. The data for the 20 DPA sample can be seen

in Figure 5.2 and 5.3. As can be seen in the micrograph, the samples did undergo

some microstructural changes.

Figure 5.2: A micrograph showing the 10 nm sample after undergoing ion bombard-
ment until 20 DPA. Bright field (a) and dark field (b) images are provided.

For the 10 nm samples, there was no observable decomposition of the SiOC layer.

There was, however, some observed mixing between the SiOC and Fe layers. This

mixing does not appear to have disrupted the SiOC layer to any great degree, and

the material itself seems to maintain its amorphous structure. This result seems to

confirm the previous findings from the ultra-thin film studies seen in chapter 3. For

films of this size, excess free volume buildup is able to be limited by the interface
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between the Fe and SiOC layer. This prevented crystallization of the SiOC layer

even under heavy damage conditions.

Figure 5.3: A micrograph showing the 50 nm sample after undergoing ion bombard-
ment until 20 DPA. Bright field (c) and dark field (d) images are provided.

For the thicker film samples, the inter-layer mixing was not as pronounced, but

there were some nano-crystals observed in the bulk of the SiOC layer. What is

interesting to note is that, again, there was no crystal formation near the interface.

This is most likely due to the elimination of free volume within the near-interface

region. Next to the interface, the excess free volume that builds up can be eliminated.

However, far from this surface, this defect sink property was not strong enough, and

therefore free volume was able to buildup resulting in crystallization.

5.3 Conclusions

The layered structured studies were able to clearly show that the interface effect

can function very similarly to the free surface effect observed in other metallic glass
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compounds. In the very thin film structure there was no crystallization observed.

This is thought to be because of the ability of the free surface to remove the excess

free volume like the free surface seen in previous studies. In the thicker film samples,

there was crystallization observed, but only away from the interface. This shows

the ability of the free surface to keep crystallization from forming near the surface,

but into the bulk, this effect is limited and cannot prevent free volume buildup and

subsequent crystallization.
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6. BULK STUDIES: TEMPERATURE DEPENDENCE

In this chapter, variable temperature experiments are performed on bulk metallic

glass ribbons. Fluence, dose rate, ion species and ion energy were kept fixed in order

to determine the response of the metallic glass purely as a function of temperature.

It was found that the metallic glass, up to a certain temperature would remain

completely amorphous. However, above that temperature point the metallic glass

underwent complete crystallization. Around the critical temperature point, some

strange phenomena were observed which warranted further studies. The mechanisms

behind this crystallization and the abnormal phenomena observed are explored in

this chapter.

6.1 Experimental Design

The samples used in this experiment were fabricated using the melt-spun ribbon

technique. The composition used for all studies is Ti40Cu31Pd15Zr10Nb7Sn2Si3. This

composition was chosen due to its good glass forming ability as well as its wide super-

cooled liquid region. DSC curves to determine temperature points were performed

initially. A plot of the DSC curve can be seen in Figure 6.1. It is important to

note that all DSC data acquisitions are preformed with the sample being heated at a

constant rate. In the experiments performed here the samples are being heated then

held at a constant temperature. The resulting microstructure that will be observed

in the experimental setting will be the equilibrium structure for that temperature.

The best descriptive data points for an equilibrium condition from the DSC curves

available will be from the 10 ◦C curve. According to the 10 C/min curve, the glass

transition temperature and the crystallization temperature are 448 ◦C and 498 ◦C

respectively.
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Figure 6.1: DSC curve showing three different heating rate curves for the Ti40 Cu31
Pd15 Zr10 Nb7 Sn2 Si3 metallic glass used for the temperature dependent experiments.

Next, untreated samples were prepared using FIB in order to determine if the

samples were completely amorphous before irradiation. An image of a sample before

treatment is shown in Figure 6.2. As seen by the bright field, dark field and diffraction

pattern, the sample is completely amorphous throughout.

With the important temperature points known, and the samples confirmed to

be amorphous, the irradiation matrix was produced. The temperatures were chosen

to give a good range of conditions up to and around the glass and crystallization

temperature. The specific temperatures used were: room temperature, 100, 200,

225, 250, 275, 300, 390, and 480 ◦C.
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Figure 6.2: Bright field, Dark field and diffraction pattern images of Ti40 Cu29 Pd15
Zr10 Nb7 Sn2 Si5 MG before treatment.

The samples were all irradiated with 3.5 MeV Cu to an ultimate fluence of 1E16

ions/cm2. In order to ensure the effects from beam heating and annealing effects

were constant for all samples, the beam flux was kept the same for all samples. A

SRIM plot showing the expected Cu ion distribution and DPA for a 1E16 ions/cm2

irradiation are shown in Figure 6.3. After irradiation, electron transparent samples

were made using the FIB lift out process and examined under TEM.

6.2 Experimental Results

TEM examination of the samples after FIB processing showed some very inter-

esting results. From the bright field, dark field and diffraction patterns, samples

irradiated up to 225 ◦C showed no crystallization. There was some near surface

re-structuring, but that is believe to be a result of some oxidation or carbonation

during either initial fabrication, or as a result of oil contamination in the irradiation

chamber. A compilation of images for each of the temperatures up to 225 ◦C is
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Figure 6.3: SRIM output showing the calculated range and DPA curve for 1E16
ion/cm2 of 3.5 MeV Cu into Ti40 Cu31 Pd15 Zr10 Nb7 Sn2 Si3.

shown in Figure 6.4.

Since the samples were stable to 1E16 ions/cm2, a sample was irradiated at room

temperature to 1E17 ions/cm2 to test for high-DPA stability. This sample was com-

pletely amorphous as well, showing that crystallization from direct ion bombardment

is very difficult to achieve in bulk samples. An image of this sample after bombard-

ment can be seen in Figure 6.5.

All samples above 250 ◦C show complete crystallization even far beyond the ion

range. The deepest observed crystallization was at 10 µm in depth. This depth is

largely limited by the FIB to be able to produce samples which are larger then 10 x
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Figure 6.4: Bright field and dark field micrographs of samples from 30-225 ◦C.

10 µm in size. Images of the samples irradiated above 250 ◦C can be seen in Figure

6.6.

Lastly, at 250◦C a very interesting structure was observed. It is a multilayer

structure which consists of several distinct layers. Large isotropic grains are present

from the surface to 674nm which interestingly enough, appear to have thin bands

of amorphous material between them. Next an amorphous band from 674nm to

1127nm is present followed by a region of columnar grains which extend until 1456

nm where the structure is dominated by a nano-grained structure outside of the ion

range. An image of this structure is found in Figure 6.7.
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Figure 6.5: Bright field and dark field and diffraction pattern micrographs of a sample
irradiated at room temperature to 1E17 ions/cm2.

6.3 Discussion of Results

6.3.1 30 to 225 ◦C

It was shown in the TEM results that for sample with a substrate temperature

at or below 225 ◦C, there was no crystallization observed. This finding is important

since it shows that in bulk samples even high fluences are not enough to cause

crystallization on their own. This result is very different from the previous findings

in the thin films and ultra-thin films study. This crystallization resistance is thought

to arise from two different mechanisms: injected interstitial interactions and 3D re-

structuring. Both of these mechanisms work to remove excess free volume from the

sample, preventing crystallization.

First, in the case of the thin films, nearly all incident ions pass completely through

the sample. This creates excess free volume while the injected interstitial effect is

nullified. However, in the bulk case, the ions come to rest in the sample creating
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Figure 6.6: Bright field micrographs of samples from 275-480 ◦C.

injected interstitials or negative excess free volume. These areas of abnormally high

and abnormally low packing density will interact with each other and cancel out,

removing the excess free volume. This cancellation effect can be seen clearly in

Figure 3.4 on page 64 where large sections of the sample are net zero for created

vacancies and interstitials.
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Figure 6.7: Dark field micrograph with labeled diffraction patterns showing the
structure in different layers.

Second, the thin film samples are only able to relax in two directions. The

structure is too thin to allow for any significant relaxation in the third axis. However,

for the bulk sample, the third axis is available, leading to more material which is

able to relax around the areas of excess free volume, reducing its ability to increase

atomic mobility to a point where crystallization can occur.

6.3.2 275 to 480 ◦C

From TEM observation, the samples have become completely crystallized, far

beyond the projected range of the ions. The best explanation for this phenomena
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is that the beam is simply heating the sample until it is above the crystallization

temperature. A simple calculation was performed to confirm this. Using two 1-D

steady state conduction models and the known energy and intensity of the beam, a

pure conduction heat transfer calculation was performed to predict the temperature

that the near surface region was elevated to during irradiation. The full heat transfer

calculation can be seen in Appendix A.

Using 275 ◦C as a test stage temperature the model was run using reasonable

values to determine the maximum temperature achieved by the sample. The tem-

perature curves for a metallic glass ribbon along the length, and in the direction of

the beam can be seen in Figure 6.8

Figure 6.8: Plot showing the temperature curves along the length and through a
metallic glass ribbon

AS can be seen by this calculation, beam heating can easily raise the center of

the sample to within a few degrees of the crystallization temperature. This model

does not take into account temperature gradients caused by the silver paste, but

that will also play a role, increasing the ultimate temperature seen at the surface of

the metallic glass. This model also shows that the temperature gradient along the
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direction of the beam is largely negligible. This explains why the metallic glass is

observed to be crystallized all the way through the sample. If the gradient in the

direction of the beam was significant, then partial crystallization would be observed.

6.3.3 250 ◦C

For this sample, a multi-part structure was observed. This structure is a result of

a few different steps that occurred. The complex structure is mostly a consequence

of the sample being held on the edge of the critical temperature to cause thermal

crystallization by beam heating.

Early in the irradiation, either due to a fluctuation in beam current or substrate

temperature, the sample was raised slightly above the crystallization temperature,

causing mass crystallization through the sample. With the sample so close to the

critical temperature, even a small change could have caused this to occur. After the

mass crystallization, the sample temperature or beam current lowered, causing the

sample to return to under the critical crystallization temperature. Now the beam

began to re-amorphize the sample. As seen in the lower temperature samples, the

beam cannot cause direct crystallization. However, it does cause damage cascades,

which will locally melt and re-quench faster than the critical cooling rate, causing the

crystalline material to re-amorphize. As can be seen in Figure 6.7, the sample does

not fully re-amorphize. This is due to the damage cascade shape. The majority of

the energy from a damage cascade is deposited over a certain range from the surface.

A SRIM plot of the DPA as a function of depth can be seen in Figure 6.9.

As can be seen in Figure 6.9, the amorphous band perfectly matches with the

peak of the DPA curve. In this region there is the most energy deposition, and the

core of the damage cascade. In that band the DPA rate is high enough to prevent

any further crystal growth from occurring even at this elevated temperature.
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Figure 6.9: Bright field micrograph of the 250 ◦C sample with DPA curve

However, in the lesser damage regions, there is not enough heat to locally melt

the sample, only enough to heat it to high temperature. This results in an increased

thermal budget for diffusion. The increased thermal budget as well as ion-induced

mixing allows for those crystals to form and grow.
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6.4 Conclusions

As shown in this study, the metallic glass is very resistant to crystallization by

direct ion bombardment. It was also shown that by heating the substrate to above a

certain temperature with a given ion flux, the sample would fully crystallize through

heating. Around the critical temperature a unique layered structure was seen which

is attributed to a multi-step process made possible by the close proximity of substrate

temperature to the critical crystallization temperature. More importantly, this study

suggests that, for bulk samples, the ion beam cannot cause direct crystallization by

creation of excess free volume. It is suggested that this is due to two processes:

injected interstitials from the beam, reducing overall excess free volume, as well as

multi-directional relaxation of the matrix around any sites that do have excess free

volume.
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7. BULK STUDIES: FLUENCE DEPENDENCE

In this chapter, experiments are performed on bulk metallic glass ribbons. More

specifically, this study examines the effects of increasing fluence on the microstructure

of the metallic glass. Two temperatures were chosen for these experiments, room

temperature and 250 ◦C. These temperatures were chosen due to the observations

made in the last set of temperature dependent samples. Initially the samples were

crystallized either purely by heating or heating by ion bombardment. Next, the

samples were bombarded to various fluences at either 250 ◦C or room temperature.

It was found that under bombardment at room temperature, after crystallization

by ion beam heating, the near surface region was amorphized from its crystalline

state. For the 250 ◦C irradiations, each stage of the multi-layer structure was seen

to develop. At very low fluences, the sample is completely amorphous in the near

surface region, however, with increasing fluence, re-crystallization was seen to oc-

cur until the layered structure seen in Figure 6.7 developed. For the samples that

were crystallized purely by heating, re-irradiation at room temperature was able to

briefly re-amorphize the samples at a low dose, but there was significant elemental

segregation observed. With increasing fluence, the near surface re-crystallized. The

mechanisms behind these observed phenomena are explored in this chapter.

7.1 Experimental Design

The samples used in this experiment were fabricated using the melt-spun ribbon

technique. The composition used for all studies is Ti40Cu31Pd15Zr10Nb7Sn2Si3. This

composition was chosen due to its good glass forming ability as well as its wide super-

cooled liquid region. DSC curves to determine temperature points were performed

initially. A plot of the DSC curve can be seen in chapter 3 in Figure 6.1.
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Table 7.1: Table showing the different doses post-crystallization that each of the
samples received. Fluence values are reported in ions/cm2.

Processes 1E13 1E14 1E15 1E16 1E17
Ion Crystallized + Room Temper-
ature Irradiation X X X X

Ion Crystallized + 250 ◦C Irradi-
ation X X X

Thermal Crystallized + Room
Temperature Irradiation X X X X

To start, all samples were crystallized using 3.5 MeV Cu ions with a substrate

temperature of 350 ◦C. These conditions were chosen based on the results from the

temperature dependent experiments. Next, the samples were further irradiated at

lower temperatures to different doses in order to see how the microstructure evolved.

The secondary irradiation doses as a function of their temperature can be seen in

Table 7.1.

After both irradiation stages were performed, an electron transparent sample was

created using the FIB lift-out technique. TEM was then performed on the sample

to characterize the crystal and amorphous structures created.

7.2 Experimental Results

The first samples examined were the samples crystallized by ion bombardment,

and re-irradiated at room temperature. For these samples, the near surface was seen

to become re-amorphous by 1E14 ions/cm2 and stayed that way all the way up to

the final test fluence of 1E17 ions/cm2. Images of the samples can be seen in Figure

7.1.

The next samples examined were the samples crystallized by ion bombardment

and re-irradiated at 250 ◦C. For these samples, it was observed that at 1E14 ions/cm2
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Figure 7.1: Bright field, dark field and diffraction pattern images of samples crystal-
lized by beam heating, then re-irradiated to the indicated fluence at room tempera-
ture by 3.5 MeV Cu.

the sample near surface region was completely amorphous up to the end of ion range.

After this, increasing fluence started to re-crystallize the sample starting from the

edges of the amorphous region, as observed after irradiation up to 1E15 ions/cm2.

The crystallization grew and coarsened until a defined amorphous band surrounded
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by large crystal grains formed at 1E16 ions/cm2. Images of each of these stages can

be seen in Figure 7.2.

Figure 7.2: Dark field TEM micrographs of samples initially crystallized by irradia-
tion at 350 ◦C, then re-irradiated to the indicated fluences at 250 ◦C.

Lastly, the samples that were crystallized purely by heating and then bombarded

at room temperature were observed. To ensure the sample was completely crystal-

lized, resistance measurements of the sample were taken. The sample was heated

and the was resistance measured by using the voltage comparator method and a lock

in amplifier. It is well documented that the resistance of metallic glass decreases

upon crystallization [27]. The metallic glass used in this study is no exception. A

plot of the resistance as a function of temperature can be seen in Figure 7.3. The

large drop in resistance, followed by a stable resistance upon cooling shows that the

sample achieved complete crystallization.

With the sample completely crystallized, it was irradiated using 3.5 MeV Cu

ions at room temperature to various fluences. At 1E13 ions/cm2, a partial re-

amorphization was observed, and at 1E14 ions/cm2 the near surface was fully re-

amorphized, but segregated. After that the near surface became increasingly crys-
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Figure 7.3: A plot of the resistance of Ti40 Cu31 Pd15 Zr10 Nb7 Sn2 Si3 metallic glass
as a function of temperature.

tallized with increasing fluence up to 1E16 ions/cm2. Images of all of the samples

can be seen in Figure 7.4.

7.3 Results: Discussion

As can be seen by the three cases of treatments, there is an evident connection

between the phase of the sample, the temperature of irradiation, the DPA and even

the crystallization history of the sample. Further examination of these effects will

show how these different effects come into play.
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Figure 7.4: Dark field, bright field and diffraction patterns of samples initially crys-
tallized by thermal crystallization, then re-irradiated to the indicated fluences at
room temperature.

7.3.1 Beam Crystallization + Room Temperature Irradiation

As can be seen in Figure 7.1 the samples re-irradiated at room temperature after

crystallization by beam heating had a completely amorphous near surface region.
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All through the ion range, even up to a very high fluence, the near surface remained

amorphous. This shows that overall the beam drives the metallic glass to be amor-

phous. Far from causing direct crystallization in bulk samples, it has the ability to

reverse crystallization. This is an extremely desirable characteristic for implementa-

tion in a nuclear setting, as ion bombardment, which causes massive damage to the

microstructure is unable to directly cause crystallization.

7.3.2 Beam Crystallization + 250 ◦C Irradiation

For the samples re-irradiated at 250 ◦C after crystallization by ion bombardment,

the story is quite different. As can be seen in Figure 7.2, the sample is initially re-

amorphized by the beam, however, with increasing dose, the sample re-crystallizes.

This is quite peculiar behavior, but can be explained by the temperature that the

sample was re-irradiated at. With the sample fully crystallized, the elements within

the metallic glass have been segregated into more stable compositions for crystal

formation. When the secondary irradiation begins at a lower temperature (250 ◦C),

the ion bombardment is able to cause enough damage to remove any crystal structure

that was created. However, since the substrate temperature is elevated, diffusion

is allowed to occur. Elements are still segregated into pockets of stable crystal

compounds from the initial crystallization, and so, with time, form more stable

crystal structures which are able to survive the ion bombardment. The amorphous

band, which exists at the peak damage depth of the beam, is subject to such a high

DPA rate, no stable crystals can form.

This process is supported by the observations at 1E15 ions/cm2. The sample

begins crystallizing from the edges of the amorphous band, where the ion beam

damage is less. In this area it is easier for crystals to form since the re-amorphizing

effect of the beam is lessened. As more stable crystal structures from, they are
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allowed to grow since the surrounding substrate contains all of the elements required

to continue growing the crystal structure.

It is also important to note that the crystals beyond the projected range did not

grow or coarsen, this again shows a role ion bombardment plays in the formation

of this crystal structure. The crystals formed at the edge of the amorphous band

are stable under ion bombardment, but in order to grow, the elements that they

are made of must be brought into contact with the crystal surface. In the bulk,

the crystals themselves lock the atoms in place, not allowing the crystals to grow.

However, within the ion bombarded region, ion mixing shuffles the atoms around

allowing crystal growth to take place. A diagram outlining this idea is shown in

Figure 7.5.

7.3.2.1 Crystal Analysis by Energy Dispersive Spectroscopy (EDS)

The hypothesis that the crystals formed at the edges of the high damage region

are a more stable structure than the bulk metallic glass must be further investigated.

This analysis was performed using EDS. In this technique, the electron beam of the

TEM is highly focused and impinges only on a small area of the sample. As the

electrons interact with the material, they will produce characteristic X-rays which

can be recorded using a silicon lithium (SiLi) drifted detector.

The crystals formed at the edge of the layered structure are too small to analyze

their structure, however, the composition, which can be investigated, should vary

from the original composition of the MG. In order to investigate this, EDS was

performed at several points along the sample. Initially line segments 600 nm long

were sampled from the specimen at 200 nm intervals from the surface. The line

segment, rather than point geometry was chosen in order to homogenize the spectra

collected. The resulting spectra can be seen over a dark field image of the sample in
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Figure 7.5: Diagram showing the crystal growth enhancement due to ion mixing

Figure 7.6. The same plot with 2σ error bars can be seen in Figure 7.7.

This plot shows that there is indeed some composition change going on. It is clear

that, especially near the amorphous band edges, there is an elemental segregation

occurring. The Pd in particular seems to be strongly effected by the crystallization

process, and is depleted on the crystal-amorphous interface. The other elements

show trends that are opposite to this, but this may be a consequence of the strong

change in the Pd signal.

It should also be noted that these plots also give a strong indication of extensive

carbon and oxygen contamination for the first 200 nm in the sample. It is unclear as

to if this contamination happened during the production or irradiation of the metallic
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Figure 7.6: A plot of the composition of the sample as determined by the EDS data
as a function of depth over a dark field image of the sample. Each data point in the
averaging of properties along a 500 nm segment at that depth.

glass, however, since the oxygen and carbon signal are completely absent past 200

nm, it is unlikely that this contamination significantly effected the microstructure

beyond that range.

Next, some point measurements were taken inside the crystalline region. This

was done in order to see if different crystal grains have varying compositions. It is

expected that if crystallization preferential structures are being made the composition

will vary from crystal to crystal. An image showing the sampling locations and the

average sampling location can be seen in Figure 7.8.

These four points each exhibit different compositions. For some elements, such
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Figure 7.7: A plot of the composition of the 250 ◦C 1E16 ions/cm2 sample as deter-
mined by the EDS data as a function of depth. Each data point in the averaging of
properties along a 500 nm segment at that depth. error bars reported at 2σ.

as Ti and Cu, the differences are relatively small. However, for Pd and Zr there are

large differences in the percentages. This shows that the crystals formed are indeed

different compositions to some extent. Lastly, scanning TEM (STEM) was used to

image the sample. This type of imaging is useful in this case since it is not sensitive

to diffraction contrast, as is the case in bright field and dark field TEM. That means

that contrast is primarily generated by differences in composition. The STEM image

of this sample can be seen in Figure 7.9.

Overall, all of this data does show that there is a change in composition between

crystals as well as a difference between the crystals and the amorphous bulk. This
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Figure 7.8: Plot showing the composition of the sample at four different locations
and an average composition along a 600 nm long line. Error bars reported at 2σ.

evidence supports the idea that these crystals are able to survive in the lower level

ion damage regions due to their more stable composition.

7.3.2.2 5 MeV

In order to see if the layered structure could be replicated at a different depth, a

sample was crystallized with the same beam heating method, then re-irradiated to

1E16 ions/cm2 with 5 MeV Cu at 250 ◦C. The results can be seen in Figure 7.10.

As can be seen in the micrograph, the sample has been re-amorphized throughout

the ion range. This result is quite different from the irradiation with 3.5 MeV Cu.

This is due to the reduced beam heating effect. Since this irradiation was performed

at a higher energy, the beam current is machine limited. Since the beam flux was

lower, the true sample temperature is also lower. This reduces the ability of the atoms
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Figure 7.9: STEM micrograph showing the irradiated region for the 1E16 ions/cm2

at 250 ◦C.

to migrate and form stable crystal compounds. This results in the same phenomena

that was observed in the room temperature irradiations, where no-recrystallization

was observed.
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Figure 7.10: Bright field, dark field and diffraction pattern images of Ti40 Cu31 Pd15
Zr10 Nb7 Sn2 Si3 metallic glass crystallized by ion bombardment at 350 ◦C and re-
irradiated at 250 ◦C to 1E16 ions/cm2 by 5 MeV Cu.

7.3.3 Thermal Crystallization + Room Temperature Irradiation

The thermally crystallized samples re-irradiated at room temperature were a

great illustration of the two process discussed in the previous samples. The ther-

mally crystallized samples showed large amounts of segregation based upon the crys-

tallization step. This shows that the crystal structures formed after crystallization

is not the original composition of the metallic glass. With the applied heat, the

elements are able to diffuse and form more stable crystal forming compounds. This

is especially evident in the case of the 1E14 ions/cm2 sample, where the near surface

region is completely amorphous, but obviously segregated. A more fully detailed

micrograph can be seen in Figure 7.11. This sample is more highly segregated than

the ion crystallized sample since there was no ion-induced mixing occurring when

the sample crystallized. Due to this enhanced segregation, stable crystals were able
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to form much more rapidly. As can be seen in Figure 7.4, the equilibrium struc-

ture forms much more rapidly. This study also shows the powerful amorphization

power of the beam. Even with stable compounds formed, there is still a distinctly

amorphous zone in the high damage rate region.

Figure 7.11: Bright field, dark field and diffraction patterns of the sample initially
thermally crystallized then re-irradiated to 1E14 ions/cm2 at room temperature

7.4 Conclusions

From these multiple-temperature experiments, several important correlations were

able to be made between the crystallization causing diffusion effects and the amor-

phizing ion damage rate effect. The variable temperatures and diffusion rates all

contributed to the final equilibrium structure achieved.

In the cases where the crystallized samples were irradiated at room temperature

the diffusion effects were too little to overcome the re-amorphizing nature of the
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beam. In that case, the samples were quickly re-amorphized and remained that way

all the way to extremely high levels of DPA.

It was seen from observation of the 250 ◦C samples that metallic glass can remain

amorphous even at an elevated temperature as long as the beam intensity is high

enough to continue amorphizing the sample. In this case the DPA rate was high

enough only to keep part of the ion bombarded region amorphous. The areas of

lower damage rate were at a high enough temperature to nucleate crystals. Since

the ion bombardment was continuing in that region, the matrix around the crystals

was kept well mixed. In that case, it prevented a depleted zone from forming around

the crystal, allowing the crystals to continue growing. This was in sharp contrast to

the crystals outside the ion bombardment region, which did not see any crystal grain

coarsening even with an extended time at an elevated temperatures.

The thermally crystallized samples were able to very clearly show the amount of

segregation effected the ability of the beam to re-amorphize the metallic glass. It was

observed that the sample was able to be re-amorphized at 1E14 ions/cm2, however,

unlike previous cases, the sample showed a distinct segregation of elements even after

re-amorphizing. This segregation occurred since these samples were annealed at a

much higher temperature than the samples crystallized with beam heating. This

allowed for more stable and complete crystal formation in the thermally crystallized

samples.

The patches of amorphous material seen in the 1E14 ions/cm2 sample have a

composition that closely matches the stable crystal compound of the crystal that

was in that location before it was re-amorphized. The presence of this already stable

crystal composition is what caused these samples to re-crystallize, unlike the beam

crystallized samples that were re-irradiated at room temperature. IT can be seen

that with larger doses, the area with the highest DPA rate
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8. POROUS MG

In this chapter, a study is performed that looks at porous metallic glass. The

porous MG was able to be fabricated using low energy He bombardment to very high

doses at room temperature. Through this process, very large voids were formed in

the MG while retaining the amorphous structure of the atoms. Next, the samples

were irradiated with 3.5 MeV Cu at 350 ◦C in order to induce crystallization. Post-

irradiation TEM analysis showed that this process was able to crystallize the sample

fully. However, the previously created voids were also removed, making it impossible

to determine if the thin film crystallization resistance seen in chapter 3 could be

replicated in a bulk specimen.

8.1 Experimental Design

The samples used in this experiment were fabricated using the melt-spun ribbon

technique. The composition used for all studies is Ti40Cu31Pd15Zr10Nb7Sn2Si3. This

composition was chosen due to its good glass forming ability as well as its wide

supercooled liquid region. Intially DSC was performed in order to determine critical

temperature points. A plot of the DSC curve can be seen in chapter 6, Figure 6.1

on page 82.

The ribbons were then bombarded with 100 keV helium to a fluence of 1E18

ions/cm2. The expected DPA and He deposition as calculated by SRIM can be seen

in figure 8.1 for these irradiation conditions.

A select sample was then bombarded with 3.5 MeV Cu at 350 ◦C. The conditions

to cause crystallization were determined from the bulk studies temperature depen-

dent experiments. After the Cu bombardment, electron transparent samples were

prepared by FIB and examined under TEM.
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Figure 8.1: SRIM output showing the calculated DPA and ion atomic fraction for
1E18 ion/cm2 of 100 keV He into Ti40 Cu31 Pd15 Zr10 Nb7 Sn2 Si3.

8.2 Experimental Results

TEM micrographs of the sample after He bombardment to 1E18 ions/cm2 can

be seen in Figure 8.2. This sample was suitable to test and see if the ultra-thin

film crystallization resistant properties could be seen in the thin films between the

voids. Higher resolution pictures, highlighting the amorphous nature of the thin films

between voids, can be seen in Figure 8.3.

The amorphous samples were also hardness tested to determine the effect the

porous structure had on the mechanical properties. The data was compared against

an untreated amorphous sample, and a fully crystallized sample. The hardness as a
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Figure 8.2: Bright field, dark field, and diffraction pattern images of Ti40 Cu31 Pd15
Zr10 Nb7 Sn2 Si3 metallic glass after bombardment to 1E18 ions/cm2 by 100 keV He

Figure 8.3: High resolution bright field and dark field images of Ti40 Cu31 Pd15 Zr10
Nb7 Sn2 Si3 metallic glass film between voids after bombardment to 1E18 ions/cm2

by 100 keV He

111



function of depth for each sample is presented in Figure 8.4.

Figure 8.4: Nano-indentation data for a fully crystallized, untreated, and 100 keV
He irradiated sample.

This data shows several interesting features. It is observed that the sample is

much softer in the bubble region. This is not surprising given that the region has a

very low density. In the near surface region the irradiated sample and the untreated

sample are indistinguishable. This is also expected since there should be little depo-

sition or ion damage in the near surface region. Lastly, it is interesting to note that

the crystalline sample is much harder than the other two samples. These trends will

be discussed in a later section.
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The amorphous sample was then irradiated to 1E16 ions/cm2 by 3.5 MeV Cu ions

at 350◦C to induce crystallization as had been seen in previous studies. After this

irradiation, the sample was examined using TEM and found to have fully crystallized.

This process also, unfortunately, removed the voids that had been produced in the

previous step. The void structures mostly collapsed and moved towards the surface.

This is unfortunate for the studies here, but not unexpected, since Helium is highly

mobile, especially at elevated temperatures. The results of this treatment can be seen

in Figure 8.5. There are a few voids that remain in the very near surface regions.

However, the thin films that are left are fully crystallized , as can be seen in Figure

8.6.

Figure 8.5: Bright field, dark field, and diffraction pattern images of Ti40 Cu31 Pd15
Zr10 Nb7 Sn2 Si3 metallic glass after bombardment to 1E18 ions/cm2 by 100 keV He
and subsequent bombardment to 1E16 ions/cm2 by 3.5 MeV Cu at 300 ◦C
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Figure 8.6: High resolution bright field and dark field images of Ti40 Cu31 Pd15 Zr10
Nb7 Sn2 Si3 metallic glass film between voids after bombardment to 1E18 ions/cm2

by 100 keV He and subsequent bombardment to 1E16 ions/cm2 by 3.5 MeV Cu at
300 ◦C

8.3 Conclusions

These results seem to mirror what was observed in previous bulk studies in terms

of what conditions will induce a phase change in the metallic glass. The void structure

was particularly interesting since the voids grew to be a large and interconnected

network. In many other materials the maximum void size is largely capped due to

the ability of the Helium to migrate through the sample. It appears that this metallic

glass is very adept at trapping helium and forming large, inter-connected voids. This

structure could be of use in filter-type applications.

The hardness data shows that the voided region is much softer when compared

to the untreated samples. This is to be expected as the bubble region is an area of

much lower density. It is also interesting to note that the crystallized sample has

a much higher harness then the untreated sample. This is mostly attributed to the
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increase in density of the sample as it undergoes the crystallization process.

Finally, characterization of the thin films between voids was unable to be per-

formed due to the collapse of the structure. The voids formed by He bombardment

were unable to withstand the bombardment by high energy Cu ions. This resulted

in a sample which was crystallized, but unable to be analyzed.
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9. CONCLUSIONS

Many studies have been performed in this analysis of metallic glass crystalliza-

tion mechanisms. In this chapter, the overall important findings of each study are

summarized. The bulk of this work is able to cover several different scenarios that a

metallic glass would encounter if it were used as a material in the construction of a

device that would be in a heavy radiation field.

9.1 Ultra-thin Films

In-situ observation of thin film metallic glass under ion bombardment revealed a

peculiar behavior that ultra thin films on the order of 10 nm are highly resistant to

crystallization both from extreme heating and ion bombardment while slightly thicker

films are susceptible to crystallization. The mechanisms behind this phenomena was

then explored. From finite element analysis, it has been shown that the crystallization

is not likely caused by direct damage cascade heating, since the quench time is far

too quick. Instead it is proposed that the crystallization is caused by a build up of

excess free volume by ion bombardment. The introduced excess free volume allows

for increased atomic mobility, leading to atomic re-arrangement into more stable

crystal structures. The crystallization resistance of the thin films then comes from

the removal of the excess free volume through the free surface. To investigate this

idea, molecular dynamics simulations were performed on a thin film metallic glass

sample, with induced excess free volume. These simulations showed that excess free

volume is readily removed via the free surface. From this study is it concluded that,

at least in the near surface region, a defect imbalance in the metallic glass can lead

to crystallization. It was also shown that the metallic glass free surface is capable of

removing excess free volume which can enhance crystallization resistance.
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9.2 Thin Films

From the observations made of thin film metallic glasses, ion bombardment pro-

vides both a creation and a destruction mechanism for nano-crystals formed in a

metallic glass matrix. Video evidence suggests that the number of crystals which

have been formed by creation of excess free volume by ion bombardment saturates

after a certain time. This saturation suggests a destruction mechanism as well,

which was not observed in previous ultra-thin studies. Based on previous modeling

research, the destruction mechanism is postulated to be directly related to the core

of a damage cascade created by ion bombardment. A localized melting and rapid

quenching occurs in this region, which replicates on a very small scale the process

used for initially forming the metallic glass. This is able to re-amorphize crystalline

structures that have formed within the film. Since both of these effects are driven by

ion bombardment, it makes since that at a certain point the effects will cancel out,

leaving an equilibrium level of nano-crystals in the matrix.

9.3 Layered Structures

The layered structured studies were able to clearly show that the interface effect

can function very similarly to the free surface effect observed in other metallic glass

compounds. In the very thin film structure there was no crystallization observed.

This is thought to be because of the ability of the free surface to remove the excess

free volume like the free surface seen in previous studies. In the thicker film samples,

there was crystallization observed, but only away from the interface. This shows

the ability of the free surface to keep crystallization from forming near the surface,

but into the bulk, this effect is limited, and cannot prevent free volume buildup and

subsequent crystallization.
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9.4 Temperature Dependent

By looking at the temperature response of metallic glass under ion bombard-

ment, it was found that metallic glass is very resistant to crystallization by direct

ion bombardment. It was also shown that by heating the substrate to above a cer-

tain temperature with a given ion flux, the sample would fully crystallize through

heating. Around the critical temperature a unique layered structure was seen which

is attributed to a muli-step process made possible by the close proximity of substrate

temperature to the critical crystallization temperature. More importantly, this study

suggests that, for bulk samples, the ion beam cannot cause direct crystallization by

creation of excess free volume. It is suggested that this is due to two processes:

injected interstitials from the beam, reducing overall excess free volume, as well as

multi-directional relaxation of the matrix around any sites that do have excess free

volume.

9.5 Fluence Dependent

From these multiple-temperature experiments, several important correlations were

able to be made between the crystallization causing diffusion effects and the amor-

phizing ion damage rate effect. The variable temperatures and diffusion rates all

contributed to the final equilibrium structure achieved.

In the cases where the crystallized samples were irradiated at room temperature

the diffusion effects were too little to overcome the re-amorphizing nature of the

beam. In that case, the samples were quickly re-amorphized and remained that way

all the way to extremely high levels of DPA.

It was seen from observation of the 250 ◦C samples that metallic glass can remain

amorphous even at an elevated temperature as long as the beam intensity is high

enough to continue amorphizing the sample. In this case the DPA rate was high
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enough only to keep part of the ion bombarded region amorphous. The areas of

lower damage rate were at a high enough temperature to nucleate crystals. Since

the ion bombardment was continuing in that region, the matrix around the crystals

was kept well mixed. In that case, it prevented a depleted zone from forming around

the crystal, allowing the crystals to continue growing. This was in sharp contrast to

the crystals outside the ion bombardment region, which did not see any crystal grain

coarsening even with an extended time at an elevated temperatures.

The thermally crystallized samples were able to very clearly show the amount of

segregation effected the ability of the beam to re-amorphize the metallic glass. It was

observed that the sample was able to be re-amorphized at 1E14 ions/cm2, however,

unlike previous cases, the sample showed a distinct segregation of elements even after

re-amorphizing. This segregation occurred since these samples were annealed at a

much higher temperature than the samples crystallized with beam heating. This

allowed for more stable and complete crystal formation in the thermally crystallized

samples.

The patches of amorphous material seen in the 1E14 ions/cm2 sample have a

composition that closely matches the stable crystal compound of the crystal that

was in that location before it was re-amorphized. The presence of this already stable

crystal composition is what caused these samples to re-crystallize, unlike the beam

crystallized samples that were re-irradiated at room temperature. It can be seen

that with larger doses, the area with the highest DPA rate remains amorphous,

while lower DPA rate zones will grow large grained crystals.

9.6 Porous MG

These results seem to mirror what was observed in previous bulk studies in terms

of what conditions will induce a phase change in the metallic glass. The void structure
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was particularly interesting since they grew to be such a large and interconnected

network. In many other materials the maximum void size is largely capped due to

the ability of the Helium to migrate through the sample. It appears that this metallic

glass is very adept at trapping helium and forming large-inter-connected voids. This

structure could be of use in filter type applications.

The hardness data shows that the voided region is much softer when compared

to the untreated samples. This is to be expected as the bubble region is an area of

much lower density. It is also interesting to note that the crystallized sample has

a much higher harness then the untreated sample. This is mostly attributed to the

increase in density of the sample as it undergoes the crystallization process.

Unfortunately, the crystallization resistance seen in the ultrathin samples was

unable to be replicated in these samples due to the collapse and removal of the thin

film structures. The crystallization of the metallic glass by ion bombardment caused

the collapse and loss of the void structure. This resulted in the thin film structures

that were developed, unable to be characterized.

9.7 Overall

These studies have shown that there are several phenomena that work together to

cause metallic glass to either retain, lose or recover its coveted amorphous state. Ion

bombardment in bulk cases is shown to have a re-amorphizing effect, as long as the

crystal structures formed are close to the original composition of the metallic glass.

Heating from ion bombardment in bulk cases is the only observed way crystallization

occurred. In very thin film samples, crystallization can occur from the presence

of excess free volume. This is an a-thermal effect which lowers the local density

to such a degree, atomic mobility is produced, allowing for re-arrangement into

more energetically favored crystal structures. It was also seen the the beam can re-
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amorphize in these cases as well through the localized melting and rapid quenching

in the core of the damage cascade region. In the case of very thin films ≈10 nm

thick, crystallization is not seen to occur even under very high dose bombardments

and high temperatures which induced crystallization in slightly thicker films. This

behavior was attributed to the ability of the free surface to remove excess free volume

which would otherwise build up and cause crystallization as seen in other parts of the

sample. This crystallization resistance effect was also seen in multi-layered samples

which appeared to duplicate the ability to remove excess free volume through a

material interface. Lastly, metallic glass was shown to be very robust under He

irradiation, able to form very large void structures without crystallizing.

All of these discoveries help define the radiation response of metallic glass under

heavy radiation damage. This information can then be used when considering the

use of metallic glass in applications where a high-radiation field is to be expected.

This also shows that under certain conditions metallic glass does not suffer the same

sorts of microstructure change that is so disruptive to the material properties of

other polygrained materials such as steels, and can even recover its amorphous mi-

crostructure under the right conditions. This form of self-healing material is highly

sough after in the materials research community today. With all of these beneficial

properties, and robust microstructure, Metallic glass may be the material to solve

some of the toughest materials challenges of today.
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APPENDIX A

HEAT TRANSFER CALCULATION

Two heat conduction models are used for this calculation, since it is really a 2-D

problem. The metallic glass samples are a fixed to the stage using silver paste at the

ends of the ribbon. A schematic of this setup can be seen in Figure A.1. It can be

assumed that the ends of the metallic glass are at the indicated stage temperature.

The center of the glass is not affixed well to the stage, and so an adiabatic condition

can safely be assumed for the rest of the strip. The second directional effect comes

from beam heating. Since the beam is only heating the very front surface of the

metallic glass, there will be heat diffusion perpendicular to the surface as well as the

heat diffusion along the strip.

A.1 X-direction Model Development

The first model that was developed was the heat transfer along the strip to the

ends of the ribbon. Here a model was used that assumed a constant temperature

condition at one edge, and an adiabatic condition in the center. For the center part of

the strip (α), the beam was used as uniform heat source. The magnitude of the heat

source was calculated from the beam current, energy and irradiated area. For the

outer section (β), no heat source was used as it was not in the irradiated area. The

fundamental equations used to generate the model are seen in Equations A.1. The

boundary conditions used can be seen in Equations A.2. Continuity conditions were

used at the interface. These are slightly simplified since constant material conditions

are assumed.
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Figure A.1: Diagram showing how the MG samples are mounted for irradiation.

Forx < Xo,k
d2T (x)α
dx2 + q̇ = 0 (A.1a)

Forx >= Xo,k
d2T (x)β
dx2 = 0 (A.1b)

In these equations Xo is distance from the center of the sample to the edge of

the irradiated region, k is the thermal conductivity of the metallic glass and q̇ is

the heat generated per unit volume from the beam. For this model it is assumed

that the energy of the beam is uniformly deposited through the entire width of the

sample. This is not accurate to the physical phenomena that is occurring, but will
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be accounted for in the second model.

Boundary Conditions

−kdT (Ψ)α
dx

= Ψ (A.2a)

T (0)β = Ts (A.2b)

Interface Conditions

dT (Xo)α
dx

= dT (Xo)β
dx

(A.2c)

T (Xo)α = T (Xo)β (A.2d)

For the boundary conditions, T (0)α is the temperature of the center of the sample,

Ts is the sample of the stage and Ψ is the distance from the center of the sample to

the edge of the sample.

A.2 Z-direction Model Development

Next, a model is developed in order to account for the heat being transferred

from the surface into the bulk of the sample. In order to do this, the sample had to

be broken in to two distinct regions. One with internal heat generation, representing

the near surface region within the ion range, and the rest of the sample without

internal heat generation. A diagram of the layout can be seen in Figure A.2. The

fundamental equations describing this model can be seen in Equations A.3
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Figure A.2: Diagram showing the expected temperature curve shape and layered
structure to be used for the heat transfer model.

Forz < φ,k
d2T (z)γ
dz2 + q̇ = 0 (A.3a)

Forz >= φ,k
d2T (z)δ
dz2 = 0 (A.3b)

In these equations k is the thermal conductivity of the metallic glass and q̇ is

the heat generated per unit volume from the beam. It is assumed that the beam

is uniformly depositing energy within the projected range of the ion track. This is
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not exactly the heat profile generated by the beam, however, this will not effect the

conclusions of this calculation significantly.

Next, boundary conditions and interface conditions must be defined. For the

surface of the sample being bombarded, a radiative heat transfer condition is applied.

It is assumed that the shape factor is 1 and that the emissivity is 0.15. This emissivity

is chosen since the sample is a highly polished metal. The back surface of the sample

is defined by a constant temperature condition. The temperature used is given

from the first heat equation model. The interface conditions are simply continuity

conditions, simplified since material properties are assumed constant for both areas.

The boundary and interface conditions can be seen in Equations A.4.

Boundary Conditions

− k
dT (0)γ
dz

= Sεσ(T 4
c − T (0)4

γ) (A.4a)

Forx < Xo,T (Θ)δ = Tα(x)Forx > Xo, T (Θ)δ = Tβ(x) (A.4b)

Interface Conditions

dT (φ)γ
dz

= dT (φ)δ
dz

(A.4c)

T (φ)γ = T (φ)δ (A.4d)

For the boundary conditions, T (0)γ is the temperature of the surface of the sam-

ple, S is the shape factor of the surface, ε is the emissivity of the sample, σ is planks

constant, Tc is the temperature of the chamber surrounding the sample and Θ is the

thickness of the sample. For the interface conditions φ is the end of range for the

ions and defines the thickness of the sample zone with internal heat generation.
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Table A.1: Table showing the different parameters required to perform the heat
transfer calculation

Parameter Value Units
Beam current 250 nA
Irradiated area 0.3 cm2

Ion Energy 3.5 MeV
Sample thickness 200 µm
Sample length 1.0 cm
Thermal conductivity 3 W/m-K [28]
Ion charge state 2 Integer

A.3 Results

With both models defined, it was solved for a stage temperature of 275 circC. This

case was used since this is the lowest temperature at which complete crystallization

was observed. The necessary parameters to solve these equations are seen in Table

A.1.

First, the temperature along the length of the sample was solved for. The re-

sulting temperature curve can be seen in Figure A.3. The maximum temperature

point at the center of the sample was 493.8 ◦C up from a stage temperature of 275
◦C giving a temperature difference of 217 ◦C.

With the maximum temperature known, this is fed into the second set of equa-

tions as the constant temperature condition for the back face of the sample. The

resulting curve can be seen in Figure A.4. From the back temperature of 493.8 ◦C

the surface temperature is 494.5 ◦C giving a temperature difference of 0.7 ◦C.

A.4 Conclusion

Looking at the two models, it is clear that the majority of the temperature

rise comes from the length of the sample. This also shows that the crystallization
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Figure A.3: Plot showing the temperature in the X-direction

observed is simply from heating the sample to above its crystallization temperature

and not a beam effect. Along the Z-direction, there is hardly any temperature change.

This explains why the sample is fully crystalline throughout. If the sample had a

larger gradient in the Z-direction, then it could be reasonably expected that the

sample would only be crystalline in the near surface and not throughout.
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Figure A.4: Plot showing the temperature in the Z-direction
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