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ABSTRACT 

Spectrometers are the cornerstone of analytical chemistry. Recent advances in micro-

optics manufacturing provide lightweight and portable alternatives to traditional 

spectrometers. In this dissertation, we developed a spectrometer based on Fabry-Perot 

interferometers (FPIs). A FPI is a tunable (it can only scan one wavelength at a time) 

optical filter. However, compared to its traditional counterparts such as FTIR (Fourier 

transform infrared spectroscopy), FPIs provide lower resolution and lower signal-noise-

ratio (SNR). Wavelength selection can help alleviate these drawbacks. Eliminating 

uninformative wavelengths not only speeds up the sensing process but also helps 

improve accuracy by avoiding nonlinearity and noise. Traditional wavelength selection 

algorithms follow a training-validation process, and thus they are only optimal for the 

target analyte. However, for chemical identification, the identities are unknown.  

To address the above issue, this dissertation proposes active sensing algorithms that 

select wavelengths online while sensing. These algorithms are able to generate analyte-

dependent wavelengths. We envision this algorithm deployed on a portable chemical gas 

platform that has low-cost sensors and limited computation resources. We develop three 

algorithms focusing on three different aspects of the chemical identification problems.  

First, we consider the problem of single chemical identification. We formulate the 

problem as a typical classification problem where each chemical is considered as a 

distinct class. We use Bayesian risk as the utility function for wavelength selection, 

which calculates the misclassification cost between classes (chemicals), and we select 



iii 

 

the wavelength with the maximum reduction in the risk. We evaluate this approach on 

both synthesized and experimental data. The results suggest that active sensing 

outperforms the passive method, especially in a noisy environment. 

Second, we consider the problem of chemical mixture identification. Since the number 

of potential chemical mixtures grows exponentially as the number of components 

increases, it is intractable to formulate all potential mixtures as classes. To circumvent 

combinatorial explosion, we developed a multi-modal non-negative least squares (MM-

NNLS) method that searches multiple near-optimal solutions as an approximation of all 

the solutions. We project the solutions onto spectral space, calculate the variance of the 

projected spectra at each wavelength, and select the next wavelength using the variance 

as the guidance. We validate this approach on synthesized and experimental data. The 

results suggest that active approaches are superior to their passive counterparts 

especially when the condition number of the mixture grows larger (the analytes consist 

of more components, or the constituent spectra are very similar to each other). 

Third, we consider improving the computational speed for chemical mixture 

identification. MM-NNLS scales poorly as the chemical mixture becomes more 

complex. Therefore, we develop a wavelength selection method based on Gaussian 

process regression (GPR). GPR aims to reconstruct the spectrum rather than solving the 

mixture problem, thus, its computational cost is a function of the number of 

wavelengths. We evaluate the approach on both synthesized and experimental data. The 

results again demonstrate more accurate and robust performance in contrast to passive 

algorithms.   



iv 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor Dr. Ricardo Gutierrez-Osuna for his support. 

Academically, his guidance not only inspired this dissertation, but also drove me to 

become a better researcher. I am especially grateful for his constant guidance and 

unwavering encouragement for high-quality writing, which helped me to get where I am 

today.  

Without the financial support of the National Science Foundation that provided the 

scholarship for my graduate studies, this work would not have been possible. I am 

grateful to Dr. Gutierrez for granting me this rare opportunity. 

I am also grateful to my committee members Dr. Yoonsuck Choe, Dr. Dylan Shell, and 

Dr. Suman Chakravorty for their assistance and feedback on this project. My 

appreciation also extends to my past and present colleagues; special thanks to Rakesh 

Gosangi, Sandesh Aryal, Avinash Parnandi, and Joseph Lee for their support and 

friendship, which helped me survive those stressful times. 

Finally, I would like to thank my mother and father for the unconditional love.   



v 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... ii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ...........................................................................................................xiv 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Contributions ............................................................................................................ 2 
1.2 Organization of the dissertation................................................................................ 3 

2. BACKGROUND ............................................................................................................ 5 

2.1 Analytical chemistry................................................................................................. 5 

2.1.1 Physical separation ............................................................................................ 6 
2.1.2 Spectroscopic techniques................................................................................... 7 

2.2 Absorbance and Beer‘s law .................................................................................... 12 

2.2.1 Transmittance and absorbance ........................................................................ 12 
2.2.2 Beer‘s law ........................................................................................................ 13 

2.2.3 Multicomponent analysis................................................................................. 14 
2.3 Wavelength selection.............................................................................................. 16 

2.3.1 Optics for wavelength selection ...................................................................... 16 

2.3.2 Theoretical justification for wavelength selection .......................................... 21 
2.4 Active wavelength selection ................................................................................... 25 

3. LITERATURE REVIEW ............................................................................................. 29 

3.1 Numerical methods of least squares and its variations........................................... 29 
3.1.1 Non-negative least squares .............................................................................. 30 

3.1.2 Sparsity-regularized least squares ................................................................... 30 
3.1.3 Bayesian approach ........................................................................................... 34 

3.2 Algorithms for wavelength selection...................................................................... 35 
3.2.1 Moving window and interval selection ........................................................... 36 
3.2.2 Feature forward/backward selection................................................................ 37 



vi 

 

3.3 Related problems in other areas ............................................................................. 37 
3.3.1 Robotics ........................................................................................................... 37 

3.3.2 Bayesian optimization ..................................................................................... 38 
3.3.3 Multi-armed bandit problem............................................................................ 39 

3.3.4 Adaptive compressed sensing.......................................................................... 40 
3.3.5 Active learning ................................................................................................ 40 

3.4 Active chemical sensing ......................................................................................... 42 

4. ACTIVE WAVELENGTH SELECTION BASED ON MISCLASSIFICATION 
COST FOR SINGLE CHEMICAL IDENTIFICATION ................................................. 45 

4.1 Methods .................................................................................................................. 46 
4.1.1 Overview of the approach ............................................................................... 46 
4.1.2 Notations.......................................................................................................... 47 

4.1.3 Library acquiring ............................................................................................. 48 
4.1.4 Wavelength selection....................................................................................... 52 

4.2 Validation on synthetic data ................................................................................... 55 
4.2.1 Dataset ............................................................................................................. 55 
4.2.2 Test case .......................................................................................................... 57 

4.2.3 Performances at sensing budgets ..................................................................... 58 
4.2.4 Comparison with passive sensing.................................................................... 59 

4.3 Validation on experimental data............................................................................. 62 
4.3.1 Experimental setup .......................................................................................... 62 
4.3.2 Experimental data ............................................................................................ 64 

4.3.3 Results ............................................................................................................. 65 
4.4 Conclusion and discussion ..................................................................................... 68 

5. ACTIVE WAVELENGTH SELECTION BASED ON MULTI-MODAL LEAST 
SQUARES METHOD FOR CHEMICAL MIXTURE IDENTIFICATION ................... 71 

5.1 Methods .................................................................................................................. 73 

5.1.1 Overview of the approach ............................................................................... 73 
5.1.2 Generating candidate solutions: multi-modal non-negative least squares ...... 74 

5.1.3 Wavelength selection....................................................................................... 77 
5.2 Validation on experimental data............................................................................. 83 

5.2.1 Experimental setup .......................................................................................... 83 

5.2.2 Experiment 1: test case .................................................................................... 85 
5.2.3 Experiment 2: active vs. passive ..................................................................... 87 

5.2.4 Experiment 3: analyzing the exploration-exploitation tradeoff....................... 90 
5.3 Validation on synthetic data ................................................................................... 92 

5.3.1 Binary mixtures ............................................................................................... 93 

5.3.2 Higher-order mixtures ..................................................................................... 94 
5.4 Conclusions and discussion .................................................................................... 96 

6. BIC SHRINKAGE NON-NEGATIVE LEAST SQUARES ....................................... 98 



vii 

 

6.1 BICS-bNNLS ......................................................................................................... 99 
6.1.1 Batch NNLS .................................................................................................. 100 

6.1.2 BIC shrinkage ................................................................................................ 102 
6.2 Nonlinear BICS-bNNLS ...................................................................................... 104 

6.2.1 Spectral library .............................................................................................. 104 
6.2.2 Nonlinear solver ............................................................................................ 106 

6.3 Drift compensation ............................................................................................... 108 

6.4 Results .................................................................................................................. 110 
6.4.1 Experimental setup ........................................................................................ 110 

6.4.2 bNNLS speed comparison ............................................................................. 110 
6.4.3 BICS-bNNLS sparsity comparison ............................................................... 111 
6.4.4 Nonlinear BICS-bNNLS accuracy comparison............................................. 115 

6.5 Conclusion and discussion ................................................................................... 117 

7. FAST ACTIVE WAVELENGTH SELECTION GUIDED BY GAUSSIAN 

PROCESS REGRESSION ............................................................................................. 119 

7.1 Active wavelength selection ................................................................................. 120 
7.1.1 Overview ....................................................................................................... 120 

7.1.2 Explorative wavelength selection .................................................................. 121 
7.1.3 Exploitative wavelength selection ................................................................. 125 

7.2 Validation on experimental data........................................................................... 127 
7.2.1 Smoothness parameter tuning........................................................................ 128 
7.2.2 Comparison with passive algorithms............................................................. 129 

7.3 Validation on synthetic data ................................................................................. 136 
7.3.1 Performance comparison ............................................................................... 137 

7.3.2 Convergence rates comparison ...................................................................... 141 
7.4 Conclusion and discussion ................................................................................... 143 

8. CONCLUSION .......................................................................................................... 146 

8.1 Future work .......................................................................................................... 147 
8.1.1 Studies of nonlinearity in chemical interactions ........................................... 147 

8.1.2 Active sensing based on Bayesian multivariate linear regression ................. 148 
8.1.3 Generalized effective rank............................................................................. 148 
8.1.4 Effective rank under nonlinearity .................................................................. 149 

8.1.5 Active chemical verification.......................................................................... 149 

REFERENCES ............................................................................................................... 151 

APPENDIX A: NONLINEAR DEVIATION OF BEER‘S LAW ........................... 161 

APPENDIX B: THE EFFECTIVE RANK UNDER NOISE .................................. 162 

APPENDIX C: OBSERVATION DISCRETIZATION .......................................... 167 



viii 

 

APPENDIX D: APPROXIMATION OF MISCLASSIFICATION COST ............. 168 

APPENDIX E: SIGNAL PROCESSING FOR THE FPI SENSOR ....................... 170 



ix 

 

LIST OF FIGURES 

Page 

Figure 1: The separation process of column chromatography.  .......................................... 7 

Figure 2: Summary of different spectroscopic techniques [12]. There are two 
dimensions in this table. Different columns group techniques into 

different wavelength ranges following an incremental order from left 
to right. Different rows represent different electromagnetic radiation 

interaction principles. ........................................................................................ 8 

Figure 3: The wavelengths of interest and the corresponding transition type of the 
sample ................................................................................................................ 9 

Figure 4: A diagram of the absorption spectrum.   is the length of the effective 

path of the absorbance. .................................................................................... 10 

Figure 5: The transformation from transmittance to absorbance. .................................... 13 

Figure 6: An illustration of the monochromators.  ............................................................ 18 

Figure 7: A diagram of the Michelson interferometer. ..................................................... 19 

Figure 8: Fabry-Perot interferometer................................................................................ 20 

Figure 9: The transmission of the Fabry-Perot interferometer across different 
wavelengths.    is the distance between two peaks,    is the effective 

bandwidth. ....................................................................................................... 21 

Figure 10: An example of a two-component mixture problem. Three subsets of 

wavelengths are chosen as shown in the gray areas.  ....................................... 23 

Figure 11: Positive and negative deviations from Beer‘s law .......................................... 24 

Figure 12: The non-uniform nonlinear deformation of the absorbance due to 

imperfect wavelength selector.   is the effective absorptivity described 

in equation (3). ................................................................................................. 25 

Figure 13: (a) The underlying mathematical problem of multicomponent analysis 
and (b) the underlying mathematical problem of wavelength selection.  ......... 26 



x 

 

Figure 14: The underlying variable selection for the active wavelength selection 
problem that is to select the optimal rows (wavelengths) and the 

optimal columns (components) at the same time.  ........................................... 27 

Figure 15: Active wavelength selection by interleaving wavelength selection and 

multicomponent analysis together.  .................................................................. 28 

Figure 16: Diagram of the active wavelength selection framework based on 
Bayesian risk.................................................................................................... 46 

Figure 17: Absorption spectra for acetone at 50 different concentrations (solid 
lines) and the estimated profile (dotted line).  .................................................. 50 

Figure 18: Dotted line is the absorption profile of acetone. The solid green lines 
are the sum of the residual matrix and the absorption profile.  ........................ 51 

Figure 19: Fitting sensor responses to concentration-independent profiles   . (a) 

Solid lines represent absorption profiles for acetone and propanol, 

whereas circles correspond to sensor observations in the presence of 
20% acetone. Observation fitted to (b) the acetone profile and (c) the 
propanol profile. .............................................................................................. 54 

Figure 20: Simulated absorption spectra for 27 chemicals. Spectra are plotted 
with an offset along the y-axis for visualization purposes.  ............................. 56 

Figure 21: (a) Average absorption spectrum of trans-3-hexene (solid line) and 
wavelengths chosen by the active sensing algorithm (circles); the 
following wavelengths (  ) were chosen: 3.4, 3.36, 3.3, 3.34, 3.28, 

3.38, 3.38, 3.44, 3.38, 3.44, 3.44, 3.38, 3.38, 3.44, and 3.34. (b) Belief 
distribution as a function of time. .................................................................... 58 

Figure 22: (a) Average number of observations used and (b) classification rate 
obtained by the active sensing framework as a function of the ratio of 

sensing cost to misclassification cost (      ). .............................................. 59 

Figure 23: Classification performance of the two methods as a function of the 

variance of the additive Gaussian noise. .......................................................... 61 

Figure 24 Classification performance of the two methods as a function of the 

number of observations used. .......................................................................... 62 

Figure 25: Experimental prototype of the Fabry-Perot spectrometer............................... 63 

Figure 26 (a) Average absorption spectra of all the chemicals including air. (b) 

Concentration-independent absorption profiles of all the chemicals.  ............. 65 



xi 

 

Figure 27 (a) Classification performance (true positives) for different chemicals 
and (b) the corresponding confusion matrix.  ................................................... 66 

Figure 28 (a) Average absorption spectra of acetone and (b) average number of 
observations at the ten concentrations.  ............................................................ 68 

Figure 29: Overview of the multimodal wavelength selection approach.  ........................ 74 

Figure 30: Flowchart of the non-negative least-squares (NNLS) algorithm (a) and 
multi-modal NNLS algorithm (b). The shaded blocks in (b) highlight 

differences between both algorithms. .............................................................. 77 

Figure 31: (a) Projected spectra of the solutions ranked by the sampled error 

           and the true error over the full spectrum       ; 
only the range               is  shown for illutration purposes.  

(b) The top 100 solutions according to the sampled error, and the 

corresponding true error.  (c) Complexity of each model (number of 
components in the mixture) for the top 100 solutions.  .................................... 79 

Figure 32: Schematic diagram of the headspace vapor sampling system.  ....................... 84 

Figure 33: A test case with acetone as background and isopropyl alcohol as 
foreground. (a) Background, foreground and the mixture; (b) Sampling 
frequency distribution before and after confirming the ground truth 

(20-th iteration); (c) Total number of solutions generated, 20-th 
iteration (vertical line); (d)  Ranking of the correct solution, ranking #1 

(horizontal line). .............................................................................................. 87 

Figure 34 (a) Average classification rate for the active and passive wavelength 
selection algorithms as a function of the foreground dilution ratio. (b) 

The average ranking of the correct solution as a function of the 
foreground dilution ratio; the dashed line represents a ranking of one, 

indicating that the correct solution was found.  ................................................ 90 

Figure 35: (a) Discovery rate, (b) resolution rate and (c) confirmation rate. The 
entropy controls the balance between exploitation (entropy being zero) 

and exploration (entropy being one).  ............................................................... 92 

Figure 36: (a-d) Number of steps needed to converge to the correct solution. (e-h) 

The corresponding foreground and background for each condition 
number; spectra were normalized to sum up to one.  ....................................... 94 

Figure 37: The number of steps used to converge to the correct solution with 

mixture problems up to 15 chemicals.  ............................................................. 96 



xii 

 

Figure 38: The variable (constituent) forward-backward selection process. ................. 100 

Figure 39: Two-dimensional Gaussian process regression reconstructs clean 

spectra at different concentrations for lacquer thinner.  ................................. 106 

Figure 40: Diagram of the nonlinear BICS-bNNLS....................................................... 107 

Figure 41: Corrected zero-absorbance line with emitter drift compensation.  ................ 110 

Figure 42: (a) Sample solutions from different solvers; (b) The same solutions in 
logarithmic scale. ........................................................................................... 113 

Figure 43: Sparsities of the solutions in    norm. .......................................................... 115 

Figure 44: Number of misclassified components with and without the nonlinear 
search algorithm............................................................................................. 116 

Figure 45: Diagram of the active wavelength selection framework for mixture 

identification problems. ................................................................................. 121 

Figure 46: An example of Gaussian process regression. ................................................ 122 

Figure 47: Exploitative wavelength selection diagram.  ................................................. 127 

Figure 48: The fitness measured by MSE at different smoothness settings across 
all chemicals. ................................................................................................. 129 

Figure 49: The spectra of acetone and brush cleaner. They are both very similar 
to each other (hard to resolve).  ...................................................................... 133 

Figure 50: Efficiency test – the number of steps measurements used to converge 
to the correct solution. ................................................................................... 134 

Figure 51: Stability test – the standard deviation of the number of steps required 

before convergence. ....................................................................................... 135 

Figure 52: Reliability test – classification rate for the two algorithms. The 

algorithm needs to converge before 200 steps; otherwise, its result is 
considered misclassified. ............................................................................... 136 

Figure 53: Efficiency test – total number measurements required before 

convergence from 1-component chemical to the 50-component 
chemical mixture. .......................................................................................... 138 

Figure 54: Stability test – the standard deviation of the number of measurements 
before convergence. ....................................................................................... 138 



xiii 

 

Figure 55: Improvement of the active approach over the passive approach 
regarding both the efficiency and stability.  ................................................... 139 

Figure 56: Reliability test – the classification rates of active approach and passive 
approach......................................................................................................... 140 

Figure 57: A zoomed-in version of Figure 56. ............................................................... 141 

Figure 58: An example of the relative sparsity trajectory through the sensing 
process. .......................................................................................................... 142 

Figure 59: The relative sparsity during the first 100 measurements across 
different orders of mixtures. .......................................................................... 143 

Figure 60 The hypercube regional integration over a two-component linear 
system. ........................................................................................................... 163 

Figure 61 Effective rank vs   under different noise level. The red dashed line is 

the rank. The solid lines illustrate different effective ranks at different 

noise level.    denotes the variance in the normal distribution for the 
noise. .............................................................................................................. 166 

Figure 62: Misclassification risk of a binary classification problem.  ............................ 169 

Figure 63: Diagram of the FPI platform for chemical identification.  ............................ 170 

Figure 64: The raw signals before and after drift compensations.  ................................. 172 

 



xiv 

 

LIST OF TABLES  

Page 

Table 1: Different least squares methods and their equivalents.  ...................................... 34 

Table 2: Pseudo code for belief update procedure ........................................................... 55 

Table 3 List of chemicals and their major components.................................................... 64 

Table 4: bSearch ............................................................................................................... 83 

Table 5: List of chemicals used in the experiments, and their major components........... 85 

Table 6: The pseudo-code of batch NNLS ..................................................................... 101 

Table 7: Pseudo-code for the BIC guided shrinkage procedure ..................................... 103 

Table 8: Pseudo-code for nonlinear spectral library search algorithm ........................... 108 

Table 9: Time consumption and relative speed-up of different algorithms with 
different library sizes averaged over 20 runs. ................................................ 111 

Table 10: The analytes components and their abbreviations.......................................... 132 



1 

 

1. INTRODUCTION 

Compact tunable chemical sensors based on Fabry-Perot interferometry have recently 

become available [1, 2], offering the prospect of low-cost, portable embedded 

spectroscopy for chemical identification and quantitative analysis. However, compared 

to traditional spectroscopy such as Fourier transform infrared spectroscopy (FTIR), these 

compact tunable sensors have lower sensitivity and resolution, which leads to higher 

sensor noise, greater nonlinearity, and greater collinearity. Wavelength selection can 

help alleviate these problems; it has been shown both theoretically [3] and 

experimentally [4-8] that by removing uninformative wavelengths, prediction accuracy 

can be improved. Additionally, since tunable sensors can only scan one spectral line at a 

time, wavelength selection can significantly speed up the sensing process by avoiding 

non-informative wavelengths.  

Given the combinatorial complexity of the wavelength selection problem, an efficient 

searching algorithm is crucial to make the process computationally tractable. Several 

approaches have been proposed in the literature, including various randomized 

algorithms such as genetic algorithms [8], simulated annealing [7], colony optimization 

[9], as well as greedy strategies.  A noteworthy greedy search technique is the successive 

projection method of Araújo et al. [5], which extracts wavelengths that minimize 

collinearity using the sequential orthogonal projections of the Gram-Schmidt procedure. 

To further reduce the search space, a common technique is to group wavelengths into 
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individual non-overlapping windows, as in the changeable size moving window scheme 

proposed by Du et al. [10]. 

Notwithstanding the effectiveness of these wavelength selection algorithms, their 

performance is limited by the fact that wavelengths are selected offline using a subset of 

all possible mixtures to which the device may later be exposed. For mixture analysis 

problems of even moderate size (e.g., tens of potential chemicals), and in the absence of 

prior knowledge of the most likely components (and possibly their relative 

concentrations), the search will generally produce wavelength subsets that are either 

highly redundant or too specific to the particular mixtures in the training set.  

To address the limitations of these methods, this dissertation develops an adaptive 

algorithm framework that interleaves the wavelength-selection and sensing processes. 

The new method allows the sensor to adapt its wavelength selection program in response 

to different chemical stimuli, their concentrations, and to environmental influences, such 

as sensor noise. We apply the active wavelength selection algorithm to Fabry-Perot 

interferometry on a chemical gas identification problem to experimentally validate the 

effectiveness of this framework.  

1.1 Contributions 

There are three major aims in this dissertation:  

 To develop a platform based on the tunable FPI sensor to identify chemical 

mixtures 

 To develop active sensing strategies for chemical mixture identification purposes 
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 To develop fast and accurate solvers for the multi-component analysis problem 

To achieve these aims, this dissertation contains the following contributions: 

 An active tunable spectrometer based on FPI sensor including both the hardware 

and software. 

 Three different active wavelength selection algorithms for chemical mixture 

identification, and we validated them on the FPI platform. 

 Two least squares solvers for the multi-component analysis problem: the multi-

modal non-negative least squares solver (MM-NNLS), and the BIC shrinkage 

non-negative least squares solver (BICS-bNNLS). 

1.2 Organization of the dissertation 

We organize this dissertation as follows: Chapter 2 provides a background of the 

analytical chemistry, the multicomponent analysis problem, and the wavelength 

selection problem. Chapter 3 provides a literature review for multicomponent analysis, 

wavelength selection, and the active wavelength selection problem. Chapters 4 through 

Chapter 7 explain the three major contributions of this dissertation. First, Chapter 4 

describes the active framework for single chemical identification based on Bayesian risk. 

Second, Chapter 5 explains the active sensing algorithm for chemical mixture 

identification based on MM-NNLS. Third, Chapters 6 and 7 present the active sensing 

algorithm that focuses on reducing the computational cost. There are two main aspects 

of this new development: a faster NNLS solver and a computationally simpler 

wavelength selection utility. Both aspects are equally important, but also cumbersome to 
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fit into one chapter, so we split it across two: Chapter 6 focuses on the nonlinear BICS-

bNNLS for the underlying multi-component analysis problem, and Chapter 7 focuses on 

the active wavelength selection algorithm. The final chapter, Chapter 8, reviews the 

contributions and discusses future directions. 
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2. BACKGROUND 

This chapter discusses topics regarding analytical chemistry, such as the physical 

instruments and techniques used to analyze chemicals. We review various spectroscopic 

techniques to help readers grasp the scope of the area (Section 2.1). We then discuss 

absorption spectroscopy and its relation to the underlying numerical problem – 

multicomponent analysis (Section 2.2). After introducing multicomponent analysis, we 

explain the benefit of wavelength selection for multicomponent analysis, and we review 

various optical instruments for wavelength selection (Section 2.3). Finally, we motivate 

the active wavelength selection and formulate the problem (Section 2.4).  

2.1 Analytical chemistry  

Analytical chemistry is an interdisciplinary science that has a wide range of topics. As a 

theoretical science, it studies the molecular structure of different chemicals; as a 

practical science, it provides qualitative and quantitative information of natural or 

artificial analytes. Structural analysis studies the actual physical arrangement of the 

atoms in a molecule; qualitative analysis identifies the species of the atoms, molecules, 

or biomolecules in the analytes; quantitative analysis provides numerical information for 

each component present in the analyte. Analytical chemistry finds itself in a wide range 

of applications, such as forensics, archeology, medicine, food and agriculture, 

environment, industry, material science, and space science. Given the widespread use of 

analytical chemistry, many varied laboratory techniques have been developed to analyze 



6 

 

or measure analytes. The two most common categories of techniques are physical 

separation and spectroscopy.   

2.1.1 Physical separation 

In the domain of analytic chemistry, physical separation is normally referred as 

Chromatography. Chromatography is a set of techniques that physically separate a 

particular analyte of interest from potential interferents. Modern chromatography can be 

traced back to the beginning of 20th century when Russian botanist Mikhail Tsweet 

developed column chromatography. Column chromatography separates chemicals by 

exploiting the chemical property that different constituents have distinct affinities to 

different media (solvent). There are two phases (both are solvents) in the process of 

chromatography: the mobile phase refers to the solvent that serves as a carrier for the 

analyte; the dissolved compounds are then pushed through a medium called stationary 

phase. If a certain constituent has a greater affinity for the stationary phase than it has for 

the mobile phase, it moves through the medium slowly. If the constituent has less 

affinity with the stationary phase, it moves through the media quickly. Due to these 

various rates of migration for different constituents, the mixture is separated physically. 

Figure 1 illustrates the process. Chromatography was later re-introduced for biomedical 

separation during the 1930s and its underlying theory, countercurrent extraction, was 

later established by Martin and Synge [11] during 1940s.  
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Figure 1: The separation process of column chromatography.  

2.1.2 Spectroscopic techniques 

Spectroscopic techniques are the cornerstones of modern analytic chemistry. In general, 

electromagnetic radiation interacts with molecules in various ways depending on the 

wavelength of interest. Interactions such as absorbing, emitting, resonating, scattering, 

and exciting in turn generate or change the radiation intensity at different wavelengths. 

Measuring the radiation intensity at different wavelengths after the aforementioned 

interactions is the general principle of spectroscopy. This provides information about the 

molecule, such as its structure, weight, identity, species of chemical bonds, and quantity 

of a certain element. Some common spectroscopic methods are summarized in a table, as 

shown in Figure 2. The first dimension in the table is the wavelengths of interest, which 

are grouped into radio waves, microwave, infrared, visible, and ultra-violet, x-ray, and   

rays. The second dimension in the table is the interaction principles between the 
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electromagnetic radiation and the analytes. The most popular mechanisms are 

absorption, scattering, fluorescence, emission, and nuclear magnetic resonance (NMR). 

 

Figure 2: Summary of different spectroscopic techniques [12]. There are two dimensions 
in this table. Different columns group techniques into different wavelength ranges 

following an incremental order from left to right. Different rows represent different 
electromagnetic radiation interaction principles. 

The wavelengths of interest provide different information about the analyte. At the 

leftmost of the spectrum (highest energy), Mossbauer spectroscopy studies the nuclear 

structure with the absorption and re-emission of   rays. At the next level of energy, X-

rays and ultraviolet-visible light provide information about electrons. X-rays, at a higher 

energy level, are more related to the core electrons, whereas ultraviolet and visible light 

are more related to valence electrons. Core electrons do not participate in bonding, while 

valence electrons do. Infrared and microwaves provide information about the larger 

structure, the molecules. Infrared is related to molecule vibration energy and microwaves 

are linked to molecule rotation energy. Molecule vibration refers to the numerous kinds 

of vibration of different atomic bonds. Molecule rotation refers to the actual spinning of 

the whole molecule. At the lowest energy level, radio waves interact with the nuclear 

spinning and provide information of the atomic bonds in which the target nucleus is 

involved. Figure 3 summarizes this relationship between spectral regions and the target 
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properties. It is beyond the scope of this dissertation to discuss all spectroscopic 

techniques in detail. Neverthless, we provide a brief explanation of the most common 

technologies: absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance 

spectroscopy, and mass spectroscopy.  

 

Figure 3: The wavelengths of interest and the corresponding transition type of the 
sample 

Absorption spectroscopy techniques have the longest history and cover the widest range 

of wavelengths (X-rays, UV-visible light, infrared, microwave). The instruments and 

technologies vary significantly depending on the interested spectral region and the state 

of the sample (such as gas, liquid, solid). However, they share the same general 

principle: the electromagnetic radiation shines through the analyte; part of the radiation 

is absorbed by the analyte; the remaining radiation is then measured by a detector placed 

at the other end. The arrangement is shown in Figure 4. 
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Figure 4: A diagram of the absorption spectrum.   is the length of the effective path of 
the absorbance. 

Raman spectroscopy is another common spectroscopic method and is considered 

complementary to infrared absorption spectroscopy. While both infrared absorption 

spectroscopy and Raman spectroscopy interact with the molecules through vibration, 

certain kinds of vibrations are either Raman active or infrared active, but not both. This 

mutual exclusion principle makes Raman spectroscopy and infrared absorption 

spectroscopy complementary to each other. In Raman spectroscopy, a monochromatic 

light, i.e., laser, shines through the sample, and a very small amount of light is scattered 

with a slightly shifted frequency, a phenomenon known as Raman scattering. The 

relationship between the intensity of the Raman scattered light and the shifted frequency 

reveals some chemical bonds hidden in absorbance spectroscopy. Compared to infrared 

spectroscopy, Raman spectroscopy is more costly but offers complementary peaks in the 

spectrum. Raman spectroscopy also has an easier sample preparation process and thus is 

a suitable solution for portable applications. 

The state of the art and the most recent addition to the spectroscopic methods is nuclear 

magnetic resonance (NMR) spectroscopy, a technology that leads to magnetic resonance 
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imaging (MRI), which widely used in medical applications. The physical principle 

behind NMR spectroscopy involves the nuclei spin and its precession frequency under a 

uniform magnetic field. Precession describes the behavior of a gyro spinning under the 

influence of gravity. Because of gravity, unless the main axis of the gyro is parallel with 

the direction of gravity, there is a secondary spin, more precisely a wobbling, where the 

main axis of the gyro is rotating around the direction of gravity. Under a uniform 

magnetic field, a certain frequency radio wave can excite the gyro from a lower energy 

level to a higher one. This resonance frequency is a function of the local intensity of the 

magnetic field that is slightly modified by the surrounding environment of the molecule. 

Such slight deviations provide clues about the configuration of the molecules, thus, it 

can be used to deduce the overall structure of a molecule. Since only nuclei with an odd 

number of protons can interact with this magnetic field, there are two types of 

commercial NMR - proton NMR (H1) and C13 NMR. 

Mass spectrometry is a method that is very commonly coupled with most of the 

spectroscopic methods. Unlike in the general definition of spectroscopies where 

electromagnetic radiation plays a crucial part, in mass spectroscopy, the analyte does not 

interact with the electromagnetic radiation. Rather, the analyte is first ionized, 

accelerated, and shot through a magnetic field. Ionization separates the analyte molecule 

into different charged fragments. Different fragments deflect differently in the magnetic 

field, resulting in fragments distributed continuously in space depending on their mass-

to-charge ratios. Manipulating the strength of the magnetic field redirects the different 

fragments to the fixed-point detector at the other end of the field. As a result, we can plot 
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the abundance of the different ionized fragments with a different mass-to-charge ratio. 

Mass spectrum may be used to calculate the exact weight of a molecule. In addition, 

because each molecule has different fragmentation pattern, it also provides some 

qualitative and quantitative information about the analyte.  

2.2 Absorbance and Beer’s law 

The main domain on which this dissertation focuses is mixture analysis based on 

absorption spectroscopy. Therefore, this section provides a detailed description of the 

underlying mathematical problem. It first explains the fundamental theoretical basis, 

Beer‘s law, and then extends it for multicomponent analysis.  

2.2.1 Transmittance and absorbance 

By comparing the partially absorbed radiation intensity   with the reference intensity 

measured without the analyte    (which can be measured beforehand or after purging the 

sample cell), we can calculate transmittance in either the transmittance representation or 

the percent transmittance representation:  

  
 

  
 ‘s 

or    
 

  
        

(1) 

The transmittance can be mapped to a more intuitive measure, absorption, which is how 

much energy the analyte absorbs: 

       

 

 
  (2) 
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or                

Figure 5 illustrates a typical transformation from the raw radiation intensity to the 

absorbance. The relationship between the absorption intensities and different 

wavelengths is the absorption spectrum. Since every different chemical often has 

signature absorption peaks at a certain range of wavelengths, the absorbance provides 

qualitative information of the analyte. 

 

Figure 5: The transformation from transmittance to absorbance.  

2.2.2 Beer’s law 

Absorbance gives a more intuitive measure, and more importantly, has a linear 

relationship to the analyte concentration. This linear relationship, known as Beer‘s law, 

was recognized by German physicist, August Beer, during the 1850s, formulated as: 

        (3) 

where   is the molar absorptivity with a unit of           ;   is the path length as 

shown in Figure 4;   is the concentration of the analyte. The earliest application of the 

Beer‘s law is the colorimetric analysis developed by Nessler in 1856. This analysis was 

conducted under visible light, and users visually compared the color of the sample to a 
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reference sample (Nessler tubes) to determine the concentration of the analyte. In the 

1930s when photoelectric transducers introduced ultraviolet radiation, absorption 

spectroscopy was expanded to ultraviolet light. A decade later, during the 1940s, 

thermocouples introduced infrared radiation; infrared absorption spectroscopy became 

popular and now serves as one of the most popular techniques in analytic chemistry.  

2.2.3 Multicomponent analysis 

Beer‘s law can be extended to multicomponent samples. Assuming component does not 

chemically react with each other, the absorbances of the different components are 

additive. Namely, given a  -component mixture with absorbance {         }, the 

total absorbance of the mixture is simply the summation of the individual absorbances:  

  ∑  

 

   

 ∑     

 

   

   (4) 

In mixture analysis, the concentration of the mixture is unknown. Using a reference 

absorbance    for each individual component measured at a known concentration 

beforehand, we can represent the new total absorbance of the mixture:  

  ∑    

 

   

 (5) 

where the relative concentration    
  
 

   
 is the ratio of the true concentration   

  and the 

reference concentration    . Typically, an absorption spectrum consists of multiple 
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spectral lines at a set of wavelengths {          }. Beer‘s law stands true for all 

wavelengths, therefore equation (5) can be written as: 

   ∑     

 

   

   {     } (6) 

where    is the total absorbance at the wavelength   , and     is the absorbance for 

component   at the wavelength   . It is mathematically more convenient to represent this 

relationship in a column vector form:  

  ∑    

 

   

 (7) 

where   is the total absorbance with   spectral lines   {       }; likewise    

denotes the absorbances of each individual component    {         }. This 

relationship can be further reduced to a simpler matrix form if we collect the reference 

absorbances of different components into a two dimensional matrix   

{          }: 

      (8) 

where   consists of the relative concentration for each individual component   

{       }.  

In mixture analysis, the problem is to solve this linear system, i.e., given the total 

absorbance   and the reference potential absorbance  , the goal is to estimate the 

concentration  . Since the concentration is the unknown here, let   denote  . The 
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concentrations are non-negative, and since there is no energy emitted in the process, the 

absorbance is also non-negative; therefore, we have non-negative constraints        . 

Finally, the mixture analysis can be formulated as solving such a non-negative constraint 

linear system: 

     

s. t.     where       

(9) 

2.3 Wavelength selection 

Wavelength selection finds a subset of wavelengths. It reduces the number of 

dimensions of the problem and improves the model accuracy. There are two aspects of 

wavelength selection: hardware and software. The hardware must provide optimal 

wavelength separation; the software must select the most optimal wavelengths to sample 

and maximize model accuracy. We first provide a brief overview of some common 

optics for wavelength selection; specifically, we explain the unique advantages of the 

Fabry-Perot interferometer that is used in this dissertation. We then theoretically justify 

the necessity of wavelength selection in the context of multicomponent analysis.  

2.3.1 Optics for wavelength selection 

One advantage of a spectrum with multiple wavelengths is the possibility of quantitative 

analysis of multicomponent samples. Acquiring multiple wavelengths requires a 

wavelength selector. However, it is impossible to acquire a single wavelength as its 

energy converges to zero when the bandwidth is infinitely small. Different wavelength 

selectors offer different throughput and resolution.  
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The simplest forms of optical filters are color-coated optics. These optics are  

absorptive filters. They absorb the complementary color of the coated color; for 

example, a purple filter removes the complementary color – green. Another popular 

option is the dichroic filter. Dichroic filters are interference filters. Rather than 

absorbing the radiation, dichroic filter work by destructively interfering and reflecting 

the unwanted wavelengths, only the selected wavelength constructively interfere and 

pass through. The dichroic filter can achieve a higher throughput and narrower 

bandwidth in contrast to the absorptive filter, but is more expensive.  

Absorptive and dichroic filters only offer very limited choices. Furthermore, to change 

the wavelengths, the filters need to be physically removed and installed. 

Monochromator offers an alternative that allows continuous adjustment of wavelength 

selection. The main component of a monochromator is the diffracting grating, which 

disperses the radiation in space. The direction of the dispersed radiation depends on the 

wavelength of the radiation. Thus, the radiation at different wavelengths is also 

separated in space. A second mirror focuses those radiations at a certain angle back to an 

exit slit. Rotating the grating changes the focusing radiation, hence achieving the effect 

of wavelength selection.   
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Figure 6: An illustration of the monochromators. 

Another wavelength selector that allows continuous wavelength selection is the 

interferometer. The interferometer, like the dichroic filter, is also based on interference. 

Compared to monochromators, interferometers are superior in one important aspect: 

higher throughput (Jacquino’s advantage), which is crucial to achieve higher signal-

noise-ratio. Because the interferometer does not scatter radiation as a monochromator 

does, less energy is lost in the process. The classical interferometer, Michelson 

interferometer, uses a beam-splitter to split the radiation to two, and then aligns the two 

beams so that they interfere with each other. By adjusting the positions of the mirrors, 

some wavelengths are constructively interfered, and others are destructively interfered. 

A diagram of the Michelson interferometer is shown in Figure 7. By adjusting either    

or   , one beam is delayed relative to the other by a distance of  |     |. Such delay 

determines which wavelengths are constructively interfered, and thus achieves 

wavelength selection.  
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Figure 7: A diagram of the Michelson interferometer. 

 Fabry-Perot interferometer 2.3.1.1.

The Fabry-Perot interferometer, introduced by Charles Fabry and Alfred Perot in 1897, 

significantly improves the performance of the wavelength selector. The optics are 

arranged as follows: two halfway mirrors are set up parallel to each other as shown in 

Figure 8. The mirrors are highly reflective so that a majority of the incoming radiation is 

reflected and divided many times before it exits the interferometer. The highly reflective 

mirrors increase the intensity of interference, and when some wavelengths are 

constructively interfered the signal is much stronger than the two-way interference in 

Michelson interferometer, resulting in much higher throughput and thus sharper spectral 

lines. The wavelength being constructively interfered depends on the distance between 

the two mirrors   as shown in Figure 8. Let   be the wavelength, if 
  

   
 is even (

  

 
  , 
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where   is an integer), there is a constructive interference; if 
  

   
 is odd (

  

 
       , 

where   is an integer), there is a destructive interference. Thus, the wavelength being 

reinforced by constructive inference is   
  

 
 where           .  

 

Figure 8: Fabry-Perot interferometer 

Therefore, instead of selecting one wavelength, Fabry-Perot interferometer selects 

multiple wavelengths. This makes the wavelength selector imperfect and its resolving 

power can be quantified by a metric – finesse  : 

  
  

  
   (10) 

where    is the distance between two neighboring constructively interfered 

wavelengths, and    is the effective bandwidth (width at half maximum) of the 

transmission peaks. These two parameters are illustrated in Figure 9.  
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Figure 9: The transmission of the Fabry-Perot interferometer across different 
wavelengths.    is the distance between two peaks,    is the effective bandwidth. 

The finesse is a function of the reflectance of the mirrors   that can be approximated as: 

  
 √ 

   
    (11) 

Therefore, the resolving power is the highest when the reflectance is close to one. For 

more details about the optics of Fabry-Perot interferometer, please refer to chapter 9 in 

―Optical Physics‖ by Lipson [13].  

2.3.2 Theoretical justification for wavelength selection 

The linearity dictated by Beer‘s law offers two benefits: computational simplicity and 

efficiency. However, in the context of multicomponent analysis with spectra that have 

multiple wavelengths, the calculations often require careful inspection to achieve 

desirable accuracy. There are two main factors that may affect the accuracy: the first is 

collinearity (section 2.3.2.1), and the second is nonlinearity (section 2.3.2.2).  



22 

 

 Collinearity and noise 2.3.2.1.

Infrared spectroscopic data is notoriously collinear because its absorbance peaks are 

often wide and overlap with each other. Collinearity can significantly reduce the number 

of components that can be reliably resolved. One metric, effective rank, quantifies such 

resolvability; however, the original effective rank proposed by Roy et al. [14] is 

interpreted as the ―average significant number of dimensions‖, which does not vary with 

the noise level. We developed an algorithm that also uses noise level as an input 

parameter: effective rank under noise. More details about the effective rank under noise 

(       ) are described in APPENDIX B:. Effective rank under noise provides insights 

about the spectra library and the maximum tolerable noise level.  

As an example, we calculate the         of a two-component problem at different 

noise level and show how noise interleaves with the different wavelengths. Let the two 

components in the mixture be one flat spectrum and one single-peak spectrum as shown 

in Figure 10 (a). Three subsets of wavelengths are chosen. All three subset have the 

same number of wavelengths (35). Their         are calculated at different noise 

levels. Figure 10 (b) shows the result. As the noise level increases, the         of both 

subset one and subset two decreases, however, the deterioration effect on subset 2 is 

dramatically larger than the effect on subset 1. Subset 3 is a region with identical values 

for both components, making the two components indistinguishable. The resulting 

        remains at one along different noise levels.  
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Figure 10: An example of a two-component mixture problem. Three subsets of 
wavelengths are chosen as shown in the gray areas.  

Using the effective rank under noise, we can tell that neither the high noise level nor the 

collinearity in the spectral library are issues when considered individually; they only 

become problematic as a combined effect. Consequently, a good conditioned linear 

system is not necessarily superior when the noise level is low. It only becomes beneficial 

when noise level grows higher.  

 Nonlinear deviation of Beer’s law 2.3.2.2.

In practical applications, nonlinear deviation often occurs due to the limitations of the 

underlying implementations. Unfortunately, Beer‘s law is no exception. There can be 

two main factors causing nonlinearity. The first is the increased interactions between 

particles of the analyte when the analyte reaches higher concentration. The increased 

interactions shift the equilibrium state of the analyte such that the relative ratio of the 

effective individual components in the analyte changes. The second is the fundamental 
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limitation of Beer‘s law – Beer‘s law is only valid for pure monochromatic radiation. 

Polychromatic radiation, on the other hand, always causes a negative deviation from 

Beer‘s law as shown in Figure 11. In this dissertation, we assume the concentration is 

low enough (gas phase close to standard atmospheric pressure) that the shift of the 

equilibrium state is negligible; however, because the FPI based wavelength selector has 

a relatively wide bandwidth, the negative deviation emerge when concentration changes. 

 

Figure 11: Positive and negative deviations from Beer‘s law 

One may argue that if the deviation scales uniformly across the whole range of 

wavelengths, then the linear system in equation (9) still remains linear solvable except 

that the estimated concentration   should be calibrated using the deformed calibration 

curve as in Figure 11. However, the effect of the negative deviation increases when the 

local the spectrum is sharper. Please refer APPENDIX A: for the derivation. This causes 

the spectrum to deform differently at different wavelengths, as shown in Figure 12.  
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Figure 12: The non-uniform nonlinear deformation of the absorbance due to imperfect 
wavelength selector.   is the effective absorptivity described in equation (3). 

Because of the nonlinear deformation, the spectral matrix   becomes a function of 

concentration   . As a result, the error for the estimation is:  

           (   
    

    
           )     

    
    

     (12) 

where the first term introduced is a non-zero offset to the estimation; the second term is 

the zero-mean error induced by observation noise. The non-zero offset is a structural 

error, which is troublesome because it cannot be diminished by repeated sampling, and 

as the more wavelengths are observed, the structural error grows.  

2.4 Active wavelength selection 

Multicomponent analysis numerically solves the linear model described in section 2.2. It 

transforms the spectroscopic data into useful information such as chemical identities and 

concentrations. Figure 13(a) illustrates the corresponding mathematical problems. 

Chemical identification using multicomponent analysis essentially finds the correct 
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columns in matrix  , given all the information of the rest in the linear system. On the 

other hand, wavelength selection finds the minimal number of rows in matrix   that 

offers the best accuracy as shown in Figure 13(b). 

 

Figure 13: (a) The underlying mathematical problem of multicomponent analysis and (b) 

the underlying mathematical problem of wavelength selection.  

The traditional wavelength selection method assumes that the identity of the chemicals is 

fixed, i.e., the rows of the matrix are preselected. A supervised method is sufficient for 

solving the wavelength selection problem so that the selected wavelength gives the best 

effective rank for those components. However, if the identities of the components are not 

fixed, the resulting mathematical problem becomes ill-defined because both the rows 

and the columns of the matrix are unknown as shown in Figure 14.  
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Figure 14: The underlying variable selection for the active wavelength selection problem 
that is to select the optimal rows (wavelengths) and the optimal columns (components) at 

the same time.  

The active wavelength-selection problem presents a paradox: selecting optimal 

wavelengths requires knowledge of the component identities; identifying the analyte 

requires a wavelength set to be measured. We propose an iterative process that solves 

either problem alternatively, which requires an on-the-fly wavelength selection and 

sensing process as shown in Figure 15. 
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Figure 15: Active wavelength selection by interleaving wavelength selection and 

multicomponent analysis together.   

With this framework, there are two research questions to answer through this entire 

dissertation: correctness of the multicomponent analysis and efficiency of wavelength 

selection. As to the former, we ask whether this algorithm correctly identifies the 

constituents in the analyte. As to the latter, we investigate how efficient this algorithm is 

compared to a passive wavelength selection strategy, a strategy that conducts 

wavelength selection offline. 
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3. LITERATURE REVIEW 

Analytical chemistry is an interdisciplinary and application-oriented domain. Much of its 

research has roots in other domains such as econometrics and pattern analysis. This 

section reviews multicomponent analysis and wavelength selection at its current state 

and some prior developments. For a general pattern analysis methods used in chemical 

sensing, please refer to [15]. Here, we focus on the methods that are relevant to 

multicomponent analysis and wavelength selection methods. We first review existing 

numerical methods for multicomponent analysis both inside and outside of analytical 

chemistry (section 3.1). We then briefly introduce the history of wavelength selection 

algorithms (section 3.2). We also discuss some similar problems in general machine 

learning and artificial intelligence (section 3.3). Lastly, we review some works that are 

directly related to active chemical sensing (section 3.4).  

3.1 Numerical methods of least squares and its variations 

The most straightforward method for solving linear inversion problem is the ordinary 

least squares method. That is using the Moore-Penrose pseudo-inverse       

          . Pseudo-inverse was first invented by E.H. Moore in 1920 [16], and as 

computer technologies advanced, it gained popularity in the domain of econometrics 

during the 1950s [17].  Later on, chemists adopted the method as a tool to calculate the 

concentrations of an analyte from its spectral data (mostly near infrared spectrum). The 

method has been called ―classical least squares‖ ever since in chemometrics community.  
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3.1.1 Non-negative least squares 

Classical least squares allows negative values, but negativity and subtraction do not exist 

in many real problems. In the case of multicomponent analysis, both absorbance and 

concentration are non-negative. Such problems are formulated as non-negative least 

squares (NNLS) problem. Lawson first developed the de facto standard NNLS algorithm 

during the 1970s [18]. This algorithm was later improved by Bro and De Jong (FNNLS) 

in 1997 [19], and Benthem and Keenan in 2004 [20]. Both were developed in the context 

of chemometrics for calibration purposes where the identities of the chemical 

components were known. Therefore, the underlying linear problem is over-determined, 

i.e., the number of observations (wavelengths) is larger than the number of variables 

(components). There are other approaches to solve this problem more generally. Most 

recently, Porluru et al. exploited the state-of-art SVM solver and adapted the non-

negative least squares problem to an SVM [21].  

3.1.2 Sparsity-regularized least squares 

Another popular development for linear least squares methods is sparsity regularization. 

Sparse models are often preferred because they are less prone to overfit. They also 

provide better interpretability as a parsimonious model often contains the most 

discriminant latent variables. In the signal processing aspect, sparsity also offers higher 

compression rate.  
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The direct metric to measure sparsity is the    norm1. With this metric, the sparsity-

regularized least squares problem can be formulated as a dual problem: 

   
 

{‖    ‖   ‖ ‖ } (13) 

where ‖    ‖  is the    norm error of the model and ‖ ‖  is the    norm – the 

number of non-zero entries. However, solving this problem is equivalent to variable 

selection (NP-hard). Interestingly, the aforementioned standard NNLS algorithm by 

Lawson [18] deployed a greedy variable selection strategy, so, the NNLS algorithm is    

norm regularized. At the beginning of the 1990s, sparsity was extensively researched in 

the signal processing community. Two noteworthy algorithms, matching pursuit [22] 

and its extension Orthogonal matching pursuit [23], used greedy forward variable 

selection. They focus on reconstructing a signal using a minimum number of selections 

from an over-complete wavelets dictionary.  

The greedy variable selection strategy often leads to a sub-optimal solution. An 

alternative solution is to relax the variable selection problem to a convex problem by 

using    norm or    norm instead of    norm.    norm regularized least squares is also 

called ―ridge regression‖, which was popularized by Hoerl during the 1960s [24] (It was 

                                                 

1    norm is defined as:|| ||    |  
|  |  

|    |  
|  

 

 .    norm is equivalent to the number 

of non-zero entries (|| ||   |  
| ), and    norm is equivalent to the maximum of all the entries 

(|| ||     {  
}). 
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first reported by a USSR mathematician Tikhonov during the 1940s). Since    norm is 

quadratic, the problem has a closed-form solution. However, while ridge regression 

improves the numerical stability of the solver, it does not necessarily improve the 

sparsity; i.e., a great number of the entries in the solution can still be non-zero. 

A better alternative to    norm is    norm, because    norm offers a heavier penalty for 

non-sparse solutions. Adding    norm regularization to least squares problems were 

reported as early as 1973. In the domain of geoscience, Claerbout and Muir proposed a 

least squares formulation complemented by    norm [25]. In the spectroscopic 

techniques domain, the same idea was used by Mammone et al. in 1985 [26] for 

spectrum reconstruction in Fourier transform spectroscopy. The    norm based sparse 

regularized least squares began to draw attention inside signal processing community 

during the 1990s, and it was applied in the area of ―compressive sensing‖ (one famous 

application is the one-pixel camera [27]). Compressive sensing reduces the number of 

observations beyond the limit of Nyquist frequency. The    norm regularized least 

squares methods play a crucial role in solving the underlying ill-defined linear system. In 

1996, Tibshirani developed Lasso [28]. He framed the    norm regularization least 

squares problem as a quadratic programming problem and was solved using interior-

point optimization algorithm (please see [29] for more details about interior-point 

optimization). Two years later, Chen et al. developed the basis pursuit algorithm [30], 

which solved the same problem. However, it was reframed as a linear programming 

problem as the least squares error in equation (9) becomes a constraint: 
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    || ||  s. t.             (14) 

In 2005, Candes et al. theoretically proved that    norm regularized least squares 

guarantees a good or even exact recovery [31]. In this article, the authors developed the 

―restricted isometry property constant‖     that gives clues of how suitable the library 

matrix   is for an s-sparse2 reconstruction problem. Their results inspired the following 

work of randomizing sensing [32], which suggests that a randomly generated 

reconstruction matrix   from i.i.d Gaussian distributions provide near-optimal signal 

reconstructions. 

To further generalize the sparsity regularization, Fu introduced bridge regression in 1998 

[33]. Bridge regression generalizes the sparsity regularization by allowing a continuous 

selection of    norm values where   has to be larger than one and normally smaller than 

two. Notice that   is not restrained to be an integer, and, as a parameter, it can be auto-

tuned using cross-validation. Another noteworthy regularization is to combine    norm 

and    norm, referred to ―elastic net‖, which was introduced by Zou and Hastie in 2005 

[34]. This method linearly combines the two norms as a compromise between 

smoothness and stability controlled by    norm and    norm.  

                                                 

2 S-sparse means that there are s non-zero entries in the solution.  



34 

 

3.1.3 Bayesian approach 

One major drawback of using sparsity regularized least squares methods is the 

dependence on the free parameter   in equation (9), as tuning this parameter can be 

computationally expensive. A natural solution is a data-driven approach in which the 

complexity of the model depends on the abundance of the data. Tiao and Zellner 

proposed the Bayesian multivariate linear regression in 1964, [35]. From a Bayesian 

point of view, parameters and their distributions are updated iteratively as a sequence of 

samples. This approach allows the model complexity to grow gracefully as more 

samples are observed. The Bayesian approach also generalizes the regularization-based 

methods. Using different    norms is equivalent to using special priors to the Bayesian 

linear regression. For example,    norm is equivalent to Laplace [36, 37]. Table 1 shows 

their relationships to Bayesian linear regression. 

Table 1: Different least squares methods and their equivalents. 

Estimator 
Ordinary 

least squares 
Variable 
selection 

 Lasso 
Bridge 

regression 
Elastic net 

Ridge 
regression 

Regularization none                        

 Bayesian 
prior 

Uniform Dirac-delta Laplace * see[33] * see [34] Gaussian 

 

One important development of the Bayesian linear regression is the Gaussian process 

regression [38]. Instead of using a finite dictionary as in a traditional linear regression 

problem, Gaussian process uses a dictionary represented by a distribution (commonly a 

multivariate Gaussian distribution). This method provides a regression method without a 
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concrete dictionary as the dictionary is represented by a distribution. It provides a 

general tool to reconstruct black-box functions using only a sparse set of samplings. Any 

knowledge of the latent variables is incorporated in the covariance matrices in the 

distribution. 

3.2 Algorithms for wavelength selection 

Given the combinatorial complexity of the wavelength selection problem, exhaustive 

search methods such as branch-and-bound [39] are computationally prohibitive 

considering that the modern infrared spectroscopy has thousands of spectral lines. Early 

work done by Frans and Harris selects only two wavelengths [40]. For more 

wavelengths, an efficient searching algorithm is crucial to make the process 

computationally tractable. One approach is to cast the wavelength selection problem to 

the more general feature selection problem. Many such adaptations have been discussed 

including genetic algorithms [8], simulated annealing [7], colony optimization [9], back-

propagation neural networks [41], and Kohonen neural networks [42]. Nevertheless, 

there are two major drawbacks of these methods. First, they involve many free 

parameters, and the performance relies on the parameter tuning and the specific 

application domain; the second drawback is the computational cost. To address these 

drawbacks, the analytical chemistry community developed more specialized wavelength 

selection algorithms. They can be broadly divided into two groups: window/interval 

selection and greedy feature selection.  
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3.2.1 Moving window and interval selection 

Moving window and interval selection both consider a continuous section of 

wavelengths as the basic selection unit. This approach has its root from molecule 

structural analysis since this continuous section normally corresponds to a functional 

group3. However, in modern applications, they are often coupled with PLS. PLS itself is 

a factor based method, which provides a secondary feature extraction on the result of the 

wavelength selection. Therefore, discrete wavelength selection is not necessary, and 

doing so may defeat the purpose of PLS.   

Norgaard introduced interval selection partial least squares (iPLS) in 2000 [43]. To 

reduce the parameter searching size, the spectrum is divided into multiple non-

overlapping windows with equal sizes. A PLS model is built for each window, and the 

most informative window is the one with the minimum error. Norgaard later extended 

this method and developed backward interval partial least squares [44]. Instead of 

selecting only one interval, the backward method builds the wavelength set sequentially. 

It calculates the modeling contribution of an interval by excluding this interval. Thus 

leaving out the most informative interval leads to the poorest performance. Similarly, 

Xiao et al. developed a forward iPLS and genetic algorithm guided iPLS in 2007 [45]. 

Another branch of interval selection is the moving window methods. In 2002, the 

moving window partial least squares regression was introduced by Jiang et al.[46]. In 

                                                 

3 A functional group refers to a set of bound atoms such as Benzene ring or alcohol.  
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this method, a window of fixed size slides through the entire spectrum. To find the best 

wavelengths, a new PLS model is calculated at each position of the window, and the best 

position is selected to minimize the residual. Later in 2004, Du et al. [47] made the 

moving window method more flexible by allowing multiple changeable size windows.  

3.2.2 Feature forward/backward selection 

Two popular greedy feature selection algorithms are the successive projection algorithm 

(SPA) [5] and the uninformative variable elimination method (UVE) [48]. The SPA 

method by Araújo et al. [5] extracts wavelengths that minimize collinearity using the 

sequential orthogonal projections of the Gram-Schmidt procedure. The original UVA 

method removes the wavelength with the lowest SNR. A more recent development by 

Cai in 2008 is the UVE algorithm [49] guided by the PLS algorithm. SPA can be 

combined with UVE, and Ye proposed the UVE-SPA algorithm [50]. The method is 

essentially a forward-backward selection method where the number of selected 

wavelengths is further reduced with similar performance.  

3.3 Related problems in other areas 

3.3.1 Robotics 

Elements of robotics are inspired by the theory of ‗active perception‘ [51, 52], which 

states that organisms actively probe their environments to enhance their ability to extract 

information. The concept of active sensing was originally proposed during the 1980s in 

the robotics and vision community [53]. In a classic study, Aloimonos et al. [54] 

proposed an active vision framework to adjust camera geometric parameters (positions, 
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rotation, and so on) to solve 3D reconstruction problems. The authors showed that, by 

using an active strategy, an otherwise ill-posed problem became well-posed, which 

dramatically improved the algorithm‘s problem-solving efficiency. Other problems in 

robotics and computer vision were soon adopted through the idea of active sensing, 

including modeling of facial expressions with temporal information [55], multi-target 

detection and tracking [56], robot navigation [57],  localization [58] and simultaneously 

map building and localization [59]. These results show that active sensing works 

exceptionally well compared to passive methods, especially when the observations are 

noisy, or the problem dynamics must be considered. 

3.3.2 Bayesian optimization 

Interestingly, a similar concept (adaptive sampling) had already been proposed twenty 

years earlier in the optimization community. In early work, Kushner and Mockus 

proposed a stochastic method for function minimization [60, 61], a method later known 

as Bayesian optimization [62]. The approach samples the objective function sparsely, 

and then uses a Gaussian process [38] to estimate the objective function and the variance 

of its estimate at all other locations in sample space. These can then be used to guide the 

selection process, either by further sampling at the predicted highest/lowest locations to 

converge to a solution (exploiting) or by sampling areas of high variance to improve the 

estimation accuracy (exploring).  
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3.3.3 Multi-armed bandit problem 

The multi-armed bandit problem was first introduced by Robbins [63] during the 1950s. 

The problem consists of a set of   probability distributions, normally Gaussian, with 

associated expected value and variances. The goal of the player is to extract as much as 

money as possible by selecting the arm with the highest value. However, at the 

beginning, none of the distributions are known. Thus, exploration is required to discover 

the most profitable arm. As more and more observations are made, one can exploit this 

information and taking the empirically best actions as often as possible. At each step, the 

player needs to decide whether next step is exploring or exploiting. This balance is 

called exploration and exploitation dilemma, and multi-armed bandit problem has been 

the most investigated problem for exploration and exploitation dilemma. The objective 

function of multi-armed bandit problem is defined as ―regret‖ – the total loss of using a 

non-oracle strategy. In 1985, Lai and Robbins proved that no strategy could perform 

better asymptotically than a logarithmically growing regret [64]. Later in 2002, this 

result was proved also true over time stripping the asymptotical limitation [63]. 

mathematically bounded in the example of multi-armed bandit problem in [63]. In the 

past decade, many algorithms were proposed to solve the problem [65-67]. Most 

recently, Bubeck and Cesa summarized the performance of different strategies 

analytically [68], and Kuleshov and Precup conducted a benchmark study some of the 

most famous methods [69] in which they suggested that some heuristics  could 

outperform many sophisticated and theoretically sound approaches.  
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3.3.4 Adaptive compressed sensing 

More recently, adaptive sampling techniques have been developed for sparse signal 

recovery, an area known as compressed sensing [70]. Compressed sensing uses    norm 

regularization to encourage sparsity in the solution of an underdetermined linear system. 

Compressed sensing algorithms previously use a random selection of the variables to be 

measured, but recent work by Haupt et al. [71] has shown that the accuracy of the 

reconstruction can be improved by use of adaptive sampling, particularly in the case of 

weak signals.  Their algorithm assigns each feature an importance measure that is 

proportional to the value of that feature and diminishes exponentially over the number of 

times that feature is sampled. In the beginning, all features are assigned uniform 

importance; as some features are sampled more frequently, their importance diminishes, 

allowing other features with stronger values to be sampled. The authors evaluated the 

method on a recovery problem for telescope star images. The proposed adaptive 

sampling scheme outperformed a non-adaptive scheme, requiring fewer samples to 

achieve higher star-detection rates. 

3.3.5 Active learning 

Adaptive sampling concepts have also been developed in the machine learning literature, 

where they are referred to as active learning. In contrast with active sensing, where the 

goal is to select an optimal sequence of features for each test case, the goal of active 

learning is to select training samples to improve the learning of decision boundaries. In a 
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theoretical study, Castro and Nowak [72] compared the minimax bounds4 of adaptive 

and passive classification methods and showed that adaptive methods have superior error 

reduction rates with reasonable complexity. These findings are particularly relevant in 

chemical sensing applications, where collecting or labeling new samples can be 

laborious. As such, active learning can alleviate this problem by minimizing the required 

number of samples without reducing the performance. Motivated by this issue, Lomasky 

et al. [73] proposed an ―active class selection‖ method for the problem of discriminating 

vapors with an array of the chemical sensor.  Their method generated the next   training 

instances according to the instability of the class boundaries, the latter being measured 

by the number of test instances whose classification results change upon inclusion of the 

previous set of   training samples. In related work,  Rodriguez et al. [74] developed an 

active sampling method for sensor array calibration that selected not only the classes of 

the vapors to be measured but also their concentrations. The authors modeled the 

preference for a particular concentration   with the pseudo-distribution          , 

where parameter   can be used to favor low concentrations (     or high 

concentrations (   ). Given a sequence of calibration batches            and their 

                                                 

4 The mini-max bound estimates the best possible error reduction rate (mini) under a worst 

difficulty scenario (max), where difficulty is measured by the dimensionality of the classification 

problem and the noise level of the measurements. 
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respective   parameter sequence           , the algorithm selects the value      that 

provides the lowest cross-validation error on batch     .  

3.4 Active chemical sensing 

Active sensing techniques have only recently been used in the context of chemical 

sensing. To our knowledge, the earliest use is the work of Nakamoto et al. [75, 76] on 

odor generation. The goal of this work was to reproduce an odor blend by creating a 

mixture from its individual components. The authors developed an active control 

algorithm that adjusted the mixture ratio so that the response of a gas sensor array to the 

mixture matched the response of the array to the target odor blend. 

To our knowledge, there are also only a handful of works adopting the idea of 

adaptiveness into chemical identification. However, with the advancements in 

microelectronic sensors and microelectromechanical systems (MEMS) technologies, 

more and more tunable micro-sensors emerged to the market. Please refer to [77] for a 

thorough review of these adaptive microsystems. Metal-oxide (MOX) gas sensors are 

the most common and offer an array affordable chemical mixture system. These sensors 

are especially suitable for specific target analytes using a proper temperature modulation 

program. Inspired by the biological chemosensory adaptation process, Raman and 

Gutierrez explored biologically plausible models mimicking the mammalian olfactory 

system [78, 79]. Gutierrez developed algorithms that adjust the Fisher‘s linear 

discriminant functions according to the sensor response from analytes [80, 81]. Gosangi 

investigated the active sensing framework focused on temperature-modulated metal 

oxide sensors (MOX). In [82], Gosangi studied the problem of discriminating   
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chemicals at a fixed concentration with a single MOX sensor. For this purpose, the 

author used a partially observable Markov decision process (POMDP) combined with a 

myopic policy that selected sensing actions based on the expected reduction in Bayesian 

risk. In [83], the objective function was tuned to minimize the energy consumption for 

temperature modulation for metal-oxide sensors. Later in [84], a dynamic Bayesian 

Networks approach was proposed. The Bayesian networks were used to model the 

dynamic transient response of metal-oxide sensors through temperature modulation. If 

the concentration of the mixture is discretized, a quantification problem can be easily 

framed as a classification problem. In [85], Gosangi developed a recursive Bayesian 

estimation approach that was used to solve the mixture quantification problem. The 

method was later formalized and experimentally validated for binary mixture problem 

[86].  

MOX sensor are first-order sensors because their measurements are one-dimensional. 

One interesting development is to expand the number of sensors to sensor arrays, which 

is higher-order sensor. For a general review of the higher-order sensor, please refer to 

[87]. In [88], Gosangi developed a Posterior-Weighted Active search method to classify 

chemical mixture using absorbance spectrum data in simulations and MOX sensor arrays 

in experiments. Using higher-order sensors based on spectroscopy, in the context of 

chemical discrimination, Priebe et al. [89] developed a decision tree algorithm for 

integrated sensing and processing. When evaluated on an optical sensor array exposed to 

carcinogens, the approach reduced misclassification rates by 50%, while requiring only 

20% of total the sensor measurements. An optical implementation of active-sensing 
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principles was proposed by Dinakarababu et al. [90] for rapid identification of 

chemicals. The authors developed a digital micro-mirror device capable of multiplexing 

certain spectral bands and directing them onto a photo-detector. The system was able to 

measure the projection of the incoming spectral density onto a set of basis vectors, rather 

than measure the spectral density directly. The basis vectors are the eigenvectors of a 

covariance matrix probabilistically weighted by the likelihood of different classes based 

on previous measurements.  
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4. ACTIVE WAVELENGTH SELECTION BASED ON 

MISCLASSIFICATION COST FOR SINGLE CHEMICAL 

IDENTIFICATION
5
 

In this chapter, we investigate an active wavelength selection strategies based on a 

Bayesian approach for single chemical identification. The method selects wavelengths 

sequentially on-the-fly, based on sensor responses obtained thus far. This allows the 

sensor to adapt its sensing program in response to different chemical stimuli and their 

concentrations, as well as to environmental influences. Our approach leverages the work 

by Gosangi et al. on active temperature programming for metal-oxide (MOX) sensors 

[91], and models active sensing as a probabilistic state estimation process [92]. In this 

chapter, we apply the active-sensing algorithm to Fabry-Perot interferometry. More 

importantly, we extend the approach to allow chemical identification at multiple 

concentrations. The approach consists of generating concentration-independent 

absorption profiles for each chemical target through non-negative matrix factorization 

(NNMF) [93], and fitting incoming sensor data to those profiles through linear least 

squares (LLS) [94]. We evaluate the concentration-independent active sensing algorithm 

                                                 

5 The description of the method and the experimental results are reprinted with permission from 

"Active Concentration-Independent Chemical Identification with a Tunable Infrared Sensor" by 

Huang and Gutierrez-Osuna, 2012. IEEE Sensors Journal, pp. 3135-3142, ©2012 IEEE. 
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on a database of IR absorption spectra from 27 chemicals, as well as experimentally on 

an 8-chemical discrimination problem using an FPI prototype.  

4.1 Methods 

4.1.1 Overview of the approach  

During the active sensing stage, we first determine the optimal operating wavelength for 

the sensor at each time step; for this, we use a utility function that measures the 

difference between the sensing cost at each wavelength and the corresponding expected 

reduction in Bayes risk. Then we acquire absorption at the chosen wavelength, remove 

linear concentration effects and update the belief distribution accordingly. 

 

Figure 16: Diagram of the active wavelength selection framework based on Bayesian 
risk. 

Our approach can be broadly divided into two stages: sensor modeling and active 

sensing. During the sensor modeling stage (Section 4.1.3), we create concentration-

independent absorption profiles for each chemical; these profiles remove the linear 

concentration effects while preserving chemical identity information. The resulting 

concentration-normalized response is then modeled with a Gaussian mixture model. 
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During the active sensing stage (Section 4.1.4), we first determine the optimal operating 

wavelength for the sensor at each time step; for this, we use a utility function that 

measures the difference between the sensing cost at each wavelength and the 

corresponding expected reduction in Bayes risk. Then we acquire absorption at the 

chosen wavelength, remove linear concentration effects, and update the belief 

distribution accordingly. 

4.1.2 Notations 

Given a gas sample of unknown concentration but known to belonging to one of   

chemical classes   {          } and a tunable IR spectrometer with   spectral 

lines   {          }, consider the problem of finding a sequence of actions 

             that minimizes the cost of discriminating gas samples. For this purpose, 

each action    has an associated cost: tuning the spectrometer to wavelength    incurs a 

cost           (e.g., power consumption), and classifying the gas sample based on 

available information carries a misclassification cost             when a sample from 

class    is incorrectly assigned to class   . 

We model this problem as that of probabilistic state estimation where each of the   

classes is represented as a state, and maintain a probabilistic distribution    (where   

denotes time) that represents our belief that the sample belongs to each class: 

     [   ] ∑       

    

   
(15) 
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Given an initial belief distribution       , a sequence of actions           , and the 

corresponding observations           , the current belief    is defined as: 

           |                       (16) 

In [91], we used a similar approach to actively modulate the operating temperatures of 

MOX sensors. However, that formulation did not account for the concentration of the 

gas sample; the framework assumed that each chemical was presented at a fixed 

concentration. Here, we extend the framework to identify samples at various 

concentrations. 

4.1.3 Library acquiring 

To a first-order approximation, the relation between light absorption and its traveling 

medium follows the Beer-Lambert law [95] (see more details in Section 2.2). The 

absorption   of an IR beam transmitted through a spectrometer with a gas chamber of 

length   filled with a chemical of absorption coefficient   at concentration   can be 

estimated as      . Thus, absorption is linearly dependent on analyte concentration. 

We take advantage of this relation to remove the linear influence of concentration on 

absorption spectra, thus creating concentration-independent absorption profiles. We start 

by collecting absorption spectra for each chemical      at   different concentrations 

and organizing the data as a matrix    of size    , where   is the number of discrete 

wavelengths in the FPI. We then employ NNMF to factorize    into a product of two 

matrices    and    such that error function ‖       ‖
  is minimized: 
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           (17) 

where    is a column matrix of size    ,    is a row matrix of size    , and    is a 

matrix of size    .    represents the concentration of the   absorption spectra,    can 

be interpreted as the concentration-independent absorption profile of chemical   , and 

   is a residual matrix that captures sensor noise. Given a concentration   , we can 

approximate the absorption spectra of chemical    as     . We chose to use NNMF for 

this factorization process because NNMF enforces a constraint that all the elements of 

   and    be non-negative; this constraint is necessary because concentrations    and 

absorption spectra    are strictly non-negative. This process is repeated   times to obtain 

absorption profiles for each chemical:           . Figure 17 illustrates the NNMF 

process for the absorption spectra of acetone at    different concentrations ranging from 

0% (air) to 100% (pure chemical) 6.  

                                                 

6 Concentrations are specified as percentage dilutions of a saturated headspace, e.g., a 10% 

concentration corresponds to a mixture of 90% air and 10% of the analyte vapors obtained from 

a saturated headspace.  
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Figure 17: Absorption spectra for acetone at 50 different concentrations (solid lines) and 

the estimated profile (dotted line). 

For each chemical, we then model the concentration-independent spectra (profile plus 

residual) with a Gaussian mixture model (GMM). These models will be used during the 

sensing stage to predict sensor responses. For each chemical   , we first create matrix  ̂  

as: 

 ̂            (18) 

where      is an identity matrix of size    . Thus  ̂  is the sum of sensor noise and 

concentration-independent absorption spectra for chemical   . Figure 18 shows an 

example of this matrix for the acetone dataset in Figure 17. 
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Figure 18: Dotted line is the absorption profile of acetone. The solid green lines are the 
sum of the residual matrix and the absorption profile. 

Using a GMM, the response  ̂ to chemical    at wavelength    can be expressed as 

follows: 

 ( ̂|     )  ∑         |              

    

   

 (19) 

where      is the number of Gaussian components.       ,       , and        are the mixing 

coefficient, mean, and standard deviation of each Gaussian component, respectively. 

These models are trained on  ̂ , i.e., the     column of matrix  ̂  is used to learn the 

mixture model for chemical    at wavelength   . Model parameters are estimated using 

Expectation Maximization [96]. 
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4.1.4 Wavelength selection 

The first step in the active sensing stage is to select the ‗best‘ wavelength to which the 

FPI should be tuned. For this, we used a greedy approach that selects a wavelength that 

maximizes the following utility function: 

               (                )    (20) 

where          is the utility of wavelength   ,    is the current belief distribution,    is 

expected reduction in Bayes risk, and    is the sensing cost at wavelength   . The 

expected reduction in Bayes risk (  ) is defined as the difference between the current 

Bayes risk        and the expected risk           upon tuning the sensor to   . The 

current Bayes risk        is estimated as: 

          
  

∑          

    

 
(21) 

which reflects the expected risk of classifying the sample. The expected Bayes risk 

          of tuning the sensor to    at the next time step is computed as: 

          ∑   
 

( ∑       |            

    

)

  

 (22) 

          averages the minimum Bayes risk over all observations that may result from 

  . If the utility of all   wavelengths is negative, we halt the sensing process and classify 

the sample based on equation (21). For a continuous observation space, equation (22) 

becomes an intractable integral; instead, we discretize the absorption space into a finite 

set of values (see APPENDIX C:). 
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The second step in the active-sensing process is to tune the spectrometer to the optimal 

wavelength    and obtain the corresponding observation   . To remove linear 

concentration effects, we then fitted the observation sequence  ⃗             (for 

wavelength sequence  ⃗            ) to the profile of each chemical using linear least 

squares. Namely, given concentration-independent profile    for chemical   , we found 

coefficient    that minimizes the sum-squared error  (            )
  

   ; this results 

in fitted observations  ⃗  
 

  

⃗⃗⃗. The process is repeated for each chemical, leading to fitted 

observations  ⃗   ⃗     ⃗  that are independent of concentration effects. Figure 19 

illustrates the entire process with an example. We first created absorption profiles for 

acetone and propanol (as described in section 4.1.3) using data collected at 50 different 

concentrations ranging from 0% to 100%. Then, the sensor was exposed to acetone at a 

concentration of 20%, and we obtained responses at 66 wavelengths. The responses were 

then fitted to the concentration-independent profile of each chemical. As shown in the 

figure, the observations fit better to the acetone profile (mean square error of      

    ) than to propanol (        ).  
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Figure 19: Fitting sensor responses to concentration-independent profiles   . (a) Solid 
lines represent absorption profiles for acetone and propanol, whereas circles correspond 

to sensor observations in the presence of 20% acetone. Observation fitted to (b) the 
acetone profile and (c) the propanol profile. 

The last step in the sensing process is to update the belief distribution using the fitted 

observations. Since the normalization step has to be performed on the entire observation 

sequence             , we also recalculate the belief from time     using the fitted 

observation  ⃗ . The process is summarized in Table 2. 
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Table 2: Pseudo code for belief update procedure 

 

In the above pseudo-code,   acts a normalization constant that ensures the belief 

distribution sums to 1. The value  ( ⃗    | ⃗      ) is obtained using the probabilistic 

sensor models as described in section 4.1.3. 

4.2 Validation on synthetic data 

We first tested the active-sensing framework on a large classification problem using 

simulated data; this allowed us to compare the active-sensing approach against a passive 

feature selection strategy thoroughly.  

4.2.1 Dataset 

To simulate the response of the FPI sensor to different chemicals, we used data from the 

NIST Chemistry WebBook [97], which provides high resolution FTIR spectra in the 

range 3-21    for over 40,000 chemicals in gas phase. We identified 27 chemicals that 

had at least one absorption peak in the operating range of our FPI (3-4.3   ). To 

simulate the spectral resolution of the FPI, we downsampled the FTIR absorption spectra 

Input: Fitted observations  ⃗⃗⃗   ⃗⃗⃗     ⃗⃗⃗  and wavelengths  ⃗⃗ 

Output: Updated belief    

Procedure belief_update( ⃗⃗⃗   ⃗⃗⃗     ⃗⃗⃗   ⃗⃗) 

Initialize belief:        
 

 
   

for     to   

     
 for     to   

          ( ⃗⃗⃗    | ⃗⃗      )         

             
 end 

        
      

 
 

end 
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to 66 values, the number of unique wavelength tunings in the FPI. Simulated spectra are 

shown in Figure 20. Using these spectra, we generated 30 absorption spectra for each 

chemical by adding Gaussian noise of variance 0.05 at each wavelength. The resulting 

dataset (      spectra) was then used to train the sensor models, one for each 

chemical, as described in section 4.1.3. We evenly discretized the observation space at 

each wavelength into 200 steps (see APPENDIX C:).  

 

Figure 20: Simulated absorption spectra for 27 chemicals. Spectra are plotted with an 

offset along the y-axis for visualization purposes. 
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4.2.2 Test case 

First, we present a test case to illustrate the active-sensing process. In this case, the 

sensor was exposed to trans-3-hexene, and we assumed a 1-0 loss function for the 

classification costs           7, and uniform sensing costs         for all 

wavelengths. The algorithm required 15 sensing actions before it classified the sample. 

Figure 21(a) shows the average absorption spectrum of trans-3-hexene and the 15 

operating wavelengths selected by the method, whereas Figure 21(b) shows the belief 

distribution as a function of time. At time    , all chemicals are equally likely. As 

observations are obtained, the belief for trans-3-hexene, sabinene, and butyl-aminen 

increase. However, from time     the probability of trans-3-hexene starts dominating. 

At     , the sensing process is halted since sufficient evidence is available where the 

utility based on equation (20) for any further sensing becomes negative, and the sample 

is classified as trans-3-hexene.  

                                                 

7      is the indicator variable. 
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Figure 21: (a) Average absorption spectrum of trans-3-hexene (solid line) and 

wavelengths chosen by the active sensing algorithm (circles); the following wavelengths 
(  ) were chosen: 3.4, 3.36, 3.3, 3.34, 3.28, 3.38, 3.38, 3.44, 3.38, 3.44, 3.44, 3.38, 

3.38, 3.44, and 3.34. (b) Belief distribution as a function of time. 

4.2.3 Performances at sensing budgets 

Next, we tested the active sensing algorithm for various settings of the misclassification 

and sensing costs. Adjusting these costs allows us to balance the total cost of sensing 

against the potential cost of misclassification. Without loss of generality, we used a 1-0 

loss function for the classification costs            and varied the sensing costs    

from 0 to 0.2 in increments of 0.02. At each cost setting, we tested the algorithm 30 

times on each of the 27 chemicals resulting in 27x30 = 510 test cases. Results are 

summarized in Figure 22. As shown in the figure, the classification rate deteriorates with 

increasing sensing costs. Also, the average number of sensing actions used reduced with 

increasing sensing costs. Hence, the method balances the classification performance with 

sensing cost. We also observed that at         the cost of taking a sensing action is 

higher than the expected reduction in risk. Therefore, the algorithm halts the sensing 
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process immediately, resulting in a classification performance of 3.7% that corresponds 

to chance level performance for a problem with 27 classes. 

 

Figure 22: (a) Average number of observations used and (b) classification rate obtained 
by the active sensing framework as a function of the ratio of sensing cost to 

misclassification cost (      ). 

4.2.4 Comparison with passive sensing 

We also compared the active sensing method against a feature subset selection strategy. 

Feature selection is a passive process where the optimal subset is obtained off-line using 

training data. In contrast, active sensing selects features on-line. We used sequential 

forward selection (SFS) coupled with a wrapper objective function [15] to obtain 

‗optimal‘ feature subsets of different cardinalities ( ); the wrapper was based on a naïve 

Bayes classifier. To ensure a fair comparison between the two methods, we modified the 

stopping criterion of the active-sensing algorithm such that the algorithm stopped as 

soon as it acquired   observations. 
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First, we conducted an experiment to compare the performance of the two methods with 

increasing levels of measurement noise. For this purpose, we generated training data 

from FTIR spectra (see section 4.2.1), added Gaussian noise of variance 0.05 and then 

trained sensor models. To test the active sensing and feature selection methods, we 

generated 20 test sets, each containing 270 spectra (10 times per chemical), by changing 

the variance in the noise from 0.05 to 1 in steps of 0.05. Figure 23 compares the 

classification performance of the two methods for      features. As shown, both 

strategies obtain nearly perfect classification performance at low noise levels. However, 

as noise levels increase active sensing consistently outperforms SFS. This is because 

active sensing selects features at measurement time in a way that adapts to noise levels, 

whereas SFS uses a pre-specified sequence that was computed off-line under more 

forgiving noise conditions. 
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Figure 23: Classification performance of the two methods as a function of the variance 
of the additive Gaussian noise. 

To further emphasize the advantages of active sensing over feature subset selection, we 

conducted a second experiment that compares the classification performance of the two 

methods with increasing values of  , the number of features or wavelengths. As before, 

we generated training data with an additive Gaussian noise of variance 0.05. Then, we 

evaluated both methods on test data with additive noise of variance 0.4. For each value 

of  , we ran each method 270 times (10 times per chemical). Results are summarized in 

Figure 24. As before, active sensing consistently outperforms SFS at all values of  .  
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Figure 24 Classification performance of the two methods as a function of the number of 

observations used. 

4.3 Validation on experimental data 

4.3.1 Experimental setup 

We also evaluated the active sensing framework on experimental data using an FPI 

device (LFP-3041L-337; Infratec, Inc). This device operates in the range of (       ) 

and has a resolving power      of 60. We used a broadband infrared pulsable source 

(INTX 20-1000-R; Intex, Inc.) operated at a 10Hz modulation frequency and 60% duty 

cycle. We mounted a 10cm gas cell (66001-10A; Specac, Inc.) with ZnSe window 

(602L08; Specac, Inc.) between the sensor and the IR source using an opto-mechanics 

fixture (Thorlabs, Inc.). This ensured a precise alignment of source, gas cell, and FPI 

sensor. The sensor was controlled using Matlab™ through a USB based evaluation 

board provided by the vendor. Chemicals were delivered to the system from 30ml glass 

vials using negative pressure with a pump connected downstream from the sample cell. 

Figure 25 shows the configuration of the device. 
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Figure 25: Experimental prototype of the Fabry-Perot spectrometer. 

We tested the active-sensing algorithm and FPI prototype on a discrimination problem 

with eight chemicals; see Table 3. We operated the FPI sensor at 66 different 

wavelengths ranging from     to       in steps of       . The sensor response was 

sampled at a rate of 1 KHz. Since the sensor response is modulated by the emitter, we 

can minimize interferences (e.g., external infrared sources, electronic noise) by 

extracting the power only at the modulation frequency (10 Hz) using Goertzel‘s 

algorithm [98]. We estimated transmittance as the ratio of the sensor response (power at 

10Hz) to the sample and to a reference gas (air), and converted transmittance    into 

absorption as        
   

  
. The experiments were conducted in a laboratory 

environment at a temperature of 22.2 ºC and standard atmospheric pressure of 760 

mmHg. Before each experiment, we acquired the sensor‘s response to air and used these 
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values as reference to estimate the absorption spectra. This helped us minimize the 

effects caused by changes in temperature, pressure, or humidity between experiments.  

Table 3 List of chemicals and their major components 

Index Chemical Components 

1 Air  
2 Brush cleaner Raffinates, Acetone, Methanol 

3 Lacquer thinner Toluene, Methanol, Hexane, Light aliphatic naphtha  
4 Denatured alcohol Ethyl alcohol, Methanol  

5 Acetone Acetone 
6 Xylene Xylene (mixed isomers), Ethylbenzene 
7 Isopropyl alcohol Isopropyl alcohol 

8 Propanol Propanol 

 

4.3.2 Experimental data 

We collected 50 absorption spectra for each chemical by varying the concentration from 

0% to 100% in steps of 2%. Figure 26 (a) shows the average absorption spectra for the 

eight chemicals, obtained by averaging the 50 absorption spectra. We then applied 

NNMF to obtain the concentration-independent absorption profiles, shown in Figure 26 

(b). We generated training data for each chemical using the NNMF profiles and residual 

matrices, as described in section 4.1.3, from which GMMs were trained. We 

experimented with various numbers of Gaussian components per GMM, but GMMs with 

a single component proved sufficient since the NNMF residual noise was approximately 

Gaussian-distributed.  

We tested the framework 20 times for each chemical, resulting in 160 test cases. For 

each chemical, the concentration of the test sample was randomly varied in the range of 
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20% to 80%. Chemicals were introduced in a randomized order to avoid any systematic 

errors or drift, and the gas cell was flushed with air for 2 minutes between exposures to 

remove residuals from the previous sample. When introducing a sample into the gas cell, 

we monitored the sensor response continuously until it stabilized; this ensured that the 

sample concentration had reached equilibrium. We used the sensor‘s average response 

(over 20 repetitions) to air as the reference. 

  

Figure 26 (a) Average absorption spectra of all the chemicals including air. (b) 
Concentration-independent absorption profiles of all the chemicals. 

4.3.3 Results  

Based on the simulation results obtained in section 4.2.3, we chose to set the ratio of 

sensing cost and misclassification cost as 0.02 to promote high classification 

performance. Classification results and the corresponding confusion matrix are shown in 

Figure 27(a) and (b), respectively. Denatured alcohol and lacquer thinner are correctly 
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classified 100% of the times, followed by air, brush cleaner, acetone, and isopropyl 

alcohol, which are classified accurately on more than 75% of the test cases. In contrast, 

propanol is classified 50% of the times as lacquer thinner; the two chemicals have 

highest absorption strength (peaks) at the same wavelength. Xylene is most often 

misclassified as air because of its low absorption strength in the sensor‘s spectral range, 

which is comparable to that of sensor noise variance. Also, the absorption profile of 

xylene obtained using NNMF is significantly noisy compared to other chemicals (see 

Figure 26 (b)), especially in the range         and          . We also observed 

that brush cleaner and acetone are often misclassified as air at low concentrations.  

 

Figure 27 (a) Classification performance (true positives) for different chemicals and (b) 

the corresponding confusion matrix. 

To test the robustness of the concentration-normalization method, we tested the 

framework on ten samples of acetone at each of 10 concentrations, ranging from 100% 
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(pure sample) down to 10% in steps of 10%, for 100 test cases. Acetone concentration 

was controlled using a gas diluter [4]. Results are summarized in Figure 28. The active 

sensing method accurately identified all samples in the concentration range 20-100% and 

only failed at a 10% concentration, in which case all samples were classified as air. 

Figure 28 (b) shows the average number of actions used at different concentrations. The 

average number of observations used increased as concentration decreased, from 5 

observations at a 100% concentration up to 9.3 observations at a 20% concentration.  

This result is consistent with the fact that the SNR decreases with concentration, and 

shows how the active sensing method can adapt the number of measurements required in 

order to obtain sufficient evidence for classification.  
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Figure 28 (a) Average absorption spectra of acetone and (b) average number of 

observations at the ten concentrations. 

4.4 Conclusion and discussion 

We have presented an approach to actively select absorption wavelengths for a tunable 

IR interferometer in the context of concentration-independent discrimination of chemical 

samples. Our approach first creates concentration-independent absorption profiles for 

each target chemical using non-negative matrix factorization (NNMF). The resulting 

normalized responses are then modeled using Gaussian mixture models. We formulated 

sensing as a decision-theoretic process, where we sequentially select wavelengths that 

are expected to provide the best reduction in Bayes risk. We validated the proposed 

method on both simulated and experimental data. Results on simulated data show that 

the passive sensing can outperform active sensing regarding classification rates for 

various sensing budgets and at various levels of sensor noise. Using a Fabry-Perot 
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interferometer, we further validated experimentally that the active sensing method can 

identify chemical samples independently of their concentration.  

Our experimental results also show an interesting anomaly: samples at 10% 

concentration only triggered 4.8 observations on average and were all misclassified as 

air. We believe this result reflects the limitations of sensor‘s sensitivity. At low 

concentrations, the light beam interacts with fewer analyte molecules, which results in 

very weak absorption spectra; as shown in Figure 17, the peak absorption values become 

comparable to sensor noise. As a result, the first few observations obtained drives up the 

belief associated with air, which tricks the algorithm into bringing the sensing process to 

an early termination.  This limitation can be addressed, and the overall sensitivity of the 

system improved, by either: a) increasing the length of the optical path, which would 

increase the number of analyte molecules encountered by the light beam and thus 

increase the signal strength; or b) incorporating a pre-concentrator (PCT) into the gas 

delivery system, which would increase the concentration of the gas samples by 1-2 

orders of magnitude.  

To create concentration-independent absorption profiles, our approach uses NNMF, a 

technique that it is only applicable to non-negative matrices. However, at low 

concentrations (or if an analyte has low absorption strength at certain wavelengths), the 

sensor response can become negative. Whenever this occurs, our current implementation 

replaces negative values with zeros before applying NNMF. This affects the 

factorization process, since the negative noisy responses are replaced by zeros but their 

positive counterparts are not. This effect can be seen in xylene‘s absorption profile of 
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Figure 26 (b), which is jagged as compared to the other chemicals. This is more evident 

in the wavelength ranges of        , and        , where many negative values 

have been replaced. An alternative solution to this problem would be to apply a 

denoising technique to the spectra prior to performing NNMF.  
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5. ACTIVE WAVELENGTH SELECTION BASED ON MULTI-MODAL 

LEAST SQUARES METHOD FOR CHEMICAL MIXTURE 

IDENTIFICATION
8
 

This chapter presents an adaptive algorithm that interleaves the wavelength-selection 

and sensing processes based on misclassification risk estimated using a multi-modal 

least squares solver. Given a set of previous measurements (absorption at specific 

wavelengths), the algorithm generates a pool of candidate solutions, each solution 

representing a vector of concentrations across all the chemicals in the library, then 

selects the next wavelength that maximizes discrimination among the candidate 

solutions. In this fashion, the algorithm can be viewed as adaptively generating a training 

set of chemical mixtures for the wavelength-selection process. As the sensing process 

continues, the training set becomes closer to the test sample, and the selected 

wavelengths grow more relevant. A weighting function over candidate solutions 

according to their fitness (consistency with the measured wavelengths) can then be used 

to bias the algorithm towards exploration (e.g., during the initial stages) or exploitation 

(e.g., to promote convergence in the final steps).  

                                                 

8 The description of the method and the experimental results are reprinted with permission from 

"Active Wavelength Selection for Mixture Analysis with Tunable Infrared Detectors" by Huang and 

Gutierrez-Osuna, 2015. Sensors and Actuators B: Chemical, pp. 245-257, ©2015 Elsevier. 
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We validated the approach through a series of experiments with real and synthetic data. 

First, we established proof-of-concept on real data from an FPI prototype exposed to 

binary mixtures (background/foreground) randomly selected from a small library of 

volatile organic compounds.  To make the problem challenging, the foreground 

component was set to have a concentration 1-2 orders of magnitude below that of the 

background component; at these levels, repeated sampling at the informative 

wavelengths for the weaker foreground is necessary before it can be detected. Then, we 

characterized the approach through simulations of binary mixtures with different degrees 

of numerical ill-conditioning (increasingly similar mixture components). Finally, we 

extended the simulation to complex mixture problems containing up to 15 chemical 

components from a library of 500 analytes.  In all three sets of experiments, a passive 

algorithm (sequential forward selection) was used as a baseline for comparison purposes.  

Our results indicate that the active strategy outperforms the passive strategy 

systematically, particularly in the presence of noise or numerical ill-conditioning. 

The remaining sections of this chapter are organized as follows.  Section 5.1 describes 

the proposed active sensing framework, including a strategy to balance the exploration 

and the exploitation. Section 0 presents an experimental evaluation of our framework on 

two-chemical mixture problems with a Fabry-Perot interferometer. Section 5.3 provides 

a thorough evaluation of the framework on high-order mixtures using synthetic spectra 

from a library of 500 chemicals. This chapter concludes with a discussion of results and 

directions for future work. 
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5.1 Methods 

5.1.1 Overview of the approach 

To solve the constrained linear system in equation (9), the proposed algorithm operates 

in two broad strokes: at each sensing step, it generates a pool of sparse solutions based 

on previous measurements, then selects the next wavelength to maximize separability 

among the solutions in the pool. The approach is illustrated in Figure 29.  With the 

arrival of the i-th measurement at wavelength    , the algorithm generates a number of 

candidate solutions {        } through a non-negative least squares solver (see 

section 5.1.2); the use of multiple solutions is needed given the instability of the 

problem. Each solution (a vector containing the concentration of the   chemicals in the 

library) is then transformed into the estimated full spectrum       , and each 

spectrum is weighted according to its fitness based on the Akaike information criterion 

(AIC) to prevent overfitting (see section 5.1.3). The wavelength   with largest weighted 

variance    across the solution pool (each solution weighted by its fitness) is then 

chosen as the next measurement, and the process is repeated.  Though other selection 

criteria may be used (e.g., maximize correlation, goodness of fit, mutual information 

[99]), weighted variance    is fast to compute and is an approximation of the 

misclassification risk of the candidates (see APPENDIX C:). The individual steps are 

described in more detail in the following subsections. 
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Figure 29: Overview of the multimodal wavelength selection approach. 

5.1.2 Generating candidate solutions: multi-modal non-negative least squares 

The most critical component of the active sensing framework is the multivariate solver 

for the underlying linear system in equation (9). Our implementation uses a non-negative 

least squares (NNLS) algorithm [18] based on matching pursuit, a numerical technique 

that finds the best matching projections onto an over-complete dictionary [100]. To 

promote sparsity, the NNLS algorithm starts with an all-zero solution vector   

[     ] , and adds one nonzero entry to   at a time, each entry representing a chemical 

component; namely, the algorithm computes the gradient term             for 

each chemical in the library, and adds the one whose gradient is largest.  Once a new 

entry has been selected, the pseudo-inverse solution9 is used to find the minimum –

minus the constraints. At this point, if any of the non-zero elements is negative, the 

                                                 

9 Using Matlab notation, the pseudo-inverse solution can be computed as [    ]
 
 [         ] 
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solution    is shifted back to the closest point in the feasible area (along any one axis) 

using the iteration: 

while    |         

              

where      ,
     

          
     - 

end while 

(23) 

where   and    are the set of indices of nonzero entries in   and   , respectively,   is the 

previous feasible solution, i.e., before the non-zero entry was added, and       represents 

the estimated concentration for the i-th chemical in the library. The iteration in equation 

(23) is repeated until all entries in     are non-negative. 

The process of estimating the local minimum (via the pseudo-inverse) and adjusting to 

the non-negative constraint10 is repeated until no more negative entries exist.  If the error 

term over measured wavelengths  ̂  ‖             ‖  is large, a new entry is 

added to the solution vector, and the NNLS process is repeated; otherwise, the process is 

terminated. A flowchart of the overall process is illustrated in Figure 30 (a). 

                                                 

10
 Note that the offset   is not included in the adjusted term    since   has no constraints. Instead,   is re-

estimated together with the adjusted term   
 (through the pseudo-inverse) after the constraint adjustment. 

Using the pseudo-inverse ensures that the offset is local-optimal –this is in contrast to setting   to the 

minimum observed value in   , a common heuristic in NNLS.  



76 

 

 Multi-modality: tracking multiple solutions 5.1.2.1.

The NNLS algorithm generates a single solution, which is problematic for two reasons. 

First, the underlying linear problem is often ill-defined since only a few wavelengths   

are measured; this is particularly severe at the beginning of the sensing process.  Second, 

the process of wavelength selection requires a training set of mixtures from which to rate 

individual wavelengths.  To address these issues, our approach wraps the NNLS 

algorithm around a multi-modal loop to generate multiple solutions. In contrast with 

heuristic multi-modal optimization techniques, which use random seeds for the search 

[101], our algorithm takes advantage of the gradient information (           ) 

and the closed-form solution of ordinary linear least squares (the pseudo-inverse), which 

significantly improve computational efficiency. Starting with an all-zero solution 

vector  , the algorithm selects the top   entries (according to their gradient    , and 

transforms each into a feasible solution, as described earlier –see equation (23). The 

result is a set of   solutions with one non-zero entry (a single chemical).  The best   of 

these   solutions according to their sum squared error    ‖             ‖ ) are 

saved to the candidate pool, and used as seeds for the next step to yield     solutions 

with 2 non-zero entries (two chemicals). The best   of those according to their error   

are added to the pool, and used as seeds for the next step (solutions with 3 non-zero 

entries).  The process continues until the candidate pool contains a solution whose error 

  is below a pre-specified threshold; duplicate solutions, which may occur due to the 

parallel searches, are removed in a final step. Parameters   and   are set by the user 
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depending on the computing resources available. A flowchart of the resulting MM-

NNLS algorithm is shown in Figure 30 (b). 

 

Figure 30: Flowchart of the non-negative least-squares (NNLS) algorithm (a) and multi-
modal NNLS algorithm (b). The shaded blocks in (b) highlight differences between both 

algorithms. 

5.1.3 Wavelength selection 

The MM-NNLS algorithm returns a pool of candidate solutions, where each solution 

represents a mixture by its concentration vector across all chemicals in the library. Thus, 

each concentration vector    can be used to reconstruct the full spectrum of the 

corresponding mixture: 
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       (24) 

It is this collection of spectra that can be used as a ―training set‖ for wavelength 

selection. Caution must be exercised, however, because these spectra are synthesized 

from solutions    that were obtained by fitting a small number of absorption 

wavelengths      – see equation (9). As a result, there is the distinct possibility that 

some of the solutions overfit the noisy measurements     . This is particularly 

problematic at low concentrations, where measurement noise can dominate the sensor 

response, which may lead the MM-NNLS algorithm to include additional entries 

(chemicals) in the solutions.  

We illustrate this problem with an example.  For this purpose, we randomly selected a 

binary mixture from a spectral library containing 500 chemicals, then randomly sampled 

absorption at 20 wavelengths, and added 1% white noise to each of the 20 measurements 

–refer to section 5.3 for details on the spectral library. Then, we allowed NNLS to 

generate a number of solutions. Results are illustrated in Figure 31(b), with solutions 

ranked according to the sampled error    ̂  ‖             ‖  , as well as the true 

error     ‖    ‖   with respect to the noise-free ground-truth full spectrum 

(assumed known in this case). Figure 31(a) shows the solution    with the lowest 

sampled error   ̂, and the solution   with the lowest true error   . Even though solution 

   has lower sampled error    ̂   ̂   , it overfits the noisy measurements      by 

using 31 non-zero entries, as shown in Figure 31(c); notice also how solution    deviates 

quite significantly from ground truth at               . In contrast, solution    has 

only 4 non-zero entries and has smaller true error          but unfortunately ranks in 
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position #89 according to the sampled error (the only error that can be measured in 

practice).  

 

Figure 31: (a) Projected spectra of the solutions ranked by the sampled error  ‖     
        ‖   and the true error over the full spectrum  ‖     ‖  ; only the range  

             is  shown for illutration purposes.  (b) The top 100 solutions 
according to the sampled error, and the corresponding true error.  (c) Complexity of each 

model (number of components in the mixture) for the top 100 solutions. 

The above example illustrates how, in the presence of noise, the solution with the 

smallest sampled error can overfit the measurements by using extra complexity (the 

number of chemicals in the mixture). To address this issue, we rank solutions based on 

the Akaike information criterion (AIC), an information-theoretic measure that takes into 

account both error and parsimony [102]. The AIC score can be computed as: 

                 (25) 
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where    is the likelihood for candidate model  , and    is its number of free parameters 

(number of components in the mixture).  For linear regression, assuming the sensor noise 

at each measurement is uncorrelated with the sensor noise of previous measurements, the 

formula can be further simplified as [103]: 

          (
 ̂ 
 
*     

(26) 

where   is the number of measured wavelengths, and   ̂ is the sum-squared error for 

model  , i.e.,   ̂   ‖               ‖ . It is these AIC scores that we use to rank 

candidate solutions, following conversion into likelihoods [102]: 

    
 
 
 
        (27) 

where         is the difference in AIC scores between model We and the best 

candidate:                       . We then normalize the weights to ensure they 

add up to one: 

   
  

     
 (28) 

 Selection criterion 5.1.3.1.

A number of traditional selection criteria (maximize correlation, the goodness of fit, 

mutual information [99]) can be used at this point to determine the next wavelength to be 

sampled. In prior work [104] we used variance as a measure of uncertainty, choosing as 

the next measurement the wavelength having the highest variance across spectra in the 

solution pool {  |  }:  
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   |    [   ] 

,  {  (  )|  }- (29) 

where      is the next wavelength to be sampled,   (  ) is the (estimated) absorption at 

wavelength    for mixture solution  , and    is the variance operator. As shown in 

APPENDIX C:, the variance at each wavelength approximates the misclassification risk. 

Thus, by selecting the wavelength with largest variance the algorithm can be viewed as 

minimizing the risk of choosing the wrong candidate.   

However, this approach treats all candidate solutions equally, regardless of their fitness.  

To address this issue, we then weigh each candidate solution as: 

        
   |    [   ]

,  
 {  (  )|  }- (30) 

where   
  is the weighted variance, which can be calculated as: 
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 (31) 

and    is the weighted mean, calculated as: 

   ∑    

 

   

 (32) 

 Balancing exploitation and exploration 5.1.3.2.

During the initial stages, when only a few measurements are available, the sampling 

process can be dominated by a few solutions. Whenever this happens, the algorithm 

invests a large number of measurements to investigate a narrow region of the spectrum 

(to discriminate among the few early solutions) rather than explore the global structure 
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of the spectrum in search of new candidates. This often leads to premature convergence. 

To guard against this problem, our implementation includes a parameter    that can be 

used to adjust the spread of the AIC weights: 

    
   

       

    
(33) 

Selecting    is non-trivial, as its value reflects on the credibility of the estimated 

solutions. If    is small, the solutions will be weighted aggressively, and active sensing 

runs the risk of premature convergence to a suboptimal solution. In contrast, if    is 

large, the weights become uniform regardless of how different they were before 

normalization, which may lead to irrelevant features being introduced. Thus, the 

weighting scheme controls how many solutions to consider for the next measurement, a 

trade-off commonly referred to as the exploration-exploitation dilemma [105].  

To balance this exploration-exploitation dilemma, we propose an entropy-guided method 

that adjusts the offset parameter    such that the entropy of the weight landscape       

remains constant. Assuming   candidate solutions, the highest entropy (      ) is 

achieved when the weights are uniformly distributed, whereas the lowest entropy11 ( ) is 

obtained when only one of the   solutions has a non-zero weight. Finally, we select a 

value between these two extremes: 

                                                 

11 s  {    }     

 
   (

 

 
) 

          ;     {    }            .  
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 ̇   s  {    }    {    }      {    }                         (34) 

where the multiplier   (     ) controls the balance between exploitation and 

exploration: i.e.,     leads to extreme exploitation whereas     leads to extreme 

exploration. In the studies reported here, we use       to balance exploration and 

exploitation.  Once the desired entropy  ̇ has been fixed, the last step is to find the 

corresponding parameter   . Since entropy grows monotonically as    increases, this can 

be easily done with a continuous linear binary search; see Table 4.  

Table 4: bSearch 

Input:     ,     
 ,     

 ,  ̇ 

Output:    

if     
      

  

 if  ̇<       
   

  return     
  

    ( ̇   (    
 ))

(    
      

 )

 (    
 )  (    

 )
     

     

 if     
      

        // Resolution of the search 

  if | (  )  ̇|       

   return   ; 

  elseif  (  )    ̇ 

   return                     
   ̇  

  elseif  (  )    ̇ 

   return                  
      ̇  

return   

 

5.2 Validation on experimental data 

5.2.1 Experimental setup 

For the experiments described here, we used a long-wave FPI sensor (LFP-80105, 

Infratec, Inc) with 107 tunings (absorption lines) in the range         , coupled with 
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a collimated broadband IR source (INTX 20-1000-R; Intex, Inc.) modulated at 10Hz and 

50% duty cycle. We mounted a 10cm gas cell (66001-10A; Specac, Inc.) with ZnSe 

window (602L08; Specac, Inc.) and a ZnSe focusing lens (LA7542-F, Thorlabs, Inc.). 

The FPI, IR source and sample cell were mounted onto an opto-mechanics fixture 

(Thorlabs, Inc.) to ensure precise alignment. The FPI device was controlled using 

Matlab™ through a USB evaluation board provided by the vendor.  

The sample delivery system is illustrated in Figure 32. Vapors from the headspace of 

30mm glass vials are delivered using negative pressure with a pump connected 

downstream from the sample cell. The pump is modulated at 0.125 Hz with 20% duty 

cycle to avoid exhausting the headspace and keep the sample concentration relatively 

stable. Two diluters (1010 precision gas diluter, Custom Sensor Solutions, Inc.) 

independently mix the foreground and background sample vapors with dry air. Since 

water and carbon dioxide have major peaks outside of the sensor‘s range, air has a 

negligible contribution to the spectrum. 

 

Figure 32: Schematic diagram of the headspace vapor sampling system. 

Eight different volatile commercial chemicals that show absorption peaks in the range of 

our sensor (         ) were used for the experiments; see Table 5. Of those, acetone 
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was chosen as the strong background because it has the strongest absorption peak of all. 

The remaining seven chemicals were randomly chosen as the weak foreground. 

Experiments were conducted in a laboratory environment at a temperature of 22.2 ºC and 

standard atmospheric pressure of 760 mmHg.  

Table 5: List of chemicals used in the experiments, and their major components 

Chemical Components 

Propanol Propanol 

Acetone (background) Acetone 

Ethyl alcohol Ethyl alcohol 

Isopropyl alcohol Isopropyl alcohol 

Tert-Butyl alcohol Tert-butyl alcohol 

Air Air and sensor drift 

Denatured alcohol Ethyl alcohol, methanol  

Brush cleaner Raffinates, acetone, methanol 

Lacquer thinner Toluene, methanol, hexane, light aliphatic naphtha 

 

5.2.2 Experiment 1: test case 

In a first experiment, we illustrate the performance of the active wavelength selection 

algorithm on a two-chemical mixture problem containing acetone at 2.5% dilution as 

background, and isopropyl alcohol at 5% as foreground. Figure 33 (a) shows the full 

spectra of the background, foreground, and the final mixture; circles represent the actual 

measurements that took place during the sensing process. The background chemical 

shows a major peak at 8.3  , while the foreground has a minor peak at 8.8  . Figure 

33 (d) shows the rank of the correct solution as iterations progress; the correct solution is 
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added to the pool at the 5-th measurement, and is confirmed (ranked #1) at the 20-th 

measurement.  

Figure 33 (c) shows the total number of solutions considered by the algorithm as the 

iterations progress, whereas Figure 33 (b) shows the distribution12 of selected 

wavelengths before and after the 20-th measurement. We observe a typical two-stage 

pattern emerging from the active sensing process: at first, the algorithm performs a broad 

sampling of absorption peaks for both chemicals (the exploration stage), then performs a 

focused search on spectral details and smaller peaks to confirm the identity of the 

weaker chemical (the exploitation stage). The most selected wavelength is around 

8.8  , which is consistent with an absorption peak for the weak foreground chemical. It 

is important to note that this shift from exploration to exploitation is not programmed but 

rather an emerging behavior of the algorithm, driven by the lower SNR from the weak 

foreground contributing to most of the uncertainty, which the algorithm seeks to 

minimize. 

                                                 

12 This distribution was obtained by applying a Gaussian kernel with        standard deviation 

to smooth the discrete distribution of measurements. 
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Figure 33: A test case with acetone as background and isopropyl alcohol as foreground. 
(a) Background, foreground and the mixture; (b) Sampling frequency distribution before 

and after confirming the ground truth (20-th iteration); (c) Total number of solutions 

generated, 20-th iteration (vertical line); (d)  Ranking of the correct solution, ranking #1 
(horizontal line). 

5.2.3 Experiment 2: active vs. passive 

In a second experiment, we compared the active wavelength selection algorithm against 

a ―passive‖ baseline algorithm based on sequential forward selection [106]. The passive 

algorithm selects a fixed subset of wavelengths that best represents the average 

absorption spectrum across all chemicals in the library:  ̅  
 

 
        

   .  The passive 

algorithm works as follows: 

- The first wavelength    is selected (deterministically) as the one with the highest 

variance in absorption across all chemicals in the library: 

         |    [   ] 
{  {      |  }}. 

- To select the second wavelength   , the passive algorithm estimates the 
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concentration of each individual spectrum in the library to fit that first 

measurement  ̅    ; doing so exposes variance at other wavelengths but the first 

one –which can be fitted with zero error. The second wavelength is then selected 

as the one with the highest weighted variance across all newly fitted one-chemical 

spectra.  

- To select the third wavelength   , the passive algorithm randomly generates 

10,000 two-chemical mixtures to fit the two measurements  ̅ [     ] 
 , and 

selects the wavelength with the highest weighted variance across the 10,000 fitted 

mixture spectra.  

- The process is repeated until the desired number of wavelengths has been 

selected: to select the (n+1)-th wavelength, the passive algorithm randomly 

generates 10,000 n-chemical mixtures to form a full-rank linear system to fit all 

previous measurements. This ensures that neighboring wavelengths, which are 

correlated to those already selected, are not selected before the whole range of the 

spectrum has been sampled at least once. This idea of decorrelating observations 

is common in passive wavelength selection methods such as successive 

orthogonal projection [5]. 

In contrast with the passive algorithm outlined above, our active algorithm requires no 

training. To ensure a fair comparison, both methods used the same evaluation function 

and solver and were stopped after 20 sensing steps. To measure performance, we 

computed the rank of the correct solution among those returned by the MM-NNLS 

solver, averaged over all tests cases. The lower the average rank, the better the method, 
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i.e., a rank of one indicates that the solver has placed the correct solution as the first one 

in its pool. As a supplementary measure, we also used the classification rate, measured 

as the percentage of trials where the correct solution was ranked as #1.  

To perform the comparison, we randomly selected five chemicals as foregrounds and 

diluted them at multiple levels while keeping the background acetone at 100% 

concentration. Each sample was tested five times at dilutions ratios of 1/50, 1/33, 1/20, 

1/10 and 1/5, for a total of 125 tests samples (5 chemicals × 5 dilutions × 5 replicates). 

Figure 34 shows the average classification rate (1 if the correct solution is ranked as #1; 

0 otherwise) and the average ranking of the correct solution achieved by both methods. 

There is no significant difference at dilution ratios above 1/20; at such concentrations the 

problem becomes trivial, and both approaches can find the correct solution with only 4-5 

measures. At low concentrations, however, active sensing outperforms its passive 

counterpart regarding classification rate, and more significantly when considering the 

average ranking of the correct solution. At the lowest dilution ratio (1/50), active sensing 

ranks the correct solution as #3 on average, whereas the passive algorithm ranks it at 

#16. This is largely because active sensing samples the most informative wavelengths 

repeatedly, avoiding the introduction of new irrelevant wavelengths. This results in a 

much more compact feature set and, as a consequence, fewer distortions due to noise are 

introduced to the solver. 



90 

 

 

Figure 34 (a) Average classification rate for the active and passive wavelength selection 
algorithms as a function of the foreground dilution ratio. (b) The average ranking of the 
correct solution as a function of the foreground dilution ratio; the dashed line represents 

a ranking of one, indicating that the correct solution was found.   

5.2.4 Experiment 3: analyzing the exploration-exploitation tradeoff 

In a third experiment, we evaluated the effect of the entropy setting for the AIC 

weightings described in section 5.1.3.2. For this purpose, we randomly picked one 

chemical five times as the foreground (out of seven chemicals) while keeping the 

background fixed (acetone). To make the problem more challenging, the 

foreground/background ratio was set to 1/20 (background twenty times stronger than 

foreground). For each of the five foreground cases, we ran experiments with five 

different AIC weighting entropies of 0.1, 0.3, 0.5, 0.7 and 0.9; settings of 0 (converge to 

the first solution found) and 1 (never converge) were not considered since they lead to 

trivial strategies. Each setting was tested ten times for each foreground, for a total of 250 

experiments (5 chemicals × 5 dilutions × 10 replicates), or 50 experiments for each 

entropy setting. From these experiments, we then counted the number of tests for which 
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the correct solution appeared in the candidate pool         and the number of tests for 

which the correct solution ranked as #1 in the pool        . Denoting the total number 

of tests by     , we then calculated three measures:  

(1) The discovery rate, measured as the proportion of times that the correct solution is 

included in the pool           ⁄  ,  

(2) The resolution rate, measured as the number of times the correct solution is 

confirmed given that it was included in the pool            ⁄  , and  

(3) The confirmation rate, measured as the proportion of times the correct solution is 

selected           ⁄    

Results are shown in Figure 35. When the algorithm uses a higher explorative setting, 

the discovery rate in Figure 35 (a) increases, but at the cost of reducing the confirmation 

rate in Figure 35 (b). The final classification rate shows an asymmetric inverted U curve, 

suggesting that a tradeoff between exploitation and exploration may be found at an 

entropy setting around 0.5. Interestingly, as shown in Figure 35 (c), too much 

exploitation appears to be more dangerous than too much exploration. In our case, 

extreme exploitation leads the algorithm to stop gathering information prematurely, 

eliminating any chance of discovering the correct solution; in contrast, extreme 

exploration will tend to evaluate the whole spectrum, with repeated sampling to 

compensate for noise, allowing the algorithm to converge slowly to the correct solution.  
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Figure 35: (a) Discovery rate, (b) resolution rate and (c) confirmation rate. The entropy 
controls the balance between exploitation (entropy being zero) and exploration (entropy 

being one).  

5.3 Validation on synthetic data 

To provide a more thorough evaluation than what can be afforded experimentally, we 

also analyzed the active wavelength selection algorithm on a large dataset of synthetic 

IR spectra.  The dataset consisted of FTIR spectra (660 spectral lines) from 500 

chemicals in the NIST Webbook infrared absorption spectrum database [107]. To 

simulate the spectral resolution of FPIs, we convolved the FTIR spectra with a Gaussian 

filter of       spread, and added white noise (details included in section 5.3.1) to each 

individual wavelength. Each spectrum was normalized to sum up to one. For the 

subsequent experiments, we compared the proposed active wavelength selection 

algorithm against the passive algorithm described in section 5.2.3. In all cases, we 

allowed the algorithms to sample each wavelength multiple times.  
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5.3.1 Binary mixtures 

In a first experiment, we tested the algorithm on a similar two-chemical mixture problem 

as in section 0. However, instead of using a fixed background, both foreground and 

background were randomly chosen from the library. We then evaluated the algorithm at 

increasing levels of difficulty by adding Gaussian noise with standard deviation 

from    to      of the median value of the complete absorption spectrum library. We 

also evaluated the algorithm as a function of the degree of collinearity between the 

foreground and background analytes, measured as the condition number of the column 

matrix containing the spectra of the two chemical components in the target mixture; the 

higher the condition number, the more collinear the two chemicals are. Figure 36 (e-h) 

illustrates pairs of spectra at different condition numbers: for lowest condition number13 

the two spectra are nearly orthogonal, whereas for the highest condition number all 

major peaks from both chemicals overlap.  

To measure performance, we considered the number of iterations (wavelength 

measurements) required for the algorithm to converge to the correct solution, with 

convergence strictly defined as the correct solution being ranked as #1 among all 

solutions and being ten times more likely than the second most likely solution. Results 

are shown in Figure 36 (a-d). At low noise levels, there are no significant differences 

between both algorithms. As noise levels increase, performance degrades for both 

                                                 

13 The lowest condition number for any two pairs of chemicals in our library is 1.2. 
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algorithms. The effects of noise are considerably amplified by collinearity: when the two 

spectra are very dissimilar (condition number close to 1) noise has minimal impact, 

whereas, for similar spectra (condition number of 10), the number of required steps 

increases significantly with noise. The active algorithm consistently outperforms its 

passive counterpart in all cases. 

 

Figure 36: (a-d) Number of steps needed to converge to the correct solution. (e-h) The 
corresponding foreground and background for each condition number; spectra were 

normalized to sum up to one. 

5.3.2 Higher-order mixtures 

In a second and final experiment, we tested the algorithms on higher-order mixture 

problems containing up to 15 chemical components. In this case, the noise level was 

fixed at 1% of the median value of all absorption spectra in the library.  As the difficulty 

of a mixture problem can vary dramatically (a badly conditioned two chemical mixture 
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can become unsolvable), we designed a mixture construction policy so that the chosen 

problems would not be arbitrarily easy or hard.  For this purpose, instead of condition 

numbers we used a random wavelength-selection algorithm to rate the difficulty of one 

hundred randomly-selected 15-chemical mixtures, and selected five mixtures that could 

be correctly classified        of the times using a maximum of 200 randomly-

selected measurements; this ensured that the highest-order mixture problems were 

solvable but non-trivial. For each of these five 15-chemical mixtures, we sequentially 

removed one component at a time to form chemical mixtures of a lower order; this 

process ensured a graded transition in problem complexity from hard to easy.  For each 

of the resulting 45 mixtures (15 × 5), we evaluated the active and passive algorithms 40 

times, each time with different added noise, for 3,000 cases.   

Results are shown in Figure 37 regarding the number of measurements needed for the 

correct solution to be ranked as #1, up to a maximum of 200 measurements.  Since the 

noise level is low (  ), there is no significant difference between active and passive 

algorithm for problems with up to four chemicals. With five or more chemicals, the 

active algorithm gradually outperforms the passive algorithm. As expected, the number 

of measurements needed grows exponentially for both algorithms with the number of 

chemicals, but the active algorithm can solve a significantly more complex problem than 

its passive counterpart for a fixed sensing budget can. As an example, given 100 

measurements the active algorithm can solve an 11-chemical mixture problem whereas 

the passive algorithm can only solve an 8-chemical problem at best.  Likewise, to solve a 
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9-chemical problem the active algorithm requires 70 measurements on average, whereas 

the passive algorithm requires 130 measurements. 

 

Figure 37: The number of steps used to converge to the correct solution with mixture 

problems up to 15 chemicals. 

5.4 Conclusions and discussion 

We have proposed an active wavelength selection algorithm for mixture analysis with 

tunable chemical sensors. The algorithm uses a multi-modal solver to maintain a pool of 

likely candidate solutions based on previous measurements, then selects its next 

wavelength as the one which maximizes discrimination among all the candidates in the 

pool. To address the ill-conditioned nature of the problem, the algorithm promotes 

sparse solutions with two complementary strategies.  First, the algorithm adds mixture 

components to the candidate solutions in an incremental fashion, from single analytes, to 

binary mixtures, to ternary mixtures, and so on. Second, the algorithm promotes sparse 

candidates using a weighting function based on the Akaike information criterion. To 

prevent the search from converging prematurely, the algorithm also uses an entropy-
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guided normalization method that rebalances the AIC weights such that the strongest 

candidate solutions do not dominate the wavelength-selection process during the early 

stages.  

The algorithm is first validated experimentally on binary mixture problems with a Fabry-

Perot Interferometer. Our results show that active wavelength selection outperforms its 

passive counterpart, particularly at low concentrations and low foreground-background 

ratios. We also characterized the algorithm on synthetic data at increasing levels of ill-

conditioning and higher-order mixtures and compared it with a passive algorithm. Active 

wavelength selection provides higher and more stable performance than passive 

selection, and more importantly, shows higher tolerance to noise and collinearity.  

Compared against passive wavelength-selection techniques, which require retraining if 

additional chemicals are added to (or removed from) the library, active wavelength 

selection can also be trivially adapted to problems of varying library sizes.  

Correlation between neighboring wavelengths can make the library matrix        close 

to singular. In practice, however, the system rarely selects neighboring wavelengths 

before the underlying linear system reaches full rank: once observations have been made 

at certain wavelengths, the NNLS solver will fit the candidate models at those 

measurements with zero error because the system is under-determined. As a result, 

variance at those wavelengths will be minimized, and so will be the variance at 

neighboring wavelengths, significantly reducing the chances that they will get selected at 

the next iteration. It is not until the linear system becomes full rank that the algorithm 

begins to sample neighboring frequencies to average out noise.  
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6. BIC SHRINKAGE NON-NEGATIVE LEAST SQUARES 

In the previous chapter, we described an active wavelength selection framework based 

on a multi-modal solver that generates multiple solutions. We leveraged such multi-

modality to calculate the uncertainty of the sampling space (wavelengths), and then to 

select those wavelengths with the highest uncertainty.  

However, the multi-modal solver is computationally costly, especially when the 

chemical library grows large or the mixture is complex. When the complexity grows, the 

computational cost soon becomes prohibitive. In addition to its lack of computational 

efficiency, the solver is also incapable of adapting for nonlinearity and emitter drift. 

Such nonlinearity and drift introduce structural errors that break the assumed underlying 

linear model.  

To address this issue, we present a single-modal solver that also accommodates for 

nonlinearity and emitter drift. Note that this solver is also built for the faster wavelength 

selection based on GPR, which is described in the next chapter (Chapter 7). It consists of 

a sparse linear solver, a search algorithm to accommodate for nonlinearity, and a first 

order Taylor approximation to compensate for emitter drift. We refer to the first 

component, the linear solver, as ―BIC shrinkage batch NNLS‖ (BICS-bNNLS, see 

Section 6.1) where BIC stands for Bayesian information criterion, and bNNLS stands for 

batch non-negative least squares, a modification of the classical NNLS algorithm 

developed by Lawson [18]. The second component, on top of BICS-bNNLS, is an 

iterative procedure to search a spectral library from a data cube that captures nonlinear 
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distortions across all concentrations (see Section 6.2). Lastly, we compensated for 

emitter drift using a non-uniform offset vector in the spectral library (see Section 6.3).  

We conducted experiments to validate the nonlinear BICS-bNNLS. First, we compared 

the batch NNLS for its computational efficiency against other solvers in Section 6.4.2. 

Second, we tested its effectiveness in searching sparse solutions in Section 6.4.3. Last, in 

Section 6.4.4, we validated the effectiveness to accommodate nonlinearity and emitter 

drift using experimental spectral data.  

6.1 BICS-bNNLS 

BICS-bNNLS uses a forward-backward variable (constituent) selection strategy: batch 

NNLS, and then BIC shrinkage. Namely, batch NNLS first adds constituents in batch to 

fit the observations, and then BIC shrinkage eliminates any insignificant constituents 

guided by Bayesian information criterion. This forward-backward variable selection 

strategy avoids the common pitfalls of convergence to a local optimum. Figure 38 

illustrates an example of this process. The algorithm starts with empty solution vector    

and forward-selects constituents until the error is zero (with corresponding solution 

      ). Then, the shrinkage process begins to eliminate the insignificant constituents 

guided by BIC. This process continues until the BIC score stops improving.  
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Figure 38: The variable (constituent) forward-backward selection process.  

6.1.1 Batch NNLS 

Batch NNLS is a modification of the classical NNLS algorithm written by Lawson. For a 

detailed description of the original NNLS algorithm, please refer to [18]. Lawson‘s 

algorithm is a variable forward selection algorithm that adds one variable at a time. 

Every time a variable is added, the algorithm checks feasibility of the solution and 

adjusts the solution to maintain feasibility. bNNLS uses the same variable selection 

strategy, but in batch. Table 6 presents the pseudo-code for bNNLS. The bNNLS 

algorithm consists of an outer-loop and an inner-loop: the outer-loop selects and adds 

variables to the solution, and the inner-loop calculates a feasible solution given the 

selected variables.  
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Table 6: The pseudo-code of batch NNLS 

Input: spectral library  , observation  , maximum #variables to 

update each time      

Output: solution   
1 

2 

3 

4 
5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

procedure bNNLS( ,  ,     ) 

                 //#constituents 

     ,     {1,2,…,N}  

      
while True  

             //calculate gradient 
if     and     ,      //gradient signals improvements  

return   //return if no more improvement 

   {
  

 
        

              
 //reduce step-size if infeasible 

    {                    } //tentative variables 

       //record the non-zeros for later comparison 
         

     ,       //move indices from Z to P 

while iter <          //find a local feasible solution 
Let    defined by: 

column j of     {
                    

        
   

   (  
   )

  
    //pseudo-inverse 

if           //check feasibility 

     
else //set infeasible variables to zero 

  {        }  
      

     ,       
endif 

endwhile 

endwhile  

return   
end 

 

To improve its computational efficiency, we modified both the outer-loop (variable 

selection) and the inner-loop (feasibility). In the outer-loop, bNNLS adds multiple 

variables at each step rather than just one variable. The number of variables   added at 
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each iteration is initialized to be     
14, but can be adjusted when no feasible solution 

exists (see Line 9). In the inner-loop, bNNLS removes multiple variables with infeasible 

values altogether (see lines from 21 to 23), compared to just one variable in the original 

NNLS. 

6.1.2 BIC shrinkage 

bNNLS generates a feasible solution that normally fits the observations within machine 

epsilon15. However, for mixture identification with noisy observations, overfitting often 

leads to false-positives in the solutions. We address this issue by sparsifying the 

solutions. The following describes the sparsifying process. 

Two common model selection methods to measure overfitting are the Akaike 

information criterion (AIC) [108] and the Bayesian information criterion (BIC) [109]. 

Both criteria encourage parsimony by penalizing model complexity, with the penalty of 

BIC growing stronger as the number of measurements increases. BIC was developed 

assuming that only one true model exists16. Considering our goal in this work is to 

                                                 

14 By default,         {   }, where      the number of constitue nts, and   is the number of 

wavelengths.  

15 Machine epsilon is the upper bound of the relative error due to rounding in floating point 

arithmetic. 

16 Asymptotically, the BIC score reaches the lowest point when a true model is found in [110]. 
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recover the mixture constituents (thus a true model must exist), we chose BIC for the 

shrinkage criterion. Table 7 shows the pseudo-code of the BIC guided shrinkage method. 

Once the NNLS algorithm generates a solution, the shrinkage algorithm greedily tests 

and eliminates the least significant component (the one with the lowest concentration) 

until the BIC score stops improving.  

Table 7: Pseudo-code for the BIC guided shrinkage procedure 

Input: solution  , observation   
Output: new sparsified solution    

 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

procedure BIC_shrinkage( ,  ) 

BIC   getBIC( , ) 
do 

       eliminate( ) 
BIC’  BIC 
BIC   getBIC(  , ) // equation(35)(36) 

while  BIC   BIC' 
return   

end 

 

/** Find the minimal non-zero element and set it to zero **/ 

sub-procedure eliminate( ) 

minX ←   
minI ← 0 

for     to length(x)-1 
if minX >  (i) and  (i)>0 
minxX ←  (i) 
minI ← i 

endif 

endfor 

   ←   

  (minI) ← 0 

return    
end 
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The BIC score can be calculated as: 

                     (35) 

where  , as a measure of model complexity, is the number of non-zero components in 

the solution  ;   is the number of measurements; and   is the likelihood of the model, 

which can be calculated as: 

         
 
    { 

 

   
             }   

(36) 

where   is the spread of the Gaussian noise, and               is the sum squared 

error. 

6.2 Nonlinear BICS-bNNLS 

The imperfection of optical filter can cause nonlinear deviations from Beer‘s law (see 

Section 2.3.2.2). As a result, the absorbances at different wavelengths scale differently as 

the concentrations changes. Such nonlinearity can be compensated by building a spectral 

library that captures the nonlinear distortions at the corresponding concentration. 

However, the concentration itself is unknown beforehand. We developed an iterative 

process where the spectral library construction and concentration estimation run 

alternatively to search both variables to improve the regression. The end result of this 

algorithm is a concentration vector   and a nonlinearly distorted spectral library  . 

6.2.1 Spectral library  

The first step to building a spectral library that captures the nonlinear distortions is to 

acquire such a library throughout the range of concentrations for each constituent. 



105 

 

However, acquiring clean spectra is especially challenging at low concentrations, at 

which absorbance is dominated by sensor noise. Hence, to build a usable spectra library 

at lower concentrations, we smoothed the sampled spectra between different 

concentrations using a two-dimensional Gaussian process. Please refer to [110] for the 

computation of Gaussian process regression. Here, we briefly describe this procedure. 

Gaussian process regression is an interpolation technique that exploits smoothness in the 

data. Such smoothness assumption is met in absorption spectra since we can safely 

assume that the spectra at neighboring concentrations are close to each other. The 

smoothness constraints can also be added to a second dimension (wavelengths) because 

absorbances at adjacent wavelengths are also close. Thus, given a sparse set of noisy 

samplings of spectra at different concentrations, Gaussian process regression calculates 

smooth spectra at any concentration.  

However, because of the interpolation nature of Gaussian process regression, the lowest 

concentration at which the spectrum can be calculated is limited by the acquired spectral 

data. Acquiring spectra at extremely low concentrations is challenging because of the 

overwhelmingly low signal to noise ratio. Fortunately, the spectra at zero concentrations 

are known to be zeros unless the emitter drifts (which will be discussed in the next 

section 6.3). The extrapolation problem becomes an interpolation once the spectrum at 

the lowest concentration, zero percent, is known. As a result, using Gaussian process 

regression, we can acquire a clean spectral library across the whole range of 

concentrations for each constituent. Such procedure is repeated for each constituent, and 
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the final spectral library is a data cube with three dimensions of constituents, 

wavelengths, and concentrations.  

Figure 39 shows an example of Tert-Butyl Alcohol samples interpolated by Gaussian 

process regression. We collected sample spectra at concentrations of 10%, 20%, 50%, 

and 100%.  

 

Figure 39: Two-dimensional Gaussian process regression reconstructs clean spectra at 
different concentrations for lacquer thinner. 

6.2.2 Nonlinear solver 

Once we have the data cube, a search algorithm constructs an ad-hoc two-dimensional 

spectral library from the data cube based on the intermediate solutions generated from 

BICS-bNNLS. BICS-bNNLS then recalculate the estimation using the new library. The 
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algorithm repeats this process until convergence, i.e., when the reconstructed library 

stops changing. Figure 40 illustrates the process. 

 

Figure 40: Diagram of the nonlinear BICS-bNNLS. 

We illustrate the pseudo-code for this nonlinear algorithm in Table 8. The algorithm 

begins with 100% concentration for all constituents in the library (Line 2:    ). 

Currently, the spectral library   consists of the spectra at the highest concentrations in 

the data cube (Line 4). Given  , BICS-bNNLS then calculates a solution    (Line 5). 

Since    is calculated using the spectral library   extracted at the latest estimation  ,    

is a relative concentration. The absolute concentration is updated correspondingly 

      (Line 8). A new spectral library   is then extracted from the data cube at this 

updated concentration, and the iteration continues until convergence, which is when the 

relative concentration is close to one with an user-defined margin    (Line 6) so that 

there is no more need to reconstruct a new spectral library.  
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Table 8: Pseudo-code for nonlinear spectral library search algorithm  

Input: data cube { ⃗⃗⃡     ⃗⃗⃡ }, observation  , solver BICS-bNNLS 
Output: solution   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

procedure nonlinear_NNLS ({ ⃗⃗⃡     ⃗⃗⃡ },  , BICS-bNNLS)    

      
do 

    extract({ ⃗⃗⃡     ⃗⃗⃡ },  ) 
     BICS-bNNLS      

if abs(    ) <     
return     

        
while  True 

end 

 

// Extract the spectra at the concentration    

sub-procedure extract({ ⃗⃗⃡     ⃗⃗⃡ },  ) 

for We = 0 to    

      ⃗⃗⃡  ⌊ ⌋   
return {       } 

end 

  

6.3 Drift compensation 

Another problem we were facing during experimentations is emitter drift. As shown in 

equation (1), the absorption value of a chemical is computed using both energy readings 

  and   . During experimentation, the power of the emitter can drift slightly by   , 

which is caused by changes in the emitter surface temperature. Ideally, if    is known, 

the absorption should be corrected as       
    

     
 . However, the sensor can only 

measure      as whole. Without knowing   , the absorption value is incorrectly 

calculated as     (
    

  
). Although the drift    is relatively small (

  

  
   ), it can still 

be troublesome for analyte with low concentrations or low sensitivity. In the previous 
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work (Chapter 5), a uniform offset (a vector of ones) was added to the library matrix   

to compensate for this drift. This offset was beneficial, especially when the emitter drift 

shifted some absorbances below zeros. However, since the drift    is different at various 

wavelengths, the offset should be non-uniform. In addition, logarithm is a nonlinear 

operator, so the emitter drift is a non-uniform nonlinear transformation of the original 

spectrum. We propose to compensate for the transformation using a first order Taylor 

series approximation by the first derivative of the absorption    
    (

      

  
)

   
 

 

  
. 

Thus, we add the column vector 
 

  
 to the linear system: 

  [           
 

  
]  (37) 

The amplitude of the drift    is then solved together with concentration   

[          ]
 . The projection 

 

  
    shifts the original zero absorbances when     . 

Note that unlike concentration, this offset coefficient does not conform to the non-

negative constraint. Figure 41 illustrates an example of a spectrum with such emitter 

drift for denatured alcohol with a 2% concentration. Note that the absorption spectra are 

partially negative because of the drift.  
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Figure 41: Corrected zero-absorbance line with emitter drift compensation. 

6.4 Results 

6.4.1 Experimental setup 

The calculations were performed on a 2.8GHz i7 860 desktop computer with 32GB of 

RAM implemented in MATLAB® 8.5a. We used two types of data for experimentation: 

a randomly generated spectra from a uniform distribution, and instrumental data from 

the FPI sensor. For detailed experimental apparatus, please refer to Section 5.2.1.  

6.4.2 bNNLS speed comparison 

To test the computational speed of the algorithm, we compared bNNLS against three 

alternatives: the fast NNLS implementation of Bro [19], the lasso implementation of 

Kim et. al. [111], and the classical NNLS implementation 600of Lawson [18]. We 

conducted a simulation for large-scale non-negative least squares with various library 

sizes from 600 to 1.2M components. With 600 features (wavelengths), the biggest 
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library occupied 5.76 GB (              of memory. The library consisted of 

entries drawn from zero to one with a uniform distribution. We synthesized mixture 

problems with 600 components (full rank) out of randomly picked, and we added a white 

noise with a spread of 0.01 to the observation. We ran all algorithms with the same 

stopping criterion: the mean squared error had to be smaller than      or reached the 

time limit of one hour. Table 9 summarizes the average computation time over 20 runs 

for each library sizes.  

Table 9: Time consumption and relative speed-up of different algorithms with different 

library sizes averaged over 20 runs.   

Library size bNNLS NNLS fNNLS Lasso 

             X           X          X           X  

            X          X            X          X  

            X         X                 

             X          X      
               X          X      

 

As can be seen, bNNLS outperforms all other algorithms in all cases. Upon closer 

inspection, for the smallest problem (600 components), fNNLS is the second best 

performer. However, as the library size increases, fNNLS scales terribly (it ran out of 

time at a problem with 60,000 components). Lasso scales slightly better but is still a lot 

worse than bNNLS and NNLS. NNLS scales as well as bNNLS, but is about eight times 

slower than bNNLS.   

6.4.3 BICS-bNNLS sparsity comparison 

To test the effectiveness of the BIC shrinkage method, we compared it against four 

alternatives: the pseudo-inverse solution (without sparse regularization, as a control 
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condition), the classical NNLS, the lasso (with    norm sparse regularization), and ridge 

regression (with    norm guided sparse regularization). We generated a library   with 

each entry drawn from a uniform distribution       . We then synthesized mixture 

problems consisting of one to ten components randomly selected from this library. We 

also added Gaussian noise with a standard deviation of      to the observations. We 

solved the mixture problems using these algorithms and compared the sparsity of their 

solutions. To illustrate what the generated solutions, Figure 42 shows an example of the 

solution in both linear scale and logarithmic scale. 
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Figure 42: (a) Sample solutions from different solvers; (b) The same solutions in 

logarithmic scale.  

A superficial inspection of results in Figure 42(a) suggests that BIC-NNLS, NNLS, and 

lasso were able to generate sparse solutions. However, as shown in see Figure 42(b), in 

logarithmic scale the lasso solution does not appear sparse while BICS-bNNLS and 

NNLS maintain their sparsity.  
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We also repeated this experiments over 100 times, and computed the average relative 

sparsity – the ratio between the number of non-zero entries and that of the ground truth 

(‖ ̂‖  ‖ ‖ ). The result is consistent with the previous test case. As shown in Figure 

43. The lasso algorithm generated solutions are just as dense as the solutions generated 

by ridge regression and OLS. For signal reconstruction purposes, the sparsity of the 

solution is not critical, but in our work, the true sparsity is critical because it represents 

the number of constituents being identified as present in the mixture. Excessive non-zero 

entries are most likely false-positives. Therefore, the    norm guided lasso algorithm is 

insufficient for the purpose of mixture identification. On the other hand, the NNLS 

solver we used developed by Lawson [18] is a forward variable selection algorithm. 

Such forward variable selection implicitly implemented the    norm regularization17. 

Finally, it is worthwhile to mention that BICS-bNNLS generated solutions with a 

sparsity ratio of    indicating perfect mixture identification without introducing any false 

positive.  

                                                 

17    norm provides the strongest sparse regularization of all norms (such as    norm and    nom).  
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Figure 43: Sparsities of the solutions in    norm. 

6.4.4 Nonlinear BICS-bNNLS accuracy comparison 

To test the accuracy of nonlinear BICS-bNNLS, we conducted an experiment with 

acetone at a concentration of 10%. We tested the algorithm with 10-100 randomly 

sampled wavelengths. We repeated the experiment 20 times and used the average 

classification rate as the performance metric. We conducted a     comparison with 

conditions: linear solver only (L) vs. nonlinear solver (NL) and uniform drift (D) vs. 

non-uniform drift (ND). Results are shown in Figure 44. 
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Figure 44: Number of misclassified components with and without the nonlinear search 

algorithm. 

As shown in the result, with the exception of the NL+ND method (nonlinear solver with 

non-uniform drift), the performances of all methods deteriorated as more wavelengths 

are introduced. This trend is consistent with the fundamental limitation Beer‘s law18 as 

described in Section 2.3.2.2. As more wavelengths are introduced, the structural error 

caused by nonlinearity begins to emerge. Importantly, the NL+ND method outperformed 

all other methods significantly across all wavelengths. Improved performance grants a 

selection of a larger number of wavelengths, indicating less structural error is 

                                                 

18 Beer’s law is only linear for infinitely narrow wavelengths, but in practice all wavelengths 

selectors are imperfect; consequently, more wavelengths introduce more nonlinearity. 
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introduced. In a final analysis, we also examined the effect of drift compensation. While 

the non-uniform drift compensation benefits both linear and nonlinear solver, it provides 

a higher performance improvement for nonlinear solver than to the linear solver. This 

suggests that both dynamic factors (e.g., emitter drift) and static factors (e.g., nonlinear 

distortions) have to be considered to model the mixture problem accurately.  

6.5 Conclusion and discussion 

In this chapter, we presented a nonlinear BICS-bNNLS algorithm that is tailored to solve 

mixture identification problem with a large number of constituents in the spectral library. 

As a linear solver, bNNLS is faster than the classical NNLS other counterparts 

mentioned in the experiments. Interestingly, in contrast to the lasso algorithm and 

fNNLS, both NNLS and bNNLS are faster. This can be explained by the smaller 

regression problem variable due to the forward selection strategy.  

BICS-bNNLS also provides a more sparse solution in contrast to NNLS due to the BIC 

shrinkage. The lasso algorithm provides a sparse solution in linear scale; however, upon 

closer inspection, the solution is densely filled by small values, rendering ineffective for 

our purpose of mixture identification.  

Lasly, we also improved the accuracy of our solver by accommodating nonlinear 

distortions and compensating for emitter drift. To collect the spectral data cube that 

captures the nonlinear distortions, we used the two-dimensional Gaussian process 

regression to interpolate spectra at low concentrations at which the spectra would be 
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otherwise too noisy. Combining nonlinearity and emitter drift, the solver provides the 

best performance and resolving power (solutions correctly identifying the analytes).   

Admittedly, there are limitations of this method. First, it only considers the nonlinearity 

caused by the change of concentration while ignoring the nonlinearity caused by 

interactions between constituents. However, since our target analyte is relatively simple 

with only a few constituents, we can safely ignore such interactions. Second, the 

algorithm can only compensate for minor emitter drift due to the limitation of the first-

order Taylor expansion. Introducing higher-order expansions can help alleviate the 

problem, but they also introduce additional model complexities that demand higher 

spectral resolutions to keep the underlying linear system well defined.  
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7. FAST ACTIVE WAVELENGTH SELECTION GUIDED BY GAUSSIAN 

PROCESS REGRESSION 

In our previous approach of active wavelength selection (MM-NNLS) described in 

Chapter 5, the wavelength selection strategy relies on feedback from the multi-modal 

solver. However, the multi-modal solver is computationally expensive, which slows 

down the sensing process especially when the spectral library grows large.  

To address this issue, we developed a faster wavelength selection algorithm. With the 

faster sparse NNLS solver (nonlinear BICs-bNNLS) described in the last chapter 

(Chapter 6), in his chapter, we present a wavelength selection strategy guided by 

Gaussian process regression (GPR) and linear discriminant analysis (LDA). Both 

methods are advantageous because their computational complexity is a function of the 

number of wavelengths in the spectrum, whereas the complexity of MM-NNLS based 

approach is a function of the library size. Like in MM-NNLS, the wavelength selection 

is divided into two stages: exploration and exploitation; GPR guides the explorative 

stage while LDA guides the exploitative stage. To further speed up the computation, we 

calculate concentrations using the more efficient BICS-bNNLS solver in Chapter 6 to 

replace the MM-NNLS solver. 

The rest of the chapter is organized as follows: Section 7.1.1 first provides an overview 

of the active wavelength selection process. Section 7.1.2.1 explains GPR in details, and 

Section 7.1.2.3 explains the how GPR guides the wavelength selection. Next, Section 

7.1.3 describes the exploitative selection strategy guided by LDA. Section 7.2 shows the 
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experimental results on both experimental and synthetic data. This chapter concludes at 

Section 7.4. 

7.1 Active wavelength selection 

7.1.1 Overview 

Figure 45 illustrates a diagram of the active wavelength selection process. It consists of 

an inner-loop and an outer-loop. The inner-loop conducts the active wavelength 

selection and sensing. The wavelength selection has two stages: it first aims at 

reconstructing the entire spectrum (exploration), then it targets at more subtle but 

distinctive regions of the spectrum (exploitation). The inner-loop is computationally 

cheap compared to the outer-loop. The outer-loop is computationally expensive but 

recovers the concentration of the analyte. The new estimated concentration not only 

helps identify the analyte but also improves the model accuracy of the utility functions 

(GPR and LDA) of the wavelength selection.  
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Figure 45: Diagram of the active wavelength selection framework for mixture 

identification problems. 

7.1.2 Explorative wavelength selection 

The explorative wavelength selection (inner-loop) is guided by the GPR. GPR allows us 

to interpolate a smooth arbitrary function using a set of sparse samplings. This procedure 

leverages the underlying smoothness of the target function. Figure 46 illustrates the GPR 

recovering an arbitrary one-dimensional function. In this example, only ten features are 

observed; however, because of the inherent smoothness of the function, GPR recovers it 

accurately especially at sampled regions. Conveniently, GPR also estimates the variance 

of the reconstruction, which is shown as the shaded area in Figure 46. The variance 

indicates how uncertain the estimation is across all features. We used this variance as the 

utility function of our explorative wavelength selection. The following explains GPR in 

details. 
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Figure 46: An example of Gaussian process regression. 

 Gaussian process regression 7.1.2.1.

Consider the case where we have wavelengths     {          }  and obtained 

corresponding observations    
 {   

    
      

}. The goal of GPR is to reconstruct 

the full spectrum     {   
    

      
} with    , and calculate the variance of the 

estimation    
  {   

     

       

 }. Gaussian processes model an arbitrary function as a 

multivariate random vector that follows a multivariate normal distribution        

        where   is a scalar, and    is a covariance matrix           . The output of 

GPR is a multivariate distribution           . Given the input measurements    
, the 

best linear unbiased predictor to reconstruct the spectrum can be calculated as: 

               
    (38) 



123 

 

where   denotes the     (auto)covariance matrix of the sampled wavelengths    

(          );   denotes the     covariance matrix between the sampled 

wavelengths    and the output wavelengths    (          ). Although possible, 

calculating the full covariance matrix     is not necessary in our case. According to 

[112, 113], we can directly calculate the variance of the estimation, the diagonal 

elements of    : 

   
    .         

           

      
/   (39) 

The inputs of this function are the covariance matrices  ,  . 

 Covariance function 7.1.2.2.

Constructing the covariance matrices are non-trivial because they need to be positive 

semi-definite. To construct the covariance matrices, a covariance function            

calculates the covariance value of a pair of wavelengths (     ). Note that all three 

covariance matrices   ,  , and   are constructed using the same covariance function 

   (     ). In this work, we design the covariance function with three components: 

    (     )        ( (      )
 
  )                     (  )     

  (40) 

The first component,    ( (      )
 
  ) , corresponds to the global smoothness of 

the spectrum. It is the squared exponential covariance function explained in [114], 

weighted by a scalar    ; The second component,                (  ), corresponds 

the product covariance function explained in [115]. This component incorporates the 
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intermediate estimate (a spectrum) projected from the solution (        ). It is 

weighted by a scalar      . The third component,     
 , corresponds to the sensor‘s 

noise level, which indicates how reliable each measurement is. It is added to the 

diagonal of the covariance matrix with     {
     

     
. We provide some remarks for 

these three components: 

 The first component, smoothness, is determined by the effective resolution of the 

spectrum regarding Gaussian process. It is fixed because although different 

chemicals have different spectral signatures, but they share the same effective 

resolution that is determined by the sensor.  

 The second component is the estimation of the analyte spectrum given the 

information collected so far. The projected spectrum is incorporated into the 

before improving the model accuracy of the Gaussian process. 

 The third component is the sensor noise. The higher the sensor noise is, the less 

credible each observation is, and the less drastic the model responds to each new 

observation. We measure the sensor‘s noise level beforehand assuming that it is 

analyte independent. This assumption holds in the case of our absorption 

spectrometer as the analyte is physically separated from the sensing mechanics.  

 Wavelength selection 7.1.2.3.

As mentioned in section 7.1, the Gaussian process calculates a variance of the estimation 

   
  {   

     

       

 }. Thus, we can use this information to guide the feature 

selection. Namely, we use a myopic strategy that selects the wavelength that maximally 
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reduces this variance. Since the only variable in equation (39) is the sampled feature 

set   , if we write the covariance matrix as a function of   :    
     , we can compute 

the total reduction in variance when one more wavelength is introduced: 

   
     (  

        
        )   (41) 

where   is a column vector of ones. Using this total reduction of variance as the utility of 

each wavelength, we select the wavelength randomly following a probability of the 

utility function: 

     
    

   

    
 

 
   

  (42) 

Based on this strategy, the sampling process adapts to the previous observations and 

keeps sampling unexplored areas. The covariance function is also periodically updated 

once a new solution is solved by the BICS-bNNLS.  

7.1.3 Exploitative wavelength selection 

The goal of explorative wavelength selection is to reconstruct the spectrum as closely as 

possible. As such, it overfits the observations, causing false-positive constituents in the 

solution. This problem occurs when the ground truth is sparse (only a few components 

constitute the analyte) and becomes worse when the size of the reference library grows. 

To address this issue, we designed an exploitative selection strategy to sparsify the 

solution. Although it is impossible to know the false-positives without knowing the 

ground truth, we used the shrinkage result of BICS-bNNLS as an approximation.  
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Our approach works as follows. Recall that BICS-bNNLS generates an overfitting 

solution   , and then sparsifies it to   via shrinkage. The chemical constituents 

eliminated during shrinkage are potentially false-positives. During exploitation, we 

select wavelengths according to their ability to discriminate between these false-

positives and remaining constituents in the solution, which we treat as an approximation 

of the ground truth. Figure 47 illustrates this process. Let    (   non-zero entries) be the 

BICS-bNNLS solution,   (     non-zero entries) be the sparsified BICS-bNNLS 

solution. Let    
 be the concentration of the eliminated entries    

 {   
    

      
} 

with indices   {       }. To identify the next wavelength, we project each 

eliminated component back to absorbance    
    

   
where    

 is the corresponding 

     column vector in the library matrix  . Then, we calculate the LDA solution for the 

binary discrimination problem (       { },        {   
      

}), where      

    

 
   . The LDA solution (a rotation vector  ) provides the direction maximum 

discrimination between the final mixture   and the eliminated components {   
      

} 

– see Figure 47. Accordingly, the exploitative wavelength selection follows a random 

sampling scheme with sampling probability proportional to the absolute value of the 

linear discriminant | |. This is an approximation of feature extraction process: 

        
|  |

 |  |
   (43) 
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Figure 47: Exploitative wavelength selection diagram. 

 

 Switching between exploration and exploitation 7.1.3.1.

The transition from exploration to exploitation (and vice versa) is signaled by the 

complexity of the solution. Namely, exploration stage continues for as long as the 

complexity of the solution continues to increase when more wavelengths are added. 

Denoting by      the number of non-zero elements at step  , exploration continues for as 

long as            , and exploitation starts whenever            . The algorithm can 

return at any time from exploitation to exploration (if            ), though in practice 

happens.  

7.2 Validation on experimental data  

The experimental apparatus is same as those in Chapter 5. Please refer to the Section 

5.2.1 for more details.  
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7.2.1 Smoothness parameter tuning 

In a first experiment, we investigated the global smoothness parameter   in equation 

(40). Once learned, this smoothness parameter is fixed throughout the experiment 

because spectra collected from the same sensor share similar smoothness. To run the 

cross-validation, we first collected five spectra for each chemical at 100% concentrations 

to achieve the highest signal-to-noise ratio. Using one setting of the parameter  , we 

generated one smoothed spectrum for each sampled spectrum. If we randomly leave one 

of the five spectra as the test sample (leave-one-out cross-validation), we then calculated 

the average of the other four smoothed spectra. The mean squared error (MSE) between 

the test sample and averaged spectrum served as the parameter metric. We repeated this 

process with parameters from         to       for each chemical and calculated 

the average MSE as the performance metric. Figure 48 illustrates the result.  
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Figure 48: The fitness measured by MSE at different smoothness settings across all 

chemicals. 

As we can see,         gives the optimal performance suggesting that the spectrum 

data collected using our sensor gives an effective resolution of       in the context of 

GPR. 

7.2.2 Comparison with passive algorithms 

In a second experiment, we compared the active wavelength selection algorithm against 

a passive algorithm. As our baseline method, we used successive projection algorithm 

(SPA), a well-known passive algorithm [116]. SPA selects features that minimize 

collinearity using the sequential orthogonal projections of the Gram-Schmidt procedure. 

SPA is greedy: it iteratively adds one wavelength at a time, the one that is minimally 

correlated to the previously selected wavelengths. By minimizing correlation, the 

selected wavelength set is minimally redundant regarding collinearity. To avoid 



130 

 

assumptions about which chemical is present, we trained SPA on the reference spectra of 

all eight chemicals. As a result, the features selected by SPA capture the signatures of all 

the eight chemicals.  

Both algorithms were stopped when they converged to the ground truth, which we 

defined as the algorithm identifying the analyte correctly for ten steps in a row. In this 

experiment, we set 200 steps as the maximum allowable steps before converging. We 

tested three aspects of the algorithm: efficiency, stability, and reliability.  

- Efficiency: we measured efficiency as the total number of steps before converging 

(excluding the ten steps required for confirmation). A smaller number implies a 

more efficient wavelength selection strategy.  

- Stability: we measured stability by the standard deviation of the number of steps 

until convergence between tests. The lower the standard deviation is, the more 

stable the algorithm is.  

- Reliability: we measured reliability by the classification rate that the algorithm 

successfully converges before the maximum 200 steps. The higher the 

classification rate is, the more reliable the algorithm is.  

 Selecting testing mixtures 7.2.2.1.

Since there are many combinations ( (
 
 
) 

       ) of the constituents, due to the 

lack of resolution of FPI sensor only a small portion of these testing mixtures are 

solvable. An ideal group of analyte should satisfy following constraints: a) The analyte 

is not trivial, i.e., the analytes can be identified within reasonable number of 
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measurements; b) the selected analytes should represent a wide spread of different 

difficulties. Thus, we propose a two-way metric to measure the difficulty of a mixture 

based on the condition number. A condition number is a function of a set of spectrum   ; 

it calculates how stable a solution of a linear system   is with respect to the disturbance 

of the observations  . A    norm condition number can be calculated as: 

        
       

       
 (44) 

where         and         are the maximum and minimum eigenvalues of the matrix 

 . We used the condition number to calculate two aspects of the analyte. One is to 

measure how resolvable the analyte is: 

   
          (45) 

where    is a column matrix with the spectra of the constituents of the analyte. The other 

metric of the difficulty is to measure distinguishable the analyte is: 

   
                   (46) 

where   has all the reference spectra and     has all reference spectra except the ones of 

the constituents  in the analyte. This directly calculates the condition number 

contribution of the analyte constituents. Intuitively, the smaller the number is, the more 

correlated the analyte is to the other constituents in the library, thus harder to be 

distinguished from other constituents using linear solvers. With this measure, we picked  

following analytes as shown in Table 10. 
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Table 10: The analytes components and their abbreviations 

 

As an example, we illustrate the most difficult mixture, brush cleaner & acetone 

(BC+ACT), in Figure 49. The largest difference between these two chemicals is the 

minor absorption from 9.4 to 10 microns. During our experiments, complex mixtures 

that have a higher difficulty (measured by    
    

) become unsolvable using the 

spectral data collected from our sensor.  

Analyte Abbreviation # components    
    

    
    

 

Tert-Butyl alcohol TBA 1 1 48 49 

Ethyl alcohol EA 1 1 55 56 

Isopropyl alcohol IA 1 1 57 58 

Denatured alcohol DA 1 1 75 76 

Tert-Butyl alcohol  
& Brush cleaner 

TBA+BC 2 5 65 70 

Denatured alcohol 

& tert-Butyl alcohol 
DA+TBA 2 3 96 99 

Lacquer thinner LT 1 1 98 99 

Lacquer thinner  
& isopropyl alcohol 

LT+ISA 2 4 105 109 

Brush cleaner 

& acetone 
BC+ACT 2 11 120 131 
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Figure 49: The spectra of acetone and brush cleaner. They are both very similar to each 
other (hard to resolve). 

 Performance comparison 7.2.2.2.

Once the analytes were chosen, we tested both algorithms (active and passive) on each 

analyte 25 times for a total of          tests. The sequence of the tests was selected 

randomly to eliminate ordering effects, and the gas cell was purged with air before each 

test to avoid any residual. Figure 50 shows the result of efficiency comparison. As we 

can see, the active framework outperforms the passive algorithm across all analytes. 
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Figure 50: Efficiency test – the number of steps measurements used to converge to the 

correct solution.  

Figure 51 shows the result for stability. As we can see, active sensing framework is also 

more stable compared to SPA for all analytes. Notice that the performance gap 

diminishes when the complexity of the analyte becomes higher. This is as expected 

because a more complicated chemical requires coverage of more spectral signatures, 

which is equivalent to a passive algorithm.  
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Figure 51: Stability test – the standard deviation of the number of steps required before 
convergence.  

Efficiency and stability provide a performance metric for the algorithms when they 

converge. In some tests, the algorithm never converges before a finite number of 

measurements. As a result, results of those tests have to be excluded. Hence, we use 

another metric – the classification rate – to measure how reliable the algorithm is. Figure 

52 shows results. 
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Figure 52: Reliability test – classification rate for the two algorithms. The algorithm 

needs to converge before 200 steps; otherwise, its result is considered misclassified.   

As we can see, the active strategy has a better chance to identify the analyte correctly. It 

is noteworthy to mention that even for simple analytes (such as single chemical TBA, 

EA, IA), the passive algorithm did not reach 100% classification rate while the active 

strategy successfully identifies the chemical every time.  

7.3 Validation on synthetic data 

To provide a more thorough evaluation than what can be afforded experimentally, we 

also analyzed the active wavelength selection algorithm on a large dataset of synthetic 

IR spectra. The dataset consisted of FTIR spectra (660 spectral lines) from 500 

chemicals in the NIST Webbook infrared absorption spectrum database [107]. To 

simulate the spectral resolution of FPIs, we convolved the FTIR spectra with a Gaussian 

filter of 0.1μm spread. Each spectrum was normalized to sum up to one. For the 

subsequent experiments, we compared the proposed active wavelength selection 
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algorithm against the passive algorithm described in section 7.2.1. In all cases, we 

allowed the algorithms to sample each wavelength multiple times. 

7.3.1 Performance comparison 

In a third experiment, we tested the algorithm on mixtures with more than 50 

constituents. We added white noise with standard deviation at 1% of the median value of 

all absorption spectra in the library. However, the classification rate collapsed to nearly 

zero as the number of constituents went beyond 50. That suggests that the solver reached 

the maximum effective resolvability of the spectral library. As the difficulty of a mixture 

problem can vary dramatically (e.g., a badly conditioned two-component mixture can be 

unsolvable while a well-conditioned 20-component mixture can be easily identified), we 

designed a mixture construction policy so that the chosen problems would be neither too 

trivial nor unsolvable. For this purpose, we randomly selected many 50-component 

mixtures and calculated their classification rate with the set noise level. We then selected 

the five mixtures that can be correctly classified        of the time. For each of 

these five 50-component mixtures, we sequentially removed one component at a time to 

form chemical mixtures of a lower order; this process ensures a gradual transition in 

problem complexity from hard to easy. For each of the resulting 250 mixtures (50 × 5), 

we evaluated the active and passive algorithms 40 times, each time with randomly added 

noise, for 10,000 cases. The maximum number of allowable measurements is 5000.  

Similar to the procedures and the metrics used in experimental validation in section 

7.2.2.2, we used the average steps to converge, the variance, and the classification rate as 

the measures for efficiency, stability, and reliability respectively. First, Figure 53 and 
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Figure 54 show the average and the standard deviation of the number of measurements 

taken before convergence. The result is the statistics of 200 (40 5) tests for each order 

of mixture.  

 

Figure 53: Efficiency test – total number measurements required before convergence 

from 1-component chemical to the 50-component chemical mixture. 

 

 

Figure 54: Stability test – the standard deviation of the number of measurements before 

convergence. 
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As we can see, the result is consistent with the ones in the experimental section. Active 

approach outperforms the passive algorithm for all analytes. The active algorithm is also 

much more stable than the passive approach. This is an expected outcome of an analyte 

adaptive approach. To illustrate the improvements better, we also calculated the 

improvement ratio: 
   

 
. This ratio tells how much percentage the improvement is on the 

basis of the passive algorithm. Figure 55 shows the result.  

 

Figure 55: Improvement of the active approach over the passive approach regarding both 
the efficiency and stability.  

As we can see here, the result is also consistent with the ones in experimental validation. 

Active approach outperforms passive approach especially in the aspect of stability. It is 

also consistent with the experimental result that the higher complexity of the analyte 

eventually diminishes the advantage of active approach for efficiency. The stability 

advantage of the active approach is more prominent than the efficiency advantage.  
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Figure 56: Reliability test – the classification rates of active approach and passive 
approach.  

Lastly, we calculate the classification rate to measure the reliability when the complexity 

of the analyte becomes higher. Figure 56 shows the result. As we can see, active 

approach maintains a 100% classification rate until passing 50-component mixture while 

passive approach usually fluctuates but rarely reach a 100% classification rate (see 

Figure 57 as a zoomed-in version). Another interesting observation is that the 

classification rates of both algorithms collapsed drastically after reaching 50-component 

mixture. This might suggest that the measurements have reached the intrinsic 

dimensionality of the underlying linear system – effective rank under noise explained in 

section 2.3.2.1. In the experiments, we found that three factors could influence the 

classification rate: the measurement noise level, the collinearity of the linear system, and 

the maximum number of measurements allowed. The maximum number of 

measurements plays a less important role asymptotically because averaging samplings 

reduces the noise level quadratic-hyperbolically ( (
   

 
   

 
* 

 

√ 
   where     
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       ). Equivalently, to compensate the noise level, the number of samples needs to 

grow quadratically, which soon becomes infeasible with real instruments.   

 

Figure 57: A zoomed-in version of Figure 56. 

7.3.2 Convergence rates comparison 

In a fourth experiment, we analyzed the performance of exploration stage and 

exploitation stage independently. In the concentration space, the exploration stage adds 

more constituents to recover the spectrum, whereas exploitative stage removes 

constituents to accelerate the convergence. Thus, the sparsity of the solution is a good 

indicator of how fast and well each stage performed. Let ‖ ‖  be the    norm of a vector 

that is equivalent to the number of non-zero entries in the vector. Let the relative sparsity 

be   
‖ ‖ 

‖     ‖ 
 where       denotes the ground truth and   denotes the estimated 

concentration. Figure 58 shows the average relative sparsity for 1-component analyte. At 

the exploration stage, the solution complexity kept increasing until approximately eight 

measurements. This result suggests that the eight measurements of 660 wavelengths can 

capture the overall structure of the entire spectrum using GPR. Compared with passive 
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approach, active method grows the solution slower at with the same amount of 

measurements during exploration. Consequently, the active approach overshoots less and 

helps accelerate convergence during exploitation, On the other hand, at the exploitation 

stage, the active approach is able to select the wavelengths that reduce the solution 

complexity much faster than the passive method. As a result, the active method 

converges to the solution much earlier than the passive method.  

 

Figure 58: An example of the relative sparsity trajectory through the sensing process. 

Next, we also investigated the relative sparsity across different orders of mixtures. 

Figure 59 shows the average trajectory of the 1-component mixtures to 51-component 

mixtures with an increment of 10. The advantage above of active wavelength selection is 

most prominent at lower-order mixtures. As the complexity of the mixture grows, the 

convergence rate begins to decrease at exploitation stage. At the extreme case of a 51-

component mixture, the exploitative wavelength selection becomes ineffective. This 
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result suggests that the system has reached the maximum resolvability of the spectrum 

given the spectral library and this noise level. Interestingly, the GPR guided explorative 

wavelength selection manages to maintain a more controlled complexity growth rate 

than the SPA passive algorithm.  

 

Figure 59: The relative sparsity during the first 100 measurements across different orders 

of mixtures.  

7.4 Conclusion and discussion 

In this chapter, we have presented an active wavelength selection based on GPR and 

LDA method. The wavelength selection method introduced a feedback loop from the 

mixture estimation from the nonlinear BICS-bNNLS solver, and the feedback adjusts the 
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prior of the wavelength selection algorithm, thus the selected wavelength set is analyte 

dependent. The wavelength selection algorithm consists of two stages: exploration and 

exploitation. The exploration stage is based on Gaussian processes aiming to select 

wavelengths for spectrum recovery; the exploitation stage is based on a variation method 

to sparsify the least squares solution calculated using the measurements explored in the 

exploration stage. Both stages are unsupervised, and they do not require a typical 

training-validating process. The method is also computationally efficient, suitable for 

portable platforms with limited computation resources. 

We evaluated our approach on both Fabry-Perot interferometer sensor and synthetic 

data. Experimentally, we tested our approach on up to two-chemical mixture problem 

out of a library of eight chemicals. Using the cross-validation method, we quantified the 

resolution of our Fabry-Perot sensor with a resolution of       . For the more 

comprehensive studies, we also tested the approach on synthetic data with up to fifty-

chemical mixture out of a library of five hundred chemicals. We compared our method 

with a passive method, successive projection algorithm. Both experimental and 

simulation results suggest that the active approach outperforms passive approach. The 

active method has a faster convergence rate, and, more importantly, performed much 

more stable with the presence of different analytes.  

However, both experimental and simulation results showed that the performance gain of 

the active approach became smaller as the number of the constituents in the mixture 

became larger. This is as expected because the passive method was trained to cover the 

signatures of the spectra in the entire reference library. Interestingly, the active method 
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still consistently performed better regarding stability. This highlights the advantage of 

selecting an analyte-dependent feature. With the identities and concentrations of the 

analyte changing, there is no global optimal feature set, since the absolute optimal 

feature set can only be found by oracle methods that already have the knowledge of the 

identities and concentrations of the analyte. Therefore, an iterative active approach is the 

solution for more general wavelength selection problems.  
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8. CONCLUSION 

We developed a set of techniques to identify chemical or chemical mixture with online 

wavelength selection and sensing. There are two main aspects of the contribution: the 

adaptive wavelength selection for mixture identification and the non-negative least 

squares solvers for mixture analysis.  

As to the adaptive wavelength selection, we developed three approaches that are based 

on Bayesian risk, multi-modal solver, and the Gaussian process regression respectively. 

The Bayesian risk based approach can only identify single chemicals; the multi-modal 

solver based approach can identify chemical mixtures but is computationally costly. 

However the proposed Gaussian process regression approach improves the 

computational speed by leveraging the smoothness of the spectrum.  

Additionally, we developed two sparse NNLS (non-negative least squares) algorithms. 

The first solver is the multi-modal NNLS that generates multiple solutions. It generates 

more sparse solutions than what classical NNLS does, and its multi-modality enables our 

first adaptive wavelength selection to identify chemical mixture. The second solver is the 

nonlinear BICS-bNNLS. It speeds up the classical NNLS using batch updating, and BIC 

shrinkage method provides additional sparsity. Furthermore, it provides a greater 

accuracy by accommodating nonlinearity and emitter drift. 

We evaluated the three active wavelength selection algorithms together with the 

corresponding solvers on both synthesized and experimental FPI data. The results lead to 

several insights:  
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- The optimal wavelengths for identification are analyte-dependent. Thus, in 

addition to improving the sensing speed, active wavelength selection improves the 

accuracy. 

- Similar to many other applications, the linear model on which IR spectral mixture 

analysis relies on can be broken due to the limitation of experimental setup. 

Factors such as nonlinearity and emitter drift introduce structural error that 

becomes the bottleneck of the platform.  

- The active sensing strategy becomes superior under two circumstances: when the 

model is nonlinear and when the observations are noisy. By sampling a smaller 

number of wavelengths, the algorithm introduces less nonlinearity and it is able to 

leverage repeated sampling to compensate for noise.  

- In contrast to passive wavelength selection algorithms, the analyte-dependent 

advantages of active sensing diminish as the analyte consists of more components, 

or numerically speaking, the concentration vector grows dense. This is as 

expected because higher-order mixture covers a large number of spectral 

signatures that are shared with many constituents.  

8.1 Future work 

8.1.1 Studies of nonlinearity in chemical interactions 

 Because the nonlinearity becomes the bottleneck of further improvement of accuracy, 

accommodation for nonlinearity can boost the performance. In this dissertation, we 

accommodate nonlinearity caused by changes in concentrations; however, we did not 

consider the nonlinearity caused by chemical interaction. In real applications, mixing 
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two chemicals together often leads to nonlinearity through two mechanisms: reversible 

reactions and irreversible reactions. Irreversible reactions between chemicals essentially 

generate new chemicals. Reversible reaction shifts the equilibrium state of the mixture, 

changing the effective concentration of the constituents. Much effort needs to be made to 

investigate such interactions with spectral data in order to conduct analysis and 

identification for higher-order mixtures. Since the mixture is combinatorial, studying 

them is labor-intensive.  

8.1.2 Active sensing based on Bayesian multivariate linear regression 

The Bayesian approach of linear regression represent both the solutions and the spectral 

library in terms of distribution. The distribution representation is a natural development 

the multi-modal NNLS approach in Chapter 5. Instead of generating multiple solutions 

that are sampled from a distribution, the Bayesian multivariate linear regression offers 

the whole distribution. Active wavelength selection can leverage the information of such 

distributions as the utility function of the wavelength selection process.  

8.1.3 Generalized effective rank 

 The effective rank provides a theoretical bound of the number of resolvable 

constituents. As an extension of the original effective rank developed by Roy et al. [14], 

we developed an effective rank with observation noise level in consideration (see 

2.3.2.2). However, this method does not consider correlation between features; neither 

does this method consider possible noisy readings in the spectral library. To generalize 

the effective rank, both the spectral library and the observations need to be represented 
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by multivariate distribution. The generalized effective rank should shine light on the 

maximum resolvable constituents under the context of generalized least squares. 

8.1.4 Effective rank under nonlinearity 

Since nonlinearity in the spectrum also contributes to the deterioration of the effective 

rank, further generalization of the effective rank requires incorporation of nonlinearities. 

Studies of different nonlinear transformation or nonlinear operators and their impact on 

effective rank can shine light on future experimental design so that the experiment can 

avoid the detrimental effects caused by nonlinearity.  

8.1.5 Active chemical verification 

So far, we have investigated the problem of chemical identification. It is a general 

framework without any prior knowledge of the analytes. In many real world 

applications, we are typically interested in only certain constituents, such as some 

specific pollutants in the atmosphere. In this case, the target analyte is known. Since we 

can exploit the characteristics of the target analyte, it is a simpler problem to verify its 

existence than identifying every constituent in the mixture.  

Admittedly, when all the constituents of both the analyte and the backgrounds are 

known, the optimal wavelength selection strategy regresses to the traditional passive 

wavelength selection. However, when the identities of backgrounds are unknown, active 

wavelength selection is still beneficial. In this case, the optimal wavelength set is 

background-dependent. Depending on the similarities and differences between the 
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background constituents and the target constituent, the most distinctive wavelengths for 

the analyte of interest vary.  



151 

 

REFERENCES 

[1] H. Ding, J. Liang, J. Cui et al., ―A novel fiber Fabry-Perot filter based mixed-gas 
sensing system,‖ Sensors and Actuators B: chemical, pp. 154-159, 2009. 

[2] N. Neumann, M. Ebermann, S. Kurth et al., "Novel MWIR microspectrometer 
based on a tunable detector." 

[3] C. H. Spiegelman, M. J. McShane, M. J. Goetz et al., ―Theoretical Justification 

of Wavelength Selection in PLS Calibration:  Development of a New 
Algorithm,‖ Anal. Chem., vol. 70, no. 1, pp. 35-44, 1998. 

[4] B. Hemmateenejad, R. Ghavamia, R. Mirib et al., ―Net analyte signal-based 
simultaneous determination of antazoline and naphazoline using wavelength 
region selection by experimental design-neural networks,‖ Talanta, vol. 67, no. 

4, pp. 1222–1229, 2006. 

[5] M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão1 et al., ―The successive 

projections algorithm for variable selection in spectroscopic multicomponent 
analysis,‖ Chemometrics and Intelligent Laboratory Systems, vol. 57, no. 2, pp. 
65–73, 2001. 

[6] B. Hemmateenejad, M. Akhond, and F. Samari, ―A comparative study between 
PCR and PLS in simultaneous spectrophotometric determination of 

diphenylamine, aniline, and phenol: Effect of wavelength selection,‖ 
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 67, 
no. 3-4, pp. 958–965, 2007. 

[7] H. Swierengaa, F. Wülfertb, O. E. de Noordc et al., ―Development of robust 
calibration models in near infra-red spectrometric applications,‖ Analytica 

Chimica Acta, vol. 311, no. 1-2, pp. 121–135, 2000. 

[8] R. Leardi, ―Genetic algorithms in chemometrics and chemistry: a review,‖ 
Journal of Chemometrics, vol. 15, no. 7, pp. 559-569, 2001. 

[9] M. Shamsipur, V. Zare-Shahabadi, B. Hemmateenejad et al., ―Ant colony 
optimisation: a powerful tool for wavelength selection,‖ Journal of 

Chemometrics, vol. 20, no. 3-4, pp. 146-157, 2006. 

[10] Y. P. Du, Y. Z. Liang, J. H. Jiang et al., ―Spectral regions selection to improve 
prediction ability of PLS models by changeable size moving window partial least 

squares and searching combination moving window partial least squares,‖ 
Analytica Chimica Acta, vol. 501, no. 2, pp. 183-191, 1/16/, 2004. 



152 

 

[11] A. Martin, and R. M. Synge, ―A new form of chromatogram employing two 
liquid phases: A theory of chromatography. 2. Application to the micro-

determination of the higher monoamino-acids in proteins,‖ Biochemical Journal, 
vol. 35, no. 12, pp. 1358, 1941. 

[12] D. Harvey, "Spectroscopic methods of analysis," Modern analytical chemistry, 
pp. 368 - 460: McGraw-Hill New York, 2000. 

[13] A. Lipson, S. G. Lipson, and H. Lipson, Optical physics: Cambridge University 

Press, 2010. 

[14] O. Roy, and M. Vetterli, "The effective rank: A measure of effective 

dimensionality." pp. 606-610. 

[15] R. Gutierrez-Osuna, ―Pattern analysis for machine olfaction: a review,‖ Sensors 
Journal, IEEE, vol. 2, no. 3, pp. 189-202, 2002. 

[16] E. H. Moore, ―On the reciprocal of the general algebraic matrix,‖ Bulletin of the 
American Mathematical Society, vol. 26, no. 9, pp. 394-395, 1920. 

[17] R. L. Basmann, ―A generalized classical method of linear estimation of 
coefficients in a structural equation,‖ Econometrica: Journal of the Econometric 
Society, pp. 77-83, 1957. 

[18] C. L. Lawson, and R. J. Hanson, "Problem NNLS," Solving least squares 
problems, pp. 160 -  165: Prentice-hall, Inc., 1974. 

[19] R. Bro, and S. De Jong, ―A fast non-negativity-constrained least squares 
algorithm,‖ Journal of chemometrics, vol. 11, no. 5, pp. 393-401, 1997. 

[20] M. H. Van Benthem, and M. R. Keenan, ―Fast algorithm for the solution of 

large‐scale non‐negativity‐constrained least squares problems,‖ Journal of 

chemometrics, vol. 18, no. 10, pp. 441-450, 2004. 

[21] V. K. Potluru, S. M. Plis, S. Luan et al., "Sparseness and a reduction from totally 
nonnegative least squares to svm." pp. 1922-1929. 

[22] S. G. Mallat, and Z. Zhang, ―Matching pursuits with time-frequency 
dictionaries,‖ Signal Processing, IEEE Transactions on, vol. 41, no. 12, pp. 

3397-3415, 1993. 

[23] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, "Orthogonal matching pursuit: 
Recursive function approximation with applications to wavelet decomposition." 

pp. 40-44. 



153 

 

[24] A. E. HOERL, ―Application of ridge analysis to regression problems,‖ Chemical 
Engineering Progress, vol. 58, pp. 54-59, 1962. 

[25] J. F. Claerbout, and F. Muir, ―Robust modeling with erratic data,‖ Geophysics, 
vol. 38, no. 5, pp. 826-844, 1973. 

[26] R. Mammone, O. McKee, and D. Schilling, "Frequency resolution enhancement 
of a compressive receiver by spectral estimation." pp. 713-719. 

[27] M. F. Duarte, M. A. Davenport, D. Takhar et al., ―Single-pixel imaging via 

compressive sampling,‖ IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 
83, 2008. 

[28] R. Tibshirani, ―Regression shrinkage and selection via the lasso,‖ Journal of the 
Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996. 

[29] S. Boyd, and L. Vandenberghe, "Interior-point methods," Convex optimization, 

pp. 561-323: Cambridge university press, 2004. 

[30] S. S. Chen, D. L. Donoho, and M. A. Saunders, ―Atomic decomposition by basis 

pursuit,‖ SIAM journal on scientific computing, vol. 20, no. 1, pp. 33-61, 1998. 

[31] E. J. Candes, J. K. Romberg, and T. Tao, ―Stable signal recovery from 
incomplete and inaccurate measurements,‖ Communications on pure and applied 

mathematics, vol. 59, no. 8, pp. 1207-1223, 2006. 

[32] E. J. Candes, and T. Tao, ―Near-optimal signal recovery from random 

projections: Universal encoding strategies?,‖ Information Theory, IEEE 
Transactions on, vol. 52, no. 12, pp. 5406-5425, 2006. 

[33] W. J. Fu, ―Penalized regressions: the bridge versus the lasso,‖ Journal of 

computational and graphical statistics, vol. 7, no. 3, pp. 397-416, 1998. 

[34] H. Zou, and T. Hastie, ―Regularization and variable selection via the elastic net,‖ 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 
67, no. 2, pp. 301-320, 2005. 

[35] G. C. Tiao, and A. Zellner, ―On the Bayesian estimation of multivariate 

regression,‖ Journal of the Royal Statistical Society. Series B (Methodological), 
pp. 277-285, 1964. 

[36] P. M. Williams, ―Bayesian regularization and pruning using a Laplace prior,‖ 
Neural computation, vol. 7, no. 1, pp. 117-143, 1995. 

[37] T. Park, and G. Casella, ―The bayesian lasso,‖ Journal of the American 

Statistical Association, vol. 103, no. 482, pp. 681-686, 2008. 



154 

 

[38] C. E. Rasmussen, and C. K. I. Williams, Gaussian processes for machine 
learning: The MIT Press, 2006. 

[39] P. M. Narendra, and K. Fukunaga, ―A branch and bound algorithm for feature 
subset selection,‖ Computers, IEEE Transactions on, vol. 100, no. 9, pp. 917-

922, 1977. 

[40] S. D. Frans, and J. M. Harris, ―Selection of analytical wavelengths for 
multicomponent spectrophotometric determinations,‖ Analytical Chemistry, vol. 

57, no. 13, pp. 2680-2684, 1985. 

[41] J. Smits, W. Melssen, L. Buydens et al., ―Using artificial neural networks for 

solving chemical problems: Part I. Multi-layer feed-forward networks,‖ 
Chemometrics and Intelligent Laboratory Systems, vol. 22, no. 2, pp. 165-189, 
1994. 

[42] R. Todeschini, D. Galvagni, J. Vılchez et al., ―Kohonen artificial neural networks 
as a tool for wavelength selection in multicomponent spectrofluorimetric PLS 

modelling: application to phenol, o-cresol, m-cresol and p-cresol mixtures,‖ 
TrAC Trends in Analytical Chemistry, vol. 18, no. 2, pp. 93-98, 1999. 

[43] L. Norgaard, A. Saudland, J. Wagner et al., ―Interval partial least-squares 

regression (iPLS): a comparative chemometric study with an example from near-
infrared spectroscopy,‖ Applied Spectroscopy, vol. 54, no. 3, pp. 413-419, 2000. 

[44] R. Leardi, and L. Nørgaard, ―Sequential application of backward interval partial 
least squares and genetic algorithms for the selection of relevant spectral 
regions,‖ Journal of chemometrics, vol. 18, no. 11, pp. 486-497, 2004. 

[45] Z. Xiaobo, Z. Jiewen, H. Xingyi et al., ―Use of FT-NIR spectrometry in non-
invasive measurements of soluble solid contents (SSC) of ‗Fuji‘apple based on 

different PLS models,‖ Chemometrics and Intelligent Laboratory Systems, vol. 
87, no. 1, pp. 43-51, 2007. 

[46] J.-H. Jiang, R. J. Berry, H. W. Siesler et al., ―Wavelength interval selection in 

multicomponent spectral analysis by moving window partial least-squares 
regression with applications to mid-infrared and near-infrared spectroscopic 

data,‖ Analytical chemistry, vol. 74, no. 14, pp. 3555-3565, 2002. 

[47] Y. Du, Y. Liang, J. Jiang et al., ―Spectral regions selection to improve prediction 
ability of PLS models by changeable size moving window partial least squares 

and searching combination moving window partial least squares,‖ Analytica 
chimica acta, vol. 501, no. 2, pp. 183-191, 2004. 



155 

 

[48] V. Centner, D.-L. Massart, O. E. de Noord et al., ―Elimination of uninformative 
variables for multivariate calibration,‖ Analytical chemistry, vol. 68, no. 21, pp. 

3851-3858, 1996. 

[49] W. Cai, Y. Li, and X. Shao, ―A variable selection method based on 

uninformative variable elimination for multivariate calibration of near-infrared 
spectra,‖ Chemometrics and intelligent laboratory systems, vol. 90, no. 2, pp. 
188-194, 2008. 

[50] S. Ye, D. Wang, and S. Min, ―Successive projections algorithm combined with 
uninformative variable elimination for spectral variable selection,‖ 

Chemometrics and Intelligent Laboratory Systems, vol. 91, no. 2, pp. 194-199, 
2008. 

[51] J. J. Gibson, The ecological approach to visual perception, 1st ed., New Jersey: 

Lawrence Erlbaum Associates, 1986. 

[52] J. J. Gibson, ―Observations on active touch,‖ Psychological Review, vol. 69, no. 

6, pp. 477-491, 1962. 

[53] R. Bajcsy, ―Active perception,‖ Proceedings of the IEEE, vol. 76, no. 8, pp. 966-
1005, 1988. 

[54] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, ―Active vision,‖ International 
Journal of Computer Vision, vol. 1, no. 6, pp. 333-356, 1988. 

[55] Z. Yongmian, and J. Qiang, ―Active and dynamic information fusion for facial 
expression understanding from image sequences,‖ Pattern Analysis and Machine 
Intelligence, IEEE Transactions on, vol. 27, no. 5, pp. 699-714, 2005. 

[56] T. H. Chung, V. Gupta, J. W. Burdick et al., "On a decentralized active sensing 
strategy using mobile sensor platforms in a network." pp. 1914-1919 Vol.2. 

[57] N. Roy, W. Burgard, and S. T. D. Fox, "Coastal navigation-mobile robot 
navigation with uncertainty in dynamic environments." pp. 35-40. 

[58] D. Fox, W. Burgard, and S. Thrun, ―Active Markov localization for mobile 

robots,‖ Robotics and Autonomous Systems, vol. 25 no. 3-4, pp. 195 - 207, 1998. 

[59] J. J. Leonard, and H. F. Durrant-Whyte, "Simultaneous map building and 

localization for an autonomous mobile robot." pp. 1442-1447. 

[60] H. J. Kushner, ―A new method of locating the maximum point of an arbitrary 
multipeak curve in the presence of noise,‖ Journal of Basic Engineering, vol. 86, 

no. 1, pp. 97-106, 1964. 



156 

 

[61] J. Močkus, "On Bayesian methods for seeking the extremum." pp. 400-404. 

[62] J. Mockus, ―Application of Bayesian approach to numerical methods of global 

and stochastic optimization,‖ Journal of Global Optimization, vol. 4, no. 4, pp. 
347-365, 1994/06/01, 1994. 

[63] P. Auer, N. Cesa-Bianchi, and P. Fischer, ―Finite-time analysis of the multiarmed 
bandit problem,‖ Machine learning, vol. 47, no. 2-3, pp. 235-256, 2002. 

[64] T. L. Lai, and H. Robbins, ―Asymptotically efficient adaptive allocation rules,‖ 

Advances in applied mathematics, vol. 6, no. 1, pp. 4-22, 1985. 

[65] J. L. T. Zhang, ―The Epoch-Greedy Algorithm for Contextual Multi-armed 

Bandits.‖ 

[66] J.-Y. Audibert, R. Munos, and C. Szepesvári, ―Exploration–exploitation tradeoff 
using variance estimates in multi-armed bandits,‖ Theoretical Computer Science, 

vol. 410, no. 19, pp. 1876-1902, 2009. 

[67] R. Kleinberg, A. Slivkins, and E. Upfal, "Multi-armed bandits in metric spaces." 

pp. 681-690. 

[68] S. Bubeck, and N. Cesa-Bianchi, ―Regret analysis of stochastic and nonstochastic 
multi-armed bandit problems,‖ arXiv preprint arXiv:1204.5721, 2012. 

[69] V. Kuleshov, and D. Precup, ―Algorithms for multi-armed bandit problems,‖ 
arXiv preprint arXiv:1402.6028, 2014. 

[70] E. J. Candes, and T. Tao, ―Near-Optimal Signal Recovery From Random 
Projections: Universal Encoding Strategies,‖ IEEE transaction on Information 
Theory, vol. 52, no. 12, pp. 5406-5425, 2006. 

[71] J. Haupt, R. Castro, and R. Nowak, "Distilled Sensing: Selective Sampling for 
Sparse Signal Recovery." 

[72] R. M. Castro, and R. D. Nowak, ―Minimax bounds for active learning,‖ 
Information Theory, IEEE Transactions on, vol. 54, no. 5, pp. 2339-2353, 2008. 

[73] R. Lomasky, C. E. Brodley, M. Aernecke et al., "Active Class Selection," 

Machine Learning: ECML 2007, Lecture Notes in Computer Science J. Kok, J. 
Koronacki, R. Mantaras et al., eds., pp. 640-647: Springer Berlin Heidelberg, 

2007. 

[74] I. Rodriguez-Lujan, J. Fonollosa, A. Vergara et al., ―On the calibration of sensor 
arrays for pattern recognition using the minimal number of experiments,‖ 

Chemometrics and Intelligent Laboratory Systems, vol. 130, pp. 123-134, 2014. 



157 

 

[75] T. Nakamoto, S. Ustumi, N. Yamashita et al., ―Active gas/odor sensing system 
using automatically controlled gas blender and numerical optimization 

technique,‖ Sensors and Actuators B: Chemical, vol. 20, no. 2–3, pp. 131-137, 
1994. 

[76] T. Nakamoto, N. Okazaki, and H. Matsushita, ―Improvement of optimization 
algorithm in active gas/odor sensing system,‖ Sensors and Actuators A: Physical, 
vol. 50, no. 3, pp. 191-196, 1995. 

[77] R. Gutierrez-Osuna, and A. Hierlemann, ―Adaptive microsensor systems,‖ 
Annual Review of Analytical Chemistry, vol. 3, pp. 255-276, 2010. 

[78] B. Raman, A. Gutierrez-Galvez, A. Perera-Lluna et al., "Sensor-based machine 
olfaction with a neurodynamics model of the olfactory bulb." pp. 319-324. 

[79] R. Gutierrez-Osuna, and P. Sun, "A biologically-plausible computational 

architecture for sensor-based machine olfaction." pp. 57-59. 

[80] R. Gutierrez-Osuna, N. Powar, and P. Sun, "Chemosensory adaptation in an 

electronic nose." pp. 223-229. 

[81] R. Gutierrez-Osuna, and N. U. Powar, ―Odor mixtures and chemosensory 
adaptation in gas sensor arrays,‖ International Journal on Artificial Intelligence 

Tools, vol. 12, no. 01, pp. 1-16, 2003. 

[82] R. Gosangi, and R. Gutierrez-Osuna, ―Active Temperature Programming for 

Metal-Oxide Chemoresistors,‖ IEEE Sensors Journal, vol. 10, no. 6, pp. 1075 -
1082, 2010. 

[83] R. Gosangi, and R. Gutierrez-Osuna, "Energy-aware active chemical sensing." 

pp. 1094-1099. 

[84] R. Gosangi, and R. Gutierrez‐Osuna, "Data‐driven Modeling of Metal‐oxide 

Sensors with Dynamic Bayesian Networks." pp. 135-136. 

[85] R. Gosangi, and R. Gutierrez‐Osuna, "Quantification of gas mixtures with active 

recursive estimation." pp. 23-24. 

[86] R. Gosangi, and R. Gutierrez-Osuna, ―Active temperature modulation of metal-

oxide sensors for quantitative analysis of gas mixtures,‖ Sensors and Actuators 
B: Chemical, vol. 185, pp. 201-210, 2013. 

[87] A. Hierlemann, and R. Gutierrez-Osuna, ―Higher-order chemical sensing,‖ 
Chemical reviews, vol. 108, no. 2, pp. 563-613, 2008. 



158 

 

[88] R. Gosangi, and R. Gutierrez-Osuna, ―Active classification with arrays of tunable 
chemical sensors,‖ Chemometrics and Intelligent Laboratory Systems, 2014. 

[89] C. E. Priebe, D. J. Marchette, and D. M. Healy, ―Integrated sensing and 
processing decision trees,‖ IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 26, no. 6, pp. 699-708, 2004. 

[90] D. V. Dinakarababu, D. R. Golish, and M. E. Gehm, ―Adaptive feature specific 
spectroscopy for rapid chemical identification,‖ Optics Express, vol. 19, no. 5, 

pp. 4595-4610, 2011. 

[91] R. Gosangi, and R. Gutierrez-Osuna, ―Active Temperature Programming for 

Metal-Oxide Chemoresistors,‖ Sensors Journal, IEEE, vol. 10, no. 6, pp. 1075 -
1082, 2010. 

[92] S. Ji, and L. Carin, ―Cost-sensitive feature acquisition and classification,‖ Pattern 

Recognition, vol. 40, no. 5, pp. 1474-1485, 2007. 

[93] D. D. Lee, and H. S. Seung, ―Learning the parts of objects by non-negative 

matrix factorization,‖ Nature, vol. 401, no. 6755, pp. 788-791, 1999. 

[94] C. L. Lawson, and R. J. Hanson, Solving least squares problems: SIAM, 1995. 

[95] Beer, ―Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,‖ 

Annalen der Physik und Chemie, vol. 86, pp. 78-88, 1852. 

[96] A. Dempster, N. Laird, and D. Rdin, ―Maximum likelihood from incomplete data 

via the EM algorithm,‖ Journal of the Royal Statistical Society, Series B, vol. 39, 
no. 1, pp. 1-38, 1977. 

[97] H. A. Seipel, and J. H. Kalivas, ―Effective rank for multivariate calibration 

methods,‖ Journal of chemometrics, vol. 18, no. 6, pp. 306-311, 2004. 

[98] G. Goertzel, ―An Algorithm for the Evaluation of Finite Trigonomentric Series,‖ 

The American Mathematical Monthly, 1958. 

[99] I. Guyon, and A. Elisseeff, ―An introduction to variable and feature selection,‖ 
The Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003. 

[100] G. S. Mallat, and Z. Zhang, ―Matching Pursuits With Time-Frequency 
Dictionaries,‖ IEEE Transactions on signal processing, vol. 41, no. 12, pp. 3997-

3415, 1993. 

[101] S. Das, S. Maity, B. Qu et al., ―Real-parameter evolutionary multimodal 
optimization — A survey of the state-of-the-art,‖ Swarm and Evolutionary 

Computation, vol. 1, no. 2, pp. 71-88, 2011. 



159 

 

[102] E. J. Wagenmakers, and S. Farrell, ―AIC model selection using Akaike weights,‖ 
Psychonomic Bulletin & Review, vol. 11, no. 1, pp. 192-196, 2004/02/01, 2004. 

[103] K. P. Burnham, and D. R. Anderson, "Model selection and multimodel inference: 
a practical information-theoretic approach," p. 63: Springer, 2002. 

[104] J. Huang, and R. Gutierrez-Osuna, ―Active analysis of chemical mixtures with 
multi-modal sparse non-negative least squares,‖ in International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), 2013, pp. 8756-8760. 

[105] S. W. Wilson, "Explore/exploit strategies in autonomy." pp. 325-332. 

[106] A. W. Whitney, ―A direct method of nonparametric measurement selection,‖ 

Computers, IEEE Transactions on, vol. 100, no. 9, pp. 1100-1103, 1971. 

[107] P. M. Chu, F. R. Guenther, G. C. Rhoderick et al., "Qunatitative Infrared 
Database," NIST Chemistry WebBook, NIST Standard Reference Database 

Number 69, N. Eds. P.J. Linstrom and W.G. Mallard, ed. 

[108] H. Akaike, ―A new look at the statistical model identification,‖ Automatic 

Control, IEEE Transactions on, vol. 19, no. 6, pp. 716-723, 1974. 

[109] G. Schwarz, ―Estimating the dimension of a model,‖ The annals of statistics, vol. 
6, no. 2, pp. 461-464, 1978. 

[110] C. K. Williams, "Prediction with Gaussian processes: From linear regression to 
linear prediction and beyond," Learning in graphical models, pp. 599-621: 

Springer, 1998. 

[111] S. Kim, K. Koh, M. Lustig et al., ―A method for large-scale l1-regularized least 
squares problems with applications in signal processing and statistics,‖ IEEE J. 

Select. Topics Signal Process, vol. 1, no. 4, pp. 606-617, 2007. 

[112] D. R. Jones, M. Schonlau, and W. J. Welch, ―Efficient global optimization of 

expensive black-box functions,‖ Journal of Global optimization, vol. 13, no. 4, 
pp. 455-492, 1998. 

[113] J. Sacks, W. J. Welch, T. J. Mitchell et al., ―Design and analysis of computer 

experiments,‖ Statistical science, pp. 409-423, 1989. 

[114] C. E. Rasmussen, and C. K. I. Williams, "Squared exponential covariance 

function," Gaussian processes for machine learning, pp. 83-84: The MIT Press, 
2006. 

[115] C. E. Rasmussen, and C. K. I. Williams, "Dot product covariance funcitons," 

Gaussian processes for machine learning, pp. 89-90: The MIT Press, 2006. 



160 

 

[116] M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão et al., ―The successive 
projections algorithm for variable selection in spectroscopic multicomponent 

analysis,‖ Chemometrics and Intelligent Laboratory Systems, vol. 57, no. 2, pp. 
65-73, 2001. 

[117] F. Hayashi, "Econometrics," Princeton University Press Princeton, NJ, 2000, p. 
27. 

[118] H. V. Poor, "An introduction to signal detection and estimation," pp. 5-9: 

Springer, 1994. 

 

 



161 

 

APPENDIX A:  NONLINEAR DEVIATION OF BEER’S LAW 

The linear relationship in Beer‘s law dictates that for a certain analyte, the slope   

mentioned in equation (3) is a constant. However, in practice, deviation can occur. 

Furthermore, the effect of the negative deviation increases the spectrum is sharper. To 

give an intuitive proof, let us assume that one neighboring spectral line is leaked to the 

detector because of the imperfect wavelength selector. Using equation (1), (2), and (3), 

the effective absorbance is: 

       
     

 

           
        

  , (47) 

where    is the targets spectral lines, and the   
  is a neighboring ―leaked‖ radiation 

energy;   and    are the corresponding molar absorptivity at these two neighboring 

wavelengths. We can calculate the second derivative of the absorbance   as to the 

concentration  :  

   

   
  

    
       (    )               

(                
 )

     (48) 

As we can see, firstly, Beer‘s law holds (
   

     ) if and only if     ; secondly, the 

negative deviation worsens when the slope is steeper, 
   

            . Figure (6) gives 

an illustration of such non-uniform nonlinear deformation. 
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APPENDIX B: THE EFFECTIVE RANK UNDER NOISE 

The intrinsic dimensionality of a linear system refers to the maximum number of 

dimensions resolvable for a linear inversion problem. The rank, which measures the 

number of linearly independent components, is a traditional metric for such intrinsic 

dimensionality. An alternative, effective rank, was proposed by Roy et al. [14]. Like the 

rank, the effective rank provides an indication of the intrinsic dimensionality. Unlike the 

rank, the effective rank offers a continuous measure (so it is possible to have 3.4 

dimensions) by computing the entropy of the eigenvalues of the matrix   in the linear 

system in equation (8). For example, when all eigenvalues are the same and non-zero, 

the effective rank is the highest. However, the method does not put sensor noise into 

consideration. Here, we propose a method that considers both the traditional rank of the 

linear system and the observational noise level: the effective rank with the consideration 

of noise.  

Given a linear system     , assuming the sensor noise follow Gaussian 

distribution          , the estimation of   also follows a multivariate normal 

distribution                      [117]. This joint distribution of the estimation   

provides us the insight of how reliable the estimation is going to be. The effective rank 

of this linear system can be then represented as the expected number of components 

being ―reliably‖ estimated. We quantify Reliability as the probability of the variables   
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estimated within a range of error, i.e., probability of the estimation being in a hyper-

cube (     *      
 

  

 
       

 
  

 
+       ).   

       ∫       
 

    (49) 

For example, assuming the total number of components    , the two dimensional 

normal distribution can be illustrated in Figure 60. Then the integrating region is the 

square area marked as T. We define the length of the cube being 
 

 
, inspired by the fact 

that the total concentration is one       .  

 

Figure 60 The hypercube regional integration over a two-component linear system. 

Given   individual chemical components, there are at most           possible 

analytes from single chemicals to  -component mixtures. If we can calculate the 
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expected number of chemical mixtures  ̅          |   * 
 

 
 
 

 
+  being reliably 

estimated as mentioned before, we can recover the intrinsic dimensionality: 

 [ |   [ 
 

 
 
 

 
] ]        ̅       (50) 

where   denotes the margin in the hyper-cube that defines reliable estimation.  

Calculating  ̅    is computationally expensive because the number of potential mixtures 

are combinatorial (    ). Furthermore, calculating the integrals of the multivariate 

distributions is computationally prohibitive. To alleviate this problem, we rotate the 

mixture components using SVD (singular-value-decomposition), since each rotated 

component is orthogonal to each other, we can simplify the multivariate integration to a 

product of a sequence of univariate integration: 

  (    |   )     ∏(       

  

(
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 (51) 

where    

  

    is the cumulative distribution function of a zero-mean normal distribution 

with variation 
  

  
. The final equation for effective rank under noise is:  

                 (∑ ∑   (    |   )
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where    is the estimated solution of one of the (
 
 
) possible  -component problem;   is 

a hyper-cube centering at the ground truth of the corresponding mixture problem.   and 

  are the key parameters in the linear system described in equation (9). 

To illustrate new effective rank under different noise levels, we compute the new 

effective rank on the same positive semi-definite circulant matrix   used in the original 

effective rank [14]. The matrix is defined as: 

  

[
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    (53) 

where the parameter   [    ]. When    , the matrix has the highest rank of four, as 

  approaches either   or   , the matrix becomes more ill-conditioned and eventually 

reaches rank 1. The result of the new effective rank is illustrated in Figure 61. As the 

noise level decreases, the effective rank converges to the rank that assumes noiseless 

measurement. As the noise level increases, the condition of the matrix becomes less 

relevant as the effective rank function flattens. It is worthwhile to mention that, when the 

noise is overwhelmingly high (     , i.e., the variance of the noise dominates the 

information of the linear system in matrix  , the effective rank eventually converge to 

zero.  



166 

 

 

Figure 61 Effective rank vs   under different noise level. The red dashed line is the rank. 

The solid lines illustrate different effective ranks at different noise level.    denotes the 

variance in the normal distribution for the noise. 
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APPENDIX C:  OBSERVATION DISCRETIZATION 

equation (22) is only applicable in discrete observation domains; in a continuous space, 

it becomes an intractable integration. To address this problem, we discretize the 

continuous observation space into a finite number of discrete values. For each 

wavelength   , we uniformly discretize the corresponding observation space into a 

sorted set of   discrete values { ̅     ̅      ̅   }. The posterior probability of the     

discrete observation for chemical    is calculated as: 

 ( ̅   |     )  ∫ ∑  ( ̅   |             )

 

   

 ̅     ̅     

 

 ̅     ̅     

 

 (54) 

The number of discrete observations   influences the accuracy and computational 

complexity of equation (22). Therefore, after some experiments, we choose the   to be 

200 to approximate the continuous observation space and still allow real-time operation. 

 



168 

 

APPENDIX D:  APPROXIMATION OF MISCLASSIFICATION COST 

To reduce computational costs, the variance of each wavelength across all candidate 

observations in equation (29) is used as an approximation of the misclassification risk. 

Assume the binary classification problem illustrated in Figure 62. Using Bayesian 

decision theory [118], its misclassification risk   can be calculated as: 

                 (55) 

where     is the cost of wrongly assigning a sample to class   when   is the correct class, 

     is the probability of such misclassification:     ∫       
   

, and     represents the 

region where such misclassifications may occur (see Figure 62). Assume that the noise 

in observation space is independent and normally distributed, and that both costs are 

equal           . Since the two distributions are symmetric relative to the 

classification boundary, the misclassification risk is monotonically related to the distance 

between the two means        : 
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/ (56) 

where      is a monotonically increasing function. Intuitively, this means that the 

further the two Gaussian means are, the easier the binary classification problem is. 

In our case, we have   candidates, so the problem becomes one of       

classification with total misclassification risk given by: 



169 

 

   ∑      

         

        ∑  .
|     |

 
/

        

   (57) 

This computation is expensive when   is large, as is our case. However, since      is 

monotonic, there also exists a monotonic function       (√ 

 
) such that  
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Figure 62: Misclassification risk of a binary classification problem. 

Using the 1st order Taylor approximation:                  , we have:  

    ∑  .
|     |
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)        (59) 

where       is the variance defined in equation (29). Thus, by selecting the wavelength 

with maximum variance we minimize the misclassification risk.  
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APPENDIX E:  SIGNAL PROCESSING FOR THE FPI SENSOR 

The FPI sensor platform consists of emitter, gas cell, FPI detector, evaluation board, and 

a computer as illustrated in Figure 63. The evaluation board is responsible for driving the 

emitter with modulated signal, sending tuning signal to FPI sensor and 

receiving/processing output signal from the FPI sensor. The tuning wavelength and the 

final processed data transmit through USB to a computer.  

 

Figure 63: Diagram of the FPI platform for chemical identification. 

The FPI detector is based on pyroelectric effect. Pyroelectric effect is a property of 

certain materials to generate a voltage as a response to the change of its temperature. A 

common method to utilize this property for measuring signal is through modulation. As 

shown in Figure 63, we send a modulated signal (a square wave) to the emitter. Then, 

the whole chain of the sensing platform (emitter, lens, gas, lens, and FPI sensor) serves 

as low pass filters that smooth the modulated signal. As a result, the FPI sensor acquires 
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a sinusoid-like signal. Figure 64(a) shows a typical example of the raw modulated signal 

collected from the FPI sensor. In this example, a new tuning is set at around the 700 

milliseconds, the signal shifts to a signal with larger amplitude suggesting a stronger 

transmittance at this new wavelength. To measure the detected energy is to calculate the 

average amplitude of these periodical signals at the modulation frequency. Discrete-time 

Fourier transform (DTFT) with continuous frequency solves the problem: 

    ∑               

 

    

   (60) 

where   corresponds to the frequency of interest,      represents the time-series signal,   

corresponds to the sampling interval,   denotes the sample index.  

A common problem of Fourier transform is the spectral leakage. Spectral leakage is the 

blurring effect in frequency domain where a portion of the energy at other frequencies 

―leaked‖ into the frequency of interest. As to the raw FPI signal as shown in Figure 

64(a), the signal is accompanied by a low-frequency component, a drift, when the sensor 

is settling for new tunings.  

Fortunately, since the signal is periodical and its interval is fixed. We eliminate the low-

frequency component by subtracting the moving average calculated with a sliding 

window at a size of the interval. The extracted moving average is shown in Figure 64(a) 

and the compensated signal is shown in Figure 64(b).  
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Figure 64: The raw signals before and after drift compensations. 


