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ABSTRACT

Markov chain Monte Carlo (MCMC) methods have proven to be a very power-

ful tool for analyzing data of complex structures. However, their compute-intensive

nature, which typically require a large number of iterations and a complete scan of

the full dataset for each iteration, precludes their use for big data analysis. In this

thesis, we propose the so-called bootstrap Metropolis-Hastings (BMH) algorithm,

which provides a general framework for how to tame powerful MCMC methods to

be used for big data analysis; that is to replace the full data log-likelihood by a

Monte Carlo average of the log-likelihoods that are calculated in parallel from mul-

tiple bootstrap samples. The BMH algorithm possesses an embarrassingly parallel

structure and avoids repeated scans of the full dataset in iterations, and is thus fea-

sible for big data problems. Compared to the popular divide-and-conquer method,

BMH can be generally more efficient as it can asymptotically integrate the whole

data information into a single simulation run. The BMH algorithm is very flexible.

Like the Metropolis-Hastings algorithm, it can serve as a basic building block for de-

veloping advanced MCMC algorithms that are feasible for big data problems. BMH

can also be used for model selection and optimization by combining with reversible

jump MCMC and simulated annealing, respectively.
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1. INTRODUCTION

Development of computer technology and fast growing internet have been brought

us massive volume of data, such as climate data, biological assay data, website trans-

action logs, and credit card records. However, such massive data cannot be practi-

cally analyzed by a common personal computer becaue their sizes are too big to fit in

a memory or it is too time consuming to be analyzed by current statistical methods.

To arrange with this problem, one may consider to use parallel and distributed ar-

chitectures, with multicore and cloud computing platforms providing access to many

processors simultaneously, but still it is unclear how to apply current statistical meth-

ods to the big data with muticore system. Also, an increase in size typically comes

with growth in complexity of data structures. Big data have put a great challange

on current statistical methodology.

During past few decades, Markov chain Monte Carlo (MCMC) methods have

been widely used in statistical data analysis, and they have proven to be a very

powerful and typically unique computational tool for analyzing data of complex

structure. However, if a size of the data is too big, it is intractable to run MCMC

methods on a matter of memory or could be time consuming because it needs a large

numeber of iterations and complete scan of the data set for each iteration. This

have been a serious problem of Bayesian approach, whose main weapon is MCMC

methods, to big data issue even though it is powerful for complex model. Motivated

by success of MCMC methods in analysing data of complex structure, we propose

in this thesis a bootstrap Metropolis-Hastings (BMH) algorithm that is feasible for

big data and workable on parallel and distributed architectures. Basically, process

of BMH algorithm follows that of Metpolis-Hastings (MH) algorithm, which is the
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general form of MCMC methods. BMH algorithm uses a Monte Carlo average of log

likelihoods calculated in certain groups of subsets randomly sampled from the full

data set whereas Metropolis-Hastings algorithm uses a log likelihood of the full data

set. By taking subsets of data, BMH avoids repeated scan of full data set, and its

memory usage can be also controlled.

1.1 Metropolis-Hastings(MH) Algorithm

In a Bayesian approach for data analysis, we investigate posterior distribution of

parameters for the model. Let θ be the parameter vector containing set of parameters

in the model, and let D be the dataset. Then posterior density is

π (θ|D) =
π(θ)f(D|θ)

C1

(1.1)

where C1 is constant, π(θ) is prior density of θ, and f(D|θ) is likelihood of the data

given the parameter set θ. It is common that we don’t know exact closed form of the

posterior density π(θ|D) because it is often hard to find the constant C1 or because

the model(likelihood) is too complicated to integrate it so that it is hard to make

inferences for the parameter set. In those cases, one can consider generating samples

from the posterior density and making inference from the posterior samples. More

we sample from the posterior, the better inference we can get. Metropolis-Hastings

algorithm gives Markov chain generated from a certain distributoin function, and its

steps are following.

1. Set initials for θt

2. Generate candidate ϑ from a proposal density g(·|θt)

3. Accept ϑ with probability of α or reject with remaining probability where α is

defined by

2



α =
π(ϑ)f(D|ϑ)g(ϑ|θt)
π(θt)f(D|θt)g(θt|ϑ)

(1.2)

4. If the candidate is accepted, set the next value as θt+1 = ϑ, or if it is rejected,

set θt+1 = θt.

5. Repeat Step 2-4 for t = 1, 2, · · · , B, so we have B posterior samples θ1,θ2,

· · · ,θB.

Even though the posterior samples are not independent since they are forming

Markov chain, we can have i.i.d. samples by taking every m samples where m is

enough large to have independence betwwen θt and θt+m.

However, still there is an important condition that should be satisfied, that is,

π(θ|D) should be possibly evaluated. For the case of big data, it is often too time

consuming or infeasible because MCMC take large amount of iterations to guarantee

precise inferences from the samples. And also if evaluation of the model is containing

an inverse of large matrix, for example multivariate gaussian density, its computa-

tional complexity is O(n3) where n is a number of observations. Hence, increase of

a volum of the data will cause lack of memory or seriously long running time.

1.2 Advanced Markov Chain Monte Carlo Methods for Big Data

In the literature, there have been a few methods proposed for big data anal-

ysis such as the aggregated estimating equation method (Lin and Xi, 2011), the

resampling-based stochastic approximation method (Liang et al., 2013), the bag of

little Bootstraps (Kleiner et al., 2014), and the approximate Metropolis-Hastings

test(AMHT) method (Korattikra et al., 2014). The aggregated estimating equation

method employs divide-and-conquer strategy. It is first to compress the raw data

of each partition of the full dataset into some low dimensional statistics, and then
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to obtain an approximation to the estimating equation estimator, the aggregated

estimating equation estimator, by solving and equation aggregated from the saved

low dimensional statistics in all partitions. Liang et al. (2013) proposed a new pa-

rameter estimator, maximum mean log-likelihood estimator, for big data problem,

and a resampling-based stochastic approximation method for obtaining such an es-

timator. The resampling-based stochastic approximation method successfully avoids

some difficulties involved in big data problems such as inversion of high dimensional

matrix. The bag of little Bootstraps provides an efficient way of bootstrapping for

big data estimators which functions by combining the results of bootstrapping mul-

tiple small subsets of the big original dataset. We propose in this paper a bootstrap

Metropolis-Hastings algorithm that takes advantages of the bag of little Bootstrap

and the resampling-based stochastic approximation method. BMH algorithm func-

tions by maximizing adjusted posterior that is a proportional to multiplication of

mean log-likelihood and prior and uses multiple small bootstrap subsets randomly

sampled from the original dataset. In this paper, to show an efficiency of BMH,

AMHT and divide-and combind method are implemented, and their results are com-

pared with that of BMH.

In Chapter 2, we briefly describe some recent approaches to solve big data prob-

lem, and in Chapter 3, we will see steps of BMH algorithm and its implementation

on parallel architecture with some theoretical background. In Chapter 4, we will

assess and compare performances of BMH, AMHT, and D&C method using simu-

lated datasets. In Chapter 5, we will apply thses three methods to real datasets, US

monthly total precipication, which is spatial data. Finally, in Chapter 6, we close

this paper with breif discussion.
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2. SOME STRATEGIES FOR BIG DATA

Laney (2012) defined Big data as follows: ”Big data is high volume, high velocity,

and/or high variety information assets that require new forms of processing to enable

enhanced decision making, insight discovery and process optimization.” High volume

might be explained by large number of observations, high velocity represents fast

changing model as time goes, and high variety means that various types of data

that needs different approaches to analyze. High velocity and variety cause setting

of complex model, and as we briefly said in Chapter 1, Markov chin Monte Carlo

is considerably suitable for estimating complex model. Hence, Bayesian approach

using MCMC can be one great solution for these types of big data problems.

However, its repeated scan of data makes it computationally too slow to be

applied to a data of large amount of observations, which is the case of high volume.

In this chapter, we will discuss recent approaches suggested as solutions of big data

problems: divide-and-conquer strategy, the approximate Metropolis-Hastings test, a

bag of little bootstrap, and a resampling-based stochastic aaproximation.

2.1 Divide-and-Conquer(D&C) Strategy

Lin and Xi (2011) developed a computation and storage efficient algorithm for

estimating equation(EE) estimation in massive data set using ”divide-and-conquer”

strategy. First, one divides full data set into k partitions, and in each partition

parameters are estimated using corresponding partitioned data. Then by discarding

original data set, one can gaurantee storage efficiency. Later estimated parame-

ters from each partition are gathered to compute aggregated EE, which is weighted

average of parameter estimators in each partition. In their paper, Newton Raph-

son method is used to find maximum likelihood estimator for parameter estima-
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tion of each partition, and it is not directly comparable to a bootstrap Metropolis-

Hastings(BMH) algorithm, which is bayesian approach. Hence, we brought their

strategy, divide-and-conquer, by following steps.

1. Divide given massive dataset D into k random partitions, D1, · · · ,Dk

2. Run MH algorithm using each of partitioned datasets, so we have k chains of

θ1, · · · ,θk

3. Calculate θ̂i by taking average of the chain in each of partition, i, for i =

1, · · · , k

4. Calculate aggregated estimator θ̂ =
∑k

i=1 θ̂i/k

Lin and Xi (2011) used Ai =
∑n

j=1
∂ψ(xij ,θ̂i)

∂θ
as a weight to calculate weighted

average of θ̂i for i = 1, · · · , k where ψ(xij,θ) is score function to be minimized

and xij is j-th observation in i-th partition. However, we instead set Ai = 1 for all

i = 1, · · · , k partitions to have simple computation, and MH algorithm will converges

to equalibrium distribution whose maxizer satisfies minimizing the score function

when uniform prior is used.

2.2 Approximate Metropolis-Hastings Test(AMHT)

Korattikra et al. (2014) proposed the approximate Metropolis-Hastings test(AMHT)

method to generate random samples from the posterior distribution of big data. This

method basically develop approximation by reformulating the Metropolis-Hastings(MH)

test as a statistical decision problem. First, draw random number u ∼ Uniform [0, 1]

and in each of MH iteration, with subsample size of ns, accept the proposal ϑ if the

average difference µ in the log-likelihoods of ϑ and θt is greater than a threshold µ0,

i.e. compute
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µ0 =
1

n
log

[
u
π(θt)g(ϑ|θt)
π(ϑ)g(θt|ϑ)

]
, and (2.1)

µ =
1

ns

ns∑
i=1

li, where li = log f(xi|ϑ)− log f(xi|θt) (2.2)

Then if µ > µ0, accept the proposal and set θt+1 = ϑ. If µ ≤ µ0, reject the

proposal and set θt+1 = θt. This reformation of the MH test makes it easy to

frame it as a statistical hypothesis test, H0 : µ > µ0 vs. H1 : µ < µ0. Given µ0

and a random sample
{
li1 , · · · , lins

}
drawn without replacement from the population

{l1, · · · , ln}, if the difference between µ0 and the sample mean l̄ =
∑

j∈{i1,··· ,im} lj/m

is significantly greater than the standard deviation of l̄, we can make the decision to

accept or reject the proposal confidently. Otherwise, we should draw more data to

increase the precision of l̄, i.e. to reduce the standard deviation of l̄, until we have

enough evidence to make a decision. In summary, with m increasement of subsample,

single iteration of AMHT can be achieved by following steps.

1. Initialize estimated means l̄← 0 and l̄2 ← 0

2. Initialize ns ← 0, set Xn = D

3. Draw u ∼ Uniform [0, 1]

4. Draw mini-batch X of size min(m,n − ns) without replacement from Xn and

set Xn ← Xn \ X

5. Update l̄ and l̄2 using X , and ns ← ns + ‖X‖

6. Estimate standard deviation s, where

s =
sl√
ns

√
1− ns − 1

n− 1
and sl =

√(
l̄2 − (l̄)2

) ns
ns − 1

(2.3)
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7. Compute δ ← 1 − φns−1

(
l̄−µ0
s

)
where φk is CDF of the standard Student-t

distribution with k degree of freedom

8. If δ > ε, goto step 4 and repeat, otherwise goto the next step to have decision

making

9. Accept the proposal so that θt+1 ← θ′ if l̄ > µ0, otherwise θt+1 ← θt.

The advantage of this method is that one can make confident decisions with

ns ≤ n data points and save computation time. The bias-variance trade-off can be

controlled by adjusting the knob ε. When ε is high, one makes decisions without

sufficient evidence and introduce high bias. As ε → 0, one makes more accurate

decisions but is forced to examine more data which results in high variance.

2.3 A Bag of Little Bootstrap(BLB) Method

Kleiner et al. (2014) introduced the Bag of Little Bootstrap(BLB), a new proce-

dure, which incorporates features of both the bootstrap and subsampling to yield a

robust, computationally efficient means of assessing the quality of estimators. BLB

is well suited to modern parallel and distributed computing architectures and fur-

thermore retains the generic applicability and statistical efficiency of the bootstrap.

The BLB fuctions by averaging the results of bootstrapping multiple small subsets

of X1, X2, · · · , Xn, which are observed i.i.d. samples drawn from some (unknown)

underlying distribution. More formally, given a subset size b < n, BLB samples k

subsets of size b from the original n data points, uniformly at random (one can also

impose the constrain that the subsets be disjoint). Let I1, · · · , Ik ⊂ {1, · · · , n} be the

corresponding index multisets (note that ‖Ij‖ = b,∀j), and let P(j)
nb = b−1

∑
i∈Ij δXi

be the empirical distribution corresponding to subset j where δXi
is an indicator

function that has 1 if i ∈ Ij and 0 otherwise. BLB’s estimate of ξ(Qn(P )) is then
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given by

k−1

k∑
j=1

ξ(Qn(P(j)
nb )) (2.4)

which is simple average of estimators calculated by observations in each subset.

2.4 A Resampling-based Stochastic Approximation(RSA) Method

Liang et al. (2013) suggested a Resampling-based Stochastic Approximation(RSA)

algorithm. In this method, at each iteration, a small subsample is drawn from the full

dataset, and then the current estimate of the parameter is updated accordingly un-

der the framework of stochastic approximation. This method also leads to a general

parameter estimation approach, maximum mean log-likelihood estimation(MMLE).

The method works by minimizing the Kullback-Leibler divergence,

KL(f, g) = −
∫

log

(
f(z|θ)

g(z)

)
g(z)dz (2.5)

where f(z|θ) is a likelihood function that user specified, and g(z) is unknown true

density function. Using subsamples randomly drawn from the given data, D, the

Kullback-Leibler divergence can be approximated by

K̂L(f, g|D) = C −
(
n

m

)−1 (n
m)∑
i=1

log f(zi|θ) (2.6)

where C denotes a constant related to the entropy of g(z), and
(
n
m

)
is the binomial

coefficient. Then, the stochastic approximation method is used to estimate θ by

solving the systems of equation
∂K̂L(f, g|D)

∂θ
= −

(
n

m

)−1 (n
m)∑
i=1

H(θ, z) = 0, where

H(θ, z) =
∂ log f(z|θ)

∂θ
is the first order derivative of log f(z|θ) with respect to θ,

and z denotes a random sample drawn from D. Then, assymptotically minimizing

9



K̂L(f, g|D) is to maximize E(log f(zi1 , · · · , zim |θ)) where i1, · · · , im ∈ {1, · · · , n}.

RSA can be achieved by following steps.

1. Draw z from D at random and without replacement.

2. θ(t+ 1
2

) = θ(t) + at+1H(θ, z)

3. If ‖θ(t+ 1
2

)− θ(t)‖ ≤ b then set θ(t+1) = θ(t+ 1
2

), πt+1 = πt, otherwise set θ(t+1) =

T (θ(t)) and πt+1 = πt + 1

where π is number of truncation, T : Θ→ K0, K0 is compact subset of Θ such

that initial θ0 ∈ K0.

For detail explanation of truncation method, please see Liang et al. (2013).
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3. A BOOTSTRAP METROPOLIS-HASTINGS(BMH) ALGORITHM

The BLB and RSA brought key idea of the bootstrap Metropolis-Hastings(BMH)

algorithm. BMH uses many small size of bootstrap samples and calculate mean log-

likelihood with those bootstrap samples, and bring this mean log-likelihood into the

Metropolis-Hastings algorithm instead of full data likelihood. The BMH algorithm

can be describe as follows.

3.1 Algorithm

Let Di denote a bootstrap sample of D, which is resampled from the full data set

at random and with/without replacement. Let m denote the size of Di. If resampling

is done without replacement, Di is called a subsample or
(
n
m

)
-bootstrap sample.

Otherwise, Di is called m-out-of-n bootstrap sample or m/n-bootstrap sample. Let

f̃(Di|θ) denote a likelihood-like fuction of Di, and define

lm,n,k(Ds|θ) =
1

k

k∑
i=1

log f̃(Di|θ), (3.1)

where k denotes the number of bootstrap samples drawn fromD, andDs = {D1, · · · , Dk}

is the collection of the bootstrap samples. The definition of f̃(Di|θ) depends on the

feature of D. If the observation in D are independently and identically distributed

(i.i.d.), then, regardless Di is a
(
n
m

)
- or m/n- bootstrap sample, we define

f̃(Di|θ) = f̃(x
(i)
1 , · · · , x(i)

m |θ) =
m∏
j=1

f(x∗ij|θ) (3.2)

where x∗ij denotes the j-th element in Di. Since x∗ij’s are no longer mutually indepen-

dent, we say that f̃(Di|θ) is a likelihood like function of Di. For the case that the
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observations in D are dependent, how to define f̃(Di|θ) will be discussed in section

3.3.

The BMH algorithm works by iterating between the following steps:

1. Draw ϑ from a proposal distribution Q(θt,ϑ).

2. Draw k bootstrap samples D1, · · · , Dk via
(
n
m

)
- or m/n- bootstrapping. Let

Ds = {D1, · · · , Dl}

3. Calculate the BMH ratio:

r(θt,Ds,ϑ) = exp {lm,n,k(Ds|ϑ)− lm,n,k(Ds|θt)}
π(ϑ)

π(θt)

Q(ϑ,θt)

Q(θt,ϑ)

4. Set θt+1 ← ϑ with probability α(θt,Ds,ϑ) = min (1, r(θt,Ds,ϑ)), and set

θt+1 ← θt with the remaining probability.

Regarding this algorithm, we have the following remarks:

• In BMH, {θt} form a Markov chain with the transition kernel given by

Pm,n,k(θ, dϑ) =
∑
Ds∈D

α(θ,Ds,ϑ)Q(θ, dϑ)ψ(Ds)

+ δθ(dϑ)

1−
∑
Ds
′∈D

∫
Θ

α(θ,D′
s,ϑ

′)Q(θ, dϑ′)ψ(D′
s)dϑ

′

 (3.3)

where D denote the space of Ds, ψ(Ds) denotes the probability of drawing

Ds, and δθ(·) is an indicator function. For
(
n
m

)
-bootsrapping, ψ(Ds) =

(
n
m

)−k
;

and for m/n-bootstrapping, ψ(Ds) = 1/nmk
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• Let

Pm,n,k,Ds(θ, dϑ) = α(θ,Ds,ϑ)Q(θ,ϑ)+δθ(dϑ)

[
1−

∫
Θ

α(θ,Ds,ϑ
′)Q(θ, dϑ′)

]
,

denote the transition kernel corresponding to a particular subset data Ds.

Then Pm,n,k(θ, dϑ) can be written as a mixture of Pm,n,k,Ds(θ, dϑ)’s; that is,

Pm,n,k(θ, dϑ) =
∑
Ds∈D

Pm,n,k,Ds(θ, dϑ)ψ(Ds). (3.4)

• When the observations in D are i.i.d., both the resampling schemes,
(
n
m

)
− or

m/n− bootstrapping, can be used in BMH. As shown in section 3.3, the two

resampling schemes lead to the same stationary distribution of the Markov

chain.

• If we define

H(θ|Ds) = −lm,n,k(Ds|θ)− log π(θ)

which is the so-called energy function of the posterior distribution, then the

BMH ratio can be written as

r(θt,Ds,ϑ) = exp {H(θ|Ds)−H(ϑ|Ds)}
Q(ϑ,θ)

Q(θ,ϑ)

• The BMH algorithm consists of a few parameters, namely, m, k, and the

proposal distribution. The proposal distribution can be chosen as in the

Metropolis-Hasting algorithm; that is, choosing an appropriate proposal dis-

tribution such that the resulting BMH chain is irreducible and aperiodic, and

the BMH moves have a reasonable acceptance rate, e.g., between 0.2 and 0.4

13



as suggested by Gelman et al. (1996) for conventional MH algorithms. A for-

mal statement for the requirement of the proposal distribution will be given in

condition (B) of Section 3.3.

Since BMH is proposed for simulations on parallel computers, the parameter k

species the number of processors/nodes used in computing the averaged log-likelihood

function. Theoretically, a large value of k is preferred. However, an extremely

large value of k may slow down the computation due to the increased inter-node

communications. In our experience, to achieve a good performance for BMH, k does

not need to be very large. Both k = 25 and k = 50 work well for all examples

of this paper. The choice of m can depend on the complexity of the model under

consideration, in particular, the dimension of θ. In general, m should increase with

the complexity of the model.

3.2 Parallel Implementation

We used master/slave apporach. At the begining of the algorithm, The data are

read simultaneously at each parallel thread. Initial values and candiates, θt and ϑ,

are generated from the master node, and the master node broadcasts (shares) the

parameters to all slave nodes. At each of node, subsampling is done independently

and simulatenously, and with the subset samples and parameters broadcasted from

the master node, log likelihood-like functions, lm,n,k(Ds|θt) and lm,n,k(Ds|ϑ), are

evaluated. Then, the evaluated lm,n,k(Ds|θt) and lm,n,k(Ds|ϑ) are gathered at mas-

ter node, and at the master node, priors and acceptance rate are calculated so we can

decide whether the candidates, ϑ, will be accepted or not. Still, all parallel nodes are

having the initial values and the candidates, so again the acceptance indicator from

the master node is broadcasted to the all slaves. If the indicator is 1 that represents

the candidates are accepted, the next values are updated to the candidates at all

14



parallel nodes, otherwise, the next values are updated to the current values, and

hence, all parallel nodes will be having next values regarded as the initial values for

the next iteration. For each of iteration of the BMH algorithm, communications are

made up for three times, but actually the communication time is not worrisome be-

cause the paralle thereads are communicating only scalar and few parameters which

is a vector of short length. Steps for BMH algorithm with parallel implementation

is as following. Figure 3.1 shows the following steps on a flowchart.

1. Read data D simultaneously at every parallel thread.

2. Set initial values θt at the master node.

3. Generate the candidates ϑ at the master node.

4. Broadcast θt and ϑ from the master node to the all slaves.

5. Draw random subset Di from the data, D at i-th parallel thread for all i, then

every parallel threads have different random subsets, Ds = {D1, · · · , Dk}.

6. At i-th parallel thread, calculate lm,n,k(Di|θt) and lm,n,k(Di|ϑ).

7. Gather lm,n,k(Di|θt)’s and lm,n,k(Di|ϑ)’s, for all i to the master node.

8. At the master node, calculate acceptance ratio, αBMH ,and decide wheather ϑ

is accepted or not. If accepted, broadcast δ = 1, otherwise braodcast δ = 0 to

all the slaves.

9. At every parallel threads, update θt+1 according to the δ broadcasted from the

master node so that θt+1 = ϑ if δ = 1 or θt+1 = θt if δ = 0.

10. Repeat step 3-9 until enough many θ’s are gathered.
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log f̃(D3|θt)
log f̃(D3|ϑ)

δ

update θt+1
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Figure 3.1: The flowchart of BMH algorithm with 3 processors
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3.3 Convergence of the Bootstrap Metropolis-Hastings Algorithm

In this section, we first prove the ergodicity of the BMH algorithm and then dis-

cuss how to make Bayesian inference for the full dataset based on the BMH samples.

The ergodicity of BMH will be studied in two scenarios, namely,
(
n
m

)
-bootstrapping

and m/n-bootstrapping.

3.3.1
(
n
m

)
-bootstrapping

To study the ergodicity of BMH, we first assume the following condition holds:

(A) sup
θ∈Θ

E|log f(X|θ)|2 <∞

Conditional on the data set D,
{

log f̃(D1|θ), · · · , f̃(Dk|θ)
}

forms a simple ran-

dom sample without replacement from a finite population. Motivated by this obser-

vation, we deine U -statistic

Um,n(D|θ) =

(
n

m

)−1 ∑
Di∈D

h(Di) =
∑
Di∈D

log f̃(Di|θ) (3.5)

where D is the space of Di and it contains all the possible
(
n
m

)
subsamples of size m,

and h(Di) = log f̃(Di|θ) is called kernel of the U -statistics. Thus, Um,n(D|θ) is the

conditional mean of log f̃(D1|θ) on the dataset D. U -statistics were introduced by

Hoeffding (1948), which represent a class of statistics that is especially important in

estimation theory. Many well known test statistics and estimators, such as mean and

variance, are in fact members of this class. The simple structure of U -statistics has

made them widely used for studying general estimation processes such as bootstrap-

ping and jackknifing, and for generalizing those parts of asymptotic theory concerned

with sample means. Refer to Lee (1990) for an overview of theory and practice of
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U -statistics. By the law of iterated expectations, it is easy to show that

E(lm,n,k(Ds|θ)− Um,n(D|θ))2 = E
[
E((lm,n,k(Ds|θ)− Um,n(D|θ))2|D

]
≤ m

k
V ar(log f(X|θ)) (3.6)

which, by condition (A) and Chebyshevs inequality, implies that as k →∞, n→∞

and m/k → 0,

lm,n,k(Ds|θ)− Um,n(D|θ)
p→ 0, (3.7)

where
p→ denotes the convergence in probability. Let gm(D|θ) = exp

{
E
[
log f̃(Di|θ)

]}
.

In the scenario of
(
n
m

)
-bootstrapping for i.i.d observations, it follows from (3.2) that

gm(D|θ) = exp
{
mE

[
log f̃(X1|θ)

]}
(3.8)

The variance of a U -statistic based on i.i.d random variables can be expressed in

terms of certain conditional expectations. Define for c = 1, 2, · · · ,m the conditional

expectation

hc(x1, · · · , xc) = E
{

log f̃(X1, · · · , Xm|X1 = x1, · · · , Xc = xc,θ)
}
,

and their variances

σ2
c = V ar(hc(X1, · · · , Xc))

Then, according to Hoeffding’s theorem (see e.g., Lee, 1990, p.12),

V ar(Um,n) =

(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m
m− c

)
σ2
c
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provided condition (A) holds. Since σ2
c = cV ar(log f(X|θ)) for the U -statistic de-

fined in (3.5), we have

V ar(Um,n) =
m2

n
V ar(log f(X|θ))

which implies the following theorem holds:

Theorem 3.3.1 Assume that the condition (A) holds and m = O(nγ), If γ < 1/2,

then

Um,n(D|θ)− log(gm(D|θ))
p→ 0, as n→∞ (3.9)

Combining (3.7) and (3.9), we have for any θ ∈ Θ,

lm,n,k(Ds|θ)− log(gm(D|θ))
p→ 0, as n→∞, (3.10)

where, as implied by (3.7) and Theorem 3.3.1,

m = O(nγ) and k = O(nγ+ε0) (3.11)

for some ε0 > 0 and γ < 1/2. Define

Γm,n,k(θ,Ds,ϑ) =
exp {lm,n,k(Ds|ϑ)− lm,n,k(Ds|θ)}

gm(D|ϑ)/gm(D|θ)

and

λm,n,k(θ,Ds,ϑ) = |log(Γm,n,k(θ,Ds,ϑ))|

= |[lm,n,k(Ds|ϑ)− log(gm(D|ϑ))]− [lm,n,k(Ds|θ)− log(gm(D|θ))]|
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It follows from (3.10) that

λm,n,k(θ,Ds,ϑ)
p→ 0, as n→∞ (3.12)

Define

ρ(θ) = 1−
∑
Ds∈D

∫
Θ

α(θ,Ds,ϑ)Q(θ, dϑ)ψ(Ds).

which represents the mean rejection probability of a BMH move starting from θ.

To establish the convergence of BMH, we also consider the transition kernel

Pm(θ,ϑ) = α(θ,ϑ)Q(θ,ϑ) + δθ(dϑ)

[
1−

∫
Θ

α(θ,ϑ′)Q(θ,ϑ′)dϑ′
]

(3.13)

which is induced by the proposal Q(·, ·) for a MH move with the invariant distribution

given by

π̃m(θ|D) ∝ πm(θ)gm(D|θ) (3.14)

Further, we assume the following conditions hold:

(B) Assume that Pm defines an irreducible and aperiodic Markov chain such that

π̃(·)Pm = π̃(·). Therefore, for any starting point θ0 ∈ Θ,

lim
t→∞
‖P t

m(θ0, ·)− π̃m(·)‖ = 0,

where ‖·‖ denotes the total variation norm.

(C) For any (θ,ϑ) ∈ Θ×Θ,

0 < Γm,n,k(θ,Ds,ϑ) <∞, ψ(·)− a.s.
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where ψ(Ds) is the resampling probability of Ds from D.

Following from the standard theory of the MH algorithm (see e.g. Tierney,

1994), condition (B) can be simply satisfied by choosing an appropriate proposal

distribution Q(·, ·). Condition (C) is equivalent to assuming 0 < exp {lm,n,k(Ds|ϑ)

−lm,n,k(Ds|θ)} <∞, which ensures the BMH ratio to be well defined in simulations.

Lemma 3.3.1 states that the kernel Pm,n,k, defined in (4), has a stationary distri-

bution. Its proof follows the proof of Lemma 1 (except for some notational changes)

of Liang and Jin (2013) for the Monte Carlo MH algorithm, where the MH ratio in-

cludes a random quantity calculated using Monte Carlo samples. A similar theorem

has also been proved in Adrieu and Robert (2009) for the pseudo-marginal approach,

where the likelihood function is approximated using a Monte Carlo approach such

as the importance sampling method.

Lemma 3.3.1 Assume conditions (B) and (C) hold. Then for any m,n, k ∈ N such

that ρ(θ) > 0 for all θ ∈ Θ, Pm,n,k is also irreducible and aperiodic, and hence there

exists a stationary distribution π̂m,n,k(θ|D) such that for any θ0 ∈ Θ,

lim
t→∞
‖P t

m,n,k(θ0, ·)− π̂m,n,k(·)‖ = 0.

Lemma 3.3.2 concerns the distance between the kernel Pm,n,k and the kernel Pm.

It states that the two kernels can be arbitrarily close to each other, provided that k

and n are large enough. The proof can be found in the Appendix.

Lemma 3.3.2 Assume the conditions (A),(B) and (C) hold. If (3.11) holds, then

for any ε ∈ (0, 1] and any θ ∈ Θ, there exist N(θ) ∈ N and K(θ, n) ∈ N such that
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for any φ : Θ→ [1, 1] and any n > N(θ) and any k > K(θ, n),

|Pm,n,kφ(θ)− Pmφ(θ)| ≤ 4ε.

Theorem 3.3.2 concerns the ergodicity of BMH, which states that the kernel

Pm,n,k shares the same stationary distribution with the kernel Pm when both n and

k become large. The proof of this theorem follows from the proof of Theorem 1 of

Liang and Jin (2013) with some minor changes for accommodating the double limits

for k and n.

Theorem 3.3.2 Assume the conditions (A), (B) and (C) hold and the observations

are i.i.d. If (3.11) holds, then for any ε ∈ (0, 1] and any θ0 ∈ Θ, there exist N(ε,θ0) ∈

N, K(ε,θ0, n) ∈ N, and T (ε,θ0, n, k) ∈ N such that for any n > N(ε,θ0), k >

K(ε,θ0, n), and t > T (ε,θ0, n, k)

‖P t
m,n,k(θ0, ·)− π̃m(·)‖ ≤ ε,

where π̃m(·) is the stationary distribution of Pm as defined in (3.14).

Theorem 3.3.2 establishes the convergence of BMH under the setting that the

bootstrap samples Ds are updated at each iteration. In practice, to avoid frequent

updating of bootstrap samples, one may repeatedly use them for a small number of

iterations. This may accelerate BMH, especially when m is large. Let κ0 denote the

number of repeated iterations. Following from (3.4), the transitional kernel of BMH

for this repeated bootstrap version can be written as

P̃m,n,k(θ, dϑ) =
∑
Ds∈D

P κ0
m,n,k,Ds

(θ, dϑ)ψ(Ds). (3.15)
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Under the same conditions of Lemma 3.3.2, it is shown in the Appendix that

‖P̃m,n,kφ(θ)− P κ0
m φ(θ)‖ ≤ 4κ0ε. (3.16)

Hence, the convergence established in Theorem 3.3.2 still follows for the BMH algo-

rithm with repeated use of bootstrap samples.

In Section 3.4, we will consider the asymptotics of π̃m(θ|D). In particular, we

will discuss how π̃m(θ|D) is related to the whole data posterior π(θ|D) as m becomes

large, and how to make Bayesian inference for π(θ|D) based on the samples simulated

by the BMH algorithm.

3.3.2 m/n-bootstrapping

Under this scenario, the ergodicity of the BMH algorithm can be studied in

a similar way to
(
n
m

)
-bootstrapping. In what follows, we show with appropriate

conditions that BMH has the same stationary distribution for the two bootstrapping

schemes.

First, we define

Vm,n(D|θ) = n−m
∑

1≤j1,··· ,jm≤n

log f̃(Xj1 , · · · , Xjm |θ)

which is the conditional mean of lm,n,k(Ds|θ) on the dataset D and is called a von

Mises statistic or V -statistic. A straightforward calculation (see the Appendix for

the details) shows that

E(lm,n,k(Ds|θ)− Vm,n(D|θ))2 =
m

k

(
1− 1

n

)
V ar(log f(X|θ)), (3.17)
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which, by condition (A) and Chebyshev’s inequality, implies

lm,n,k(Ds|θ)− Vm,n(D|θ)
p→ 0, (3.18)

as k → ∞, n → ∞ and m/k → 0. It follows from (3.2) that Vm,n(D|θ) =

m
n

∑
Xi∈D log f(Xi|θ). This implies the following theorem:

Theorem 3.3.3 Assume that the condition (A) holds. Let m = O(nγ). If γ < 1/2,

then

Vm,n(D|θ)− log(gm(D|θ))
p→ 0, as n→∞ (3.19)

Combining (3.18) and (3.19), we have

lm,n,k(Ds|θ)− log(gm(D|θ))
p→ 0, as n→∞,

under the setting (3.11). Then, by the same reasoning as Theorem 3.3.2, we have

the following theorem:

Theorem 3.3.4 Assume that the observations are i.i.d., and the conditions (A),

(B) and (C) hold. If (3.11) is satisfied, then BMH with m/n-bootstrapping has the

same stationary distribution as with
(
n
m

)
-bootstrapping.

3.4 Bayesian Inference

This subsection is organized as follows. In Section 3.4.1, we establish the asymp-

totic normality of π̃m(θ|D). In Section 3.4.2 and Section 3.4.3, we discuss how to

estimate the mean and asymptotic covariance matrix of πn(θ|D), respectively.
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3.4.1 Asymptotic Normality of π̃m(θ|D)

For convenience, we rewrite the full data posterior π(θ|D) by πn(θ|D); i.e.,

πn(θ|D) ∝ πn(θ)f(D|θ),

where f(D|θ) =
∏n

i=1 f(xi|θ) denotes the likelihood function of D, and πn(θ) denotes

the prior of θ which may depend on the value of n.

The asymptotic normality of posterior distributions has long been studied in the

literature. Walker (1969) presented a straightforward approach to the problem for

i.i.d. observations. Later, this result was generalized to different statistical models

and the conditions were also weakened, see e.g., Dawid (1970), Heyde and Johnstone

(1979), and Chen (1985). Among those work, the conditions given in Chen (1985)

are very general and flexible. For convenience, we shall present Chen’s result as

√
n(θ(n) − µn)

d→ N(0,Σ0), (3.20)

where θ(n) denotes a generic sample of the full data posterior πn(θ|D), µn denotes a

local mode of πn(θ|D),
d→ denotes convergence in distribution, and

Σ0 = n
{
−∂2 log πn(θ|D)/∂θ∂θT

}−1
∣∣∣
θ=µn

=

{
−∂2

[
1

n
log πn(θ) +

1

n

n∑
i=1

log f(xi|θ)

]
/∂θ∂θT

}−1
∣∣∣∣∣∣
θ=µn

Here, we have assumed that πn(θ|D) satisfies appropriate conditions, to be specific,

the conditions (E1)-(E5) given in Lemma A.0.1 of the Appendix. These conditions re-

quire that for each n, µn is a local maximum of πn(θ|D) such that ∂ log πn(θ|D)/∂θ|θ=µ0
=
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0 and Σ0 is positive definite, and that for large n, πn(θ|D) becomes highly peaked

and behaves like a normal kernel inside a small neighbourhood of µn, and the prob-

ability outside the neighbourhood is negligible. As pointed out by Chen (1985), the

posterior πn(θ|D) can be multimodal, and µn does not need to be the global max-

imum. However, the concentration condition must be satisfied at µn; that is, the

probability outside a small neighborhood of µn is negligible.

For BMH, lm,n,k(Ds|θ) works as the log-likelihood function, which, as shown

in Sections 3.3.1 and 3.3.2, converges to gm(D|θ) in probability under appropriate

conditions. Let πm(θ) denote the prior distribution of θ. Then the posterior density

function π̃m(θ|D) is given by

π̃m(θ|D) ∝ πm(θ)gm(D|θ) = exp

{
m

[
1

m
log πm(θ) + E log f(X|θ)

]}
.

Let l̃m(θ) = m
[

1
m

log πm(θ) + E log f(X|θ)
]
. It is assumed that for each m,

(D1) l̃m(θ) is uniformly continuous on the parameter space Θ, and it has a unique

global maximum and a finite number of local maxima.

(D2) At the global maximum of l̃m(θ), denoted by µm, the following conditions are

satisfied:

(i) l̃′m(µm) = ∂l̃m(θ)/∂θ
∣∣∣
θ=µm

= 0

(ii) ∂2l̃m(θ)/∂θ∂θT is continuous on Θ, and l̃′′m(µm) = ∂2l̃m(θ)/∂θ∂θT
∣∣∣
θ=µm

is negative definite.

The uniform continuity condition can be satisfied by restricting Θ to a large compact

set, say, Θ = [10−100, 10100]d, where d is dimension of θ. As a practical matter, this is

equivalent to set Θ = Rd. The maxima µm’s may be different for different values of
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m. As m→∞, 1
m

log πm(θ) tends to 0, and thus µm converges to the maximum of

E log f(X|θ). It follows from Jensen’s inequality that Eθ∗ log(f(X|θ)/f(X|θ∗)) ≤ 0

for any θ ∈ Θ, where θ∗ denotes the true value of θ and Eθ∗ denotes expectation

with respect to f(x|θ∗). That is, for any θ ∈ Θ,

Eθ∗ log f(X|θ) ≤ Eθ∗ log f(X|θ∗).

Moreover, this inequality is strict unless P (f(X|θ) = f(X|θ∗)) = 1. Hence, as

m→∞, µm will converge to θ∗. The uniqueness condition for the global maximum

requires θ∗ to be unique. In the case that the uniqueness condition is violated, e.g.,

in mixture models, the BMH samples can still be used for model inference after

applying a label switching procedure (see e.g., Stephens, 2000). Alternatively, one

may impose some constraints on θ such that θ∗ is unique.

Theorem 3.4.1 shows that under conditions (D1) and (D2), π̃m(θ|D) will converge

to a normal density function. Its proof can be found in the Appendix.

Theorem 3.4.1 Assume that conditions (D1) and (D2) hold for each m > 0. Then,

as m→∞, we have

√
m(θ(m) − µm)

d→ N(0, Σ̃0), as m→∞, (3.21)

where θ(m) denotes a generic sample of π̃m(θ|D), and Σ̃0 = m
[
l̃′′m(µm)

]−1

.

Let b(θ) be a function of θ. Suppose that ∂b(θ)/∂θ exists and is not 0. Then,

by Delta method, we have

√
m(b(θ(m))− b(µm))

d→ N

(
0,

(
∂b(θ)

∂θ

)T
Σ̃0

(
∂b(θ)

∂θ

))
, as m→∞. (3.22)
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Further, by the convergence of the averaged observed information to the Fisher

information

− 1

n

n∑
i=1

∂2 log f(xi|θ)

∂θ∂θT
→ −E

(
∂2 log f(x|θ)

∂θ∂θT

)
under regularity conditions, we have

‖Σ̃0 − Σ0‖
p→ 0 as n→∞ (3.23)

That is, Σ0 can be estimated based on the BMH samples simulated from π̃m(θ|D).

As implied by (3.21) and (3.23), BMH has the capability to incorporate the whole

data information into a single simulation run. Hence, it can have quite different

performance from the D&C method. For the latter, suppose that the dataset has

been divided into K subsets D1, · · · ,DK , and each is of size m, i.e., n = m × K.

If m is reasonably large, for each subset the corresponding posterior distribution is

approximately normal; that is,

√
m(θ

(m)
i − µm,i)

d→ N(0,Σm,i),

where i indexes the i-th subset, and µm,i and Σm,i denote, respectively, the mean

and covariance matrix of the posterior distribution based on the subset Di . If m is

small, µm,i’s and Σm,i’s can be quite different from others. It is true that µm,i and

Σm,i will asymptotically lose their dependentce on i when m becomes large, but this

comes at a price of increasing computational cost. As shown by simulated example

in Section 4.1.1, this dependence can lose supprisingly slowly. For a simple linear

regression of three predictors, the dependence can still exist for m = 104, see Table

4.4 for the details.
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3.4.2 Estimation of the Mean of πn(θ|D)

First, we explore the relationship between b(µn) and b(µm). Consider the stan-

dard Laplace approximation for posterior means, see e.g., Lindley (1961, 1980),

Kass et al. (1990) and Miyata (2004) for the details. Given a prior π, a log-

likelihood log p(x|θ), a positive function ξ, and a real function h, we dene hn and ρ

by hn(θ) = − log p(x|θ)/n − log ξ/n and ρ = π/ξ. Suppose that we are interested

in estimating the posterior mean Eπn [b(θ)] for an integrable function b(θ), where

Eπn [] denotes expectation with respect to the posterior πn(θ|D). Under regularity

conditions, Eπn [b(θ)] can be approximated as follows:

Eπn [b(θ)] =

∫
Θ
b(θ)ρ(θ) exp {−nhn(θ)} dθ∫
Θ
ρ(θ) exp {−nhn(θ)} dθ

= b(θ̂) +
1

n

∑
ij

bih
ij

{
ρj(θ̂)

ρ(θ̂)
− 1

2

∑
rs

hrshrsj

}
+

1

2n

∑
ij

hijbij +O(n−2)

(3.24)

where ρj(θ̂) = ∂ρ(θ̂)/∂θj , bi = ∂b(θ̂)/∂θi, bij = ∂2b(θ̂)/∂θi∂θj, hrsj = ∂3hn(θ̂)/∂θr∂θs∂θj,

hij is the component of the matrix [∂2hn(θ)/∂θ∂θT ]1, and θj denotes the j-th com-

ponent of θ. There are two special cases for the choices of ξ and ρ: If ξ = 1 and

ρ = π, then θ̂ becomes the MLE; and if ξ = π, then ρ = 1 and θ̂ becomes the

posterior mode.

Suppose that θ is subject to the following prior:

πm(θ) = [πn(θ)]m/n. (3.25)

Note that this prior setting facilitates the following theoretical analysis, but is not an

essential requirement. Then it follows from (3.24) that the posterior mean Eπ̃m [b(θ)],
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which is dened with respect to the posterior π̃m(θ|D), can be approximated by

Eπ̃m [b(θ)] =

∫
Θ
b(θ)ρ(θ) exp {−mEh(θ)} dθ∫
Θ
ρ(θ) exp {−mEh(θ)} dθ

=

∫
Θ
b(θ)ρ(θ) exp {−mhn(θ)} dθ∫
Θ
ρ(θ) exp {−mhn(θ)} dθ

= b(θ̂) +
1

m

∑
ij

bih
ij

{
ρj(θ̂)

ρ(θ̂)
− 1

2

∑
rs

hrshrsj

}
+

1

2m

∑
ij

hijbij +O(m−2),

(3.26)

where ρj, bi, bij, hrsj, and hij are as defined in (3.24), Eh(θ) = −E log f(X|θ) −

log(ξ)/n, and the second equality follows from the convergence

1

n

n∑
i=1

log f(xi|θ)
a.s.→ E log f(X|θ),

which holds under condition (A). Hence, Eπ̃m [b(θ)]→ b(θ̂) as m→∞. As n goes to

innity, m will also go to innity, then it follows from (3.24) and (3.26) that

Eπ̃m [b(θ)]− Eπm [b(θ)]→ 0, as m,n→∞ (3.27)

and, by setting ξ = π and ρ = 1 in (3.24) and (3.26),

‖b(µm)− b(µn)‖ → 0, as m,n→∞. (3.28)

Equation (3.27) suggests that we can use the sample average

̂Eπ̃m [b(θ)] =
1

T

T∑
t=1

b(θt), (3.29)

to estimate Eπn [b(θ)], where θ1, · · · ,θT denote T samples simulated by BMH from
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the approximate posterior π̃m(θ|D). It follows from (3.27) and the property of

MCMC that ̂Eπ̃m [b(θ)] provides a consistent estimator for Eπn [b(θ)]. Further, it fol-

lows from (3.24) and the consistency of MLE that ̂Eπ̃m [b(θ)] is consistent for b(θ∗);

that is,

̂Eπ̃m [b(θ)]
p→ b(θ∗), as m→∞. (3.30)

In practice, m cannot be very large for the reason of computational efficiency. As

implied by (3.26), we can improve the accuracy of the estimator of b(θ∗) using an

extrapolation method by fitting the linear regression

̂Eπ̃m [b(θ)] = β0 + β1/m+ ε

for a small set of m, where 1/m works as the explanatory variable, and ε is the

normal random error. Then β̂0, the least square estimator of β0, will serve as an

estimator of b(θ∗), which corresponds to the limit m→∞.

3.4.3 Estimation of the Covariance Matrix of πn(θ|D)

In addition to the mean of the posterior πn(θ|D), the asymptotic covariance

matrix of πn(θ|D) can also be simply estimated based on the BMH samples. It

follows from (3.21) and (3.23) that mΣ̂m provides a consistent estimator of Σ0 , where

Σm denotes the covariance matrix of θ(m) calculated based on the BMH samples. In

summary, BMH provides a simple way to asymptotically integrate the whole data

information into a single simulation run and thus a convenient way for Bayesian

analysis of big data.
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4. SIMULATION STUDIES

4.1 A Linear Regression Example

Consider the normal linear regression

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, · · · , n

where (β0, β1, β2, β3) = (2, 0.25, 0.25, 0) are regression coefficients, and ε1, · · · , εn are

i.i.d. normal random errors with mean 0 and variance σ2, In simulations, we set

n = 105 and σ2 = 0.25, generate both x1 = (x11, · · · , xn1)T and x2 = (x12, · · · , xn2)T

from the multivariate normal distribution N(0,

boldsymbolIn), and set x3 = (x13, · · · , xn3)T = 0.7x2 + 0.3z, where

boldsymbolIn is an n-by-n identity matrix, and z is also generated from N(0,

boldsymbolIn). Under this setting, x2 and x3 are highly correlated with a theoretial

correlation corefficient of 0.919. The high correlation between x2 and x3 makes

the posterior distribution πn(θ|D) multimodal and the estimators of β2 and β3 are

negatively correlated. Let θ = (β0, β1, β2, β3, σ
2) and θ∗ = (2, 0.25, 0.25, 0, 0.25) be

its true value. We will use this example to demonstrate that (i) BMH can be used

for Bayesian analysis of big data; that is, it can correctly estimate the mean and

covariance matrix of πn(θ|D), and (ii) the multimodality of πn(θ|D) does not affect

the asymptotically normality of π̃m(θ|D). For this example, θ∗ is unique, but the

posterior can contain two separated modes.

To conduct Bayesian analysis for this example, we let θ be subject to the following

prior distribution

πm(θ) ∝
(

1

σ

)m/n
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as suggested in Section 3.4. To explore the performance of BMH with dierent val-

ues of k and m, we tried all cross settings of k = 25, 50 and m = 200, 500, 1000.

For each setting of (k,m), BMH was run for 20 times independently; 10 runs for(
n
m

)
-bootstrapping and 10 runs for m/n-bootstrapping. Each run consisted of 55,000

iterations, where the first 5,000 iterations were discarded for the burn-in process and

the samples generated in the remaining iterations were used for parameter estima-

tion. To facilitate simulations, we have reparameterized σ2 by log(σ2). Denote the

reparameterized parameter vector by θ̃.

The proposal distribution consisted of two equally weighted components. The

first component is designed according to the hit-and-run algorithm (Chen and Schmeiser,

1996), which is to set

θ̃
′
= θ̃t + S × e

where θ̃t and θ̃
′

denote, respectively, the current and proposed values of θ̃, e is a

random direction drawn uniformly from a unit sphere, and S ∼ N(0, s2). Here s is

called the step size of the proposal. The second component is to randomly choose

two components of θ̃t to undergo the modication

θ̃
′
j = θ̃t,j + ẽ

where θ̃t,j denotes the selected components of θ̃t and ẽ ∼ N(0, s2I2). In all sim-

ulations of this subsection, we set s = 0.15. The resulting acceptance rate of the

BMH moves ranges from 0.10 to 0.26 for different values of m. When m is large, the

posterior distribution becomes highly peaked. To maintain a reasonable acceptance

rate, s should be decreased accordingly. For simplicity, we fix s = 0.15 in the every

simulations of this section.
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Table 4.1: Prameter estimation results of MH and BMH for the simulated ex-
ample. The numbers in paranthesis denote the standard deviations of the esti-
mates, which are calculated by average over 10 independent runs. The true value of
(β0, β1, β2, β3, log σ2) is (2.0,0.25,0.25,0,-1.3863)

(k,m) m
n
× 100% β0 β1 β2 β3 log σ2

MH for the full data

(1, 105) 100%
1.9997 0.2502 0.2491 0.0001 -1.3852

(5.2e−6) (4.9e−6) (8.3e−6) (1.6e−5) (1.9e−5)

BMH with
(
n
m

)
-bootstrapping

(25, 200) 0.2%
2.0028 0.2531 0.2576 -0.0115 -1.3619

(2.6e−4) (2.7e−4) (1.1e−3) (1.6e−3) (1.0e−3)

(25, 500) 0.5%
2.0029 0.2531 0.2556 -0.0087 -1.3771

(1.3e−4) (2.0e−4) (1.9e−3) (2.4e−3) (1.0e−3)

(25, 1000) 1.0%
2.0030 0.2532 0.2571 -0.0105 -1.3827

(2.2e−4) (1.8e−4) (7.8e−4) (1.1e−3) (7.5e−4)

(50, 200) 0.2%
1.9998 0.2504 0.2463 0.0041 -1.3600

(1.4e−4) (1.3e−4) (4.2e−4) (5.9e−4) (3.9e−4)

(50, 500) 0.5%
1.9998 0.2503 0.2497 -0.0009 -1.3753

(8.3e−5) (7.6e−5) (2.0e−4) (3.3e−4) (2.4e−4)

(50, 1000) 1.0%
1.9998 0.2500 0.2489 -0.0007 -1.3807

(3.9e−5) (5.1e−5) (1.2e−4) (2.1e−4) (2.1e−4)

BMH with m/n-bootstrapping

(25, 200) 0.2%
2.0027 0.2532 0.2514 -0.0026 -1.3619

(3.1e−4) (2.3e−4) (2.0e−3) (2.5e−3) (1.1e−3)

(25, 500) 0.5%
2.0028 0.2533 0.2565 -0.0096 -1.3788

(2.1e−4) (1.4e−4) (9.4e−4) (1.1e−3) (4.4e−4)

(25, 1000) 1.0%
2.0030 0.2533 0.2569 -0.0106 -1.3832

(1.3e−4) (1.1e−4) (6.5e−4) (9.2e−4) (6.6e−4)

(50, 200) 0.2%
2.0030 0.2529 0.2560 -0.0091 -1.3616

(2.4e−4) (2.8e−4) (2.1e−3) (2.8e−3) (6.1e−4)

(50, 500) 0.5%
2.0030 0.2530 0.2552 -0.0078 -1.3776

(1.9e−4) (1.4e−4) (1.1e−3) (1.6e−3) (6.3e−4)

(50, 1000) 1.0%
2.0029 0.2531 0.2569 -0.0108 -1.3813

(1.2e−4) (1.5e−4) (1.2e−3) (1.6e−3) (8.0e−4)
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For comparison, Bayesian analysis has also been done for the model using the full

dataset with the prior πn(θ) ∝ 1/σ. The MH algorithm was run for 10 times indepen-

dently with the full dataset. Each run consisted of 55,000 iterations, where the first

5,000 iterations were discarded for the burn-in process and the samples generated

in the remaining iterations were used for inference. The proposal distribution used

in these runs is the same as that used in the BMH runs. Table4.1 compare the pa-

rameter estimates produced by MH and BMH. The comparison confirms the validity

of BMH: The two resampling schemes,
(
n
m

)
-bootstrapping and m/n-bootstrapping,

result in almost the same estimates, and the estimates tend to converge to the MH

estimates as k and m become large. Note that the standard deviations of the BMH

estimates tend to decrease as k and m increase. Table4.1 also shows that BMH is

quite robust to the choice of k and m; it can work well with k as low as 25 and a

wide range of m.

As discussed in Section 3.4.2, the BMH estimates can potentially be improved

via extrapolation. To illustrate this procedure, we fit a linear regression for the

BMH estiamtes of log(σ2), obtained with (k,m)=(50,200), (50,500), and (50,1000),

versus 1/m. Figure 4.1 shows the scatter plot of the BMH estimates and the fitted

regression line

̂log(σ2) = −1.38577 + 5.1541/m

whose coefficient of determination is R2=0.7031. The extrapolated estiamte of

log(σ2) at m = n is -1.385721, which is surprisingly close to the MH estimate -

1.3852.

Next, we explore the estimation of Σ0 , the asymptotic covariance matrix of

πn(θ|D), using BMH. To estimate Σ0 , we thinned the MH and BMH runs by a factor
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Figure 4.1: Regression extrapolation for the BMH estimates of log(σ2) obtained with

(k,m)=(50,200), (50,500), and (50,1000): The fitted line is ̂log(σ2) = −1.38577 +
5.1541/m

of 500 such that the resulting samples are approximately mutually independent.

Note that the samples obtained in BMH runs are usually less correlated than those

obtained in MH runs, as π̃m(θ|D) is less highly peaked than πn(θ|D). But, for

simplicity, we thinned both by the same factor. Table 4.2 summarizes the estimates

of Σ0 obtained by MH and BMH (with m/n-bootstrapping and k = 50). The BMH

estimates obtained under other settings are similar. In this table, we report the

mean and standard deviations of the estimates of σ2
11, · · · , σ2

55 , σ2
12 and σ2

34 obtained

in 10 independent runs by the respective algorithms, where σ2
ij denotes the (i, j)th

element of Σ0 . The elements σii, i = 1, · · · , 5, correspond to the posterior variances

of β0, · · · , β3 and log σ2, respectively. The element σ2
34 corresponds to the posterior

covariance of β2 and β3, which are known to be negatively correlated. The element
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Table 4.2: Mean and standard deviations (in the paranthesis) of the estimates
of σ2

11, · · · , σ2
55, σ

2
12 and σ2

34 obstained by MH and BMH (with k=50 and m/n-
bootstrapping) in 10 independent runs, where σ2

ij denotes the (i, j)th elements of
Σ0.

m σ2
11 σ2

22 σ2
33 σ2

44 σ2
55 σ2

12 σ2
34

MH for the full data
0.259 0.243 1.521 2.652 2.133 0.011 -1.836

(0.039) (0.027) (0.171) (0.383) (0.215) (0.024) (0.245)

BMH with m/n-bootstrapping
200 0.274 0.270 1.670 2.840 2.057 -0.014 -1.984

(0.040) (0.017) (0.225) (0.378) (0.389) (0.026) (0.279)
500 0.268 0.253 1.770 2.978 2.149 0.001 -2.104

(0.039) (0.027) (0.334) (0.405) (0.302) (0.026) (0.361)
1000 0.289 0.259 1.665 2.815 2.178 0.006 -1.987

(0.023) (0.045) (0.169) (0.384) (0.371) (0.019) (0.253)

σ2
12 corresponds to the posterior covariance of β0 and β1 , which are known to be

uncorrelated. Note that the MH estimate of Σ0 is nΣ̂n , and the BMH estimate of

Σ0 is mΣ̂m , where Σ̂n and Σ̂m are calculated using the thinned MCMC samples

from their respective runs. Table 4.2 confirms the validity of BMH for Bayesian

inference of big data: It can be used through rescaling to quantify the uncertainty

of the estimators corresponding to the full data.

4.1.1 A Comparison Study with Existing Methods

In this section, we compare BMH with two existing methods, the divide-and-

conquer (D&C) strategy and approximate MH test (AMHT) methods.

As a natural methodology, the D&C method has often been used in big data

analysis. The D&C method used in this thesis proceeds as follows.

We first divide the whole dataset into 50 subsets, each consisting of 2,000 obser-

vations. The MH algorithm was then run for each subset data for a total of 55,000

iterations, where the first 5,000 iterations were discarded for the burn-in process, and
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the remaining 50,000 samples were collected for statistical inference of the model.

The proposal used in the simulations was the same as that used by BMH in Section

4.1. The parameters were estimated based on the samples collected from the simu-

lations for each subset data. Finally, we combine all the estimates from each subset

data by simply averaging to get the final estimate of the parameters. D&C method

is also applied to the same cluster architecture that BMH was appled to. After we

divide the data set, all process run independently until the final iteration of the chain.

So, there are minimum number of comunications between parallel threads. Natually,

D&C method takes more computational time with fixed number of parallel threads

because it scans 10 times larger number of subjects at every iteration in each group

whereas we can fix smaller number of samples, m = 200, for BMH algorithm.

Korattikra et al. (2014) proposed an approximate MH test (AMHT) method for

sampling from the posterior distribution of big data. As described in Chapter 2, the

significance level ε controls the approximate accuracy of the posterior distribution

and also the proportion of the data to be used at each iteration of the algorithm.

To compare AMHT with BMH, we set the mini-batch size m′=200 and tuned the

significance level ε = 0.01 such that around 500 observations, which is 0.5% of the

data, will be used at each iteration. Hence, such a run of AMHT cost more CPU time

than BMH with m = 200. Note that each run of AMHT employed the same proposal

distribution and consisted of the same number of iterations as BMH run. For each

run of AMHT, we have also discarded the first 5000 iterations for the burn-in process

and used the samples generated in the remaining 50,000 iterations for inference.

Table 4.3 compares the parameter estimates resulted from D&C , AMHT, and

BMH (with k = 50, m = 200 and
(
n
m

)
-bootstrapping). BMH can produce very

accurate estimates as much as D&C or AMHT, but is much faster than the other

two methods although D&C and AMHT involve more observations at each iteration,
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Table 4.3: Comparison of BMH with D&C and AMHT algorihtms for parameter
estimation, where the numbers in upper row calculated by averaging estimates over
10 runs, and the number in the paranthesis is the standard deviation of the estimates.
CPU(sec) is average running time in second.

Algorithm β0 β1 β2 β3 log σ2 CPU(sec)

BMH
1.9997 0.2504 0.2463 0.0041 -1.3600 160.47

(1.46e-4) (1.34e-4) (4.21e-4) (5.90e-4) (3.88e-4) (11.16)

D&C
1.9997 0.2503 0.2491 0.0001 -1.3856 238.32

(3.77e-5) (3.40e-5) (5.73e-5) (1.07e-4) (1.33e-4) (10.50)

AMHT
1.9999 0.2500 0.2453 0.0050 -1.3716 303.81

(5.47e-6) (6.23e-6) (1.40e-5) (2.02e-5) (2.93e-5) (16.62)

and their standard deviation are smaller than BMH.

In Table 4.4, we report the MH, BMH (with k = 50, m= 200 and
(
n
m

)
-bootstrapping),

AMHT (with m′ = 200 and ε = 0.01), and D&C estimates of σ2
11, · · · , σ2

55, σ2
12 and

σ2
34 based on the pooled samples from their respective runs, where σ2

ij denotes the

(i, j)th element of Σ0. For the D&C method, Σ0 was estimated by n
k
Σ̂DC , where Σ̂DC

is the covariance matrix of the posterior samples pooled from 10 runs. For the BMH

method, Σ0 was estimated by mΣ̂m, where m = 200 and Σ̂m is the covariance matrix

of the posterior samples pooled from 10 runs. For AMHT method, Σ0 was estimated

by nΣ̂AMHT , where Σ̂AMHT is the covariance matrix of the posterior samples pooled

from 10 runs. For the MH method, Σ0 was estimated by nΣ̂n, where Σ̂n is the co-

Table 4.4: MH, BMH, D&C, and AMHT estimates of σ2
11, · · · , σ2

55, σ2
12, σ2

34, and
ρβ2,β3 obtained with pooled samples, where σ2

ij denotes the (i, j)th element of Σ0,
and ρβ2,β3 denotes the correlation coefficient of β2 and β3

Method σ2
11 σ2

22 σ2
33 σ2

44 σ2
55 σ2

12 σ2
34 ρβ2,β3

MH 0.2934 0.2661 1.4488 2.5658 1.9656 0.0580 -1.7657 -0.9158
BMH 0.2746 0.2718 1.6757 2.8428 2.0627 -0.0144 -1.9874 -0.9106
DNC 0.5035 0.5140 3.0750 5.3683 3.8867 0.0093 -3.7258 -0.9170

AMHT 0.3263 0.3788 2.0377 3.1848 2.7706 -0.0056 -2.3386 -0.9180
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variance matrix of the posterior samples pooled from 10 runs. As in Table 4.2, the

simulations have been thinned by a factor of 500, which ensures the pooled samples

to be approximately mutually independent. Table 4.4 shows that BMH can produce

correct estimates of Σ0 using pooled samples, while D&C and AMHT cannot.

In summary, BMH can be very efficient for Bayesian analysis of big data, as it is

able to incorporate all data information into a single run and thus inference can be

made based on a single run. In contract, D&C needs to run for all subsets, otherwise

the resulting inference can be severely biased.

4.2 BMH on Spatial Model

In this section, we will assess the performance of BMH algorithm on a spatial

model. Consider the Gaussian geostatistical model,

Y = µ+ Z + ε, ε
i.i.d∼ N(0, τ 2I) (4.1)

where Y = {Y (s1), · · · , Y (sn)}T denotes the observations at location s1, · · · , sn,

µ = {µ(s1), · · · , µ(sn)}T denotes the mean vector of Y, Z = {Z(s1), · · · , Z(sn)}T

denotes a Gaussian process with mean, a vector of zeros, and covariance matrix Σ =

σ2R, where R is an exponential correlation function with elements of exp {−‖si − sj‖/φ}

for i, j = 1, · · · , n where ‖·‖ is a distance measure. And τ 2 is the nugget variance.

The model (4.1) can be extended to the regression setting with the mean µ(si) being

replaced by

µ(si) = β0 +

p∑
j=1

βjxj(si) (4.2)

where xj(·) denotes the jth explanatory variable, and βj is the corresponding regrre-

sion coefficient. Under the model (4.1), Y follows a multivariate Gaussian distribu-

tion, Y|θ ∼ N (µ, σ2R + τ 2I), and the log likelihood-like function of Di = (si,Y(si))
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is defined as follows.

log f̃(Di|θ) = −n
2

log 2π − 1

2
log|σ2R(si) + τ 2I|

− 1

2
(Y(si)− µ(si))

T
(
σ2R(si) + τ 2I

)−1
(Y(si)− µ(si)) (4.3)

where si is subsample locations of corresponding subset Di and R(si) = exp {−di/φ}

where di is a distance matrix between all locations in si. We suggest following priors

for the model (4.1) with exponential correlation function as non-informative priors.

π(θ) ∝
(

1

φσ2τ 2

)m/n

50 datasets are generated from the model (4.1) with uniformly distributed spatial

sites of size n = 1000, 2000, 3000, 5000, and 10000 respectively. The covariate x

is randomly generated from the normal distribution with mean zero and stadard

deviation 0.5. The true parameters for the example are set as β0 = 1.0, β1 = 1.0,

φ = 25.0, σ2 = 1.0, and τ 2 = 1.0. We set subset size as m = 100 and 300 for each case

of n, and the number of subsets is set as k = 50. The length of the Markov chain

is 22,000, and the first 2,000-10,000 observations are discarded as burn-in period.

The results of our example shows that BMH works very well for estimating the

model (4.1). The resulting output is shown in Table 4.5. We took sample means of

the chains as the estimators for the parameters. The numbers in Table 4.5 are the

averages of the estimates from the 50 datasets, and the numbers in paranthesis are

standard errors.

Note that, in this example, as n gets bigger, standard errors generally get smaller,

and averages of the estimators get closer to the true values. When n is small (n ≤

1000), MLE is the fastest and the most accurate. However, when n ≥ 2000, BMH

41



Table 4.5: Comparisons of BMH with MLE for 50 simulated datasets. n: size of
dataset, m: size of subset, CPU(m): averaged CPU time(in minutes). The numbers
in the parenthesis denote the standard error of the estimates.

n m β̂0 β̂1 φ̂ σ̂2 τ̂ 2 φ̂/σ̂2 CPU(m)

1000

100
1.075 0.987 31.5 1.261 1.014 29.468 3.67

(0.432) (0.073) (9.3) (0.494) (0.123) (18.655) (0.86)

300
1.103 0.985 35.0 1.334 0.992 27.458 60.18

(0.435) (0.068) (11.0) (0.423) (0.158) (7.976) (2.11)

MLE
1.067 0.984 26.6 1.000 1.004 25.875 1.51

(0.423) (0.066) (13.5) (0.364) (0.064) (7.499) (0.22)

2000

100
0.897 0.992 31.3 1.243 1.010 27.676 3.52

(0.424) (0.054) (9.2) (0.490) (0.121) (10.344) (0.04)

300
0.857 0.990 34.9 1.332 1.015 27.659 69.99

(0.486) (0.050) (9.0) (0.464) (0.051) (7.742) (11.66)

MLE
0.904 0.991 26.5 1.023 1.004 25.684 14.99

(0.390) (0.051) (14.1) (0.485) (0.038) (5.255) (2.28)

3000

100
0.987 0.997 30.9 1.260 0.999 25.485 3.69

(0.451) (0.040) (9.9) (0.410) (0.095) (7.040) (0.78)

300
0.969 1.000 34.3 1.302 1.002 26.977 58.31

(0.436) (0.038) (9.9) (0.387) (0.055) (5.543) (1.51)

MLE
1.031 1.000 29.1 1.120 1.002 25.197 25.59

(0.401) (0.037) (22.2) (0.700) (0.031) (3.141) (4.74)

5000

100
1.024 1.007 29.7 1.231 0.979 25.624 3.62

(0.402) (0.032) (8.6) (0.382) (0.110) (8.563) (0.75)

300
1.044 1.009 33.9 1.264 1.003 27.460 58.16

(0.445) (0.030) (10.3) (0.371) (0.047) (6.834) (1.12)

MLE
0.989 1.008 25.2 0.978 1.003 25.624 191.74

(0.413) (0.030) (10.3) (0.354) (0.024) (2.910) (60.37)

10000

100
0.977 0.996 33.1 1.427 0.988 25.809 3.66

(0.572) (0.022) (8.9) (0.732) (0.076) (7.538) (0.81)

300
0.957 0.999 35.8 1.326 1.013 28.099 58.26

(0.454) (0.022) (9.7) (0.438) (0.033) (5.884) (1.49)

MLE
0.972 0.999 27.6 1.096 0.997 24.866 718.44

(0.336) (0.020) (16.4) (0.600) (0.016) (2.592) (272.73)
True 1.000 1.000 25.0 1.000 1.000 25.0 -
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with m = 100 gets 5 to 200 times faster than MLE. For the cases of BMH with

m = 300, when n ≥ 5000, BMH gets faster than MLE. It is because computational

complexity of BMH, which is O(m3), is independent of n, whereas that of MLE is

O(n3). Whatever the size of n is, the computation time of BMH is constant for

fixed subsample size m. When the number of observation gets larger, it is getting

hard to get MLE in matters of memory and speed, but there is still no problem

in calculating BMH estimator. BMH could be more powerful for more complex

Figure 4.2: Speed of BMH and MLE with observation size of n: The solid line
represents runing time of MLE in seconds, the dashed line represents the running
time of BMH with m = 100, and the dotted line represents the running time of BMH
with m = 300.
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model such as spatio-temporal model. For T discrete time points, if we get n spatial

observations, we need matrix multiplication of size n for T times including inversion of

the matrix whose computational complexity is O(Tn3). If n is very large, computing

MLE becomes even more serious problem than estimating spatial model. However,

computational complexity of BMH in this case is O(Tm3), and it is still feasible

even though we possiblely need to generate longer chain depending on the size of n.

Figure 4.2 shows the average computational time in minutes for MLE, BMH with

m = 100, and BMH with m = 300. The solid line represents runing time of MLE,

the dashed line represents the running time of BMH with m = 100, and the dotted

line represents the running time of BMH with m = 300. Because the subsample size

m is fixed, running time of BMH is constant as the size of data, n, increases.

4.3 BMH on Spatio-Temporal Model

In this section, we will discuss the spatio-temporal model to apply for BMH

algorithm. First we consider the modified AR model proposed by Sahu and Bakar

(2012) to set spatio-temporal model. Let Yt = {Y (s1, t), · · · , Y (sn, t)}T be the vector

of observations and Zt = {Z(s1, t) , · · · , Z(sn, t)}T be the vector of the true values

in sites s = {s1, · · · , sn} at time point t. The modified AR model is as follows:

Yt = µ+ Zt + εt, εt ∼ N(0, τ 2I),

Zt = ρZt−1 + ηt, ηt ∼ N(0,Ση), (4.4)

Z0 = η0, η0 ∼ N(0,Ση)

where εt = (ε(s1, t), · · · , ε(sn, t)) is a vector of measurement errors with τ 2 as the

nugget effect. η = (η(s1, t), · · · , η(sn, t))) is the spatially correlated error, and ρ is the

autoregressive process parameter between sequential two time points. The covariance
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matrix Ση = σ2R and R has elements exp {−‖si − sj‖/φ}, i, j = 1, · · · , n, where

‖·‖ is distance measure, and φ is range parameter of the exponential correlation

function (Cressie, 1993). µ = (µ(s1), · · · , µ(sn)) is a vector of mean function, which

is constant throughout the all time points, and it can be expressed by linear function

of possible covariates, X, such that µ = XTβ.

In the equation (4.4), the second stage model, which is correlation structure

between Zt and Zt−1, is AR(1) model, and, hence, we can write joint distribution of

Zt and Zt−1 as following.

 Zt

Zt−1

 ∼ N(0,Ψ⊗ Ση), Ψ =
1

1− ρ2

1 ρ

ρ 1

 (4.5)

where ⊗ is Kronecker product. For between time correlation matrix Ψ, see Brock-

well and Davis (1991), p.81. Therefore, the joint distribution of Yt and Yt−1 is as

following.  Yt

Yt−1

 ∼ N(µ,Ψ⊗ Ση + τ 2I) (4.6)

From the equation (4.6), we can derive the conditional distribution of Yt|Yt−1 ∼

N (µY ,ΣY )

µY = µ+ ρΣηW
−1 (Yt−1 − µ)

ΣY =
1

1− ρ2

(
W − ρ2ΣηW

−1Ση

)
where W = Ση +(1−ρ2)τ 2I. Ψ is the assymptotic correlation matrix for t > c where

c is large enough. Hence, the marginal distribution of Y1 is normal distriburion with

mean µ and covariance W0 where W0 =
1

1− ρ2
Ση + τ 2I =

1

1− ρ2
W .
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By combining marginal distribution of Y1 and conditional distribution of Yt|Yt−1,

the log likelihood-like function of Di is definded as following.

log f̃(Di|θ) = log f̃(Y1(si)|θ) +
T∑
t=2

log f̃(Yt(si)|Yt−1(si),θ)

= −nT
2

log 2π +
nT

2
log(1− ρ2)− 1

2
log|Wi| −

T − 1

2
log|Ki|

− 1− ρ2

2
(Y1(si)− µ(si))

T W−1
i (Y1(si)− µ(si))

− 1− ρ2

2

T∑
t=2

(
Yt(si)− µ(si)− ρΣiW

−1
i (Yt−1(si)− µ(si))

)T
×K−1

i

(
Yt(si)− µ(si)− ρΣiW

−1
i (si)(Yt−1(si)− µ(si))

)
(4.7)

where Σi = σ2R(si), Wi = Σi + (1 − ρ2)τ 2I, and Ki = Wi − ρ2ΣiW
−1
i Σi. To apply

BMH on the spatio-temporal model, we also define non-informative priors, π(θ), as

following.

π(θ) ∝
(

1

φσ2τ 2

)m/n
To apply BMH to the examples, we reparameterize φ, σ2, τ 2, and ρ in their

logarithms so that their parameter spaces are always positive. In this section, 50

simulation datasets are generated by the model (4.4) using the package geoR. At

n = 2000 spatial sites within bounded region on [0, 100] × [0, 100] are randomly

selected for T = 120 descrete time points. To assess the performance of BMH

according to the between time autocorrelation, ρ, we set different values for ρ. We

assume no covariates in the model, so the mean function is constant, β. The true

values set on each parameter are set as following.

β = 5.0, φ = 25.0, σ2 = 1.0, τ 2 = 1.0, ρ =

0.2

0.7
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Figure 4.3: Trace plot of samples of the parameters from the posterior distribution
by BMH algorithm: (a)-(f) are trace plots where ρ = 0.2, and (g)-(l) are trace plots
where ρ = 0.7. (a)-(f) and (g)-(l) represent β, φ, σ2, τ 2, and ρ respectively.

Through out the paper, we used k = 50 parallel threads on a cluster machine which

uses Quad-Core AMD OpteronTM Processor 8382 @2.6Ghz. For the case when ρ =

0.2, each run is consisted of 15,000 iterations, and the first 5,000 iterations were

discarded for burn-in process whereas runs for the case of higer autocorrelation,

ρ = 0.7 are consisted of 20,000 iterations. The first 10,000 iterations were discarded

for the burn-in process.

Figure 4.3 shows the trace plot of the samples generated from the posterior dis-
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tribution for each case of ρ. When ρ is relatively high, the logner burn-in process

is needed. The subsample sizes are set to be m = 100, and the stepsize is set by

0.2 to have acceptance rate of 0.15 ∼ 0.23. Table 4.6 summarizes the results of the

BMH runs, the averages of 50 estimates of BMH and MLE, and numbers in the

parenthesis denote the standard errors of the estimates. Notice that BMH is more

than 30 times faster than MLE for estimating spatio-temporal model. The averages

of BMH estimators are very close to MLE which is unbiased.

4.3.1 Comparison Study with Existing Methods

In this section, we illustrate the performance of BMH by comparing other meth-

ods, AMHT and D&C with spatio-temporal model example. Under the same pa-

rameter setting with previous example of this section, 10 data sets with n = 10, 000

samples are generated for T = 120 descrete time points. Again we set k = 50,

and subsample size m = 200 for BMH and AMHT, and D&C also uses n/k =200

observations in each groups. At for this example, temporal subsets are used for

BMH method. At every iteration of BMH, m subsamples are selected as a subset

of Bootstrap sample, and then, Ts = 50 time points are also selected among 120

Table 4.6: BMH result for the spatial-temporal model with nugget effect: The first
column, ρ represents the true values for between time autocorrelation coefficient.

ρ Method β̂ φ̂ σ̂2 τ̂ 2 ρ̂ ˆφ/σ2 CPU(min)

0.2
BMH

5.001 25.14 1.011 0.999 0.195 24.90 7.13
(0.046) (1.426) (0.036) (0.007) (0.017) (1.005) (0.7)

MLE
4.9985 25.07 1.0033 1.0004 0.1985 24.99 311.13
(0.046) (1.098) (0.036) (0.004) (0.010) (0.479) (101.8)

0.7
BMH

5.012 25.29 1.003 1.002 0.699 25.27 9.08
(0.104) (1.355) (0.036) (0.007) (0.010) (0.976) (0.1)

MLE
5.008 25.02 1.001 1.000 0.699 25.01 281.54

(0.109) (1.030) (0.034) (0.004) (0.005) (0.413) (78.6)
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Table 4.7: Results for the spatial-temporal model of BMH, AMHT, and D&C with
m = 200 and k = 50. From the left column, φ represents the true values of range
parameter, ρ represents the true values of between time autocorrelation coefficient.
CPU(m) is running time in minute.

φ ρ Method β̂ φ̂ σ̂2 τ̂ 2 ρ̂ CPU(m)

25

0.2

BMH
5.009 25.595 1.016 1.001 0.188 61.3

(2.9e-3) (6.8e-2) (2.6e-3) (5.3e-4) (8.1e-2) (9.2)

AMHT
5.013 25.773 1.021 1.001 0.187 210.4

(2.3e-3) (5.9e-2) (2.8e-3) (4.8e-4) (6.1e-4) (4.6)

D&C
5.010 25.314 1.013 0.999 0.193 98.3

(2.4e-3) (6.7e-2) (2.4e-3) (4.1e-4) (5.2e-4) (1.4)

0.7

BMH
5.009 25.582 1.013 1.000 0.703 69.0

(8.4e-3) (5.6e-2) (3.3e-3) (5.0e-4) (5.8e-4) (8.5)

AMHT
5.016 25.837 1.021 1.002 0.702 161.3

(6.9e-3) (5.1e-2) (3.3e-3) (4.4e-4) (5.3e-4) (1.7)

D&C
5.001 25.399 1.013 0.999 0.699 105.3

(7.6e-3) (6.7e-2) (3.0e-3) (4.5e-4) (4.9e-4) (4.9)

75

0.2

BMH
5.002 79.246 1.012 1.003 0.181 64.8

(3.6e-3) (2.6e-1) (4.3e-3) (2.1e-4) (1.8e-3) (6.6)

AMHT
5.000 80.215 1.026 1.003 0.181 192.4

(3.6e-3) (1.7e-1) (3.5e-3) (2.2e-4) (1.4e-3) (3.0)

D&C
5.011 76.884 0.993 1.002 0.192 103.1

(2.8e-3) (2.4e-1) (4.7e-3) (2.2e-4) (1.5e-3) (3.1)

0.7

BMH
4.978 84.409 1.077 1.003 0.707 63.4

(1.2e-2) (5.1e-1) (3.6e-3) (4.0e-4) (8.3e-4) (5.2)

AMHT
4.982 86.510 1.101 1.004 0.705 170.7

(9.8e-3) (5.0e-1) (4.0e-3) (3.6e-4) (7.7e-4) (3.0)

D&C
5.038 80.581 1.055 1.001 0.701 103.0

(9.4e-3) (3.0e-1) (2.9e-3) (3.1e-4) (7.8e-4) (2.5)

descrete time points in the subsampled chunck. Temporal subset should be consec-

utive to detect temporal correlation, and it can be contructed by following. First,

generate random number t0 from Unif(1, T − Ts), and then, select time points of

[t0, t0 + 1, · · · , t0 + Ts − 1] among the previously selected random subset. By using

this scheme, we can run BMH more faster. However, this temporal subsetting should

be carfully considered because if we take too small Ts to estimate temporal correla-
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tion, location parameter and nugget parameter cannot be correctly estimated, and

it affects on the estimate of range parameter. The step size is set to by 0.15 for all

three methods to have acceptance rate of 0.15 ∼ 0.30. Significance level, is set by

ε = 0.02 for AMHT. 55,000 samples are generated from the posterior distribution,

and the first 5,000 samples are discarded as burn-in process. From remaining 50,000

samples, 500 samples are selected systemically as one in every 100 points to have

i.i.d. random numbers. Table 4.7 summarizes the result of the BMH, AMHT, and

D&C runs, the averages of 10 estimates of the methods.

In this example, the same number of observations are used at each iteration of

BMH and D&C, and the same number of mini-batch, m′ is used for AMHT. However,

D&C and AMHT used T = 120 of whole time period whereas BMH used Ts = 50

of subset period. Hence, BMH cost less memory and computation time than the

other two methods. In the Table 4.7, obivously, standard errors for the parameter

estimates of D&C and AMHT are a little smaller than that of BMH because their

number of samples actually used are bigger, and the estimates of D&C are slightly

more accurate than that of BMH, but still BMH estimates are quite usible as much

as D&C, and seem even better than that of AMHT.
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5. REAL DATA ANALYSIS

5.1 US Precipitaion

In this section, we assess the performance of BMH using Spatial data. The data

we used in this section is the US precipitation data from National Climatic Data Cen-

ter for years 1895 to 1997, which are available at www.image.ucar.edu/GSP/Data/US.

monthly.met/. The reason that we used these data is that they are fully observed

for all 103 years with missing data imputed by Johns et al. (2003), and are very

large so that they can be good examples for assessing the performance of BMH on

big data. The observed spatial sites for precipitation is n = 11918. US precipitation

data is seriously right skewed, and can not be applied to the gaussian model. To

have symmetric distribution, we used anomalies that is standardized square root of

the monthly precipitations. Hence, the mean function in our model is assumed to be

constant, which is zero throughout all the sites.

Among the 103 years of US precipitation data, April 1948 is selected to assess

performance of BMH on spatial model. First, the dataset is randomly divided into

Figure 5.1: Total precipitation(left) and Anomalies(right) in April 1948
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Figure 5.2: Contourplot of April 1948 Anomalies of US precipitation

n = 11000 of training set and n = 918 of test set. BMH with m = 100 and 300 were

applied to the trainning set for five times. Corresponding stepsizes are set to be 1.5

and 1.0 to have acceptance rate of 0.15 ∼ 0.20. The total length of chain is 15,000,

and the first 5,000 iterations are discarded as burn-in process. Figure 5.3 shows the

trace plots of BMH samples. The black lines represent BMH chains when m = 100,

and the red lines represent BMH chains when m = 300. The chains when m = 300

have much less variation than when m = 100. Table 5.1 shows averages of the 5

Table 5.1: Parameter estimation for April 1948 US precipitation

Method m β φ σ2 τ 2 φ/σ2 CPU(min)

BMH
100

0.0943 318.48 0.8729 0.0491 352.02 3.39
(0.0247) (37.73) (0.0569) (0.0096) (19.59) (0.30)

300
0.0500 218.47 0.7328 0.0274 293.04 57.73

(0.0113) (26.23) (0.0481) (0.0041) (10.89) (2.74)
MLE -0.2348 167.86 0.8625 0.0270 194.62 32331.22
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Figure 5.3: Trace plot of the parameters in spatial model by BMH algorithm for
April 1984 US precipitation: (a)-(e) represent β, φ, σ2, τ 2, and φ/σ2 respectively.
The black line is for m = 100, and the red line is for m = 300.

estimates and their stadard errors. As subset size m gets bigger, stadard errors of

all parameters are reduced.

5.1.1 Kriging

Under the model (4.1), a joint distribution of the dependent variable is multivari-

ate normal distribution for fixed domain. Hence, the joint distribution at observed

locations and new locations given parameters is as follows.

Xobs

Xnew

∣∣∣∣∣∣∣θ
 ∼ N


µobs

µnew

 ,

Σ11 Σ12

Σ21 Σ22


 (5.1)

where θ is a set of all parameters in the model, Σ11 is a covariance matrix of observed

locations, Σ12 = ΣT
21 is a covariance matrix between observed locations and new

locations, and Σ22 is a covariance matrix of new locations. With fixed parameters,

predictors for the new locations are assumed to follow conditional normal distribution
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(Handcock and Stein, 1993). And the conditional distribution of Xnew|Xobs,θ is,

Xnew|Xobs,θ ∼ N
(
µnew + Σ21Σ

−1
11 (Xobs − µobs) ,Σ22 −Σ21Σ

−1
11 Σ12

)
(5.2)

Here, we still need to calculate inversion of covariance matrix for observed locations,

Σ−1
11 , and it is infeasible if the number of observation is very large. To avoid this

problem, Cressie (1993) suggested to use only neighborhoods that will typically have

more substantial weights. We will call this method Local Kriging, and the Local

Kriging is used for prediction throughout this paper. Let s0 be the location that

we need to predict, and let s1 be the neighborhoods near s0. Then, we can define

covariances with respect to s0 and s1, cov(s1) = Σ1 and cov(s1, s0) = Σ10, and the

Local Kriging estimator X̂(s0) is defined as following.

X̂(s0) = µ(s0) + Σ01

(
Σ1 + τ 2I

)−1
(X(s1)− µ(s1))

where µ(s) is mean function at location s, and X(s1) is observations at location set

s1, which is the neighborhoods near s0. In the Bayesian context, predictor follows

posterior predictive distribution, and hence, it is defined by

f (X(s0)|X(s1)) =

∫
f(X(s0)|X(s1),θ)π(θ|X(s1))dθ (5.3)

where f(·) is a density function of conditional normal distribution defined in (5.2).

The point estimation of the predictor can be earned by calculating expected value

of the posterior predictive distribution, (5.3).

For the prediction of US precipitation, neighborhood distance δ is set as 40, 50,

100 and 150. MSPEs are calcluated for 5 times for each setting of δ, with MLE

and BMH estimators by m = 100 and m = 300. The resulting output is shown in
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Table 5.2. The numbers in Table 5.2 are the averages of MSPEs and the numbers in

parenthesis are standard errors. In this paper, MSPE is defined by following.

MSPE = E (ŷi − yi)2 ≈ 1

ntest

ntest∑
i=1

(ŷi − yi)2

where yi is the i-th observation of test dataset, ŷi is predictor for the test dataset, and

ntest is the number of observations in the test dataset, which is 918 in this example.

The average numbers of observations for δ = 40, 50, 100, and 150 are about 25, 38,

135, and 277 respectivly. Thining is made for calculating predictive posterior distri-

bution. Among 10,000 samples in the chain after the burn-in process, samples are

selected in every 100 samples. Hence, total of 100 samples are applied to calculate

the predictive posterior distribution. The prediction results in Table 5.2 indicate that

neighborhood distance δ should be at least 50 mile to provide sufficiently precise pre-

diction for this dataset. When we set δ = 40, the median number of neithborhoods is

20, and such points that have small number of neighborhoods would not be able to be

correctly predicted. So, choice of δ can be done by checking the number of neighbor-

hoods, and finding δ having sufficient number of neighborhoods. However, the speed

of Local Kriging depends on the number of neighborhoods as whose computational

Table 5.2: Averages of MSPEs using neighborhoods within distances δ. Numbers in
paremthesis are stadard errors of the MSPEs. CPU(sec) represents running time in
seconds for calculating single MSPE.

Neighborhood distance(δ)
m 40 50 100 150

100 0.06891(2.0e-3) 0.06818(2.0e-3) 0.06830(2.2e-3) 0.06827(2.2e-3)
300 0.06744(4.2e-4) 0.06663(3.7e-4) 0.06664(3.9e-4) 0.06660(3.9e-4)

MLE 0.06681 0.06617 0.06619 0.06615
CPU(sec) 6.62(0.03) 11.33(0.03) 149.21(4.20) 1275.93(5.70)
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Figure 5.4: Observed and predicted precipitation for April 1948: (a) is the true
values in test dataset, (b) is predicted values of Local Kriging of δ = 50 with BMH
estimator m = 300, and (c) is predicted values of Local Kriging of δ = 50 with MLE.

complexity is O(ntest×n3
b) where nb is number of neighborhoods. Hence, considering

both of minimum and maximum number of neighborhoods is needed. We suggest at

least 5 and at most 200 neighborhoods as reasonable number of neighborhoods. The

Local Kriging with parameters estimated by BMH with m = 300 provides enough

precise prediction as much as that by MLE, but notice that BMH gurantees highly

faster estimation.

5.1.2 Comparison Study

To compare with BMH, the data is applied to AMHT and D&C for five times. For

AMHT mini-batch size is set by m′ = 100 and significance level is set by ε = 0.002,

for D&C, k = 50 groups are used, and so in each group n/k = 220 observations are

used. Table 4.6 shows estimates from the three methods. Numbers in upper rows are

averages of the five parameter estimates, and the numbers in paranthesis in the lower

rows are standard errors of the average estimates. We set parameter space for the

range parameter φ as [0, 3000] because a distance bwteen the east cost to the west

cost of US is approximated 3,000 miles and φ should be smaller than 3,000 miles.

15,000 samples were generated and the first 5,000 samples were discarded as burn-

in process as we did for BMH algorithm. This data is originaly imputed by Johns

et al. (2003), and he didn’t set the nugget effect on his model. Interestingly, AMHT
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Table 5.3: Parameter estimation of sptial model for April 1948 Anomalies of US
precipiation.

Method µ φ σ2 τ 2 φ/σ2

BMH
0.0943 318.48 0.8729 0.0491 352.02

(0.0247) (37.73) (0.0569) (0.0096) (19.59)

AMHT
-0.2058 309.18 0.7958 0.0000 384.81
(0.0036) (3.99) (0.0089) (0.0000) (0.5673)

D&C
0.1022 324.52 0.9100 0.0029 361.49

(0.0192) (21.47) (0.0117) (0.0053) (10.25)

estimated the nugget effect, τ 2 = 0 which is true for this data. Certainly, AMHT is

good for point estimation, but its poor performance on the covariance estimation of

posterior distribution is not suitable for performing bayesian inference.

Prediction were made by parameter samples generated from the posterior dis-

tribution using BMH and AMHT, and also we did kriging by simply pluging in

the parameter estimates from D&C method because D&C has different chains for

each partition and it is hard to define monte carlo integration using different chains.

The neighborhood size was set by δ = 50, and MSPEs for the prediction using the

results of AMHT and D&C are 0.07173 and 0.07917 respectively. This is bigger

than that of BMH, which is 0.06818 with same size of neighborhood 50. Predic-

tion of BMH was better than that of other methods because BMH samples are

well-described its posterior distribution. When we calculate predictive posterior dis-

tribution, π(y∗|D) =
∫

Θ
P (y∗|D,θ)π(θ|D)dθ, we need to do monte carlo integration

with respect to parameters generated from posterior distribution, where y∗ is the

value we need to predict. And as the samples correctly descibe population posterior,

this integration will be converged well to its true value.
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6. CONCLUSION

In this paper, we have proposed the BMH algorithm as a basic MCMC algorithm

for Bayesian analysis of big data. The BMH algorithm is workable on parallel and

distributed architectures and avoids repeated scans of the full dataset in iterations,

and is thus feasible for big data problems. Compared to the popular divide-and-

conquer strategy, BMH is generally more efficient as it can asymptotically integrate

the whole data information into a single simulation run. The BMH algorithm is very

flexible. Like the Metropolis-Hastings algorithm, it can serve as a basic building block

for developing advanced MCMC algorithms that are feasible for big data problems.

Compared to the existing big data analysis methods, such as aggregated estimating

equation, resampling-based stochastic approximation, bag of little bootstraps, and

approximate MH test, a unique power of BMH is that it tames the powerful MCMC

methods to be used for big data analysis, such as parameter estimation, optimiza-

tion and model selection. BMH provides a simple yet effective way of uncertainty

quantication for big data problems.

Let T denote the number of iterations of BMH. Then the overall computational

complexity of BMH can be expressed as O(mkT ), which is the same for both resam-

pling schemes. Note that the computational complexity of BMH does not directly

depend on n, although m, k and T can all increase with n. As shown in Chapter

3, for BMH, we can set m = O(nγ) and k = O(nγ+ε0) for γ < 1/2 and any ε0 > 0.

Hence, the overall computational complexity of BMH is O(n2γ+ε0T ). In a parallel

implementation, the time complexity of BMH is O(nγT ). For a parallel implemen-

tation of the MH algorithm on the full data, the time complexity is O(n1−γ−ε0T ) if

nγ+ε0 nodes are used. Since γ usually takes a very small value and ε0 is nearly zero,
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BMH can be much faster than MH.

BMH aims to provide a numerical approximation to the full data posterior for

big data problems. The BMH approximation preserves all features of the full data

posterior, such as marginal and correlation structures, which can be inferred from

its samples. As shown in Table 4.2, the approximation can be rather accurate (up

to a known scale factor). The BMH algorithm proposes to replace the full data

log-likelihood by a Monte Carlo average of the log-likelihoods that are calculated in

parallel from multiple bootstrap samples. As an alternative strategy, one may try to

replace the likelihood function by its Monte Carlo average in simulations. Although,

in theory, this averaged likelihood method may go through under suitable conditions,

our numerical results show that it can be much less efficient than BMH in terms of

accuracy of the resulting parameter estimates. Compared to the averaged likelihood

method, BMH has some significant advantages. As explained previously, it follows

from Jensens inequality that for any m ∈ N , the mode of gm(D|θ) is identical to θ∗

; that is, the maximum mean log-likelihood estimator is identical to the true param-

eter. This makes lm,n,k(Ds|θ) perform like a regular log-likelihood function when n

and k are large. However, this property does not hold for the maximum mean likeli-

hood estimator. We note that the maximum mean log-likelihood estimator has been

explored in Liang et al. (2013) using a resampling-based stochastic approximation

method in the context of large geostatistical data. In this paper, we have considered

only the use of BMH in parameter estimation. Applying BMH to model selection

is straightforward. For example, BMH can be combined with the reversible jump

MCMC algorithm (Green, 1995) in a similar way to tempering BMH for tackling

the problem of model selection. In addition to the parameter estimation and model

selection problems, BMH can also be applied to optimization problems by running

it under the framework of simulated annealing (Kirkpatrick et al., 1983). This leads
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to the annealing BMH algorithm. A further exploration for the performance of these

algorithms is of great interest.
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APPENDIX A

Proof of Lemma 3.3.2 Let

Q(θ, ψ(λm,n,k(θ,Ds,ϑ) > ε)) =

∫
{(ϑ,Ds):λm,n,k(θ,Ds,ϑ)>ε}

ψ(dDs)Q(θ, dϑ),

where Ds is treated as a continuous variable for the notational simplicity. It follows

from (3.12) and condition (B) that for any θ ∈ Θ and any ε > 0,

lim
k→∞

lim
n→∞

Q(θ, ψ(λm,n,k(θ,Ds,ϑ) > ε)) = 0.

Then the remaining part of the proof follows the proof of Lemma 2 of Liang and Jin

(2013). This completes the proof of Lemma 3.3.2.

Proof of Equation (3.16) It follows from (3.15) and the telescoping sum decom-

position formula that

‖P̃m,n,kφ(θ)− P κ0
m φ(θ)‖ ≤

∑
Ds∈D

‖P κ0
m,n,k,Ds

φ(θ)− P κ0
m φ(θ)‖ψ(Ds)

=
∑
Ds∈D

‖
κ0−1∑
l=0

P l
m(Pm,n,k,Ds − Pm)P

κ0−(l+1)
m,n,k,Ds

φ(θ)‖ψ(Ds)

≤ κ0

∑
Ds∈D

‖Pm,n,k,Dsφ(θ)− Pmφ(θ)‖ψ(Ds).

Then, following the same reasoning as in the proof of Lemma 3.3.2, we have (3.16)

holds.
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Proof of Equation (3.17) Let µ = E[log f(X|θ)], let zi = log f(Xi|θ) − µ for

i = 1, · · · , n, let σ2 = V ar(zi), and let {y1, · · · , ymk} denote mk samples drawn

without replacement from the set {z1, · · · , zn}. Since the sampling was done with

replacement, we have

E(y2
i ) = σ2, E(yiyj) =

σ2

n
,

E(ȳ2) =

(
1

mk
+

1

n
− 1

mnk

)
σ2,

E(yiz̄) =
σ2

n
, E(z̄2) =

σ2

n
,

where ȳ = (y1+· · ·+ymk)/mk and z̄ = (z1+· · ·+zn)/n. Then, by noting Vm,n(D|θ) =

mz̄ +mµ, we have

E(lm,n,k(Ds|θ)− Vm,n(D|θ))2 = E(mȳ −mz̄)2 =
m

k

(
1− 1

n

)
σ2

Proof of Theorem 3.4.1 To prove this theorem, we introduce the following lemma

which is due to Chen (1985).

Lemma A.0.1 Let {fn(x), n = 1, 2, · · · } be a sequence of probability density func-

tions defined on X . Define ln = log fn(·). It is assumed that, for each n, there

exists a strict local maximum, µn , of fn in X such that the following conditions are

satisfied:

(E1) l′n(µn) = ∂ln/∂x|x=µn
= 0.

(E2) l′′n(µn) = ∂2ln/∂xx
T
∣∣
x=µn

is negative definite; or Σn = [−l′′n(µn)]−1 is positive

definite.
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(E3) (Steepness) σn → 0 as n→∞, where σ2
n is the largest eigenvalue of Σn defined

in (E2 ).

(E4) (Smoothness) For any ε > 0, there exists an integer N and η > 0 such that,

for any n > N and x ∈ H(µn, η) = {x ∈ X : |x− µn| < η}, l′′n(x) exists and

satisfies

Id − A(ε) ≤ l′′n(x) {l′′n(µn)}−1 ≤ Id + A(ε),

where d is the dimension of x, Id is a d×d identity matrix, and A(ε) is a d×d

positive semi-definite symmetric matrix whose largest eigenvalue tends to zero

as ε→ 0.

(E5) (Concentration) For any η > 0, the probability

Qn =

∫
H(µn,η)

fn(x)dx→ 1, as n→∞.

Let Xn denote a sample of fn(x) and let Zn = Σ
−1/2
n (Xn−µn) Then Zn converges in

distribution to the standard normal Z whose pdf is f(z) = (2π)−d/2 exp
{
−zT z/2

}
.

Then, to prove Theorem 3.4.1, it suffices to verify that π̃m(θ|D) satisfies the

conditions (E1 )-(E5 ). The condition (D2 ) implies that (E1 ) and (E2 ) are satisfied.

For π̃m(θ|D), the matrix corresponding to Σn in (E2 ) is given by

[
−l̃′′m(µm)

]−1

=
1

m
Σ̃m,1,

where Σ̃m,1 is positive definite and its eigenvalues are asymptotically independent of

m. Hence, condition (E3 ) is satisfied.

In condition (D2 ), it is assumed that ∂2l̃m(θ)/∂θθT is continuous on Θ. There-

fore, the smoothness condition (E4 ) is satisfied.
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In condition (D1 ), it is assumed that l̃m(θ) is uniformly continuous on Θ, and

it has a unique global maximum and a finite number of local maxima. Therefore,

it follows from the existing result of simulated annealing, see e.g. Theorem 2.3 of

Dekkers and Aarts (1991), that the concentration condition (E5 ) is satisfied. This

completes the proof of the theorem.
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