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ABSTRACT 
 

 
Commercial strains of Pediococcus acidilactici are incorporated into food safety 

cultures that are used to inhibit the proliferation of foodborne pathogens.  We employed 

comparative genomics and molecular biology to characterize Pediococcus acidilactici 

D3, an industrial food safety strain provided by the company Guardian Food 

Technologies.  The objective of this research was to develop strain-specific molecular 

probes at unique genomic targets to uniquely identify P. acidilactici D3.  The 

antimicrobial activity of P. acidilactici D3 was examined in this study. In addition, a 

carbohydrate utilization profile was prepared for this strain, from which it was observed 

that sucrose was readily metabolized by P. acidilactici D3.  In order to identify the 

genes responsible for the observed antimicrobial activity and sucrose utilization, a draft 

sequence of the P. acidilactici D3 genome was generated. The genes putatively 

responsible for the expression of an antimicrobial peptide (pediocin) and the sucrose 

utilization loci were annotated.  Using a combination of the two operons as genomic 

targets, strain-specific probes were successfully developed and validated with 

quantitative-PCR. 
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CHAPTER I 

INTRODUCTION 

 

INTRODUCTION 

Biopreservation 

The most widely used traditional preservatives are the chemical preservatives 

propionates, sorbates, and benzoates (21, 45).  Alternatively, there is a growing trend of 

consumer demand for natural preservatives.  In 2010, 39% of consumers cited chemicals 

in foods as the most important food safety issue (42).  Food developers are investing 

effort into improving the quality and shelf life of foods with natural preservatives. 

Biopreservation or biologically based preservation technologies is the use of 

lactic acid bacteria (LAB) and their metabolic products to improve the safety and quality 

of foods (28).  In situ acidification by the production of lactic acid, the production of 

diacetyls, hydrogen peroxide, and bacteriocins by LAB are all widely recognized 

methods for biopreservation.  Bacteriocins in particular have been studied to be highly 

beneficial in inhibiting food spoilage pathogenic bacteria that are otherwise less 

susceptible to traditional inhibitory/food preservation techniques.    

 

Food Safety Cultures 

Last year, it was estimated that 31 major pathogens cause 9.4 million cases of 

food-borne illnesses in the United States alone (38).  Such astonishing statistics appeals 

for the improvement of food safety technologies. 
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The microbial quality of a product plays a valuable role in the modification of 

several characteristics such as nutritional value, taste, texture, etc., that can influence the 

shelf life of foods.   In addition, certain antimicrobial compound producer strains of 

LAB can prolong the shelf life of food products by reducing the load of food-borne 

pathogenic and/or spoilage bacteria (28).   

Lactic acid bacteria have been used previously to control pathogens such as E. 

coli O157:H7, Salmonella and Listeria.  The effectiveness of a Lactobacillus-based 

intervention strategies was studied  by using a combination of 4 strains of lactic acid 

bacteria (Lactiguard, Guardian Food Technologies, Kansas City, MO) for the reduction 

of Salmonella in turkey products (9).  Both bacteriostatic and bacteriocidal activity was 

observed when the competitive inhibition of L. monocytogenes at refrigeration (5°C) 

temperatures by lactic acid bacteria, isolated from commercially available ready-to-eat 

meat products, was studied (2).  

 

Bacteriocins 

Bacteriocins are antimicrobial proteins produced by bacteria to inhibit the growth 

of other species of bacteria that are competing for the same nutrients.  This heterologous 

group of proteins varies in its size, mode of action and effectual concentration.   

The genetic organization of the bacteriocin operon generally appears as a 

contiguous set of open reading frames, responsible for bacteriocin synthesis and 

transport.  Genes transcribing accessory proteins for modifying or cleaving a pre-

bacteriocin, and those coding for immunity proteins, which are usually membrane 
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proteins that prevent bacteriocins from causing self-lysis, are also a part of the 

bacteriocin operon. 

Since proteins responsible for the modification, export and regulation of 

bacteriocin production are often encoded in the same operon as the bacteriocins.  

Bacteriocin production related genes are among those that are often transferred 

horizontally. Horizontal gene transfer is very common in LAB due to the presence of 

mobile genetic elements, insertion elements, and conjugative and mobilizable plasmids.  

 

Pediococcus acidilactici  

Pediococcus acidilactici is a gram positive homofermentive lactic acid bacteria 

that belongs to the family Lactobacillus.  This species has a long history of safe use as a 

starter culture in mean and vegetable fermentation.  A few strains of P. acidilactici 

produce bacteriocins; and these bacteriocins produced by Pediococcus are called 

pediocins (18).   

 

Genomics 

In simple terms, genomics is the study of genes and their functions. Functional 

genomics is the characterization of these genes and their interaction with the 

environment or other genes.  Genome sequencing and functional genomics has provided 

a molecular basis for important traits in LAB such as sugar metabolism, flavor 

formation, stress response, etc.  Bioinformatics has been an essential tool in handling 

and analyzing the huge volume of data generated by genomic sequencing (40).  
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PROJECT OBJECTIVES  

We employed comparative genomics and molecular biology to characterize 

Pediococcus acidilactici D3, an industrial food safety strain provided by the company 

Guardian Food Technologies.  The three central deliverables of the project include: (i) 

the generation of a partial draft genome sequence, (ii) the characterization of the 

phenotypic profile, and (iii) the development strain-specific molecular diagnostics to 

detect and quantify P. acidilactici D3, a component of LactiGuard.   

Figure 1 describes the project outline and the approach used to attain the 

deliverables. The phenotypic study was used to identify functional traits: bacteriocin 

production, carbohydrate utilization, and exopolysaccharide production, that would later 

serve as gene targets for probe development: Each phenotypic study was done in 

comparison with related strains, including the ‘Type’ strain for each species of 

Pediococcus.  Once these characteristics were confirmed, and determined to be exclusive 

targets, they were selected as genomic targets for strain-specific probe design.  This 

included a detailed study of the operons putatively involved in the expression of these 

phenotypes. The P. acidilactici D3-encoded genes/operons were examined for single 

nucleotide polymorphisms (SNPs) and other larger-order genetic changes in comparison 

to other closely related strains. Diagnostic regions on the genome were used as targets 

for the design of primers/probes, which were then tested for strain-specific amplification 

compared to other strains.  Following probe design, quantitative-PCR was developed to 

screen for specificity and quantification.  
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THESIS STRUCTURE 

 Chapter II (Expression of antimicrobials by Pediococcus acidilactici: 

Functional genomics in food safety) includes two main sections of the research: (i) 

strain verification and genome sequencing, and (ii) the study of antimicrobials produced 

by P. acidilactici D3.  The initial verification tests were conducted to confirm the 

speciation of our target strain.  These tests included light microscopy to observe shape 

and clustering, gram staining to attest that the strain was gram positive, 16S rRNA for a 

molecular level confirmation and. scanning electron microscopy to observe the size and 

shape of P. acidilactici D3 in closer detail. Whole genome sequencing of the strain was 

carried out with the Ion Torrent Personal Genome Machine.  The sequence data obtained 

was used to explain the genomic basis for pediocin production, which was 

phenotypically observed by bacteriolytic zymograms.  Annotation of the pediocin 

operon of P. acidilactici D3 was accomplished in this chapter. 

 Carbohydrate utilization studies using the OMNILOG (BIOLOG phenotypic 

microarray plates) and Analytical Profile Index (API) strips were conducted to 

characterize P. acidilactici D3 phenotypically in Chapter III (Strain-specific molecular 

diagnostics for Pediococcus acidilactici).   Sucrose metabolism was an interesting 

phenotype observed because previous work has cited plasmid-linked sucrose utilization 

in P. pentosaceus (17). Similar to Chapter II, the sucrose operon, consisting of six open 

reading frames, was annotated.  The sucrose operon contained several single nucleotide 

polymorphisms which provided ideal strain-specific targets for probe design, which 
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concluded the final deliverable of the project – strain specific diagnostics to detect P. 

acidilactici D3.  In this chapter, the method for primer/probe design is outlined.  

Validation of the probes by quantitative PCR (qPCR) and successive band detection on 

agarose gels is described.  A combination of probe pairs to be used for detection of P. 

acidilactici D3 in a strain-specific manner is listed, thereby accomplishing the objectives 

of this research. 

 Chapter IV (Summary) briefly describes the result of each aspect of the project 

and summarizes the overall project conclusion. 
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CHAPTER II 

EXPRESSION OF ANTIMICROBIALS BY Pediococcus acidilactici: 

FUNCTIONAL GENOMICS IN FOOD SAFETY 

 

INTRODUCTION 

Strains of Pediococcus acidilactici have long been incorporated into starter 

cultures designed to drive the commercial fermentation of plant materials (e.g., 

cucumbers, olives) and meats (e.g., fermented sausages, fresh and marinated fish).  

When used in this capacity, a few strains of Pediococcus acidilactici act preserve the 

product and to inhibit spoilage microorganisms such as gram-negative bacteria: 

Escherichia spp. (5) and Salmonella spp. (9, 36), gram-positive spore-formers: Bacillus 

spp. and Clostridium spp. (30), nonstarter lactic acid bacteria, and foodborne and 

feedborne pathogens: Listeria spp. (2, 31).  Much of the preservative and protective 

activities are due to the expression of diffusible, low-molecular weight factors including 

byproducts of metabolism and antimicrobial peptides.  

Ribosomally-encoded bacteriocins are antimicrobial peptides that are typically 

effectual against a narrow range of target microorganisms (10). A universal system for 

bacteriocin taxonomy, based on the foundations of previously proposed schemes (6, 23), 

categorizes bacteriocins into four main classes (19).  Class I bacteriocins are 

‘lantibiotics’, post-translationally modified peptides with atypical amino acids like 

lanthionine residues; Class II bacteriocins are ‘unmodified peptides’, and are subdivided 

into IIa: ‘pediocin-like’, IIb: ‘miscellaneous’, and IIc: ‘multicomponent’.  Bacteriolytic 
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and non-lytic ‘large proteins’ are Class III bacteriocins, and Class IV antimicrobials are 

‘cyclic peptides’.  Regardless of their classification, antimicrobial factors are typically 

more effective in combination (synergism) (13), which parallels the hurdle concept for 

food safety and stability (24).  Bacteriocins produced by bacteria of the genus 

Pediococcus are termed pediocins (Class IIa) and are small membrane-permeabilizing 

peptides (22) (Figure 2) that are effectual bacteriolytics at low concentrations (32) and 

are the subject of this study.   

  The pediocin-encoding operons are located on a 9.6 kb plasmid (18) and an 11.4 

kb plasmid (34) in Pediococcus acidilactici PAC1.0  and  Pediococcus acidilactici H, 

respectively.  In these two strains, the four genes responsible for pediocin production and 

transport are: pedA (bacteriocin, Uniprot: P29430), pedB (immunity protein, Uniprot: 

P36496), pedC (protein biosynthesis, Uniprot: P37249), and pedD (transport and ATP-

binding, Uniprot: P36497) (Figure 3).  Although the genes for bacteriocin production 

are among some features found in Pediococci in a strain-specific fashion, these genes 

could serve as biomarkers for the identification of food safety strains.  The utility of food 

safety strains, especially bacteriocin-producing strains, is highly significant and could 

confer an extended shelf-life and an improved spoilage-prevention strategy in consumer 

foods. 

We studied the functional genomics of pediocin production in P. acidilactici D3 

by studying the strain’s capability to produce antimicrobial peptides after identifying the 

presence of pediocin producing genes in the P. acidilactici D3’s genome.  Further 

analysis of these genes led to the annotation of the pediocin operon. 
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MATERIALS AND METHODS 

Bacterial Strains and Cultivation Conditions 

All of the strains (12, 15, 29, 41, 43) used in this study are listed in Table 1. P. 

acidilactici D3 was provided by Guardian Food Technologies (Overland Park, KS).  

Additional P. acidilactici strains, and strains of related species, were also acquired from 

various sources to enable phenotypic, genetic, and genomic comparisons to the strain 

provided by Guardian Food Technologies.   

All lactic acid bacteria were streak purified three times on de Man-Rogosa-

Sharpe (MRS) agar (Difco Laboratories, Detroit, MI, USA) and cultivated at 37°C.  

Stocked cultures were maintained at —80°C in MRS broth supplemented with 20% (v/v) 

glycerol.  Strains were passed 2X before being used. 

 

Colony and Cell Morphology  

 Because a butyrous consistency might suggest the expression of complex 

extracellular polysaccharides (e.g., exopolysaccharides like homopolysaccharides), P. 

acidilactici D3 colonies were observed for shape, size, color, margin type, and 

consistency.  Strains were also observed under a light microscope in order to identify the 

shape of the cells, and determine if the cells were found singly, in pairs or tetrads.  

The gram-stain was used to assay the physiochemical properties of P. acidilactici 

D3’s cellular envelope, especially the abundance of peptidoglycan.  The strain 
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Escherichia coli K-12 BW25113 was used a gram-negative control and the strain L. 

amylovorus ATCC 33620T served as the gram-positive control. 

 

Scanning Electron Microscopy (SEM) 

An overnight broth culture of P. acidilactici D3 was observed at up to 50,000X 

using the TOPCON Aquila Scanning Electron Microscope (Microscopy & Imaging 

Center, Texas A&M University).  Preparation of the broth culture for observation was 

carried out over four days with four main steps: sample fixing, sample dehydration, 

sample coating, and final imaging.  Fixing the sample consisted of mixing and equal 

volume of the fixative (2% gluteraldehyde, 2% paraformaldehyde and 1X of minimal 

media buffer containing sodium acetate, potassium dihydrogen-phosphate, manganese 

sulphate, magnesium sulphate, ammonium citrate, and dipotassium phosphate) to the 

broth culture.  This was followed by pelleting the cells and storing them in 1% (w/v) 

osmium tetroxide (OsO4) in hydroxyethyl piperazineethanesulfonic acid (HEPES), pH 

7.4.  The sample was then stored at 4°C overnight.  On the second day, samples were 

dehydrated by microwave processing with an ascending grade of methanol (10 a 100% 

in 5% increments), 1 or 6 minutes in each step, and finally washed with hexamethyl 

disitizane (HMDS) for three cycles of 30 minutes each on the rotator, and finally left 

overnight.  The samples were then splutter coated with ruthenium vapor and finally 

observed under scanning electron microscope.    
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16S rRNA Gene Sequencing and Taxonomy  

Universal primers/ oligonucleotides (Invitrogen) (Table 2) were selected for 

PCR amplification of the 16S rRNA region of the P. acidilactici D3 genome using a 

gradient cycler (Eppendorf Gradient Cycler).  Each 25µL reaction contained 1.5ng/µL of 

template bacterial DNA, 1X (1.5mM MgCl2) of Optimized DyNAzyme EXT Buffer, 

200µM of each dNTP, 0.5µM of each primer and 0.5U of DyNAzyme EXT DNA 

Polymerase.  With the primers 27F and 1522R, the PCR conditions were an initial 

denaturation cycle for 2 min at 94°C, 30 cycles of denaturation for 0.5 min at 94°C, 

annealing for 0.75 min at 56°C, and extension for 2 min at 72°C.  This was followed by 

a final extension for 7 min at 72°C and cooling to 4°C, at which temperature the 

products were maintained.  The PCR products were loaded on a 0.8% agarose mini gel 

and run at 80V.  3µL of each sample was taken, mixed with 2µL of 50% (v/v) 6X gel 

loading dye (New England BioLabs) in glycerol, and 1.43X of Sybergold DNA stain.  

The gel was visualized under a light cabinet (Alpha Innotech Multi Image Light Cabinet) 

under transilluminance UV.   

A pure genomic DNA sample of P. acidilactici D3 was sent to Eton Bio for 16S 

rRNA sequencing to confirm taxonomy of the strain.    The Basic Local Alignment 

Search Tool (BLAST) was used to conduct 16S rRNA sequence comparison to verify 

the nomenclature of P. acidilactici D3 as Pediococcus acidilactici. A homology search 

of the 16S rRNA sequence was performed using BlastN to determine the closest known 

relatives of the Pediococcus acidilactici D3 strain. In addition, the genomic DNA 
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sample was sent to Accugenix for identification of the strain based on 16S rRNA 

analysis with the vendor’s database and primer set. 

A phylogenetic tree based on 16S rRNA sequence from Accugenix for P. 

acidilactici D3 against related type strains (Table 3) for the species in the Pediococcus 

cluster (11) by using BLAST pairwise alignments and by applying the neighbor joining 

algorithm with a bootstrap analysis using 100 replicates was completed. 

 

Whole Genome Sequencing and Bioinformatics 

 In order to achieve a total DNA yield of 10-20µg of high quality DNA (OD 

A260/280 purity ratio ~ 1.8) for sequencing, DNA extraction, precipitation and 

purification was optimized using a combination of the Masterpure Gram Positive DNA 

Purification Kit (Epicenter Biotechnologies), phenol chloroform precipitation, and the 

DNeasy Blood Purification Kit (Qiagen) spin protocol.  

In brief, to extract genomic DNA from the gram-positive Pediococcus cells, 5mL 

of bacterial culture, grown overnight (OD ~ 2), was pelleted in a swing bucket centrifuge 

(Eppendorf centrifuge 5810 R).  The pellet was resuspended in 750µL of TE buffer 

(EpiCentre Biotechnologies) and lysozyme (Ambresco) was added to give a final 

concentration of 30mg/mL. The solution was incubated for 3 hours at 37°C.  5µL of 

Proteinase K (50µg/µL) was diluted into 750 µL of lysis buffer (EpiCenter 

Biotechnologies) to yield a 140µg/mL enzyme concentration.    This was followed by 

incubation for 15 mins at 67°C with intermittent vortexing every 5 mins.  The samples 

were then cooled to 37°C and placed on ice for 5 mins.  A half volume of MPC Protein 
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Precipitation Reagent (EpiCenter Biotechnologies) was added and vortexed for 10 secs.  

The proteinaceous debris was pelleted by centrifugation at 4,000 rpm for 15 mins at 4°C.  

An RNase blend of 5µL RNase A (EpiCenter Biotechnologies), 5 µL of Riboshredder 

(Epicenter Biotechnologies) and 5 µL of Purelink RNase A (Life Technologies) was 

added to the supernatant and incubated at 37°C for 30 mins.  A 1:1 Phenol chloroform 

precipitation and subsequent 24:1 chloroform isoamyl alcohol wash was conducted to 

remove any contaminants.  An equal volume of isopropanol was added to the 

supernatant obtained from the above steps to precipitate the DNA by inversion of the 

sample tubes 30-40 times.  At this point, filamentous DNA was pelleted by 

centrifugation at 4,000 rpm for 10 mins at 4°C and the isopropanol was removed.  Once 

the pellet was rinsed with 70% ethanol, the DNA was resuspended in 150µL of sterile 

deionized water.  The resuspended DNA was then divided into two spin columns 

(DNeasy Spin Kit for Blood, Qiagen) such that each column contained 75µL of sample 

or ~48-57ng of DNA, and the DNeasy spin protocol was followed. 

The extracted DNA was primed for sequencing by carrying out the Ion Xpress 

Template kit preparation protocol.  Whole genome sequencing of Pediococcus 

acidilactici D3 was conducted partially using the Ion Torrent Personal Genome Machine 

and the Illumina GAII sequencer.   

Sequencing conducted on the Ion Torrent Personal Genome Machine was 

performed by real-time measurement of hydrogen ions produced during DNA replication 

on the surface of ion spheres distributed on the 316D Ion chip.   The sequencing, 
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including base calling, in conjunction with measurement, was carried out on the Torrent 

Server.    

The CLC Genomics Workbench 4.7.2 software was used to assemble the partial 

genome sequence of P. acidilactici D3 by de novo assembly.  Two runs of Ion Torrent 

and two runs of Illumina GXII high-throughput sequencing were carried out sequentially 

to increase coverage of the genome.  The results of all four runs were combined and 

mapped against the reference genome sequence of Pediococcus acidilactici DSM 

20284T contigs:  NZ_AEEG01000001.1, NZ_AEEG01000002.1, NZ_AEEG01000003.1, 

NZ_AEEG01000004.1, NZ_AEEG01000005.1, NZ_AEEG01000006.1, 

NZ_AEEG01000007.1, NZ_AEEG01000008.1, NZ_AEEG01000009.1, 

NZ_AEEG010000010.1, NZ_AEEG010000011.1 and NZ_AEEG010000012.1.     

 

Spot-on-agar Antimicrobial Activity Assay 

 Samples for antimicrobial screening were prepared as described in Figure 4.  

Briefly, the supernatant of an overnight culture of Pediococcus acidilactici D3 was 

ultrafiltered in the Amicon 3K centrifugal filter unit (Millipore).  The ultrafiltration 

cartridge separated the filtrate, containing low molecular weight compounds (<3000 Da, 

e.g. lactic acid) from the retentate, containing peptides >3000 Da (e.g. bacteriocins).  

Different fractions of this culture (the cell pellet, supernatant, retentate and the filtrate) 

were then spotted onto MRS agar plates overlaid with 9mL of MRS soft agar seeded 

with 500µL of an overnight culture of the pediocin-sensitive indicator strain, 

Pediococcus acidilactici DSM 20284T.  In order to control for the antimicrobial 
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properties of lactic acid (to account for acid inhibition), uninoculated control fractions 

(supernatant, filtrate and retentate acidified with lactic acid, made comparable to the 

final pH of the inoculated filtrate and retentate, respectively) was also prepared.  

Fractionated control suspensions were similarly assayed for antimicrobial activity.  

Spotted plates were incubated at 37°C overnight and then observed for zones of 

inhibition.  If present, zones of inhibition suggest the presence of antimicrobial 

compound(s) that may have caused the lysis of the indicator strain.   

 

Bacteriolytic-zymogram 

In order to estimate the size of the antimicrobial(s) expressed by the strain, the 

retentate obtained by ultrafiltration was analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE).  Since the expected size of the 

bacteriocin is of the range 4,000 Da (4), the NuPage Bis Tris gel (Life Technologies) 

was used with the NuPage MES SDS Running Buffer (Life Technologies).   

The amount of protein in the retentate was determined by the Quant-IT Protein 

Assay Kit (Invitrogen), methodology followed according to the given protocol.  The 

retentate was then diluted with the uninoculated control retentate for comparable 

analysis with the 10ng/µL of commercial pediocin (Sigma-Aldrich). 

Following electrophoresis, half the SDS gel (containing the marker, a 

commercial pediocin-positive control, and the retentate of P. acidilactici D3) was 

washed three times for 1 hour each and was overlaid on MRS soft agar (0.75% w/v 

agarose) seeded with the indicator strain, P. acidilactici DSM 20284T. For band-size 
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comparison, the other half of the gel (containing the marker and the retentate of strain 

D3) was stained with SimplyBlue SafeStain (Invitrogen) and was then washed 

thoroughly with distilled water. The size of the band corresponding to the antimicrobial 

activity (a zone of inhibition) was used to estimate the size of the bacteriocin.  

 

Mapping of the Pediocin Operon 

The preliminary genome sequence data for P. acidilactici D3, generated from the 

Ion Torrent sequencing run, was assembled by de novo assembly using the CLC Bio 

Genomics Workbench.   Sequence data was mapped using the Pediococcus acidilactici 

H plasmid pSMB74 (GenBank: U02482.2) as a scaffold, which is known to encode a 

pediocin operon. For the pediocin D3, a draft sequence of the operon was generated.  

Using multiple sequence alignment and comparative genomics, primers were designed in 

the conserved regions to amplify various regions of the pedABCD operon. These PCR 

products were then sequenced by Sanger Sequencing in order to fill gaps in the pediocin 

operon sequence (Figure 5). 

It is well known that these genes encoding pediocin production share highly 

conserved regions within the pediocin operon.  Based on sequence similarity to P. 

acidilactici MTCC 5101 plasmid pCP289 ped operon (GenBank: GQ214404.1), the 

presence of the pediocin operon was once again validated.   

Genomic sequence data from Illumina GAIIx sequencing was mapped against 

Pediococcus acidilactici strain K10 pediocin operon (GenBank: AY705375.1).  The 

mapped reads were extracted, reassembled by de novo and then once again aligned with 
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the P. acidilactici strain K10 pediocin operon.  Identification of the pediocin operon in 

P. acidilactici D3 plays an important role in not only identification of the strain P. 

acidilactici D3, but also utilization of the strain in food safety cultures.   

 

Pediocin Operon 

 The pediocin operon was annotated by identifying the start codons (ATG, GTG, 

TTG, ATT, CTG), the stop codons (TAG, TAA, TGA), the ribosome binding site 

(GGAG) upstream of each gene, and the -10 regulatory signal with consensus TATAA.  

The nucleotide sequence of the pediocin-encoding P. acidilactici PAC 1.0 plasmid 

pSRQ11 fragment was used as a reference for annotation (27). 

 

RESULTS AND DISCUSSION 

Cell and Colony Morphology 

P. acidilactici D3, the P. acidilactici type strain DSM 20284T and the other 

pediococci, including P. pentosaceus type strain DSM 20336T were cocci and generally 

observed singly or in pairs, although a few tetrads and short chains were also perceived 

(20). Light microscopy captures are illustrated in Figure 6. 

P. acidilactici D3 retained the purple-iodine complex in the gram reaction.  Thus, they 

are gram-positive. The gram-negative assay control strain (Escherichia coli K-12 

BW25113) stained pink/red in color (3), whereas the gram-positive assay control strain 

(L. amylovorus ATCC 33620T) stained dark purple/blue. 
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When grown on an agar plate, colonies were opaque and circular in form with 

entire, slightly translucent margins. The colony surfaces were typically smooth and 

slightly convex in elevation. Interestingly, Pediococcus acidilactici D3 had a butyrous 

and viscid consistency, which might suggest the expression of complex extracellular 

polysaccharides (e.g., exopolysaccharides, capsular polysaccharides) (47). 

 

Scanning Electron Microscopy 

Scanning Electron Microscopy revealed that the size of each P. acidilactici D3 

cell was approximately 700nm in diameter.  In different fields, P. acidilactici D3 was 

predominantly found in singles, pairs, or clustered.  Representative micrographs of P. 

acidilactici D3 are shown in Figure 7. 

 

16S rRNA Identification 

Taxonomic classification schemes have evolved over time.   Currently, a variety 

of genotype-based methods are routinely used to classify microorganisms into different 

taxonomic groups.  The 16S rRNA gene is well conserved within bacteria, including 

species of the same genus. Therefore, the evaluation of this gene has become a standard 

method for species determination.   

Nomenclature for Pediococcus has often been revised.  P. acidilactici DSM 

20284 was proposed as the neotype or ‘Type’ strain for P. acidilactici by rejecting the 

previous neotype strain P. acidilactici ATCC 33314 (IFO 3884=DSM 20333=NCDO 
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1859).  P. acidilactici ATCC 33314 was replaced by DSM 20284T due to P. acidilactici 

ATCC 33314’s high DNA homology with the strain P. pentosaceus DSM 20336T (16) 

The 16S rRNA sequence for P. acidilactici D3 is illustrated in Figure 8.  The 

identification reports from Accugenix based on similarity search against their private 

database reported P. acidilactici D3 to be P. lolli.  However, a BlastN of the Accugenix-

generated 16S rRNA sequence against available databases resulted in a 99% identity and 

99% coverage with P. acidilactici (GenBank: AJ305320.1) and a 98% identity with 96% 

coverage with P. lolli (GenBank: AB362985.1).  In 2009, P. lolli was proposed as a new 

species of Pediococcus based on similarity of 16S rRNA gene sequencing results to P. 

acidilactici DSM 20284T (98.2%), P. pentosaceus DSM 20336T (96.9%), and P. stilesii 

LMG 23082T (96.3%) and DNA-DNA relatedness (8).  DNA-DNA relatedness between 

the strain P. lolii NGRI 0510QT and P. acidilactici DSM 20284T and P. pentosaceus 

DSM 20336T was found to be lower than the recommended DNA-DNA relatedness 

threshold for a species (70%) (49) and hence was recommended as a new species for 

Pediococcus.   

However, based on previous nomenclature (7, 33) and by BlastN of the 16S 

rRNA sequence against the available public database, we have determined our strain to 

be P. acidilactici.  The phylogentic tree depicting 16S rRNA relatedness of the 

Pediococci is shown in Figure 9. 
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Whole Genome Sequencing 

A distribution of read lengths from the preliminary Ion Torrent run, after 

mapping against the reference is shown in Figure 10.  The average read length for reads 

that mapped against the reference and reads that did not map against the reference was 

approximately 100 base pairs long.  A larger volume of data, 20,979,013 reads, each of 

length 106 base pairs, was generated in the first run with the Illumina GAIIx sequencer.  

The reads were mapped against the previously assembled contigs of the type strain P. 

acidilactici DSM 20284T.  The assembled reference sequence length was 1,926,844 base 

pairs long, to which 16,546,761 Illumina reads mapped to.   

 

Antimicrobial Activity Assay 

In contrast to the uninoculated controls, the cell pellet, supernatant, and retentate 

after ultrafiltration, of P. acidilactici D3 created zones of inhibition (Figure 11) on a 

lawn of the type strain, P. acidilactici DSM 20284T.  These results suggest that one or 

more antimicrobial substances were produced. 

As shown in Figure 12, the antimicrobial spot assay of P. acidilactici D3 on soft 

agar seeded with a sensitive indicator strain P. acidilactici DSM 20284T demonstrated 

the efficiency of P. acidilactici D3 in causing cell lysis (illustrated by the zones of 

inhibition) over the commercial pediocin (Sigma-Aldrich). 
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Bacteriolytic Zymogram 

The bacteriolytic zymogram demonstrated that at least one of the antimicrobials 

was a protein, approximately 4,000 Da in size (Figure 13). The approximate length of 

the commercial pediocin was 30-55 amino acids, or approximately 4,000 – 5,000 Da in 

size.  

 

Pediocin Operon 

Besides the above phenotypic studies, we have identified the potential for 

Pediococcus acidilactici D3 to produce pediocins based on sequence homology to 

pediocin operons on other bacteriocin producing strains.  

The four genes of the pediocin operon: pedA, pedB, pedC, and pedD are shown in 

Figure 14.  

 We have demonstrated that P. acidilactici D3 causes antimicrobial activity and 

this is due to the production of proteins (bacteriocins called pediocins) of approximately 

4Da in size.  It is also likely that the pediocin operon is linked to this antimicrobial 

activity.  Pediocin production in Pedioccous is unique to few strains and is an essential 

trait in its ability to act as a food safety culture.  In assessment of our ultimate goal in 

producing strain-specific probes, a molecular probe within the pediocin operon region 

could serve the purpose of eliminating non-pediocin producing related strains and hence 

more easily distinguish P. acidilactici D3 from a mixed culture. 
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CHAPTER III 

STRAIN-SPECIFIC MOLECULAR DIAGNOSTICS FOR 

Pediococcus acidilactici 

 

INTRODUCTION 

 Previous studies explain that certain strains of Pediococcus damnosus cause 

ropiness in wine due to exopolysaccharide (EPS) production (26, 48). Integral EPS can 

help to bind the cell to the surface, while sloughed EPS and substrate-bound cells can be 

used to disrupt biofilms (37) and/or inhibit the adhesion of microorganisms  involved in 

spoilage, pathogenesis, or both (25, 46).  In addition, EPS production has been known to 

augment the ability of producer strains to co-aggregate with harmful microorganisms, 

thus presenting a barrier that could inhibit the colonization of pathogenic bacteria (35).   

 Many substrates are known to regulate EPS production in bacteria.  For instance, 

sucrose is the major substrate for glycosyltransferases (39) that are necessary for the 

synthesis of homopolysaccharides (HoPS) (44), a desirable attribute in food-grade starter 

cultures.  Thus, sucrose metabolism could also be an important trait linked to the 

efficacy of food safety cultures (14).   

There are six genes, expressed as an operon, required for sucrose transport and 

utilization: scrK (fructokinase), agaS (α-galactosidase), scrA (PTS EII transport protein), 

scrB (sucrose 6-phosphate hydrolase), scrR (sucrose regulator), and agl (α-glucosidase) 

(Figure 15).  The proteins encoded by these genes are responsible for the regulation of 
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uptake and metabolism of sucrose into the cell. The genes associated with sucrose 

utilization are plasmid encoded on P. acidilactici PAC1.0 (18) and P. pentosaceus (17). 

 Our objective in this study was to identify interesting phenotypes demonstrated 

by P. acidilactici D3 (such as sucrose utilization) and use these phenotypes to identify 

genes that are responsible for these phenotypes.  These genes could then be used as 

targets for probes for strain-specific diagnosis. 

 

MATERIALS AND METHODS 

Carbohydrate Utilization 

 Phenotypic data from API CHL 50 strips (BioMeriux) and Biolog Phenotype 

Microarray (1) plates framed a platform for probing for genes involved in biosynthetic 

and catabolic pathways.   

 

Phenotype Microarray Analysis   

 Phenotype microarrays were used in order to determine the uptake and utilization 

of selected sugar substrates, including sucrose.  Briefly, P. acidilactici D3 was streak 

purified on MRS agar plates incubated at 37°C overnight. A sterile cotton swab was used 

to inoculate an individual colony into the inoculating fluid, containing minimal media, at 

a cell density of T=65%.  100µL of this inoculating fluid was dispensed into a 96 well 

PM plate, each well containing a single substrate.  Utilization of the substrate was 

determined by a redox reaction that caused a color change in the medium, which was 

detected and recorded by the OMNILOG PM during incubation at 37°C for 48 hours.  
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Analytical Profile Index (API) 

 For comparison, carbohydrate utilization profiles will also be verified based on 

the API 50 CHL test kits (bioMérieux, France).  The API CHL medium was used for the 

identification of lactobacilli. The procedure was followed in accordance to the 

manufacturer’s instructions.  A positive reaction was scored when a color change from 

blue (lack of fermentation, pH ~ 6.2) or green (pH ~ 5.2) to yellow (below 

approximately pH 4) at 37ºC after 48 hours of incubation was observed.  A colorimetric 

reference (Figure 16) based on the pH dependent colour change of bromocresol purple 

(0.017% w/v), which is used in the API CHL media, was developed to standardize the 

scoring of API strips. 

 

Sucrose Operon 

 The P. acidilactici D3 genomic sequences were queried for the sucrose operon 

genes by mapping all generated sequences (Ion Torrent and Illumina data) to the 

raffinose and sucrose operon of Pediococcus pentosaceus (GenBank: L32093.1).  The 

mapped sequence reads were then extracted and reassembled by de novo assembly.  

BlastN of each contig generated with the P. pentosaceus reference determined the 

location of each contig on the operon.   

 The sucrose operon was annotated by identifying the start codons (ATG, GTG, 

TTG, ATT, CTG), the stop codons (TAG, TAA, TGA), the ribosome binding site 

(GGAG) upstream of each gene, and the -10 regulatory signal with consensus TATAA 
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using the CLC Genomics Workbench.  The nucleotide sequence of the P. pentosaseus 

raffinose and sucrose operon was once again used as a reference for annotation. 

 

Probe Development  

To conclude our research, the final deliverable of strain-specific diagnostics was 

initiated.  Previously, we identified pediocin production and sucrose utilization as key 

phenotypes of interest.  These two features are distinguishing to P. acidilactici as 

typically, P. acidilactici does not ferment sucrose and only a few strains produce 

pediocins. 

Once the sequence data was assembled, each operon of interest (pediocin operon 

and the sucrose utilization operon, in particular) was identified by mapping the P. 

acidilactici D3 sequence reads to similar operons/genes/sequences submitted into the 

NCBI (National Center for Biotechnology Information) database up to that time.  The 

genomic DNA sequence reads of P. acidilactici D3 were extracted after mapping against 

a reference.  These sequences were then re-assembled by de novo assembly into contigs, 

which were mapped again to the reference.  The putative regulatory signals (-35, -10 

promoter regions), ribosome binding sites, start codons, stop codons, and restriction sites 

in the operons were predicted. After annotation of the operons, regions with unique 

nucleotide changes were used to design forward and reverse primers (approximately 18-

22 bases in length); PCR conditions for these primers were optimized and tested on P. 

acidilactici D3 and closely related strains.  Since the goal of the primers/probes was to 

facilitate strain-specific identification, the assembled sequences were examined for 
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single-nucleotide polymorphisms and larger-order differences in sequence.  Thereafter, a 

variety of primer pairs were used to preferentially detect P. acidilactici D3 and thereby 

constrain the PCR amplification. 

 

SNP Detection 

 SNPs or single nucleotide polymorphisms are single nucleotide base differences 

from reference sequences.  Once the sucrose operon for P. acidilactici D3 was 

assembled and annotated, the operon was aligned with the raffinose and sucrose operon 

of P. pentosaceus (GenBank: L32093.1).  Conflicting bases were identified by means of 

the SNP detection tool in the CLC Genomics Workbench software.  The SNP detection 

table, containing information about the position of the SNP in relation to the reference, 

the frequency of  occurance of the SNP across all the generated reads, the number of 

reads containing the SNP, the base pair change (and any allele variations, if present) and 

coverage (the number of reads at the particular SNP region) was generated.  SNPs with 

frequencies  95% (counts of reads with the SNP by the total coverage) were chosen as 

regions for probe design (Figure 17). 

 

Primer Design 

 For the unique identification of Pediococcus acidilactici D3 by the isolation of 

DNA (from a product supplemented with the strain, for example) and subsequent qPCR 

detection with molecular probes, the probes were designed at two operons, the pediocin 

operon and the sucrose operon, which either provided constraints to enable unique 
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detection, or contained strain-specific changes in the genome, which together, identified 

P. acidilactici D3 when compared to other related strains.   

 Regions containing SNPs were identified and used to design primers.  Forward 

and reverse primers (with an annealing temperature between 58.5°C to 60°C) were 

designed to amplify an approximate 500 base pair region, with at least one SNP in either 

the forward or reverse primer.  In addition, primer probes were redesigned to ensure 

specific binding by choosing primers with SNPs on the 3’ end of the primer.  In Figure 

18, screenshots of probe design on the CLC Genomics Workbench is illustrated.  The 

highlighted regions on the consensus show SNPs in comparison to the P. pentosaceus 

raffinose and sucrose operon. 

 

Quantitative-Polymerase Chain Reaction and Gel Electrophoresis 

Quantitative-Polymerase Chain Reaction (qPCR) was optimized for the selected 

probes with the final conditions as shown in Figure 19.  With each probe pair, the qPCR 

run was repeated at least twice, with triplicate samples in each run, for each of the 

previously selected related strains of P. acidilactici D3 (Figure 20).  Detection was 

executed on the Bio-Rad iQ5 Real-Time PCR Detection System with the Fast SYBER 

Green Master Mix (Applied Biosystems).  Each 20µL reaction tube of the 96-well PCR 

contained 10µL of the Fast SYBER Green Master Mix (2X), 1ng of template, 0.75-1µL 

of 10pmol forward and reverse primer working solution, and make up to 20µL with 

nuclease-free water.  The plate was centrifuged briefly before each run. Agarose gel 
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electrophoresis of the samples was carried out after each run to confirm amplification of 

the targeted 500bp region.   

 

RESULTS AND DISCUSSION 

Carbohydrate Utilization 

The phenotypic study of the effect of various substrates and conditions on the 

growth of P. acidilactici D3 is shown in Figure 21.  The array shown in the figure is a 

collection of growth signals using the BIOLOG protocol A and C1, the BIOLOG 

phenotype microarray plates P1 and P2, and the API strip trials 1 and 2. 

 

API Strip Analysis 

 P. acidilactici D3 metabolized a wide range of carbohydrates using the API strip 

analysis. Pentoses (such as L-arabinose, ribose and D-xylose), hexoses (such as 

galactose, glucose, fructose, and mannose), modified hexoses (such as N-acetyl 

glucosamine) and disaccharides (like cellobiose, saccharose, trehalose and gentibiose) all 

showed a positive signal. As per the API CH 50 identification table, P. acidilactici does 

not ferment sucrose.  However, P. acidilactici D3 did metabolize sucrose (D-saccharose) 

within 24 hours.  This positive result was likely due to the presence of the sucrose 

operon in the genome of P. acidilactici D3.   

Differences in fermentation pattern were also observed as a function of time (24h 

vs. 48h).  Of the 49 sugars tested for their ability to be fermented by P. acidilactici D3 

and P. acidilactici DSM 20284T strain, 14 sugars (L-arabinose, D-ribose, D-xylose, D-
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galactose, D-glucose, D-fructose, D-mannose, N-acetyl glucosamine, arbutine, esculine 

ferric citrate, salicine, D-cellobiose, D-saccharose, gentibiose) showed a positive 

fermentation profile for both strains after a 48 hour incubation. The sugars D-trehalose 

and D-tagatose exhibited an intermediate color standard (green) when fermented by P. 

acidilactici D3.  In contrast, P. acidilactici DSM 20284T fermented both sugars within 

24 hours.   

 

BIOLOG Phenotype Microarray Analysis 

 Comparable to the results of the API analysis, several carbohydrates that showed 

a positive signal using the API strips also exhibited a positive signal with the BIOLOG 

PM analysis.  The well containing sucrose had a high growth signal, once again 

suggesting the expression of the sucrose operon.  In addition, P. acidilactici D3 

displayed strong (signal >100) metabolism of compounds such as dihydroxy acetone, 

tween 40, and pectin. 

 

Sucrose Operon 

 Five contigs (Figure 22, panels A-E) were generated from de novo assembly of 

the extracted reads (initially mapped to the P. pentosaceus sucrose and raffinose 

operons).  In contrast to the P. pentosaceus sucrose and raffinose operons that are 

contiguous with each other, P. acidilactici D3 contains only the sucrose operon, as 

illustrated in Figure 23.  Contig 5 is represented in the figure because it was the longest 

contig and contained genes scrK to the initial sequence of the agl gene.  The green 
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(forward) and red (reverse) lines show millions of reads that were generated from 

Illumina and Ion Torrent sequencing data.   

 The sucrose operon for P. acidilactici D3 was annotated (Figure 24).  It consists 

of six contiguous genes, of with the three upstream genes are reverse.  The genes scrK, 

agaS, scrA are reverse on the plus strand.  The genes scrB, scrR, and agl are forward on 

the minus strand.  Figure 25 represents a consolidated sucrose operon of P. acidilactici 

D3.  

 

Verification by Amplification 

When PCR was conducted for P. acidilactici D3 and related strains for 

amplification of the pedA-B region on the pediocin operon, it was found that several 

strains were eliminated from the screening process.  These pediocin probes could 

therefore be used to specifically target P. acidilactici D3.  However, the strains P. 

acidilactici PS and P. pentosaceus DSM 20336T also showed amplification at this 

region.  Since the pediocin operon is highly conserved among strains, the sucrose 

operon, containing SNPs was chosen as a second target to constrict the molecular 

diagnostic to P. acidilactici D3.   

Quantitative - PCR amplification of P. acidilactici D3 with probe pair ‘pedjmsF’ 

and ‘pedjmsR’ is shown in Figure 26. The experiment was done in technical triplicates.  

1 ng of genomic DNA was amplified for all three replicates of P. acidilactici D3.  This 

concluded that the primer pair could be used as a probe for our strain.  At cycle 30, the 

non-template control (light green) started showing non-specific amplification which 
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could be due to the production of primer-dimers.  Similarily, Figure 27 depicts the 

results of qPCR for P. acidilactici D3 using the probes pair ‘1SUCD3F’ and 

‘1SUCD3R’.  Using this probe pair, all replicates of our strain showed amplification, 

signifying optimal qPCR conditions.   

We expected the related strains to behave similar to the non-template control to 

validate strain-specificity of the probe.  When qPCR was conducted for the related 

strains, only the three replicates for reactions containing the P. acidilactici D3 template 

showed amplification up until cycle 30 (Figure 28); therefore verifying strain-

specificity.   

The products of amplification were observed on agarose gel electrophoresis as 

distinct band of size 500bp.  The combination of probes was determined to specifically 

identify P. acidilactici D3 from related strains.  Figure 29, Panel A, describes the PCR 

products generated using primers ‘pedjmsF’ and ‘pedjmsR’ for P. acidilactici D3 and 

related strains.  When the pediocin operon was used as a target, amplification was 

observed in a few related strains due to high sequence conservation of the pediocin 

operon. In Panel B, PCR products generated using primers ‘1SUCD3F_N’ and 

‘1SUCD3R’ for P. acidilactici D3 and related strains is shown. P. acidilactici D3 

showed amplification when both the pediocin and sucrose probe targets were used.  In 

contrast, the related strains showed specific amplification, represented by a bright band 

on the gel, for either the pediocin target, sucrose target, or neither target. 

Based on the above data, the diagnostic probes chosen for strain-specific 

diagnosis of P. acidilactici D3 is shown in Figure 30.    
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CHAPTER IV 

SUMMARY 

 

Biopreservatives not only prevent spoilage and extend the shelf life of a product, 

but they are also perceived as a natural and healthier option to chemical preservatives.  

The food safety bacterial culture P. acidilactici D3, provided by Guardian Food 

Technologies, was determined to produce antimicrobial peptides called pediocins, 

demonstrated by both phenotypic and genomic studies.   These pediocins are effective 

antimicrobials, previously identified to inhibit the growth of food spoilage bacteria. 

In order to develop molecular probes to specifically identify P. acidilactici D3, 

whole genome sequencing was carried out.   The combination of Ion Torrent Next 

Generation Sequencing and Illumina Sequencing provided sequence data to probe for 

unique genes that related to characteristic phenotypes such as bacteriocin production and 

sucrose utilization.  Sucrose utilization was identified by carbohydrate utilization 

studies, including phenotype microarrays, a high-throughput method to identify possible 

phenotypes of interest. 

Single nucleotide polymorphisms on the genome of P. acidilactici D3 were used 

to design probes in unique regions of the genome (verified by comparative genomic 

analysis). Amplification of target genes were confirmed by qPCR and PCR and 

compared to strains related to Pediococcus acidilactici.  The methodology followed in 

this project resulted in the successful identification of strain-specific probes, unique to 

the strain P. acidilactici D3.  
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Table 3. List of Pediococcus cluster type strains used for neighbor joining tree 
analysis and their GenBank Accession numbers  
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APPENDIX II 

 FIGURES 

 

 

 

 

Figure 1. Project outline and description of deliverables. 
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Figure 2. Schematic of the mode of action of pediocin. In the figure, the pediocin 
peptide is shown as the helix, the N-terminus in gray and the C-terminus in red. 

  

PEDIOCIN 

CELL WALL 

CELL MEMBRANE 

PEDIOCIN PASSES 

THROUGH THE 

CELL WALL 

PEDIOCIN 

PENETRATES THE 

CELL MEMBRANE 

PEDIOCIN 

INSERTS ITSELF 

INTO THE 

MEMBRANE 

CAUSING PORE 

FORMATION AND 

DEPOLARIZATION 

OF THE CELL, 

LEADING TO CELL 

DEATH 



46 
 

 

 

 

 

 

Figure 3. The pediocin operon. It consists of four open reading frames coding for four 
genes involved in pediocin biosynthesis, transport and antimicrobial immunity. 
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Figure 4. Schematic depicting the preparation of samples for the spot-on-agar 
antimicrobial activity assay and bacteriolytic zymograms. 
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Figure 5. Sequence alignment and gene confirmation. Panel A. A sequence 
alignment of Ion Torrent reads with the P. acidilactici H plasmid pSMB74 
revealed the presence of the pediocin operon.  Panel B. In this example, the region 
pedBCD, which had an expected size of 2,862 bp was amplified.  The product was 
run on an agarose gel and the band size of approximately 3,000bp was observed.  
Panel C. The amplified region was then sequenced by Sanger sequencing. 
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B C 
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Figure 6. Light microscope captures of few Pediococcus strains 
Panels A, B, C and E are P. acidilactici. Panel E is P. stilesii.  Samples were unstained 
and fields were at 100X magnification 
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Figure 7. Scanning Electron Microscopy. Panels A-D, representative fields of Pediococcus 
acidilactici D3.  
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Figure 9. Tree view by neighbor joining method for Pediococcus cluster type strains 
and P. acidilactici D3.   
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Figure 10. Distribution of read lengths 
Panel A, distribution of read lengths that matched the reference and Panel B, distribution 
of read lengths that did not match the reference. 
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Figure 11. Antimicrobial spot assay with various ultrafiltration fractions.  Spot 
assays demonstrate no antimicrobial activity in the uninoculated MRS media and P. 
acidilactici D3 filtrate.  In the inoculated fraction (supernatant, cell pellet and retentate) 
a zone of inhibition (antimicrobial activity) is observed.   

 

 

 

 

 

 

P. acidilactici 

D3 



55 
 

 

 

 
Figure 12. Bacteriocin spot-on-agar assay demonstrating relative bacteriocin 
activity by Pediococcus acidilactici D3.  Bacteriocin spot assay of P. acidilactici D3 on 
soft agar seeded with a sensitive indicator strain Pediococcus acidilactici DSM 20284

T 

demonstrated the efficiency of P. acidilactici D3 in causing cell lysis (illustrated by 
zones of inhibition) over the commercial pediocin (Sigma-Aldrich). 
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Figure 13.  SDS-PAGE and bacteriolytic zymogram demonstrating relative size of 
bacteriocin produced by Pediococcus acidilactici D3.  SDS-PAGE was used to resolve 
the proteins (> 3,000 Da) present in the Pediococcus acidilactici D3 culture retentate 
into separate bands.  The size of the band corresponding to antimicrobial activity on a 
bacteriocin-sensitive indicator was determined to be ~4,000 Da.   
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Figure 14. The pediocin operon of Pediococcus acidilactici D3. It consists of four open 
reading frames coding for four genes involved in pediocin biosynthesis, transport and 
antimicrobial immunity. The upstream -35 signal (purple), the -10 (blue), the ribosome 
binding site (RBS), the start codon (green), and the stop codon (29) are shown for the gene 
pedA. 
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Continued: Figure 14. The pediocin operon of Pediococcus acidilactici D3. 

  



59 
 

 

Continued: Figure 14. The pediocin operon of Pediococcus acidilactici D3.  
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Continued: Figure 14. The pediocin operon of Pediococcus acidilactici D3.
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Figure 15. Sucrose operon and metabolic pathway. There are six open reading frames 

in the sucrose operon and each open reading frame codes for a gene that acts in the 

metabolic pathway for the uptake and degradation of sucrose, ending in the glycolytic 

pathway.  
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Figure 16.  Colorimetric reference standard for API 50 research strip.  Graph 

of pH change based on lactic acid percentage. Lactic acid dissolved was in 

aqueous bromocresol purple (0.017% w/v) (BCP) at different concentrations 

(from left to right: 0.026%, 0.052%, 0.104%, 0.208%, 0.416%, 0.830%, to 

1.667%). The pH (y-axis) of the colorimetric reference as a function of lactic acid 

concentration (%) (x-axis), including deionized water (0.00% lactic acid). Each 

reading was taken thrice.  

pH
 

Lactic Acid (%) 
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Figure 17. SNP detection table.  The SNP detection table was generated 
after alignment of the sucrose operon of P. acidilactici D3 to the 
raffinose operon genes of P. pentosaceus (GenBank: L32093.1).  SNPs 
with frequencies  95 were chosen for probe design. 
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Figure 19. Optimized qPCR conditions for amplification of P. acidilactici D3. 
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Figure 20. Methodology for qPCR to quantify P. acidilactici D3 in comparison to 

related strains.  For each strain, 1ng of DNA was tested for amplification; Fast SYBER 

Green MasterMix (Applied Biosystems) was used for detection; NTC (non-template 

control). 
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Figure 21. BIOLOG and Analytical Profile Index data.  
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Figure 22. Contigs of the sucrose operon. Panel A: Contig 1; Panel B: Contig 2; Panel 

C: Contig 3; Panel D: Contig 4; Panel E: Contig 5 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon.   
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Continued: Figure 22. Contigs of the sucrose operon.   
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Continued: Figure 22. Contigs of the sucrose operon.  
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Continued: Figure 22. Contigs of the sucrose operon.   
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon.  
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Continued: Figure 22. Contigs of the sucrose operon. 
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Figure 23. Contig 5 of the Pediococcus acidilactici D3 sucrose operon mapped 

against the raffinose and sucrose operon of Pediococcus pentosaceus (GenBank: 

L32093.1). 
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Figure 24. The Sucrose Operon of Pediococcus acidilactici D3. Panel A is the 

annotated sucrose operon with genes scrK to the introduction of agl.  Panel B 

contains the minus strand of the agl gene after a 66bp gap from the other 

contiguous genes. 
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.   
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.   
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.  
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.  
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.  
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3. 
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3.  
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Continued: Figure 24. The Sucrose Operon of Pediococcus acidilactici D3. 
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Figure 25. Condensed illustration of the sucrose operon. The genes are: scrK (29), 

agaS (pink), scrA (blue), scrB (green), scrR(yellow), and agl (brown).  The 66bp gap in 

the agl gene is shown in orange.   
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Figure 26. qPCR amplification of P. acidilactici D3 with probe pair ‘pedjms’. The 

experiment was done in technical replicates.  1 ng of genomic DNA was amplified for 

all three replicates of P. acidilactici D3. At cycle 30, the non-template control (light 

green) started showing non-specific amplification which could be due to the production 

of primer-dimers. 
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Figure 27. qPCR amplification of P. acidilactici D3 with probe pair 1SUCD3F and 

1SUCD3R. 1 ng of genomic DNA was amplified for all three replicates of P. acidilactici 

D3 (blue, purple, brown). The non-template control is shown in pink. 
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 Figure 28. qPCR amplification with probe pair ‘1SUCD3F_N and 1SUCD3R’. 

qPCR amplification of P. acidilactici D3 (orange, light green and dark blue). Related 

strains and non-template controls – each done in triplicates (all other colors). At cycle 

30, only the P. acidilactici D3 operon is amplified.  Cycles > 30 show non-specific 

amplification.  
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Figure 29. A combination approach using probe pairs to detect the pediocin and 

sucrose-utilization operons enabled the identification of P. acidilactici D3. Panel A, 

PCR products generated using primers pedjmsF and pedjmsR for P. acidilactici D3 and 

related strains.  When the pediocin operon was used as a target, amplification was 

observed in a few related strains due to high sequence conservation of the pediocin 

operon. Panel B, PCR products generated using primers 1SUCD3F_N and 1SUCD3R 

for P. acidilactici D3 and related strains. P. acidilactici D3 showed amplification when 

both the pediocin and sucrose probe targets were used (green).  In contrast, the related 

strains showed specific amplification, represented by a bright band on the gel, for either 

the pediocin target, sucrose target, or neither target (red, orange, and yellow). 

B 
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Figure 30. Final list of primers and their target gene. Nucleotides shown in red are 
SNPs. 




