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ABSTRACT 

Adhesive wear is one of the most difficult types to study and is especially 

challenging for polymers. Such wear processes involve the mutual sticking of surface 

asperities followed by removal of debris from the bulk. This differs from abrasive wear 

in which debris is formed due to the penetration of hard rough asperities into the softer 

surface. Such descriptions have served the polymer tribology community for decades 

and are well suited for post-mortem analysis of wear surfaces. For instance, the presence 

of rippled features on the wear surface and large flake shaped debris are typical 

indicators of adhesive wear. However, this approach offers little insight into the 

underlying physics that occur at the interface. The overall objective of this research is to 

gain fundamental knowledge of adhesive wear phenomena in polyaryletherketone 

(PAEK) polymers. Ultimately, the hope is to correlate the observed surface damage and 

friction response with material science based explanations. Since no true adhesive wear 

test configuration exists, a top down approach was used in designing a set of 

experimental conditions. This was done with a multi-axis tribometer capable of being 

programmed to a wide array of displacements and trajectories. A catastrophic form of 

adhesive wear is termed fretting and results from the repeated slip of mutually loaded 

contacts. Using the multi axis tribometer PAEK polymers were studied in both multi 

directional sliding and fretting configurations with varied environmental conditions.  

An important aspect of PEEK tribology is the surface temperature reached during 

sliding. Infrared thermography was used to observe the full field temperature map of 

PEEK during ball-on-disc sliding. Additionally, friction studies were performed with 
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steel and sapphire counterfaces. The results of this study illustrate the important role 

transfer films play in determining both the friction and temperature response of the 

PEEK wear interface. The formation of transfer films resembles a unidirectional drawing 

process. Polarized FTIR-ATR measurements were used to assess chain orientation in the 

friction formed PEEK on steel transfer films. The results of these studies serve to better 

elucidate underlying mechanisms involved in adhesive wear of PAEK polymers.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview of Tribology 

When materials come into contact with one another, surface forces arise that 

resist sliding. Early studies of these frictional forces are often credited to Leonardo Da 

Vinci and have been investigated by science for the past 500 years[1]. It has been found 

that the real area of contact ultimately determines the nature of these forces. At the micro 

scale, surfaces tend to be rough and so contact is between the opposing peaks and 

valleys often referred to as asperities. The forces that result from these asperity contacts 

can result in damage or wear to one or both of the materials in contact. The combined 

study of friction and wear constitutes the field of tribology and the broader scope of this 

dissertation. 

Much of the current understanding of material wear behavior comes from the 

seminal works of Archard[2], Tabor[3, 4], and Lancaster[5] among others. Common to 

all of them is the notion that wear is a process and can involve multiple mechanisms. 

Discussions of wear mechanisms typically refer to at least one of the schemes shown in 

Figure 1.1. Adhesive wear is often described as the result of surfaces becoming stuck 

followed by shear rupture of one of the materials. Abrasive wear results from the 

penetration of a hard asperity into the softer surface.  The repeated passage of surfaces 

relative to one another can produce subsurface damage that will form debris through 

fatigue wear. The chemical interaction of the mated surfaces may also form debris 
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through a corrosive mechanism. Although these illustrations offer little insight into the 

origins of wear, they provide some clue as to how it can be prevented. For instance, the 

removal of hard rough asperities through polishing will reduce the degree of abrasive 

wear. Adhesive wear is unique in the sense that it has the capacity to occur even between 

atomically smooth surfaces. Furthermore, adhesive wear has a tendency to take part in 

combination with other wear processes. The origins of fretting wear for instance are 

typically attributed to the combination of adhesive and fatigue wear processes. This 

multi-faceted behavior has made adhesive wear both challenging to study and prevent.  

 

 

Figure 1.1. Illustration of common wear mechanisms[6] 
(Figure reprinted from Kato, K. and K. Adachi, Wear mechanisms. Modern tribology handbook, 2001. 1: p. 273-300 

with permission from CRC Press) 
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Wear should be viewed as a system response in which the contact type and 

deformation state lead to surface changes that all may interact. An attempt at mapping 

this behavior is shown in Figure1.2 and illustrates the interconnectivity of the wear 

system. This complexity is especially pronounced in polymers. Polymers are viscoelastic 

and so bulk mechanical properties will change as a function of strain rate and 

temperature. This also means that the surface changes that take place during wear can 

then alter the deformation state and contact type. Despite the inherent challenges in 

studying wear of polymers, significant progress has been made over the past half-

century.   

 

 



 

4 

 

 
Figure 1.2. Classification of possible wear scenarios[6] 

(Figure reprinted from Kato, K. and K. Adachi, Wear mechanisms. Modern tribology handbook, 2001. 1: p. 273-300 
with permission from CRC Press) 

 
 
 

Polymers are also a broad class of materials in terms of their chemical structure 

and mechanical properties. This in turn has had an impact on how their wear behavior 

has been studied. Many of the same phenomenological wear processes occur across all 

material under similar contact types. Figure 1.3 shows the varied approaches taken in the 

study of polymer wear. Often a phenomenological approach is used in order to relate a 

particular set of conditions to a possible wear mechanism. However, the exact responses 

of elastomeric, thermosetting, glassy, and semicrystalline polymers are all profoundly 

different. A combined material response and generic scaling approach are thus also 
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necessary. The benefit of such approaches is most evident for linear aliphatic polymers 

PTFE and UHMWPE. In seminal work by Tabor et.al, it was found that the frictional 

response of these polymers could be related to their smooth molecular profiles[7]. 

Anisotropy in the static friction response of pre-rubbed samples resulted from 

preferential chain orientation that occurs on the polymer surface. Furthermore, transfer 

of highly oriented low friction films was detected on smooth glass substrates. These 

films consist of single polymer strands that are drawn as fibrils from the polymer bulk. 

Additionally, when bulky side groups were introduced to either polymer their 

characteristic tribological response disappeared. This early work linking molecular 

structure to friction and wear has served as a wellspring for tribology research. The 

transfer film formation of PTFE is often exploited to create self-lubricating bearings. 

Processing conditions and fillers can even be tailored to promote this behavior. 

Similarly, knowledge of surface chain orientation in UHMWPE has been used to explain 

its sensitivity to cross shearing wear environments[8]. The current practice of 

crosslinking UHMWPE artificial joints can be credited to this understanding. Clearly, 

advances in the application of polymers to tribology depend on the ability to link 

structure-property relations to friction and wear. 
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Figure 1.3. Common approaches to studying wear of polymers [9] 

(Figure reprinted from Briscoe, B.J. and S.K. Sinha, Wear of polymers. Proceedings of the Institution of Mechanical 
Engineers, Part J: Journal of Engineering Tribology, 2002. 216(6): p. 401-413.with permission from CRC Press) 

 
 
 

The polyaryletherketone (PAEK) family of thermoplastics is also a well-studied 

group of tribologically relevant polymers. Their high glass transition temperature and 

resistance to most solvents make them an ideal material for application in extreme 

environments. Despite outstanding wear resistance, they tend to have high coefficients of 

friction. Often, low friction fillers such as PTFE and MoS2 are incorporated to overcome 

this[10]. Still, significant work has been done to better understand the origins of unfilled 

PAEK wear resistance. This wear resistance is often attributed to an ability to form 

protective transfer films on harder metallic counterfaces. Unlike PTFE that forms 

transfer films due to its unique banded crystal structure, there is no specific mechanism 

for PAEK film formation[11]. Bahadur suggested that compacted debris becomes 

physically entrapped between asperities.[12] The film protects the bulk from abrasive 
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wear by covering hard rough asperities. However, this explanation fails to account for 

any tribochemical tranformations that may occur near the surface. Other researchers 

have focused on PAEKs susceptibility to frictional heating. It is believed that this 

heating process leads to the catastrophic failures seen in gears and roller bearings made 

from the PEEK member of this family[13]. This dissertation will thus attempt to 

understand how the changes that may manifest at the adhesive wear interface contribute 

to the overall tribological performance.  

1.2 Research Scope 

  To further understand adhesive friction and wear mechanisms in high 

performance polyaryletherketone (PAEK) polymers, multi-faceted experimental and 

analysis approaches are needed. Such an approach involves the study of a selection of 

materials across a wide range of conditions capable of elucidating meaningful 

information. A process flow diagram for adhesive wear is given below. Briscoe utilized 

a similar diagram as a guide in his discussions of the phenomenon. This guide is in no 

way comprehensive, but it helps navigate the selection of variables for experimentation.  
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Figure 1.4. Adhesive wear process flow diagram 
 
 
 

As the diagram in Figure 1.4 shows, the process begins with the interaction of the 

opposing surface asperities. The number and size of these asperity contacts depend on a 

number of variables. Greater normal loads will cause more asperities to come into 

contact. An increased plasticity index due to increased roughness or decreased material 

hardness will also play a role. During adhesive wear processes, the real asperity contact 

area may even be larger than the apparent contact area due to surface penetration. The 

overall material response will then be determined by these adhesively bonded asperities. 

With time, frictional heat will build up and can alter the material properties at the 

surface. Third body debris can further degrade properties, but also can support load.     
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Initial work will focus on contact with small displacement amplitudes and high 

contact pressures. This is often called fretting and it is believed that failure results from 

excessive surface heating. Failure may be due to the removal of large pieces of debris or 

fracture from crack propagation. Fillers are often incorporated into the base polymer to 

reduce the severity of these effects. However, the presence of water or other plasticizers 

can also degrade the PAEK surface. A selection of material will be tested under these 

conditions accompanied by appropriate post-hoc analysis. Under lighter loads and larger 

displacements transfer films will form which are often associated with low wear rates. 

However, little can be said as to how they form or contribute to wear reduction. The 

structure-property characteristics of such films will also be studied. Finally in situ 

methods will be applied to quantify the frictional heating that may take place under 

varied conditions.  

 
 
 

 
Figure 1.5. The interfacial and cohesive components of friction 
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As shown in the above Figure 1.5, the study of energy dissipation mechanisms 

requires the separation of interfacial and cohesive zones. The interfacial zone (~100nm) 

is largely responsible for the adhesive friction forces fs and potential tribochemistry. The 

subsurface cohesive zone will then be responsible for the viscoelastic losses that 

contribute to frictional work. The separation of experiments into transfer film and 

fretting studies in effect will help isolate variables pertinent to each condition. The wear 

surface and debris generated from the different experimental tests will also help answer 

fundamental questions about the adhesive wear process:  

1) Under what conditions does transfer of debris to the counterface either mitigate 
or promote wear? 

2) Do tribochemical transformations occur at the surface that can be linked to either 
improved wear resistance or accelerated damage? 

3) What role does frictional heating play in determining the material response? 
4) Does frictional heating alone explain material behavior or do other energy 

dissipative mechanisms manifest during adhesive wear processes? 
 

However, appropriate analytical methodologies need to be sensitive to the scale of 

damage being investigated. For instance, surface sensitive tools GI-SAXS and XPS are 

more appropriate for the study of interfacial phenomena than subsurface damage or bulk 

wear debris.  A selection of appropriate analytical methodologies is shown in Figure 1.6. 
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Figure 1.6. Analytical methodologies to be used in post-hoc surface analysis 

 
 
 

The described process flow diagrams and research objectives have been 

incorporated into a research schema shown in Figure 1.7. As shown on the right hand 

side, in-situ observation will accompany the experimental studies. This work will also be 

supplemented with numerical modeling. It is expected that over the course of these 

studies new research questions will arise. These methods will help supplement the 

findings from wear testing and post-hoc analysis.  
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Figure 1.7. Research schema used in experimental studies 
 
 
 
1.3 Layout of the Dissertation 

The brief introduction to wear behavior presented in this chapter provides 

groundwork to perform a comprehensive study of adhesive wear in polyaryletherketone 

PAEK polymers. As discussed, no single adhesive wear test configuration exists and so a 

top down approach is used in designing experiments. The overall goal of this dissertation 

is to assign material science based explanations to the observed behavior. A literature 

review will be presented in Chapter II. This review will highlight work regarding wear 

of PAEK and relevant material behaviors.  
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The following Chapters III and Chapter IV will focus on experiments related to 

fretting. Fretting is a particular type of adhesive wear that occurs under conditions of 

high normal load and nominally small displacements. Using a multi-axis tribometer, test 

conditions have been created to help distinguish possible adhesive wear mechanisms in 

PAEK polymers. Analysis of wear surfaces and debris collected from the different tests 

will allow for discussion of possible mechanisms. Finite element modeling will also be 

employed to understand the stress and strain magnitude that takes place during fretting.   

In Chapter V temperature measurements of the sliding surface are measured in 

situ. The measured surface temperature will then be compared to the predicted flash 

temperature rise. It is believed that frictional heating contributes significantly to the 

friction and wear behavior of PEEK. The sliding speed and pressure were selected as test 

variables. Separate friction measurements were also performed using both steel and a 

sapphire counterfaces. In Chapter VI attempts are made to understand the relationship 

between transfer film formation and wear performance. This chapter is a corollary to the 

previous chapters and builds upon previous discussions.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Wear Behavior of Polyetheretherketone 

Polyaryletherketones are an ideal material for fundamental study of adhesive 

wear processes. The PEEK member of this family in particular has been well studied and 

this dissertation builds upon previous research and literature alike. A discussion of many 

of these findings will be presented and later incorporated into a research schema. The 

end goal is to provide deeper insight into suspected phenomena.  

 The behavior of PEEK has been investigated in a number of wear 

configurations[14]. Vast majorities have dealt with the wear of PEEK in pin-on-disc 

sliding[10]. Of particular interest has been the relationship between counterface surface 

roughness and wear[15-18]. Ovaert found that for unfilled PEEKs, an optimal surface 

roughness appears to exist as shown in figure 4[17, 19]. However, with increasing 

surface roughness there are only modest increases in wear. It is believed that this 

phenomenon can be attributed to the deposition of transfer films on the steel 

counterfaces. In theory, mechanically deposited films serve to protect the bulk from hard 

rough asperities. Laux and Schwartz later found that PEEK transfer film quality could be 

directly related to wear resistance[20, 21]. Most explanations contend that these films 

reduce wear by suppressing abrasion. Since the film modulus more closely matches the 

bulk, potential debris generating contact stress is reduced. However, this explanation 

neglects any changes in the polymer surface state that may beget wear resistance.  
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Figure 2.1. Relationship between surface roughness and wear debris formation in PEEK[17] 

(Figure reprinted Ovaert, T.C. and H.S. Cheng, Counterface topographical effects on the wear of polyetheretherketone 
and a polyetheretherketone-carbon fiber composite. Wear, 1991. 150(1): p. 275-287 

 
 

The PEEK debris shape has also caused many researchers to speculate about the 

underlying wear mechanisms. As shown in Figure 2.1, PEEK debris tends to form as flat 

plate like particles. This observation is true for sliding against both smooth and rough 

surfaces. The above micrograph in fact depicts debris formed during sliding against a 

steel surface with roughness of 0.05µm RMS. Similar type debris is observed in metals 

and is attributed to the delamination wear process described by Suh[22]. For metals, 

delamination wear involves the nucleation of subsurface cracks that form through 

adhesive-fatigue interaction of asperities. It has been suggested that a similar explanation 

can be used for PEEK despite the obvious differences in how cracks form between 

polymers and metals. Ovaert postulated that during sliding heating takes place below the 

surface promoting plastic flow[17, 19]. The elevated temperature in combination with 

axial strain and subsurface stress leads to the formation of flat sheet like debris. Friedrich 

suggested that the fractal dimension of these particles could be used as a tool to assess 
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the severity of wear[23]. Based on debris morphology they suggested that for nominal 

contact pressures above 4 MPa cutting mechanisms disappear and wear is dominated by 

plastic flow. The contribution of sliding velocity has also been widely discussed[24-26]. 

With increased sliding velocity the effects of frictional heating will also increase. In 

some circumstances this may reduce friction and wear by promoting plastic surface flow 

and film formation. However, excessive velocity creates debris aggregation that will 

negatively impact wear resistance[26]. The apparent dependence on pressure and 

velocity has popularized usage of the product PV (MPa m/s) as an upper service limit for 

PEEK. Despite prevalent use of PV amongst manufacturers it has been proven to be a 

poor tool to gauge part performance.  

A tremendous amount of tribochemical information is contained within wear 

debris. As a polymer surface is worn, frictional heating and strain can lead to changes in 

the polymer structure. The surface strains can then lead to chain orientation as seen in 

PE and PTFE[7, 8, 27, 28]. However chain rupture can also occur and result in 

molecular weight reduction as seen in the wear of polyamides[29]. PEEK in particular 

has been the subject of such post-hoc analysis[30-35].  
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Figure 2.2. Proposed variation in PEEK chemical structure during wear process[34]. 
(Figure reprinted from Zhang, M.Q., Z.P. Lu, and K. Friedrich, Thermal analysis of the wear debris of 

polyetheretherketone. Tribology International, 1997. 30(2): p. 103-111) 
 

 

As shown in Figure 2.2, oxidative crosslinking is believed to result from PEEK 

wear against steel counterfaces. Using thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC), Zhang studied the thermal properties of PEEK 

debris formed under varied conditions[34]. It was suggested that during wear, chain 

scission of the diphenyl ether segment occurs and forms oxidative crosslinks at free 

radical sites. They had observed changes in the pyrolysis behavior as well as a tendency 

for crystallization to be impeded. It was rationalized that these results were from the 

formation of crosslinked branches that restricted segmental mobility. Later, X-ray 

photoelectron spectroscopy (XPS) was used to further support this argument[32]. The 

appearance of a π-π* shakeup peak in the C1S spectrum indicated the presence of single 

pendant phenyl rings due to chain scission. This behavior depended on contact pressure 

with the greatest intensity occurring at moderate (2-4MPa) contact pressures. The 
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change in the spectra with increased pressure was thought to be the result of chain 

scission occurring on different parts of the backbone that require greater thermal energy. 

The thermal properties of PEEK wear debris also indicate that it had been formed at 

temperatures near the melt. The first heat of melting for wear debris typically contains a 

cold crystallization exotherm[34]. This feature is often found in material that had been 

rapidly quenched from the melt state. The location of double melting peaks also tends to 

coincide with the thermal history. Usually for PEEK, an endotherm appears 10-15°C 

above the annealing temperature. The location of this feature has been used to determine 

that the PEEK wear surface may reach temperatures around 200°C [34, 35]. These 

studies are certainly not conclusive proof to the theories they espouse. However, they do 

demonstrate that the PEEK wear surface is in no way chemically inert. There is also the 

possibility that the polymer structure can be tailored to promote desirable tribochemistry. 

For instance, a more crosslinked surface would have greater load supporting capacity 

and creep resistance. Subtle changes in the branching or molecular weight could 

potentially result in more tenacious transfer films.  

It has been observed that wear resistance of PEEK depends strongly on the 

molecular weight[10, 20, 36]. The increased molecular weight Mw will enhance a 

number of mechanical properties that may influence wear both directly and indirectly. 

With increased Mw there will also be an increased number of interspherulitic links and 

tie chains that can improve fracture properties. It has been suggested that abrasive wear 

of polymers is determined by the fracture toughness KIC.  Similarly, adhesive wear can 
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be described in terms of fatigue parameters, such as the critical length for crack growth 

ac[37]. Both of these parameters have been found to depend on Mw in PEEK[38, 39]. 

 
 

 
Figure 2.3. Schematic of PEEK crack propagation and fracture surface[39]  

(Figure reprinted from Chu, J.-N. and J. Schultz, The influence of microstructure on the failure behaviour of PEEK. 
Journal of Materials Science, 1990. 25(8): p. 3746-3752.) 

 
 

As shown in the above Figure 2.3, microstructure plays a key role in the fracture 

behavior of polymers. For PEEK, the propagation of cracks can be impeded by the 

interaction of the crack front with the spherulite boundaries. With increased Mw there is 

an increased tie chain density which helps arrest crack growth[38]. It has also been 

observed that in lower Mw PEEK, larger spherulites occur and suffer from decreased 

fracture toughness[39]. This decreased fracture toughness can then be correlated with an 

increase in intraspherulitic fracture. Although fracture properties provide some empirical 

evidence for a relationship between Mw and wear resistance, it is not a direct correlation. 
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The apparent frictional heating at the surface means that rheological properties could 

also play a determining role in performance. Polymer melt viscosity and melt index 

increase with Mw and such properties would enhance transfer film load capacity. 

The same surface plasticization that promotes protective film formation may also 

lead to catastrophic failures. For instance, PEEK roller bearings suffer from an adhesive 

wear type of pitting failure[40, 41]. Gears made of PEEK will fail similarly when there 

are excessive slide to roll ratios[13, 42]. It is suspected that high irreversible 

deformations take place at the contact and results in hysteric heating [43, 44]. Failure 

occurs when the opposing surfaces become compliant and adhesively weld together. 

Despite outstanding solvent resistance, PEEK can easily be plasticized by a number of 

solvents[45]. Chemicals as innocuous as water or methanol can substantially affect the 

hardness of the top(<1µm) surface layers. This will also severely compromise the 

capacity of PEEK to function as a bearing under high contact stress. Briscoe described a 

scuffing failure that takes place in alkane lubricated high-speed contacts and appears 

unique to PAEK material[46]. The loss of asperity persistence and propensity to scuff 

depended primarily on the applied load. These catastrophic adhesive-fatigue failures or 

often attributed to a scenario called fretting. However, fundamental studies of PEEK 

fretting are seemingly non-existent[47]. 

Typically, PAEK is incorporated with some low friction filler material to 

minimize the potential for adhesive wear[10]. These fillers are often selected without 

regard to how the PAEK surface chemistry contributes to friction and wear. Instead, 

fillers are selected based on their ability to mechanically reinforce the bulk as wells as 
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produce low friction transfer films. Often the filler is required to have multiple functions. 

PTFE is a popular choice for its internal lubrication properties and ability to form low 

friction transfer films. Carbon fibers will add strength but also might help dissipate heat 

from the surface. Chemically reactive nano-fillers such as CuS and Al2O3 can increase 

transfer film tenacity and support asperity loads[48]. It has been pointed out that 

although filler can improve the ultimate strength of a composite, the elongation at break 

is hindered. Some authors have used these mechanical properties as a guide to optimize 

the filler quantity in PEEK[49]. The most common selection however appears to be 10% 

graphite, 10% PTFE, 10% short carbon fiber. This selection of fillers can reduce sliding 

friction and promote transfer film formation. However, filled composites can still be 

vulnerable to failure under adhesive wear conditions. For instance, fretting in wet 

environments where the formation of protective transfer films may be hindered.  

The historical studies of PTFE and PE friction anisotropy greatly accelerated 

their development as bearing materials. Tanaka in fact observed a similar anisotropy in 

PEEK and reported this amongst the unsolved problems in polymer tribology[11]. With 

advancing methods in simulation and spectroscopy further details on the mechanistic 

origins of friction and wear continue to emerge[50]. A similar type of understanding 

should be achievable for PAEK by studying its own unique tribological behavior from a 

material science perspective.   

2.2 PEEK Crystal Structure  

An important aspect of PAEK material is the crystallinity and morphology 

achieved during processing. This crystallinity is largely responsible for the outstanding 
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solvent resistance observed[51]. It has also been reported that crystallinity can enhance 

the resistance to environmental stress cracking[52] and physical aging[53]. Crystallinity 

can also impart some mechanical strength[54-56], hardness[14], and improvement in 

modulus[54-56]. A typical crystallinity for the PEEK member of the PAEK family is 30-

40% but will vary with molecular weight Mw[57]. Typically, higher crystallinity Xc% is 

achieved in samples with lower Mw. Longer chains inhibit chain folding and so lower 

crystallinity is achieved for higher Mw. Within the PAEK family the crystallinity 

attained will also vary. Examples of the polymer repeat unit are shown for PEEK and 

PEK in Figure 2.4. The chemical structure consists of aromatic rings joined by either an 

ether or ketone linkage. The naming of the PAEK type corresponds to the presences of 

these ether and ketone linkages. The rigidity imparted by the ketone unit will have some 

impact on chain mobility. For instance the glass transition Tg increases with the ratio of 

ketone to ether[58]. The maximum attainable crystallinity is also affected by the 

flexibility of these repeat units[59]. This means that PEKK materials will likely possess 

lower crystallinity than PEEK.  

 

Figure 2.4. Chemical structure of the polymer repeat unit for PEEK and PEK 
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Upon crystallization, PAEKs adopt an orthorhombic unit cell with a planar zig-

zag conformation[60, 61]. Among the types of PAEKs the crystal structure for PEEK is 

most studied but similar behavior occur amongst all PAEKs. A scheme for the unit cell 

and morphology of the crystal structure of PEEK is shown in Figure 2.5[62]. It can be 

seen in the schematic that the polymer backbone lines up with the c axis. During 

crystallization lamellae stacks are aligned with the b axis in the radial direction. The 

schematic also shows stacks of crystalline lamellae joined together by an amorphous 

region. The thickness of the lamellae will depend on thermal history and steric effects. 

Crystallization results from the folding of polymer chains densely packed bundles. A 

typical melt crystalized thickness is 5-6nm and corresponds to 10-12 aryl groups[59]. 

PAEK adopt a self-impinging spherulitic structure and the size of these spherulites 

depends upon growth kinetics. Typically PEEK spherulites have a diameter of 25-40µm 

and larger spherulites usually correspond to higher melting temperatures[60].  

 
 
 

  
Figure 2.5. Illustration of the crystallographic unit cell and lamellar stack for PEEK.[62] (Figure 

reprinted from Jin, L., et al., Crystallization behavior and morphological characterization of poly (ether ether 
ketone). Polymer, 2014. 55(20): p. 5255-5265 

 



 

24 

 

A number of uncertainties regarding the crystallization behavior of PAEK 

remain. In particular the double melting phenomenon observed in PEEK lacks 

fundamental understanding. This double melting refers to the presence of multiple 

endotherms in the differential scanning calorimetry (DSC) heating traces as shown in 

Figure 2.6. A popular explanation is the dual lamellar thickness model proposed by Cebe 

and Hong[63]. In theory two populations of crystals exist and these give rise to discrete 

melting endotherms. Bassett extrapolated on this theory and proposed less perfect 

crystalline regions exist between the thicker lamellae[64]. These less perfect crystals 

result in the lower endotherms. There are a couple of explanations for the nature of these 

crystalline domains. It is possible that thin lamellae are inserted between two thicker 

lamellae[65, 66] or the thin lamellae may bundle in stacks between stacks of thicker 

lamellae[67, 68]. Recent work used a combination of spectroscopy and microscopy 

techniques to understand this phenomenon[62]. It was suggested that the presence of 

ordered molecular bundles remain in the melt. These domains act as nuclei and result in 

the formation of small less perfect spherulites. A flash DSC technique was used to 

demonstrate the effects of heating rate on double melting[62]. The presence of a single 

endotherm with flash DSC showed that double melting results from the relatively slow 

heating imposed by standard DSC. Small angle X-ray spectroscopy (SAXS) was also 

used to calculate crystallinity based on lamellar thickness. The results produce a linear 

crystallinity that is nearly twice the bulk crystallinity found with DSC. To resolve the 

discrepancy a model was proposed in which a perfect crystal structure exists with less 

perfect structure extending into an amorphous region[62].  
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Figure 2.6. Theory regarding the double melting behavior observed in PEEK[62]. (Figure 
reprinted from Jin, L., et al., Crystallization behavior and morphological characterization of poly (ether ether 

ketone). Polymer, 2014. 55(20): p. 5255-5265 
 
 
 

Many uncertainties exist regarding crystallization of PAEK and a wide array of 

factors will contribute to the crystalline structure and morphology. It can be expected 

that such factors will play a role in the overall tribological response. For instance, it has 

been suggested that wear in PEEK increases with increasing spherulite size[10].  

2.3 PEEK Structure Property Relations  

Changes in a polymer’s molecular structure can impact many properties. 

Commonly, discussion of structure property behavior concerns the mechanical solid-

state behavior. With increasing Mw there is often an observed increase in elongation at 

break and impact strength[58]. Because Mw also affects crystallinity many properties do 

not change directly. For instance the tensile strength and modulus are slightly higher in 

lower Mw PEEK due to an increased crystallinity[55]. However, fracture toughness and 

impact strength will decrease with increased crystallinity[38, 39]. Table 2.1 shows how 
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increases in parameters for PEEK influences trends in fracture properties[38, 69].  In the 

melt state the rheological behavior will be affected by changes in the polymer chain 

structure. For instance, molecular weight Mw and the presence of branching can 

influence the measured zero shear viscosity[70]. The results indicate that PAEK behave 

as rigid rods in the melt. Samples exhibiting possible long chain branching also are more 

susceptible to shear thinning.  The thermal stability within the PAEK class of materials 

will also be influenced by changes in molecular structure[70-72]. It appears that higher 

Mw and branching can increase the susceptibility to degradation. During degradation in 

oxygen crosslinks may also form following chain scission events. Most studies regarding 

such properties are of the PEEK member of the PAEK family but similar trends have 

been observed in PEK and PEKEKK. Attempts have been made to tailor structure 

property behavior with various processing methods. Orientation through the use of 

extrusion or drawing processes has been shown to significantly improve mechanical 

properties[73-76]. Some annealing treatments have been used to improve thermal 

stability[77] and the mechanical performance of PEEK composites[78]. This work will 

hopefully elucidate how tribological behavior depends on differences in structure of 

PAEKs. Processing conditions and material selections can then be made based on such 

knowledge. 
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Table 2.1. Effect of test parameters on fracture behavior of PEEK.  
Testing Parameter Impact Toughness Fracture KIC Fatigue Crack 

Growth 
↑ Molecular Weight ↑ ↑ ↑ 
↑ Crystallinity ↓ ↓ ↑ 
↑ Spherulite Size - ↓ ↓ 
↑ Aging ↓ - - 
↑ Density ↑ - - 
↑ Loading Rate - ↓ - 
↑ Temperature - ↑ - 
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CHAPTER III

MULTIDIRECTIONAL FRETTING AND SLIDING WEAR* 

The polyaryletherketone (PAEK) family of thermoplastics is increasingly used in 

engineering applications that require outstanding tribological properties. Considerable 

attention has thus been paid to their wear behavior in a number of environments. 

However, little focus has been given to PAEK response to fretting conditions. Fretting 

wear results from the repeated slip of mutually loaded contacts. In this study, a custom 

built multi-axis tribometer is used to replicate fretting of PAEK in a pin on flat 

configuration. This chapter concerns the experimentation and analysis of a selection of 

PAEK material in a multidirectional fretting and sliding wear environment.   

3.1 Introduction 

Fretting is said to occur when mutually loaded contacts move relative to one 

another with nominally small displacements. The resulting slip between asperities causes 

cracks to nucleate and grow with repeated motion.  Damage may then manifest as 

fretting wear in which debris are removed from the bulk, or crack propagation through 

fretting fatigue[79-81]. Often, a particular wear environment is termed to be the result of 

fretting based solely on the appearance of the worn surfaces in contact. Such a surface is 

characterized by a “pock marked” or “dented” appearance. Not surprisingly, this post-

* This chapter is reprinted from Laux, K.A., et al., Wear Behavior of Polyaryletherketones Under Multi-
directional Sliding and Fretting Conditions. Tribology Letters, 2015. 58(3): p. 1-13.with permission from
Springer.



29 

hoc assessment method means that a number of parameters are believed to be the 

underlying cause of fretting. Many theories focus on how the retention of debris within 

the contact contributes to wear and act as third body abrasives. For instance, the term 

mutual overlap coefficient (MOC) was coined to describe scenarios in which the 

displacement amplitude is small enough to cause some portion of the contact to remain 

covered [82]. However, it has also been shown that this retained debris has the capacity 

to support the load between contacting bodies thereby mitigating wear. More commonly, 

studies of fretting involve the relationship between normal load and the critical 

displacement needed for slip to occur. Much of the pioneering work in fretting was done 

by Mindlin who derived relationships for stick-slip criteria based on Hertzian contact 

mechanics and elasticity[83, 84]. For a sphere on flat configuration, the shear stress 

distribution has a nearly infinite magnitude at the edges of the contact annulus assuming 

no slip occurs. Within the center of this contact a region termed the stick zone exists. 

Slip will thus occur when the contact has been displaced a sufficient amount to 

overcome the shear traction in this stick zone. Mindlin criterion for stick-slip is 

particularly valuable since it allows prediction of the minimum displacement for slip to 

occur. This knowledge allows the material response to be mapped in terms of the applied 

load and displacement [5, 6]. For instance, Vingsbo described fretting in metals as three 

different regimes that depend upon the applied normal load and the displacement of the 

contact [4]. With increasing displacement and decreasing load the wear behavior 

transitions from stick, to mixed and gross slip, until finally wear behavior matches that 
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of sliding. Wear is said not to occur under pure stick conditions and cracks only begin to 

nucleate due to slip.  

Studies of fretting in metals and methods for design against fretting conditions 

have persisted for decades[85, 86]. However, application of fretting theories to polymers 

has been challenging and little fundamental knowledge exists. Interestingly, many early 

studies of polymer fretting focus on polymer coatings since these often serve as 

palliatives against fretting of metals[87-91]. The so-called velocity accommodation of 

polymers is believed to prevent slip conditions from occurring between the metallic 

components[92]. Attention was also paid to how wear debris generated by polymers may 

lead to tribo-oxidative wear of metallic counterfaces. For instance, Rabbe observed that 

debris from Polymethylmethacrylate (PMMA) bone cement used in orthopaedic 

applications can accelerate corrosion of titanium and steel implants[93]. However, the 

growing utilization of polymers in a wide variety of engineering applications 

necessitates study of their own unique response and failure due to fretting. Largely 

because of their transparent nature, PMMA and epoxy are the most commonly studied 

polymers under such conditions[94-99]. This transparency has allowed for in-situ 

observation of the contact area as well as the onset of slip. For these amorphous glassy 

polymers the standard fretting map technique has been successfully employed using ball 

on flat reciprocating tests. Chateuminois even found that Mindlin criteria could be used 

to predict the critical displacement for slip[95]. As might be expected, the transition 

from stick to slip results in transverse cracking at the contact edges. As Mindlin 

predicted, the edges of the contact annulus represent the highest region of shear stress 
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and slip will initiate cracks in this region. This behavior has also been observed in 

polycarbonate[100] and thermosetting bismaleimide[101].Within the gross slip regime 

“micro-cracks” and “rolls” are observed in the central portion of the contact and are 

more difficult to explain[95, 102]. In polymers, third body debris are believed to possess 

a load sharing capacity and may play a role in the dissipation of frictional energy. 

Chateuminois in fact found that these “rolls” of compacted debris have a modulus that 

nearly matches that of the bulk. With increased displacement the size of these “rolls” 

increases, but the measured fretting wear volume diminishes significantly[99]. A similar 

description of fretting damage has been applied to non-glassy polymers as well[47, 103]. 

Guo investigated a selection of polymers using a ball on flat fretting test rig and 

attempted to link their response to relevant material properties[103]. The observed 

fretting scars were reported to consist primarily of compacted and possibly melted 

debris. This led to the conclusion that fretting resistance is fundamentally linked to a 

polymer’s ability to withstand frictional heating.  

The polyaryletherketone (PAEK) family of thermoplastics has been increasingly 

used in such fretting environments, but few studies exist regarding their fretting 

behavior[47]. These aromatic backboned polymers are named according to the presence 

of ether and ketone structures in their repeat unit. Common examples include 

polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polyetherketone 

(PEK).  The ratio of ketone and ether groups has an effect on chain rigidity and thus the 

glass transition temperature, Tg, typically increases with increasing ketone to ether ratios. 

Their semicrystalline nature and high Tg (150-180°C) in fact make them a desirable 
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bearing material in high temperature and corrosive environments.  Laux and Schwartz 

studied the PEEK member of this family with regard to sliding wear and transfer film 

formation[21]. It was found that sliding path direction had a substantial influence on 

both wear behavior and transfer film formation. Entrapped third body debris and cross 

shear motion are determining factors in the sliding wear of many polymers. In theory, 

these factors should play a critical role in the fretting of polymers. However, it is 

difficult to reproduce such an environment with conventional reciprocating fretting rigs. 

The primary motive of this study is to produce stick-slip and ultimately fretting wear of 

PAEK material against steel in a pin-on-flat configuration. By controlling the nominal 

contact pressure and displacement trajectories, a selection of PAEK material will be 

studied under both multi-directional sliding and fretting environments.  

3.2 Materials and Methods 

3.2.1 Material   

Six samples of commercially available PAEK material were used in this work 

and are listed in Table 3.1 along with relevant material properties. Within this selection, 

three PEEK materials from a single supplier were selected and are differentiated by their 

molecular weight, Mw. These PEEK grades are labeled A, B, and C in order of high to 

low Mw. Gel permeation chromatography (GPC) was used to confirm this trend for the 

PEEK samples and values are listed in Table 3.1 along with data for the other three 

PAEK samples. Samples were injection molded under controlled conditions described in 

previous work[21] and then machined into 6.35mm diameter pins for wear testing. 

Samples were also molded into bars for dynamic mechanical analysis and tensile testing. 
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Additionally, differential scanning calorimetry (DSC) was used to assess the degree of 

crystallinity for all material in this study. The percent crystallinity (%Xc) was 

determined using the ratio of first heat melting enthalpy (∆𝐻𝐻𝑚𝑚) to the enthalpy of fusion 

for a perfect crystal (130 J/g)[104]. As the data shows, lower Mw PEEK typically 

achieves higher degrees of crystallinity compared to higher Mw PEEK under the same 

conditions. The increasing Mw slows down chain folding and thus lower crystallinities 

are commonly observed. Similarly the more sterically hindered PEKK is considerably 

more amorphous than PEK, PEEK, or PEKEKK. The Tg values for all samples are also 

reported in Table 3.1. Using dynamic mechanical analysis (DMA) Tg is located by the 

peak value of tan δ. Testing was performed in torsional shear mode (TA Instruments, 

ARES-G2). Injection molded samples were machined to dimensions of 40 x 11.5 x 3.3 

mm in accordance with ASTM D790 [105]. A temperature sweep was performed with a 

ramp rate of 3°C/minute between 25 and 300°C.  During the test, a 0.05% strain was 

applied with a loading frequency of 1 Hz. Tensile tests were also performed in 

accordance with standard ASTM D638 using type V tensile specimens. These samples 

were machined from injection molded stock pieces as described in ISO standard 2818. 

The averaged values for tensile modulus (E) elongation at break (ε) and ultimate tensile 

strength (σ) from four tests are given in Table 1. These tabulated results are not intended 

to represent a comprehensive review of all PAEK material properties, but rather to serve 

as a guide in understanding the results presented in this work.  
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Table 3.2. Compilation of material properties (molecular weight Mw, glass transition temperature 
Tg, crystallinity %Xc) and mechanical properties (tensile modulus E, elongation at break ε, and 
ultimate tensile strength σ) for all PAEK used in this study. 

Sample Mw Tg[ ̊C] %Xc

Tensile 

Modulus E (GPa) 
%Elongation ε 

Tensile 

Strength σ (MPa) 

PEKK 106,742 158 10 3.3 98 87 

PEKEKK 66,019 176 38 4.1 22 95 

PEK 100,125 167 46 4.3 12 96 

PEEK-A 122,323 159 32 3.7 71 91 

PEEK-B 114,362 158 42 3.8 51 82 

PEEK-C 66,200 160 48 3.7 18 85 

3.2.2 Sliding Wear 

Typically, the study of sliding and fretting wear requires the use of separate 

tribometers that are specially suited for the particular type of wear in question. Sliding 

wear is accomplished by having the counterface continuously move relative to the 

normally loaded sample surface. This is often done using a pin-on-disc or block-on-ring 

configuration where the counterface (disc/ring) rotates and the sample (pin/block) 

remains fixed. Although some debris is inevitably trapped between the sample and 

counterface, sliding allows most debris to be expelled. This means that a fresh pin 

surface is constantly moving across counterface asperities. For PAEK polymers, this also 

means the dominant mechanism for debris removal is abrasion as hard rough asperities 

penetrate the softer bulk. Adhesion and fatigue mechanisms may also manifest, but are 

often the result of some surface plasticization. For instance, Omar demonstrated that 
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adhesive-fatigue wear could be promoted during sliding wear of polymers through the 

introduction of solvents at the wear interface[37]. In this work, the dry sliding wear of 

PAEK is studied using a multi-directional tribometer described by Laux and 

Schwartz[20, 21]. This two-axis tribometer employs two programmable linear stages 

(Aerotech) to move the counterface in a desired path and at a specified velocity. As the 

PAEK sample pins are pneumatically loaded against the planar counterface, wear is 

generated from their relative motion. Multi-directional refers to the motion of the sample 

pin with relation to the counterface asperities. The hardened (HRC 60) D2 tool steel 

counterfaces used in this experiment are directionally ground to a surface roughness of 

0.5µm Ra. Because the surface is ground in a single direction, a circular sliding path will 

generate a continuously changing shear direction and thus multi-directional wear. The 

resulting anisotropy in the surface roughness is shown in Figure 3.1. As depicted in the 

profilometer traces, taller and more distant asperity peaks appear when roughness is 

measured perpendicular to the grinding direction. The direction of sliding relative to 

these asperity peaks was previously found to greatly impact how PEEK transfer films 

form[20, 21]. Thick transfer films are found on portions of the wear path associated with 

perpendicular sliding and are mostly absent when sliding parallel to the grinding 

direction. The presence and quality of these films was found to correlate with wear 

resistance[21]. The resulting cross shearing of the pin surface will also disrupt the strain 

hardening in the direction of motion seen for unidirectional sliding tests. For linear 

polymers like PTFE[106, 107] and UHMWPE[8] motion that disrupts any natural 

orientation will result in increased wear. The process of transfer film formation in PEEK 
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may lead to similar orientation phenomena. Using previous work with PEEK as a 

benchmark[21], sliding wear of PAEK samples will be studied with 5 MPa of nominal 

contact pressure. For the 6.35mm diameter pins used in this study, a normal load of 

157N is used to achieve this pressure. A circular wear path with a 20mm diameter and 

constant sliding velocity of 200 mm/s will be used for each test. To ensure a measurable 

quantity of debris is generated, each test is run for 2km of sliding distance. Before each 

test, samples are finished to a roughness of approximately 0.2µm Ra and are 

ultrasonically cleaned and dried before and after each test. The volumetric wear (mm3) is 

measured by weighing the samples before and after each test using a precision balance 

with 0.01mg resolution. 

Figure 3.1. Profilometer 3D image of ground counterfaces and linear roughness measurements 
taken perpendicular and parallel to the direction of surface grinding.   

3.2.3 Fretting Wear 

Unlike sliding wear in which mutually loaded surfaces continuously move past 

each other, fretting is characterized by intermittent sticking and slipping of the two 
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surfaces.  In order to produce such an environment, sufficiently high contact pressures 

are needed to create adhesive sticking. Additionally, one surface must move a distance 

great enough to break this contact before re-sticking with the adjoining surface. A ball 

on flat configuration is often preferred because Hertzian contact can produce such 

pressures with modest normal loads. As discussed earlier, this also allows for prediction 

of the critical displacement δ necessary for slip to occur. In nominally flat rough contact 

however, sticking occurs between a number of asperities of varying height and 

geometry. This means that a distribution of displacements is needed to describe the onset 

of slip within the region of contact. The displacement of these adhesive contacts will 

also depend on the applied normal load as well as the dynamic stiffness of the fretting 

rig. Friction profiles, also sometimes called friction loops, are a popular method used to 

map the relation between normal load and displacement for the experimental setup in 

question. For the 6.35mm diameter pin on flat configuration in this study, a nominal 

pressure of 50MPa was chosen which requires a normal load of 1570N. To determine the 

necessary displacement needed for slip a series of friction profiles were produced as 

shown in Figure 3.2. The frictional data is acquired by loading PAEK pins against the 

directionally ground counterfaces and reciprocating the stage at 1Hz in a single 

direction. The motion profile of the stage is sinusoidal without any dwell between start 

and stop. Since the counterface is mounted directly to a 3-axis load cell (Interface), 

frictional forces can be assigned to movement across or parallel to the surface roughness 

direction. The data in Figure 3.2A-D shows the frictional force from movement 

perpendicular to the counteface asperities using a data collection rate of 250Hz.  
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Figure 3.2. Friction profiles for PAEK pin under 50MPa of contact pressure and reciprocating 
perpendicular to the counterface surface roughness at 1Hz for displacements 0.5 to 2mm. 

The above friction profiles indicate that at some point between 1 and 2mm of 

imposed displacement ∆, the local contact is able to move a sufficient distance δ to 

unstick asperities. In the friction profile for 0.5mm for instance, the friction force is 

sinusoidal and almost perfectly matches the motion profile programmed to the robotic 

stage. As the displacement ∆ increases to 1mm, deviations in the friction profile occur at 

various points. The friction profile depends on the local strength of asperity contacts, but 

also the stiffness of the sample holder, pneumatic piston, and structure of the test rig. 

The deviations in the profile can be said to represent the contribution of these 

components to the overall stiffness of the experimental setup. As the displacement is 
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increased to 1.5mm and 2mm the friction profile appears flatter indicating a possible 

transition from mixed slip to gross slip or even sliding. It should be noted that in many 

fretting studies, the transition from stick to slip occurs in the micrometer range of 

displacement ∆. However, these studies are predominately for metal on metal fretting 

and use inherently stiffer loading setups such as lap-joints. Although the data in Figure 

3.2 represents friction force for a single displacement direction, the same transitions 

were observed for both robotic stage axes, referred to as X and Y. Likewise, the surface 

roughness direction and PAEK type were found to give similar behaviors. As mentioned 

in the introduction, the viscoelastic nature of polymers presents some complications in 

discussing the contact mechanics involved in fretting. Polymers will undergo frictional 

softening over the course of an experiment and the mechanical response of the surface 

will change as well. A softer more compliant polymer surface will mean greater 

deformation by counterface asperities and an increase in the real contact area. This real 

contact area is sometimes called a multi-contact interface (MCI). In polymer fretting, the 

size of these contact patches will determine the static friction and ultimately the shear 

stresses generated when these contacts are broken. This growth in friction with repeated 

sticking and slipping of surfaces is demonstrated in Figure 3.3. A sample of PAEK is 

loaded at 50MPa and reciprocated across the surface roughness direction a displacement 

of 2mm and frequency of 10Hz. The motion profile has the same sinusoidal shape used 

for data in Figure 3.2. Initially the frictional force is small and marked by erratic spikes 

in the friction profile. After about 1000 cycles this friction force grows and an apparent 

steady state behavior is reached. The highlighted sections of the plot show that with 
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increasing cycles the friction response becomes more sinusoidal with fewer spikes. 

Either through an increase in contact area or a change in the elasticity of the contact 

surface, slip appears to become more difficult.  

Figure 3.3. Friction force for PAEK pin under 50MPa of contact pressure reciprocating 
perpendicular to the counterface surface roughness at 10Hz for a displacement of 2mm. 

Using knowledge gained from these preliminary studies, a computer program 

was written to produce a multidirectional fretting environment. Similar to the 

multidirectional motion for sliding wear, it is desired to have repeated cross shear of the 

PAEK surface across the counterface asperities. The test program moves the robotic 

stages through a series of 10,000 random XY data points. These data points are confined 

to a 2mm by 2mm space so some portion of the 6.35mm diameter pin remains 

continuously covered. Additionally, these random data points were chosen to have point-

to-point displacement trajectories between 0.1 and 2mm with a mean value of 1mm. 
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Because only displacements exceeding 1mm will break the adhesive contacts, slip will 

occur at intermittent times and directions during the course of a test. An initial test run 

confirmed this desired result and it was observed that following a short transient period, 

slip began as indicated by a loud popping noise. To produce a comparative set of wear 

data for the previously listed PAEK materials, tests were run for 500,000 point to point 

moves. Although a frequency cannot be assigned to randomized movement, the test 

program completes on average 15 moves per second.  

3.3 Results 

3.3.1 Wear  

The measured volumetric wear from the multidirectional sliding and fretting 

experiments are plotted in Figures 3.4 and 3.5. Under 5MPa of nominal contact pressure 

and 200 mm/s continuous sliding for 2km, the high Mw PEEK-A appears to have the 

lowest wear of all samples. As found in previous studies, a dramatic increase in wear 

corresponds to a decrease in Mw for PEEK. In accordance with this, lower Mw PEEK-C 

has a near order of magnitude greater wear than PEEK-A. The median Mw of these 

samples PEEK-B has wear performance between the high and low Mw samples. 

Amongst the other grades of PAEK, the PEK, PEKK, and PEKEKK material all have 

very similar performance with that of PEEK-B. In fact, Tukey t-test suggests wear 

behavior of these four materials are statistically indistinguishable (p<0.05). Although 

PEKK has slightly higher wear amongst this group, the result is interesting given that 

these materials all differ in chemical structure and mechanical properties. It should also 

be pointed out that transfer film formation occurred for all samples studied. The quality 
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of transfer film does not differ between PAEK types and is likely not the differentiating 

factor in wear behavior.  

Figure 3.4. Wear results for the various PAEK materials after 2 km sliding distance under 
nominal contact pressure of 5.0 MPa. The bars indicate the size of standard error of the means 

(n=4). 
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Figure 3.5. Wear results for the various PAEK materials after 500,000 point to point movements 
under nominal contact pressure of 50 MPa. The bars indicate the size of standard error of the 

means (n=4). 

The results for the 50MPa multidirectional fretting shown in Figure 3.5 exhibit 

much different trends than that of the sliding wear. Most surprising is the behavior of 

PEK and low Mw PEEK-C which fractured before completing the entire 500,000 point-

to-point movements. In fact, for both samples fracture was observed within the first 

50,000 moves and the tests were stopped at this point. The other four samples that 

completed the entire 500,000 moves do not fracture, but the central region of the pin 

contains a large crater from where debris has been removed. Though some wear debris 

was expelled to the periphery, most debris is contained within this wear crater. The 

measured weight loss indicates some interesting trends in the volume of material 

removed. Comparing the high and moderate Mw PEEK for instance shows near identical 
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weight loss. This is surprising considering PEEK-B generated nearly twice the amount 

of wear as PEEK-A during sliding wear. Similarly, the PEKK and PEKEKK materials 

were the best performing samples in the fretting environment but exhibited only 

moderate sliding wear resistance. Comparison of these two data sets points to the notion 

that different mechanisms are responsible for the resulting behaviors. For instance, Omar 

suggests that in polymers abrasive wear is determined largely by fracture toughness K1C 

and adhesive-fatigue wear depends on crack growth parameters[37].   

3.3.2 Fretting Wear Surface  

Figure 3.6 shows the selected images of fretting wear surfaces for the PAEK 

material used in the experiment. Using a violet laser confocal microscope (LCM) a 

number of images of the surface are first taken at 10X magnification and later stitched 

together using accompanying software to produce the fully assembled images below. As 

discussed earlier, distinct differences in sample behavior are apparent between the six 

PAEK materials. The most apparent features are the cracks emanating from the surface 

in the PEK and low Mw PEEK-C samples. These cracks propagate into the bulk of the 

material resulting in fracture. Though the exact start point cannot be determined, it 

appears that these cracks originate from the surface interior and propagate outwards. 

This central portion of the pin also has a melted appearance suggesting that frictional 

softening may play a role in the origin of these cracks. As mentioned earlier, some 

samples also develop a crater in the center of the pin in which wear debris collects. This 

behavior is found in the PEEK-A and PEEK-B material as well as PEKK and PEKEKK. 

However, just as the measured wear volume differs within this group the depth of the 
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crater seems to vary as well. The LCM is also equipped with profilometry software and 

allows measurement of the wear surfaces. Observation of these craters indicates that the 

PEEK samples are both deeper and have a larger volume than the PEKK and PEKEKK 

samples. Considering the measured weight loss follows the same trend, it can be 

presumed that most fretting wear debris is generated in the formation of these craters. 

There also appears to be some differences in the shape of craters found in PEKK and 

PEKEKK compared to the PEEK samples. In PEEK-A and PEEK-B the crater is mostly 

circular in shape and is deeper towards the sample center. However, both PEKK and 

PEKEKK samples develop shallower craters with a more oblong shape. The shape of 

this region also indicates that these craters had formed from cracks propagating in some 

preferred direction. It should be noted that flat contact between the sample and 

counterface was checked prior to each test so the influence of eccentric loading on wear 

was minimized. A possible explanation may be due to the direction of counterface 

surface asperities relative to sample movement. The counterfaces were ground so 

roughness was oriented in a single direction. Although slip occurs with motion both 

parallel and perpendicular to these asperities, the magnitude of surface shear forces 

generated likely differs. It can be presumed that the static friction forces are greater for 

slip perpendicular to the counterface asperities than parallel. This difference in static 

friction may attribute to how cracks form, propagate and eventually form craters on the 

PAEK surface. Visual observation of the worn sample surfaces indicates that fretting 

wear of PAEK depends largely on how surface cracks form and grow as the result of the 

mixed and gross slip condition.  
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Figure 3.6. Assembled LCM images of PAEK pin surfaces after being tested under fretting 
conditions.   

3.4 Discussion 

In examining both the sliding and fretting wear data many possible explanations 

for material performance emerge that cannot be linked to a single material property. 

Wear in polymers depends largely on the contributions of abrasive, adhesive, and fatigue 

mechanisms. Abrasive wear results from the removal of debris from the bulk via 

penetration and cutting by hard rough asperities. In theory then, a material with greater 

toughness, tensile strength and elongation at break should be more resistant to abrasive 

wear. Adhesive and fatigue wear are often discussed together since surface damage 
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induced by adhesion often begets cracks that grow through fatigue. Adhesive wear can 

be imagined as occurring when junctions form between surface asperities and 

subsequently rupture during contact shearing. Additionally, fatigue wear is generated as 

the result of subsurface cracks that grow through repeated impact by counterface 

asperities. These simplified views of wear processes offer insight into how a material 

might behave in a specific wear environment. However, linking specific material 

properties to observed wear performance still remains a challenge. For instance, PEK 

and low Mw PEEK-C have similar tensile stress and strain behavior shown in Table 3.1, 

but their sliding wear performance differs by an order of magnitude. In fact the material 

demonstrating the greatest sliding wear resistance, high Mw PEEK-A, does not stand out 

amongst any of the tabulated mechanical properties. Studies of the wear of PEEK have 

suggested that Mw may play an important role in determining wear behavior[10, 20]. It 

was hypothesized that increased Mw increases the number of entanglements and 

interspherulitic links that resist the removal of debris from the bulk. Smaller spherulite 

size has been found to accompany improved wear resistance in many semicrystalline 

polymers[108]. However, most studies focus on pin on disc sliding wear and it is likely 

that the same material property correlations cannot be applied to fretting or adhesive-

fatigue wear. For instance, PEEK-A was found to be superior during sliding wear tests 

but behaved similarly or worse than other PAEK material during fretting.  

To better understand wear behavior in PAEKs there is a need to link structure-

property relationships to underlying wear mechanisms. Differences in underlying 

mechanisms responsible for abrasive, adhesive, and fatigue wear are evident in the 
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experimental result that sliding wear resistance does not correspond to fretting wear 

resistance. To explain the observed fretting behavior for the PAEK material studied in 

this work the separate components leading to fretting wear must be further elucidated. It 

is believed that fretting results from the repeated sticking and slipping of mutually 

loaded surfaces. The loading and unloading of asperity contacts will initiate cracks that 

grow with repeated traversals. These cracks may lead to sample fracture or the formation 

of fretting debris depending on the resulting surface stress. In isotropic elastic solids, 

surface material strength (σ) can be linked to the sample modulus (Ε) and the imparted 

strain (ε). However, for viscoelastic polymeric material the bulk properties at the surface 

change as a function of time and temperature. This nonlinear stress-strain relationship 

renders predictive equations based on loading and displacement invalid. Furthermore, 

most studies of fretting in polymers have suggested frictional softening[103] and third 

body debris accumulation[99] is the determining factor in polymer fretting performance. 

These conclusions are supported by the observation that polymer fretting surfaces often 

consist of rolls of compacted or melted debris [95]. Although the fretting surfaces in 

Figure 6 show signs of melting, the overriding surface features are cracks and craters. 

Discussion of this observed fretting response should thus focus on how frictional 

softening may lead to sticking and slipping of contacts and how this ultimately produces 

surface cracks under the ascribed conditions.  

As discussed in the introduction, the fretting experiment was designed to create 

intermittent multidirectional slip. Because polymers have the capacity to exhibit strain 

hardening through chain orientation, cross shear motion is believed to be a more severe 
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wear environment than linear reciprocation. Additionally, polymers are sometimes 

viewed as fretting resistant due to their viscoelastic response to surface traction called 

velocity accommodation[92].  To create intermittent multidirectional slip, the test 

program used in this study consisted of random point-to-point XY movements. Since 

only some of the resulting displacements are large enough to cause slip, the adhesive 

contacts are broken at random intervals. During experiments, this phenomenon is 

believed to have caused the reported sporadic popping noise. The velocity 

accommodation observed in linear reciprocation is also possibly prevented since the 

polymer chains cannot orient in some preferred direction. The periods of stick between 

slip events also may allow for the growth of asperity contacts. The static coefficient of 

friction depends largely on the real area of contact between surface asperities. 

Fundamental research in the origins of static friction has shown that asperity contacts 

can grow over time through creep[109]. This is sometimes called physical contact aging. 

In theory, the static or break loose friction will increase exponentially with time from 

when an adhesive contact was formed. The brief pauses between slip displacements 

would thus create greater static friction than would be seen in a continuous reciprocating 

motion. To better demonstrate this, additional linear reciprocating tests were conducted 

using PEK and PEEK-C. Both of these materials fractured prior to completing the 

500,000 point-to-point motions in the multidirectional fretting experiment. Samples were 

loaded with 50 MPa of nominal contact pressure and reciprocated perpendicular to 

surface roughness at 10Hz as shown in Figures 1 and 2. Tests were conducted with 

displacements between 1 and 2mm and run for 500,000 cycles. Interestingly, neither 
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fracture nor audible slip occurred during any of these tests. Figure 3.7 shows the 

resulting surface for PEK from tests done with a displacement of 2mm. Although 

catastrophic failure does not occur, surface cracks are seen at the edges of a central 

frictionally softened region. This central region also appears striated as if it had been 

stretched in the reciprocation direction. Such a phenomenon is similar to the roll 

formation and velocity accommodation often reported in polymer fretting. These 

phenomenological results do not prove chain orientation or contact aging occur. 

However it does support the notion that intermittent multidirectional fretting presents a 

more severe fretting environment than linear reciprocation. Future studies on the origins 

of static friction in PAEK metal contact will be done and should be helpful in discussion 

of polymer fretting.  
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Figure 3.7. Assembled LCM image of PEK pin loaded under 50MPa contact pressure 
reciprocating 2mm at frequency 10Hz for 500,000 cycles. B) Magnified LCM image of the 

highlighted section of the pin. Scale bar 100µm. 

Another phenomenon worth further investigation is the role entrapped third 

bodies have in fretting tests. In both the multidirectional tests in Figure 3.6 and the 

reciprocating tests in Figure 3.7, most debris was found adhered to the pin surface at the 

end of each experiment. As mentioned earlier, the displacements used were chosen to 

create intermittent multidirectional slip. These displacements were also confined to a 

2mm by 2mm space so some portion of the 6.35mm diameter pin remains constantly 

covered. This overlap region will in theory be more affected by frictional heating and 

slip will mostly take place here. Observation that surface cracks and craters originate in 

the center of the pin supports this theory. It was also found that slip did not occur 
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immediately and required several thousand displacements until slip was audibly 

detected. It is likely that frictional softening promotes greater adhesion between the pin 

and counterface and the shearing of these adhesive contacts causes slip. However, it 

cannot be determined if frictional softening results from melting or merely increased 

surface plasticity. The surface temperatures achieved during wear remains an 

unanswered question in polymer tribology largely due to the difficulty of in-situ 

measurement. Zhang et al. studied the surfaces and debris formed during sliding wear of 

PEEK using differential scanning calorimetry (DSC)[34]. Their belief was that surface 

temperatures ranged 300-345°C based on the location of endotherms in the first heating 

trace of samples taken from the wear surface. Additionally, they report the appearance of 

a cold crystallization exotherm in the debris heating trace. This implies debris is formed 

and ejected from the bulk in a molten state and flash cooled. Similarly, PAEK debris 

collected from both the fretting and sliding wear tests in this experiment was studied 

using a TA Instruments Q20 DSC. Samples were heated from 30°C to 400°C at 

10°C/min with nitrogen flowing at 50 ml/min. Figure 8 shows the first heating traces for 

sliding and fretting debris obtained from PEEK-A and PEEK-B along with a reference 

cut from the respective sample pin. In line with the result obtained by Zhang, both 

sliding and fretting samples exhibit a cold crystallization exotherm around 150°C. 

Furthermore, the melting endotherm for sliding and fretting debris shifts to a higher 

temperature nearly 15°C above that of the reference and broadens considerably. Zhang 

related this shift and broadening of endotherms to the reorganization and thickening of 

lamellae that takes place when PEEK is annealed at temperatures above 300°C[34]. It is 



53 

quite possible then that the wear surfaces reach temperatures where the material behaves 

in a rubbery state. For fretting, a more compliant surface would enable greater adhesion 

to the counterface and thus greater static friction forces. These features are seen in the 

first heating traces of all PAEK samples studied in this experiment with the exception of 

PEKK. The debris from the more amorphous PEKK material does not exhibit the cold 

crystallization peak seen in other samples. Additionally multiple melting endotherms 

appear between 300°C and 350°C. Unlike PEEK however, the crystallization kinetics of 

PEKK are much less understood so further analysis of this material is difficult.   

Figure 3.8. DSC first heating trace of sliding and fretting wear debris for A)PEEK-A B)PEEK-B 

It should also be noted that the areas of the first heat melting endotherms increase 

significantly for debris from both sliding and fretting experiments. In fact for the PEEK 

samples in Figure 3.8, the endotherm areas imply that debris has crystallinity in excess 

of 50%. In light of most all PEEK crystallization studies this should not be possible. 
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Rather, the measured heat of melting ∆𝐻𝐻𝑚𝑚 likely also reflects the presence of residual 

stress in the crystalline phase imparted by the wear process. This behavior is commonly 

seen in equal channel angular extrusion (ECAE) of polymers such as polyethylene 

terephthalate (PET)[110]. To better understand this, samples were also analyzed with X-

Ray diffraction (XRD). A Bruker D8 Discover powder XRD with a copper X-ray source 

was used for Bragg angles between 5 and 40 degrees. Figure 3.9 shows the measured 

intensity plotted with respect to Bragg angle for PEEK-A and PEEK-B. The unworn 

reference samples show typical prominent peaks at 19 and 23 degrees along with four 

additional smaller peaks[111]. However, in both the sliding and fretting debris there is a 

drastic change in the nature of the XRD profiles. The sliding wear debris exhibits a loss 

of nearly all peaks with the exception of the 19-degree peak associated with the 110 

crystallographic plane. Fretting debris however appears to lose all previous peaks and a 

new peak appears around 30 degrees in both PEEK samples. In fretting and sliding, 

debris appears to be largely amorphous. The increased heat of melting in DSC studies is 

then likely due to residual stress and not increased crystallinity. Additionally, the 

sharpness and location of the new peak in the fretting debris suggests inorganic material 

from the metal counterface. This implies that during fretting, adhesion between the two 

surfaces is strong enough to actually remove fragments from the counterface. There may 

also be some contribution from chain scission events. For polyamide it has been found 

that third body debris experiences a reduction in molecular weight MW. Marcellan 

studied the debris formed from reciprocating ball on flat tests using DSC and size 

exclusion chromatography[29]. Contrary to the changes in Figure 3.8, they observe a 
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reduction in both the melting temperature and heat of melting ∆𝐻𝐻𝑚𝑚. This change was 

found to be due to a reduction in MW and the same features are observed in the second 

heating trace. However, the second heating trace for the measured debris in Figure 3.8 

closely matches the unworn reference. This indicates that the observed features are the 

result of some reversible process. It is believed that during wear of PEEK, such chain 

scission events are likely to result in oxidative crosslinking rather than a reduction in 

MW[32, 34]. Further quantitative studies of PEEK wear debris would further help in 

understanding the exact tribochemistry.  

Figure 3.9. Powder X-ray Diffraction spectra of sliding and fretting wear debris for A) PEEK-A 
and B) PEEK-B 

The final discussion point is to probe the role fracture mechanisms may play in 

the fretting failure of PAEK. Microstructure will play a role in the fracture and fatigue 

behavior of PAEK and similar mechanisms may explain the observed differences in 
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fretting behavior. For instance, the clear distinction between the fractured surface 

observed in low MW PEEK-C and the cratered surface found in higher MW PEEK-A and 

PEEK-B. Chu and Schultz found that for PEEK, the MW has a strong influence on both 

microstructure and fracture[39]. Lower MW PEEK was found to form larger spherulites 

and in turn suffers from decreased fracture toughness K1C. This behavior was attributed 

to increased intraspherulitic fracture mechanisms that arise in lower MW PEEK 

compared to mostly interspherulitic fracture in high MW PEEK. Additionally, Saib 

studied the fatigue behavior of PEEK and observed a strong correlation between crack 

growth and the MW, crystallinity, and tie chain density[38]. In particular, the lower MW 

PEEK exhibited unstable crack growth compared to the Paris law type stable crack 

growth in the higher MW PEEK. During fretting experiments, mixed and gross slip 

events are believed to lead the nucleation and growth of cracks, which should then 

strongly depend on microstructure. The fractured fretting surface seen in PEEK-C is 

indicative of unstable crack growth and propagation perpendicular to the wear surface. 

However, PEEK-A and PEEK-B may possess crack arresting mechanisms that are not 

present in PEEK-C and thus do not fail in a catastrophic manner. A similar explanation 

may also apply to the other PAEK material studied, but better knowledge of the 

relationship between failure mode and microstructure is needed.  

The fracture mechanisms that occur during fretting may also be related to the 

apparent frictional softening that takes place on the pin surface. For instance, the 

fractures observed in PEK appear to originate from a melted interior region. In metals, 

fretting is often discussed in terms of oxidation or other tribological transformations that 
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lower fatigue resistance and lead to fracture. Though different transformations would 

take place in polymers, crack growth would be strongly influenced by the material 

properties at the surface. A melted interior region would in theory weaken the material 

and would have a diminished capacity to resist crack growth. It is also possible that 

material transformation may take place that improves fretting resistance. As discussed 

earlier, the PEKK wear debris differs from other PAEK material in its DSC heating 

trace. The mostly amorphous PEKK seems to undergo some friction induced 

crystallization not observed in other PAEKs. In-situ crystallization has been shown to 

improve the wear behavior of amorphous PEEK films[112] and a similar phenomenon 

could occur in fretting of PEKK. Because the PEKK samples are mostly amorphous, 

they appear transparent and can thus be easily studied under optical microscopy as 

shown in Figure 3.10. Samples of PEKK were tested for 50,000 point-to-point fretting 

movements so as to prevent material removal from the surface. In fact all PAEK samples 

exhibit a darkened thermal mound in the pin center during the early stages of fretting. 

Interrupting the test prior to the formation of debris craters allows for observation of 

possible subsurface transformations prior to crack growth. PEKK samples were 

sectioned parallel and perpendicular to this thermal mound as shown in Figure 3.10C. 

Using an Olympus BX60 optical microscope, samples were studied under cross 

polarization. Figure 3.10A shows the darkened tribologically transformed region that 

appears on the PEKK surface interior. When the sample is sectioned and polished 

perpendicular to this thermal mound, as in Figure 3.10B, the tribologically transformed 

material extends well below the surface. Even more interesting is the observation of a 
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roughly 100µm thick transition region separating the bulk sample from the thermal 

mound. Through frictional heating or possibly some strain-induced mechanism, PEKK 

undergoes an observable material transformation during fretting tests. Although this 

transformation cannot be linked directly to improved crack resistance, the PEKK 

samples outperform all other PAEK material during fretting tests. Additional energy 

dissipative mechanism may exist in PEKK or PEKEKK that explain their superior 

fretting performance and will be worth further investigation.  

Figure 3.10. Cross-polarized optical micrographs of the PEKK fretting surface after 50,000 point-to-
point moves. A) Top view with scale 1mm B) Side view of surface damage with scale 1mm C) Illustration 

of the pin surface features D) 50x zoom of damage features marked by the arrow with scale bar 100µm.  
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Although many questions raised from the results of this study cannot be 

completely answered, their analysis gives better insight into the nature of fretting in 

PAEK. Because fretting and sliding wear were studied in an identical pin-on-flat 

configuration it also allows for direct comparison of sample performance. Unlike sliding 

wear in which debris can be expelled from the contact, the entrapment of debris 

promotes adhesive contact between the pin surface and metal counterface. With 

sufficiently high displacements, slip of adhesive contacts will occur. The resulting 

damage from repeated sticking and slipping leads to sample failure that cannot otherwise 

be related to static mechanical properties or sliding wear performance. This study leads 

to several key conclusions that will help future studies of PAEK wear behavior in 

general.  

3.5 Conclusions 

Based on the results of this study, several conclusions can be drawn about the 

fretting behavior of PAEK. Sliding wear and fretting of PAEKs are governed by 

different mechanisms. Although a material may exhibit outstanding performance in a 

sliding wear environment, cratering and fracture can occur when samples are tested in a 

fretting environment.  This fretting wear behavior also depends on how directional and 

intermittent stick slip is. Surface cratering and fracture occur in an intermittent 

multidirectional fretting environment but do not occur for a continuously linear 

reciprocating path. It is believed that velocity accommodation and chain orientation 

occur and mitigate potential surface damage. Analysis of wear debris suggests frictional 

softening of the wear surface also plays a key role in fretting. Greater adhesion between 
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the pin and counterface results from this softened surface and increases the magnitude of 

frictional forces. However, fretting wear of PAEKs cannot be linked to static mechanical 

properties. The fretting performance depends on how cracks nucleate and grow as the 

result of slip. Differences in fracture toughness and crack growth parameters better 

explain the observed surface damage. Additionally, tribological transformations such as 

melting or crystallization will influence the propagation of fretting induced surface 

cracks. 
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CHAPTER IV 

INFLUENCE OF FILLER AND WET CONTACT ON FRETTING 

Polyetheretherketone (PEEK) polymers are increasingly used in tribological 

applications where fretting damage occurs. Fillers are often incorporated to enhance 

strength and reduce friction. However, environmental conditions can severely limit their 

operating lifetime. Wet contact conditions in particular can lead to catastrophic failures. 

In this chapter, fretting of a selection of filled and unfilled PEEKs are tested in both dry 

and wet conditions. Analysis of the wear surfaces and debris reveal substantial 

differences in wear behavior. The fretting performance appears to be strongly tied to the 

static friction response of the material. Static friction measurement along with FEA 

analysis was conducted to better understand the observed phenomena.  

4.1 Introduction 

Polymers are increasingly used in tribological applications. Often, it is necessary 

for such polymeric material to function across a broad range of environments. Design 

challenges frequently occur since a material may offer outstanding wear resistance in 

one application or environmental condition but suffer in another. The polyaryetherketone 

(PAEK) family of thermoplastics is an attractive material for use in such varied 

environments. These semicrystalline polymers are resistant to most solvents and possess 

a high glass transition temperature (Tg) around 150°C[113]. Such properties coupled 

with their inherent wear resistance make PEEK a popular choice for use in extreme 

environments. The tribological behavior of PEEK is well reported and has been studied 
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in both the unfilled virgin state and with the incorporation of various fillers[10, 14, 114]. 

Wear resistance is often attributed to transfer films that protect against abrasion from 

counterface asperities[12]. For this reason, many studies have focused on the 

relationship between counterface roughness and sliding wear rate[15-18]. Ovaert 

observed that there exists an optimal surface roughness that minimizes wear[17, 19]. 

However, with increasing surface roughness the wear rate was mostly invariant due to 

the presence of transfer films[19]. Bahadur believed that these films form when debris 

becomes physically entrapped between asperities[12]. Though the exact role of transfer 

films in determining PEEK wear behavior is not fully known, much work has been done 

to promote their formation.  

Fillers are often incorporated into PEEK to enhance desirable properties. 

Commonly, low friction additives such as PTFE, graphite, and MoS2 are used to reduce 

friction[115]. Although PEEK has high wear resistance in its unfilled state, the 

coefficient of friction is higher than desired. Fillers are also chosen based on their ability 

in assisting the formation and functionality of the transfer films. Inorganic fillers like Al-

2O3, CuF, and CuS have been found to enhance polymer transfer film adhesion and 

thereby mitigate wear.[116-118] The incorporation of PTFE alone can even form films 

that achieve ultra low friction and wear behavior.[119] However, the addition of fillers 

into the PEEK matrix may come with a loss in mechanical integrity. Carbon and glass 

fibers are a popular choice for mechanical reinforcement. Additionally, fillers must be 

used in limited quantity as particle agglomeration and matrix voids can occur with high 

loadings. PEEK based composites are typically manufactured with filler loadings below 
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30%. For this reason the fill ratios of 10% PTFE, 10% graphite, 10% carbon fiber has 

been a popular formulation for PEEK based tribo-composites[120]. 

The use of polymer based bearing material in wet environments creates a number 

of challenges[121]. Polymers can be plasticized in the presence of solvents. It has been 

observed that wear increases when the solubility parameters of the polymer and liquid 

closely match[122]. The solvent can penetrate the polymer surface and promote stress 

cracking that accelerates the formation of debris. Such conditions are also said to 

promote adhesive-fatigue over abrasive wear. Omar suggested that plasticizers promote 

subsurface crack propagation resulting in the formation of large plate-like debris[37]. 

The deleterious effects of lubricants on polymer wear performance can also be 

accelerated under conditions with high contact pressures. For some polymer-lubricant 

pairs, plasticization of the polymer surface can occur leading to a rapid increase in 

friction. Briscoe termed this behavior scuffing and studied this phenomenon in PEEK at 

length[46, 123, 124]. Briscoe observed that the high pressures found in boundary 

lubrication can accelerate this scuffing failure[124]. Furthermore, frictional heating 

elevates the contact temperature and plasticizes more of the bulk. Recently, Berer 

observed that the hydrostatic pressure resulting from oil lubricants can exacerbate the 

propagation of subsurface cracks in unfilled PEEK on PEEK rollers[40]. Even though 

PEEK is resistant to most solvents, it can be plasticized in a number of environments[45, 

125]. Nanoindentation and scratch studies have shown that even water can significantly 

soften the surface of PEEK-based materials[45]. The effects of water lubrication on the 

sliding wear behavior of PEEK and its composites have also been reported. For pin on 
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disc sliding, water lubrication generally lowers the coefficient of friction[126]. However, 

for most PEEK samples studied, wear rates increase significantly[126-128]. The increase 

in wear volume is believed to depend on the penetration of water below the PEEK 

surface. The high contact stress and frictional heating that occur during sliding is 

believed to promote this process. Yamamoto for instance observed plasticization of 

unfilled PEEK samples after sliding that did not occur after immersion alone[127]. The 

selection of filler type will also affect the performance. Glass fibers for instance are 

found to suffer from stress corrosion cracking in water[128, 129]. Carbon fiber based 

fillers were found to offer some improved performance, but generally all PEEK samples 

suffer in wet conditions. Unfortunately, only a small number of studies have been done 

so any conclusion remains speculative. Jacobs asserted that water lubricated wear rates 

depend primarily on counterface tribochemistry[129]. The presence of water was said to 

induce a hydrolysis like degradation of the PEEK.  In their work they proposed that 

chemically inert diamond like coatings and Al2O3 counterfaces should be used in place 

of steel for aqueous environments. Water lubrication will also wash away transfer films 

that reduce wear in dry sliding tests. Yamatomo observed that compared to PEEK, 

samples of PPS were still capable of forming transfer films in wet conditions[127]. This 

behavior has been attributed to the bonding between sulfur compounds in PPS with iron 

in the steel counterface. Although PPS does not perform considerably better in wet 

sliding, transfer films will inherently protect against abrasion. Water is a seemingly 

innocuous fluid, but it can have a substantial affect on PEEK polymers in tribological 

applications.  
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Fretting is often characterized by conditions with high contact pressures and 

nominally small displacements. Damage occurs when adhesively bonded asperity 

contacts repeatedly become unstuck and slip. The static friction that results from sticking 

and slipping can induce surface cracks that may propagate catastrophically. Typically, 

fretting damage can be related to the degree of slip. The well-established Mindlin 

criterion for slip allows for some prediction of fretting based on contact mechanics[83, 

84]. However, a lot of the theories surrounding fretting cannot be applied for polymers 

due to their viscoelastic nature. Typical fretting experiments are done using 

unidirectional reciprocation in a ball on flat configuration. However, polymers may 

undergo orientation hardening in the direction of strain. The polymer surface may also 

prevent slip from occurring through a mechanism termed velocity accommodation[92]. 

In the previous chapter it was demonstrated that for unfilled polyaryletherketones 

(PAEKs), intermittent and random slip trajectories can produce fretting damage not 

observed in unidirectional reciprocation[130]. Surface cratering or fracture occurred in 

samples depending on their fracture toughness and crack growth parameters. It is unclear 

though how changes in the contact conditions might affect this fretting response. For 

instance, the introduction of lubricating fillers will lower the frictional forces but may 

also result in increased slip.  Some fillers may potentially reduce fracture toughness, 

which can increase the severity of fretting damage. Wet conditions can plasticize the 

PEEK surface but may also serve as a lubricant reducing the buildup of heat and 

expelling entrapped debris. The aim of this work is to study the influence of both filler 

and environmental conditions on the fretting behavior of PEEK. The resulting analysis 
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will then help understanding how changes in contact conditions impact the material 

response to fretting.  

4.2 Materials and Methods 

4.2.1 Materials  

A total of eight different samples of PEEK based material were used in this work. 

Four of the samples are neat unfilled PEEK and labeled based on their molecular weight 

Mw. Within this selection two samples are termed low molecular weight, labeled L1 and 

L2, while the high molecular weight samples are H1 and H2. Gel permeation 

chromatography (GPC) was used to differentiate the samples and values are listed in 

Table 1. Additionally, relevant material properties are included in Table 4.1. All neat 

unfilled test specimens were injection molded under controlled conditions described in 

previous work[21]. Tensile tests were performed in accordance with ASTM standard 

D638 using type V tensile specimens. Wear samples were made from injection molded 

sprues that are machined into 6.35mm diameter pins. As the data shows, lower Mw 

PEEK typically achieves higher degrees of crystallinity compared to higher Mw PEEK 

under the same conditions. Mechanically, the unfilled samples are similar with the 

exception of the elongation at break. Although fracture testing was not performed, it is 

expected that such properties differ between samples. Typically, lower Mw PEEK forms 

larger spherulites and suffers from decreased fracture toughness K1C[39]. Additionally, 

lower tie chain density will lead to unstable fatigue crack growth[38].  
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Table 4.1. Tabulated molecular weight Mw crystallinity %Xc and tensile properties for PEEK 
samples used 

Sample 
Mw 

(kg/mol) 
%Xc

Tensile 

Modulus E (GPa) 

%Elongation at 

break ε 

Tensile 

Strength σ (MPa) 

PEEK L1 66.2 48 4.0 22 78 

PEEK L2 75.9 42 3.7 18 85 

PEEK H1 114.4 42 3.8 51 82 

PEEK H2 122.3 32 3.7 71 91 

It is expected that these differences will occur in the filled samples as well. The 

same four grades were also used to make compression-molded samples containing 

10%PTFE, 10% carbon fiber and 10% graphite. The individual ingredients are 

introduced into a thermally jacketed high speed mixer, and mixed while maintaining 

temperatures well below 20 °C to avoid agglomeration of the PTFE component. The 

resulting powder mixture is introduced into the mold system and initially compressed to 

approximately 2,000 psi. Once compressed, the entire mold assembly with pre-

compressed powder is placed in an industrial oven and heated to a temperature in excess 

of the crystalline melting point of the highest melting component to achieve a fully 

molten system. Once melted and at a uniform temperature throughout, the assembly is 

removed from the oven and re-compressed to a pressure of approximately 4,000 psi. 

This pressure is maintained as the temperature decreases, and the steel mold components 

are removed at appropriate times to avoid problems associated with coefficient of 

thermal expansion differences. Wear samples were molded using a 38mm diameter 
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cylindrical mold and then machined into 6.35mm diameter pins. A mold for tensile and 

compressive test specimens was also used in accordance with the ASTM standards. The 

relevant material properties and testing standards are listed in Table 3.2. As might be 

expected the introduction of filler resulted in some changes in properties compared to the 

neat samples. The neat specimens were all found to have a density of 1.30 g/cm3 and 

moisture content at saturation of 0.4%. It appears that the filled samples differ only 

slightly in this regard. Mechanically, the filled samples all suffer from decreased 

elongation at break and tensile strength. The samples were also comparable to each other 

with the only notable exception being the L1 sample based on a low Mw PEEK. 

Table 4.2. Tabulated material properties for filled PEEK material with accompanying standard 
used. 

Filled 10% PTFE, 10% CF, 10% Graphite 

Base PEEK L1 L2 H1 H2 

Density (g/cm3) ASTM D792 1.46 1.46 1.46 1.46 

Moisture Content at Saturation (%) ASTM D570 0.30% 0.30% 0.30% 0.30% 

Hardness, Shore D ASTM D785 79.8 80.9 80.8 82.1 

Tensile Modulus (GPa) ASTM D638 3.36 4.39 4.44 4.42 

Tensile Strength at Break (MPa) ASTM D638 36.1 63.6 68.3 64.9 

Elongation at Break (%) ASTM D638 1.90 2.2 2.4 2.7 

Flexural Strength (MPa) ASTM D790 154.2 155.13 155.8 147.8 

Flexural Modulus (GPa) ASTM D790 12.3 12 11.6 11.1 

Compressive Strength (MPa) ASTM D695 135.7 161.1 163.1 165.6 
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4.2.2 Fretting Test  

Fretting occurs when mutually loaded contacts repeatedly stick and slip. In order 

to produce a fretting type of environment, sufficiently high pressures are needed. In the 

previous chapter a nominal pressure of 50MPa was used. In this work, the same test 

conditions were used as those described. To achieve such a contact pressure, the 6.35mm 

diameter pins were loaded against a hardened (HRC 60) D2 steel counterface with a load 

of 1570N. The counterfaces were all ground to have a unidirectional average roughness 

Ra of 0.5µm. The fretting rig used two programmable independently driven stages 

(Aerotech) to move the counterface against the pin. Because the steel surface was 

ground in a single direction, varying the sliding trajectory could control the degree of 

shear anisotropy. For instance, a circular path will produce a constantly changing shear 

direction compared to linear sliding. The resulting shear anisotropy from such motion 

can prevent strain hardening that occurs with unidirectional wear tests. Additionally, the 

fretting test requires some portion of the pin contact to remain covered throughout the 

experiment. The entrapment of debris and accumulation of heat in this overlapping 

region can accelerate fretting damage. Finally, the experiment was designed to create 

multidirectional and intermittent slip between the PEEK pin and a steel counterface. 

Polymers have been observed to undergo a velocity accommodation mechanism during 

linear reciprocating fretting tests [Ref.]. The viscoelastic nature of polymers means that 

they can comply with surface strains and prevent slip from occurring. The fretting test is 

designed so that adhesive contacts slip and stick intermittently so that strain compliance 

cannot occur. It was found that this result could be obtained by moving in a randomized 
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point-to-point trajectory that is confined to a 2mm by 2mm space as illustrated in Figure 

4.1. The displacement trajectories have magnitudes between 0.1 and 2mm. It was found 

that for the test rig and loading conditions adhesive contact between the pin and the plate 

require displacements greater than 1mm to slip. The introduction of lubricating fillers 

and wet conditions might alter this slip behavior and a series of friction loop experiments 

were done to understand this.  

Figure 4.1. Illustration of the loading configuration and motion profile used in fretting tests. 

The critical displacement δ needed for adhesive contacts to slip will depend on 

the normal load as well as the stiffness of the fretting rig. This behavior can be observed 

in the friction profiles for PEEK pins sliding against the steel surface. For this test, single 

direction sliding was carried out at 1Hz perpendicular to the grinding direction. The 

motion profile was sinusoidal and there is no dwell between start and stop. Counterfaces 

Random Motion  
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were mounted to a 3-axis load cell (Interface) with a data collection rate of 250Hz. 

Figure 4.2A-D shows the frictional force from the filled L1 sample sliding with 

displacements 0.5 to 2mm. Similar to the findings for unfilled PEEK, slip only occurred 

for displacements exceeding 1mm. In the friction profile a displacement of 0.5mm for 

instance, the friction force was sinusoidal and matched the motion profile of the robotic 

stage.  Figures 4.3 and 4.4 show the frictional force for wet contact by placing a small 

quantity of water on the counterface. A similar profile occurred for displacements of 

0.5mm indicating that for all test conditions the surfaces remained stuck for small 

trajectories. As the displacement increased, a slight kink was observed in the profile. It is 

believed that this is due to the stiffness of the rig that must be overcome before sliding is 

initiated. At some displacement between 1 and 2mm the local contact was moved a 

sufficient distance for asperities to come unstuck. In comparing the profiles in the below 

figures, the most striking difference is between wet and dry sliding. For both filled and 

unfilled samples the friction profiles appear flatter for displacements greater than 1.5mm 

and indicate a state of mixed or gross slip. There is also a prominent spike in friction due 

to the transition from static to kinetic friction. The introduction of water to the surface 

appears to cause erratic spikes in the friction profile for the unfilled neat samples. This 

chatter phenomenon was not observed in the filled samples as shown in Figure 4.4B. It is 

not clear how water inhibits smooth sliding of neat PEEK samples, but there are a few 

explanations. The water at the surface may prevent asperities from smoothly plowing 

through the bulk. In effect, the water causes some asperity contacts to slip at intermittent 

times. A similar phenomenon is observed in rubber windscreen wipers moving across a 
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wet glass surface. Regardless of the underlying causes, the transition from stuck to 

unstuck occurs at similar displacements for all of the fretting conditions.  

Figure 4.2. Friction profiles for a filled L1 PEEK pin under 50MPa of contact pressure and 
reciprocating perpendicular to the counterface surface roughness at 1Hz for displacements 0.5 to 

2mm. 

Figure 4.3. Friction profiles for a water lubricated unfilled L1 PEEK pin under 50MPa of 
contact pressure and reciprocating perpendicular to the counterface surface roughness at 1Hz for 

displacements 0.5 to 2mm. 
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Figure 4.4. Friction profiles under dry and wet contact for A) unfilled L1 PEEK B) filled L1 
PEEK under 50MPa of contact pressure and 1Hz reciprocation 2mm perpendicular to the 

counterface surface roughness. 

Fretting experiments were performed using a test program similar to that 

described in the previous chapter. The program was written so that all point-to-point 

displacement trajectories are between 0.1 and 2mm with a mean value of 1mm. The test 

program moves the robotic stages through a series of 10,000 random XY data points. 

These data points are confined to a 2mm by 2mm space so some portion of the 6.35mm 

diameter pin remains continuously covered. To produce a comparative set of wear data 

for the previously listed PAEK materials, tests were run for 500,000 point to point 

moves. Although a frequency cannot be assigned to randomized movement, the test 

program completes on average 15 moves per second. For wet fretting studies, a basin 

containing the steel countefaces was filled with deionized water until the bottom half of 

the pin was completely submerged. Throughout the course of the test, loose debris was 

removed from the basin with a pipette and fresh water was added. This practice was 

done every hour until the completion of the experiment. Wear was measured 

volumetrically by weighing samples before and after each experiment.  
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4.3 Results  

4.3.1 Wear 

The measured volumetric wear results from the fretting studies are shown in 

Figures 4.5 and 4.6. For the low Mw L1 and L2 PEEK samples fracture occurs within the 

first 50,000 point-to-point movements of the experiment. For the High Mw H1 and H2 

PEEK a large crater occurs within the central portion of the sample. It is believed that 

most of the wear debris was generated in the formation of this feature. The measured 

wear volume for samples H1 and H2 indicate that both samples respond similarly to the 

dry fretting environment. When the same four samples were tested in wet conditions 

new trends emerge. The L1 and L2 samples that previously fractured experience nearly 

twice the wear as H1 and H2. In light of sliding wear studies for PEEK material this is 

not surprising. However, it is surprising that fracture is inhibited simply by the 

introduction of water to the surface. Additionally, the wear volume for H1 and H2 

samples is reduced in a wet environment. Comparing the wear volumes alone would 

indicate that water improves the fretting behavior of neat PEEK samples. However, 

further analysis of the surface can provide better explanations. For filled samples similar 

trends occur when comparing the low and high Mw PEEK samples as shown in Figure 

4.6. The filled H1 and H2 material exhibits outstanding dry fretting resistance with only 

a modest amount of debris generated. Although the L1 and L2 samples generate a larger 

wear volume compared to H1 and H2 samples, there is no evidence of fracture or 

cracking. However, the introduction of water to the fretting environment appears to 

significantly increase the generation of debris. For the filled L2 sample wear increases 
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by nearly three times from dry to wet conditions. Comparison of the wear data sets 

suggests different mechanisms occur during the different fretting conditions tested.  

Figure 4.5. Wear results for the unfilled PEEK materials after 500,000 point to point movements 
under wet and dry fretting conditions. The bars indicate the size of standard error of the means 

(n=4). 

Figure 4.6. Wear results for the filled PEEK materials after 500,000 point to point movements 
under wet and dry fretting conditions. The bars indicate the size of standard error of the means 

(n=4). 
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4.3.2 Fretting Wear Surface 

Although distinct differences occur in the measured wear volume discussed 

previously, the most striking difference appears when comparing the wear surfaces. 

Figures 4.7 and 4.8 show selected images of samples after fretting tests taken using a 

digital microscope (Dino-Lite). For the unfilled neat PEEK, dry fretting results in 

fracture or crater formation depending on the Mw of the sample. It was observed for 

samples L1 and L2 that cracks are able to propagate through the bulk of the specimen. In 

comparison, samples H1 and H2 develop craters in the central portion of the pin.  It is 

believed that dry fretting wear results from the accumulation of heat at the pin surface. 

The displacement trajectories were chosen so that an inner portion of the pin remains 

constantly covered. Figure 4.7 illustrates this heat accumulation effect for sample H1. 

Within the first few thousand cycles the central portion of the pin begins to soften as 

shown in Figure 4.7A. This softened surface may then result in greater friction due 

greater asperity penetration and contact. Additionally, cracks may propagate more easily 

into the softened bulk and lead to fracture or cratering of the surface. The introduction of 

water appears to drastically influence this distribution of heat. Although sticking and 

slipping of the pin is audible throughout the course of a wet fretting experiment, fracture 

does not occur in any neat PEEK specimen. As discussed earlier, the wet fretting 

conditions do result in different wear volumes for the tested grades. However, debris 

appears to form as large flakes that are easily washed away by the water. As seen in 

Figure 4.8B for the low Mw L1 sample, the surface has a polished glassy hue. Even 
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though water promotes slip it seems to inhibit the accumulation of heat on the wear 

surface.  

Figure 4.7. Wear surfaces of unfilled H2 PEEK after A)5,000 moves B)500,000 moves. 

Figure 4.8. View of PEEK fretting surface for A) unfilled L1 sample dry B) unfilled L1 sample 
wet C) filled L1 sample dry D) filled L1 sample wet. 
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Figure 4.8 also depicts the wear surfaces for filled PEEK samples in both wet and 

dry fretting. In addition to a reduction in wear volume, fillers minimize the damage 

observed on the wear surface in dry conditions. It was observed that debris formed as a 

fine powder and collected near the periphery of the pin. There was also a layer of 

compacted debris under the surface. Since the filled sample contains lubricating graphite 

and PTFE fillers, these compacted layers will likely help reduce friction. The carbon 

fiber filler may also improve the dissipation of heat.  However, aqueous conditions 

severely impact the integrity of the filled PEEK. Debris morphology appears as large 

smeared plates or flakes. This morphology is common to polymers experiencing 

adhesive-fatigue wear. In particular, the low Mw L1 and L2 samples show severe cracks 

around the sample periphery. Figures 4.8C and D illustrate the change in surface damage 

that occurs for the L1 sample in wet conditions. Figure 4.9 is a SEM micrograph (FEI-

Quanta 600) taken of sample L2 after dry fretting in image A and wet fretting in image 

B. The region of interest in B is near cracks seen towards the periphery. The images

show that wet conditions alter the surface in such a way that surface cracks form close to 

the surface.  
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Figure 4.9. SEM micrograph of filled L1 PEEK sample following A) dry fretting B) wet 
fretting.  

4.4 Discussion 

4.4.1 Fretting Damage 

Based on the results of the fretting experiments, several phenomena occur that 

require further discussion. Most notably, surface damage features change in character 

and location. For dry unfilled samples, damage is predominantly in the central portion of 

the pin. Previous work[130] found that the accumulation of heat in this region softens 

the surface and intensifies the static friction response. The increased frictional force may 

then initiate the formation of cracks that lead to fretting damage. However, the cratering 

and fracture that occur in dry conditions do not occur during wet fretting tests. It is 

assumed that water helps quench the surface and prevent the buildup of heat. It is also 

likely that some change in the contact loading occurs between test conditions. Water 

trapped between the pin and counterface will exert hydrostatic pressure on the pin 

surface. It has been observed that for oil lubricated PEEK rollers, hydrostatic pressure 

A B
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can force fluid into microscopic surface cracks. The filled samples appear particularly 

sensitive to this effect. As seen in Figures 4.8D and 4.9B, cracks are visible across the 

entire surface. These cracks are most prominent in a ring near the periphery. Even 

though the unfilled specimens do not exhibit this cracking, the damage in a wet 

environment is predominantly near the edge as seen in Figure 4.8B. This suggests that 

the maximum stress occurs near the edges during wet fretting. Observation of the 

samples from the side shows a splaying feature as seen in Figure 4.10. During the 

fretting test, the counterface moves in a randomized path with trajectories confined to a 

2mm by 2mm square. The test conditions were such that strain is imparted radially 

outward from the surface. For the dry samples, cratering takes place and the stress 

distribution is pushed radially outward over the course of the experiment. This can 

explain the splaying seen high Mw H2 samples in Figure 4.10D. However, in wet 

conditions all filled samples exhibit this feature. Comparing Figure 4.10A and 4.10C, it 

appears that the lower Mw L1 sample fractures more easily compared to the higher Mw 

H2 samples. Even though there is some difference in the elongation at break between 

samples, differences in mechanical properties alone cannot explain sample performance. 

It is likely that the lower Mw L1 sample surface can be softened more easily in the wet 

fretting environment. It can be observed in Figure 10b that this splaying does not take 

place for the L1 sample in a dry environment. The addition of lubricating fillers PTFE 

and graphite effectively lowers friction and thereby reduces the radial surface stress. The 

addition of water both prevents the formation of lubricating transfer films as well as 
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softens the wear surface. However, to understand this measurement of the static friction 

response is needed.   

Figure 4.10. Side view of PEEK fretting surface for A) filled L1 sample wet B) filled L1 sample 
dry C) filled H2 Sample wet D) unfilled H2 sample dry. 

4.4.2 Contact Stress Distribution 

To better understand the stress field distribution during fretting damage, FEM 

simulation was performed using the supercomputing facilities at Texas A&M University. 

A model of a PEEK pin loaded against a rigid sliding body was created using the 

ABAQUS/ Explicit® software package (V. 6.12)[131].The dimensions of the FEM 
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computational domain are shown in Figure 4.11. Eight-node 3D linear brick elements 

were adopted in the FEM modeling. Nodes on the top surface of the PEEK pin were 

restrained in all three directions to simulate the clamping condition. The FEM simulation 

was divided into two steps. During first step, the rigid sliding body moves up to the 

PEEK pin to produce a 1600N load on the pin. In the second step, the rigid sliding body 

reciprocates 2 mm distance back and forth at a speed of 2 m/s. To define the contact 

between the rigid body and PEEK pin during the fretting process, general contact 

algorithm in ABAQUS® was used. To describe the frictional behavior of the interacting 

surfaces, isotropic Coulomb friction model was used. The rate effect was not considered 

in this simulation work along with the assumption that no heat is generated during the 

process. Since the numerical analysis was performed primarily to understand the stress 

field distribution during fretting damage, the above assumption can be considered 

reasonable. A piece-wise linear true stress-strain curve was used to describe the 

constitutive behavior of the PEEK pin in the dynamic stress analysis. To simplify the 

modeling complexity, mechanisms involving node or element separation and 

viscoelasticity of polymers were not included. A more realistic material constitutive 

model and a comparable speed will have to be considered along with heat generation 

during the fretting process in the future for quantitative modeling. The surface 

coefficient of friction (µ), Young’s modulus (E), Poisson’s ratio (ν) and yield stress (σy) 

were assumed to be 0.3, 3.5 GPa, 0.4, and, 140 MPa, respectively. The yielding and 

post-yield behavior was assumed to follow the stress-strain curve generated in the 

uniaxial compression tests. 
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(a) 
(b) 

Figure 4.11. FEM simulation model - a) 3-D view; b) front view. 

Figure 4.12 shows the stress field distribution in the PEEK pin when the rigid 

sliding body reciprocates against it. The arrow indicates sliding direction of the rigid 

body with arrow in both directions indicating that the rigid body is at the center. 

According to the numerical analysis, the stress magnitude is higher at the bottom surface 

of the PEEK pin indicating that the stress generated is primarily due to friction between 

the pin and rigid sliding body. Additionally, the highest stress magnitude can be seen at 

the bottom trailing edge of the pin. As the rigid body reciprocates, the position of the 

highest stress magnitude in the pin changes accordingly. The same spot of the bottom 

edge feels the highest stress magnitude alternatively. This alternating stress condition 

can be the reason for splaying phenomenon observed in the samples. For unfilled 

sample, the heat is accumulated during the fretting process which softens the mid-

portion of the sample and causes craters in the middle of the pin. Wet condition helps 

dissipate this heat and as long as the stress magnitude does not exceed the yield stress of 

6.35 mm
PEEK pin 

Rigid sliding bod
6.35 
mm

Rigid body movement direction
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the material, no splaying of the sample can be observed. For filled samples, the filler 

reduces the tensile strength of the material significantly as shown in Table 4.2. The wet 

condition may further weaken the bottom of the sample over time causing the splaying 

phenomenon to occur in wet filled sample. It should be noted that the surface of both 

PEEK pin and rigid sliding body is considered smooth in the numerical modeling. 

However, both contacting surface may not be sufficiently smooth during the experiment. 

As a result, local deformation and damage mechanisms at the asperities may also play a 

major role in the contact stress distribution.   
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Figure 4.12. von Mises stress contour of the PEEK pin when the rigid sliding body - a) at the 
center; b) moves to the right; c) at the center; d) moves to the left. 

(Left images show the 3-D view and right images show the bottom view; the rigid sliding body 
is removed for better visualization; the arrow indicates sliding direction of rigid body, direction 

in both ways mean the rigid body is at the center) 
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Figure 4.13 continued 

4.4.3 Static Friction Response 

During the fretting tests, surface forces arise that resist sliding. In the experiment, 

a 50MPa contact pressure was selected in order to create adhesive sticking between the 

pin and counterface asperities. Additionally, the test rig was programmed such that 

surfaces would unstick and slip intermittently. This transition from stuck to unstuck 

releases energy. The repeated sticking and slipping of contacts can then lead to 

catastrophic failures observed in fretting. In order to quantify how static friction changes 

between test conditions, a stop-go methodology is used. Typically, studies focus on the 
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kinetic friction that results from pin on disc sliding. However, prior to sliding there 

exists static or break-loose friction force that is always greater in magnitude. This 

behavior however is still poorly understood.  

Baumberger described the static friction behavior of rough surfaces by imagining 

an interface consisting of many single asperity contacts[109]. The friction response will 

then depend on the real contact area as well as the strength of each individual asperity 

contact. Static friction will also depend on the way in which material in and around the 

contact are sheared or ruptured during sliding. During a stop-go test, the contacting 

surfaces are rubbed together for a sufficient period of time to form adhesive contacts. 

The motion is then stopped for some prescribed hold time and then the surfaces are once 

again slid past one another. Although the experiment is simple by design, a wealth of 

information can be obtained from the measured frictional forces. The shape and size of 

the static friction peaks can then help understand the severity of a potential fretting 

environment. Figures 4.13 and 4.14 demonstrate a test using unfilled PEEK specimen 

L1. The test parameters were selected to best replicate the static friction that might occur 

during a fretting test. The pin is loaded against the counterface with a 1570N load and 

the stage then reciprocates at 10Hz with a displacement of 2mm for 1000 cycles. Motion 

is paused to allow the asperity contacts to grow. The surfaces are then slid apart and the 

tangential forces are recorded. Figures 4.13 and 4.14 also show a stop-go experiment 

with different sliding speeds after a pause. In Figure 4.13, sliding after pause is 100 

mm/s over a distance of 10mm. Figure 4.14 is an identical test condition except the 

speed is slowed to 10 mm/s. It can be observed that for both tests, friction grows with an 
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increasing number of cycles. It is believed this is due to the formation of a multi contact 

interface. The reciprocating surfaces result in frictional softening and asperity 

penetration into the bulk. During the dwell period, this adhesive contact causes a holding 

force opposite the direction of sliding. For both slow and high speed tests, a spike in 

friction is observed before sliding. In Figure 4.13 the process of breaking asperity 

contacts and initiating smooth sliding takes place in about 0.1 seconds. This process is 

much slower in Figure 4.14 where the transition from static to kinetic friction occurs 

gradually. In a fretting environment, the breaking and reforming of adhesive contacts is 

believed to occur rapidly and so a 100 mm/s sliding speed best simulates this process.  

In Figure 4.15A, a zoomed-in view of the transition from Figure 4.13 is shown. 

With a data collection rate of 250Hz, the static friction and kinetic friction response can 

be clearly distinguished. Typically, stop-go experiments seek to understand how the 

magnitude of static friction changes with hold time[132]. This behavior is often referred 

to as physical contact aging and results from the growth of asperity contacts by creep. 

Attempts were made to measure this behavior with hold times in seconds varying across 

several decades. Although measurable static friction spikes occur in every instance, little 

evidence of contact aging was found for PEEK sliding against steel counterfaces. It is 

possible that the data collection rate is too slow to distinguish the subtle changes in static 

friction. Furthermore, contact aging measurements are usually done for polymer on 

polymer pairs with very small loads. For instance, a surface force apparatus can 

distinguish the changes in contact aging that results from surface crosslinks and free 

chain ends[133]. However, the friction profiles from stop-go measurements of PEEK on 
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steel allow for behaviors to be observed and related to the fretting environment. Analysis 

of the changing stick-slip behavior can be equally valuable[134]. 

Figure 4.14. Friction force during 1,000 cycle stop-go experiment with 100mm/s slide velocity 
after 10 second hold. 

Figure 4.15. Friction force during 1,000 cycle stop-go experiment with 10mm/s slide velocity 
after 10 second hold. 

Figure 4.15 shows how surface roughness affects the friction response for an 

unfilled L1 sample. According to Bowden and Tabor, friction can be broken down into 

components of plowing and adhesion[135]. Adhesive friction depends largely on the real 

contact area and possible bonding between material pairs. However, plowing will be 
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greatly affected by the plastic deformation of asperities. The effects of these friction 

components are evident when comparing the perpendicular and parallel sliding friction 

profiles. For sliding perpendicular to the surface grinding direction, a sharp stiction spike 

occurs followed by an increasing kinetic friction trace. When sliding is parallel to the 

surface roughness, static friction diminishes and the kinetic friction decreases with 

increased sliding distance. This trend in friction suggests that sliding direction alters how 

easily the hard steel asperities deform the PEEK surface. Perpendicular sliding results in 

asperities cutting into the bulk and quickly reforming adhesive contacts. This grinding 

angle effect has been observed in similar studies of steel pins sliding over ground steel 

surfaces[136]. Additionally, for the filled L1 sample in Figure 4.16 both adhesive and 

plowing components are altered sliding perpendicular to surface roughness. In light of 

the different fretting performances between samples, this result makes sense. The filled 

samples contain lubricating graphite and PTFE that will reduce adhesion to the 

counterface. The kinetic friction trace also exhibits smooth sliding compared to the 

plowing phenomena seen in the unfilled specimen. Observation of the counterface in 

Figure 19A shows debris transfer to the surface not seen with the unfilled specimens. 

This transferred debris likely aids in the reduction of friction during sliding. This also 

indicates that counterface asperities more easily cut through the softer surface of the 

filled specimen. The filled samples improved fretting performance can likely be 

attributed to this reduction in traction force.  
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Figure 4.16. Stop-go friction profiles for unfilled L1 PEEK A)perpendicular sliding B)parallel 
sliding 

Figure 4.17. Stop-go friction profiles for A)filled L1 PEEK B)unfilled L1 PEEK 

It was observed that the for water lubricated fretting, both filled and unfilled 

PEEK behaved differently compared to dry conditions. Water may quench the surface of 

the unfilled sample and prevent the build up of heat. The transfer film that reduces 

friction in filled samples will also be washed away as a result of water. However, it is 

expected that water lubrication will also alter the static and kinetic friction response. 

Stop-go experiments were performed for neat and filled samples with water lubrication 
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as shown in Figure 4.17 and 4.18. Samples were also soaked in deionized water for 3 

weeks and tested immediately after removing samples from the water. This has been 

shown to be sufficient time to saturate as well as plasticize the surface of PEEK[45]. 

From the friction profiles, it can be seen that water lubrication has a much different 

effect on the unfilled and filled samples. For the neat unfilled L1 sample in Figure 17A, 

water lubrication results in irregular sticking and slipping. Additionally, the magnitude 

of the static holding force and kinetic friction are reduced. Although slip occurs more 

easily under water-lubricated conditions, less energy is released in the breaking of 

adhesive contacts. This may in part explain why fracture did not occur for the L1 and L2 

samples in wet conditions. In contrast to this, the filled sample in Figure 18A exhibits an 

increasing kinetic friction under wet conditions. The magnitude of the friction forces are 

also significantly reduced compared to testing in dry conditions. Although the lower 

friction force implies water offers some lubrication, the trend in kinetic friction suggests 

more severe plowing. When samples are soaked in water different trends emerge. For the 

unfilled L1 PEEK sample in Figure 17B, soaking in water appears to have little effect on 

either static or kinetic friction. However, the filled sample experiences both a stiction 

spike as well as a decreasing kinetic friction trace. Observation of the counterface after a 

stop-go test gives some explanation for this. In Figure 19B the counterface shows a 

transfer of large debris flakes following a stop-go friction test. The lubricating effect of 

this debris can explain the trend in kinetic friction. However, this behavior can also 

explain the observed fretting damage for the filled samples under water lubrication.  
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Figure 4.18. Stop-go friction profiles for unfilled L1 PEEK A)wet contact B)water soaked 

Figure 4.19. Stop-go friction profiles for filled L1 PEEK A)wet contact B)water soaked 

It can be seen that the introduction of filler to the PEEK base material reduces the 

magnitude of the static friction force. However, when the same filled sample is soaked in 

water, the smooth sliding behavior disappears. For water soaked samples stiction occurs 

followed by decreasing kinetic friction. Water lubrication however results in an 

increased plowing effect. This decreased interfacial shear strength and increased asperity 
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penetration can exacerbate the formation of cracks. Under the hydrostatic pressure 

conditions used in wet fretting, water can be forced into these cracks. It is believed that 

this behavior is inherently linked to the observed fretting response. Fretting of filled 

PEEK in water results in increased wear as well as the appearance of cracks on the 

surface. Furthermore, splaying is observed towards the pin periphery. This splaying 

phenomenon likely results from the increased stiction during wet fretting.   

Figure 4.20. Counterface surface following stop-go experiment with A)Dry filled L1 B)water 
soaked filled L1 

The performance of PEEK based polymers in a fretting environment depends on 

the shear stresses generated when adhesive contacts are broken during slip. This work 

illustrates how changes in surface properties can affect this behavior. For unfilled PEEK, 

significant frictional heating can occur during repeated stick slip cycles. The softened 

material can be easily sheared from the bulk. An aqueous environment can inhibit the 

build up of heat on the surface and prevent catastrophic fractures. Lubricating fillers 

such as PTFE and graphite can lower frictional forces and reduce tractive shear stresses. 

A B
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However, it remains difficult to predict fretting behavior for a particular environment a 

priori. As a part of this work it has been demonstrated how static friction measurements 

can be used to give some foresight into fretting behavior. A stop-go experiment can be 

used to capture the friction response that results from sticking and slipping of adhesive 

contacts.  

4.5 Conclusions 

Based on the results of this study, several conclusions can be drawn about the 

fretting behavior of PEEK and its composites. A selection of four PEEK materials of 

varying molecular weight were used in both unfilled neat form and with the inclusion of 

10% PTFE, 10% graphite, 10% carbon fiber. Using a multi-axis tribometer, a test 

program was created that produces multidirectional and intermittent slip. Tests were 

performed in dry and wet conditions and results varied drastically between test 

environments.  

1) The dry fretting behavior of unfilled PEEK is observed to result in fracture or

cratering depending on sample molecular weight. Lower molecular weight samples were 

found to fracture during the first few thousand cycles of fretting tests. Observation of the 

surface indicates that frictional heating occurs during dry fretting in the central portion 

of the pin. The softened surface promotes greater adhesion between the pin and 

counterface and increases the magnitude of the frictional forces.    

2) In water lubrication, the unfilled PEEK no longer exhibits fracture or cratering during

fretting. The change in damage results from the fact that water will remove debris from 

under the wear surface and also dissipate heat. However, water promotes slip between 
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the pin and counterface. The more erratic friction that results also causes an increase in 

wear volume generated.    

3) Despite the loss in tensile strength and elongation at break, samples with lubricating

fillers exhibit outstanding fretting resistance. This fretting resistance can be attributed to 

the friction response seen in stop-go experiments. Lubricating fillers promote smooth 

sliding and inhibit the formation of adhesive asperity contacts.  

4) Water has a deleterious effect on the fretting performance of filled samples. Both the

wear volume and severity of damage increase in wet fretting conditions. The molecular 

weight of the base PEEK material has the biggest effect on wet fretting performance. For 

all samples, surface cracks and splaying occur towards the periphery of the pin. Friction 

measurements show that wet conditions increase the static friction response as well as 

the degree of asperity plowing. This friction response coupled with the hydrostatic 

contact pressure can promote the formation of cracks on the pin surface.  

5) Stop-go friction experiments are a valuable tool in understanding and predicting the

fretting response of polymers in varied environments. Fretting depends both on the 

magnitude of friction forces during slip as well as how easily asperity contacts reform. 

The stiction spike and kinetic friction trace observed in stop-go experiments can 

effectively replicate a stick-slip event during fretting.     
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CHAPTER V 

INFLUENCE OF SURFACE PROPERTIES ON FRICTION AND HEAT 

An important aspect of PEEK tribology is the surface temperature reached during 

sliding. However, most knowledge of frictional heating in PEEK is based on post-hoc 

analysis of debris and wear surfaces. In this chapter, infrared thermography is used to 

observe the full field temperature map of PEEK during ball-on-disc sliding. 

Additionally, friction studies were performed with steel and sapphire counterfaces. The 

results of this study illustrate the important role transfer films play in determining both 

the friction and temperature response of the PEEK wear interface.       

5.1 Introduction 

Wear in polymers remains challenging to study due to the inherent complexity of 

the process. The viscoelastic nature of polymers means that bulk mechanical properties 

will change as a function of strain rate and temperature. Adhesive chemical bonds at the 

wear surface between the polymer and counterface may occur. Polymers can undergo 

changes in structure though chain scission or crosslinking events. These dynamic 

properties all must be considered when describing the wear surface[9]. It is common for 

descriptions of polymer wear phenomena to involve the interfacial surface 

temperature[137]. A substantial decrease in polymer mechanical properties can occur at 

elevated temperatures such as the glass transition Tg or melting Tm. Conditions in which 

excessive surface temperatures are reached are often avoided but prediction of such 

thermal softening is challenging. The combination of pressure and velocity is believed to 
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greatly contribute to the surface temperature[24, 138, 139]. However pressure and 

velocity alone tell very little of how surface temperatures arise. To gain better insight 

into the heat generated during sliding direct observation of the surface is needed. This 

work will focus on understanding how frictional heat manifests during sliding of 

polyetheretherketone (PEEK) polymers. This high performance semicrystalline polymer 

is valued for its solvent resistance as well as high glass transition (Tg ~150°C) and 

melting (Tm~350°C) temperatures[58]. Such properties have enabled PEEK to be used in 

tribological applications where temperatures and corrosive environments would preclude 

the use of many materials. PEEK has seen use in oil and gas exploration[125], 

biomedical applications[140], and space environments[141] to name a few. Limits on 

operating conditions are often ascribed to excessive heating that results from 

friction[24]. To avoid such conditions, it is not uncommon for an upper value of pressure 

and velocity to be assigned to PEEK based components[10, 23, 25, 142, 143]. This work 

seeks to provide deeper insight into the origins of frictional heating that occur in PEEK 

polymers.  

5.1.1 Frictional Heating 

When two surfaces rub against each other, frictional heat is generated and the 

temperature at the rubbing interface rises. Depending on test conditions and material 

properties of the rubbing pair, the interfacial temperature, 𝑇𝑇𝑠𝑠, can be substantially higher 

than the stated test temperature. This is particular true when rubbing surfaces are rough. 

For rough surfaces, the real contact area is often much smaller than the size of the 

nominal contact area[144-146]. The asperity contact pressures may also be much greater 
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than that predicted by Hertzian contact mechanics. The high local pressure and friction 

can also give rise to exceedingly high temperatures[147].  

The actual magnitude of 𝑇𝑇𝑠𝑠 is important for accurate descriptions of polymer 

wear phenomena. Potentially, this heat can be great enough to soften or even melt the 

polymer surface. Severe wear associated with melting temperatures are likely initiated 

by the buildup of small thermal transients[137]. Many studies have observed rippled and 

stretched wear features that suggest the surface was strained in a rubbery state[21, 36, 

148]. Analysis of wear debris often shows changes in molecular structure that indicate 

surface temperatures near melting are reached[35, 130]. Ludema and Rhee utilized mass 

spectroscopy to detect chemical decomposition products that may occur during severe 

polymer wear[149]. The detection of chemical vapors corresponding to melting implied 

that such temperatures have been reached at the rubbing interface. Archard determined a 

maximum temperature for polymer pairs based on a model for load-controlled 

friction[150]. They observed that predicted temperatures near the glass transition 

corresponded with severe wear in Perspex sliding pairs. Polymers are also typically good 

insulators and so heat cannot easily be conducted away from the surface. Ettles 

suggested that for polymers, a limiting condition should occur based on the thermal 

softening point[137]. This thermal control model has been supported by empirical 

observations of polymer friction[108, 137, 139]. However, observations of interfacial 

temperature are largely speculative and based on post hoc analysis. Detection of this 

interfacial temperature requires in situ measurement of the contact. 
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The flash temperature concept has been used to model the temperature 

distribution that results from a moving heat source[147, 150-153]. In sliding contacts, 

friction generates heat that will dissipate at the interface. The interfacial temperature 

distribution that develops can be estimated based on material properties and sliding 

speeds. Models have been proposed for a variety of Peclet numbers and shapes of heat 

source[154]. Early work attempted to confirm these models through the use of buried 

thermocouples, dyes, temperature sensitive films [154]. However, advances in infrared 

(IR) thermography have enabled in situ studies of frictional heating to be performed with 

great accuracy. In situ studies are valuable as they enable direct comparisons with flash 

temperature models[155-158]. The real contact area, frictional forces, and contact 

temperature can all be directly measured. This means analytical solutions can be 

proposed and verified for a number of sliding conditions[155, 156].  

In situ frictional heating studies of polymers so far have focused largely on 

rubber and other soft elastomers[155, 158-160]. These materials have low elastic 

modulus and thus large real contact areas and friction can occur at low pressures and 

sliding speeds. These test conditions are however orders of magnitude below operational 

pressures and velocities commonly experienced by many engineering polymers. In this 

work, polyetheretherketone (PEEK) polymer, a high performance engineering polymer, 

will be studied across a range of pressures and speeds in which frictional heating is 

believed to become significant. The upper limits on the combination of pressure and 

velocity vary between applications. For instance, a thrust washer configuration may 

operate with a nominal pressure of ~1MPa and speeds of 4m/s[161]. In academic studies 
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pin on disc and block on ring sliding tests are common. A typical max pressure is ~4-

6MPa with maximum speeds between ~1-2m/s[10, 23, 36]. In this experiment a PEEK 

ball on sliding disc configuration will be used. During sliding, the surface temperature 

will be monitored with in situ IR thermography.  

5.1.2 PEEK Tribochemistry 

The polyaryletherketone (PAEK) family of thermoplastics, with 

polyetheretherketone (PEEK) being the best-known representative, is an often-studied 

group of semicrystalline polymers[58]. A number of authors have focused on PEEK 

wear behavior[10, 14, 19, 162]. Comparisons in terms of friction and wear resistance are 

often made with polytertrafluoroethylene (PTFE). PEEK is in fact often filled with PTFE 

to reduce friction. However on its own PTFE suffers from high wear rates[119]. In a 

study by Burris, they report for unfilled PTFE a coefficient of friction µ~0.1 and wear 

rate 𝐾𝐾 ≈ 6 × 10−4 𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁

3
[119, 163]. In the same study, unfilled PEEK had outstanding 

wear resistance 𝐾𝐾 ≈ 1.9 × 10−6 𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁

3
 but tended to have high coefficients of friction 

µ~0.4[119, 163]. PEEK wear resistance is often attributed to an ability to form 

protective transfer films on harder metallic counterfaces[19, 21]. Unlike PTFE that 

forms transfer films due to its unique banded crystal structure, there is no specific 

mechanism for PAEK film formation[7]. When PAEK is rubbed against metal, Bahadur 

suggested that compacted polymer debris becomes physically entrapped between 

asperities of the countersurface[12].  A polymeric film is eventually formed, and protects 

the bulk polymer from abrasive wear by covering hard rough asperities. 
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Many studies have attempted understand the role thermal and tribochemical 

effects have on the wear of PEEK. Using thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC), Zhang studied the thermal properties of PEEK 

debris formed under varied conditions[34]. It was believed that during wear, chain 

scission of the diphenyl ether segment occurs and forms oxidative crosslinks at free 

radical sites. They had observed changes in the pyrolysis behavior as well as a tendency 

for crystallization to be impeded. It was rationalized that these results were from the 

formation of crosslinked branches that restricted segmental mobility. Later, X-ray 

photoelectron spectroscopy (XPS) was used to further support this argument[32]. The 

appearance of a π-π* shakeup peak in the C1S spectrum indicated the presence of single 

pendant phenyl rings due to chain scission. This behavior depended on contact pressure 

with the greatest intensity occurring at moderate (2-4MPa) contact pressures. The 

change in the spectra with increased pressure was thought to be the result of chain 

scission occurring on different parts of the backbone that require greater thermal energy. 

The thermal properties of PEEK wear debris also indicate that it had been formed at 

temperatures near the melt. The first heat of melting for wear debris typically contains a 

cold crystallization exotherm[34]. This feature is often found in material that had been 

rapidly quenched from the melt state. The location of double melting peaks also tends to 

coincide with the thermal history. Usually for PEEK, an endotherm appears 10-15°C 

above the annealing temperature. The location of this feature has been used to determine 

that the PEEK wear surface may reach temperatures around 200°C [34, 35].  
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These studies are certainly not conclusive proof to the theories they espouse. 

They do demonstrate though that the PEEK wear surface is in no way chemically inert. 

According to Bahadur, the chemical activity between the filler and counterface can 

enhance the tenacity of polymeric transfer films[116, 117, 164]. Jacobs used this logic to 

investigate the effect of counterface material and aqueous environments on sliding wear 

of PEEK[129, 165]. Based on measured wear rates they suggested that chemically inert 

diamond like coating (DLC) or alumina Al2O3 counterfaces should be used in place of 

steel [129, 165]. Figueiredo recently used Raman spectroscopy to detect adhesive 

transfer between neat PEEK and various counterfaces[166]. Low surface roughness and 

surface energy was believed to minimize the adhesion tendency as well as tribo 

oxidative wear[166]. These observations all indicate that wear behavior of PEEK 

depends strongly on tribochemistry and temperature effects. However, these theories can 

be further supported by in-situ studies.   

5.2 Materials and Methods 

PEEK balls were rubbed against steel and sapphire discs in a ball-on-flat 

configuration. Friction and interfacial temperatures were recorded at various sliding 

speeds and contact pressures. Both steel and sapphire discs were used for friction 

measurements while only sapphire discs were used for temperature measurements.  

5.2.1 Materials 

PEEK ball samples were made from a commercially available Victrex 450G 

injection molded bar stock. The 19 mm diameter balls were machined from a single 25 

mm diameter rod on a 3-axis CNC lathe to ensure reproducibility between samples. Steel 
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and sapphire discs for friction measurements were purchased from PCS. The materials 

properties of the balls and discs are listed in Table 5.1. Contacts are formed when a 

PEEK ball is pressed against a disc. The ball is always stationary while the disc rotates at 

a programmed speed. The labeling PEEK-sapphire and PEEK-steel denote contacts 

formed between a PEEK ball, and sapphire disc or steel disc respectively. 

 
Table 5.1. Material properties of disc substrates. 

Material (source) Dimensions  Hardness Roughness, Ra (nm) 

19 mm PEEK balls (Victrex) 19 mm diameter 85 Shore-D 1500 

MTM Steel AISI 52100 disc 

(PCS) 

46 mm diameter 760 HV < 10 

MTM Sapphire disc (PCS) 46 mm diameter 2000 HV < 20 

Sapphire disc  100 mm diameter 2000 HV 7 

 
 

5.2.2 Friction Measurement 

Coefficients of friction were measured using a mini traction machine (MTM) 

from PCS instrument under pure sliding conditions[167]. An illustration of the MTM 

test rig is shown in Figure 5.1. Tests were done by pressing a 19 mm diameter PEEK 

ball on a rotating disc. A new disc specimen was used for each test. Discs were cleaned 

with toluene in an ultrasonic bath and washed with acetone before use. The PEEK balls 

were also washed with acetone to remove surface contaminants. The balls were then 

rinsed in deionized water and thoroughly dried before each test. All tests were conducted 
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at 25oC. In this study, the effect of speed and load on friction coefficient was 

investigated. Friction was measured across a range of loads between 1N and 40N at a 

fixed sliding speed of 100 mm/s. The change in friction as a function of sliding speed 

was also measured at a fixed load of 10N over sliding speed range of 1 to 4000 mm/s. 

The test equipment measures friction as the average of five data points taken at the 

desired load and speed. Each test point represents approximately a 5 second period of 

sliding measured by a force transducer. The duration of sliding is roughly 12minutes for 

fixed load increasing speed tests and 3 minutes for fixed speed increasing load tests.  

 
 

 
Figure 5.1. Illustration of MTM test and sample configuration 

 
 
 
5.2.3 Temperature Measurement 

The interfacial temperature of a rubbing contact, 𝑇𝑇𝑠𝑠, was examined with IR 

thermography.  Details of the setup and calibration procedures are described in[157]. 

Briefly, the rubbing contact was created with an EHL rig (manufactured by PCS 
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instrument), where a stationary PEEK ball is pressed against a rotating sapphire disc 

from the bottom. A sapphire disc was used as the counterface because it fully transmits 

infrared radiation in the wavelength range of 3 – 5 µm. As the contact heats up, infrared 

(IR) radiation is emitted. An infrared camera X6540SC (FLIR), placed above the 

contact, can then detect the IR radiation emitted from the contact (see Figure 5.2). The 

camera had a 320 x 256 focal plane array with a 5x lens and 6.3 µm resolution. The 

observables are IR intensity images.  

In order to detect 𝑇𝑇𝑠𝑠 with IR thermography, a calibration is required. From such 

calibration the relationship between 𝑇𝑇𝑠𝑠 and the amount of detected photon counts by the 

IR camera is obtained. This was done with a stationary contact formed by pressing the 

PEEK ball against the sapphire disc. Calibration for temperatures above ambient was 

performed with the ball partially immersed in a silicon oil bath. The EHL rig allows the 

oil to be heated to a predetermined temperature.  A thermocouple was placed inside the 

PEEK ball just below the contact to estimate 𝑇𝑇𝑠𝑠. Once the estimated 𝑇𝑇𝑠𝑠 from the 

thermocouple matched that of the oil bath, the IR signals detected by the camera are 

recorded. This was performed for a temperature up to 110°C. The above described 

process was conducted twice with two different sapphire disc, one of which was coated 

with Aluminum. This is because IR signals obtained with the uncoated sapphire disc, 

𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, contain contributions from both the contact interface and the heated sapphire 

disc. Due to aluminum low IR emissivity, the IR signals from the coated disc, 𝐶𝐶𝐴𝐴𝐴𝐴, comes 

only from the heated disc. The IR signal from the contact is then 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 −  𝐶𝐶𝐴𝐴𝐴𝐴. The 

interfacial temperature can be obtained using the relationship: 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 −
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𝐶𝐶𝐴𝐴𝐴𝐴). These calibration curves can be found in appendix 6.1 and are used to create 

temperature maps with IR intensity images. 

 

 
Figure 5.2. Illustration of In-Situ IR measurement 

 

 
Figure 5.3. Discs used for IR calibration curves. 
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5.3 Results 

5.3.1 Friction With Constant Sliding Speed 

Friction measurements were performed with load and sliding speed as variables. 

Tests were repeated at least 2 times to verify observed friction trends. As shown in 

Figure 5.4, for a fixed speed of 100 mm/s the coefficient of friction µ, which is the ratio 

between frictional force, 𝐹𝐹, and applied normal force 𝑊𝑊, drops with increasing load. 

Fitting a power series to the PEEK-sapphire contact (circles, Figure 5.4) and PEEK-steel 

contact (squares, Figure 5.4) data gives 𝜇𝜇 = 0.33𝑊𝑊−0.15, and 𝜇𝜇 = 0.5𝑊𝑊−0.1 

respectively. This behavior has been observed in polymers previously [168-171]. This is 

inconsistent with Amonton’s laws for friction which states µ remains a constant. Note 

the validity of Amonton’s laws would require that the real contact area, 𝐴𝐴 increases 

proportionally with the applied normal load, W, i.e. 𝐴𝐴 ∝ 𝑊𝑊. If 𝐴𝐴 ∝ 𝑊𝑊𝑛𝑛, hence 𝐹𝐹 ∝ 𝑊𝑊𝑛𝑛, 

µ reduces with increasing 𝑊𝑊 and 𝜇𝜇 ∝ 𝑊𝑊𝑛𝑛−1 [35]. The nature of the contact would 

govern the value of 𝑛𝑛, with 2
3

< 𝑛𝑛 < 1 for deformations ranging from fully elastic 

smooth surfaces to plastic deformation of asperities of rough surfaces. With high sliding 

speed, frictional heating can soften the polymer surface, which will influence the 

proportionality between load and friction. For thermally controlled friction, 𝜇𝜇 ∝ 𝑊𝑊−1 for 

full contact and partial contact 𝜇𝜇 ∝ 𝑊𝑊−0.25 have been suggested[137]. Ettles based this 

relationship on observations of a rapid drop in friction with increasing load reported for 

several polymers[172-175]. These trends were not correlated to a measured surface 

temperature but phenomenological evidences of surface melting. The observation that 

the critical load for softening shifted to lower loads with increased speed implied 
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softening resulted from frictional heating[137]. It can be assumed that for the test 

conditions used in Figure 5.4, thermal effects are not significant.  

Comparison of 𝜇𝜇 for PEEK-steel and PEEK-sapphire contacts shows that 𝜇𝜇 for 

PEEK-steel contacts is nearly twice that of PEEK-sapphire contacts. Observation of the 

steel counterface after friction tests (see Figure 5.14A) shows the presence of small 

debris not found on the sapphire surface. The debris also appears well adhered to the 

surface. A number of explanations can account for both the transfer of debris and 

differences in friction. It is possible that debris formed as the result of plastic yielding of 

the PEEK surface. The yield strength for PEEK is approximately 98MPa in tension and 

125MPa in compression[176, 177]. Under sufficiently large loads the yield strength of 

the PEEK surface may have been exceeded in the contact. Assuming Hertzian contact 

(see appendix section 6.2) a nominal pressures of 75MPa occurs for PEEK-steel at the 

maximum 40N load. This pressure is below the yield strength but the real asperity 

contacts are likely much smaller than a Hertzian contact. The small size of transferred 

debris (see Figure 5.14A) supports this. The resulting high localized pressures at asperity 

contacts will also give rise to a larger shear stress. Debris can be removed from the bulk 

if the adhesive force between the PEEK and the counterface exceeds the bulk shear 

strength of the PEEK. The resulting shear stress in the asperity contacts may have been 

great enough to shear debris away from the bulk. However, this does not explain the 

difference in behavior between PEEK-steel and PEEK-sapphire friction. Friction is 

governed by both the elastic-plastic deformation of sliding bodies and their adhesion to 

one another[178, 179]. Plastic deformation of surface asperities will change the contact 
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area and thereby affect the value for friction. Hard counterface asperities may also 

penetrate and cut into the softer polymer surface and contribute to friction. Since steel 

and sapphire counterfaces are of similarly low roughness (Ra = 10 – 20 nm) such 

plowing components of friction are likely not significant. Differences in friction between 

PEEK-steel and PEEK-sapphire result from changes in contact area and adhesion 

between the contacting bodies. Furthermore, deposition of PEEK debris to the steel 

increases the adhesion between the surfaces. This increased adhesive friction is observed 

under all loads and suggests debris transfer may have occurred readily. This potential 

contribution of debris transfer to adhesive friction will be further discussed.  

 

 
Figure 5.4. Evolution of friction coefficient µ with increasing load W when PEEK balls were 
rubbed against steel and sapphire discs. The sliding speeding was 100 mm/s. The duration of 

each test was 150 s. 
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5.3.2 Friction With Constant Load 

How coefficient of friction of PEEK-steel contact and PEEK-sapphire contact 

varies with sliding speed 𝑈𝑈 at a constant load of 10 N is presented in Figure 5. Results 

for PEEK-sapphire contact (open circles in Figure 5.5) shows that µ increases gradually 

at 𝑈𝑈 ranges 1 – 50 mm/s, then more rapidly until a maximum is reached and then drops 

off around 𝑈𝑈 = 1 m/s.   Similar observations have been seen previously [137, 174].  The 

increase in friction can be attributed to growth in asperity contacts with increased 

sliding. During this initial period sliding speed is low and frictional heat does not 

become significant. The contact area changes as the result of mechanical deformation of 

surface asperities. As the contact area grows from partial to full contact a greater 

proportion the PEEK surface contributes to the overall frictional force. With increased 

speed a transition point where friction drops may occur. This transition is often 

attributed to thermal induced softening or melting after which friction of polymer enters 

the “thermal control regime”[137]. In the thermal control regime, the contact 

temperature may approach the glass transition temperature 𝑇𝑇𝑔𝑔 of the polymer.  The 

PEEK surface softens and thus slides more easily and friction rapidly drops with 𝜇𝜇 ∝

1
√𝑈𝑈

[137]. With a PEEK-steel contact (open squares in Figure 5.5), 𝜇𝜇 grows rapidly 

initially until 𝑈𝑈 ≈ 10 mm/s, after which it reaches a plateau. 𝜇𝜇 sees a slight drop before 

increasing again around 𝑈𝑈 ≈ 1 m/s but it is difficult to conclude if a transition has 

occurred based on Figure 5.5 alone.   
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Observations of the steel counterfaces after the test show thick transfer films (see 

Figure 5.14C) not seen on sapphire counterfaces. The deposition of debris on the steel 

counterface and the eventual formation of a transfer film can explain the different 

friction behaviors between PEEK sliding against steel and sapphire. This transfer film 

formation will likely influence the adhesive friction and contact temperatures. The role 

transfer films play in such processes will be further discussed. The results obtained with 

constant speed friction tests at 𝑈𝑈 = 100 mm/s and 𝑊𝑊 = 10 N (Figure 4) are also included 

in Figure 5 (solid symbols).  Since none of these values fall within the range of speed 

where 𝜇𝜇 falls with increasing 𝑈𝑈, it supports that thermal effects were not important for 

results with constant speed conditions (Figure 5.4) within the tested range. 

 

 
Figure 5.5. Evolution of friction coefficient µ with increasing speed 𝐔𝐔 when PEEK balls were 

rubbed against steel and sapphire discs. The load was 10 N. The duration of each test was 700 s. 
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5.3.3 Temperature Rise During Friction Test 

To understand how friction 𝜇𝜇 and surface temperature 𝑇𝑇𝑠𝑠 evolves during rubbing, 

a thermocouple was used to detect the counterface temperature just behind the trailing 

edge of the contact 𝑇𝑇𝑠𝑠𝑠𝑠. 𝑇𝑇𝑠𝑠𝑠𝑠 is used to estimate 𝑇𝑇𝑠𝑠 and 𝑇𝑇𝑠𝑠𝑠𝑠 is likely to be lower than 𝑇𝑇𝑠𝑠. A 

steel counterface was used with a 10 N constant load and velocities 𝑈𝑈 = 10 mm/s, 100 

mm/s, 2 m/s, and 4 m/s. Each tests lasted 5 mins. The change in 𝜇𝜇 and 𝑇𝑇𝑠𝑠𝑠𝑠 with time are 

shown in Figure 5.6 and 5.7 respectively. For all velocities tested, 𝜇𝜇 grows within the 

first few seconds of sliding, after which a steady state is reached. Lower velocities 10 

mm/s and 100 mm/s exhibit a plateau in friction coefficient for the duration of sliding. 

However, faster sliding speeds 2 m/s and 4 m/s the friction values fluctuate much more 

with time. The stable 𝜇𝜇 observed with low sliding speeds is accompanied by low stable 

𝑇𝑇𝑠𝑠𝑠𝑠 ≈ 20°C as shown in Figure 5.7 However, for 𝑈𝑈 = 2 m/s and 4 m/s tests 𝑇𝑇𝑠𝑠𝑠𝑠 grows 

continuously. Temperatures also appear to trend towards a plateau at longer sliding 

times. For 𝑈𝑈 = 4 m/s 𝑇𝑇𝑠𝑠𝑠𝑠 has reached above 130°C after 300 s. In this case, it is likely 

that 𝑇𝑇𝑠𝑠 is higher and may approach the PEEK’s glass transition temperature 𝑇𝑇𝑔𝑔 ~ 150°C. 

The high temperature may explain the more erratic nature of 𝜇𝜇 obtained at high 𝑈𝑈.  

The plateau 𝜇𝜇 ~ 0.5 – 0.6 in all conditions match relatively well with results 

obtained from the constant load friction test (open square in Figure 5.5, and section 

5.3.2). In addition, the transition from stable 𝜇𝜇 at low 𝑈𝑈 to more fluctuating 𝜇𝜇 at high 𝑈𝑈 

in Figure 5.6 coincides with observation in Figure 5.5, with stable 𝜇𝜇 with U < 1 m/s and 

𝜇𝜇 with larger scatter thereafter. In all cases, some adhered debris was found on the steel 

counterface and is similar to the debris observed in constant load tests (see Figure 
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5.14A) discussed in section 3.2. The deposition of debris to the counterface is likely to 

play a significant role in how friction and surface temperatures evolve. Thus the 

observed discrepancy in 𝜇𝜇 may be due to the amount of time allowed for adhered debris 

to form.  

 
Figure 5.6. Evolution of friction over time for PEEK sliding against steel. 

 

 
Figure 5.7. Evolution of surface temperature over time for PEEK sliding against steel. 
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5.3.4 Surface Temperature With IR Thermography 

The contact temperature produced by PEEK-steel contact was estimated at a 

position of the counterface as close to the trailing edge as possible in section 5.3.3. In 

order to directly measure the contact temperature during rubbing, IR thermography is 

applied to PEEK-sapphire contacts as outlined in section 5.2.3. The effects of applied 

load 𝑊𝑊 and sliding speed 𝑈𝑈 on contact temperature 𝑇𝑇𝑠𝑠, in the form of temperature maps, 

are shown Figures 5.8 and 5.9 respectively. The range of loads and speeds were selected 

to allow for comparison with results obtained with friction tests (as shown in sections 3.1 

– 3.3).  

Temperature maps obtained at 𝑈𝑈 = 100 mm/s sliding speed with 𝑊𝑊 between 1 N 

and 40 N are shown in Figure 5.8. Across the entire range of loads studied, a maximum 

contact temperature rise of 3.5°C (i.e. 𝑇𝑇𝑠𝑠 = 28.5°C) occurs (see Figures 5.8 and 10A). 

While 𝑇𝑇𝑠𝑠 remains relatively unchanged, the contact area, which can be estimated by the 

width of the temperature distribution in Figure 5.8, grows with increasing normal load. 

In addition, the contact area is not continuous, but rather is made of patches at low loads 

(𝑊𝑊 = 1 – 5 N). With increasing load, partial contact develops into full contact. These 

observations supports that for load controlled friction, in the case of PEEK against 

sapphire (see constant speed friction test results presented in Figure 5.4 (section 3.1)), 

thermal effect is not important. Provided the PEEK ball is not in contact with any third 

body debris, the same observation may be extended to PEEK sliding on steel.  
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Figure 5.8. Maps of surface temperature rise 𝐓𝐓𝐈𝐈𝐈𝐈  for constant load 𝐖𝐖 = 10N and increasing 

speed 𝐔𝐔 for stationary PEEK ball against sliding sapphire counterface. Each image correspond to 
the temperature at time = 5 minutes. The color scale shows the local temperature rise in the 

contact. 
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Figure 5.9. Maps of surface temperature rise 𝐓𝐓𝐈𝐈𝐈𝐈 at constant speed U = 100mm/s and increasing 
load W for stationary PEEK ball against sliding sapphire counterface. Each image correspond to 

the temperature at time = 5 minutes. The color scale shows the local temperature rise in the 
contact. 

Figure 5.10. Profile of the average temperature rise 𝐓𝐓𝐈𝐈𝐈𝐈 across the center of the contact: (A) 
constant U = 100 mm/s (Figure 4) and (B) constant W = 10 N (Figure 8). 

The temperature maps for PEEK-sapphire contact with a constant 10N load at 

various velocities are shown in Figure 5.9. The corresponding temperature profiles are 
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presented Figure 10B. For 𝑈𝑈 = 100 – 200 mm/s, only slight temperature rise is observed. 

With increased sliding speeds significant changes are observed in both the contact shape 

and the contact temperature. For 𝑈𝑈 above 1 m/s a temperature rise of 40°C is observed, 

giving a maximum surface temperature of about 65°C. These observations can be used 

to explain how coefficient of friction 𝜇𝜇 changes with 𝑈𝑈 for PEEK-sapphire contact (open 

circles, Figure 5 in section 3.2). Assuming that the real area of contact 𝐴𝐴𝑟𝑟 corresponds to 

the hottest sections of the temperature maps, both Figures 5.9 and 10B show that 𝐴𝐴𝑟𝑟 

grows with speed until 𝑈𝑈 = 500 mm/s. This is accompanied by a modest temperature rise 

at 𝑈𝑈 = 500 mm/s (7°C average) in Figure 10B. This supports that the initial increase of 𝜇𝜇 

with 𝑈𝑈 for PEEK-sapphire contact in Figure 5.5 can be explained by an increase in true 

contact area. 

For 𝑈𝑈 above 500 mm/s, a distinct hot zone has been established, with further 

increase in 𝑈𝑈 giving higher 𝑇𝑇𝑠𝑠. Nevertheless maximum 𝑇𝑇𝑠𝑠 observed is 65°C and is below 

any thermal transition for PEEK such as 𝑇𝑇𝑔𝑔 ~150°C. This is insufficient to cause the 

PEEK to soften and allow the thermal-control model to be applied to explain how 𝜇𝜇 

decreases with 𝑈𝑈 at high 𝑈𝑈 for PEEK-sapphire contact shown in Figure 5.5. The 

observed drop in 𝜇𝜇 indicates decreased interfacial shear strength, but can occur due to a 

number of reasons. The most likely explanation stems from differences in heat 

dissipation between the experiments. For sliding speeds above 1 m/s significant heat 

drag is observed in Figure 5.10B. This phenomenon is commonly found for conditions 

with large Peclet numbers[156]. Since the sapphire disc has a higher thermal 

conductivity than the PEEK ball, most of the frictional heat generated at the interface is 
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conducted into the moving sapphire body. Based on the partition equation in the 

appendix Section 5.6.3 it can be assumed that a majority of heat is conducted into the 

sapphire disc. The portion of the frictional heat is conducted into the disc 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 0.97 

for all sliding speeds tested. Heat will also be dissipated from the disc to the 

surroundings through convection. The resulting temperature distribution in the disc can 

be described by the Peclet number 𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈
𝜒𝜒

, where 𝑎𝑎 and 𝜒𝜒 are diameter of the contact 

and thermal diffusivity of the disc respectively. Laraqi has analytically shown that for 

𝑃𝑃𝑒𝑒 > 20 considerable heat drag develops[156]. In Laraqi’s analysis there appears to be a 

threshold velocity where 𝑃𝑃𝑃𝑃 > 30 and the partition coefficient no longer changes. At 

such a sliding speed they suggested that a thermal balance arises between frictional heat 

generated in the contact and heat removed due to convection[156]. Unless all of the heat 

generated at the contact is dissipated into the surroundings the surface temperature will 

rise with increased sliding. Rowe demonstrated this affect with a rubber half sphere 

sliding against an IR transparent CaF2 disc under both forced and natural 

convection[155]. The reduced heat transfer efficiency of natural convection resulted in a 

continuous rise in surface temperature with increased sliding[155].   

For the experimental conditions used in this study the Peclet number reaches 20 

at 1.08 m/s and 30 at 1.62 m/s. The observation of heat drag in Figure 8 is similar to the 

response predicted by Laraqi[156] and observed by Rowe[155]. High sliding speeds may 

prevent some of this heat from being conducted to the surroundings. The amount of 

retained heat at a specific location will depend on how much time it has in dissipating 

the heat between two subsequent contacts with the PEEK ball. Since the sapphire discs 
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for friction tests (sections 5.3.1 – 5.3.3) and IR thermography (section 5.3.4) are 46 mm 

and 100 mm respectively. The smaller disc used for friction tests would give less time 

for heat to be removed. In addition, temperature maps were collected using a sliding 

time of 5 minutes but friction experiments in Figure 5.5 took roughly 12 minutes to 

complete. Hence higher surface temperatures may reach PEEK 𝑇𝑇𝑔𝑔 during friction 

measurements due to this retained heat. The drop in friction observed at 1 m/s may be 

the result of temperatures above the glass transition. The relationship between surface 

temperature and sliding conditions will be further discussed.  

5.4 Discussion 

5.4.1 Flash Temperature 

Frictional heat generated at a contact causes contact temperature to rise. The 

hottest flash temperatures should then correspond to regions of the highest friction and 

contact pressure. Average flash temperature rise for PEEK-sapphire contact can be 

estimated using Jaeger’s solution assuming a uniform circular source[152]. A number of 

models can be used such as that by Tian and Kennedy [153] or Archard[150]. Rowe et. 

al derived a partitioned flash temperature solution for a moving heat source based on 

these models and an equation based on Jaeger’s model is used for the predicted 

temperature rise[155] (see Appendix section 5.6.3 for details). Since the heat flux 

density 𝑞̇𝑞 due to friction 𝜇𝜇 is 𝑞̇𝑞 = 𝜇𝜇𝜇𝜇𝜇𝜇 where 𝑝𝑝 is the average normal pressure and 

sliding speed 𝑈𝑈 (see appendix section 5.6.3), assumptions on 𝑝𝑝 and 𝜇𝜇 need to be made. 

Note that for PEEK-sapphire contact, the real contact area changes with increased 

sliding speed. The temperature maps allow for observation of how temperature is 
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distributed within the contact but not pressure or friction. This means that measured 

surface temperatures may deviate from the predicted flash temperature depending on 

assumptions made in the calculation. In this case, the pressure and contact area are 

assumed to be Hertzian and 𝜇𝜇 is a constant. Flash temperature predictions are done for 

the constant load condition 𝑊𝑊 = 10 N using both nominal and maximum pressure as well 

as the mean 𝜇𝜇 = 0.3 and maximum 𝜇𝜇 = 0.6 (see Figure 5 for 𝜇𝜇 value). Predicted flash 

temperature rise 𝑇𝑇𝑓𝑓 (lines) and maximum local surface temperature rise 𝑇𝑇𝐼𝐼𝐼𝐼 (open 

squares) from IR thermography are shown in Figure 5.11. Note 𝑇𝑇𝐼𝐼𝐼𝐼 (squares, Figure 11) 

and 𝑇𝑇𝑓𝑓 (nominal) based on average pressure and mean 𝜇𝜇 = 0.3 (solid line, Figure 11) 

match relatively well. However, 𝑇𝑇𝐼𝐼𝐼𝐼 are lower than 𝑇𝑇𝑓𝑓 predicted using the maximum 

values for pressure and friction coefficient.  

Both the observed (from IR thermography) and predicted temperatures are well 

below any possible PEEK thermal transition such as Tg ~150°C. In fact the predicted 

nominal flash temperature would require a sliding speed of 48 m/s to reach such a 

transition. The maximum temperature rise is about 40°C as shown by the temperature 

maps obtained by IR thermography (Figure 5.9). The temperature maps are obtained 

after 5 minutes of sliding. During this sliding time temperature remains stable. It is 

possible that higher temperatures may occur at asperities before this steady state was 

reached. Such temperature spikes appear to be on a time and spatial scale smaller than 

the resolution of the IR camera.   
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Figure 5.11. Flash temperatures calculated for stationary PEEK ball against rotating sapphire 

disc using the nominal and maximum contact conditions. A constant load of 10N was used. The 
labels and their corresponding conditions are: 𝐓𝐓𝐟𝐟(𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍)= nominal pressure, 𝛍𝛍 = 

0.3; 𝐓𝐓𝐟𝐟(𝐩𝐩𝐦𝐦𝐦𝐦𝐦𝐦)= maximum pressure, 𝛍𝛍 = 0.3; 𝐓𝐓𝐟𝐟(𝛍𝛍𝐦𝐦𝐦𝐦𝐦𝐦)= nominal pressure, 𝛍𝛍 = 0.6; 𝐓𝐓𝐈𝐈𝐈𝐈 – contact 
temperature from IR thermography. Details of the predictions is in section 6.3 in the Appendix 

 
 
 

The thermal conductivity of the counterface plays a significant role in 

determining the flash temperature 𝑇𝑇𝑓𝑓. Figure 5.12 shows predictions of 𝑇𝑇𝑓𝑓 of a PEEK 

ball against sapphire, steel, glass and PEEK (see the appendix Section 5.6.3 for materials 

properties). Steel and sapphire are good thermal conductors. They have similar thermal 

conductivity 𝐾𝐾 and diffusivity 𝜒𝜒. Hence their predicted 𝑇𝑇𝑓𝑓 are nearly identical (see solid 

line and dash line in Figure 5.12 for sapphire and steel respectively). Glass was not used 

as a counterface in any experiment, but it demonstrates how a thermal insulator may 

alter the surface temperature. Its predicted flash temperature rise reaches 𝑇𝑇𝑔𝑔 ~150°C 

even for speeds lower than 1 m/s (dotted line, Figure 5.12). PEEK is a good thermal 

insulator and much softer than any of the other counterfaces. Its low thermal 

conductivity 𝐾𝐾 and diffusivity 𝜒𝜒 as well as larger Hertzian contact area produces even 
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higher 𝑇𝑇𝑓𝑓 than that of glass. Note, while the predicted 𝑇𝑇𝑓𝑓 for glass and PEEK 

counterfaces is higher than 𝑇𝑇𝑔𝑔 when U is larger than 1 m/s and 0.4 m/s respectively, in 

practice the contact temperature will be capped at the softening temperature of the PEEK 

balls. 

The 𝑇𝑇𝑓𝑓 prediction and the experimental contact temperature for PEEK-sapphire 

contact matches well, as shown in both Figures 5.11 and 5.12.  Based on the 𝑇𝑇𝑓𝑓 

predictions, one would expect PEEK-steel contact to have similar temperature rise to 

that of PEEK-sapphire contact.  Friction tests however, as presented in Figure 5.7, and 

also in Figure 5.12 (squares) shows that the contact temperature for PEEK-steel contact, 

as estimated by the local temperature of steel disc just next to the trailing edge of the 

contact, is higher than the predicted 𝑇𝑇𝑓𝑓. The 𝑇𝑇𝑓𝑓 prediction with PEEK-PEEK contact 

might have provided the cause of such discrepancy. After friction tests PEEK debris and 

transfer films were found on steel counterfaces. This adhered debris likely facilitated 

frictional heating and resulted in much higher temperatures than that of PEEK-bare steel 

contact. Having said that, the measured temperature for PEEK-steel and the predicted 𝑇𝑇𝑓𝑓 

of PEEK-PEEK contact approaches Tg ~150°C at a sliding speed of 4 m/s and 0.4 m/s 

respectively. This may be due to two reasons. Firstly the measured temperature from 

PEEK-steel contact is obtained outside the contact (close to the trailing edge). Thus it is 

likely that the actual temperature inside the contact is higher. As a result transfer films 

found on steel counterfaces may have then been formed at temperatures at or above the 

glass transition Tg. Secondly, the PEEK transfer film is discontinuous. Hence during 
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rubbing the PEEK ball may be in contact of both transfer film and steel.  The 

morphology and properties of transfer film will be discussed in section 5.4.2. 

 
Figure 5.12. Predictions of lash temperatures for PEEK ball sliding against counterfaces of 

sapphire, steel, glass and PEEK. A constant load of 10 W, nominal pressure and µ = 0.3 were 
used for these predictions.  All lines are predictions. The circles and squares are experimental 

results. Circles are temperature recorded for PEEK balls against sapphire disc with IR 
thermography.  Squares are temperature recorded for PEEK balls against steel disc during 

friction tests with a thermocouple. 
 
 
 
5.4.2 The Role Of Transfer Films On Friction Mechanisms. 

The sliding friction behavior for PEEK was found to depend significantly upon 

the counterface material. Under identical test conditions, PEEK-sapphire and PEEK-

steel contacts result in different frictional traces (see Figure 5.5). Both counterfaces had 

very low surface roughness (𝑅𝑅𝑎𝑎 10 – 20 nm) and so ploughing components of friction 

are minimal. Observation of the ball and counterface following experiments suggests 

that adhesive friction plays an important role. The laser confocal micrographs (Keyence 

VK9700) in Figure 5.13 show the resulting wear scars on the PEEK balls after the 
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constant load friction tests (Figure 5.5). These wear scars are of similar size and indicate 

that the contact area was comparable between tests. However, the ball surface that slid 

against steel has a distinct red hue towards the edges of the wear scar, which is not 

observed on the PEEK balls that were rubbed against sapphire disc. The red hue is 

believed to be iron oxide Fe2O3 that was transferred from the steel counterface.  

While the sapphire counterface remained clean, PEEK debris was observed on 

the steel surface following each experiment. The interaction between the steel and PEEK 

surfaces may explain the different friction responses observed. Compared to the steel 

counterface, sapphire is both harder and chemically inert. Both steel and sapphire 

counterfaces are very smooth (𝑅𝑅𝑎𝑎 10 – 20 nm) and so it is quite difficult for debris to be 

physically entrapped by asperities. Examples of the debris found on steel counterfaces 

are shown in Figure 5.14. The adhesion of PEEK debris to the steel surface may be the 

result of chemical bonding. PEEK has been shown to be a suitable adhesive used in 

bonding steel surfaces together[180]. The adhesive strength however depends on the 

reaction products formed at the interface. Sugama suggested that adhesion of PEEK to 

steel results from metal-O complexes that form[180, 181]. Studies of the adhesive 

interface with X-ray photoelectron spectroscopy (XPS) revealed the formation of new 

peaks in the C1s and O1s spectra. It was believed that these peaks result from Fe-O-C and 

Cr-O-C compounds. These species may form due to a charge transfer reaction between 

C=O in the PEEK and elemental Fe or Cr in the stainless steel. Conditions in which 

Fe2O3 formed at the interface was found to correspond to decreased bond strength[180]. 

Similar reaction products may be responsible for the adhesive behavior of PEEK debris 
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to steel counterfaces. The formation of Fe2O3 during sliding could also result in weakly 

bound transfer films and the observed residue on the ball surface. In the studies by 

Sugama, the PEEK was bonded to steel at temperatures above 400°C[180, 181]. Such 

temperatures might be necessary to form the metal-O complexes they described. 

However, the activation energy for the formation of adhesive chemical bonds between 

PEEK and steel could be supplied by friction alone. For instance, Buckley used Auger 

spectroscopy to show evidence of chemical bonding when polyimide and PTFE were 

rubbed against metal surfaces [182]. For PTFE it has been observed that friction induced 

chain scission events facilitate the bonding of debris to steel surfaces[183, 184]. It is 

possible that chain scission events also underlie the bonding of PEEK debris to steel. 

However, these theories are difficult to prove and are beyond the scope of this work. 

Further chemical analysis of the interface between transfer film and steel counterfaces 

will be needed.    
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Figure 5.13. Ball surface after constant load experiment (as shown in Figure 5) A) Steel 
counterface B) Sapphire counterface with scale bar 500µm. The load was 10 N. *White arrow in 

A) highlights region of possible Fe2O3 transfer **Black arrow shows direction of disc sliding 
 
 
 

The steel counterfaces from the friction experiments are shown in Figure 5.14. In 

Figure 5.14A and 5.14B debris from the constant speed increasing load experiment 

(Figure 5.4) is visible. Similarly, PEEK debris is also visible on the steel counterface 

from the constant load increasing speed experiment (Figure 5.5) in Figure 5.14C and 

5.14D. The morphology of debris formed on the steel surface differs significantly 

between the experiments. The constant speed increasing load experiment results in the 

deposition of small discrete particles. However, long continuous sections of film are 

visible for the constant load increasing speed tests. Although these transfer films do not 

cover the steel surface uniformly some sections appear to be uniform in thickness and 

well adhered to the surface. These film sections are roughly 1 µm thick as measured by 

the confocal microscope (Keyence VK9700) and accompanying profilometry software. 

The formation and nature of this transfer films will affect the friction response observed 

A B 
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with PEEK-steel contact. As previously discussed, the surface debris can promote 

frictional heating in PEEK-steel contact and temperatures above 𝑇𝑇𝑔𝑔 ~ 150°C can be 

reached with modest sliding speeds in PEEK-PEEK contact (see Figure 5.12). The 

PEEK-PEEK calculated flash temperatures suggest some sections of transfer film may 

have even been formed in a molten state. For PEEK this would require temperatures 

above 350°C. Ettles described this phenomenon and proposed a thermal control model 

for friction[137]. For this model, the melting point 𝑇𝑇𝑚𝑚 is the maximum attainable surface 

temperature. Heat generated due to friction will go into melting more of the polymer 

rather than raising the surface temperature. Friction will also decrease with sliding speed 

due to increased melting of the bulk. However, the PEEK on steel friction coefficient 

remained stable for most velocities. Additionally, temperature measurements taken near 

the contact suggest temperatures well below 𝑇𝑇𝑚𝑚. High surface temperatures would also 

likely result in some visible changes to the steel surface. For instance “bluing” of 

stainless steel will occur during tempering. If melting does in fact occur during film 

formation, the friction and thermal effects remain localized. This localized melting could 

explain why films form as long continuous patches rather than a single sheet in Figure 

14C.  
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Figure 5.14. Debris transferred to steel counterfaces from A) constant velocity friction tests (see 
Figure 4) with scale bar 100µm B) counterface following constant velocity friction test C) 
constant load friction test (see Figure 5) with scale bar 100µm. D) counterface following 
constant load friction test. Black arrow represents the direction of sliding. White arrow 

highlights delaminated debris.  The black and white regions of A and C correspond to PEEK 
film and steel surface respectively. 

 
 
 
Differences in the friction response between PEEK-steel and PEEK-sapphire can 

also be attributed to the debris found in Figure 5.14. Recall in Figure 5.5 that for 

increasing sliding speed tests the PEEK-sapphire friction grew to a maximum before 

dropping off at speeds above 1m/s. However, PEEK sliding against steel exhibited a 

stable friction period across a wide range of speeds. The stability of this friction period 

may be as a result of localized surface phenomenon. The friction response does not 
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rapidly diminish with speed like in the thermal control model described by Ettles[137]. 

However, such a description is best extended to scenarios where melting of the entire 

bulk sliding body takes place. The formation of films observed in Figure 5.14C represent 

phenomenon extremely close to the sliding surface. The friction measurements and 

corresponding debris transfer show that PEEK sliding behavior is highly sensitive to 

environmental factors. Adhesion, deformation and delamination components of friction 

all may contribute to the observed response. The effect of adhesive friction is most 

apparent when comparing results from PEEK-steel and PEEK-sapphire contacts. 

Adhesive friction is typically described by the equation (1) [179].  

𝜇𝜇𝑎𝑎 = 𝜏𝜏𝑜𝑜
𝜎𝜎𝑦𝑦

+ 𝛼𝛼 Equation (1) 

where the coefficient of friction due to adhesion 𝜇𝜇𝑎𝑎 is governed by the interfacial shear 

strength 𝜏𝜏𝑜𝑜 which corresponds to the frictional force 𝑓𝑓 per unit area 𝐴𝐴, i.e.  𝑓𝑓
𝐴𝐴
. A pressure 

coefficient 𝛼𝛼 is used to account for the fact that shear strength 𝜏𝜏0 will increase linearly 

with increasing pressure[179].The plastic flow stress or yield pressure 𝜎𝜎𝑦𝑦 will change the 

real contact area 𝐴𝐴𝑟𝑟 depending on load 𝑊𝑊 according to 𝐴𝐴𝑟𝑟 = 𝑊𝑊
𝜎𝜎𝑦𝑦

. Equation (5.1) can then 

be written as 

𝜇𝜇𝑎𝑎 = 𝜏𝜏𝑜𝑜𝐴𝐴𝑟𝑟
𝑊𝑊

+ 𝛼𝛼. Equation (5.2) 

For the majority of sliding conditions as shown in Figure 5.4 and Figure 5.5, 

friction of PEEK-steel contact is greater than that of PEEK-sapphire contact. Differences 

in contact area will affect the measured friction coefficient and could account for the 

difference. A calculation of Hertzian contact (see appendix section 5.6.2) would produce 
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a contact diameter of 0.52mm for both sapphire and steel under a 10N static load.  

Figure 5.13 also indicates that wear scars are comparable with diameters ~1.5mm. Since 

it was not possible to observe changes in the contact area for PEEK-steel in situ a direct 

comparison cannot be made. Provided the contact areas and pressure coefficients are 

comparable between tests, it can be presumed that adhesive friction differs due to 

interfacial shear strength 𝜏𝜏0. The greater adhesive friction 𝜇𝜇𝑎𝑎 response results from 

greater surface forces between PEEK and steel compared to sapphire. Friction forces 

arise from the breaking of asperity contacts as well as shearing of bulk material in and 

around the contact. As shown in Figure 5.15, shearing will occur at some distance ℎ 

below the surface. Debris will be removed from the bulk if the adhesive strength 𝜏𝜏𝑖𝑖 at the 

interface exceeds the bulk shear strength of the polymer 𝜏𝜏𝑏𝑏. Subsurface cracks can also 

form and grow during sliding. The forces generated at this crack interface will contribute 

to friction and explains the high values observed during such debris formation. In Figure 

14C there also appears to be thicker debris fragments that were sheared from the bulk 

and are highlighted by a white arrow. These fragments are much thicker than the 1µm 

transfer film sections and are roughly 3-5µm thick as measured by profilometry 

(Keyence VK9700). Figure 15C shows a larger section of thin continuous transfer film. 

The difference in such debris formation can contribute to different adhesive friction 𝜇𝜇𝑎𝑎. 

As illustrated in Figure 5.15 the thicker debris would correspond to shearing of material 

further into the bulk. Such debris was also found for the constant load constant sliding 

speed tests (Figure 5.6) and was most prevalent for speeds above 2m/s. Recall there was 

greater fluctuation in the friction response for these higher sliding speeds as well. The 
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way in which debris is removed from the bulk could contribute to the observed friction 

responses for PEEK-steel sliding.  In the absence of debris transfer, like for PEEK-

sapphire, the friction response depends largely on changes in the contact area rather than 

shearing of the bulk. 

 

 

 
Figure 5.15. Illustration of interfacial processes that contribute to friction. 

 
 
 

Blanchett described a similar delamination phenomenon for PTFE and discussed 

its relationship with sliding conditions[185]. Low wear and friction corresponded to 

drawing of fibrils across the sliding surface. However, severe wear was due to 

subsurface deformation and fracture. This transition from fibril drawing to delamination 

depends on how friction changes with temperature and sliding speed. Delamination 

occurs when the shear stress at the internal interface is less than the shear stress at the 

sliding surface[22]. Although fibril drawing is unlikely to occur in PEEK below Tg 

frictional heating at the surface can allow for smooth drawing of tribofilms. The 

presences subsurface cracks or penetration of heat into the bulk will disrupt this process 

as shown in Figure 5.15.  
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5.4.3 Transfer Film 

The experimental results suggest that the sliding friction behavior of PEEK is 

highly dependent on the transfer of debris to the counterface. Briscoe explained that a 

polymer’s ability to form thin continuous transfer layers is related to its 

drawability[179]. PEEK can undergo large deformations before break and when heated 

above Tg can be drawn into highly oriented films[74, 186, 187]. To further demonstrate 

the relationship between drawability and transfer film formation the infrared dichroic 

ratio of a PEEK film was measured. This technique has been shown to be able to assess 

orientation in PEEK[188, 189]. A transfer film formed on steel counterface during 

constant load friction experiment (Figure 5.5) was carefully removed from the disc and 

was examined with FTIR (Shimadzu IRAffinity-1) using an ATR accessory (PIKE 

MIRacle) and its spectra are shown in Figure 5.16. Measurements were taken using a 

ZnSe polarizer (Spectra-Tech) parallel and perpendicular to the sliding direction. 

Backgrounds were taken with the polarizer in place and only the polarizer was rotated 

between measurements. The dichroic ratio can be measured using the ratio of absorbance 

peaks from the parallel and perpendicular spectra 𝐷𝐷 = 𝐴𝐴∥
𝐴𝐴⊥

. The results show similarly 

high dichroism at all wavenumbers and indicate that the film is stretched in the direction 

of sliding. The diphenyl ether peak at 1190 gives dichroic ratio of 3.4 and the 1648 band 

associated with stretching of carbonyl groups gives a dichroic ratio of 2.8. Typically, 

dichroic ratios 𝐷𝐷 increase for increasing draw ratios 𝜆𝜆 but are not equivalent in value. 

Measurements were also taken of the wear scar and untested sections of the ball. Neither 

surface shows evidences of orientation from the polarized infrared spectra. The ball wear 
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surface may exhibit some orientation but the underlying bulk material masks the signal. 

Further work to understand film structure and any possible molecular orientation will be 

needed.  

Figure 5.16. Polarized FTIR-ATR measurement of transfer film parallel and perpendicular to 
sliding and micrograph of the film with scale bar 500µm. 

The dichroic ratio measurements support the notion that films form in a similar 

manner to drawing processes. For temperatures above the glass transition Tg PEEK films 

can be extruded to draw ratios 𝜆𝜆 ~ 3[74]. During sliding of PEEK, the deposition of 

debris on steel surfaces can promote frictional heating that increases the drawability of 

transfer layers. Subsurface delamination can disrupt this drawing process and result in 

increased friction. However, further understanding of PEEK transfer film formation and 

its adhesion to steel substrates will be needed.  
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5.5 Conclusion 

In this study, the friction and surface temperature response of 

polyetheretherketone (PEEK) was monitored under dry sliding conditions with pressure 

and velocity as variables. Both stainless steel (AISI 52100) and sapphire counterfaces 

were used during friction studies. The counterfaces have similarly low roughness Ra 10-

20nm but result in very different friction behavior. PEEK on steel appears to have a 

greater adhesive friction response than sapphire due to stronger electrostatic surface 

forces. Under all test conditions, PEEK debris was found transferred to the steel surface. 

Iron oxide residue also appears on the PEEK surfaces and indicates some chemical 

interaction took place during sliding. The transfer of debris to the surface explains how 

temperatures approaching melt or Tg can occur. Observation of frictional heating with 

full field infrared thermography supports this theory. Temperature maps of the contact 

for PEEK sliding against sapphire produces a temperature increase of 40°C with a 10N 

load and 2m/s sliding velocity. Although such a temperature rise is well below any 

thermal transition for PEEK, models for the average flash temperature match closely. 

Surface temperatures approaching the melt or Tg require sliding against an insulating 

material. Transfer films result from the localized heating of surface debris. The process 

is similar to drawing or extrusion of polymers at temperatures above the glass transition. 

Exposure to plasticizers or excessive sliding speed can disrupt this transfer film 

formation and lead to erratic and severe coefficients of friction. The friction and surface 

temperatures for PEEK depend on this transfer film formation process and cannot be 

explained by pressure and velocity alone.  
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5.6 Supplemental Materials

5.6.1 Calibration Curves 

Figure 5.17. Single-pixel camera counts PEEK ball and uncoated and Al coated sapphire disc 

Figure 5.18. Calibration curve for IR experiment 
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5.6.2 Contact Mechanics 

 To calculate the nominal contact area and pressure the below equations and 

data are used. The material properties used in calculations is given in Table 5.2. 

𝑎𝑎 = �
3𝑊𝑊

8
(1 − 𝑣𝑣12)/𝐸𝐸1 + (1 − 𝑣𝑣22)/𝐸𝐸2

1/𝑑𝑑1

3
 

𝑝𝑝 = 𝑊𝑊
𝜋𝜋𝑎𝑎2

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝑊𝑊
2𝜋𝜋𝑎𝑎2

𝑎𝑎 Contact radius [𝑚𝑚] 

𝑝𝑝 Average contact pressure [𝑃𝑃𝑃𝑃] 

𝑣𝑣1 Poisson ratio Ball 

𝑣𝑣2 Poisson ratio Disc 

𝐸𝐸1 Elastic modulus Ball [𝑃𝑃𝑃𝑃] 

𝐸𝐸2 Elastic modulus Disc [𝑃𝑃𝑃𝑃] 

𝑑𝑑1 Ball diameter [𝑚𝑚] 

Table 5.2. Material properties for contact mechanics calculations. 
Sample PEEK Steel Glass Sapphire 

Poisson Ratio 0.38 0.3 0.22 0.25 

Elastic Modulus (GPa) 3.6 200 90 345 

Diameter (mm) 19 NA NA NA 
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5.6.3 Flash Temperature 

 Calculations for the average flash temperature are based on Jaegers model for a 

uniform circular source. The below equations and data are used for calculation. The 

material properties for calculation are given in Table 5.3. 

𝑇𝑇𝑓𝑓 = 0.903𝑞̇𝑞𝑎𝑎
0.849𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑√𝑃𝑃𝑒𝑒+1.064𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 𝛼𝛼 = 0.849𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑√𝑃𝑃𝑃𝑃
0.849𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑√𝑃𝑃𝑃𝑃+1.064𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑇𝑇𝑓𝑓 Average flash temperature rise [°𝐶𝐶] 

𝛼𝛼 Heat partition coefficient 

𝜇𝜇 Coefficient of friction 

𝑊𝑊 Normal Load [𝑁𝑁] 

𝑈𝑈 Relative sliding velocity [𝑚𝑚/𝑠𝑠] 

𝑎𝑎 Contact radius [𝑚𝑚] 

𝐴𝐴 = 𝜋𝜋𝑎𝑎2 Contact area 

𝑝𝑝 = 𝑊𝑊/𝐴𝐴 Average contact pressure [𝑃𝑃𝑃𝑃] 

𝑞̇𝑞 = 𝜇𝜇𝜇𝜇𝜇𝜇 Heat flux per unit area [𝑊𝑊/𝑚𝑚2] 

𝐾𝐾 Thermal conductivity [𝑊𝑊/𝑚𝑚𝑚𝑚] 

𝜌𝜌 Density [𝑘𝑘𝑘𝑘/𝑚𝑚3] 

𝜎𝜎 Specific heat [𝐽𝐽/𝑘𝑘𝑘𝑘𝑘𝑘] 

𝜒𝜒 = 𝐾𝐾/𝜌𝜌𝜌𝜌 Thermal diffusivity [𝑚𝑚2/𝑠𝑠] 

𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈/𝜒𝜒 Peclet number 
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Table 5.3. Material properties for flash temperature calculations. 
𝜒𝜒[𝑚𝑚2/𝑠𝑠] 𝐾𝐾[𝑊𝑊/𝑚𝑚𝑚𝑚] 𝜌𝜌[𝑘𝑘𝑘𝑘/𝑚𝑚3] 𝜎𝜎[𝐽𝐽/𝑘𝑘𝑘𝑘𝑘𝑘] 

PEEK 1.41E-7 0.25 1320 1340 

Steel 1.28E-5 46 7810 460 

Glass 6.59E-7 1.1 2230 750 

Sapphire 1.39E-5 42 3980 760 
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CHAPTER VI 

RELATIONSHIP WITH HIGH TEMPERATURE DRAWING PROCESSES 

The transfer films that are deposited on counterfaces are a frequently discussed 

topic in polymer tribology. Wear resistance is often ascribed to these films which protect 

the bulk polymer from abrasion by hard rough asperities. This behavior is common to 

the Polyetheretherketone (PEEK) family of polymers.  However, little can be said 

regarding the underlying structure of PEEK transfer films. This chapter will focus on 

developing a deeper understanding of this behavior. Using a dual axis tribometer, PEEK 

pins were worn against a selection of counterfaces. Analysis of the transfer film and 

wear surface suggest that films form at temperatures above the glass transition Tg. Due 

to the inherently high friction and low thermal conductivity of PEEK such temperatures 

can easily occur when sliding against itself. Infrared thermal imaging of PEEK sliding 

on PEEK and glass surfaces was used to support this theory. The formation of transfer 

films resembles a unidirectional drawing process. Polarized FTIR-ATR measurements 

were used to assess chain orientation in the friction formed PEEK on steel transfer films.  

6.1 Introduction  

6.1.1 Wear of polymers 

The need for advances in understanding of polymer wear behavior has been 

pointed out by a number of authors[190, 191]. Traditionally, wear studies have focused 

on how a particular polymer performs relative to some other polymer under a similar set 

of conditions. The resulting wear surfaces are then described in terms of the possible 
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mechanisms that might have occurred. Descriptions such as abrasive, adhesive, and 

fatigue have been used to link the observed damage to some material response. Briscoe 

further categorized these behaviors based on interfacial and cohesive zones[191]. 

However, challenges persist due to the inherent complexity of wear processes. It is 

possible for multiple wear mechanisms to occur simultaneously. The viscoelastic nature 

of polymers also means that bulk properties will change with temperature and strain rate. 

To date there are no a priori methods to determine a polymer wear behavior under a 

given set of conditions. Despite such shortcomings, significant advances have been made 

over the past half-century. In particular, the role molecular structure plays in the wear 

behavior of some polymers. This relationship is most well understood for linear 

semicrystalline polymers polyethylene and PTFE. In seminal work by Tabor et.al, it was 

found that the frictional response of these polymers could be related to their smooth 

molecular profiles[7, 27, 28]. This early work linking molecular structure to friction and 

wear has served as a wellspring for tribology research. The transfer film formation of 

PTFE is often exploited to create self-lubricating bearings. Processing conditions and 

fillers can even be tailored to promote this behavior. Similarly, knowledge of surface 

chain orientation in UHMWPE has been used to explain its sensitivity to cross shearing 

wear environments[8]. The current practice of crosslinking UHMWPE artificial joints 

can be credited to this understanding. Clearly, advances in the application of polymers to 

tribology depend on the ability to link structure-property relations to friction and 

wear[50].  
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The behavior of PEEK has been investigated in a number of wear 

configurations[14]. The vast majority have dealt with the wear of PEEK in pin-on-disc 

sliding[10]. Of particular interest has been the relationship between counterface surface 

roughness and wear[15-18]. Ovaert found that for unfilled PEEKs, an optimal surface 

roughness appears to exist[17, 19]. However, with increasing surface roughness there are 

only modest increases in wear. It is believed that this phenomenon can be attributed to 

the deposition of transfer films on the steel counterfaces. In theory, mechanically 

deposited films serve to protect the bulk from hard rough asperities. Laux and Schwartz 

later found that PEEK transfer film quality could be directly related to wear 

resistance[20, 21]. Most explanations contend that these films reduce wear by 

suppressing abrasion. Since the film modulus more closely matches the bulk, potential 

debris generating contact stress is reduced. However, this explanation neglects any 

changes in the polymer surface state that may beget wear resistance. Studies of the wear 

behavior of PAEK have indicated that oxidative crosslinking may take place during 

debris and transfer film formation[32, 34]. It is also likely that chain orientation takes 

place at the wear interface. It has been observed that PEEK is more sensitive to a cross 

shear wear environment than linear reciprocating possibly due to orientation 

strengthening[21]. Tanaka in fact observed a similar anisotropy in the friction response 

of PEEK and reported this amongst the unsolved problems in polymer tribology[11]. 

Despite evidence suggesting tribochemical changes in the surface of PEEK, there is no 

proof as to why or if such changes promote wear resistance.  



6.1.2 PEEK Structure Properties 

Polyetheretherketone (PEEK) is an aromatic backboned semicrystalline polymer 

belonging to the polyaryletherketone (PAEK) family of thermoplastics. As previously 

discussed, they are used extensively in tribological applications. Their high glass 

transition temperature Tg~150°C melting temperature Tm~350°C and solvent resistance 

make them an attractive engineering polymer for a wide range of environments. This has 

also meant PEEK is well studied and a wealth of knowledge exists regarding structure 

property relationships. PEEK typically achieves crystallinity between 30% and 45% 

depending on processing conditions and molecular weight[58]. Under identical 

conditions, lower molecular weight Mw PEEK will achieve a higher crystallinity 

compared to higher molecular weight Mw PEEK.  The larger Mw will slow down chain 

folding and result in lower crystallinity. Chivers reported that increased crystallinity can 

increase the yield strength and elastic modulus but molecular weight alone does not have 

a significant effect[54]. Increasing molecular weight will however increase elongation at 

break. It has also been observed that molecular weight can influence fracture[39, 54] and 

fatigue[38] properties due to differences in microstructure. Typically, lower Mw PEEK 

forms larger spherulites with decreased tie chain density. Chu and Schultz found that 

lower Mw PEEK has reduced fracture toughness KIC compared to higher Mw PEEK[39]. 

They also observed an increase in intraspherulitic fracture in lower Mw PEEK and 

attributed this to microstructure. Saib observed a strong relationship between Mw, 

crystallinity and tie chain density with fatigue behavior as well[38].  For higher Mw 

PEEK a Paris law stable crack growth behavior was found and this did not occur in the 
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lower Mw PEEK. Several authors have investigated a strain induced crystallization 

phenomenon in PEEK. Hamdan and Swallow reported that in compression crystallinity 

can increase for strain rates above 103/s[192, 193].  

A number of researchers have attempted to improve mechanical properties of 

PEEK by tailoring microstructure through processing. Solid-state extrusion has been 

used to increase the modulus and strength of PEEK films along the drawing 

direction[73]. A die drawing process has also been employed to create samples with a 

modulus as high as 11GPa[76]. PEEK can achieve a preferred crystallographic 

orientation through extrusion and drawing processes[73, 76, 194, 195]. Films of PEEK 

grown through PTFE epitaxy are also found to achieve a similar structure[189]. Several 

spectroscopy studies of stretched PEEK films have been done to understand the 

influence of deformation on structure[196]. Daver and Cakmak employed a combined 

birefringence and wide-angle x-ray spectroscopy (WAXS) techniques to identify the 

structural ordering processes that occur during deformation of amorphous PEEK films in 

the rubbery state. Strain hardening was found to coincide with the appearance of nematic 

like ordering in the WAXS pattern[197]. PEEK and other semicrystalline polymers owe 

their naturally high draw ratio to such deformation induced structural changes[198]. 

When films of PEEK are stretched to draw ratios λ>3, chain orientation and strain 

induced crystallization impart substantial tensile strength[199]. In theory, a highly drawn 

and oriented PEEK surface would be more wear resistant. Briscoe attributed the transfer 

film formation observed in some polymers to drawability[179]. It might be expected that 
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PEEK transfer films undergo structural changes that contribute to improved wear 

performance.  

6.2 Materials and Methods 

In this work we will investigate the transfer film behavior of PEEK and how it 

relates to both wear resistance and drawability. The surface strains and frictional heating 

that occur during wear may contribute to some structural changes. However, the exact 

strain magnitude and temperature remain unknown and difficult to measure. To better 

understand the nature of transfer film and wear behavior in PEEK, a combined wear and 

spectroscopy study of will be performed.    

6.2.1 Materials 

In this work, samples from two different grades of PEEK material will be used. 

These grades are differentiated by weight average molecular weight MW and are termed 

PEEK-L and PEEK-H. Gel permeation chromatography (GPC) was used to measure the 

molecular weight and the values for MW are shown in Table 6.1. Wear pins were 

manufactured from the base PEEK material using an injection molding process 

described in previous work[20]. Rods of approximately 14mm diameter are extruded and 

machined into pins with a diameter of 6.35mm and length of 20mm. Samples were also 

molded into standard shapes for mechanical property measurements. Dynamic 

mechanical properties were measured using 40 x 11.5 x 3.3 mm bar shaped specimens 

molded in accordance with standard ASTM D790. A temperature sweep was performed 

using dynamic mechanical analysis (DMA) in torsion mode with a 1Hz frequency and 

0.05% strain (TA Instruments, ARES-G2). The glass transition Tg as measured by the 



146 

peak value of tan δ  is shown in Table 6.1. The crystallinity of the injection molded 

specimens were also measured using differential scanning calorimetry (DSC). The 

percent crystallinity (%Xc) was determined using the ratio of first heat melting enthalpy 

(∆𝐻𝐻𝑚𝑚) to the enthalpy of fusion for a perfect crystal (130 J/g)[104]. As shown in Table 

6.1 the PEEK-L sample achieves a higher value of crystallinity compared to the higher 

MW sample. The higher molecular weight inhibits chain folding and results in a lower 

%Xc. The injection molded bar specimens were cut into dog bones and tested in 

accordance with standard ASTM D638. Although there is a slight increase in modulus 

for PEEK-L it has significantly worse elongation at break compared to PEEK-H.  

Table 6.1. Tabulated molecular weight Mw crystallinity %Xc and tensile properties for PEEK 
samples used. 

Sample 
Mw 

(kg/mol) 
Tg[ ̊C] %Xc

Tensile 

Modulus E (GPa) 
%Elongation ε 

Tensile 

Strength σ (MPa) 

PEEK-L 66.2 159 48 4.0 22 78 

PEEK-H 114.4 158 42 3.8 51 82 

6.2.2 Tribology Test Methods 

In this work, wear testing is performed in a pin on plate configuration. A custom 

built multi axis tribometer is used which incorporates two programmable linear stages 

(Aerotech). Wear pins are mounted with a twist-lock style drill chuck and loaded against 

the counterface by pneumatically controlled actuators. The linear stages are stacked on 

top of eachother and can be programmed to move the counterface in a desired path. The 

counterface moves relative to the statically loaded pin. Wear results from the sliding of 



147 

the counterface against the pin surface. The counterface is made of D2 grade tool steel 

with both high carbon (1.5%C) and high chrome (11%Cr) content. The counterface is 

also unidirectionally ground to a Ra surface roughness of 0.5µm as shown in Figure 1. In 

this work, two different sliding paths will be used. A path termed multidirectional sliding 

results from the stages moving the counterface in a circle with a diameter of 20mm. This 

circular path and unidirectional counterface grinding means the angle between the pin 

sliding trajectory and counterface roughness are constantly changing. The sliding is done 

at a continuous speed of 100 and 200 mm/s for a total sliding distance of 2km. Loads of 

32N and 160N are also used as test parameters and result in nominal contact pressures of 

1 and 5MPa respectively. A sliding path termed linear reciprocating will also be used in 

which the counterface slides in a single direction. To compare the effects of linear 

reciprocation and multidirectional sliding tests will be done with the same 1 and 5MPa 

of nominal contact pressure. During reciprocation sliding is stopped and resumed at the 

end of travel and so a continuous velocity cannot be assigned. However, the average 

speed is fixed to be roughly 100 and 200 mm/s for comparative purposes. The sliding 

path has a distance of 75mm and tests are run for a sliding distance of 2km. It has been 

shown that the direction of asperities relative to sliding can be a contributing factor in 

polymer wear behavior[21, 200]. Tests were conducted with different sliding angles 

relative to the counterface roughness. The study were done with sliding perpendicular or 

90° relative to the grinding direction with the previously described pressured and 

velocities. Additional studies were done with angles 0° or parallel to roughness as well 

as at 30° and 60°. Before testing, the wear surface of each pin was finished to a surface 
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roughness of approximately 0.2 µm Ra.  Samples were ultrasonically cleaned, dried, and 

weighed before and after each test on a precision balance with a resolution of 0.01mg. 

The counterface was also wiped with acetone and then rinsed with deionized water to 

remove any contaminants prior to testing. After each test the change in mass was 

recorded and the reported density of the respective PEEK materials was used to calculate 

volumetric wear. Tests were all replicated four times and the standard error is reported 

with wear data.  
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Figure 6.1. Images of the counterfaces used for wear and friction studies. A) Laser confocal 
micrograph of the steel counterface with scale bar 100 µm B) Counterface used for friction tests 

C) Topographical image of the counterface.

Friction data will also be collected for some sliding conditions. A three axis load 

cell (Interface) is used to monitor the forces that result from sliding. The counterface is 

mounted directly to the load cell and allows for real time monitoring of friction forces. A 

separate counterface is used for such studies since the counterfaces used in wear tests are 

too large to mount to the load cell. As shown in Figure 6.1B, a counterface with 

dimensions 50mm x 50mm with unidirectional surface roughness Ra of 0.5µm is used. 

A B 

C 
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Sample counterfaces made of other materials such as glass and PEEK are also used in 

later studies but have a similar dimension. Friction data is collected at a rate of 250Hz. 

6.2.3 Surface Imaging 

Following wear tests surfaces were imaged using a number of methods. An 

ultraviolet laser confocal microscope (Keyence VK-9700) equipped with profilometry 

software was used. The microscope has a robotic stage and allows for images to be taken 

at magnification 10x-50x and stitched together into a complete image. An optical 

microscope (Olympus BX60) equipped with polarizers was also used in transmission 

mode to view possible birefringence or orientation in wear debris. A hand held digital 

microscope (Dino-lite) was used to take high resolution images of selected wear 

surfaces. Finally, scanning electron microscopy (SEM) was used to take high 

magnification images of wear surfaces and debris. Samples were coated with a 10nm 

thick layer of platinum with a Cressington108a auto sputter coater. A FEI-Quanta 600 

electron microscope was then used to image the wear surface. 

6.2.4 Temperature Measurement 

Observations of the sliding temperature were done using an infrared camera 

(Fluke Ti45 IR Fusion) for PEEK pins sliding against glass and PEEK counterfaces. The 

camera has a temperature sensitivity of 0.08°C and uses a 160x120 Vanadium Oxide 

focal plane array. Calibration was performed for the temperature range -20°C to 350°C 

in accordance with manufacturer specifications[201]. The PEEK and glass counterfaces 

are assumed to have emissivity ε~0.95 in the IR range of light. The IR temperature 

measurments of glass and PEEK counterfaces were also verified using a thermocouple. 
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The counterfaces were placed in an oven at 150°C and surface temperatures measured 

with the IR camera and thermocouple matched within 1°C.  

6.2.5 Spectroscopy 

Transfer films deposited on the steel counterfaces were studied to assess possible 

molecular orientation. Polarized Fourier transform infrared micoscopopy (FTIR) in 

attenuated total reflectance (ATR) mode was used to measure PEEK films. The dichroic 

ratio 𝐷𝐷 was measured using infrared spectra taken with the IR source polarized parallel 

and perpendicular the direction of sliding. Similar techniques have been demonstrated to 

assess orientation in PEEK films[188, 189]. Transfer films were examined with FTIR 

(Shimadzu IRAffinity-1) using an ATR accessory (PIKE MIRacle). Measurements were 

taken using a ZnSe polarizer (Spectra-Tech) parallel and perpendicular to the sliding 

direction. Backgrounds were taken with the polarizer in place and only the polarizer was 

rotated between measurements. The dichroic ratio can be measured using the ratio of 

absorbance peaks from the parallel and perpendicular spectra 𝐷𝐷 = 𝐴𝐴∥
𝐴𝐴⊥

. 

6.3 Results and Discussion 

6.3.1 Wear 

The results from the wear studies are shown below in Figure 2 and Figure 3. In 

Figure 6.2 the effects of molecular weight MW, contact pressure P, sliding velocity V, 

and wear path are all apparent. Wear is expressed in terms of wear volume (mm3) in 

Figure 6.2A and Figure 6.2C. The same data is also expressed as a wear factor 𝐾𝐾 (𝑚𝑚𝑚𝑚3/

𝑁𝑁𝑁𝑁) as seen in Figure 6.2B and Figure 6.2D. Wear factor is calculated using the ratio of 

volumetric wear 𝑉𝑉𝑉𝑉𝑉𝑉(𝑚𝑚𝑚𝑚3)to the product of sliding distance 𝑑𝑑(𝑚𝑚) and normal load 
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𝐹𝐹𝑁𝑁(𝑁𝑁) and can be written 𝐾𝐾 = 𝑉𝑉𝑉𝑉𝑉𝑉
𝐹𝐹𝑁𝑁𝑑𝑑

�𝑚𝑚𝑚𝑚
3

𝑁𝑁𝑁𝑁
�. It should also be noted that Figure 6.2A and 

6.2B correspond to the multidirectional sliding experiment and Figure 6.2B and 6.2C 

correspond to linear reciprocation.  

Figure 6.2. Wear volume and wear factor for PEEK-L and PEEK-H samples tested at different 
combinations of pressure and velocity. A) Multidirectional continuous sliding wear volume B) 
Multidirectional continuous sliding wear factor C) Linear reciprocating wear volume D) Linear 

reciprocating wear factor.    

From the results it is apparent that molecular weight has a significant impact on 

wear performance in both multidirectional sliding and linear reciprocating. The 

difference is most extreme for multidirectional sliding under the highest combination of 



 

153 

 

pressure 5MPa and sliding velocity 0.2m/s. However, as the wear factors in Figure 6.2B 

and D indicate the higher MW sample has consistently higher wear resistance. This 

relationship between wear rate and MW in PEEK has been reported in a number of 

studies[10, 20, 21, 36]. From the mechanical properties in Table 1 it can be seen that 

PEEK-L has a much lower elongation at break than PEEK-H. The resulting lower 

ductility may play a part in explaining the lower wear resistance for PEEK-L. 

Additionally, the largest wear factor occurs at lower values of pressure velocity PV. 

With increased PV it is possible that frictional heat softens the surface. A softer more 

compliant surface would be less susceptible to cutting abrasive wear from the hard rough 

counterface asperities. The lower molecular weight samples will also have a lower shear 

viscosity 𝜂𝜂. This means that in the melt state the lower molecular weight material will 

flow under a smaller stress and may exhibit greater shear thinning[70]. If the frictional 

heating is great enough to melt some of the PEEK wear surface, the differences in wear 

behavior may be better explained by rheological properties than mechanical. However, 

the most striking observation in wear behavior is the difference between multidirectional 

sliding and linear reciprocating wear. This behavior was reported in a previous study[21] 

and the results are in line with those in Figure 6.2. It was reported that a reciprocating 

behavior produces transfer films that are both thinner and more continuous. A similar 

phenomenon is observed in this study such continuous films can be seen in Figure 6.4A. 

The transfer films are believed to cover hard rough asperities that will cut into the bulk. 

It is also suspected that the cross shearing from the circular multidirectional path can 

more easily remove debris from the bulk. In other polymers such as ultra high molecular 
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weight polyethylene (UHMWPE) and polytetrafluorethylene (PTFE) apparent 

orientation of polymer chains occur in the direction of sliding. For UHMWPE it has 

been observed that wear rates correspond to the degree of cross shearing[8]. Wang 

theorized that chains are oriented and sheared apart in a multidirectional environment 

and this explains the increased wear rate. In PTFE chains can be pulled from the bulk 

and form smooth running films that reduce wear[50]. Although PEEK does not share the 

same linear aliphatic structure, some orientation strengthening mechanism may underlie 

the observe difference in wear between the test conditions. To further investigate the 

influence of linear reciprocation on wear behavior tests were done with varying surface 

roughness direction. The results for reciprocation across different surface grinding 

angles are shown in Figure 6.3.  Tests were done with a contact pressure of 5MPa and 

sliding speed 0.2m/s for a distance of 2km.  

 

 
Figure 6.3. Wear volume resulting from linear reciprocation at varying angles relative to the 

surface roughness direction for PEEK-L and PEEK-H.  
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For both PEEK-L and PEEK-H the highest wear volume occurs for sliding 

parallel to the direction of grinding. In a study by Friedrich they also observed that the 

highest wear for unfilled PEEK corresponded to roughness aligned parallel to 

sliding[15]. A similar observation has also recently been made for a PTFE alumina 

Al2O3 composite[200]. As can be seen in Figure 4A, continuous transfer films are 

apparent on the counterface for sliding angles perpendicular to the grinding direction. At 

lower sliding angles films are still visible but appear sparser and less continuous. Sliding 

at angle 0° parallel to the grinding direction results in no visible film formation and 

debris is formed near the sliding periphery as seen in Figure 6.4B. Harris described a 

debris mobility phenomenon in the PTFE-Al2O3 system they studied[200]. They 

postulated that in order for a film to form debris must be retained in the wear track. 

Sliding perpendicular to the direction of roughness increases mechanical work and 

initiates a favorable tribochemical response in the PTFE-Al2O3 system. Bahadur 

suggested that for PEEK, the formation of a transfer film results from the mechanical 

entrapment of debris between conterface asperities[12]. Reciprocation perpendicular to 

the surface roughness direction causes debris to be deposited between asperity peaks. 

The enhanced mechanical anchoring means debris will be more readily retained and a 

transfer film can more easily be formed. However, the process by which wear debris 

forms into a transfer film is unclear. It is suspected that frictional heat may soften the 

retained debris and causes it to agglomerate into a continuous sheet[21]. The mechanism 

by which debris forms into a transfer film and how it relates to wear resistance will be 

further discussed.  
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Figure 6.4. Counterfaces transfer films and debris formed sliding A) Perpendicular to the 
surface grinding direction B) Parallel to the surface grinding direction. 

6.3.2 Transfer Film Formation 

A selection of transfer films was formed under linear reciprocation with varying 

pressure and velocity. This was done in order to study the mechanisms responsible for 

film formation and how it relates to wear. Films were formed with reciprocation 

perpendicular to the surface roughness direction and the PEEK-H material was used for 

all tests. In Figure 6.5 an illustration of the process is shown along with the pin surface 

and accompanying transfer film. In order to accommodate the load cell used in friction 

measurements the reciprocation distance was limited to 20mm.  
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Figure 6.5. Illustration of the loading configuration and motion profile used in fretting tests.  

The transfer film and pin surface following the test are also shown. 
 

 

Sliding was done for a total of 2,000 cycles, which corresponds to a sliding 

distance of 8m. This sliding distance is significantly lower than the 2km of sliding used 

in wear studies. However, it appears that under the selected pressure and velocity 

conditions a film will readily form within the first few thousand cycles. In Figure 6 the 

friction trace for sliding with a load of 200N and sliding frequency 2Hz (80mm/s) is 

shown. The dynamic friction trace within the first few hundred cycles is shown in Figure 

6.6A and Figure 6B corresponds to roughly one thousand sliding cycles. Spikes in 

friction at the beginning and end of sliding show up in the friction trace for the first few 

hundred sliding cycles. With increasing cycles the static spikes in the friction trace are 

not longer visible but the friction response appears more erratic. It can be seen in Figure 

6.6B that small fluctuations occur in the friction trace during sliding. It was observed 

that during this period transfer films become visible on the counterface. Although 
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transfer films appear linked to lower wear in PEEK it appears that they do little to reduce 

the magnitude of the friction forces.   

 

  

Figure 6.6. Friction profiles for PEEK pin sliding against steel counterface with pressure 5 MPa 
and sliding at 2Hz or 80 mm/s for A) 100 sliding cycles B) 1000 sliding cycles.    

 

 

Examples of films formed with different loads and sliding velocity are show in 

Figure 6.7. Additionally, the resulting pin surfaces are shown in Figure 6.8. It can be 

seen that there is an apparent pressure and velocity limit on the tenacity of the transfer 

films. Increasing pressure and velocity causes films to flake off and become detached 

from the counterface. It might be presumed that under these sliding conditions the 

adhesion between the film and the counterface is overcome by the sliding frictional 

forces. At high sliding velocity the debris also appears to be discolored indicating 

possible oxidation. It may also be reasoned that the observed behavior results from the 

buildup of frictional heat at the wear surface. The formation of large sheet like debris 

particles at high combinations of pressure and velocity has been well reported in PEEK. 

Zhang described such PEEK debris in terms of the fractal dimension[23, 202]. They had 

N=100 N=1000 

A B 
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observed that larger plate like debris occurred at larger loadings. Additionally, they 

observed “filmy laces” emanating from the trailing edge of the wear pins[23]. Zhang 

suggested that frictional heat resulted in debris becoming plastically deformed and 

extruded between the pin and counterface. Ovaert observed a similar phenomenon and 

indicated that the retention of debris was critical for transfer film formation[17-19]. The 

wear particle and transfer film thickness also corresponded to the location of subsurface 

stress maxima[19]. They indicated that the formation of transfer films and plate like 

debris resembled a delamination process. It is difficult to determine whether the transfer 

film seen in Figure 6.7A and detached debris seen in Figure 6.7D were formed as the 

result of the same process. The detached debris may be due to previously formed film 

becoming debonded from the counterface. However, it is possible that increasing load 

disrupts transfer film formation and promotes the delamination debris For PTFE 

Blanchett described a similar phenomenon[185]. Low wear corresponded to the 

formation of highly oriented debris that consisted of individual PTFE fibrils. This fibril 

formation process however could be disrupted by the propagation of subsurface cracks 

and the formation of large debris flakes. Although PEEK will not fibrillate in the way 

observed for PTFE, there could be a similar mechanism that competes with 

delamination.  



 

160 

 

  

  

Figure 6.7. Transfer film and debris deposited on counterfaces after sliding for 1000 cycles. A) 
5MPa contact pressure 2Hz (80 mm/s) sliding speed B) 10MPa contact pressure 5Hz (200 mm/s) 

sliding speed C) 5MPa contact pressure 10Hz (400 mm/s) sliding speed D) 20MPa contact 
pressure 2Hz (80 mm/s) sliding speed. 

 

 

The notion that plastic flow takes place at the wear interface is supported by 

observation of the wear pin surface. Figure 8 shows the pin surface for transfer films 

formed with a 160N (5MPa) load and sliding at 2Hz (80mm/s). There are several surface 

features that show up prominently on the wear surface. In Figure 6.8A grooves can be 

seen on the surface parallel to the direction of sliding as indicated by the black arrow in 

the figure. There also appears to be a region of interest perpendicular to the direction of 

sliding. A magnified view of the wear surface can be seen in Figure 6.8B. As can be 
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seen, ripples appear within the surface grooves and are also aligned with the direction of 

sliding. Similar surface features have been observed in wear studies of PEEK[21, 36] 

and UHMWPE[148]. It is believed that such ripples occur due to plastic flow of the wear 

surface. As the polymer slides over the counterface frictional heating occurs. If the 

temperature exceeds the glass transition Tg~150°C the polymer will be in a rubbery 

state. The more rubbery polymer surface can then be stretched or plastically deformed 

during sliding. A similar phenomenon occurs in rubber and are referred to as 

Schallamach waves[203]. It is believed the periodicity of these ripples in rubber 

corresponds to the sticking and slipping of asperity contacts[204]. Recall in Figure 6.6 

friction response became increasingly erratic with increased sliding cycles. This friction 

response likely corresponds to the formation of the observed ripple features. However, it 

is unclear whether temperatures approaching Tg~150°C had occurred and will be further 

discussed.  

 

  

Figure 6.8. Laser confocal micrographs of wear pin surface after sliding with pressure 5 MPa 
and speed 80 mm/s A) Arrow indicates sliding direction B) Scale bar is 100 µm 

A B 
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With increasing pressure and velocity the pin surface appears increasingly 

damaged as shown in Figure 6.9.  Deep ruts are also visible on the surface parallel to the 

direction of sliding. Interestingly, many of the same features found in Figure 6.8 are also 

visible. Although ripples are less prominent, these features are still apparent in Figure 

6.9B. The increased pressure and velocity results in both a loss of transfer film integrity 

and also greater damage to the pin surface. There appears to be a limit on pressure and 

velocity beyond which transfer films offer no benefit to wear reistance. Rather, the films 

become third bodies that abrade the bulk pin surface and contribute to greater frictional 

heating.  

Figure 6.9. Wear pin surface after sliding with contact pressure 20 MPa sliding speed 80 mm/s 
A) Arrow indicates sliding direction B) Scale bar 100 µm

The transfer film in Figure 6.7A was further examined using scanning electron 

microscopy (SEM) in Figure 6.10. It was assumed that the tenacity of the transfer film 
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depended largely on its adhesion to the counterface. Inspection of the SEM image shows 

some intriguing features that may be used to describe the film formation and behavior. 

Although the film appears as a large continuous sheet, there are a number of holes and 

voids. The film in Figure 6.10A appears to be made up of compacted and coalesced 

debris fragments. Zooming in on some regions also shows that these fragments are 

connected by fibrils. These fibrils may serve as weak points within the film structure. 

During sliding, the shear stress imparted on the film from the reciprocating pin can cause 

sections of the film to break and become detached from the bulk. The fibrils are also 

oriented in the direction of sliding. This may also in part explain the difference in wear 

behavior between multidirectional sliding and linear reciprocation. The cross shearing 

experienced during multidirectional sliding would inhibit such fibril formation. It has 

been suggested that transfer film formation in polymers depends on drawability[179]. 

Obsevations of the transfer film and pin surface during linear reciprocation suggest that 

they had been strained in the direction of sliding. Further discussion of the relationship 

between film formation and drawability will be further discussed.  
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Figure 6.10. Scanning electron micrograph of transfer film with scale bars A) 40 µm and B) 5 

µm 
 

 

6.3.3 Transfer Film Structure and Drawability 

To further explore the structure of the transfer films sections of film were 

analyzed to assess possible orientation. The high quality film in Figure 6.7A and the 

detached film from 6.7D were examined. Figure 11 shows the polarized optical 

micrograph of the film from 6.7D. Under the cross polarizers the film shows a high 

degree of birefringence. The film section also is transparent and does not show any 

evidence crystalline structures. Previous analysis of wear debris suggested that the films 

had been heated to temperatures above melt and quenched into an amorphous state.  
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Figure 6.11. Micrograph taken of detached debris fragment with an optical microscope. Image is 
taken in transmission mode with the light source linearly polarized. Scale bar is 20µm and 

arrows indicate the direction of sliding. 

Transfer films from Figure 6.7A and detached debris from Figure 6.7D were 

measured using polarized FTIR-ATR spectroscopy. The absorbance spectra are shown in 

Figure 6.12 with the infrared source polarized parallel and perpendicular to the sliding 

direction. The pin surface was also measured but does not exhibit any difference in the 

spectra. The spectra from both the transfer film and debris appear to be oriented in the 

direction of sliding. Interestingly, some portions of the spectra are more drawn than 

others. The dichroic ratio can be measured using the ratio of parallel and perpendicular 

spectra 𝐷𝐷 = 𝐴𝐴∥
𝐴𝐴⊥

 and dichroic ratios are shown in Figure 13. 
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Figure 6.12. Polarized FTIR-ATR spectra from A) Transfer film deposited on steel counterface 
B) Detached debris fragment.    

 
 

The previous results demonstrated that the sliding friction and wear behavior of 

PEEK depended strongly on the deposition and integrity of transfer films. It is believed 

that a polymer’s ability to form thin continuous transfer layers is related to its 

drawability[179]. Studies have shown that PEEK may undergo large deformations 

before break and when heated above Tg can be drawn into highly oriented films[74, 186, 

187]. It is common for PEEK films to be drawn to ratios λ~3 when temperatures above 

Tg are used[74]. Interestingly, the measured transfer film and debris dichroic ratios are 

similar for some wavenumbers as shown below. In particular the wavenumbers from the 

diphenyl ether segments show much stronger dichroism than that of other segments. For 

instance the peak at 1645, which corresponds to the carbonyl group, does not exhibit any 

dichroism. Although the dichroic ratio does not directly correspond to draw ratio it is an 

indication of orientation. Typically, the more oriented a polymer film the higher the 

dichroic ratio. Comparison of the debris and film also suggest that the transfer film may 

be slightly more oriented. Comparing wavenumbers between 1100 and 1300 show 
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consistently higher dichroic ratios D. It might be reasoned that films achieve greater 

integrity and tenacity when they can be drawn to achieve the highest possible 

orientation. 

 

  

Figure 6.13. Measured dichroic ratios for wear pin, transfer film and detached debris. The 
diphenyl ether and carbonyl groups are also depicted.    

 

 

6.3.4 Frictional Heating 

It is believed that frictional heating contributes to the wear behavior of PEEK. 

This frictional heating may be especially pronounced when the PEEK pin surface slides 

over previously deposited debris fragments. Typically polymer on polymer sliding does 

not produce favorable friction or wear behaviors[205-207]. When polymers slide against 

themselves greater adhesive friction forces often arise. Polymers are also thermal 

insulators and so frictional heat cannot easily dissipate away from the sliding surface. In 

PEEK surface temperatures exceeding the glass transition are observed in gear 

assemblies and are attributed to the high friction and low thermal conductivity[13]. 

Wavenumber Pin Plate Debris
930 0.95 2.42 2.48
1012 0.94 2.48 2.66
1162 0.97 2.67 1.69
1188 1.00 1.86 1.56
1227 1.00 1.99 1.48
1284 0.96 2.73 2.35
1309 1.02 2.51 1.25
1490 1.00 2.08 1.34
1598 1.00 1.16 1.15
1645 0.99 0.99 1.08
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Apparent excessive frictional heating has also been observed when PEEK slides against 

itself but no surface temperature measurements are provided[127]. Tanaka made a 

similar observation for PEEK sliding against glass counterfaces[139]. 

 

 

  

Figure 6.14. Illustration and experimental setup for measurement of surface temperature. 
 

 
 

It is believed that frictional heating contributes to the wear behavior of PEEK. 

This frictional heating may be especially pronounced during transfer film formation. The 

deposition of debris to the steel counterface creates periods of PEEK on PEEK sliding. 

In order to demonstrate the potential for surface temperatures to reach thermal 

transitions experiments are performed with PEEK and glass counterfaces. The results are 

also compared with that predicted by flash temperature theory. Surface temperature was 

discussed in a previous section and a similar calculation methodology is used. During 

sliding heat is generated at the surface and the heat flux can be calculated as 𝑞̇𝑞 = 𝜇𝜇𝜇𝜇𝜇𝜇. In 

the equation the average heat flux 𝑞̇𝑞 is calculated using the coefficient of friction µ along 
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with the nominal contact pressure 𝑝𝑝 and sliding speed 𝑈𝑈. The average temperature rise 

𝑇𝑇𝑓𝑓 is then calculated using Jaeger’s solution for a uniform circular souce[152, 154, 155].  

 

𝑇𝑇𝑓𝑓 = 0.903𝑞̇𝑞𝑎𝑎
0.849𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃√𝑃𝑃𝑃𝑃+1.064𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃

      (Equation 6.1) 

In the equation the thermal conductivity 𝐾𝐾[𝑊𝑊/𝑚𝑚𝑚𝑚] of the pin and plate are used and the 

values used are listed in Table 6.2. Additionally the Peclet number is calculated 

according to 𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈/𝜒𝜒. In the equation the thermal diffusivity 𝜒𝜒 = 𝐾𝐾/𝜌𝜌𝜌𝜌 is used 

along with the sliding speed 𝑈𝑈 and radius of contact 𝑎𝑎. 

 
 

Table 6.2. Thermal properties diffusivity Χ, conductivity Κ, density ρ, and specific heat σ for 
counterfaces used in experiments. 

 
 
 
 
Figure 6.15 shows the predicted flash temperature rise 𝑇𝑇𝑓𝑓 for different 

counterfaces with increasing sliding speed 𝑈𝑈. In the calculation it is assumed that the 

coefficient of friction µ is a constant 0.3 and the pin surface is in full contact with the 

counterface giving a contact radius 𝑎𝑎 of 3.2 mm. The average contact pressure is 

assumed to be 5 MPa in order to provide comparison with the previous wear studies. As 

might be expected the largest flash temperature rise corresponds to the counterface with 

the lowest thermal conductivity. This is in stark contrast to PEEK sliding against steel 

where a temperature rise of only 4°C is predicted at a 300 mm/s sliding speed. 
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Furthermore the temperature rise for PEEK on PEEK sliding is well below any thermal 

transition such as the glass transition Tg~150°C.  

Figure 6.15. Predicted flash temperature rise with increasing sliding speed for a PEEK pin with 
a contact pressure of 5 MPa sliding against stainless steel, glass, and PEEK counterfaces. 

The predicted temperature rise for sliding conditions used in wear studies 

indicates that frictional heating would not become significant. However, during sliding 

some portion of heat is retained within the sliding track. Using a glass counterface and a 

25 mm diameter pin loaded to 5 MPa of contact pressure the sliding surface temperature 

is monitored with an infrared camera (Fluke Ti45 IR Fusion). Initially, the camera 

detects a modest temperature rise. However, after roughly 1,000 sliding cycles a 

significant temperature rise is detected as shown in Figure 6.16. In the figure the pin 
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slides a distance of 75 mm before reversing direction. Heat that is generated within the 

pin contact will continuously rise with repeated traversals.  

 
 
 

 
Figure 6.16. Infrared image of a PEEK pin sliding on a glass counterface with a contact pressure 

of 5 MPa and sliding speed of 200 mm/s. 
 
 
 
The infrared camera temperature measurements were repeated with the 6.35 mm 

diameter pins with both glass and PEEK counterfaces. With contact pressure 5 MPa and 

sliding speed were set to 200 mm/s and the counterface temperature was monitored with 

the infrared camera. As shown in Figure 6.17 the heat is retained within the sliding track. 

The surface temperatures increase with increasing sliding cycles until eventually the 

sliding track approaches the glass transition Tg. Figure 6.17A shows the surface after the 

first 100 sliding cycles. During this period a flash temperature rise Tf of only 30°C is 

observed. The flash temperature model predicted a similar temperature rise as seen in 
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Figure 6.15. It can be presumed that during the first few sliding cycles the contact 

transitioned from partial to full contact. In Figure 6.17B the surface temperature after 

500 sliding is shown and in Figure 6.17C the surface temperature after 1000 cycles is 

shown. Interestingly the measured surface temperature reaches a point above the glass 

transition Tg. When the glass surface temperature reaches 170°C after 1000 sliding 

cycles there is a noticeable change in the polymer surface. Figure 6.18 shows wear pin 

surfaces after sliding on glass for 1000 cycles. The polymer appears to have been 

softened and deformed in the direction of sliding. This observation corresponds with the 

measured surface temperature of 170°C. The 5 MPa of contact pressure and 200 mm/s 

sliding velocity were sufficient to heat the surface above the glass transition when a 

glass counterface is used.  

 
 
 

   

Figure 6.17. Infrared images for PEEK pin sliding on glass counterface with a contact pressure 
of 5 MPa and sliding speed of 200 mm/s. A) Surface after 100 cycles B) Surface after 500 cycles 

C) Surface after 1000 cycles 
 

A B C T 63°C T 111°C T 170°C 
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Figure 6.18. Illustration of transfer film formation process. Debris is heated due to friction and 
joined to debris deposited in adjacent asperities. 

 
 
 

The same sliding test conditions were used with the PEEK pin sliding on a PEEK 

counterface. After the first 200 sliding cycles significant frictional heating takes place. 

Similar to glass the surface reaches a temperature of 170°C, which is above the glass 

transition temperature. As shown in Figure 6.19 the sliding track reaches such 

temperatures and also results in significant changes in both the pin and PEEK 

counterface. The edges of the PEEK pin have completely been worn off and the 

counterface shows evidence of plastic flow. This response is counterintuitive to what is 

observed during PEEK transfer film formation. It is believed that transfer film formation 

results from the heat generated due to PEEK on PEEK sliding. However, PEEK on 

PEEK sliding appears to result in a catastrophic loss of sample integrity. It appears that 

during transfer film formation the heating at the surface remains localized and close to 

the wear interface. During film formation temperatures approaching the glass transition 

do not penetrate into the bulk as observed with glass or PEEK counterfaces.  
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Figure 6.19. Selected images from PEEK on PEEK sliding with a contact pressure of 5 MPa and 
sliding speed 200 mm/s. A) Infrared image with max temperature 170°C. B) Infrared image 

overlaid on top of real image. C) Pin surface after 200 sliding cycles. D) PEEK counterface after 
200 sliding cycles.   

 
 
 

6.4 Conclusion 

The results of this study demonstrate PEEK polymer’s sensitivity to 

multidirectional sliding compared to a linear reciprocating environment. The sensitivity 

is especially pronounced for lower molecular weight MW material. It is also observed 

that wear resistance can be partially attributed to the formation of transfer films. When 

sliding perpendicular to the surface grinding direction well adhered films form on the 

surface but are entirely absent when sliding along the grinding direction. The absence of 
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C D 

T 170°C T 170°C 



175 

a transfer film corresponds to an increase in wear. However the presence of a transfer 

film alone does not explain the order of magnitude increase in wear rate during 

multidirectional sliding. Observations of the wear surface and transfer film indicate that 

formation occurs in a rubbery state. Measurements of the film with polarized FTIR-ATR 

spectroscopy suggest that the film is oriented in the direction of sliding. Such 

observations indicate that the wear surface and film formation resemble a drawing 

process. PEEK can be drawn at temperature near the glass transition Tg to ratios λ~3. 

Such draw ratios produce films with improved mechanical strength in the direction of 

drawing. It can be reasoned that the transfer film and wear surface experience similar 

orientation strengthening, which can be attributed to wear resistance. The formation of 

such transfer films is also aided by frictional heating as illustrated in the below Figure 

6.20. During the first few sliding cycles debris becomes detached and imbedded between 

counteface asperities. The sliding of the PEEK pin against such third body debris can 

quickly elevate the surface temperature above Tg. The insulating nature of PEEK also 

means that the surface temperature will grow with increasing sliding cycles. Such 

phenomenon was demonstrated with PEEK and glass counterfaces. The heat retained in 

the sliding track can be observed to grow until it reaches the glass transition of 150°C. 

Interestingly the pin surface begins to melt and lose its integrity with glass and PEEK 

counterfaces but is largely undamaged when sliding against a transfer film on metal 

counterface. Although the exact nature of transfer films is not fully known it appears 

strongly linked to the drawability of the PEEK wear surface.  
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Figure 6.20. Illustration of transfer film formation process. Debris is heated due to friction and 

joined to debris deposited in adjacent asperities. 
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CHAPTER VII 

CONCLUSIONS AND CONSIDERATIONS FOR FUTURE RESEARCH 

 

7.1 Summary and Conclusions 

Experimental work and analysis of results were performed in order to gain a 

deeper understanding of adhesive wear processes in polyaryletherketone (PAEK) 

polymers. The focuses of this study were as follows:  

1. Develop an experimental methodology to simulate adhesive fatigue damage 

in PAEK material. Utilizing this methodology, investigate the role of PAEK 

structure properties and environmental conditions on the fretting response.   

2. Measure the static friction response of PAEK systems. Relate the static 

friction response to how the material will behave in a fretting environment.  

3. Investigate how surface properties affect the sliding friction and flash 

temperature of PEEK polymers. Perform in-situ temperature measurements to 

validate the predicted flash temperature behavior.   

4. Describe how changes in PEEK structure arise during the wear and transfer 

film formation. In particular, understand the relationship between transfer 

film formation and drawability of the PEEK wear surface.  

The experimental study using a selection of polyaryletherkeone (PAEK) 

polymers show the effect of material properties on the adhesive wear behavior. The 

repeated sticking and slipping of adhesively joined asperities results in fretting damage. 

The severity of this fretting response is strongly linked to the PAEK fracture properties. 
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It was observed that during fretting, fracture occurred for lower Mw PEEK material and 

the PEK member of the PAEK family. Although fillers could greatly improve the 

fretting response in dry conditions, the lower Mw PEEK material also exhibited 

catrastrophic fractures in wet conditions. Studies of the static friction response 

demonstrate how changes in the wear surface contribute to fretting wear. In wet 

conditions, the penetration of fluid into the bulk reduces the interfacial shear strength 

and promotes slipping of asperities. For dry sliding conditions, frictional heating softens 

the surface and increases the magnitude of static friction. The damage observed in dry 

fretting remains localized to regions affected by this frictional heating.  

Analyzing the debris and wear surface shows the importance of frictional heating 

on determining the material response. In both fretting and dry sliding conditions debris 

was found to be largely amorphous. Figure 7.1A shows the wide angle X-ray diffraction 

pattern for both wear debris and the as received “amorphous” powder. Neither material 

shows evidence of crystal structure and implies that the material has been quenched from 

a temperature above the melt. As shown in Figure 7.1B the crystal structure does not 

disappear until reaching temperatures above 340°C.    
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Figure 7.1. Wide angle X-Ray diffraction pattern for PEEK wear debris and original amorphous 

powder. B) Spectra of powder between 220°C and 350°C. 
 
 
 

However, in situ measurement reveals only a modest rise in the surface 

temperature. Figure 7.2 illustrates the findings taken using infrared thermography. The 

measured surface temperature rise closely matches the results predicted by flash 

temperature theory. When debris can become entrapped within the sliding contact, 

localized heating takes place. The inherently low thermal conductivity of PEEK and the 

high PEEK on PEEK friction increase the resulting sliding surface temperature. The 

localized heating and shearing of material in the sliding contact can also result in the 

formation of a transfer film. This process resembles high temperature drawing and the 

films appear oriented in the direction of sliding.  

A B 
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Figure 7.2. Illustration of frictional heating and transfer film formation process. 

The localized heating also explains the sensitivity of PEEK wear behavior to 

molecular weight Mw and sliding direction. Figure 7.3 shows the dynamic mechanical 

behavior for a low and high Mw PEEK sample. With increasing temperature the shear 

modulus G’ drops and molecular mobility becomes more favorable. The increased 

molecular mobility at temperatures above the glass transition Tg will promote debris 

formation. The cross shearing of the PEEK surface from multidirectional sliding will 

increase the wear rate as a result. The localized heating also explains the drastic 

difference in behaviors between the various grades and type of PAEK material tested. 

Figure 7.4 shows the stress strain hysteresis behavior for a low and high Mw PEEK 

sample tested at 175C. It can be seen that the energy dissipated due to hysteresis is much 
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greater in the lower Mw PEEK sample. The greater hysteric heating will cause greater 

softening of the bulk polymer and will contribute to wear behavior.  

 
 
 

 
Figure 7.3. Dynamic mechanical temperature sweep for PEEK-L and PEEK-H samples.  
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Figure 7.4. Hysteresis loops for PEEK-L and PEEK-H samples taken at 175°C. 
 
 

 
The experimental results demonstrate how the varied material parameters and 

test conditions contribute to adhesive wear. Although wear cannot be predicted a priori 

these studies allow for some behavioral predictions to be made for PEEK based material. 

Further work in understanding the relationship between material properties and wear of 

PEEK is needed.  

7.2 Considerations for Future Research 

 The findings presented in this dissertation offer greater insight into the 

fundamentals of friction and wear in PAEK based materials. Although many questions 

were answered, there are many areas that require additional work. The research findings 



183 

can also be used to design improved PAEK based material for application in tribological 

environments.    

7.2.1 Model for Subsurface Damage Mechanisms 

In this work it became apparent that the severity of wear and damage to the pin 

surface corresponded to how material is sheared away from the bulk. Low wear 

corresponded to instances in which transfer films formed as thin continuous sheets. More 

severe wear coincided with thicker delaminated sheets of debris. Blanchett described a 

similar process for the behavior of PTFE[185] and an illustration is shown in Figure 7.5. 

The sliding conditions such as pressure, velocity, and surface roughness will all 

contribute to the subsurface stress distribution. Additionally, changes in surface 

properties that occur during wear can also contribute to how material is sheared from the 

bulk. Future work to model this contact stress distribution would be highly beneficial. 

Figure 7.5. Illusstration of subsurface shear stress and contributing factors. 
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A model of how the presence of a transfer film changes the contact stress 

distribution would also be necessary. It is believed that transfer films reduce wear since 

they protect the bulk from abrasion of hard rough asperities. The film modulus closely 

matches that of the bulk as seen in the nanoindentation load vs. depth graph in Figure 

7.6. However, it is uncertain what factors dictate the tenacity of these films and their 

effectiveness in reducing wear. Attempts have been made to incorporate such transfer 

film effects on contact stress by some researchers[208]. An effective model would also 

describe how heat is distributed within the film[209]. 

Figure 7.6. Nanoindentation of transfer film and bulk PEEK material. 



7.2.2 Nanoparticles to Improve Transfer Film Deposition 

Fillers are often added to PEEK and may result in lower friction and improved 

wear resistance. The most common fillers are PTFE, graphite, and carbon fiber and are 

used both individually and in combination with each other. However, the use of filler to 

improve tribological behavior can reduce mechanical properties. Nanoparticles are an 

increasingly attractive choice for filler[48]. When such nanoparticles are well dispersed 

in the polymer matrix they can interact with cracks or other damage features. Due to the 

particle size they will not act as a stress concentrator that promotes crack propagation. 

Many nanoparticles are also multifunctional in the sense that they can improve strength, 

lower friction and promote transfer film formation all at the same time. Work to 

incorporate well dispersed nanomaterial into a PEEK matrix would be extremely 

valuable.  

7.2.3 Chemical Adhesion Between Debris and Surface 

Another area that lacks comprehensive knowledge is the adhesion between 

transfer films and counterfaces. The tenacity of the transfer film depends on how 

strongly it is bonded to the counterface. When the shear strength of this bond is 

overcome the transfer film will be removed and no longer offer any protection from 

abrasion. To better understand the nature of this bonding between PEEK film and the 

counterface chemical spectroscopy can be performed. In previous work with PTFE 

focused ion beam milling was used to remove sections of transfer film bonded to 

counterfaces[210]. The cross section of the transfer film and counterface could then be 

examined with transmission electron microscopy (TEM). Chemical analysis of the cross 

185 
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section can also be done to assign chemistry to the adhesion mechanism.  Such a 

procedure would also be beneficial for understanding how different counterface 

materials and fillers influence the wear behavior.  
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