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ABSTRACT

The ability to perform mechanical states reconstruction is an essential task in quantum optome-

chanics to understand different quantum aspects of mechanical states of motion. Many interest-

ing phenomena appear when the light and mechanical motion are coupled through the radiation-

pressure coupling. Preparing, controlling, and measuring mechanical states are all very crucial in

the study and development of quantum optomechanics. In this dissertation, we introduce a prac-

tical scheme for mechanical states reconstruction in the weak optomechancial coupling regime in

which most optomechanical systems operates. The scheme relies on sending a beam of two-level

atoms to pass through an optomechanical cavity where an oscillating mirror is coupled to a cavity

field. The atoms interact resonantly with the cavity field as they pass through the cavity. As the

oscillating mirror modifies the dynamics of the atoms, we show in this dissertation that by mea-

suring the atomic population inversion of the atoms when they exit the optomechanical cavity, it is

possible to obtain the mirror’s state by analyzing the measured data of the population inversion.

In the first part of this dissertation, we study a hybrid system in which a two-level atom is

placed inside a cavity field where one side of the cavity is free to move. The two-level atom

is coupled to the cavity field through the well known Jaynes-Cummings coupling, whereas the

mechanical mirror and the cavity field are coupled to each other via the radiation-pressure coupling.

A complete analytical and numerical study is performed on this system, and it is shown that the

mechanical mirror modifies the atomic population inversion in such a way that each mechanical

state changes the signal of the population inversion of the atom differently. From the results in this

part of the dissertation, we concluded that the population inversion can be analyzed and employed

to extract the quantum state of the mechanical mirror.

Second, as each specific mechanical state affects the atomic population inversion differently,

we developed the idea of using the atom as a tool to reconstruct the quantum state of the mechan-

ical mirror. We first assumed that the two-level atom is initially in a superposition of its excited

and ground states while both the cavity field and the mechanical mirror are in general superposi-
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tion of Fock states with unknown coefficients. The derived general expression of the population

inversion indicates that it is sufficient to initially prepare the atoms in the excited states before

passing through the optomechancial cavity and the cavity field is in vacuum state. The population

inversion of the atoms exiting the cavity can then be measured, and the collected data can be used

to determine the full state of the mechanical mirror. The scheme in this part of the dissertation is

only developed for measuring pure mechanical states.

Third, we extended the scheme of mechanical states reconstruction to the more practical states

of the mirror in which the mirror is initially in a mixed state. We derived a general analytical

solution of the population inversion allowing us to reconstruct more experimentally feasible states

of the mechanical mirror such as thermal states.
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1. INTRODUCTION

The Jaynes-Cummings (JC) model [1, 2, 3, 4] describes the interaction between a single mode

quantized field and a single two-level atom. The JC-model predicted the collapse and revival in

the signal of the population inversion when the cavity field is prepared initially in a coherent state.

Many extensions for this interesting model have been made since its development such as the

study of the population inversion in a two-level atomic system interacting with a squeezed state

electromagnetic field [5], a two-level atom initially prepared in a coherent superposition interacting

with a quantized field [6], three-level atom interacting with a single mode quantized field [7], for

time-dependent cavity frequency [8, 9].

In the recent years, the area of cavity optomechanics [10] in which the mechanical motion is

coupled to electromagnetic fields through the radiation-pressure coupling has been extended and

developed to many interesting areas of research. Applications in the area of cavity optomechan-

ics are rapidly expanding for example to quantum information [11], high sensitivity displacement

measurement [12], ground state cooling [13, 14, 15, 16, 17, 18, 19, 20, 21], macroscopic superpo-

sition [22, 23, 24, 25], and quantum entanglement [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] in

optomechanical systems.

In cavity optomechanics, mechanical state reconstruction refers to the ability to perform some

series of measurements to determine the state of a mechanical oscillator. Mechanical state recon-

struction allows for significant understand and characterization for different quantum properties

in optomechanical systems. Few schemes for mechanical state reconstruction have recently been

introduced [38, 39, 40, 41]. In [40], a mechanical oscillator is strongly coupled to a cavity light

field where photons can leak outside. Measuring the emission and scattering spectra enables ex-

tracting the oscillator’s state as the oscillator strongly imprints its state on the measured spectrum.

The scheme introduced in [41] relies on creating a coupling between an atoms and a mechanical

oscillator using a magnetic field. The Wigner function of the oscillator can then be measured by

measuring the ground state population of the atom.
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In this dissertation, we propose an atom-based measurement method to reconstruct the quantum

state of a mechanical oscillator. We consider a cavity field weakly coupled to a mechanical mirror

via the radiation-pressure force. We then consider a beam of two-level atoms initially prepared in

the excited state to enter an optomechanical cavity and interact resonantly with a vacuum cavity

field. The population inversion of the atoms can be measured after they exit the cavity. Due to

the optomechanical coupling, the dynamics of the atoms are modified in such a way that each

specific mechanical state leads to a distinct change in the atomic population inversion. Therefore

the measured data of the population inversion can be used to extract the state of the mechanical

mirror.

This dissertation is organized as follows: In Chapter 1, I give a brief review of the quantum

theory of atom-field interaction followed by a general overview of the area of quantum optome-

chanics.

In Chapter 2, the atomic population inversion of a two-level atom placed inside an optome-

chanical cavity is studied analytically and numerically. We considered different initial conditions

for the cavity field and the mechanical mirror. It is shown that the oscillating mirror significantly

modifies the population inversion signal in comparison to the case of the Jaynes-Cummings model

where the two-level atom is placed inside a cavity in which both of its sides are fixed. The results

shown in this chapter motivate us to develop an atom-based scheme to measure the quantum state

of the mechanical mirror.

In Chapter 3, a scheme for the reconstruction of pure mechanical states is introduced. The

scheme contains a beam of initially excited two-level atoms sent to pass through an optomechanical

cavity. The atoms interact with a vacuum cavity field as they pass through the optomechanical

cavity, and the population inversion is measured upon exciting the atoms from the other side of the

cavity. As different mechanical states result in different signals of the population inversion, it is

shown that a mathematical data analysis of the population inversion can be used to reconstruct the

full state of the mechanical mirror.

In Chapter 4, an extension of the work presented in the previous chapter to the general and more
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Figure 1.1: Atom-field interaction.

practical case where the mechanical mirror is initially considered in a mixed state. It is shown that

the density matrix elements of the state of the mechanical mirror can be reconstructed using this

scheme.

In Chapter 5, summaries and conclusions of the results and new findings in this dissertation are

given.

1.1 Quantum theory of atom-field interaction

Here we provide brief description and derivation of the JC-model as it is related to the work

presented in this dissertation. In the JC-model, a single two-level atom is set to interact with a

single mode quantized electromagnetic field as shown in Fig. 1.1. |e⟩ is the excited state of the

two-level atom and |g⟩ is the ground state with a transition frequency ωa between both levels. The

Hamiltonian of the system shown in Fig. 1.1 is explicitly given by [42]

H = ℏωcc
†c+

1

2
ℏωaσz + ℏgc(c†σ− + σ+c) (1.1)

where the first term in Eq. (1.1) describes the cavity field Hamiltonian with ωc is the resonance

frequency of the cavity and c† (c) is the creation(annihilation) operator of the cavity field. The

second term in Eq. (1.1) represents the two-level atom Hamiltonian with σz = |e⟩ ⟨e| − |g⟩ ⟨g|.
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The third term in equation Eq. (1.1) describes the interaction energy between the two-level atom

and the cavity field with coupling strength gc. σ+ = |e⟩ ⟨g| is the raising operator of the atom and

σ− = |g⟩ ⟨e| is the lowering operator of the atom.

In the interaction picture, the Hamiltonian Eq. (1.1) can be calculated from

V = eiH0t/ℏ Hint e
−iH0t/ℏ, (1.2)

where H0 = ℏωcc
†c +

1

2
ℏωaσz and Hint = ℏgc(c†σ− + σ+c), are the free part and the interaction

part of the system’s Hamiltonian, respectively. Simple calculations of Eq. (1.2) gives the following

expression for the interaction picture Hamiltonian

V = ℏgc(σ+c eiδt + c†σ− e
−iδt), (1.3)

where δ = ωa − ωc.

The time-dependent state of the total system can be written as [42]

|ψ(t)⟩ =
∞∑
n=0

ce,n(t) |e, n⟩+ cg,n+1(t) |g, n+ 1⟩ , (1.4)

where ce,n(t) is the probability amplitude for the atom to be in its excited state with n photons

in the cavity while cg,n+1(t) is the probability amplitude for the atom to be in the ground state

with n+ 1 photons in the cavity. The system’s dynamics can be studied using the time-dependent

Schrödinger’s equation which is given by

|ψ̇⟩ = − i
ℏ
V |ψ⟩ . (1.5)

Equations of motion for the probability amplitudes can be derived from Schrödinger’s equation.
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Figure 1.2: Population inversion as a function of time with gc = 1 and δ = 0. (a) Initial state of
the cavity is a Fock state |0⟩. (b) Initial state of the cavity is a coherent state with mean number of
photons < n >= 20.

The equations of motion for the probability amplitudes are given by [42]

ċe,n(t) = −igc
√
n+ 1 eiδtcg,n+1(t), (1.6a)

ċg,n+1(t) = −igc
√
n+ 1 e−iδtce,n(t). (1.6b)

Let us first consider the case when the cavity field is initially in a Fock state |n⟩while the two-level
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atom is in the excited state. Subject to these initial conditions, Eqs. (1.6) can be solved and the

resultant expression of the population inversion is given by

W (t) = |ce,n(t)|2 − |cg,n(t)|2 = cos (Ωnt) , (1.7)

where Ωn=2gc
√
n+ 1. The population inversion in this case is obviously oscillating periodically

as seen in Fig. 1.2(a).

When the cavity field is initially in a coherent state while the atom is in the excited state, the

population inversion is given by

W (t) =
∞∑
n=0

[
|ce,n(t)|2 − |cg,n(t)|2

]
=

∞∑
n=0

pn cos (Ωnt) , (1.8)

where

pn =
⟨n⟩n e−⟨n⟩

n!
, (1.9)

is the coherent state distribution of the photons with ⟨n⟩ being the mean number of photons. As

shown in Fig. 1.2(b), the population inversion collapses for certain time and then starts to revives.

This can be understood from having the summation in Eq. (1.8) over many terms where each term

has a different oscillation frequency and this leads to constructive and destructive interference

between these terms.

1.2 Cavity optomechanics

The fundamental optomechanical system in cavity optomechanics consists of a cavity with one

mirror fixed at one end and an oscillating mirror at the other end of the cavity as shown in Fig. 1.3.

The cavity field is coupled to the mechanical mirror via the radiation-pressure force [10].
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Figure 1.3: Schematic of an optomechanical system.

We consider that the length of the cavity in Fig. 1.3 is L and its resonance frequency is ωc.

Let’s also consider the mechanical mirror is oscillating at frequency ωm and its mass is denoted

as m. Due to the oscillation of the mechanical mirror, length of the cavity field changes accord-

ingly and becomes position dependent, i.e. ωc(x). Position of the mechanical mirror is defined as

x = x0(b+ b†) where b†(b) is the creation (annihilation) operator of the mechanical mirror. x0 rep-

resents the zero-point motion or fluctuation of the oscillating mirror and in terms of the mass and

frequency of the mechanical mirror, it is defined as x0 =
√

ℏ/2mωm . With all these definitions,

the Hamiltonian of the optomechanical system depicted in Fig. 1.3 can be written as

H = ℏωc(x)c
†c+ ℏωmb

†b, (1.10)

where the first term in Eq. (1.10) describes the cavity field Hamiltonian while the second term

describes the Hamiltonian of the oscillating mirror. c†(c) is the cavity field creation (annihilation)

operator. Taylor expansion of the frequency of the cavity gives

ωc(x) = n
πc

L+ x
= ωc +

∂ωc

∂x
x+ ... = ωc − ωc

x

L
+ .... (1.11)
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As the change of the cavity length is very small, the first and second terms in the previous equation

can be kept and the higher order terms can be neglected. By using the expansion of the cavity field

frequency in Eq. (1.11), the Hamiltonian of the optomechanical system Eq. (1.10) can be rewritten

as

H = ℏωcc
†c+ ℏωmb

†b− ℏgmc†c(b† + b), (1.12)

where

gm =
ωc

L

√
ℏ

2mωm

. (1.13)

is optomechanical coupling strength defined in terms of the cavity and mechanical mirror variables.
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2. OPTOMECHANICALLY INDUCED ANOMALOUS POPULATION INVERSION IN A

HYBRID SYSTEM∗

2.1 Introduction

The quantum mechanical description of the interaction between a two-level atom and a single

mode field is known as the Jaynes-Cummings (JC) model [1]. Collapse and revival of the atomic

population inversion, a pure quantum effect, was predicted theoretically [2] and demonstrated

experimentally [3, 4] using the JC model.

The atomic population inversion in the JC model has been extended to a variety of schemes.

For example, for a three-level atom interacting with a quantized field [7], for a time dependent

atom-field coupling strength [43], for a time-varying cavity frequency with [8] and without [9]

the rotating wave approximation, and for double two-level atoms that interact with a two-mode

quantized field [44]. Effects of amplitude dissipation and phase dissipation on the population

inversion have also been investigated [45, 46, 47, 48].

Recently, cavity optomechanics [10], which describes the radiation-pressure interaction be-

tween electromagnetic fields and mechanical motions, has developed into a promising area of

research. Motivated by quantum information processing [11], testing quantum mechanics [49],

and sensitive measurements [12], quantum state engineering of a mechanical oscillator, such as

ground state [13, 14, 15, 16, 17], Fock state [15, 19], and squeezed state [50, 51, 52, 53, 54], have

been proposed theoretically and achieved experimentally.

More recently, hybrid optomechanical systems have been studied, aiming at harnessing the

advantages of different quantum systems to novel quantum technologies [55]. Specifically, cavity

optomechanics with atomic ensembles have been investigated for macroscopic entanglement [30,

56, 31], ground-state cooling [57, 58, 59, 60], and optomechanical coupling enhancement [61].

For a cavity optomechanical system with a single atom, atom-field-mirror tripartite coupling [62],

∗Reprinted with permission from “Optomechanically induced anomalous population inversion in a hybrid system”
by S. Asiri, W. Ge, and M. S. Zubairy, 2018. J. Phys. A: Mathematical and Theoretical, Accepted Manuscript online
4 April 2018, copyright [2018] IOP Publishing. Reproduced with permission. All rights reserved.
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strong atom-mirror coupling [63], atom-assisted strong coupling [64], atom-assisted cooling [65],

and nonlinear coherent state preparation [66] have been explored.

In this chapter, we present a study on the atomic population inversion of a single two-level

atom that is coupled to an optomechanical cavity, extending the JC model in the newly developed

area of hybrid optomechanics. The Hamiltonian of the hybrid optomechanical system has been

studied recently [67] on the phonon number statistics of a mechanical mirror in the presence of an

artificial two-level atom. Here we are interested in the opposite effect where the atomic population

is affected by the mechanical mirror.

Recently, there is a related work [68] on suppression of Rabi oscillations in a hybrid optome-

chanical system using the same initial Hamiltonian as in this manuscript. In comparison to [68],

our work has the following differences: (i) On the contrary to Ref. [68], where single-photon

strong coupling is required for exotic features, we focus on the experimental accessible regime of

single-photon weak coupling, i. e., ωm ≫ gm. (ii) In Ref. [68], the study is mostly focused on

the initial state |e⟩a |0⟩c |0⟩m, while in this work we consider a variety of different initial states,

both pure and mixed. (iii) In the current work, the population inversion exhibits different features

than suppression of Rabi oscillations reported in [68]. For example, we have observed both op-

tomechanically induced collapses and oscillations in the population inversion. (iv) We present both

analytical derivations and numerical calculations to explore different features, while in Ref. [68]

the study on suppression of Rabi oscillations is only carried out with numerical calculations.

In the classical limit, the radiation-pressure coupling between a cavity field and a mechanical

mirror results in a time-dependent cavity frequency [8]. Here we investigate the effect of optome-

chanical coupling on the population inversion when the mechanical mirror is in a quantum state.

Our results may be useful for identifying the initial state of a mechanical mirror from different

characteristics in the population invesion [69].

We study the anomalous effects in two different cases. In the first case, we study the interaction

between initially excited two-level atom and a Fock state cavity field coupled to a mechanical

mirror. For the resonant atom-field interaction, we show that the atomic population inversion can
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exhibit collapses and revivals induced by the mechanical mirror when it is initially in a Fock state.

This is drastically different from the JC model which predicts Rabi oscillations for a Fock state

cavity field. The first collapse region becomes more apparent when the mirror is in a higher number

state. For the far-detuned atom-field interaction, we first show that the atomic population inversion

can undergo full Rabi oscillations between the excited state and the ground state of the atom by

coupling to a Fock state of the mechanical mirror. Under this situation, the atom couples effectively

to the mirror via the resonant JC interaction with the help of the cavity field. We further investigate

this effective interaction by considering an initial coherent state of the mechanical mirror, and we

find that collapse and revival feature similar to the JC model is observed. For a more realistic

situation, we consider the case when the mechanical mirror is initially in a mixed state and we find

that the mixture of the mechanical states induces slower collapse and reduced revival amplitude in

the population inversion. In the second case, we consider the population inversion when the cavity

field is in a coherent state and the mechanical mirror is in a Fock state. We show that the first

collapse region in the JC model displays non-collapsed behavior induced by the mechanical mirror

and the revival amplitude is reduced as well.

Our model is quite generic, therefore it can be implemented in different hybrid optomechanical

systems, such as a superconducting qubit coupled to superconducting circuits [70]. With recent

developments in preparing quantum states of a mechanical oscillator [13, 14, 15, 16, 17, 19, 50, 51,

52, 53, 54] and demonstrations on long cavity and atomic coherence time [10, 71], our predications

in a hybrid optomechanical system may be possible with experimental demonstration.

This chapter is organized as follows: In Sec. 2.2, we introduce the model. In Sec. 2.3, we

investigate the collapse-revival phenomena when the cavity field is initially in a Fock state, while

the mechanical mirror is in a Fock state or a coherent state. In Sec. 2.4, we present an analytical

and numerical solutions for the hybrid optomechanical system when the cavity field is initially in a

coherent state and the mechanical mirror is in a Fock state. In Sec. 2.5, we summarize our results.
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2.2 The model

We consider a hybrid optomechanical system that consists of a two-level atom and a cavity

with a mechanical mirror at one end, as illustrated in Fig. (2.1). The cavity field is coupled to the

two-level atom and the mechanical mirror via Jaynes-Cummings coupling and radiation-pressure

coupling, respectively. In our model, the atom is prepared in the excited state |e⟩a initially and

passed through the cavity to interact with the cavity field for a certain amount of time. We are

interested in the population inversion of the atom as a function of time in the presence of the

mechanical mirror for different initial states of the cavity and the mirror.

The Hamiltonian of the hybrid system is given by [67]

Hs = H0 +H1, (2.1)

where H0 is the free Hamiltonian and H1 is the interaction Hamiltonian of the system. The free

Hamiltonian is explicitly given by

H0 = ℏωcc
†c+ ℏ

ωa

2
σz + ℏωmb

†b, (2.2)

where ωc is the cavity resonant frequency, ωa is the atomic transition frequency, and ωm is the

oscillation frequency of the mechanical mirror. The operator b (c) is the annihilation operator of

the phonon (photon) number, and σz = |e⟩a a ⟨e| − |g⟩a a ⟨g| is the population inversion operator

of the two-level atom. Here |g⟩a is the ground state of the atom. The interaction Hamiltonian is

written as

H1 = −iℏgc(σ+c− c†σ−)− ℏgmc†c(b† + b), (2.3)

where the first term describes the Jaynes-Cummings coupling between the cavity field and the

two-level atom [42] while the second term is the radiation-pressure coupling between the cavity

field and the mechanical mirror [72]. The atom-field (mirror-field) coupling strength is gc (gm).
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Figure 2.1: Schematic of the hybrid optomechanical system.

The mirror-field coupling strength is defined as gm =
ωc

L

√
ℏ

2mωm

where L is the cavity length.

σ+ = |e⟩a a ⟨g| and σ− = |g⟩a a ⟨e| are the atomic transition operators.

According to the time-dependent Shrödinger’s equation, the state vector of the hybrid system,

|ψs⟩, evolves as

|ψ̇s⟩ = −
i

ℏ
Hs |ψs⟩ . (2.4)

Here we neglect the decoherence of the system for simplicity. The dissipation of the system will

be considered in the numerical simulation using the master equation approach (see Appendix B).

To study the evolution of the system in a simpler way, we apply some mathematical procedures

[25]. Recently, a different operator approach was presented in Ref. [73]. Here our method is more

suitable for analyzing the population inversion in the atom-field polariton basis as discussed below.

As presented in Appendix A, we obtain an effective Hamiltonian of the hybrid system in the

transformed picture given by T = e−βc†c(b†−b) with β = gm/ωm. After some procedures, the

effective Hamiltonian is then given by

HT =
∞∑
n=1

(
ℏ
Ωn

2
σ(n)
z + ℏgpn(σ(n)

− − σ
(n)
+ )(b† − b)

)
+ ℏωmb

†b, (2.5)

where σ(n)
z and σ

(n)
∓ are the polariton Pauli matrices for the polariton states |±, n⟩ of the atom

and the cavity field (see Appendix A), and Ωn =
√
δ2 + 4g2c (n+ 1) is the polariton energy with

δ = ωa − ωc, and gpn = βgc
√
n+ 1 is the effective polariton-phonon coupling strength. This
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effective Hamiltonian will be used throughout this chapter for the interactions among the tripartite.

Therefore, it is clear from the effective Hamiltonian that for a particular polariton state |±, n⟩, the

mechanical mirror couples to these states similar to the JC model.

In the absence of the mechanical mirror, the Hamiltonian is reduced to the JC coupling in the

atom-photon dressed state by taking gm = 0, i. e., gpn = 0. In the presence of the mechanical

mirror, we will show in this chapter interesting results for the atomic population inversion even

if gpn ≪ Ωn. Under the condition ωm + Ωn ≫ gpn ≫ |ωm − Ωn|, we apply rotating-wave

approximation and the transformed Hamiltonian is reduced to

HT =
∞∑
n=1

[
ℏ
Ωn

2
σ(n)
z + ℏgpn(σ(n)

− b† + σ
(n)
+ b)

]
+ ℏωmb

†b. (2.6)

Under the effective Hamiltonian HT , the transformed state vector is defined as |ψT ⟩ = T |ψs⟩

where

|ψ̇T ⟩ = −
i

ℏ
HT |ψT ⟩ . (2.7)

is the time-dependent Schrodinger’s equation.

2.3 Collapse and revival for an initial Fock state in the cavity

2.3.1 Initial mechanical Fock states

We first consider the cavity field is initially in a Fock state |n⟩c, and the mechanical mirror is

in a Fock state |l⟩m, namely |ψs(0)⟩ = |e⟩a |n⟩c |l⟩m. In the transformed picture, the initial state is

given by

|ψT (0)⟩ = e−βn(b†−b) |e⟩a |n⟩c |l⟩m

≈ |e⟩a |n⟩c
(
|l⟩m − βn

√
l + 1 |l + 1⟩m + βn

√
l |l − 1⟩m

)
=
[
cos
(αn

2

)
|+, n⟩+ sin

(αn

2

)
|−, n⟩

] (
|l⟩m − βn

√
l + 1 |l + 1⟩m + βn

√
l |l − 1⟩m

)
.

(2.8)
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From Eq. (2.6), we see that the effective Hamiltonian HT transfers one phonon between the

polariton state, therefore the time-dependent state vector is given by

|ψT (t)⟩ =
l+1∑

k=l−2

c+k |+, n⟩ |k⟩+
l+2∑

k=l−1

c−k |−, n⟩ |k⟩ , (2.9)

where c+l−2(0) = 0, c+l−1(0) = cos
(
αn

2

)
βn
√
l, c−l−1(0) = sin

(
αn

2

)
βn
√
l, c−l (0) = sin

(
αn

2

)
,

c+l (0) = cos
(
αn

2

)
, c−l+1(0) = − sin

(
αn

2

)
βn
√
l + 1, c+l+1(0) = − cos

(
αn

2

)
βn
√
l + 1, and c−l+2(0) =

0. We derive from Schrödinger’s equation (2.7) the time-dependent solutions of the coefficients as

c+k (t) = e−iωm(k+ 1
2
)t
[
c+k (0) cos

(
gpn
√
k + 1t

)
− ic−k+1(0) sin

(
gpn
√
k + 1t

) ]
, (2.10a)

c−k+1(t) = e−iωm(k+ 1
2
)t
[
c−k+1(0) cos

(
gpn
√
k + 1t

)
− ic+k (0) sin

(
gpn
√
k + 1t

) ]
, (2.10b)

where we consider Ωn = ωm for simplicity. The excited state population of the atom is given by

Pe(t) =
l+2∑

k=l−2

∣∣∣c+k (t) cos(αn

2

)
+ c−k (t) sin

(αn

2

) ∣∣∣2. (2.11)

By substituting the expression of c+k (t) and c−k (t) from Eqs. (2.10), we find the population of the

excited state |e⟩a is

Pe(t) ≈ sin2
(αn

2

)[
cos2

(αn

2

)
sin2

(
gpn
√
lt
)
+ sin2

(αn

2

)
cos2

(
gpn
√
lt
)]

+ cos2
(αn

2

)[
cos2

(αn

2

)
cos2

(
gpn
√
l + 1t

)
+ sin2

(αn

2

)
sin2

(
gpn
√
l + 1t

)]

+ 2 cos (ωmt) sin
2
(αn

2

)
cos2

(αn

2

)
cos
(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
,

(2.12)

where we have omitted higher-order terms O(βn) for βn≪ 1. The expression of Pe(t) shows the

feature of polariton interference represented by the cross product sin2
(
αn

2

)
cos2

(
αn

2

)
in the last
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Figure 2.2: Population inversion as a function of time with gc = ωm/2, gm = 0.04ωm, and δ = 0.
(a) Analytical (solid) and numerical (without damping) (dashed) results with the initial state of the
system |e⟩a |0⟩c |0⟩m. (b) Analytical (solid) and numerical (without damping) (dashed) results with
the initial state of the system |e⟩a |0⟩c |1⟩m. (c) Numerical result with dissipation for otherwise the
same situation as in (a). (d) Numerical result with dissipation for otherwise the same situation as
in (b). The other parameters are γa = 10−3, γc = 10−3ωm, γm = 10−5ωm, and n̄th = 5.

line in Eq. (2.12).

Since we have the expression of the population in the excited state, the population inversion is

given by W (t) = 2Pe(t)− 1. Now we consider two limiting cases for our model.

2.3.1.1 Zero atom-field detuning δ = 0

When δ = 0, sin
(
αn

2

)
= cos

(
αn

2

)
= 1√

2
. Therefore, the population is reduced to

Pe(t) =
1

2
+

1

2
cos (ωmt) cos

(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
. (2.13)
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Figure 2.3: Population inversion as a function of time. (a) Analytical (solid) and numerical
(without damping) (dashed) results with the initial state of the system |e⟩a |0⟩c |2⟩m. (b) Ana-
lytical (solid) and numerical (without damping) (dashed) results with the initial state of the system
|e⟩a |0⟩c |3⟩m. (c) Numerical result with dissipation for otherwise the same situation as in (a). (d)
Numerical result with dissipation for otherwise the same situation as in (b). The other parameters
are the same as in Fig. 2.2.

First, we observe that when gm = 0 (gpn = 0), Pe(t) =
1
2
+ 1

2
cos (ωmt), exhibiting Rabi oscillations

in the case of an atom interacting resonantly with a field in a Fock state described by the original

JC model [42].

Second, when the mechanical mirror is initially in the vacuum state, i. e., l = 0, the result

reduces to Pe(t) = 1
2
+ 1

2
cos (ωmt) cos

(
βgc
√
n+ 1t

)
which is presented in the previous work

[68, 74] and also shown in Fig. 2.2(a). In Ref. [68], suppression of Rabi oscillations of the atomic

population has been shown in a hybrid optomechanical system in the single photon strong-coupling

regime (gm ∼ ωm). Here we present a general expression given by Eq. (2.13) for different mechan-

ical states in the single-photon weak coupling regime (gm ≪ ωm). We see from Eq. (2.13) that
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the Rabi oscillations are modified by two cosine functions due to the optomechanical interaction.

This can be understood as the interference of the two polariton states modulated by the mechanical

state. Since gpn
√
l ≪ ωm, the product of the two cosine functions cos

(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
determines the profile of the population inversion. The first collapse time is when the cosine func-

tion with the faster oscillation reaches zero, i.e., tc ≈ π
2gpn

√
l+1

. The population inversion starts

to have the first revival when the cosine function with the slower oscillation has a zero value, i.e.,

tr ≈ π
2gpn

√
l
.

To confirm our analytical result, we plot the population inversion using Eq. (2.13) along with

the numerical results (see Appendix B) in Figs. 2.2(a), 2.2(b) and Figs. 2.3(a), 2.3(b). We observe

a quantitative agreement (both plots are overlapped on each other in the figures) between the two

methods. Moreover, we see collapses and revivals of the population inversion for l > 0 Fock state

of the mechanical mirror when the atom is interacting with a cavity Fock state. The collapse is

due to the interference between two polariton states interacting with the mechanical Fock state for

l > 0. The first collapse and revival times are also in good agreement with our analytical results.

For example, when l = 2, tc ≈ 45/ωm and tr ≈ 56/ωm. Whereas for l = 0 no such an interference

occurs because |0⟩m only interacts with the upper-level polariton state |+, n⟩. We also consider

the population inversion when the dissipation of the system is included as shown in Figs. 2.2(c),

2.2(d), and Figs. 2.3(c), 2.3(d). It is shown that the predicted anomalous collapses and revivals are

also apparent with suppressed amplitudes. The details of the dissipation mechanism are presented

in Appendix B.

2.3.1.2 Non-zero atom-field detuning δ ̸= 0

Now we consider the situation when δ ̸= 0 that the atom-field coupling is non-resonant. First,

when the field-mirror coupling is zero, i. e., gm = 0, then we obtain

Pe(t) = 1− 1

2
sin2 (αn) (1− cos (ωmt)) , (2.14)
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Figure 2.4: Population inversion as a function of time for non-zero atom-field detuning δ =
0.95ωm. (a) Analytical (solid) and numerical results with (dotted) and without (dashed) dissipation
when the initial state of the system is |e⟩a |0⟩c |0⟩m. (b) Analytical (solid) and numerical results
with (dotted) and without (dashed) dissipation when the initial state of the system is |e⟩a |0⟩c |1⟩m.
The other parameters are γa = γc = 10−3ωm, γm = 10−5ωm, and n̄th = 5.

which recovers the original JC model for a single atom interacting nonresonantly with a Fock

state in a cavity [42]. We see from this expression that for αn ≈ 0 or π, Pe ≈ 1, i. e., the atomic
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population will mostly stay in the excited state. Second, when we consider gpn ̸= 0 and the atom-

field interaction is far-detuned from the atomic transition frequency such that δ ≫ 2gc
√
n+ 1, then

for δ > 0, we have αn ≈ 0, and for δ < 0, we have αn ≈ π. In these situations, the mechanical

mirror couples to the two-level atom through an effective JC interaction since the polariton states

are approximately equivalent to the atomic states. In the former situation, we have

Pe(t) ≈ 1− sin2
(
gpn
√
l + 1t

)
. (2.15)

This result is not trivial since in the far-detuned case of a JC model without a mechanical mirror,

the population of the excited state will mostly stay in that state as shown in Eq. (2.14). However,

with the assistance of the mechanical mirror, the atom can undergo Rabi oscillations resonantly

from level |e⟩a to level |g⟩a by creating a photon into the cavity and a phonon into the mechanical

mirror, i. e. |e⟩a |0⟩c |l⟩m → |g⟩a |1⟩c |l + 1⟩m. In the latter case, we have

Pe(t) ≈ 1− sin2
(
gpn
√
lt
)
. (2.16)

Similarly, the atom is able to oscillate between the excited state |e⟩a and the ground state |g⟩a

with the field coupled to the mechanical mirror. In this case, the atom will create a photon and

destroy a phonon by going from |e⟩a to |g⟩a due to the energy conservation, i. e. |e⟩a |0⟩c |l⟩m →

|g⟩a |1⟩c |l − 1⟩m. In Fig. (2.4), we show the population inversion using the analytical expression

Eq. (2.15)and the numerical results with and without dissipation. These plots show good agree-

ment between the analytical and numerical results and it can be seen that the optomechanically-

induced Rabi oscillation is persistent in the presence of dissipation.

2.3.2 Initial mechanical coherent states

In this subsection, we consider the case when the mechanical mirror is in a coherent state |γ⟩m

in which the other initial conditions are the same as in the previous subsection.
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Figure 2.5: Population inversion as a function of time for non-zero atom-field detuning δ = 0.95ωm

where the mechanical mirror is initially in a coherent state |γ⟩m. The initial state of the system is
|e⟩a |0⟩c |γ⟩m. Mean number of phonons is (a) |γ|2 = 3 and (b) |γ|2 = 6. γa = γc = 10−4ωm,
γm = 10−5ωm. The other parameters are the same as in Fig. 2.2.

In the transformed picture, the initial state of the system is

|ψT (0)⟩ = e−βn(b†−b) |e⟩a |n⟩c |γ⟩m

≈
∞∑
l=0

Cm
l

[
cos
(αn

2

)
|+, n⟩+ sin

(αn

2

)
|−, n⟩

]
×
[
|l⟩m − βn

√
l + 1 |l + 1⟩m + βn

√
l |l − 1⟩m

]
,

(2.17)
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where Cm
l = e−|γ|2/2γl/

√
l! is the coefficient of the coherent state of the mechanical mirror. The

time-dependent state vector is

|ψT (t)⟩ =
∞∑
l=0

c+l (t) |+, n⟩ |l⟩+ c−l (t) |−, n⟩ |l⟩ , (2.18)

where c+l−2(0) = 0, c+l−1(0) = Cm
l cos

(
αn

2

)
βn
√
l, c−l−1(0) = Cm

l sin
(
αn

2

)
βn
√
l, c−l (0) = Cm

l sin
(
αn

2

)
,

c+l (0) = Cm
l cos

(
αn

2

)
, c−l+1(0) = −Cm

l sin
(
αn

2

)
βn
√
l + 1, c+l+1(0) = −Cm

l cos
(
αn

2

)
βn
√
l + 1,

and c−l+2(0) = 0.

The general analytical expression of the population of the excited state is quite cumbersome.

Therefore, we study the case of far-detuned atom-cavity interaction.

When the cavity field is far-detuned from the atomic transition frequency in the hybrid system,

the mechanical mirror can couple to the two-level atom through an effective JC interaction if the

mechanical frequency is close to the polariton frequency as discussed in Sec. 2. 3. 1. 2. Therefore,

for an initial coherent state of the mechanical mirror, we expect the atomic population inversion to

exhibit collapse and revival in an exact manner as the original JC model. For δ > 0, the excited

state population in this case is given by

Pe(t) ≈
∞∑
l=0

pml

[
1− sin2

(
gpn
√
l + 1t

)]
, (2.19)

where pml = |Cm
l |2 is the initial probability of the mechanical mirror in the phonon number state

|l⟩m. For the case when δ < 0, the excited state population is

Pe(t) ≈
∞∑
l=0

pml

[
1− sin2

(
gpn
√
lt
)]
. (2.20)

These expressions of the excited state population are similar to that in the original JC model [42].

In Figs. 2.5(a) and (b), we compare the analytical solution of the population inversion Eq. (2.20)

to the numerical solutions with and without dissipation for two different mean number of phonons

of the mechanical mirror. Figs. 5(a) and 5(b) show good agreements between the analytical and
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the numerical results.

We conclude in this section that for an atom interacting with a Fock state cavity field, anoma-

lous population inversion of the atom can be induced by coupling the field to a mechanical mirror.

Our treatment can be extended to any other initial states of the mechanical mirror.

2.3.3 Initial mechanical thermal states

In order to make our model more relevant to experiments [13, 14, 15, 16, 17, 19], we consider

that the mechanical mirror is initially in a mixture of different Fock states. The initial state of the

mechanical mirror in this case can be represented by the density operator ρm(0) and we assume

that the atom is initially in its excited state and the cavity field is in a Fock state. The initial state

of the total system can be described by the following density operator

ρ(0) = ρp(0)⊗ ρm(0), (2.21)

where ρp(0) is the initial state of the atom-field subsystem. The evolution of the system is described

by the master equation

ρ̇ = − i
ℏ
[V , ρ], (2.22)

where V is the Hamiltonian of the system in the interaction picture (see Appendix C). The formal

solution of this equation can be written as

ρ(t) = U(t)ρ(0)U †(t), (2.23)

where U(t) is the time evolution operator of the system (see Appendix C). After getting the density

operator of the total system ρ(t), the density operator of polariton state can be found by tracing

over the mirror states as

ρp(t) = Trmρ(t) =
∞∑
k=0

⟨k| ρ(t) |k⟩ . (2.24)
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From the above equation, the density matrix elements of the polariton state can then be calculated

from the following equation

ρpij(t) =
∞∑
k=0

⟨k, n, i| ρ(t) |j, n, k⟩ , (2.25)

where i, j ≡ +,−.

By transforming the state |e, n⟩ to the interaction picture as

|e, n⟩I = U †
0(t) |e, n⟩ , (2.26)

it is straightforward to show that Pe(t) when δ = 0 and Ωn = ωm can be calculated using the

following equation

Pe(t) =
1

2

[
ρp++(t) + ρp−−(t) + eiωmt ρp+−(t) + e−iωmt ρp−+(t)

]
. (2.27)

By calculating the density matrix elements of the polariton state (see Appendix C), it follows that

the excited state population when the mirror is initially in a mixed state is given by

Pe(t) =
∞∑
l=0

pl

[
1

2
+

1

2
cos (ωmt) cos

(
gpn
√
lt
)
cos
(
gpn
√
l + 1

)]
, (2.28)

where pl is the phonon distribution. In Figs. 2.6(a)-(c), we show the analytical (Eq. (2.28))

and numerical (Eq. (B.3)) solutions of the population inversion without dissipation for an initial

thermal mechanical state, where the mean phonon number is l̄ and pl = l̄l

(l̄+1)l+1 . It can be seen

from Figs. 2.6(a)-2.6(c) that the population inversion behavior converges to the same case when

the mechanical mirror is in its ground state |0⟩m as mean number of thermal phonons becomes

very small i. e., l̄≪ 1. For finite mean thermal phonon number, the population inversion collapses

slower and the revival amplitude becomes smaller due the mixture of different contributions in Eq.

(2.28)).
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Figure 2.6: Population inversion as a function of time where the mechanical mirror is initially
in a mixed state. (a) Analytical (solid) and numerical (without damping) (dashed) results with
mean number of thermal phonons l̄ = 0.2. (b) Analytical (solid) and numerical (without damping)
(dashed) results with mean number of thermal phonons l̄ = 0.6. (c) Numerical result with dissipa-
tion for otherwise the same situation as in (a). (d) Numerical result with dissipation for otherwise
the same situation as in (b). The other parameters are the same as in Fig. 2.2.

Another interesting situation appears when l̄ ≪ 1, which has been realized in recent experi-

ments [13, 14, 15, 16, 17, 19]. We approximate the initial thermal state of the mechanical mirror

as

ρm(0) ≃ p0 |0⟩ ⟨0|+ p1 |1⟩ ⟨1| , (2.29)

where p0+ p1 ≃ 1. If we consider a single phonon excitation on this state, then the resultant initial

state of the mechanical mirror becomes

ρm(0) ≃ 1

N

(
p0 |1⟩ ⟨1|+ 2 p1 |2⟩ ⟨2|

)
, (2.30)
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where N = p0 + 2p1 is a normalization constant. The above state approximates to |1⟩m when p1

approaches zero. Using the initial state (2.30), the excited state population in this case becomes

Pe(t) =
1

N

[
p0
2

(
1 + cos (ωmt) cos(gpnt) cos(gpn

√
2t)

)
+ p1

(
1 + cos (ωmt) cos(gpn

√
2t) cos(gpn

√
3t)

)]
.

(2.31)

In the limit of very small mean number of phonons l̄ ≪ 1, the result (2.31) becomes very close to

the result shown in Fig. 2.2(b) where the initial state of the mechanical mirror is |1⟩m. Therefore,

anomalous features on the population inversion in the presence of an optomechanical mirror may

still be observable even if the initial mechanical state is in a mixed state.

2.4 Collapse and revival for a coherent cavity field

We now consider the case when initially the cavity field is in a coherent state |α⟩c, and the

mechanical mirror is in a Fock state |l⟩m. Similar to the treatment in the previous section, the

initial state vector in the transformed picture is given by

|ψT (0)⟩ = e−βc†c(b†−b) |e⟩a |α⟩c |l⟩m

≈ |e⟩a |α⟩c |l⟩m

=
∞∑
n=0

Cc
n

[
cos
(αn

2

)
|+, n⟩+ sin

(αn

2

)
|−, n⟩

]
|l⟩m

(2.32)

where we consider |α|β ≪ 1 such that the mean displacement of the mirror due to the coherent

state is negligible. Cc
n = e−|α|2/2αn/

√
n! is the coefficient of the coherent state of the field |α⟩c.

In this situation, we consider the mechanical mirror interacts resonantly with one of the polari-

ton states |±, s⟩ such that ωm = Ωs. It also interacts nonresonantly with the other polariton states

|±, n⟩ with n ̸= s. When the mechanical mirror is in a Fock state and interacts resonantly with a

polariton state, the excited state population is given by Eq. (2.12). For the nonresonant interaction

case, we provide the derivation of the excited state population for the atom in Appendix C.
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Figure 2.7: Population inversion as a function of time when the cavity field is initially in a coherent
state |α⟩c. Mean number of photons |α|2 = 7, gc = ωm/2

√
s+ 1, gm = 0.02ωm, δ = 0, and s = 7.

The initial state of the system is (a) |e⟩a |α⟩c |0⟩m, (b) |e⟩a |α⟩c |1⟩m, (c) |e⟩a |α⟩c |2⟩m, and (d)
|e⟩a |α⟩c |3⟩m. The other parameters are the same as in Fig. 2.2.

Since different polariton states do not couple to each other, the excited state population can be

given as a sum of these contributions, i. e.,

Pe(t) = pcs P
s
e (t) +

∞∑
n=0
n̸=s

pcn P
n
e (t), (2.33)

where pcn = |Cc
n|2 is photon number distribution of the cavity field. The first term in Pe(t) is

the contribution due to the resonant interaction between the mechanical mirror and the polariton

states |±, s⟩, while the second term is the contribution due to the non-resonant interaction between
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the mechanical mirror and the other atom-field polariton states |±, n ̸= s⟩. For the nonresonant

contributions, we can check two interesting limits. First, when ∆n = 0, P n
e in Eq. (2.33) reduces

to the resonant case given by Eq. (2.13). Second, when the mirror frequency is far out of resonance

to the polariton states, i. e. ∆n ≫ gpn, the expression of P n
e reduces to 1 + cos(Ωnt) which is the

result of original JC model. We note that, in general, the result of Eq. (2.33) can be extended for

an arbitrary initial photon number distribution.

In Fig. 2.7, we show the atomic population inversion for an initial excited state of the atom,

initial coherent cavity field with mean number of photons |α|2 = 7, and different initial Fock

states of the mechanical mirror. We consider the parameters such that the mechanical mirror is

interacting resonantly with the polariton states |±, s = 7⟩, the most populated initial polariton

states. In order to see the effect of the mechanical mirror being in various Fock states, we compare

both the analytical result Eq. (2.33) and the numerical results to the original JC model without a

mechanical mirror. It can be seen that the mechanical mirror induces oscillations in the collapse

region predicted by the original JC model and the amplitude of these oscillations increases as the

mechanical mirror is initially in a larger Fock state. We also observe that the mechanical mirror

reduces the amplitude of the revival oscillations compared to the original JC model. Therefore,

we conclude that due to the optomechanical coupling, the population inversion shows anomalous

oscillations.

2.5 Conclusion

In this chapter, we have studied the atomic population inversion for an initially excited two-

level atom in an optomechanical cavity for different initial states of the cavity field and the mechan-

ical mirror. We have derived analytical expressions for the population inversion in various cases

and compared them with the numerical calculations with and without dissipation. Our results

showed that the population inversion exhibits anomalous oscillations induced by the mechanical

mirror. In general, the population inversion can display the collapse-and-revival feature induced by

the mechanical mirror even if the cavity field is initially prepared in a Fock state. While for a co-

herent state cavity field, the population inversion can present small oscillations in the first collapse
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region in the original JC model. The amplitude of these oscillations increases as the mechanical

mirror is in a larger Fock state. We also considered the case of having the mechanical mirror

initially in different mixed states. We showed that the population inversion approaches the case

of initial mechanical Fock states when the initial mean thermal phonon number is much smaller

than one. As the mean thermal phonon number increases, the population inversion exhibits slower

collapse and smaller revival amplitudes.

Our findings may be useful for distinguishing different quantum states of a mechanical mirror

in a cavity, which may deserve a further study in the future.

29



3. QUANTUM STATE RECONSTRUCTION OF A MECHANICAL MIRROR IN A HYBRID

SYSTEM

3.1 Introduction

Cavity optomechanics is a rapidly developing area of research [10] which explores the interac-

tion between electromagnetic fields and mechanical states of motion via radiation-pressure forces

[72, 75, 76]. Numerous research studies in cavity optomechanics cover a wide variety of prob-

lems such as ground state cooling [12, 16, 18, 15, 13, 14, 19, 20, 21], generation of macroscopic

quantum superposition in optomechancial systems [22, 23, 24, 25], and creation and verification

of quantum entanglement [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Quantum state reconstruction of the mechanical states of motion plays a very crucial role in

revealing and understanding various non-classical properties and aspects in different cavity op-

tomechanical systems [77]. Recently, several reconstruction schemes have been introduced to

reconstruct motional mechanical states in cavity optomechanics. A mechanical state tomography

scheme [38] is based on sending short optical pulse to enter an optomechanical cavity. The accu-

mulated phase of the output pulse is measured to obtain information about the oscillator quadra-

tures. Mechanical state tomography based on a back-action-evading interaction has been experi-

mentally demonstracted to accurately measure the position of the mechanical oscillator [39].

Another interesting reconstruction scheme was introduced in which an optomechanical cavity

is coupled to an outside continuous field [40]. Detection of a single photon emission and scattering

spectrum [78] is used to measure the quantum state of the mechanical mirror in the system. Due

to the large coupling strength between the cavity field and the mechanical mirror, effect of the

mechanical motion strongly affects the detected emission and scattering spectra of the photon, and

thus enabling an extraction of accurate information about the initial state of the mechanical mirror.

However, this method works well only when the optomechanical coupling strength is strong, but

fails in the weak coupling regime.
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A number of researches investigate using atoms as a measurement tool for the quantum states

of cavity fields[79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]. A measurement scheme [80]

was introduced to reconstruct the quantum state of a light field using a beam of two-level atoms

initially prepared in a coherent superposition of their excited and ground states. In this scheme, a

beam of two-level atoms is sent in an optical cavity to interact with a quantized electromagnetic

field inside and the probability of detecting the atoms in the excited states is measured after the

atoms exit the cavity. By controlling the phase difference between the two states of the atom and

varying the interaction time, the complete quantum state of the cavity field can be reconstructed

by solving a system of linear equations. Similarily, using atom as a detector, one can also measure

the quantum state of a nanomechanical oscillator in an optomichanical system [41]. The atom

is coupled to an optical field via a Raman transition and to the nanomechanical oscillator via a

magneticsublevel-phonon interaction [41]. Since the atom is directly coupled to the nanomechan-

ical oscillator, measurement of the probability of the atom to be in its ground state directly gives

the Wigner function of the nanomechanical oscillator. This method is an interesting extension of

the idea of nonlinear atom homodyne [81] which was developed to measure the quantum state of

a single mode field.

In this chapter, we propose a scheme to detect the full quantum state of a mechanical os-

cillator in a hybrid optomechanical system. Our method is also based on the use of a beam

of two-level atoms as detector for the state of the mechancial oscillator. Instead of using direct

magneticsublevel-phonon coupling as in Ref. [41], the atoms can indirectly couple to the mechan-

ical mirror in our system via the polariton-phonon coupling. In our method, the atom is initially

considered in the excited state while the cavity field is in vacuum state. We show that by measuring

the probability of the atoms being in the excited state for different interaction times after passing

through the cavity, it is possible to reconstruct the initial state of the mechanical mirror by inverting

a simple system of linear equations. Although stronger optomechanical coupling strength can have

better reconstruction quality, our method does not require the coupling strength to be ultrastrong.

This chapter is organized as follows: In Sec. 3.2, we introduce the suggested model to measure
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the state of the mechanical mirror. In Sec. 3.3, we derive the excited state probability of the atom

when the atom passes through the optomechanical cavity. In Sec. 3.4, we show how to measure

the full quantum state of the mechanical mirror. Finally, we summarize the results.

3.2 The model

We consider an optomechanical system consisting of an optical cavity with a fixed mirror on

one side and a mechanical mirror on the other side of the cavity. The position of the mechanical

mirror is described by x = x0(b+ b†) where x0 is the zero point position of the mechanical mirror

and it is given by x0 =
√
ℏ/2mωm. Here b(b†) is the mechanical mirror annihilation (creation)

operator and m and ωm are the mass and frequency of the mechanical mirror, respectively. The

cavity field is weakly coupled to the mechanical mirror via the radiation pressure coupling. To

detect the quantum state of the mechanical mirror, we consider a beam of two level atoms entering

the cavity to interact with the quantized field inside the cavity and the probability of finding the

atom in the excited state is measured for different interaction times.

The total Hamiltonian describing the system depicted in Fig. 3.1 is

H = H0 +HI , (3.1)

whereH0 andHI are the free and interaction parts of the system’s Hamiltonian, respectively. The

free part of the Hamiltonian can be written as

H0 = ℏωcc
†c+ ℏ

ωa

2
σz + ℏωmb

†b, (3.2)

where the first term in Eq. (3.2) describes the Hamiltonian of the cavity field with frequency ωc.

The second and third terms in Eq. (3.2) represent the Hamiltonian of the two-level atom with

transition frequency ωa and the mechanical mirror with fundamental oscillation frequency ωm,

respectively. Here c(c†) is the annihilation (creation) operator of the cavity field. The interaction
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Figure 3.1: Quantum state reconstruction using atom as detector in the hybrid optomechanical
system.

part of the Hamiltonian in Eq. (3.1) is given by [67, 92]

HI = −iℏgc(σ+c− c†σ−)− ℏgmc†c(b† + b). (3.3)

The first term in Eq. (3.3) describes the interaction between the two-level atom and the cavity field.

The second term describes the interaction between the cavity field and the mechanical mirror via

the radiation pressure coupling. The coefficients gc and gm are the coupling strengths of the atom-

field and the cavity field-mechanical mirror interaction, respectively. The coefficient gm is defined

as gm = (ωc/L)
√
ℏ/2mωm where L is the length of the cavity and σ+ = |e⟩ ⟨g| and σ− = |g⟩ ⟨e|

are the atomic raising and lowering operators, respectively.

In the weak mechanical coupling limit, the Hamiltonian of the system can be simplified [67,
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92] so that the system’s dynamics can be treated analytically. The Hamiltonian is reduced in

such a way that the mechanical mirror is coupled to a specific polariton state |±, n⟩ in a Jaynes-

Cummings (JC)-like coupling where |+, n⟩ = cos(αn/2)|e, n⟩+i sin(αn/2)|g, n+1⟩ and |−, n⟩ =

sin(αn/2)|e, n⟩−i cos(αn/2)|g, n+1⟩with tanαn = 2gc
√
n+ 1/δ and δ = ωa−ωc is the detuning

between the transition frequency of the two-level atom and the frequency of the cavity field. The

rotating-wave approximation under the condition ωm + Ωn ≫ gpn ≫ |ωm − Ωn| can be applied.

Therefore transformed Hamiltonian in the linear approximation is reduced to [67, 92]

HT =
∞∑
n=1

[
ℏ
Ωn

2
σ(n)
z + ℏgpn

(
σ
(n)
− b† + σ

(n)
+ b
)]

+ ℏωmb
†b, (3.4)

where Ωn =
√
δ2 + 4g2c (n+ 1) describes the energy of the polariton with photon number n, and

gpn = βgc
√
n+ 1 is the effective coupling between the polariton and the mechanical mirror. σ(n)

z

and σ
(n)
∓ are the polariton Pauli matrices for the polariton states |±, n⟩. It is clearly seen that

in the dressed state picture the polariton effectively couples to the phonons. Using the effective

Hamiltonian shown in Eq. (3.4), we can solve the dynamics of the system using the time-dependent

Schrödinger’s equation

|ψ̇T ⟩ = −
i

ℏ
HT |ψT ⟩ , (3.5)

where |ψT ⟩ = T |ψs⟩ is the transformed state of the total system with T = e−βc†c(b†−b) and |ψs⟩ the

untransformed state of the system. By solving Eq. (3.5), we can obtain the population dynamics

of the atom which encodes the information of the mechanical mirror. Therefore, it is possible to

reconstruct the quantum state of the mechanical mirror by measuring the atomic population.

3.3 Excited state probability

When the atoms pass through the cavity, the population in the excited state can be modified

by the cavity field and the mechanical mirror phonon. It is therefore possible to measure the

quantum state of the mechanical mirror from the atomic excited state probability. In this section,
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we calculate the evolution of the excited state probability and show how we can measure the

quantum state of the mechanical mirror.

We assume that the mechanical mirror is in an unknown superposition state |ψmirror⟩ =
∑∞

l=0 ul|l⟩

where ul is unknown amplitude to be determined and it satisfies that
∑∞

l=0 |ul|2 = 1. We first con-

sider the general case where the two-level atom is initially in a superposition of the excited state

|e⟩ and the ground state |g⟩, i.e., |ψatom(0)⟩ = ce |e⟩+ cg |g⟩ with |cg|2 + |ce|2 = 1, and the cavity

field is in the state |ψcavity(0)⟩ =
∑∞

n=0wn|n⟩ with
∑∞

n=0 |wn|2 = 1. The initial state of the total

system can then be written as

|ψs(0)⟩ =
∞∑
n=0

∞∑
l=0

wnul

(
ce |e, n⟩+ cg |g, n⟩

)
|l⟩ . (3.6)

The initial state (3.6) in the transformed picture is given as |ψT (0)⟩ = e−βn (b†−b) |ψs(0)⟩. For

βn ≪ 1, the initial state |ψT (0)⟩ ≈ |ψs(0)⟩. Using the dressed state bases of the atom-field

subsystem, the system’s initial state can be rewritten as

|ψ(0)⟩ = w0cg

∞∑
l=0

ul |g, 0⟩ |l⟩

+
∞∑
n=0

∞∑
l=0

ul

[(
cewn cos

(αn

2

)
− icgwn+1 sin

(αn

2

))
|+, n⟩

+

(
cewn sin

(αn

2

)
+ icgwn+1 cos

(αn

2

))
|−, n⟩

]
|l⟩ .

(3.7)

It is clear that the effective Hamiltonian (3.4) can lead to transitions such that |+, n⟩ |l⟩ ←→

|−, n⟩ |l + 1⟩. The state of the system at time t is therefore given by

|ψ(t)⟩ =
∞∑
l=0

C
g

0,l(t) |g, 0⟩ |l⟩+
∞∑
n=0

C
−

n,0(t) |−, n⟩ |0⟩

+
∞∑
n=0

∞∑
l=0

[
C

+

n,l(t) |+, n⟩ |l⟩+ C
−

n,l+1(t) |−, n⟩ |l + 1⟩
]
.

(3.8)

where Cg

0,l(t) is the probability amplitude that the atom is in the ground state and the field is
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in the vacuum state with the mechanical mirror being in the state |l⟩, and C+

n,l(t) (C−

n,l(t)) is the

probability amplitude that the polariton being in the state |+, n⟩ (|−, n⟩) and the mechanical mirror

being in the state |l⟩. The equations of motion for the probability amplitudes can be derived from

the time-dependent Schrödinger’s equation. A solution of these coupled equations can give the

following expressions

C
g

0,l(t) = 0, (3.9a)

C+
n,l(t) = e−iωm(l+ 1

2
)t

[
C+

n,l(0) cos
(ωnl

2
t
)
− i∆n

ωnl

C+
n,l(0) sin

(ωnl

2
t
)

− 2i
gpn
√
l + 1

ωnl

C−
n,l+1(0) sin

(ωnl

2
t
)]

, (3.9b)

C−
n,l+1(t) = e−iωm(l+ 1

2
)t

[
C−

n,l+1(0) cos
(ωnl

2
t
)
+ i

∆n

ωnl

C−
n,l+1(0) sin

(ωnl

2
t
)

− 2i
gpn
√
l + 1

ωnl

C+
n,l(0) sin

(ωnl

2
t
)]

(3.9c)

C−
n,0(t) = e

iΩn
2

tC−
n,0(0), (3.9d)

where ∆n = Ωn−ωm and ωnl =
√

∆2
n + 4g2pn(l + 1). For resonant atom-field interaction (δ = 0),

sin
(
αn/2

)
= cos

(
αn/2

)
= 1/

√
2. In this case, the probability to find the atom in the excited state

can be calculated from the following equation

Pe(t) =
1

2

∞∑
n=0

∞∑
l=0

∣∣∣C+

n,l(t) + C
−

n,l(t)
∣∣∣2. (3.10)

If we consider the atom to be initially prepared in the excited state, i. e., ce = 1 and cg = 0,

and the cavity field is in the vacuum state, i. e., w0 = 1 and wn = 0 for n ̸= 0. The atomic

population inversion defined by W (t) = 2Pe(t) − 1 follows directly by substituting the solutions

of the probability amplitudes from Eqs. (3a)-(3d) into Eq. (3.10). The resulting expression for
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W (t) is

W (t) =
∞∑
l=0

[
cos
(
gp0
√
lt
)
cos
(
gp0
√
l + 1t

)
cos
(
ωmt

)
al

+ sin
(
gp0
√
l + 1t

)
sin
(
gp0
√
l + 2t

)(
Re (bl) cos(ωmt)− Im (bl) sin

(
ωmt

)
)
)

+

(
cos
(
gp0
√
l + 2t

)
− cos

(
gp0
√
lt
))

sin
(
gp0
√
l + 1t

)
×
(
Re (cl) sin(ωmt) + Im (cl) cos(ωmt)

)]
,

(3.11)

where for simplicity sake, we considered Ω0 = 2gc = ωm. The coefficients al, bl, and cl are given

by

al =
∣∣ul∣∣2, bl = ulu

∗
l+2, cl = ulu

∗
l+1. (3.12)

The coefficient al gives the probability distribution of the initial state of the mechanical mirror

while the phase information of the mirror’s state is contained in either bl or cl depending on what

the mirror’s initial state is. In the next section, we show how the initial state of the mechanical

mirror can be reconstructed using Eq. (3.11).

3.4 Quantum state reconstruction of the mechanical mirror

In order to reconstruct the full initial state of the mechanical mirror, we need to find the co-

efficients al, bl and cl in Eq. (3.11). From Eq. (3.11), we see that we have an infinite number of

the coefficients al, bl, and cl. We can truncate the infinite summation over the number of phonons

l in Eq. (3.11) to a maximum number lmax such that lmax ≫ l̄, where l̄ is the average number of

phonons. Since al is a real number but both bl and cl are complex number, the unknown variables

for each l is 5 (al,Re[bl], Im[bl],Re[cl], Im[cl]). For a cutoff lmax, the total number of unknown

variables is 5(lmax + 1). Therefore, to determine all the unknown variables, we need to measure

W (t) for at least 5(lmax + 1) interaction times. For each value of tk (k = 1, 2, · · · , 5(lmax + 1)),
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the expression for the inversion is given by

W (tk) =
lmax∑
l=0

[
Al(tk) al +Bl(tk) Re (bl) + Cl(tk) Im (bl)

+Dl(tk) Re (cl) + El(tk) Im (cl)
]
,

(3.13)

where al,Re[bl], Im[bl],Re[cl], Im[cl] are unknown variables to be determined and

Al(tk) = cos
(
gp0
√
ltk

)
cos
(
gp0
√
l + 1tk

)
cos
(
ωmtk

)
(3.14a)

Bl(tk) = sin
(
gp0
√
l + 1tk

)
sin
(
gp0
√
l + 2tk

)
cos(ωmtk) (3.14b)

Cl(tk) = − sin
(
gp0
√
l + 1tk

)
sin
(
gp0
√
l + 2tk

)
sin(ωmtk) (3.14c)

Dl(tk) =
[
cos
(
gp0
√
l + 2tk

)
− cos

(
gp0
√
ltk

)]
sin
(
gp0
√
l + 1tk

)
sin(ωmtk) (3.14d)

El(tk) =
[
cos
(
gp0
√
l + 2tk

)
− cos

(
gp0
√
ltk

)]
sin
(
gp0
√
l + 1tk

)
cos(ωmtk). (3.14e)

Eq. (3.13) can be further written as the matrix form

W = MX, (3.15)

where W is a 5(lmax +1)-dimensional vector which contains the experimental data of the popula-

tion inversion, i.e., W = (W (t1),W (t2), · · · ,W (t5(lmax+1))
T . The vector X contains the unknown

coefficients which need to be determined to reconstruct the initial state of the mechanical mirror

and it is defined as X ≡ (X0,X1, · · · ,X5(lmax+1))
T with Xl =

(
al,Re (bl), Im (bl),Re (cl), Im (cl)

)T

.

The matrix M is preknown and it is given by

Mk l = Al(tk) +Bl(tk) + Cl(tk) +Dl(tk) + El(tk), (3.16)

where the elements of this matrix are defined in Eqs. (13a)-(13d), and k, l = 1, 2, ..., 5(lmax + 1).

Having W and M we can either use matrix inversion or least Square fitting method to obtain the
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solutions for X which contains both the probability and phase information of the mirror’s state.

Extracting the values of al from the vector X directly yields the phonon probability distribution

of the mechanical mirror. The phase of the mechanical mirror can be obtained from other elements

of the vector X. In what follows we explain the procedure of reconstructing the phase of the

mirror’s state. When we look at Eq. (3.11), we see that it contains terms of the product of different

amplitudes, i.e., ulu∗l+1 and ulu∗l+2. These terms contain the phase of the amplitude from which

we can reconstruct the phase of the quantum state of the mechanical mirror. Since al = |ul|2 and

cl = ulu
∗
l+1, we have cl =

√
alal+1e

−i(φl+1−φl) where the amplitude ul = |ul|eiϕl . Therefore, the

phase difference between the probability amplitude ul and its first neighbor ul+1 is given by

∆φl+1 = φl+1 − φl = arctan
[−Im

(
cl
)

Re
(
cl
) ]. (3.17)

Hence, the phase can be determined from cl. In certain cases some elements may be missing and

the phase difference between neighboring elements is undefined. For example, in the squeezed

vacuum, only even photon number has nonzero amplitude. In this case, cl = 0 and the phase can

not be reconstructed. Fortunately, we can use al and bl to determine the phase difference between

the next-nearest-neighbor elements. We have bl = ulu
∗
l+2 =

√
alal+2e

−i(φl+2−φl). Then the phase

difference between two neighboring bases is given by

∆φl+2 = φl+2 − φl = arctan
[−Im

(
bl
)

Re
(
bl
) ]. (3.18)

By solving bl, one can reconstruct the phase of squeezed vacuum.

In the following, we apply our scheme to three examples of the mechanical state and examine

different conditions in which this scheme can work to reconstruct the initial state of the mechanical

mirror.
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3.4.1 Coherent state

Supposing that the initial state of the mechanical mirror is a coherent state and it can be written

as

|ψmirror(0)⟩ = e−l̄/2

∞∑
l=0

l̄
l/2

√
l!
|l⟩ , (3.19)

where l̄ is the average phonon number. The exact probability distribution of phonons is given by

P (l) =
l̄
l
e−l̄

l!
(3.20)

which is a Poisson distribution. From Eq. (3.19), we know that ul = e−l̄/2 l̄
l/2
/
√
l! and the

population inversion can be calculated from Eq. (3.11) for an arbitrary time. To reconstruct the

quantum state of the mechanical mirror, we need to choose a value of the cutoff lmax and measure

W (t) for 5(lmax + 1) discrete times. Then we use the least square method to fit the unknown

variables X from Eq. (3.15). In Fig. 3.2(a), we compare the reconstructed probability distribution

of phonons with the exact distribution Eq. (3.20) with l̄ = 3 for two different cutoffs (lmax = 8 and

15). In this example, we fix the coupling ratio to be gm/ωm = 0.07. The solid curve represents the

exact probability distribution of phonons, the triangles correspond to the reconstructed probability

distribution when lmax = 8, and the points correspond to the reconstructed probability distribution

when lmax = 15. It is clearly seen that in both cases (lmax = 8 and 15) the reconstructed results of

the probability distribution of phonons are close to the exact distribution. More importantly, when

the the cutoff lmax is increased, the quality of reconstruction apparently improves. In pratice, the

cutoff lmax is chosen such that the phonon distribution is negligible when l > lmax.

Fig. 3.2(b) shows the effect of increasing the optomechanical coupling strength gm on the

quality of reconstruction while lmax is fixed. Here, the averge phonon number is l̄ = 3 and lmax is

set to be 12. When gm/ωm = 0.06, the reconstructed probability distribution is close to the exact

distribution but most points are still deviating from the exact probability distribution (the solid

curve).
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Figure 3.2: Reconstruction of initial mechanical coherent state. (a) Comparison between the ex-
act and reconstructed probability distribution of phonons for two different values of lmax with
gm/ωm = 0.07. (b) Comparison between the exact and reconstructed probability distribution of
phonons for two different coupling strength with lmax = 12. Mean number of phonons l̄ = 3.

However, when the optomechanical coupling is increased to gm/ωm = 0.09, the result of

reconstruction is clearly approaching the exact probability distribution. Therefore, increasing the

optomechanical coupling strength leads to extracting a more accurate information about the initial
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state of the mechanical mirror. We should emphasize that the optomechanical coupling strengths

in the considered examples are in the weak coupling regime. This is different from the method

presented in [40] where strong optomechanical coupling is needed to reconstruct the initial state

of the mechanical mirror, i.e., gm/ωm > 1.

3.4.2 Arbitrary quantum state with phase

In the previous subsection, we considered that the initial state has real amplitudes. In this

subsection we show how to reconstruct a general quantum state when both probability and phase

are included. A general quantum state can be expanded as a superposition of Fock state. Here, as

an example, we consider that the initial state of the mechanical mirror is a superposition of four

Fock states |0⟩, |1⟩, |2⟩, and |3⟩ with a phase difference between neighboring Fock states.

|ψmirror(0)⟩ =
1√
10

(√
3 |0⟩+ eiπ/5 |1⟩+

√
5 eiπ/3 |2⟩+ eiπ/4 |3⟩

)
(3.21)

In order to extract the full quantum state of the mechanical mirror, we solve Eq. (3.15) for a trun-

cated maximum number of phonons lmax. In this example, we chose lmax = 4 which means the

atomic population inversion is measured for 5(lmax+1) = 25 discrete interaction times. From Eq.

(3.15), we can construct a linear system of equations using the measured data of the atomic popu-

lation inversion W (tk) along with Eqs. (3.14a)-(3.14d). We solve this system of linear equations

by simple matrix inversion to reconstruct the initial state of the mechanical mirror. The values of

al which are contained in the vector X yields the probability of the mirror’s quantum state while

the real and imaginary parts of cl can be used to reconstruct the phase difference between the

neighboring Fock states.

In Fig. 3.3(a), we compare the exact values of the phonon number distribution of the initial

state of the mirror 1/10
(
3, 1, 5, 1

)T with the reconstructed values for two different values of the

ratio between the optomechanical coupling and the oscillation frequency of the mechanical mirror,

i.e., gm/ωm = 0.02 and 0.05. The reconstructed values of the probability clearly converges to the

exact values as gm/ωm increases.
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Figure 3.3: Comparison between the exact and reconstructed probability distribution of phonons
(a) and the phase difference ∆φl+1 (b) where the initial state of the mechanical mirror is given by
Eq. (3.21) for two different ratios between the optomechanical coupling gm and the mechanical
frequency ωm.

This is similar to the reconstruction of the coherent state and it is because stronger coupling

strength can project more information from the mechanical mirror to the atom. The phase re-

construction is shown in Fig. 3.3(b) where we can see that the reconstructed values of the phase

difference between two successive phonon numbers agrees very well with the exact values for
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both coupling strengths. This indicates that the reconstruction of phase is not very sensitive to the

fluctuation.

3.4.3 Squeezed vacuum state

The reconstruction method for the phase shown in subsection (3.4.2) fails when certain coef-

ficients vanish. For example, in the squeezed vacuum state only the coefficients with even Fock

number are nonzero. Then cl = ulu
∗
l+1 is always zero and the reconstruction of phase is impossi-

ble. Fortunately, in our reconstruction method, we have the terms like bl = ulu
∗
l+2 in addition to

cl (see Eq. (3.11)). In the squeezed vacuum state, although cl is zero, bl is not equal to zero from

which we can still extract the phase information of the squeezed vacuum state.

The initial state of the mechanical mirror in a squeezed vacuum state can be written as

|ψmirror(0)⟩ =
∞∑
l=0

C2l |2l⟩ , (3.22)

where the coefficients C2 l are given by [42]

C2l =
(−1)l√
cosh r

√
(2l)!

2l l!

(
eiφ tanh r

)l
, (3.23)

with r being the squeezing parameter. By solving al and bl in Eq. (3.11), we can in principle

reconstruct both the phonon number distribution and the phase of the squeezed vacuum state.

In Fig. 3.4(a), we plot the exact probability distribution of the mechanical mirror P (2l) =∣∣C2l

∣∣2 along with the reconstructed distributions using two different values of gm/ωm. The recon-

struction values are very close to the exact values and the quality of the probability distribution

reconstruction improves as the mechanical coupling strength gm is larger as in the previous exam-

ple. In Fig. 3.4(b), we compare the exact phase differences ∆φl+2 with the reconstructed ones

using Eq. (3.18). Different from the phase reconstruction based on cl, the reconstruction based

on bl is more sensitive to the coupling strength. Stronger coupling strength can give better phase

reconstruction.
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Figure 3.4: Comparison between the exact and reconstructed probability distribution of phonons
(a) and the phase difference ∆φl+2 (b) when the initial state of the mechanical mirror is squeezed
vacuum for two different ratios between the optomechanical coupling gm and the mechanical fre-
quency ωm. r = 2 and φ = π/8.
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3.4.4 Velocity fluctuation

In the previous subsections, we assume that interaction times are precisely determined. How-

ever, in practice the interaction times can vary a bit due to the uncertainty in the velocity of atoms.

In this subsection, we show that even if the interaction times have small fluctuations, our method

still works very well.

Suppose that each interaction time has an uncertainty. To reconstruct the quantum state of

the mechanical mirror, we measure W (tk) for Nruns times for each tk and their average W (tk)

is treated as W (tk) in Eq. (3.15). Then we reconstruct the quantum state of the mechanical

mirror by using the same method presented in the previous section. We consider the case when

the mechanical mirror is initially prepared in a coherent state with average number of phonons

l̄ = 3 and each atom velocity has 4% uncertainty. In the numerical simulation, the sampling time

is randomly chosen between tk − 0.02∆t and tk + 0.02∆t for each tk and ∆t is the gap between

two successive interaction times (i.e., ∆t = tk+1 − tk). Using the least square fitting method with

10−3 tolerance, we can obtain a solution for X. The reconstructed results for two different iteration

times are shown in Fig. 3.5 where Fig. 3.5(a) is the result of reconstruction usingNruns = 10 while

Fig. 3.5(b) is the result of reconstruction using Nruns = 30. We see from both figures that when

Nruns = 10, the reconstructed probability distribution of phonons is deviating significantly from

the exact distribution of phonons. However, when the iteration times is increased to Nruns = 30,

the reconstructed probability distribution of phonons converges to the exact distribution very well.

3.4.5 Reconstruction of thermal state

So far we considered quantum state reconstruction of pure states of the mirror. Next we address

the question about the reconstruction of mixed states. It turns out that, for arbitrary mixed states

described by a density operator ρ, our proposed method can be applied to reconstruct only the

diagonal elements ρll and the off diagonal elements ρl,l+1 and ρl,l+2. It can be shown that, for mixed

states, Eq. (3.11) can be obtained with al, bl and cl replaced by ρll, ρl,l+2 and ρl,l+1, respectively.
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Figure 3.5: Reconstruction of the initial state of the mechanical mirror when fluctuation in the
interaction times between the atoms and the cavity field is considered. (a) Number of iterations
is Nruns = 10. (b) Number of iterations is Nruns = 30. The average phonon number is l̄ = 3,
gm/ωm = 0.9, and the fluctuation in the interaction times is ±2%.

We can then use the reconstruction method discussed in previous sections to obtain the partial

information of the density matrix of the mechanical mirror.

One important state of the mirror that we can reconstruct using our method is the thermal state
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for which only the diagonal density matrix elements are non-vanishing. The state is given by

ρm(0) =
∞∑
l=0

ρll |l⟩ ⟨l| , (3.24)

where ρll = l̄l

(l̄+1)l+1 is the phonon-number distribution with l̄ being the average number of phonons.

Since the thermal state has only the diagonal terms, the coefficients shown in Eq. (3.11) are al = ρll

and bl = cl = 0. Therefore, the population inversion W (t) for the thermal state is given by

W (t) =
∞∑
l=0

cos
(
gp0
√
lt
)
cos
(
gp0
√
l + 1t

)
cos
(
ωmt

)
ρll. (3.25)

Using the same method discussed above, we can reconstruct the phonon-distribution for the ther-

mal state.

The numerical results are shown in Fig. 3.6 where we assume the average phonon number

l̄ = 2. In Fig. 3.6(a) we compare the reconstruction results for two different cutoffs with the exact

thermal distribution. We can see that when lmax is not large enough, the reconstruction deviates

from the exact distribution significantly. However, if we increase the cutoff lmax, the reconstruction

result matches the exact thermal distribution very well. In Fig. 3.6(b), we show the reconstruction

results for two different coupling strengths. It shows that larger coupling strength can give better

reconstruction result. In Fig. 3.6(c), we consider the case when the velocity of the atoms has

certain uncertainty. In the figure, we compare the reconstruction results for two different velocity

uncertainties, i.e., 2% and 4%. It is shown that smaller uncertainty can have better reconstruction

results. Even if the uncertainty is 4%, the reconstructed phonon distribution cans still be very close

to the exact thermal phonon distribution.
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Figure 3.6: Comparison between the exact and reconstructed phonon-number distributions for
initially mechanical thermal state. (a) The comparison is made using lmax = 6 and lmax = 10 with
gm/ωm = 0.07. (b) The comparison is made for two different coupling strength (gm/ωm = 0.05
and 0.09) with lmax = 10. (c) The comparison is made using two different values for the fluctuation
in the interaction time, 4% and 2% with gm/ωm = 0.09 and lmax = 10. Mean number of phonons
is l̄ = 2.
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3.5 Conclusion

In this chapter, we proposed a scheme to detect the quantum state of the mechanical mirror. In

this scheme, a beam of two-level atoms initially prepared in the excited state are sent through an

optomechanical cavity to interact with the cavity field. The polariton formed by the atom and the

cavity field can effectively couple to the phonon of the mechanical mirror. From this coupling, the

quantum state of the mechanical mirror can imprint to the dynamics of the atom. By measuring

the probability of the atoms to be in the excited state when exciting the optomechanical cavity,

it is possible to reconstruct the full quantum state of the mechanical mirror including both the

phonon number distribution and the phase even if the interaction times have a certain amount of

uncertainty. We also show that mechanical thermal state can be reconstructed with high fidelity.

Our method does not require a strong optomechanical coupling and it may provide a useful tool in

the quantum information processing based on optomechanical systems.
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4. QUANTUM STATE MEASUREMENT OF A MECHANICAL MIRROR

4.1 Introduction

Cavity optomechanics [10, 93, 75] which explores the interaction between electromagnetic

fields and mechanical states of motion has recently been developed and dramatically extended to

investigate different phenomena in quantum physics. Mechanical motion of nanomechanical or

micromechanical oscillators can be effectively coupled to a cavity field via the radiation-pressure

force. A number of interesting phenomena has been demonstrated in the area of optomechanics

such as cooling of mechanical motion near its ground state [14, 94, 95, 41, 18, 15, 96, 12, 16,

19, 21], macroscopic quantum superposition [23, 49, 97, 25, 24], quantum entanglement between

light and mechanical motion [28, 98, 99, 100] and between mechanical oscillators [26, 101, 31,

32, 33, 102, 103]. Quantum systems such as optomechanical systems could therefore be exploited

to explain some fundamental questions in modern physics. An important task for these purposes is

the ability to measure the quantum state of mechanical motion in optomechanical systems.

Reconstruction of quantum state is very important in many quantum optics experiments as

it allows to characterize full information of the quantum system. In cavity optomechanics, few

schemes [38, 39, 40, 41] have been proposed for the measurement of mechanical states of mo-

tion. In [41], a detector atom based scheme was proposed to reconstruct the mechanical state of

a nanomechanical oscillator where the atom is directly coupled to the oscillator by a magnetic

field. Another proposal for mechanical state reconstruction [40], is based on extracting the infor-

mation about the mechanical state from the measured emission and scattering spectra of a single

photon after decaying outside the optomechancial cavity. Mechanical state tomography scheme

[38] employing short optical pulses has also been proposed in an optomechanical system where

the position of the mechanical oscillator can be obtained from the phase of the pulse when it exits

the cavity.

More recently, we studied a hybrid optomechanical system [92] where a single photon cavity
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is simultaneously coupled to a two-level atom and a mechanical mirror. We show that the atomic

population inversion dynamics can be modified in such a way that it induces collapses and revivals

in the population inversion signal which is known to be periodic when the cavity field is in a

Fock state and in the absence of any optomechanical coupling (JC-model). Inspired by the idea

of using atoms as tool to measure the quantum state of a cavity field via atom-field coupling [80],

here we propose a method to measure the quantum state of a mechanical mirror via polariton-

phonon coupling. The motivation behind this idea is that different mechanical states modifies the

population inversion of the atom differently. By sending a beam of two-level atoms to interact

with the optomechanical cavity field, we showed that the quantum state of the mechanical mirror

can be successfully reconstructed by measuring the excited state population of the atoms. In our

method, the whole information of a pure mechanical including both the amplitude and phase can

be reconstructed and partial information of a mixed mechanical state can be also reconstructed.

This chapter is organized as follows: In Sec. 4.2, we describe the model used to reconstruct the

full density matrix of the initial mechanical state. In Sec. 4.3, we give the derivation of the atomic

population inversion when the mirror is in a mixed state. In Sec. 4.4, we explain the mathematical

method of using the population inversion to measure the initial state of the mirror. In Sec. 4.5, we

summarize our results.

4.2 Model

The schematic setup for measuring the quantum state of the mechanical mirror is shown in

Fig. 4.1. The system is composed of an optical cavity with an oscillating mirror on one side

of the cavity. The cavity field interacts with the mechanical mode through the radiation-pressure

coupling. To detect the quantum state of the mechanical mirror, a beam of two-level atoms is sent

to pass through the cavity. The atoms can interact with the cavity field and effectively couple to

the mechanical phonon through polariton-phonon coupling. The population dynamics of the atoms

exciting the cavity can therefore encode the information of the mechanical state.
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Figure 4.1: Schematic of the mechanical state reconstruction model. Two level atoms in their
excited states are sent to interact with the cavity field and the probability of finding the atoms in
the excited state Pe(t) is measured when the atoms are exciting the cavity.

The Hamiltonian of the hybrid system is given by

H = H0 +HI , (4.1)

where H0 is the free Hamiltonian and HI is the interaction Hamiltonian. The free Hamiltonian

includes three parts which is given by

H0 = ℏωcc
†c+ ℏ

ωa

2
σz + ℏωmb

†b, (4.2)

where the first term is the cavity field Hamiltonian, the second term is the atom Hamiltonian, and
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the third term is the mechanical mirror Hamiltonian. c(c†) is the annihilation (creation) operator

of the cavity field with cavity field frequency ωc. σz is the z component of the Pauli matrix and the

atomic transition frequency is ωa. b(b†) is the mechanical mirror annihilation (creation) operator.

In the linear regime, the position of the mechanical mirror is given by x = x0(b + b†) where

x0 =
√

ℏ/2mωm is the zero point position of the mechanical mirror with m and ωm being the

mass and frequency of the mechanical mirror, respectively. The interaction part of the Hamiltonian

is given by

HI = −iℏgc(σ+c− c†σ−)− ℏgmc†c(b† + b), (4.3)

where the first term in (4.3) is the interaction energy operator between both the two-level atom and

the cavity field with coupling strength gc, and the second term is the interaction energy operator

between the cavity field and the mechanical mirror with coupling strength gm. σ+ = |e⟩ ⟨g| (σ− =

|g⟩ ⟨e|) is the raising (lowering) operator of the atom. The coupling strength gm is defined as

gm = (ωc/L)
√
ℏ/2mωm where L is the length of the cavity. In fact, the form of the Hamiltonian

given in Eq. (4.3) does not allow for analytical treatment of the dynamics of the system. However,

the Hamiltonian Eq. (4.3) can be simplified in the weak-optomechnical coupling limit such that an

approximate version of Eq. (4.3) can be obtained [67, 92] which allows us to analyze the system’s

evolution analytically. To make this chapter self contained, we briefly discuss the mathematical

steps to get an approximation of the Hamiltonian as they have been given in details in [92].

In the interaction picture of the atom and cavity field, the free parts of the atom and cavity field

Hamiltonian can be eliminated and the new interaction Hamiltonian is given as

H′

I = −iℏgc(σ+c− c†σ−) + ℏωmb
†b− ℏgmc†c(b† + b), (4.4)

where we assume that the cavity field is in resonance with the atom, i. e., δ = ωc − ωa = 0

for simplicity. Using the unitary transformation T = e−βc†c(b†−b), the transformed Hamiltonian
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HT = T H′
IT † reduces to

HT ≈ −iℏgc(σ+c− c†σ−) + ℏωmb
†b− iℏβgc(σ+c+ c†σ−)(b

† − b), (4.5)

Here, only the linear terms are kept in Eq. (4.5) which is a valid approxiamtion in the case of weak

optomechanical coupling, i.e., β = gm/ωm ≪ 1.

We can further simplify the transformed Hamiltonian in Eq. (4.5) by transforming the bare

bases to the atom-field dressed state bases or the polariton bases. We define the polariton states

of the atom-field subsystem as |+, n⟩= 1/
√
2
(
|e, n⟩+ i |g, n+ 1⟩

)
and |−, n⟩= 1/

√
2
(
|e, n⟩−

i |g, n+ 1⟩
)
. Under these new polariton state bases, the first term of Eq. (4.5) can be diagonalized

because Hac |±, n⟩= ±ℏΩn/2 |±, n⟩ where Hac = −iℏgc(σ+c − c†σ−) and Ωn = 2gc
√
n+ 1 is

the spliting between two polariton branches. We can then define the new Pauli matrices for the

polariton states such that σ(n)
z |±, n⟩ = ± |±, n⟩ and σ(n)

∓ |±, n⟩ = |∓, n⟩. Under these new polari-

ton Pauli matrixes, the Hamiltonian in Eq. (4.5) after applying the rotating-wave approximation

becomes [67, 92]

H′

T =
∞∑
n=1

[
ℏ
Ωn

2
σ(n)
z + ℏgpn

(
σ
(n)
− b† + σ

(n)
+ b
)]

+ ℏωmb
†b, (4.6)

where we assume ωm + Ωn ≫ gpn ≫ |ωm − Ωn| and gpn = βgc
√
n+ 1 is the effective coupling

between the polariton and phonon. The Hamiltonian shown in Eq. (4.6) is a JC-like Hamiltonian

where the polariton and the phonon couples to each other effectively.

4.3 Population inversion of the atom

We consider that the atom is initially in the excited state |e⟩ and the cavity field is in a Fock

state |n⟩. The mechanical mirror is initially assumed to be in a mixed state ρm(0). The density

operator for the initial state of the total system is given by [92]

ρ(0) = ρp(0)⊗ ρm(0), (4.7)
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where ρp(0) describes the density operator of the polariton. We use the equation of motion for the

density matrix to study the dynamics of the system which is given by

ρ̇ = − i
ℏ
[V , ρ], (4.8)

where the system’s interaction picture Hamiltonian V is the rotating wave approximation of Eq.

(4.6) and it is given by [92]

V =
∞∑
n=1

ℏgpn
[
σ
(n)
− b†ei(ωm−Ωn)t − σ(n)

+ be−i(ωm−Ωn)t
]
. (4.9)

The solution of Eq. (B.3) can be written using the time evolution operator U(t) as

ρ(t) = U(t)ρ(0)U †(t). (4.10)

Tracing over the mirror states directly yields the density operator of polariton state [92] and the

density matrix elements of the polariton state can be expressed as

ρpij(t) =
∞∑
k=0

⟨k, n, i| ρ(t) |j, n, k⟩ , (4.11)

where i, j ≡ +,−. The probability to find the atom in its excited state is given by [92]

Pe(t) =
1

2

[
ρp++(t) + ρp−−(t) + eiωmt ρp+−(t) + e−iωmt ρp−+(t)

]
. (4.12)

The density matrix elements ρp++(t), ρ
p
−−(t), ρ

p
+−(t), and ρp−+(t) in Eq. (4.12) can be calculated

using Eq. (E.1) and they are explicitly given by Eq. (E.3) (see appendix A) for an initial mixed state

of the mechanical mirror ρm(0). By substituting Eq. (E.3) into Eq. (4.12), the atomic population
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inversion is given by

W (t) =
∞∑
l=0

[
cos
(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
cos
(
ωmt

)
ρml,l(0) + sin

(
gpn
√
l + 1t

)
×

(
cos
(
gpn
√
l + 2t

)
− cos

(
gpn
√
lt
))(

cos
(
ωmt

)
Im
(
ρml+1,l(0)

)
− sin

(
ωmt

)
Re
(
ρml+1,l(0)

))
+ sin

(
gpn
√
l + 1t

)
sin
(
gpn
√
l + 2t

)
×
(
cos
(
ωmt

)
Re
(
ρml,l+2(0)

)
+ sin

(
ωmt

)
Im
(
ρml+2,l(0)

))]
,

(4.13)

where the population inversion is defined as W (t) = 2Pe(t) − 1, and ρmi,j(0) = ⟨i| ρm(0) |j⟩ is

the density matrix elements of the mechanical mirror with i, j ≡ {l, l + 1, l + 2} and l is the

phonon number. It is clearly seen that the population of the atom after the interaction depends on

the mechanical quantum state. This property can be used to reconstruct the mechanical state.

Let us first consider the simplest case when the mechanical mirror is initially in a Fock state

i.e., ρm(0) = |l⟩ ⟨l|. In this case, the population inversion shown in Eq. (4.13) reduces to

W (t) = cos
(
ωmt

)
cos
(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
. (4.14)

In the absence of the optomechanical coupling, i.e., gm = 0, we have gpn = 0 and the population

inversion Eq. (4.14) goes back to the result of JC-model, i.e., W (t) = cos
(
ωmt

)
. In Eq. (4.14),

we see that the periodic oscillations of the atomic population inversion (JC-model) when the cavity

field is in a Fock state is modified by the cosine functions cos
(
gpn
√
lt
)

and cos
(
gpn
√
l + 1t

)
due

to the optomechanical coupling. In Fig. 4.2(a) and 4.2(b), the population inversion is shown for

the cases when the mechanical states are |0⟩ and |2⟩, respectively. It is obviously seen that different

mechanical states yield different signals of the population inversion although the optomechanical

coupling is weak. When the mechanical mirror is in a lower Fock state, the period of the collapse

and revival is longer.
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Figure 4.2: Atomic population inversion as a function of time for initial mechanical Fock state (a)
ρm(0) = |0⟩ ⟨0| and (b) ρm(0) = |2⟩ ⟨2|. We considered resonant atom-field interaction (δ = 0),
gc = ωm/2, and gm = 0.05ωm.

When the mechanical mirror is initially in a thermal state which is the usual case (ρml,l(0) =∑∞
l=0

l̄
l

(l̄+1)l+1 |l⟩⟨l|), the atomic population inversion Eq. (4.13) becomes

W (t) =
∞∑
l=0

l̄
l

(l̄ + 1)l+1
cos
(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
cos
(
ωmt

)
, (4.15)

where l̄ is the average number of thermal phonons of the mechanical state. In Fig. 4.3(a) and
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Figure 4.3: Atomic population inversion as a function of time for initial mechanical thermal state
for two different mean number of thermal phonons (a) l̄ = 0.5 and (b) l̄ = 1.5. We considered
resonant atom-field interaction (δ = 0), gc = ωm/2, and gm = 0.05ωm.

4.3(b), we show the result of Eq. (4.15) for different average number of thermal phonons, i.e.,

l̄ = 0.5 and 1.5, respectively. Similar to the mechanical Fock states, mechanical thermal states

apparently yield different oscillations of the population inversion which correspond to different

average number of thermal phonons. The population inversion decays more quickly with larger

average phonon number.

The fact of having different population inversion signals for different mechanical states where

the mechanical mirror and the cavity field are weakly coupled motivate the idea of using the atomic
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population inversion to extract the initial state of the mechanical mirror. The population inversion

can be obtained by measuring the probability of finding the atom in the excited state Pe(t). In the

next section, we show how the result Eq. (4.13) can be used to measure the state of the mechanical

mirror and we give several examples of mechanical states that can be reconstructed using Eq.

(4.13).

4.4 Reconstruction of mechanical mixed state

It is obvious from Eq. (13) that the population inversion (4.13) depends on the density matrix

elements ρml,l(0), ρ
m
l,l+1(0), ρ

m
l+1,l(0), ρ

m
l,l+2(0), ρ

m
l+2,l(0). Thus, by just measuring W (t) for different

interaction times, we are in principle able to determine all the diagonal terms and some off-diagonal

terms of the initial density matrix.

SinceW (t) depends on infinite summation of the density matrix elements, in practice to recon-

struct the quantum state we have to choose a maximum number of phonons lmax and this maximum

number is much larger than the mean number of phonons l̄ i.e., lmax ≫ l̄. For the chosen maximum

number of phonons lmax, there are a total of 5(lmax+1) unknown variables to be determined. This

apparently requires at least 5(lmax + 1) total number of measurements of the population inversion

W (t) in order to find all the 5(lmax+1) unknown variables. For this purpose, we rewrite Eq. (4.13)

as

W (tk) =
lmax∑
l=0

[
Al(tk) ρ

m
l,l(0) +Bl(tk) Re

(
ρml,l+1(0)

)
+ Cl(tk) Im

(
ρml+1,l(0)

)
+Dl(tk) Re

(
ρml,l+2(0)

)
+ El(tk) Im

(
ρml+2,l(0)

)]
,

(4.16)

where k = 1, 2, ..., 5(lmax + 1). Equation (4.16) can be rewritten as a linear system of equations

such that

W = M ρ, (4.17)

where the vectors W and ρ are both 5(lmax+1)-dimensional vectors. The vector W holds the mea-

sured data of the population inversion for 5(lmax+1) different interaction times. The vector ρ con-

tains 5(lmax + 1) density matrix elements to be determined where for each l, there are five density
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matrix elements i.e., ρl =

(
ρml,l(0),Re

(
ρml,l+1(0)

)
, Im

(
ρml+1,l(0)

)
,Re

(
ρml,l+2(0)

)
, Im

(
ρml+2,l(0)

))T

.

The matrix M is a square matrix defined as

Mk l = Al(tk) +Bl(tk) + Cl(tk) +Dl(tk) + El(tk), (4.18)

where the elements of the matrix M are given by

Al(tk) = cos
(
gp0
√
ltk

)
cos
(
gp0
√
l + 1tk

)
cos
(
ωmtk

)
(4.19a)

Bl(tk) = sin
(
gp0
√
l + 1tk

)
sin
(
gp0
√
l + 2tk

)
cos(ωmtk) (4.19b)

Cl(tk) = − sin
(
gp0
√
l + 1tk

)
sin
(
gp0
√
l + 2tk

)
sin(ωmtk) (4.19c)

Dl(tk) =
[
cos
(
gp0
√
l + 2tk

)
− cos

(
gp0
√
ltk

)]
sin
(
gp0
√
l + 1tk

)
sin(ωmtk) (4.19d)

El(tk) =
[
cos
(
gp0
√
l + 2tk

)
− cos

(
gp0
√
ltk

)]
sin
(
gp0
√
l + 1tk

)
cos(ωmtk). (4.19e)

Having the measured data, we can then use the least square fitting method to solve Eq. (4.17) and

reconstruct the quantum state of the mechanical mirror. In the next subsections, we give several

examples to show how the method described here can be used to reconstruct the initial state of the

mechanical mirror.

4.4.1 Reconstruction of mechanical pure state

In this subsection, we give examples when the mechanical mirror is in a pure state and we show

that Eq. (4.17) can be used to reconstruct such states with very good agreement to the exact initial

states of the mechanical mirror.

In reality, there is a certain uncertainty in the velocity of atoms when they pass through the

cavity. In Fig. 4.4, we consider two states, vacuum state ψ(0) = |0⟩ and superposition of Fock

states ψ(0) = 1/
√
2
(
|1⟩+ |2⟩

)
, and compare the reconstructed states to the exact states.
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Figure 4.4: Reconstruction of the density matrix elements for initially pure mechanical states. (a-c)
Initial mechanical state is ψ(0) = |0⟩ state. (d-f) Initial mechanical state is ψ(0) = 1/

√
2
(
|1⟩ +

|2⟩
)

state. (a) and (d) Exact density matrix elements. (b) and (e) The reconstructed density matrix
elements when the interaction time has 2% fluctuation. (f) and (g) The reconstructed density matrix
elements when the interaction time has 4% fluctuation. Other parameters are gm/ωm = 0.05 and
Nruns = 30.

In both figures, we compare the reconstructed results the atom velocity has 2% and 4% uncer-
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tainties with the exact mechanical state. We randomly choose the sampling points of time between

tk − 0.01∆t and tk + 0.01∆t in Figs. 4(b) and 4(e) and between tk − 0.02∆t and tk + 0.02∆t

in Fig. 4.4(c) and 4.4(f) where ∆t = tk+1 − tk. At each tk, the population inversion W (tk) is

measured Nruns = 30 times and then the average of the population inversion is taken.

Figures. 4(a) and 4(d) shows the exact density matrices for the mechanical states ψ(0) = |0⟩

and ψ(0) = 1/
√
2
(
|1⟩ + |2⟩

)
, respectively. In Figs. 4(b) and 4(e), we show the reconstructed

density matrix elements when the interaction time has 2% fluctuation, and Figs. 4(c) and 4(f) are

the reconstructed density matrix elements when the interaction time has 4% fluctuation. It is clearly

seen that in both examples the reconstructed density matrices are very close to their corresponding

exact density matrices. When the interaction time has 2% fluctuation, the fidelity between the

reconstructed density matrix and the exact density matrix when the mechanical state is ψ(0) = |0⟩

and ψ(0) = 1/
√
2
(
|1⟩+ |2⟩

)
are 0.996% and 0.99%, respectively. When the interaction time has

4% fluctuation, the fidelity in both cases are 0.952% and 0.957%.

4.4.2 Reconstruction of mechanical thermal state

An interesting and more practical example to consider is the case when the mechanical mirror

is initially in a thermal state. The initial state of the mechanical mirror in this case is given by

ρm(0) =
∞∑
l=0

l̄l

(l̄ + 1)l+1
|l⟩ ⟨l| , (4.20)

where l̄ is the average number of phonons. It is clearly seen that the density matrix has only

diagonal terms in the thermal state. Eq. (16) then becomes

W (tk) =
lmax∑
l=0

Al(tk)ρ
m
ll (0) (4.21)

from which we can reconstruct the thermal phonon distribution.

The numerical results are shown in Fig. 4.5. In Fig. 4.5(a), we compare the reconstructed and

the exact phonon-number distributions for two different cutoffs lmax (i.e., lmax = 10 and lmax=14)
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with l̄ = 3. It is shown that larger lmax yields better reconstructed phonon-number distribution.

Thus, in practice lmax should be large enough to give a good reconstruction. We also consider the

effect of velocity fluctuation and the result is shown in Fig. 4.5(b). Here, we also chose l̄ = 3 and

fix lmax = 15 and compare the reconstructed phonon-number distribution to the exact one using

different interaction time fluctuation, i.e., 2% and 4% uncertainties in the velocities of the atoms

passing the cavity. We find that even if the interaction time has 4% fluctuation the reconstructed

phonon distribution can still be very close to the exact thermal phonon distribution. It again shows

that our method can still work even if the velocity of the atoms has certain fluctuations.

4.4.3 Reconstruction of general density matrix

In addition to the pure states and the thermal states, we can also reconstruct partial information

of a general mixed state. In particularly, we can reconstruct the diagonal terms and the non-

diagonal terms like ρl,l+1 and ρl,l+2. For example, in Fig. 4.6 we consider reconstruction of the

following density matrix

ρm(0) =


0.2 0.1 0.2

0.1 0.3 0.1

0.2 0.1 0.5

 . (4.22)

In Figs. 4.6(b) and 4.6(c), we show the reconstructed density matrix elements when the interaction

time has 2% and 4% fluctuation, respectively. The fidelity between the reconstructed density matrix

and the exact density matrix in Fig. 4.6(b) is 0.99 and in Fig. 4.6(c) is 0.957.
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Figure 4.5: Comparison between the exact and reconstructed phonon-number distributions for
initially mechanical thermal state. (a) The comparison is made using lmax = 10 and lmax = 14
with gm/ωm = 0.06. (b) The comparison is made using two different values for the fluctuation in
the interaction time, 4% and 2% with gm/ωm = 0.09 and lmax = 15. Mean number of phonons is
l̄ = 3 in both subfigures.
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Figure 4.6: Reconstruction of a general density matrix. (a) The exact density matrix elements to
be reconstructed. (b) Reconstruction of the density matrix elements when the interaction time has
2% fluctuation. (c) Reconstruction of the density matrix elements when the interaction time has
4% fluctuation.
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4.5 Conclusion

In summary, we consider an optomechanical system where a beam of two-level atoms can

pass through an optomechanical cavity to interact with a quantized field. The atomic population

inversion is modified due to the radiation-pressure coupling between the mechanical mirror and

the cavity field. Therefore, the atomic population inversion reflects certain information about the

mechanical quantum state. We derive an analytical solution of the atomic population inversion

in the limit of weak optomechanical coupling where the mechanical mirror is initially assumed

to be in a mixed state. We show that by measuring the atomic population in the excited state

at different interaction times, we can reconstruct the full information of the mechanical quantum

state. We numerically demonstrate that both pure and mixed mechanical state can be successfully

reconstructed using our model even if the interaction time has certain fluctuation.
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5. SUMMARY

In summary, we studied the population inversion of a two-level atom placed inside an optome-

chanical cavity. The atom is coupled to the cavity field via the JC-coupling while the mechanical

mirror is coupled to the cavity field via the radiation-pressure coupling. Initially, the two-level atom

is considered to be in the excited state while we assumed several initial conditions for the cavity

field and the mechanical mirror. Generally, the optomechanical-coupling results in collapses and

revivals in the signal of the population inversion when the cavity field and the mechanical mirror

are initially considered in Fock states. On the other hand, when the cavity field is initially prepared

in a coherent state while the mechanical mirror is in a Fock state, the optomechanical-coupling

results in small oscillations in the region where the population inversion collapses in the origi-

nal JC-model. The results of the population inversion indicates that the signal of the population

inversion can be used to infer the quantum state of the mechanical mirror.

To measure the quantum mechanical state of the oscillating mirror using this system, we con-

sidered a beam of two level atoms that enter the optomechanical cavity while they are in the excited

state when entering the cavity. The atoms can then interact with the cavity field which is initially

prepared in the vacuum state. The population inversion of the atoms can be measured after passing

through the cavity. The measured population inversion is affected due to the coupling between

the cavity field and the mechanical mirror. Since each mechanical state causes different modifica-

tion on the signal of the population inversion, the measure data of the population inversion can be

used to extract the full state of the mechanical mirror. Our reconstruction scheme can be used to

determine both pure and mixed mechanical states.
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APPENDIX A

EFFECTIVE HAMILTONIAN

To obtain the effective Hamiltonian of the hybrid system, we first adopt the interaction picture

of the cavity field and the atom, therefore the total Hamiltonian can be rewritten as

HI = ℏ
δ

2
σz + iℏgc(c†σ− − σ+c) + ℏωmb

†b− ℏgmc†c(b† + b), (A.1)

where δ = ωa − ωc.

Second, we perform a unitary transformation T = e−βc†c(b†−b) as considered in Ref. [76] such

that

HT = T HIT †

= ℏ
δ

2
σz + iℏgc

(
c†D(−β)σ− − σ+cD(β)

)
+ ℏωmb

†b

≈ ℏ
δ

2
σz + iℏgc(c†σ− − σ+c)

+ℏωmb
†b− iℏβgc(σ+c+ c†σ−)(b

† − b), (A.2)

where the displacement operator D(β) = eβ(b
†−b) ≈ 1 + β(b† − b) for β = gm/ωm ≪ 1 for most

of the current optomechanical systems [10]. Under the unitary transformation T , the mechanical

mirror is transformed into a displaced basis depending on the photon number of the cavity field. We

define the atom-cavity Hamiltonian asHac = ℏ δ
2
σz + iℏgc(c†σ−− σ+c) and the hybrid interaction

Hamiltonian asHhd = −iℏβgc(σ+c+ c†σ−)(b
† − b).

Third, we diagonalizeHac in the dressed state bases of the atom-field subsystem [42]

|+, n⟩ = cos
(αn

2

)
|e⟩a|n⟩c+i sin

(αn

2

)
|g⟩a|n+ 1⟩c , (A.3)

|−, n⟩ = sin
(αn

2

)
|e⟩a|n⟩c−i cos

(αn

2

)
|g⟩a|n+ 1⟩c , (A.4)
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where tanαn=2gc
√
n+ 1/δ, Hac |±, n⟩= ±ℏΩn/2 |±, n⟩, Ωn=

√
δ2 + 4g2c (n+ 1), and (σ+c +

c†σ−) |±, n⟩= ±i
√
n+ 1 |∓, n⟩.

We define a new set of Pauli matrices for the polariton states as σ(n)
z |±, n⟩ = ± |±, n⟩ and

σ
(n)
∓ |±, n⟩ = |∓, n⟩. Therefore, the above Hamiltonian is then given by

HT =
∞∑
n=1

(
ℏ
Ωn

2
σ(n)
z + ℏgpn(σ(n)

− − σ
(n)
+ )(b† − b)

)
+ ℏωmb

†b, (A.5)

where gpn = βgc
√
n+ 1 is the effective polariton-phonon coupling strength.
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APPENDIX B

EQUATIONS OF MOTION FOR THE DENSITY MATRIX ELEMENTS

Here we derive the equations of motion for the density matrix elements. The total Hamiltonian

of the hybrid optomechanical system is

HI = ℏ
δ

2
σz + iℏgc(c†σ− − σ+c) + ℏωmb

†b− ℏgmc†c(b† + b), (B.1)

where δ = ωa − ωc. The density matrix of the hybrid optomechanical system is given by

ρ̂(t) =
∞∑

i,j,k,l=0

ρi
′j′

ij,kl(t) |i
′⟩a ⟨j

′|a ⊗ |i⟩c ⟨k|c ⊗ |j⟩m ⟨l|m , (B.2)

where |i′(j′)⟩a is the state of the two-level atom with i′, j′ ≡ {g, e}. |i(k)⟩c and |j(l)⟩m denote

the Fock states of the cavity and the mechanical mirror. We derive the equations of motion for the

density matrix elements using the Markovian master equation given by

ρ̇ = − i
ℏ
[HI , ρ] + Laρ+ Lcρ+ Lmρ, (B.3)

whereLaρ, Lcρ andLmρ are the dissipation of the atom, the cavity field and the mechanical mirror.

These dissipation terms are given by

Laρ =γa(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−), (B.4a)

Lcρ =γc(2cρc
† − c†cρ− ρc†c), (B.4b)

Lmρ =γmn̄th(2b
†ρb− bb†ρ− ρbb†) + γm(1 + n̄th)(2bρb

† − b†bρ− ρb†b).
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Where γa, γc and γm are the dissipation rates for the atom, the cavity field and the mechanical

mirror, respectively. The equations of motion are then given by

ρ̇
gg

ij,kl(t) = gc
√
i ρ

eg

i−1 j,k l + iωm(l − j)ρ
gg

i j,k l + igmi
(√

j ρ
gg

i j−1,k l +
√
j + 1 ρ

gg

i j+1,k l

)
+ gc
√
k ρ

ge

i j,k−1 l − igmk
(√

l + 1 ρ
gg

i j,k l+1 +
√
l ρ

gg

i j,k l−1

)
+ 2γa ρ

ee

i j,k l

+ γc

[
2
√

(i+ 1)(k + 1) ρ
gg

i+1 j,k+1 l − (i+ k) ρ
gg

i j,k l

]
+ γm n̄th

[
2
√
jl ρ

gg

i j−1,k l−1 − (j + l + 2) ρ
gg

i j,k l

]
+ γm(1 + n̄th)

[
2
√

(j + 1)(l + 1) ρ
gg

i j+1,k l+1 − (j + l) ρ
gg

i j,k l

]
, (B.5a)

ρ̇
ee

ij,kl(t) = −gc
√
i+ 1 ρ

ge

i+1 j,k l + iωm(l − j) ρ
ee

i j,k l + igmi
(√

j ρ
ee

i j−1,k l +
√
j + 1 ρ

gg

i j+1,k l

)
− gc
√
k + 1 ρ

eg

i j,k+1 l − igmk
(√

l + 1 ρ
ee

i j,k l+1 +
√
l ρ

ee

i j,k l−1

)
− 2γa ρ

ee

i j,k l

+ γc

[
2
√

(i+ 1)(k + 1) ρ
ee

i+1 j,k+1 l − (i+ k) ρ
ee

i j,k l

]
+ γmn̄th

[
2
√
jl ρ

ee

i j−1,k l−1 − (j + l + 2) ρ
ee

i j,k l

]
+ γm(1 + n̄th)

[
2
√

(j + 1)(l + 1) ρ
ee

i j+1,k l+1 − (j + l) ρ
ee

i j,k l

]
, (B.5b)

ρ̇
ge

ij,kl(t) = iδρ
ge

i j,k l + gc
√
i ρ

ee

i−1 j,k l + iωm(l − j) ρ
ge

i j,k l + igmi
(√

j ρ
ge

i j−1,k l +
√
j + 1 ρ

ge

i j+1,k l

)
− gc
√
k + 1 ρ

gg

i j,k+1 l − igmk
(√

l + 1 ρ
ge

i j,k l+1 +
√
l ρ

ge

i j,k l−1

)
− γa ρ

ge

i j,k l

+ γc

[
2
√

(i+ 1)(k + 1) ρ
ge

i+1 j,k+1 l − (i+ k) ρ
ge

i j,k l

]
+ γmn̄th

[
2
√
jl ρ

ge

i j−1,k l−1 − (j + l + 2) ρ
ge

i j,k l

]
+ γm(1 + n̄th)

[
2
√

(j + 1)(l + 1) ρ
ge

i j+1,k l+1 − (j + l) ρ
ge

i j,k l

]
. (B.5c)

Where ρ̇gg

ij,kl(t) = ⟨g, i, j|ρ̇|g, k, l⟩, ρ̇
ee

ij,kl(t) =

⟨e, i, j|ρ̇|e, k, l⟩, and ρ̇ge

ij,kl(t) = ⟨g, i, j|ρ̇|e, k, l⟩. To see the effect of the atomic, the cavity field

and the mechanical mirror dissipation on the evolution of the population inversion in the hybrid
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optomechanical system, we numerically solve the Markovian master equation along with the dis-

sipation terms. We then plot the numerical results of the population inversion using Eq. (B.3)

in Figs. (2-5) along with the analytical results. We find the anomalous population inversion is

preserved while its amplitude is suppressed when taking the dissipation into account.
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APPENDIX C

DERIVATION OF THE EXCITED STATE POPULATION WHEN THE MIRROR IS IN A

THERMAL STATE

In this appendix we derive the excited state population of the atom when the mechanical mirror

is initially in a mixed state ρm(0) while the atom is in the excited state and the cavity field is in a

Fock state. Because the mechanical mirror is in a mixed state, we need to analytically solve the

Markovian master equation given below in order to get the density operator of the excited state

population

ρ̇ = − i
ℏ
[V , ρ], (C.1)

where V(t) is the Hamiltonian in the interaction picture which can be written as

V(t) = U †
0(t)HIU0(t), (C.2)

where

U0(t) = exp

(
− i
ℏ
H0t

)
(C.3)

and

H0 = ℏωmb
†b+

∞∑
n=1

ℏ
Ωn

2
σ(n)
z . (C.4)

Applying the same procedure as in [42], the interaction picture Hamiltonain is then given by the

following expression

V =
∞∑
n=1

ℏgpn
[
σ
(n)
− b†ei(ωm−Ωn)t − σ(n)

+ be−i(ωm−Ωn)t
]
. (C.5)

The initial state of the system can be written as

ρ(0) = ρp(0)⊗ ρm(0) (C.6)
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where ρp(0) is the initial state of the polariton and it is given by

ρp(0) =


ρp++(0) ρp+−(0)

ρp−+(0) ρp−−(0)

 =


cos2

(
αn

2

)
cos
(
αn

2

)
sin
(
αn

2

)

cos
(
αn

2

)
sin
(
αn

2

)
cos2

(
αn

2

)
 (C.7)

The formal solution of Eq. (C.1) can be written as

ρ(t) = U(t)ρ(0)U †(t), (C.8)

where U(t) is the evolution operator of the system and it is given by

U(t) = A |+, n⟩ ⟨+, n|+B |−, n⟩ ⟨−, n|

+ C |+, n⟩ ⟨−, n|+D |−, n⟩ ⟨+, n| ,
(C.9)

where

A =cos
(
gpn
√
bb† t

)
, (C.10a)

B =cos
(
gpn
√
b†b t

)
, (C.10b)

C =− ib
cos
(
gpn
√
b†b t

)
√
b†b

, (C.10c)

D =− ib†
cos
(
gpn
√
bb† t

)
√
bb†

. (C.10d)

In order to calculate the excited state population Pe(t), we first transform the state |e, n⟩ which is

given by

|e, n⟩ = cos
(αn

2

)
|+, n⟩+ sin

(αn

2

)
|−, n⟩ , (C.11)

to the interaction picture using

|e, n⟩I = U †
0(t) |e, n⟩ . (C.12)
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For δ = 0 and Ωn = ωm, the previous transformation gives

|e, n⟩I =
1√
2
eiωmb†bt

(
eiωmt/2 |+, n⟩+ e−iωmt/2 |−, n⟩

)
. (C.13)

From (C.13), the excited state population is given by

Pe(t) =
1

2

[
ρp++(t) + ρp−−(t) + eiωmt ρp+−(t) + e−iωmt ρp−+(t)

]
. (C.14)

The density matrix elements of the polariton states in the previous equation can be calculated from

the following equations

ρp++(t) =
1

2

∞∑
l=1

⟨l|Aρm(0)A+ Cρm(0)A− Aρm(0)D − Cρm(0)D |l⟩ , (C.15a)

ρp−−(t) =
1

2

∞∑
l=1

⟨l| −Dρm(0)C −Bρm(0)C +Dρm(0)B +Bρm(0)B |l⟩ , (C.15b)

ρp+−(t) =
1

2

∞∑
l=1

⟨l| − Aρm(0)C − Cρm(0)C + Aρm(0)B + Cρm(0)B |l⟩ , (C.15c)

ρp−+(t) =
1

2

∞∑
l=1

⟨l|Dρm(0)A+Bρm(0)A−Dρm(0)D −Bρm(0)D |l⟩ . (C.15d)

If we consider that the mechanical mirror is initially prepared in incoherent mixture i. e., ρm(0) =∑∞
l=0 pl |l⟩ ⟨l|, then excited state population when Ωn = ωm reduces to the following equation

Pe(t) =
∞∑
l=0

pl

[
1

2
+

1

2
cos (ωmt) cos

(
gpn
√
lt
)
cos
(
gpn
√
l + 1

)]
. (C.16)
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APPENDIX D

DERIVATION OF THE EXCITED STATE POPULATION FOR THE COHERENT CAVITY

FIELD

We consider that the mechanical mirror interacts non-resonantly with a single polariton state

|±, n⟩. The time-dependent state vector is given by

|ψT (t)⟩ =
l∑

k=l−1

c+k |+, n⟩ |k⟩+
l+1∑
k=l

c−k |−, n⟩ |k⟩ . (D.1)

We derive from Schrödinger’s equation (2.7) the time evolution of the state vector coefficients as

ċ+k =− i
(
ωmk +

Ωn

2

)
c+k − igpn

√
k + 1c−k+1, (D.2a)

ċ−k+1 =− i
(
ωm(k + 1)− Ωn

2

)
c−k+1 − igpn

√
k + 1c+k , (D.2b)

The solutions to Eqs. (D.2) are

c+k (t) = e−iωm(k+ 1
2
)t

[
c+k (0) cos

(ωnk

2
t
)
− i∆n

ωnk

c+k (0) sin
(ωnk

2
t
)

− 2i
gpn
√
k + 1

ωnk

c−k+1(0) sin
(ωnk

2
t
)
, SZ(D.3a)

c−k+1(t) = e−iωm(k+ 1
2
)t

[
c−k+1(0) cos

(ωnk

2
t
)
+ i

∆n

ωnk

c−k+1(0) sin
(ωnk

2
t
)

− 2i
gpn
√
k + 1

ωnk

c+k (0) sin
(ωnk

2
t
)
. SZ(D.3b)

Where ∆n = Ωn − ωm and ωnk =
√

∆2
n + 4g2pn(k + 1). The population of the excited states can

then be calculated using

Pe(t) =
∞∑
n=0

l+1∑
k=l−1

∣∣∣c+k (t) cos(αn

2

)
+ c−k (t) sin

(αn

2

) ∣∣∣2, (D.4)
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which gives the expression of the nonresonant case in Eq. (2.33) using the initial conditions

c+l−1(0) = Cc
n cos

(
αn

2

)
βn
√
l, c−l−1(0) = Cc

n sin
(
αn

2

)
βn
√
l, c−l (0) = Cc

n sin
(
αn

2

)
, c+l (0) = Cc

n cos
(
αn

2

)
,

c−l+1(0) = −Cc
n sin

(
αn

2

)
βn
√
l + 1, and c+l+1(0) = −Cc

n cos
(
αn

2

)
βn
√
l + 1. The contribution due

to the resonant interaction between the mechanical mirror and the polariton states |±, s⟩ is given

by

P s
e (t) =

1

2

[
1 + cos (Ωst) cos

(
gps
√
lt
)
cos
(
gps
√
l + 1t

)]
. (D.5)

The contribution due to the non-resonant interaction between the mechanical mirror and the other

atom-field polariton states |±, n ̸= s⟩ is given by

P n
e (t) =

1

2

{
1

2
cos2

(ωnl

2
t
)
+

1

2

(
∆n

ωnl

)2

sin2
(ωnl

2
t
)
+

1

2
cos2

(ωnl−1

2
t
)
+

1

2

(
∆n

ωnl−1

)2

sin2
(ωnl−1

2
t
)

+ cos (ωmt)

[
cos
(ωnl

2
t
)
cos
(ωnl−1

2
t
)
− ∆2

n

ωnlωnl−1

sin
(ωnl

2
t
)
sin
(ωnl−1

2
t
)]

− sin (ωmt)

[
∆n

ωnl−1

cos
(ωnl

2
t
)
sin
(ωnl−1

2
t
)
+

∆n

ωnl

sin
(ωnl

2
t
)
cos
(ωnl−1

2
t
)]

+ 2g2pn

[
l

ω2
nl−1

sin2
(ωnl−1

2
t
)
+

(l + 1)

ω2
nl

sin2
(ωnl

2
t
)]}

,

(D.6)

where δ = 0 is assumed for simplicity, ∆n ≡ Ωn − ωm represents the detuning between the

mechanical frequency and the polariton state |±, n⟩, and ωnl =
√

∆2
n + 4g2pn(l + 1).
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APPENDIX E

DERIVATION OF THE EXCITED STATE POPULATION WHEN THE MIRROR IS IN A

THERMAL STATE

It can be shown using (4.11) that the density matrix elements of the polariton states in (4.12)

can be calculated using the following equations [92]

ρp++(t) =
1

2

∞∑
l=1

⟨l|Aρm(0)A+ Cρm(0)A− Aρm(0)D − Cρm(0)D |l⟩ , (E.1a)

ρp−−(t) =
1

2

∞∑
l=1

⟨l| −Dρm(0)C −Bρm(0)C +Dρm(0)B +Bρm(0)B |l⟩ , (E.1b)

ρp+−(t) =
1

2

∞∑
l=1

⟨l| − Aρm(0)C − Cρm(0)C + Aρm(0)B + Cρm(0)B |l⟩ , (E.1c)

ρp−+(t) =
1

2

∞∑
l=1

⟨l|Dρm(0)A+Bρm(0)A−Dρm(0)D −Bρm(0)D |l⟩ , (E.1d)

Where the operators A, B, C, and D are given by [92]

A =cos
(
gpn
√
bb† t

)
, (E.2a)

B =cos
(
gpn
√
b†b t

)
, (E.2b)

C =− ib
cos
(
gpn
√
b†b t

)
√
b†b

, (E.2c)

D =− ib†
cos
(
gpn
√
bb† t

)
√
bb†

. (E.2d)
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It follows that the density matrix elements of the polariton states are given by

ρp++(t) =
1

2

∞∑
l=0

[
cos 2

(
gpn
√
l + 1t

)
⟨l| ρm(0) |l⟩+ i sin

(
gpn
√
l + 1t

)
cos
(
gpn
√
l + 1t

)
×
(
⟨l| ρm(0) |l + 1⟩ − ⟨l + 1| ρm(0) |l⟩

)
+ sin 2

(
gpn
√
l + 1t

)
⟨l + 1| ρm(0) |l + 1⟩

]
,

(E.3a)

ρp−−(t) =
1

2

∞∑
l=0

[(
sin 2

(
gpn
√
l + 1t

)
+ cos 2

(
gpn
√
lt
))
⟨l| ρm(0) |l⟩

− i sin
(
gpn
√
l + 1t

)
cos
(
gpn
√
l + 1t

)(
⟨l| ρm(0) |l + 1⟩ − ⟨l + 1| ρm(0) |l⟩

)]
,

(E.3b)

ρp+−(t) =
1

2

∞∑
l=0

[
i cos

(
gpn
√
l + 2t

)
sin
(
gpn
√
l + 1t

)
⟨l + 1| ρm(0) |l⟩

+ sin
(
gpn
√
l + 2t

)
sin
(
gpn
√
l + 1t

)
⟨l + 2| ρm(0) |l⟩

+ cos
(
gpn
√
l + 1t

)
cos
(
gpn
√
lt
)
⟨l| ρm(0) |l⟩

− i sin
(
gpn
√
l + 1t

)
cos
(
gpn
√
lt
)
⟨l + 1| ρm(0) |l⟩

]
, (E.3c)

ρp−+(t) =
1

2

∞∑
l=0

[
− i cos

(
gpn
√
l + 2t

)
sin
(
gpn
√
l + 1t

)
⟨l| ρm(0) |l + 1⟩

+ cos
(
gpn
√
lt
)
cos
(
gpn
√
l + 1t

)
⟨l| ρm(0) |l⟩

+ sin
(
gpn
√
l + 2t

)
sin
(
gpn
√
l + 1t

)
⟨l| ρm(0) |l + 2⟩

+ i sin
(
gpn
√
l + 1t

)
cos
(
gpn
√
lt
)
⟨l| ρm(0) |l + 1⟩

]
. (E.3d)
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