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ABSTRACT

Kaluza-Klein dimensional reduction is an indispensable ingredient of the theoretical physics,

since, M-theory and superstring theories are consistent in eleven and ten dimensions and thus, to

make a connection to our four-dimensional space-time physics, it is crucial to use this mechanism.

Dimensional reduction on a general coset space such as a sphere, introduced by Pauli, is more sub-

tle that that of a group manifold reduction, introduced by DeWitt, including the circle reduction of

Kaluza and Klein. While there is a group-theoretic argument for the consistency of the latter, there

is no such an argument for the former, hence, besides the exceptional cases, all Pauli reductions

may be inconsistent.

We study an uplift ansatz for two specific truncations of gauged STU supergravity. This theory

itself is an important truncation of the renowned N = 8, gauged SO(8) supergravity in four

dimensions. We consider two truncations of the former theory, named as 3+1 and 2+2, due to the

way of truncations of their gauge fields. We find the uplift ansätze for the metric and the four-form

field strength in these cases.

We consider two theories and explore the possibility of their consistent Pauli S2 reductions.

First, minimal supergravity in five dimensions, and second, the Salam-Sezgin theory. We use the

Hopf reduction technique in both cases, and by that, we show while it is not possible to perform

a consistent reduction of the former, there is a consistent Pauli reduction of the latter, and by this

construction, we can recover the result of Gibbons-Pope in 2003. In other words, we can provide

a group theoretical argument for their work. To make the latter case happen, we find a new higher

dimensional origin for the Salam-Sezgin theory, at least in the bosonic sector.
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1. INTRODUCTION 

1.1 Historical remarks

One of the most important and deepest unanswered questions in the history of science is finding 

a unique scheme where all forces of nature can be combined to the elegant theory with a beautiful 

underlying mathematical structure. The quest for such a “Final Theory” has been initiated mostly 

by Albert Einstein, especially when he eventually obtained the final form of general relativity in 

November 1915. Right after that, he started a long journey of investigation to find a unification 

of the gravity in form of his general relativity and Maxwell’s electromagnetism, the only known 

forces at that time. The exploration for such a theory has not been successful during his life time. 

However, several brilliant ideas emerged either by himself or by other physicists.

One of the most striking ideas aiming a unification of all forces introduced by Nordström [1] 

in 1914, even one year before the completion of general relativity, known as the dimensional 

reduction. However this work had been ignored by community for long time. Five years later, 

Theodor Kaluza, inspired by a work of Hermann Weyl in 1918, found the same scheme. The 

main idea of the dimensional reduction is as follows. Considering pure gravity in five space-time 

dimensions and assuming the fifth dimension is compactified on a small circle, one can obtain 

gravity and electromagnetism along with a scalar field and an infinite tower of massive fields in 

four dimensions. A natural unification of gravity and electromagnetism has been achieved! Kaluza 

sent the draft of his paper to Einstein, and while Einstein found out his theory “startling”, he did 

not submit the paper to the Prussian Academy for two years [2].

Nordström had developed his own version of gravity, know as scalar gravity, and hence, his 

dimensional reduction is different with that of Kaluza. He wrote the higher dimensional Maxwell 

vector potential as a combination of the four dimensional vector potential, corresponding to elec-

tromagnetic vector potential, and a scalar field describes his scalar gravity. It is remarkable that 

he introduced exactly the same ansatz as it is written today for a vector field. Therefore, his
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five-dimensional Lagrangian is a pure Maxwell one and after dimensional reduction he obtained

four-dimensional Maxwell electromagnetism and a kinetic scalar term for “gravity”.

Kaluza in his published work [3] in 1921, like Nordström assumed “cylinder condition” , mean-

ing that all fields of the four-dimensional theory are independent of the fifth dimension [2]. In other

words, he implicitly discarded an infinite tower of massive fields. The crucial issue of the consis-

tency then shall be arisen here, i.e. whether a truncation of massive fields is consistent or not. As

we will see later, in the special case of the circle reduction, the case where they studied, this con-

sistency is guaranteed by a simple group-theoretical argument, however, for most of “non-trivial”

dimensional reductions, such a simple test does not exist. Moreover, Kaluza considered just the

linearized level of equations of motion, therefore all of the complications may arise as a result of

considering the highly non-linear nature of the Einstein equations, shall not be addressed by this

consideration.

Klein in 1926 [4] improved the program by considering the full non-linear theory, and by the as-

sumption of the cylinder condition, he could find out pure Einstein gravity in five dimensions gives

rise to Einstein gravity, Maxwell electromagnetism and a scalar in four dimensions. Of course,

the latter field is not a desirable choice for him since there was no known scalar field at that time.

Therefore, he assumed the g55 component of the metric which is proportional to the scalar field, is

constant, and hence the scalar field can be discarded. If just the Lagrangian would be considered,

there is no inconsistency in discarding the scalar field has been arisen. However, the modern crite-

rion for the consistency of the reduction ansatz, pioneered by the work of Duff, Nilsson, Pope and

Warner in 1984 [5], is based on the equations of motion rather than the Lagrangian.

A consistent dimensional reduction is defined as follows. An initial (D+n)-dimensional theory

can be compactified on a compact n-dimensional internal manifold. One can find a Fourier expan-

sion of the D-dimensional theory in terms of the internal manifold harmonics, however, retaining

all of an infinite tower of fields is not essentially interested. Henceforth, one needs to truncate

an infinite number of fields and retain just finite number of them, named ansatz. Especially, one

needs to keep the bosonic fields which express the isometry group of the internal manifold. The
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criterion for the consistency of an ansatz is as follows. Upon inserting the ansatz in the higher

dimensional equations of motion, due to the conspiracies between several fields, the ones depend

upon the internal manifold cancel out of the equations and the remaining equations shall be those

of the D-dimensional space-time. Specifically, the retaining fields should not be the sources for

discarding ones. In that sense, discarding the scalar field, as Klein considered, is not consistent,

since vanishing R55 in five dimensions implies the Maxwell field strength is a source term for the

scalar field and discarding the latter should be accompanied by discarding the former, i.e. no more

unification shall be achieved.

Now, the question is, finding a general mechanism to construct the consistent reductions. This

is, in general, a very non-trivial question. In fact, besides reductions which their consistency is

guaranteed by a group-theoretic argument, there is no known litmus test to check the consistency

of a reduction. The only way is calculating the higher dimensional equations of motion as we have

just emphasized.

1.2 DeWitt and Pauli reductions

One may classify general dimensional reductions in two categories of DeWitt ( group manifold)

and Pauli (coset) reductions. The former was studied first by Bryce DeWitt in 1963 [6] and then

named DeWitt reduction in [7]. The internal space in this case is a group manifold. Then one can

construct fields which are invariant under the left (or right) action of the group. In other words,

one can easily show U−1 dU , where U is an element of the group manifold, is invariant under the

transformation U → GU , where G is a global rigid element of the group. Therefore, U−1 dU is

invariant under the left action of the group, or the latter is a singlet under the left action of the

group GL. Then if one writes U−1 dU = σa T
a, where T a are the generators of the algebra, hence

σa may be labeled as left-invariant one-forms. Similarly, dU U−1 is invariant under the right action

of the group, i.e. U → UG, and it is a singlet under GR

Having said the above, let us consider the group manifold reduction. Assume an ansatz is

written in terms of the left-invariant fields (or equivalently the right-invariant ones). In other words,

one may retain the singlets under the left action of the isometry group, GL and discard all other
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fields. Then, one can divide all higher dimensional equations of motion, which are written in terms

of the lower dimensional fields, into two parts: a part includes all terms which are singlets of the

group GL, and the other part involves non-singlet ones. Since the product of all singlets is again

a singlet of the group, by truncating all non-singlet fields to zero, all equations of the latter part

actually are trivially satisfied. There is no danger for surviving fields (i.e. singlets under GL)

to be sources for vanishing ones (i.e. non-singlets under GL). This is why the consistency of a

reduction on a group manifold G is guaranteed by a group-theoretic argument. Note that since a

circle S1 or more general a torus T n are both group manifolds ( U(1) and U(1)n respectively), then

the consistency of Kaluza and Klein original example of a circle S1, or a torus T n reductions are

guaranteed by a group-theoretic argument.

The first coset reduction was investigated by Wolfgang Pauli in an unpublished work in 1953

[2]. He unsuccessfully, attempted to find an S2 reduction of pure Einstein gravity in six dimensions,

while keeping the non-Abelian SO(3) Yang-Mills fields. It is clear now, to obtain a consistent S2

reduction of six-dimensional theory, one needs to start from a supergravity theory, instead of a pure

gravity which Pauli considered. The coset reduction was named Pauli reduction in [7].

In contrast to the DeWitt case, there is no group-theoretical argument applicable to the Pauli

reduction. As a matter of fact, almost all Pauli reductions are inconsistent, however there are ex-

ceptional cases where the Pauli reductions are consistent. Hence, the important question becomes

finding a deeper understanding of why such “miraculous” reductions exist. The main examples

of consistent Pauli reductions include of the renowned S7 reduction of eleven-dimensional super-

gravity of deWit and Nicolai [11] and later [12], S4 reduction of eleven-dimensional supergrav-

ity [13], [14] and [15], the Pauli consistent reduction of type IIB supergravity on S5 in [16], and

the Pauli reduction of the bosonic string on a group manifold G where the the full isometry group

of G×G is retained in [17].

One may ask since a DeWitt reduction can be constructed in an algorithmic method, why

one has to consider the Pauli reductions. First of all, since the isometry group of the bosonic

gauge fields of the lower-dimensional theory is the same as that of the internal manifold, hence to
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obtain a specific isometry group, a Pauli reduction needs a higher dimensional theory with smaller

dimensions in compare with a DeWitt one. In other words, assuming the lower d-dimensional

theory has a gauge group of G, in the higher D-dimensional theory, D = d + dimG − dimH in

the Pauli reduction on the coset G/H , whereas D = d + dimG in the DeWitt reduction on the

group manifold G. Hence this is somewhat more “economical” way of obtaining the Yang-Mills

in the lower-dimensional theory. Secondly, the mere existence of these reductions motivates us to

investigate their underlying mathematical structure and it may lead us to new aspects, such as the

generalized geometry, which will be addressed briefly later.

1.3 Three revivals of the dimensional reduction

The dimensional reduction had not played a central role in the theoretical physics after its

birth in 1910s until 1970s. However, it has been revived in 1970’s and 1980’s because of the

constructions of supergravities in dimensions higher than four and especially the fact that su-

perstring theories are consistent in ten space-time dimensions. Then to connect these theories

to our four-dimensional space-time, the dimensional reduction is the best tool and technique.

Therefore, in early 1980s, this subject was extensively studied and interesting results were ob-

tained [5, 11, 18–22]. This is the first revival of the program.

The second revival of the dimensional reduction started in late 1997 when Juan Maldacena

made a conjecture about a correspondence between a gravity theory in an anti-de Sitter space and

a conformal field theory on its boundary [23–25]. The prominent example of this correspondence

is type IIB superstring theory on AdS5 × S5 and N = 4 super Yang-Mills on its four dimensional

boundary. Motivated by this example, there was a notable amount of researches conducted to

understand the non-linear structure of a reduction of a higher dimensional theory on a general coset

space like sphere [27–30]. For instance, the Pauli S4 reduction of eleven-dimensional supergravity

was constructed in [13, 14].

The third revival of this program has been started in past few years. There has been an intense

research program known as generalized geometry, where it aims to understand the different dual-

ities of string theory better. This aim can be achieved by assuming the internal manifold has the
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same dimensions as number of the adjoint representation of the underlying symmetry group of the

theory. Furthermore, by imposing the section constraint on the theory, it makes the hidden sym-

metries of a theory manifest. Within this framework, there is a generalized Scherk-Schwarz [19]

mechanism, where it is possible to have a systematic way of construction of the Kaluza-Klein

ansatz. [31,32] However, there are two issues related to this program. Firstly, the ansatz it is found

by this method is not very practical and one needs to find out a more feasible ansatz, and more

importantly, it is not obvious how to incorporate the fermions in this program. Therefore, with-

out inclusion of the fermions, the Kaluza-Klein ansatz will not address the crucial concept of the

supersymmetry. There are several examples of consistent Kaluza-Klein construction of a bosonic

sector of a theory, however, the construction becomes inconsistent after inclusion of the fermions.

In fact, in our alternative M-theory origin of the Salam-Sezgin theory which will be addressed

shortly, one observes that while it is somewhat an easy task to construct the bosonic truncations, it

is very difficult to find a consistent truncations of the fermionic fields.

1.4 Dissertation outline

This dissertation organizes as follows. In chapter 2, we review the Kaluza-Klein theory by a

toy example of the Klein-Gordon scalar field. Also, a circle reduction shall be addressed in this

chapter. The bosonic Lagrangian and equations of motion will be discussed and it will be shown

that discarding the dilaton field results from the circle reduction is inconsistent with retaining the

Maxwell field.

In chapter 3, we will find the embedding of two specific truncations of the STU supergravity in

eleven dimensions. The latter theory is a maximal Abelian (i.e. U(1)4) sub-group of the renowned

four-dimensional N = 8, SO(8) gauge supergravity, and has an essential role in study of black

holes in four dimensions. We will study two different truncations of this theory, i.e. 3 + 1 and

2 + 2, where besides a graviton, two gauge fields and a dilaton and an axion survive in these two

scenarios. We will find out the embedding eleven-dimensional metric and four-form field strength

in the above mentioned truncations.

In chapter 4, we will raise a question of the possibility of consistent Pauli S2 reduction of min-
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imal five-dimensional supergravity. The motivation for this study comes from the similarity be-

tween the latter theory’s bosonic Lagrangian and that of eleven-dimensional supergravity. Hence,

since there are consistent Pauli S4 and S7 reductions of eleven-dimensional supergravity, one may

conjecture a consistent Pauli S2 reduction of five-dimensional minimal supergravity exists. We

will show, using the Hopf reduction technique, there is no such a consistent Pauli reduction in this

case.

The Einstein-Maxwell N = (1, 0) six-dimensional theory, known as the Salam-Sezgin the-

ory [36], will be subject of two chapters 5 and 6. The latter theory has a supersymmetric four-

dimensional Minkowski4 × S2 vacuum solution, then one may wonder about the possibility of

consistent S2 Pauli reduction of it. This reduction found in 2003 by Gibbons and Pope [38], how-

ever, one does not have an understanding of why this reduction works. Using the Hopf reduction

technique, we have been able to find a group-theoretic understanding of this reduction. For this

purpose, the Salam-Sezgin theory should be derived from a seven-dimensional theory. This has

been done in [39], however, the Kaluza-Klein vector potential results from reduction of the metric

has been set to zero in that work, meaning that the Dirac monopole on S2 has been vanishing, thus

one cannot recover S3 as a U(1) Hopf fibration over S2 and the the Hopf fibration technique fails.

Therefore, one needs to find an alternative origin for the Salam-Sezgin theory. We will present an

alternative reduction in chapter 5. The seven-dimensional theory is an N = 2, SO(4) supergravity

with some exotic signs in the bosonic Lagrangian. Although the supersymmetry transformations

maintain and the entire Lagrangian is invariant under them, but, the reality condition of this the-

ory is somewhat obscured. We expect , however, this problem will be resolved and there will be

an “exotic” half maximal supergravity with an SO(4) gauging in seven dimensions. We will not

present our calculation about the fermionic truncation which yields to the Salam-Sezgin theory.

In chapter 6, we will show the possibility of obtaining the bosonic sector of the Salam-Sezgin

theory from a half maximal supergravity with an SO(2, 2) gauging in seven dimensions, where

the Kaluza-Klein vector potential has an active role. Therefore, we will be able to follow the Hopf

fibration technique to recover the Gibbons-Pope result of the Pauli S2 reduction of the Salam-
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Sezgin theory.

Finally, we will conclude in chapter 7.
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2. REVIEW OF THE KALUZA-KLEIN REDUCTION

In this chapter, we first introduce the concept of the dimensional reduction by considering a

scalar field satisfying the Klein-Gordon equation in a higher dimension and then, by performing a

circle reduction, we find out an infinite tower of massive fields in a lower dimension.

Furthermore, we study the metric ansazt and the gauge potential ansatz result from the Kaluza-

Klein circle reduction starting from pure gravity in a higher dimension.

2.1 The Klein-Gordon case

Consider a massless scalar field ϕ in D + 1 dimensions. One may divide the coordinates to a

D-dimensional space-time, denoted by x, and a component, say z, which will be compactified on

a circle with a radius of L . The Klein-Gordon equation in D + 1 dimensions reads

□̂ϕ̂(x, z) = 0 , (2.1)

where we put hat on the higher dimensional quantities to distinguish them from the lower dimen-

sional ones. Now, one may perform a Fourier transformation along the z component and write

ϕ̂(x, z) =
∑
n∈Z

ϕn(x) e
inz
L . (2.2)

Therefore, assuming the metric is flat, the massless Klein-Gordon equation implies

□̂ϕ̂(x, z) =
∑
n∈Z

e
inz
L (□ϕn(x)− n2

L2 ϕn(x)) = 0 . (2.3)

Since these modes are linearly independent, then one can conclude

□ϕn(x)− n2

L2 ϕn(x) = 0 . (2.4)

In other words, in the lower dimension, one has an infinite number of scalar fields which all of
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them are massive with mass of n2

L2 except the n = 0 case, i.e. the massless mode.

This is a common feature of the Kaluza-Klein reduction. One has to truncate an infinite tower

of massive fields, however, in a simple case we have seen above, it can be done very easily, but in

general, one has to consider a consistent truncation. As we have emphasized in chapter 1, in case

of a DeWitt reduction, one can perform a consistent truncation, but, in case of a Pauli reduction,

the problem becomes overwhelmingly harder.

2.2 The Kaluza-Klein circle reduction

In this section, we consider a circle Kaluza-Klein reduction, and we present its metric ansatz,

and find out the spin connection components. Also, we present the reduction ansazt for a p-form

vector potential. One may put hat on the higher dimensional fields, to make them distinguishable

from the lower dimensional ones.

2.2.1 The metric ansatz

Assume the higher dimensional theory is Einstein gravity, i.e. L̂D+1 = R̂∗̂1l. The standard

metric ansatz reads [26]

dŝ2D+1 = e2αφ ds2D + e2βφ (dz +A(1))
2 , (2.5)

where φ is a “breathing mode”. The constants α and β will be determined later. Using the vielbein

formalism, the obvious choice is

êa = eαφ ea, êz = eβφ (dz +A(1)) . (2.6)

The next step is finding the spin connection. One may derive it by using dêA = −ω̂AB ∧ êB,

where the torsion has been assumed to be vanishing. Here M,N,P, ... (A,B,C, ...) denote the

curved (flat) higher dimensional indices respectively. While, in the lower dimension, we use

µ, ν, ρ, ..., ζ (a, b, c, ..., z) for the curved (flat) indices respectively. Let the spin connection com-
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ponents be the following

ω̂ABC = ω̂A[BC], ω̂BC = ω̂ABC ê
A, ω̂C = ηAB ω̂ABC . (2.7)

Then the components of the higher dimensional spin connection read

ω̂abc = e−αφ (ωabc + 2α ηa[b ∂c] φ) , ω̂abz = −ω̂azb = −ω̂zab = 1
2
e(β−2α)φFab ,

ω̂zaz = −β e−αφ ∂aφ , ω̂a = e−αφ
(
ωa + (α(D − 1) + β) ∂aφ

)
, ω̂z = 0 . (2.8)

According to eqn (3.14) of [7], one can write the Ricci scalar as follows

R̂ = ω̂ABC ω̂
CAB + ω̂A ω̂

A , (2.9)

Then by this consideration, and using (2.8), Ricci scalar becomes as follows

R̂ = ω̂ABC ω̂
CAB + ω̂A ω̂

A = e−2αφ
[
R +

(
− α2(D − 1)− β2 + (α(D − 1) + β)2

)
×∂a φ∂a φ− 1

4
e2(β−α)φF2

(2)

]
, (2.10)

where F2
(2) = FabFab.

Taking into account ê = e(αD+β)φ e , one can write the Lagrangian in the lower dimension.

Now constants α and β can be found by demanding that there is no scalar pre-factor for the

Einstein-Hilbert term and also, the scalar field has a canonical normalized kinetic term. Thus

we have

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α . (2.11)

With the above relation for β, one can write the following expression for the spin connection
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components

ω̂abc = e−αφ (ωabc + 2α ηa[b ∂c] φ) , ω̂abz = −ω̂azb = −ω̂zab = 1
2
e−αDφFab ,

ω̂zaz = α (D − 2) e−αφ ∂aφ , ω̂a = e−αφ (ωa + α ∂aφ), ω̂z = 0 , (2.12)

where α2 = 1
2(D−1)(D−2)

.

Having obtained these constants, it is instructive to write the Ricci tensor components

R̂ab = e−2αφ
(
Rab − 1

2
∂aφ∂bφ− 1

2
e−2(D−1)αφF2

ab − α ηab□φ
)
,

R̂az = R̂zb =
1
2
e(D−3)αφ∇b

(
e−2(D−1)αφFab

)
, (2.13)

R̂zz = e−2αφ
(
(D − 2)α□φ+ 1

4
e−2(D−1)αφF2

)
.

There is an intricate point about using the relation (2.9) for finding the Ricci scalar. If one,

instead were used the Ricci tensor components to find the Ricci scalar, one obtains

R̂ = ηab R̂ab + ηzz R̂zz = e−2αφ
[
R +

(
− α2(D − 1)− β2 + (α(D − 1) + β)2

)
×∂a φ∂a φ− αD□φ− 1

4
e2(β−α)φF2

(2)

]
. (2.14)

Note that, the difference between (2.10) and (2.14) is a term which involves D□φ , and since this

is a total derivative term and shall not contribute in equations of motion, this difference may be

neglected. 1

Beginning with the Einstein equations in the higher dimension in (2.13), one can find the

Einstein, scalar and the Maxwell equations in the lower dimension

Rµν = 1
2
∂µφ∂νφ+ 1

2
e−2α(D−1)φF2

µν − 1
4(D−1)

e−2α(D−1)φF2 gµν

□φ = −α(D−1)
2

e−2α(D−1)φF2 , d(e−2α(D−1)φ ∗ F(2) ) = 0 , (2.15)

1Note since αD + β = 2α, and hence ê = e2αφ e, then the scalar pre-factor e−2αφ appears in the Ricci scalar
cancels out with this prefactor from ê, and therefore D□φ appears in the final lower-dimensional Lagrangian without
any scalar pre-factor.
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where F2
µν = FµρFν

ρ.

Having found the lower dimensional equations of motions, one can obtain the D-dimensional

Lagrangian, which is the same as the one which may be derived from (2.10)

LD = R ∗ 1l− 1
2
∗ dφ ∧ dφ− 1

2
e−2α(D−1)φ ∗ F(2) ∧ F(2) . (2.16)

Now, from the scalar equation of motion, it is clear that setting the scalar to zero should be

accompanied by setting the Maxwell field to zero, otherwise, the latter is a source for the former.

This is one of the most common type of inconsistencies which may occur in the kaluza-Klein

reduction and truncation. Actually, the original proposal of Klein to keep the graviton and Maxwell

field and discard the scalar field, dilaton, is the first example of the inconsistent truncation.

2.2.2 The vector potential ansatz

Now, we consider the reduction ansatz for a gauge potential which usually appears in the

Lagrangian. Assuming the fields are independent of the compact coordinate z, the natural reduction

ansatz for a general p-form potential is 2

Â(p) = A(p) + A(p−1) ∧ dz . (2.17)

Hence for the field strength F̂(p+1) = dÂ(p), the reduction ansatz becomes

F̂(p+1) = dA(p) + dA(p−1) ∧ dz = dA(p) − dA(p−1) ∧ A(1) + dA(p−1) ∧ (A(1) + dz)

= F(p+1) + F(p) ∧ (dz +A(1)) . (2.18)

Then, one can find the following lower-dimensional relations between the vector potentials and

2Actually according to [2], Nordström [1] in 1914, five years before Kaluza suggested his idea, had used the exact
same ansatz for the gauge potential!

13



the field strengths

F(p+1) = dA(p) − dA(p−1) ∧ A(1) , F(p) = dA(p−1) . (2.19)

For the case of p = 1, then one may write

Â(1) = A(1) + χdz , F̂(2) = dÂ(1) = F(2) + dχ ∧ (dz +A(1)) ,

F(2) = dA(1) − dχ ∧ A(1) (2.20)

where scalar χ is normally called ‘axion’.

The preliminary relations we presented in this chapter, will help us for the calculations which

we will perform in the rest of the dissertation.
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3. THE EMBEDDING OF TRUNCATED GAUGED STU SUPERGRAVITIES IN 11

DIMENSIONS 1

3.1 Introduction

Eleven-dimensional supergravity is a fundamental theory for two reasons. Firstly, it is a low

energy limit of M-theory, which itself is yet the best candidate for a consistent realization of the

quantum theory of gravity and also the unification of all forces of nature. Secondly, it is the unique

theory which describes supergravity in the highest possible dimension. One can obtain maximal

four-dimensional gauged supergravity, N = 8 and SO(8) of de Wit and Nicolai [10], by the

compactification of eleven-dimensional supergravity on S7. This is the most famous example of

consistent Kaluza-Klein-Pauli reductions and it was studied extensively in 1980s [20, 22], and the

partial consistency of the reduction was proved by de Wit and Nicolai in 1987 [11]. Although, they

found an eleven-dimensional uplift ansatz for the metric, but they did not provide the full uplift

ansätze for all components of the four-form field strength F(4) at that time. Nonetheless, more

recently, they presented the complete ansätze for all components of this field and have completed

their earlier proof [12] . However, this result is somewhat complicated, it is possible to obtain

some truncations of the maximal SO(8) supergravity. One of the notable truncations is so-called

gauged STU supergravity. In this N = 2 theory, besides the graviton, one retains the maximum

abelian subgroup of the SO(8) gauged group, i.e. U(1)4 gauge bosons and also, three dilatons and

three axions of the original theory in the bosonic sector. The three dilatons and axions belong to

35v and 35c of original SO(8) theory respectively. Gauged STU theory is particularly intriguing

since almost all four-dimensional black hole solutions can be characterized by this theory. Hence,

to obtain an embedding ansatz for a specific black hole solution in eleven dimensions, one may

need to find that of gauged STU supergravity. This motivation yields to an exploration of the uplift

ansatz for this case.
1 Reprinted with permission from “Embedding of gauged STU supergravity in eleven dimensions” by Arash Azizi,

Hadi Godazgar, Mahdi Godazgar, and C.N. Pope , 2016 Phys. Rev. D94 no. 6 (2016) 066003, Copyright [2016] by
The American Physical Society.
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We consider further truncations of gauged STU supergravity as follows. The bosonic sector

comprises a graviton, two (instead of four in gauged STU case) gauge fields, a dilatonic and an

axionic scalar fields. We study two different possibilities of this truncation. In the first case,

named 3 + 1 in [33], one sets three gauge potentials equal, while all axions as well as all dilatons

are considered to be equal. In the second scenario, named 2 + 2 in [33], one sets four gauge fields

of gauged STU theory pairwise equal. Also, one sets two axions and two dilatons to zero, while

the third axion and dilaton are kept. Even though the ansätze for the metric and four-form for the

latter case were found a while ago in [34], we find the full ansätze for the former case for the first

time.

The metric ansatz for both of the above truncations, already presented in a more general case of

gauged STU supergravity in [35]. Therefore, finding the uplift ansatz for the metric is a straight-

forward task. To obtain the metric ansatz, one shall use appropriate parametrizations for both

cases. We show the ansatz matches with the previous results of [34] and [49], with considering the

relevant truncations and rescalings.

The four-form ansatz for the original maximal SO(8) theory had not been known before the

work of de Wit and Nicolai in [12] in 2013. However, for special truncations of this theory, such

as the cases in [34] and [49] the ansatz was found. For 3 + 1 and 2 + 2 truncations, we found

the four-form ansatz for former case for the first time by the method we will describe shortly, but

for the latter case, the ansatz already has been presented in [34]. We obtained the ansatz in 3 + 1

case by writing a trial ansatz for A′
(3), where dA′

(3) is the only unknown part of the four-form field

strength. Considering the eleven-dimensional equations for four-form field, i.e. d ∗ F(4) = −1
2
∗

F(4) ∧ F(4), one can obtain several different equations which the trial ansatz should satisfy. Then,

using Mathematica for solving these related equations, we could successfully find the complete

ansatz for the 4-form.

Shortly after our calculation, the full uplifting ansatz for gauged STU supergravity was found

and presented in sections 2, 3, 4 and 5 of [33] based on what de Wit and Nicolai had found in [12].

Now, finding the ansatz is a straightforward calculation, and we will present different steps for
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obtaining it in this chapter. It matches exactly with what we already had found by a trial ansatz. In

addition to this, one can employ the field strength ansatz for general gauged STU supergravity to

find out that of the 2 + 2 case and recover the result in [34].

Let us begin by specifying the two truncations we mentioned above. It is standard to use

SL(2,R) parametrization for the scalar fields of gauged STU theory rather than an SO(2, 1) one.

In that sense, dilaton/axion pairs (φi, χi) given by

eφi = coshλi + sinhλi cosσi , χi e
φi = sinhλi sinσi , (3.1)

Now, two truncations are as follows

λ1 = λ σ1 = σ , λ2 = λ3 = σ2 = σ3 = 0 ,

2 + 2 : φ1 = φ χ1 = χ , φ2 = φ3 = χ2 = χ3 = 0 ,

A1
µ = A2

µ = Aµ , A3
µ = A4

µ = Ãµ , (3.2)

λ1 = λ2 = λ3 = λ , σ1 = σ2 = σ3 = σ ,

3 + 1 : φ1 = φ2 = φ3 = φ , χ1 = χ2 = χ3 = χ ,

A1
µ = Ãµ , A2

µ = A3
µ = A4

µ = Aµ . (3.3)

In the rest of this chapter, we will find the metric and four-form field strength ansätze, and also

the bosonic Lagrangian for these two cases.

3.2 3 + 1 Truncation of gauged STU supergravity

One may introduce the following re-parametrizations for µi, where µiµi = 1

µ1 = cos ξ , µa = νa sin ξ , a = 2, 3, 4 ,
∑
a

ν2a = 1 . (3.4)

We define c = cos ξ and s = sin ξ, since we have used them frequently.
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3.2.1 The embedding of the metric

3.2.1.1 The CP2 geometry

Consider
∑

a ν
2
a = 1 where a = 2, 3, 4. Now, define complex variables za as za = νa e

iϕa . The

unit Fubini-Study metric on CP2 reads

dΣ2
2 =

∑
a

dza dz̄a − |
∑
a

z̄adza|2 . (3.5)

Hence, using the above definition, one can obtain the following relation for the metric

dΣ2
2 =

∑
a

dν2a + ν2a dϕ
2
a −

(∑
a

ν2a dϕa
)2
. (3.6)

The Kähler form on CP2 can be written as follows

J = 1
2
dB , and dψ +B =

∑
a

ν2a dϕa . (3.7)

The unit metric for a five-sphere is

dΩ2
5 =

∑
a

dν2a + ν2a dϕ
2
a . (3.8)

Then, the Fubini-Study metric shall be

dΣ2
2 = dΩ2

5 − (dψ +B)2 . (3.9)

3.2.1.2 Obtaining the metric ansatz in terms of CP2 geometry

The metric ansazt for the embedding of general gauged STU spergravity in eleven dimensions

was found quite long time ago in [35]. Hence finding the 3 + 1 specialization of the metric is a

straightforward task. To do so, one may start from functions Yi and Ỹi introduced in terms of the
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axions and dilatons in eqn (11) of [35]. According to our specialization, they read

Yi ≡ Y = e
φ
2 , Ỹi ≡ Ỹ = (1 + χ2 e2φ)

1
2 e−

φ
2 , bi ≡ b = χ eφ , i = 1, 2, 3 . (3.10)

The next step is finding Zi introduced in eqn (20) of [35]. Therefore, one can find

Z1 = µ2
1 (1− Ỹ 4) + Ỹ 4 = c2 + s2 e−2φ (1 + b2)2 , (3.11)

Za = µ2
a (1− Y 2Ỹ 2) + Y 2Ỹ 2 + µ2

1 Y
2(Y 2 − Ỹ 2) = −s2 b2ν2a + β , a = 2, 3, 4 ,

where

β = Y 2 (Y 2 c2 + Ỹ 2 s2) = e2φ c2 + (1 + b2) s2 , (3.12)

Also, one needs to find the function Ξ defined by eqn (21) of [35], which reads, in our special

case, as follows

Ξ = Y 2 (Y 2 µ2
1 + Ỹ 2 (1− µ2

1))
2 = e−φ β2 . (3.13)

Now, having obtained all of the above relations, the metric ansazt can be derived from eqn (28)

of [35]. It is a tedious procedure and we shall show the result in few steps. First, one can write

down directly from eqn (28) the following relation

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
Z1 (s

2dξ2 + c2 dϕ2
1) +

∑
a

Za
[
(c νa dξ + s dνa)

2 + s2 ν2a dϕ
2
a

]
+2b2

[
c2s2 dϕ1

∑
a

ν2a dϕa − s4
(
ν22 dϕ2 ν

2
3 dϕ3 + ν22 dϕ2 ν

2
4 dϕ4 + ν23 dϕ3 ν

2
4 dϕ4

)]
+b2

(
3µ2

1 dµ
2
1 +

∑
a

µ2
a dµ

2
a + 2

∑
a

µ1 dµ1 µa dµa
)}

. (3.14)

This is an ungauged metric and the gauging can be simply recovered by

dϕi −→ dϕi − g Ai(1) , (3.15)

where in general Ai(1) is four U(1)4 gauge potentials of gauged STU supergravity. However, in the
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special case of 3 + 1 truncation, one should truncate the gauge potentials according to (3.3). For

simplicity, one may consider the ungauged metric and recover the gauge potentials in the last step.

Now, inserting Za from (3.11), and making use of the relation

3µ2
1 dµ

2
1 +

∑
a

µ2
a dµ

2
a + 2µ1 dµ1 µa dµa =

∑
a

c2s2 dξ2(1 + ν4a) + s4 ν2adν
2
a + 2cs3 ν3a dνa dξ ,

one can write down

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

∑
a

{
Z1 (s

2 dξ2 + c2 dϕ2
1) + β (c2 dξ2 + s2 dν2a + s2 ν2a dϕ

2
a)

+b2
[
− c2s2ν4adξ

2 − s4 ν2adν
2
a − 2cs3 ν3adνa dξ − s4ν4a dϕ

2
a + 2c2s2dϕ1 (dψ +B)

−s4
(
(dψ +B)2 − ν4a dϕ

2
a

)
+ c2s2 dξ2(1 + ν4a) + s4 ν2adν

2
a + 2cs3 ν3a dνa dξ

]}
.

Using (3.8), one can make a further simplification as follows

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
Z1 (s

2 dξ2 + c2 dϕ2
1) + β (c2 dξ2 + s2 dΩ2

5)

+b2
(
2c2s2 dϕ1 (dψ +B)− s4 (dψ +B)2 + c2s2 dξ2

)}
= Ξ

1
3 ds24 + g−2 Ξ− 2

3

{
dξ2 (Z1 s

2 + βc2 + b2c2s2) + β s2 (dΣ2
2 + (dψ +B)2)

+Z1 c
2 dϕ2

1 + 2 b2c2s2 dϕ1 (dψ +B)− s4b2 (dψ +B)2
}
. (3.16)

Now, one can use relations for Z1 and β in (3.11) and (3.12) to write down the following

expression

Z1 s
2 + βc2 + b2c2s2 = e−2φ β2 . (3.17)

The next step is completing the square in terms involving dψ +B, and writing

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
e−2φ β2 dξ2 + β s2 dΣ2

2 + Z1 c
2 dϕ2

1

+γs2
[
(dψ +B)2 + 2b2c2

γ
(dψ +B) dϕ1

]}
= Ξ

1
3 ds24 + g−2 Ξ− 2

3 (3.18)

×
{
e−2φ β2 dξ2 + β s2 dΣ2

2 + γs2
[
(dψ +B) + b2c2

γ
dϕ1

]2
+ e−2φ c2 β2

γ
dϕ2

1

}
,
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where we have used the following result for the coefficient of dϕ2
1

Z1 c
2 − b4c4s2 γ−1 = e−2φ c2 β2

γ
, (3.19)

where γ = Y 4 c2 + s2 .

The last step is retrieving the gauge potentials according to (3.15) and our 3+1 specialization in

(3.3). Note that since dψ +B =
∑

a ν
2
a dϕa, one can observe the inclusion of the gauge potentials

leads to

dψ +B −→ dψ +B − g A(1) , dϕ1 −→ dϕ1 − g Ã(1) . (3.20)

Hence, the metric, as it was presented in eqn (6.22) of [33] shall be

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

[ β2

Y 4
dξ2 + γ s2

(
(dψ +B − gA(1)) +

b2 c2

γ
(dϕ1 − gÃ(1))

)2

+β s2 dΣ2
2 +

β2 c2

γ Y 4
(dϕ1 − gÃ(1))

2
]
. (3.21)

3.2.2 The embedding of the four-form

The full ansatz for the four-form field strength can be written as

F̂(4) = −2gU ϵ(4) + Ĝ(4) + dÂ′
(3) + F̂ ′′

(4) , (3.22)

where U , Â′
(3), F̂

′′
(4) and Ĝ(4) are given by equations (5.4), (5.5), (5.6) and (5.8) of [33] respectively.

Note that all of these relations except the ansatz for Â′
(3) were given in the paper [35] in 2000.

As a first step towards finding F̂(4), one may calculate A′
(3). The ansatz for this field is given by

eqn (5.5) of [33] as follows

Â′
(3) =

1
2
Aαβ̂γ̂ dµα ∧ (dϕβ − g Aβ(1)) ∧ (dϕγ − g Aγ(1)) , (3.23)

where Aαβ̂γ̂ dµα can be derived from eqn (4.19) of [33]. Here we have introduced the hat notation
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in α̂ where (1̂, 2̂, 3̂, 4̂) = (5, 6, 7, 8). We do not repeat somewhat lengthy relations for Aαβ̂γ̂ dµα

here, however, to obtain the result, one needs to find out Wi, introduced in eqn (4.20) of [33] first.

They are

W1 = (1 + b2)2 e−2φ s2 , Wa = e2φ c2 + (1 + b2) s2 (1− ν2a) , a = 2, 3, 4 . (3.24)

Hence after calculation, one can write down

Aα56 dµα =
bβ

2Ξg3
[
c2 d(s2 ν22)− s2 ν22 e

−2φ(1 + b2) d(c2)
]
,

Aα78 dµα =
bβ s2

2Ξg3
[
ν24 d(s

2 ν23)− ν23 d(s
2 ν24)

]
,

Aα57 dµα =
bβ

2Ξg3
[
c2 d(s2 ν23)− s2 ν23 e

−2φ (1 + b2) d(c2)
]
,

Aα68 dµα =
bβ s2

2Ξg3
[
ν24 d(s

2 ν22)− ν22 d(s
2 ν24)

]
,

Aα58 dµα =
bβ

2Ξg3
[
c2 d(s2 ν24)− s2 ν24 e

−2φ (1 + b2)d(c2)
]
,

Aα67δµα =
bβ s2

2Ξg3
[
ν23 d(s

2 ν22)− ν22 d(s
2 ν23)

]
. (3.25)

Now, upon using (3.23), the ansatz for A′
(3) becomes as follows

A′
3 =

bβ

2Ξg3

{∑
a

[
c2 d(s2 ν2a) ∧ dϕ1 ∧ dϕa − e−2φ (1 + b2) s2 ν2ad(c

2) ∧ dϕ1 ∧ dϕa
]

+1
2
s2

∑
a,b

[
ν2b d

(
s2 ν2a

)
− ν2a d(s

2 ν2b )
]
∧ dϕa ∧ dϕb

}
, (3.26)

where we have set Ai = 0 for simplicity and it will be recovered in the last step.

Now, considering the CP2 relations introduced in (3.7), one can write

A′
3 =

bβ

2Ξg3

[
2cs

(
c2 + e−2φ (1 + b2) s2

)
dξ ∧ dϕ1 ∧ (dψ +B)

−2c2s2 J ∧ dϕ1 + 2s4 J ∧ (dψ +B)
]
, (3.27)
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where we have used

dψ +B =
∑
a

ν2a dϕa ⇒ dB =
∑
a

d(ν2a) ∧ dϕa = 2J , (3.28)

from relations in (3.7).

Finally, one may recover the gauge potentials by using (3.20) and write

Â′
(3) =

sc χ

g3
dξ ∧ (dϕ1 − gÃ(1)) ∧ (dψ +B − gA(1))−

s2c2

βg3
χ e2φ (dϕ1 − gÃ(1)) ∧ J . (3.29)

Other terms of the uplifting ansatz for F̂(4) can readily be found from equations 41, 42 and 43

of [35], hence the final result for F̂(4) is

F̂(4) = −2gU ϵ(4) + Ĝ(4) + dÂ′
(3) + F̂ ′′

(4) , (3.30)

where

U = 2(Y 2 c2 + Ỹ 2 s2) + Y 2 ,

Ĝ(4) = −2sc

g
(∗dφ− χ e2φ ∗dχ) ∧ dξ ,

+
s4

βg3
χ e2φ (dψ +B − gA(1)) ∧ J ,

F̂ ′′
(4) =

sc

g2 |W |2
dξ ∧ R̃ ∧ (dϕ1 − gÃ(1))−

sc

g2 |W |2
dξ ∧R ∧ (dψ +B − gA(1))

− s2

g2 |W |2
R ∧ J , (3.31)

and A′
(3) is given by (3.29). One can find W from eqn (37) of [35] as

|W |2 = (1 + 4b2)(1 + b2)2 (3.32)
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and also from eq (40) of [35] one has

R̃ = R1 , R = R2 = R3 = R4 , (3.33)

with

R̃ = Ỹ 6 [(1 + 3b2) ∗F̃(2) + 2b3 F̃(2)] + 3b (1 + b2) Ỹ 2 [b ∗F(2) + (1 + 2b2)F(2)] ,

R = Y 2 (1 + b2)2 [∗F (2) − 2b F(2)] + b (1 + b2) Ỹ 2 [b ∗F̃(2) + (1 + 2b2) F̃(2)] . (3.34)

3.2.2.1 Finding the Lagrangian

The bosonic Lagrangian can be obtained from eqn (34) of [35], and in the 3+ 1 specialization,

it shall be

L4 = R ∗1l− 3
2

(
∗dφ ∧ dφ+ e2φ ∗ dχ ∧ dχ

)
− V ∗1l + LKinA + LCS, (3.35)

where V is the potential for scalars (φ, χ) and LKinA and LCS are the kinetic and Chern-Simons

terms for one-form potentials A(1) and Ã(1). Following the equations 35, 36 and 38 of [35] and

using 3 + 1 specialization, V , LKin and LCS can be written as follows

V = −12g2
(
eφ + e−φ(1 + χ2 e2φ)

)
,

LKinA = − 1
2(1+4χ2 e2φ)

[
6χ2 eφF ∧ ∗F̃ + e−3φ(1 + 3χ2e2φ)(1 + χ2e2φ)F̃ ∧ ∗F̃ + 3eφ ∗ F ∧ F

]
,

LCS = − χ
(1+4χ2 e2φ)

[
− 3e2φF ∧ F + 3(1 + 2χ2 e2φ) F̃ ∧ F + χ2(1 + χ2 e2φ) F̃ ∧ F̃

]
.(3.36)

One may compare these uplifting ansätze for the metric, four-form F̂(4) and the Lagrangian

with the previous results of [49] where the dilatons are not identical, but axions were set to zero. If

one set all of the dilatons equal to each other as well as three gauge potentials in that paper, it turns

out the result matches with that of our result in this section, after truncating the axion to zero. In

other words, by setting the axion to zero, one can set b = χeφ = 0 , therefore, as one can observe
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from (3.29), A′
3 = 0 and the involved calculation for obtaining A′

3 can be avoided.

3.3 2 + 2 Truncation of gauged STU supergravity

3.3.1 The embedding of the metric

For our purpose of 2 + 2 truncation, defined in (3.2), it is convenient to define µi as follows

µ1 = c cos 1
2
θ , µ2 = c sin 1

2
θ , µ3 = s cos 1

2
θ̃ , µ4 = s sin 1

2
θ̃ , (3.37)

where c = cos ξ and s = sin ξ as before.

The next step is finding bi, Yi and Ỹi in this specialization as follows

b1 = b = χ eφ, b2 = b3 = 0, Y1 = Y = e
φ
2 , Y2 = Y3 = 1

Ỹ1 = Ỹ = (1 + χ2 e2φ)
1
2 e−

φ
2 , Ỹ2 = Ỹ3 = 1 . (3.38)

Therefore, one can find out Zi from eqn (20) of [35] as follows

Z1 = Z2 = Ỹ 2 s2 + c2 , Z3 = Z4 = Y 2 c2 + s2 ,

Ξ = Y 2 c4 + Ỹ 2 s4 + (1 + Y 2 Ỹ 2) c2s2 = Z1 Z3 . (3.39)

With these preliminaries, one can calculate the metric from eqn (28) of [35] as follows

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
Z1

(
dµ2

1 + µ2
1 dϕ

2
1 + dµ2

2 + µ2
2 dϕ

2
2

)
+Z3

(
dµ2

3 + µ2
3 dϕ

2
3 + dµ2

4 + µ2
4 dϕ

2
4

)
+1

2
b2
[
(µ1 dµ1 + µ2 dµ2)

2 + (µ3 dµ3 + µ4 dµ4)
2
]}
. (3.40)

Again as we emphasized in the case of 3 + 1 truncation, the above metric is ungauged and one

25



needs to follow (3.15) to gauge it. Using the definitions for µi in (3.37), one can write

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
Z1

[
s2 dξ2 + 1

4
c2dθ2 + c2

(
cos2 1

2
θ dϕ2

1 + sin2 1
2
θ dϕ2

2

)]
+Z3

[
c2 dξ2 + 1

4
s2dθ̃2 + s2

(
cos2 1

2
θ̃ dϕ2

3 + sin2 1
2
θ̃ dϕ2

4

)]
+ χ2 e2φ c2s2dξ2

}
. (3.41)

It is convenient to introduce the following relation for the four azimuthal angles

ϕ1 =
1
2
(ψ + ϕ) , ϕ2 =

1
2
(ψ − ϕ) , ϕ3 =

1
2
(ψ̃ + ϕ̃) , ϕ4 =

1
2
(ψ̃ − ϕ̃) . (3.42)

Therefore, after some algebra, one can write

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

{
Ξ dξ2 + 1

4
c2 (Ỹ 2 s2 + c2)

(
dθ2 + dψ2 + dϕ2 + 2dψ dϕ cos θ

)
+1

4
s2 (Y 2 c2 + s2)

(
dθ̃2 + dψ̃2 + dϕ̃2 + 2dψ̃ dϕ̃ cos θ̃

)}
. (3.43)

One needs to find out how the the gauge potentials incorporate in the Euler angles . Following

(3.15) and above definitions for azimuthal angles , one can readily find out

dϕ −→ dϕ , dψ −→ dψ − 2g A(1) ,

dϕ̃ −→ dϕ̃ , dψ̃ −→ dψ̃ − 2g Ã(1) . (3.44)

Having obtained these, one can easily complete the square in the metric ansatz (3.43), and after

considering the gauge potentials as it is stated in (3.44), one can write

dŝ211 = Ξ
1
3 ds24 +

Ξ
1
3

g2

{
dξ2 +

cos2 ξ

4Z3

[
dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ− 2gA(1))

2
]

+
sin2 ξ

4Z1

[
dθ̃2 + sin2 θ̃ dϕ̃2 + (dψ̃ + cos θ̃ dϕ̃− 2gÃ(1))

2
]}

, (3.45)

as it was presented in eqn (6.10) of [33].

One can compare the metric ansazt we have found, with the metric presented in eqn (1) of [34].
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The latter result, studying the embedding of D = 4, N = 4 with SO(4) gauging supergravity in

eleven dimensions, is more general than what it was obtained here. However, one should find the

same result after considering an Abelian truncation of SO(4) gauging, i.e. U(1)2 gauging, with

A(1) and Ã(1) gauge potentials defined by (3.2). To make a connection with the eqn (1) of [34], one

needs to write down hi and h̃i 2, appeared in their metric, as follows

hi = σi − g Ai , h̃i = σ̃i − g Ãi , (3.46)

where σi are three left-invariant one-forms in S3 = SU(2). Note, since SO(4) = SU(2)×SU(2),

we have two copies of S3 here, where their corresponding gauge potentials are denoted by Ai and

Ãi. One may explicitly write σi in terms of the Euler angles as follows

σ1 = cosψ dθ+sinψ sin θ dϕ , σ2 = − sinψ dθ+cosψ sin θ dϕ , σ3 = dψ+cos θ dϕ . (3.47)

With these preliminaries, one can find out
∑

i h
2
i and

∑
i h̃

2
i in the metric ansatz in eqn (1)

of [34] as follows

∑
i

h2i = dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ− 2 gA(1))
2

∑
i

h̃2i = dθ̃2 + sin2 θ̃ dϕ̃2 + (dψ̃ + cos θ̃ dϕ̃− 2 gÃ(1))
2 , (3.48)

where as we have emphasized, just two gauge potentials A3 ≡ A(1) and Ã3 ≡ Ã(1) out of 6 gauge

potentials of SO(4) are kept.

Finally, Setting Ξ = ∆2, and rescaling g = 1√
2
gRef. [34], one can retrieve eqn (1) of [34] from

the metric presented in (3.45).

One may set χ = 0 to find a further truncation which was studied in [49] for the first time.

2In chapter 4, the combination of the left-invariant one-forms and the gauge potentials will be denoted by νi.
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Hence, with this assumption, one has

Y = e
1
2
φ , Ỹ = e−

1
2
φ , Ξ ≡ ∆2 = e−φ

(
eφ c2 + s2

)2
, (3.49)

and it can be observed the resulting ansatz is the same as that of eqn (3.1) of [49] and also eqn (44)

of [34].

3.3.2 The embedding of the four-form

Full ansatz of the embedding of the four-form of gauged STU supergravity in eleven dimen-

sions is given in section 4 and 5 of [33]. In this part, we find out the uplift of the four-form in 2+2

truncation of gauged STU supergravity and we will show it is in full agreement with the result

derived in [34].

One can follow the same route as it was taken in the 3 + 1 truncation, and use the ansatz in

(3.22). Let us calculate A′
(3) contribution in four-form field strength first. To do so, one needs to

find out Wi in eqn (4.20) of [33] as follows

W1 = c2 sin2 1
2
θ + s2Ỹ 2 , W2 = c2 cos2 1

2
θ + s2Ỹ 2 ,

W3 = s2 sin2 1
2
θ̃ + c2Y 2 , W4 = s2 cos2 1

2
θ̃ + c2Y 2 . (3.50)

The next step is finding Aαβ̂γ̂ dµα from eqn (4.19) of [33]. Here we have introduced the hat

notation in α̂ where (1̂, 2̂, 3̂, 4̂) = (5, 6, 7, 8). Since b2 = b3 = 0, it leads to a considerable

simplification. The results become

Aα56 dµα =
b

2Ξ g3

[
µ2
1W2 d(µ

2
2)− µ2

2W1 d(µ
2
1)− µ2

1 µ
2
2 d(α2 + α3)

]
,

Aα78 dµα =
b

2Ξ g3

[
µ2
4W3 d(µ

2
3)− µ2

3W4 d(µ
2
4) + µ2

3 µ
2
4 d(α2 − α3)

]
,

Aα57 dµα = Aα68 dµα = Aα58 dµα = Aα67 dµα = 0 , (3.51)
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where

α1 = µ2
1 + µ2

2 α2 = µ2
1 + µ2

3 , α3 = µ2
1 + µ2

4 . (3.52)

Now, one needs to make use of the reparametrizations introduced in (3.37) and the result is

Aα56 dµα = b c4

4Ξ g3
(s2 Ỹ 2 + c2) sin θ dθ , Aα78 dµα = −b s4

4Ξ g3
(s2 + Y 2 c2) sin θ̃ dθ̃ . (3.53)

The next step is using the expression (5.5) in [33] for finding A′
(3), which we already presented

in (3.23). According to eqn (3.51), just two terms contribute in (3.23) relation, hence one can write

down

Â′
(3) =

χ eφ

4Ξ g3

(
c4 sin θ (c2 + s2 Ỹ 2) dθ ∧ (dϕ1 − g A(1)) ∧ (dϕ2 − g A(1))

−s4 sin θ̃ (s2 + c2 Y 2) dθ̃ ∧ (dϕ3 − g Ã(1)) ∧ (dϕ4 − g Ã(1))
)
. (3.54)

Now, making use of (3.42), one can obtain

Â′
(3) =

χ eφ

8 g3

( c4

s2 + c2 Y 2
sin θ dθ ∧ dϕ ∧ (dψ − 2g A(1))

− s4

c2 + s2 Ỹ 2
sin θ̃ dθ̃ ∧ dϕ̃ ∧ (dψ̃ − 2g Ã(1))

)
. (3.55)

To relate the above result to that of [34] in eqn (7), one has to find out

ϵ(3) ≡ 1
6
εijk h

i ∧ hj ∧ hk = h1 ∧ h2 ∧ h3 = σ1 ∧ σ2 ∧ (σ3 − 2g A(1))

= sin θ dθ ∧ dϕ ∧ (dψ − 2g A(1)) , (3.56)

where we have used (3.47). One can obtain the similar result for ϵ̃(3) and hence, can verify

Â′
(3) = f ϵ(3) + f̃ ϵ̃(3) , (3.57)
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where

f =
χ eφ c4

8g3 (s2 + c2 Y 2)
, f̃ = − χ eφ s4

8g3 (c2 + s2 Ỹ 2)
. (3.58)

It turns out this is the same result as eqn (8) of [34] with the above mentioned rescaling for the

coupling constant g, i.e. g = 1√
2
gRef. [34].

To obtain the full ansatz for the four-form field strength, one needs to find out other parts of it.

To do so, one may calculate F̂ ′′
(4), presented in eq (43) of [35] as follows

F̂ ′′
(4) = − 1

2g2
|W |−2

∑
i

dµ2
i ∧ (dϕi − g Ai(1)) ∧Ri . (3.59)

Here Ri are two-forms introduced in eqn (40) of [35] and according to 2 + 2 specialization, they

read

R1 = R2 = Ỹ 2 (1 + b2) (∗F(2) + bF(2)) , R3 = R4 = Y 2 (1 + b2) (∗F̃(2) − bF̃(2)) , (3.60)

where F(2) = dA(1) and F̃(2) = dÃ(1). Also, as it can be obtained easily from eqn (37) of [35],

W = 1 + b2. Now, making use of the following relations

dϕ1 − g A = 1
2
(dψ + dϕ− 2g A) = 1

2
h3 + sin2 1

2
θ dϕ ,

dϕ2 − g A = 1
2
(dψ − dϕ− 2g A) = 1

2
h3 − cos2 1

2
θ dϕ , (3.61)

one can write down the following result for F̂ ′′
(4)

F̂ ′′
(4) =

1

2g2 (1 + b2)

[
e−φ (cs dξ ∧ h3 + 1

2
c2 h1 ∧ h2) ∧ (∗F(2) + bF(2))

+eφ (−cs dξ ∧ h̃3 + 1
2
s2 h̃1 ∧ h̃2) ∧ (∗F̃(2) − bF̃(2))

]
. (3.62)

Again with the rescling of the coupling constant , one can obtain the same result as eqn (10) of [34],

after applying an appropriate truncations.

The only remaining term for finding the complete uplift ansazt for four-form is Ĝ(4) which can
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be readily obtained by using eqn (5.8) of [33]. Hence the full ansatz reads

F̂(4) = −2g U ϵ(4) + dÂ′
(3) + F̂ ′′

(4) +
cs

g
(− ∗ dφ+ e2φ χ ∗ dχ) ∧ dξ , (3.63)

where U = c2Y 2 + s2Ỹ 2 + 2 and A′
(3) and F̂ ′′

(4) are given by (3.57) and (3.62) respectively. Again,

one may check the above ansatz is consistent with the truncated result in [34] after applying the

rescaling in the coupling constant.

3.3.3 Finding the bosonic Lagrangian

The bosonic Lagrangian, as we mentioned in 3 + 1 case, can be derived from eqn (34) of [35].

It reads

L4 = R ∗1l− 1
2

3∑
i=1

(∗dφi ∧ dφi + e2φi ∗dχi ∧ dχi
)
− V ∗1l + LKin + LCS . (3.64)

Note that since b2 = b3 = 0, this leads to a great deal of simplicity in calculation. One may readily

calculate V , LKin and LCS from eqn (35) , eqn (36) and eqn (38) of [35] respectively and the result

is

L = R ∗1l− 1
2
∗dφ ∧ dφ− 1

2
e2φ ∗dχ ∧ dχ− V ∗1l

−Y −2 ∗F (2) ∧ F(2) − Ỹ −2 ∗F̃ (2) ∧ F̃(2)

−χF(2) ∧ F(2) + χY 2 Ỹ −2 F̃(2) ∧ F̃2 , (3.65)

where

V = −4g2 (Y 2 + Ỹ 2 + 4) . (3.66)

Therefore, we could be able to recover all results which previously presented in [34] for case

of 2 + 2 truncation of gauged STU supergravity.
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4. ON THE PAULI REDUCTION OF MINIMAL SUPERGRAVITY IN FIVE DIMENSIONS

4.1 Introduction

In this chapter, we address the possibility of the consistent Pauli S2 Reduction of minimal

supergravity in five dimensions. The main motivation for this investigation, is the resemblance

between the bosonic Lagrangian of this theory and that of eleven-dimensional supergravity, which

can be observed from the following expressions

L5 = R∗1l− 1
2
∗F(2) ∧ F(2) − 1

3
√
3
F(2) ∧ F(2) ∧ A(1) ,

L11 = R∗1l− 1
2
∗F(4) ∧ F(4) − 1

6
F(4) ∧ F(4) ∧ A(3) , (4.1)

where F(2) = dA(1) and F(4) = dA(3). Since there are S7, S4 and S5 consistent Pauli reductions

of the latter theory, one wonders about the existence of S2 or S3 consistent Pauli reductions of the

former one.

One may study this problem by writing a trial ansatz, and then considering the five-dimensional

equations of motion, if the internal manifold coordinates (S2 components in this case) remarkably

conspire and cancel out in these equations, one can claim the consistent ansatz has been found. The

important point is, this ansatz should include the gauge bosons with gauge group of the isometry

of the internal manifold (in this case, three gauge bosons with SU(2) gauging). Using this method,

the construction of the ansatz was not successful. Therefore, we investigated another method,

which is a more systematic one, and can be used to study the other cases as well.

This method, originally presented in [7], was named the “Hopf fibration technique” in [45]. The

idea is starting from a higher dimensional theory and performing a (necessary consistent) DeWitt

reduction on a group manifold G, then again from the initial theory, one can perform another

DeWitt reduction on a group manifold H , where the latter group is a sub-group of the former one.

Now, viewing the group manifoldG as anH Hopf fibration overG/H , it is guaranteed by a group-

theoretical argument that the coset reduction G/H is indeed consistent. In our case, the higher
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dimensional theory is minimal six-dimensional supergravity. We implement a consistent DeWitt

SU(2) reduction on this theory and find a three-dimensional space-time. In addition to this, we

perform a consistent Kaluza-Klein S1 reduction to obtain minimal five-dimensional supergravity

coupled to a vector multiplet. Now, writing the group manifold SU(2) as a U(1) Hopf fibration

over SU(2)/U(1) = S2 coset space, one can obtain a consistent Pauli S2 reduction from the five-

dimensional theory to the three-dimensional one. However, to accomplish the task of finding the S2

reduction of minimal five-dimensional supergravity, one needs to perform a consistent truncation

in five dimensions. But, as we will clarify later, this truncation gives rise to the vanishing of the

field strengths, and hence it implies the impossibility of the S2 reduction of this theory.

The rest of this chapter organizes as follows. In section 4.2 , we will obtain an S1 reduction

of minimal six-dimensional supergravity, and find a relation, due to the self-duality of three-form

field strength in six dimensions, between two- and three- form field strengths in five dimensions.

In section 4.3, we will present an S3 = SU(2) DeWitt reduction from six-dimensional minimal

supergravity down to a three-dimensional space-time. Also, we consider this S3 as a Hopf fibration

of U(1) over an S2, and by this means, write down the SU(2) DeWitt ansätze in a Hopf fibration

fashion. Hence by comparing these ansätze with those of the circle reduction in section 4.2.2, one

can find finally the ansätze for S2 reduction of minimal supergravity coupled to a vector multiplet.

However, as we will show in section 4.4, the truncation we have found for obtaining pure minimal

supergravity in five dimensions is not compatible with our ansätze, meaning that, one cannot find

a consistent Pauli S2 reduction of minimal D = 5 supergravity using the Hopf fibration technique.

4.2 S1 reduction of minimal D = 6 supergravity

The field content of the bosonic sector of minimal supergravity in six dimensions consists of a

metric ĝMN and a two-form potential B̂(2) whose field strength is a self-dual field, i.e. Ĥ(3) =

dB̂(2) = ∗̂Ĥ(3). Our convention is to insert a hat on the six-dimensional and a bar on five-

dimensional fields to avoid any ambiguity. In any 4n + 2 dimensions, self duality of the field
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strength, ∗H(2n+1) = H(2n+1) yields to

∗H(2n+1) ∧H(2n+1) = H(2n+1) ∧H(2n+1) = −H(2n+1) ∧H(2n+1) = 0 . (4.2)

Hence, it is not possible to write down a Lagrangian for this theory and one should state equations

of motion instead. However, minimal supergravity in six dimensions can be derived from the

following six-dimensional bosonic string Lagrangian with an appropriate truncation

L̂ = R̂ ∗̂1l− 1
2
∗̂dϕ̂ ∧ dϕ̂− 1

4
ea ϕ̂ ∗̂Ĥ(3) ∧ Ĥ(3) , (4.3)

where Ĥ(3) = dB̂(2), and a2 = 8
D−2

= 2. Here, ∗̂, ∗̄ and ∗ denote the Hodge dual of forms in 6, 5

and 3 dimensions respectively. Therefore, the equations of motion read

R̂MN = − eaϕ̂

12(D − 2)
Ĥ2 ĝMN + 1

2
∂M ϕ̂ ∂N ϕ̂+ eaϕ̂

8
Ĥ2
MN ,

□̂ϕ̂ = a
24
eaϕ̂ Ĥ2, (4.4)

d
(
eaϕ̂∗̂Ĥ(3)

)
= 0,

where Ĥ2 = ĤMNP Ĥ
MNP , and Ĥ2

MN = ĤMPQ ĤN
PQ. Now, upon imposing the self duality

condition on three-form field strength, one obtains Ĥ2 = 0. Then to have a consistent truncation,

due to the second equation of (4.4), the scalar field should be set to zero. Therefore, the truncated

theory, which is the bosonic sector of minimal supergravity in six dimensions, has the following

equations of motion

R̂MN = 1
8
Ĥ2
MN , d∗̂Ĥ(3) = 0, ∗̂Ĥ(3) = Ĥ(3). (4.5)
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4.2.1 A Kaluza-Klein circle reduction to 5D

According to the standard Kaluza-Klein S1 reduction presented in chapter 2, one can write

dŝ26 = e2ᾱϕ ds̄25 + e2β̄ϕ (g−1 dτ +A(1))
2 , (4.6)

Ĥ(3) = dB̂(2) , B̂(2) = B(2) +B(1) ∧ g−1 dτ , Ĥ(3) = H(3) + H(2) ∧ (g−1 dτ +A(1)) ,

where we choose ᾱ2 = 1
24

and β̄ = −3ᾱ to find a canonically normalized kinetic term for the

“breathing mode" ϕ in five-dimensional bosonic Lagrangian. Here z = g−1 τ has the dimensions

of length, while τ is a dimensionless coordinate. As usual, the higher dimensional relations above

yield the following relations in five dimensions

H(3) = dB(2) − dB(1) ∧ A(1) , H(2) = dB(1) . (4.7)

One can find the six-dimensional dual of the field strength as follows

∗̂Ĥ(3) = ∗̂H(3) + ∗̂
(
H(2) ∧ (dz +A(1))

)
= (−1)3×1 e−ᾱϕ eβ̄ϕ ∗̄H(3) ∧ (dz +A(1))

+(−1)2×0 eᾱϕ e−β̄ϕ ∗̄H(2) = −e−4ᾱϕ ∗̄H(3) ∧ (dz +A(1)) + e4ᾱϕ ∗̄H(2) . (4.8)

Now, the self duality condition implies

H(3) = e4ᾱϕ ∗̄H(2) , (4.9)

in five dimensions. Therefore, the six-dimensional three-form field strength shall be

Ĥ(3) = e4ᾱϕ ∗̄H(2) +H(2) ∧ (dz +A(1)) . (4.10)
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4.2.2 Finding the bosonic Lagrangian in 5D

The six-dimensional Einstein equation, writing in the flat indices, has a simple form

R̂AB = 1
8
ĤA

CDĤBCD . (4.11)

Now one needs to find the components of Ĥ2
AB = ĤA

CDĤBCD in five dimensions. To do

so, from (4.7) one can obtain the following relations for the flat components of the five- and six-

dimensional field strengths as usual

Ĥabc = e−3ᾱϕHabc , Ĥab6 = eᾱϕHab , (4.12)

where the above five-dimensional field strengths are clearly a three-form and a two-form fields

respectively, and for simplicity we refrain to insert the subscripts when there is no ambiguity.

Recalling the self duality relation (4.9), one has the following result for the components of H(3)

and H(2)

Habc =
1
2
e4ᾱϕ ϵabc

deHde . (4.13)

Therefore, using the above relation, one can obtain the following expressions for the components

of Ĥ2
AB

Ĥ2
ab = Ĥacd Ĥb

cd + 2Ĥac6 Ĥb
c6 = e−6ᾱϕHacdHb

cd + 2eᾱϕHacHb
c

= 1
4
e2ᾱϕ ϵacdef H

df ϵb
cdghHgh + 2eᾱϕHacHb

c = e2ᾱϕ (−ηabHcdH
cd + 4HacHb

c) ,

Ĥ2
a6 = Ĥabc Ĥ6

bc = e−2ᾱϕHabcH
bc = 1

2
e2ᾱϕ ϵabcdeH

bcHde ,

Ĥ2
66 = Ĥ6ab Ĥ6

ab = e2ᾱϕHabH
ab . (4.14)

Using the expressions for higher dimensional Ricci components in (2.13) of chapter 2, one has
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the following five-dimensional relations for the higher dimensional Einsteins equation in (4.11)

R̂ab = e−2ᾱϕ
(
Rab − 1

2
∂aϕ ∂bϕ− 1

2
e−8ᾱϕF2

ab − ᾱ ηab□ϕ
)

= 1
8
e2ᾱϕ (−ηabHcdH

cd + 4HacHb
c) ,

R̂az = R̂zb =
1
2
e2 ᾱϕ∇b

(
e−8ᾱϕFab

)
= 1

16
e2ᾱϕ ϵabcdeH

bcHde , (4.15)

R̂zz = e−2ᾱϕ
(
3ᾱ□ϕ+ 1

4
e−8ᾱϕF2

)
= 1

8
e2ᾱϕHabH

ab .

In differential geometry, there is an operator which is the adjoint of the exterior derivative (

sometimes called the interior derivative) which can be written as follows

(δ ω(p))µ1···µp−1 ≡ (−1)np+t (∗d ∗ ω(p))µ1···µp−1 = −∇µ ωµµ1···µp−1 , (4.16)

where ω(p) is a p-form and n and t are the number of space-time and time-like dimensions respec-

tively. Having used this relation, one can write the second equation of (4.15) in the form language

as follows

d(e−8ᾱϕ ∗̄F(2)) = −1
2
H(2) ∧H(2) . (4.17)

Having obtained the above equation, now it is not hard to find a five-dimensional Lagrangian

which yields the three equations in (4.15) as an Einstein, a one-form gauge potential A(1) and a

scalar equations of motion. From the right hand side of (4.17), one needs to include the term

−1
2
H(2) ∧ H(2) ∧ A(1) in the Lagrangian, while the pre-factors of the kinetic terms may be found

from the third equation in (4.15), i.e. the scalar equation of motion. The five-dimensional bosonic

Lagrangian shall be written as

L5 = R̄ ∗̄1l− 1
2
∗̄dϕ∧ dϕ− 1

2
e−8ᾱϕ ∗̄F(2) ∧F(2) − 1

2
e4ᾱϕ ∗̄H(2) ∧H(2) − 1

2
H(2) ∧H(2) ∧A(1) . (4.18)

The first equation of (4.15), upon using the scalar equation of motion, gives rise to the Einstein

equation derived from the above Lagrangian. However, the equation for B(1) , the gauge potential
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whose field strength isH(2) = dB(1), did not appear in (4.15), but it can be derived from the Bianchi

identity, i.e. dĤ(3) = 0. Namely, using (4.10), one has

dĤ(3) = d
(
e4ᾱϕ ∗̄H(2)

)
+H(2) ∧ F(2) = 0. (4.19)

This is exactly the equation for the gauge potential B(1) derived from the above Lagrangian.

4.2.3 Truncations to minimal supergravity in 5D

The Lagrangian we found in (4.18) is five dimensional minimal supergravity coupled to one

vector multiplet. One needs to perform the following truncation to obtain minimal supergravity in

five dimensions

ϕ = 0 , H(2) =
√
2F(2) . (4.20)

The factor of
√
2 is crucial here, since, to satisfy the third equation of (4.15), upon truncation of the

scalar field to zero, the presence of this factor guarantees the source term for the truncated scalar

field is also vanishing.

To have a canonical normalization for the kinetic term of the field strength, one may use the

following field redefinition

Ã(1) =
√
3A(1) . (4.21)

Hence, the bosonic Lagrangian shall be that of pure minimal supergravity in five dimensions

L5 = R̄ ∗̄1l− 1
2
∗̄F̃(2) ∧ F̃(2) − 1

3
√
3
F̃(2) ∧ F̃(2) ∧ Ã(1) . (4.22)

4.3 SU(2) DeWitt reduction from D = 6 to D = 3

In this section, we consider a consistent SU(2) DeWitt reduction of minimal supergravity in six

dimensions down to a three-dimensional theory. This construction was already presented in [44]

and we shall review it here.

It is convenient to present the general DeWitt reduction ansatz of the Einstein-Hilbert action
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in D = n + q dimensions reduced on a q-dimensional group manifold. The metric ansatz, stated

in [7], and it is

dŝ2(n+q) = e2αφ ds2(n) + g−2e2βφ T̃ij ν
i νj, (4.23)

where one-forms νi

νi = σi − gAi , (4.24)

are written in terms of the left-invariant one-forms σi in the group manifold. The unimodular ma-

trix T̃ij parameterizes the remaining scalar fields of the n-dimensional theory. The scalar field φ is

a “breathing mode" and constants (α, β) shall be determined by demanding the lower dimensional

Lagrangian has no scalar pre-factor in the Einstein-Hilbert term and the scalar has a canonically

normalized kinetic term. Hence the constants are

α = −
√

q

2(n− 2)(n+ q − 2)
, β = −α (n− 2)

q
. (4.25)

We investigate the case of G = SU(2) in the following.

4.3.1 The ansätze for an SU(2) group manifold reduction

The reduction ansätze for the metric and the self-dual three-form are the following

dŝ26 = e2αφds23 + g−2 e2βφ T̃ij ν
i νj , (4.26)

Ĥ(3) = mg−3Ω(3) +me4αφ ϵ(3) +
1
2
g−2 εijk B

i ∧ νj ∧ νk − g−1e
4αφ
3 T̃ij ∗Bi ∧ νj , (4.27)

where the constants α and β can be found from (4.25) by setting (n, q) = (3, 3) and they are given

by α2 = 3
8

and β = −α
3

. One-forms νi are given by (4.24) as νi = σi− gAi and three left invariant

one-form σi are expressed as the following expression in terms of the Euler angles (ψ, θ, τ)

σ1 = cosψ dθ+sinψ sin θ dτ , σ2 = − sinψ dθ+cosψ sin θ dτ , σ3 = dψ+cos θ dτ , (4.28)
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and they satisfy the following relation

dσi = −1
2
εijk σj ∧ σk . (4.29)

The three-form Ω(3) is defined by

Ω(3) ≡ ν1 ∧ ν2 ∧ ν3 , (4.30)

where ϵ(3) is the volume form of the three-dimensional space-time, andBi denotes an SU(2) triplet

of one-form fields.

One can define the covariant derivative and the field strength of the SU(2) gauge potentials Ai

as usual

Dνi ≡ dνi + g εijk A
j ∧ νk F i = dAi + 1

2
g εijk A

j ∧ Ak . (4.31)

Then, one can find an expression for Dνi as follows

Dνi ≡ dνi + gεijk A
j ∧ νk = dσi − g dAi + gεijk A

j ∧ νk = −1
2
εijk σj ∧ σk (4.32)

−g dAi + gεijk A
j ∧ νk = −1

2
εijk (νj + gAj) ∧ (νk + gAk)− g dAi + gεijk A

j ∧ νk

= −1
2
εijk νj ∧ νk − 1

2
gεijk νj ∧ Ak − 1

2
gεijk Aj ∧ νk − 1

2
g2 εijk Aj ∧ Ak − g dAi

+g εijk A
j ∧ νk = −g dAi − 1

2
g2 εijk Aj ∧ Ak − 1

2
εijk νj ∧ νk = −1

2
εijk νj ∧ νk − g F i .

Using (4.27) and the Bianchi identity dĤ(3) = 0 one has

dĤ(3) = DĤ(3) = mg−3 dΩ(3) +
1
2
g−2εijkDB

i ∧ νj ∧ νk − g−2εijk B
i ∧Dνj ∧ νk

−g−1 4
3
α e

4αφ
3 T̃ij dφ ∧ ∗Bi ∧ νj − g−1 e

4αφ
3 DT̃ij ∧ ∗Bi ∧ νj

−g−1 e
4αφ
3 T̃ij ∧ ∗Bi ∧Dνj − g−1 e

4αφ
3 T̃ij ∧D ∗Bi ∧ νj = 0 . (4.33)

We are interested in terms involving νj ∧ νk, and since they are independent of those terms
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which involving νi, then the former terms should be vanishing according to the above equation.

Also using (4.30), the following expression for dΩ(3) can be written

dΩ(3) =
3
6
εijkDν

i ∧ νj ∧ νk = −1
2
g εijk F

i ∧ νj ∧ νk . (4.34)

Then, according to the above argument about the vanishing of terms involving νj∧νk in (4.33),

one can conclude

εijk ν
j ∧ νk ∧

(
− 1

2
mg−2 F i + 1

2
g−2DBi + 1

2
g−1e

4αφ
3 T̃iℓ ∗Bℓ

)
= 0 . (4.35)

In other words

DBi −mF i + ge
4
3
αφ T̃ij ∗Bj = 0 , (4.36)

where DBi = dBi + g εijk A
j ∧Bk.

Upon plugging in the ansätze (4.26) and (4.27) into the six dimensional equations of motion

(4.5), one can find the three-dimensional equations of motion and it can be derived from a bosonic

Lagrangian presented in [44].

4.3.2 SU(2) as a Hopf fibration

So far, we have obtained a circle reduction of minimal supergravity in six dimensions and

also an SU(2) reduction of that theory. Now, one can re-interpret the latter reduction as a U(1)

Hopf fibration of the circle reduction over S2. Hence, one can find a consistent S2 reduction of

five-dimensional theory. The crucial point here is, one needs to re-write elements of the SU(2)

reduction in the Hopf fibration manner.

To describe the S2 reduction, one may introduce three Cartesian coordinates µi, where µi µi =

1, to describe the unit two-sphere in R3. One may use the following re-parametrization in terms of

the Euler angles (θ, ψ)

µ1 = sinψ sin θ , µ2 = cosψ sin θ , µ3 = cos θ . (4.37)
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Now, one needs to find relations between elements of the SU(2) reduction and these three

parameters. The starting point is the following expression between the three parametrization coor-

dinates and the three left-invariant one-forms

dµi = εijk µ
j σk , (4.38)

where σi are defined in (4.28). One can easily verify the above relation by a direct calculation.

Now, considering the gauge fields, the above relation yields to the following

Dµi = εijk µ
j νk , (4.39)

where the covariant derivative is defined as Dµi ≡ dµi + g εijk A
j µk . Now, having obtained that,

let us find the following combination

εijk µ
j Dνk = εijk µ

j εkmn µ
m νn = µj (µi νj − µj νi) = µi (µj νj)− νi . (4.40)

Therefore one can write

νi = σi − g Ai = −εijk µj Dµk + µi σ ,

σ ≡ µi νi = dτ + cos θ dψ − g µiAi . (4.41)

At this stage, it is useful to introduce some relations which will be needed to perform the

calculations. First, we present two well-known relations in linear algebra about the determinant

and the inverse of a general n× n matrix

detA = εi1i2···in A1i1 A2i2 · · ·Anin = 1
n!
εi1i2···in εj1j2 · · · jnAi1j1 Ai2j2 · · ·Ainjn ,

A−1
ij = 1

(n−1)!
1

detA
εi i2···in εj j2···jn Aj2i2 · · ·Ajnin , (4.42)

where the second relation above can be derived from the first one, by multiplyingA−1
ij in both sides
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of the first relation and using a useful identity named Schouten’s trick. The latter is as follows

ε[i1i2···in Mi] = 0 ⇒ εi1i2···in Mi = εi i2···in Mi1 + εi1 i···in Mi2 + · · · εi1i2···iMin . (4.43)

Since the anti-symmetrization of n+1 components where each of them runs over n value, is always

vanishing, hence the result is obvious, but, in spite of its simplicity, it is a very powerful tool and

we have used it frequently in our calculations.

Let us employ (4.42) to find a useful lemma

εijk AjmAkn = detA εℓmnA
−1
ℓi , (4.44)

where it can be proved as follows

εℓmnA
−1
ℓi = 1

2
1

detA
εℓmn εℓpq εijk AjpAkq =

1
2

1
detA

εijk (AjmAkn − AjnAkm)

= 1
detA

εijk AjmAkn . (4.45)

Therefore, for the case of Aij = T̃ij , one has

εijk T̃jm T̃kn = T̃−1
iℓ εℓmn , (4.46)

where we have used the fact that T̃ij is uni-modular and symmetric.

To obtain the Hopf fibration result for SU(2) reduction metric ansatz in (4.26), one needs to

find a relation for T̃ij νi νj . Using (4.41) one can calculate

T̃ij ν
i νj = T̃ij (−εimn µmDµn + µi σ) (−εjpq µpDµq + µj σ) = T̃ij εimn εjpq µ

m µpDµnDµq

−2T̃ij εikℓ µ
k µj Dµℓ σ + ∆̃σ2 = ∆̃

(
σ − ∆̃−1 T̃ij εikℓ µ

k µj Dµℓ
)2

+M , (4.47)

where ∆̃ = T̃ij µ
iµj . We try to complete the square and M denotes the remaining terms to be

found later. Our motivation to complete the square term is to find a (dτ+gA)2 term which appears
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in the S1 reduction. Taking into account νi is a dimensionless quantity, one may have the following

relation

σ − ∆̃−1 T̃ij εikℓ µ
k µj Dµℓ = dτ + gA , (4.48)

and considering σ from (4.41), one can write the following relation for the Kaluza-Klein vector

gauge potential

A = g−1 cos θ dψ − µiAi − g−1 ∆̃−1 T̃ij εikℓ µ
jµkDµℓ . (4.49)

Now, one needs to find M . From (4.47), one can write the following expression for M

M = ∆̃−1
(
∆̃ T̃ij εimn εjpq µ

m µpDµnDµq −
(
T̃ij εikℓ µ

k µj Dµℓ
)2)

. (4.50)

Writing ∆̃ = T̃rs µ
rµs, the first term of the right hand side of the above relation shall be written

as

∆̃ T̃ij εimn εjpq µ
m µpDµnDµq = T̃rs µ

rµs T̃ij εimn εjpq µ
m µpDµnDµq

= T̃rs T̃ij (εrpq µ
j + εjrq µ

p + εjpr µ
q) εimn µ

sµmµpDµnDµq

= (T̃rs εrpq µ
sµpDµq)(T̃ij εimn µ

jµmDµn)

+εisp T̃
−1
pq εimn µ

sµmDµnDµq

=
(
T̃ij εikℓ µ

k µj Dµℓ
)2

+ T̃−1
ij DµiDµj , (4.51)

where we have use the following relations

µr εjpq = εrpq µ
j + εjrq µ

p + εjpr µ
q ,

εjrq T̃rs T̃ij = εisp T̃
−1
pq , µiµi = 1 , µiDµi = 1

2
D(µiµi) = 0 . (4.52)

Now, upon using (4.50) and (4.51) then M has a simple form

M = ∆̃−1 T̃−1
ij DµiDµj . (4.53)
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Finally, the metric ansatz (4.26) can be written in the Hopf fibration form

dŝ26 = e2αφ ds23 + g−2 e2βφ ∆̃−1 T̃−1
ij DµiDµj + g−2 e2βφ ∆̃ (dτ + gA)2 , (4.54)

where the Kaluza-Klein vector potential A has defined in (4.49).

The next step is finding a Hopf fibration expression for the three-form field strength Ĥ(3).

Before calculating it, let us introduce some useful relations

νi = µi (dτ + gA)− ∆̃−1 T̃jk εijℓ µ
kDµℓ , (4.55)

1
2
εijk ν

j ∧ νk = (dτ + gA) ∧Dµi + ∆̃−1 T̃ij µ
j ω(2) , (4.56)

Ω(3) =
1
6
εijkν

i ∧ νj ∧ νk = (dτ + gA) ∧ ω(2) , (4.57)

where

ω(2) =
1
2
εijk µ

iDµj ∧ Dµk . (4.58)

To prove (4.55), one can start from (4.41) to write

νi = −∆̃−1 T̃mn µ
mµn εijk µ

j Dµk + µi
(
dτ + gA+ ∆̃−1 T̃ij εikℓ µ

jµkDµℓ
)

= −∆̃−1
(
T̃mn (εmjk µ

i + εimk µ
j + εijm µ

k)µnµj Dµk − T̃ij εikℓ µ
iµjµkDµℓ

)
+µi (dτ + gA) = µi (dτ + gA)− ∆̃−1 T̃jk εijℓ µ

kDµℓ , (4.59)

where we have used the Schouten’s identity in the second line above and using the following

expression for σ

σ = dτ + cos θ dψ − g µiAi = dτ + gA+ ∆̃−1 T̃ij εikℓ µ
jµkDµℓ . (4.60)
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To prove (4.56) , one can use (4.55)

1
2
εijk ν

j ∧ νk = 1
2
εijk

(
µj (dτ + gA)− ∆̃−1 εjmℓ T̃mn µ

nDµℓ
)

×
(
µk (dτ + gA)− ∆̃−1 εkpq T̃pr µ

rDµq
)
= −∆̃−1 εijk εjmℓ T̃mn µ

nµkDµℓ

∧ (dτ + gA) + 1
2
∆̃−2 εijk εjmℓ T̃mn µ

n εkpq T̃pr µ
r εℓqs µ

s ω(2) (4.61)

= −∆̃−1 (T̃knDµ
i − T̃inDµ

k)µnµk ∧ (dτ + gA)

+1
2
∆̃−2 (T̃ir εℓjs − T̃jr εℓis) εjmℓ T̃mn µ

nµrµs ω(2) = (dτ + gA) ∧ Dµi

+∆̃−1 T̃ij µ
j ω(2) − 1

2
∆̃−2 (T̃ir T̃sn − T̃sr T̃in)µ

nµrµs ω(2)

= (dτ + gA) ∧Dµi + ∆̃−1 T̃ij µ
j ω(2) ,

where we have used

Dµi ∧Dµj = εijk µ
k ω(2) . (4.62)

Its proof is the following

Dµi ∧Dµj = 1
2
εijk εkpqDµ

p ∧Dµq = 1
2
εijk εkpqDµ

p ∧Dµq µm µm

= 1
2
εijk (εmpq µ

k + εkmq µ
p + εkpm µ

q)Dµp ∧Dµq µm

= 1
2
εijk εmpq µ

mDµp ∧Dµq µk = εijk µ
k ∧ ω(2) . (4.63)

Note that from (4.56) by multiplying µi in both sides, one obtains

1
2
εijk µ

i νj ∧ νk = ω(2) . (4.64)

There is also another expression for ω(2). Multiplying both sides of the first relation of (4.41)

by Dµi, one can easily find

ω(2) =
1
2
Dµi ∧ νi . (4.65)
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Making use of (4.65) , (4.32) and (4.41), one may calculate

ω(2) = −1
2
εijk µ

i νj ∧ νk + 2ω(2) = µi (Dνi + gF i) +Dµi ∧ νi = D(µiνi) + gµiF i

= dσ + gµiF i = sin θ dψ ∧ dθ − g d(µiAi) + g µiF i . (4.66)

Finally (4.57) can be proved as follows

(dτ + gA) ∧ ω(2) = µmνm ∧ ω(2) =
1
2
εijk µ

i µmνm ∧ νj ∧ νk = 1
2
εijk µ

i µm εmjk Ω(3) = Ω(3) ,

where we multiply µi in both sides of (4.55) and also employ the relation

Dµi ∧Dµj ∧Dµk = εijk ω(3) ⇒ ω(3) =
1
6
εijkDµ

i ∧Dµj ∧Dµk = 1
6
µmµm εijkDµ

i ∧Dµj ∧Dµk

= 1
6
µm(εmjk µ

i + εimk µ
j + εijm µ

k)Dµi ∧Dµj ∧Dµk = 0 . (4.67)

After these preliminaries, now we may find the Hopf fibration form of the self-dual field

strength Ĥ(3) given by (4.27)

Ĥ(3) = mg−3 dτ + gA) ∧ ω(2) +me4αφ ϵ(3) + g−2Bi ∧
(
(dτ + gA) ∧Dµi + ∆̃−1 T̃ij µ

j ω(2)

)
−g−1e

4αφ
3 T̃ij ∗Bj ∧

(
µi (dτ + gA)− ∆̃−1 εimℓ T̃mk µ

kDµℓ
)

(4.68)

= d(τ + gA) ∧
[
mg−3 ω(2) − g−2Bi ∧Dµi − g−1 e

4
3
αφ T̃ij µ

i ∗Bj
]

+me4αφ ϵ(3) + g−2 ∆̃−1 T̃ij µ
iBj ∧ ω(2) + g−1e

4
3
αφ ∆̃−1 εjkm µ

ℓ T̃ij T̃kℓ ∗Bi ∧Dµm .

Now we have all ingredients of re-interpreting the DeWitt SU(2) reduction of initial minimal

six-dimensional supergravity as a Pauli S2 reduction of five dimensional theory. To obtain this,

one may compare the metric ansätze of the SU(2) expressed in the Hopf fibration form in (4.54)
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with that of the S1 reduction in (4.6)

ds̄25 = e2αφ−2ᾱϕ ds23 + g−2 e−
2
3
αφ−2ᾱϕ ∆̃−1 T̃−1

ij DµiDµj , (4.69)

e−6ᾱϕ = e−
2
3
αφ ∆̃ . (4.70)

Moreover, by comparison of the three-form self-dual field strength reduction ansätze of the

SU(2) in (4.68) with that of the circle reduction in (4.10), one finds

H(2) = mg−2 ω(2) − g−1Bi ∧Dµi − e
4
3
αφ T̃ij µ

i ∗Bj , (4.71)

e4ᾱϕ ∗̄H(2) = me4αφ ϵ(3) + g−2 ∆̃−1 T̃ij µ
iBj ∧ ω(2) + g−1e

4
3
αφ ∆̃−1 εjkm µ

ℓ T̃ij T̃kℓ ∗Bi ∧Dµm .

One can follow [7] to define the three-dimensional scalar fields

Tij = Y
1
3 T̃ij , Y = e4αφ . (4.72)

Hence, the Pauli S2 reduction ansätze of five-dimensional minimal supergravity coupled with

a vector multiplet whose Lagrangian is given by (4.18) has the following form

ds̄25 = Y
1
3 ∆

1
3 ds23 + g−2 Y

1
3 ∆−2

3 T−1
ij DµiDµj ,

e6ᾱϕ = Y
1
2 ∆−1 ,

A(1) = g−1 cos θdψ − µiAi − g−1∆−1 Tij εikℓ µ
jµkDµℓ , (4.73)

B(1) = mg−2 cos θ dψ −mg−1 µiAi + g−1 µiBi + dω(0)

F(2) = −1
2
εijk

(
g−1 U ∆−2 µiDµj ∧Dµk − 2g−1∆−2Dµi ∧DTjℓ Tkm µℓ µm

)
−∆−1 Tij µ

i F j

H(2) = mg−2 ω(2) − g−1Bi ∧Dµi − Tij µ
i ∗Bj ,

where ∆ = Tij µ
iµj = Y

1
3 ∆̃ and U = 2µi Tij Tjk µ

k −∆Tii.
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Using equations (4.36) and (4.66), one can write H(2) given by (4.71) as

H(2) = mg−2 ω(2)−g−1Bi∧ Dµi+g−1 µiDBi−mg−1 µiF i = mg−2 dσ+g−1D(µiBi), (4.74)

therefore, considering H(2) = dB(1), hence B(1) can be written up to a total derivative denoted by

dω(0), as the expression given by (4.73).

4.4 Impossibility of the Pauli reduction of 5D minimal supergravity

We constructed a consistent Pauli S2 reduction of five-dimensional minimal supergravity cou-

pled with a vector multiplet in the last section. However, to obtain a Pauli S2 reduction of pure

minimal supergravity in five dimensions, one needs to perform a consistent truncation given by

(4.20). In this section, we examine this condition in five dimensions and study its consequences

in three-dimensional space-time fields. Thus, we find out whether obtaining the consistent Pauli

reduction of pure minimal supergravity is possible by this method.

From the Pauli reduction ansatz for ϕ given in (4.73), one can observe ϕ = 0 yields to

Y
1
2 = ∆ = Tij µ

iµj . (4.75)

The important point is Y and Tij depend just upon the three-dimensional space-time, and are

independent of the S2 coordinates µi, thus

Tij = fδij , Y
1
2 = ∆ = f , (4.76)

where f is a general function of the three-dimensional space-time. Considering the determinant of

Tij and according to (4.72), one has

detTij = f 3 = Y det T̃ij = Y = f 2 , (4.77)

where we have used the fact that T̃ij is uni-modular. Hence f = 1, so Tij = δij . Now, considering
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the truncation B(1) =
√
2A, one concludes from (4.73)

m =
√
2 g , µiBi = −g dω(0) , (4.78)

and the two-sphere coordinates independence of Bi yields

Bi = 0 . (4.79)

Therefore, from (4.36) we find out Bi = 0 implies F i = 0, and thus Ai is pure gauge.

Consequently, although there is a consistent Pauli S2 reduction of minimal supergravity cou-

pled to a vector multiplet, the investigation of finding such a consistent reduction in case of pure

minimal supergravity fails due to the impossibility of performing a consistent truncation in five

dimensions. However, this failure does not provide a rigorous mathematical proof of the impossi-

bility of the consistent Pauli S2 reduction of pure minimal supergravity in the case where all SU(2)

gauge bosons are retained.
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5. AN ALTERNATIVE M-THEORY ORIGIN OF THE SALAM-SEZGIN THEORY

5.1 Introduction

Salam and Sezgin [36], based on a work of Nishino and Sezgin [37], found a chiral N = (1, 0)

Einstein-Maxwell supergravity in six dimensions. Among many interesting features of this theory,

its spontaneous compactification on Minkowski4 × S2 is more striking and a natural question of

whether there is a full non-linear Pauli consistent reduction of it on S2 had been raised. Gibbons

and Pope in [38] studied this question and found out a remarkable consistent ansatz for this reduc-

tion. Although they presented the ansatz, but the underlying principle of why this ansatz works

remains unclear. One may use the “Hopf fibration technique” introduced in [7] to investigate this

problem. To do so, one needs to find a seven-dimensional theory which upon reducing on a circle

gives rise to the Salam-Sezgin theory, or in other words, find out an embedding of the latter theory

in a higher dimensional theory. Fortunately, such an embedding was constructed in [39] and one

can use it to perform the above mentioned technique. However, unfortunately, the Kaluza-Klein

vector potential obtained by a circle reduction from seven-dimensional theory has been truncated

to zero in that work. It means the Dirac monopole on two-sphere is vanishing and thus the Hopf

fibration in that case, is just a trivial fibration of S2 × S1 instead of the expected S3 one.

By further investigation, we have been able to find an alternative embedding of the Salam-

Sezgin theory in M-theory where the Kaluza-Klein vector potential is present. Hence, by using

the Hopf fibration technique, which we will elaborate in chapter 6, we have a group-theoretical

understanding of Gibbons-Pope remarkable S2 reduction of the Salam-Sezgin theory.

The first step towards finding the higher-dimensional origin of the Salam-Sezgin theory is

starting from an SO(4), half maximal, i.e. N = 2 seven-dimensional supergravity. The latter

can be derived from a consistent truncation of the maximal theory, i.e. N = 4, SO(5) in seven

dimensions found by a Noether method in [40]. Then since the maximal theory itself can be

understood as a consistent Pauli S4 reduction of M-theory [13–15], thus the half maximal theory
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can be derived from type I or Heterotic string theory as it was shown in [15].

Having said that the seven-dimensional SO(4), half maximal supergravity, is a higher-dimensional

origin of the Salam-Sezgin theory, now at this stage, there are two possibilities to proceed:

• The first one, considered in the original work of [39] and our work in [45], is passing from a

compact SO(4) group to a non-compact SO(2, 2) one in seven dimensions. The justification

of the possibility of this process was discussed in [41] and [39]. We will consider this

method, to find the bosonic sector of the Salam-Sezgin theory in the next chapter.

• The second possibility, which will be addressed in this chapter, is based on the Wick rotation

δĀB̄ → −i δĀB̄ . Again, based on the work in [41], we shall discuss in subsection 5.2.4 how

this possibility is obtained. This method changes the sign of the Yang-Mills kinetic term and

also the potential term in the bosonic Lagrangian of SO(4) theory. However, although the

supersymmetry transformations maintain and also the Lagrangian is invariant under them,

the reality conditions on fermionic fields are ambiguous. We expect a Wick rotated seven-

dimensional supergravity whose bosonic Lagrangian is given by a “wrong” sign for the

Yang-Mills kinetic and the potential terms, exists and we try to find the fermionic Lagrangian

and also supersymmetry transformations. Moreover, we will show the bosonic sector of the

Salam-Sezgin theory can be derived from that theory.

As we have mentioned above, in this chapter we follow the second option . Then, one needs to

perform a Kaluza-Klein S1 reduction down to six dimensions, and apply some bosonic truncations.

the Yang-Mills field strengths are truncated to zero in six dimensions. In that sense the “wrong”

sign of the kinetic terms for Yang-Mills fields does not appear in the Salam-Sezgin theory.

The rest of this chapter organizes as follows. Since the initial stages of the embedding of

the Salam-Sezgin theory in higher dimensions, constructed in [39], are the same as our alternative

embedding, section 5.2 is a brief review of how one can obtainN = 2 gauge SO(4) supergravity in

seven dimensions from M-theory. Also, the above mentioned Wick rotation will be addressed and

the reason why this scheme has been followed will be discussed. Section 5.3 devotes to the Kaluza-
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Klein circle reduction from seven-dimensions down to six, and finding the bosonic truncations of

the embedding. Finally in section 5.4, we will discuss about the consequence of our Wick rotation

and will show, the Wick rotated seven-dimensional theory can be obtained by a time-like reduction

from ten dimensions.

5.2 Obtaining N = 2 gauged SO(4) from N = 4 gauged SO(5) supergravity in seven

dimensions

We review the different steps needed to obtain N = 2 gauged SO(4) supergravity from N = 4

gauged SO(5) theory in seven dimensions. The starting point is seven-dimensional N = 4, SO(5)

gauged maximal supergravity. It was first constructed in 1984 by Noether method in [40], and

about fifteen years later, it was shown [13,14], this theory can be understood as a remarkable Pauli

S4 reduction of eleven-dimensional supergravity, the low energy limit of the M-theory. This is

one of the most significant examples of the Pauli reduction. We shall review this theory in the

following.

5.2.1 Review of N = 4 gauged SO(5) supergravity in 7D

The bosonic part of the theory comprises a graviton, 10 Yang-Mills vector potentials A(1)A
B

with SO(5)g gauging, 14 scalars ΠA
i parametrize the coset manifold SL(5,R)/SO(5)c (how-

ever the rigid SL(5,R) symmetry is changed to SO(5)c during the gauging procedure), and 5

three-form potentials S(3)A which are vectors in SO(5)g gauging. The fermionic part consists of

4 gravitini ψMI , which is a vector-spinor of space-time and a spinor of SO(5)c composite group

(the spinor index of the latter group denotes by I while that of the space-time suppressed), and also

16 gaugini λIi , which is a spinor of space-time with suppressed indices, and a vector-spinor of the

composite group SO(5)c where the indices are denoted by indices i and I respectively.

The bosonic sector (eAM , A(1)A
B, S(3)A,ΠA

i) has 14 + 10 × 5 + 5 × 10 + 14 = 128 degrees

of freedom, the same as the fermionic part (ψMI , λIi ) with 4 × 4 × 4 + 16 × 4 = 128 degrees of

freedom.

In this theory space-time curved (flat) indices are denoted by M,N,P, ... (A,B,C, ...) respec-
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tively and run over 0, 1, ..., 6. The SO(5)g indices are denoted by A,B,C, ... (not to be confused

with the flat indices) and run over 0, 1, 2, 3, 4. The SO(5)c composite group vector indices are

presented by i, j, k, ..., and also run over 0, 1, 2, 3, 4. The SO(5)c composite group spinor indices

are expressed by I, J,K, ... and run over 1, 2, 3, 4. Space-time spinor indices are suppressed here.

Since the original work [40] and the paper [39] which we follow its notation and convention, do

not use the same conventions, one needs to find field re-definitions which is necessary for relating

results of the former to those of the latter. We consider this issue in appendix A. All results of this

section already presented in [40], and we review them here. The bosoinc Lagrangian of this theory

reads

L7 = R ∗1l− ∗Pij ∧ P ij − 1
4
ΠA

iΠB
j ΠC

iΠD
j ∗FAB

(2) ∧ FCD
(2) − 1

2
Π−1

i
AΠ−1

i
B ∗S(3)A ∧ S(3)B

+
1

2g
ηAB S(3)A ∧DS(3)B − 1

8g
ϵAC1···C4 η

AB S(3)B ∧ FC1C2
(2) ∧ FC3C4

(2) − 1

g
Ω− V ∗1l , (5.1)

where

F(2)A
B = dA(1)A

B + g A(1)A
C ∧ A(1)C

B ,

V = 1
2
g2 (2Tij Tij − (Tii)

2) , Tij = Π−1
i
AΠ−1

j
B ηAB ,

Π−1
i
A (δA

B d+ g A(1)A
B)ΠB

k δkj = Pij +Qij ; Pij = P(ij) , Qij = Q[ij] , (5.2)

and by definition we have

AAB(1) ≡ ηAC A(1)C
B , with AAB(1) = −ABA(1) . (5.3)

The above relations, besides the factor of 1
4

we introduced in the kinetic term of FAB
(2) instead

of that of 1
2

in [39], are exactly the same as equations (1), (2) and (3) of [39].

Next, we review the supersymmetry transformations given by eqn (9) of [39]. Those of the
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bosonic fields are 1

δeAM = 1
2
ϵ̄ΓA ψM ,

ΠA
iΠB

j δAABM = 1
2
ϵ̄ γij ψM + 1

4
ϵ̄ΓM γk γij λk ,

Π−1
i
A δΠA

j = 1
4
(ϵ̄ γi λ

j + ϵ̄ γj λi) , (5.4)

δSMNP,A = −3
8
ΠA

i (2ϵ̄ γijk ψ[M + ϵ̄Γ[M γℓ γijk λℓ)ΠB
j ΠC

k FBC
NP ]

−3
2
δij ΠA

j D[M (2ϵ̄ΓN γ
i ψP ] + ϵ̄ΓNP ] λ

i)

+1
2
g δAB Π−1

i
B (3ϵ̄Γ[MN γ

i ψP ] − ϵ̄ΓMNP λ
i) , (5.5)

where we add a factor of g, which was missing in [39], in the last line of the above relations. Note

the covariant derivative appeared in the supersymmetry transformation of the three-form potential

above, is denoted by D, which is the most general covariant derivative introduced in this work. In

the original paper [40], there is a typographical error and instead of D the covariant derivative D

appeared in that supersymmetry transformation, however in [13,14], this has been corrected to the

more general covariant derivative D 2. The relation between these two covariant derivatives shall

be clarified in the following. First, consider the covariant derivativeD acting on a spinor as follows

DM ϵ = ∂M ϵ+ 1
4
ωMAB Γab ϵ+ 1

4
QMij γ

ij ϵ . (5.6)

The covariant derivative acts on a field with the Yang-Mills and the composite vector indices

in a standard way

DT(1) iA = d T(1) iA + g A(1)A
B ∧ T(1) iB +Q(1) i

j ∧ T(1) jA . (5.7)

1One should not confuse the flat indices in seven dimensions A,B,C, · · · with the SO(5)g Yang-Mills gauge
group indices

2The notion was used in [13, 14] for the covariant derivative and the general covariant derivative are ∇ and D
respectively, while we have used D and D for them respectively.
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Now, the general covariant derivative involves P(1) ij as well as Q(1) ij as follows

D T(1) iA = DT(1) iA + P(1) i
j ∧ T(1)jA . (5.8)

Note the only place this general covariant derivative appears is the supersymmetry transformation

of the three-form potential, and in all other equations, covariant derivative D appears.

The supersymmetry transformations rules of fermions, originally presented in eqn (9) of [40],

and then in eqn (6) of [39] are as follows

δψM = DM ϵ+ 1
20
g Tii ΓM ϵ− 1

80
(ΓM

NP − 8δNM ΓP ) γij ϵΠA
iΠB

j FNP
AB

− 1
60
(ΓM

NPQ − 9
2
δNM ΓPQ) γi ϵΠ−1

i
A SNPQ ,A ,

δλi =
1
32
ΓMN (γkℓ γi − 1

5
γi γkℓ) ϵΠA

k ΠB
ℓ FMN

AB − 1
120

ΓMNP (γi
j − 4δji ) ϵΠ

−1
j
A SMNP ,A

+1
2
g (Tij − 1

5
Tkk δij) γ

j ϵ+ 1
2
ΓM γj ϵ PM ij . (5.9)

The original sign which appeared in the second term of the gravitino supersymmetry transfor-

mation in in eqn (9) of [40] written by Pernici, Pilch, and van Nieuwenhuizen in 1984 , was an

equal sign, which is definitely a typographical error. However, in two works published in 1999

by Nastase, Vaman and van Nieuwenhuizen [13, 14], it was stated to be a minus sign. During the

construction of the alternative embedding of the Salam-Sezgin theory, we found out if this sign

would change to a plus sign, then the alternative reduction would work. Upon direct calculation

regarding to verify the correct sign, we found, surprisingly, this sign should be a plus sign. After

reviewing the literature, it turns out this sign was correctly reported as a plus sign in [41] (couple

of months later after the original work in 1984). Some later works [42,43] followed this paper, and

hence presenting the correct sign.

According to equations (5) and (6) of [15] one can write the following relation for the three-

form potential

DSA(3) ≡ dSA(3) + g AAB ∧ SB(3) = g TAB ∗ SB(3) + 1
8
εABCDE F

BC
(2) ∧ FDE

(2) , (5.10)
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where

TAB ≡ Π−1
i
AΠ−1

i
B . (5.11)

5.2.2 The Inönü-Wigner group contraction limit of the SO(5)

The next step shall be using the Inönü-Wigner group contraction limit of SO(5) gauged su-

pergravity mentioned above, to find maximal supergravity with SO(4) gauge group. The result,

N = 4, SO(4) gauged maximal supergravity, could be interpreted as a consistent Pauli S3 reduc-

tion of type IIA supergravity [15].

One may divide both SO(5)g and SO(5)c vector indices, A and i, as follows

i = (0, α) , A = (0, Ā), (5.12)

where Ā and α are now vector indices of SO(4)g and SO(4)c gauging respectively. If one applies

different rescalings on bosonic fields and the gauge coupling constant introduced in equations

(11) and (14) of [39] , then by taking a singular limit, one can achieve the SO(4) gauging. The

procedure described in that paper and was originally presented in [15].

For our final purpose to obtain the Salam-Sezgin theory, one does not need the detail of max-

imal SO(4) gauge supergravity, however, one has to find a further truncation to N = 2, SO(4)

gauge supergravity. In the following, we will address this truncation.

5.2.3 Review of N = 2 gauged SO(4) supergravity in seven dimensions

One needs to perform consistent truncations of the bosonic and fermionic fields of the maximal

theory, to obtain an N = 2 theory with SO(4) gauge group in seven dimensions, as described

in [39]. This theory can be considered as a consistent Pauli S3 reduction of the type I, or Heterotic

supergravity. Let us review the field content, the Lagrangian, and supersymmetry transformations

of this theory. All of these results presented in [39] and we repeat it here for convenience.

The bosonic truncations we apply are the following

χα = 0, A0Ā
(1) = 0 , Sα(3) = 0 , (5.13)
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where four scalars χα were introduced in Tij in eqn (11) of [39], as a part of the Inönü-Wigner

procedure.

To retain the supersymmetry, one needs to truncate some fermionic fields as well. For that

purpose, one may write ϵ = ϵ+ + ϵ−, where the superscripts ± show the positive and negative

chiralities under the SO(5)c chirality operator (i.e. γ0). In other words, γ0 ϵ± = ±ϵ±. According

to eqn (12) of [39], one can make the following truncations

ϵ− = 0 , ψ−
µ = 0 , λ−0 = 0 , λ+α = 0 . (5.14)

Hence from γi λi = 0, we can find

γi λi = λ+0 − λ−0 + γα λ+α + γα λ−α = λ+0 + γα λ−α = 0 , (5.15)

then

λ+0 = −γα λ−α . (5.16)

Therefore, after the above truncations, the remaining independent fermionic fields are ψ+
µ and

λ−α . One has to verify the supersymmetry transformations (5.5) and (5.9) shall be consistent under

the bosonic and fermionic truncations mentioned above ( i.e. the supersymmetry transformation of

a truncated field should be vanished) and ffter some calculation, it is clear that they are consistent.

The bosonic field content of half maximal SO(4) supergravity comprises a graviton eAM , 9

scalar fields described by a unimodular matrix πĀα which parametrizes a coset of SL(4,R)/SO(4)c

, a scalar field denoted by Φ which results from the Inönü-Wigner group contraction procedure as

explained in eqn (14) of [39], 6 Yang-Mills vector potentials AĀB̄(1) in the vector representation of

SO(4)g , and a three-form field strength H(3). The fermionic fields include two gravitini ψM and

8 gaugini λα. The bosonic degrees of freedom for the multiplet of (eAM , πĀ
α,Φ, AĀB̄(1) , H(3)) are

14 + 9 + 1 + 6× 5 + 10 = 64 and the fermionic degrees of freedom for the multiplet of (ψM , λα)

are 2× 4× 4 + 8× 4 = 64 as we expect for the half maximal theory in seven dimensions.
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Here Ā, B̄, ... (α, β, ...) , run over values 1, 2, 3, 4, are the vector indices of SO(4)g (respec-

tively composite group SO(4)c). Seven dimensional curved (flat) indices denote by M,N,P, · · ·

(respectively A,B,C, · · · ) run over 0, 1, · · · , 6. Seven-dimensional Dirac matrices denote by ΓM ,

while the composite Dirac matrices denote by γα.

The bosonic Lagrangian of this theory reads

L7 = R ∗1l− 5
16
Φ−2 ∗dΦ ∧ dΦ− ∗pαβ ∧ pαβ − 1

2
Φ−1 ∗H(3) ∧H(3)

−1
4
Φ−1/2 πĀ

α πB̄
β πC̄

α πD̄
β ∗F ĀB̄

(2) ∧ F C̄D̄
(2) − 1

g
Ω− V ∗1l , (5.17)

where

π−1
α
Ā [δĀ

B̄ d+ g A(1)Ā
B̄] πB̄

γ δβγ = pαβ +Qαβ , pαβ = p(αβ) , Qαβ = Q[αβ] , (5.18)

and the scalar potential in the Lagrangian is

V = 1
2
g2Φ1/2 (2MαβMαβ − (Mαα)

2) . (5.19)

where Mαβ = π−1
α
Ā π−1

β
B̄ ηĀB̄. Also the gauge potentials are raised and lower by SO(4)g

invariant tensor ηĀB̄. Finally, Ω denotes the Chern-Simons term, which its detail form can be

found in [40]. Covariant derivatives are the same as the case of the maximal theory presented in

(5.6), (5.7) and (5.8).

One can obtain from (5.10), and considering the bosonic truncation we have made, the follow-

ing relation

dH(3) =
1
8
εĀB̄C̄D̄ F

ĀB̄
(2) ∧ F C̄D̄

(2) . (5.20)

Starting from the fermionic Lagrangian in SO(5) gauged maximal seven-dimensional super-

gravity, given in eqn (8) of [40], one can write the fermionic Lagrangian of the SO(4) limit of this

theory. It is understood all of the fields and Dirac matrices and the covariant derivative are in seven
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dimensions. The fermionic Lagrangian reads

e−1LFermi = −ψ̄MΓMNPDNψP − λ̄iΓMDMλi +
1
8
gΦ

1
4 (Mλ̄iλi − 8Mαβλ̄αλβ)

+1
2
gΦ

1
4Mαβλ̄αγβΓ

MψM + 1
2
ψ̄M ΓNΓM λ0Φ−1∂NΦ + ψ̄M ΓNΓMγαλβpNαβ

−1
8
ψ̄M ΓNΓMγαλαΦ

−1∂NΦ + 1
8
gΦ

1
4 M ψ̄M ΓMNψN

+ 1
8
√
2
Φ−1

4

(
ψ̄M(ΓMNPQ − 2δMN δPQ) γαβψQ πĀ

α πB̄
βFNQ

ĀB̄

+4ψ̄MΓNP ΓM γαλβπĀ
α πB̄

β FNP
ĀB̄ + 1

2
λ̄iγ

j γαβ γ
i ΓMN λj πĀ

α πB̄
β FMN

ĀB̄
)

− 1
24
Φ−1

2

(
ψ̄M (ΓMNPQR + 6δMN ΓP δQR)ψR

−2ψ̄M(ΓMNPQ − 3δMN δPQ)λ0 − λ̄0 ΓNPQ λ0 + λ̄α ΓNPQ λα

)
HNPQ . (5.21)

Supersymmetry transformations for the fermionic fields shall be given by 3

δψM = DM ϵ+ 1
20
gMααΦ

1/4 ΓM ϵ− 1
80
(ΓM

NP − 8δNM ΓP ) γαβ ϵΦ
−1/4 πĀ

α πB̄
β F ĀB̄

NP

− 1
60
(ΓM

NPQ − 9
2
δNM ΓPQ) ϵΦ−1/2HNPQ ,

δλα = 1
2
ΓM γβ ϵ PM,αβ +

1
32
ΓMN (γβγ γα − 1

5
γα γβγ) ϵΦ

−1/4 πĀ
β πB̄

γ F ĀB̄
MN

− 1
120

ΓMNP γα ϵΦ
−1/2HMNP + 1

2
g (Mαβ − 1

5
Mγγ δαβ) Φ

1/4 γβ ϵ . (5.22)

Also, correcting a typographical error in the three-form supersymmetry transformation in eqn

3The typographical error in the second term of the right hand side of eqn (19) in the gravitino supersymmetry
transformation is corrected here.
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(20) of [39], the bosonic supersymmetric transformations read 4

δeAM = 1
2
ϵ̄ΓA ψM ,

Φ−1/4 πĀ
α πB̄

β δAĀB̄M = 1
2
ϵ̄ γαβ ψM + 1

2
ϵ̄ΓM (γβ λα − γα λβ) ,

π−1
α
Ā δπĀ

β = 1
4
(ϵ̄ γα λ

β + ϵ̄ γβ λα) − 1
8
ϵ̄ γγ λγ δ

β
α , Φ−1 δΦ = −ϵ̄ γα λα ,

δHMNP = −3
4
Φ1/4 (ϵ̄ γαβ ψ[M − ϵ̄Γ[M γαβγ λ

γ)πB̄
α πC̄

β FNP ]
B̄C̄

−3
2
Φ1/2D[M (2ϵ̄ΓN ψP ] − ϵ̄ΓNP ] γ

α λα). (5.23)

5.2.4 Towards a Wick rotated supergravity in seven dimensions

The way non-compact SO(2, 2) gauging was achieved in [39], is based on the argument first

presented in [41]. Let us briefly state the argument here. It is in the context of N = 4, SO(5)

seven-dimensional supergravity which had been discovered in [40] couple of months earlier than

that work. However, one can use it to a less general case of our interest, i.e. N = 2, SO(4)

seven-dimensional supergravity.

They perform a “Wick rotation” represented by a matrix EAA
′ ∈ SL(5,C), and satisfies

EA
A′
EB

B′
δAB = ηA

′B′
. (5.24)

All fields of the theory rotate according to this Wick rotation, i.e.

AM A
B = EA

A′
A′
M A′

B′
E−1

B′
B , ΠA

i = EA
A′
Π′
A′
i , SMNP,A = EA

A′
S ′
MNP,A′ .

(5.25)

Then, if one assumes detEAA
′
= 1, the Lagrangian and supersymmetry transformation shall

be replaced by the ‘prime’ fields, moreover, δAB shall be replaced by ηAB. According to [41], since

the supersymmetry transformations maintain and the Lagrangian is invariant under them, then one
4 The typographical sign error of the supersymmetry transformation of the three-form in eqn (20) of [39] is cor-

rected (the sign of the second term after the covariant derivative should be minus rather than plus). Also, because
of the rescaling introduced in equations (11) and (14) of that paper, the last term in this transformation (term with
coupling constant g in (5.5) should be vanished. The missing term in the scalar transformation, πĀ

α has been added.
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can declare all of the primed fields are real.

Now, having said about their argument, we introduce EAA
′ as follows

EA
A′

= diag(−1, e
iπ
4 , e

iπ
4 , e

iπ
4 , e

iπ
4 ) , (5.26)

where clearly detEA
A′

= 1. The invariant tensor has become

ηA
′B′

= EA
A′
EB

B′
δAB = diag(1, i , i , i , i ) . (5.27)

Now, if we consider the Inönü-Wigner group contraction limit of the SO(5), the invariant

tensor becomes

ηĀB̄ = i δĀB̄ , and ηĀB̄ = −i δĀB̄ . (5.28)

Note that the above result follows exactly the same line of reasoning as passing from SO(4)

compact group to SO(2, 2) non-compact one. In the latter work one should replace δĀB̄ → ηĀB̄

and in our work the replacement is δĀB̄ → −i δĀB̄.

Having obtained this Wick rotated theory, one may consider its consequence in the supersym-

metry transformations and the Lagrangian. First of all, recall the fundamental Yang-Mill gauge

potentials have the form of A(1)Ā
B̄, and hence to raise the index, one may write

AĀB̄(1) = ηĀC̄ A(1)C̄
B̄ = i δĀC̄ A(1)C̄

B̄ . (5.29)

In other words, the kinetic term of A(1)Ā
B̄ in the bosonic Lagrangian has a positive sign instead of

the usual negative one.

Also, the scalar potential in the Lagrangian undergoes a sign change and is given by

V = 1
2
g2Φ1/2 (2MαβMαβ − (Mαα)

2) . (5.30)
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where

Mαβ = π−1
α
Ā π−1

β
B̄ ηĀB̄ = −i δĀB̄ π

−1
α
Ā π−1

β
B̄ . (5.31)

We will not present all of the supersymmetry transformations and the entire Lagrangian here.

One can easily obtained them by the replacing δĀB̄ → −i δĀB̄ in (5.17), (5.21), (5.22) and (5.23).

One can provide another Wick rotation to obtain the same result. Assuming the standard SO(4)

gauging, if the scalar field Phi is analytically continued to a pure imaginary field, i.e. Φ1/4 →

−i Φ1/4, together with HMNP → −HMNP , one has the same result as the previous case of δĀB̄ →

−i δĀB̄. Since it is easier to work with this Wick rotation, we will consider this case and hence we

have ηĀB̄ = δĀB̄.

5.2.5 Why the Wick rotated theory is necessary to study the fermionic sector?

The previous work [39] about finding a higher-dimensional origin for the Salam-Sezgin theory,

as we have emphasized, is based on non-compact SO(2, 2) gauging of the half maximal super-

gravity in seven dimensions. Also, there is a possibility, as we shall show in the next chapter, to

construct the bosonic sector of the Salam-Sezgin theory by this non-compact gauging and at the

same time, retain the kaluza-Klein vector potential A(1). Hence, one may speculate the possibility

of obtaining the fermionic sector with the same gauging. However, one can show it is inconsistent

to assume the same ferminic truncations as [39] and also keep A(1). It can be observed from the

vielbein transformation in (5.23), since both ψ−
µ and ψ+

7 have been truncated to zero, as it was

assumed in [39], then the supersymmetry transformation of A(1) shall be vanishing. Hence, A(1)

itself should be truncated.

One may argue, other fermionic truncation may be employed to keep A(1) and using the non-

compact gauging. The form of gaugino transformation in (5.22) forces us to assume the following

truncation for the positive chirality 5 part of the gaugino: λ+α = ηαβ γβ λ
+. Also, other consequence

of this reduction is H(2) = 0. Then considering the Yang-Mills supersymmetry transformation in

(5.23) leads to a fermionic truncation of ψ−
µ = 0. The latter result is based on the assumption

5Note here the positive and negative chiralities are with respect to the space-time chirality operator Γ7, and it
should not be confused with that of the composite one which we discussed previously.
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from the bosonic sector where the Chern-Simons contribution vanishes if A12
(1) = ±A34

(1). If one

considers the supersymmetry transformation of ψ+
7 in (5.22), then since H(2) = 0, then one has

δψ+
7 ∼ g(χ12 + χ34) γ12ϵ.6 In addition to this, since the fermionic degrees of freedom are 20, then

one needs to truncate the latter field (since it is not possible to make this field proportional to other

fermionic fields), meaning that δA(1) = 0, or A(1) should be truncated. This argument shows the

bosonic and fermionic ansatz, presented in [39], is the only consistent possibility if one considers

SO(2, 2) non-compact gauging in seven dimensions.

It is worth to mention that the truncation discussed in [39] does not consistent with the compact

SO(4) gauging. To see this, one may find the supersymmetry transformation of the field ψ−
µ , which

is truncated to zero in that work, is non-vanishing. According to (5.22), there is a Mαα = ηαα

contribution in that transformation, which actually becomes zero for the case of SO(2, 2), but it

shall be 4 in the case of SO(4) gauging. It clearly indicates that this scheme of truncations does

not consistent with the compact gauging, and one needs to use the non-compact one, as it was

employed in [39].

In the next section, we perform a Kaluza-Klein circle down to six dimensions and consider the

bosonic truncations and equations of motion.

5.3 The Kaluza-Klein circle reduction to six dimensions: bosonic sector

The Kaluza-Klein circle reduction is a standard calculation which we presented in the chapter

2. Using those results, one can write the metric ansatz as follows

dŝ27 = e2αφ ds26 + e−8αφ (dz +A(1))
2 , (5.32)

where φ is a “breathing mode”, and α2 = 1
40

. Also in this section, we insert hat on seven-

dimensional fields to distinguish them from the six-dimensional ones. The bosonic ansätze for

a circle reduction are standard and shall be addressed in the next part.

6The scalar has been ignored, this is why “∼” has been used
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5.3.1 The ansätze for gauge potentials

For obtaining the Salam-Sezgin theory, one does not need six gauge potentials of the SO(4)

half maximal theory, thus one may truncate them. We consider a consistent truncation where

only the maximal Abelian subgroup, i.e. U(1)2, of SO(4)g gauged Yang-Mills fields are retained.

Namely, Â12
(1) = Â(1) and Â34

(1) = Â′
(1) are kept. Also, one may truncate all scalars in the coset

SL(4,R)/SO(4), i.e. πĀα = δĀ
α. Consequently, with the assumption of keeping the compact

gauge group SO(4), then Mαβ = δαβ . Obviously, this truncation is consistent with all equations

of motion. Having assumed this truncation, and using (5.20), then one can write

dĤ(3) = F̂(2) ∧ F̂ ′
(2) , F̂(2) = dÂ(1), F̂ ′

(2) = dÂ′
(1) . (5.33)

Based on the above relations, one can write

dĤ(3) =
1
2
d(F̂(2) ∧ Â′

(1) + Â(1) ∧ F̂ ′
(2)) , (5.34)

and hence

Ĥ(3) = dB̂(2) +
1
2
F̂(2) ∧ Â′

(1) +
1
2
F̂ ′

(2) ∧ Â(1) . (5.35)

The ansätze for the Kaluza-Klein circle reduction for the bosonic fields are standard and can

be written as follows

Ĥ(3) = H(3) +H(2) ∧ (dz +A(1)),

Â(1) = A(1) + χdz, Â′
(1) = A′

(1) + χ′ dz,

B̂(2) = B(2) +B(1) ∧ dz,

F̂(2) = F(2) + dχ ∧ (dz +A(1)), F̂ ′
(2) = F ′

(2) + dχ′ ∧ (dz +A(1)) . (5.36)
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Therefore, one may find the following relations for six-dimensional fields

H(3) = dB(2) − dB(1) ∧ A(1) +
1
2
dA(1) ∧ A′

(1) +
1
2
dA′

(1) ∧ A(1)

−1
2
(χ′dA(1) + χdA′

(1)) ∧ A(1) − 1
2
(A(1) ∧ dχ′ + A′

(1) ∧ dχ) ∧ A(1),

H(2) = dB(1) +
1
2
(χ′dA(1) + χdA′

(1) + A′
(1) ∧ dχ+ A(1) ∧ dχ′),

F(2) = dA(1) − dχ ∧ A(1), F ′
(2) = dA′

(1) − dχ′ ∧ A(1), F(2) = dA(1) . (5.37)

Writing in the flat indices, one can find the following relations between components of seven-

and six- dimensional fields

Ĥabc = e−3αφHabc, Ĥab7 = e2αφHab,

Âa = e−αφ (Aa − χAa), Â′
a = e−αφ (A′

a − χ′ Aa), Â7 = e4αφ χ, Â′
7 = e4αφ χ′

ê = e2αφ e . (5.38)

In addition to this, one can easily obtain relations between the components of seven- and six-

dimensional fields in the curved indices

Ĥ(3)µνρ = H(3)µνρ + 3H(2) [µν Aρ], Ĥ(3)µνz = H(2)µν ,

Âµ = Aµ, Â′
µ = A′

µ, Âz = χ, Â′
z = χ′,

B̂(2)µν = B(2)µν , B̂(2)µz = B(1)µ . (5.39)

At this stage, following [45], a re-parametrization of two scalar fields Φ and φ is introduced as

follows

Φ = e
2
5
ψ−4

5
ϕ , 20αφ = −2ψ − ϕ . (5.40)
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With these preliminaries, the six-dimensional bosonic Lagrangian becomes

L6 = R∗1l− 1
4
∗dϕ ∧ dϕ− 1

4
∗dψ ∧ dψ − 1

2
e
1
2
ϕ+ψ ∗F (2) ∧ F(2) − 1

2
eϕ ∗H(3) ∧H(3)

−1
2
e
1
2
ϕ−ψ ∗H(2) ∧H(2) +

1
2
e
1
2
ϕ (∗F(2) ∧ F(2) + ∗F ′

(2) ∧ F ′
(2))

+1
4
e−ψ (∗dχ ∧ dχ+ ∗dχ′ ∧ dχ′)− Ω(6)

g
− V ∗1l , (5.41)

where

V = 4g2e−
1
2
ϕ , (5.42)

and Ω(6) is the Chern-Simons term in six dimensions which shall be studied in the next subsection.

Note that the Yang-Mills kinetic terms have a wrong sign.

5.3.2 The Chern-Simons term in seven dimensions

Let us calculate the Chern-Simons variation for the Abelian truncation, i.e. Â(2) = Â12
(2), Â

′
(2) =

Â34
(2). Since all of the fields in this part is seven-dimensional, then we omit the hat for simplicity.

The expression we have used here to calculate the Chern-Simons term is eqn (10) of [40]. Since the

normalization convention for the trace operator does not specify clearly in the latter, we generally

assume

Tr(F ∧ F ) = c F ij ∧ F ji , (5.43)

where this c is either 1 or 1
2
. We have the following relations for δΩ(3)

δΩ(3) = 4c2(F ∧ F + F ′ ∧ F ′) ∧ (F ∧ δA+ F ′ ∧ δA′)

= 4c2(F ∧ F ∧ F ∧ δA+ F ∧ F ∧ F ′ ∧ δA′

+F ′ ∧ F ′ ∧ F ∧ δA+ F ′ ∧ F ′ ∧ F ′ ∧ δA′) . (5.44)

Also, δΩ(5) shall be written as follows

δΩ(5) = 2c (F ∧ F ∧ F ∧ δA+ F ′ ∧ F ′ ∧ F ′ ∧ δA′) . (5.45)
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Now, combining the above relations, one may find the following relation for the Chern-Simons

variation

δΩ(7) = 2δΩ(5) − δΩ(3) = 4c
[
(1− c)F ∧ F ∧ F ∧ δA+ (1− c)F ′ ∧ F ′ ∧ F ′ ∧ δA′

−cF ∧ F ∧ F ′ ∧ δA′ − cF ′ ∧ F ′ ∧ F ∧ δA
]
. (5.46)

Therefore, for the specific value of c = 1
2
, we have the following

δΩ(7) = F ∧ F ∧ F ∧ δA+ F ′ ∧ F ′ ∧ F ′ ∧ δA′

−F ∧ F ∧ F ′ ∧ δA′ − F ′ ∧ F ′ ∧ F ∧ δA . (5.47)

After some algebra, one finds the 7D Chern-Simons term, up to a total derivative is

Ω(7) =
1
4
F ∧ F ∧ F ∧ A+ 1

4
F ′ ∧ F ′ ∧ F ′ ∧ A′ − 1

2
F ∧ F ∧ F ′ ∧ A′ . (5.48)

The above relation for seven-dimensional Chern-Simons term can be vanished in specific cases,

e.g. F̂ = ±F̂ ′. Therefore, we apply a further truncation and assume Â = Â′, or in six dimensions

A = A′ and χ = χ′ .

5.3.3 The bosonic equations of motion

Now, we shall find equations of motion of the six dimensional theory derived from the La-

grangian above (5.41). To ensure the truncation we have imposed on the Yang-Mills fields, i.e.

A = A′ and χ = χ′ is consistent, we present equations of motion for both gauge potentials and

the axions, and then we will deduce the above mentioned truncation is consistent with the equa-

tions we will present. However, the Chern-Simons term is vanishing according to the argument

presented in the previous part. First we state scalar equations of motion

□ϕ = 1
4
e
1
2
ϕ+ψ F2

(2) +
1
6
eϕH2

(3) +
1
4
e
1
2
ϕ−ψH2

(2) − 1
4
e
1
2
ϕ (F 2

(2) + F ′2
(2))− 4g2e−

1
2
ϕ,

□ψ = 1
2
e
1
2
ϕ+ψ F2

(2) − 1
2
e
1
2
ϕ−ψH2

(2) +
1
2
e−ψ

(
(∂χ)2 + (∂χ′)2

)
. (5.49)
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Next, we consider equations of motion for one-form potentials A(1) and A′
(1) as follows:

2d(e
1
2
ϕ ∗ F(2)) = −d(e

1
2
ϕ−ψ ∗H(2)χ

′)− e
1
2
ϕ−ψ ∗H(2) ∧ dχ′

−d
(
eϕ ∗H(3) ∧ (A′

(1) − χ′A(1))
)
+ eϕ ∗H(3) ∧ F ′

(2) ,

2d(e
1
2
ϕ ∗ F ′

(2)) = −d(e
1
2
ϕ−ψ ∗H(2)χ)− e

1
2
ϕ−ψ ∗H(2) ∧ dχ

−d
(
eϕ ∗H(3) ∧ (A(1) − χA(1))

)
+ eϕ ∗H(3) ∧ F(2) . (5.50)

The equation of motion for the Kaluza-Klein vector potential A(1) reads

d
(
e
1
2
ϕ+ψ ∗ F(2)

)
= −eϕ ∗H(3) ∧

[
dB(1) − 1

2
(χ′dA(1) + χdA′

(1) + A(1) ∧ dχ′ + A′
(1) ∧ dχ)

]
+1

2
e−

1
2
ϕ (∗F(2) ∧ dχ+ ∗F ′

(2) ∧ dχ′) . (5.51)

Next, we consider equations of motion for potentials B(1) and B(2) in the following

d(e
1
2
ϕ−ψ ∗H(2)) = d(eϕ ∗H(3) ∧ A(1)),

d(eϕ ∗H(3)) = 0 . (5.52)

Finally, equations of motion for axionic scalar fields χ and χ′ are

d(e−ψ ∗ dχ) = eϕ ∗H(3) ∧ dA′
(1) ∧ A(1) − d(eϕ ∗H(3) ∧ A′

(1) ∧ A(1))− e
1
2
ϕ−ψ ∗H(2) ∧ dA′

(1)

−d(e
1
2
ϕ−ψ ∗H(2) ∧ A′

(1))− d(e
1
2
ϕ ∗ F(2) ∧ A(1)) ,

d(e−ψ
′ ∗ dχ′) = eϕ ∗H(3) ∧ dA(1) ∧ A(1) − d(eϕ ∗H(3) ∧ A(1) ∧ A(1))− e

1
2
ϕ−ψ ∗H(2) ∧ dA(1)

−d(e
1
2
ϕ−ψ ∗H(2) ∧ A(1))− d(e

1
2
ϕ ∗ F ′

(2) ∧ A(1)) . (5.53)

Now it is a straightforward task to check the ansazt A = A′ and χ = χ′ is consistent with

the above mention equations. therefore, it is possible to find more convenient relations. Plugging
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(5.52) in (5.50), one can obtain the following relations for the six-dimensional field strengths

d(e
1
2
ϕ ∗ F(2)) = −e

1
2
ϕ−ψ ∗H(2) ∧ dχ+ eϕ ∗H(3) ∧ F(2) . (5.54)

Using the equations (5.50) and (5.52), one can find the following equations of motion for the

axionic scalar field

d(e−ψ ∗ dχ) = eϕ ∗H(3) ∧ dA(1) ∧ A(1) − e
1
2
ϕ−ψ ∗H(2) ∧ (2dA(1) − dχ ∧ dA(1))

−e
1
2
ϕ ∗ F(2) ∧ dA(1) . (5.55)

The equation of motion for Kaluza-Klein vector field strengths, can be easily found by using

H(2) relation from (5.37)

d
(
e
1
2
ϕ+ψ ∗ F(2)

)
= −eϕ ∗H(3) ∧H(2) + e−

1
2
ϕ ∗ F(2) ∧ dχ . (5.56)

5.3.4 The bosonic truncations

There is only one scalar field appears in the Salam-Sezgin theory, while the theory presented in

the last part has three scalars ϕ, ψ and χ . Hence, one needs to perform a consistent truncation of

these scalars. The axions were truncated to zero in [39], but, if these fields would be just constant

numbers, then, obviously, they did not contribute in the kinetic part of the Lagrangian. Upon

investigation in the supersymmetry transformations, one has to truncate both A and A′ to zero.

However, since the covariant derivative depends on the gauge field, one needs to keep the axion,

but one may assume it is not a dynamical field, but a constant number to be determined by

supersymmetry transformations.

In that sense, one can retain the standard gauging in the covariant derivative, however, instead

of the usual Yang-Mills vector potential, one has the Kaluza-Klein vector potential A(1) as a gauge

field.

Now, we may check whether our proposed truncation is consistent with the bosonic equations
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of motion. It can be easily verified that equation of motion for the axion (5.55) , and also the field

strength F(2) (5.50) are trivially satisfied. The remaining equations after this truncation shall be

□ϕ = 1
4
e
1
2
ϕ+ψ F2

(2) +
1
6
eϕH2

(3) +
1
4
e
1
2
ϕ−ψH2

(2) − 4g2e−
1
2
ϕ,

□ψ = 1
2
e
1
2
ϕ+ψ F2

(2) − 1
2
e
1
2
ϕ−ψH2

(2),

d(e
1
2
ϕ−ψ ∗H(2)) = −eϕ ∗H(3) ∧ F(2),

d(eϕ ∗H(3)) = 0,

d
(
e
1
2
ϕ+ψ ∗ F(2)

)
= −eϕ ∗H(3) ∧H(2) . (5.57)

Also, the six-dimensional bosonic Lagrangian has the following form

L6 = R∗1l− 1
4
∗dϕ ∧ dϕ− 1

4
∗dψ ∧ dψ − 1

2
e
1
2
ϕ+ψ ∗F (2) ∧ F(2) − 1

2
eϕ ∗H(3) ∧H(3)

−1
2
e
1
2
ϕ−ψ ∗H(2) ∧H(2) − 4g2 e−

1
2
ϕ ∗1l . (5.58)

This is still not the bosonic Salam-Sezgin Lagrangian, and one more truncation is needed to

this theory be achieved. Assume the scalar field ψ is vanishing, and at the same time, F2
(2) = H2

(2).

They are consistent with equations of motion (5.57). Therefore, due to the re-parametrization given

in (5.40) one has

Φ = e−
4
5
ϕ , 20αφ = −ϕ , Φ = e16αφ . (5.59)

Finally, the bosonic Lagrangian shall be that of the Salam-Sezgin

L6 = R∗1l− 1
4
∗dϕ ∧ dϕ− e

1
2
ϕ ∗F (2) ∧ F(2) − 1

2
eϕ ∗H(3) ∧H(3) − 4g2 e−

1
2
ϕ ∗1l , (5.60)

with the rescaling of F2
(2) = H2

(2) = 2 F̃ 2
(2), where F̃(2) is the field strength in the Salam-Sezgin
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theory. Let us summarize all the bosonic truncations we have found so far

ψ = 0, Φ = e16αφ, 20αφ = −ϕ, πĀ
α = δĀ

α, Mαβ = δαβ,

F̂ ĀB̄ = 0, Âa = Â′
a = −χAa, Â7 = Â′

7 = χ, F2
(2) = H2

(2) = 2 F̃ 2
(2), χ = χ′ = const. ,

H(3) = dB(2) − dB(1) ∧ A(1), H(2) = dB(1), F(2) = dA(1). (5.61)

Since F2
(2) = H2

(2), one has options of F(2) = ±H(2). The important question of which sign should

be chosen, is not answered by the bosonic sector, and it will be determined by the supersymmetry

considerations. Also, the constant value of the axion shall be determined by the supersymmetry

transformations as well.

5.3.5 The supersymmetry transformations?

We stated in 5.2.4 that the starting point theory in seven dimensions is a Wick rotated theory

which we may find it by δĀB̄ → −i δĀB̄ Wick rotation. However, the reality condition for the

fermionic fields becomes vague here. In spite of that, we found a fermionic truncation for the

circle reduction of the Wick rotated theory and we could recover the fermionic Lagrangian of the

Salam-Sezgin theory. This is a very encouraging hint about the presence of such an exotic theory

in seven dimensions.

We do not present our calculations in the fermionic sector, since the seven dimensional theory

is not yet rigorously proved to be existed.

5.4 Final remarks

It is instructive to find out the embedding of the seven-dimensional metric in ten dimensions.

Recall our Wick rotation δĀB̄ → −i δĀB̄, or the other option Φ1/4 → −i Φ1/4. One needs to

investigate the consequences of this odd choice.

The embedding of seven-dimensional metric ansatz to ten dimensions, as in eqn (46) of [15],

is as follows

ds210 = g−
1
4 Φ

3
16 ∆

1
4
(
ds27 + g−2Φ−1

2 ∆−1M−1
αβ Dµ

αDµβ
)
. (5.62)
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Hence, after applying either of the above Wick rotations, one can write

ds210 = Ω
(
ds27 − g−2Φ−1

2 DµαDµα
)
. (5.63)

It means the dimensional reduction has been performed on three time-like coordinates instead

of the usual space-like reduction. One may conclude this reduction is a case of Hull’s [50, 51]

program about time-like reduction. Actually he found there is an exotic type IIA in (6,4) signature,

i.e. 6 space-like and 4 time-like coordinates [50]. Then one may speculate the Wick rotated

supergravity we are looking for, is actually the three time-like reduction of type IIA (6,4).

This is an interesting possibility and further work is needed to find a more elaborated connec-

tion between the Wick rotated seven dimensional supergravity and the time-like reduction.
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6. PAULI S2 REDUCTION OF THE SALAM-SEZGIN THEORY

6.1 Introduction

In the previous chapter we saw an alternative higher dimensional origin for the Salam-Sezgin

theory where the Kaluza-Klein vector potential A(1) is non-zero. As we have emphasized there, the

reason for keeping this field is to use the “Hopf fibration technique” and to find a group-theoretical

explanation for the consistent Pauli S2 reduction of the Salam-Sezgin theory, constructed by Gib-

bons and Pope in [38].

The first step towards using the Hopf fibration technique, is starting from a seven-dimensional

theory. As we have discussed in the previous chapter, if one considers just the bosonic sector,

this theory can be SO(2, 2) gauged half maximal, i.e. N = 2 seven-dimensional supergravity. This

theory has been investigated in [39], and it may be derived from type I or Heterotic string theory

as it was shown in [15].

The next step is performing the Kaluza-Klein S1 reduction down to six dimensions to obtain

a non-chiral N = (1, 1) supergravity. Then, one may apply consistent truncations to obtain the

Salam-Sezgin theory. However, the difference between the six-dimensional bosonic truncation

imposed in [39] and ours is the Kaluza-Klein field strength F(2) and two-form field strength H(2)

in one hand and the Yang-Mills field strengths F 12
(2) and F 34

(2) in the other hand. Let us compare two

truncations in the following

Truncation given by [39] : F(2) = H(2) = 0 , F 12
(2) = −F 34

(2) ,

Our truncation : F(2) = −H(2) , F 12
(2) = F 34

(2) = 0 . (6.1)

Note both of these truncations are consistent and give rise to the Salam-Sezgin theory in the bosonic

sector.

Then one needs to perform an SU(2) DeWitt reduction of the seven-dimensional theory to

obtain a four-dimensional one [44]. Now, having obtained a consistent reduction of the Salam-
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Sezgin theory with its Dirac monopole A(1), it is a straightforward calculation to write the the

SU(2) as a U(1) Hopf fibration over S2 . The crucial point here is, the ansatz we may write in the

Hopf fibration manner, should be consistent with the truncation we have applied in six dimensions

to obtain the Salam-Sezgin theory. As we will observe, this truncation is consistent with the Hopf

ansatz. Thus, one can read off the consistent S2 reduction of the Salam-Sezgin theory, and find

the exact same results as [38] after some field rescalings. Therefore, by this method, we have a

group-theoretic understanding of why the Pauli S2 reduction of the Salam-Sezgin theory works.

In this chapter, we deal with fields in seven, six and four dimensions. To avoid ambiguity, the

convention is as follow. We insert a hat on seven-dimensional fields and four-dimensional ones are

appearing without any symbol on them everywhere. Especially in section 6.5, and where there is a

chance of an ambiguity, we shall insert a bar on six-dimensional quantities.

The rest of this chapter is organized as follows. In section 6.2, we shall consider the non-

compact SO(2, 2) half maximal seven-dimensional supergravity and perform some truncatuions.

In section 6.3, we perform a Kaluza-Klein S1 reduction followed by our bosonic truncations to

obtain the Salam-Sezgin theory. We perform an SU(2) DeWitt reduction in section 6.4, and we

consider the Hopf fibration technique in section 6.5 to find the S2 reduction of the Salam-Sezgin

theory. Also, we will verify the consistency of our ansatz by inserting it in six-dimensional equa-

tions of motion.

6.2 Truncation of N = 2 gauged SO(2, 2) supergravity in seven dimensions

The gauged SO(4) half maximal supergravity in seven dimensions, as we described in length

in chapter 5, can be obtained from maximal SO(5) seven-dimensional supergravity found in [40]

in two steps:

First, one may use the Inönü-Wigner group contraction limit of SO(5) gauged supergravity to

find a maximal supergravity (i.e. N = 4) with SO(4) gauge group.

Second, one may perform a consistent truncations on bosonic and fermionic fields of the max-

imal SO(4) theory to obtain a half maximal theory with N = 2, but with the same SO(4) gauging

in seven dimensions.
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The entire Lagrangian and the supersymmetry transformations of seven-dimensional gauged

SO(4) half maximal supergravity were given in 5.2.3.

6.2.1 Pass to a non-compact SO(2, 2) gauging

As it was illustrated in [41], it is possible to pass from a compact Yang-Mills gauging to

a non-compact one. Following that idea, it was assumed in [39] the gauging can be the non-

compact SO(2, 2) rather than the compact SO(4) one. One needs to simply assume ηĀB̄ =

diag (1, 1,−1,−1).

The main motivation of choosing the non-compact gauging is obtaining the positive definite

potential of the Salam-Sezgin theory, which is one of the main obstacle to find a higher dimensional

embedding of this theory. According to a no-go theorem by Maldacena and Nunez [43], if the

lower-dimensional space-time has a positive definite potential, then the non-singular internal space

should be non-compact. This is why the non-compact group was chosen in [39].

Now, having described the bosonic part of the half maximal theory with non-compact SO(2, 2)

gauging in seven dimensions, one may perform a consistent bosonic truncation to find a simpler

theory in seven dimensions.

6.2.2 Truncation of SO(2, 2) half maximal theory in seven dimensions

If one interests in just the bosonic section of the Salam-Sezgin theory and its Pauli S2 reduction

down to four-dimensional space-time, then it is more convenient to impose truncations in seven-

dimensional SO(2, 2) half maximal theory, before performing the S1 Kaluza-Klein reduction. The

truncation is as follows

πĀ
α = δĀ

α , AĀB̄(1) = 0 . (6.2)

The above truncation is obviously consistent, i.e. the equations of motion of the bosonic La-

grangian (5.17) is consistent with them. The final bosonic Lagrangian after applying the above

truncations has become

L̂7 = R̂ ∗̂1l− 5
16
Φ̂−2 ∗dΦ̂ ∧ dΦ̂− 1

2
Φ̂−1 ∗̂Ĥ(3) ∧ Ĥ(3) − 4g2 Φ̂

1
2 ∗̂1l , (6.3)
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where we insert hat on fields to emphasize they are seven-dimensional ones. Note we have used

the non-compact gauging to obtain the potential term, i.e. ηĀB̄ = diag (1, 1,−1,−1), and also

Mαβ = ηαβ , according to truncation of the scalar fields.

The Bianchi identity (5.20), after the above truncations reads

dĤ(3) = 0 . (6.4)

Now, one may perform the S1 Kaluza-Klein reduction to find the bosonic sector of the Salam-

Sezgin theory.

6.3 The Kaluza-Klein circle reduction down to six dimensions

The Kaluza-Klein circle reduction is a standard calculation which we presented in the chapter

2. Using these results, one can write the metric ansatz as follows

dŝ27 = e2αφ ds26 + e−8αφ (dz +A(1))
2 , (6.5)

where φ is a “breathing mode”, and α2 = 1
40

.

Making use of the seven-dimensional Bianchi identity dĤ(3) = 0, one can write

Ĥ(3) = dB̂(2) . (6.6)

The ansätze for the Kaluza-Klein circle reduction for the bosonic fields are standard and can

be written as follows

B̂(2) = B(2) +B(1) ∧ dz , Ĥ(3) = H(3) +H(2) ∧ (dz +A(1)) , (6.7)

where

H(3) = dB(2) − dB(1) ∧ A(1) , H(2) = dB(1) , F(2) = dA(1) . (6.8)

The relations between the flat and curved components of seven- and six- dimensional fields are
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as follows

Ĥabc = e−3αφHabc, Ĥab7 = e2αφHab , ê = e2αφ e

Ĥ(3)µνρ = H(3)µνρ + 3H(2) [µν Aρ], Ĥ(3)µνz = H(2)µν ,

B̂(2)µν = B(2)µν , B̂(2)µz = B(1)µ . (6.9)

The convenient re-parametrization of scalar fields is introduced again as follows

Φ = e
2
5
ψ−4

5
ϕ , 20αφ = −2ψ − ϕ . (6.10)

Having obtained the circle reduction, the six-dimensional bosonic Lagrangian becomes

L6 = R∗1l− 1
4
∗dϕ ∧ dϕ− 1

4
∗dψ ∧ dψ − 1

2
e
1
2
ϕ+ψ ∗F (2) ∧ F(2) − 1

2
eϕ ∗H(3) ∧H(3)

−1
2
e
1
2
ϕ−ψ ∗H(2) ∧H(2) − 4g2e−

1
2
ϕ∗1l , (6.11)

Now, we shall find equations of motion of the six dimensional theory derived from the La-

grangian in (6.11). They are exactly as eqn (5.57).

At this stage, we impose truncations in six-dimensional fields to obtain the Salam-Sezgin the-

ory.

6.3.1 The bosonic truncations in six dimensions

The bosonic sector of the Salam-Sezgin theory can be achieved by the following truncations in

six dimensions

ψ = 0 , A(1) = −B̄(1) ≡ 1√
2
A(1) (6.12)

where A(1) is the gauge potential appears in the Salam-Sezgin theory. It is easy to check the above

ansatz is consistent with the six-dimensional equations we have found in (5.57).

Now, the six-dimensional bosonic Lagrangian in (6.11) becomes that of the Salam-Sezgin the-
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ory

LSS = R̄ ∗̄1l− 1
4
∗̄dϕ ∧ dϕ− 1

2
e
1
2
ϕ ∗̄F(2) ∧ F(2) − 1

2
eϕ ∗̄H̄(3) ∧ H̄(3) − 4g2 e−

1
2
ϕ ∗̄1l , (6.13)

where we have used bar to emphasize the fields are six-dimensional ones. (No bar on F(2) since

there will be no such a field in four dimensions below and therefore it will be surplus.)

The next step is performing a DeWitt SU(2) reduction of seven dimensions down to four,

which will be the subject of the next section.

6.4 DeWitt SU(2) reduction from 7D theory

In this section, we perform a group-theoretic DeWitt reduction of the seven-dimensional theory,

the half maximal SO(2, 2) supergravity, on a group manifold S3 = SU(2). The consistency of this

reduction is guaranteed by a group-theoretic argument as we have emphasized in chapter 1. The

method we have used here is analogous to that of chapter 4.

The ansätze for the metric and three-form Ĥ(3) in terms of four-dimensional fields read

dŝ27 = e2α
′φ′
ds24 +

1
4
g−2 e−

4α′

3
φ′
Tij ν

i νj ,

Ĥ(3) = mg−3Ω(3) + g−2 1
2
εijk B

i ∧ νj ∧ νk + g−1Ci ∧ νi +H(3), (6.14)

where νi = σi−gAi, and σi are the left-invariant one-forms of SU(2), as described in eqn (4.28) of

chapter 4, and α′2 = 3
20

. The matrix Tij describing the scalar fields is unimodular. The three-form

Ω(3) is Ω(3) ≡ ν1 ∧ ν2 ∧ ν3, as it was mentioned in chapter 4. Also four-dimensional fields Bi and

Ci are one-form and two-form triplets of SU(2) respectively. Finally H(3) is a four-dimensional

three-form.

Having obtained the complete reduction ansäztze for an SU(2) reduction of seven-dimensional

theory, the next step is writing S2 = S3/S1 and using the Hopf fibration method.
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6.5 SU(2) as a U(1) Hopf fibration over S2

Now, following the same line of reasoning as in section 4.3.2, one can write SU(2) as a U(1)

Hopf fibration over S2. We may use extensively the calculations we presented in chapter 4. One

can write

νi = 2gµi (dz +A(1))−∆−1 Tjk εijℓ µ
kDµℓ ,

1
2
εijk ν

j ∧ νk = 2g(dz +A(1)) ∧Dµi +∆−1 Tij µ
j ω(2) ,

Ω(3) =
1
6
εijkν

i ∧ νj ∧ νk = 2g(dz +A(1)) ∧ ω(2) , (6.15)

where we already provided the proof for all of above relations in section 4.3.2. However, we

rescale g and use z instead of τ .

Now, with these preliminaries, one may write down DeWitt SU(2) ansätze in (6.14) in a Hopf

fibration manner. To do so, one may start from the metric. It reads

dŝ27 = e2α
′φ′
ds24 +

1
4
g−2 e−

4α′

3
φ′
∆−1 T−1

ij DµiDµj + e−
4α′

3
φ′
∆(dz +A(1))

2 , (6.16)

where, as in section 4.3.2, the gauge potential is

A(1) =
1
2
g−1 cos θ dψ − 1

2
µiAi − 1

2
g−1∆−1 Tij εikℓ µ

jµkDµℓ , ∆ = Tij µ
iµj . (6.17)

After some calculations, one can find the field strength of the above Kaluza-Klein gauge po-

tential as follows

F(2) = −1
2
g−1 U∆−2 ω(2) +

1
2
g−1∆−2εijkDµ

i ∧DTjℓ Tkm µℓµm − 1
2
∆−1Tijµ

i F j , (6.18)

where U = 2Tik Tkj µ
iµj −∆Tii.

Now, one needs to compare the above result with the metric we found from a circle reduction
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in (6.5). It turns out

e−8αφ = e−
4α′

3
φ′
∆ , (6.19)

and also

ds̄26 = e−2αφ+2α′φ′
ds24 +

1
4
g−2 e−2αφ−4α′

3
φ′
∆−1 T−1

ij DµiDµj . (6.20)

The next step is finding the Hopf fibration form of the seven-dimensional three-form Ĥ(3), using

(6.14) and the relations (6.15). It reads

Ĥ(3) = 2mg−2 (dz +A(1)) ∧ ω(2) + g−2Bi ∧
(
2g (dz +A(1)) ∧Dµi +∆−1 Tij µ

j ω(2)

)
+g−1Ci ∧

(
2g µi (dz +A(1))−∆−1 Tjk εijℓ µ

kDµℓ
)
+H(3) . (6.21)

Recall Ĥ(3) can be written as

Ĥ(3) = dB̂(2) = dB̄(2) + dB̄(1) ∧ dz = dB̄(2) − dB̄(1) ∧ A(1) + dB̄(1) ∧ (dz +A(1))

= H̄(3) + H̄(2) ∧ (dz +A(1)) . (6.22)

Hence, comparing the above relations one can read off the six-dimensional two-form and three-

form field strengths H̄(2) and H̄(3) as follows

H̄(2) = 2mg−2 ω(2) − 2g−1Bi ∧Dµi + 2µiCi,

H̄(3) = g−2∆−1 Tij µ
j Bi ∧ ω(2) − g−1∆−1 Tjk εijℓ µ

k Ci ∧Dµℓ +H(3). (6.23)

6.5.1 Imposing the six-dimensional truncations

Now, all the bosonic fields of six-dimensional theory have been written in terms of the four-

dimensional ones. The next step is considering the truncations in six dimensions necessary to

obtain the Salam-Sezgin theory, and applying those constraints on the Hopf ansatz we have found.

Recall to obtain the Salam-Sezgin theory one needs to perform the following truncations in six
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dimensions

F(2) = −B̄2 , ψ = 0 . (6.24)

Now, let us explore the consequences of the above constraints. Comparing results of (6.18) and

(6.23), one can observe

U = 4mg−1∆2 , Bi = −1
4
∆−2εijkDTjℓ Tkm µ

ℓµm , C i = 1
4
∆−1Tij F

j . (6.25)

Now, pursuing the same argument as presented in section 4.4, one can claim since Bi is a four-

dimensional field, it shall not depend on the internal components µi, therefore Tij = δij , and hence

∆ = Tij µ
iµj = 1. Also from the expression for U , one finds U = 2Tik Tkj µ

iµj −∆Tii = −1. In

summary, one should have

Tij = δij , m = −1
4
g , Bi = 0 , C i = 1

4
F i . (6.26)

The other constraint is ψ = 0, and from (6.10), it can be seen that ϕ = −20αφ, and Φ = e−
4
5
ϕ.

Then, from relation (6.19), one has 6αφ =α′φ′.

Note here in contrast with chapter 4, it is possible to satisfy the constraints resulted from the

needed truncation in six dimensions. Now, having found an interpretation of the SU(2) as a U(1)

Hopf fibration over S2, one can write down the ansäzte for the Pauli S2 reduction of the Salam-

Sezgin theory down to four dimensions.

Using the above relations between different scalar fields, from the metric ansatz given by

(6.20), one may read off the ansatz for Pauli S2 reduction of the Salam-Sezgin theory as follows

ds̄26 = e−
1
2
ϕ ds24 +

1
4
g−2 e

1
2
ϕDµiDµi . (6.27)

The next step is using the relations given by (6.26) in results (6.23) to write down the ansäzte
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for the Salam-Sezgin two-form and three-form field strengths

F(2) =
√
2F(2) = −

√
2H̄(2) =

1√
2
g−1ω(2) − 1√

2
µi F i ,

H̄(3) = H(3) − 1
4
g−1εijk F

iµj ∧Dµk . (6.28)

The six-dimensional scalar field ϕ is the same as four-dimensional one, meaning that in six

dimensions it does not depend upon the internal manifold. Now the reduction ansäzte are complete.

6.5.2 Consistency of the ansatz

The way we have found our reduction ansatz, i.e. the Hopf fibration technique, guarantees its

consistency by group-theoretical argument. However, it is useful to directly verify this important

issue. One may check the consistency of the ansatz, by insert it in six-dimensional equations of

motion. If all of the internal manifold dependence would cancel, then the remaining equations, all

would depend upon four-dimensional fields, could be considered as the space-time equations of

motion which may be derived from a four-dimensional Lagrangian.

First, we consider the Bianchi identity. From (6.8), one can write

dH̄(3) = −H̄(2) ∧ F(2) =
1
2
F(2) ∧ F(2) . (6.29)

To find out the consequence of this six-dimensional equations, one may employ the following

relations which we already proved in section 4.3.2.

DF i = 0 , 1
2
εijkDµ

j ∧ Dµk = µi ω(2) , D(Dµi) = g εijk F
j µk , Dω(2) = gDµi ∧ F i .

(6.30)

Hence, dH̄(3) becomes

dH̄(3) = DH̄(3) = dH(3) − 1
4
g−1 εijk F

i ∧Dµj ∧Dµk − 1
4
g−1 εijk F

i µj ∧D(Dµk)

= dH(3) − 1
2
g−1 µi F i ∧ ω(2) − 1

4
F i ∧ F i + 1

4
µiµj F i ∧ F j . (6.31)
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To find out the right hand side of (6.29), one can write

F(2) ∧ F(2) = −g−1 µi F i ∧ ω(2) +
1
2
µiµj F i ∧ F j . (6.32)

Therefore, the Bianchi identity in six dimensions becomes

dH(3) =
1
4
F i ∧ F i . (6.33)

As we expected, the internal manifold dependence, terms involving µi, Dµi and ω(2) cancels

out and the final result just depends upon four-dimensional space-time.

The next step is considering the six-dimensional equations of motion. Since they involve find-

ing the Hodge-dual calculation, let us first present it. We have employed the result in appendix B.

The ∗̄ means the Hodge-dual with respect to six-dimensional metric ds26. Then H̄(3) is

∗̄H̄(3) = ∗̄H(3) − 1
4
g−1εijk ∗̄(F iµj ∧Dµk) = (−1)2×3 e

1
2
ϕ 1

4g2
e
1
2
ϕ ∗H(3) ∧ ω(2)

−1
4
g−1εijk µ

j (−1)2×1 ∗ F i ∧ εkmn µmDµn = 1
4g2

eϕ ∗H(3) ∧ ω(2)

+ 1
4g

∗ F i ∧Dµi . (6.34)

Also, to find the six-dimensional Hodge-dual of F(2), one can write

∗̄F(2) =
1√
2
g−1∗̄ω(2) − 1√

2
∗̄(µi F i) = 1√

2
g−1 e−ϕ (4g2) e−

1
2
ϕ ∗ 1l

− 1√
2
µi (−1)2×2 1

4g2
e
1
2
ϕ ∗ F i ∧ ω(2) = 2

√
2 g e−

3
2
ϕ ∗ 1l

− 1
4
√
2g2

e
1
2
ϕ µi ∗ F i ∧ ω(2) . (6.35)

One may find ∗̄1l as follows

∗̄1l = e−ϕ 1
4g2

e
1
2
ϕ ∗ 1l ∧ ω(2) =

1
4g2

e−
1
2
ϕ ∗ 1l ∧ ω(2) . (6.36)
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Finally, ∗̄dϕ can be written as

∗̄dϕ = (−1)1×2 e−
1
2
ϕ 1

4g2
e
1
2
ϕ ∗ dϕ ∧ ω(2) =

1
4
g−2 ∗dϕ ∧ ω(2) . (6.37)

Having obtained the above relations, now we can consider the equations of motion in six di-

mensions. From the bosonic Salam-Sezgin Lagrangian in (6.13) , we can derive the following

equation for the scalar field

d∗̄dϕ+ 1
2
e
1
2
ϕ ∗̄F(2) ∧ F(2) + eϕ ∗̄H̄(3) ∧ H̄(3) − 4g2 e−

1
2
ϕ ∗̄1l = 0 . (6.38)

Now, if one substitutes the six-dimensional ansätze given in (6.28), and using the above result

for ∗̄dϕ, the six-dimensional scalar equations yields

d(1
4
g−2 ∗dϕ ∧ ω(2)) +

1
2
e
1
2
ϕ
(
2
√
2 g e−

3
2
ϕ ∗ 1l− 1

4
√
2g2

e
1
2
ϕ µi ∗ F i ∧ ω(2)

)
∧

( 1√
2
g−1ω(2) − 1√

2
µi F i) + eϕ

(
1

4g2
eϕ ∗H(3) ∧ ω(2) +

1
4g

∗ F i ∧Dµi
)
∧(

H(3) − 1
4
g−1εijk F

iµj ∧Dµk
)
− 4g2 e−

1
2
ϕ ( 1

4g2
e−

1
2
ϕ ∗ 1l ∧ ω(2)) = 0 . (6.39)

Now, the surviving terms above have a form of G(4) ∧ω(2), where G(4) is a four-form in space-time.

Hence G(4) ∧ ω(2) = 0, implies G(4) = 0. It means

1
4g2

d∗dϕ+ e−ϕ ∗ 1l + 1
16g2

eϕ µiµj ∗ F i ∧ F j + 1
4g2

e2ϕ ∗H(3) ∧H(3)

− 1
16g2

eϕ (µiµj ∗ F j ∧ F i − ∗F i ∧ F i)− e−ϕ ∗ 1l = 0 . (6.40)

As it is clear from the above relation, all S2 dependence of fields cancels out and the remaining

equation is that of a four-dimensional scalar field, which reads

d∗dϕ+ e2ϕ ∗H(3) ∧H(3) +
1
4
eϕ ∗F i ∧ F i = 0 . (6.41)
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Now, let us consider the one-form gauge potential six-dimensional equation of motion. From

the Lagrangian (6.13), it reads

d(e
1
2
ϕ∗̄F(2))− eϕ ∗̄H̄(3) ∧ F(2) = 0 . (6.42)

Using relations (6.28), (6.34) and (6.35), one can write

2
√
2 g d(e−ϕ ∗ 1l)− 1

4
√
2g2

d(eϕ µi ∗ F i ∧ ω(2))− eϕ
(

1
4g2

eϕ ∗H(3) ∧ ω(2) +
1
4g

∗ F i ∧Dµi
)
∧(

1√
2
g−1ω(2) − 1√

2
µi F i

)
= − 1

4
√
2g2

eϕ
(
dϕ ∧ µi ∗ F i ∧ ω(2) + µiD ∗ F i ∧ ω(2)

+gµi ∗ F i ∧Dµj ∧ F j − eϕ ∗H(3) ∧ µiF i ∧ ω(2) − g ∗ F i ∧ F j ∧Dµi µj
)
= 0 , (6.43)

where we have used (6.30). Now, it is apparent that the S2 dependence vanishes and the four-

dimensional equation becomes

dϕ ∧ ∗F i +D ∗ F i − eϕ ∗H(3) ∧ F i = 0 . (6.44)

Finally the six-dimensional equation of motion for B̄(2) is

d(eϕ ∗̄H̄(3)) = 0 . (6.45)

Using (6.34), and the relations in (6.30), the above equation implies

1
4g2

d(e2ϕ ∗H(3) ∧ ω(2)) +
1
4g
d(eϕ ∗ F i ∧Dµi) = 1

4g2

[
d(e2ϕ ∗H(3)) ∧ ω(2)

−e2ϕ ∗H(3) ∧ gDµi F i + gD(eϕ ∗ F i) ∧Dµi + g2 eϕ ∗ F i ∧ εijk F jµk
]
= 0 . (6.46)

Since ∗F i ∧ F j = 1
2
F i.F j ∗ 1l, then it is symmetric under the exchange of i and j indices, hence

the last term in the above relation vanishes. Then, again all of the internal manifold dependence
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vanishes and one concludes the following equations

d(e2ϕ ∗H(3)) = 0 , and D(eϕ ∗F i)− e2ϕ ∗H(3) ∧ F i = 0 . (6.47)

Having obtained all of the field equations for four-dimensional space-time, one may observe

that those fields can be derived from the following bosonic Lagrangian in four dimensions.

L4 = R ∗1l− 1
2
∗dϕ ∧ dϕ− 1

2
e2ϕ ∗H(3) ∧H(3) − 1

4
eϕ ∗F i ∧ F i . (6.48)

Finally one may compare the ansäzte we have found here with those of [38]. With the following

rescalings, one can recover the Pauli S2 reduction of the Salam-Sezgin theory presented in [38]

Ai →
√
2Ai , g →

√
2 g , ϕ→ −ϕ . (6.49)
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7. CONCLUSION AND OUTLOOK

In this dissertation, we have investigated different consistent Kaluza-Klein-Pauli reductions.

All the dimensional reductions we have considered are Pauli (coset) reductions, which besides few

exceptions, they are generally inconsistent.

In chapter 2, we considered a toy example of the Klein-Gordon scalar field, and explaining why

one has an infinite massive tower of fields in the lower dimensional theory, after a circle reduction

of a massless scalar in the higher dimensions. Also, we presented the reduction ansätze for the

metric and gauge potential for the circle reduction.

In chapter 3, we found the embedding of two specific truncations, i.e. 3 + 1 and 2 + 2 of STU

gauge supergravity, in eleven dimensions. STU gauged supergravity is a maximal Abelian sub-

group of the eminent N = 8, gauged SO(8) four-dimensional supergravity. We have found the

metric and four-form field strength ansätze for 3 + 1 case for the first time, and we could recover

the results of [34] in 2 + 2 truncation.

We have used a systematic method to find Pauli reductions. This method was introduced in [7]

and named “Hopf fibration technique” in [45]. One performs a consistent DeWitt reduction of a

higher dimensional initial theory, say T1, on a group manifold G down to the lower-dimensional

space-time theory, named T3. Furthermore, one may construct another consistent DeWitt reduction

of T1 on a group manifold H , where G ⊃ H , and obtains a theory T2 whose dimension is higher

than that of the space-time. The claim is, there is a consistent Pauli reduction of T2 on a coset space

G/H to give the space-time theory, T3. It can be justified, if one considers a Hopf fibration of G

as a group manifold H bundle over a coset space G/H , then the consistency of the Pauli reduction

on a coset space G/H is guaranteed based on the consistencies of both DeWitt reductions of T1

on group manifolds G and H . Thanks to this Hopf fibration technique, one may find out a deeper

understanding of why a “miraculous” Pauli reduction works.

We have employed the Hopf fibration technique to investigate the possibility of the Pauli re-

ductions in two different scenarios. First, in chapter 4, we consider an S2 reduction of the minimal
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supergravity in five dimensions. The main motivation for this investigation is the resemblance

of the bosonic Lagrangian of the latter theory and that of eleven-dimensional supergravity. As a

result of this analogy, and since there are S7, S4 and S5 Pauli reductions of eleven-dimensional

supergravity, one may conjecture there are S2 or S3 reductions of minimal supergravity in five

dimensions. Making use of this technique, one may start from minimal supergravity in six di-

mensions as the initial theory, and perform an S1 reduction to find minimal supergravity coupled

to a vector multiplet in five dimensions. However, to obtain pure five-dimensional minimal su-

pergravity, one needs to perform consistent truncations in five dimensions. The next step, shall

be an SU(2) DeWitt reduction of the initial theory to give a three-dimensional space-time. Now,

viewing the S3 = SU(2) as a Hopf fibration of an S1 bundle over coset space S2 = S3/S1, one

can find the consistent Pauli S2 reduction of the five-dimensional minimal supergravity coupled

to a vector multiplet. While it is an interesting result in its own right, this construction has not

been our main goal of the investigation, and we are looking to find an S2 reduction of pure five-

dimensional minimal supergravity. As we have mentioned above, one needs to perform truncations

in five dimensions to obtain the latter theory from the former one. However, a simple consideration

shows these truncations are not compatible with the ansatz we have found for minimal supergrav-

ity coupled to a vector multiplet, and the search for constructing the Pauli reduction of minimal

supergravity fails. Although this analysis does not provide a rigorous mathematical proof of the

impossibility of the reduction, it is very promising. Especially, we have tried to find a trial ansatz

and by inspecting the higher dimensional equations of motion, we hoped to find the correct ansatz.

Again, this method failed to give a correct ansatz. Therefore, by considering these examinations,

it seems very persuading to believe there is no consistent Pauli S2 of the minimal supergravity in

five dimensions.

Our second inquiry, in chapter 6 is revisiting an interesting question of the possibility of a

consistent S2 Pauli reduction of six-dimensional N = (1, 0) Einstein-Maxwell supergravity. The

latter theory found by Salam and Sezgin in 1984, and hence it has been named Salam-Sezgin

theory. Since this theory admits a Minkowski4 × S2 vacuum with N = 1 supersymmetry, it is
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an interesting inquiry to find out whether this theory admits the full non-linear Pauli S2 reduction.

Gibbons and Pope found out a “remarkable” consistent reduction ansatz in 2003, however, the

underlying reason of why this ansatz is achievable remains obscure. Furthermore, Salam and

Sezgin observed in their original paper [36], since the integer S2 Dirac monopole charge n has

been fixed by the equations of motion to be n = ±1, then regarding the fact that an S2 with a

singly charge Dirac monopole on it is an S3, they conjectured the possibility of the presence of an

S3 dimensional reduction of a seven-dimensional theory to give the four-dimensional Minkowski

vacuum they found from the spontaneous compactification of their theory. This is exactly what we

have found with the Hopf fibration technique.

To use the Hopf fibration technique, one needs to find an embedding of the Salam-Sezgin

theory in a higher-dimensional one. This has been done in [39] and an M-theory origin of this

theory has been found. However, the Kaluza vector potential A(1), arises from a circle reduction

of the metric of a seven-dimensional theory, was set to zero in their work. Since this vector field

is corresponding to a Dirac monopole on S2, its vanishing means the monopole charge has to be

set to zero, and hence the resulting Hopf fibration is just a trivial S2 × S1 instead of the expected

S3 one. To remedy this problem, one has to find another embedding of the Salam-Sezgin theory

where the vector potential A(1) is non-zero. We have found such an embedding.

The alternative embedding of the Salam-Sezgin theory in M-theory has been found based on

the assumption that the Kaluza vector potential A(1) is not zero. The striking feature of this embed-

ding is the role of a constant axion. According to the standard Kaluza-Klein circle reduction, one

may obtain a scalar, named axion, from a reduction of a vector one-form gauge potential. While

this axion has been always assumed either to be truncated to zero or to be a scalar field depends

on the space-time coordinate in the literature, we presume this field is a constant to be determined

by the supersymmetry transformations. By this premise, one can retain the usual covariant deriva-

tive. Since the six-dimensional Yang-Mills gauge potentials are truncated to zero in our scheme,

one needs a vector potential in the covariant derivative to be gauged. Thanks to the circle reduc-

tion, the Kaluza vector potential A(1) appears along with an axion in the covariant derivative of
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six-dimensional theory, and this vector potential can play a role of the usual gauge vector in the

covariant derivative as a result of the constant axion.

In the first embedding of the Salam-Sezgin theory in M-theory found in [39], it was assumed

the compact SO(4) gauge group of the seven-dimensional theory is changed to a non-compact

group of SO(2, 2). They could recover the positive definite potential of the Salam-Sezgin theory

by this premise. We constructed the alternative embedding, in the bosonic sector, with the non-

compact gauging in chapter 6, where the vector potential A(1) is non-zero. However, to retain the

vector potential A(1), if one would consider the fermionic sector as well, one has to start from

an N = 2 with SO(4) gauging, but a ‘Wick rotated’ supergravity in seven dimensions, as it was

shown in chapter 5. The Wick rotation can be achieved by either δĀB̄ → −i δĀB̄ or Φ1/4 →

−i Φ1/4, together with HMNP → −HMNP . However, as we have emphasized in chapter 5, the

reality condition of this theory is not very clear. This is why we did not present our fermionic

calculation in this dissertation. Nevertheless, both supersymmetry transformations maintain the

Lagrangian is invariant under them. More promising, we could find exactly the same Lagrangian,

both bosonic and fermionic sectors, as that of the Salam-Sezgin theory. Also, according to our

fermionic truncations, the supersymmetry transformations become the same as those of the Salam-

Sezgin theory.

Upon writing down the embedding of seven-dimensional metric ansatz in ten dimensions, one

can observe that the Wick rotated theory in seven dimensions, results from a time-like reduction of

ten-dimensional type I theory. In other words, the metric of the internal manifold, has an overall

negative sign as opposed to the usual positive sign. Time-like reduction is an interesting possibility

in the dimensional reduction program, which explored by Hull in 1990s [50, 51]. Since reduction

is time-like, then the higher dimensional theory should have a different space-time signature than

that of Minkowski. In this case, to obtain a (t, s) = (1, 6) theory with three time-like compact

coordinates, the ten dimensional theory should have a signature of (t, s) = (4, 6). This is a possi-

bility in Hull’s work in [50] as a type IIA (4,6). It is intriguing that the Salam-Sezgin theory has

an embedding with the usual space-like reduction and also an exotic time-like one.
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Having found an alternative embedding of the Salam-Sezgin theory with non-zero vector po-

tential A(1), one can follow the Hopf fibration technique to find an S2 reduction of the latter theory.

In chapter 6, we showed in detail how this works. After performing a circle reduction of seven-

dimensional theory, one needs to impose a truncation to obtain the Salam-Sezgin theory in six

dimensions. The crucial point is to verify whether this truncation is consistent with the Hopf

ansatz we find. Unlike the case of chapter 4, we showed this truncation is actually consistent with

the Hopf ansatz in chapter 6, meaning that, there is a consistent Pauli S2 reduction of the Salam-

Sezgin theory down to four dimensions. The two contrasting examples of chapters 4 and 6 show

how a truncation can be critical for the possibility of finding a consistent Pauli reduction.

One may employ the Hopf reduction technique to find more Pauli reductions of different su-

pergravities. Especially the case of Pauli S2 reduction is the easiest one to implement. However,

one may consider more involved geometries and may find more interesting Pauli reductions. In

addition to this, one may use the assumption of the constant axion to find different truncations,

especially when there is a Maxwell gauge potential in the higher-dimensional theory. Since one

may truncate the lower-dimensional Maxwell gauge potential to zero and by keeping the axion as a

constant number, one can still retain the usual gauging in the lower-dimensional theory by making

use of the Kaluza-Klein vector potential.

The other exciting possibility is the time-like reduction which may give rise to more consistent

dimensional reductions or even constructing of unknown supergravities.
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APPENDIX A

FINDING THE FIELD RE-DEFINITIONS

It is important to find the field re-definitions between [36], the original paper of Salam and Sez-

gin, [40] where SO(5) gauged maximal supergravity in seven dimensions was initially constructed,

and [39] where the first embedding of the Salam-Sezgin theory was introduced. Especially since

the fermionic Lagrangian was not presented (beside the two kinetic terms) in the last work, one

needs to find the field re-definitions to obtain the the full fermionic Lagrangian of the Salam-Sezgin

theory, from reduction and truncations of the original theory of [40] and compare it with that of

the Salam and Sezgin work in [36].

Let us label fields and coupling constant of [36] and [40] with tilde and prime respectively,

while those of [39] are without any labeling. To begin with, one may compare the bosonic La-

grangian of SO(5) gauged maximal supergravity in seven dimensions, i.e. eqn (8) of [40] and eqn

(1) of [39]. Hence one can find the following

L7 = 2L′
7, g = 1

2
g′, F(2) =

√
2F ′

(2), S(3) = −2
√
3 i mS ′

(3), (A.1)

where m = 1
2
g′ in the former paper. One can observe that the supersymmetry transformations, eqn

(9) of [40] and equations (6) and (9) of [39], agree with each other upon considering the above field

redefinitions. However, there is a typographical error in eqn (2) of [39], where the field strength

was defined. According to [40] (below eqn (9)), the field strength was defined as usual

F ′
(2)A

B = dA′
(1)A

B + g′A′
(1)A

C ∧ A′
(1)C

B , (A.2)

where we rewrite it in the form-language, and also rename the vector potential from B(1) to A′
(1).
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Upon using the above field redefinitions, one has to find the following relation in [39]

F(2)A
B = dA(1)A

B +
√
2 g A(1)A

C ∧ A(1)C
B , (A.3)

where
√
2 is missing in eqn (2) of [39]. However, since we consider the abelian truncation of the

original theory to obtain the Salam-Sezgin theory, this issue shall be irrelevant. However, this issue

reflects in the definition of Qij . If one accepts the definition of this quantity as it is presented in

eqn (6) of [40], then Qij defined in eqn (2) of [39] should be modifies as follows

Π−1
i
A (δA

B d+
√
2 g A(1)A

B)ΠB
k δkj = Pij +Qij ; Pij = P(ij) , Qij = Q[ij], (A.4)

where factor of
√
2 has been added. Since it is somewhat inconvenient to have the factor of

√
2,

we redefine the gauge potential in the way that this factor becomes absorbed in that field. This is

the convention which used in [15] and we follow it.
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APPENDIX B

FINDING THE HODGE-DUALITY RELATION WITH A SPHERICAL CONSTRAINT

B.1 The notation

We follow the convention and notion of [26]. For convenience, we present the main definitions

here. First of all, to specify our notation, consider a general p-form in a general D dimensions

ω(p) =
1
p!
ωµ1µ2···µp dx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (B.1)

Then, the Hodge-dual of this p-form field is defined as follows

∗ (dxµ1 ∧ · · · ∧ dxµp) = 1
q!
ϵν1···νq

µ1···µp dxν1 ∧ · · · ∧ dxνq , (B.2)

where q = D − p. Here

ϵµ1···µD =
√

|g| εµ1···µD (B.3)

is a totally anti-symmetric Levi-Civita tensor while the Levi-Civita tensor density εµ1···µD = (1,−1, 0)

for an even, odd or no permutation of (0, 1, · · · , D − 1) respectively. All upstairs indices Levi-

Civita density tensor is related to the above one as follows

εµ1···µD = (−1)t εµ1···µD , (B.4)

where t is number of time-like component in the metric. Here, since the Levi-Civita density tensor

is not a tensor, hence its indices do not raise and lower by the metric. However those of the

Levi-Civita tensor do raise and lower by the metric, then one can find out

ϵµ1···µD = 1√
|g|
εµ1···µD . (B.5)
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One can use (B.2) to find the following relation for the components of a Hodge-dual form field

(∗ω)(q) ≡ 1
q!
(∗ω)ν1···νq dxν1 ∧ · · · ∧ dxνq ,

(∗ω)ν1···νq = 1
p!
ϵν1···νq

µ1···µp ωµ1···µp . (B.6)

Also, again using (B.2) for the case of p = 0, one can write

∗ 1l = 1
D!
ϵµ1···µD dx

µ1 ∧ · · · ∧ dxµD . (B.7)

Other important relation which we have been used it extensively is the applying the Hodge-dual

twice on a general p-form. The result is as follows

∗ ∗ ω(p) =
1
p!
ωµ1···µp ∗ ∗(dxµ1 ∧ · · · ∧ dxµp) = 1

p!q!
ωµ1···µp ϵν1···νq

µ1···µp ∗ (dxν1 ∧ · · · ∧ dxνq)

= 1
p!q!

ωµ1···µp ϵν1···νq
µ1···µp ϵρ1···ρp

ν1···νq dxρ1 ∧ · · · ∧ dxρp

= (−1)pq+t ωµ1···µp δ
µ1···µp
ρ1···ρp dx

ρ1 ∧ · · · ∧ dxρp = (−1)pq+t ωµ1···µp dx
ρ1 ∧ · · · ∧ dxρp

= (−1)pq+t ω(p), (B.8)

where δµ1···µpρ1···ρp = δ
[µ1
[ρ1

· · · δµp]ρp]
. We have employed the following relation

ϵµ1···µpν1···νq ϵ
µ1···µpρ1···ρq = p!q! (−1)t δρ1···ρqν1···νq . (B.9)

Note according to the above definition one has δµ1···µDµ1···µD = 1.

Another useful relation is ∗A(p) ∧B(p) =
1
p!
A.B ∗ 1l. The proof is as follows

∗A(p) ∧B(p) =
1

p!2q!
Aµ1···µp ϵν1···νq

µ1···µp Bρ1···ρp dx
ν1 ∧ · · · ∧ dxνq ∧ dxρ1 ∧ · · · ∧ dxρp

= 1
p!2q!

Aµ1···µp Bρ1···ρp ϵν1···νqµ1···µp(−1)t ϵν1···νqρ1···ρp ∗ 1l (B.10)

= 1
p!
δρ1···ρpµ1···µp A

µ1···µp Bρ1···ρp ∗ 1l = 1
p!
Aµ1···µp Bµ1···µp ∗ 1l = 1

p!
A.B ∗ 1l ,
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where we have used (B.9) and also

dxµ1 ∧ · · · ∧ dxµD = (−1)t ϵµ1···µD ∗ 1l , (B.11)

where one can readily find out this relation from (B.7).

B.2 The Hodge-dual on a sphere

In this section, we consider an important problem of finding the Hodge-dual of a general p-

form on a sphere. For simplicity one can assume the sphere has a unit radius. Then, one may

parametrize the (D− 1)-sphere in D dimensions by xµ where δµνxµxν = 1. Note that the index in

xµ can raise and lower by the delta Dirac metric and hence one may simply write the constraint as

xµxµ = 1. Then considering the following metric

ds2 = gµν dx
µdxν , (B.12)

one needs to find the following Hodge-dual ∗(dxµ1 ∧ · · · ∧ dxµp). Because of the constraint, D− 1

components are independent, and hence the Hodge-dual of a p-form shall be a D − p− 1 = q − 1

form. Considering this point, the most general form of the Hodge-dual of a p-form is as follows

∗ (dxµ1 ∧ · · · ∧ dxµp) = 1
(q−1)!

ϵνν1···νq−1

µ1···µp Aν dxν1 ∧ · · · ∧ dxνq−1 , (B.13)
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when Aν is a general function to be determined. To find this function, one may apply the Hodge-

dual operation twice on a p-form as follows

∗ ∗ (dxµ1 ∧ · · · ∧ dxµp) = 1
(q−1)!

ϵνν1···νq−1

µ1···µp Aν ∗ (dxν1 ∧ · · · ∧ dxνq−1)

= 1
p!(q−1)!

ϵνν1···νq−1

µ1···µp Aν ϵρρ1···ρp
ν1···νq−1 Aρ dxρ1 ∧ · · · ∧ dxρp

= (−1)p(q−1)

p!(q−1)!
ϵνµ1···µpν1···νq−1 Aν ϵρρ1···ρp

ν1···νq−1 Aρ dxρ1 ∧ · · · ∧ dxρp

= (p+ 1) (−1)p(q−1)+t δνµ1···µpρρ1···ρp Aν A
ρ dxρ1 ∧ · · · ∧ dxρp

= (−1)p(q−1)+t (δνρ δ
µ1···µp
ρ1···ρp − p δνρ1 δ

µ1···µp
ρ···ρp )Aν A

ρ dxρ1 ∧ · · · ∧ dxρp

= (−1)p(q−1)+t
(
Aν A

ν dxµ1 ∧ · · · ∧ dxµp − pAν dx
ν Aµ1 ∧ · · · ∧ dxµp

)
= (−1)p(q−1)+t dxµ1 ∧ · · · ∧ dxµp , (B.14)

where we have used (p + 1) δ
νµ1···µp
ρρ1···ρp = δνρ δ

µ1···µp
ρ1···ρp − p δν[ρ1 δ

µ1···µp
|ρ|···ρp], and the anti-symmetrization has

been dropped since this term is coupled to dxρ1 ∧ · · ·∧dxρp . The last line was written according to

the general result of (B.8). To achieve this result, the following two conditions should be satisfied

Aν A
ν = 1 , Aν dx

ν = 0 . (B.15)

We claim the following expression for Aµ will fulfill both of the above conditions

Aµ = 1√
∆
gµν xν , (B.16)

where ∆ = gµν xµxν . Now, one may readily check the above expression satisfies both conditions

in (B.15) as follows

Aµ dx
µ = gµν A

µdxν = 1√
∆
gµν g

µρ xρ dxν = 1√
∆
xν dxν = 1

2
√
∆
d(xν xν) = 0 ,

AµA
µ = gµν A

µAν = 1
∆
gµν g

µρxρ gνσxσ = 1
∆
gνσ xνxσ = 1 . (B.17)
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This completes the proof. Thus the final result for a Hodge-dual of a general p-form with the

constraint of xµxµ = 1 shall be

∗ (dxµ1 ∧ · · · ∧ dxµp) = 1
(q−1)!

1√
∆
ϵνν1···νq−1

µ1···µp gνρ xρ dxν1 ∧ · · · ∧ dxνq−1 . (B.18)

One can may consider two important special cases of the above general result.

Corollary 1. Consider the case p = 0. Then we have

∗1l = 1
(D−1)!

1√
∆
ϵνν1···νD−1

gνρ xρ dxν1 ∧ · · · ∧ dxνD−1

= 1
(D−1)!

1√
∆
ϵνν1···νD−1

gνρ xρ dxν1 ∧ · · · ∧ dxνD−1 xµxµ

= 1
(D−1)!

1√
∆
(ϵµν1···νD−1

xν + (D − 1) ϵνµ···νD−1
xν1)gνρ xµ xρ dxν1 ∧ · · · ∧ dxνD−1

= 1
(D−1)!

√
∆ ϵµ1µ2···µD x

µ1 dxµ2 ∧ · · · ∧ dxνD , (B.19)

where we have used the following Schouten’s identity

ϵ[µ1µ2···µD Vµ] = 0 ⇒ ϵµ1µ2···µD Vµ = ϵµµ2···µD Vµ1 + · · ·+ ϵµ1µ2···µ VµD , (B.20)

and also the relation xµdxµ = 0.

Corollary 2. Consider the case p = 1. Hence, according to (B.18), one can write

∗dxµ = 1
(D−2)!

1√
∆
ϵνν1···νD−2

µ gνρ xρ dxν1 ∧ · · · ∧ dxνD−2

= 1
(D−2)!

1√
∆
gµσ gνρ ϵνν1···νD−2σ x

ρ dxν1 ∧ · · · ∧ dxνD−2 . (B.21)

Considering an S2 reduction, which has been studied frequently in the literature, one needs to

examine the case of D = 3. From the above formula, one can write

∗ dxi = 1√
∆
g−1
im g

−1
jn

√
|g| εjkm xn dxk = 1√

∆

√
|g| |g|−1 εinℓ gkℓ x

n dxk = 1√
∆

1√
|g|
εijk x

j gkℓ dx
ℓ ,

(B.22)
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where we have used the identity (4.44) in chapter... εijk g−1
jm g

−1
kn = |g|−1 εℓmn gℓi. Note i, j, k, · · · =

1, 2, 3 and they raise and lower by δij , thus one may not worry about up and down indices in this

situation.
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