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ABSTRACT

Sparsity is a standard structural assumption that is made while modeling high-dimensional

statistical parameters. This assumption essentially entails a lower dimensional embedding of the

high-dimensional parameter thus enabling sound statistical inference. Apart from this obvious

statistical motivation, in many modern applications of statistics such as Genomics, Neuroscience

etc. parameters of interest are indeed of this nature.

For over almost two decades, spike and slab type priors have been the Bayesian gold standard

for modeling of sparsity. However, due to their computational bottlenecks shrinkage priors have

emerged as a powerful alternative. This family of priors can almost exclusively be represented

as a scale mixture of Gaussian distribution and posterior Markov chain Monte Carlo (MCMC)

updates of related parameters are then relatively easy to design. Although shrinkage priors were

tipped as having computational scalability in high-dimensions, when the number of parameters is

in thousands or more, they do come with their own computational challenges. Standard MCMC

algorithms implementing shrinkage priors generally scale cubic in the dimension of the parameter

making real life application of these priors severely limited. The first chapter of this document

addresses this computational issue and proposes an alternative exact posterior sampling algorithm

complexity of which that linearly in the ambient dimension.

The algorithm developed in the first chapter is specifically designed for regression problems.

However, simple modifications of it allows tackling other high-dimensional problems where these

priors have found little application. In the second chapter, we develop a Bayesian method based

on shrinkage priors for high-dimensional multiple response response regression. We show how

proper shrinkage may be used for modeling high-dimensional low-rank matrices. Unlike spike

and slab type priors, shrinkage priors are unable to produce exact zeros in the posterior. In this

chapter we also devise two independent post MCMC processing schemes based on the idea of

soft-thresholding with default choices of tuning parameters. This post processing steps provide

exact estimates of the row and rank sparsity in the parameter matrix.
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Theoretical study of the posterior convergence rates using shrinakge priors are relatively un-

derdeveloped. While we do not attempt to provide a unifying foundation to study these properties,

in chapter three we choose a specific member of the shrinkage family known as the horseshoe prior

and study its convergence rates in several high-dimensional models. These results are completely

new in the literature and also establish the horseshoe priors optimiality in the minimax sense in

high-dimensional problems.
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NOMENCLATURE

MCMC Markov chain Monte Carlo

BSML Bayesian sparse multiple shrinkage

SPLS Sparse partial least squares

LASSO Least absolute shrinkage and selection operator

HS Horseshoe prior
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mle Maximum likelihood estimator

indp. Independently

‖x‖2 Euclidean norm of a vector x

a . b a ≤ Cb for some positive constant C

‖A‖F Frobenius norm of the matrix A

‖A‖2 Operator norm of the matrix A

h2(p, q) Squared Hellinger distance between densities p and q
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1. BAYESIAN SHRINKAGE

1.1 Introduction

Recent technological advances in different branches of science has enabled scientists to gather,

collect and process extremely complex high-dimensional data. Classical statistical techniques are

known to be inadequate in analyzing these data sets. However, in the last twenty years statisticians

have made a conscious effort to develop statistical techniques specially designed to handle complex

high-dimensional data. Popularly known as the the ‘small n, large p’ regime, these techniques have

also ushered in new theoretical works basing them on sound foundations.

When considering a high-dimensional statistical model, one often assumes certain structure

in the parameters for developing inferential tools. For example, in a linear regression problem

y = Xβ + ε, when the design matrix X has more columns than rows, traditional least squares

estimates do not exist. A common assumption made in this case is that the parameter vector β is

sparse. This means only a small proportion of entries of β are non-zero and most of its entries are

zero or very close to zero. If X has n rows and p columns, then assuming a sparse β essentially

shrinks the parameter space from <p to a subspace close to the origin. Restricting the parameter

space to such a subspace then lays the groundwork for developing statistical methods. Frequentist

penalized likelihood methods essentially optimize the classical least squares objective function

subject to the constraint that the parameter lives in a possibly much lower dimensional subspace of

<p. One popular example of this idea is the LASSO [5] where the least squares objective function

is minimized subject to a `1 penalty on the parameter β, i.e. the LASSO estimator of β is defined

as,

β̂LASSO = arg min
β

(
‖y −Xβ‖2

2 + λ

p∑
j=1

βj

)
. (1.1)

In (1.1) λ is a tuning parameter which optimized over a set of plausible values and controls the

sparsity in the estimate β̂LASSO. Of course, setting λ = 0 recovers the least squares estimator

and λ = ∞ corresponds to the sparsest estimate β̂LASSO = 0. Several other penalized estimators

1



for β in the regression model have been proposed in the literature. See [6, 7] for the SCAD and

MCP estimators. The book [8] is an excellent monograph for a compact overview of the works on

penalized estimation in high-dimensional models.

From a Bayesian perspective, a natural way to model sparse parameters is to consider a prior

which is a mixture of two densities, one of which is a continuous density for the non-zero entries

and the other is a point mass at zero. The mixture proportion controls the degree of sparsity in the

parameter. A typical point mass mixture prior for the jth entry of a parameter β ∈ <p is displayed

below:

π(βj) = ω g(βj) + (1− ω)δ0(βj). (1.2)

Here g(·) is a continuous density over the real line and is popularly known as the slab part of

the prior π. δ0(·) is point mass at 0, known as the spike part and ω controls the proportion of

non-zeros in the parameter β. Originally developed by [9] and further improved by the seminal

work of [10], the spike slab priors have been remarkably successful in statistical models involving

sparsity. For example, [11] used them in the context of high-dimensional factor models, [12]

addressed the high-dimensional multiple response regression problem. [13] analyzed prior (1.2) in

the context of Gaussian sequence model. The authors considered an empirical Bayes estimate of

ω and showed the posterior median is an optimal estimator in minimax sense when the continuous

density g is sufficiently heavy-tailed. When consider a fully Bayesian analysis [14] showed how the

rather seemingly innocuous Uniform prior on ω may lead to suboptimal inference. They suggested

using a Beta-Binomial prior on ω wherein the parameter are chosen so as to assign exponentially

decaying mass on increasing model size for optimal inference. In a more recent work [15] showed

that the Beta-Binomial prior on ω in conjunction with a Laplace density for g(·) lead to posteriors

which contract at the optimal rate in a frequentist sense when the truth belongs certain sparsity

classes. While the anlysis in [15] was carried out for the Gaussian sequence model, the authors

extended their results in [16] with the same choice of prior in a linear regression framework. [16]

also that the posterior distribution using prior (1.2) in linear regression leads to posteriors which

are low-dimensional Gaussian distribution in an asymptotic sense.
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Although spike and slab priors are known to enjoy theoretical optimality for quite some time

now, their use in real world applications have been limited due to the computational challenges

involved. When β ∈ <p, posterior MCMC sampling involves model search over an exponentially

growing model size; for with p variables there are 2p possible models to search over. Moreover,

the need to properly integrate estimates from different model sizes have garnered a separate line of

research known as Bayesian model averaging. See [17] for more details and the intricacies involved

in the problem. As a result, their impact on the broader scientific community has been rather

limited, whereas frequentist methods enjoy an overwhelming popularity in day to day practice of

high-dimensional statistics.

[18], in his seminal work introduced the idea of shrinkage. Consider a sample y ∼ N(θ, I), θ ∈

<p. The maximum likelihood estimator of θ in this case is y. However, the following estimator

known as Stein’s estimator,

θ̂Stein = y

(
1− p− 2

‖θ‖2
2

)
(1.3)

Stein showed that θ̂mle dominates θ̂Stein under the squared error loss:
∥∥∥θ̂ − θ∥∥∥2

2
. [19] established

an empirical Bayes interpretation of Stein’s estimator. Full Bayes estimators such as the posterior

mean automatically provides some shrinkage. For example, in a Gaussian model with Gaussian

prior on the mean, the posterior mean is a convex combination of the sample mean and prior mean.

Anchoring on the idea that Bayes estimators provide automatic shrinkage, a new class of priors

started to emerge in the last two decades. Popularly known as shrinkage priors, these priors aim to

aggressively shrink the noise components of a sparse parameter towards zero while retaining the

signal components as much as possible. This is achieved by having an individual scale parameter

for each component called the local scale parameter and a global scale parameter is introduced

which shrinks the entire parameter towards the origin [20]. A further advantage of these priors is

due to their conditionally Gaussian representation. Suppose θ ∈ <p, a shrinkage prior is defined
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hierarchically as follows,

θj | λj, τ
indp.∼ N(0, λ2

jτ
2), j = 1, . . . , p (1.4)

λj
indp.∼ f,

τ ∼ h.

In the above display λj correspond to the local scale parameter for the jth component of θ and τ

is the global shrinkage parameter. f and h are densities on the positive real line. Different choices

of the mixing densities f and h lead to different marginal densities of θ. The choice of f and h

are obviously very crucial. Recipes for choosing f and h are provided in [20] where the authors

suggest an exponentially light-tailed distribution for h allowing for sparse estimates and f should

be sufficiently heavy-tailed to capture the signal/non-zero components.

Several authors have suggested different choices of f and h. [21, 1, 22, 23] are members of

a long list of shrinkage priors. In this thesis we will mainly be focusing on methodological and

theoretical aspects of the horseshoe prior from [1] which is obtained when f and h are both set to

the standard Half-Cauchy distribution on the positive real line. The density of the standard Half-

Cauchy distribution is f(x) ∝ (1 + x2)−1I(0,∞). Marginal distributions for the Dirichlet-Laplace

prior [23] and the horseshoe prior [1] are provided in figure 1.1 and figure 1.2. Both these priors

exhibit a sharp spike in around the origin which mimics the point mass of spike and slab priors and

helps shrink the noise variables aggressively. The tail of the horseshoe prior decays very slowly

similar to the Cauchy distribution, while Dirichlet-Laplace tail is slightly lighter. These operating

characteristics effectively provides a continuous analogue of spike slab priors.

The continuous nature of shrinkage priors comes as a boon in posterior computation. Since, due

to their conjugate Gaussian formulation as shown in (1.4), designing MCMC chains for posterior

sampling are relatively straightforward - closed form full conditional distributions allows for Gibbs

sampling and the parameter can be updated in a block thus resulting in better mixing of the MCMC

4
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Figure 1.1: Marginal distribution for the Dirichlet-Laplace prior with hyperparameter 1/2 and the
horseshoe prior are plotted around a neighborhood of zero. The Laplace and Cauchy densities are
also plotted for reference.
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Figure 1.2: Same densities as in figure 1.1. Here the focus is on the tail behavior of the priors.
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chain. For example, consider the canonical linear regression model,

y = Xβ + ε, ε ∼ N(0, 1). (1.5)

When β is believed to be sparse, one possible choice for a prior distribution on β is the horseshoe

prior. The full conditional posterior distribution of β then is N(A−1XTy, A−1), whereA = XTX+

Λ−1, where Λ is a diagonal matrix with λ2
jτ

2 as its jth entry.

Posterior summaries from these MCMC chains such as posterior mean or median can then be

used as point estimates for β. The fully Bayesian treatment of the problem also allows for quanti-

fying the uncertainty by means of credible intervals which is not the case for Bayesian spike slab

priors and frequentist penalized methods. Seemingly, shrinkage priors provide a unified founda-

tion for high-dimensional analysis with its appealing computational tractability and the ability to

simultaneously provide point estimates and uncertainty intervals.

1.2 Research questions and motivation

In the previous discussion we hope to have provided a convincing argument for the use of

shrinkage priors. However, one major computational bottleneck has restricted their usage in data

sets of real scientific interest. For example, in genome wide association studies it is common to

record activities of thousands of genes related to a particular response. In such scenarios, im-

plementing a linear regression model with a shrinkage prior would require sampling from a very

high-dimensional Gaussian distribution at each and every MCMC iteration.Furthermore, this high-

dimensional Gaussian distribution involves a matrix inversion. Standard MCMC algorithms for

this problem have complexity scaling cubic in the number of parameters which can be very time

consuming even when there is only a few hundred parameters. The first question that we will be

asking ourselves is,

• can we develop a faster algorithm?

The idea of shrinkage is not only limited to regression problems. When multiple responses are

observed for a set of subjects or individuals along with possibly thousands of predictors, proper
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shrinkage is warranted. However, priors for multiple response problems based on shrinkage are rel-

atively underdeveloped due to their computational challenges. Provided our answer to the previous

question is a yes, in the next chapter we ask,

• can we develop a computationally tractable, sound methodology for handling multiple re-

sponse at the same using the idea of shrinkage?

If again the answer is a yes, we ask,

• what theoretical guarantees can we provide for these methods in a high-dimensional setting?

1.3 Outilne

Here we provide a brief snapshot of the rest of our work motivated from the research questions

discussed above.

In the first chapter we consider the model (1.5) with a shrinkage prior on β. Suppose n is the

sample size and p is the number of predictors. Existing algorithms [24] which rely on comput-

ing Cholesky factors have O(p3) complexity. As a solution to this problem we develop an exact

sampling algorithm for Gaussian distributions which relies on data augmentation. Computational

complexity of the proposed algorithm is O(n2p) providing huge gains in time when p � n. To

provide a perspective, for (n, p) = (100, 5000) and 6000 MCMC iterations our algorithm offers

a speed-up factor of 250 times over the algorithm in [24]. A MATLAB script implementing the

algorithm with the horseshoe prior [1] is publicly available here. An R package is also available at

CRAN.

The next chapter focuses on the multiple response regression problem. Often several variables

of interest, possibly correlated, are measured on different individuals/subjects along with a set of

predictors and it is known that statistical procedures ignoring the correlation may lead to incorrect

inferential decisions. A simple yet powerful model for studying multiple responses and a set of

predictors is the multi-response linear regression model: Y = XC +E, Y ∈ <n×q, C ∈ <p×q. In

the presence of many predictors it is then natural to ask in this setting which variables are impor-

tant and whether there is a latent dependence among the important ones. Here we simultaneously
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address the problems of rank reduction and variable selection in high-dimensional reduced rank

models from a Bayesian perspective. We develop a novel shrinkage prior on the coefficient matrix

which encourages shrinkage towards low-rank and row-sparse matrices. The prior is placed on a

full-rank decomposition ofC bypassing need to specify a prior on the unknown rank. Since shrink-

age priors are unable to select variables, we propose two independent post-processing schemes to

achieve row sparsity and rank reduction with encouraging performance. A key feature of our

post-processing schemes is to exploit the posterior summaries to offer careful default choices of

tuning parameters, resulting in a procedure which is completely free of tuning parameters. When

compared with existing frequentist methods our proposed methodology showed a decoupling ef-

fect for rank estimation and variable selection, whereas for the frequentist methods overfitting of

the rank is necessary for optimal variable selection. The methodology is available for MATLAB

implementation here.

Finally, we investigate the theoretical properties of the posterior obtained from a horseshoe

prior in several high-dimensional models. Such studies of the horseshoe prior quantifying rates of

convergence [25, 26] focus exclusively on the normal means problem with their proofs crucially

exploiting an exact conjugate representation of the posterior mean. However, other than [27] who

studied the case p < n, there are no posterior consistency results for the horseshoe prior in regres-

sion or general statistical models of practical ineterest where such representation is not possible.

Furthermore, [27] did not quantify the rate of convergence. To aid theoretical analysis, we adopt

the fractional posterior framework developed in [28] where only a prior mass condition is suffi-

cient to guarantee consistency of the fractional posterior. In this work, our key contribution is in

providing a novel non-asymptotic prior concentration result for the prior in around minimax neigh-

borhoods of low-rank and row sparse matrices which drives the concentration of the posterior. The

result is established allowing p to grow sub-exponentially in n , a first of its kind in this setting.

To exhibit our result’s full generality we extend our results to high-dimensional single response

regression models and factor models.
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2. FAST SAMPLING OF GAUSSIAN SCALE MIXTURE PRIORS IN

HIGH-DIMENSIONAL REGRESSION

2.1 Introduction

Continuous shrinkage priors have received significant attention in recent years as a mechanism

to induce approximate sparsity in high-dimensional parameters. Such priors can be almost exclu-

sively expressed as global-local scale mixtures of Gaussians [20]; examples include the relevance

vector machine [29], normal/Jeffrey’s prior [30], the Bayesian lasso [31, 32], the horseshoe [1],

normal/inverse-Gaussian priors [22], generalized double Pareto priors [33] and Dirichlet–Laplace

priors [34]. These global-local priors [20] aim to aggressively shrink out the noise coefficients

while retaining the signals, thereby providing an approximation to the operating characteristic of

the more traditional discrete mixture priors [9, 35, 14], which allow a subset of the parameters to

be exactly zero.

1 A major attraction of the global-local priors has been computational efficiency and simplicity.

Posterior inference poses a stiff challenge for discrete mixture priors in exploring very large model

spaces in moderate to high-dimensional settings. On the contrary, the scale-mixture representa-

tion of global-local priors allows parameters to be updated in blocks via a fairly automatic Gibbs

sampler in a wide variety of statistical problems; examples include regression [32, 33], wavelet

denoising [20], factor models and covariance estimation [36, 37], dependent time series [38] name

a few. Moreover, recent results suggest that a subclass of global-local priors can achieve the same

level of statistical accuracy as the discrete mixture priors in high-dimensional estimation prob-

lems. For the normal means problem, [34] and [25] established optimal posterior concentration of

the Dirichlet–Laplace and horseshoe priors respectively. In the context of large covariance esti-

mation via factor models, [37] showed that both appropriately chosen discrete mixture priors and

global-local priors lead to a minimax rate of posterior concentration. While a general theory for

1*Reprinted with permission from “Fast sampling with Gaussian scale-mixture priors in high-dimensional re-
gression” by Anirban Bhattacharya, Antik Chakraborty and Bani K. Mallick, 2016, Biometrika, 103(4), 985 - 991,
Copyright [2016] by Biometrika Trust.

9



global-local priors is yet lacking, more results are likely to appear in the near future.

In this article, we focus on computational aspects of global-local priors in the high-dimensional

linear regression setting

y = Xβ + ε, ε ∼ N(0, σ2In), (2.1)

where X ∈ <n×p is a n × p matrix of covariates with the number of variables p potentially

much larger than the sample size n. In such p � n settings, one expects the vector of regression

coefficients β ∈ <p to be sparse. A global-local prior on β assumes the following hierarchical

structure:

βj | λj, τ, σ ∼ N(0, λ2
jτ

2σ2), (j = 1, . . . , p), (2.2)

λj ∼ f, (j = 1, . . . , p) (2.3)

τ ∼ g, σ ∼ h, (2.4)

where f, g and h are densities supported on (0,∞). In the above display, the λjs are usually

referred to as local scale parameters while τ is a global scale parameter. Different choices of f and

g lead to different classes of priors. For instance, a half-Cauchy distribution for f and g leads to

the horseshoe prior of [1]. General guidelines for choices of the densities f and g can be found in

[20] and [37].

Exploiting the scale-mixture representation (2.2), it is straightforward to write down a Gibbs

sampler for the above class of priors. In particular, the conditional posterior of β given y and

λ = (λ1, . . . , λp)
T, τ and σ is Gaussian:

β | y, λ, τ, σ ∼ N(A−1XTy, σ2A−1), A = (XTX + Λ−1
∗ ), Λ∗ = τ 2diag(λ2

1, ..., λ
2
p). (2.5)

Further, the p local scale parameters λj have conditionally independent posteriors and hence λ =

(λ1, . . . , λp)
T can be updated in a block. Even in cases where λjs and τ do not admit conditionally
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conjugate posteriors, a slice sampling algorithm [39] can be adapted to update these parameters

efficiently.

A standard algorithm to sample from Gaussian distributions as in (2.5) can be found in [24],

which avoids inverting A and instead performs a Cholesky decomposition of A and a series of lin-

ear system solutions to generate samples. While this is efficient for moderate values of p, obtaining

a Cholesky decomposition of A at each MCMC step becomes highly expensive for large p. One

cannot resort to precomputing the Cholesky factors since the matrix Λ∗ in (2.5) changes from one

iteration to the other. The resulting computational bottleneck obscures the computational advan-

tages of global-local priors when p is large. In this article, we present an exact sampling algorithm

for Gaussian distributions as in (2.5) which relies on data augmentation and block matrix manip-

ulations. We show that the computational complexity of the proposed algorithm scales linearly

in the dimension p. Computational gains with increasing dimensionality is illustrated through a

simulation example on linear regression with the horseshoe prior [1].

2.2 The algorithm

We first state our algorithm in a general setting. Suppose the goal is to sample from Np(µ,Σ),

with

Σ = (ΦTΦ +D−1)−1, µ = ΣΦTα, (2.6)

where Φ ∈ <n×p, D ∈ <p×p is symmetric positive definite and α ∈ <n×1. It is straightforward

to observe that (2.5) is a special case of (2.6) with Φ = X/σ, D = σ2Λ∗ and α = y/σ. Further,

the need to sample from a distribution as in (2.6) arises in almost all the applications of continuous

shrinkage priors mentioned in the introduction and the proposed approach can be seamlessly inte-

grated into such settings. In the sequel, we do not require D to be diagonal, however we implicitly

assume that D−1 is easy to calculate and it is straightforward to sample from N(0, D). This is the

case, for example, if D corresponds to the covariance matrix of an AR(q) process or a Gaussian

Markov random field.
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Letting Q = Σ−1 = (ΦTΦ + D−1) denote the precision (or inverse covariance) matrix and

b = ΦTα, we can write µ = Q−1b. [24] proposed an efficient algorithm to sample from a Gaussian

distribution with precision matrixQ and meanQ−1b that avoids explicitly calculating the inverse of

Q which is computationally expensive and numerically unstable. Instead, the algorithm in Section

3.1.2. of [24] performs a Cholesky decomposition of Q and uses the Cholesky factor to solve a

series of linear systems to arrive at a sample from the desired Gaussian distribution. The algorithm

adapted to the present setting can be expressed as follows:

Algorithm 1. [24]

(i) Compute the Cholesky decomposition (ΦTΦ +D−1) = LLT.
(ii) Solve Lv = ΦTα.
(iii) Solve LTm = v.
(iv) Solve LTw = z, where z ∼ N(0, Ip).
(vi) Set θ = m+ w. Then, θ ∼ N(µ,Σ).

The algorithm in [24] was originally developed to efficiently sample from Gaussian Markov

random fields where the precision matrix Q has a banded structure and a Cholesky factor can be

computed efficiently. Even though the precision matrix (ΦTΦ + D−1) does not have any special

structure in the present setting, Algorithm 1 remains practically useful as long as p is around 500;

however, for larger values of p, there is an inevitable breakdown point. In fact, the complexity of

the algorithm scales as O(p3) since the Cholesky decomposition in step (i) requires O(p3) floating

point operations and the subsequent linear system solutions can be performed in O(p2) floating

point operations [40].

TheO(p3) complexity is prohibiting in high dimensional settings where p is in the order of tens

of thousands or even higher. We present an alternative exact mechanism to sample from a normal

distribution with parameters as in (2.6) below:

Proposition 2.2.1. Suppose θ is obtained by following steps (i) - (iv) of Algorithm 2. Then, θ ∼

N(µ,Σ), where µ and Σ are as in (2.6).
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Algorithm 2. Proposed algorithm

(i) Sample u ∼ N(0, D) and δ ∼ N(0, In).
(ii) Set v = Φu+ δ.
(iii) Solve (ΦDΦT + In)w = (α− v).
(iv) Set θ = u+ ΦTDw.

A proof of Proposition 2.2.1 is provided in Section 2.2.1. While the sampling mechanism

is valid for all n and p, the computational gains are most prominent when p � n and the as-

sumptions regarding D made at the beginning of the Section are satisfied. Indeed, the primary

motivation behind the algorithm derivation is to scale down the problem from p to n dimensions

using the Sherman–Woodbury–Morrison matrix identity [41] and then using Gauss–Jordan type

factorizations and linear system solvers to scale back to p dimensions. When D is diagonal as case

of continuous shrinkage priors (2.2), the complexity of the proposed algorithm can be accurately

calculated.

Proposition 2.2.2. Assume D is diagonal and p ≥ n. Then, steps (i) - (iv) in Algorithm 2 can be

carried out via O(n2p) floating point operations.

Proof. We use a couple of facts from [40]: (i) ifB1 ∈ <m1×m2 andB2 ∈ <m2×m3 , then the product

B1B2 can be computed inO(m1m2m3) floating point operations; (ii) ifB ∈ <m×m, then the linear

system Bx = y can be solved in O(m3) operations. Since D is diagonal, sampling u in step (i)

can be carried out in O(p) floating point operations and the matrix multiplication Φu in step (ii)

takes additional O(np) operations. Once again using that D is diagonal, the matrix Φ̃ = ΦD can

be computed in O(np) floating point operations and hence the complexity of calculating ΦDΦT =

Φ̃ΦT isO(n2p). The n×n linear system in step (iii) can be computed inO(n3) operations. Finally,

since Φ̃ is already calculated in step (iii), the matrix multiplication ΦTDw = (Φ̃)Tw takes O(n2p)

operations. Since p ≥ n, n2p ≥ n3, and the overall complexity is O(n2p).

In comparison to the O(p3) complexity of Algorithm 1, the proposed Algorithm 2 therefore

offers substantial gains in p� n settings with a reduction in complexity from cubic to linear in p.
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Our numerical results in Section 2.4 indeed show that when p � n, both algorithms have similar

computation time while Algorithm 2 is significantly faster when p is large.

When D is not diagonal, the complexity of the proposed algorithm needs to be calculated on a

case by case basis depending on the structure of D. Without any assumptions on D, calculating Φ̃

above would take O(np2) operations which is the dominating term in the complexity calculations.

Even in this case, the complexity reduces from cubic to quadratic in p which can be substantial

when p is large.

2.2.1 Algorithm Derivation

We now prove Proposition 2.2.1 by deriving Algorithm 1 in a constructive fashion. We begin

with an identity for Σ derived from the Sherman–Woodbury–Morrison formula [41].

Σ = (ΦTΦ +D−1)−1 = D −DΦT(ΦDΦT + In)−1ΦD. (2.7)

Using (2.7), we first obtain a more amenable expression for µ as

µ = DΦT(ΦDΦT + In)−1α. (2.8)

To see this, recall from (2.6) that µ = ΣΦTα. Using (2.7), ΣΦT = DΦT − DΦT(ΦDΦT +

In)−1ΦDΦT = DΦT −DΦT(ΦDΦT + In)−1(ΦDΦT + In − In) = DΦT(ΦDΦT + In)−1.

We now provide a data augmentation scheme to sample from N(0,Σ). Clearly, if η ∼ N(0,Σ),

then θ = µ + η gives us a sample from N(µ,Σ). We first record a matrix identity below that can

be easily verified:

P S

ST R

 =

 In 0

STP−1 Ip


P 0

0 R− STP−1S


In P−1S

0 Ip

 , (2.9)
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where P ∈ <n×n and R ∈ <p×p are invertible and S ∈ <n×p. Letting

Ω =

P S

ST R

 , L =

 In 0

STP−1 Ip

 , Γ =

P 0

0 R− STP−1S

 ,

Ω, L,Γ are (n + p) × (n + p) matrices and (2.9) can be conveniently expressed as Ω = LΓLT.

Further, L is invertible, with L−1 =

 In 0

−STP−1 Ip

 easily derived since L is lower triangular.

Therefore, Γ = L−1Ω(L−1)T.

Now, set P = (ΦDΦT + In), S = ΦD and R = D. Let u ∼ N(0, D), δ ∼ N(0, In) and

v = Φu + δ as in steps (i) - (ii) of Algorithm 1 and set ζ = (vT, uT)T ∈ <n+p. By construction,

cov(v, u) = ΦD = S and var(v) = (ΦDΦT + In) = P , which implies the covariance matrix of ζ

is Ω. Moreover, since u and δ are independent, ζ has a joint Gaussian distribution. Since both u

and v are zero mean, we conclude that ζ ∼ N(0,Ω).

Next, using the identity Γ = L−1Ω(L−1)T, we have ζ∗ = L−1ζ ∼ N(0,Γ). The crucial

observation is that with the present choices of P, S and R, the lower p × p diagonal block of Γ,

R − STP−1S = Σ, using the identity (2.7). Therefore, if we collect the last p entries of ζ∗ in a

vector η, then η ∼ N(0,Σ). Exploiting the structure of L−1, we have η = u − STP−1v. Note

further from (2.8) that µ = STP−1α. Finally,

θ = µ+ η = STP−1α + u− STP−1v = u+ STP−1(α− v).

The proof is completed by noting that P−1(α− v) is identical to w in step (iii) of Algorithm 1 and

ST = DΦT.

2.3 Application to Bayesian shrinkage priors

Returning to our original motivation, we illustrate the scalability of the proposed algorithm

through an application to linear regression with a horseshoe prior [1] on the regression coefficients

β in (5.15). The horseshoe prior is obtained by placing independent half-Cauchy priors on the λjs
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and τ in the hierarchical specification (2.2) - (2.4), with the half-Cauchy density given by (1 +

t2)−11(0,∞)(t). To complete the prior specification, we consider an improper prior π(σ2) ∝ σ−2 on

σ. Posterior computation proceeds in a straightforward manner via a Gibbs sampler which cycles

through sampling from (i) β | y, λ, τ, σ, (ii) λ | β, τ, σ, (iii) τ | β, λ, σ and σ | y, β, λ, σ, where

recall that λ = (λ1, . . . , λp)
T. We use a slice sampling algorithm from the online supplement to

[39] to update the λjs and τ , while σ2 has an inverse-gamma conditional posterior. The conditional

posterior of β is Gaussian as given in (2.5) and is the main computational bottleneck when p is

large. As noted in the beginning of Section 2.2, letting Φ = X/σ, D = σ2Λ∗ and α = y/σ,

we are in the setting of (2.6) and the algorithms in Section 2.2 can be applied to sample from the

conditional posterior of β.

We borrow a simulation setting from §3.3.1 of [42] to generate the data. Given n and p, the

p columns of the design matrix X were generated independently from a standard n dimensional

Gaussian distribution. All but the first 5 entries of β were set to zero, while the non-zero entries

were sampled independently as (−1)r(a + |z|), with r ∼ Bernoulli(0.4), z ∼ N(0, 1) and a =

5 log n/
√
n. Finally, y was generated from a N(Xβ, σ2In) distribution with σ = 2. We fixed

n = 100 and varied p from 500 to 5000 with a step size of 500. We additionally included the case

where (n, p) = (100, 200). For each value of p, 10 datasets were generated as above.

The Gibbs sampler mentioned in the previous paragraph was run for 6000 iterations where

we alternatively used the standard Algorithm 1 and the proposed Algorithm 2 to sample from

the conditional posterior of β in step (i). Steps (ii) - (iv) of the Gibbs sampler were identically

implemented for both methods. All computations were implemented in MATLAB on a INTEL(E5-

2690) 2.9 GHz machine with 64 GB DDR3 memory. Figure 2.1 plots the time in seconds averaged

over the 10 datasets to run 6000 iterations of the Gibbs sampler for the two methods in a logarithmic

scale against p. The actual times in seconds for selected values of p are presented in Table 2.1.

From Fig. 2.1 and Table 2.1, it is evident that both algorithms have similar computation time when

p � n, while the proposed algorithm produces massive gains for larger values of p. Table 2.1 also

shows that the absolute run time for 6000 iterations of the Gibbs sampler in our case takes only

16



p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
g(

T
im

e)

0

2

4

6

8

10
Algorithm 2
Algorithm 1

Figure 2.1: Linear regression with horseshoe prior [1] on the regression coefficients. Logarithm
of time (in seconds) to complete 6000 iterations of a Gibbs sampler is reported. Algorithm 1 and
proposed Algorithm 2 were applied to sample from the conditional posterior of β in (2.5). Sample
size n was fixed at 100 and the dimension p was varied from 500 to 5000, with 500 step size. 
Additionally the case p = 200 was included. Reprinted with permission from [65].

40 seconds. We have tried p as large as 20, 000 in our case which takes less than 5 minutes to run

6000 iterations.

Table 2.1: Same setting as in Fig. 2.1. Absolute time (in seconds) to run 6000 iterations of the 
Gibbs sampler reported for the two algorithms for chosen values of p.  Reprinted with permission 
from [65].

p Time (in seconds)
Algorithm 1 Algorithm 2

200 5.50 6.05
500 8.79 31.03

1000 12.83 160.92
2000 20.04 944.78
3000 27.60 2616.80
4000 35.76 5775.70
5000 43.99 11314.28

2.4 Frequentist operating characteristics in high dimensions

The proposed algorithm provides an opportunity to compare the frequentist operating charac-

teristics of shrinkage priors in high-dimensional regression problems, hitherto unexplored poten-
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Figure 2.2: Boxplots of `1, `2 and prediction error across 100 simulation replicates. HSme and 
HSm respectively denote posterior point wise median and mean for the horeshoe prior. True β0 
is 5-sparse with non-zero entries from setting (a). Top row: Σ = Ip (independent). Bottom row: Σjj 

= 1, Σjj′ = 0.5, j 6= j′ (compound symmetry).  Reprinted with permission from [65].
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tially due to the computational bottleneck. We compare various aspects of the horseshoe prior [1]

to a host of frequentist procedures and obtain highly promising results. While space constraints

prevent us from a more detailed study, we expect similar results for the Dirichlet-Laplace [23],

normal-gamma [22] and generalized double-Pareto [33] priors, which we hope to report elsewhere.

We first report comparisons with SCAD [6] and MCP [7] penalties in terms of estimation

and prediction accuracy. We considered model (5.15) with n = 200, p = 5000 and σ = 1.5.

Letting xi denote the ith row of X , the xis were independently generated from Np(0,Σ), with

(i) Σ = Ip (independent) and (ii) Σjj = 1,Σjj′ = 0.5, j 6= j′ = 1, . . . , p (compound symme-

try). The true β0 had 5 non-zero entries in all cases, with the non-zero entries having magnitude

(a) {1.5, 1.75, 2, 2.25, 2.5} and (b) {0.75, 1, 1.25, 1.5, 1.75}, multiplied by a random sign. For

each of the four cases, we considered 100 simulation replicates. The frequentist penalization ap-

proaches were implemented using the R package ncvreg via 10-fold cross-validation. For the

horseshoe prior, we considered both the posterior mean and the point wise posterior median as a
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Figure 2.3: Same setting as in Fig 2.2. True β0 is 5-sparse with non-zero entries from setting (b)  
Reprinted with permission from [65].
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point estimate. Figures 1 and 2 report boxplots for `1 (||β̂ − β0||1), `2 (||β̂ − β0||2) and predic-

tion (||Xβ̂ − Xβ0||2) errors across the 100 replicates for the two signal strengths. The horseshoe

prior can be seen to be highly competitive across all simulation settings, in particular when the

signal strength is weaker. An interesting observation is the somewhat superior performance of the

point wise median compared to the mean even under an `2 loss; a similar fact has been observed

about point mass mixture priors [15] in high dimensions. We repeated the entire simulation with

p = 2500 and obtained similar conclusions. Overall, out of the 24 = 2 (choices of p) × 2 (covari-

ate designs) × 2 (signal strength) × 3 (error criterion) settings, the horseshoe prior had the best

average performance over the simulation replicates in 22 cases.

While there is now a huge literature on penalized point estimation, the question of uncertainty

characterization in p > n settings has started receiving attention only very recently [3]. Although

Bayesian procedures provide an automatic characterization of uncertainty through the posterior

distribution on parameters, the resulting credible intervals are not guaranteed to possess the cor-

rect frequentist coverage in nonparametric/high-dimensional problems [43]. This compelled us to
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empirically investigate the frequentist coverage of shrinkage priors in p > n settings; it is trivial

to obtain element-wise credible intervals for the βjs from the posterior samples. We compared the

horseshoe prior with the recently proposed approach of [3], which can be used to obtain asymptot-

ically optimal element wise confidence intervals for the βjs. We considered a similar simulation

scenario as before. We let p ∈ {500, 1000}, and considered a Toeplitz structure (Σjj′ = 0.9|j−j
′|)

for the covariate design [3] in addition to the independent and compound symmetry cases stated

already. The first two rows of Table 2.2 report the average coverage probabilities (over 100 simu-

lation replicates) and lengths of confidence intervals for the horseshoe and [3], averaged over the 5

signal variables. The last two rows report the same averaged over the (p− 5) noise variables. The

standard deviations corresponding to the averages are provided in the subscripts.

It can be readily seen from Table 2.2 that the horseshoe had a superior performance. Sev-

eral observations are worth mentioning. First, an attractive adaptive property of shrinkage priors

emerge, where the length of the intervals automatically adapt between the signal and noise vari-

ables, maintaining the nominal coverage. The procedure of [3] on the other hand seems to obtain

approximately equal sized intervals for the signals and noise variables. We should mention here

that the default choice of the LASSO tuning parameter λ �
√

log p/n suggested in [3] seemed

to provide substantially poorer coverage for the signal variables at the cost of improved coverage

for the noise. For each setting, we separately tuned the parameter (assuming the knowledge of the

truth) to arrive at the coverage probabilities reported. The horseshoe (and other shrinkage priors)

on the other hand are free of tuning parameters. The same procedure that was used for estimation

automatically provides valid frequentist uncertainty characterization.

2.5 Discussion

The numerical results in the previous section warrant additional numerical and theoretical in-

vestigations into properties of shrinkage priors in high dimensions. The proposed algorithm can be

used for essentially all the shrinkage priors used in the literature and should prove to be useful in an

exhaustive comparison of existing priors. Further, as stated previously, the scope of the proposed

algorithm extends well beyond the linear regression setting. For example, extensions to logistic and
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Table 2.2: Frequentist coverage probabilities and lengths of 95% intervals for the LASSO and the 
horseshoe. The confidence intervals for the LASSO were constructed using the method in [3]. The 
intervals for the horseshoe are the usual symmetric posterior credible intervals. For both methods, 
the average coverage probabilities and lengths of the intervals are reported after averaging across 
all signal variables (row 1 and 2) and noise variables (row 3 and 4). Numbers in the subscript 
denote the standard errors corresponding to the average coverage probabilities.  Reprinted with 
permission from [65].

Dimension 500 1000

Design Independent Comp Symm Toeplitz Independent Comp Symm Toeplitz

LASSO HS LASSO HS LASSO HS LASSO HS LASSO HS LASSO HS

Signal Coverage 0.750.12 0.930.01 0.730.04 0.950.00 0.800.07 0.940.04 0.780.12 0.940.02 0.770.02 0.940.01 0.760.03 0.950.01

Signal Length 0.46 0.42 0.71 0.85 0.79 0.86 0.41 0.39 0.76 0.82 0.96 1.05

Noise Coverage 0.990.008 10.000 0.980.01 10.000 0.980.01 10.000 0.990.01 0.990.000 0.990.01 10.00 0.990.01 10.00

Noise Length 0.43 0.02 0.69 0.04 0.78 0.05 0.42 0.006 0.76 0.007 0.98 0.003

probit regression are immediate using standard data augmentation tricks [44, 45]. The same is true

for other generalized linear models and survival models. Multivariate regression problems where

one has a matrix of regression coefficients can be handled by updating the vectorized version of the

coefficient matrix in a block; note this is an example where even if the number of variables is not

bigger than the sample size, the number of regression coefficients may be large if the dimension of

the response if moderate. Factor models offer another attractive area of application of the proposed

algorithm. Shrinkage priors have been used as a prior of factor loadings in [36]. While [36] update

the p > n rows of the factor loadings independently, exploiting the assumption of independence

in the idiyosyncratic components, their algorithm does not extend to approximate factor models,

where the idiyosyncratic errors are dependent. The proposed algorithm can be adapted to such

situations by updating the vectorized loadings in a block. Finally, we envision applications in high

dimensional additive models where each of a large number of functions is expanded in a basis, and

the large collection of basis functions are updated in a block.
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3. BAYESIAN SPARSE MULTIPLE REGRESSION FOR SIMULTANEOUS RANK

REDUCTION AND VARIABLE SELECTION

3.1 Introduction

Studying the relationship between multiple response variables and a set of predictors has broad

applications ranging from bioinformatics, econometrics, time series analysis to growth curve mod-

els. The least squares solution in a linear multiple response regression problem is equivalent to

performing separate least squares on each of the responses [46] and ignores any potential depen-

dence among the responses. In the context of multiple response regression, a popular technique

to achieve parsimony and interpretability is to consider a reduced-rank decomposition of the coef-

ficient matrix, commonly known as reduced rank regression [47, 48, 49]. Although many results

exist about the asymptotic properties of reduced rank estimators [50], formal statistical determi-

nation of the rank remains difficult even with fixed number of covariates and large sample size

due mainly to the discrete nature of the parameter. The problem becomes substantially harder

when a large number of covariates are present, and has motivated a series of recent work on pe-

nalized estimation of low rank matrices, where either the singular values of the coefficient matrix

[51, 52], or the rank itself [53] is penalized. Theoretical evaluations of these estimators focusing

on adaptation to the oracle convergence rate when the true coefficient matrix is of low rank has

been conducted [53]. It has also been noted [54] that the convergence rate can be improved when

the true coefficient matrix has zero rows and variable selection is incorporated within the estima-

tion procedure. Methods that simultaneously handle rank reduction and variable selection include

[51, 54, 55]. To best of our knowledge, uncertainty characterization for the parameter estimates

from these procedures is currently not available.

The first fully systematic Bayesian treatment of reduced rank regression was carried out in [56],

where conditioned on the rank, independent Gaussian priors were placed on the elements of the

coefficient matrix. While formal Bayesian model selection can be performed to determine the rank
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[56], calculation of marginal likelihoods for various candidate ranks gets computationally burden-

some with increasing dimensions. The problem of choosing the rank is not unique to reduced rank

regression and is ubiquitous in situations involving low rank decompositions, with factor models

being a prominent example. [11] placed a prior on the number of factors and proposed a computa-

tionally intensive reversible jump algorithm [57] for model fitting. As an alternative, [36] proposed

to increasingly shrink the factors starting with a conservative upper bound and adaptively collaps-

ing redundant columns inside their MCMC algorithm. Recent advancements in Bayesian matrix

factorization have taken a similar approach; see for example, [58, 59, 60, 61].

From a Bayesian point of view, a natural way to select variables in a single-response regression

framework is to use point mass mixture priors [10, 14] which allow a subset of the regression

coefficients to be exactly zero. These priors were also adapted to multiple response regression by

several authors [12, 62, 63, 64]. Posterior inference with such priors involves a stochastic search

over an exponentially growing model space and is computationally expensive even in moderate

dimensions. To alleviate the computational burden, a number of continuous shrinkage priors have

been proposed in the literature which mimic the operating characteristics of the discrete mixture

priors. Such priors can be expressed as Gaussian scale mixtures [20], leading to block updates

of model parameters; see [65] for a review of such priors and efficient implementations in high-

dimensional settings. To perform variable selection with these continuous priors, several methods

for post-processing the posterior distribution have been proposed [66, 67, 68].

In this article we simultaneously address the problems of dimension reduction and variable

selection in high-dimensional reduced rank models from a Bayesian perspective. We develop a

novel shrinkage prior on the coefficient matrix which encourages shrinkage towards low-rank and

row-sparse matrices. The shrinkage prior is induced from appropriate shrinkage priors on the

components of a full-rank decomposition of the coefficient matrix, and hence bypasses the need to

specify a prior on the rank. We provide theoretical understanding into the operating characteristics

of the proposed prior in terms of a novel prior concentration result around rank-reduced and low-

sparse matrices. The prior concentration result is utilized to prove minimax concentration rates of
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the posterior under the fractional posterior framework of [28] in a ultrahigh-dimensional setting

where the number of predictor variables can grow sub-exponentially in the sample size.

The continuous nature of the prior enables efficient block updates of parameters inside a Gibbs

sampler. In particular, we adapt an algorithm for sampling structured multivariate Gaussians from

[65] to efficiently sample a high-dimensional matrix in a block leading to a low per-iteration

MCMC computational cost. We propose two independent post-processing schemes to achieve row

sparsity and rank reduction with encouraging performance. A key feature of our post-processing

schemes is to exploit the posterior summaries to offer careful default choices of tuning parameters,

resulting in a procedure which is completely free of tuning parameters. The resulting row-sparse

and rank-reduced coefficient estimate is called a Bayesian sparse multi-task learner (BSML). We

illustrate the superiority of BSML over its competitors through a detailed simulation study and

the methodology is applied to a Yeast cell cycle data set. Code for implementation is available at

www.stat.tamu.edu/~antik.

3.2 Bayesian sparse multitask learner

3.2.1 Model and Prior Specification

Suppose, for each observational unit i = 1, . . . , n, we have a multivariate response yi ∈ <q

on q variables of interest, along with information on p possible predictors xi ∈ <p, a subset of

which are assumed to be important in predicting the q responses. Let X ∈ <n×p denote the design

matrix whose ith row is xT
i , and Y ∈ <n×q the matrix of responses with the ith row as yT

i . The

multivariate linear regression model is,

Y = XC + E, E = (eT1 , . . . , e
T

n)T, (3.1)

where we follow standard practice to center the response and exclude the intercept term. The

rows of the error matrix are independent, with ei ∼ N(0,Σ). Our main motivation is the high-

dimensional case where p ≥ max{n, q}, although the method trivially applies to p < n settings

as well. We shall also assume the dimension of the response q to be modest relative to the sample
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size.

The basic assumption in reduced rank regression is that rank(C) = r ≤ min(p, q), whence

C admits a decomposition C = B∗A
T
∗ with B∗ ∈ <p×r and A∗ ∈ <q×r. While it is possible to

treat r as a parameter and assign it a prior distribution inside a hierarchical formulation, posterior

inference on r requires calculation of intractable marginal likelihoods or resorting to complicated

reversible jump Markov chain Monte Carlo algorithms. To avoid specifying a prior on r, we work

within a parameter-expanded framework [69] to consider a potentially full-rank decomposition

C = BAT with B ∈ <p×q and A ∈ <q×q, and assign shrinkage priors to A and B to shrink out the

redundant columns when C is indeed low rank. This formulation embeds all reduced-rank models

inside the full model; if a conservative upper bound q∗ ≤ q on the rank is known, the method can

be modified accordingly. The role of the priors on B and A is important to encourage appropriate

shrinkage towards reduced-rank models, which is discussed below.

We consider independent standard normal priors on the entries of A. As an alternative, a

uniform prior on the Stiefel manifold [70] of orthogonal matrices can be used. However, our

numerical results suggested significant gains in computation time using the Gaussian prior over

the uniform prior with no discernible difference in statistical performance. The Gaussian prior

allows an efficient block update of vec(A), whereas the algorithm of [70] involves conditional

Gibbs update of each column of A. Our theoretical results also suggest that the shrinkage provided

by the Gaussian prior is optimal when q is modest relative to n, the regime we operate in. We

shall henceforth denote ΠA to denote the prior on A, i.e., ahk ∼ N(0, 1) independently for h, k =

1, . . . , q.

Recalling that the matrix B has dimension p × q, with p potentially larger than n, stronger

shrinkage is warranted on the columns of B. We use independent horseshoe priors [1] on the

columns of B, which can be represented hierarchically as

bjh | λjh, τh ∼ N(0, λ2
jhτ

2
h), λjh ∼ Ca+(0, 1), τh ∼ Ca+(0, 1), (3.2)
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independently for j = 1, . . . , p and h = 1, . . . , q, where Ca+(0, 1) denotes the truncated standard

half-Cauchy distribution with density proportional to (1+ t2)−11(0,∞)(t). We shall denote the prior

on the matrix B induced by the hierarchy in (3.2) by ΠB.

We shall primarily restrict attention to settings where Σ is diagonal, Σ = diag(σ2
1, . . . , σ

2
q ),

noting that extensions to non-diagonal Σ can be incorporated in a straightforward fashion. For

example, for moderate q, a conjugate inverse-Wishart prior can be used as a default. Furthermore,

if Σ has a factor model or Gaussian Markov random field structure, they can also be incorporated

using standard techniques [36, 24]. The cost-per-iteration of the Gibbs sampler retains the same

complexity as in the diagonal Σ case; see §3.3 for more details. In the diagonal case, we assign

independent improper priors π(σ2
h) ∝ σ−2

h , h = 1, . . . , q on the diagonal elements, and call the

resulting prior ΠΣ.

The model augmented with the above priors now takes the shape

Y = XBAT + E, ei ∼ N(0,Σ), (3.3)

B ∼ ΠB, A ∼ ΠA, Σ ∼ ΠΣ. (3.4)

We shall refer to the induced prior on C = BAT by ΠC , and let

p(Y | C,Σ;X) ∝ |Σ|−n/2 e−α tr{(Y−XC)Σ−1(Y−XC)T}/2

denote the likelihood for (C,Σ).

3.3 Posterior Computation

Exploiting the conditional conjugacy of the proposed prior, we develop a straightforward and

efficient Gibbs sampler to update the model parameters in (3.3) from their full conditional dis-

tributions. We use vectorization to update parameters in blocks. Specifically, in what follows,

we will make multiple usage of the following identity. For matrices Φ1,Φ2,Φ3 with appropriate
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dimensions, and vec(A) denoting column-wise vectorization, we have,

vec(Φ1Φ2Φ3) = (ΦT

3 ⊗ Φ1)vec(Φ2) = (ΦT

3 ΦT

2 ⊗ Ik)vec(Φ1), (3.5)

where the matrix Φ1 has k rows and ⊗ denotes the Kronecker product.

Letting θ | − denote the full conditional distribution of a parameter θ given other parameters

and the data, the Gibbs sampler cycles through the following steps, sampling parameters from their

full conditional distributions:

Step 1. To sample B | −, use (3.5) to vectorize Y = XBAT + E to obtain,

y = (X ⊗ A)β + e, (3.6)

where β = vec(BT) ∈ <pq×1, y = vec(Y T) ∈ <nq×1, and e = vec(ET) ∼ Nnq(0, Σ̃) with Σ̃ =

diag(Σ, . . . ,Σ). Multiplying both sides of (3.6) by Σ̃−1/2 yields ỹ = X̃β + ẽ where ỹ = Σ̃−1/2y,

X̃ = Σ̃−1/2(X⊗A) and ẽ = Σ̃−1/2e ∼ Nnq(0, Inq). Thus, the full conditional distribution β | − ∼

Npq(Ω
−1
B X̃Tỹ,Ω−1

B ), where ΩB = (X̃TX̃+Λ−1) with Λ = diag(λ2
11τ

2
1 , . . . , λ

2
1qτ

2
q , . . . , λ

2
p1τ

2
1 , . . . , λ

2
pqτ

2
q ).

Naively sampling from the full conditional of β has complexityO(p3q3) which becomes highly

expensive for moderate values of p and q. [65] recently developed an algorithm to sample from a

class of structured multivariate normal distributions whose complexity scales linearly in the ambi-

ent dimension. We adapt the algorithm in [65] as follows:

(i) Sample u ∼ N(0,Λ) and δ ∼ N(0, Inq) independently.

(ii) Set v = X̃u+ δ.

(iii) Solve (X̃ΛX̃T + Inq)w = (ỹ − v) to obtain w.

(iv) Set β = u+ ΛX̃Tw.

It follows from [65] that β obtained from steps (i) - (iv) above produce a sample from the

desired full conditional distribution. One only requires matrix multiplications and linear system

solvers to implement the above algorithm, and no matrix decomposition is required. It follows

from standard results [40] that the above steps have a combined complexity of O(q3 max{n2, p}),
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a substantial improvement over O(p3q3) when p� max{n, q}.

Step 2. To sample A | −, once again vectorize Y = XBAT + E, but this time use the equality of

the first and the third terms in (3.5) to obtain,

y = (XB ⊗ Iq)a+ e, (3.7)

where e and y are the same as in step 1, and a = vec(A) ∈ <q2×1. The full conditional posterior

distribution a | − ∼ N(Ω−1
A X∗ỹ,Ω

−1
A ), where ΩA = (XT

∗X∗ + Iq2), X∗ = Σ̃−1/2(XB ⊗ Iq2)

and ỹ = Σ̃−1/2y. To sample from the full conditional of a, we use the algorithm from §3.1.2 of

[24]. Compute the Cholesky decomposition (XT
∗X∗+ Iq2) = LLT. Solve the system of equations:

Lv = XT
∗ ỹ, LTm = v, and LTw = z, where z ∼ N(0, Iq2). Finally obtain a sample as a = m+w.

Step 3. To sample σ2
h | −, observe that σ2

h | − ∼ inverse-Gamma(n/2, Sh/2) independently

across h, where Sh = {Yh − (XBAT)h}T{Yh − (XBAT)h}, with Φh denoting the hth column of

a matrix Φ. In the case of an unknown Σ and an inverse-Wishart(q, Iq) prior on Σ, the posterior

update of Σ can be easily modified due to conjugacy; we sample Σ | − from inverse-Wishart{n+

q, (Y −XC)T(Y −XC) + Iq}.

Step 4. The global and local scale parameters λjh’s and τh’s have independent conditional pos-

teriors across j and h, which can be sampled via a slice sampling scheme provided in the online

supplement to [39]. We illustrate the sampling technique for a generic local shrinkage parameter

λjh; a similar scheme works for τh. Setting ηjh = λ−2
jh , the slice sampler proceeds by sampling ujh |

ηjh ∼ Unif(0, 1/(1 + ηjh)) and then sampling ηjh | ujh ∼ Exp(2τ 2
h/b

2
jh)I{ηjh < (1 − ujh)/ujh},

a truncated exponential distribution.

The Gibbs sampler above when modified to accommodate non-diagonal Σ as mentioned in step

3 retains the overall complexity. Steps 1-2 do not assume any structure for Σ. The matrix Σ−1/2

can be computed in O(q3) steps using standard algorithms, which does not increase the overall

complexity of steps 1 and 2 since since q < n � p by assumption. Modifications to situations

where Σ has a graphical/factor model structure are also straightforward.
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Point estimates of C, such as the posterior mean, or element-wise posterior median, are readily

obtained from the Gibbs sampler along with a natural uncertainty quantification, which can be

used for point and interval predictions. However, the continuous nature of our prior implies that

such point estimates will be non-sparse and full rank with probability one, and hence not directly

amenable for variable selection and rank estimation. Motivated by our concentration result in

Theorem 3.5.7 that the posterior meanXC increasingly concentrates aroundXC0, we propose two

simple post-processing schemes for variable selection and rank estimation below. The procedures

are completely automated and do not involve any input of tuning parameters from the user’s end.

3.3.1 Post processing for variable selection

We first focus on variable selection. We define a row-sparse estimate ĈR for C as the solution

to the optimization problem

ĈR = arg min
Γ∈<p×q

{
‖XC −XΓ‖2

F +

p∑
j=1

µj‖Γ(j)‖2

}
, (3.8)

where Φ(j) represents the jth row of a matrix Φ, and the µjs are predictor specific regularization

parameters. The objective function aims to find a row-sparse solution close to the posterior mean

in terms of the prediction loss, with the sparsity driven by the group lasso penalty [71]. For a

derivation of the objective function in (3.8) from a utility function perspective as in [68], refer to

section 3.7 and 3.8.

To solve (3.8), we set the sub-gradient of (3.8) with respect to Γ(j) to zero and replace ‖Γ(j)‖

by a data dependent quantity to obtain the soft thresholding estimate,

Ĉ
(j)
R =

1

XT
j Xj

(
1− µj

2‖XT
j Rj‖

)
+

XT

j Rj, (3.9)

where for x ∈ <, x+ = max(x, 0), and Rj is the residual matrix obtained after regressing XC on

X leaving out the jth predictor, Rj = XC −
∑

k 6=j XkĈ
(k)
R . For practical implementation, we use

C as our initial estimate and make a single pass through each variable to update the initial estimate
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according to (3.9). With this initial choice, Rj = XjC
(j)

and ‖XT
j Rj‖ = ‖Xj‖2‖Cj‖.

While the p tuning parameters µj can be chosen by cross-validation, the computational cost

explodes with p to search over a grid in p dimensions. Exploiting the presence of an optimal

initial estimate in the form of C, we recommend default choices for the hyperparameters as µ̂j =

1/‖Cj‖−2 which in spirit is similar to the adaptive lasso [72]. When predictor j is not important,

the minimax `2-risk for estimating C(j)
0 is (log q)/n, so that ‖C(j)‖ � (log q)/n. Since ‖Xj‖2 � n

by assumption, µ̂j/‖XT
j Rj‖ � n1/2/(log q)3/2 � 1, implying a strong penalty for all irrelevant

predictors.

Following [68], posterior uncertainty in variable selection can be gauged if necessary by re-

placing C with the individual posterior samples for C in (3.8).

3.3.2 Post processing for rank estimation

To estimate the rank, we threshold the singular values of XĈR, with ĈR obtained from (3.9).

In situations where row sparsity is not warranted, C can be used instead of ĈR. For s1, . . . , sq

the singular values of XĈR, and a threshold ω > 0, define the thresholded singular values as

νh = sh I(sh > ω) for h = 1, . . . , q. We estimate the rank as the number of nonzero thresholded

singular values, that is, r̂ =
∑q

h=1 I(νh > 0) =
∑q

h=1 I(sh > ω). We use the largest singular

value of Y −XĈR as the default choice of the threshold parameter ω, a natural candidate for the

maximum noise level in the model.

3.4 Simulation Results

We performed a thorough simulation study to assess the performance of the proposed method

across different settings. For all our simulation settings the sample size n was fixed at 100. We

considered 3 different (p, q) combinations, (p, q) = (500, 10), (200, 30), (1000, 12). The data were

generated from the model Y = XC0 + E. Each row of the matrix E was generated from a

multivariate normal distribution with diagonal covariance matrix having diagonal entries uniformly

chosen between 0.5 and 1.75. The columns of the design matrix X were independently generated

from N(0,ΣX). We considered two cases, ΣX = Ip, and ΣX = (σXij ), σXjj = 1, σXij = 0.5 for
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i 6= j. The true coefficient matrix C0 = B∗A
T
∗ , with B∗ ∈ <p×r0 and A∗ ∈ <r×r0 , with the

true rank r0 ∈ {3, 5, 7}. The entries of A∗ were independently generated from a standard normal

distribution. We generated the entries in the first s = 10 rows of B∗ independently from N(0, 1),

and the remaining (p− s) rows were set equal to zero.

As a competitor, we considered the sparse partial least squares (SPLS) approach due to [73].

Partial least squares minimizes the least square criterion between the response Y and design matrix

X in a projected lower dimensional space where the projection direction is chosen to preserve

the correlation between Y and X as well as the variation in X . [73] suggested adding lasso

type penalties while optimizing for the projection vectors for sparse high dimensional problems.

Since SPLS returns a coefficient matrix which is both row sparse and rank reduced, we create

a rank reduced matrix ĈRR from ĈR for a fair comparison. Recalling that ĈR has zero rows,

let ŜR denote the sub-matrix corresponding to the non-zero rows of ĈR. Truncate the singular

value decomposition of ŜR to the first r̂ terms as obtained in §3.3.2. Insert back the zero rows

corresponding to ĈR in the resulting matrix to obtain ĈRR. Clearly, ĈRR ∈ <p×q so created is

row sparse and has rank at most r̂; we shall refer to ĈRR as the Bayesian sparse multi-task learner

(BSML). Matlab implementation of the proposed method can be found online at www.stat.

tamu.edu/~antik.

For an estimator Ĉ of C, we consider the mean square error, MSE = ‖Ĉ − C0‖2
F/(pq), and

the mean square prediction error, MSPE = ‖XĈ−XC0‖2
F/(nq) to measure its performance. The

squared estimation and prediction errors of SPLS and ĈRR for different settings are reported in

table A.1 along with the estimates of rank. In our simulations we used the default 10 fold cross

validation in the cv.spls function from the R package spls. The SPLS estimator of the rank

is the one for which the minimum cross validation error is achieved. We observed highly accurate

estimates of the rank for the proposed method, whereas SPLS overestimated the rank in all the

settings considered. The proposed method also achieved superior performance in terms of the two

squared errors, improving upon SPLS by as much as 5 times in some cases. Additionally, we

observed that the performance of SPLS deteriorated relative to BSML with increasing number of
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covariates.

In terms of variable selection, both methods had specificity and sensitivity both close to one

in all the simulation settings listed in table A.1. Since SPLS consistently overestimated the rank,

we further investigated the effect of the rank on variable selection. We focused on the simulation

case (p, q, r0) = (1000, 12, 3), and fit both methods with different choices of the postulated rank

between 3 and 9. For the proposed method, we set q∗ in §3.2.1 to be the postulated rank, that

is, considered B ∈ <p×q∗ and A ∈ <q×q∗ for q∗ ∈ {3, . . . , 9}. For SPLS, we simply input q∗

as the number of hidden components inside the function spls. Figure 3.1 plots the sensitivity

and specificity of BSML and SPLS as a function of the postulated rank. While the specificity is

robust for either method, the sensitivity of SPLS turned out to be highly dependent on the rank.

The left panel of figure 3.1 reveals that at the true rank, SPLS only identifies 40% of the significant

variables, and only achieves a similar sensitivity as BSML when the postulated rank is substantially

overfitted. BSML, on the other hand, exhibits a decoupling effect wherein the overfitting of the

rank does not impact the variable selection performance.

We conclude this section with a simulation experiment carried out in a correlated response

setting. Keeping the true rank r0 fixed at 3, the data were generated similarly as before except that

the individual rows ei of the matrix E was generated from N(0,Σ), with Σii = 1,Σij = 0.5, 1 ≤

i 6= j ≤ q. To accommodate the non-diagonal error covariance, we placed a inverse-Wishart(q, Iq)

prior on Σ. An associate editor pointed out the recent article [4] which used spike-slab priors on the

coefficients in a multiple response regression setting. They implemented a variational algorithm to

posterior inclusion probabilities of each covariate, which is available from the R package locus.

To select a model using the posterior inclusion probabilities, we used the median probability model

[74]; predictors with a posterior inclusion probability less than 0.5 were deemed irrelevant. We

implemented their procedure with the prior average number of predictors to be included in the

model conservatively set to 25, a fairly well-chosen value in this context. We observed a fair degree

of sensitivity to this parameter, which when set to the true value 10, resulted in comparatively poor

performance. Table 3.2 reports sensitivity and specificity of this procedure and ours, averaged
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over 50 replicates. While the two methods performed almost identically in the relatively low

dimensional setting (p, q) = (200, 30), BSML consistently outperformed [4] when the dimension

was higher.

Table 3.1: Estimation and predictive performance of the proposed method (BSML) versus SPLS
across different simulation settings. We report the average estimated rank (r̂), Mean Square Error,
MSE (×10−4) and Mean Square Predictive Error, MSPE, across 50 replications. For each setting
the true number of signals were 10 and sample size was 100. For each combination of (p, q, r0)
the columns of the design matrix were generated from N(0,ΣX). Two different choices of ΣX was
considered. ΣX = Ip (independent) and ΣX = (σXij ),σXjj = 1,σXij = 0.5 for i 6= j (correlated). The
method achieving superior performance for each setting is highlighted in bold.

(p,q)
(200,30) (500,10) (1000,12)

Independent Correlated Independent Correlated Independent Correlated
Rank Measures BSML SPLS BSML SPLS BSML SPLS BSML SPLS BSML SPLS BSML SPLS

r̂ 3.0 7.9 3.0 9.4 3.0 9.7 3.0 8.8 3.2 9.4 3.4 8.9

3 MSE 3 14 5 15 3 7 5 30 3 50 3 38

MSPE 0.07 0.25 0.06 0.17 0.22 0.15 0.34 0.21 0.35 4.19 0.30 1.51

r̂ 5 9.7 4.9 12.2 4.9 9.9 4.8 9.8 5.1 9.9 5.1 9.9

5 MSE 5 69 9 61 3 10 6 24 2 108 4 129

MSPE 0.11 3.8 0.09 4.6 0.17 0.41 0.20 0.38 0.32 9.54 0.32 4.63

r̂ 6.9 10.3 6.9 15.8 6.8 10 6.7 9.7 6.8 10.2 6.6 11.5

7 MSE 6 116 10 112 3 20 5 49 2 195 4 261

MSPE 0.12 10.81 0.11 9.01 0.16 0.72 0.16 0.92 0.32 16.70 0.31 7.44
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Table 3.2: Variable selection performance of the proposed method in a non-diagonal error structure
setting with independent and correlated predictors; ei ∼ Σ, σii = 1, σij = 0.5. Sensitivity and
specificity of BSML is compared with [4].

BSML [4]

(p,q) Measure Independent Correlated Independent Correlated

r0 = 3

(200,30) Sensitivity 1 1 0.96 0.87
Specificity 0.90 0.84 0.77 0.67

(500,10) Sensitivity 1 0.99 0.9 0.8
Specificity 0.99 0.99 0.80 0.64

(1000,12) Sensitivity 0.99 0.99 0.92 0.63
Specificity 0.99 0.99 0.80 0.64

3.5 Yeast Cell Cycle Data

Identifying transcription factors which are responsible for cell cycle regulation is an important

scientific problem [73]. The yeast cell cycle data from [75] contains information from three dif-

ferent experiments on mRNA levels of 800 genes on an α-factor based experiment. The response

variable is the amount of transcription (mRNA) which was measured every 7 minutes in a period of

119 minutes, a total of 18 measurements (Y ) covering two cell cycle periods. The ChIP-chip data

from [76] on chromatin immunoprecipitation contains the binding information of the 800 genes for

106 transcription factors (X). We analyze this data available publicly from the R package spls

which has the above information completed for 542 genes. The yeast cell cycle data was also ana-

lyzed in [55] via sparse reduced rank regression (SRRR). Scientifically 21 transcription factors of

the 106 were verified by [2] to be responsible for cell cycle regulation.

The proposed BSML procedure identified 33 transcription factors. Corresponding numbers for

SPLS and SRRR were 48 and 69 respectively. Of the 21 verified transcription factors, the proposed

method selected 14, whereas SPLS and SRRR selected 14 and 16 respectively. 10 additional tran-
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Figure 3.1: Average sensitivity and specificity across 50 replicates is plotted for different choices of
the postulated rank. Here (p, q, r0) = (1000, 12, 3). Values for BSML (SPLS) are in bold (dashed).
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scription factors that regulate cell cycle were identified by [76], out of which 3 transcription factors

were selected by our proposed method. Figure 3.2 plots the posterior mean, BSML estimate ĈRR,

and 95 % symmetric pointwise credible intervals for two common effects ACE2 and SW14 which

are identified by all the methods. Similar periodic pattern of the estimated effects are observed as

well for all the other two methods in contention, perhaps unsurprisingly due to the two cell cycles

during which the mRNA measurements were taken. Similar plots for the remaining 19 effects

identified by our method are placed inside the supplemental document.

The proposed automatic rank detection technique estimated a rank of 1 which is significantly

different from SRRR (4) and SPLS (8). The singular values of Y − XĈR showed a significant

drop in magnitude after the first four values which agrees with the findings in [55]. The 10-fold

cross validation error with a postulated rank of 4 for BSML was 0.009 and that of SPLS was 0.19.

We repeated the entire analysis with a non-diagonal Σ, which was assigned an inverse-Wishart

prior. No changes in the identification of transcription factors or rank estimation were detected.

3.5.1 Concentration results

In this section, we establish a minimax posterior concentration result under the prediction loss

when the number of covariates are allowed to grow sub-exponentially in n. To best of our knowl-
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Figure 3.2: Estimated effects of ACE2 and SWI4, two of 33 transcription factors with non-zero
effects on cell cycle regulation. Both have been scientifically verified by [2]. Dotted lines corre-
spond to 95% posterior symmetric credible intervals, bold lines represent the posterior mean and
the dashed lines plot values of the BSML estimate ĈRR.

edge, this is the first such result in Bayesian reduced rank regression models. We are also not

aware of a similar result in any model involving the horseshoe or another polynomial tailed shrink-

age prior in ultrahigh-dimensional settings. [27] applied the general theory of posterior consistency

[77] to linear models with growing number of covariates and established consistency for the horse-

shoe prior with a sample size dependent hyperparameter choice when p = o(n). Results [25, 26]

that quantify rates of convergence focus exclusively on the normal means problem, with their proofs

crucially exploiting an exact conjugate representation of the posterior mean.

A key ingredient of our theory is a novel non-asymptotic prior concentration bound for the

horseshoe prior around sparse vectors. The prior concentration or local Bayes complexity [77, 28]

is a key component in the general theory of posterior concentration. Let `0[s; p] = {θ0 ∈ <p :

#(1 ≤ j < p : θ0j 6= 0) ≤ s} denote the space of p-dimensional vectors with at most s non-zero

entries.

Lemma 3.5.1. Let ΠHS denote the horseshoe prior on <p given by the hierarchy θj | λj, τ ∼

N(0, λ2
jτ

2), λj ∼ Ca+(0, 1), τ ∼ Ca+(0, 1). Fix θ0 ∈ `0[s; p] and let S = {j : θ0j 6= 0}. Assume

s = o(p) and log p ≤ nγ for some γ ∈ (0, 1) and max | θ0j |≤ M for some M > 0 for j ∈ S.
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Define δ = {(s log p)/n}1/2. Then we have, for some positive constant K,

ΠHS

(
θ : ‖θ − θ0‖2 < δ

)
≥ e−Ks log p.

Proof. Using the conditional formulation of prior ΠHS defined in equation (3.2) we have,

ΠHS(‖β − β0‖2 < δ) =

∫
τ

pr(‖β − β0‖2 < δ | τ)f(τ)dτ

≥
∫
Iτ∗

pr(‖β − β0‖2 < δ | τ)f(τ)dτ,
(3.10)

where Iτ∗ = [τ∗/2, τ∗] with τ∗ = (s/p)3/2 {(log p)/n}1/2. Let S = {1 ≤ j ≤ p : θ0j 6= 0}. We first

provide a lower bound of the conditional probability pr(‖β−β0‖2 < δ | τ ∈ Iτ∗). For τ ∈ Iτ∗ , we

have,

pr(‖β − β0‖2 < δ | τ) ≥ pr (‖βS − β0S‖2 < δ/2 | τ) pr (‖βSc‖2 < δ/2 | τ)

≥
∏
j∈S

pr

(
|βj − β0j| <

δ

2
√
s
| τ
) ∏
j∈Sc

pr

(
|βj| <

δ

2
√
p
| τ
)
.

(3.11)

For a fixed τ ∈ Iτ∗ , we will provide lower bounds for each of the terms in the right hand side of

(5.7); pr{|βj − β0j| < δ/(2s1/2)} for any j ∈ S, and pr{|βj| < δ/(2p1/2)} for any j ∈ Sc.

We first consider pr{| βj |< δ/(2p1/2) | τ}with τ ∈ Iτ∗ . Since given τ and λ, βj ∼ N(0, λ2
jτ

2),

we use the Chernoff bound for a Gaussian random variable to obtain,

pr
{
|βj| > δ/(2p1/2) | λj, τ

}
≤ 2e−δ

2/(8pλ2jτ
2) ≤ 2e−δ

2/(8pλ2jτ
2
∗ ) = 2e−p

2/(8s2λ2j ),
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since nδ2 = s log p. Thus,

pr
{
|βj| < δ/(2p1/2) | τ

}
=

∫
λj

pr
{
|βj| < δ/(2p1/2) | λj, τ

}
f(λj) dλj

≥
∫
λj

{
1− 2 exp

(
− p2

8s2λ2
j

)}
f(λj) dλj

= 1− 4

π

∫
λj

exp

(
− p2

8s2λ2
j

)
(1 + λ2

j)
−1dλj = 1− 4

π
I,

where I =
∫
λj

exp
{
− p2/(8s2λ2

j)
}

(1 + λ2
j)
−1dλj . We then bound the integrand from above as

follows,

I =

∫
λj

exp

(
− p2

8s2λ2
j

)
(1 + λ2

j)
−1dλj ≤

∫
λj

exp

(
− p2

8s2λ2
j

)
λ−2
j dλj

=
1

2

∫ ∞
0

z−1/2 exp

(
−p

2z

8s2

)
dz,

=
Γ(1/2)

{2p2/(8s2)}1/2
=
s
√

2π

p
,

where we made the substitution z = 1/λ2 at the third step. Thus, for τ ∈ Iτ∗ , pr(| βj |< δ/2p1/2 |

τ) ≥ 1−Rs/p, where R = (32/π)1/2.

Next, for pr(| βj−β0j |< δ0|τ) with τ ∈ Iτ∗ , we have, letting δ0 = s−1/2(δ/2) = 2−1{(log p)/n}1/2,

pr(| βj − β0j |< δ0 | τ) = (2/π3)1/2

∫
λj

∫
|βj−β0|<δ0

exp{−β2
j /(2λ

2
jτ

2)} 1

λjτ(1 + λ2
j)
dβjdλj

≥ (2/π3)1/2

∫
|βj−β0|<δ0

∫ 2/τ

1/τ

exp{−β2
j /(2λ

2
jτ

2)} 1

λjτ(1 + λ2
j)
dλjdβj

≥ (2/π3)1/2

∫
|βj−β0|<δ0

exp(−β2
j /2)

(∫ 2/τ

1/τ

1

1 + λ2
j

dλj

)
dβj,
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since for λj ∈ [1/τ, 2/τ ], 1/(λjτ) ≥ 1/2 and exp{−β2
j /(2λ

2
jτ

2)} ≥ exp (−β2
j /2). Continuing,

pr(| βj − β0j |< δ0 | τ) ≥ (2/π3)1/2 τ

4 + τ 2

∫
|βj−β0|<δ0

exp (−β2
j /2)dβj

≥ (2/π3)1/2 τ

4 + τ 2
exp{−(M + 1)2/2} δ0

≥ K τ δ0

≥ K

(
s

p

)3/2
log p

n
≥ K∗p

−5/2,

where in the third step, we used 4 + τ 2 < 5 and in the final step we used n < p. Substituting these

bounds in (5.7), we have for τ ∈ Iτ∗

pr(‖β − β0‖2 < δ | τ) ≥ (1−Rs/p)p−sK∗e−(5s/2) log p ≥ e−Ks log p, (3.12)

whereK is a positive constant. The proof is completed upon observing that pr(τ ∈ Iτ∗) ≥ τ∗/(2π),

so that we get,

ΠHS(‖β − β0‖2 < δ) ≥ e−Ks log p, (3.13)

for some positive constant K.

We believe Lemma 3.5.1 will be of independent interest in various other models involving the

horseshoe prior. The only other instance of a similar prior concentration result in p � n settings

that we are aware of is for the Dirichlet–Laplace prior [37].

We now study concentration properties of the posterior distribution in model (3.3) in p � n

settings. To aid the theoretical analysis, we adopt the fractional posterior framework of [28], where

a fractional power of the likelihood function is combined with a prior using the usual Bayes formula

to arrive at a fractional posterior distribution. Specifically, fix α ∈ (0, 1) and recall the prior ΠC

on C defined after equation (3.4) and set ΠΣ as the inverse-Wishart prior for Σ. The α-fractional
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posterior for (C,Σ) under model (3.3) is then given by

Πn,α(C,Σ | Y ) ∝ {p(Y | C,Σ;X)}α ΠC(C) ΠΣ(Σ). (3.14)

Assuming the data is generated with a true coefficient matrix C0 and a true covariance matrix

Σ0, we now study the frequentist concentration properties of Πn,α(· | Y ) around (C0,Σ0). The

adoption of the fractional framework is primarily for technical convenience; refer to Appendix A

document for a detailed discussion. We additionally discuss the closeness of the fractional posterior

to the usual posterior in the next subsection.

We first list our assumptions on the truth.

Assumption 3.5.2 (Growth of number of covariates). log p/nγ ≤ 1 for some γ ∈ (0, 1).

Assumption 3.5.3. The number of response variables q is fixed.

Assumption 3.5.4 (True coefficient matrix). The true coefficient matrix C0 admits the decomposi-

tion C0 = B0A
T
0 where B0 ∈ <p×r0 and A0 ∈ <q×r0 for some r0 = κq, κ ∈ (0, 1]. We additionally

assume that A0 is semi-orthogonal, i.e. AT
0A0 = Ir0 , and all but s rows of B0 are identically zero

for some s = o(p). Finally, max
j,h
| C0jh |< T for some T > 0.

Assumption 3.5.5 (Response covariance). The covariance matrix Σ0 satisfies for some a1 and a2,

0 < a1 < smin(Σ0) < smax(Σ0) < a2 < ∞ where smin(P ) and smax(P ) are the minimum and

maximum singular values of a matrix P respectively.

Assumption 3.5.6 (Design matrix). For Xj the jth column of X , max1≤j≤p ‖Xj‖ � n.

Assumption 1 allows the number of covariates p to grow at a sub-exponential rate of enγ for

some γ ∈ (0, 1). Assumption 2 can be relaxed to let q grow slowly with n. Assumption 3 posits

that the true coefficient matrix C0 admits a reduced-rank decomposition with the matrix B0 row-

sparse. The orthogonality assumption on true A0 is made to ensure that B0 and C0 have the same

row-sparsity [55]. The positive definiteness of Σ0 is ensured by assumption 4. Finally, assumption
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4 is a standard minimal assumption on the design matrix and is satisfied with large probability if

the elements of the design matrix are independently drawn from a fixed probability distribution,

such as N(0, 1) or any sub-Gaussian distribution. It also encompasses situations when the columns

of X are standardized.

Let p0(Y | X) ≡ p(Y | C0,Σ0;X) denote the true density. For two densities q1, q2 with respect

to a dominating measure µ, recall the squared Hellinger distance h2(q1, q2) = {(1/2)
∫

(q
1/2
1 −

q
1/2
2 )2dµ}. As a loss function to measure closeness between (C,Σ) and (C0,Σ0), we consider the

squared Hellinger distance h2 between the corresponding densities p(· | C,Σ;X) and p0(· | X). It

is common to use h2 to measure the closeness of the fitted density to the truth in high-dimensional

settings; see, e.g., [78]. In the following theorem, we provide a non-asymptotic bound to the

squared Hellinger loss under the fractional posterior Πn,α.

Theorem 3.5.7. Suppose α ∈ (0, 1) and let Πn,α be defined as in (5.11). Suppose assumptions 1-

5 are satisfied. Let the joint prior on (C,Σ) be defined by the product prior ΠC and ΠΣ where ΠΣ is

the inverse-Wishart prior with parameters (q, Iq). Define ε̃n = max{K1 log ρ/s2
min(Σ0), 4/s2

min(Σ0)}εn

where ρ = smax(Σ0)/smin(Σ0) and K1 is an absolute positive constant related to Lemma 4.0.2 in

chapter 4 and εn = {(qr0 + r0s log p)/n}1/2. Then for for any D ≥ 1 and t > 0,

Πn,α

[
(C,Σ) : h2

{
p(Y | X;C,Σ), p0(Y | X)

}
≥ (D + 3t)

2(1− α)
nε̃ 2

n | Y
]
≤ e−tnε̃

2
n

with P (n)
(C0,Σ0) probability at least 1−K2/{(D−1+t)nε̃ 2

n} for sufficiently large n and some positive

constant K2.

Proof. Fix α ∈ (0, 1). Define Un =

[
(C,Σ) :

1

n
Dα{(C,Σ), (C0,Σ0)} > D + 3t

1− α
ε̃n

2

]
. Let η =

(C,Σ) and η0 = (C0,Σ0). Also let p(n)
η denote the density of Y | X with parameter value η

under model (3.3). Finally, let Πη denote the joint prior ΠC ×ΠΣ. Then, the α-fractional posterior

probability assigned to the set Un can be written as,

Πn,α(Un | Y ) =

∫
Un
e−αrn(η,η0)dΠη∫
e−αrn(η,η0)dΠη

:=
Nn

Dn

, (3.15)
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where rn(η, η0) = log p
(n)
η0 /p

(n)
η . We prove in Lemma 4.1.1 of chapter 4, with P (n)

(C0,Σ0)-probability

at least 1−K2/{(D− 1 + t)2nε̃2n}, the denominator Dn ≥ e−α(D+t)nε̃2n for some positive constant

K2. For the numerator proceeding similarly as in the proof of theorem 3.2 in [28] we arrive at,

P
(n)
(C0,Σ0)

{
Nn ≤ e−(D+2t)nε̃2n

}
≥ 1−1/{(D−1+ t)2nε̃2n}. Combining the upper bound for Nn and

lower bound for Dn we then have,

Πn,α

[
(C,Σ) :

1

n
Dα{(C,Σ), (C0,Σ0)} ≥ (D + 3t)

1− α
ε̃n

2 | Y
]
≤ e−tnε̃n

2

,

with P (n)
η0 -probability at least 1−K2/{(D − 1 + t)2nε̃2n}. Finally, we combine the following two

inequalities [28] for two densities p and q to arrive at the conclusion, D1/2(p, q) ≥ 2h2(p, q), and

α
β

1−β
1−αDβ(p, q) ≤ Dα ≤ Dβ, 0 < α ≤ β < 1.

The proof of theorem 3.5.7 hinges upon establishing sufficient prior concentration around C0

and Σ0 for our choices of ΠC and ΠΣ which in turn drives the concentration of the fractional

posterior. Specifically, building upon Lemma 3.5.1 we prove in Lemma 4.0.6 of chapter 4 that for

our choice of ΠC we have sufficient prior concentration around row and rank sparse matrices.

[54] obtained nε2n = (qr0 + r0s log p) as the minimax risk under the loss || XC − XC0 ||2F

for model (5.15) with Σ = Iq and when C0 satisfies assumption 3. Theorem 3.5.7 can then be

viewed as a more general result with unknown covariance. Indeed, if Σ = Iq, we recover the

minimax rate εn as the rate of contraction of fractional posterior as stated in the following theorem.

Furthermore, we show that the fractional posterior mean as a point estimator is rate optimal in

the minimax sense. For a given α ∈ (0, 1) and Σ = Iq, the fractional posterior simplifies to

Πn,α(C | Y ) ∝ {p(Y | C, Iq;X)}αΠC .

Theorem 3.5.8. Fix α ∈ (0, 1). Suppose Assumptions 1-5 are satisfied and assume that Σ is known

to be Σ0. Without loss of generality assume Σ0 = Iq. Let εn be defined as in theorem 3.5.7. Then

for any D ≥ 2 and t > 0,

Πn,α

{
C ∈ <p×q :

1

nq
‖XC −XC0‖2

F ≥
2(D + 3t)

α(1− α)
ε2n | Y

}
≤ e−tnε

2
n
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holds with P (n)
C0

probability at least 1 − 2/{(D − 1 + t)nε2n} for sufficiently large n. Moreover, if

C =
∫
CΠn,α(dC), then with P (n)

C0
probability at least 1−K1/{nε2n}

|| XC −XC0 ||2F ≤ K2nε
2
n,

for some positive constants K1 and K2 independent of α.

Proof. For C ∈ <p×q, we write p
(n)
C to denote the density of Y |X which is proportional to

e− tr{(Y−XC)(Y−XC)T}/2. For any C∗ ∈ <p×q we define a ε-neighborhood as,

Bn(C∗, ε) =

{
C ∈ <p×q :

∫
p

(n)
C∗ log(p

(n)
C∗ /p

(n)
C )dY ≤ nε2,

∫
p

(n)
C∗ log2(p

(n)
C∗ /p

(n)
C )dY ≤ nε2

}
.

(3.16)

Observe that Bn(C0, ε) ⊃ An(C0, ε) =
{
C ∈ <p×q : 1

n
‖XC −XC0‖2

F ≤ ε2
}

for all ε > 0 and the

Rényi divergence Dα(p
(n)
C , p

(n)
C0

) = α
2
‖XC − XC0‖2

F . By a similar argument as in step 1 of the

proof of Lemma 4.1.1 of chapter 4, we have ΠC{An(C0, εn)} ≥ e−Knε
2
n for positive K. Hence the

first part follows from [28, theorem 3.2].

For the second part first observe that from [28, corollary 3.3] we get
∫

(nq)−1 || XC−XC0 ||2F

Πn,α(dC | Y ) ≤ K2{α(1−α)}−1εn with P (n)
C0

-probability at least 1−K1/{nε2n}, whereK1 andK2

are positive constants independent of α. using the convexity of the Frobenius norm and applying

Jensen’s inequality, we get α/2 || XC −XC0 ||2F= α/2 || X
∫
C Πn,α(dC) −X

∫
C0 Πn,α ||2F≤

α/2
∫
|| XC −XC0 ||2F Πn,α(dC) ≤ Kn(1− α)−1ε2n for some positive K.

For theorem 3.5.8 the optimal bound is obtained for α = 1/2 which is consistent with [79]

where the authors consider a pseudo-likelihood approach for weighted model aggregation of sev-

eral least squares estimates.

3.5.2 Fractional and usual posterior for reduced rank models with prior ΠC

While [28] proved that Πn,α(· | Y ) converges to Πn(· | Y ) weakly as α → 1− for general

statistical models and priors, in this section we investigate what more can be said in reduced rank

models with ΠC as the prior and given some rate information is available for the fractional pos-
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terior. As a measure of discrepancy between the fractional posterior Πn,α(· | Y ) and the usual

posterior Π(· | Y ) we use the Kullback-Liebler divergence defined as D(p || q) =
∫
p log(p/q) dµ

for two densities p and q with some common dominating measure µ. Since for two k- dimensional

Gaussian distributions N(θ1, Ik) and N(θ2, Ik), the Kullback-Liebler divergence is || θ1−θ2 ||22� k,

we consider a Cesáro average of the form p−1D{Πn,α(· | Y ),Π(· | Y )}. For a discussion on in-

formation theoretic motivation for using Cesáro averages of Kullback-Liebler distances see [80].

Theorem 3.5.9. Consider model (5.15) with Σ = Iq and the prior on C is ΠC as defined in section

2.1. Recall εn from theorem 3.5.8. Then,

lim
α→1−

p−1D{Πn,α(· | Y ) || Π(· | Y )} ≤ K1
(qr0 + r0s log p)

p
,

with P (n)
C0

-probability at least 1−K2/{nε2n}, where K1 and K2 are positive constants independent

of α.

Proof. Let us write mα(Y ) =
∫
ln(C)αΠ(dC) and m(Y ) =

∫
ln(C)Π(dC) where ln(·) is the

likelihood function for model (1) from the main document. From Theorem 3.4 of [28] there exists

An such that An = {Y : limα→1−mα(Y ) = m(Y )} and PC0(An) = 1. Let us now turn our

attention to D{Πn,α(· | Y ),Π(· | Y )}.

D{Πn,α(· | Y ),Π(· | Y )} =

∫
log{Πn,α(· | Y )/Π(· | Y )}Πn,α(· | Y )dC

= logm(Y )/mα(Y ) +
(1− α)

2

∫
‖Y −XC‖2

FΠn,α(· | Y )dC

≤ logm(Y )/mα(Y ) + (1− α)

∫
‖Y −XC0‖2

FΠn,α(· | Y )dC

+ (1− α)

∫
‖XC −XC0‖2

FΠn,α(· | Y )dC.
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Using theorem 3.5.8 and from corollary 3.3 of [28] we have the following following result,

α/2

∫
‖XC −XC0‖2

F Πn,α(· | Y ) dC ≤ K1nε
2
n(1− α)−1

with PC0 probability at least 1−K2/(nε
2
n)−1, where K1, K2 are positive constants independent of

α. Let Bn ∈ σY
(n) be the set where the above result holds. Then for Y ∈ An ∩Bn we have,

D{Πn,α(· | Y ),Π(· | Y )} ≤ logm(Y )/mα(Y ) + (1− α)‖Y −XC0‖2
F + (2/α)K1nε

2
n

Letting α→ 1− in the above display, we get for y ∈ An ∩Bn

lim
α→1−

p−1D{Πn,α(· | Y ),Π(· | Y )} ≤ 2K1(nε2n)/p.

The result then follows from a union probability bound on An ∩Bn.

Theorem 3.5.9 suggests in the limit α → 1− the fractional posterior and the usual posterior

for ΠC and model (5.15) are only εn apart in the average Kullback-Leibler sense. Thus poste-

rior/fractional posterior summaries such as mean, median are expected to be close with high proba-

bility under P (n)
C0

. Further empirical evidence of virtually indistinguishable results from Πn,α(· | Y )

and Π(· | Y ) is provided in appendix A justifying our choice of the theoretical environment. From

a computational point of view, for model (5.15), raising the likelihood to a fractional power only

results in a change in the (co)variance term, and hence our Gibbs sampler discussed subsequently,

can be easily adapted to sample from the fractional posterior.

3.6 Definitions required for proofs of Theorem 3.5.7, 3.5.8, 3.5.9

For two densities pθ and pθ0 with respect to a common dominating measure µ and indexed by

parameters θ and θ0 respectively, the Rényi divergence of order α ∈ (0, 1) is defined asDα(θ, θ0) =

(α−1)−1 log
∫
pαθ p

1−α
θ0

dµ. The α-affinity between pθ and pθ0 is denoted byAα(pθ, pθ0) =
∫
pαθ p

1−α
θ0

dµ =

e−(1−α)Dα(pθ,pθ0 ). See [28] for a review of Rényi divergences.
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3.7 Derivation of equation (3.8)

Set Σ = Iq. Suppose Y ∗ ∈ <n×q be n future observations with design points X so that

given C, Y ∗ can be decomposed into Y ∗ = XC + E∗ where E∗ where the individual rows of E∗

follow N(0,Σ). We define the utility function in terms of loss of predicting these n new future

observations. To encourage sparsity in rows of a coefficient matrix Γ that balances the prediction

we add a group lasso penalty [71] to this utility function. We define the utility function as,

L(Y ∗,Γ) = ‖Y ∗ −XΓ‖2
F +

p∑
j=1

µj‖Γ(j)‖2 (3.17)

where the p tuning parameters {µj}pj=1 control the penalty for selecting each predictor variable and

Φ(j) represents the jth row of any matrix Φ. Intuitively we want µj to be small if the jth predictor

is important and vice versa. The expected risk, E{L(Y ∗,Γ)}, after integrating over the space of all

such future observations given C and Σ, is

L(Γ, C,Σ) = q tr(Σ) + ‖XC −XΓ‖2
F +

p∑
j=1

µj‖Γ(j)‖2. (3.18)

Finally we take expectation of this quantity with respect to π(C | Y,X) and drop the constant

terms to obtain (3.8).

3.8 Derivation of equation (3.9)

We let Φj and Φ(j) denote the jth column and row of a generic matrix Φ. Using the subgradient

of (10) with respect to Γ(j) [81], we have

2XT

j (XΓ−XC) + µjαj = 0, j = 1, . . . , p, (3.19)

where αj = Γ(j)/‖Γ(j)‖ if ‖Γ(j)‖ 6= 0 and ‖αj‖ < 1 when ‖Γ(j)‖ = 0. For Γ(j) = 0 we can

rewrite (3.19) as, 2XT
j (
∑

k 6=j XkΓ
(k) − XC) + µjαj = 0 which imply that αj = −2XT

j Rj/µj ,

where Rj is the residual matrix obtained after regressing XC on X leaving out the jth predictor,
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Rj = XC −
∑

k 6=j XkΓ
(k). We can use this to set Γ(j) to zero: if αj < 1 set Γ(j) = 0. Otherwise

we have 2XT
j (XjΓ

(j) − Rj) + µjΓ
j/‖Γ(j)‖ = 0. Solving for Γ(j) in the above equation we then

get,

Γ(j) =

(
XT

j Xj +
µj

2‖Γ(j)‖

)−1

XT

j Rj. (3.20)

This solution is dependent on the unknown quantity ‖Γ(j)‖. However, taking norm on both sides

in (3.20) we get a value of ‖Γ(j)‖ which does not involve any unknown quantities: ‖Γ(j)‖ =

(‖XT
j Rj‖−µj/2)/XT

j Xj . Substituting this in (3.20) we get, Γ(j) = (XT
j Xj)

−1
(
1− µj/2‖XT

j Rj‖
)
XT
j Rj .

Finally, combining the case when Γ(j) = 0, we have (3.9).

3.9 Further results on Yeast cell cycle data

The yeast cell cycle data consists of mRNA measurements Y , measured every 7 minutes in

a period of 119 minutes. The covariates X are binding information on 106 transcription factors.

When applied to this data, the proposed method identified 33 transcription factors out of 106 that

driving the variation in mRNA measurements. 14 of the identified transcription factors are among

the 21 scientifically verified [76]. In section 3.5 we provided estimated effects of two of the 21

scientifically verified transcription factors. Here we plot the estimated effects of the remaining

transcriptions factors that were scientifically verified.
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Figure 3.3: Estimated effects of the 19 of 21 scientifically verified transcription factors selected
by the proposed method. Effects of other two, viz. ACE2 and SWI4 are included in the main
manuscript. Red lines correspond to 95% posterior symmetric credible intervals, black lines rep-
resent the posterior mean and the blue dashed line plots values of the BSML estimate ĈRR.
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4. RELATED PROOFS FROM CHAPTER 3

4.1 Prior concentration results

We establish a number of results in the following sequence of Propositions and Lemmas to

prove Theorem 3.5.7 and 3.5.8. The main goal here would be to establish prior concentration

results around true model parameters. Recall the definitions of ε̃n and εn from Theorem 3.5.7 and

3.5.8 in the previous chapter respectively. For Theorem 3.5.7 we need a lower bound on the prior

probability assigned to the set B∗n(η0, ε̃n) = {η = (C,Σ) :
∫
p

(n)
η0 log(p

(n)
η0 /p

(n)
η )dY ≤ nε̃2n} by the

product prior Πη = ΠC ⊗ ΠΣ. Similarly, for Theorem 3.5.8, we need the prior probability of the

set Bn(C0, εn) = {C ∈ <p×q :
∫
p

(n)
C0

log(p
(n)
C0
/p

(n)
C )dY ≤ nε2n,

∫
p

(n)
C0

log2(p
(n)
C0
/p

(n)
C )dY ≤ nε2n}.

We start by characterizing B∗n(η0, εn) and Bn(C0, εn) in terms of ‖Σ−Σ0‖2
F and ‖XC −XC0‖2

F .

But first, we record few inequalities which we will use frequently in our subsequent analysis. For

any two matrices A & B,

smin(A)‖B‖F ≤ ‖AB‖F ≤ ‖A‖2‖B‖F (4.1)

smin(A)‖B‖2 ≤ ‖AB‖2 ≤ ‖A‖2‖B‖2 (4.2)

For a proof of these inequalities, see the supplementary document of [37].

Proposition 4.1.1. Consider model 3.1 in chapter 3, Y = XC + E, ei ∼ N(0,Σ). Then,

∫
p(n)
η0

log(p(n)
η0
/p(n)

η )dY =
n

2
log
|Σ|
|Σ0|

+
n

2
tr(Σ−1Σ0−Iq)+

1

2
‖(XC−XC0)Σ−1(XC−XC0)T‖2

F

(4.3)

Moreover, when Σ0 = Σ = Iq, we have
∫
pnC0

log(p
(n)
C0
/p

(n)
C )dY = 2−1‖XC − XC0‖2

F and if

‖C − C0‖2
F < 1, then

∫
p

(n)
C0

log2(p
(n)
C0
/p

(n)
C ) ≤ 2−1‖XC −XC0‖2

F .

Proof. The expression for
∫
p

(n)
η0 log(p

(n)
η0 /p

(n)
η )dY follows directly from the formula of Kullback-

Liebler divergence between two Normal distributions. Setting Σ = Σ0 on the right hand side of
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4.3 yields the second assertion. Using formulas for variance and covariance of quadratic forms of

Normal random vectors the third assertion is proved by noting that ‖C−C0‖4
F ≤ ‖C−C0‖2

F when

‖C − C0‖2
F < 1.

Lemma 4.1.2. Let Σ,Σ0 be q × q positive definite matrices and δ ∈ (0, 1). If ‖Σ−Σ0‖F ≤ δ and

δ/smin(Σ0) < 1/2, then

tr(Σ0Σ−1 − Iq)− log | Σ0Σ−1 |≤ (K log ρ)δ2

s2
min(Σ0)

,

where K is some absolute positive constant and ρ = 2smax(Σ0)/smin(Σ0).

Furthermore,

‖(XC −XC0)Σ−1(XC −XC0)T‖2
F ≤ {4/s2

min(Σ0)}‖XC −XC0‖2
F

.

Proof. For the first claim see Lemma 1.3 in the supplementary document of [37]. To prove the

second claim, by (4.1) we have, ‖(XC −XC0)Σ−1(XC −XC0)T‖2
F ≤ ‖XC −XC0‖2

F‖Σ−1‖2
2

where ‖P‖2 is the largest singular value of the matrix P . Lemma 1.3 from [37] also provides a

lower bound of smin(Σ) as smin(Σ0)/2. Since ‖Σ−1‖2 = 1/smin(Σ0), the result follows immedi-

ately.

According to Lemma 3.5.1, it is equivalent to consider prior concentration of the Frobenius

balls ‖XC − XC0‖F and ‖Σ − Σ0‖F for sufficient prior concentration around Kullback-Leibler

neighborhoods. In the following sequence of lemmas we prove ΠC and ΠΣ ≡ inv-Wishart(q, Iq)

satisfies such concentration.

Lemma 4.1.3. Suppose the q × q matrix Σ ∼ ΠΣ where ΠΣ is the inverse-Wishart distribution

with parameters (q, Iq). Let Σ0 be any fixed symmetric positive definite matrix. Let δ be such that
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2q−1/2δ/smin(Σ0) ∈ (0, 1). Then,

ΠΣ(Σ : ‖Σ− Σ0‖F < δ) ≥ e−Tnδ
2

,

where T is a positive constant.

Proof. By inequality (4.1), we have the following,

ΠΣ(Σ : ‖Σ− Σ0‖F < δ) ≥ ΠΣ(Σ : ‖Σ0Σ−1 − Iq‖F < δ/‖Σ‖2)

≥ ΠΣ{Σ : ‖Σ0Σ−1 − Iq‖F < δ/smin(Σ)}

≥ ΠΣ{Σ : ‖Σ0Σ−1 − Iq‖F < 2δ/smin(Σ0)}

≥ ΠΣ{Σ : ‖Σ1/2
0 Σ−1Σ

1/2
0 − Iq‖F < 2δ/smin(Σ0)},

where we have used the the lower bound smin(Σ) > smin(Σ0)/2 from the previous lemma and

the similarity of the two matrices Σ0Σ−1 and Σ
1/2
0 Σ−1Σ

1/2
0 . Let φj be the jth eigenvalue of H =

Σ
1/2
0 Σ−1Σ

1/2
0 where j = 1, . . . , q. Then ‖H − Iq‖2

F =
∑q

j=1(φj − 1)2 ≤ 4δ2/s2
min(Σ0). Letting

δ∗ = 2q−1/2δ/smin(Σ0), we then have,

ΠΣ

{
φj :

q∑
j=1

(φj − 1)2 < 4δ2/s2
min(Σ0), j = 1, . . . , q

}
≥ ΠΣ

{
φj : (φj − 1)2 < δ2

∗, j = 1, . . . , q

}
= ΠΣ

{
φj :

1− δ∗
1 + δ∗

< φj < 1, j = 1, . . . , q

}
= ΠΣ

{
φj :

1− δ∗
1 + δ∗

< φj <
1− δ∗
1 + δ∗

(1 + t), j = 1, . . . , q

}
, (4.4)

where t = 2δ∗(1− δ∗)−1 which by assumption lies in (0, 1). Noting that H ∼Wishart(q,Σ0) and

invoking Lemma 1 of [82] we have the following lower bound on the probability assigned by ΠΣ
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to the event in (4.4),

ΠΣ

{
φj :

1− δ∗
1 + δ∗

< φj <
1− δ∗
1 + δ∗

(1 + t), j = 1, . . . , q

}
≥ b1

(
1− δ∗
1 + δ∗

)b2 ( 2δ∗
1− δ∗

)b3
e−b4(

1−δ∗
1+δ∗ ). (4.5)

Hence, for δ∗ small enough, (4.5) can be lower bounded by e−Tnδ2 for some positive constant T

and sufficiently large n.

Recall the prior ΠB from chapter 3. If a matrix B ∈ <p×q ∼ ΠB then each column of B is a

draw from ΠHS. In the following Lemma we generalize Lemma 1 to provide a lower bound on the

probability the prior ΠB assigns to Frobenius neighborhoods of B0 ∈ <p×r0 . By assumption 3 the

hth column of B0, bh ∈ `0[s; p]. In order to make the Frobenius neighborhood well defined, we

append (q − r0) zero columns to the right of B0 and set B0∗ = (B0 | Op×(q−r0)).

Lemma 4.1.4. Let the entries of B0∗ ∈ <p×q satisfy max | B0∗ |≤ M for some positive constant

M . Suppose B is a draw from ΠB. Define δB = {(r0s log p)/n}1/2. Then for some positive

constant K we have,

ΠB(‖B −B0∗‖F < δB) ≥ e−Kr0s log p.

Proof. Observe that, since by assumption 3, r0 = κq for some κ ∈ (0, 1],

ΠB(‖B −B0∗‖F < δB) ≥
q∏

h=1

ΠHS
(
‖bh − b0h‖2 < q−1/2δB

)
=

q∏
h=1

ΠHS

[
‖bh − b0h‖2 < {(κs log p)/n}1/2

]

=

r0∏
h=1

ΠHS

[
‖bh − b0h‖2 < {(κs log p)/n}1/2

] q∏
h=r0+1

ΠHS

[
‖bh − b0h‖2 < {(κs log p)/n}1/2

]

=

r0∏
h=1

ΠHS

[
‖bh − b0h‖2 < {(κs log p)/n}1/2

] q∏
h=r0+1

ΠHS

[
‖bh‖2 < {(κs log p)/n}1/2

]
.
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From Lemma 3.5.1 we have, ΠHS[‖bh− b0h‖2 < {(κs log p)/n}1/2] ≥ e−K1s log p for some positive

K1. Arguments along the same line of first part of Lemma 3.5.1 can also be applied to obtain

that, ΠHS
(
‖bh‖2 < {(κs log p)/n}1/2

)
≥ (1− Rs/p)p ≥ e−K2 log p for some positive K2 and R as

defined in Lemma 3.5.1. Combining these two lower bounds in the above display we have,

ΠB(‖B −B0∗‖F < δB) ≥ e−K1r0s log pe−K2(q−r0)s log p.

Since r0 = κq, the result follows immediately with K = K1 + (1/κ− 1)K2.

Similar to Lemma 4.1.4, the following result provides a lower bound on the probability as-

signed to Frobenius neighborhoods of A0 by the prior ΠA. Again we append (q − r0) columns at

the right of A0 and set A0∗ = (A0 | Oq×(q−r0)).

Lemma 4.1.5. Suppose the matrix A ∼ ΠA. Let δA = (qr0/n)1/2. Then for some positive constant

K we have,

ΠA(‖A− A0∗‖F < δA) ≥ e−Kqr0 .

Proof. First we use vectorization to obtain ΠA(‖A− A0‖F < δA) = ΠA(‖a− a0‖2 < δA), where

a, a0 ∈ <q
2 . Using Anderson’s lemma [83] for multivariate Gaussian distributions, we then have,

ΠA(‖a− a0‖2 < δA) ≥ e−‖a0‖
2/2pr(‖a‖2 < δA/2)

= e−r0/2pr(‖a‖2 < δA/2).

The quantity pr(‖a‖ < δA/2) can be bounded from below as,

pr(‖a‖2 < δA/2) ≥ {pr(| aj |< δA/q)}q
2 ≥ Te−δ

2
A (δA/q)

q2 ≥ e−Kq
2

,

whereK is a positive constant. Since r0 = κq, it follows that ΠA(‖A−A0∗‖F < δA) ≥ e−Kqr0 .

Our final result will concern the prior mass assigned to Frobenius neighborhoods of C ∈ <p×q.
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As in chapter 3 we write ΠC for prior on C = BAT induced from ΠB and ΠA.

Lemma 4.1.6. Suppose C0 satisfies assumption 3. Let C ∼ ΠC with ΠC as defined above. Define

δC = {(qr0 + r0s log p)/n}1/2. Then for some positive constant K,

ΠC(‖C − C0‖F < δC) ≥ e−K(qr0+r0s log p).

Proof. Recall the definition of B0∗ and A0∗ from Lemma 4.1.4 and 4.1.5 respectively. Using the

triangle inequality followed by (4.1), we have,

‖C − C0‖F = ‖BAT −B0∗A
T

0∗‖F = ‖BAT −B0∗A
T +B0∗A

T −B0∗A
T

∗0‖F

= ‖(B −B0∗)A
T +B0∗(A− A0∗)

T‖F

≤ ‖(B −B0∗)A
T‖F + ‖B0(A− A0∗)

T‖F

≤ smax(A)‖(B −B0∗)‖F + smax(B0)‖A− A0∗‖F .

From standard random matrix theory [84] it is well known that for a random matrix of dimension

m1 ×m2 with independent Gaussian entries, the largest singular admits a high probability upper

bound; for every t ≥ 0, smax(A) ≤
√
m1+

√
m2+twith probability at least 1−2 exp (−t2/2). Also

since the elements of B0 are bounded, so is smax(B0), say by ξ. For a sufficiently large positive

number L and for A ∈ E = {A : smax(A) ≤ 2
√
q + L} we then have,

‖C − C0‖F ≤ (2
√
q + L) ‖B −B0∗‖F + ξ ‖A− A0∗‖F .

Thus we have, ΠC(‖C −C0‖F < δC) ≥ ΠC{(2
√
q +L)‖B −B0‖F + ξ‖A−A0‖F < δC}. Since

δC = {(qr0 + r0s log p)/n}1/2 ≥ 2−1/2 [{(r0s(log p)/n)}1/2 + (qr0)1/2] =

2−1/2(δB + δA), the probability ΠC(‖C − C0‖F < δC) ≥ ΠB(‖B − B0∗‖F < K1δB) ΠA(‖A −

A0∗‖F < K2δA), where K1 and K2 are positive constants.

From Lemma 4.1.4 it follows that, ΠB(‖B − B0‖F < K1δA) ≥ e−Kr0s log p and from Lemma

4.1.5 we have, ΠA(‖A − A0‖F < K2δA) ≥ e−Tqr0 . Hence ΠC(E ∩ {C : ‖C − C0‖F < δC}) ≥
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e−K(qr0+r0s log p). Since for two sets E1 and E2, pr(E1 ∪ E2) ≥ pr(E1) + pr(E2)− 1, the Lemma

is proved.

4.2 Denominator in the proof of Theorem 3.5.7

Recall Dn from the proof of Theorem 3.5.7 in chapter ??. The following lemma establishes a

high probability lower bound for Dn under the true data generating distribution P (n)
η0 .

Lemma 4.2.1. LetDn =
∫
e−αrn(η,η0)dΠη. LetB∗n(η0, ε̃n) = {η = (C,Σ) :

∫
p

(n)
η0 (log p

(n)
η0 /p

(n)
η )dY ≤

nε̃n
2}. Then, with P (n)

η0 -probability at least 1−K/(D − 1 + t)nε̃ 2
n , we have,

Dn ≥ e−Tα(D+t)nε̃ 2n ,

for any D > 1 and t > 0 for some positive constants K.

Proof. The proof is divided into three parts. First we show that Πη(B
∗
n{η0, ε̃n)} ≥ e−Tnε̃

2
n for some

positive T . Then after noting Dn ≥ Πn{B∗n(η0, ε̃n)}D∗n, where D∗n =
∫ ∫

Bn(η0,ε̃n)
e−αrn(η,η0)dΠB

η ,

we bound the expectation and variance of Z where Z is such that logD∗n ≥ Z and ΠB
η is the

restriction of Πη to B∗n(η0, ε̃n). Finally, we provide a high probability lower bound of D∗n.

Step 1. From proposition 4.1.1 if ‖Σ−Σ0‖F < εn then (n/2){tr(Σ−1Σ0− Iq)− log | Σ0Σ−1 |

} ≤ nε̃ 2
n/2. Also if ‖XC − XC0‖2

F ≤ nε2n then ‖(XC − XC0)Σ−1(XC − XC0)T‖2
F ≤ nε̃2n/2.

Hence B∗n(η0, ε̃n) ⊃ A∗n(η0, ε̃n){η = (C,Σ) : ‖XC − XC0‖2
F ≤ nε̃ 2

n , ‖Σ − Σ0‖F < ε̃n} and

Πη{A∗n(η0, ε̃n)} = ΠC{C : ‖XC −XC0‖2
F ≤ nε̃ 2

n}ΠΣ{Σ : ‖Σ− Σ0‖F < ε̃n}.

Using Lemma 4.1.2 we get that ΠΣ{Σ : ‖Σ− Σ0‖F < ε̃n} ≥ e−Tnε̃
2
n . Next,

‖X(C − C0)‖2
F ≤ ‖X‖2

F‖C − C0‖2
F ≤ qmax

1≤j≤p
‖Xj‖2‖C − C0‖2

F = nq‖C − C0‖2
F ,

where the first inequality follows from the Cauchy-Schwartz inequality and the last equality holds

due to assumption 5 for a sufficiently large n. Due to lemma 4.1.6 we have ΠC {C : ‖C − C0‖2
F ≤ ε2n} ≥

e−Knε
2
n for some positive constant K. Since q is fixed, for large n, nq is of the order n and εn and
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ε̃n varies only by constants, therefore by Lemma 4.1.6 ΠC(‖C − C0‖2
F ≤ ε̃n

2/q) ≥ e−Knε̃
2
n . Thus

we get ΠC{C : ‖XC − XC0‖2
F ≤ nε̃ 2

n} ≥ e−Knε̃
2
n . Finally collecting the lower bounds for the

individual probabilities we have Πη(B
∗
n{η0, ε̃n}) ≥ e−Tnε̃

2
n for some positive T as desired.

Step 2. It is obvious that,

Dn ≥Πη{Bn(η0, ε̃n)}
∫
Bn(η0,ε̃n)

e−αrn(η,η0)Πη{Bn(η0, ε̃n)}−1dΠη

= Πη{Bn(η0, ε̃n)}D∗n,

whereD∗n =
∫
Bn(η0,ε̃n)

e−αrn(η,η0)dΠB
η . LetB be a shorthand forB∗n(η0, ε̃n). By Jensen’s inequality

applied to the concave logarithm function we then have logD∗n ≥ α
∫
B

log p
(n)
η /p

(n)
η0 dΠB

η = Z

(say). Then,

E(n)
η0

(Z) = −α
∫
B

KL(p(n)
η0
, p(n)

η )dΠB
η ≥ −Tnαε̃ 2

n ,

for some positive T , where the last inequality follows from the definition of B.

Next we compute the variance of Z under P (n)
η0 .

varη0(Z) = α2E(n)
η0
{Z − E(n)

η0
(Z)}2

= α2

∫ [∫
B

{
log(p(n)

η0
/p(n)

η )− E(n)
η0

(log p(n)
η0
/p(n)

η )
}
dΠη

]2

p(n)
η0
dY

≤ α2

∫ ∫
B

{
log(p(n)

η0
/p(n)

η )− E(n)
η0

(log p(n)
η0
/p(n)

η )
}2
p(n)
η0
dΠηdY

= α2

∫
B

[∫ {
log(p(n)

η0
/p(n)

η )− E(n)
η0

(log p(n)
η0
/p(n)

η )
}2
p(n)
η0
dY

]
dΠη

= α2

∫
B

{varη0(Z
∗)}dΠη,

where Z∗ = log p
(n)
η0 /p

(n)
η =

∑n
i=1 log pη0(Yi)/pη(Yi) =

∑n
i=1 Z

∗
i . Hence due to independence
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varη0(Z
∗) = nvarη0(Z

∗
1). Now,

varη0(Z
∗
1) = varη0

{
1

2
(Y1 − CTx1)Σ−1(Y1 − CTx1)− 1

2
(Y1 − CT

0 x1)Σ−1
0 (Y1 − CT

0 x1)

}
.

Let (Y1 − CT
0 x1) = u0 and (Y1 − CTx1) = u1 and (CT

0 x1 − CTx1) = u. Then,

varη0(Z
∗
1) =

1

4
varη0

(
uT

1 Σ−1u1 − uT

0 Σ−1u0 + uT

0 Σ−1u0 − uT

0 Σ−1
0 u0

)
=

1

4
varη0

{
uTΣ−1u+ 2uTΣ−1u0 + uT

0 (Σ−1 − Σ−1
0 )u0

}
=

1

4
varη0

{
2uTΣ−1u0 + uT

0 (Σ−1 − Σ−1
0 )u0

}
= varη0(u

TΣ−1u0) +
1

4
varη0

{
uT

0 (Σ−1 − Σ−1
0 )u0

}
+

1

2
covη0

{
uTΣ−1u0, u

T

0 (Σ−1 − Σ−1
0 )u0

}
= uTΣ−1Σ0Σ−1u+

1

2
tr{(Σ−1Σ0 − Iq)

2}

≤ ‖CT

0 x1 − CTx1‖2
2 ‖Σ0‖2‖Σ−1‖2

2 +
1

2
‖Σ−1/2Σ0Σ−1/2 − Iq‖2

F

≤ ‖CT

0 x1 − CTx1‖2
2 ‖Σ0‖2‖Σ−1‖2

2 +
1

2
‖Σ0 − Σ‖2

F‖Σ−1‖2
2

≤ 4‖Σ0‖2

s2
min(Σ0)

‖CT

0 x1 − CTx1‖2
2 +

1

2
‖Σ−1‖2

2‖Σ− Σ0‖2
F

≤ 4‖Σ0‖2

s2
min(Σ0)

‖CT

0 x1 − CTx1‖2
2 +

2

s2
min(Σ0)

‖Σ− Σ0‖2
F ,

where we have used the lower bound on smin(Σ) from lemma 4.1.2. Therefore, varη0(Z
∗) ≤

α2 4‖Σ0‖2
s2min(Σ0)

‖XC − XC0‖2
F + α2 2n

s2min(Σ0)
‖Σ − Σ0‖2

F . Since B ⊃ A∗n(η0, ε̃n) from step 1, and

Π{A∗n(η0, ε̃n)}, we finally get varη0(Z) ≤ Kα2nε̃ 2
n for some positive constant K.

Step 3. For any D > 1 and t > 0, by Chebyshev’s inequality

P (n)
η0
{Z ≤ −Tα(D + t)nε̃ 2

n} = P (n)
η0
{Z ≤ −Tα(D − 1 + t+ 1)nε̃ 2

n}

= P (n)
η0
{Z − (−Tαnε̃ 2

n) ≤ −Tα(D − 1 + t)nε̃2n}

≤ varη0(Z)

{Tα(D − 1 + t)nε̃ 2
n}

2

≤ K

T 2(D − 1 + t)2nε̃ 2
n

,
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where we have used the fact that varη0(Z) ≤ Knε̃ 2
n . Thus we get with P (n)

η0 -probability at least

1−K/(D − 1 + t)2nε̃ 2
n ,

logD∗n ≥ −Tα(D + t)nε̃ 2
n ⇔ D∗n ≥ e−Tα(D+t)nε̃ 2n ,

for some positive constant K. Since Dn ≥ Πη(B)D∗n and Πη(B) ≥ e−Tnε̃
2
n ≥ e−Tα(D+t)nε̃2n (D >

1), we finally obtain,

Dn ≥ e−Tα(D+t)nε̃2n ,

with P (n)
η0 -probability at least 1−K/(D − 1 + t)2nε̃2n for some positive constant K.
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5. CONVERGENCE RATES OF FRACTIONAL HORSESHOE POSTERIORS IN

HIGH-DIMENSIONS

5.1 Introduction

Nowadays data arising from various scientific fields like Genetics, Physics, Bioinformatics, Psy-

chology nowadays are inherently high-dimensional in nature. For example, in Genetics it is of in-

terest to study gene behaviors for thousands of genes and typically measurements are only available

for a few hundred patients. In such scenarios it is frequently assumed that the high-dimensional

parameter possesses a low-dimensional structure. One popular way of providing the parameter

with a low dimensional structure is by assuming it is ‘sprase’, wherein most of the elements of the

parameters are exactly equal to or very close to zero. In the literature, the non-zero component of

the parametr is known as the signal and zero or small part is known as noise. The presence of high-

dimensional parameters have motivated a series of works based on thresholding or regularization

in common statistical problems of regression [5, 6, 7, 72, 85], covariance estimation [86, 87, 88]

among others. While there is now a plethora of frequentist methods that rapidly produce point

estimates in such problems, the uncertainty associated with such estimates, a decidedly non-trivial

problem, has only gained limited attraction until recently [3, 89, 90].

On the other hand, by interpreting regularization as priors over parameter spaces, Bayesian

methods have the innate ability to produce a posterior distribution over the space of parameters

instead of just providing a point estimate. There is now a rich body of literature on various pos-

sible choices of such priors, commonly referred to as shrinkage priors - see [22, 33, 1, 23] and

references therein. A unifying theme of these priors lies in the fact that these priors can mostly

be expressed as global-local scale mixture of Gaussian distributions [20], wherein a single global

scale parameter controls the overall shrinkage in the estimation procedure and local scale param-

eters allow for capturing signals with large magnitude. The Gaussian representation also allows

for straightforward Markov chain Monte Carlo sampling from the posterior distribution [65]. For

59



a class of shrinkage priors [91, 92] establishted rapid mixing and convergence at a geometric rate

of these sampling procedures. More recently, [65] developed an exact sampling scheme for sam-

pling from a high-dimensional Gaussian distribution frequently encountered in the computational

process involving shrinkage priors. Further computationally tractable algorithms are discussed

and explored in [93]. The choice of the mixing distributions for the scale distribution essentially

determines the priors ability to recover sparse parameters. Indeed, [83] proved sub-optimal risk

properties of several routinely used mixing distributions such as the Inverse Gamma distribution.

[20] prescribed a heavy-tailed prior on the local scale parameters, while the prior on the global

scale parameter should have sufficient mass near zero.

In a seminal work [94] obtained the minimax lower bound for estimating a sparse vector of a

given dimension and for Lq risks. Several frequentist estimators have been proven to be optimal in

the sense of attaining the minimax risk for models ranging from Gaussian regression, generalized

linear models to graphical models [8]. Analyzing the posterior obtained from shrinkage priors

requires obtaining the convergence rate of the posterior to a point mass at the true parameter. We

say a prior is optimal for sparse estimation if this convergence rate coincides with the minimax rate

for the sparse class.

[77] provided sufficient conditions for posterior convergence rates in a general statistical model

where the number of parameters are allowed to grow with the sample size or the parameter space

itself can be infinite. The conditions include a prior concentration result and careful construction

of sieves with a control on their entropy. Furthermore, the prior probability assigned to the com-

plement of the sieves is required to be exponentially small. Intuitively, the prior mass condition is

used to control the marginal distribution of the parameter under the specified prior and the sieve

condition guarantees existence of exponentially consistent tests which are then used to control

the posterior probability. In the canonical sparse normal means problem [23] proved the poste-

rior contracts at the minimax rate for the Dirichlet-Laplace prior using the aforementioned tools.

Their results can be extended to more sophisticated statistical models analogously, see [37] for a

treatment involving high-dimensional factor models. However, for polynomial tailed priors such
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as the horseshoe [1] the exponentially decaying prior mass assigned to the complement of sieves

is difficult to verify. This technical difficulty has restricted its theoretical treatment to the normal

means model where the conditionally independent Gaussian scale mixture representation is cru-

cially exploited to achieve a tractable expression of coordinatewise posterior means. In particular,

[25] showed that the horseshoe posterior contracts at the minimax rate for a suitably chosen global

scale parameter, while [95] established similar results with an empirical Bayes and full Bayes ap-

proach by specifying a prior on the global scale parameter. In their work [25], the authors interpret

the global scale parameter as the proportion of signal variables upto logarithmic factors. See also

[26] for a study of the horseshoe prior from a testing perspective.

As noted earlier, the conditional independence structure is usually not valid for many practical

statistical models. For instance, in a linear regression problem, the design matrix induces cor-

relation in the posterior distribution of the coefficient vector. Thus results from [25, 95] cannot

be readily adopted to more complex models although empirical studies have shown the superior

performance of the horseshoe across different settings [65].

In this article, we adopt the fractional posterior framework [28]. Here a fractional power of the

likelihood function is combined with the prior using Bayes theorem to obtain a fractional poste-

rior. [28] show only a prior mass condition is sufficient to prove convergence rate of the fractional

posterior. Simulation results in Appendix A and Theorem 3.5.9 show in Gaussian models, as far

as estimation and prediction is concerned, fractional and usual posterior are almost indistinguish-

able. Here we focus on analyzing fractional posterior obtained from horseshoe related priors in

regression and factor models.

5.2 Notation

Let l0[s; p] = {θ ∈ <p : #(1 ≤ j ≤ p : θj 6= 0) ≤ s} be the subset of <p with at most s

non-zero entries. For a vector θ ∈ <p, let Sθ = {1 ≤ j ≤ pn : θj 6= 0}, called the support of

θ. We write || · ||2 to denote the l2 norm and || · ||1 denote the l1 norm. The Kullback-Liebler

divergence between two distributions P and Q is written as D(P || Q). We will use Ik to denote

the k-dimensional identity matrix.
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5.3 The horseshoe prior

The horseshoe prior was originally introduced in [1] as a sparse prior over θ ∈ <p in the model

yj = θj + εj, εj
iid∼ N(0, 1), j = 1, . . . , p, (5.1)

when the true mean θ0 ∈ l0[s; p]. A draw η ∈ <p from the horseshoe prior can be hierarchically

represented as,

ηj | λj, τ
indp.∼ N(0, λ2

jτ
2) (5.2)

λj
indp.∼ C+(0, 1) j = 1, . . . , p (5.3)

τ ∼ g, (5.4)

where C+(0, 1) is the standard Half-Cauchy distribution on the positive real line <+ with density

function f(x) ∝ (1 + x2)−11(0,∞) and g is the density of a distribution on <+ with respect to the

Lebesgue measure. Let the joint prior thus induced on η be ΠHS. The global scale parameter τ

controls the overall shrinkage while the local scale parameters λj allow to capture the coordinates

with large magnitude. Choices of g are discussed below. First, we give a brief overview of the

properties of the hierarchy (5.2)-(5.4).

Fix τ = 1. Due to independence the conditional posterior mean of θj in model (5.1) with

apriori θ ∼ ΠHS, is given by,

E(θj | yj, λj) =

(
1− 1

1 + λ2
j

)
yj.

Evidently, the amount of shrinkage for each coordinate j is then controlled by the variable ωj =

(1 + λ2
j)
−1. When λj ∼ C+(0, 1), the induced prior on ωj is a Beta(1/2,1/2) distribution [1] which

has its peak near 0 and 1 and a plateau in between. Thus the prior ΠHS has the ability to shrink

noise coordinates heavily towards 0 with ωj close to 1 yet at the same time retain signal coordinates
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with small ωj values. Furthermore, because there are no hyperparameters involved, the horseshoe

prior has enjoyed wide popularity among the class of global-local shrinkage priors.

When estimating θ0, previous theoretical works [25, 95] have interpreted τ to be the proportion

of non-zero components in θ0 upto logarithmic factors. Indeed, small values of τ will result in

sparser draws of η, see figure 1 of [25]. In this article we set g to be the Half-Cauchy density [1].

However, simple modifications with an Unif(0, 1) prior on τ lead to similar conclusions.

For θ0 ∈ l0[s; p] with s = o(p), [94] provided the minimax squared error loss as,

inf
θ̂

sup
θ∈l0[s;p]

Eθ0 || θ̂ − θ0 ||22� s log(p/s), (5.5)

where the infimum is taken over all possible estimators θ̂. In what follows, we will be working

with the approximate minimax rate of s log p. Next, consider n independent copies (Yi)
n
i=1 of the

p-dimensional vector Yi = (yij)
p
j=1. We work in a high-dimensional regime where the dimension

p is allowed to grow with the sample size n. Further, the sparsity s of θ0 may also change with n.

In terms of notation, we will use pn and sn to make their dependence explicit on the sample size.

Bayesian asymptotic results rely heavily on the prior mass assigned to neighborhoods of the true

parameter [96, 77, 28]. Given a sparse vector θ0 ∈ l0[sn; pn], our first result is a non-asymptotic

concentration result of ΠHS on shrinking l2 neighborhoods of θ0.

Theorem 5.3.1. Suppose n, pn and sn is such that sn/pn ≤ 1/2 and log pn = o(n) and sn log pn =

o(n). Let θ0 ∈ l0[sn; pn] be such that for all j ∈ Sθ0 we have 1
2

√
log pn
n
≤ θ0j ≤ pmn , for some

positive constant m. Then for some positive constant C,

ΠHS(|| θ − θ0 ||2≤ δn) ≥ e−Cnδ
2
n = e−Csn log pn .
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Proof. Using the conditional formulation of prior (5.2)-(5.3) we have,

ΠHS(‖θ − θ0‖2 < δn) =

∫
τ

pr(‖θ − θ0‖2 < δn | τ)g(τ)dτ

≥
∫
Iτ∗

pr(‖θ − θ0‖2 < δn | τ)g(τ)dτ,
(5.6)

where Iτ∗ = [τ∗/2, τ∗] with τ∗ = (sn/pn)3/2 (log pn/n)1/2. Let S = {1 ≤ j ≤ pn : θ0j 6= 0}. We

first provide a lower bound of the conditional probability pr(‖θ− θ0‖2 < δn | τ ∈ Iτ∗) by dividing

it into two terms. For τ ∈ Iτ∗ we have,

pr(‖θ − θ0‖ < δn | τ) ≥ pr

(
‖θS − θ0S‖2 <

δn
2
| τ
)
pr

(
‖θSc‖2 <

δn
2
| τ
)

≥
∏
j∈S

pr

(
|θj − θ0j| <

δn
2
√
sn
| τ
) ∏
j∈Sc

pr

(
|θj| <

δn
2
√
pn
| τ
) (5.7)

Now we will provide lower bounds for each of the terms pr{| θj − θ0j |< δn/(2s
1/2
n )} for any

j ∈ S and pr{| θj |< δn/(2p
1/2
n )} for any j ∈ Sc and for τ ∈ Iτ∗ .

We first consider pr{| θj |< δn/(2p
1/2
n ) | τ} with τ ∈ Iτ∗ . Since given τ and λ, θj ∼

N(0, λ2
jτ

2), we use Chernoff type bounds for a Gaussian random variable to obtain,

pr
(
| θj |> δn/2p

1/2
n | λj, τ

)
≤ 2e

−
δ2
n

8λ2
jτ

2
≤ 2e

−
δ2

8λ2
jτ

2
∗ = 2e

−
p2
n

8s2
nλ

2
j .

Hence,

pr(| θj |< δn/2p
1/2
n | τ) =

∫
λj

pr(| θj |< δn/2p
1/2
n | λj, τ)f(λj)dλj

≥
∫
λj

{
1− 2 exp

(
− p2

n

8s2
nλ

2
j

)}
f(λj)dλj

= 1− 4

π

∫
λj

exp

(
− p2

n

8s2
nλ

2
j

)
(1 + λ2

j)
−1dλj = 1− 4

π
I,
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where I =
∫
λj

exp

(
− p2

n

8s2
nλ

2
j

)
(1+λ2

j)
−1dλj . We then bound the integrand from above as follows,

I =

∫
λj

exp

(
− p2

n

8s2
nλ

2
j

)
(1 + λ2

j)
−1dλj ≤

∫
λj

exp

(
− p2

n

8s2
nλ

2
j

)
λ−2
j dλj

=
1

2

∫ ∞
0

z−1/2 exp

(
−p

2
nz

8s2
n

)
dz, z = 1/λ2,

=
Γ(1/2)

2(p2
n/8s

2
n)1/2

=
sn
√

2π

pn
.

Thus for τ ∈ Iτ∗ , pr(| θj |< δn/2p
1/2
n | τ) ≥ 1−Rsn

pn
, where R = (32/π)1/2.

For pr(| θj − θ0j |< δ0|τ) with τ ∈ Iτ∗ , we have, letting δ0 = δn/2
√
sn

pr(| θj − θ0j |< δ0 | τ) = (2/π3)1/2

∫
λj

∫
|θj−θ0|<δ0

exp{−θ2
j/(2λ

2
jτ

2)} 1

λjτ(1 + λ2
j)
dλjdθj

≥ (2/π3)1/2

∫
|θj−θ0|<δ0

∫ 2θ0j/τ

θ0j/τ

exp{−θ2
j/(2λ

2
jτ

2)} 1

λjτ(1 + λ2
j)
dλjdθj

≥ (2/π3)1/2

∫
|θj−θ0|<δ0

exp

(
−
θ2
j

2θ2
0j

)
1

2θ0j

∫ 2θ0j/τ

θ0j/τ

1

1 + λ2
j

dλjdθj,

since for λj ∈ [θ0j/τ, 2θ0j/τ ], 1/λjτ ≥ 1/(2θ0j) and exp{−θ2
j/(2λ

2
jτ

2)} ≥ exp (−θ2
j/2θ

2
0j).

Moreover, in the interval [θ0j/τ, 2θ0j/τ ], (1 + λ2
j)
−1 ≥ (1 + 4θ2

0j/τ
2). Thus,

pr(| θj − θ0j |< δ0 | τ) ≥ (2/π3)1/2 1

2θ0j

θ0j

τ

1

1 + 4θ2
0j/τ

2

∫
|θj−θ0|<δ0

exp

(
−
θ2
j

2θ2
0j

)
dθj

= (2/π3)1/2 τ

4θ2
0j + τ 2

∫
|θj−θ0|<δ0

exp

(
−
θ2
j

2θ2
0j

)
dθj.

By the assumption that θ0j > δ0, it follows that θj/θ0j < 2 when | θj − θ0j |< δ0. Furthermore,

since for every τ ∈ Iτ∗ , τ 2 < τ 2
∗ < δ2

0 because sn/pn ≤ 1/2, we get 4θ2
0j + τ 2 < 5θ2

0j . Putting
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together these bounds in the above display and using θ2
0j ≤ pmn we get,

pr(| θj − θ0j |< δ0 | τ) ≥ (2/π3)1/2e−2 1

5θ2
0j

τδ0 = K(θ0j)
−2

(
sn
pn

)3/2
log pn
n
≥ Kp−(5/2+m)

n ,

(5.8)

assuming sn log pn ≥ 1 where K = 1
5
(2/π3)1/2e−2. Substituting these bounds in (5.7), we have

for τ ∈ Iτ∗

pr(‖θ − θ0‖ < δ | τ) ≥
(

1−Rsn
pn

)pn−sn
Ke−

5
2
sn log pn ≥ e−Cs log p, (5.9)

for some positive constant C. Then the unconditional prior mass ΠHS(|| θ− θ0 ||2< δn) admits the

following bound,

ΠHS(|| θ − θ0 ||2< δn) ≥ e−Csn log pn

∫
Iτ∗

g(τ)dτ ≥ e−Csn log pn
τ∗

2(1 + τ 2
∗ )

≥ e−Csn log pn
τ∗
4
≥ e−Csn log pn

for some positive constant C.

A version of theorem 5.3.1 appeared in [97] for bounded uniformly θ0. One key feature of our

proof is in choosing the global shrinkage parameter τ carefully so that sufficiently large number

of elements of a draw from ΠHS are shrunken towards zero. This happens if τ is restricted within

a constant interval of (sn/pn)3/2{(log pn)/n}1/2. The lower threshold 2−1
√

(log pn)/n represents

a certain minimum signal strength below which the prior is unable to distinguish it from a noise

variable. Such minimum thresholds exist in the literature [25] who call it the detection boundary.

Theorem 5.3.1 will be the key building block in our subsequent studies of several high-dimensional

models.
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5.4 Fractional posteriors

In this section we introduce fractional posteriors and related concepts developed recently in

[28]. Suppose we observe n independent but not necessarily identically distributed data points

X(n) = (X1, . . . , Xn) from a distribution Pθ where θ ∈ Θ is the parameter of interest. We assume

pθ to be the density of Pθ with respect to some dominating measure µ. Let (P(n)
θ , p

(n)
θ ) be the

corresponding product measure and density of the n random variables with respect to µ(n) . For

α ∈ (0, 1), the α-fractional likelihood is defined as,

Ln,α(θ) =
{
p

(n)
θ

}α
, (5.10)

the usual likelihood raised to the power α. Suppose Πn is a prior distribution on Θ. Then the

α-fractional posterior Πn,α is defined by substituting the α-fractional likelihood in equation (5.10)

in the usual Bayes theorem. For B ∈ B, the σ-field of Θ,

Πn,α(B | X(n)) =

∫
B
Ln,α(θ)Πn(dθ)∫

Θ
Ln,α(θ)Πn(dθ)

. (5.11)

We assume θ0 to be true value of the parameter and also assume that the model is correctly spec-

ified, i.e. θ0 ∈ Θ. To measure the recovery of θ0 we will use the Rényi divergence Dα(θ, θ0) =

Dα(p
(n)
θ , p

(n)
θ0

) of order α ∈ (0, 1) which for two densities q1 and q2 with respect to some common

dominating measure ν is defined as,

Dα(q1, q2) =
1

α− 1
log

∫
qα1 q

(1−α)
2 dν. (5.12)

[28] show that the rate of contraction of Πn,α at θ0 is determined by the concentration of Πn around

certain Kullback-Leibler type neighborhoods of θ. We state here the concentration result of Πn,α

from [28] for the sake of completeness. Define for every positive ε the set,

Bn(θ0, ε) =

{
θ ∈ Θ :

∫
p

(n)
θ0

log
p

(n)
θ0

p
(n)
θ

dµ(n) ≤ nε2 ,

∫
p

(n)
θ0

log2 p
(n)
θ0

p
(n)
θ

dµ(n) ≤ nε2

}
. (5.13)

67



The following theorem provides a nonasymptotic upper bound to the probability assigned by Πn,α

to Dα neighborhoods of θ0.

Theorem 5.4.1 ([28]). Fix α ∈ (0, 1). Suppose εn is such that nε2n ≥ 2. Let Πn satisfies

Πn(Bn(θ0, εn)) ≥ e−nε
2
n .

Then for any D ≥ 2 and t > 0,

Πn,α

(
θ ∈ Θ :

1

n
Dα(θ, θ0) ≥ D + 3t

1− α
ε2n
∣∣X(n)

)
≤ e−tnε

2
n

holds with P(n)
θ0

-probability at least 1− 2/(D − 1 + t)2nε2n.

A simple application of theorem 5.3.1 and 5.4.1 gives the following fractional posterior con-

centration result for model (5.1) with θ0 ∈ l0[sn; pn] and apriori θ ∼ ΠHS. With α ∈ (0, 1) and for

n independent copies Y (n) = (Y1, . . . , Yn) where each Yi is generated according to model (5.1),

the α-fractional posterior is given by,

Πn,α(θ | Y (n)) ∝ exp

(
−α

2

n∑
i=1

|| Yi − θ ||22

)
ΠHS(dθ) (5.14)

Theorem 5.4.2. Consider model (5.1). Let the true parameter θ0 ∈ l0[sn; pn] be such that for

j ∈ Sθ0 , 1
2

√
log pn
n
≤ θ0j ≤ pmn and sn, pn and n satisfy the conditions of theorem 5.3.1. Fix

α ∈ (0, 1). Then the α-fractional posterior Πn,α defined in (5.14) satisfies,

Πn,α

(
θ ∈ Θ :

α

2
|| θ − θ0 ||22≥

D + 3t

1− α
sn log pn

)
≤ e−tsn log pn

for any D ≥ 2 and t > 0 with P(n)
θ0

-probability at least 1− 2/{(D − 1 + t)2sn log pn}.

Proof. Let εn = {(sn log pn)/n}1/2. Since D (N(θ0, Ipn) || N(θ, Ipn)) = 2−1 || θ − θ0 ||22, the

set Bn(θ0, εn) ⊃ {θ :|| θ − θ0 ||22≤ ε2n}. From theorem 5.3.1 we then get ΠHS{Bn(θ0, εn)} ≥
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ΠHS(θ :|| θ− θ0 ||22≤ ε2n) ≥ e−Cnε
2
n . Therefore the theorem follows from theorem 5.4.1 noting that

Dα(θ, θ0) = nα
2
|| θ − θ0 ||22.

Given Πn,α satisfies theorem 5.4.1 with rate εn, [28, Corollary 3.3] prove that with P(n)
θ0

-

probability at least 1 − C1/(nε
2
n),
∫
n−1Dα(θ, θ0)Πn,α(dθ) ≤ C2(1 − α)−1εn for positive con-

stant C1, C2 independent of α. As a result, we get from theorem 5.4.2 that
∫
|| θ − θ0 ||22

Πn,α(dθ) ≤ C2{α(1 − α)}−1sn log pn with high P(n)
θ0

-probability. Then using the convexity of

the l2-norm followed by Jensen’s inequality it immediately follows that the α-fractional poste-

rior mean θ̄α =
∫
θΠn,α(dθ) is a rate optimal estimator in the minimax sense: || θ̄α − θ0 ||22≤

C2{α(1 − α)}−1sn log pn. [25] proved minimax optimality under l2 loss of the usual posterior

mean obtained from a horseshoe prior in the normal means model.

5.5 High-dimensional sparse linear regression

While the normal means model in equation (5.1) certainly provides insight into the operating

characteristics of the prior ΠHS, practical statistical models seldom admit such simple parameteri-

zation. We now consider the Gaussian linear regression model defined as,

yn = Xnβn + εn, εn ∼ Nn(0, σ2
nIn), (5.15)

where yn ∈ <n and Xn is a n × pn dimensional deterministic matrix. We focus on the high-

dimensional case where n ≤ pn and allow pn to grow with n exponentially fast; log pn ≤ nγ ,

for some γ ∈ (0, 1). Our object of interest will be the contraction rate of fractional posteriors

Πn,α when the true parameter β0n ∈ l0[sn; pn] and βn is endowed with the prior ΠHS. Fix α ∈

(0, 1). Since the additive error in model (5.15) is assumed to Gaussian, for any Borel set B ∈ <p,

Πn,α(B | yn) is,

Πn,α(B | yn) =

∫
B
e−

α
2
||y−Xnβn||22ΠHS(dβn)∫

e−
α
2
||y−Xnβn||22ΠHS(dβn)

. (5.16)

In the high-dimensional setting n ≤ pn, the structure of the design matrix plays a central role in

evaluating the performance of a statistical procedure [8]. However, for the relatively easier problem
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of prediction optimality is achieved by imposing the following minimal assumption on Xn.

Assumption 5.5.1. The entries of Xn satisfy ‖X‖ = max
1≤j≤pn

‖Xj‖2
2 � n. This holds if the entries

are standardized, a common practice. Also if the entries are generated from a distribution which

is independent of n and pn, for example from a N(0, 1) distribution.

We now generalize Theorem 5.4.1 to model (5.15).

Theorem 5.5.2. (Prediction recovery) Fix α ∈ (0, 1). Assume that β0n ∈ l0[sn; pn] satisfies the

conditions in theorem 5.4.2 and Xn satisfies assumption 5.5.1. Then for any D ≥ 2 and t > 0,

Πn,α

(
β ∈ <p :

α

2
|| Xnβ −Xnβ0n ||22≥

D + 3t

1− α
sn log pn

)
≤ e−tsn log pn ,

with P(n)
β0n

-probability at least 1− 2/{(D − 1 + t)2sn log pn}.

The proof of Theorem 5.5.2 follows along the same lines as that of Theorem 5.4.2. Assumption

5.5.1 is made to ensure sufficient prior concentration around β0 propagates to prior concentration

around Xnβ0n. The precise arguments are collected below.

Proof. For model (5.15) and for every ε > 0 we have Bn ⊃ {β : ‖Xβ − Xβ0‖2
2 < nε2}.

Now from Theorem 5.3.1 we have ΠHS{β : ‖β − β0‖2
2 < (sn log pn)/n} ≥ e−Csn log pn . Since

‖Xβ −Xβ0‖2
2 ≤ ‖X‖ ‖β − β0‖2

2 and ‖X‖ � n, the result immediately follows from 5.4.1.

Connections with previous work: The most comparable result to Theorem 5.5.2 for the prior

ΠHS is provided in [98] with the rate εn = sn log pn. The authors prove the equivalent of Theorem

5.5.2 for the usual posterior with prior ΠHS where they allow a deterministic choice of the global

shrinkage parameter τ . Thus, Theorem 5.5.2 establishes that the fractional posterior also achieves

the optimal convergence rate. In [99] convergence properties of the fractional posterior is studied

with a joint prior on the model size and the coefficients. [16] extensively studied the usual posterior

in model (5.15) with a similar prior as considered in [99].
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5.6 High-dimensional sparse factor models

Factor models are a widely popular tool to model the dependence structure of multi-dimensional

observations through a linear combination of unobserved underlying factors [100, 101]. When

the number of factors is sufficiently small compared to the dimension then it can also be inter-

preted as a dimension reduction tool [88]. Suppose we observe y1, . . . , yn ∼ N(0,Ωn) where

yi ∈ <pn , i = 1, . . . , n independently and our parameter of interest is Ωn. A k factor model

proposes the following decomposition,

yi = Λnηi + εi, (5.17)

where k � pn, ηi ∈ <k×1 are the unobserved factors, Λn ∈ <pn×k is the factor loading matrix

and εi ∼ N(0,Σn), Σn = σ2
nIpn . When ηi ∼ N(0, Ik), then Ωn = ΛnΛT

n + Σn. Thus model (5.17)

reduces the number of parameters from {pn(pn − 1)/2} to pn(k + 1) - a reduction of quadratic

to linear in pn. While for small to moderate pn model (5.17) may provide sufficient dimension

reduction, in many modern applications such as Genomics where pn may be in thousands, fur-

ther sparsity structure is warranted for devising efficient statistical procedures. Especially, in the

Bayesian framework [74] introduced sparse factor models where the loading matrix Λ is modeled

to be sparse via proper point mass mixture priors. See also [11, 102]. Computational challenges

involving point mass priors have motivated the an alternative class of priors known as shrinkage

priors. [36] used independent shrinkage priors on the columns of the loading matrix Λ starting with

a conservative estimate of the number of unknown factors. [37] elicited a prior on Λ by having

independent Dirichlet-Laplace priors [23] on the columns of Λ. The authors show minimax (upto

log factors) convergence rates of the posterior distribution in Frobenius and operator norm loss

when the dimension pn grows exponentially with n; log pn ≤ nγ, γ ∈ (0, 1).

Suppose Ω0n ∈ Cn is the true data generating parameter, i.e. we observe,

y(n) = (y1, . . . , yn), where yi
iid∼ N(0,Ω0n),
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where Cn is the cone of covariance matrices of order pn × pn. In order to estimate Ω0n, we model

the data as yi ∼ N(0,Ωn) and use (5.17) to decompose Ωn as Ωn = ΛnΛT
n + Σn. Before we begin

our prior prior specification, we list the assumption we make on Ω0n.

Assumption 5.6.1. Ω0n is of the form, Ω0n = Λ0nΛT
0n + Σ0n, where Λ0n ∈ <pn×k0n , k0n ≤ pn and

Σ0n = σ2
0nIpn .

Assumption 5.6.2. Each column of Λ0n ∈ ` [sn; pn] with sn = o(pn) and the entries of the columns

are uniformly bounded by some positive T .

Assumption 5.6.3. There are positive constants a and b such that a < smin(Ω0n) < smax(Ω0n) < b

for every n.

Suppose k∗ is a conservative estimate of the number of factors k0n. Although k0n is not known,

assuming k∗ > k0n, we will set our prior in order to shrink out the redundant (k∗ − k0n) columns.

To that end, letting Λj, j = 1, . . . , k∗ to be the jth column of Λn, we specify a the horseshoe prior

ΠHS with individual global shrinkage parameter τj for each column,

λhj | ψhj, τj ∼ N(0, ψ2
jhτ

2
j ), ψhj ∼ C+(0, 1), τj ∼ C+(0, 1). (5.18)

We call the joint prior on Λn as ΠΛn . As for the residual variance σ2
n, we use a Gamma(a, b)

prior which will be referred as Πσn . The joint prior thus elicited on Ωn through Λn and σn will be

denoted by ΠΩn = ΠΛn ⊗ Πσn . Under this setup, for a fixed α ∈ (0, 1), the α-fractional posterior

for B ∈ Cn is,

Πn,α(B | y(n)) =

∫
B

exp
{
−α

2

∑n
i=1 yiΩ

−1
n yi

}
ΠΩn(dΩn)∫

Cn exp
{
−α

2

∑n
i=1 yiΩ

−1
n yi

}
ΠΩn(dΩn)

(5.19)

The setBn from Theorem 5.4.1 on which we study the prior concentration in the current context

is characterized in the following lemma.

Lemma 5.6.4. For every positive ε, we have Bn(Ω0n, ε) ⊃ Ãn{(Λ0n, σ0n), ε}, where

Ãn{(Λ0n, σ0n), ε} = {(Λ0n, σ0n) : ‖Λ0n − Λn‖2
F < Cε2, (σ0n − σn)2 < Cε2/p2

n},
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for some positive constant C.

Proof. First we note that for every ε > 0, Bn(Ω0n, ε) ⊃ An(Ω0n, ε), where

An(Ω0n, ε) =

Ωn :

∫
p

(n)
Ω0n

log
p

(n)
Ω0n

p
(n)
Ωn

≤ nε2,

∫
p

(n)
Ω0n

(
log

p
(n)
Ω0n

p
(n)
Ωn

−
∫
p

(n)
Ω0n

log
p

(n)
Ω0n

p
(n)
Ωn

)2

≤ nε2

 .

(5.20)

The Kullback-Liebler divergence between N(0,Ω0n) and N(0,Ωn) is 2−1tr(Ω−1
n Ω0n − Ipn) +

log |ΩΩ−1
0n |. Hence we have,

∫
p

(n)
Ω0n

log
p

(n)
Ω0n

p
(n)
Ωn

= (n/2) tr(Ω−1
n Ω0n − Ipn) + log |ΩΩ−1

0n |.

By similar calculations we also have,

∫
p

Ω
(n)
0n

(
log

p
(n)
Ω0n

p
(n)
Ωn

−
∫
p

Ω
(n)
0n

log
p

(n)
Ω0n

p
(n)
Ωn

)2

= (n/2) tr
(
Ω−1
n Ω0n − Ipn

)2
=
∥∥Ω−1

n Ω0n − Ipn
∥∥2

F
.

From Lemma 1.3 of [37] we have that for δ ∈ (0, 1) and δ/smin(Ω0n) < 1/2, ‖Ω0n − Ωn‖2
F < δ

implies tr(Ω−1
n Ω0n− Ipn) + log |ΩΩ−1

0n | ≤ Cδ2, for some positive constant C. Also, from the same

result we get for ‖Ω0n − Ωn‖ < δ ‖Ω−1
n Ω0n − Ipn‖

2

F ≤ Kδ2, for some positive K. Therefore, the

setAn(Ω0n, ε) after adjusting for constants contains the setA∗n(Ω0n, ε) =
{

Ωn : ‖Ω0n − Ωn‖2
F ≤ Cε2

}
,

for some positive C.

Our next goal is to write A1
n(Ω0n, ε) in terms of Λ0n and σ0. If ‖Λ0n − Λn‖ < δ for sufficiently

small δ then,

‖Ω0n − Ωn‖2
F = ‖Λ0nΛT

0n − ΛnΛT

n + (σ0n − σ)Ipn‖
2
F

≤ ‖Λ0nΛT

0n − ΛnΛT

n‖
2
F + (σ0n − σ)2pn

≤ ‖Λ0n − Λn‖F ‖Λ0n − Λ‖2 + (σ0n − σ)2Ipn

≤ ‖Λ0n − Λ‖2
F 2 ‖Λ0n‖2

2 + (σ0n − σ)2Ipn ,
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where to obtain the first inequality we have used (a − b)2 ≤ 2(a2 + b2) and for the last two steps

we used ‖AB‖F ≤ ‖A‖2 ‖B‖F and ‖A‖2 ≤ ‖A‖F . Hence we have the following set containment,

A∗n(Ω0n, ε) ⊃ Ãn{(Λ0n, σ0n), ε} = {(Λ0n, σ0n) : ‖Λ0n − Λn‖2
F < Cε2, (σ0n − σn)2 < Cε2/p2

n}.

(5.21)

Suppose our initial guess of the number of factors k∗ is such that k∗ = Mk0n for some constant

M > 1. Then we have the following prior concentration result for Ãn{(Λ0n, σ0n), ε} for the prior

ΠΩn .

Theorem 5.6.5. Consider the prior ΠΩn . Then,

ΠΩn{Bn(Ω0n, ε)} ≥ e−Ck0nsn log pn ,

for some positive C.

Proof. From Lemma 5.6.4 we get ΠΩn{Bn(Ω0n, ε)} ≥ ΠΩn [Ãn{(Λ0n, σ0n), ε}]. The rest of the

proof is very similar to Lemma 4.0.4 and is omitted here.

Based on 5.6.5 we get the following convergence rate for the fractional posterior distribution

in Hellinger distance.

Theorem 5.6.6. For prior ΠΩn we have for any α ∈ (0, 1) and t > 0

Πn,α

{
Ωn : h2(pΩn0 , pΩn) ≥ D + 3t

(1− α)

}
≤ e−tk0nsn log pn ,

with P (n)
Ω0n

-probability at least 1− 2/{(D − 1 + t)2k0nsn log pn} for any D ≥ 2.

Proof. The result holds for any Rényi divergence of order α ∈ (0, 1) by Theorem 5.4.1. The claim

then follows from the equivalence of Rényi divergences [28].
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6. SUMMARY AND CONTRIBUTIONS

In this thesis we have attempted to lay a solid foundation for applications of shrinkage priors

in various high-dimensional problems. Our contributions cover the computational, methodological

and theoretical aspects of this class of priors.

In particular, in chapter 2 and 3 we focus on the computational and methodological part. We

develop an exact sampling algorithm for MCMC updates in chapter 2 which scales linearly in the

dimension. Then building on this fast algorithm, we extend shrinkage priors to model low-rank,

row-sparse matrices in 3. Finally, in chapter 5 we establish the minimax optimality of fractional

horseshoe posteriors in high-dimensional regression and factor models. Our prior concentration re-

sult can be easily adopted to cover other sparse situations such as dictionary learning, approximate

sparse factor models etc.
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APPENDIX A

FRACTIONAL VERSUS USUAL POSTERIOR

In this section, we provide some additional discussion regarding our adoption of the fractional

posterior framework in the main document. We begin with a detailed discussion on the sufficient

conditions required to establish posterior contraction rates for the usual posterior from [77] and

contrast them with those of fractional posteriors [28]. For simplicity, we discuss the i.i.d. case

although the discussion is broadly relevant beyond the i.i.d. setup. We set out with some notation.

Suppose we observe n independent and identically distributed random variablesX1, . . . , Xn | P ∼

P where P ∈ P , a family of probability measures. Denote Ln(P ) as the likelihood for this data

which we abbreviate and write as X(n). We treat P as our parameter of interest and define a prior

Πn for P .

Let P0 ∈ P be the true data generating distribution. For a measurable set B, the posterior

probability assigned to B is

Πn(B | X(n)) =

∫
B
Ln(P ) Πn(dP )∫

P Ln(P ) Πn(dP )
(A.1)

For α ∈ (0, 1), the α-fractional posterior Πn,α(· | Y ) is,

Πn,α(B | X(n)) =

∫
B
{Ln(P )}αΠn(dP )∫
P{Ln(P )}αΠn(dP )

. (A.2)

The fractional posterior is obtained upon raising the likelihood to a fractional power α and com-

bining with the prior using Bayes’s theorem.

Let p and p0 be the density of P and P0 respectively with respect to some measure µ and p(n)

and p(n)
0 be the corresponding joint densities. Suppose εn is a sequence such that εn → 0 and

nε2n → ∞ as n → ∞. Define Bn = {p :
∫
p

(n)
0 log p

(n)
0 /p(n) ≤ nε2n,

∫
p

(n)
0 log2 p

(n)
0 /p(n) ≤ nε2n}.

Given a metric ρ on P and δ > 0, let N(P ∗, ρ, δ) be the covering number of P ∗ ⊂ P [77]. For
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sake of concreteness, we focus on the case where ρ is the Hellinger distance. We now state the

sufficient conditions for Πn(· | X(n)) to contract at rate εn at P0 [77].

Theorem A.0.1 ([77]). Suppose εn be as above. If, there exists Pn ⊂ P and positive constants

C1, C2 such that,

1. logN(Pn, h, εn) . nε2n,

2. Πn(Pcn) ≤ e−C1nε2n , and

3. Πn(Bn) ≥ e−C3nε2n ,

then Πn{p : h2(p, p0) > Mεn | X(n)} → 0 in P0-probability for a sufficiently large M .

However, if we use the fractional posterior Πn,α(· | X(n)) for α ∈ (0, 1), then we have the

following result from [28],

Theorem A.0.2 ([28]). Suppose condition 3 from Theorem S1 is satisfied. Then Πn,α{h2(p, p0) >

Mεn | X(n)} → 0 in P0-probability.

We refer the reader to [28] for a more precise statement of Theorem A.0.2. The main difference

between Theorems A.0.1 and A.0.2 is that the same rate of convergence (upto constants) can be

arrived at verifying fewer conditions. The construction of the setsPn, known as sieves, can be chal-

lenging for heavy-tailed priors such as the horseshoe. On the other hand, one only needs to verify

the prior concentration bound Πn(Bn) ≥ e−C3nε2n to ensure contraction of the fractional posterior.

This allows one to obtain theoretical justification in complicated high-dimensional models as in

ours. To quote the authors of [28], ‘the condition of exponentially decaying prior mass assigned

to the complement of the sieve implies fairly strong restrictions on the prior tails and essentially

rules out heavy-tailed prior distributions on hyperparameters. On the other hand, a much broader

class of prior choices lead to provably optimal posterior behavior for the fractional posterior’.

That said, the proof of the technical results below illustrate that verifying the prior concentration

condition alone can pose a stiff technical challenge.

We now aim to provide some intuition behind why the theory simplifies with the fractional

posterior. Define Un = {p : h2(p, p0) > Mεn}. From equation (R2) and (R3) in [28] Un can be al-
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ternatively defined as, Un = {p : Dα(p, p0) > M∗εn}, where the constant M∗ can be derived from

M by the equivalence relation Rényi divergences [28, equation (R3)]. The posterior probability

assigned to the set Un is then obtained by (A.1) and the fractional posterior probability assigned

to Un follows from (A.2). Thus after dividing the numerator and denominator by the appropriate

power of Ln(P0) we get,

Π(Un | X(n)) =

∫
Un

Ln(P )

Ln(P0)
Πn(dP )∫

P

Ln(P )

Ln(P0)
Πn(dP )

, (A.3)

and

Πn,α(Un | X(n)) =

∫
Un

{
Ln(P )

Ln(P0)

}α
Πn(dP )∫

P

{
Ln(P )

Ln(P0)

}α
Πn(dP )

. (A.4)

Taking expectation of the numerator in (A.4) with respect to P0 and applying Fubini’s theorem to

interchange the integrals yields
∫
Un
e−(1−α)Dα(p,p0) Πn(dP ) which by definition of Un is small. The

same operation for (A.3) leads to
∫
Un

Πn(dP ) which isn’t necessarily small, needing the introduc-

tion of the sieves Pn in the analysis.

We conducted a small simulation study carried out to compare the results of Πn and Πn,α for

different choices of α in the context of model (3) in the main document with priors defined in

(4). We obtain virtually indistinguishable operating characteristics of the point estimates, further

corroborating our theoretical study.

We end this section by recording a high probability risk bound for the Rényi loss [28] in the

following corollary that is subsequently used.

Corollary A.0.3 ([28]). Fix α ∈ (0, 1). Recall the definition of Rényi divergence between p and

p0 from the main document: Dα(p, p0) = (α − 1)−1 log
∫
pαp1−α

0 dµ. Under the conditions of
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Table A.1: Empirical results comparing r̂, MSPE = (nq)−1‖XC−XC0 ||2F and MSE=(pq)−1‖C−
C0‖2

F for different choices of the fractional power α. α = 1 corresponds to the usual posterior.
The data used in this table was generated in a similar manner as described in section 3.4 of this
document.

(p,q)
(200,30) (500,10) (1000,12)

Independent Correlated Independent Correlated Independent Correlated
α Measures BSML SPLS BSML SPLS BSML SPLS BSML SPLS BSML SPLS BSML SPLS

r̂ 3.0 7.9 3.0 9.4 3.0 9.7 3.0 8.8 3.2 9.4 3.4 8.9
1 MSE 3 14 5 15 3 7 5 30 3 50 3 38

MSPE 0.07 0.25 0.06 0.17 0.22 0.15 0.34 0.21 0.35 4.19 0.30 1.51

r̂ 3.0 3.0 3.0 3.0 3.0 3.1
0.5 MSE 1.9 2.7 1.9 3.9 1.2 1.4

MSPE 0.05 0.06 0.15 0.25 0.22 0.32

r̂ 3.1 3.0 3.0 2.9 2.9 3.0
0.75 MSE 1.8 2.4 1.6 4.3 1.2 1.2

MSPE 0.08 0.07 0.16 0.22 0.32 0.31

r̂ 3.0 3.1 3.0 3.0 3.1 2.9
0.95 MSE 2.1 2.9 1.5 3.6 1.5 1.5

MSPE 0.09 0.07 0.16 0.29 0.31 0.31

Theorem A.0.2, for any k ≥ 1,

∫ {
1

n
Dα(p, p0)

}k
dΠn,α(· | X(n)) ≤ K1(1− α)−kε2kn ,

with P0-probability at least 1−K2/(nε
2
n), where K1 and K2 are positive constants independent of

α.
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