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ABSTRACT

Gene-environment interactions can be efficiently estimated in case-control data by existing

retrospective methods that assume gene-environment independence in the source population, but

such techniques require parametric modeling of the genetic variables. Standard logistic regression

analysis of case-control data has low power to detect gene-environment interactions, but it has been

the only method capable of analyzing complex polygenic data for which parametric distributional

models are not feasible.

This dissertation proposes a general, computationally simple, semiparametric method for anal-

ysis of case-control studies that allows exploitation of the assumption of gene-environment inde-

pendence without any further parametric modeling assumptions about the marginal distributions of

any of the two sets of factors. The method relies on the key observation that an underlying efficient

profile likelihood depends on the distribution of genetic factors only through certain expectation

terms that can be evaluated empirically.

This method is further improved by treating the genetic and environmental variables symmet-

rically to generate two sets of parameter estimates that are combined to generate a more efficient

estimate. A semiparametric framework is employed to develop the asymptotic theory of the estima-

tors, and their performance is evaluated via simulation studies. The methods are illustrated using

data from a case-control study of breast cancer, and free software implementing both methods is

demonstrated.
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1. INTRODUCTION

Recent genome-wide association studies indicate that the genetic predisposition for diseases

such as cancer and diabetes involves hundreds, if not thousands, of genetic variants (Chatterjee

et al., 2016; Fuchsberger et al., 2016). In order to understand disease mechanisms and develop

strategies for disease prevention, it is critical to know how these genetic factors interact with envi-

ronmental risk factors.

Case-control studies are retrospective observational studies in which the sample consists of a

group of healthy subjects and a group of diseased subjects. A crucial aspect of the case-control de-

sign is that the outcome, disease status, is known before sampling. The ability to deliberately over-

sample diseased subjects makes the case-control design cost effective, which is why it is widely

popular in studies of gene-environment interactions.

Existing methods of estimating gene-environment interactions in case-control data are either

inefficient or not flexible enough to handle more than a few genetic variants. The focus of this

dissertation is to provide flexible methodology, theory, and software for the efficient estimation of

polygenic gene-environment interactions in case-control data.
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2. SEMIPARAMETRIC ANALYSIS OF COMPLEX POLYGENIC GENE–ENVIRONMENT

INTERACTIONS IN CASE–CONTROL STUDIES*

Many methods have been recently proposed for efficient analysis of case–control studies of

gene-environment interactions using a retrospective likelihood framework that exploits the nat-

ural assumption of gene-environment independence in the underlying population. However, for

polygenic modeling of gene-environment interactions, a topic of increasing scientific interest, ap-

plications of retrospective methods have been limited due to a requirement in the literature for

parametric modeling of the distribution of the genetic factors. We propose a general, computation-

ally simple, semiparametric method for analysis of case–control studies that allows exploitation

of the assumption of gene–environment independence without any further parametric modeling

assumptions about the marginal distributions of any of the two sets of factors. The method relies

on the key observation that an underlying efficient profile likelihood depends on the distribution

of genetic factors only through certain expectation terms that can be evaluated empirically. We

develop asymptotic inferential theory for the estimator and evaluate numerical performance using

simulation studies. An application of the method is presented.

2.1 Introduction

Recent genome-wide association studies indicate that complex diseases, such as cancers, dia-

betes and heart diseases, are in general extremely polygenic (Chatterjee et al., 2016; Fuchsberger

et al., 2016). Genetic predisposition to a single disease may involve thousands of genetic vari-

ants, each of which may have a very small effect individually, but in combination they can explain

substantial variation in risk in the underlying population. As discoveries from genome-wide as-

sociation studies continue to enhance understanding of complex diseases, in the future, it will be

critical to understand how these genetic factors interact with environmental risk factors for both

*Reprinted with permission from “Semiparametric analysis of complex polygenic gene-environment interactions in
case-control studies” by Stalder, O., Asher, A., Liang, L., Carroll, R. J., Ma, Y., and Chatterjee, N., 2017. Biometrika,
104, 801-812, Copyright 2017 by Oxford University Press.
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understanding disease mechanisms and developing public health strategies for disease prevention.

Because of its sampling efficiency, the case–control design is widely popular for conducting

studies of genetic associations and gene–environment interactions. A variety of analytic methods

have been proposed to increase the efficiency of analysis of case–control data for studies of gene–

environment interactions by exploiting an assumption of gene–environment independence in the

underlying population. It has been shown that under the assumptions of gene–environment inde-

pendence and rare disease, the interaction odds-ratio parameters of a logistic regression model can

efficiently be estimated based on cases alone (Piegorsch et al., 1994). A general logistic regression

model can be fit to case–control data under the gene–environment independence assumption using

a log-linear modeling framework (Umbach and Weinberg, 1997) or a semiparametric retrospec-

tive profile likelihood framework (Chatterjee and Carroll, 2005). More recently, the assumption of

gene–environment independence has been exploited to propose a variety of powerful hypothesis

testing methods for conducting genome-wide scans of gene–environment interactions (Gauderman

et al., 2013; Han et al., 2015; Hsu et al., 2012; Mukherjee et al., 2012; Mukherjee and Chatterjee,

2008; Murcray et al., 2009).

We consider developing methods for efficient analysis of case–control studies for modeling

gene–environment interactions involving multiple genetic variants simultaneously. To develop

parsimonious models for joint effects, many studies have recently focused on developing models

for gene–environment interactions using underlying polygenic risk scores that could be defined by

all known genetic variants associated with the diseases (Chatterjee et al., 2016, 2013; Dudbridge,

2013; Meigs et al., 2008; Wacholder et al., 2010). Further, for obtaining improved biological

insights and for enhancing statistical power for detection, it may often be desired to model gene–

environment interactions using multiple variants within genomic regions or/and biologic pathways

(Chatterjee et al., 2006; Jiao et al., 2013; Lin et al., 2013, 2015). In standard prospective logistic

regression analysis, which conditions on both the genetic and environmental risk factor status of

the individuals, handling multiple genetic variants is relatively straightforward. In contrast, with

“retrospective” methods, which aim to exploit the assumption of gene–environment independence,
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the task becomes complicated because all currently existing methods require parametric modeling

of the distribution of the genetic or environmental variables.

We propose computationally simple methodology for fitting general logistic regression models

to case–control data under the assumption of gene–environment independence, but without re-

quiring any further modeling assumptions about the distributions of the genetic or environmental

variables. We extend the Chatterjee–Carroll profile likelihood framework, which originally con-

sidered modeling gene–environment interactions using single genetic variants for which genotype

status could be specified using parametric multinomial models. The new method relies on the

observation that the profile likelihood itself can be estimated based on an empirical genotype dis-

tribution that is estimable from a case–control sample. We develop the asymptotic theory of the

resulting estimator under a semiparametric inferential framework. Simulations and an example

illustrate the properties of the new methodology.

2.2 Model, Method and Theory

2.2.1 Background, model and method

In the following, we use notation similar to that of Chatterjee and Carroll (2005). We will

denote disease status, genetic information and environmental risk factors by D, G and X , re-

spectively. Here G may correspond to a complex multivariate genotype associated with multiple

genetic variants or a continuous polygenic risk score that is defined a priori based on known asso-

ciations of the genetic variants with the disease. We assume the risk of the disease given genetic

and environmental factors in the underlying population can be specified using a model of the form

pr(D = 1 | G,X) = H{α0 +m(G,X, β)}, (2.1)

where H(x) = {1 + exp(−x)}−1 is the logistic distribution function and m(G,X, β) is a paramet-

rically specified function that defines a model for the joint effect of G and X on the logistic-risk

scale. The goal of the gene–environment interaction study is to make inference on the parameters

β in (2.1), including interaction parameters.
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Let F (G,X) denote the joint distribution of G and X in the underlying population. The key

assumption that genetic, G, and environmental factors, X , are independently distributed in the

underlying population can be mathematically stated as

dF (G,X) = dFG(G)× dFX(X),

where FG and FX denote the underlying marginal distributions of G and X , respectively. In

the Supplementary Material we discuss how to weaken this assumption by suitable conditioning

on additional stratification factors. In contrast to the existing literature, here we assume that the

marginal distributions FG(G) and FX(X) are both completely unspecified.

We consider a population-based case–control study, in which (G,X) are sampled indepen-

dently from those with the disease, called cases, and those without the disease, called controls.

Suppose there are n1 cases and n0 controls. Standard prospective logistic regression analysis,

which is equivalent to maximum likelihood estimation when F (G,X) is allowed to be completely

unspecified, yields consistent estimates of β (Prentice and Pyke, 1979).

The retrospective likelihood is the probability of observing the genetic and environmental vari-

ables, given the subject’s disease status. Under gene–environment independence in the underlying

population, the retrospective likelihood is

pr(G = g,X = x|D = d) = pr(D = d|G = g,X = x)pr(G = g)pr(X = x)/pr(D = d).

Let fG(·) and fX(·) represent the density/mass functions of G and X , respectively. The retrospec-

tive likelihood is

fG(g)fX(x) exp[d{α0 +m(g, x, β)}]/[1 + exp{α0 +m(g, x, β)}]∫
fG(u)fX(v) exp[d{α0 +m(u, v, β)}]/[1 + exp{α0 +m(u, v, β)}]dudv

. (2.2)

Chatterjee and Carroll (2005) profiled out fX(·) by treating it as discrete on the set of distinct

observed values (x1, . . . , xm) of X with probabilities δi = pr(X = xi), and then maximized (2.2)
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over (δ1, . . . , δm), leading eventually to the semiparametric profile likelihood described as follows.

Define κ = α0 + log(n1/n0) − log(π1/π0), where π1 = 1 − π0 = pr(D = 1) is defined as the

probability of the disease in the underlying population. Define Ω = (κ,βT)T. Also define

S(d, g, x,Ω) =
exp[d{κ+m(g, x, β)}]

1 + exp{κ+ log(π1/π0)− log(n1/n0) +m(g, x, β)}
.

Then, with this notation, the semiparametric profile likelihood is

L(D,G,X,Ω, fG) = fG(G)
S(D,G,X,Ω)∑1

d=0

∫
fG(v)S(d, v,X,Ω)dv

. (2.3)

While the representation in (2.3) does not involve the unknown density of X , it does involve the

unknown density of G. This is a major reason that the current literature specifies a parametric

distribution for G. Our task in this paper is to dispense with the need to give a parametric form for

the distribution function ofG, so that analysis can be performed with respect to potentially complex

multivariate genotype data for which parametric modeling can be difficult and cumbersome.

Here is our key insight, which we discuss first in the context that π1 is known or at least can be

estimated well. For case–control studies that are conducted within well defined populations, rel-

evant probabilities of the disease can be ascertained based on population-based disease registries.

When case–control studies are conducted by sampling of subjects within a larger cohort study, the

probability of the disease in the underlying population can be estimated using the disease incidence

rate observed in the cohort.

Our key insight in treating the distribution of G as nonparametric concerns the term in the

denominator of (2.3), defined as

R(x,Ω) =
∑1

r=0

∫
fG(v)S(r, v, x,Ω)dv.

This is simply the expectation, in the source population, of
∑1

r=0 S(r,G, x,Ω). That is, R(x,Ω) =

Epop{
∑1

r=0 S(r,G, x,Ω)}, where the subscript pop emphasizes that the expectation is in the source
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population, not the case–control study. However, crucially,

R(x,Ω) = π1E{
∑1

r=0S(r,G, x,Ω) | D = 1}+ π0E{
∑1

r=0S(r,G, x,Ω) | D = 0}. (2.4)

Of course, R(x,Ω) is unknown, but we estimate it unbiasedly and nonparametrically by

R̂(x,Ω) =
∑J

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj, x,Ω). (2.5)

In the Supplementary Material, we show that R̂(x,Ω) is an unbiased estimate of R(x,Ω), that is

n1/2-consistent, and that it is asymptotically normally distributed.

Ignoring the leading term fG(G) in (2.3), which is not estimated, and taking logarithms, leads

us to an estimated loglikelihood in Ω across the data as

L(Ω) =
∑n

i=1logS(Di, Gi, Xi,Ω)−
∑n

i=1logR̂(Xi,Ω). (2.6)

Define SΩ(d, g, x,Ω) = ∂S(d, g, x,Ω)/∂Ω and similarly for R̂Ω(x,Ω). Then the estimated score

function, a type of estimated estimating equation, is

Ŝn(Ω) = n−1/2

n∑
i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
. (2.7)

Define

Sn(Ω) = n−1/2

n∑
i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

}
,

which is the profile loglikelihood score function when the distribution of G is known. Since the

profile loglikelihood score of Chatterjee and Carroll (2005) would have mean zero if the distribu-

tion of G were known, it follows that

E {Sn(Ω)} = 0, (2.8)
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where the expectation in (2.8) is taken in the case–control study, not in the source population. Thus,

since R̂(x,Ω) and R̂Ω(x,Ω) converge in probability to R(x,Ω) and RΩ(x,Ω), respectively, a con-

sistent estimate of Ω can be obtained by solving Ŝn(Ω) = 0. This estimate Ω̂, which maximizes the

semiparametric pseudolikelihood (2.6), will be referred to as the semiparametric pseudolikelihood

estimator.

2.2.2 Rare diseases when π1 is unknown

When the probability of disease in the source population is unknown, one can invoke a rare

disease assumption which is often reasonable for case–control studies (Epstein and Satten, 2003;

Kwee et al., 2007; Lin and Zeng, 2006; Modan et al., 2001; Piegorsch et al., 1994; Zhao et al.,

2003). If we assume that π1 ≈ 0, then S(d, g, x,Ω) ≈ exp[d{κ+m(g, x, β}], and the expectation

involved in calculation of R(X,Ω) can be evaluated based on the sample of controls, with D = 0,

only. In this case, the estimates of Ω converge not to Ω itself, but instead to Ω∗, the solution to (2.8)

with π1 = 0. Typically, except when the sample size is very large and hence standard errors are

unusually small, the small possible bias of the rare disease approximation is of little consequence

and coverage probabilities of confidence intervals remain near nominal, see §2.3 for examples.

The asymptotic theory of §2.2.3 below is then unchanged.

In the Supplementary Material, we show that the score and the Hessian take on simple forms

in this case, and that the Hessian is negative semidefinite. Computation is thus very efficient.

2.2.3 Asymptotic theory

To state the asymptotic results, we first make the definitions

Γ1 =
∑1

d=0(nd/n)E

{
∂SΩ(D,G,X,Ω)/S(D,G,X,Ω)

∂ΩT

∣∣∣∣D = d

}
;

Γ2 =
∑1

d=0(nd/n)E

{
∂RΩ(X,Ω)/R(X,Ω)

∂ΩT

∣∣∣∣D = d

}
.

In addition, define cd = nd/n, Zi = (Di, Gi, Xi), P1(Xi,Ω) = 1/R(Xi,Ω) and P2(Xi,Ω) =

RΩ(Xi,Ω)/R2(Xi,Ω).
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We use the notational convention that for arbitrary functions (P, T ), TE(r, d, x) = E{T (r,G, x) |

D = d}. Also, we use the convention that

E [P (X) {T (r, gi, X)− TE(r, d,X)} | D = t]

= E [P (X) {T (r, g,X)− TE(r, d,X)} | D = t]g=Gi
.

Define

ζ(Zi,Ω) =
SΩ(Zi,Ω)

S(Zi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

−
1∑

d=0

1∑
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d] .

Finally, define ζ∗(Zi,Ω) = ζ(Zi,Ω)− E{ζ(Z,Ω) | D = Di}.

Theorem 1. Suppose nd/n→ cd, where 0 < cd <∞, and that π1 is known. Then

n1/2(Ω̂− Ω) = −(Γ1 − Γ2)−1n−1/2
∑n

i=1ζ∗(Zi,Ω) + op(1). (2.9)

Thus, since the Zi are independent and E{ζ∗(Z,Ω) | Di} = 0, as n→∞, in distribution,

n1/2(Ω̂− Ω) → Normal
[
0, (Γ1 − Γ2)−1Σ{(Γ1 − Γ2)−1}T

]
;

Σ =
∑1

d=0(nd/n)cov{ζ∗(D,X,G,Ω) | D = d}

=
∑1

d=0(nd/n)cov{ζ(D,X,G,Ω) | D = d}.

In §2.2.2, when π1 is unknown and the disease is relatively rare, the same result holds by setting

π1 = 0.
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2.3 Simulations

2.3.1 Overview

In our simulations, m(G,X, β) = GTβG + XβX + (GX)TβGX and the value of X is binary

with population frequency 0.5. There are either three or five correlated single nucleotide polymor-

phisms within a region: we report the latter case, but the results for the former are similar. Each

single nucleotide polymorphism takes on the values 0, 1 or 2 following a trinomial distribution that

follows Hardy–Weinberg equilibrium, i.e., the jth component ofG equals 0, 1, 2 with probabilities

{(1− pj)2, 2pj(1− pj), p2
j}. The values of the pj are described below.

To generate correlation among the single nucleotide polymorphisms, we first generated a 3 or

5-variate multivariate normal variate, each with mean 0 and standard deviation 1, and a correlation

matrix with correlation between the jth and kth component = ρ|j−k|, where ρ = 0.7. After gener-

ating these random variables, we trichotomized them with appropriate thresholds so that frequency

of 0, 1 and 2 matched those specified by the allele frequency pj and Hardy–Weinberg equilibrium.
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Table 2.1: Results of 1000 simulations as described in §2.3, with mean bias, coverage probabili-
ties of a 95% nominal confidence interval, and mean squared error efficiency of our semiparametric
pseudolikelihood estimator compared to ordinary logistic regression. The simulations were per-
formed with 1000 cases and 1000 controls.

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic: 1000 cases
Bias 0.00 0.01 0.00 0.01 −0.01 0.01 0.01 −0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

SPMLE, Rare: 1000 cases
Bias 0.01 0.00 0.00 0.02 −0.01 0.02 −0.02 −0.01 0.01 −0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
Avg MSE Eff All G: 1.28 All X: 1.26 All G ∗X: 2.18

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.01 −0.01 0.01 0.00 −0.01 0.01 −0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
Avg MSE Eff All G: 1.28 All X: 1.28 All G ∗X: 2.07

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1 (§2.2.2); SPMLE, π1 known is our estimator when π1 is known in the source population
(§2.2.1); CI (%) is the coverage in percent of a nominal 95% confidence interval (calculated using the
asymptotic standard error); Avg MSE Eff is the mean squared error efficiency of our method compared to
logistic regression averaged over G (All G), over X (All X) and over the G ∗X (All G ∗X) interactions.

In both simulations, the logistic intercept α0 was chosen so that the population disease rate π1 =

0.03. However additional simulations with π1 = 0.01 yielded very similar results with regards

to coverage, efficiency gains, and unbiasedness. See also §2.3.3 for a discussion of additional

simulations, and the Supplementary Material. In the simulation reported here, (p1, p2, p3, p4, p5) =

(0.1, 0.3, 0.3, 0.3, 0.1), βX = log(1.5), βG = {log(1.2), log(1.2), 0.0, log(1.2), 0.0}, and βGX =

{log(1.3), 0.0, 0.0, log(1.3), 0.0}. Here the value of α0 = −4.14.

2.3.2 Results

The standard error estimators used in our simulation were based on the asymptotic theory

described in Theorem 1: we also used the bootstrap, with very similar results. The appropriate
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bootstrap in a case–control study is to resample the cases and controls separately, thus maintaining

the sample sizes for each.

The simulation results are presented in Table 2.1. Our semiparametric pseudolikelihood esti-

mator has little bias and coverage percentages near the nominal level. Both with a rare disease

approximation and with π1 known, our semiparametric pseudolikelihood estimator achieves ap-

proximately a 25% increase in mean squared error efficiency over ordinary logistic regression for

the main effects in both G and X .

Strikingly, the mean squared error efficiency of our semiparametric pseudolikelihood estima-

tors compared to ordinary logistic regression is approximately 2.00 for all the interaction terms,

thus demonstrating that our methods, which do not model the distribution of eitherG orX , achieve

numerically significant increases in efficiency.

2.3.3 Additional simulations

The Supplementary Material presents a series of additional simulations. These include the re-

sults of a simulation to evaluate the robustness of our method to misspecification of the population

disease rate, where we found a surprising robustness to disease rate misspecification. Addition-

ally, there are simulations to examine the robustness of our method to violations of the gene–

environment independence assumption. Those simulation studies show that there will be bias in

the estimate of gene–environment interaction parameters for the specific single nucleotide poly-

morphisms under violation of gene–environment independence, but average mean square error for

parameter estimates across all the different single nucleotide polymorphisms could be still substan-

tially lower than that obtained from prospective logistic regression analysis. We also show there

how to remove this bias when G and E are independent conditional on a discrete stratification vari-

able. Mukherjee and Chatterjee (2008) and Chen et al. (2009) show how to use empirical-Bayes

methods to provide additional robustness to violations of the gene–environment independence as-

sumption.
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2.4 Data Analysis

In this section, we apply our methodology to a case–control study for breast cancer arising

from a large prospective cohort at the National Cancer Institute: the Prostate, Lung, Colorectal and

Ovarian cancer screening trial (Canzian et al., 2010). The design of this study is described in detail

by Prorok et al. (2000) and Hayes et al. (2000). The cohort data consisted of 622, 449 women, of

whom 3.56% developed breast cancer (Pfeiffer et al., 2013). The case–control study analyzed here

consists of 753 controls and 658 cases. Although π1 is known in this population, we analyze the

data both with π1 known and with π1 unknown but with a rare disease approximation.

We had data available on genotypes for 21 single nucleotide polymorphisms that have been

previously associated with breast cancer based on large genome-wide association studies. The

polygenic risk score was defined by a weighted combination of the genotypes, with the weights

defined by log-odds-ratio coefficients reported in prior studies. We examined the interaction of the

polygenic risk score with age at menarche (X), a known risk factor for breast cancer, defined as

the binary indicator of whether the age at menarche exceeds 13 or not. We also adjust the model

for age as a continuous variable, denoted here as Z, so that the model fitted is

pr(D = 1) = H(β0 + βGG+ βXX + βGXGX + βZZ). (2.10)

Results in which age was categorized as < 35, 35-40, 40-45,. . . ,> 75 were similar.

We also performed analyses to check the gene–environment independence assumption. Since

X is binary, we ran a t-test of the polygenic risk score against the levels of X , of course among the

controls only. The p-value was 0.91, indicating almost no genetic effect. We also ran chisquared

tests for the 21 individual genes, finding no significant association after controlling the false dis-

covery rate: the minimum q–value was 0.09. We also checked for correlation, known as linkage

disequilibrium, between the 21 loci used to create the polygenic risk score and 32 loci that are

known to influence age at menarche (Elks et al., 2010). The data available to us do not have the

necessary information to analyze linkage disequilibrium between the two sets of loci.
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Table 2.2: Results of the analysis of the Prostate, Lung, Colorectal and Ovarian cancer screening
trial data

βZ βG βX βGX

Logistic
Estimate 0.018 0.297 −0.165 0.124
std err 0.054 0.064 0.132 0.068
p–value 7.45× 10−1 3.19× 10−6 2.10× 10−1 6.87× 10−2

SPMLE, Rare
Estimate 0.024 0.321 −0.175 0.138
std err (asymptotic) 0.054 0.067 0.134 0.055
p–value (asymptotic) 6.60× 10−1 1.62× 10−6 1.91× 10−1 1.16× 10−2

SPMLE, π1 known
Estimate 0.022 0.313 −0.174 0.141
std err (asymptotic) 0.054 0.065 0.133 0.055
p–value (asymptotic) 6.78× 10−1 1.64× 10−6 1.93× 10−1 1.13× 10−2

Logistic is ordinary logistic regression; SPMLE, Rare is our method using the rare disease approximation
with unknown π1; SPMLE, π1 known is our method when the disease rate is known in the source population
(π1 = 3.56%); std err is the asymptotic standard error estimate; βZ is the main effect for age; βG and βX
are the main effects for the polygenic risk score (G) and the environmental variable X (age at menarche >
13), respectively; βGX is the gene–environment interaction.

Using phased haplotypes from subjects of European descent from 1000 Genomes (Consortium,

2015) and HapMap (Gibbs et al., 2003), no evidence of linkage disequilibrium was found: the

maximum R2 was 0.1 and the minimum q–value was 0.85. Finally, a 2014 study examined the

relationship between age at menarche and 10 of the 21 SNPs used to create our polygenic risk

score, none of which were found to influence age at menarche (Andersen et al., 2014).

Table 2.2 presents the results for the cases that π1 is unknown and known, respectively: as

remarked upon previously, the results are very similar. To provide a basis for comparison because

of the very different scales of the variables, the variable age at baseline was standardized to have

mean zero and standard deviation one. In addition, we standardized some of the coefficient esti-

mates so that βG was multiplied by the standard deviation of the polygenic risk score, and βGX

was multiplied by the standard deviation of X times the polygenic risk score.
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As expected from the known association of the single nucleotide polymorphisms with risk of

breast cancer, the polygenic risk score was strongly associated with breast cancer status of the

women in the study. Standard logistic regression analysis reveals some evidence for interaction of

the polygenic risk score with age-at-menarche, but the result was not statistically significant at the

0.05 level. When the analysis was done under the gene–environment independence assumption,

the evidence of interaction appeared to be stronger.

The coefficient estimate for the interaction term is slightly larger for our semiparametric meth-

ods than that for logistic regression. Also, the asymptotic standard error estimate of logistic re-

gression is approximately 23% larger than our methods, indicating a variance increase of ≈ 50%.

Although not listed here, the bootstrap mentioned in §2.3.2 has very similar standard error esti-

mates. In that bootstrap, 33% of the time, the logistic interaction estimate was actually greater

than that of the disease rate known estimate.

2.5 Discussion and Extensions

We have proposed a general method for using retrospective likelihoods for studying gene–

environment interactions involving multiple markers, a method that does not require any distribu-

tional assumption of the multivariate genotype distribution. Sometimes, one may consider model-

ing multi–marker gene–environment interactions using an underlying polygenic risk score, which

is a weighted combination of numerous genetic markers where the weights are pre-determined

from previous association studies. In such situations, the polygenic risk score might be assumed to

follow approximately a normal distribution in the underlying population and the profile likelihood

method of Chatterjee and Carroll (2005) can be used with appropriate modification by replacing

the parametric multinomial distribution for a single nucleotide polymorphism genotype by a para-

metric normal distribution for the polygenic risk score, see also Chen et al. (2008) and Lin and

Zeng (2009). In general, however, when an investigator desires to explore complex models for

multivariate gene–environment interactions retaining separate parameters for distinct single nu-

cleotide polymorphisms or for distinct genetic profiles defined by combinations of correlated sin-

gle nucleotide polymorphisms, then one cannot avoid dealing with complex multivariate genotype
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distributions, something that is not easy to specify through parametric models.

Our methods are types of semiparametric plug-in estimators, and thus have certain features in

common with the work of Newey (1994), namely that the profile likelihood has the nonparametric

component R(x,Ω) in (2.4) that is estimated by (2.5). Generally, however, such plug-in estimators

are not semiparametric efficient. We believe it will be possible to create an efficient semiparametric

estimator by modifying the work of Ma (2010): we are exploring this and its computational aspects,

which may be daunting.

Supplementary Material

Supplementary Material available in the Appendix and at Biometrika online contains proofs,

skewness and kurtosis and q–q plots for the simulation in Table 1, how to modify our methods

to account for strata, additional simulations and software written in R. The data used in §2.4 are

available from the National Cancer Institute via a data transfer agreement.
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3. IMPROVED SEMIPARAMETRIC ANALYSIS OF POLYGENIC GENE-ENVIRONMENT

INTERACTIONS IN CASE-CONTROL STUDIES

Standard logistic regression analysis of case-control data has low power to detect gene-environment

interactions, but until recently it was the only method that could be used on complex polygenic

data for which parametric distributional models are not feasible. Under the assumption of gene-

environment independence in the underlying population, Stalder et al. (2017, Biometrika, 104,

801-812) developed a retrospective method that treats both genetic and environmental variables

nonparametrically. We propose an improvement to the method of Stalder et al. that increases the

efficiency of the estimates with no additional assumptions and modest computational cost. This

improvement is achieved by treating the genetic and environmental variables symmetrically to gen-

erate two sets of parameter estimates that are combined to generate a more efficient estimate. We

employ a semiparametric framework to develop the asymptotic theory of the estimator, and evalu-

ate its performance via simulation studies. The method is illustrated using data from a case-control

study of breast cancer.

3.1 Introduction

Genetic epidemiologists have identified both genetic and environmental factors that influence

the incidence of complex diseases such as cancers, heart diseases, depression, and diabetes (Gus-

tavsson et al., 2016; Krischer et al., 2017; Mullins et al., 2016; Nickels, 2013; Rudolph, 2015).

As new studies identify additional genetic variants associated with a disease, attention turns to

exploring the interaction between genetic susceptibility and environmental risk factors.

Researchers studying gene-environment interactions often adopt a case-control study design,

wherein diseased cases and healthy control subjects are identified and their covariate information is

collected retrospectively. When the disease is rare, sampling cases and controls separately provides

substantial cost and time savings over a prospective cohort study, but it makes statistical inference

more complicated.
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Prentice and Pyke (1979) demonstrated that standard prospective logistic regression of case-

control data, which ignores the retrospective sampling scheme, nevertheless yields consistent esti-

mates of all parameters except the logistic intercept. Logistic regression is equivalent to maximum

likelihood estimation under a model that places no assumptions on the joint distribution of the

genetic and environmental variables, and it achieves the variance lower bound under this model

(Breslow et al., 2000).

To improve estimation efficiency, studies of gene-environment interactions often take advan-

tage of the relatively mild assumption that the genetic and environmental variables are indepen-

dently distributed in the source population. This assumption is easy to test, is frequently valid,

and enables the use of specialized methods for the analysis of case-control data. Piegorsch et al.

(1994) proposed a case-only approach that efficiently estimates multiplicative interactions (but not

main effects) under the assumptions of gene-environment independence and rare disease. Chat-

terjee and Carroll (2005) exploited the gene-environment independence assumption to develop a

semiparametric retrospective profile likelihood framework that treats environmental variables non-

parametrically but assumes that the genetic variables have a known, discrete distribution. Further

developments have yielded additional retrospective methods based on parametric modeling of the

distribution of genetic variables given the environmental variables, see for example Han et al.

(2012); Lobach et al. (2008); Ma (2010).

Genome-wide association studies have shown that genetic predisposition to a single disease

tends to be highly polygenic, with many genetic variants influencing disease risk (Chatterjee et al.,

2016; Fuchsberger et al., 2016). To provide a more complete picture of genetic risk and gene-

environment interactions, it is often advantageous to include multiple genetic loci in the disease

model (Chatterjee et al., 2006; Jiao et al., 2013; Lin et al., 2015). In the interest of parsimony,

many studies have focused on developing polygenic risk scores through a weighted combination

of all known genetic variants associated with a disease (Chatterjee et al., 2013; Dudbridge, 2013).

Handling multiple genetic variants, polygenic risk scores, or a combination of both is straight-

forward with prospective logistic regression, but can be unwieldy or even impossible when using

18



retrospective methods that exploit gene-environment independence to gain efficiency but require a

parametric model for the distribution of the genetic component.

The method of Stalder et al. (2017) extends the Chatterjee-Carroll retrospective profile likeli-

hood framework by treating both the genetic and environmental variables nonparametrically, re-

quiring only the assumption of gene-environment independence in the source population. This

assumption of independence can be weakened if a discrete stratification variable is found such that

genes and environment are independent within strata of the source population.

Here we propose an improvement to the method of Stalder et al. (2017) that increases the

efficiency of the estimates with no additional assumptions and modest computational cost. This

development relies on the observation that the method of Stalder et al. removes dependence on the

distribution of the genetic and environmental variables in two different fashions; by treating the

genetic and environmental variables symmetrically we generate two sets of parameter estimates

that are combined to generate a more efficient estimate. We employ a semiparametric framework

to develop the asymptotic theory of the estimator. The properties of the new method are illustrated

through simulations in Section 3.3, and an example in Section 3.4.

3.2 Methodology and Theory

3.2.1 Background

We adopt notation similar to that of Stalder et al., with disease status, genetic information, and

environmental risk factors denoted by D, G, and X , respectively. Both G and X are potentially

multivariate and can contain both discrete and continuous components. For a given case-control

study, n1 is the number of cases (D = 1) and n0 is the number of controls (D = 0), while

π1 = pr(D = 1) is the disease rate in the source population and π0 = 1 − π1. We maintain the

assumption in Stalder et al. that π1 is either known or can be estimated well.

The assumption of gene-environment independence in the source population can be written as

fGX(g, x) = fG(g) × fX(x), where fGX(·, ·) is the joint density or mass of G and X in the un-

derlying population, and fG(·) and fX(·) are the marginal density or mass functions of G and X ,
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respectively, in the underlying population. We assume fX(x) and fG(g) are completely unspeci-

fied.

Given the genetic and environmental covariates, we assume the risk of disease in the underlying

population follows the model pr(D = 1 | G,X) = H{α0 + m(G,X,β)}, where H(x) = {1 +

exp(−x)}−1 is the logistic distribution function and m(G,X,β) is a function that describes the

joint effect of G and X and is known up to the unspecified parameters of interest β.

Given the subject’s disease status, the retrospective likelihood is the probability of observing

the genetic and environmental variables. Under gene-environment independence in the source

population, the retrospective likelihood is

fG(g)fX(x) exp[d{α0 +m(g, x, β)}]/[1 + exp{α0 +m(g, x, β)}]∫
fG(u)fX(v) exp[d{α0 +m(u, v, β)}]/[1 + exp{α0 +m(u, v, β)}]dudv

.

The logistic intercept α0, typically of little scientific interest, is not consistently estimated using

prospective logistic regression, which instead converges to κ = α0 + log(n1/n0) − log(π1/π0)

(Prentice and Pyke, 1979). For convenience, we parameterize everything in terms of κ, and we

define Ω = (κ,βT)T. Chatterjee and Carroll (2005) profiled out fX(·) to create a semiparametric

profile likelihood

LX(D,G,X,Ω, fG) = fG(G)
S(D,G,X,Ω)

RX(X,Ω)
, (3.1)

where

S(d, g, x,Ω) =
exp[d{κ+m(g, x, β)}]

1 + exp{κ− log(n1/n0) + log(π1/π0) +m(g, x, β)}
;

RX(x,Ω) =
∑1

r=0

∫
fG(v)S(r, v, x,Ω)dv. (3.2)

The key insight of Stalder et al. (2017) was to develop an unbiased estimator of RX(x,Ω) that

treats fG(·) nonparametrically, defined as

R̂X(x,Ω) =
∑n

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj, x,Ω). (3.3)
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The leading term fG(G) in eq. (3.1) is constant with respect to Ω, and can be ignored for the

purpose of estimation. Replacing RX(x,Ω) with R̂X(x,Ω) and taking the logarithm yields the

estimated profile loglikelihood of Ω given the data as

L̂X(Ω) =
∑n

i=1log{S(Di, Gi, Xi,Ω)} −
∑n

i=1log{R̂X(Xi,Ω)}. (3.4)

Define SΩ(d, g, x,Ω) = ∂S(d, g, x,Ω)/∂Ω and R̂XΩ(x,Ω) = ∂R̂X(x,Ω)/∂Ω. The profile

likelihood score function, SX(Ω), is unknown but can be estimated consistently by

ŜX(Ω) = n−1/2

n∑
i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− R̂XΩ(Xi,Ω)

R̂X(Xi,Ω)

}
. (3.5)

By solving ŜX(Ω) = 0, we obtain a consistent estimate of Ω, which we will denote as Ω̂X and

which is called the SPMLE by Stalder et al. (2017).

3.2.2 Symmetric Combination Estimator

The above equations are equivalent to those found in Stalder et al. (2017) with the addition

of the subscript X in eqs. (3.1) to (3.5) to emphasize that the density of X has been profiled out,

leaving the density of G to be treated nonparametrically. Because our only assumption about G

and X is their independence in the source population, we could just as well have interchanged

them and profiled out the distribution of G. The notation in this symmetric case is analogous to the

above, but with subscript G instead of X . It follows that the analogous estimated score function

ŜG(Ω) = n−1/2

n∑
i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− R̂GΩ(Gi,Ω)

R̂G(Gi,Ω)

}

can be used to obtain Ω̂G, another consistent estimate of Ω.

The optimal combination of symmetric estimators Ω̂X and Ω̂G follows the principle of general-

ized least squares. Suppose the dimension of Ω is p. Let Ip be the p× p identity matrix and define

X = (Ip, Ip)
T. Define Y = (Ω̂T

X , Ω̂
T
G)T and Λall = cov(Y). Theorem 2, in Section 3.2.3, shows
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Y → Normal(XΩ,Λall).

Treating this as a generalized least squares problem, we can rewrite it as Y = XΩ + ε, where

ε ∼ Normal(0,Λall). The Symmetric Combination Estimator is the solution to the linear model,

namely

Ω̂Symm = (XTΛ−1
allX )−1XTΛ−1

allY . (3.6)

An alternative method of combining the two estimates is to average the two estimated profile

likelihoods into a single composite likelihood. The resulting Composite Likelihood Estimator

yields minimal efficiency gains over the SPMLE from Stalder et al., and is presented in Section B.1

of the Supplementary Material.

3.2.3 Asymptotic Theory

In this subsection we first demonstrate that the joint distribution of Ω̂X and Ω̂G is asymptoti-

cally normal. We then show the asymptotic results for the Symmetric Combination Estimator. In

practice, asymptotic standard errors for the Symmetric Combination Estimator proved unreliable

due to slow convergence, so bootstrap standard errors are used instead.
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To state the asymptotic results, let Zi = (Di, Gi, Xi) then define

ΓX =
1∑

d=0

nd

n
E

[
∂

∂ΩT

{
SΩ(Z,Ω)

S(Z,Ω)
− RXΩ(X,Ω)

RX(X,Ω)

} ∣∣∣∣D = d

]
;

ΓG =
1∑

d=0

nd

n
E

[
∂

∂ΩT

{
SΩ(Z,Ω)

S(Z,Ω)
− RGΩ(X,Ω)

RG(X,Ω)

} ∣∣∣∣D = d

]
;

ζX(Zi,Ω) =
SΩ(Zi,Ω)

S(Zi,Ω)
− RXΩ(Xi,Ω)

RX(Xi,Ω)

−
1∑

d=0

1∑
r=0

ndπdi
ndi

E

{
SΩ(r, g,X,Ω)

RX(X,Ω)
− RXΩ(X,Ω)S(r, g,X,Ω)

R2
X(X,Ω)

∣∣∣∣D = d

}
g=Gi

;

ζG(Zi,Ω) =
SΩ(Zi,Ω)

S(Zi,Ω)
− RGΩ(Gi,Ω)

RG(Gi,Ω)

−
1∑

d=0

1∑
r=0

ndπdi
ndi

E

{
SΩ(r,G, x,Ω)

RG(G,Ω)
− RGΩ(G,Ω)S(r,G, x,Ω)

R2
G(G,Ω)

∣∣∣∣D = d

}
x=Xi

;

ζX∗(Zi,Ω) = ζX(Zi,Ω)− E{ζX(Z,Ω)|D = Di};

ζG∗(Zi,Ω) = ζG(Zi,Ω)− E{ζG(Z,Ω)|D = Di}.

By profiling X and G out separately, we have the following two equations

n1/2(Ω̂X − Ω) = −Γ−1
X n−1/2

∑n
i=1ζX∗(Zi,Ω) + op(1); (3.7)

n1/2(Ω̂G − Ω) = −Γ−1
G n−1/2

∑n
i=1ζG∗(Zi,Ω) + op(1). (3.8)

Equation (3.7) is proved in Theorem 1 of Stalder et al. (2017), and the proof of the symmetric case

in eq. (3.8) is analogous.

To demonstrate the asymptotic properties of the Symmetric Combination Estimator, denote the

block-diagonal matrix Γ−1
all = diag(Γ−1

X ,Γ−1
G ).

Theorem 2. Suppose that 0 < lim
n→∞

nd/n < 1, and π1 is known. Then

n1/2(Y − XΩ) = −Γ−1
all n

−1/2

n∑
i=1

ζX∗(Zi,Ω)

ζG∗(Zi,Ω)

+ op(1).
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The Zi are independent and E{ζX∗(Zi,Ω)|Di} = E{ζG∗(Zi,Ω)|Di} = 0, so as n→∞,

n1/2(Y − XΩ)→ Normal(0,Λall) (3.9)

in distribution, where

Λall = Γall Σall ΓT
all;

Σall = cov

ζX∗(Z,Ω)

ζG∗(Z,Ω)

 = cov

ζX(Z,Ω)

ζG(Z,Ω)

 .

The proof of Theorem 2 follows directly from the proofs of eqs. (3.7) and (3.8) and the prop-

erties of M-estimators Ω̂X and Ω̂G.

Remark 1. In Section 3.2.2, we constructed a linear model from eq. (3.9) and used generalized

least squares to calculate Ω̂Symm. The asymptotic properties of GLS estimators inform us that as

n→∞,

n1/2(Ω̂Symm − Ω)→ Normal{0, (XTΛ−1
allX )−1}.

In practice, Ω̂X and Ω̂G are highly correlated, which slows convergence to the asymptotic

covariance matrix. Asymptotic estimates of standard errors proved unreliable in simulations, and

are not recommended. Instead, we estimate cov(Ω̂Symm) using a balanced bootstrap, where cases

and controls are resampled separately, thus maintaining their respective sample sizes.

3.2.4 Rare Diseases When π1 is Unknown

Due to its sampling efficiency, the case-control design is typically used to study relatively rare

diseases. If the true disease rate in the source population is unknown, it is common to assume that

π1 ≈ 0 (Kwee et al., 2007; Lin and Zeng, 2006; Modan et al., 2001; Piegorsch et al., 1994). Under

this rare disease assumption, Ω̂X and Ω̂G converge not to Ω, but to ΩX∗ and ΩG∗, the solutions to

their respective score equations with π1 = 0. Using estimates of ΩX∗ and ΩG∗ to calculate Ω̂Symm

runs the risk of introducing bias, but in practice the small potential bias is typically inconsequential
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unless the sample size is very large and standard errors unusually small. Examples in Section B.2.2

of the Supplementary Material demonstrate that under the rare disease approximation, coverage

intervals remain near nominal until the true disease rate exceeds 8%.

3.3 Simulations

3.3.1 Scenario

To investigate the performance of the Symmetric Combination Estimator, we adopt the same

simulation settings as reported in Stalder et al. (2017). Environmental variable X is binary with

population frequency 0.5, andG consists of five correlated single nucleotide polymorphisms (SNPs).

The SNPs follow a trinomial distribution in Hardy-Weinberg equilibrium, wherein SNP Gj takes

values (0, 1, 2) with probabilities {(1− pj)2, 2pj(1− pj), p2
j}, respectively.

To generate correlated SNPs, we first simulated a 5-variate normal random variable with mean

0 and covariance between the jth and kth components equal to 0.7|j−k|. We then trichotomized the

variates with appropriate thresholds so that the frequency of 0, 1, and 2 followed Hardy-Weinberg

equilibrium with minor allele frequencies (p1, p2, p3, p4, p5) = (0.1, 0.3, 0.3, 0.3, 0.1).

Disease status was simulated according to the risk modelH{α0+m(G,X,β)}, withm(G,X, β) =

GTβG + XβX + (GX)TβGX . Here βG = {log(1.2), log(1.2), 0, log(1.2), 0}, βX = log(1.5), and

βGX = {log(1.3), 0, 0, log(1.3), 0}. We set the logistic intercept α0 = −4.165 to yield a population

disease rate π1 = 0.03.

A sample of 1000 cases and 1000 controls was drawn from the simulated population, and

parameters were estimated using logistic regression, the SPMLE of Stalder et al. (2017), the Sym-

metric Combination Estimator with known π1, and the Symmetric Combination Estimator with a

rare disease approximation. Standard error estimates for both logistic regression and the SPMLE

were based on asymptotic theory, while those for the Symmetric Combination Estimator were

calculated using 200 balanced bootstrap samples, as described in Remark 1.
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3.3.2 Results

Table 3.1 presents the results of 1000 simulations comparing standard logistic regression, the

SPMLE proposed by Stalder et al. with known π1, our proposed Symmetric Combination Esti-

mator with known π1, and the Symmetric Combination Estimator using the rare disease approx-

imation. Standard error estimates for logistic regression and the SPMLE were calculated using

asymptotic theory, and the standard error estimates for both versions of the Symmetric Combina-

tion Estimator were calculated using 200 bootstrap samples as described in Remark 1.

The Symmetric Combination Estimator, both with known π1 and when using the rare disease

approximation, shows negligible bias and has coverage percentages near the nominal level. Like

the SPMLE, both versions of our Symmetric Combination Estimator provide slightly more than

25% improvement in mean squared error efficiency over ordinary logistic regression for the main

effect of X .

More impressively, our estimator nearly doubles the mean squared error efficiency of logistic

regression for the main effects of G, and nearly triples the mean squared error efficiency for the

interaction terms. This is a marked improvement even over the performance of the SPMLE, and it

is accomplished without modeling the distribution of either G or X .

3.3.3 Further Simulations

Further simulations were conducted with multiple correlated SNPs and a binary environmental

risk factor, but with changes to the number of SNPs (3 or 8), the population disease rate (1% or

5%), or the sample size (500 or 3000 cases & controls). All such simulations yielded results similar

to those in Table 3.1 with regards to coverage, efficiency gains, and unbiasedness, and are thus not

reported.

Section B.2 of the Supplementary Material contains the results of simulations examining the

behavior of the Symmetric Combination Estimator in a variety of settings. Section B.2.1 contains

an unabridged version of Table 3.1 that includes the SPMLE_G (Ω̂G) and the Composite Like-

lihood Estimator, neither of which approach the MSE efficiency of the Symmetric Combination
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Table 3.1: Results of 1000 simulations as described in Section 3.3.1, comparing the bias, cov-
erage, and efficiency of four estimators: ordinary logistic regression, the SPMLE of Stalder
et al. with known π1, our proposed Symmetric Combination Estimator with known π1, and the
Symmetric Combination Estimator using the rare disease approximation

βG1 βG2 βG3 βG4 βG5 βX βXG1 βXG2 βXG3 βXG4 βXG5

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic Regression
Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
CI(%) 95.2 95.5 94.4 94.7 95.3 95.8 94.5 95.9 94.7 94.6 95.3

SPMLE, known π1

Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI(%) 95.4 95.8 94.8 96.1 96.3 95.6 94.6 96.0 94.3 95.6 95.1
MSE Eff All G: 1.29 1.27 All G∗X: 1.98

Symmetric Combination Estimator, known π1

Bias 0.00 -0.03 0.00 0.00 -0.01 0.01 -0.03 0.02 0.00 -0.02 0.01
CI∗(%) 96.7 95.7 96.7 96.5 97.8 95.4 94.8 96.7 96.2 96.6 97.2
MSE Eff All G: 1.92 1.31 All G∗X: 2.90

Symmetric Combination Estimator, rare
Bias 0.01 -0.02 0.00 0.01 -0.01 0.02 -0.05 0.02 0.00 -0.03 0.00
CI∗(%) 96.4 95.7 95.7 96.3 98.1 94.9 94.0 97.0 96.4 95.5 97.5
MSE Eff All G: 1.86 1.27 All G∗X: 2.96

CI: coverage of a 95% nominal confidence interval, calculated using asymptotic standard error. CI∗:
coverage of a 95% nominal confidence interval, calculated using 200 bootstrap samples. MSE Eff :
mean squared error efficiency when compared to logistic regression, averaged over G (All G) or G∗X
interactions (All G∗X).

Estimator. Section B.2.2 presents the results of simulations with misspecified population disease

rate; we found the Symmetric Combination Estimator fairly robust to the misspecification of the

disease rate. Section B.2.3 contains simulation studies examining the robustness of our method

with respect to violations of the gene-environment independence assumption. Those simulations

demonstrate that there will be bias in the estimated interaction parameter between a specific gene

and a correlated environmental variable, but the rest of the parameter estimates continue unbiased,

and the average mean squared error for all G∗X interactions can still be substantially lower than

that obtained from prospective logistic regression. Section B.2.4 presents the results of simulations

with different distributions for G and X .
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3.4 Data Analysis

3.4.1 Data

Here we apply the proposed methodology to a case-control study of breast cancer. This case-

control sample is taken from a large prospective cohort at the National Cancer Institute: the

Prostate, Lung, Colorectal and Ovarian cancer screening trial (Canzian et al., 2010). This co-

hort enrolled 64,440 non-Hispanic, white women aged 55 to 74, of whom 3.72% developed breast

cancer (Pfeiffer et al., 2013). The case-control study analyzed here consists of 658 cases and 753

controls.

Each of the 1411 subjects was genotyped for 21 SNPs that have been previously associated

with breast cancer based on large genome-wide association studies. These SNPs were weighted

by their log-odds-ratio coefficients and summed to define a polygenic risk score. A scaled version

of this polygenic risk score, with mean zero and standard deviation one, was used as the genetic

risk factor G. The individual SNPs and their coefficients can be found in Section B.2.5 of the

Supplementary Material.

Early menarche is a known risk factor for breast cancer (Anderson et al., 2007), and envi-

ronmental variable X is a binary indicator of whether the age at menarche is less than 14. The

interaction between age at menarche and genetic breast cancer risk is a topic of interest, but the

power to detect such interactions in previous studies has been limited (Gail, 2008).

The model fitted is pr(D = 1) = H(β0 + βGG + βXX + βGXGX). While π1 is known

in this population, we apply our method using both the known disease rate and the rare disease

approximation.

3.4.2 Verifying Gene-Environment Independence

Before applying our approach, we performed analyses to check the assumption of gene-environment

independence in the population. Using the 753 controls, we ran a t-test of the polygenic risk score

against the levels of X . The p-value was 0.91, indicating no evidence of correlation between G

and X . We also ran chi-squared tests for each of the 21 individual genes and found no significant
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association after controlling the false discovery rate: the minimum q-value was 0.09.

We also checked for correlation, known as linkage disequilibrium, between the 21 SNPs used

to create the polygenic risk score and 32 SNPs known to influence age at menarche (Elks et al.,

2010). Using phased haplotypes from subjects of European descent from 1000 Genomes (Consor-

tium, 2015) and HapMap (Gibbs et al., 2003), we were able to analyze 651 of the 672 possible

linkages, and no evidence of linkage disequilibrium was found: the maximum R2 was 0.1 and the

minimum q-value was 0.85. Finally, a recent study of breast cancer susceptibility loci examined

the relationship between age at menarche and 10 of the 21 SNPs used to create our polygenic risk

score, none of which were found to influence age at menarche (Andersen et al., 2014).

3.4.3 Results

Table 3.2: Results of the analysis of the Prostate, Lung, Colorectal and Ovarian cancer
screening trial data

βG βX βGX

Logistic Regression
Estimate 0.539 0.124 -0.242
Standard Error (asymptotic) 0.117 0.128 0.133
p-value (asymptotic) < 1e-4 0.331 0.068

Symmetric Combination, known π1 = 3.72%

Estimate 0.495 0.093 -0.215
Standard Error (bootstrap) 0.094 0.133 0.089
p-value (bootstrap) < 1e-4 0.484 0.016

Symmetric Combination, rare disease approximation
Estimate 0.538 0.116 -0.237
Standard Error (bootstrap) 0.089 0.124 0.099
p-value (bootstrap) < 1e-4 0.352 0.016

βG and βX are the main effects for the polygenic risk score G and the environmental variable X
(age at menarche < 14), and βGX is the gene-environment interaction.

Table 3.2 presents the results of our analysis with known π1 and under a rare disease approxi-

mation. In both cases, standard errors for the Symmetric Combination Estimator were calculated

using 500 bootstrap samples. The two estimates yield very similar results, indicating that a valid

analysis can be conducted even if π1 is not known.

The polygenic risk score was strongly associated with breast cancer status of the women in the
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study, which is to be expected given that each of its component SNPs has a known association with

breast cancer risk. Standard logistic regression analysis provides some indication of an interaction

between the polygenic risk score and age at menarche, but the result is not statistically signifi-

cant at the 0.05 level. Using the assumption of gene-environment independence in the population,

the Symmetric Combination Estimator finds stronger evidence of this interaction. The improved

power to detect this interaction is due to the much smaller standard error estimates of the Sym-

metric Combination Estimators. Using logistic regression, the estimated standard error of βGX is

49% larger than with our method, indicating a variance increase of 121% (when applying the rare

disease approximation, the variance increase is 81%).

3.5 Discussion and Extensions

Researchers investigating gene-environment interactions in case-control studies have tradition-

ally had two broad options for analysis: logistic regression, which is flexible but has low power to

detect interactions, or less flexible methods that exploit the assumption of gene-environment inde-

pendence for increased efficiency. Improved understanding of genetic risk factors has led to the

need for efficient estimators that can model complex gene-environment interactions. Stalder et al.

(2017) proposed a retrospective profile method that exploits the assumption of gene-environment

independence while treating the genetic and environmental variables nonparametrically. By obvi-

ating the need for a parametric model of genotype distributions, their method is well suited for the

analysis of multimarker genetic data and polygenic risk scores.

We proposed an improvement to the method of Stalder et al. (2017) that increases the effi-

ciency of the estimates with modest computational cost and no additional assumptions, making

it applicable anywhere that the method of Stalder et al. can be used. The proposed Symmetric

Combination Estimator places no distributional assumptions on the genetic or environmental vari-

ables, but it does rely on three assumptions. The first assumption, that the logistic risk model

H{α0 + m(G,X,β)} is known up to parameters α0 and β, is minimally restrictive because a

flexible function, such as a function of b-splines, can be defined for m(G,X,β). The second

assumption, that π1 is known or can be well estimated, can be relaxed by using the rare disease ap-
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proximation of Section 3.2.4. Even if the true disease rate is not rare, the Symmetric Combination

Estimator is generally robust to the misspecification of π1, as demonstrated in Section B.2.2 of the

Supplementary Material.

The final assumption is gene-environment independence in the source population. In Sec-

tion B.2.3 of the Supplementary Material, we present the results of simulations demonstrating

that bias is introduced in the estimated interaction parameter between correlated genetic and en-

vironmental variables, but the rest of the parameter estimates are unbiased. We recommend that

researchers verify gene-environment independence before applying the Symmetric Combination

Estimator, as we did in Section 3.4.2. To relax the gene-environment independence assumption, it

should be possible to adapt the Symmetric Combination Estimator to the case where G and X are

conditionally independent within the strata of an observed factor, as demonstrated in the Supple-

mentary Material of Stalder et al. (2017). If suitable strata cannot be found, another possibility is to

construct an empirical Bayes-type estimator like that of Mukherjee and Chatterjee (2008), which

shrinks the Symmetric Combination Estimator back to the standard logistic regression estimate

when the gene-environment independence assumption is violated.
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4. SEMIPARAMETRIC ANALYSIS OF POLYGENIC GENE-ENVIRONMENT

INTERACTIONS IN CASE-CONTROL STUDIES WITH CASECONTROLGE

Gene-environment interactions can be efficiently estimated in case-control data by methods that as-

sume gene-environment independence in the source population, but until recently such techniques

required parametric modelling of the genetic variables. The caseControlGE package implements

the methods of Stalder et. al. (2017, Biometrika, 104, 801-812) and Wang et. al. (2018, un-

published), which exploit the assumption of gene-environment independence without placing any

assumptions on the marginal distributions of the genetic or environmental variables. These meth-

ods are ideally suited for analyzing complex polygenic data for which parametric distributional

models are not feasible. In addition to the two estimators, the package also supplies a function

to simulate case-control data and several helper functions for use on model objects. Use of this

package is illustrated by simulating and analyzing data from a case-control study of breast cancer.

4.1 Introduction

4.1.1 caseControlGE package

The caseControlGE package (Asher, 2018) contains tools for the analysis of case-control data

using R (R Core Team, 2018). It implements the methods of Stalder et al. (2017) and Wang

et al. (2018), both of which fall under the class of semiparametric retrospective profile likelihood

estimators. These methods are the first available to exploit the assumption of gene-environment in-

dependence while treating the genetic component nonparametrically. As such, they are well suited

to replace logistic regression as the preferred method in situations where parametric distributional

models are not feasible, such as in the analysis of complex polygenic data.

caseControlGE contains three main functions: simulateCC, spmle, and spmleCombo,

as well as several helper functions. Section 4.2 of this paper introduces simulateCC in the

context of simulating case-control data analogous to the data analyzed in Wang et al. (2018). Sec-

tion 4.3 introduces spmle as a tool to analyze the simulated data, and Section 4.4 introduces
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spmleCombo to conduct a more efficient analysis of the simulated data.

4.1.2 Background

Case-control studies are retrospective observational studies in which the sample consists of a

group of healthy subjects and a group of diseased subjects. A crucial aspect of the case-control de-

sign is that the outcome, disease status, is known before sampling. The ability to deliberately over-

sample diseased subjects makes the case-control design cost effective, which is why it is widely

popular in studies of gene-environment interactions.

Given the genetic and environmental covariates G and E, we assume the risk of disease D in

the underlying population follows the model

pr(D = 1 | G,X) = H{β0 +m(G,X,β)}, (4.1)

where H(x) = {1 + exp(−x)}−1 is the logistic distribution function and m(G,X,β) is a

function that describes the joint effect of G and X and is known up to the unspecified parameters

of interest β.

Given the retrospective nature of case-control sampling, it is surprising that standard prospec-

tive logistic regression can be used to obtain unbiased estimates of β (Prentice and Pyke, 1979).

Logistic regression requires no assumptions about the joint distribution of G and E, but it suffers

from low power when estimating G ∗E interaction effects. To gain efficiency, Chatterjee and Car-

roll (2005) exploited the assumption of gene-environment independence in the source population

to maximize the retrospective likelihood while profiling out the distribution of E. Their method

is available as the function snp.logistic in the Bioconductor package CGEN (Bhattacharjee

et al., 2012).

The method of Chatterjee and Carroll, and subsequent methods utilizing the same retrospective

profile likelihood framework, require a parametric model for the distribution of G given E. This

becomes difficult as the number and complexity of genetic variables in the model grows. Cap-

italizing on advances in high-throughput genomics, genome-wide association studies have iden-
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tified scores of SNPs associated with complex diseases such as cancers and diabetes. Modern

case-control studies of gene-environment interactions need efficient methodology that allows for

a flexible and arbitrarily complex genetic component, such as multiple correlated SNPs and/or

continuous polygenic risk scores.

The SPMLE method of Stalder et al. (2017) extends the retrospective profile likelihood frame-

work of Chatterjee and Carroll, dispensing with the need to model G parametrically. When the

population disease rate π1 is known, the retrospective profile loglikelihood can be estimated (up to

an additive constant) using just the case-control sample and without modeling the distribution of

G. When π1 is unknown but the disease is rare, estimates can be obtained using the rare disease

approximation that π1 ≈ 0, which typically introduces negligible bias (Stalder et al., 2017).

Wang et al. (2018) proposed an improvement to the method of Stalder et al. that increases

the efficiency of the estimates with no additional assumptions. This development relies on the

observation that the method of Stalder et al. removes dependence on the distribution of the genetic

and environmental variables in two different fashions; by treating the genetic and environmental

variables symmetrically Wang et al. generate two sets of parameter estimates that are combined to

generate a more efficient estimate.

4.1.3 Implementation

The semiparametric method of Stalder et al. (2017) is implemented as the function spmle

in caseControlGE, detailed in Section 4.3. Estimating the semiparametric profile likelihood is a

computationally intensive process, and significant effort was invested in speeding up calculations.

Estimation functions, including the analytic gradient and hessian, are written in C++ and compiled

using Rcpp (Eddelbuettel, 2013), providing a tremendous speedup over native R code. Extensive

benchmarking and code profiling was conducted, and estimation functions were written to apply

matrix operations to contiguous blocks of memory whenever possible, reducing memory latency

and allowing modern processors to exploit data level parallelism and perform the same operation

on multiple data points simultaneously.

The estimated semiparametric likelihood is maximized using the quasi-Newton optimizer ucminf
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(Nielsen and Mortensen, 2016) using starting values from logistic regression. ucminf is partic-

ularly well suited for this application because it allows us to precondition the optimization with

the analytic hessian, and it evaluates the gradient after each call to the objective function. Calcu-

lating the gradient along with the likelihood adds negligible computational complexity, so we call

a single C++ function to compute them both, then return them separately to ucminf. This leads

ucminf to converge in roughly half the time of the next-fastest optimizers (several of the various

R implementations of the BFGS algorithm tie for second place). The unmatched speed of ucminf

means we are willing to tolerate its bugs, which include occasionally declaring convergence be-

fore actually converging. To address this, spmle checks the gradient at the reported optimum and

restarts the optimization if necessary (with different starting values).

Computational complexity of the asymptotic covariance estimation, which contains a sum of

the form
∑n

i=1

∑n
j=1

∑n
k=1 ∂Lijk(Ω)/∂Ω, was reduced from O(n3) to O(n2) by storing interme-

diate values in a three-dimensional array. This increases speed at the cost of memory usage, which

climbs fromO(n) toO(n2), setting a practical limit on sample size in the low tens of thousands for

average personal computers. This is sufficient to analyze all but the largest case-control studies;

covariance estimates for larger studies should be computed using the bootstrap.

Asymptotic covariance estimates for the Symmetric Combination Estimator of Wang et al.

converge slowly and unreliable in practice, often providing poor coverage. Wang et al. recom-

mend a balanced bootstrap, with cases and controls resampled separately, to estimate covariance.

caseControlGE offers users with multicore computers the option to speed up computation by us-

ing multiple processors. Parallelization is implemented using the R base package parallel, which

is installed by default on all operating systems. Parallelization on computers running Linux or ma-

cOS is done by forking the active R session, saving time and memory. This option is unavailable in

Windows, so parallelization is fractionally slower because a PSOCK cluster is created with a new

instance of R running on each core.
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4.2 Simulating case-control data with simulateCC

4.2.1 Data description

Wang et al. (2018) demonstrate the utility of their method by analyzing data from a case-

control study of breast cancer. This case-control sample is taken from a large prospective cohort at

the National Cancer Institute: the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screen-

ing trial (Canzian et al., 2010). The case-control study analyzed by Wang et al. consists of 658

cases and 753 controls sampled from a cohort of 64,440 non-Hispanic, white women aged 55 to

74, of whom 3.72% developed breast cancer (Pfeiffer et al., 2013). The data are available from

the National Cancer Institute via a data transfer agreement, but cannot be distributed with the

caseControlGE package. Fortunately, we can use the caseControlGE function simulateCC to

generate a similar data set for analysis.

Each of the 1411 subjects in the PLCO sample was genotyped for 21 SNPs that have been

previously associated with breast cancer based on large genome-wide association studies. These

SNPs were weighted by their log-odds-ratio coefficients and summed to define a polygenic risk

score (PRS). A standardized version of this PRS, with mean zero and standard deviation one, was

used as the genetic risk factor G by Wang et al.. Early menarche is a known risk factor for breast

cancer, and Wang et al. used a binary indicator of whether the subject underwent early menarche

as E (age at menarche < 14). Several environmental variables were recorded as part of the PLCO

study, including body mass index (BMI). There is some evidence that obese women have a reduced

risk of breast cancer, so in our simulation we will consider BMI in addition to the variables modeled

by Wang et al..

4.2.2 Data simulation

Genetic variables generated by simulateCC include SNPs and three distributions of contin-

uous PRS: Normal(0,1), Gamma(shape=20, scale=20), and bimodal. Environmental variables can

be binary or Normal(0,1). To simulate case-control data with simulateCC, we specify distri-

butions for G and E and provide regression coefficients β and intercept β0 from eq. (4.1). The
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function simulateCC generates values of G and E for a simulated population, then simulates

binary D from its conditional distribution (D | G,X, β0,β). A sample of n1 cases and n0 controls

is taken from this simulated population.

To determine the appropriate distributions to use when simulating G and E, we examine the

PLCO data. In doing so, it is important to keep in mind that the case control sample is not rep-

resentative of the source population. Case-control studies deliberately oversample cases, so the

distribution of G and E in the sample may be quite different from the distribution of G and E in

the population (especially for variables that are strongly correlated with disease status). To accu-

rately simulate the genetic and environmental variables from the PLCO study, we need to estimate

their distributions in the source population.

Wang et al. report βG = 0.459 with p < 1e − 4, but they standardized G to mean zero and

standard deviation one in the case-control sample. G has a strong positive effect on disease risk,

indicating that the distribution of (G|D = 0) is meaningfully different from the distribution of

(G|D = 1). Specifically, E(G|D = 1) > E(G|D = 0). With a population disease rate of 0.0372,

this implies Epop(G) ≈ E(G|D = 0) < 0, where the subscript pop emphasizes that the expectation

is in the source population.

This causes no problem for Wang et al., but it presents us with the dilemma that G � N(0, 1).

If we simulate G ∼ N(0, 1) and use βG = 0.459 as reported in Wang et al., our simulated (D |

G,X, β0,β) will not match the distribution of the actual PLCO data.

If we did not have access to the PLCO data, our best option would be to approximate δ =

E(G|D = 0), simulate G ∼ N(δ, 1), and use β as reported in Wang et al.. While we cannot

distribute the PLCO data, we can use it to estimate population parameters, so approximating δ

is not necessary. The simplest and most common way to estimate population parameters is to

calculate them using just the controls. Case-control designs are typically used to study relatively

rare diseases, and the bias introduced by using the cases as a stand-in for the population is usually

quite small.

When π1 is known, it is possible to calculate unbiased estimates by weighting the cases and
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controls by π1 and (1 − π1), respectively. (This technique is employed to great effect by Stalder

et al., and is the reason that spmle requires the user to specify a value for pi1.)

We return to the PLCO data to conduct an analysis similar to that of Wang et al., but with

two environmental variables: the indicator of early menarche and BMI. We will standardize the

two continuous variables due to their very different scales, but to make our lives easier when we

conduct subsequent simulations, we standardize them to have mean zero and standard deviation

one in the source population.

We calculate Êpop(PRS), Êpop(early menarche), and Êpop(BMI) by weighting the means

within cases and controls by π1 and (1−π1), respectively. We calculate ŝdpop(PRS) and ŝdpop(BMI)

using the sample standard deviations among the controls only. We have

G =
PRS− Êpop(PRS)

ŝdpop(PRS)
, E1 = I(age at menarche < 14), E2 =

BMI− Êpop(BMI)

ŝdpop(BMI)
.

After this scaling, the distributions of G and E2 in the source population can be well approxi-

mated by uncorrelated N(0, 1) random variables. Binary environmental variable E1 is also uncor-

related with G, and has a frequency of 0.745 in the population. We fit a model in these variables to

the PLCO data using spmleCombo, yielding the rest of the information we need to simulate case

control data:

π1 = 0.0372 n0 = 753 n1 = 658

G ∼ N(0, 1) E1 ∼ Bin(0.745) E2 ∼ N(0, 1)

βG = 0.450 βE1 = 0.143 βE2 = −0.019

βGE1 = −0.195 βGE2 = −0.040

The logistic intercept β0 is not consistently estimated by logistic regression or either of the semi-

parametric methods in caseControlGE, however it is typically of little interest. The function

simulateCC prints the population disease rate each time it runs, so we run simulateCC sev-

eral times with different values of β0. Using a guess-and-check approach with increasing sample

size as we get closer, we manipulate β0 to match the disease rate observed in the source population.
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#### Load the castControlGE package and set the random seed

library("caseControlGE")

set.seed(979)

#### Generate data with beta0 = -3 as a starting point

tmp = simulateCC(ncase=1000, ncontrol=1000, beta0=-3,

betaG_normPRS=0.450, betaE_bin=0.143,

betaE_norm=-0.019, betaGE_normPRS_bin=-0.195,

betaGE_normPRS_norm=-0.040, E_bin_freq=0.745)

#>

#> Disease prevalance: 0.0520909090909091

#### Disease rate too high, try beta0 = -4

tmp = simulateCC(ncase=1000, ncontrol=1000, beta0=-4,

betaG_normPRS=0.450, betaE_bin=0.143,

betaE_norm=-0.019, betaGE_normPRS_bin=-0.195,

betaGE_normPRS_norm=-0.040, E_bin_freq=0.745)

#>

#> Disease prevalance: 0.0212909427411371

#### Continue guessing, increasing sample size as we get closer

#### Not run during the vignette (was used when writing it)

## tmp = simulateCC(ncase=1e3, ncontrol=1e3, beta0=-3.5, ...

## tmp = simulateCC(ncase=1e4, ncontrol=1e4, beta0=-3.4, ...

## tmp = simulateCC(ncase=1e5, ncontrol=1e5, beta0=-3.4, ...

## tmp = simulateCC(ncase=1e5, ncontrol=1e5, beta0=-3.41, ...

rm(tmp)

After several iterations (commented out for speed), we determined that beta0 = -3.41

produces a population disease rate of 0.0372. Now we generate our simulated PLCO data.
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#### Set the random seed for reproducibility

set.seed(70)

#### Generate a synthetic data set that has similar properties

#### to the PLCO data

dat = simulateCC(ncase=658, ncontrol=753, beta0=-3.41,

betaG_normPRS=0.450, betaE_bin=0.143,

betaE_norm=-0.019, betaGE_normPRS_bin=-0.195,

betaGE_normPRS_norm=-0.040, E_bin_freq=0.745)

#>

#> Disease prevalance: 0.0362381630253141

4.2.3 Confirming the G-E independence assumption

The function simulateCC returns a list with elements D, G, and E, which are numeric vectors

or matrices. We combine them into a data.frame to print the first 6 rows and tabulate by disease

status.

#### Examine the simulated data

#### and tabulate the number of cases & controls

kable(list(head(as.data.frame(dat)), table(dat$D, dnn="D")),

caption="Simulated PLCO data", booktabs=TRUE)
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Table 4.1: Simulated PLCO data

D G E.1 E.2

0 0.1336533 1 0.3866567
0 0.4328288 0 1.4536655
0 0.3389738 1 -1.0088425
0 -1.4542346 1 0.7076604
0 -1.0777144 1 -0.2864078
0 1.4280646 1 1.6047819

D Freq

0 753
1 658

Case-control data generated by simulateCC are sorted by disease status (which is why the

first 6 rows do not contain a single case), but we see there are 658 cases and 753 controls. Be-

fore we calculate the spmle, we will check the assumption of gene-environment independence in

the source population. In our case, this check is largely perfunctory because we did not provide

the arguments regress_E_bin_on_G_normPRS or regress_E_norm_on_G_normPRS

to simulateCC, so the genetic and environmental variates were drawn from independent distri-

butions.

But when analyzing real data, it is crucial to verify this assumption. Violations of the G-E

independence assumption can introduce bias in the estimates of interaction parameters between

the specific genetic and environmental variables in violation of G-E independence (the other pa-

rameters in the model appear unaffected in simulation studies by Stalder et al.).

We do this by checking for dependence between G and E in the controls. Environmental vari-

able E1 is binary, so we use a t-test of G over the two levels of E1. To test for dependence between

G and E2, we conduct a correlation test.
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#### Save the indices of all controls in dat

controls = which(dat$D == 0)

#### t-test of G over the levels of E1

pander(t.test(dat$G[controls] ~ dat$E[controls, 1]),

split.cells=11)

Table 4.2: Welch Two Sample t-test: dat$G[controls] by dat$E[controls, 1]

Test statistic df P value
Alternative
hypothesis

mean in
group 0

mean in
group 1

-0.7291 317 0.4665 two.sided -0.1163 -0.05508

#### correlation test between G and E2

pander(cor.test(dat$G[controls], dat$E[controls, 2]))

Table 4.3: Pearson’s product-moment correlation: dat$G[controls] and
dat$E[controls, 2]

Test statistic df P value Alternative hypothesis cor

-0.8129 751 0.4165 two.sided -0.02965

Now that we are satisfied the assumption of gene-environment independence has not been

violated, we can exploit this assumption using the two semiparametric retrospective methods of

caseControlGE.
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4.3 Analyzing case-control data with spmle

4.3.1 Known and rare disease

The function spmle is the backbone of caseControlGE; it is called on its own to evaluate the

SPMLE of Stalder et al., and it is the key component of the Symmetric Combination Estimator

of Wang et al.. Calling spmle is slightly different from calling other estimation commands like

lm or glm because we do not specify the model formula to spmle. Instead we specify which

variables are genetic and which are environmental, and spmle fits the formula: D ∼ G * E.

spmle returns an S3 object of class "spmle". caseControlGE contains spmle methods

for all applicable S3 generics, such as summary.spmle, print.spmle, anova.spmle,

predict.spmle, confint.spmle, etc.

We fit the gene-environment interaction model with spmle, and compare it to the estimates

from standard logistic regression. We do not need to fit the logistic regression model with a call to

glm because spmle automatically fits a logistic regression model to obtain starting values. This

logistic regression model is returned with the fitted spmle object.

#### Fit the spmle to the simulated PLCO data

spmleFull = spmle(D=D, G=G, E=E, pi1=0.0372, data=dat)

#### Print coefficient estimates from spmle

#### and the logistic model returned by spmle

kable(summary(spmleFull)$coefficients,

caption="spmle, known pi1", digits=4)

Table 4.4: spmle, known pi1

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3226 0.1049 -3.0755 0.0021
G 0.5808 0.1033 5.6203 0.0000
E1 0.1762 0.1332 1.3225 0.1860
E2 0.0430 0.0565 0.7604 0.4470
G:E1 -0.2426 0.1064 -2.2807 0.0226
G:E2 -0.0436 0.0432 -1.0091 0.3129
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kable(summary(spmleFull$glm_fit)$coefficients,

caption="logistic regression", digits=4)

Table 4.5: logistic regression

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3014 0.1152 -2.6160 0.0089
G 0.5513 0.1111 4.9610 0.0000
E1 0.1549 0.1311 1.1814 0.2375
E2 0.0435 0.0562 0.7730 0.4395
G:E1 -0.2263 0.1279 -1.7695 0.0768
G:E2 -0.0130 0.0574 -0.2258 0.8213

The parameter estimates are extremely similar between the two models, but the spmle has

smaller standard errors for the interaction terms. Logistic regression uncovers some evidence of

a G:E1 interaction between the PRS and early menarche, but the result is not significant at the

0.05 level. The spmle is able to provide stronger evidence of a G:E1 interaction because the

estimated standard error of the G:E1 coefficient is 20% larger with logistic regression than the

spmle, giving a variance increase of almost 45%.

In this instance we know the true population disease rate π1 = 0.0372. If π1 were unknown

we would calculate the spmle under the assumption that π1 ≈ 0. Calculating the rare disease

approximation using spmle is as simple as specifying pi1 = 0 in the function call.

kable(summary(spmle(D=D, G=G, E=E, pi1=0, data=dat))$coef,

caption="spmle, rare disease", digits=4)

Table 4.6: spmle, rare disease

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3253 0.1054 -3.0857 0.0020
G 0.5862 0.1054 5.5617 0.0000
E1 0.1791 0.1336 1.3404 0.1801
E2 0.0428 0.0566 0.7562 0.4495
G:E1 -0.2436 0.1051 -2.3175 0.0205
G:E2 -0.0437 0.0416 -1.0492 0.2941
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The estimates and standard errors are nearly identical to the model with known π1, indicating

that a valid estimator can be obtained even when the disease rate is unknown.

4.3.2 Reduced model test

Body mass index does not appear to be a significant predictor in this model. The coefficients

for the E2 main effect and the G ∗E2 interaction are near zero and both terms have large p values,

so we fit a reduced model without BMI. To demonstrate the options controlling optimization, we

disable hessian preconditioning and supply bad starting values to the optimizer while fitting the

reduced model.

#### Fit the reduced spmle with bad starting values

spmleRed = spmle(D=D, G=G, E=E[,1], pi1=0.0372, data=dat,

startvals=rep(NA, 4), control=list(use_hess=F))

#> ucminf retry 1 of 2

With invalid starting values, ucminf is unable to converge during its first attempt. splme

checks whether ucminf has converged and, seeing that it has not, prints “ucminf retry 1

of 2” and restarts the optimization with different starting values. If optimization had failed to

converge on the second try, spmlewould have issued an error. The number of retries, convergence

criterion, and other optimization parameters can be passed as elements of the control argument.

summary.spmle reports the number of retries, number of ucminf iterations, and maximum

gradient at the optimum, so we can confirm that the model really did converge while we check the

parameter estimates.
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#### Check convergence and parameter estimates

summary(spmleRed, signif.legend=FALSE)

#>

#> Call:

#> spmle(D = D, G = G, E = E[, 1], pi1 = 0.0372, data = dat,

#> control = list(use_hess = F), startvals = rep(NA, 4))

#>

#> Pearson Residuals:

#> Min 1Q Median 3Q Max

#> -1.9511 -0.9175 -0.6480 1.0055 2.1736

#>

#> Coefficients:

#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) -0.3221 0.1048 -3.075 0.00211 **

#> G 0.5808 0.1034 5.616 1.96e-08 ***

#> E[, 1] 0.1737 0.1331 1.305 0.19187

#> G:E[, 1] -0.2400 0.1064 -2.256 0.02408 *

#>

#> Null deviance: 1949.7 on 1410 degrees of freedom

#> Residual deviance: 1848.1 on 1407 degrees of freedom

#> AIC: 1856.1

#> UCMINF retries: 1, iterations: 14,

#> max gradient at convergence: 4.917e-08

We see that not only did the model converge, but it converged to nearly the same parameter

estimates as the full model. To check whether the reduced model is just as good as the model with

BMI, we use anova to conduct a nested model test.

If the function anova is called on spmle objects, the method anova.spmle is used to
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calculate likelihood ratio tests of the models. This is a valid way to test full vs reduced spmle

models because the loglikelihood reported by logLik.spmle is accurate up to an additive con-

stant. However, anova should not be used to compare an spmle model to a model fit by a

different method.

#### Likelihood ratio test for reduced vs full model

pander(anova(spmleRed, spmleFull))

Table 4.7: Likelihood ratio test

#Df LogLik Df Chisq Pr(>Chisq)

4 -924 NA NA NA
6 -923.3 2 1.387 0.4998

The negligible difference in loglikelihood and large p value of the likelihood ratio test confirms

our suspicion that BMI is not an important predictor of breast cancer status in the simulated PLCO

data. Now that we have completed variable selection, we will fit the Symmetric Combination

Estimator of Wang et al. using early menarche as the sole environmental variable. The Symmet-

ric Combination Estimator is not a maximum (pseudo)likelihood estimator like spmle; it is the

optimal combination of two such estimators. As such, it has no associated loglikelihood and the

function anova.spmle cannot be used to compare models fit using the Symmetric Combination

Estimator.
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4.4 Analyzing case-control data with spmleCombo

4.4.1 Fitting spmleCombo with bootstrap standard error estimates

The SPMLE of Stalder et al. exploits the gene-environment independence assumption to pro-

duce an estimator that is substantially more efficient than standard logistic regression. It is re-

markable then, that the Symmetric Combination Estimator of Wang et al. is yet more efficient

than the SPMLE without requiring any additional assumptions about the data. But there is no free

lunch, and the challenge presented by the Symmetric Combination Estimator is that its standard

error converges to its asymptotic limit very slowly, making asymptotic standard error estimates

imprecise and unreliable in practice.

The caseControlGE implementation of the Symmetric Combination Estimator, spmleCombo,

estimates standard error using the balanced bootstrap recommended by Wang et al., wherein cases

and controls are resampled separately to maintain their sample sizes. To speed up the process,

spmleCombo can run the bootstrap on multiple cores in parallel with the argument ncores. By

default, spmleCombo uses 50 bootstraps to estimate the standard error, executed in series on a

single core. This is typically sufficient to obtain a reasonable estimate of standard error without

undue computational burden. Users with multiple cores, small data sets, or copious free time can

increase the number of bootstraps for more precise estimates, though there are diminishing re-

turns in precision as the number of bootstraps grows large. Here we use 100 bootstraps distributed

between 2 cores.

#### Set seed for reproducibility,

#### then fit spmleCombo with 100 bootstraps and 2 cores

set.seed(75)

comboRed = spmleCombo(D=D, G=G, E=E.1, pi1=0.0372,

data=as.data.frame(dat)[,-4],

nboot=100, ncores=2)

When we fit the SPMLE spmleRed in Section 4.3.2, we removed BMI from the model by
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specifying E=E[,1]. In the code above we achieve the same effect by coercing dat into a

data.frame and dropping E2 from the data that is passed to spmleCombo. We examine the

parameter estimates and variance.

#### Print coefficient estimates

#### for the Symmetric Combo reduced model

kable(summary(comboRed)$coefficients,

caption="Symmetric Combo, known pi1", digits=4)

Table 4.8: Symmetric Combo, known pi1

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3337 0.0949 -3.5177 0.0004
G 0.5426 0.0976 5.5601 0.0000
E.1 0.1887 0.1208 1.5615 0.1184
G:E.1 -0.2410 0.0954 -2.5250 0.0116

#### Ratio of variances: logistic regression / Symmetric Combo

pander(t(diag(vcov(comboRed$glm_fit))/diag(vcov(comboRed))),

caption="Ratio of variances: logistic / Symmetric Combo")

Table 4.9: Ratio of variances: logistic / Symmetric Combo

(Intercept) G E.1 G:E.1

1.473 1.294 1.176 1.79

Parameter estimates from the Symmetric Combination Estimator are very similar to those of

the SPMLE, but the efficiency is greater still. The lack of a viable asymptotic standard error is

an inconvenience, but with no additional assumptions and a compute time measured in minutes if

not seconds, the Symmetric Combination takes the day. And because the Symmetric Combination

is a combination of two SPMLE models, spmleCombo includes both SPMLE fits in the spmle
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object it returns. The first of which, labeled spmle_E because its likelihood was profiled over the

distribution of E, is the same reduced model we fit with spmle in Section 4.3.2. The symmetric

counterpart, which maximizes the likelihood profiled over the distribution of G, is returned as

spmle_G.

#### Verify that the "spmle_E" component of comboRed

#### is the same as spmleRed from section 3.2

all.equal(coef(comboRed$spmle_E), coef(spmleRed),

check.attributes=FALSE)

#> [1] TRUE

#### Print coefficient estimates for the SPMLE profiled over G

kable(summary(comboRed$spmle_G)$coef,

caption="spmle profiled over G", digits=4)

Table 4.10: spmle profiled over G

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3167 0.1042 -3.0389 0.0024
G 0.5586 0.0979 5.7044 0.0000
E.1 0.1695 0.1327 1.2774 0.2015
G:E.1 -0.2322 0.1023 -2.2700 0.0232

The estimates from the SPMLE profiled over G bear a striking similarity to those from version

profiled over E. It is this correlation that makes the asymptotic standard error of the Symmetric

Combination Estimator so slow to converge to its asymptotic limit. spmleCombo will (grudg-

ingly) report the asymptotic standard error estimate if we disable the bootstrap with nboot =

0. This triggers a warning, which we will see when we calculate the Symmetric Combination

Estimator using the rare disease approximation.
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#### Force spmleCombo to report the asymptotic SE

#### for the rare disease model

comboRare = spmleCombo(D=D, G=G, E=E.1, pi1=0,

data=as.data.frame(dat)[,-4], nboot=0)

#> Warning in spmleCombo(D = D, G = G, E = E.1, pi1 = 0, data =

#> as.data.frame(dat)[, : nboot=0,

#> using asymptotic standard error estimate,

#> which has poor coverage properties

If we only want point estimates of the parameters, and not their standard errors, we can ignore

this warning. But if we want p-values or confidence intervals, we should not put faith in the

asymptotic estimates of standard error.

#### Print coefficient estimates with asymptotic SE

#### for the rare disease approximation

kable(summary(comboRare)$coefficients,

caption="spmleCombo, rare : Asymptotic SE", digits=4)

Table 4.11: spmleCombo, rare : Asymptotic SE

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3260 0.0954 -3.4180 0.0006
G 0.5494 0.0233 23.5543 0.0000
E.1 0.1807 0.1254 1.4417 0.1494
G:E.1 -0.2395 0.0324 -7.3816 0.0000

The parameter estimates are perfectly reasonable, but the asymptotic standard error estimates

for G and G ∗ E1 are completely unbelievable.
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4.4.2 Residual analysis

Diagnostic plots of the Pearson residuals from the SPMLE or Symmetric Combination models

are interpreted similarly to diagnostic plots from logistic regression. As with logistic regression,

we do not expect normally distributed residuals. Instead we check that the expected value of the

residual is near zero over the range of fitted values. caseControlGE provides the plot.spmle

function to do just this, and draws a lowess curve through the residuals.

#### Plot Pearson residuals vs predicted value

plot(comboRed,

main="Residuals vs Fitted: Symmetric Combo, known pi1")
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Figure 4.1: Reduced model diagnostics: residuals vs predicted values

The fitted lowess curve is near zero over the range of predicted values, raising no concerns
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about model fit. Below we plot residuals vs. independent variables and find no issues

#### Plot Pearson residuals vs independent variables

plot(resid(comboRed)~dat$G, ylab="residuals", xlab="PRS")

panel.smooth(x=dat$G, y=resid(comboRed))

boxplot(resid(comboRed) ~ dat$E[,1], notch=TRUE,

names=c("late menarche", "early menarche"))
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Figure 4.2: Reduced model diagnostics: residuals vs independent variables

Finally, we plot the residuals against BMI, the independent variable we removed from the

model after the likelihood ratio test indicated it was not improving the model. We expect to see no

pattern to the residuals.
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#### Plot Pearson residuals vs BMI

plot(resid(comboRed)~dat$E[,2], ylab="residuals", xlab="BMI",

main="Residuals vs BMI")

panel.smooth(x=dat$E[,2], y=resid(comboRed))
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Figure 4.3: Reduced model diagnostics: residuals vs BMI, excluded from the model

4.4.3 Predictions

Satisfied that the model fits well, our final task is to visualize the model by predicting the ex-

pected probability of developing breast cancer for subjects who experience early or late menarche,

spanning the gamut of PRS values. We use the function predict.spmle, which takes the same

arguments as the predict methods for other classes. The one detail we must keep in mind is that

spmle and spmleCombo allow the data argument to be a data.frame or a list. When

we fit comboRed we coerced dat into a data.frame, so when we make predictions using
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comboRed, we will need to supply newdata as a data.frame with variable names “D”, “G”,

and “E.1”.

The following lengthy block of code creates two sets of prediction data: one for women who

underwent early menarche and one for women who did not. We plot the curves for both groups

of women along with a 95% confidence interval of the mean (predict.spmle does not calcu-

late prediction intervals for an individual because they are not easily interpretable with a binary

response).

#### Store vectors of polygenic risk scores,

#### separated by disease status and menarche timing

GcaseEarly = dat$G[which(dat$D==1 & dat$E[,1]==1)]

GcaseLate = dat$G[which(dat$D==1 & dat$E[,1]==0)]

GcontrolEarly = dat$G[which(dat$D==0 & dat$E[,1]==1)]

GcontrolLate = dat$G[which(dat$D==0 & dat$E[,1]==0)]

#### Create a grid of PRS values

xg = seq(from=min(dat$G), to=max(dat$G), length=100)

#### Create two sets of new data,

#### one with early menarche, the other without

newEarly = data.frame(G=xg, E.1=1)

newLate = data.frame(G=xg, E.1=0)

#### Predict risk and get CI for both data sets

predEarly = predict(object=comboRed, newdata=newEarly,

interval="confidence", type="response")

predLate = predict(object=comboRed, newdata=newLate,

interval="confidence", type="response")
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#### Calculate the boundaries of a 95% CI for each data set

CIearly = data.frame(x=c(xg, rev(xg)),

y=c(predEarly[,"lwr"], rev(predEarly[,"upr"])))

CIlate = data.frame(x=c(xg, rev(xg)),

y=c(predLate[,"lwr"], rev(predLate[,"upr"])))

#### Plot the predictions for women with early age at menarche

plot(x=xg, y=predEarly[,"fit"], xlim=range(xg),

main="Effect of Polygenic Risk Score and Early Age at Menarche",

ylim=range(c(predEarly, predLate)), type="l",

lwd=3, col="blue", xlab="Polygenic Risk Score",

ylab="Predicted pr(D=1)", xaxs="i")

#### Add the predictions for women with late age at menarche

lines(x=xg, y=predLate[,"fit"], lwd=3, col="red")

#### Shade the 95% CIs

polygon(x=CIearly, col=addTrans("blue", 120), border=NA)

polygon(x=CIlate, col=addTrans("red", 120), border=NA)

#### Add a rug for each data set: Early in blue, Late in red,

#### and cases above, controls below

rug(GcaseEarly, ticksize=0.02, side=3, col="blue")

rug(GcaseLate, ticksize=0.02, side=3, col="red")

rug(GcontrolEarly, ticksize=0.02, side=1, col="blue")

rug(GcontrolLate, ticksize=0.02, side=1, col="red")
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#### Add a vertical line at the population mean PRS

abline(v=0, lty=3, col="darkslategray")

#### Add a legend

legend(x="topleft", inset=0.05, title="Age at Menarche",

legend=c("Early", "Late"), col=c("blue", "red"), lwd=3)
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Figure 4.4: Predicted probability of developing breast cancer

Both early menarche and PRS have positive main effects, but the interaction has a negative

coefficient. Visualizing the model, we see how this interesting effect plays out: on average, women
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who experienced early menarche are at higher risk for breast cancer. However, among women with

a high PRS, those who underwent early menarche are at lower risk of developing breast cancer than

those who underwent late menarche.

The difference in risk at the far right end of the scale appears dramatic, but examining the tic-marks

indicating observed values of PRS we see that there is a lone outlier with PRS > 3, so we would be

well advised to ignore or crop values of PRS above 3. On the other end of the spectrum, women

who had early menarche experience higher risk of breast cancer than women with equally “good”

genes who had late menarche.
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5. SUMMARY

Researchers investigating gene-environment interactions in case-control studies have tradition-

ally had two broad options for analysis: logistic regression, which is flexible but has low power

to detect interactions, or less flexible methods that exploit the assumption of gene-environment

independence for increased efficiency. Improved understanding of genetic risk factors has led to

the need for efficient estimators that can model complex gene-environment interactions.

We have proposed a general method for using retrospective likelihoods for studying gene-

environment interactions involving multiple markers, a method that does not require any distribu-

tional assumption of the multivariate genotype distribution (Stalder et al., 2017). By obviating the

need for a parametric model of genotype distributions, this method is well suited for the analysis

of multimarker genetic data and polygenic risk scores. Additionally, we proposed an improvement

to the aforementioned method that increases the efficiency of the estimates with modest computa-

tional cost and no additional assumptions.

To make these methods available to the public, we have created a free and open source software

package implementing both methods (Asher, 2018). The package is extensively documented and

is available for download at https://github.com/alexasher/caseControlGE/.
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APPENDIX A

APPENDIX TO SECTION 2*

A.1 Proof of Theorem 1

Sketch of Technical Arguments

Necessary U-Statistic theory

Consider the case of one sample. Let Z1,. . . ,Zn be independent and identically distributed. Let

h∗(·) be a function such that E{h∗(Z1, Z2)} = 0. Define

Un∗ =
∑n

i=1

∑n
j 6=ih∗(Zi, Zj)/{n(n− 1)} =

∑n
i=1

∑
j<ih∗(Zi, Zj)/{n(n− 1)/2}.

If h∗(z1, z2) 6= h∗(z2, z1), we make it symmetric in its arguments by noticing that if

h(z1, z2) = {h∗(z1, z2) + h∗(z2, z1)}/2,

then

Un∗ = Un =
∑n

i=1

∑n
j 6=ih(Zi, Zj)/{n(n− 1)}.

We recognize Un as a U-statistic of order 2 with a symmetric kernel h(·). Define

h1(z) = 2E{h(z, Z2)}. (A.1)

*Reprinted with permission from “Semiparametric analysis of complex polygenic gene-environment interactions in
case-control studies” by Stalder, O., Asher, A., Liang, L., Carroll, R. J., Ma, Y., and Chatterjee, N., 2017. Biometrika,
104, 801-812, Copyright 2017 by Oxford University Press.

66



Then, as in Theorem 12.3 of Van der Vaart (1998),

n1/2Un = n−1/2
∑n

i=1h1(Zi) + op(1). (A.2)

Next we consider a special case of two samples, namely the n0 controls and n1 cases, denoted

as (U1, . . . , Un0) and (V1, . . . , Vn1), respectively, with n = n0 + n1. The U-statistic of interest is

Un = (n0n1)−1
∑n0

i=1

∑n1

j=1I(Di = 0)I(Dj = 1)h(Ui, Vj), (A.3)

where 0 = E{h(Ui, Vj) | Di = 0, Dj = 1}. Let n0/n → λ and n1/n → 1 − λ, with 0 < λ < 1.

Define

h1,0(u) = E{h(u, V ) | D = 1};

h0,1(v) = E{h(U, v) | D = 0}.

Then, from Chapter 12.2 of Van der Vaart (1998),

n1/2Un = n1/2n−1
0

∑n0

i=1I(Di = 0)h1,0(Ui) + n1/2n−1
1

∑n1

j=1I(Dj = 1)h0,1(Vj) + op(1). (A.4)

Preliminary Lemma

Let the data be Zi = (Di, Gi, Xi) for i = 1, . . . , n, ordered so that the first n0 observations are

the controls, and the last n1 observations are the cases.

Define nd = cdn.
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In the proofs, for generic functions T (·) and P (·), we need to deal with terms

Dn(P, T ) =
∑1

d=0(πd/nd)n
−1
∑n

i=1

∑J
j=1

∑1
r=0I(Dj = d)

×P (Xi) {T (r,Gj, Xi)− TE(r,Dj, Xi)}

=
∑1

t=0

∑1
d=0(πd/nd)n

−1
∑n

i=1

∑J
j=1

∑1
r=0I(Di = t,Dj = d)

×P (Xi) {T (r,Gj, Xi)− TE(r, d,Xi)} ,

where

TE(r, d, x) = E{T (r,G, x) | D = d}.

We will use repeatedly the fact that for any constant x,

0 = E [P (x) {T (r,G, x)− TE(r, d, x)} | D = d] . (A.5)

We will make the following notational convention. We define

E [P (X) {T (r, gi, X)− TE(r, d,X)} | D = t] (A.6)

to mean

E [P (X) {T (r, g,X)− TE(r, d,X)} | D = t]g=Gi
.

Similarly, E [P (xi) {T (r,G, xi)− TE(r, d, xi)} | D = t] is

E [P (x) {T (r,G, x)− TE(r, d, x)} | D = t]x=Xi
.

Below, we will prove the following Lemma, which relies of U-statistics of order 2 for one

sample and U-statistics of order 1 for independent samples, namely the cases and the controls. We
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use the notation defined at (A.6).

Lemma 1. Define Zi = (Di, Gi, Xi). As n→∞ in such a way that nd = cdn for 0 < c0, c1 < 1,

n1/2Dn(P, T )

= n−1/2
∑n0

i=1

∑1
d=0

∑1
r=0{cdπdi/cdi}E{P (X)T (r, gi, X) | D = d}

−n−1/2n0E
[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
−n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
+ op(1).

Proof of Lemma 1

Now, since there are only n terms with i = j, whereas the leading terms before the summations

are O(n−2), and because (n − 1)−1 − n−1 = O(n−2), and because the first n0 observations are

controls, to order n1/2, analyzing Dn is equivalent to analyzing

Dn(P, T ) =
∑1

t=0

∑1
d=0Dn(P, T, t, d) + op(n

−1),

where

Dn(P, T, 0, 0) = (π0/n0)n−1
∑n0

i=1

∑n0

j=1,j 6=iI(Di = 0, Dj = 0)

×P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 0, Xi)}

= {n0(n0 − 1)}−1
∑n0

i=1

∑n0

j=1,j 6=iI(Di = 0, Dj = 0)

×(π0c0)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 0, Xi)}+Op(n
−1);

Dn(P, T, 0, 1) = (π1/n1)n−1
∑n0

i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)}

= (n0n1)−1
∑n0

i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×(π1c0)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)} ;
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Dn(P, T, 1, 0) = (π0/n0)n−1
∑n

i=n0+1

∑n0

j=1I(Di = 1, Dj = 0)

×P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 0, Xi)}

= (n0n1)−1
∑n0

i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×(π0c1)P (Xj)
∑1

r=0 {T (r,Gi, Xj)− TE(r, 0, Xj)} ;

Dn(P, T, 1, 1) = (π1/n1)n−1
∑n

i=n0+1

∑n
j=n0+1,j 6=iI(Di = 1, Dj = 1)

×P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)}

= {n1(n1 − 1)}−1
∑n

i=n0+1

∑n
j=n0+1,j 6=iI(Di = 1, Dj = 1)

×(π1c1)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)}+Op(n
−1).

Now, Dn(P, T, 1, 0) andDn(P, T, 0, 1) are U-statistics of order 1 for 2 independent samples, while

Dn(P, T, 0, 0) andDn(P, T, 1, 1) are U-statistics of order 2 for a single sample, all with asymmetric

kernels.

We next analyze Dn(P, T, 0, 1). The term Dn(P, T, 0, 1) has kernel

h(Zi, Zj, 0, 1) = (π1c0)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)} .

Then

h1,0(u, 0, 1) = E{h(u, Zj, 0, 1) | Dj = 1} = 0, by (A.5);

h0,1(v, 0, 1) = E{h(Zi, v) | Di = 0}

= (π1c0)E
[
P (X)

∑1
r=0 {T (r, v,X)− TE(r, 1, X)} | D = 0

]
.

70



Thus, from (A.4),

n1/2Dn(P, T, 0, 1) = (n1/2/n1)
∑n

j=n0+1h0,1(Zj, 0, 1) + op(1)

= n−1/2
∑n

j=n0+1c
−1
1 h0,1(Zj, 0, 1) + op(1). (A.7)

In the notation defined at (A.6),

n1/2Dn(P, T, 0, 1) = n−1/2
∑n

j=n0+1(π1c0/c1)I(Dj = 1)

×
∑1

r=0E [P (X) {T (r, gj, X)− TE(r, 1, X)} | D = 0] + op(1)

= n−1/2
∑n

i=n0+1I(Di = 1) (A.8)

×(π1c0/c1)
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 1, X)} | D = 0] + op(1).

Now consider he term Dn(P, T, 1, 0), which has kernel

h(Zi, Zj, 1, 0) = (π0c1)P (Xj)
∑1

r=0 {T (r,Gi, Xj)− TE(r, 0, Xj)} .

Then

h1,0(u, 1, 0) = E{h(u, Zj, 1, 0) | Dj = 1}

= (π0c1)E
[
P (Xj)

∑1
r=0 {T (r, u,Xj)− TE(r, 0, Xj)} | Dj = 1

]
;

h0,1(v, 1, 0) = E{h(Zi, v, 1, 0) | Di = 0} = 0, by (A.5).

Thus, from (A.4),

n1/2Dn(P, T, 1, 0) = (n1/2/n0)
∑n0

i=1h1,0(Zi, 1, 0) + op(1)

= n−1/2
∑n0

i=1c
−1
0 h1,0(Zj, 1, 0) + op(1). (A.9)

71



In the notation defined at (A.6),

n1/2Dn(P, T, 1, 0) = n−1/2
∑n0

i=1I(Di = 0)(π0c1/c0) (A.10)

×
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 1] + op(1).

We next analyze Dn(P, T, 0, 0), which is a U-statistic of order 2 but with an asymmetric kernel

h∗(Zi, Zj, 0, 0) = I(Di = Dj = 0)(π0c0)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 0, Xi)} .

To make this a symmetric kernel, we define

h(Zi, Zj, 0, 0) = (1/2)I(Di = Dj = 0)(π0c0)
[
P (Xi)

∑1
r=0 {T (r,Gj, Xi)− TE(r, 0, Xi)}

+P (Xj)
∑1

r=0

{
T (r,Gi, Xj)− TE(r, 0, Xj)

}]
.

We now apply (A.1), so that

h1(z, 0, 0) = (π0c0)E
[
P (x)

∑1
r=0 {T (r,G, x)− TE(r, 0, x)} | D = 0

]
+(π0c0)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 0, X)} | D = 0

]
= (π0c0)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 0, X)} | D = 0

]
, by (A.5).

From (A.2), this means that

n1/2Dn(P, T, 0, 0) = (n1/2/n0)
∑n0

i=1h1(Zi, 0, 0) + op(1)

= (n−1/2/c0)
∑n0

i=1h1(Zi, 0, 0) + op(1).
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Thus, in the notation defined at (A.6),

n1/2Dn(P, T, 0, 0) = n−1/2
∑n0

i=1I(Di = 0)π0 (A.11)

×
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 0] + op(1).

We next analyze Dn(P, T, 1, 1), which is a U-statistic of order 2 but with an asymmetric kernel

h∗(Zi, Zj, 1, 1) = I(Di = Dj = 1)(π1c1)P (Xi)
∑1

r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)} .

To make this a symmetric kernel, we define

h(Zi, Zj, 1, 1) = (1/2)I(Di = Dj = 1)(π1c1)
[
P (Xi)

∑1
r=0 {T (r,Gj, Xi)− TE(r, 1, Xi)}

+P (Xj)
∑1

r=0

{
T (r,Gi, Xj)− TE(r, 1, Xj)

}]
.

We now apply (A.1), so that

h1(z, 1, 1) = (π1c1)E
[
P (x)

∑1
r=0 {T (r,G, x)− TE(r, 1, x)} | D = 1

]
+(π1c1)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 1, X)} | D = 1

]
= (π1c1)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 1, X)} | D = 1

]
, by (A.5).

From (A.2),

n1/2Dn(P, T, 1, 1) = (n1/2/n1)
∑n

i=n0+1h1(Zi, 1, 1) + op(1)

= (n−1/2/c1)
∑n

i=n0+1h1(Zi, 1, 1) + op(1).
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Thus, in the notation at (A.6),

n1/2Dn(P, T, 1, 1) = n−1/2
∑n

i=n0+1I(Di = 1) (A.12)

×π1E
[
P (X)

∑1
r=0 {T (r, gi, X)− TE(r, 1, X)} | D = 1

]
+ op(1).

Collecting the terms (A.8), (A.10), (A.11) and (A.12), we get that

n1/2Dn(P, T )

= n−1/2
∑n0

i=1I(Di = 0)π0

∑1
r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 0]

+n−1/2
∑n0

i=1I(Di = 0)(π0c1/c0)
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 1]

+n−1/2
∑n

i=n0+1I(Di = 1)π1E
[
P (X)

∑1
r=0 {T (r, gi, X)− TE(r, 1, X)} | D = 1

]
+n−1/2

∑n
i=n0+1I(Di = 1)(π1c0/c1)

∑1
r=0E [P (X) {T (r, gi, X)− TE(r, 1, X)} | D = 0]

+op(1).

This in turn is seen to be

n1/2Dn(P, T ) = G1 − G2 + op(1),

where

G1(P, T ) = n−1/2
∑n

i=1

∑1
d=0

∑1
r=0(cdπdi/cdi)E{P (X)T (r, gi, X) | D = d};

G2(P, T ) = n−1/2
∑n

i=n0+1

∑1
r=0I(Di = 0)π0E {P (X)TE(r, 0, X) | D = 0}

+n−1/2
∑n0

i=1

∑1
r=0I(Di = 0)(π0c1/c0)E {P (X)TE(r, 0, X) | D = 1}

+n−1/2
∑n

i=n0+1

∑1
r=0I(Di = 1)π1E {P (X)TE(r, 1, X) | D = 1}

+n−1/2
∑n

i=n0+1

∑1
r=0I(Di = 1)(π1c0/c1)

∑1
r=0E {P (X)TE(r, 1, X) | D = 0} .
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It is easily seen that

G2(P, T ) = n−1/2n0E
[
P (X)

{
π0

∑1
r=0TE(r, 0, X)

}
| D = 0

]
+n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X)

}
| D = 1

]
+n−1/2n1E

[
P (X)

{
π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
+n−1/2n0E

[
P (X)

{
π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
= n−1/2n0E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
+n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
.

This completes the proof of Lemma 1.

Proof of Theorem 1

With a first-order Taylor series expansion, it is readily seen that

n−1/2
∑n

i=1

{
SΩ(Di, Gi, Xi, Ω̂)

S(Di, Gi, Xi, Ω̂)
− SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)

}
= Γ1n

1/2(Ω̂− Ω) + op(1).

Similarly,

n−1/2
∑n

i=1

{
R̂Ω(Xi, Ω̂)

R̂(Xi, Ω̂)
− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
= Γ2n

1/2(Ω̂− Ω) + op(1).

In a manner similar to that of Wei et al. (2013), we have that

0 = Ŝn(Ω̂) = Ŝn(Ω) + n−1/2∂Ŝn(Ω)

∂ΩT
n1/2(Ω̂− Ω) + op(1)

= Ŝn(Ω) + (Γ1 − Γ2)n1/2(Ω̂− Ω) + op(1)

= Sn(Ω)− n−1/2
∑n

i=1

{
R̂Ω(Xi,Ω)

R̂(Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

}
+(Γ1 − Γ2)n1/2(Ω̂− Ω) + op(1). (A.13)
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We now analyze the second term in (A.13), which equals

n−1/2
∑n

i=1

[
R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)
− RΩ(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}

R2(Xi,Ω)

]
+ op(1)

= n−1/2
∑n

i=1P1(Xi,Ω){R̂Ω(Xi,Ω)−RΩ(Xi,Ω)}

−n−1/2
∑n

i=1P2(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}+ op(1).

Thus,

Cn = n−1/2
∑n

i=1{
R̂Ω(Xi,Ω)

R̂(Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)
}

= n−1/2
∑n

i=1

R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)

−n−1/2
∑n

i=1

RΩ(Xi,Ω)

R2(Xi,Ω)
{R̂(Xi,Ω)−R(Xi,Ω)}+ op(1)

= Cn1 − Cn2 + op(1).

First, we calculate that

R̂(x,Ω)−R(x,Ω) =
∑J

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj, x,Ω)

−
∑1

r=0

∑1
d=0πdSE(r, d, x,Ω)

=
∑J

j=1{
∑1

r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj, x,Ω)

−
∑1

r=0

∑1
d=0(πd/nd)I(Dj = d)SE(r, d, x,Ω)}

=
∑1

d=0n
−1
d

∑J
j=1

∑1
r=0I(Dj = d)πd

×{S(r,Gj, x,Ω)− SE(r, d, x,Ω)} . (A.14)

Similarly,

R̂Ω(x,Ω)−RΩ(x,Ω) =
∑1

d=0n
−1
d

∑J
j=1

∑1
r=0I(Dj = d)πd

×{SΩ(r,Gj, x,Ω)− SE,Ω(r, d, x,Ω)} . (A.15)
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Then, from (A.14) and (A.15),

Cn1 = n−1/2
∑n

i=1P1(Xi,Ω){R̂Ω(Xi,Ω)−RΩ(Xi,Ω)}

=
∑1

d=0(πd/nd)n
−1/2

∑n
i=1P1(Xi,Ω)

×
∑J

j=1

∑1
r=0I(Dj = d) {SΩ(r,Gj, Xi,Ω)− SE,Ω(r,Dj, Xi,Ω)} ;

Cn2 = n−1/2
∑n

i=1P2(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}

=
∑1

d=0(πd/nd)n
−1/2

∑n
i=1P2(Xi,Ω)

×
∑J

j=1

∑1
r=0I(Dj = d) {S(r,Gj, Xi,Ω)− SE(r,Dj, Xi,Ω)} .

In the notation defined at (A.6),

Cn1 = n1/2Dn(P1, SΩ) + op(1);

Cn2 = n1/2Dn(P2, S) + op(1).
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Thus, with Lemma 1,

Cn = Cn1 − Cn2 + op(1)

= n−1/2
∑n

i=1

∑1
d=0

∑1
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d]

−n−1/2n0E
[
P1(X,Ω)

{
π0

∑1
r=0SE,Ω(r, 0, X) + π1

∑1
r=0SE,Ω(r, 1, X)

}
| D = 0

]
−n−1/2n1E

[
P1(X,Ω)

{
π0

∑1
r=0SE,Ω(r, 0, X) + π1

∑1
r=0SE,Ω(r, 1, X)

}
| D = 1

]
+n−1/2n0E

[
P2(X,Ω)

{
π0

∑1
r=0SE(r, 0, X) + π1

∑1
r=0SE(r, 1, X)

}
| D = 0

]
+n−1/2n1E

[
P2(X,Ω)

{
π0

∑1
r=0SE(r, 0, X) + π1

∑1
r=0SE(r, 1, X)

}
| D = 1

]
+ op(1)

= n−1/2
∑n

i=1

∑1
d=0

∑1
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d]

−n−1/2n0E {P1(X,Ω)RΩ(X,Ω) | D = 0}

−n−1/2n1E {P1(X,Ω)RΩ(X,Ω) | D = 1}

+n−1/2n0E {P2(X,Ω)R(X,Ω) | D = 0}

+n−1/2n1E {P2(X,Ω)R(X,Ω) | D = 1}+ op(1).

However,

P1(X,Ω)RΩ(X,Ω) = {R(X,Ω)}−1RΩ(X,Ω);

P2(X,Ω)R(X,Ω) = {R(X,Ω)}−1RΩ(X,Ω),

so the last 4 terms above cancel, completing the proof of Theorem 1.
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A.2 Alternative Proof Based on a Hypothetical Population

Here we give an alternative argument using the hypothetical population framework of Ma

(2010). DefineK1(D,G,X,Ω) = SΩ(D,G,X,Ω)/S(D,G,X,Ω) andK2(X,Ω) = RΩ(X,Ω)/R(X,Ω).

Solving (7) in the main paper leads to the expansion

0 = n−1/2

n∑
i=1

{
K1(Di, Gi, Xi, Ω̂)− R̂Ω(Xi, Ω̂)

R̂(Xi, Ω̂)

}

= n−1/2

n∑
i=1

{
K1(Di, Gi, Xi,Ω)− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}

+

[
n−1
∑n

i=1∂

{
K1(Di, Gi, Xi,Ω)− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
/∂ΩT + op(1)

]
√
n(Ω̂− Ω)

= n−1/2

n∑
i=1

[
K1(Di, Gi, Xi,Ω)−K2(Xi,Ω)− R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)

+
RΩ(Xi,Ω)

R2(Xi,Ω)

{
R̂(Xi,Ω)−R(Xi,Ω)

}]
+ (Γ1 − Γ2)

√
n(Ω̂− Ω) + op(1)

= n−1/2

n∑
i=1

{
K1(Di, Gi, Xi,Ω)−K2(Xi,Ω)− P1(Xi,Ω)R̂Ω(Xi,Ω)

+P2(Xi,Ω)R̂(Xi,Ω)
}

+ (Γ1 − Γ2)
√
n(Ω̂− Ω) + op(1).

Now using U-statistics properties,

n−1/2
∑n

i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−3/2
∑n

i=1

∑J
j=1

πd
cd
I(Dj = d) {P1(Xi,Ω)SΩ(r,Gj, Xi,Ω)

−P2(Xi,Ω)S(r,Gj, Xi,Ω)}

=
∑1

r=0

∑1
d=0n

−1/2
∑n

i=1E

[
πd
cd
I(D = d) {P1(xi,Ω)SΩ(r,G, xi,Ω)− P2(xi,Ω)S(r,G, xi,Ω)}

]
+
∑1

r=0

∑1
d=0n

−1/2
∑J

j=1E

[
πd
cd
I(dj = d) {P1(X,Ω)SΩ(r, gj, X,Ω)− P2(X,Ω)S(r, gj, X,Ω)}

]
−
∑1

r=0

∑1
d=0n

−1/2
∑J

j=1E

[
πd
cd
I(Dj = d) {P1(X,Ω)SΩ(r,Gj, X,Ω)− P2(X,Ω)S(r,Gj, X,Ω)}

]
+op(1).
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Further, we thus have that

n−1/2
∑n

i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−1/2
∑n

i=1πd {P1(Xi,Ω)SE,Ω(r, d,Xi,Ω)− P2(Xi,Ω)SE(r, d,Xi,Ω)}

+
∑1

t=0

∑1
r=0

∑1
d=0n

−1/2
∑n

i=1

πdct
cd

I(di = d)

×E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = t]

−
∑1

t=0

∑1
r=0

∑1
d=0n

1/2πdctE {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω) | D = t}

+op(1).

Thus,

n−1/2
∑n

i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−1/2
∑n

i=1πd {P1(Xi,Ω)SE,Ω(r, d,Xi,Ω)− P2(Xi,Ω)SE(r, d,Xi,Ω)}

+
∑1

d=0

∑1
r=0n

−1/2
∑n

i=1

πdicd
cdi

E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = d]

−
∑1

t=0

∑1
r=0

∑1
d=0n

1/2πdctE {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω) | D = t}

+op(1)

=
∑1

d=0

∑1
r=0n

−1/2
∑n

i=1

πdicd
cdi

E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = d]

+op(1).

Here the last step is because for any X ,

∑1
r=0

∑1
d=0πd {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω)}

=
1

R(X,Ω)

∑1
r=0

∑1
d=0πdSE,Ω(r, d,X,Ω)− RΩ(X,Ω)

R2(X,Ω)

∑1
r=0

∑1
d=0πdSE(r, d,X,Ω)

=
RΩ(X,Ω)

R(X,Ω)
− R(X,Ω)RΩ(X,Ω)

R2(X,Ω)

= 0.

This leads to the result.
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A.3 Score and Hessian: Rare Disease Case of §2.2 in the Main Paper

We consider models in which κ + m(g, x,β) = QT(g, x)Ω, and Ω = (κ,βT)T. The point of

this section is to show that both the log-pseudolikelihood score and its Hessian are very simply

calculated, and that the Hessian is negative semidefinite.

In the rare disease case,

S(d, g, x,Ω) = exp{dQT(g, x)Ω}, (A.16)

and thus

log{S(d, g, x,Ω)} = dQT(g, x)Ω.

This means that

∂log{S(d, g, x,Ω)}/∂Ω = dQ(g, x),

and also that

∂2log{S(d, g, x,Ω)}∂Ω∂ΩT = 0.

Similarly, in the rare disease case,

R̂(X,Ω) = n−1
0

∑J
j=1

∑1
r=0I(Dj = 0)S(r,Gj, X,Ω).

From (A.16),

R̂Ω(X,Ω) = ∂R̂(X,Ω)/∂Ω = n−1
0

∑J
j=1

∑1
r=0I(Dj = 0)S(r,Gj, X,Ω)rQ(Gj, X)

= n−1
0

∑J
j=1I(Dj = 0)S(1, Gj, X,Ω)Q(Gj, X). (A.17)
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Thus,

R̂ΩΩ(X,Ω) = ∂2R̂(X,Ω)/∂Ω∂ΩT

= n−1
0

∑J
j=1I(Dj = 0)S(1, Gj, X,Ω)Q(Gj, X)QT(Gj, X). (A.18)

This means that the Hessian for the log-pseudolikelihood in equation (6) of the main paper is

−∂{R̂Ω(X,Ω)/R̂(X,Ω)}
∂ΩT

= −R̂ΩΩ(X,Ω)

R̂(X,Ω)
+
R̂Ω(X,Ω)R̂T

Ω(X,Ω)

R̂2(X,Ω)

= {R̂(X,Ω)}−2
{
−R̂ΩΩ(X,Ω)R̂(X,Ω) + R̂Ω(X,Ω)R̂T

Ω(X,Ω)
}
.

Write Vj = I(Dj = 0)S(1, Gj, X,Ω). For matrices, define A ≤ B to be that B − A is positive

semidefinite. By Hölder’s inequality

R̂Ω(X,Ω)R̂T
Ω(X,Ω)

= n−1
0

∑J
j=1VjQ(Gj, X)× n−1

0

∑J
j=1VjQ

T(Gj, X)

≤ n−1
0

∑J
j=1VjQ(Gj, X)QT(Gj, X)× n−1

0

∑J
j=1Vj

= R̂ΩΩ(X,Ω)R̂(X,Ω).

Hence, the Hessian is negative semidefinite as claimed.
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A.4 Stratification and the Independence Assumption

The assumption of gene-environment independence may not hold when there may exist un-

derlying strata in the population, e.g. defined by ethnicity, across which the distribution of both

genetic and environmental factors vary. In this case, as discussed in Section 3.1 of Chatterjee and

Carroll (2005), we extend our framework to account for the scenario where the genetic and envi-

ronmental factors can be assumed to be independent conditional on a discrete stratification A with

a = 1, ..., A levels.

To apply the method in Section 2.1 in the main paper to this case, for stratum a, we replace πd

by πda, the probability that D = d in the ath stratum of the source population, and we replace n, n0

and n1 by na, n0a and n1a, the number of subjects, controls, and cases in stratum a, respectively.

We modify (1) to pr(D = 1|G,X,A = a) = H{α0a + m(G,X, β)}: more complex models

with possible interactions between (G,X) and the strata can also be considered. We then set κa =

α0a+log(n1a/n0a)−log(π1a/π0a). The parameters to be estimated are then Ω = (κ1, ..., κA, β
T)T.

We also replace S(d, g, x,Ω) by

Sa(d, g, x,Ω) =
exp[d{κa +m(g, x, β)}]

1 + exp{κa + log(π1a/π0a)− log(n1a/n0a) +m(g, x, β)}
.

Next, set n =
∑A

a=1 na, and replace (5) by

R̂a(x,Ω) =
∑J

j=1

∑1
r=0

∑1
d=0(πda/nda)I(Dj = d,Aj = a)Sa(r,Gj, x,Ω),

and the estimated loglikelihood (6) becomes

L(Ω) =
∑A

a=1I(Ai = a)[
∑n

i=1log{Sa(Di, Gi, Xi,Ω)} −
∑n

i=1log{R̂a(Xi,Ω)}],

which is then maximized to obtain the estimate Ω̂. Now replace the score function (7) by

Ŝn(Ω) = n−1/2
∑A

a=1

∑n
i=1I(Ai = a)

{
SΩ,a(Di, Gi, Xi,Ω)

Sa(Di, Gi, Xi,Ω)
− R̂Ω,a(Xi,Ω)

R̂a(Xi,Ω)

}
,
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using the obvious definitions of SΩ,a(·), R̂Ω,a(·), P1a(X,Ω), P2a(X,Ω) and withZi = (Di, Gi, Xi,Ai).

In terms of the asymptotic theory of Section 2.3 of the main paper, we replace (Γ1,Γ2) by

Γ1 =
∑A

a=1

∑1
d=0(nda/n)E

{
∂SΩ,a(D,G,X,Ω)/Sa(D,G,X,Ω)

∂ΩT

∣∣∣∣A = a,D = d

}
;

Γ2 =
∑A

a=1

∑1
d=0(nda/n)E

{
∂RΩ,a(X,Ω)/Ra(X,Ω)

∂ΩT

∣∣∣∣A = a,D = d

}
.

Then define

ζa(Zi,Ω) = I(Ai = a)
SΩ,a(Zi,Ω)

Sa(Zi,Ω)
− RΩ,a(Xi,Ω)

Ra(Xi,Ω)

−
1∑

d=0

1∑
r=0

cd,aπdi,a
cdi,a

×E [{P1a(X,Ω)SΩ,a(r, gi, X)− P2a(X,Ω)Sa(r, gi, X)} | A = a,D = d] ,

and now Σ becomes

Σ =
∑A

a=1

∑1
d=0(nda/n)cov{ζa(D,X,G,Ω)|D = d,A = a}.
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A.5 Additional Simulations

A.5.1 Comparison with the Method of Chatterjee and Carroll (2005)

Table 2 of this Supplementary Material gives results in the same simulation setting as in Section

3 in the main paper, except that to compare with Chatterjee and Carroll (2005), we only use the first

SNP for our method and for the Chatterjee-Carroll method. The latter method uses the R package

CGEN in Bioconductor, and is based on that package’s function snp.logistic, which allows for SNP

levels 0, 1, 2 and X values 0,1, as in our simulation. The results of that analysis and our method

are very similar, indicating that our method is, in this case, almost efficient.

A.5.2 Misspecification of Population Disease Rate

Table 3 of this Supplementary Material reports the results of a simulation to evaluate the ro-

bustness of our method to misspecification of the population disease rate, using a sample of 1000

cases and 1000 controls. We considered actual disease rates of π1 = 0.03, 0.05, 0.085 and 0.12,

and compared the results for the rare disease approximation and when the assumed disease rate

was π1 = 0.03. For the method using the a rare disease approximation, it was only when the rate

was π1 = 0.12 that there was a deterioration in the coverage probabilities, but even then the lowest

coverage rate was 91.8%. When the disease rate was assumed to be π1 = 0.03, nominal coverage

was seen except when the exact disease rate was π1 = 0.12, and even at the worst case the lowest

coverage rate was 93.1%, almost nominal. This indicates a surprising robustness to disease rate

misspecification.

A.5.3 Violations of the Gene-Environment Independence Assumption

Tables A.4, A.5 and A.6 of this Supplementary Material contain simulations to examine the

robustness of our method to violations of the gene-environment independence assumption. In

these simulations, the genetic variables are generated as described in Section 3 of the main pa-

per, but the environmental variable is normally distributed with mean αG1, αG2, or αG3. We

let α = 0.032 to introduce a dependence between X and G with R2 = 0.001. Here βG =

{log(1.2), log(1.2), 0, log(1.2), 0} as in Section 3 of the main paper, but βX = log(1.73) and
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βGX = {log(1.42), 0, 0, log(1.42), 0}. In each simulation, the logistic intercept was chosen to give

a 3% population disease prevalence. In Table A.4 X is correlated with G1, which has a nonzero

main effect and a nonzero interaction; in Table A.5 X is correlated with G2, which has a nonzero

main effect but no interaction effect; in Table A.6 X is correlated with G3, which has neither main

nor interaction effects.

Similarly to Chatterjee and Carroll (2005), we find that violating the G-E independence as-

sumption induces a bias in the parameter estimates. In Section A.4 of this Supplementary Material

we describe how to remove this bias when G and E are independent conditional on a discrete

stratification variable A. Mukherjee and Chatterjee (2008) and Chen et al. (2009) show how to

use empirical-Bayes methods as well to provide additional robustness against violations of the

gene-environment independence assumption.
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A.6 Properties of R̂(x,Ω) in equation (5) of the Main Paper

Equation (5) of the main paper is

R̂(x,Ω) =
∑J

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj, x,Ω).

Computing its expectation is facilitated by seeing that

E{I(Dj = d)S(r,Gj, x,Ω)} = E{S(r,Gj, x,Ω)|Dj = d} = E{S(r,G, x,Ω)|D = d}

Hence, recognizing that there are nd subjects with D = d,

E{R̂(x,Ω)} =
∑J

j=1

∑1
r=0

∑1
d=0(πd/nd)E{S(r,G, x,Ω)|D = d}

=
∑1

r=0

∑1
d=0πd/nd)E{S(r,G, x,Ω)|D = d}

= R(x,Ω).

Hence, (5) of the main paper is unbiased for R(x,Ω). Further, we see that

R̂(x,Ω)−R(x,Ω)

=
∑1

r=0

∑1
d=0(πd/nd)

∑J
j=1

× [I(Dj = d)S(r,Gj, x,Ω)− E{I(Dj = d)S(r,Gj, x,Ω)}] ,

so that R̂(x,Ω) is n1/2-consistent for R(x,Ω), and with proper normalization is asymptotically

normally distributed.
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A.7 SNPs Involved in Creating the Polygenic Risk Score

Table A.1: SNPs involved in creating the polygenic risk score, and their regression coefficients

Actual RS Variable
Number Name Coefficient
rs11249433 gene1 -0.02813492
rs1045485 gene2 -0.09307971
rs13387042 gene3 -0.26203658
rs4973768 gene4 0.08013260
rs10069690 gene5 0.06459363
rs10941679 gene6 0.09185539
rs889312 gene7 -0.00565121
rs17530068 gene8 0.09668742
rs2046210 gene9 0.09851217
rs1562430 gene10 -0.14871719
rs1011970 gene11 0.05329783
rs865686 gene12 -0.02913340
rs2380205 gene13 -0.01821032
rs10995190 gene14 -0.04275836
rs2981582 gene15 0.14008397
rs909116 gene16 0.04955235
rs614367 gene17 0.06438418
rs3803662 gene18 0.27080105
rs6504950 gene19 -0.17586244
rs8170 gene20 0.08570773
rs999737_as gene21 -0.13737833
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A.8 Comparison with the Method of Chatterjee and Carroll (2005) in a Special Case

Table A.2: Results of 1000 simulations with 3% disease prevalence as described in Section 3 of
the main paper, except that to compare with Chatterjee and Carroll (2005), we only use the first

SNP. We compare our semiparametric pseudolikelihood estimator to the method of Chatterjee and
Carroll (2005) and to ordinary logistic regression. The simulations were performed with 500

cases and 500 controls

500 cases & 500 controls 1000 cases & 1000 controls
βG1 βX βG1X βG1 βX βG1X

True 0.182 0.405 0.262 0.182 0.405 0.262

Logistic
Bias -0.011 0.001 0.015 0.009 0.003 -0.001
CI (%) 93.9 94.1 93.7 95.2 94.2 95.6

Chatterjee Carroll
Bias -0.008 0.005 -0.004 0.013 0.006 -0.016
CI (%) 95.1 94.1 93.6 96.0 94.6 94.4
MSE Eff 1.405 1.108 2.227 1.321 1.118 2.183

SPMLE, Rare
Bias -0.007 0.004 -0.001 0.013 0.006 -0.015
CI (%) 95.1 94.1 94.1 95.8 94.5 94.8
MSE Eff 1.381 1.104 2.166 1.290 1.113 2.141

SPMLE, π1 known
Bias -0.014 0.001 0.014 0.006 0.003 0.000
CI (%) 95.1 94.2 94.8 95.9 94.7 94.4
MSE Eff 1.359 1.100 2.016 1.292 1.113 2.021

Logistic is ordinary logistic regression; Chatterjee Carroll is the method of Chatterjee and Carroll (2005);
SPMLE, Rare is our estimator using the rare disease approximation with unknown π1 (Section 2.2 of the

main paper); SPMLE, π1 known is our estimator when π1 is known in the source population (Section 2.1 of
the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a nominal 95% confidence

interval (calculated using the asymptotic standard error); MSE Eff is the mean squared error efficiency of
the method compared to logistic regression.
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A.9 Simulation When the Disease Rate is Misspecified
Table A.3: Results of 1000 simulations as described in §3 of the main paper, except that the

logistic intercept has been modified to give population disease rates (0.03, 0.05, 0.085, 0.12). We
compare ordinary logistic regression, our method using the rare disease approximation, and our
method with “known” π1 = 0.03, which is misspecified when π1 > 0.03. The simulations were

performed with 1000 cases and 1000 controls

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

LogisticDisease Rate = 0.03

Bias 0.00 0.01 0.00 0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

Disease Rate = 0.05

Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI (%) 95.8 95.2 95.9 94.7 94.4 95.6 95.7 95.5 95.3 94.8 95.3

Disease Rate = 0.085

Bias -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
CI (%) 94.2 94.8 95.6 94.4 93.7 94.4 94.9 94.3 94.9 95.9 94.2

Disease Rate = 0.12

Bias 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
CI (%) 94.8 95.5 94.9 95.2 93.8 95.7 94.4 95.9 94.9 95.3 95.0

SPMLE, RareDisease Rate = 0.03

Bias 0.01 0.00 0.00 0.02 -0.01 0.02 -0.02 -0.01 0.01 -0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
MSE Eff All G: 1.28 X: 1.26 All G ∗X: 2.18

Disease Rate = 0.05

Bias 0.02 0.00 0.00 0.02 -0.01 0.03 -0.04 0.00 0.00 -0.03 0.00
CI (%) 94.4 95.4 96.8 94.4 95.0 95.1 93.8 94.6 96.3 94.5 94.4
MSE Eff All G: 1.25 X: 1.23 All G ∗X: 1.99

Disease Rate = 0.085

Bias 0.02 0.01 0.00 0.02 0.00 0.05 -0.05 -0.01 0.00 -0.05 0.00
CI (%) 95.0 94.5 96.1 94.1 93.9 93.5 93.9 94.8 95.8 94.5 95.6
MSE Eff All G: 1.25 X: 1.14 All G ∗X: 2.02

Disease Rate = 0.12

Bias 0.03 0.01 -0.01 0.03 0.00 0.06 -0.08 -0.01 0.00 -0.06 0.00
CI (%) 94.2 95.5 94.6 93.3 93.9 93.4 92.0 96.1 94.5 91.8 94.4
MSE Eff All G: 1.21 X: 1.02 All G ∗X: 1.88

Continued on next page
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Table A.3 – continued from previous page
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

SPMLE, π1 = 0.03Disease Rate = 0.03

Bias 0.00 0.00 0.00 0.01 -0.01 0.01 0.00 -0.01 0.01 -0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
MSE Eff All G: 1.28 X: 1.28 All G ∗X: 2.07

Disease Rate = 0.05

Bias 0.01 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.01
CI (%) 94.6 95.4 96.4 94.7 94.7 95.8 94.3 94.6 96.0 94.5 94.1
MSE Eff All G: 1.25 X: 1.27 All G ∗X: 1.90

Disease Rate = 0.085

Bias 0.01 0.01 0.00 0.01 0.00 0.03 -0.03 -0.01 0.00 -0.03 0.00
CI (%) 95.1 94.8 96.4 94.4 93.9 94.7 94.9 95.1 95.8 94.9 95.2
MSE Eff All G: 1.25 X: 1.21 All G ∗X: 1.95

Disease Rate = 0.12

Bias 0.02 0.01 -0.01 0.03 0.00 0.05 -0.06 -0.01 0.00 -0.05 0.01
CI (%) 94.3 95.6 94.9 93.6 93.8 94.4 93.5 96.3 94.6 93.1 94.6
MSE Eff All G: 1.22 X: 1.10 All G ∗X: 1.84

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1 (Section 2.2 of the main paper); SPMLE, π1 = 0.03 is our estimator calculated as if the
disease rate in the source population were known to be 0.03 (Section 2.1 of the main paper); Bias is the
mean bias; CI (%) is the coverage in percent of a nominal 95% confidence interval (calculated using the
asymptotic standard error); MSE Eff is the mean squared error efficiency of our method compared to logistic
regression, averaged over G, over X and over the G ∗X interactions.
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A.10 Simulations When the Gene-Environment Independence Assumption is Violated

Table A.4: Results of 1000 simulations with G as described in Section 3 of the main paper, but
X ∼ N(0.032G1, 1). We compare our semiparametric pseudolikelihood estimator to ordinary
logistic regression. Three simulations were performed with sample sizes of (1000, 2000, 3000)

cases and controls each

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias -0.01 0.00 0.01 0.00 -0.01 0.01 0.01 0.01 -0.01 0.01 0.01
CI (%) 94.5 96.2 95.8 94.8 93.7 94.0 95.4 95.7 95.6 95.5 95.3

Logistic: 2000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 95.4 94.7 94.8 95.2 95.0 94.5 95.6 96.1 94.0 94.7 95.9

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 94.1 94.1 95.1 95.7 94.6 94.2 94.2 95.4 94.8 95.0 94.7

SPMLE, π1 known: 1000 cases
Bias -0.01 0.00 0.01 0.00 -0.01 -0.03 0.10 0.00 0.00 0.01 0.00
CI (%) 94.2 95.9 95.0 95.2 93.8 93.3 80.4 94.9 94.9 95.0 94.8
MSE Eff All G: 1.07 X: 1.31 All G ∗X: 1.75

SPMLE, π1 known: 2000 cases
Bias 0.00 0.00 0.00 0.01 0.00 -0.03 0.10 0.00 0.00 0.00 0.00
CI (%) 94.2 94.8 95.1 95.5 95.6 90.9 71.4 95.5 94.1 95.0 95.6
MSE Eff All G: 1.07 X: 1.08 All G ∗X: 1.53

SPMLE, π1 known: 3000 cases
Bias -0.01 0.00 0.00 0.00 0.00 -0.03 0.10 0.00 0.00 0.00 0.00
CI (%) 94.7 95.3 95.7 95.2 94.2 88.0 54.8 94.2 95.7 95.0 93.9
MSE Eff All G: 1.06 X: 0.95 All G ∗X: 1.27

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a
nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean

squared error efficiency of our method compared to logistic regression, averaged over G, over X and over
the G ∗X interactions.
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Table A.5: Results of 1000 simulations with G as described in Section 3 of the main paper, but
X ∼ N(0.032G2, 1). We compare our semiparametric pseudolikelihood estimator to ordinary
logistic regression. Three simulations were performed with sample sizes of (1000, 2000, 3000)

cases and controls each

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
CI (%) 93.4 95.1 94.5 93.0 95.7 94.4 94.4 93.7 94.8 93.4 94.4

Logistic: 2000 cases
Bias 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
CI (%) 95.3 94.0 94.4 94.6 93.2 94.9 94.6 94.8 94.2 95.5 93.8

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 94.1 94.5 94.5 95.3 95.2 95.9 94.7 93.9 94.4 95.6 95.3

SPMLE, π1 known: 1000 cases
Bias 0.00 -0.01 0.00 0.01 -0.01 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 93.7 95.3 95.4 94.0 95.1 89.4 93.8 86.0 95.0 94.6 94.9
MSE Eff All G: 1.06 X: 1.12 All G ∗X: 2.19

SPMLE, π1 known: 2000 cases
Bias 0.00 -0.01 0.00 0.00 0.00 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 95.6 94.2 94.9 94.4 93.9 88.1 94.3 78.7 95.1 95.4 95.6
MSE Eff All G: 1.08 X: 0.91 All G ∗X: 1.91

SPMLE, π1 known: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 94.8 94.2 94.9 95.9 94.9 84.3 95.4 72.7 95.4 95.3 95.5
MSE Eff All G: 1.08 X: 0.72 All G ∗X: 1.82

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a
nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean

squared error efficiency of our method compared to logistic regression, averaged over G, over X and over
the G ∗X interactions.

93



Table A.6: Results of 1000 simulations with G as described in Section 3 of the main paper, but
X ∼ N(0.032G3, 1). We compare our semiparametric pseudolikelihood estimator to ordinary
logistic regression. Three simulations were performed with sample sizes of (1000, 2000, 3000)

cases and controls each

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01
CI (%) 95.5 94.4 95.2 96.2 95.3 94.7 94.9 94.0 94.9 95.5 94.9

Logistic: 2000 cases
Bias 0.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
CI (%) 94.0 94.1 94.4 94.6 94.9 95.2 95.5 95.1 95.5 94.0 94.7

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 95.9 94.2 94.1 94.8 94.3 95.1 95.4 95.9 95.8 92.9 94.4

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.00 0.00 -0.04 0.01 0.00 0.06 0.01 0.00
CI (%) 95.6 94.8 95.5 96.3 95.3 92.0 94.8 95.5 88.3 95.7 96.2
MSE Eff All G: 1.07 X: 1.20 All G ∗X: 2.12

SPMLE, π1 known: 2000 cases
Bias 0.00 0.00 -0.01 0.00 0.00 -0.04 0.01 0.00 0.06 0.00 0.00
CI (%) 95.2 94.4 94.5 94.0 94.8 89.4 95.0 94.8 82.3 94.9 94.6
MSE Eff All G: 1.06 X: 0.95 All G ∗X: 1.95

SPMLE, π1 known: 3000 cases
Bias 0.00 0.00 0.00 0.00 -0.01 -0.04 0.00 0.00 0.06 0.00 0.00
CI (%) 95.3 94.7 94.0 95.3 94.2 84.5 94.4 94.9 75.7 95.0 94.8
MSE Eff All G: 1.06 X: 0.76 All G ∗X: 1.82

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a
nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean

squared error efficiency of our method compared to logistic regression, averaged over G, over X and over
the G ∗X interactions.
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A.11 The Simulation in Table 1 of the Main Paper With Componentwise Mean Squared

Error Efficiencies

Table A.7: Results of 1000 simulations as described in Section 3 of the main paper, with mean
bias, coverage probabilities of a 95% nominal confidence interval, and mean squared error
efficiency of our semiparametric pseudolikelihood estimator compared to ordinary logistic

regression. The sample sizes were performed with 500 cases and 500 controls, and again with
1000 cases and 1000 controls

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic, 500 cases
Bias 0.02 -0.02 0.02 -0.01 0.01 0.00 0.00 0.02 -0.02 0.02 -0.01
CI (%) 94.7 94.9 94.8 94.5 95.2 96.4 94.3 93.6 94.3 94.9 95.4

Logistic, 1000 cases
Bias 0.00 0.01 0.00 0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

SPMLE, Rare, 500 cases
Bias 0.02 -0.01 0.02 0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00
CI (%) 95.0 95.8 94.2 94.5 95.5 95.6 95.8 95.3 94.3 95.0 95.9
MSE Eff 1.37 1.34 1.23 1.27 1.27 1.29 2.44 2.13 1.87 1.91 2.22

SPMLE, Rare, 1000 cases
Bias 0.01 0.00 0.00 0.02 -0.01 0.02 -0.02 -0.01 0.01 -0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
MSE Eff 1.35 1.25 1.29 1.25 1.24 1.26 2.36 2.00 2.19 2.02 2.21

SPMLE, π1 known: 500 cases
Bias 0.01 -0.01 0.02 -0.01 0.00 0.00 0.01 0.01 -0.02 0.01 0.00
CI (%) 95.0 95.7 94.3 94.4 95.5 95.7 95.4 95.1 94.3 94.9 95.7
MSE Eff 1.39 1.34 1.22 1.26 1.28 1.28 2.31 2.01 1.78 1.81 2.09

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.01 -0.01 0.01 0.00 -0.01 0.01 -0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
MSE Eff 1.36 1.25 1.28 1.27 1.24 1.28 2.25 1.91 2.06 1.96 2.08

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1, Section 2.2; SPMLE, π1 known is our estimator when π1 is known in the source

population, Section 2.1; CI (%) is the coverage in percent of a nominal 95% confidence interval, calculated
using the asymptotic standard error; MSE Eff is the mean squared error efficiency of our method compared

to logistic regression.
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A.12 Skewness, Kurtosis and qq-Plots for the Simulation in Table 1 of the Main Paper

Table A.8 gives skewness and kurtosis for the simulation in Table 1 of the main paper with 1000

cases and controls. Figure A.1 presents q–q plots for the main effects for (G1, . . . , G5, X) in the

same simulation. Figure A.2 presents q–q plots for the interaction effects for X and (G1, . . . , G5)

in the same simulation.

Table A.8: Skewness and kurtosis for the simulation in Table 1 of the main paper with 1000 cases
and controls. Kurtosis = 0 for the normal distribution

Skewness Kurtosis
-0.02 -0.08
-0.05 0.12
-0.13 0.07
-0.02 -0.15
0.06 -0.04

-0.21 0.15
-0.01 -0.20
-0.03 -0.10
0.04 0.11
0.09 -0.13
0.01 -0.06
0.14 0.25
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Figure A.1: The qq-plots for the main effects for (G1, . . . , G5, X) in the simulation in Table 1 of
the main paper with 1000 cases and controls.

97



Figure A.2: The qq-plots for the interaction effects for X and (G1, . . . , G5) in the simulation in
Table 1 of the main paper with 1000 cases and controls.
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A.13 The Simulation in Table 1 of the Main Paper With 500 Cases and Controls

Table A.9: Results of 1000 simulations as described in §3 of the main paper, with mean bias,
coverage probabilities of a 95% nominal confidence interval, and mean squared error efficiency of

our semiparametric pseudolikelihood estimator compared to ordinary logistic regression. The
simulations were performed with 500 cases and 500 controls

βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic: 500 cases
Bias 0.02 -0.02 0.02 -0.01 0.01 0.00 0.00 0.02 -0.02 0.02 -0.01
CI (%) 94.7 94.9 94.8 94.5 95.2 96.4 94.3 93.6 94.3 94.9 95.4

SPMLE, Rare: 500 cases
Bias 0.02 -0.01 0.02 0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00
CI (%) 95.0 95.8 94.2 94.5 95.5 95.6 95.8 95.3 94.3 95.0 95.9
Avg MSE Eff All G: 1.30 All X: 1.29 All G ∗X: 2.13

SPMLE, π1 known: 500 cases
Bias 0.01 -0.01 0.02 -0.01 0.00 0.00 0.01 0.01 -0.02 0.01 0.00
CI (%) 95.0 95.7 94.3 94.4 95.5 95.7 95.4 95.1 94.3 94.9 95.7
Avg MSE Eff All G: 1.30 All X: 1.28 All G ∗X: 2.02

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1 (§2.2); SPMLE, π1 known is our estimator when π1 is known in the source population

(§2.1); CI (%) is the coverage in percent of a nominal 95% confidence interval (calculated using the
asymptotic standard error); Avg MSE Eff is the mean squared error efficiency of our method compared to

logistic regression averaged over G, over X and over the G ∗X interactions, respectively.
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APPENDIX B

APPENDIX TO SECTION 3

B.1 Composite Likelihood Estimator

The composite profile likelihood is just the average of the two symmetric profile likelihoods

LCL(Ω) = (LX(Ω) + LG(Ω))/2

=
∑n

i=1log{S(Di, Gi, Xi,Ω)} − 0.5
∑n

i=1log{R̂X(Gi,Ω)} − 0.5
∑n

i=1log{R̂G(Xi,Ω)}.

The estimated score function is thus the average of the two symmetric score functions

ŜCL(Ω) = (ŜX(Ω) + ŜG(Ω))/2

= n−1/2

n∑
i=1

{
SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)
− 1

2

R̂XΩ(Xi,Ω)

R̂X(Xi,Ω)
− 1

2

R̂GΩ(Gi,Ω)

R̂G(Gi,Ω)

}
.

Estimate Ω̂CL is calculated by solving ŜCL(Ω) = 0, or equivalently, maximizing LCL(Ω).

Following the notation defined previously, we sum eqs. (3.7) and (3.8) together instead of

stacking them as in Theorem 2.

Theorem 3. Suppose that 0 < lim
n→∞

nd/n < 1, and π1 is known. Then

n1/2(Ω̂CL − Ω) = −(ΓX + ΓG)−1n−1/2
∑n

i=1{ζX∗(Zi,Ω) + ζG∗(Zi,Ω)}+ op(1).
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To calculate the asymptotic variance, write

Σall =

ΣXX ΣXG

ΣGX ΣGG

 = cov

ζX∗(Zi,Ω)

ζG∗(Zi,Ω)

 = cov

ζX(Zi,Ω)

ζG(Zi,Ω)

 ;

ΣXX =
∑1

d=0(nd/n)cov{ζX∗(Z,Ω)|D = d} =
∑1

d=0(nd/n)cov{ζX(Z,Ω)|D = d};

ΣGG =
∑1

d=0(nd/n)cov{ζG∗(Z,Ω)|D = d} =
∑1

d=0(nd/n)cov{ζG(Z,Ω)|D = d};

ΣXG =
∑1

d=0(nd/n)cov{ζX∗(Z,Ω), ζG∗(Z,Ω)|D = d}

=
∑1

d=0(nd/n)cov{ζX(Z,Ω), ζG(Z,Ω)|D = d} = ΣT
XG.

Since the Zi are independent and E{ζX∗(Zi,Ω)|Di} = E{ζG∗(Zi,Ω)|Di} = 0, then

n1/2(Ω̂CL − Ω) → Normal(0,ΛCL);

ΣCL =
∑1

d=0(nd/n)cov{ζX∗(Zi,Ω) + ζG∗(Zi,Ω)}

= ΣXX + ΣGG + ΣXG + ΣGX ;

ΛCL = (ΓX + ΓG)−1ΣCL{(ΓX + ΓG)−1}T.

The proof of Theorem 3 follows directly from the proofs of eqs. (3.7) and (3.8) and the prop-

erties of M-estimators Ω̂X and Ω̂G.

B.2 Additional Simulations

B.2.1 Unabridged version of Table 3.1 from Section 3.3

Table 3.1 in Section 3.3 of the main paper reports the results of four estimators: logistic re-

gression, the SPMLE with known π1, our Symmetric Combination Estimator with known π1, and

our Symmetric Combination Estimator using the rare disease approximation. Table B.1 presents

the results of all estimators in 1000 simulations under the simulation settings of Section 3.3.1. In

addition to logistic regression, four retrospective methods are presented: the SPMLE (Ω̂X), the

SPMLE_G (Ω̂G), the Composite Likelihood Estimator (Ω̂CL), and the Symmetric Combination Es-
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timator (Ω̂Symm). Each retrospective estimator was calculated under two conditions: with known

π1, and with unknown π1 using the rare disease approximation.

We see that the rare disease approximation of each retrospective estimator closely matches

the version calculated with known π1. The efficiency of the Composite Likelihood Estimator is

equivalent to that of the SPMLE and its symmetric counterpart, the SPMLE_G. The Symmetric

Combination Estimator stands out as markedly more efficient than the other estimators.

102



Table B.1: Results of 1000 simulations as described in Section 3.3.1, comparing the bias,
coverage, and efficiency of all estimators

βG1 βG2 βG3 βG4 βG5 βX βXG1 βXG2 βXG3 βXG4 βXG5

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00
Logistic Regression

Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
CI(%) 95.2 95.5 94.4 94.7 95.3 95.8 94.5 95.9 94.7 94.6 95.3

SPMLE, known π1

Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI(%) 95.4 95.8 94.8 96.1 96.3 95.6 94.6 96.0 94.3 95.6 95.1
MSE Eff 1.32 1.25 1.26 1.32 1.30 1.27 2.08 1.78 1.88 1.95 2.12

SPMLE, rare
Bias 0.02 0.00 0.00 0.01 -0.01 0.02 -0.02 0.00 0.00 -0.01 0.01
CI(%) 95.0 95.7 94.8 95.9 96.4 95.5 94.4 96.0 94.7 95.4 95.7
MSE Eff 1.31 1.26 1.27 1.32 1.30 1.26 2.18 1.89 2.01 2.06 2.27

SPMLE_G, known π1

Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI(%) 95.0 95.8 94.8 96.1 96.3 95.2 94.8 95.5 94.1 95.6 95.6
MSE Eff 1.35 1.27 1.29 1.34 1.33 1.28 2.12 1.82 1.90 1.98 2.14

SPMLE_G, rare
Bias 0.02 0.00 0.00 0.01 -0.01 0.02 -0.02 0.00 0.00 -0.01 0.01
CI(%) 94.9 95.7 94.9 95.9 96.3 94.8 94.1 95.5 94.3 95.0 95.7
MSE Eff 1.35 1.29 1.31 1.35 1.35 1.27 2.25 1.94 2.04 2.10 2.32

Composite Likelihood Estimator, known π1

Bias 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI(%) 94.9 95.8 94.9 96.1 96.5 95.4 94.7 95.7 94.4 95.7 95.5
MSE Eff 1.34 1.26 1.28 1.33 1.32 1.28 2.11 1.81 1.90 1.98 2.14

Composite Likelihood Estimator, rare
Bias 0.02 0.00 0.00 0.01 -0.01 0.02 -0.02 0.00 0.00 -0.01 0.01
CI(%) 94.9 95.6 94.9 95.9 96.4 95.2 94.1 95.8 94.8 95.3 95.7
MSE Eff 1.32 1.27 1.29 1.33 1.32 1.27 2.23 1.92 2.03 2.09 2.31

Symmetric Combination Estimator, known π1

Bias 0.00 -0.03 0.00 0.00 -0.01 0.01 -0.03 0.02 0.00 -0.02 0.01
CI∗(%) 96.7 95.7 96.7 96.5 97.8 95.4 94.8 96.7 96.2 96.6 97.2
MSE Eff 1.92 1.71 2.00 1.83 2.05 1.31 2.84 2.51 2.99 2.68 3.34

Symmetric Combination Estimator, rare
Bias 0.01 -0.02 0.00 0.01 -0.01 0.02 -0.05 0.02 0.00 -0.03 0.00
CI∗(%) 96.4 95.7 95.7 96.3 98.1 94.9 94.0 97.0 96.4 95.5 97.5
MSE Eff 1.86 1.71 1.92 1.78 1.95 1.27 2.75 2.66 3.08 2.69 3.58

CI: coverage of a 95% nominal confidence interval, calculated using asymptotic standard error. CI∗:
coverage of a 95% nominal confidence interval, calculated using 200 bootstrap samples. MSE Eff :

mean squared error efficiency when compared to logistic regression.
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B.2.2 Simulation when the disease rate is misspecified

Table B.2 presents the results of a simulation to evaluate the robustness of our method to

misspecification of the population disease rate. A sample of 1000 cases and 1000 controls was

simulated using the same scenario as described in Section 3.3.1 except the logistic intercept was

modified to yield true population disease rates of 0.05, 0.085, and 0.12. In each instance, 1000 data

sets were simulated and the Symmetric Combination Estimator was calculated with misspecified

“known π1 = 0.03” and again using the rare disease approximation.

When using the rare disease approximation, coverage remains near nominal until the true dis-

ease rate reached 0.085, and even then the lowest coverage rate was 91.3% (for interaction param-

eter βXG1, which still demonstrated a mean squared error efficiency of 2.51 compared to logistic

regression). When the disease rate was assumed “known π1 = 0.03”, nominal coverage was seen

except when the population disease rate was 0.12. This indicates the Symmetric Combination Es-

timator is fairly robust to disease rate misspecification, and even an imprecise estimate of π1 is

likely to be sufficient to conduct a valid analysis.
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Table B.2: Results of simulations as described in Section 3.3.1, but with population disease
rates (0.05, 0.085, 0.12). For each disease rate, we simulated 1000 data sets and compared

logistic regression, our method with misspecified “known π1 = 0.03”, and our method using the
rare disease approximation.

βG1 βG2 βG3 βG4 βG5 βX βXG1 βXG2 βXG3 βXG4 βXG5

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00
Disease Rate = 0.05 Logistic Regression
Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI(%) 95.8 95.2 95.9 94.7 94.4 95.6 95.7 95.5 95.3 94.8 95.3

Symmetric Combination Estimator, “known π1 = 0.03”
Bias 0.00 -0.03 0.00 0.00 -0.01 0.03 -0.05 0.02 0.00 -0.04 0.01
CI∗(%) 97.6 94.1 97.0 94.8 95.8 95.1 93.7 95.6 96.8 94.8 96.8
MSE Eff 1.84 1.74 2.07 1.69 1.97 1.30 2.61 2.65 3.14 2.37 2.97

Symmetric Combination Estimator, rare
Bias 0.01 -0.02 0.00 0.01 -0.01 0.04 -0.06 0.02 0.00 -0.05 0.00
CI∗(%) 96.9 94.3 97.4 94.4 96.1 94.7 92.2 95.4 96.7 93.4 96.6
MSE Eff 1.75 1.73 2.03 1.60 1.89 1.22 2.48 2.76 3.22 2.25 3.11
Disease Rate = 0.085 Logistic Regression
Bias -0.01 0.01 0.00 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 0.01
CI(%) 94.3 94.9 95.4 94.4 93.5 94.5 94.8 94.0 95.1 95.8 94.5

Symmetric Combination Estimator, “known π1 = 0.03”
Bias 0.00 -0.02 0.00 0.01 -0.01 0.05 -0.07 0.01 0.00 -0.06 0.00
CI∗(%) 96.4 95.2 96.9 95.7 95.7 93.6 92.7 96.0 97.6 92.9 97.1
MSE Eff 1.84 1.81 1.99 1.61 1.90 1.18 2.65 2.81 3.18 2.15 3.20

Symmetric Combination Estimator, rare
Bias 0.01 -0.01 0.00 0.02 -0.01 0.06 -0.08 0.01 0.00 -0.06 0.00
CI∗(%) 96.5 95.8 96.5 95.7 95.3 92.5 91.3 96.1 97.3 91.8 97.1
MSE Eff 1.77 1.81 1.98 1.59 1.86 1.12 2.51 2.91 3.21 2.07 3.30
Disease Rate = 0.12 Logistic Regression
Bias 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI(%) 94.6 95.4 94.9 94.8 93.7 95.7 94.4 95.9 94.8 94.8 94.8

Symmetric Combination Estimator, “known π1 = 0.03”
Bias 0.00 -0.02 0.00 0.02 -0.01 0.06 -0.08 0.01 0.00 -0.07 0.01
CI∗(%) 96.4 95.6 96.1 94.5 95.6 93.5 89.2 96.4 97.2 89.0 96.9
MSE Eff 1.83 1.71 1.95 1.59 1.86 1.08 2.33 2.80 3.07 1.90 3.02

Symmetric Combination Estimator, rare
Bias 0.02 -0.01 0.00 0.03 -0.01 0.07 -0.10 0.01 0.00 -0.08 0.00
CI∗(%) 95.6 96.1 96.4 94.5 95.1 91.8 86.0 96.6 97.0 87.4 96.0
MSE Eff 1.72 1.72 1.91 1.53 1.79 0.99 2.11 2.95 3.14 1.78 3.11

CI: coverage of a 95% nominal confidence interval, calculated using asymptotic standard error. CI∗:
coverage of a 95% nominal confidence interval, calculated using 200 bootstrap samples.

MSE Eff : mean squared error efficiency when compared to logistic regression.
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B.2.3 Violations of the Gene-Environment Independence Assumption

Table B.3 presents the results of simulations to examine the robustness of our methods to vio-

lations of the gene-environment independence assumption. In these simulations, a sample of 1000

cases and 1000 controls is simulated with genetic variables as described in Section 3.3.1, but the en-

vironmental variable is normally distributed with mean αG1, αG2, or αG3. We set α = 0.032 to in-

duce dependence betweenX andGj withR2 = 0.001. Here βG = {log(1.2), log(1.2), 0, log(1.2), 0}

as in Section 3.3.1, but βX = log(1.35), and βGX = {log(1.21), 0, 0, log(1.21), 0}. In each sim-

ulation, the logistic intercept was selected to give a population disease rate of 0.03. In the first

simulation, X is correlated with G1, which has a nonzero main effect and a nonzero interaction; in

the second simulation, X is correlated with G2, which has a nonzero main effect but no interaction

effect; in the third simulation, X is correlated with G3, which has neither main nor interaction

effects.

We find that violating the gene-environment independence assumption induces bias in the es-

timate of the interaction parameter of the environmental variable and the specific SNP that is in

violation of the gene-environment independence assumption, while the estimated interaction pa-

rameters of the other SNPs are unaffected. When π1 is known, estimates of the main effects of the

SNP that is in violation of the gene-environment independence assumption are uncompromised.
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Table B.3: Results of simulations violating the gene-environment independence assumption
with X ∼ N(0, 0.032Gj) for SNPs (G1, G2, G3). In each instance, we simulated 1000 data sets

and compared our method, both with known π1 and using the rare disease approximation, to
logistic regression.

βG1 βG2 βG3 βG4 βG5 βX βXG1 βXG2 βXG3 βXG4 βXG5

True 0.18 0.18 0.00 0.18 0.00 0.30 0.19 0.00 0.00 0.19 0.00
X correlated with G1 Logistic Regression
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
CI(%) 95.3 94.9 95.3 94.3 93.6 95.4 95.5 94.0 94.9 94.1 95.6

Symmetric Combination Estimator, known π1

Bias 0.00 -0.03 0.00 0.00 0.00 -0.01 0.05 0.01 0.00 -0.02 0.00
CI∗(%) 95.8 93.3 95.6 94.3 95.4 94.2 92.5 92.7 95.6 93.5 95.4
MSE Eff 1.31 1.13 1.37 1.26 1.44 1.34 1.91 2.40 2.71 2.41 2.91

Symmetric Combination Estimator, rare
Bias 0.00 -0.03 0.00 0.00 0.00 0.01 0.01 0.01 0.00 -0.03 0.00
CI∗(%) 96.4 92.5 96.3 94.8 95.7 95.5 95.3 93.5 95.8 90.3 95.3
MSE Eff 1.35 1.14 1.47 1.34 1.51 1.43 3.24 2.67 2.96 2.27 3.59
X correlated with G2 Logistic Regression
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
CI(%) 94.8 95.1 94.5 94.5 95.3 96.2 94.3 93.4 94.7 95.3 95.2

Symmetric Combination Estimator, known π1

Bias -0.01 -0.02 0.00 0.00 0.00 -0.03 -0.02 0.06 0.00 -0.02 0.00
CI∗(%) 95.6 95.2 95.8 95.5 96.9 93.1 94.2 83.5 95.3 94.1 96.1
MSE Eff 1.33 1.27 1.35 1.32 1.42 1.11 2.79 1.54 2.84 2.63 3.21

Symmetric Combination Estimator, rare
Bias -0.01 -0.02 0.00 0.00 0.00 -0.01 -0.05 0.05 0.00 -0.03 0.00
CI∗(%) 95.8 94.9 95.9 95.1 96.3 96.0 87.7 84.7 95.3 90.3 97.0
MSE Eff 1.34 1.27 1.44 1.35 1.45 1.37 2.41 1.79 3.21 2.43 3.95
X correlated with G3 Logistic Regression
Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.01 0.00 0.00 0.00 0.01
CI(%) 94.9 94.8 96.0 94.9 95.2 95.0 95.9 95.0 95.6 94.7 94.3

Symmetric Combination Estimator, known π1

Bias -0.01 -0.02 0.01 0.00 -0.01 -0.03 -0.01 0.01 0.05 -0.02 0.00
CI∗(%) 96.0 93.8 96.3 96.4 96.5 92.2 93.5 95.6 89.9 94.0 94.8
MSE Eff 1.33 1.16 1.34 1.25 1.34 1.15 2.56 2.62 1.63 2.33 2.89

Symmetric Combination Estimator, rare
Bias -0.01 -0.03 0.01 0.00 -0.01 -0.01 -0.04 0.01 0.04 -0.03 0.00
CI∗(%) 95.6 93.5 96.3 96.3 96.5 94.4 88.2 96.5 89.1 90.8 95.5
MSE Eff 1.41 1.16 1.35 1.28 1.37 1.39 2.37 3.01 1.78 2.17 3.62

CI: coverage of a 95% nominal confidence interval, calculated using asymptotic standard error. CI∗:
coverage of a 95% nominal confidence interval, calculated using 100 bootstrap samples.

MSE Eff : mean squared error efficiency when compared to logistic regression.
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B.2.4 Simulations with alternative distributions for G and X

Table B.4 presents the results of a simulation in which X and G are both multivariate with a

combination of discrete and continuous components. G1 and G2 are correlated SNPs in Hardy-

Weinberg equilibrium with minor allele frequencies (0.2, 0.3), and G3 has a gamma distribution

with shape = 20 and scale = 20 (to simulate a skewed polygenic risk score). X1 is binary with

frequency 0.5 and X2 has a standard normal distribution. Here βG = {log(1.2), 0, log(1.38)},

βX = {log(1.5), log(1.14)}, βGX = {log(1.1), 0, 0, 0, 0, 0}, and the logistic intercept was selected

to give a population disease rate of 0.05. Using these settings, 1000 data sets were simulated with

1000 cases and 1000 controls each.

Table B.4: Results of 1000 simulations with multivariate G and X , comparing the bias, coverage, and
efficiency of standard logistic regression to our Symmetric Combination Estimator, both with known π1

and using the rare disease approximation.

βG1 βG2 βG3 βX1 βX2 βX1G1 βX1G2 βX1G3 βX2G1 βX2G2 βX2G3

True 0.18 0.00 0.32 0.41 0.14 0.10 0.00 0.00 0.00 0.00 0.00
Logistic Regression

Bias 0.01 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
CI(%) 94.4 94.3 95.2 94.6 94.0 95.7 94.7 94.7 94.5 95.4 94.6

Symmetric Combination Estimator, known π1

Bias -0.02 0.00 -0.06 -0.01 -0.02 -0.02 0.00 0.01 0.00 0.00 0.00
CI∗(%) 93.4 94.7 94.9 94.8 96.0 94.1 95.4 96.1 95.8 96.9 96.5
MSE Eff 1.48 1.66 1.61 2.44 2.75 2.22 2.67 2.84 2.90 2.80 3.03

Symmetric Combination Estimator, rare
Bias -0.01 0.00 -0.06 0.00 -0.02 -0.03 0.00 0.01 0.00 0.00 0.00
CI∗(%) 93.3 94.5 95.3 94.8 95.8 94.1 95.6 96.3 95.6 96.9 96.2
MSE Eff 1.54 1.73 1.66 2.60 2.98 2.37 2.98 3.08 3.25 3.07 3.32

CI: coverage of a 95% nominal confidence interval, calculated using asymptotic standard error.
CI∗: coverage of a 95% nominal confidence interval, calculated using 100 bootstrap samples.

MSE Eff : mean squared error efficiency when compared to logistic regression.
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B.2.5 Creating the polygenic risk score for the PLCO data analysis

Table B.5 displays the SNPs used in the calculation of the polygenic risk score for the analysis

of the Prostate, Lung, Colorectal and Ovarian cancer screening trial data described in Section 3.4.1.

Table B.5: SNPs involved in creating the polygenic risk score, and their regression coefficients

RS Number Coefficient
rs11249433 -0.02813492
rs1045485 -0.09307971
rs13387042 -0.26203658
rs4973768 0.08013260
rs10069690 0.06459363
rs10941679 0.09185539
rs889312 -0.00565121
rs17530068 0.09668742
rs2046210 0.09851217
rs1562430 -0.14871719
rs1011970 0.05329783
rs865686 -0.02913340
rs2380205 -0.01821032
rs10995190 -0.04275836
rs2981582 0.14008397
rs909116 0.04955235
rs614367 0.06438418
rs3803662 0.27080105
rs6504950 -0.17586244
rs8170 0.08570773
rs999737 -0.13737833
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APPENDIX C

APPENDIX TO SECTION 4

Package ‘caseControlGE’
Type Package

Title Semiparametric Gene-Environment Interactions in Case-Control

Studies

Version 0.2

Author Alex Asher

Maintainer Alex Asher <alexasher@stat.tamu.edu>

Description

Implements the methods of Stalder et. al. (https://doi.org/10.1093/biomet/asx045) and

Wang et. al. (forthcoming). These are retrospective estimators that assume Gene-

Environment independence in the source population, but place no assump-

tions on the marginal distributions of genetic or environmental vari-

ables. G and E can be multivariate, and both continuous and discrete variables may be used.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports Rcpp (>= 0.12.16), ucminf (>= 1.1-3)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.0.1

NeedsCompilation yes
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Suggests knitr, rmarkdown, pander

VignetteBuilder knitr

R topics documented:

caseControlGE-package

Semiparametric Gene-Environment Interactions in Case-Control

Studies

Description

An R package for analysis of gene-environment interactions in case-control studies, using

distribution-free retrospective methodology. The method of Stalder et. al. (2017) and the

improvement suggested by Wang et. al (2018) use a retrospective likelihood framework under

the assumption of gene-environment independence (in the population) to gain efficiency when

estimating the interaction effects of genetic and environmental variables.

Details

Both methods treat the genetic and environmental variables nonparametrically, facilitating the

analysis of polygenic risk factors for which distributional assumptions are difficult to justify.

Keywords

case-control study; gene-environment interaction; genetic epidemiology; retrospective method;

semiparametric analysis; pseudolikelihood; polygenic analysis

Contents

spmle implements method of Stalder et. al. (2017). Given binary response D (disease status),

a vector or matrix of genetic risk factors G, a vector or matrix of environmental risks E,

and the population disease rate pi1, spmle fits a model of the form D ~ G * E by

maximizing the retrospective pseudolikelihood.
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spmleCombo implements the method of of Wang et. al (2018) under the same set of as-

sumptions as spmle. This function takes the same imput as spmle with the addition

of nboot (number of bootstrap samples) and ncores (number of CPU cores to use

simultaneously). spmleCombo produces estimates that, on average, have significantly

smaller mean squared error than spmle, at the cost of increased computation to calculate

the bootstrap standard error.

simulateCC simulates case-control data with a wide range of possible genetic and environ-

mental variables.

methods for class "spmle" both spmleCombo and spmle return objects of class "spmle".

A range of S3 methods are provided: anova.spmle, confint.spmle,

logLik.spmle, model.matrix.spmle, plot.spmle,

predict.spmle, print.spmle, print.summary.spmle,

summary.spmle, vcov.spmle.

References

Stalder, O., Asher, A., Liang, L., Carroll, R. J., Ma, Y., and Chatterjee, N. (2017). Semi-

parametric analysis of complex polygenic gene-environment interactions in case-control stud-

ies. Biometrika, 104, 801–812.

Wang, T., Asher, A., Carroll, R. J. (2018). Improved Semiparametric Analysis of Polygenic

Gene-Environment Interactions in Case-Control Studies Unpublished.

predict.spmle Predict method for spmle objects

Description

Obtains predictions from a fitted spmle object.
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Usage

## S3 method for class 'spmle'

predict(object, newdata, se.fit = FALSE,

interval = c("none", "confidence"), level = 0.95,

type = c("link", "response"), na.action = na.pass, ...)

Arguments

object of class inheriting from "spmle"

newdata an optional list or data frame in which to look for variables to use when making

predictions. If omitted, the fitted values are used.

se.fit a switch indicating if standard errors are required.

interval Type of interval calculation. Can be abbreviated. Prediction intervals are not

meaningful for binary responses and are not allowed.

level confidence level.

type the type of prediction required. The default is "link" which uses the logit

scale of the linear predictors, giving the log odds. The alternative "response"

uses the probability scale, giving Pr(D=1|G,E).

na.action function determining what should be done with missing values in newdata.

The default is to predict NA.

... further arguments passed to or from other methods.

Details

predict.spmle produces predicted values, obtained by evaluating the spmle function in

the frame newdata (which defaults to model.frame(object)). If the logical se.fit

is TRUE, standard errors of the predictions are calculated (only in the link scale). Setting

interval="confidence" specifies computation of confidence intervals at the specified

level.
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Value

predict.spmle produces a vector of predictions or a matrix of predictions and bounds with

column names fit, lwr, and upr if interval is set.

If se.fit is TRUE, a list with the following components is returned:

fit vector or matrix as above

se.fit vector with standard error of predicted means, in the link scale

residual.scale residual standard deviation

df degrees of freedom for residual

simulateCC Simulate case-control data with multivariate, possibly dependent ge-

netic and environmental components.

Description

simulateCC simulates case-control data to be analyzed by spmle, spmleCombo, logistic

regression, or other methods.

Usage

simulateCC(ncase, ncontrol, beta0, betaG_SNP, betaG_normPRS,

betaG_gammaPRS, betaG_bimodalPRS, betaE_bin, betaE_norm,

betaGE_SNP_bin, betaGE_normPRS_bin, betaGE_gammaPRS_bin,

betaGE_bimodalPRS_bin, betaGE_SNP_norm, betaGE_normPRS_norm,

betaGE_gammaPRS_norm, betaGE_bimodalPRS_norm, MAF,

SNP_cor = 0, G_normPRS_cor = 0, E_norm_cor = 0, E_bin_freq,

regress_E_bin_on_G_SNP, regress_E_bin_on_G_normPRS,

regress_E_bin_on_G_gammaPRS, regress_E_bin_on_G_bimodalPRS,
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regress_E_norm_on_G_SNP, regress_E_norm_on_G_normPRS,

regress_E_norm_on_G_gammaPRS, regress_E_norm_on_G_bimodalPRS,

control = list())

Arguments

ncase, ncontrol

number of cases and controls, both must be positive integers.

beta0 logistic intercept, required. Can be manipulated to change the population dis-

ease rate.
betaG_SNP, betaG_normPRS, betaG_gammaPRS, betaG_bimodalPRS

optional coefficients for genetic main effects (at least one must be specified).

Genetic variables can include SNPs and polygenic risk scores with standard

normal, gamma(20, 20), and bimodal distributions. Vector valued coefficients

produce multivariate genetic data. When simulating SNPs, you must provide

MAF with the same length as betaG_SNP.
betaE_bin, betaE_norm

optional coefficients for environmental variable main effects (at least one must

be specified). Environmental variables can include binary and standard nor-

mal random variables. Vector valued coefficients produce multivariate envi-

ronmental data.
betaGE_SNP_bin, betaGE_normPRS_bin, betaGE_gammaPRS_bin,

betaGE_bimodalPRS_bin, betaGE_SNP_norm, betaGE_normPRS_norm,

betaGE_gammaPRS_norm, betaGE_bimodalPRS_norm

coefficients for multiplicative G*E interaction effects. The length of the coef-

ficient of any given G*E interaction must equal the product of the lengths of

the coefficients of the corresponding G and E main effects.

MAF Minor Allele Frequency of SNPs. This vector is the same length as beta_G_SNP

and has values between 0 and 1. The MAF is used to generate SNP data that
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is in Hardy-Weinberg Equilibrium. This specifies Pr[G=(0, 1, 2)] =

[(1-MAF)^2, 2*MAF(1-MAF), MAF^2].

SNP_cor scalar specifying the correlation between adjacent SNPs. SNPs are simulated

by generating multivariate normal random draws with an AR1(SNP_cor)

covariance matrix. These normal draws are then trichotomized according to

HWE to simulate SNPs. Default SNP_cor = 0.
G_normPRS_cor

correlation matrix for multivariate normal polygenic risk scores. In the bi-

variate case, a 2x2 matrix or a scalar (for correlation) are accepted. Default

G_normPRS_cor = 0 generates independent normal polygenic risk scores.

E_norm_cor correlation matrix for multivariate normal environmental variable. In the bi-

variate case, a 2x2 matrix or a scalar (for correlation) are accepted. Default

E_norm_cor = 0 generates independent normal environmental variables.

E_bin_freq marginal probability that E_bin = 1. Must have length equal to

length(betaE_bin) and values between 0 and 1.
regress_E_bin_on_G_SNP, regress_E_bin_on_G_normPRS,

regress_E_bin_on_G_gammaPRS, regress_E_bin_on_G_bimodalPRS

allow the simulation of case-control data that violates the G-E independence

assumption. If specified, binary environmental variables will be generated

with Pr(E=1|G) = plogis[regress_E_bin_on_G * G +

qlogis(E_bin_freq)]. If these arguments are missing, NULL, or all 0s,

the binary environmental variables will be independent of the genetic vari-

ables. If specified, the length of the regression argument must equal the prod-

uct of the lengths of the coefficients of the corresponding G and E main effects.
regress_E_norm_on_G_SNP, regress_E_norm_on_G_normPRS,

regress_E_norm_on_G_gammaPRS, regress_E_norm_on_G_bimodalPRS

allow the simulation of case-control data that violates the G-E independence
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assumption. If specified, normal environmental variables will be generated

from a Normal(regress_E_norm_on_G * G, 1) distribution. If these ar-

guments are missing, NULL, or all 0s, the normal environmental variables will

be independent of the genetic variables. If specified, the length of the regres-

sion argument must equal the product of the lengths of the coefficients of the

corresponding G and E main effects.

control a list of control parameters, all of which are ignored except trace, a scalar.

If trace > -1, information about the simulation (e.g. population disease

rate, correlations between SNPs, etc.) is produced. Default trace=0.

Details

The user can specify up to four types of genetic variables, each of which can be multivari-

ate: SNPs with additive effects under Hardy-Weinberg Equilibrium and polygenic risk scores

with standard normal, gamma(20, 20), and bimodal distributions. Two types of environmental

variables (binary and normal) can also be potentially multivariate.

SNPs may be generated in linkage disequilibrium, yielding correlated SNPs. Multivariate nor-

mal polygenic risk scores may have a user-specified correlation matrix, as may multivariate

normal environmental variables. Correlation may also be specified between genetic and en-

vironmental variables to simulate data in violation of the gene-environment independence as-

sumption.

The number of variables generated is determined by the length of the betas given. If you specify

betaG_normPRS = c(log(1.1), log(1.2)) and

betaE_bin = c(log(1.2), log(1.2), log(1.2)), you will get two G variables

(normally distributed polygenic risk scores), and three E variables (with binary distributions).

In this example, you would supply a vector of length 6 for betaGE_normPRS_bin.

If both G and E are multivariate, beta_GE_ and regress_E_ arguments iterate G quickly

and E slowly. In the example above, betaGE_normPRS_bin is ordered (G1*E1, G2*E1,
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G1*E2, G2*E2, G1*E3, G2*E3).

simulateCC works by simulating a population using user-specified parameters, then select-

ing ncase cases and ncontrol controls as the case-control sample. The entire population is

used to calculate disease prevalance (reported when control$trace > -1). Case-control

studies deliberately oversample cases, so the distribution of G and E in the sample may be quite

different from the distribution of G and E in the population (especially for variables that are

strongly correlated with disease status).

Value

simulateCC produces a list with three elements:

D a binary vector with ncontrol zeros and ncase ones.

G a matrix with ncontrol + ncase rows and a column for each genetic

variable. Genetic variables are ordered: SNPs, normal PRSs, gamma PRSs,

bimodal PRSs.

E a matrix with ncontrol + ncase rows and a column for each environ-

mental variable. Environmental variables are ordered: binary, normal.

See Also

spmleCombo, spmle

Examples

set.seed(2018)

# Simulation from Table 1 in Stalder et. al. (2017)

dat = simulateCC(ncase=1000,

ncontrol=1000,

beta0=-4.165,

betaG_SNP=c(log(1.2), log(1.2), 0, log(1.2), 0),

betaE_bin=log(1.5),
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betaGE_SNP_bin=c(log(1.3), 0, 0, log(1.3), 0),

MAF=c(0.1, 0.3, 0.3, 0.3, 0.1),

SNP_cor=0.7,

E_bin_freq=0.5)

# Simulation with 5 SNPs and a single normal environmental variable

# that is dependent on G1 with an R^2 of 0.001.

# True population disease rate in this simulation is 0.03.

# This simulation scenario was used in the Supplementary Material

# of Stalder et. al. (2017)

dat2 = simulateCC(ncase=1000,

ncontrol=1000,

beta0=-3.89,

betaG_SNP=c(log(1.2), log(1.2), 0, log(1.2), 0),

betaE_norm=log(1.5)/(qnorm(0.75)-qnorm(0.25)),

betaGE_SNP_norm=c(log(1.3), 0, 0, log(1.3), 0) /

(qnorm(0.75)-qnorm(0.25)),

MAF=c(0.1, 0.3, 0.3, 0.3, 0.1),

SNP_cor=0.7,

regress_E_norm_on_G_SNP=c(sqrt(0.001),rep(0,4)),

control=list(trace=1))

spmle Semiparametric Maximum Pseudolieklihood Estimator for Case-

Control Studies Under G-E Independence.

Description

spmle maximizes the retrospective pseudolikelihood of case-control data under the assump-

tion of G-E independence in the underlying population. The marginal distributions of G and E
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are treated nonparametrically.

Usage

spmle(D, G, E, pi1, data, control=list(), swap=FALSE, startvals)

Arguments

D a binary vector of disease status (1=case, 0=control).

G a vector or matrix (if multivariate) containing genetic data. Can be continuous,

discrete, or a combination.

E a vector or matrix (if multivariate) containing environmental data. Can be

continuous, discrete, or a combination.

pi1 the population disease rate, a scalar in [0, 1) or the string "rare". Using pi1=0

is the rare disease approximation.

data an optional list or environment containing the variables in the model. If not

found in data, the variables are taken from the environment from which

spmle is called.

control a list of control parameters that allow the user to control the optimization al-

gorithm. See ’Details’.

swap a logical scalar rarely of interest to the end user. Dependence on the distribu-

tions of G and E are removed using different methods; this switch swaps them

to produce a symmetric estimator with identical properties to the SPMLE. De-

fault FALSE.

startvals an optional numeric vector of coefficient starting values for optimization. Usu-

ally left blank, in which case logistic regression estimates are used as starting

values.
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Details

This function applies the method of Stalder et. al. (2017) to maximize the retrospective pseu-

dolikelihood of case-control data under the assumption of G-E independence. It currently

supports the model with G and E main effects and a multiplicative G*E interaction.

The control argument is a list that controls the behavior of the optimization algorithm

ucminf from the ucminf package. When ucminf works, it works brilliantly (typically more

than twice as fast as the next-fastest algorithm). But it has a nasty habit of declaring conver-

gence before actually converging. To address this, spmle checks the maximum gradient at

"convergence", and can rerun the optimization using different starting values. The control

argument can supply any of the following components:

max_grad_tol maximum allowable gradient at convergence. spmle does not consider

the optimization to have converged if the maximum gradient > max_grad_tol when

ucminf stops. Default max_grad_tol = 0.001.

num_retries number of times to retry optimization. An error is produced if the optimiza-

tion has not converged after num_retries. Different starting values are used for each

retry. Default num_retries = 2.

use_hess a logical value instructing spmle to use the analytic hessian to precondition the

optimization. This brings significant speed benefits, and is one reason ucminf is so

fast. For unknown reasons, preconditioning causes computers with certain Intel CPUs to

prematurely terminate iterating. By default, use_hess = TRUE, but if you notice that

ucminf never converges during the first attempt, try setting use_hess = FALSE.

trace a scalar or logical value that is used by both spmle and ucminf to control the print-

ing of detailed tracing information. If TRUE or > 0, details of each ucminf iteration are

printed. If FALSE or 0, ucminf iteration details are suppressed but spmle still prints

optimization retries. If trace < 0 nothing is printed. Default trace = 0.

additional control parameters not used by spmle, but are passed to ucminf. Note that
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the ucminf algorithm has four stopping criteria, and ucminf will declare convergence

if any one of them has been met. The ucminf control parameter "grtol" controls

ucminf’s gradient stopping criterion, which defaults to 1e-6. grtol should not be set

larger than the spmle control parameter max_grad_tol.

Value

an object of class "spmle". The function summary (i.e., summary.spmle) can be used to

obtain or print a summary of the results.

The function anova (i.e., anova.spmle) will conduct likelihood-ratio tests comparing one

spmle object to another. These are valid tests because the loglikelihood reported by

logLik.spmle is accurate up to an additive constant. However anova should not be used

to compare an spmle object to a model fit by a different method.

predict.spmle, the predict method for S3 class "spmle", can predict the expected

response (on logistic or probability scales), compute confidence intervals for the expected re-

sponse, and provide standard errors.

The generic accessor functions coefficients, fitted.values and residuals can

be used to extract various useful features of the value returned by spmle.

An object of class "spmle" is a list containing at least the following components:

coefficients a named vector of coefficients

pi1 the value of pi1 used during the analysis

SE standard error estimate of coefficients

cov estimated covariance matrix of coefficients

glm_fit a logistic regression model fit using the same model as spmle

call the matched call

formula the formula used
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data the data argument

model the model frame

terms the terms object used

linear.predictors the linear fit on the logistic link scale

fitted.values the fitted values on the probability scale

residuals the Pearson residuals

null.deviance the deviance for the null model. Deviance = -2*logLik.

df.residual the residual degrees of freedom

df.null the residual degrees of freedom for the null model

rank the numeric rank of the fitted linear model (i.e. the number of parameters estimated)

nobs number of observations

ncase number of cases

ncontrol number of controls

spmle objects created by spmle() additionally have components logLik (log pseudolike-

lihood), deviance (-2 * log pseudolikelihood), aic, bic, ucminf (optimization output),

and matrices H_inv, Sigma, zeta0, and zeta1, which are used in calculating the asymp-

totic estimate of standard error.

References

Stalder, O., Asher, A., Liang, L., Carroll, R. J., Ma, Y., and Chatterjee, N. (2017). Semi-

parametric analysis of complex polygenic gene-environment interactions in case-control stud-

ies. Biometrika, 104, 801–812.

See Also

spmleCombo for a slower but more precise estimator, simulateCC to simulate data
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Examples

# Simulation from Table 1 in Stalder et. al. (2017)

set.seed(2018)

dat = simulateCC(ncase=500, ncontrol=500, beta0=-4.165,

betaG_SNP=c(log(1.2), log(1.2), 0, log(1.2), 0),

betaE_bin=log(1.5),

betaGE_SNP_bin=c(log(1.3), 0, 0, log(1.3), 0),

MAF=c(0.1, 0.3, 0.3, 0.3, 0.1),

SNP_cor=0.7, E_bin_freq=0.5)

# SPMLE with known population disease rate of 0.03

spmle(D=D, G=G, E=E, pi1=0.03, data=dat)

# Simulation with a single SNP and a single binary environmental

# variable.

# True population disease rate in this simulation is 0.03.

# This simulation scenario was used in the Supplementary Material

# of Stalder et. al. (2017) to compare performance against the

# less flexible method of Chatterjee and Carroll (2005), which is

# available as the function as snp.logistic in the Bioconductor

# package CGEN.

dat2 = simulateCC(ncase=100, ncontrol=100, beta0=-3.77,

betaG_SNP=log(1.2), betaE_bin=log(1.5),

betaGE_SNP_bin=log(1.3), MAF=0.1,

E_bin_freq=0.5)

# SPMLE using the rare disease assumption, optimization tracing,

# and no hessian preconditioning.
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spmle(D=D, G=G, E=E, pi1=0, data=dat2,

control=list(trace=0, use_hess=FALSE))

spmleCombo Improved Semiparametric Estimator for Case-Control Studies Under

G-E Independence.

Description

spmleCombo estimates Gene-Environment interactions in case-control data under the as-

sumption of G-E independence in the underlying population. This is an improved version

of spmle that, on average, has significantly smaller mean squared error than spmle, at the

cost of increased computing time.

Usage

spmleCombo(D, G, E, pi1, data, nboot = 50, ncores = 1,

control = list(), startvals)

Arguments

D a binary vector of disease status (1=case, 0=control).

G a vector or matrix (if multivariate) containing genetic data. Can be continuous,

discrete, or a combination.

E a vector or matrix (if multivariate) containing environmental data. Can be

continuous, discrete, or a combination.

pi1 the population disease rate, a scalar in [0, 1) or the string "rare". Using pi1=0

is the rare disease approximation.

data an optional list or environment containing the variables in the model. If not

found in data, the variables are taken from the environment from which

spmleCombo is called.
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nboot the number of bootstraps to use when estimating the standard error, an inte-

ger. Setting nboot=0 disables the bootstrap and uses the asymptotic standard

error estimate (not recommended because the asymptotic SE often has poor

coverage: setting nboot=0 will trigger a warning). Default nboot = 50.

ncores the number of cpu cores to use when parallelizing bootstraps, an integer. De-

fault ncores = 1 executes the bootstrap sequentially.

control a list of control parameters that allow the user to control the optimization al-

gorithm. See ’Details’.

startvals an optional numeric vector of coefficient starting values for optimization. Usu-

ally left blank, in which case logistic regression estimates are used as starting

values.

Details

This function calculates the Symmetric Combination Estimator of Wang et. al. (2018), which

improves estimation efficiency in case-control studies of gene-environment interactions while

treating the marginal distributions of G and E nonparametrically.

This is done by calling spmle twice (once with swap=TRUE) to generate two symmetric

estimates, which are then combined using a GLS approach. It currently supports the model

with G and E main effects and a multiplicative G*E interaction.

The control argument is a list that controls the behavior of the optimization algorithm

ucminf from the ucminf package. When ucminf works, it works brilliantly (typically

more than twice as fast as the next-fastest algorithm). But it has a nasty habit of declaring

convergence before actually converging. To address this, spmleCombo checks the maximum

gradient at "convergence", and can rerun the optimization using different starting values. The

control argument can supply any of the following components:

max_grad_tol maximum allowable gradient at convergence. spmleCombo does not con-

sider the optimization to have converged if the maximum gradient > max_grad_tol
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when ucminf stops. Default max_grad_tol = 0.001.

num_retries number of times to retry optimization. An error is produced if the optimiza-

tion has not converged after num_retries. Different starting values are used for each

retry. Default num_retries = 2.

use_hess a logical value instructing spmleCombo to use the analytic hessian to precondi-

tion the optimization. This brings significant speed benefits, and is one reason ucminf is

so fast. For unknown reasons, preconditioning causes computers with certain Intel CPUs

to prematurely terminate iterating. By default, use_hess = TRUE, but if you notice

that ucminf never converges during the first attempt, try setting use_hess = FALSE.

trace a scalar or logical value that is used by both spmleCombo and ucminf to control the

printing of detailed tracing information. If TRUE or > 0, details of each ucminf iteration

are printed. If FALSE or 0, ucminf iteration details are suppressed but spmleCombo

still prints optimization retries. If trace < 0 nothing is printed. Default trace = 0.

additional control parameters not used by spmleCombo, but are passed to ucminf. Note

that the ucminf algorithm has four stopping criteria, and ucminf will declare con-

vergence if any one of them has been met. The ucminf control parameter "grtol"

controls ucminf’s gradient stopping criterion, which defaults to 1e-6. grtol should

not be set larger than the spmleCombo control parameter max_grad_tol.

Value

an object of class "spmle". The function summary (i.e., summary.spmle) can be used

to obtain or print a summary of the results. The Symmetric Combination Estimator is not a

maximum (pseudo)likelihood estimator like spmle; it is the optimal combination of two such

estimators. As such, it has no associated loglikelihood and the function anova.spmle cannot

be used to compare models fit using spmleCombo.

predict.spmle, the predict method for S3 class "spmle", can predict the expected

response (on logistic or probability scales), compute confidence intervals for the expected re-
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sponse, and provide standard errors.

The generic accessor functions coefficients, fitted.values and residuals can

be used to extract various useful features of the value returned by spmleCombo.

An object of class "spmle" is a list containing at least the following components:

coefficients a named vector of coefficients

pi1 the value of pi1 used during the analysis

SE standard error estimate of coefficients

cov estimated covariance matrix of coefficients

glm_fit a logistic regression model fit using the same model as spmleCombo

call the matched call

formula the formula used

data the data argument

model the model frame

terms the terms object used

linear.predictors the linear fit on the logistic link scale

fitted.values the fitted values on the probability scale

residuals the Pearson residuals

null.deviance the deviance for the null model

df.residual the residual degrees of freedom

df.null the residual degrees of freedom for the null model

rank the numeric rank of the fitted linear model (i.e. the number of parameters estimated)

nobs number of observations

ncase number of cases
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ncontrol number of controls

spmle objects created by spmleCombo() additionally have components spmle_E (model

from spmle that profiled out the distribution of E), spmle_G (model from spmle that pro-

filed out the distribution of G with swap=TRUE), and bootstraps (matrix of bootstrapped

parameter estimates, if nboot > 0).

References

Stalder, O., Asher, A., Liang, L., Carroll, R. J., Ma, Y., and Chatterjee, N. (2017). Semi-

parametric analysis of complex polygenic gene-environment interactions in case-control stud-

ies. Biometrika, 104, 801–812.

Wang, T., Asher, A., Carroll, R. J. (2018). Improved Semiparametric Analysis of Polygenic

Gene-Environment Interactions in Case-Control Studies Unpublished.

See Also

spmle, simulateCC to simulate data

Examples

# Simulation from Table 1 in Stalder et. al. (2017)

set.seed(2018)

dat = simulateCC(ncase=500, ncontrol=500, beta0=-4.165,

betaG_SNP=c(log(1.2), log(1.2), 0, log(1.2), 0),

betaE_bin=log(1.5),

betaGE_SNP_bin=c(log(1.3), 0, 0, log(1.3), 0),

MAF=c(0.1, 0.3, 0.3, 0.3, 0.1),

SNP_cor=0.7, E_bin_freq=0.5)

# SPMLE with known population disease rate of 0.03

# and asymptotic SE estimates

spmleCombo(D=D, G=G, E=E, pi1=0.03, data=dat, nboot=0)

129


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	SEMIPARAMETRIC ANALYSIS OF COMPLEX POLYGENIC GENE–ENVIRONMENT INTERACTIONS IN CASE–CONTROL STUDIES
	Introduction
	Model, Method and Theory
	Background, model and method
	Rare diseases when 1 is unknown
	Asymptotic theory

	Simulations
	Overview
	Results
	Additional simulations

	Data Analysis
	Discussion and Extensions

	Improved Semiparametric Analysis of Polygenic Gene-Environment Interactions in Case-Control Studies
	Introduction
	Methodology and Theory
	Background
	Symmetric Combination Estimator
	Asymptotic Theory
	Rare Diseases When 1 is Unknown

	Simulations
	Scenario
	Results
	Further Simulations

	Data Analysis
	Data
	Verifying Gene-Environment Independence
	Results

	Discussion and Extensions

	Semiparametric Analysis of Polygenic Gene-Environment Interactions in Case-Control Studies with caseControlGE
	Introduction
	caseControlGE package
	Background
	Implementation

	Simulating case-control data with simulateCC
	Data description
	Data simulation
	Confirming the G-E independence assumption

	Analyzing case-control data with spmle
	Known and rare disease
	Reduced model test

	Analyzing case-control data with spmleCombo
	Fitting spmleCombo with bootstrap standard error estimates
	Residual analysis
	Predictions


	SUMMARY
	REFERENCES
	APPENDIX APPENDIX TO SECTION 2
	Proof of Theorem 1
	Alternative Proof Based on a Hypothetical Population
	Score and Hessian: Rare Disease Case of §2.2 in the Main Paper
	Stratification and the Independence Assumption
	Additional Simulations
	Comparison with the Method of ChatterjeeCarroll2005
	Misspecification of Population Disease Rate
	Violations of the Gene-Environment Independence Assumption

	Properties of R"0362R(x,) in equation (5) of the Main Paper
	 SNPs Involved in Creating the Polygenic Risk Score
	Comparison with the Method of ChatterjeeCarroll2005 in a Special Case
	Simulation When the Disease Rate is Misspecified
	Simulations When the Gene-Environment Independence Assumption is Violated
	The Simulation in Table 1 of the Main Paper With Componentwise Mean Squared Error Efficiencies
	Skewness, Kurtosis and qq-Plots for the Simulation in Table 1 of the Main Paper
	The Simulation in Table 1 of the Main Paper With 500 Cases and Controls

	APPENDIX Appendix to Section 3
	Composite Likelihood Estimator
	Additional Simulations
	Unabridged version of tab:sim1 from sec:Simulations
	Simulation when the disease rate is misspecified
	Violations of the Gene-Environment Independence Assumption
	Simulations with alternative distributions for G and X
	Creating the polygenic risk score for the PLCO data analysis


	APPENDIX Appendix to Section 4
	caseControlGE-package
	predict.spmle
	simulateCC
	spmle
	spmleCombo


