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ABSTRACT

Software-Defined Networking (SDN) has quickly emerged as a new promising technology for

future networks. Its decoupling of the logically centralized control plane from the data plane makes

the network management more flexible. However, recently, there are several trends to the computer

networks that bring new challenges to the SDN. First, with the rapid expansion of computer net-

works, there will be much more network events along with the large volume of network traffic

that brings the scalability issue to the SDN control plane. The scalability issue could bring even

more challenging security threat. Second, the third-party applications in the SDN control plane

are becoming more complex and prone to bugs/vulnerabilities. However, existing network diag-

nosis tools cannot directly apply to the SDN since they cannot reason the root causes within the

buggy/vulnerable application. Third, many enterprise networks migrate to the Infrastructure-as-

a-Service clouds. However, existing IaaS clouds only allow the cloud administrator to enjoy the

benefit of SDN. The cloud tenants are not able to enjoy the technique of SDN in the clouds due

to several security and privacy issues. Motivated by these challenges, we aim to enhance several

new features to the SDN control plane. Our target is to design a secure SDN control plane which

is: 1) robust to handle spikes of data plane events and even flooding attacks; 2) accountable to give

records and explanation about how the flow control decisions have been made to help the diagno-

sis of networking problems; and 3) multitenancy-friendly to allow multitenancy management of

network functions in the Infrastructure-as-a-Service clouds.

In this dissertation work, we propose three extensions to the SDN control plane to enhance

the three new features. To make the SDN control plane robust, we design a scalable, efficient,

lightweight, and protocol-independent defense framework for SDN networks to prevent the data-

to-control plane saturation attack. To make the SDN control plane accountable, we provide fine-

grained forensics and diagnosis functions in the SDN networks. To make the SDN control plane

multitenancy-friendly, we introduce a new cloud usage paradigm: Bring Your Own Controller

(BYOC), which offers each tenant an individual SDN controller, where tenants can deploy SDN

ii



applications to manage their network. We also propose how to design a new SDN control plane

from the scratch by integrating the three extensions. The evaluation results show that our solution

can meet the needs and achieve a secure SDN framework.
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1. INTRODUCTION

Software-Defined Networking (SDN) [1] has quickly emerged as a new promising technology

for future networks, and its reference implementation, OpenFlow [2], is becoming widely used

in recent years. It decouples the control plane from the data plane of the network. The logically

centralized control plane (which is called controller) works as network operating system to flexibly

and dynamically manage the forwarding behaviors of the data plane. Due to these reasons, many

network functions, such as routing, measurement, traffic engineering and monitoring, are being

built and deployed as SDN applications in the SDN control plane.

However, there are several trends to the computer networks that bring new security challenges

to the SDN control plane. First, due to the rapid expansion of computer networks, the SDN control

plane is required to handle large volume of network events and address potential denial-of-service

(DoS) attacks. Second, with the increasingly complex types and functions, there are could be

buggy or vulnerable SDN applications that may mislead the forwarding behaviors of the data plane.

Thus, there is a need for network administrators to diagnose network problems and pinpoint the

root causes within the buggy/vulnerable SDN applications. Third, more and more cloud networks

adopt SDN as their network framework. The adoption of SDN in Infrastructure-as-a-Service (IaaS)

clouds faces an obstacle which is that the cloud administrator does not allow the cloud tenants to

enjoy the SDN technique to manage the tenant virtual networks due to several privacy and security

concerns. In summary, the SDN control plane should be improved to fulfill the security needs from

these trends.

My dissertation research is motivated by the above problems. According to the new require-

ments that come from the trends of networks, we aim to provide several new features to the SDN

controller design. As illustrate in Figure 1.1, we enhance the following new features to the SDN

control plane: 1) robust to handle spikes of data plane events and even flooding attacks; 2) account-

able to give records of the running behavior of the network and explanation about how the forward-

ing decisions have been made to help the diagnosis of networking problems; and 3) multitenancy-
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friendly to enable multitenancy management by the cloud tenants in IaaS clouds. The three goals

for enhancing SDN control plane form the basis of this Ph.D. dissertation work.
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Figure 1.1: Motivation and System Overview of My Dissertation Work

1.1 Research Problems

First, we aim to make the SDN control plane robust to handle the large volume of network

events and even the flooding attacks. Current OpenFlow implementations use a "southbound"

protocol. When a switch receives a new flow for which there is no matching flow rules installed in

the flow table (we call it a "table-miss" in this paper), the data plane will ask the control plane for

actions. The "southbound" protocol of an OpenFlow controller introduces considerable overhead.

A table-miss could consume resources (e.g., CPU, memory and bandwidth) in both control plane

and data plane. This leads to issues in both scalability and security. While there are many studies

and solutions on the scalability issue, there is very little research on the even more challenging

security issue. Essentially, a large number of data plane messages will flood the control plane

and could exceed the throughput and processing capacities of the control plane. An attacker can

exploit it by launching dedicated denial of service attack (or data-to-control plane saturation attack)

that floods SDN networks. As a result, this attack will overload the buffer memory of network

devices, generate amplified traffic to occupy the data-to-control plane bandwidth, and consume the
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computation resource of the controller in a short time. In Section 2, we study the defense against

the data-to-control plane saturation attack.

Second, there could be buggy/vulnerable applications running in the SDN control plane. The

security problem occurs in the control plane will have impact on the data plane forwarding behav-

ior. Network users would like to have network diagnosis tool to pinpoint the root cause of for-

warding problems. However, the emerging Software-Defined Networking (SDN) technique makes

network security diagnosis much harder, because it decouples the control plane from the data plane

and the logically centralized control plane is complicated and prone to security vulnerabilities. For

example, when you observe a disconnection problem happen in a network running tens of SDN

applications in the control plane, it is difficult to diagnose which application is exploited and how it

makes the incorrect flow control decisions. Furthermore, since many existing SDN controllers are

reactive and event-driven, the culprit events behind the misbehaving control plane are even much

harder to be pinpointed. Fundamentally, there is a big gap in the SDN era, from observing the

faulty forwarding behaviors in the data plane to finding out the root causes of the security problem

in the SDN control plane. In Section 3, we study to bridge this gap by providing digital forensics

that investigates the activities of the SDN framework and makes use of the recorded activities for

networking security problems diagnosis.

Third, in the Infrastructure-as-a-Service (IaaS) cloud networking environment, the existing

adoption of SDN limited. This is because, currently, many enterprises are embracing elastic com-

puting offered via the cloud computing. Infrastructure-as-a-Service (IaaS) clouds provide enter-

prises with on-demand computing resources along with networking and storage capabilities. The

SDN technique also provides numerous benefits to enterprises. While enterprises encounter a dif-

ficult situation when they migrate to public clouds – relinquishing control over their in-house SDN

controller along with the entire suite of SDN applications running atop it. The cloud provider’s

SDN controller that manages all OpenFlow-enabled hardware as well as software switches is not

accessible to tenants. Despite tenants’ demand of diverse network security functions such as intru-

sion detection and access control, most cloud providers only offer elementary network functions
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such as ACL rules, load balancing, or a software suite with limited customizability. Losing access

to the SDN controller deprives tenants of local and third-party SDN applications that cater their

needs. Therefore, a cloud tenant desires an SDN controller to develop and deploy arbitrary SDN

applications. In Section 4, we study the problem of allowing cloud tenants deploying customized

security applications to manage their network.

1.2 Solution Overview

We aim to enhance the SDN control plane to be robust, accountable and multitenancy-friendly.

As shown in Figure 1.1, we propose three extensions to the SDN control plane to achieve the

goals. To make the SDN control plane robust, we design FLOODGUARD [3], a scalable, efficient,

lightweight, and protocol-independent defense framework for SDN networks to prevent the data-

to-control plane saturation attack. FLOODGUARD addresses two research challenges including

protecting the controller from being overloaded and preserving network policy enforcement dur-

ing the saturation attack. To solve the first challenge, we migrate all the table-miss packets to a data

plane cache component, which temporarily caches the packets to protect the data plane switches

and forwards them to the controller in a rate limited manner. To solve the second challenge, we

propose a solution that is based on proactively placing the potential rules into the switches to guar-

antee the policy enforcement of the OpenFlow controller and its applications during the data-to-

control plane saturation attack. We evaluate FLOODGUARD through a prototype implementation

tested in both software and hardware environments. As shown in Section 2, the results show that

FLOODGUARD is effective with adding only minor overhead.

To make the SDN control plane accountable, we leverage the concept of digital forensics that

investigates the activities of the SDN framework and makes use of the recorded activities for net-

working security problems diagnosis. We design a new system, FORENGUARD, which provides

fine-grained forensics and diagnosis functions in the SDN networks. FORENGUARD addresses

three research challenges: What kinds of activities in the SDN framework are required for the

diagnosis purpose? How to build the causal relationship between different activities? And how

to automatically pinpoint the root causes when observing forwarding problems. To address these
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problems, FORENGUARD leverages a model of the activities of the SDN framework, designs a new

hybrid analysis approach that combines static analysis and dynamic profiling to track the informa-

tion flows in the SDN framework, and provides a new functional module for automatic diagnosis.

In Section 3, we show several use cases of FORENGUARD that can quickly pinpoint the root causes

which make use of different software vulnerabilities to launch attacks. The evaluation results show

that our system can provide fine-grained diagnosis for many types of networking problems and

only introduce minor runtime overhead.

To make the SDN control plane multitenancy-friendly, we introduce a new cloud usage paradigm:

Bring Your Own Controller (BYOC). BYOC offers each tenant an individual SDN controller,

where tenants can deploy SDN applications to manage their network. There are several research

challenges remaining including topology abstraction, performance concern and potential security

attacks. We propose BYOC-VISOR [4], a network virtualization platform which is tailored to IaaS

clouds and provides customized, secure, and scalable services to tenants. To address the research

challenges, BYOC-VISOR designs a new topology abstraction scheme (called V-Topo) that pre-

vents the leaking of sensitive provider’s topology and provides the static view of the network even

when the tenant VMs are frequently migrated, a new message tagging technique (called Message

Cookie) to improve the performance and defend against the flooding attack, and a new functional

module (called Message Guard) to monitor, profile, and filter undesired controller messages. As

shown in Section 4, BYOC-VISOR supports different controller platforms and diverse SDN ap-

plications such as firewall, IDS, and access control. We implement a prototype system and the

performance evaluation results show that our system has low overhead.

Last but not least, although we propose three frameworks to achieve the three features, there is

still a gap from individual frameworks to an integrated system. To bridge this, we will discuss the

additional design solutions and the remaining challenges. We will also discuss about the lesson

learned from the three projects.

The remainder of this dissertation is organized as follows. The following three sections, Section

2, 3, 4, present the detailed motivation, research problems, design, implementation and evaluation

5



results of the FLOODGUARD, FORENGUARD, BYOC-VISOR projects. Section 5 discusses about

the integration of the three projects and the lesson learned. Finally, Section 6 concludes the disser-

tation work and provides the direction of my future research work.
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2. FLOODGUARD: MAKE THE SDN CONTROL PLANE ROBUST AGAINST FLOODING

ATTACKS ∗

2.1 Introduction

SDN is designed to support fine-grained network management policies by decoupling the con-

trol plane from the data plane. Current OpenFlow implementations use a "southbound" protocol.

When a switch receives a new flow for which there is no matching flow rule installed in the flow

table (we call it a "table-miss" in this thesis), the data plane will ask the control plane for actions.

The "southbound" protocol of an OpenFlow controller introduces considerable overhead. A

table-miss could consume resources (e.g., CPU, memory and bandwidth) in both control plane and

data plane. This leads to issues in both scalability and security. While there are many studies

and solutions on the scalability issue [5, 6, 7, 8, 9], there is very little research on the even more

challenging security issue. Essentially, a large number of data plane messages will flood the control

plane and could exceed the throughput and processing capacities of the control plane. An attacker

can exploit it by launching dedicated denial of service attack (or data-to-control plane saturation

attack) that floods SDN networks [10, 11]. The attacker only needs to generate a large number

of anomalous packets, with all or part of header fields of each packet are spoofed as random

values. These incoming packets will trigger table-misses and send packet_in messages to the

controller. As a result, this attack will overload the buffer memory of network devices, generate

amplified traffic to occupy the data-to-control plane bandwidth, and consume the computation

resource of the controller in a short time. While some existing research has already discussed this

attack and presented some solutions, e.g., AvantGuard [11], they do not provide a comprehensive

solution yet. For example, AvantGuard can only defeat TCP-based flooding attacks, but not others

(e.g., UDP, ICMP).

In this thesis, we study the data-to-control plane saturation attack in reactive controllers (e.g.

∗ c© 2015 IEEE. Reprinted, with permission from Haopei Wang, Lei Xu, and Guofei Gu, "FloodGuard: A DoS
Attack Prevention Extension in Software-Defined Networks," in Proceedings of the 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 239-250, June 2015.
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POX [12] and Floodlight [13]). The impact of this attack on different controller applications is

quite different. Each application in the controller consists of multiple packet-processing policies.

These policies are high-level and used to generate low-level flow rules to the data plane. The appli-

cations need to analyze each packet_in messages, extract required information (packet header,

data path, inport and etc.) and process response OpenFlow messages. Different applications have

different program logic, architecture and throughput. Similarly, the impact of this data-to-control

plane saturation attack on the OpenFlow infrastructure differs in target applications. For example,

a load balancing application is more vulnerable than a hub application. It is because the former one

needs more programming complexity to handle packet_in messages and respond to traffic load

dynamics. The flow rules generated by the load balancing application may frequently change dur-

ing the saturation attack, which means this attack could consume network resources more quickly

by attacking this application.

To defend against this attack, we have two research challenges as follows:

• How to keep the major functionality of the SDN infrastructure working when the saturation

attack occurs?

• How to handle the flooding traffic without sacrificing benign traffic?

For the first challenge, we propose a solution that is based on proactively placing the poten-

tial rules into the switches to guarantee the policy enforcement of the OpenFlow controller and

its applications during the data-to-control plane saturation attack. Motivated by existing work

[14, 15, 16], we attempt to use program analysis techniques to solve the first challenge. We define

an important concept that will be used in this thesis, i.e., proactive flow rules. Proactive flow rules

are all data plane level (low-level) flow rules that can be generated by an application based on

current controller state. The proactive flow rules represent the forwarding actions for all possible

incoming packets at this moment. In this thesis, we introduce a new approach that combines sym-

bolic execution and dynamic application tracking to generate proactive flow rules. The proactive

insertion of the flow rules can keep the major functionality of the network working.
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However, even with the proactive insertion of the flow rules, the OpenFlow controller could

still be vulnerable to the overloading problem during the data-to-control plane saturation attack.

It is because most of flooding packets stay outside the logic of OpenFlow controller applications,

i.e., the flooding traffic can hardly match proactive flow rules, which will actually send back and

overload the OpenFlow controller. One simple solution to protect the OpenFlow controller can

be dropping those packets if they cannot match any existing data plane flow rules. However, the

naive drop solution inevitably scarifies some normal traffic, which may not be covered by current

proactive flow rules. To solve the second challenge, we migrate all the table-miss packets to a data

plane cache component, which temporarily caches the packets to protect the data plane switches

and forwards them to the controller in a rate limited manner. The data plane cache is coordinated

by the migration agent inside the OpenFlow controller, which provides utility to detect data-to-

control plane saturation attack and limit the uploading rate of packet_in messages from the

data plane cache.

To summarize, the contributions of this work include the following:

• We deeply study the behaviors of the data-to-control plane saturation attack and analyze its

impact on different OpenFlow controller applications.

• We design FLOODGUARD, a scalable, efficient, lightweight, and protocol-independent de-

fense framework for SDN networks to prevent data-to-control plane saturation attack by us-

ing proactive flow rule analyzer and packet migration. Proactive flow rule analyzer module

provides a new approach that combines symbolic execution and dynamic application track-

ing to derive proactive flow rules in runtime. Packet migration module migrates, caches, and

processes table-miss packets by using rate limiting and round robin scheduling.

• We implement a prototype system and test it in different attack scenarios in both software

and commodity hardware OpenFlow switch environments. We show the evaluation results of

the protection of both the control plane and the data plane. Experiments show that FLOOD-

GUARD provides a scalable and efficient security solution for SDN networks against data-
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to-control plane saturation attacks.

2.2 Related Work

2.2.1 SDN Scalability

The data-to-control plane saturation attack is derived from the scalability problem in SDN

research, which is how the control plane handles a large-scale network. Several papers have already

studied this challenge. Onix [5] provides a distributed controller solution. Onix introduces a

logically centralized but physically distributed controller framework which can share the work

load. DIFANE [8] presents an approach to proactively compute low-level flow rules, distribute and

then cache these rules into the data plane to handle a large number of incoming packets. However,

it is not easy to directly apply this approach to our problem. We focus our problem domain on a

reactive model while DIFANE uses a different model (it assumes proactive flow rules are given).

Furthermore, a large number of generated fake packets will still cause high communication and

computation burden in DIFANE. Our approach is a lightweight solution and provides packet-level

migration, which guarantees the transparency to controller applications and end users. DevoFlow

[9] introduces mechanisms for devolving control to a switch and finding elephant flows and micro-

flows, which benefits to measurement requirement.

2.2.2 SDN Software Analysis

Some studies provide methods to analyze SDN control plane software. Pyretic [14] introduces

some features to describe the model of an application from the abstraction point of view. Some ex-

isting studies such as NICE [15], VeriCon [17] and [16] propose several methods to verify different

features of control applications. In [18], the authors improve the performance of control software

troubleshooting by using a minimal causal sequence of triggering events.

2.2.3 SDN Security

SDN security becomes a hot research topic in recent years. There are two main directions.

SDN-supported security research targets to use SDN technique (which is relatively a new tech-

nique) to solve traditional security challenges. Some papers such as Mahout [19] use traditional
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statistic based aggregation solutions to prevent flooding attacks in OpenFlow networks. These

attacks are targeting the end hosts while the data-to-control plane saturation attack is against the

OpenFlow network infrastructure. In addition, statistic aggregation algorithms do not help because

the data-to-control plane saturation attack utilizes micro-flows. Therefore, we argue that statistic-

based solutions are not suitable for our problem. CloudWatcher [20] introduces the Network Se-

curity Virtualization service to cloud networks. FRESCO [21] proposes a framework designed

to facilitate the rapid design and modular composition of security applications. OpenSafe [22]

improves the management of network monitoring applications.

Another direction is security for SDN which aims to protect and strengthen SDN-enabled in-

frastructure. Our work belongs to this direction. AvantGuard [11] attempts to solve the same

saturation attack challenge, and it is the closest work to ours. AvantGuard introduces a module

which implements a SYN proxy and only exposes those flows that finish the TCP handshake.

AvantGuard can effectively defeat TCP based saturation attacks. Its limitation is obvious that it is

invalid to other protocols. Our approach aims to defeat more generic saturation attacks in SDN, not

only limited to TCP protocol. FortNOX [23] introduces the tunneling attack and proposes a secu-

rity enforcement kernel to defend against this attack. Rosemary [24] introduces a sandbox-based

framework to safeguard the SDN control layer against malicious or faulty control applications. To-

poGuard [25] studies the network topology poisoning attack and proposes an extension to mitigate

against the attack. Sphinx [26] proposes a framework to detect known and potential attacks on

SDN networks.

2.3 Problem Statement

In this section, we introduce some background knowledge about SDN, provide an adversary

model of the data-to-control plane saturation attack, analyze the vulnerability in different Open-

Flow applications and state our research problem.

11



2.3.1 Background on Flow Rule Installation

In OpenFlow networks, forwarding devices handle network flows based on the flow rules re-

ceived from a controller. The controller installs flow rules to data plane in two approaches, i.e.,

proactively and reactively. In the proactive flow installation approach, the controller could popu-

late the flow rules before all traffic comes to the switch. In the reactive flow installation approach,

the controller could dynamically install or modify flow rules. The reactive approach enables the

flexible management of forwarding behaviors based on current network situation. Thus, it could

support more dynamic applications than the proactive approach. Currently most OpenFlow en-

abled networks choose the reactive approach for their management. In our work we focus on

reactive controllers and consequent security threats against them.

2.3.2 Adversary Model

We assume an adversary could produce a large number of micro-flows to an OpenFlow-enabled

network by her own host or controlling many distributed bot hosts. The attack traffic can be mixed

with normal traffic and is hard to distinguish. The control plane and the data plane will suffer from

the saturation at the same time and their resources will be consumed in a short time.

We start from a simple scenario to illustrate how an adversary can flood the SDN infrastructure.

There is an OpenFlow-enabled switch which receives an external input stream. The stream is mixed

with traffic from both a benign host and a bot host which is controlled by an attacker. The attacker

could generate flooding traffic and consequently launch the saturation attack to the OpenFlow

switch. Here is a basic and typical process of flow control in OpenFlow switches. When a table-

miss occurs, which means there is a new packet which data plane does not know how to handle,

the data plane will buffer the packet and send a packet_in message which contains the packet

header to controller if the buffer memory is not full. If the buffer is full, the message will contain

the whole packet instead of only its header. The attacker can exploit it by launching dedicated

data-to-control plane saturation attack that floods SDN networks. She can generate a large number

of anomalous packets, which means all or part of fields of each packet are spoofed as random
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values. These spoofed packets have a low probability to be matched by any existing flow entries

in the switch. As a result, the flooding attack will significantly downgrade the performance of the

whole OpenFlow infrastructure.

OpenFlow Switch

Controller
Benign User

Attacker

Normal Traffic

Flooding Traffic

Packet_In 

Messages

(Overload the 

Buffer Memory)

( Generate 

Amplified Traffic)

( Saturate the 

Computation Resource )

Figure 2.1: Attack Process

Figure 2.1 illustrates the basic process of the attack. The first component which is affected is

the OpenFlow switch. The buffer memory will be consumed soon and the throughput is affected

a lot including the packet forwarding throughput and the data-to-control plane communication

channel throughput. We have tested the impact of the saturation attack on an OpenFlow switch. In

the Mininet [27] environment, a software switch is dysfunctional by about 500 packets/second of

table-miss UDP traffic. A hardware switch is a little more capable, but still vulnerable. Besides

the data plane switch, the bandwidth of data-to-control plane communication channel will also

be occupied. In OpenFlow Specification 1.4 [28], if the buffer memory of a switch is full, the

packet_in message will contain the whole body of each table-miss packet. That means the

attacker can generate amplified traffic to occupy the data-to-control plane bandwidth. Suppose the

data plane link and communication channel have the same capacity, amplification attack allows the

attacker to consume less resources but cause more harm. At last, the control plane will suffer from

the saturation attack, because the controller has to process each packet_in message and then
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Application arp_hub ip_balancer route
Policy LLDP packet→ drop srcip=1*, dstip=10.0.0.1→ dstip=192.168.0.1 dstip=192.168.0.1→ port(1)

ARP packet→ broadcast srcip=0*, dstip=10.0.0.1→ dstip=192.168.0.2 dstip=192.168.0.2→ port(2)

Table 2.1: Sample Applications

Controller Platform Packet_In Handler Function Listening Interface
NOX def packet_in_callback(self, dpid, inport, core.register_for_packet_in

reason, len, bufid, packet)

POX def _handle_PacketIn (self, event) core.openflow

Ryu def _packet_in_handler(self, ev) controller.ofp_event.EventOFPPacketIn

Beacon public Command receive(IOFSwitch sw, OFMessage msg) beaconcontroller.core.IOFMessageListener

Floodlight public Command receive(IOFSwitch sw, core.IOFMessageListener

OFMessage msg, FloodlightContext cntx)

OpenDayLight public PacketResult receiveDataPacket(RawPacket inPkt) sal.packet.IListenDataPacket

Table 2.2: Packet_In Handler Functions in Different Controllers

respond to the data plane. The flooding traffic can easily overload the computation capability of

the control plane in a short time.

2.3.3 Motivation

If we are able to pre-install all flow rules into the data plane and discard all other table-miss

packets, the security problem is solved. However, it is unrealistic due to the dynamics of network

policies. Each control application is composed of distinct packet-processing policies. Some poli-

cies are dynamic which means they may vary from different network situations. For example, in

a cloud network the routing policies should be updated when the topology changes. Thus, the

controller has to update the flow rules when network state changes. The dynamic nature makes

it impossible to pre-install all flow rules. Therefore, the application needs to analyze data plane

messages and update its packet-processing policies. As described above, the dynamic nature can

result in both the scalability issue and security vulnerability.

For those packet-processing policies that will be dynamically changed inside an OpenFlow
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application, we define them as dynamic policies. Conversely, we define the unchanged policies as

static policies. For example, we suppose there is a developer who deploys three applications, as

shown in Table 2.1, to manage a small network. The arp_hub application is to drop all Link Layer

Discovery Protocol (LLDP) packets and broadcast Address Resolution Protocol (ARP) packets.

The ip_balancer application is to load balance the traffic destined to a public IP address and

split the traffic based on the source IP address. Incoming traffic with a source IP address whose

highest-order bit is 1 gets a private destination IP address 192.168.0.1 and is forwarded to one

server replica. The remaining traffic gets another private destination IP address 192.168.0.2 and

goes to the other server replica. The third one, the route application generates routing path based

on the destination IP address. Packet-processing policies in the arp_hub module are quite stable.

However, those policies in the other two modules may update when topology changes. According

to our definition, policies in the first module are static policies and those in the other two modules

are dynamic policies. The reason why there exists dynamic policies is that there should be variables

sensitive to the network state in the control application program. For example, the routing table in

the third module is a state sensitive variable which is associated with the current network topology.

We argue that the dynamic policies make applications vulnerable, since dynamic policies need

to be updated during the transition of the data plane. In current OpenFlow protocol, the con-

troller obtains the transition information of the data plane mainly from the packet_in messages.

Hence, during the flooding attack, a large number of packet_in messages will consume the re-

source in the controller and, simultaneously, even mislead the control plane. Also, the dynamic

policies will change unpredictably and frequently, which makes it hard to predict the trend of them.

We suppose at any time we are able to know all the static policies and dynamic policies based on

current network state, and then we can know what kinds of packet_in messages the control

plane is able to process immediate responses to the data plane. We cannot simply drop other mes-

sages because many applications are learning-based and some messages that have not been learned

by the applications may be useful in the future. These messages can be handled later when the

controller becomes relatively idle after the attack. That kind of information will be quite useful for
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the defense. For further description about our defense solution, we introduce a new concept, i.e.,

proactive flow rules.

Proactive Flow Rules are all data-plane-level flow rules which can be generated by an appli-

cation based on current controller state. In the above case in Table 2.1, each policy could generate

one entry of flow rule. At a certain moment, we call all these possible flow rules as proactive flow

rules. The proactive flow rules are dynamic and time-sensitive. At another moment, the proac-

tive flow rules may be different because the policies have changed. Proactive flow rules represent

the range of packet_in messages which current control logic can handle at this moment. This

concept is motivated from DIFANE [8] which introduces another similar concept called low-level

authority rules. The authority rules are cached in the Authority Switches and need to be updated to

handle dynamics. DIFANE caches these kinds of flow rules to keep packet processing in the data

plane. We assume most of the flooding packets are out of the control logic, and we aim to use the

proactive flow rules to roughly separate the benign packets and malicious packets. Moreover, there

are still several issues in DIFANE. For instance, there is no systematical solution to generate and

update the proactive flow rules dynamically. Our work attempts to design a systematical solution,

and we will discuss it in the design section.

We also conduct a deep analysis of the OpenFlow program model. Typically each control ap-

plication contains a packet_in handler function to handle packet_in messages from the data plane.

We summarize some popular controller platforms and their corresponding handler functions in Ta-

ble 2.2. The handler functions have a variety of names in different controller platforms, but have

similar features. The handler function is event-driven. Triggered by packet_in messages, the

function then may take some actions to handle this packet and consequent flows. Even for the same

input, the handler function of an application could enforce different actions. As mentioned above,

it is because of the dynamic nature of the state sensitive variables. For example, in the route

application in Table 2.1, the routing table is associated with the current network configuration and

is state sensitive. Therefore, if we want to get the proactive flow rules, we need to know the current

value of all state sensitive variables dynamically. We design a hybrid symbolic execution algorithm
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which is described in the design section.

2.3.4 Research Challenges

The first one is to preserve major functionality of the network infrastructure when the saturation

attack occurs. To achieve this, we design a new functional module called proactive flow rule

analyzer, which is implemented in the control plane. It includes symbolic execution and dynamic

application tracking to derive proactive flow rules in runtime. The proactive flow rule dispatcher

component will install the proactive flow rules directly into the OpenFlow switch.

The second challenge is to handle table-miss packets without sacrificing benign packets. Sim-

ply dropping table-miss packets seems one answer but obviously not a good one since it could drop

some benign packets. Therefore, we migrate the table-miss packets to a data plane cache when the

attack occurs, and then trigger packet_in messages back to the controller in a limited rate.

Our design meets the following objectives. First, our framework is lightweight, i.e., under nor-

mal circumstances, only the monitoring component is active but others keep dormant. Second, our

design is transparent to the controller applications and end hosts. Third, we merely add reason-

ably low overhead and latency. Finally, our solution is independent of the protocol of attack traffic

(unlike AvantGuard which only defends against TCP-based flooding attacks).

2.4 System Design

To address the security problems discussed in previous sections, we introduce FLOODGUARD,

a scalable, efficient, lightweight and protocol-independent defense framework for SDN networks

to prevent data-to-control plane saturation attack. We present the detailed design of FLOODGUARD

in this section.

2.4.1 System Architecture

FLOODGUARD introduces two new functional modules to existing OpenFlow infrastructure :

1) a proactive flow rule analyzer module, and 2) a packet migration module. The analyzer module

is to enforce the major functionality of the network infrastructure when the saturation attack occurs.

The packet migration module is to transmit benign network flows to the OpenFlow controller
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Figure 2.2: Conceptual Architecture

without overloading it. A conceptual architecture of FLOODGUARD is shown in Figure 2.2. The

proactive flow rule analyzer module is implemented as a controller application above the controller

platform. In the packet migration module, the migration agent component is also implemented as a

controller application and the data plane cache component sits between the control plane and data

plane.

We maintain a finite-state machine to manage the whole FLOODGUARD system. The state

machine is shown in Figure 2.3. Before all the states, FLOODGUARD has some preparation work,

i.e., using symbolic execution to generate a set of path conditions for each packet_in handler

function of each application. Compared with traditional symbolic execution method, we not only

symbolize the input variables but also symbolize the global variables used in the packet_in

handler function. After the preparation work, FLOODGUARD starts from the Idle State. Initially, if

there is no attack, both the proactive flow rule analyzer and the packet migration modules keep idle.

When a saturation attack is detected, FLOODGUARD comes to the Init State. The migration agent

component starts to redirect the table-miss packets to the data plane cache. The proactive flow rule

analyzer module will dynamically track the running controller applications and convert the path
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Figure 2.3: States of FLOODGUARD

conditions which are generated before to proactive flow rules. At the same time, the data plane

cache component begins to handle cached packets and generate packet_in messages to the

controller. When the proactive flow rules are ready, FLOODGUARD comes to the Defense State.

The analyzer module directly installs these rules to the data plane switches and keeps updating

these flow rules. When the attack is detected to be over, FLOODGUARD comes to the Finish State.

The migration agent component stops migrating the table-miss packets and the data plane cache

will keep handling unprocessed packets. When the data plane cache finishes processing all cached

packets, it will become idle again. Our framework does not need any modification to existing SDN

infrastructure and is transparent to both the control plane and data plane.

2.4.2 Proactive Flow Rule Analyzer

The proactive flow rule analyzer module is running as an application in the controller and

consists of three components: (i) symbolic execution engine, (ii) application tracker, and (iii)

proactive flow rule dispatcher. The architecture of the proactive flow rule analyzer module is

shown in Figure 2.4.
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The proactive flow rule analyzer module could be activated anytime when needed. For ex-

ample, it can typically be activated right after the detection of the saturation attack, which is in-

formed by (the flooding detection function in) the packet migration module. Once activated, the

analyzer module generates the proactive flow rules and directly installs these rules into the data

plane switches. Then the analyzer module keeps updating the proactive flow rules dynamically. In

essence, the analyzer will leverage the logic of applications in the controller to generate proactive

flow rules, which, to a great extent, covers all the possible upcoming packets that the application

cares about. The challenge here is how to dynamically generate proactive flow rules. We introduce

a new approach which combines symbolic execution and dynamical application tracking to address

this challenge.

Symbolic Execution Engine
Identifying Global 

Variables

Offline Analysis 

APP Source Code

Application 
Tracker

Proactive 
Flow Rule 
Dispatcher

App1 App2

Assign Global 
Variables as 
Current Value

Controller

Proactive 
Flow Rules

Switch

…

Path 
Conditions

Figure 2.4: Proactive Flow Rule Analyzer

In a reactive controller, the controller platform maintains the connections to the data plane and

transforms OpenFlow messages into events. Upon the controller, OpenFlow applications provide

multiple event handlers to process OpenFlow messages (e.g., PortStatus, PacketIn, Barrier). In

this thesis, we only focus on the packet_in event handler. It is because from previous section,
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we know that the packet_in handler function is the main target of flooding attacks. The input

of packet_in handler function is the packet_in event and the output is flow rules. We use

a sample application, l2_learning application [12], and describe the corresponding control flow

graph of its packet_in handler. First, we briefly describe the logic of this function. The input

for this function is the packet_in event. This function maintains a MAC-port mapping table,

which can be learned from the source MAC address and incoming port of previous packet_in

messages. The function firstly checks if the destination MAC address of the packet is a broadcast

address. If so, the function just simply broadcasts the packet. If not, the function will search this

MAC address in the MAC-port mapping table. If this MAC address has not been learned before,

the function has no idea which port to forward it so just broadcast it. If the MAC address has been

learned before, the function installs a relative flow rule and forward this packet to the mapping

port.

The control-flow logic of packet_in handler function of the l2_learning is as follows. One

for input whose destination MAC address is broadcast (pt.mac_dst = BROADCAST ), one for

input whose destination MAC address is not broadcast and not learned before (pt.mac_dst 6=

BROADCAST and pt.mac_dst /∈ macToPort) and the other for input whose destination MAC

address is not broadcast but has been learned before (pt.mac _dst 6= BROADCAST and pt.mac_dst ∈

macToPort). The BROADCAST is a constant value, and the value of the data structure macToPort

is network state sensitive ∗. From our analysis and discussion in the previous section, we identify

the variable macToPort as a state sensitive variable. Suppose at a certain point in the running

cycle, macToPort has a concrete value (i.e., {0x00000000000A : 01}. Consequently in the

control-flow logic the first two branches only generate packet_out messages without any flow

rules. Nevertheless, the third branch may generate a flow rule: mac_dst = 00 : 00 : 00 : 00 : 00 :

0A, action = output : 01, which is the proactive flow rule we can get at this moment.

Symbolic Execution [29, 30] is a practical way to generate proactive flow rules. Symbolic Exe-

cution is a program analysis approach, which is capable of efficiently traversing possible branches

∗The key reason it is network state sensitive is because it will dynamically change and vary in every call back of
the handler function.
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Figure 2.5: Sample Control-Flow Logic

in a program. A symbolic execution engine will symbolize the input of a program and then exe-

cute all the feasible paths at the beginning of the program. During executing each path, the engine

records the accumulation of conditions that lead to this path, which is called "path conditions" or

"path constraints". For example, in l2_learning application, the path condition for the third branch

is pt.mac_dst 6= BROADCAST and pt.mac_dst ∈ macToPort. When the engine finishes the

execution of all feasible paths, we get all path conditions of the program.

For the sake of reducing runtime overhead, we choose to run symbolic execution offline for gen-

erating proactive flow rules. However, simply offline running symbolic execution on the packet_in

handler function as mentioned above cannot totally solve the problem. It is because packet_in

handler function may contain state sensitive variables whose value will dynamically change. For

example, in the l2_ learning application example, the initiate value of macToPort is empty. We

can only assign macToPort as its initial value, which means we will lose the third branch in the

generated path conditions. To tackle the problem, we increment symbolic execution with dynamic

application tracking. In detail, when we generate the path conditions offline, we symbolize both

the input variables and the state sensitive variables. Then we use dynamic application tracking

to locate state sensitive variables and extract them at runtime to derive proactive flow rules. In
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the l2_learning example, we first symbolize the input variable (i.e., packet_in event) and the

macToPort. We get path conditions which are the three branches. When the saturation attack

happens, we keep tracking the application to get the runtime value of macToPort and assign to

the path conditions. Then we dynamically convert the path conditions to proactive flow rules.

To derive proactive flow rules, we need to locate state sensitive variable, which is highly related

to program dynamics. For example, macToPort is a state sensitive variable. We find that all state

sensitive variables are global variables to the function, which means to the handler function, the

set of global variables is a superset of the state sensitive variables. The application program will

call the handler function hundreds of times with different value of these variables. Therefore, we

decide to symbolize input variables and all global variables used in the handler function to generate

the path conditions. Then we can assign the value of these global variables dynamically to the path

conditions and then generate our needed proactive flow rules. Motivated by this idea, we introduce

a new approach which combines the symbolic execution and dynamic application tracking to meet

our requirement. We summarize the algorithm of our approach as follows.

Algorithm 1: Generation of the Path Conditions (offline)
Input: F = packet_in handler function
Output: P = a set of path conditions
input← ∅, global← ∅;
input = find_input_variables(F );
global = find_global_variables(F );
F ′ = symbolize(F , input, global);
P = symbolic_execution_engine(F ′);
return P

We first separate the whole process into two steps. In the first step, our input is the packet_in

handler function and our desired output is the path conditions of this function. We first find input

variables (e.g. packet_in event) and the global variables which are used in the packet_in

function. Next we symbolize both the input variables and the global variables. Then we use
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Algorithm 2: Converting to Proactive Flow Rules (runtime)
Input: P = a set of path conditions
Input: global′ = global variables with real-time value assigned
Output: R = proactive flow rules
R← ∅;
paths = assign_value(P , global′);
foreach each path condition p in paths do

if p.decision = Modify_State_Message then
R.add (convert(p.path_condition));

return R

traditional symbolic execution algorithm to traverse possible branches, collect all path conditions

and then generate the path conditions. This step will be relatively time consuming. However, the

symbolic execution engine component could process this step offline in advance, which means it

will not increase overhead to our system. This step is summarized in Algorithm 1.

The second step is dynamic analysis. In the state machine, when it goes to Init State, the

application tracker component will process the second step. It will track and assign current value

of the global variables to the path conditions. After this process, in the path conditions only input

variables are symbolized. Then we use the proactive flow rule dispatcher component to analyze

each path condition. We only consider the paths whose final handling decision is in a small set

which is to generate Modify State Message (defined in OpenFlow Spec. 1.4.0) †. At last, we

get the proactive flow rules that we want. This step is summarized in Algorithm 2. Figure 2.4

illustrates the process of dynamically generating proactive flow rules. In the l2_learning case as

shown in Figure 2.5, the number of proactive flow rules is based on how many MAC-port pairs have

been learned in the macToPort. After the proactive flow rules are ready, the analyzer component

will install them to the data plane switches.

2.4.3 Packet Migration

Installing proactive flow rules during the attack will preserve the major functionality of the

network infrastructure because those packets that mach these flow rules are what the SDN apps

†This kind of messages will install new flow rules in data plane switches.
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mainly care about. For the unmatched packets (i.e., table-miss packets), one may think that we

could simply drop them. However, in that case, some new network flows will not be monitored

by the controller and thus be dropped. For example, in the above l2_learning application example,

when we generate the proactive flow rules and install them into the switches, we may sacrifice the

learning capability. After installing the proactive flow rules, new incoming network flows cannot

not be learned by the controller. That is because the new incoming flows have not been learned

before and thus cannot match any proactive flow rules. Therefore, we cannot simply drop the

table-miss packets. That leads to our second challenge, i.e., how to handle the flooding packets

without sacrificing benign packets? Our idea is to temporarily cache the table-miss packets after

the installation of the proactive flow rules. We introduce the packet migration module. The packet

migration module contains two components: migration agent and data plane cache.

2.4.3.1 Migration Agent

The migration agent component is the "brain" of the whole FLOODGUARD system. It has

three main functions. The first function is to detect the saturation attack. Anomaly-based flooding

detection is easy to get around by an attacker who is willing to slowly execute the attack. Only

using real-time rate of packet_in messages is not enough to detect the attack. Therefore, our

detection algorithm makes use of both the real-time rate of packet_in messages from the data

plane and the utilization of the infrastructure (buffer memory, controller memory and CPU) to

calculate current usage percentage of the capacity of our OpenFlow network. We identify there is

a potential flooding attack based on certain anomaly threshold. When the migration agent detects

the saturation attack occurs or ends, it will trigger the corresponding state transition in the state

machine described above.

The second task of the migration agent component is to migrate table-miss packets to the data

plane cache. When the saturation attack is detected, it will change the system state to the Init

State, which will trigger both the proactive flow rule analyzer and the data plane cache. The

migration agent component installs one entry of wildcard flow rule which has the lowest priority

and forwards all table-miss packets to data plane cache. Therefore, the flooding packets will not
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overload the switch or flood the controller. The data plane cache will temporarily store all the

table-miss packets. Some packets will be given priority to trigger packet_in messages from the

data plane cache.

Controller

App Proactive Flow 
Rule Analyzer

Tag Encoded 
Wildcard Rules

Packets

Data Plane Cache

Packet_In 
Messages

Controller Platform

Migration

Proactive 
Flow Rules

Migration Agent

Data Plane

Figure 2.6: Migration Process

However, the process has one obvious challenge. In OpenFlow protocol, a packet_in mes-

sage contains both packet header and INPORT information. Due to the addition of data plane

cache, the original INPORT information is lost in the process of migration. When we generate

packet_in messages later in the data plane cache, we lose the original INPORT information.

To solve this problem, we utilize a packet tag to preserve INPORT information. In OpenFlow

specification, some fields are used for matching packet headers. We can borrow some reserved

fields to tag table-miss packets (e.g. 8 bits TOS). Therefore, we modify the wildcard flow rule

mentioned above which is to migrate the table-miss packets. In our implementation, we install

multiple wildcard rules instead of only one rule. When the controller detects the flooding attack,

it installs several wildcard rules to migrate table-miss packets with encoded INPORT information

into tag. For each port there is a corresponding wildcard rule. We add one matching condition
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which matches the incoming port and also add one action which preserves the INPORT informa-

tion to the TOS field. For example, one wildcard rule could be: "inport = 1, actions : set-tos-bits =

1, output : data_plane_cache". If the ingress switch has 6 ingress ports, we need 3 bits to encode

INPORT information and the number of wildcard rules is 6. In the data plane cache, when we need

to generate packet_in messages, we can decode the INPORT information from the TOS field.

The whole process is shown in Figure 2.6.

When the data plane cache generates packet_in messages, it cannot directly send the mes-

sages to the controller. It is because the controller platform distinguishes different datapaths

(switches) from different connections (e.g., TCP session). If the data plane cache directly sends

messages to the controller, the data plane cache will be identified as a new datapath. The third

function of the migration agent component is to solve this issue. The data plane cache will send

the packet_in messages to the migration agent component. Then the migration agent will raise

packet_in events with the original datapath information to other applications in the controller.

Also, the migration agent instructs rate limit to data plane cache based on the utilization of system

resource and the rate of incoming packet_in messages.

2.4.3.2 Data Plane Cache

Data plane cache is a machine/device that temporarily caches table-miss packets during the

saturation attack. During the data-to-control saturation attacks, most of the flooding traffic will be

redirected the data plane cache instead of flooding the OpenFlow infrastructure. The data plane

cache, as shown in Figure 2.7, has three functions: packet classifier, packet buffer queue, and

packet_in generator. When a migrated table-miss packet arrives in data plane cache, the packet

classifier parses the header of the packet and attaches it to its corresponding buffer queue. Specifi-

cally, there are four packet buffer queues inside data plane cache based on the packet protocol, i.e.,

TCP, UDP, ICMP, and Default. Each packet buffer queue is based on FIFO (first-in, first-out) and

embraces tail drop scheme, i.e., when new packets come to a full packet buffer queue, the earliest

coming packet inside the packet buffer queue will be dropped. Among those four packet buffer

queues, we adopt round-robin scheduling algorithm to pick the queue header packet for future gen-
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erating packet_in messages. The insight behind the round-robin-based packet buffer queue lies

in the observation that an attacker normally exploit a specific protocol to launch attacks, e.g., TCP

SYN flooding attack, UDP flooding attack, and ICMP flooding attack. Even if the attacker knows

how our scheduling manner works and attacks the various protocols, the effect of the manner is the

same as just using one queue and has no drawbacks. Lastly, the packet_in generator converts the

scheduled packets into packet_in messages by decoding the INPORT information from the tag

added before and sends them to the OpenFlow controller. The sending rate of packet_in generator

is controlled by the migration agent inside the remote OpenFlow controller.
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Figure 2.7: Data Plane Cache

2.4.4 Handling Dynamics

During the flooding attack, proactive flow rules may vary due to network dynamics. For ex-

ample, in the ip_balancer application, the change of traffic in different flows will lead to the re-

generating of flow rules. If we still use previous proactive flow rules in the data plane, it will lead

to unpredictable results. Therefore, the proactive flow rules should keep consistent with current

network state. To handle the dynamics, in the proactive flow rule analyzer module we constantly
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update the proactive flow rules. We have several steps to update the proactive flow rules, as illus-

trated in Figure 2.8. By frequently referencing to the global variables, any change of value can be

easily identified by the application tracker component. Then this component can find correspond-

ing path conditions and regenerate the proactive flow rules. At last, the control plane will update

the latest proactive flow rules to the data plane switches. The variation should be quite simple as

adding or removing a few matching rules. In the case shown in Table 2.1, if the incoming traffic

with a source IP address whose highest-order bit is 1 gets a private destination IP address which

changes to 192.168.0.2 and the remaining traffic changes to 192.168.0.1, the change can be de-

tected by the analyzer. Then the proactive flow rule analyzer regenerates the proactive flow rules

and reports the variation of two flow rules to the data plane switches. Consequently, the flow table

in the OpenFlow switch has the latest matching rules which represents the current network state.
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Reconvert 
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rules 

Inform the 
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Update the flow 
table

Figure 2.8: Handling Dynamics

There is a tradeoff between the performance and the accuracy. We can update the rules every

time after a change. That will bring high accuracy, but also introduce relatively high overhead.

We can also update the rules after a certain number of changes happen. That will increase the

performance but reduce the accuracy. We can also update the rules based on a constant time

interval (e.g., 1ms). We think the decision should be based on the actual situation and system

features.
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Application State Sensitive Variable (Type) Description
l2_learning macToPort (dictionary) {mac address : INPORT}
l3_learning arpTable (dictionary) {IP address : mac address and INPORT}
ip_balancer servers (list) IP addresses of duplicated servers

service_ip (IPaddr) IP addresses of services
live_servers (dictionary) {IP address : mac and INPORT} of live duplicated servers

memory (dictionary) {four tuples of packet header : flow record}
of_firewall firewall (dictionary) {packet patterns : TRUE or FALSE}

table (dictionary) {switch data path : mac address}
mac_blocker blocked (set) mac addresses of blocked hosts

Table 2.3: The State Sensitive Variables in Applications

2.4.5 Discussion

One issue in the deployment is that how many data plane caches are necessary for a large

number of OpenFlow switches. Ideally, we only need to deploy one data plane cache to serve all

switches. However, to be more scalable, we could also use a set of data plane caches, with each in

charge of a subset of switches (e.g., a subnet of an enterprise network or a rack of a cloud network).

Another concern is that the size of TCAM memory in switches may not be enough to install

all proactive flow rules. Note that in our design, we do not add new extra rules. Instead, we just

proactively install those rules in advance. If the TCAM memory is really limited, we have another

design option which is to install and update the proactive flow rules into the data plane cache. In

the data plane cache, for those packets who can find a match, we provide them a higher priority

to trigger packet_in messages. However, the system needs to sacrifice some performance for

this design option. There is a tradeoff. According to the actual situation, the network administrator

could make a decision between the two options.

2.5 Evaluation

In this section we introduce our implementation of FLOODGUARD and evaluate the perfor-

mance and overhead of our framework.
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2.5.1 Implementation

We implement FLOODGUARD and test into both software and hardware OpenFlow environ-

ments. In the software environment, we use Mininet [27] to emulate the OpenFlow-enabled net-

work data plane. In the hardware environment, we use an OpenFlow-enabled commercial LinkSys

WRT54GL switch with Pantou [31]. The proactive flow rule analyzer module is implemented as an

application upon the POX controller [12], a lightweight OpenFlow controller platform. We mod-

ify the concolic execution engine in the NICE [15] project to implement our symbolic execution

engine and use STP [32] as the path constraint solver. We implement the data plane cache as a

software system in approximately 1,000 lines of C++ code.

2.5.2 FloodGuard Defense Effects

We first evaluate and compare two scenarios: (i) testing an application with existing OpenFlow

network, and (ii) testing the same application with FLOODGUARD. We have two kinds of test

environments. One is a hardware switch environment that includes a POX controller, an Open-

Flow switch (LinkSys WRT54GL), a server machine that implements data plane cache and three

clients. We also have a software environment, in which we use Mininet [27], a popular SDN em-

ulation tool. One client is the attacker who launches a UDP flooding attack to the switch. The

other two clients keep normal communicating with each other. The POX controller is running the

l2_learning application which discovers the topology and provides basic forwarding services. The

test environment is shown in Figure 2.9.

We first measure the bandwidth between the two clients with and without flooding attacks. The

attacker keeps generating different rates of UDP flooding traffic to the switch. We evaluate the

impact on bandwidth under different attack rates with and without using FLOODGUARD. Since

software switches and hardware switches have different performance and capacity, we measure the

bandwidth in both software and physical switch environments. We use an open source tool iperf

to measure the available bandwidth between two clients.

The results in software environment and hardware environments are shown in Figure 2.10 and
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Figure 2.10: Bandwidth in Software Environment

Figure 2.11. In our design, without the saturation attack, FLOODGUARD should have no impact

on the data plane. This has been verified in our bandwidth evaluation. FLOODGUARD does not

affect the bandwidth of traffic forwarding. In the software environment, without FLOODGUARD,

the bandwidth is about 1.7Gbps when there is no attack. When we start the saturation attack

and increase the attack rate, the bandwidth goes down quickly. The bandwidth decreases in half

after about 130 packets per second (PPS) of traffic. The whole network is dysfunctional after an
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Figure 2.11: Bandwidth in Hardware Environment

attack rate of 500 PPS. While using FLOODGUARD the bandwidth also starts from about 1.7Gbps

without the attack. Even though we increase the attack rate up to 500PPS (Packets Per Second), the

bandwidth keeps almost unchanged. In this sense, FLOODGUARD can protect the software switch

well.

In the hardware environment, the results also show the good protection of FLOODGUARD.

Without FLOODGUARD, the bandwidth also quickly goes down with the increase of the attack

rate. The bandwidth starts from about 8.4Mbps and decreases in half after about 150 PPS. With an

attack rate after 1000 PPS, the hardware switch is almost dysfunctional. By using FLOODGUARD,

the bandwidth keeps as about 8.3Mbps under an attack of less than 200 PPS. While after a rate of

200 PPS, the bandwidth will also decrease slowly. That is because our switch does not have the

ternary content addressable memory (TCAM) but instead uses the OpenWRT [33] firmware which

implements a software flow table. The software flow table cannot reach the same level efficiency

as TCAM. Even then, we can still see that FLOODGUARD provides significant good protection and

saves more resources. It is expected that with a real OpenFlow hardware switch, FLOODGUARD
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OpenFlow OpenFlow + FLOODGUARD

Total Total Data Plane Cache After Migration
130ms 157ms 30ms 127ms

Table 2.4: Average Delay of the First Packet in Each New Flow

will have better protection results.

Next we will show our evaluation of the protection impact on the control plane. We illustrate

how FLOODGUARD can protect the controller. We choose five applications for our evaluation:

l2_learning, ip_balancer, l3_learing, of_firewall and mac_blocker (we downloaded the first four

applications from [12] and of_firewall from [34])). We simultaneously run these five application

in the controller and use an attacker to launch the saturation attack with a rate of 100 PPS in the

hardware switch environment. We keep monitoring the resource consumption of each application

(we choose the CPU utilization of each application as the indicator of how many resources it

consumes). In Figure 2.12 we show the evaluation results.

We can see the protection effects of FLOODGUARD in the figure. The flooding attack starts

at about 0.6s. We can observe that the CPU utilization of each application increases quickly and

reaches a peak at about 0.8s. Then the CPU utilization begins to go down slowly because of the

installation of the migration flow rules. When we can also observe the impact of the data plane

cache, the utilization does not go down immediately to the initial level. Instead, the utilization

maintains at a medium level for some time. At about 1.5s, the CPU utilization of all the applica-

tions goes back to the initial level. We can observe from the results that FLOODGUARD provides

effective protection to the control plane. The saturation attack does not consume many resources

of the control plane.

2.5.3 Overhead Analysis

In this section we show our evaluation about the overhead of FLOODGUARD. First we measure

the overhead of symbolic-execution engine and proactive flow rule dispatcher, which seem to be

time-consuming components. To generate the path conditions, running symbolic execution engine
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Figure 2.12: CPU Utilization under the Flooding Attack

for each application takes relatively long time which is more than ten seconds. However, from the

design section we know Algorithm 1 can be processed offline in advance, which means it will not

add any overhead to the runtime performance of FLOODGUARD. Thus, the overhead of symbolic

execution engine is not a concern.

At runtime, we need to dynamically dispatch proactive flow rules. This part of overhead cannot
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be omitted. We keep using the five controller applications. In Table 2.3 we provide the state sen-

sitive variables in each application and their descriptions. For each application mentioned above,

we test the average overhead of generating proactive flow rules. The results are shown in Figure

2.13. The logic in every application has different complexity. For most cases the overhead is less

than 2ms. We can see that the worst case is about 9ms in of_firewall application. That is because

this application contains relatively more complex data structure, which the proactive flow rule dis-

patcher takes more time to analyze the path conditions. The overhead is still acceptable for our

system.

Figure 2.13: Overhead of Generating Proactive Flow Rules

We also evaluate the average time delay of the whole migration process in the physical environ-

ment. We generate a new benign TCP connection under the UDP flooding attack, and we will let

the first handshake packet trigger table-miss (by not installing relevant proactive flow rules which

may be generated at this time) in order to measure the migration overhead. The scenario is the
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same as shown in Figure 2.9 and the result is shown in Table 2.4. Without flooding traffic it takes

an average time about 130ms to process and forward the first packet of a new flow in the orig-

inal OpenFlow network. However, when flooding attacks occur, the delay will become infinite.

FLOODGUARD can detect and prevent such attacks meanwhile will inevitably bring some over-

head. During the flooding attack, the first handshake packet of a new TCP connection will trigger

table-miss and will be forwarded to the data plane cache with almost no delay. Since the system

is under the UDP flooding attack, the TCP buffer queue in the data plane cache is relative idle. It

takes about 30ms to process the packet. After that, the procedure of re-triggering a packet_in

message, setting up new flow rules and forwarding the packet takes about 127ms. To sum up,

FLOODGUARD increases about a total of 27ms overhead (20.8%) in this scenario. When new flow

rules are set up in the switch, there is no more delay for the subsequent packets in this flow. Al-

though FLOODGUARD unavoidably adds some overhead of time delay, the tradeoff is that it can

cache flooding packets and protect both the controller and the switches. Thus, FLOODGUARD

makes the OpenFlow network more secure against flooding attacks.

2.6 Discussion and Conclusion of This Work

In this section we discuss several important questions and limitations about FLOODGUARD

and conclude this work.

2.6.1 Deployment of the Data Plane Cache

Our current design remains a problem that is how many data plane caches are necessary for

a large number of OpenFlow switches in the real deployment. We think about a physically cen-

tralized but logically distributed framework. We could deploy one data plane cache for a set of

switches (e.g., a subnet of an enterprise or a rack of a cloud). We leave the deployment in our

future work.

2.6.2 Limitation of the Flow Table

Our paper has a limitation which is that, in some certain switches (e.g., the ingress switch of

an enterprise), the number of generated proactive flow rules may be far over the limitation of the
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number of flow table entries. In that case, we have another design option which is to install and

update the proactive flow rules into the data plane cache. In the data plane cache, for those packets

who can find a match, we provide them the higher priority to trigger packet_in messages.

However, the system need to sacrifice some performance for this design option. This is a tradeoff.

According to the actual situation, the network administrator could make a decision between the

two design options.

2.6.3 Why Use Proactive Flow Rules?

We note that packets unmatched by the proactive flow rules are not necessarily equal to mali-

cious packets. Therefore, using proactive flow rules to classify table-miss packets cannot totally

separate malicious packets from normal packets. However, we assume that most of the malicious

packets cannot match any proactive flow rules, so that they will be redirected to the data plane

cache in our approach. Besides the malicious packets, a few normal packets unmatched by current

proactive rules will also be redirected. That may happen but not frequently. Therefore, we still

generate packet_in messages from the data plane cache to the controller. Those mismatched

packets will also be handled but with some delay.

2.6.4 Why not in Controller or Switch?

FLOODGUARD installs proactive flow rules in a server machine instead of the controller or

switches. It is due to the following reasons. First, many research [8, 9] has already discussed

that installing all rules in the switch is not scalable because of the limited size of TCAM memory.

Second, if the proactive flow rules are installed in the control plane, the flooding attack will still

overload the switch buffer and obstruct the communication channel link.

2.6.5 Conclusion

In this work, we propose FLOODGUARD to prevent the data-to-control plane saturation attack

by using proactive flow rule analyzer and packet migration. When the saturation attack is detected

by FLOODGUARD, the packet migration module will redirect the table-miss packets in the Open-

Flow switch to the data plane cache. At the same time, the proactive flow rule analyzer module
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will dynamically track the runtime value of the state sensitive variables from the running applica-

tions, convert generated path conditions to the proactive flow rules dynamically and install these

flow rules into the OpenFlow switches. Then the data plane cache will slowly send the table-miss

packets as packet_in messages to the controller by using rate limiting and round-robin schedul-

ing algorithm. We present a prototype implementation tested in both a software environment and

a commodity hardware OpenFlow switch environment with real attack scenarios. The evaluation

results demonstrate the effectiveness of FLOODGUARD and show that our system only add minor

overhead.
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3. FORENGUARD: TOWARDS ACCOUNTABLE NETWORK FRAMEWORK IN THE SDN

ERA

3.1 Introduction

Network security diagnosis is important and useful since it can help the network administrator

find a wide range of errors that may cause severe damages [35]. However, the emerging Software-

Defined Networking (SDN) technique makes network security diagnosis much harder, because it

decouples the control plane from the data plane and the logically centralized control plane is com-

plicated and prone to security vulnerabilities [36]. For example, when you observe a disconnection

problem happen in a network running tens of SDN applications in the control plane, it is difficult

to diagnose which application is exploited and how it makes the incorrect flow control decisions.

Furthermore, since many existing SDN controllers are reactive and event-driven, the culprit events

behind the misbehaving control plane are even much harder to be pinpointed. Fundamentally, there

is a big gap in the SDN era, from observing the faulty forwarding behaviors in the data plane to

finding out the root causes of the security problem in the SDN control plane.

In this work, we plan to bridge this gap by providing digital forensics that investigates the

activities of the SDN framework and makes use of the recorded activities for networking security

problems diagnosis. Previous research has worked on either network-level or host-level forensics.

In the context of SDN, however, existing approaches cannot be directly used for our problem.

This is because the networking security problems in SDN networks involve both the control plane

and data plane, which makes individual either network-level or host-level forensics not effective;

instead we need a systematical integration of both. In particular, in SDN networks, we observe

forwarding problems from the data plane, but the culprits behind are typically in the control plane.

That motivates us to monitor/record the fine-grained activities in the SDN framework and build

causal dependency graphs among them. With careful diagnosis, the users can backtrack through

dependency graphs and pinpoint the root cause of the security problems. To achieve this, we face
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the following challenges:

• What kinds of activities in the SDN framework are required for the diagnosis purpose? We

aim to construct a model of concise set of activity types that can represent the execution of

the SDN framework and aid the diagnosis. Since activity recording incurs overhead, the size

of the set should be minimal.

• How to build the causal relationship between different activities? Simply dynamically taint-

tracking all the control and data flows in the control plane introduces huge overhead, while

we aim to design a relatively lightweight solution.

• How to efficiently query and locate the suspicious activities from the large forensics data?

There is an urgent need of a diagnosis tool that allows users to simply query and quickly

locate the corresponding suspicious activities.

To address the first challenge, we model the states and transitions of the SDN data plane and

the execution of the control plane. Using the model, the forensics results can concisely reason

how each forwarding behavior occurs and provide easy-to-read information for diagnosis. To

address the second challenge, we design a hybrid analysis approach that combines static analysis

and dynamic profiling to track the information flows in the SDN framework. More specifically, we

statically preprocess the controller/applications and then use runtime logging data to reconstruct

event-oriented execution traces of the control plane and the state transition graphs of the data

plane. To address the third challenge, we design a functional module that takes the description of

the forwarding problem as input and automatically responds with the relevant suspicious activities

as a reference for users. Besides this module, we also provide a command line tool that allows

users to declaratively query for customized and detailed logged information.

We design a new system, FORENGUARD, which provides fine-grained forensics and diagnosis

functions in the SDN networks. The forensics function of FORENGUARD involves both the SDN

control plane and data plane. By monitoring and recording fine-grained activities in the SDN

framework, we build dependency graphs based on their causal relationships. Our key insight is
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that the causal relationship can help users to backtrack the system activities and understand how

each activity happens (e.g., which previous event triggers which module to generate which flow

rule into the data plane, which causes a forwarding problem). The diagnosis function supports

both fast querying for network forwarding issues and querying using a declarative query language

for detailed activities in the SDN framework. FORENGUARD will respond user queries with the

dependent graphs of activities that are relevant to the problem and help the users track back to the

root cause of the security problems.

We implement a prototype system of FORENGUARD on top of the popular Floodlight [13]

controller.∗ We show several use cases of FORENGUARD that can quickly pinpoint the root causes

which make use of different software vulnerabilities to launch attacks. Our evaluation results show

that our system can provide fine-grained diagnosis for many types of networking problems and

only introduce minor runtime overhead.

In summary, this work makes the following contributions:

• We propose a novel forensics scheme which dynamically logs the activities of both the SDN

control plane and data plane, and builds event-oriented execution traces and state transition

graphs for diagnosing network forwarding problems.

• We propose a command line tool which provides an inference-based approach to query the

logged elements that have dependency relationships with the queried ones.

• We implement a prototype system, FORENGUARD, which helps network operators trace

back past activities of both the control plane and data plane and pinpoint the root causes of

network security problems. Our evaluation shows that FORENGUARD is useful for diagnos-

ing common SDN networking security problems with minor runtime overhead.

3.2 Background and Example

In this section, we first explain necessary background, the abstract model of the SDN frame-

work in this work and the threat model. Next, we use a running example which is a simple SDN
∗Our technique is generic and extensible, and can be applicable to other mainstream controllers as well.
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controller application to explain research problems of diagnosing forwarding problems in SDN

networks and motivate FORENGUARD.

3.2.1 Abstract Model of SDN framework

Data Plane

Core Services SDN Control 
Plane

Event 
Handlers

Event 
Provider

Event 
Handlers

Event 
Handlers

. . .

App 1 App 2 App N

OpenFlow 
Messages

Admin

Admin Messages
(e.g., REST Reqs)

Figure 3.1: The Abstraction Model of the SDN Framework

We first define an abstract model of the SDN framework for forensics and diagnosis purposes.

In this work, our model includes only important elements which are the most useful ones for

diagnosing networking problems that are caused by the misbehaving control plane. As shown in

Figure 3.1, SDN decouples the network control plane from the data plane. The data plane consists

of forwarding devices (i.e., SDN-enabled switches). Each switch contains large numbers of packet-

forwarding rules, and each packet-forwarding rule is a tuple of pattern, action and priority. At

a certain time, the state of the data plane is the value of all the packet-forwarding rules at all

switches. The communication (i.e., OpenFlow [2] messages) between the control plane and the

data plane may indicate the changes of the data plane state. For example, FlowMod message will

install/delete/modify a rule. And it will trigger a FlowRemoved message to the control plane
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when a rule has expired or been removed.

About the control plane, although there is no standard for the design, we attempt to provide

a generic model that can represent most of existing mainstream SDN controllers (e.g., POX [12],

Floodlight [13], OpenDaylight [37]). In our generalized model, the SDN control plane embraces

an event-driven system. Multiple concurrent modules (also known as applications, we use the two

words interchangeably in this thesis) communicate via events. There is a Core Services module

that works as the "event broker". It receives messages from the data plane (via OpenFlow mes-

sages) or the network administrator (via REST APIs) and dispatches the events (e.g., PacketIn

event, FlowRemoved event). Other applications in the control plane subscribe the needed events

from the Core Services. Each application has several event handler functions to process the events

and make forwarding decisions. Some applications may dispatch their own event types, publish

to the Core Services and allow other applications to subscribe. For example, in Floodlight [13]

controller, the LinkDiscovery application will discover every link in the data plane and dispatch

LinkUp and LinkDown event. Other applications like the TopologyManager module can receive

the LinkUp/Down events and change the topology they have learned. In this work, we focus on

the event handler functions of every application because they represent the major logic that makes

forwarding decisions.

Host2

Sw2

Sw3
Sw1

Host1

Dst: 
Host 2

?

Figure 3.2: Attacking the LearningSwtich Application
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3.2.2 Threat Model and Assumptions

Similar to existing research in digital/network forensic [38, 35, 39, 40], we trust the networking

OS (i.e., the SDN controller) and our monitoring system (as an application in the SDN controller)

and treat them as a trusted computing base (TCB). We assume no rootkit and also assume all ap-

plications running in the SDN control plane are initially benign but could be mis-configured or

buggy/vulnerable. The bugs/vulnerabilities inside the applications written in Java in mainstream

controllers typically do not cause buffer overflow or executable code injection. Instead, they might

be exploited to crash the application [41] or mislead network forwarding decisions [25, 26, 41].

For example, TopoGuard project [25] discussed an issue in the topology discovery application

which can be exploited to poison the topology learned by the controller and make wrong routing

decisions. In this work, these security issues of the SDN applications in the control plane that can

be exploited and lead to network forwarding problems in the data plane are our targeted security

problems. In our threat model, we assume an attacker can take control of host machines or com-

promised switches in the network and try to attack the SDN control plane by invoking/injecting

certain network events, as shown in [26, 25, 41].

To make a practical forensics and diagnosis system, we assume the following additional as-

sumptions: First, we assume the attacker takes action after FORENGUARD is deployed. Second,

even though the attack can mislead the SDN control plane to make faulty forwarding decisions,

she cannot fake or modify the runtime recording logs or disrupt the logging process, which could

be achieved by using append-only secure log systems such as [42, 43]. Third, although FOREN-

GUARD injects some profiling instrumentation into the controller applications, it will not affect

their original decision making logic.

The goal of the diagnosis is to pinpoint the root-cause of the caused forwarding problems,

i.e., the violation of forwarding-related invariant. We consider three types of forwarding-related

invariant: connectivity (routing between pairs of hosts), isolation (user-specified routing limita-

tions), and virtualization (virtual network enforced flow handling policies). Finally, we focus on

flow-level diagnosis (instead of packet-level diagnosis).
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3.2.3 Running Example

1 public class LearningSwitch {

2 // Stores the learned state for each switch

3 protected Map<IOFSwitch, Map<MacVlanPair, OFPort>>

4 macVlanToSwitchPortMap;

5 private Command processPacketIn(sw, pkt) {

6 OFPort inPort = pkt.get(MatchField.IN_PORT));

7 MacAddress srcMac = pkt.get(MatchField.ETH_SRC);

8 MacAddress dstMac = pkt.get(MatchField.ETH_DST);

9 VlanVid vlan = pkt.get(MatchField.VLAN_VID);

10 // Learn the port for this source MAC/VLAN

11 this.macVlanToSwitchPortMap.get(sw).put

12 (new MacVlanPair(srcMac, vlan), inPort);

13 // Try to get the port for the dest MAC/VLAN

14 OFPort outPort = macVlanToSwitchPortMap.

15 get(sw).get(new MacVlanPair(dstMac, vlan));

16 if (outPort == null) {

17 // Dest MAC/VLAN not learned, flood it

18 this.writePacketOut(sw, pkt, OFPort.FLOOD);

19 } else {

20 // Dest MAC/VLAN learned, forward

21 this.pushPacket(sw, pkt, outPort);

22 // Install flow entry matching this packet

23 this.writeFlowMod(sw, OFFlowModCommand.ADD,

24 OFBufferId.NO_BUFFER, pkt, outPort);

25 }

26 return Command.CONTINUE;

27 }}

Listing 3.1: Example Controller Application

Listing 3.1 (abstracted from a real-world SDN controller application [44]) shows a simple but

vulnerable application that may be exploited by malicious end-hosts to launch the host location
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hijacking attack. The application implements a learning switch which uses the previous learned

MAC/VLAN to port mapping (underlined variable) to install forwarding rules. When the applica-

tion receives a PacketIn message (which means the first packet of a new flow), if the destination

MAC/VLAN has been learned before from the switch (Line 22 - 29), the application will install

a flow rule to forward this flow to the port in the pair with the MAC/VLAN, otherwise flood the

packet (Line 19 - 21).

The above learning-based algorithm is vulnerable since the "learned" information could be

spoofed that will mislead the future forwarding decision. Illustrated in Figure 3.2, an attacker can

spoof the MAC address of Host 2 and send a packet to Host 1. The packet will be flooded to

Host 1 and makes every switch it arrives at learn that it is from the attacker’s host. Later, when

the real Host 2 makes connection to Host 1, the LearningSwitch application will install flow rules

based on what it has learned and forward the traffic whose destination is the MAC of Host 2 to

the attacker. As a result, Host 2 does not have network connection to Host 1. However, it is hard

for Host 2 to pinpoint the root cause. That is because she does not have enough information about

what happened in the control plane and data plane in the past. Host 2 desires a tool that receives

her trouble ticket and pinpoints the root cause of the forwarding problem.

3.2.4 Problem Statement

Traditional diagnosis tools can only locate the issues at either the network level (e.g., Anteater

[35]) or host level (e.g., Forenscope [45]), and are not capable of integrating the two levels. Several

troubleshooting and verification tools in the context of SDN have been proposed in recent years.

They provide functions of static or dynamic network-wide invariant verification [46, 47, 48], model

checking [15], packet history analysis [49], record and replay [50] and delta debugging [51]. How-

ever, these tools fall short because of limited expressiveness (invariant expression), scalability

(exponential explosion), non-deterministic (trace replay) or coarse granularity (network flow/flow

rule level) issues.

Unlike existing approaches, we leverage the concept of forensics which records system activi-

ties in runtime and makes use of them for diagnosis. Suppose we have enough information about
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what happened in the SDN framework, for the above running example, our concrete diagnosing

steps can be like follows:

Step 1. We first analyze the forwarding rules in the data plane to find out the set of rules

that result in the forwarding problem. We identify them as "suspicious" forwarding rules. In the

running example, the rules that forward the traffic whose MAC belongs to Host 2 to the attacker

are suspicious rules.

Step 2. Based on the suspicious rules, we can list all OpenFlow messages that install/modify

these rules.

Step 3. By recording the execution traces of the SDN applications, we can trace the relevant

control plane activities which generate the messages.

Step 4. By analyzing the causal relationship among different activities in the execution trace

that generate the messages, we finally find out that the wrong forwarding decision is made by

two previous data plane activities. One is the new flow event from Host 2. The other is the new

flow event (using spoofed source MAC) from the attacker. Obviously, the spoofed packet from the

attacker is the root cause of the problem.

In summary, our idea is to record detailed activities in both the control and data plane and build

the causal relationship between them. Nevertheless, realizing the forensics and diagnosis in SDN

networks requires tackling three challenging problems:

• First, how to decide useful activities that are necessary for the diagnosing purpose?

• Second, how to build the causal relationship among different activities?

• How to efficiently query/locate the suspicious activities from the big data?

Besides, our system has the following design goals:

• Fine Granularity: We aim to provide fine-grained details for the execution traces (e.g.,

every main step that makes the forwarding decision) and root causes of forwarding problems

(e.g., which message/event/packet/piece of code is the root cause).

• Minor Overhead: Forensics system will introduce unavoidable overhead. To analyze the

runtime behaviors of the SDN framework, unlike existing information flow analysis ap-
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proaches (e.g., dynamic taint-tracking), we aim to design a relatively lightweight solution.

• Easy-to-Query: Our tool aims to support both directly querying for network forwarding

issues (similar to traditional network tools, e.g., ndb) and querying for detail activities (a

declarative query language that can query the integration of control and data plane activities).

3.3 Related Work

Besides the SDN security area, this work is also highly related to digital forensics and SDN

troubleshooting.

3.3.1 Digital Forensics

Digital forensics is a well studied research topic. In the past decade, research of network-level

forensics focuses more on handling the large amount of data (storing, indexing and retrieval) in

large-scale, complex networks. TimeMachine [38] records raw network packets and builds the

index for the headers of the likely-interesting packets. Anteater [35] monitors the data plane state

and uses formal analysis to check if the state violates specified invariants. Teryl et al. proposed

a storage system [52] to efficiently build the index of payload information of network packets.

VAST [39] is a platform that uses the actor model to capture different levels of network activi-

ties and provides a declarative language for query. Network provenance [53] is also a relevant

research topic in recent years. The basic principle of FORENGUARD is similar to network prove-

nance, which is to track causality and capture diagnostic data at runtime that can be queried later.

Unlike existing tools [54, 55] which mostly target declarative languages or require at least some

manual annotations from software developers, FORENGUARD can directly work on the general-

purpose programming language (e.g., Java). On host-level forensics, Forenscope [45] proposes

a framework that can investigate the state of a running operating system without using taint or

causing blurriness. BackTracker [56] records the files and processes in the operating system and

builds them in a dependency graph for intrusion detection. Different from all above work, FOREN-

GUARD focuses on a unique context of SDN which decouples control and data planes and also

requires both network and host level tracking.
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3.3.2 SDN Troubleshooting

Peyman et al. [48] use packet header space analysis to statically check network specifications

and configurations. Veriflow [47] and NetPlumber [46] verify network invariants dynamically

when flow rules update. These verification approaches highly rely on the predefined invariant

policies, but the lack of expressiveness can only help with known violations. OFRewind [50] can

record and replay the communication messages between SDN control plane and data plane. STS

[51] improves the delta-debugging algorithm that can generate a minimal sequence of inputs that

can trigger a controller bug. However, the delta-debugging algorithm does not scale well with the

network size and STS can only provide coarser-grained culprits. The most relevant work to our

work is NetSight [49] and path query [57]. NetSight [49] monitors packet history to analyze the

data plane behaviors and troubleshoot the network. Path query [57] provides a query language

for path-based traffic monitoring. Compared with NetSight, we record most of the control plane

activities and data plane forwarding tables for troubleshooting. Also, unlike path query which

provides the monitoring of network performance issues, our tool provides the monitoring and

diagnosis of network forwarding/security issues.

3.4 Modeling of the SDN Activities

In this section, we explain FORENGUARD’s modeling of activities in both the SDN control

plane and data plane.

3.4.1 Data Plane Activities

The purpose of recording the state of the data plane is to understand the forwarding behaviors

at any time. First, we give a definition of the state of the data plane:

Definition 1: At time t, the state of the data plane (denoted as st) is the value of the set of all

flow entries at all switches at time t.

st = {r1, r2, ...rn}|time=t

ri = (switchID, entryID, (match, action, priority))

(3.1)
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Definition 2: A transition (denoted as ai) of the data plane is one OpenFlow message that is

triggered by or will trigger the change of the state.

For instance, the FlowMod message sent from the control plane will install/modify/remove a

flow rule in one switch. And FlowRemoved message sent from the data plane means a flow rule

has been expired/removed. These two messages are types of transitions. We use→ to describe the

transition of data plane state. So if an activity ai triggers that the state of the data plane transits

from sx to sy, then: sx
at−→ sy.

The state of the data plane can clearly show the forwarding behavior at that time. And the

transitions can explain the reason of the state changes. In our diagnosis steps, we first search for

the corresponding data plane state that starts to have the faulty forwarding behavior and then find

the activity which causes the transition to that state. For instance, in our running example, when

Host 2 observes that there is no network connection between Host 1 and Host 2, we start to search

the state that tells us how the data plane forwards the traffic of Host 2 (either source or destination

address is Host 2). We can quickly find that in some state, there is a forwarding path that matches

Host 2’s traffic but is between Host 1 and another location (not Host 2). Then by searching the

transitions and corresponding activities, we find that there are several FlowMod messages that

make the faulty forwarding path. After we find the faulty data plane states and corresponding

activities, our next steps is to move to the control plane and understand why and how the control

plane makes such forwarding decisions.

3.4.2 Control Plane Activities

We aim to record the execution of the control plane to understand how each application receives

and dispatches events, and makes forwarding decisions during runtime. We model the execution

of the controller as a sequence of operations to functions, state variables and events.

The operations in Table 3.1 list the activities that we think can explain the major decision

making logic of the control plane. We can divide the operations into three categories: function op-

erations, variable operations and communication operations. The initiation and the termination of

a function instance show the dynamic call graphs. The read and write operations of state variables
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Operation Definition
Init(f, A, td) Start the function f of app A in thread td
End(f, A, td) Terminate the function f of A in thread td
Read(v, td) Read variable v in thread td
Write(v, td) Write variable v in thread td

Dispatch(e, td) Dispatch event e in thread td
Receive(e, td) Receive event e in thread td
Clear(v, td) Singleton tasks clear the value

of variable v in thread td
Send(sw, msg, td) Send message msg to

switch sw in thread td

Table 3.1: Control Plane Operations

help to understand the information flow in runtime. We define the state variables as the global vari-

ables in every application (e.g., the MAC/VLAN to port mapping table in the running example).†

The other four operations are communication operations. Specifically, the Clear operation means

that some applications may trigger some singleton tasks to periodically clear the value of some

state variables (e.g., clear the list of hosts information). We record this operation because when

we observe this operation, we can know the value of this state variable is cleared, and we can also

clear its all previous causal relationships. The Send operation means this function generates new

OpenFlow message to the data plane, which may trigger the state transition in the data plane.

The purpose of logging the execution of the control plane is to help pinpoint the root cause

of some suspicious messages. When we figure out the suspicious messages that trigger the data

plane state to have forwarding problems, we can observe the steps how the control plane generates

the messages. When diagnosing the forwarding problem, the logged execution can explain which

application, which operations and which events/variables affect the decisions made by the control

plane. In the running example, when Host 2 reports the connection problem, and we already find

the suspicious messages, we can observer that the function processPacketIn receives the

event about new traffic from Host 2, checks the value of some field in the MAC/VLAN to port

†In our implementation of FORENGUARD that works on Java-based controllers, the state variables are the instance
variables of the main class of each application.
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mapping and generates the suspicious messages. So the event about new traffic from Host 2 is the

direct cause, and the runtime value of the mapping table is the indirect cause of the problem. Then

we keep searching previous operations that write the certain filed of the mapping table. At last, we

find another event which shows a new flow causes such MAC/VLAN to port pair to the mapping

table, which is the root cause of the reported problem.

3.5 System Design

In this work, we propose a fine-grained forensics and diagnosis system, named FORENGUARD,

that can help network administrators to pinpoint security issues in software defined network. The

key idea behind is that FORENGUARD makes the trade off between SDN controller performance

and the cost of monitoring sensitive operations. To this end, FORENGUARD is designed as three-

fold. First, FORENGUARD applied static program analysis to identify the minimal set of variables

and operations whose changes may be associated with future security issues. For convenience, we

refer to these variables and operations as state variables and operations (according to our model

of the control plane in previous section. To monitor these variables and operations in the run-

time with minimal overhead, FORENGUARD instrumented the code of the target controller. To

monitor the information flow in the run-time, we also design a novel lightweight flow tracking

approach, which is also implemented in the instrumentation. Second, FORENGUARD deploys and

runs the newly instrumented SDN controller. By analyzing the controller log in real time, the

network activities are constructed based on causal relationship. Finally, once administrators find

a routing problem, FORENGUARD can help to figure out the root season of the problem using an

easy-to-query language.

3.5.1 System Architecture

FORENGUARD works on top of the SDN control plane and does not disrupt the normal op-

eration of other controller applications. As showed in Figure 3.3, our system consists of three

modules: 1) Preprocessor, which conducts static analysis to extract the concise set of activities

for the recording purpose and further instruments SDN controller to monitor the sensitive opera-
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Figure 3.3: System Design of FORENGUARD

tions and apply our lightweight information flow tracking approach; 2) Activity Logger, which

runs the instrumented controllers and dynamically reconstructs the casual relationships from the

collected activity logs; 3) Diagnosis, which provides an easy-to-use diagnosis language and can

help pinpoint the root reason of a security problem. In the following of this section, we describe

the design details of each module and techniques.

3.5.2 Preprocessor

The goals of the Preprocessor module are three-fold: using static analysis to extract activities,

generating data dependency graphs and instrumenting the controller. The Preprocessor module

statically analyzes the source code of an SDN controller.‡ As explained in Section 3.4, to reason

about how each forwarding decision has been made from the control plane, we need to record the

important operations and the information flows (e.g., which flow rule is triggered by which data

plane events.). However, dynamic analysis (e.g., taint analysis) to track the information flows will

inevitably add huge runtime overhead, which is unacceptable in the SDN control plane, while static

analysis is not precise. Instead, we aim to achieve a trade-off between the overhead and precision.

FORENGUARD statically identifies the state variables, analyzes the data flows and instruments

the read/write operations of the variables. Then, these state variables and operations are further

recorded to build the information flows. For example, in the running example in the problem

‡We assume the SDN controller and third-party applications should be open source to the network administrator
and operators.

54



statement, FORENGUARD is able to analyze the information flows from the data sources (e.g., the

PacketIn event and/or one filed of the MAC/VLAN to port map) to the generated messages.

Next we will detail how FORENGUARD conducts static analysis and instrumentation.

3.5.2.1 Static Analysis

The Preprocessor module consists of two sub-modules: global control flow graph analysis and

data dependency graph analysis. Given an SDN controller application, FORENGUARD runs the

sub-module global control flow graph analysis to first convert its source code into intermediate

representative language (bytecode) and transform to a global control flow graph (CFG). Then,

FORENGUARD identifies the important operations according to the controller model by searching

CFG and the paths to the operations. In the meantime, FORENGUARD also identifies the state

variables and searches all read/write operations of the variables. Here, we define the state variables

as the class instance variables of the application. The insight behind is that, except the inputs

(events) from south or north bound interfaces, instance variables are normally used to store the

states of the application and make forwarding decisions. For example, in the motivating example,

all previously learned information is saved in the MAC/VLAN to port map data structure. And

every output flow rule is generated based on both the input events and the runtime value of the

MAC/VLAN to port map data structure. Specially, we do not count variables that are used for

logging (log system of the controller itself, not FORENGUARD) or debugging, which are useless

for our purpose.

Next, FORENGUARD constructs the data dependency graph by applying the backward data

flow tracking technique on the state variables identified in the previous analysis. To support the

above analysis, several challenges are addressed. First, different with regular programs, an SDN

application does not have entry points, since the main function is missing. To apply data flow

tracking as normal, entry points must be explicitly defined. To this end, our SDN model in the

problem statement section is leveraged, which provides sufficient hints. The major part of each

application is multiple event-driven handler functions. The event handler functions are registered

in the Core Services to subscribe the corresponding events. Therefore, we set the handler functions
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as the entry points for the data dependency analysis.

Second, to adapt data flow tracking on a SDN controller, we define source and sink as follows.

The data sources we use are the parameters of the handler functions including the events and

corresponding metadata (e.g., in-port of a new flow) and the state variables (from read operations).

The data sinks are state variables (from write operations) and generated flow rules (e.g., Line 27 of

the running example).

PacketIn 
Event

sw

pkt

macVlanToSw-
itchPortMap

msg

Figure 3.4: Data Dependency Graph of the Running Example

FORENGUARD performs context-sensitive, field-sensitive data flow analysis on controllers to

build the data dependency graph (DDG). Figure 3.4 shows the data dependency graph (DDG) of the

running example. The data of the MAC/VLAN to port map could be from the input parameters (sw

and pkt) which are extracted from the PacketIn event. The generated flow rule msg (if that branch

is triggered) is affected by the input parameters and the map. At runtime, FORENGUARD will

generate more concrete and precise information flows based on the logs of read/write operations

of the state variables.

We discuses two technique challenges about the static analysis: inaccuracy and coarse-granularity.

The inaccuracy of static analysis is well-known since it just explores all possible data flow paths

but cannot track if one certain path is actually triggered in runtime. Another challenge is that

static analysis can only provide coarse-grained data flow tracking results. That is because each

state variable may contain many fields, and it is hard to track which field every event actually

accesses. In our running example, the MAC/VLAN to port mapping data structure contains

multiple entries. Illustrated in Figure 3.5, suppose we already know Event 4 reads the variable
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Figure 3.5: Challenge of Coarse-granularity

macV lanToSwitchPortMap and then processes a new flow rule which causes the forwarding

problem, however, it is still not clear which field of the variable Event 4 reads, and which previous

event adds/modifies this field. To address them, we instrument the source code of the controller

and applications to profile the detailed field read/write operations of each state variable.

3.5.2.2 Instrumentation

Based on the static analysis result, another sub-module instrumentation starts to instrument the

controller applications at the bytecode level. The target of the instrumentation is to profile impor-

tant operations of the control plane at runtime. The instrumented code will record the source code

context (e.g., class name, line number, thread ID) as the metadata with the heap memory infor-

mation (the virtual memory address in JVM) of the operation. Specially, for variable read/write

operation, we do not record the runtime value of the variable for two insights behind. First, record-

ing the runtime value of the variables is too costly. Second, our purpose is to track the information

flows, which has no need to track the concrete variable value. For example, we aim to track an in-

formation flow starting from a data plane event e1 changes the value of a.x (whose virtual memory

address is m1). Further, another information flow reads this memory location and finally generates

a message msg1 which installs a new flow rule . Then we can build the the causal relationship

from e1 to msg1.
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3.5.3 Activity Logger

After the Preprocessor module, we deploy the instrumented controller in an SDN network. The

Activity Logger module works as a controller component and dynamically collects activities from

both the control plane and the data plane and further builds the causal dependency relationships.

The activities are handled by the three sub-modules: 1) Data Plane Activity Collector collects the

runtime data plane activities; 2) Control Plane Activity Collector collects the runtime control plane

runtime activities; 3) Causal Dependency Generator builds the causal dependency relationships

between the collected activities and saves them into a database.

3.5.3.1 Data Plane Activity Collector

Section 3.4 defines the activities of the data plane. The Activity Logger module first keeps

tracking all OpenFlow messages between the control plane and the data plane. Since we consider

switches could be compromised in our threat model, The Data Plane Activity Collector sub-module

does not directly monitor the states of the data plane switches through some administering channels

(e.g., ovs-ofctl, ovs-dpctl). Instead, to flexibly track the states and any transitions of the data plane,

the Data Plane Activity Collector sub-module makes use of the OpenFlow messages to speculate

the states of the data plane switches. In the OpenFlow protocol, any changes in the data plane

forwarding tables (install, modify, delete, expire) should be enforced by or inform the control

plane via OpenFlow messages. Therefore, by tracking and analyzing all OpenFlow messages, it

is already able to understand the state and changes of the data plane forwarding tables. In our

tracking solution, the Data Plane Activity Collector sub-module always maintains a data structure

that stores the current state of the data plane forwarding tables. Whenever it observes the OpenFlow

message which shows a change of data plane forwarding table, the module will generate the new

state of the table based on the meaning of that OpenFlow messages. For example, a FlowRemoved

messages will indicate that a flow entry in one forwarding table has expired. Thus, the sub-module

can delete the flow entry from its own data structure and log the change. In the future diagnosis

phase, if the stored data plane state does not match the actual data plane forwarding behaviors,
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then there could be attacks from the compromised switches.

3.5.3.2 Control Plane Activity Collector

The control plane activities that we aim to collect are function operations, variable operations

and communication operations, which we describe in Section 3.4. The previous Preprocessor

module already instruments the source code with the logic of recording the operations. The instru-

mented statement will forward the information to the Control Plane Activity Collector sub-module.

3.5.3.3 Causal Dependency Generator

The Causal Dependency Generator sub-module collects and processes the activities received

from the Data Plane Activity Collector and Control Plane Activity Collector sub-modules. It

reconstructs event-oriented execution traces of the control plane and the state transition graphs of

the data plane, and then combines them together. State transition graphs include the data plane

forwarding states and state transitions. Event-oriented execution traces include the function-level

call graphs (function operations and communication operations) and information flows (variable

operations) of the control plane. Figure 3.6 shows an example of these two types of data structures.

In this figure, Sx denotes data plane forwarding states, ex denotes events, fx denotes function

calls and a.x and b.y denote variables. Using these graphs, we can reason the causal relationship

between activities.

We design an algorithm (shown in Algorithm 3) to reconstruct the dynamic function-level

call graphs. The main challenge is that many threads of the same event handler function could

invoke concurrently and our algorithm is able to handle this case. It takes as an input a list of all

function operations generated from the SDN controller execution trace. It takes as another input

the static call graphs generated from previous static analysis. The output of the algorithm is a list

of execution traces. Each execution trace is a sequence of function operations which represents the

entire execution from the start of an event handler function to the end of the handler function. We

build the data dependency relationships of different variables in each application, in the Activity

Logger module, based on the recorded read/write operations of the fields of the variables. For
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Algorithm 3: Function Call Graph Reconstruction
Input: S = list of function calls in [(thread ID: T , function name: M ), ... ]
Input: G = adjacency list representing the global control flow graph {node:[adjacency

nodes], ...}
Output: L = list of function calls representing dynamic call-graphs {thread:[[function

calls],...], ...}
stack[:] ← ∅ # Initiate the stack as empty only at the first run of the algorithm
L[:][-1]← 0;
foreach Si in S do

while stack[Si.T ] 6= ∅ do
R← stack[Si.T ].top();
if there is a path from R to Si.M in G then

break
stack[Si.T ].pop();

if stack[Si.T ] 6= ∅ then
L[Ti][-1].append(Si)

else
L[Ti].append(new List(Si))

stack[Ti].push(Si.M )

example, suppose we have the result that event e has data flow relationship with the state variable

v.a. When we dynamically log there is a write operation to v.a with its object ID in the heap

memory, and this execution trace is triggered by an event e1, we can build the information flow from

e1 to v.a. In our running example, for every generated OpenFlow message, we can find the data

sources which cause the messages. When diagnosing some suspicious messages, we can directly

find the data sources of the messages, which could be the root causes. The Causal Dependency

Generator sub-module maintains a list of all runtime objects which are fields of the state variables

and the current data sources. After each operation, the Causal Dependency Generator sub-module

may update the data sources of some objects. For example, a write operation will clear the previous

data sources for the object and may build new data sources for this object.
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Figure 3.6: Execution Traces of the Control Plane and State Transition Graphs of the Data Plane

3.5.4 Diagnosis

We design a command line tool for the users to query for recorded activities in the SDN frame-

work. The usage of the tool is shown as the following:

Usage : Diagnosis [options]

The user can set up different options to satisfy their different query requirements. The option:

−− query = trace|message|event|function|variable
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tells the tool what to retrieve from the database and what to output. For all queries, our tool

supports to set up a time filter:

−− after = Y EAR : MONTH : DAY : HOUR : MIN : SEC

−− before = Y EAR : MONTH : DAY : HOUR : MIN : SEC|now

By using the above two options, we can query for activities within a given time period. Our tool

supports both fast querying for forward issues and querying for detailed activities. In the following

we will explain how to use our tool to fast query for forwarding problems and how to query detailed

activities.

Motivated from some networking tools like ndb, FORENGUARD supports automatically query-

ing for network forwarding problems including reachability, isolation, routing loop and way-point

routing. Our tool provides an option:

−− problem = routingloop|routingpath|waypoint

The argument routingloop is to detect routing loops and will output corresponding activities. The

argument routingpath is to output the activities which are related to a certain network flow. To

use this argument, the user should also specify the matching conditions for this network flow. For

example, the user can use−−srcip and−−dstip to specify a flow between two ip addresses. Our

tool currently supports to use the 5-tuple packet header to specify a network flow. This argument

can verify both the conditions of reachability and isolation. The argument waypoint is to query for

forwarding rules of certain traffic going through certain specific way_point. To use this argument,

the user should specify both the network flow and the −− dpid of the way_point switch.

Users can also query for detailed activities through our tool. As shown previously, by using

the − − query option, the users specify what kinds of activities they want to query. The user

can use the argument trace for the corresponding execution traces, message for communication
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OpenFlow messages, event for event trigger and dispatch activities, function for function call

activities and variable for variable access activities. The user can also set up several filters to

specify what kinds of activities are needed. For example, to query for the execution traces that are

relevant to a network flows whose source IP is 10.0.0.2 and destination port is 80, we can write:

−− srcip = 10.0.0.2 −−dstport = 80

For messages, we can specify the application name and message types (PacketIn, FlowRemoved

and etc.) Our tool is independent of controller types, programming language and hardware specifics.

Many network problems are caused by application crashes in the SDN control plane [24].

Unlike other types of root causes, the application crash does not directly output any harmful flow

rules to the data plane. To diagnose this kind of problem, by showing the execution traces of the

control plane, we can locate the crash point in the program first (e.g., in which function) and then

list relevant activities in the execution trace. For example, many application crashes are caused by

data races at instance variables [41]. From the execution traces, we can list the recent read/write

operations of variables and check if there is data race happened.

3.6 Evaluation

In this section, we present the implementation details and the evaluation results of FOREN-

GUARD.

3.6.1 Implementation

We implement a prototype system of FORENGUARD on top of the Floodlight [13] controller

(Java language) version 1.0. FORENGUARD extends the Soot [58] framework which provides the

global control flow analysis, data dependency analysis and instrumentation function on the inter-

mediate representation Jimple code of the controller. We separately analyze each module/appli-

cation in Floodlight controller and set the event handler functions as the entry points for analysis.

Our data dependency analysis is built on top of the flow-insensitive, context-sensitive and field-

sensitive analysis using Soot Pointer Analysis Research Kit (SPARK).
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Figure 3.7: Simplified Dependency Graph of Execution Traces of the Running Example.

3.6.1.1 Instrumentation

We do not instrument any statement which only accesses variables that are used for collecting

system logs , debugging or providing interfaces. For read/write operations of state variables, we

add instrumentation to log every read and write statement that accesses static and instance field

variables on the heap memory. We observe that the SDN controller leverages heterogeneous stor-

ages for network state using complicated data types (e.g., the HashMap in the running example).

For some methods of these kind of data types (e.g., HashMap.put()), the Jimple code would miss

the read/write operations. This is because the analysis will not go through the HashMap.put()

function and only consider this is a read operation (but actually a write operation). Therefore, we

maintain a static mapping of those methods and their read/write operations for a set of commonly

used data types. For example, we consider ArrayList.add() is a write operation. Besides, we log

the memory access operation in a fine-grained field level (e.g., each entry of the hash map).

3.6.1.2 Event Dispatching

There are two types of event dispatching schemes in Floodlight controller, which are queue-

based and observer-based. Queue-based is mostly used for the Core Service to dispatch data plane

events (e.g., PacketIn Event). Observer-based is mostly used for inter-application event dis-
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patch. For queue-based scheme, we log the write/read the global queue as Dispatch and Receive

operations. For observer-based scheme, we log the statements of dispatching the events as the

Dispatch operations and the invocations of handler functions as the Receive operations.

3.6.1.3 System Environment

We select MongoDB [59] as our database to store the activities and their causal relations. We

use Mininet [27] to emulate the SDN data plane topologies. For the performance evaluation, we

use Cbench [60] as a benchmark tool to generate OpenFlow messages. The setting of our host

machines is dual-core Intel Core2 3GHz CPU running 64-bit Ubuntu Linux.

3.6.2 Effectiveness Evaluation

3.6.2.1 Running Example

We first illustrate the forensics of the running example (mentioned earlier as Listing 3.1 in the

problem statement) and how FORENGUARD helps diagnose the networking forwarding problem. If

we observe that one host lost its network connectivity, we can use the−−problem = routingpath

option to diagnose the issue. FORENGUARD can automatically find out the suspicious activities

that cause the network problem. We visualize the activities that are recorded in the database (left

side) and the result output by FORENGUARD (right side) in Figure 3.7. Box denotes switches,

Hexagon denotes events, Circle denotes function calls, Diamond denotes variable fields, Trapez-

ium denotes OpenFlow messages. To make the graph concise, we omit the timestamps and thread

information of each activity and use numbers (instead of the actual names) to denote activity de-

tails (e.g., using f1,2,3... to show function calls). We can observe that, the two installed flow rules

are the direct reason that causes the forwarding issue. Behind the two installed flow rules, there

are four PacketIn events (Event1-4 in the figure) that are the potential root causes. By further

checking the detailed information of these four events, we can reason where and why the events

come from. Event 1 and 3 are triggered by the packet from the attacker to Host1 at Sw1 and Sw2.

Event 4 and 2 are triggered by the response packet from Host1 to the attacker at Sw2 and Sw1.

Therefore, we find Event 1 and 3 are the root causes of the issue, and we can also locate the at-
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Attack Code Root Causes Problem # of Relevant Data # of Relevant Control # of Involved
Plane Activities Plane Activities Applications

A1 Loss of LLDP Packets [51] Routing Loop 6 18 5
A2 Race Condition [41] Application Crash 3 9 2
A3 Link Fabrication [25] Packet Loss 2 16 5
A4 Switch Table Flooding [36] Disconnection 1 flooding 1
A5 Switch ID. Spoofing [36] Disconnection 1 3 1
A6 Malformed Control Message [36] Disconnection 1 3 1
A7 Control Message Manipulation [36] Disconnection 1 3 1
A8 PacketIn Flooding [3] Application Crash flooding flooding 6
A9 Host Location Hijacking [25] Disconnection 2 14 1

A10 LoadBalancer Misconfiguration Load Unbalanced 3 14 1
A11 Firewall Misconfiguration Routing Loop 2 10 1

Table 3.2: Diagnosis Cases

tacker. The figure shows that FORENGUARD can significantly reduce the human effort to diagnose

network forwarding problems.

3.6.2.2 Extended Evaluation

We reproduce 11 attack cases that cause network forwarding problems and use FORENGUARD

to diagnose the root causes. Most these attacks are reported from previous research [51, 41, 25, 36,

3]. Table 3.2 summarizes the cases and the observed problem from the data plane. Among these

attacks, A3, A8 and A9 can be generated by an attacker from a compromised host. Attacks A1,

A2, A4, A5 A6 and A7 are initiated from the data plane switches or man-in-the-middle attackers

who can manipulate the control messages between the control plane and the data plane. Attacks

A10 and A11 are from the north bound configuration of the controller through the REST interface.

All the above attacks involve 14 applications and generate thousands of data plane activities and

tens of thousands of control plane activities totally. To demonstrate how FORENGUARD is help-

ful to diagnose the root causes, we also show the relevant control and data plane activities that

can identify the attacks after using FORENGUARD to narrow down the recorded activities. The

numbers of control/data plane activities show the relevant activities after narrowing down from a

large dataset of logs. Many attacks involve more than one application (e.g., A1), which means

individually checking every application is hard to diagnose the root cause of these attacks. How-

ever, FORENGUARD is able to find out the involved applications quickly and help to diagnose the

problems.
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By leveraging the simplified dependency graphs (e.g., the example in Figure 3.7) generated by

FORENGUARD, the network administrator can further pinpoint the root causes of each network

forwarding problem. In the following, we show how an administrator can benefit from FOREN-

GUARD and pinpoint the root causes of a problem from Table 3.2 step by step.

3.6.2.3 Pinpoint the Problem in A11

There is a Firewall application in which users can configure firewall rules (e.g., block a black

list of IPs). When the user observes a network disconnection from the data plane, he can report

this problem to the network administrator by using the −− problem = routingpath option. The

detailed output from FORENGUARD are shown in Figure 3.8. The diagnosis process of FOREN-

GUARD is as follows: It will first search for forwarding graphs for the flows of the user and find

the flow rules that drop the packets from this user. Then it keeps searching for the control plane

execution traces that generate those messages. FORENGUARD can quickly locate the Firewall ap-

plication and observe the flow rule which drops the packets triggered by a new flow event and one

entry of the variable rules which is configured from the REST API before.

3.6.3 Overhead and Scalability

FORENGUARD instruments logging code into the controller and will add unavoidable overhead

to the SDN control plane. To quantify the added overhead, we measure two performance metrics of

the SDN controller with and without FORENGUARD. One is the throughput overhead and the other

is latency overhead, i.e., how much our system will affect the message processing throughput and

latency of SDN controllers. When evaluating the overhead of FORENGUARD, we only enable the

basic routing application and necessary dependencies in the controller. To evaluate the throughput

overhead, we use the Cbench tool to generate a large amount of new flow events and evaluate

the maximum processing rate in the control plane. To evaluate the delay overhead, we make use

of two frequent OpenFlow messages, PacketIn message and StatsReq/Res message. The

PacketIn message is triggered by a new flow or a flow entry matching and sent from the data

plane. The StatsReq/Res message is used for the control plane to query for flow stats from the
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Figure 3.8: Diagnosing a Disconnection Problem

data plane.

To measure the delay of processing PacketIn messages, we use a machine with two net-

work cards to keep sending network packets through one network card to the network. The other

network card of this machine is connected to the controller port of the switch and will receive the

corresponding PacketIn messages. To measure the delay of processing StatsRes messages,

we use the same machine to keep sending stats query messages to the data plane and measure the

delay between the StatsReq and StatsRes messages.

Figure 3.9 shows the overhead evaluation results. Figure 3.9 (a) shows the throughput re-

sults with and without using FORENGUARD. We can observe that FORENGUARD decreases the

throughput of the SDN control from 751.2 to 660.1 messages per second, i.e., about 12.1% over-

head. Figure 3.9 (b) and (c) show the delay overhead when using FORENGUARD. For PacketIn

messages, the average processing time with and without FORENGUARD is 0.886ms and 0.719ms,

which means about 23.4% overhead. Similarly, for StatsReq/Res messages, the average pro-
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Figure 3.9: Overhead of FORENGUARD

cessing time with and without FORENGUARD is 1.12ms and 0.928ms, which means about 20.4%

overhead. We think the overhead increased by FORENGUARD is reasonably acceptable, especially

compared with dynamic taint-tracking approaches which normally suffer a slowdown of 2-10 times

[61].

The scalability results are important since network operators should decide how much com-

puting and storage resources are needed to support FORENGUARD. We measure two aspects of

scalability of our system: activity processing speed and data generating rate. The processing speed

is important because the major performance bottleneck of FORENGUARD is the processing of col-

lected activities, and we should make sure that the logged activities will not overload the buffer.

The data generating rate measures how much data will be generated by our system and stored into

the database.

To measure the scalability, we use Mininet to emulate several network topologies (from a small

size to a 10-switch topology). Every end host in the data plane will generate 10 new flow events

(PacketIn messages) per second to the control plane. We keep running the system for around

one hour per topology. Shown in Figure 3.10, the rate of logged data increases linearly with the

size of the data plane. The workload of with about 1,000 new flows per second (the 10-switch

topology) is comparable to the workload of typical enterprise networks [62]. For this workload,

FORENGUARD will averagely generate about 0.93GB data per hour into the database.
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Figure 3.10: Log Data Generating Rate
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Figure 3.11: Scalability of FORENGUARD

We test the processing speed with different sizes of the control flow graphs and different num-

bers of total operations. Since FORENGUARD needs to search the control flow graphs to build the

logged operations to execution traces, the processing speed should be relevant to the size of control

flow graphs. Considering the logic of some SDN control application could be very complicated,

we generate relatively large control flow graphs which contain 200, 1k and 2k nodes in each graph.

The results are shown in Figure 3.11. The results show that the processing throughput almost does

not decrease with the scales of the control flow graphs.
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3.7 Discussion and Conclusion

FORENGUARD takes the first and significant step towards a network security forensics and

diagnosis system in the SDN context. However, FORENGUARD is still preliminary and has several

limitations for future research work to improve, which we will discuss below.

3.7.1 Limitation on Threat Model

In this work, we do not assume malicious SDN applications in the first place because currently

apps are well vetted before deployment due to their extreme importance to the operation of entire

networks. We also note that existing Java-based SDN applications leave less or no room for buffer

overflow and code injection attacks. In the worst cases, even if an exploited malicious SDN appli-

cation may directly attack FORENGUARD, this could easily expose their existence; or they could

intentionally generate fake executing logs to mislead the forensics function of FORENGUARD,

for which we think there are still anomalies that could be detected from code or behavior level.

Nevertheless, we note that vetting/detecting malicious applications is a separate/orthogonal topic

different from the forensic/diagnosis research targeted by this paper. Our future work will look

into those issues.

3.7.2 Extension to Other Controllers and Distributed Controllers

FORENGUARD leverages some generic principles used by all these controllers (how they dis-

patch events from the core service), as well as some heuristics of the Java language (e.g., reasoning

about reference data types like Set, List, Array and their methods according to Java 7). Therefore,

we believe our technique is relatively generic and extensible to other mainstream Java-based con-

trollers (e.g., Floodlight, OpenDaylight, ONOS) as well. However, we admit that it requires more

efforts to implement our proposed approach to other non-Java controllers.

FORENGUARD could also be extended to support different types of distributed controller mod-

els. For example, in the ONOS [63] model of distributed controllers, FORENGUARD can work on

each individual core/controller in the forensics stage, and then perform the diagnosis through the

merged forensic data. This is one of our future work.
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3.7.3 Accuracy of the Static Analysis

Our current implementation of FORENGUARD relies on existing static analysis techniques in

Soot. The techniques are known to be not 100% accurate. For example, the static data flow tracking

is not flow-sensitive. However, we think the issue of the static analysis itself is beyond the scope

of this study. FORENGUARD is focusing more on what to forensic and how to diagnose security

problems. However, our tool could also benefit from any future research in the area of improving

static analysis.

3.7.4 Room for Optimization

We plan to allow FORENGUARD to provide the customizability to tune the recorded activity

types. Besides, there is still room for the optimization of the storage. For example, FORENGUARD

could benefit from previous work (e.g., VAST [39]) which proposed several compression schemes

for forensic data. In our future work, we will investigate more optimization schemes and study the

proper design for our case.

3.7.5 Conclusion

In this work, we propose FORENGUARD, a first-in-its-kind SDN forensics and diagnosis tool

that integrates both control and data planes, as well as both network and host level forensics and di-

agnosis. FORENGUARD dynamically records fine-grained activities, builds them as event-oriented

execution traces of the control plane and state transition graphs of the data plane, and provides a

declarative query language for users to locate the suspicious activities and pinpoint the root causes

of the forwarding problems. The evaluation results show that FORENGUARD is useful in SDN

networks and only adds acceptable runtime overhead to the SDN control plane.
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4. BYOC-VISOR: PROVIDING MULTITENANCY-FRIENDLY SDN SERVICES IN IAAS

CLOUDS ∗

4.1 Introduction

More and more cloud service providers tend to use SDN as their network framework [64] and

its reference implementation, OpenFlow [2], as a communication protocol. SDN brings flexible

flow-level control and management. The SDN controller has a centralized view of the entire net-

work and is suitable for implementing network functions. On the other hand, enterprises are also

embracing elastic computing offered via the cloud computing. Infrastructure-as-a-Service (IaaS)

clouds (such as Amazon EC2, Microsoft Azure, OpenStack, and Google Compute Engine) provide

enterprises with on-demand computing resources along with networking and storage capabilities.

The pay-as-you-go model offered by the cloud computing enables enterprises to conveniently scale

up and decrease resources to meet the peak demand. Cloud providers themselves employ SDN

technologies to enable multi-tenancy by creating better management of tenants’ networks.

While both technologies, SDN and cloud computing, provide numerous benefits to enterprises,

enterprises encounter a difficult situation when they migrate to public clouds – relinquishing con-

trol over their in-house SDN controller along with the entire suite of SDN applications running

atop it. The cloud provider’s SDN controller that manages all OpenFlow-enabled hardware as well

as software switches is not accessible to tenants. Despite tenants’ demand of diverse network func-

tions such as intrusion detection, access control, measurement, traffic engineering, and QoS, most

cloud providers only offer elementary network functions such as ACL rules, load balancing, or a

software suite with limited customizability. Losing access to the SDN controller deprives tenants

of local and third-party SDN applications that cater their needs. Therefore, a cloud tenant desires

an SDN controller to develop and deploy arbitrary SDN applications.

To this end, in this work, we present the design and implementation details on our project called

∗ c© 2017 IEEE. Reprinted, with permission from Haopei Wang, Abhinav Srivastava, Lei Xu, Sungmin Hong, and
Guofei Gu, "Bring Your Own Controller: Enabling Tenant-defined SDN Apps in IaaS Clouds," in Proceedings of 2017
IEEE International Conference on Computer Communications (INFOCOM), pp. 1-9, May 2017.
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Bring Your Own Controller (BYOC) that provides an SDN controller, called User Controller,

to each IaaS cloud tenant. The goal is to allow tenants to manage a network consisting of their

own VMs by using the user SDN controllers onto which they can implement customized network

functions (either by re-purposing existing SDN applications or implementing new applications).

To manage these individual SDN controllers, we propose BYOC-VISOR, a network virtualization

platform which is tailored to IaaS clouds and provides customized, secure, and scalable services to

tenants. Our conceptual architecture is illustrated in Figure 4.1. BYOC-VISOR operates from the

cloud control domain and acts as a middleware layer. It provides a logical control plane instead of

the actual control plane to tenants.

The design to equip each tenant with an individual SDN controller comes with several critical

challenges – security, privacy, performance, and scalability – that BYOC-VISOR aims to solve.

We present the main challenges and BYOC-VISOR’s design to address them below:

• Topology Abstraction: The cloud SDN controller operates on the provider’s network topol-

ogy to route flows dynamically to tenant networks. However, tenant SDN controllers cannot

be given access to this topology as it would reveal the sensitive infrastructure-level details

to tenants. Many attacks that target the cloud infrastructure (e.g., side channel attack [65])

use sniffing the physical topology and configurations as a stepping stone. Moreover, relying
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directly on the physical topology makes the tenants’ SDN applications error-prone due to

the dynamic nature of cloud systems. Some recent work (e.g., [66, 67]) proposed to trans-

late physical topology to logical topology using loose-coupling approaches. However, they

suffer from poor performance, as discussed in related work. We attempt to provide balanced

trade-off between the flexibility and overhead. To solve this problem, we abstract the un-

derlying topology and create the notion of a pseudo switch that is controlled by a tenant

SDN controller. The abstracted topology consists of a set of tenant VMs connecting to a

pseudo switch controlled by the tenant SDN controller. BYOC-VISOR’s task is to map the

abstracted topology into the provider’s topology by programming the underlying switches.

The topology abstraction scheme (V-Topo) prevents the leaking of sensitive provider’s topol-

ogy and provides the static view of the network even when the tenant VMs are frequently

migrated.

• Performance: BYOC-VISOR needs to maintain the communication between the tenant

SDN controller and the cloud data plane. In particular, each data plane message should

be delivered to the corresponding tenant controller (called mapping step) according to the

origin of the message. Given the scale of a cloud system, if the mapping step is not efficient,

BYOC-VISOR becomes the bottleneck and stalls all tenants network operations [68, 66].

This problem can also appear when a malicious tenant floods the network with the spoofed

traffic from the VM to paralyze the cloud infrastructure. To solve this challenge, we design a

message tagging technique called Message Cookie to improve the performance and defend

against the flooding attack.

• Security: SDN controllers influence flow routes by installing flow rules. The lack of a strong

isolation among tenant SDN controllers may facilitate one tenant’s flow rules to impact other

tenants network traffic. In particular, malicious tenants can launch packet injection and

forwarding loop attacks. To provide a fine-grained access control to restrict the malicious

behavior from user controllers, we design a Message Guard module to monitor, profile, and

filter undesired controller messages.
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We incorporate all of our design choices in a prototype system of BYOC-VISOR on the GENI

[69] platform. BYOC-VISOR supports multiple unmodified SDN controllers, such as Floodlight

[13], OpenDaylight [37], as a user SDN controller. To demonstrate the efficacy of our system, we

deployed many existing unmodified SDN-based security applications atop the user controllers. Our

performance evaluation shows that BYOC-VISOR has low overhead, and scales well in clouds.

In this work, we make the following contributions:

• We highlight the problem of migrating SDN applications to clouds, and introduce a new

cloud use paradigm, Bring Your Own Controller, which provides an individual SDN con-

troller to each tenant to design and deploy customized SDN applications.

• We describe the challenges in realizing BYOC-VISOR and present techniques– topology

abstraction, message cookie, and message guard– to overcome them.

• We implement a prototype system of BYOC-VISOR, and test it with different SDN con-

troller platforms and a variety of applications. Our evaluation results demonstrate that the

system is efficient and effective.

4.2 Problem Statement

Our main idea is to allow each cloud tenant to use his/her own User Controller (UC) in the

cloud control plane. We create a virtualization layer that allows each tenant to observe and manage

an isolated and abstracted network topology. Unfortunately, existing multi-tenancy controlling

solutions(e.g., FlowVisor) cannot be directly used in our target IaaS clouds because they face three

main research challenges: topology abstraction (C1), scalability constraints (C2), and security

attack threats (C3). We detail the challenges as follows:

For the challenge C1, the data plane infrastructure is normally abstracted to provide logical net-

work topology for the control plane. Simply providing a one-to-one mapping has serious privacy

and conflict issues. FlowVisor [68, 70] provides a logically different and isolated view of (part of)

the entire network for each controller by slicing the physical resources. However, this abstraction

has the following limitations:

76



• The fixed slice cannot adapt well to the dynamic nature of cloud networks (e.g., VM migra-

tions), because it could be difficult for tenants to implement the control logic if the topology

changes frequently. We should keep the physical topology changes transparent to the user

controllers.

• Each slice reflects part of the real physical topology and configuration, which leads to privacy

leakage. Our abstraction should hide the sensitive information of the cloud infrastructure

(e.g., physical topology) to avoid some potential attacks (e.g., side channel attack [65, 71],

cloudoscopy attack [72]).

OpenVirteX [66] improves FlowVisor by introducing a loose coupling of physical and virtual

topology to allow tenants to customize the virtual topologies. However, the loose coupling solution

is too costly in clouds because it is achieved by installing a set of flow rules into the data plane

and some backbone nodes may be overloaded with flow rules from lots of tenants. And Open-

VirteX does not discuss the situation that the physical topology changes and how to reconfigure

the mapping to keep the virtual topology unchanged. In this work, we design a relatively tight

coupling solution which can address the challenge of proper topology abstraction. We introduce a

new abstraction solution, called V-Topo, in the design section.

For the challenge C2, we observe that the processing of the data plane messages is the perfor-

mance bottleneck of FlowVisor when used in IaaS clouds. When receiving the data plane mes-

sages, the virtualization middle layer needs to deliver these messages to corresponding slices,

which is a time-consuming task. Especially, the throughput is mainly affected by the processing

of PacketIn Messages. There are two reasons. First, PacketIn Messages are the majority traffic to

controller since each of them contains a captured network packet (or packet header). Second, for

other messages, the processing could be easier by using a request/response pair mapping to find

the corresponding control logic. FlowVisor uses a linear search algorithm on the network packet

header space, which cannot scale to the cloud size, and has to limit the message arrival rate. Our

solution targets the IaaS clouds which have millions of virtual machines running inside. Therefore,

the throughput of handling data plane messages should be able to support the above scale.
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For the challenge C3, another challenge in designing BYOC-VISOR is to consider and handle

the case that some cloud tenants may be malicious and aim to launch attacks to/through our system.

We aim to reduce the attack surface to protect the normal BYOC operation.

We will explain the threat model we consider in this paper. A malicious tenant who has VMs

and a user controller in the cloud can launch attacks from two sides. From the user controller

side, the malicious tenants can try to install flow rules to affect the data plane. From the virtual

machine side, the malicious tenants are able to generate arbitrary network traffic which can raise

network events to the control plane. To summarize, the attacker can launch attacks using OpenFlow

messages and network packets.

4.3 Related Work

Besides the SDN security area, this work is also highly related to the research of network

virtualization area.

Network virtualization is a hot research topic in recent years. One work very close to BYOC-

VISOR is FlowVisor [68]. While seemingly related, there are some striking differences with our

work. First, FlowVisor is designed for the enterprise network under a single administrative do-

main, which is different from clouds that support multiple administrative domains as targeted by

BYOC-VISOR. Second, FlowVisor creates parallel controllable networks by slicing the physical

resources including the network topology. Since each FlowVisor slice reflects a part of the real

physical topology and configurations, the slicing solution will not operate in the cloud as it does

not address security & privacy concerns. Finally, the peak rate of message processing in FlowVisor

is about 1,200 per second [68]. This throughput does not scale well in clouds, and it will decrease

with the scale of the data plane. Another system VeRTIGO [73] extends FlowVisor to allow the

tenants to specify virtual links. These two slicing solutions are considered to have a tight coupling

between physical and virtual topology. A different approach is based on a loose coupling between

physical and virtual topology, allowing tenants to customize the virtual topologies as adopted by

OpenVirteX [66] and NVP [67]. However, such solutions are too costly to be applied in clouds due

to the overload of flow rules and failure to address the security threats. FlowN maps the NOX [74]
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API calls instead of the OpenFlow messages and uses a database instead of an in-memory complex

data structure to reduce the overhead. Some network-as-a-service solutions [75] allow the tenants

to specify the high-level routing policies for their traffic. However, our work provides dynamic,

fine-grained and more flexible management through user controllers.

4.4 System Design

In this section, we present BYOC-VISOR, a network virtualization platform that provides cus-

tomized, secure, and scalable SDN services to cloud users. BYOC-VISOR operates as a network

hypervisor and is transparent to both user controllers and the cloud data plane.

4.4.1 System Architecture
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Figure 4.2: BYOC-VISOR Architecture

The overall architecture of BYOC-VISOR is shown in Figure 4.2. BYOC-VISOR consists of

three main modules. The User Controller Hypervisor virtualizes standard OpenFlow interfaces
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for user controllers, monitors all communication messages, and blocks malicious flow rules gener-

ated by user controllers. The Topology Abstraction module achieves the V-Topo by rewriting the

control plane and data plane messages. The Database module contains the profile and communi-

cation record of user controllers, the mapping table between physical and logical topology, and the

message cookie information.

4.4.2 Topology Abstraction

We first describe our topology abstraction scheme employed by BYOC-VISOR.

4.4.2.1 Abstraction Solution

We introduce a new abstraction solution called V-Topo that provides each user controller a

logical topology abstracted from the corresponding physical topology. The abstraction scheme has

two steps. The first step is to decide on a physical topology representation for each tenant, and

the second step is to map the physical topology to a logical topology as viewed by the user SDN

controller. The physical topology consists of the tenant VMs and corresponding Open vSwitches

(OVS) switches, running on each compute node.∗ In the logical topology, all VMs belonging

to a single tenant are connected to a big pseudo switch. The pseudo switch contains virtualized

configuration information (e.g., datapath ID and ports), which protects sensitive private

information. Thus, each user controller has a logically separated view of the physical topology.

Figure 4.3 shows a concrete example, where Tom and Alice are two tenants with several VMs

running. Through BYOC-VISOR, Tom’s user controller views one pseudo switch that is abstracted

from the physical switch 000034 and 000042. Likewise, Alice’s user controller views one switch

abstracted from the physical switch 000034 and 000092.

In our implementation, V-Topo is achieved by modifying the message header of OpenFlow

communication messages. The modification of the message header is based on the physical-logical

topology mapping table maintained in the database. In the above example, Tom’s data plane mes-

sages generated from the real switch 000034 is viewed as the pseudo switch 000001. Flow rules

∗In Section 4.4.3.2, we describe the reason for choosing only OVS as part of the physical topology.

80



BYOC-Visor

OVS
Datapath:
000034

1.1.0.1
(Tom)

1.1.0.2
(Alice)

1.1.0.3
(Tom)

OVS
Datapath:
000042

OVS
Datapath:
000092

Tom’s 
Controller

Pseudo DP:
000001

1.1.0.1

Alice’s 
Controller

1.1.0.4
(Alice)

1.1.0.5
(Alice)

V-Topo

1.1.0.3

Pseudo DP:
000002

1.1.0.51.1.0.41.1.0.2

V-Topo

VM_IP

Phy_DPID

Vir_DPID

IP_Addr

Phy_Inport

Vir_Inport

…

Mapping 
Table

Phy_DPID 000034

Phy_Inport 2

After 
Migration

Phy_DPID 000092

Phy_Inport 1

Figure 4.3: Sample Abstraction

that Tom attempts to install into switch 000001 are actually installed into the real switch 000034

and/or switch 000042. In particular, if Tom’s user controller installs a flow rule that steers the flow

with original destination 1.1.0.1 to 1.1.0.3 then in the physical topology BYOC-VISOR installs

several flow rules in both switches 000034 and 000042 and utilize the underlay cloud networking

to route the flows.

Topology Abstraction module achieves the logical topology by dynamically rewriting the

header fields of OpenFlow messages. For data-to-control plane messages, Data Plane Message

Rewriter modifies the message header to insert the logical information by using the abstracted

topology mapping in the database. After the modification, the data plane message rewriter sends

the new messages to the User Controller Hypervisor for message mapping and distribution. The

Control Plane Message Rewriter does the opposite work. It receives each control plane message

and corresponding datapath (logical datapath) information from the User Controller Hypervisor,

modifies the message header of each message by inserting the physical information, and finds the

physical datapath corresponding to the logical datapath information. The control plane message
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rewriter sends the modified messages to the corresponding physical datapaths. Consequently, the

abstraction process is transparent to both the data plane and the logical control plane.

4.4.2.2 Dynamic Topology Handling

Before describing the dynamic topology handling details, we first provide some background

knowledge on the live VM migration. There are two types of live VM migrations: pre-copy and

post-copy. A pre-copy migration copies the memory pages to the target host, suspends the original

VM, and finally copies the delta memory changes changed during the process. In contrast, a post-

copy migration suspends the VM first and then moves it to the target. No matter which approach is

employed, BYOC-VISOR performs several actions (by changing the physical to logical topology

mapping) to handle dynamism only during the "down-time" or "suspend-time". This guarantees

that there should be no packet in flight during our mapping update.

BYOC-VISOR solves two challenges associated with the migration process. Topology Con-

sistency: In the above example, if the VM 1.1.0.2 migrates from switch 000034 to switch 000092,

the physical topology changes. However, instead of changing the whole logical topology to ad-

dress the migrated resource, we only update the mapping information of this VM in the mapping

table. The mapping table during the migration process is shown on the right side of Figure 4.3.

With this approach, after the migration, the logical topology viewed by Tom still remains the same

as before the migration. Flow Rules Consistency: A flow rule consistency ensures that the flow

rules installed by the user controller should be migrated transparently with the VM migration.

During the migration state, the user controller manager migrates the corresponding flow rules and

counters to the new location. If the migrated VM changes its IP address, we also verify and update

the matching fields in each flow rule and counter.

4.4.3 Performance Improvement

We design Message Cookie technique to improve the scalability of BYOC-VISOR and defend

against certain security threat. A message cookie has two main functions. First, it identifies the ori-

gin (from which VM) to handle spoofing threat. Second, it improves the throughput of processing
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mapping step.

4.4.3.1 Message Cookie

The throughput of the mapping step is mainly affected by the processing of PacketIn messages.

There are two reasons. First, PacketIn messages are the majority traffic to the controller triggered

by new data plane traffic. Second, for other messages, the processing could be easier by using

a request/response pair mapping (by searching the pending request messages) to find the corre-

sponding control logic. Existing solutions (such as FlowVisor) use a flow space mapping approach

that forms an n-dimensional space based on n bits in the network packet headers. Each tenant

maintains an isolated subspace that represents all packet headers belonging to the tenant. Thus, to

identify the owner of a flow, we need a search algorithm to map from a high-dimensional packet

header space to a tenant subspace, which is inherently slow and not suitable for large-scale cloud

systems.

We introduce a novel technique, namely, Message Cookie, to address the scalability chal-

lenge. Our approach is motivated by the well-known SYN Cookie technique. The idea is to enable

switches to embed a tag to store the mapping state information within the data-to-control plane

messages. We refer to the tag as textbfMessage Cookie. When generating PacketIn messages, the

switch can preserve mapping information into the messages by leveraging the flow table pipeline.

We can utilize reserved fields such as 8 bit TOS field or unused IP header options to embed the

message cookie. For example, a flow rule with "src/dst = 1.1.0.1, actions : set-tos-bits = 52, out-

put : controller" suggests that generated PacketIn messages which satisfy the condition "src/dst =

1.1.0.1" will be marked belonging to Tom (whose UseID is 52). With this approach, it is possible

to use a few flow entries to realize the mapping at each switch. Compared with the traditional

flow space mapping approach, we distribute the computational workload of mapping to multiple

switches instead of a single choke point. Therefore, our approach addresses the scalability chal-

lenge and achieves much higher throughput.
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4.4.3.2 Edge-based Optimization

The overhead of the message cookie scheme depends on the location of the switches. In par-

ticular, the backbone switches, such as ToR switches or core switches, may need a large number of

flow entries to implement the tagging function, making it impractical due to the limited memory

space in each switch.

We propose an edge-based optimization approach to solve the problem by implementing the

message cookie only inside the edge switches. An edge switch is a hypervisor software switch

(Open vSwitch) that is directly connected to VMs. We note that the V-Topo’s (in Section 4.4.2)

physical topology also assumes the tenant VMs are connected to adjacent edge switches. The

reasoning behind the edge-based solution in an IaaS cloud deployment is that each edge switch

is normally connected to no more than 30 VMs [76]. Thus, it is possible to enforce efficient and

simple tagging function at the edge switches with low overhead (a few flow entries).

4.4.4 User Controller Hypervisor

4.4.4.1 User Controller Manager

The main function of the User Controller Hypervisor is to virtualize interfaces for the user con-

trollers. The user controller manager leverages the standard OpenFlow protocol to communicate

with the user controller. For the Connection Initiation and Topology Discovery request messages,

the manager automatically generates the data-to-control plane messages to respond to the user con-

trollers. For example, in response to the negotiation messages (FeatureReq/Res, SetConfig), the

manager provides the configuration of the abstracted topology to the user controller. For the Open-

Flow messages in the attack detection and response actions stages, the manager simply relays these

messages. Although the communication (we define as Hypercalls) between the manager and the

user controller uses the OpenFlow protocol, it is not a "real" OpenFlow communication; in fact, it

is between the cloud control plane and logical control plane.
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4.4.4.2 Message Guard Module

Another major function of the User Controller Hypervisor is to restrict the behaviors of user

controllers and enhance the security of our system by checking the Hypercall messages. In each

User Controller Manager, there is a Message Guard module. This module continuously monitors

the hypercall communication and detects any possible malicious behaviors from user controllers.

More specifically, the message guard module introduces several security features including fine-

grained access control, profiling, and rate-limiting. In case of attacks, our system quickly blocks

the malicious tenant and removes all counters and flow rules that are installed by the attacker. The

cloud administrator can gather detailed information on the identified malicious tenants for further

fine-grained analysis.

The message guard module limits the cumulative number of both control-to-data plane mes-

sages and the rate of data-to-control plane messages for each tenant. Limiting the control-to-data

plane messages is to restrict the data plane resources that one user controller can consume. On the

other hand, limiting the data-to-control plane messages is to prevent the flooding attack originating

from VMs.

We also provide fine-grained access control on all control messages generated by user con-

trollers. The purpose of access control is to guarantee the control logic enforced by one tenant

should not affect other tenants’ network traffic. The message guard module monitors and verifies

all control-to-data plane messages. We only allow two types of control-to-data plane messages,

namely, FlowMod and StatsReq messages. The FlowMod message is used to insert, modify, or

delete flow rules. To verify if a tenant is allowed to perform certain operations, source or destina-

tion address in each matching rule or header fields after modification should be within the scope of

the address space of the tenant. The action in each flow rule can take one of these values: DROP,

CONTROLLER, SET, or FORWARD (means drop, trigger PacketIn to the controller, modify the

packet header, or forward this flow). The StatsReq message is to request the traffic statistics (flow

statistics, port statistics, etc.). We only allow the flow statistics requests and the matching rule of

the flow should have the same requirement as for the flow rules.
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However, the above access control policies are not enough to block all malicious behaviors

from user controllers. It is difficult to predict the effect of the action field in each flow rule.

Especially, we consider two new action-based attacks. Packet injection attack means the user

controller can use the "modify" action to change the header fields of packets to inject arbitrary

packets to the cloud network. Those spoofed packets may affect other tenants’ VMs or even user

controllers. Forwarding loop attack means the user controller can install flow rules to form a

routing loop of its own traffic in the cloud. By increasing the traffic quantity, the routing loop can

obstruct the cloud infrastructure.

Algorithm 4: switch_iteration
Input: r = new flow rule
Input: sw = switch ID in which r will install
Input: s[].r_list = all installed flow rules of every switch
if policy_check (r) == Malicious then

return False
if Action.Forward ∈ r.actions then

sw′ = sw.switchID(r.actions.forward);
if Action.Modify ∈ r.actions then

r.match = modify (r.match, r.actions.modify);

foreach i ∈ s[sw′].r_list do
r′.match = i.match ∩ r.match;
r′.actions = i.actions;
if !(switch_iteration(r′, sw′)) then

return False

return True

We design an iteration algorithm, shown in Algorithm 4, to achieve the above-mentioned goals.

Our algorithm dynamically verifies the new flow rules in the physical topology of each tenant

because the physical topology is tied to the actual behavior of the network. The input to this

algorithm is a new flow rule and a set of already installed flow rules. Existing real time data

plane verification tools such as VeriFlow [47] are of limited use because flow rules with "set"

action change the header space of packets that cannot be handled by these tools. Our algorithm
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generates the derived forwarding rules from the new flow rule hop by hop. Then, we verify if the

derived forwarding rule violates some access control policies. For example in Figure 4.3, given

that Tom installs a rule that steers the flow from the original destination 1.1.0.1 to 1.1.0.3 into his

pseudo switch, the flow rule that will be installed into the OVS switch 000034 is: "Sw000034 : *

-> 1.1.0.1 : set(1.1.0.1 -> 1.1.0.3), forward Sw000042", given the existing flow rule in the data

plane is: "Sw000042 : *-> 1.1.0.3 : set(1.1.0.3 -> 1.1.0.1), forward Sw000034". After running 2

iterations in our algorithm, the derived forwarding rule violates the forwarding loop policy since it

loops back to the original switch. For messages that do not meet the above-described access control

policies, the user controller manager drops the control message and returns an OFPET_EPERM

error.

4.5 Evaluation

To demonstrate the practicability and efficiency of the BYOC-VISOR design, we develop re-

alistic SDN security applications atop various user controllers and evaluate the performance and

scalability of BYOC-VISOR.

4.5.1 System Implementation

We have implemented a prototype system of BYOC-VISOR based on the libfluid [77] library

bundle. To evaluate the dynamism handling and performance overhead, we employ resources in-

cluding VMs, hypervisors, and OpenFlow-enabled switches to emulate the cloud environment on

the GENI [69] platform. To evaluate the scalability, we create a testbed using three host machines

with dual-core Intel Core2 3GHz CPU running 64-bit Ubuntu Linux. The first machine emulates

the cloud data plane using Mininet [27], and a benchmark tool CBench [60] as the bulk mes-

sages generator, another is to run BYOC-VISOR, and the third operates as user controllers. Our

system currently supports OpenFlow 1.0 specification and is compatible with most of the Open-

Flow controllers as user controllers. We demonstrate our system using both the OpenFlow-based

applications and legacy network functions.
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4.5.2 Case Study

In the background section, we discuss two types of SDN applications with the key difference

being the location of the major processing phase – inside the controller or data plane devices. In

our evaluation, we design and deploy three SDN-based network functions to work atop user SDN

controllers, and three legacy network functions to operate inside the VM in the data plane. The test

environment is shown in Figure 4.4.

4.5.2.1 Control-plane network functions

We develop three SDN applications on top of three different user SDN controllers. The first

two are firewall SDN applications which are developed to work with POX [34] and Floodlight [78].

The third SDN app is a reflector net application developed upon FRESCO [21] that executes on a

NOX controller. We notice that BYOC-VISOR supports the correct operations of all three original

SDN-based network functions on diverse OpenFlow controller platforms, without any modification

on the controller or application side.

4.5.2.2 Data-plane network functions

We deploy three different legacy network applications, namely Snort [79], BotHunter [80], and

Bro [81]. We install these legacy applications in three VMs as middle-boxes (a.k.a. NFV, Network

Function Virtualization). On top of the user controller, we develop an SDN application using the

FRESCO platform [21]. The SDN application steers the network traffic destined to tenant VMs
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towards the Snort/BotHunter/Bro VMs. When the middle-box VMs accept the traffic, it steers

them back to the destination VM. In our testing, all scenarios work smoothly as expected. These

applications demonstrate the effectiveness of our system in allowing tenants to design and deploy

SDN applications. We also hope that these examples would provide guidelines for tenants to

develop more such applications on BYOC-VISOR.

Figure 4.5: Communication Bandwidth and Port Stats during Migration

4.5.3 Dynamic Handling

We first test the ability of BYOC-VISOR to handle frequent topology changes. We design an

experiment to verify that the logical topology observed by the user controller remains unchanged

even with the frequent VM migration. We build experimental topology as shown in Figure 4.3

using the GENI [69] platform and use two VMs with IP addresses 1.1.0.4 and 1.1.0.5. At the

beginning, two VMs are connected to the same switch. Later, one VM (1.1.0.5) migrates to switch

000042, and then migrates again to switch 000034. We generate communication traffic between

the two VMs and record the traffic rate. To verify that the V-Topo remains unchanged from the

user controller side, we send StatsRequest messages from the user controller to the pseudo switch
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in V-Topo to query the real time traffic rate at the port†, which is initially connected to VM 1.1.0.5

and show the accumulated traffic in Figure 4.5. We observe that the migration occurs twice at

about 51s and 195s because the bandwidth suddenly decreases to zero. During the migration, there

is no traffic passing through the port. The results show that even when the VM moves to another

location in physical topology, the VM is still connected to the original port of the pseudo switch.

The experiment results verify that the logical topology observed by the user controller is stable and

BYOC-VISOR elegantly handles VM migration.

4.5.4 Performance Overhead

BYOC-VISOR inserts an additional middle layer and unavoidably adds extra overhead to the

system. From the tenants’ perspective, there is an additional latency while sending and receiving

messages. To quantify the latency overhead, we evaluate the increased response time for the two

most commonly used OpenFlow request messages– PacketIn and StatsReq/Res– with and without

our system. The PacketIn message is used for the data plane to send a network packet to the

control plane when a new flow arrives in or a flow entry sends a specific flow to the controller.

The StatsReq message is from the controller to query the data statistic, and the data plane returns

a response message with the statistics.

For the PacketIn message experiment, we set up an environment with a VM with two network

interface cards attached to an OpenFlow-enabled switch in GENI. An OpenFlow application con-

tinuously sends randomly generated packets (with a rate of 100 packets per second) to the switch

through one interface. The application simultaneously receives PacketIn messages from the other

interface that is connected to the OpenFlow control port of the switch. Thus, this application is able

to measure the response interval between sending the packet and receiving the PacketIn messages.

The evaluation results are shown in Figure 4.6(a). We observe that without BYOC-VISOR, the

average delay between each pair of packet and PacketIn is about 0.25ms. With BYOC-VISOR,

the average delay increases to about 0.37ms. We note that this communication overhead is mostly

†In Section 4.4.4.2, we mention that we only allow the user controller to query the flow statistics not the port
statistics. Here we temporarily relax this assumption only to conduct this experiment.
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Figure 4.6: Performance and Scalability Evaluation Results

added only on the first packet and gets amortized across the duration of the flow.

For the StatsReq/Res message experiment, we set up another environment with a VM as an

OpenFlow controller that connects to several OpenFlow-enabled switches. An application queries

the flow statistics from the switches at a peak rate supported by the hardware. The application also

measures the delay between each pair of request and response. The evaluation result is shown in

Figure 4.6(b). We notice that without BYOC-VISOR, the average delay is about 0.45ms, and with

our system is 0.52ms, which is a reasonably small overhead.

4.5.5 Scalability

To evaluate the scalability of BYOC-VISOR, we create a 3-machine setup as described in the

motivating example. All user controllers run a firewall app. We first determine the CPU utilization

of BYOC-VISOR under normal circumstances except the migration situation. We measure the

CPU utilization when using a different number of user controllers and message rates. To measure

the effect of different message rates, we use one VM to continuously send packets at different
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rates to the OVS to trigger PacketIn messages for the user controller. To measure the effect of

various numbers of user controllers, BYOC-VISOR connects to several user controllers and sends

messages to each user controller at a constant rate. We measure the CPU utilization at every

one second for an extended period of time and calculate the average. Since different types of

hardware devices may have different capabilities, it is both difficult and insignificant to compare

the absolute CPU utilization among them. A better metric is to observe a growth in CPU utilization

with an increase in message rates and the number of user controllers. Thus, in this experiment, we

show the CPU utilization growth using the relative CPU utilization and compare it with a baseline

value. The baseline utilization value is generated using 100 MPS (messages per second) in the first

experiment, and a single controller in the second experiment.

The results are shown in Figure 4.6(c)(d). We observe that the CPU utilization scales linearly

with the number of user controllers and message rates. This is consistent with the theoretical

analysis, and is an acceptable growth trend. In practice, cloud administrators may deploy multiple

instances of BYOC-VISOR to balance the load among tenants.

Secondly, we measure the message mapping throughput. One benefit of message cookie is

to avoid searching the entire mapping flowspace for each PacketIn message. This suggests the

throughput of the message mapping process should not be affected by the scale of the data plane

topology. To validate the hypothesis, we set up a message throughput experiment, using a bench-

mark tool Cbench [60] to evaluate the throughput with different scales of topology (by increasing

the number of OVS switches and VMs in the topology). In our testing topology, each OVS con-

nects to 8 VMs, while each user controller manages 4 VMs, randomly assigned to it.

Like the CPU utilization experiment, we measure the relative growth in throughput instead

of comparing the absolute values. We measure the baseline throughput using the Floodlight con-

troller, without running BYOC-VISOR, in a 16-switch topology. We evaluate a relative throughput

compared with the baseline by scaling the topology from 4-switch to 1024-switch and executing

a single instance of BYOC-VISOR in a single thread. The results are shown in Figure 4.6(e).

We observe that the throughput is not impacted with the topology scale, outperforming FlowVisor
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whose throughput decreases linearly under the same condition as described in [68]. The results

prove that our system scales well with a large number of switches in a cloud environment. There

are several studies about the OpenFlow controller performance [82, 24]. These studies measure

a baseline throughput of the Floodlight controller in a dedicated server machine using the same

16-switch topology, and the value is about 100k messages per second. Using the same method, we

estimate that BYOC-VISOR can process about 70k messages per second.

4.6 Discussion and Conclusion

Our current implementation of BYOC-VISOR supports the OpenFlow v1.0 protocol. We think

it does not affect the feasibility of our tool. In addition, our system can easily extend to other

versions by supporting more message types in the implementation. We plan to support the latest

OpenFlow v1.5 in our future work. Also, the user controller may have the inconsistent update

issue that implies all switches cannot be updated atomically. Note that this issue is within each

individual user controller, and it is not the responsibility of BYOC-VISOR. User controllers can

directly leverage the existing solution [83] to address the inconsistent update issue. Finally, we

implement the message cookie by installing flow rules to add a tag to each message. This approach

avoids any hardware-level changes, creating a flexible yet less optimal solution. This is a trade-off

between flexibility and performance. Alternatively, we can improve the performance by modifying

the OpenFlow switches to enforce the message cookie function in the circuit to avoid extra flow

tagging rules.

We aim to provide multitenancy-friendly SDN services in IaaS cloud networks. To this end, we

offer an individual user SDN controller to each tenant. This approach requires addressing several

new challenges: topology abstraction, performance, and security. We present BYOC-VISOR, a

new SDN virtualization platform to provide customized and scalable SDN services to cloud users.

We measure the overhead and scalability performance with a prototype implementation of BYOC-

VISOR. Our evaluation results show that BYOC-VISOR scales well in the cloud and only adds

minor latency overhead.
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5. RE-DESIGN THE SDN CONTROL PLANE

In this section, we will discuss and answer the following questions: How can we design a new

SDN control plane from the scratch and enhance the three new features proposed in this thesis to

the control plane? What kinds of lessons have we learned from designing and implementing these

projects?

5.1 The Integration of Three Features into a New SDN Control Plane

In this subsection, we will discuss about how to design a new SDN control plane from the

scratch by enhancing the three new features. In this thesis, we propose three individual projects

in which each of them enhances one feature into the SDN control plane. However, there is still a

gap between three individual frameworks into an integrated system. In order to build a new SDN

control plane by combining the three frameworks, we propose several new ideas according to the

design and implementation, as well as the lessons learned from the three projects.

Data Plane

Control Plane
Hypervisor Layer

ControllerMulti-controller
Layer

Database

Data Plane 
Cache

Figure 5.1: Architecture of the Integrated SDN Control Plane

First of all, the new SDN control plane consists of two layers – the hypervisor layer and the

multi-controller layer. As shown in Figure 5.1, the hypervisor layers provides virtualization to
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support multi-tenancy controlling. This layer will leverage the idea and design of BYOC-VISOR

to achieve the function. The multi-controller layer implements several SDN controllers. FOREN-

GUARD analyzes and instruments the SDN controllers. Each of the SDN controller deploys one

instance of FLOODGUARD, and one instance of the Collector module of FORENGUARD. Besides

these two layers, we deploy an additional host be to the Data Plan Cache module of FLOODGUARD

and the Database module of FORENGUARD.

We use BYOC-VISOR as the hypervisor layer. To better cooperate with other two frame-

works, we add some new features to tis design. First, we move the Migration Agent module

from FLOODGUARD and integrate into the User Controller Manager module of BYOC-VISOR.

The insight behind is that basically the User Controller Manager module and the Migration Agent

module are doing the similar thing which is to monitor the state of each controller. Thus, we in-

tegrate them together to maintain the stat machine of each controller, project the virtual topology

and decide whether to start the packer migration to defend against the flooding attacks. Second,

for the diagnosis purpose, BYOC-VISOR should record the physical-logical topology mapping

table and provide this information for FORENGUARD in runtime to build the dependency graphs.

The insight is that, the hypervisor layer will provide different view of the physical topology to

the controllers. Therefore, it is necessary to bridge the gap between physical topology and virtual

topology for the forensics purpose.

We use FLOODGUARD to protect the controllers, and we add two new designs. First, we plan to

make FLOODGUARD independent of the programming language. Current FLOODGUARD is lim-

ited to Python language since its symbolic execution engine is only able to analyze Python based

source code. Since most mainstream SDN controllers are Java based, in our future work, we will

leverage a good symbolic execution engine for Java language and re-implement the Proactive Flow

Rule Analyzer module of this project. Second, instead of using one instance of FLOODGUARD to

protect the whole SDN control plane, we design that each controller will deploy an instance of

FLOODGUARD and their will share one instance of the data plane cache. The insight behind is

that different controller could manager different slice of the network space and the flooding attack

95



could only target some certain controller.

To integrate FORENGUARD into the new SDN control plane, we combine its static analysis

phase together with the proactive flow rule analyzer module of FLOODGUARD cause they both

statically analyze and process the source code of the controller applications. Besides, as men-

tioned earlier, when generating the runtime dependency graphs of activities, the collector module

of FORENGUARD will consider the physical-virtual topology mapping from the hypervisor layer.

And the diagnosis module should reason the root causes within different controllers.

5.2 Lessons Learned

As we propose earlier in every project, we have made a large amount of design and implemen-

tation decisions. For almost every decision, we consider many aspects of factors and select the final

decision from several options. In this subsection, we will highlight several important decisions we

have made and explain our considerations about how to make the decision. We will also provide

our lessons learned from design failures in each project.

5.2.1 Lessons from FLOODGUARD Project

A fundamental problem of the SDN concept is that its logically centralized control plane could

become the performance bottleneck and lead the security threat. The mainstream research idea to

address this issue is to leverage machine learning techniques to filter out flooding packets. We also

fall into this direction at the beginning. Soon we notice this direction is hard to come out good

solutions since machine learning based approaches will inevitably cause false positives and false

negatives. Then we totally give up this direction and attempt to look for other ideas. After several

failures, we go back to think about the machine learning based approach and try to optimize it.

The first lesson learned is that: There is always potential to improve machine learning based

approaches to meet different needs. Although machine learning based approaches suffer from

false positives and false negatives, however, we can always optimize this kind of approach to learn

from different sources to improve its accuracy. For this project, instead of learning from historical

statistics, we come up with the idea of learning from the programming logic of each application.
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Then we further come up with the FLOODGUARD idea. Our defense tool leverages the techniques

of program analysis and learns from the program logic that what kinds of network packets are

useless and could be discarded. Therefore, we solve the problem by improving the traditional

approach and achieve pretty good accuracy.

Also from this project, the second lesson we have learned is: It is better to install the proac-

tive flow rules into the switches instead of into the data plane cache. In the early stage, our

idea is to install all proactive flow rules into the data plane cache and let it become the temporary

forwarding switches during the flooding attack. Our insight is that, the TCAM memory of each

OpenFlow switch may not be enough to install all these proactive flow rules. However, after im-

plementing the system by following this design, we notice the performance of the system is very

bad. It it because the data plane cache is software based and cannot process the network packet

matching and forwarding as fast as ASIC like TCAM. Thus, we then decide to install the proactive

flow rules back into the switches. Here, we achieve a trade-off which is we that get better perfor-

mance and simply the design of the data plane cache, however, we have to scale the memory size

of the OpenFlow switches in some extreme cases.

5.2.2 Lessons from FORENGUARD Project

During the design and implementation of FORENGUARD, we have learned the following lessons.

First, dynamic analysis, especially taint analysis, is not suitable for analyzing the SDN control

plane applications. This is because the SDN control plane is heavily loaded when managing even

a small scale of network. Dynamic analysis will increase huge overhead and make the processing

of network events 10x-12x slower than usual. In this project, we leverage a lot of static analy-

sis technique to understand the information flows of each application. However, static analysis is

not accurate. Therefore, we combine static analysis with dynamic recording (instrumentation) to

achieve a better trade-off between accuracy and overhead. Our current implementation achieves

much better performance. However, there is still huge space of optimization potential in terms of

implementation.

Second, it is better to make the usage of a new tool similar to that of an old and wildly
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used tool. At the beginning, we design several programming interfaces to use our diagnosis tool.

Soon after doing some user study, we notice our tool is not easy to use. People need some time to

learn how to use our tool. Then we design and implement a command line tool which is similar to

existing network diagnosis tool, so that users can quickly get started. Besides the command line

tool, we also make the query results visible as a graph instead of plain text. This makes our tool

more useful and user-friendly.

5.2.3 Lessons from BYOC-VISOR Project

There are three hard lessons that we have learned from this project. First, there will very

likely have problems when applying generic approach to a specific network environment

or setting. Multi-tenancy controlling in the SDN control plane is not a new feature. However,

previous research targets this problem in a generic networking environment. I motivate the research

idea of this project during my internship when I test exiting multi-tenancy controlling tools in a

cloud environment and find several research problems. The lesson shows that generic approach

may very likely be limited in some specific environment or settings.

Second, it is important to provide user-friendly interfaces for the users to implement SDN

applications. Similar to the previous project, this project should also provide user interfaces to

implement and deploy SDN applications. BYOC-VISOR firstly virtualizes control plane interfaces

for users to deploy customized SDN applications. However, the raw low-level OpenFlow interfaces

are still not user-friendly enough. Users have to be SDN experts to use the low-level interfaces.

Therefore, in the working example, we show that our system can also cooperate with application

developing tools like FRESCO [21] and FRESCO provides some high-level interfaces. Thus, we

think this problem could be solved by using other tools which target on the interface abstraction.

The third lesson: it is suggested finding some killer applications first to motivate the

research problems, then applying the approach to generic applications. At the beginning we

focus on the security applications since they are the killer applications for cloud services. After

completing a preliminary design, we notice there may be many other cloud services which can

be customized as well. Then we focus on how to customize generic applications using our tool.
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Current design of BYOC-VISOR is applicable to generic network functions/services by providing

a virtualized control plane. However, there is still limitation when using our tool. For example, the

virtual topology is limited to a certain style. And only limited types of OpenFlow messages can be

used to support the applications. Therefore, in future work, we will explore additional challenges

and necessary modification/improvement for that limitation.
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6. CONCLUSION AND FUTURE WORK

Software-Defined Networking (SDN) technology is a novel approach to computer networks.

However, there are several trends of existing networks that bring new security challenges to SDN.

First, the rapid increasing of network traffic and events makes the SDN control plane suffer from

the scalability issues and vulnerable to the Denial-of-Service attacks. Second, more and more SDN

control plane application from third parties could be buggy/vulnerable, and make the network diag-

nosis much more frustrating. Third, while more and more enterprises migrate to the Infrastructure-

as-a-Service (IaaS) clouds, however, the cloud administrator does not allow the cloud tenants enjoy

the SDN technique due to privacy and security reasons. All these trends bring new security chal-

lenges of the design of the SDN control plane.

In this thesis, we present several techniques to enhance the security of the SDN control plane to

meet needs from the above trends. First, we propose a security extension to make the SDN control

plane robust to the Denial-of-Service attacks. We implement a prototype system, FLOODGUARD,

which is an efficient, lightweight and protocol-independent defense framework for SDN networks.

FLOODGUARD contains two new techniques/modules: proactive flow rule analyzer and packet

migration. To preserve network policy enforcement, proactive flow rule analyzer dynamically

derives proactive flow rules by reasoning the runtime logic of the SDN/OpenFlow controller and

its applications. To protect the controller from being overloaded, packet migration temporarily

caches the flooding packets and submits them to the OpenFlow controller using rate limit and

round-robin scheduling. We believe FLOODGUARD is able to make the SDN control plane robust

to address the scalability issue and the DoS attacks.

Second, we make the SDN control plane accountable to give records of its running behaviors

for the future diagnosis of network problems. we propose FORENGUARD, which provides flow

level forensics and diagnosis functions in SDN networks. Unlike traditional forensics tools that

only involve either network level or host level, FORENGUARD monitors and records the runtime

activities and their causal dependencies involving both the SDN control plane and data plane.
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FORENGUARD can backtrack the previous activities in both the control and data plane through

causal relationships and pinpoint the root cause of the problem. We show that FORENGUARD can

quickly display causal relationships of activities and help to narrow down the range of suspicious

activities that could be the root causes.

Third, we provide a multitenancy-friendly solution to the SDN control plane of the IaaS clouds.

To allow enterprise tenants to develop and deploy their own SDN applications in the cloud, in this

paper, we introduce a new cloud usage paradigm: Bring Your Own Controller (BYOC). BYOC

offers each tenant an individual SDN controller, where tenants can deploy SDN applications and

manage their network. To manage these tenant SDN controllers, we propose BYOC-VISOR, a new

SDN based virtualization platform. BYOC-VISOR addresses several security and performance

challenges which are specific to IaaS clouds. We show that BYOC-VISOR supports different

controller platforms and diverse SDN security applications.

In our future work, we will continue our research to make the SDN control plane more secure.

There are many attacks that specific to the SDN control plane. We aim to protect the SDN control

plane against more advanced attacks and provide as lightweight as possible solutions. We plan

to extend our FLOODGUARD work to build a security layer between the SDN data plane and the

control plane for more flexible innovation and management. We will continue our study about new

threats against the SDN framework and extend our target protocol to other protocols (e.g., P4 [84]).

We plan to extend our FORENGUARD work in several aspects. First, we will extend the imple-

mentation to support more SDN controllers and other programming language (e.g., Python, C++).

Second, we will extend the diagnosis module to have more visualization functions to make the

framework more user-friendly. Third, we will continue of study of network diagnosis and extend

from flow-level diagnosis to packet-level diagnosis techniques.

We will extend our BYOC-VISOR to support more customization to the cloud tenants. For

example, we would like to allow the cloud tenants to customize arbitrary topology for their virtual

private networks. We plan to design physically distributed but logically centralized hypervisor

level of BYOC-VISOR to achieve better scalability in real clouds.
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