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ABSTRACT

Efficiency and productivity analysis focuses on firm performance to obtain firm–level and

industry–level economic structural insights. This study provides the theoretical and methodolog-

ical basis for nonparametric production function estimation using local weighting and imposing

shape constraints to avoid functional misspecification and to improve the interpretability of esti-

mation results.

The first contribution is a model that combines a conventional local weighted estimator with

monotonicity and global concavity constraints consistent with a production process with decreas-

ing returns to scale. The second contribution is a model that imposes more complicated shape

constraints allowing small firms to benefit from increasing returns to scale while still imposing

decreasing returns to scale for large firms. This set of shape constraints is referred to as an S-shape

production function and the relationship to the Regular Ultra Passum law is described. Further, an

algorithm is proposed to estimate a production function satisfying the S-shape restriction, convex

input sets and allowing for potentially non-homothetic input isoquants. The third contribution is

a model that further extends the first two contributions to address the simultaneity issue using an

instrumental variables approach. The proposed model imposes shape constraints in a Landweber–

Fridman regularization. In addition to methodological contributions, simulation and application

results are provided to demonstrate the improved finite sample performance and the interpretabil-

ity of estimation results. Insights are gained for both Chilean and Japanese manufacturing by using

the census of manufacturing data from these two countries.
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1. INTRODUCTION

An aspect of productivity analysis is the study of firm performance by comparing the outputs

produced to the inputs consumed. Specifically, we are interested in estimating a production func-

tion, which describes the relationship between observed outputs, such as value added, and factors

of production, such as labor and capital. In addition to providing a measure of firm level pro-

ductivity, as measured by the distance from the observation to the estimated production function,

a production function can also provide industry–level economic insights such as returns to scale,

elasticity of substitution between inputs, or most productive scale size. Thus, production functions

are applied to many different fields including agriculture, banking, education, environment, health

care, energy, manufacturing and so on (Fried et al. (2008)).

When modeling production functions, parametric regression models are still widely used al-

though they require ex–ante specifications of a typically unknown functional form. Given that

productivity is measured as the unobserved residual, overly restrictive assumptions about the pro-

duction functions form are likely to result in a biased estimates of productivity levels. In contrast,

nonparametric regression methods, such as the local linear estimator, avoid functional misspeci-

fication. However, the flexible nature of nonparametric methods make it difficult to interpret the

estimation results in production economics (Beattie et al. (1985)). Fortunately, microeconomic

theory such as Varian (1984) provides additional structures for modeling production which can

be stated as shape constraints. Recently several nonparametric shape constrained estimators have

been proposed that combine the advantage of avoiding parametric functional specification with

improved small sample performance relative to unconstrained nonparametric estimators. Nev-
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ertheless, the existing methods have limitations regarding either estimation performance due to

overfitting or computational feasibility. Thus, the first objective of this research is to propose a

new estimator that imposes shape restrictions on local kernel weighting methods. By combining

local averaging with shape-constrained estimation, we hope to improve finite sample performance

by avoiding overfitting and control the computational complexity.

Furthermore, existing methods only allow to impose simple shape constraints such as con-

cavity/convexity and monotonicity. These structure exclude important economic phenomena such

as increasing returns to scale due to specialization, fixed costs, or learning (Frisch (1964)). This

makes a shape constrained estimator biased and inconsistent regardless of a flexible nature of non-

parametric estimator due to the misspecified constraints. This motivates us to impose more general

flexible axiomatic structures consistent with the Regular Ultra Passum (RUP) law. There are sev-

eral existing estimators which impose the RUP law as shape constraints. However, these estimation

methods assume additional structure such as homotheticity on production function, and thus, are

not flexible enough to capture a variety of realistic production structures. Thus, the objective of

this research is to impose more general shape restrictions on a production function to allow the

characterization of wider variety of economic phenomena.

Finally, when estimating production functions, endogeneity is a common critical problem since

firms’ managers determine input levels while knowing their firm specific productivity level which

is modeled as a part of the residuals. Specifically, firms change variable labor input levels due to the

shocks in productivity, which makes conventional regression models biased and inconsistent. For

instance, more productive firms may hire more labors since firms need to prepare for a busy period

in the near future. Several solutions to this endogeneity problem have been suggested including

instrumental variable (IV) and control function approaches. However, the existing methods assume

2



specific parametric functional forms on the production function, and thus, are likely to suffer from

functional misspecification. Thus, we extend the proposing shape constrained estimator to the

case when variable inputs are endogenous by using instrumental variables. We propose to impose

shape constraints in the Landweber–Fridman regularization estimation process. This estimator is

computationally feasible even with complicated shape constraints.

We estimate production functions for Chilean and Japanese manufacturing industries with our

proposed models. The estimation results provide a description of supply–side of manufacturing

industries as we report marginal product, marginal rate of substitution, elasticity of substitution

and the most productive scale size. We find that these models result in a alternative economic

insights than existing parametric models. Specifically, restrictive parametric models are likely

to be suffered from the bias due to the misspecification. Furthermore, we report the aggregated

productivity–level to measure the dynamics of industry growth over time.

The remainder of this dissertation is as follows. In Chapter 2, we propose a novel method called

Shape Constrained Kernel-weighted Least Squares (SCKLS), which optimizes a local polynomial

kernel criterion while estimating a multivariate regression function with simple shape constraints

such as concavity and monotonicity. In 3, we generalize shape constraints and propose an iterative

algorithm to estimate a production function which satisfies both the S-shape restriction and input

isoquant convexity. In Chapter 4, we propose to extend our models using an IV approach to

address the endogeneity by imposing shape constraints on a regularization process. In Chapter 5,

we conclude and summarize the entire work, and suggest the research direction for future work.
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2. SHAPE CONSTRAINED KERNEL-WEIGHTED LEAST SQUARES: ESTIMATING

PRODUCTION FUNCTIONS FOR CHILEAN MANUFACTURING INDUSTRIES 1

2.1 Introduction

In this chapter, we propose a new estimator that imposes shape restrictions on local kernel

weighting methods. By combining local averaging with shape-constrained estimation, we hope to

improve finite sample performance by avoiding overfitting.

Work on shape-constrained regression first started in the 1950s with Hildreth (1954), who

studied the univariate regressor case with a least squares objective subject to monotonicity and

concavity/convexity constraints. See also Brunk (1955) and Grenander (1956) for alternative

shape constrained estimators. Under the concavity/convexity constraint, properties such as con-

sistency, rate of convergence, and asymptotic distribution have been shown by Hanson and Pledger

(1976), Mammen (1991), and Groeneboom et al. (2001), respectively. In the multivariate case,

Kuosmanen (2008) developed the characterization of the least squares estimator subject to concav-

ity/convexity and monotonicity constraints, which we will refer to as Convex Nonparametric Least

Squares (CNLS) throughout this chapter. Furthermore, consistency of the least squares estimator

was shown independently by Seijo and Sen (2011) and Lim and Glynn (2012).

Regarding the nonparametric estimation implemented using kernel based methods, Birke and

Dette (2007), Carroll et al. (2011), and Hall and Huang (2001) investigated the univariate case and

proposed smooth estimators that can impose derivative-based constraints including monotonicity

1Reprinted with permission from “Shape constrained kernel-weighted least squares: Estimating production func-
tions for Chilean manufacturing industries. by Yagi, D., Chen, Y., Johnson, A. L., & Kuosmanen, T., 2018. Journal of
Business & Economic Statistics, just-accepted.”, Copyright by Taylor & Francis.
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and concavity/convexity. Du et al. (2013) proposed Constrained Weighted Bootstrap (CWB) by

generalizing Hall and Huang’s method to the multivariate regression setting. Beresteanu (2007)

developed a similar type of estimator but for use with spline based estimators. Finally, we mention

the work of Li et al. (2016), which extended Hall and Huang’s method to use the k-nearest neighbor

approach subject to the monotonicity constraint.

In this chapter, Shape Constrained Kernel-weighted Least Squares (SCKLS) estimator is de-

scribed, which optimizes a local polynomial kernel criterion while estimating a multivariate regres-

sion function with shape constraints. Under the monotonicity and convex/concavity constraints,

we prove uniform consistency and establish the convergence rate of the SCKLS estimator. Kuos-

manen (2008), Seijo and Sen (2011) and Lim and Glynn (2012) emphasize the potential advantage

that CNLS does not require the selection of tuning parameters. Our proposed SCKLS estimator

sheds further light on this issue: in the SCKLS framework, CNLS can be seen as the zero band-

width estimator; we argue that, compared to unrestricted kernel methods, the SCKLS estimator

is relatively robust to the bandwidth selected and is able to alleviate well-known issues such as

boundary inconsistency faced by the CNLS estimator.

Note that with n observations, CNLS imposes O(n2) concavity/convexity constraints, which

can lead to computational difficulties. The number of constraints and the number of variables

in the SCKLS estimator do not depend on the number of observations, but rather the number

of evaluation points which is arbitrarily defined by the modeler, thereby bring the computational

complexity of the estimator largely under control of the modeler. In this chapter, we implement

an iterative algorithm that reduces the number of constraints by building on the ideas in Lee et al.

(2013) to further improve the computational performance. We then validate the performance of

the SCKLS estimator via Monte Carlo simulations. For a variety of parameter settings, we find
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performance of SCKLS to be better or at least competitive with CNLS, CWB, and the local linear

estimators. We provide the first simulation study of CWB with global concavity constraints. We

also investigate the use of variable bandwidth methods that are a function of the data density 2 and

propose variants of a uniform grid as practical ways to further improve the performance of SCKLS.

Crucially, we also investigate the behavior of SCKLS when the shape constraints are misspec-

ified and propose a hypothesis test to validate the shape constraints imposed. Having a test that

validates the shape constraints is critical because otherwise our estimation procedure would lead

to inconsistent estimates.

Finally, we apply the SCKLS estimator empirically on Chilean manufacturing data from the

Chilean Annual Industrial Survey. The estimation results provide a concise description of the

supply-side of the Chilean plastic and wood industries as we report marginal productivity, marginal

rate of substitution and most productive scale size. We also investigate the impact of exporting on

productivity by including additional predictors of output in a semi-parametric model. We find that

exporting correlates with higher productivity, thus supporting international trade theories that high

productivity firms are more likely to compete in international markets.

Our focus on production functions guides our selection of the polynomial function used in

estimation, the data generation processes (DGP) in the Monte Carlo simulations. For the applica-

tion analyzing the Chilean manufacturing data, we are interested in monotonic and concave shape

constraints and use a local linear kernel function. These assumptions are motivated by standard

economic theory for production functions (Varian, 1984). However, the methods proposed in the

paper are general and applicable for other applications with higher order polynomial functions or

2A variable bandwidth method allows the bandwidth associated with a particular regressor to vary with the density
of the data.
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alternative shape restrictions, as discussed in Appendix A.1.

The remainder of this chapter is as follows. Section 2.2 describes the model framework and

presents our estimator, SCKLS. Section 2.3 contains the statistical properties of the estimator,

and Section 2.4 discusses the behavior of SCKLS under misspecification, as well as a test for

concavity and monotonicity. Monte Carlo simulation results under several different experimental

settings are shown in Section 2.5. Section 2.6 applies the SCKLS estimator to estimate a production

function for both the Chilean plastics and wood industries. Section 2.7 concludes and suggests

future research directions. Appendix A.1 provides extensions to SCKLS and a comparison to

CNLS and CWB. Appendix A.2 contains all the technical proofs and Appendix A.3 describes a

test for affinity. Appendix A.4 states the details of the iterative algorithm for SCKLS, and Appendix

A.5 presents a more extensive set of simulation results. Appendix A.6 describes the details of the

partially linear model, and Appendix A.7 gives further details about the application to the Chilean

manufacturing data.

2.2 Model Framework and Methodology

2.2.1 Model

Suppose we observe n pairs of input and output data, {Xj, yj}nj=1, where for every j =

1, . . . , n, Xj = (Xj1, . . . , Xjd)
′ ∈ Rd is a d-dimensional input vector, and yj ∈ R is an output.

Consider the following regression model

yj = g0(Xj) + εj, for j = 1, . . . , n,
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where εj is a random variable satisfying E(εj|Xj) = 0. Assume that the regression function

g0 : Rd → R belongs to a class of functions, G, that satisfies certain shape restrictions. Here

our estimator can impose any shape restriction that can be modeled as a lower or upper bound on

a derivative. Examples are supermodularity, convexity, monotonicity, and quasi-convexity. For

purposes of concreteness, and in view of the application to production functions, we focus on

imposing monotonicity and global convexity/concavity, specifically, g0 is concave if:

λg0(x1) + (1− λ)g0(x2) ≤ g0(λx1 + (1− λ)x2), ∀x1,x2 ∈ Rd and ∀λ ∈ [0, 1]

Furthermore, saying g0 is monotonically increasing means that

if x1 ≤ x2, then g0(x1) ≤ g0(x2),

where the inequality of x1 ≤ x2 means that every component of x2 is greater than or equal to

the corresponding component of x1. Here we denote G2 as the set of functions satisfying these

constraints.

2.2.2 Shape Constrained Kernel-weighted Least Squares (SCKLS) with Local Linear

Given observations {Xj, yj}nj=1, we state the (multivariate) local linear kernel estimator devel-

oped by Stone (1977) and Cleveland (1979) as

min
a,b

n∑
j=1

(yj − a− (Xj − x)′b)2K

(
Xj − x
h

)
, (2.1)
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where a is a functional estimate, and b is an estimate of the slope of the function at x with x being

an arbitrary point in the input space, K
(
Xj−x
h

)
denotes a product kernel, and h is a vector of

bandwidths (see Racine and Li (2004) for more detail). We note that the objective function uses

kernel weights, so more weight is given to the observations that are closer to the point x.

We introduce a set ofm points, x1, . . . ,xm, for evaluating constraints, which we call evaluation

points, and impose shape constraints on the local linear kernel estimator. In the spirit of local linear

kernel estimator, we define Shape Constrained Kernel-weighted Least Squares (SCKLS) estimator,

for the case of monotonicity and concavity, to be the function ĝn : Rd → R such that

ĝn(x; â, b̂) = min
i∈{1,...,m}

{
âi + (x− xi)′b̂i

}
(2.2)

for any x ∈ Rd, where â = (â1, . . . , âm)′ and b̂ = (b̂′1, . . . , b̂
′
m)′ are the solutions to the following

optimization problem

min
a,b

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)

subject to ai − al ≥ b′i(xi − xl), i, l = 1, . . . ,m

bi ≥ 0, i = 1, . . . ,m.

(2.3)

The first set of constraints in (2.3) imposes concavity and the second set of constraints imposes

non-negativity of bi at each evaluation point xi. For more details see Kuosmanen (2008). Note that

(2.2) implies the functional estimate is constructed by taking the minimum of linear interpolations

between the evaluation points. This makes SCKLS a globally shape constrained function although

it is a non-smooth piece-wise linear function.
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The SCKLS estimator requires the user to specify the number and the locations of the eval-

uation points. A standard method for determining the location of evaluation points, {xi}mi=1, is

to construct a uniform grid, where each dimension is divided using equal spacing. However, we

can address the skewness of input variable distributions common in manufacturing survey data by

using a non-uniform grid method, specifically percentile gridding, to specify evaluation points.

Alternatively, we can deal with the input skewness by applying the k-nearest neighbor (k-NN)

approach, Li et al. (2016). The k-NN approach uses a smaller bandwidth in dense data regions and

a larger bandwidth when the data is sparse. The analysis in Section 2.6 uses both a percentile grid

and k-NN approach to define the kernel function. For details of these extensions, see Appendix

A.1.

As the density of the evaluation points increases, the estimated function potentially has more

hyperplane components and is more flexible; however, the computation time typically increases. If

a smooth functional estimate is preferred, see Nesterov (2005) and Mazumder et al. (2015), where

methods for smoothing are provided. In practice, we propose to select the bandwidth vector h via

the leave-one-out cross-validation based on the unconstrained estimator. See Section 2.5 for the

details.

Appendix A.1 proposes several alternative implementations of the SCKLS estimator: (1) SCKLS

with Local Polynomial approximation, (2) a k-nearest neighbor (k-NN) approach and (3) non-

uniform grid method.

2.3 Theoretical Properties of SCKLS

For mathematical concreteness, we next consider the statistical properties of SCKLS under

monotonicity and concavity constraints. Recall that G2 is the class of functions which are mono-
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tonically increasing and globally concave, and g0 is the truth to be estimated from n pairs of

observations. We make the following assumptions:

Assumption 2.1.

(i) {Xj, yj}∞j=1 are a sequence of i.i.d. random variables with yj = g0(Xj) + εj .

(ii) g0 ∈ G2 and is twice-differentiable.

(iii) Xj follows a distribution with continuous density function f and support S. Here S is a

convex, non-degenerate and compact subset of Rd. Moreover,

min
x∈S

f(x) > 0.

(iv) The conditional probability density function of εj , givenXj , denoted as p(e|x), is continuous

with respect to both e and x, with the mean function

µ(·) = E(εj|Xj = ·) = 0

and the variance function

σ2(·) = Var(εj|Xj = ·)

bounded away from 0 and continuous over S. Moreover, supx∈S E
(
ε4j

∣∣∣Xj = x
)
<∞.

(v) K(·) is a non-negative, Lipschitz second order kernel with a compact and convex support.

For simplicity, we set the bandwidth associated with each explanatory variable, hk, for k =

1, . . . , d, to be h1 = · · · = hd = h.
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(vi) h = O(n−1/(4+d)) as n→∞.

Here (i) states that the data are i.i.d.; (ii) says that the constraints we impose on the SCKLS

estimator are satisfied by the true function; (iii) makes a further assumption on the distribution

of the covariates; (iv) states that the noise can be heteroscedastic in certain ways, but requires

the change in the variance to be smooth; (v) is rather standard in local polynomial estimation to

facilitate the theoretical analysis; and (vi) assures the bandwidths become sufficiently small as

n → ∞ so that both the bias and the variance from local averaging go to zero. For details of

the consistency of local linear estimator and a discussion of some of these conditions, see Masry

(1996), Li and Racine (2007) and Fan and Guerre (2016).

We consider two scenarios: let the number of evaluation points (denoted by m) grow with n,

or fix the number of evaluation points a priori. For simplicity, we also assume that the evaluation

points are drawn independent of {Xj, yj}nj=1.

Assumption 2.2.

(i) The number of evaluation points m → ∞ as n → ∞. For simplicity, we assume that the

empirical distribution of {x1, . . . ,xm} converges to a distribution Q that has support S (i.e.

as defined in Assumption 2.1(iv))) and a continuous differentiable density function q : S → R

satisfying minx∈S q(x) > 0.

(ii) The number of evaluation points m is fixed. All the evaluation points lie in the interior of S.

Moreover,

supx∈S mini=1,...,m ‖x− xi‖
mini 6=j;i,j∈{1,...,m} ‖xj − xi‖

≤ κ

for some κ ≥ 1 (i.e. {x1, . . . ,xm} are reasonably well spread across S).
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Our main results are summarized below. A short discussion on our proof strategy and the

proofs are available in Appendix B.

Theorem 2.1. Suppose that Assumption 2.1(i)-2.1(vi) and Assumption 2.2(i) or 2.2(ii) hold. Then,

1

m

m∑
i=1

{ĝn(xi)− g0(xi)}2 = O(n−4/(4+d) log n)

.

Theorem 2.2.

1. (The case of an increasing m) Suppose that Assumption 2.1(i)-2.1(vi) and Assumption 2.2(i)

hold. LetC be any fixed closed set that belongs to the interior of S. Then with probability one,

as n→∞, the SCKLS estimator satisfies

sup
x∈C

∣∣ĝn(x)− g0(x)
∣∣→ 0.

2. (The case of a fixed m) Suppose that Assumption 2.1(i)-2.1(vi) and Assumption 2.2(ii) hold.

Then, as n→∞, with probability one, the estimates from SCKLS satisfy

âi → g0(xi) and b̂i →
∂g0

∂x
(xi)

for all i = 1, . . . ,m.

Note that this convergence rate is nearly optimal (differing only by a factor of log n). However,

in the above, we only manage to show that the SCKLS estimator converges at the evaluation points
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or in the interior of the domain. It is known that shape-constrained estimators tend to suffer from

bad boundary behaviors. For instance, the quantity supS
∣∣ĝCNLSn (x) − g0(x)

∣∣ does not converge

to zero in probability, where ĝCNLSn is the CNLS estimator. Though for SCKLS, if we let the

number of evaluation points, m, grow at a rate slower than n, we argue that we can both alleviate

the boundary inconsistency and improve the computational efficiency.

Assumption 2.3. The number of evaluation points m = o(n2/(4+d)/ log n) as n→∞.

Theorem 2.3. Suppose that Assumption 2.1(i)-2.1(vi), Assumption 2.2(i) and Assumption 2.3 hold.

Then, with probability one, as n→∞, the SCKLS estimator satisfies

sup
x∈S

∣∣ĝn(x)− g0(x)
∣∣→ 0.

We also note that CNLS can be viewed as a special case of SCKLS when we let the set of

evaluation points be {X1, . . . ,Xn} and the bandwidth vector ‖h‖ → 0. See Appendix A.1 for

the proof of the relationship between CNLS and SCKLS, together with more discussions on the

relationship between SCKLS and alternative shape constrained estimators such as CWB.

2.4 Shape Misspecification: Theory and Testing

2.4.1 Misspecification of the shape restrictions

So far we have assumed in our estimation procedures that g0 ∈ G2, where G2 is the class of

functions which are monotonically increasing and globally concave. To understand the behavior

of SCKLS, we are interested in its performance when g0 /∈ G2.
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Let Q be a distribution on S (as in Assumption 2.2(i)) and define g∗ : S → R as

g∗0 := argmin
g∈G2

∫
S

{g(x)− g0(x)}2Q(dx).

The existence and Q-uniqueness of g∗0 follows from the well-known results about the projection

onto a cone in the Hilbert space. When g0 ∈ G2, it is easy to check that g∗0 = g0. See also Lim and

Glynn (2012). The following result can be viewed as a generalization of Theorem 2.2.

Theorem 2.4.

Suppose that Assumption 2.1(i), 2.1(iii)-2.1(vi) and Assumption 2.2(i) hold. Furthermore, sup-

pose that g0 is twice-differentiable. Let C be any compact set that belongs to the interior of S.

Then with probability one, as n→∞, the SCKLS estimator satisfies

sup
x∈C

∣∣ĝn(x)− g∗0(x)
∣∣→ 0.

Theorem 2.4 assures us that the SCKLS estimator converges uniformly on a compact set to

the function g∗0 that is closest in L2 distance to the true function g0 for which our estimator is

misspecified. Consequently, as long as g0 is not too far away from G2, our estimator can still be

used as a reasonable approximation to the truth, especially when the sample size is moderate. See

Appendix A.5 for a numerical demonstration.
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2.4.2 Hypothesis Testing for the Shape

Admittedly, the SCKLS estimator can be inappropriate if the shape constraints are not fulfilled

by g0. Thus, we propose a procedure based on the SCKLS estimators for testing

H0 : {g0 : S → R} ∈ G2 against H1 : {g0 : S → R} /∈ G2.

Denote by

r̃2
(
{Xj, yj}nj=1, {xi}mi=1

)
= min

a,b

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)
;

the value of the objective function that is minimized by the local linear kernel estimator. And

denote by

r̂2
(
{Xj, yj}nj=1, {xi}mi=1

)
= min

a,b

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)
,

subject to ai − al ≥ b′i(xi − xl) and bi ≥ 0, i, l = 1, . . . ,m.

Here r̂2(·, ·) is the value of the objective function that is minimized by SCKLS.

We focus on the test statistic

Tn := T
(
{Xj, yj}nj=1, {xi}mi=1

)
=
[ 1

mnhd

{
r̂2
(
{Xj, yj}nj=1, {xi}mi=1

)
− r̃2

(
{Xj, yj}nj=1, {xi}mi=1

)}]1/2

,

which is a re-scaled version of the difference between the values of the same objective function
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(with the same bandwidth h), optimized either with or without the shape constraints. Intuitively,

the value of this statistic should be small if g0 ∈ G2. This statistic can also be viewed as a smoothed

and re-scaled version of the goodness-of-fit statistic.

Here we focus on the boundary case when g0 is constant (i.e. g0 = 0) because it is hardest

to evaluate the null hypothesis when g0 is both non-increasing and non-decreasing and both con-

cave and convex, intuitively and theoretically and it allows us to control the size of our test statistic.

Since the noise here might be non-homogeneous, we use the wild bootstrap to approximate the dis-

tribution of the test statistic under H0. See Wu (1986), Liu (1988), Mammen (1993) and Davidson

and Flachaire (2008) for an overview of the wild bootstrap procedure.

Our testing procedure has three steps:

1. Estimate the error at each Xj by ε̃j = yj − g̃n(Xj) for j = 1, . . . , n, where g̃ is the uncon-

strained local linear estimator with kernel and bandwidth satisfying Assumptions 2.1(v)–(vi).

2. The wild bootstrap method is used to construct a critical region for Tn. Let B be the number

of Monte Carlo iterations. For every k = 1, . . . , B, let uk = (u1k, . . . , unk)
′ be a ran-

dom vector with components sampled independently from the Rademacher distribution, i.e.

P (ujk = 1) = P (ujk = −1) = 0.5. Furthermore, let yjk = ujk ε̃j . Then, the wild bootstrap

test statistic is

Tnk = T
(
{Xj, yjk}nj=1, {xi}mi=1

)
.
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3. Define the Monte Carlo p-value as3

pn =
1

B

B∑
k=1

1{Tn≤Tnk}.

For a test of size α ∈ (0, 1), we reject H0 if pn < α.

A few remarks are in order.

First, here we conveniently implemented the simplest wild bootstrap scheme to simplify our

analysis, in line with the work of Davidson and Flachaire (2008). Instead of imposing the Rademacher

distribution on ukj , we can also use any distribution with zero-mean and unit-variance. One popu-

lar choice suggested by Mammen (1993) is

ujk =


−
√

5−1
2

with probability 5+
√

5
10

√
5+1
2

with probability 5−
√

5
10

.

Second, note that the definition of yjk in Step 2 makes this a test of the residuals, i.e., when

drawing bootstrap samples, we use yjk = ujk ε̃j instead of yjk = ĝn(Xj) + ujk ε̃j . From this

perspective, our test is similar to the univariate monotonicity test in Hall and Heckman (2000).

One reason behind this choice is to avoid the boundary inconsistency of the bootstrap procedure.

See Andrews (2000) and Cavaliere et al. (2017) who addressed this issue in a much simpler setup.

Generally speaking, testing the null hypothesis becomes harder when g0 is on the boundary of G2.

In practice, we could use yjk = ĝn(Xj) + ujk ε̃j in certain scenarios (e.g. when testing g0 is a

3Since we underestimate the level of the errors in Step 1 by a factor of roughly n−2/(4+d), for the theoretical
development, we address this bias issue by modifying the p-value to be pn = 1

B

∑B
k=1 1{Tn≤Tnk+∆n}, where ∆n =

O(n−2/(4+d) log n). Note that if we fix m and pick h = O(n−η) for η ∈ ( 1
4+d ,

1
d ), then ∆n/Tnk = op(1) as

n → ∞, i.e. this correction has a negligible effect. Indeed, our experience suggests that this modification offers little
improvement in terms of finite sample performance in our simulation study.
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strictly increasing and strictly concave function against g0 /∈ G2), and slight improvements are

observed in terms of finite-sample performance.

We now look into the theoretical properties of our procedure under both H0 and H1. See

Appendix A.2 for the proof.

Theorem 2.5. Suppose that Assumptions 2.1(i),(iii)–(v) and 2.2(i) hold, and the conditional er-

ror distribution (i.e. εj|Xj) is symmetric. Furthermore, assume that g0 is continuously twice-

differentiable and let h = O(n−η) for some fixed η ∈ ( 1
4+d

, 1
d
). Let B := B(n) → ∞ as n → ∞.

Then, for any given α ∈ (0, 1),

– Type I error: for any g0 ∈ G2, lim supn→∞ P (pn < α) ≤ α;

– Type II error: for any g0 /∈ G2, lim supn→∞

{
1− P (pn < α)

}
= 0.

In addition, if we replace Assumption 2.2(i) by Assumption 2.2(ii), the same conclusions hold for

sufficiently large m.

See also Section 2.5 for the finite-sample performance of our test in a simulation study, where

we demonstrate that the proposed test controls both Type I and Type II errors reasonably well.

Additionally, Appendix A.3 describes our procedure for testing affinity using SCKLS.

2.5 Simulation study

2.5.1 Numerical experiments on estimation

2.5.1.1 The setup

We now examine the finite sample performance and robustness of the proposed estimator

through Monte Carlo simulations. We run our experiments on a computer with Intel Core2 Quad

CPU 3.00 GHz and 8GB RAM. We compare the performance of SCKLS is compared with that
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of CNLS and LL. See Appendix A.5 for a comparisons of SCKLS with CWB. For the SCKLS

and the CNLS estimator, we solve the quadratic programming problems with MATLAB using the

built-in quadratic programming solver, quadprog. We run two sets of experiments varying the

number of observations (n), the number of evaluation points (m), and the number of the inputs (d).

We also run additional experiments to show the robust performance of the SCKLS estimator under

alternative conditions. See Appendix A.5 for the results.

We measure the estimator’s performance using Root Mean Squared Errors (RMSE) based on

two criteria: the distance from the estimated function to the true function measured 1) at the ob-

served points and 2) at the evaluation points constructed on an uniform grid , respectively. As

CNLS estimates hyperplanes at observation points, we use linear interpolation to obtain the RMSE

of CNLS4. We replicate each scenario 10 times and report the average and standard deviation.

2.5.1.2 Choosing of the tuning parameters

For the SCKLS estimator, we use the Gaussian kernel function K(·) and leave-one-out cross-

validation (LOOCV) for bandwidth selection. LOOCV is a data-driven method, and has been

shown to perform well for unconstrained kernel estimators such as local linear (Stone, 1977). We

apply LOOCV procedure on unconstrained estimates (i.e. local linear) to select the bandwidth for

SCKLS to reduce the computational burden and because SCKLS is relatively insensitive to the

bandwidth choice (see for example Section 2.5.1.3.1). For further computational improvements,

we apply the iterative algorithm described in Appendix A.4.

2.5.1.3 Results

2.5.1.3.1 Fixed number of evaluation points

4The CNLS estimates include the second stage linear programming estimation procedure described in Kuosmanen
and Kortelainen (2012) to find the minimum extrapolated production function.
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Experiment 1. We consider a Cobb–Douglas production function with d-inputs and one-output,

g0(x1, . . . , xd) =
∏d

k=1 x
0.8
d
k . For each pair (Xj, yj), each component of the input, Xjk, is ran-

domly and independently drawn from uniform distribution unif [1, 10], and the additive noise, εj ,

is randomly sampled from a normal distribution, N(0, 0.72). We consider 15 different scenarios

with different numbers of observations (100, 200, 300, 400 and 500) and input dimensions (2, 3

and 4). The structure and data generation process of Experiment 1 follows Lee et al. (2013). We

fix the number of evaluation points at approximately 400 and locate them on a uniform grid.

For this experiment, we compare the following four estimators: SCKLS, CNLS, Local Linear

Kernel (LL), and parametric Cobb–Douglas estimator. The latter estimator serves as a baseline be-

cause it is correctly specified parametric form. Tables 2.1 and 2.2 show for Experiment 1 the RMSE

measured on observation points and evaluation points, respectively. The number in parentheses is

the standard deviation of RMSE values computed by 10 replications. Note the standard derivations

are generally small compared to the parameter estimates, which indicates low variability even after

only 10 replications. A more extensive set of results for this experiment is summarized in Ap-

pendix A.5. The SCKLS estimator has the lowest RMSE in most scenarios even when RMSE is

measured on observation points (note that the SCKLS estimator imposes the global shape con-

straints via evaluation points in Equation (2.3)). Also as expected, the performance of SCKLS

estimator improves as the number of observation points increases. Moreover, the SCKLS estima-

tor performs better than the LL estimator particularly in higher dimensional functional estimation.

This provides empirical evidence that the shape constraints in SCKLS are helpful in improving

the finite sample performance as compared to LL. Note that LL appears to have larger RMSE val-

ues on evaluation points which are located in input space regions with sparse observations. This
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implies that the SCKLS estimator has more robust out-of-sample performance than the LL esti-

mator due to the shape constraints. We also observe that the performance of the CNLS estimator

measured at the evaluation points is worse than that measured at the observations. CNLS often

has ill-defined hyperplanes which are very steep/shallow at the edge of the observed data, and this

over-fitting leads to poor out-of-sample performance. In contrast, the SCKLS estimator performs

similarly for both the observation points and evaluation points, because the construction of the grid

that completely covers the observed data makes the SCKLS estimator more robust.

We also conduct simulations with different bandwidths to analyze the sensitivity of each esti-

mator to bandwidths. We compare SCKLS and LL with bandwidth h ∈ [0, 10] with an increment

by 0.01 for the 1-input setting, and we use bandwidth h ∈ [0, 5]× [0, 5] with an increment by 0.25

in each coordinate for the 2-input setting. We simulate 100 datasets to compute the RMSE for

Table 2.1. RMSE on observation points for Experiment 1.

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS 0.193 0.171 0.141 0.132 0.118
(0.053) (0.047) (0.032) (0.029) (0.017)

CNLS 0.229 0.163 0.137 0.138 0.116
(0.042) (0.037) (0.010) (0.027) (0.016)

LL 0.212 0.166 0.149 0.152 0.140
(0.079) (0.042) (0.028) (0.028) (0.028)

Cobb–Douglas 0.078 0.075 0.048 0.039 0.043

3-input

SCKLS 0.230 0.187 0.183 0.152 0.165
(0.050) (0.026) (0.032) (0.019) (0.031)

CNLS 0.294 0.202 0.189 0.173 0.168
(0.048) (0.035) (0.020) (0.014) (0.020)

LL 0.250 0.230 0.235 0.203 0.181
(0.068) (0.050) (0.052) (0.050) (0.021)

Cobb–Douglas 0.104 0.089 0.070 0.047 0.041

4-input

SCKLS 0.225 0.248 0.228 0.203 0.198
(0.038) (0.020) (0.037) (0.042) (0.028)

CNLS 0.315 0.294 0.246 0.235 0.214
(0.039) (0.027) (0.024) (0.029) (0.015)

LL 0.256 0.297 0.252 0.240 0.226
(0.044) (0.057) (0.056) (0.060) (0.038)

Cobb–Douglas 0.120 0.073 0.091 0.067 0.063
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Table 2.2. RMSE on evaluation points for Experiment 1.

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS 0.219 0.189 0.150 0.147 0.128
(0.053) (0.057) (0.034) (0.030) (0.021)

CNLS 0.350 0.299 0.260 0.284 0.265
(0.082) (0.093) (0.109) (0.119) (0.078)

LL 0.247 0.182 0.167 0.171 0.156
(0.101) (0.053) (0.030) (0.030) (0.034)

Cobb–Douglas 0.076 0.076 0.049 0.040 0.043

3-input

SCKLS 0.283 0.231 0.238 0.213 0.215
(0.072) (0.033) (0.030) (0.029) (0.034)

CNLS 0.529 0.587 0.540 0.589 0.598
(0.112) (0.243) (0.161) (0.109) (0.143)

LL 0.336 0.340 0.360 0.326 0.264
(0.085) (0.093) (0.108) (0.086) (0.042)

Cobb–Douglas 0.116 0.098 0.080 0.052 0.046

4-input

SCKLS 0.321 0.357 0.329 0.308 0.290
(0.046) (0.065) (0.049) (0.084) (0.044)

CNLS 0.845 0.873 0.901 0.827 0.792
(0.188) (0.137) (0.151) (0.235) (0.091)

LL 0.482 0.527 0.483 0.495 0.445
(0.115) (0.125) (0.146) (0.153) (0.074)

Cobb–Douglas 0.146 0.091 0.115 0.081 0.080

each bandwidth as well as for the bandwidth via LOOCV. Figure 2.1 displays the average RMSE

of each estimator. The histogram shows the distribution of bandwidths selected by LOOCV. The

instances when SCKLS and LL provide the lowest RMSE are shown in light gray and dark gray re-

spectively. For the one-input scenario, the SCKLS estimator performs better than the LL estimator

for bandwidth between 0.25 - 2.25 as shown in (a). For the two-input scenario, the SCKLS esti-

mator performs better for most of the LOOCV values as shown by the majority of the histogram

colored in light gray. This indicates that LOOCV, calculated using the unconstrained estimator,

provides bandwidths that work well for the SCKLS estimator. Importantly, the SCKLS estimator

does not appear to be very sensitive to the bandwidth selection method since, heuristically, the

shape constraints help reduce the variance of the estimator. Finally, we note that similar results can

be obtained in experimental settings with lower signal-to-noise level, or with non-uniform input.

See Appendix A.5 for more details.
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(a) One-input (b) Two-input

Figure 2.1. The histogram shows the distribution of bandwidths selected by LOOCV. The curves
show the relative performance of each estimator.

2.5.1.3.2 Different numbers of evaluation points

Experiment 2. The setting is the same as Experiment 1. However, now we consider 9 different

scenarios with different numbers of evaluation points (100, 300 and 500) and input dimensions (2,

3 and 4). We fix the number of observed points at 400.

We show the performance of SCKLS. Table 2.3 and 2.4 shows for Experiment 2 the RMSE

measured on observations and evaluation points respectively. Both tables show that empirically

even if we increase the number of evaluation points, the RMSE value does not change significantly.

This has important implications for the running time. Specifically, we can reduce the calculation

time by using a rough grid without sacrificing too much in terms of RMSE performance of the

estimator.
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Table 2.3. RMSE on observation points for Experiment 2.

Average of RMSE on observation points
Number of evaluation points 100 300 500

2-input SCKLS 0.142 0.141 0.141

3-input SCKLS 0.198 0.203 0.197

4-input SCKLS 0.239 0.207 0.206

Table 2.4. RMSE on evaluation points for Experiment 2.

Average of RMSE on evaluation points
Number of evaluation points 100 300 500

2-input SCKLS 0.181 0.164 0.158

3-input SCKLS 0.304 0.267 0.257

4-input SCKLS 0.383 0.296 0.270

2.5.2 Numerical experiments on testing the imposed shape

Experiment 3. We test monotonicity and concavity for data generated from the following single-

input and single-output DGP:

g0(x) = xp (2.4)

and

g0(x) =
1

1 + exp(−5 log(2x))
. (2.5)

With n observations, for each pair (Xj, yj), each input, Xj , is randomly and independently drawn

from uniform distribution unif [0, 1]. In this simulation, we use the following multiplicative noise

to validate whether the wild bootstrap can handle non-homogeneous noise.

yj = g0(Xj) + (Xj + 1) · εj,
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where εj , is randomly and independently sampled from a normal distribution, N(0, σ2). We use

three different DGP scenarios A, B and C. For scenarios A and B, we use function (2.4) where

the exponent parameter p defines whether the function g0 is an element of the class of functions

G2 or not. We use p = {0, 2} for scenarios A and B respectively, where g0 ∈ G2 if p = 0, and

g0 /∈ G2 if p = 2 since g0 is strictly convex. For scenario C, we consider an “S”-shape function

defined by (2.5) which violates both global concavity and convexity. We consider different sample

sizes n = {100, 300, 500} and standard deviation of the noise σ = {0.1, 0.2}, and perform 500

simulations to compute the rejection rate for each scenario. We assume that we do not know the

distribution of the noise in advance and use the wild bootstrap procedure described in Section 2.4.2

with B = 200.

Table 2.5 shows the rejection rate for each DGP. For high signal-to-noise ratio scenarios (σ =

0.1), the test works well even with a small sample size. Our test is able to control the Type I

error, as illustrated in scenario A. In addition, the Type II error of our test is small for the scenarios

B and C where shape constraints are violated by the DGP. Furthermore, for low signal-to-noise

ratio scenarios (σ = 0.2), the rejection rate for scenarios B and C significantly improves when

the sample size is increased from 100 to 300. Indeed, for larger noise scenarios more data is

required for the test to have power. Thus, our test seems informative enough to guide users to

avoid imposing shape constraints on the data generated from misspecified functions.
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Table 2.5. Rejection rate (%) of the test for monotonicity and concavity

Sample size DGP Scenario
Power of the Test (α)

0.05 0.01 0.05 0.01
(n) σ = 0.1 σ = 0.2

100
A (H0) 5.8 2.0 8.0 2.6
B (H1) 98.6 94.6 55.0 36.2
C (H1) 98.6 94.4 42.6 24.2

300
A (H0) 6.8 1.8 6.6 3.0
B (H1) 100.0 100.0 92.0 83.2
C (H1) 100.0 100.0 97.0 86.8

500
A (H0) 5.4 1.6 5.6 1.4
B (H1) 100.0 100.0 99.4 97.2
C (H1) 100.0 100.0 99.8 99.4

2.6 Application

We apply the proposed method to estimate the production function for two large industries in

Chile: plastic (2520) and wood manufacturing (2010) where the values inside the parentheses in-

dicate the CIIU3 industry code. There are some existing studies which analyze the productivity

of Chilean data, see for example Pavcnik (2002), who analyzed the effect of trade liberalization

on productivity improvements. Other researchers have analyzed the productivity of Chilean manu-

facturing including Benavente (2006), Alvarez and Görg (2009) and Levinsohn and Petrin (2003).

However, the above-cited work use strong parametric assumptions and older data. Most studies

use the Cobb–Douglas functional form which restricts the elasticity of substitution to be 1. When

diminishing marginal productivity of inputs characterizes the data, the Cobb–Douglas functional

form imposes that the most productive scale size is at the origin. We relax the parametric assump-

tions and estimate a shape constrained production function nonparametrically using data from

2010. We examine the marginal productivity, marginal rate of substitution, and most productive

scale size (MPSS) to analyze the structure of the industries. We also investigate how productivity
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differs between exporting and non-exporting firms, as exporting has become an important source of

revenue in Chile5. See Appendix A.7 for the details of estimation and comparison across different

estimators.

2.6.1 The census of Chilean manufacturing plants

We use the Chilean Annual Industrial Survey provided by Chile’s National Institute of Statis-

tics6. The survey covers manufacturing establishments with ten or more employees. We define

Capital and Labor as the input variables and Value Added as the output variable of the production

function7. Capital and Value Added are measured in millions of Chilean peso while Labor is mea-

sured as the total man-hours per year. We use cross sectional data from the plastic and the wood

industries.

Many researchers have found positive effects of exporting for other countries using parametric

models. See for instance, De Loecker (2007) and Bernard and Jensen (2004). Here we use SCKLS

to relax the parametric assumption for the production function. To capture the effects of exporting,

we use a semi-parametric modeling extension of SCKLS. The partially linear model is represented

as follows:

yj = Z ′jγ + g0(Xj) + εj, (2.6)

where Zj = (Zj1, Zj2)′ denotes contextual variables and γ = (γ1, γ2)′ is the coefficient of contex-

tual variables. We model exporting with two variables: a dummy variable indicating the establish-

5Note that firms’ decisions, i.e., selecting labor and capital levels with considerations for productivity levels or
whether to export, are potentially endogenous. Solutions to this issue are to instrument or build a structural model
based on timing assumptions. Our estimator can be embedded within the estimation procedures such as those described
in Ackerberg et al. (2015) to address this issue.

6The data are available at http://www.ine.cl/estadisticas/economicas/manufactura.
7The definition of Labor includes full-time, part-time, and outsourced labors. Capital is defined as a sum of the

fixed assets balance such as buildings, machines, vehicles, furniture, and technical software. Value added is computed
by subtracting the cost of raw materials and intermediate consumption from the total amount produced. Further details
are available at http://www.ine.cl/estadisticas/economicas/manufactura.
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Table 2.6. Statistics of Chilean manufacturing data.

Plastic
(2520)

Non-exporters (n = 173) Exporters (n = 72)

Labor
Capital

(million)

Value
Added

(million) Labor
Capital

(million)

Value
Added

(million)
Share of
Exports

mean 92155 725.85 546.93 240890 2859 1733.9 0.147
median 55220 258.41 247.05 180330 1329.1 1054.9 0.0524
std 106530 1574 1068.1 212480 3840.2 1678.8 0.201
skewness 3.301 5.2052 5.9214 1.3681 2.4594 1.0678 -0.303

Wood
(2010)

Non-exporters (n = 97) Exporters (n = 35)

Labor Capital
Value
Added Labor Capital

Value
Added

Share of
Exports

mean 76561 364.93 334.83 501470 3063.4 4524.1 0.542
median 44087 109.48 115.39 378000 2195.4 2673.5 0.648
std 78057 702.35 555.87 436100 2510.3 4466.3 0.355
skewness 2.243 3.5155 3.432 0.81454 0.63943 1.0556 -0.303

ments that are exporting and the share of output being exported. For more details see Appendix

A.6.

Table 2.6 presents the summary of statistics for each industry by exporter/non-exporter. We

find that exporters are typically larger than non-exporter in terms of labor and capital. Input vari-

ables are positively skewed, indicating there exist many small and few large establishments. Since

SCKLS with variable bandwidth (k-nearest neighbor) and non-uniform grid performed the best in

our simulation scenarios with non-uniform input data (as indicated in Appendix A.5), we use these

options. We choose the smoothing parameter k via leave-one-out cross validation. Appendix A.1

explains the details of our implementation of K-NN for the SCKLS estimator.

Figure 2.2 is a plot of labor and capital for each industry and shows input data is sparse for large

establishments. Beresteanu (2005) proposed to include shape constraints only for the evaluation

points that are close to the observations. Thus, in addition to using a percentile grid of evaluation

points, we propose to use the evaluation points that are inside the convex hull of observed input

{Xj}nj=1. See Appendix A.7 for details.
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Figure 2.2. Labor and Capital of each industry.

We begin by testing if the Cobb–Douglas production function is appropriate for our data. We

use the hypothesis test for correct parametric specification described in Henderson and Parmeter

(2015)8. The resulting p-value is 0.092 for the plastic industry and 0.007 for the wood industry,

respectively. Therefore, the Cobb–Douglas parametric specification is likely to be wrong, particu-

larly applied to the wood industry.

Next, we apply the test proposed in Section 2.4.2 to determine if imposing global concavity

and monotonicity shape constraints is appropriate. We estimate a p-value of 0.302 for the plastic

industry and 0.841 for the wood industry, respectively. For both industries, the estimated p-value

is not small enough to reject H0, which means that the observed data is likely to satisfy the shape

constraints imposed.

8We apply a Cobb–Douglas OLS to the second stage data {Xj , yj − Zjγ}nj=1 which removes the effect of con-
textual variables from observed output. See Appendix A.6 for details.
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2.6.2 Estimated production function and interpretation

We estimate a semi-parametric model with a nonparametric shape constrained production func-

tion, a linear model for exporting share of sales, and a dummy variable for exporting. Table 2.7

shows the goodness of fit (R2) of the production function: 71.1% of variance is explained in the

plastic industry while 43.8% of variance is explained in the wood industry.

Table 2.7. SCKLS fitting statistics for cross sectional data.

Industry
Number of

observations R2

Plastic 245 71.1%
Wood 132 43.8%

Table 2.8 reports additional information characterizing the production function: the marginal

productivity and the marginal rates of substitution at the 10, 25, 50, 75 and 90 percentiles are

reported for both measures. Here, the rate of substitution indicates how much labor is required to

maintain the same level of output when we decrease a unit of capital. When comparing the two

industries, we find that the wood industry has a larger marginal rate of substitution than the plastic

industry. This indicates that capital is more critical in the wood industry than the plastic industry.

We also compare the estimated production function by the local linear and the SCKLS estima-

tors. Figure 2.3 and Figure 2.4 show the estimated production function within the convex hull of

observations for plastic and wood industries, respectively. Visually, the production function esti-

mated by the LL estimator is difficult to interpret and the values of important economic quantities

such as marginal products and marginal rates of substitution are also hard to interpret. In particular,

it is not possible to identify most productive scale size.
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Table 2.8. Characteristics of the production function.

Plastic (2520)
Marginal Productivity Marginal Rate of Substitution

Labor (= bl) Capital (= bk) (= bk/bl)
(million peso/man hours) (peso/peso)

10th percentile 0.00396 0.111 23.3
25th percentile 0.00523 0.139 23.9
50th percentile 0.00579 0.139 24.0
75th percentile 0.00579 0.139 35.3
90th percentile 0.00579 0.260 44.8

Wood (2010)
Marginal Productivity Marginal Rate of Substitution

Labor (= bl) Capital (= bk) (= bk/bl)

10th percentile 1.46×10−18 0.816 760
25th percentile 8.55×10−16 0.816 760
50th percentile 0.00133 1.01 760
75th percentile 0.00133 1.01 9.73×1014

90th percentile 0.00133 1.01 5.59×1017
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Figure 2.3. Production function estimated by LL and SCKLS for the plastic industry (2520)
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Figure 2.4. Production function estimated by LL and SCKLS shape constraints for the wood
industry (2010)

Table 2.9 reports the estimated coefficients for the exporting variables. In the plastic industry,

the dummy variable for exporting is significant and positive while exports’ share of sales is not.

This indicates that the plants that export tend to produce more output than plants that do not ex-

port regardless of the export quantity. In contrast, the coefficient on the exports’ share of sales is

significant and positive in the wood industry while the dummy variable for exporting is not signifi-

cant, indicating that establishments in the wood industry tend to be more productive the more they

export. Thus, in both industries we find evidence of increased productivity for exporting firms.

Table 2.9. Coefficient of contextual variables from a 2-stage model.

Plastic (2520) Wood (2010)
Dummy of
exporting

Share of exporting
in sales

Dummy of
exporting

Share of exporting
in sales

Point estimate 334.5 303.7 -763.0 4114
95% lower bound 148.7 -334.3 -1944 2568
95% upper bound 520.3 941.8 417.7 5660
p-value 4.70×10−4 0.3493 0.2033 5.64×10−7
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Table 2.10 reports the most productive scale size for the 10, 25, 50, 75, 90 percentiles of

Capital/Labor ratio distribution of observed input. In both industries, the observed value added

output is the largest for establishments with high capital to labor ratios, indicating that capital-

intensive establishments have increased actual output. Furthermore, labor-intensive establishments

have smaller most productive scale size in both industries. This is consistent with the theory of the

firm, i.e. firms grow and become more capital intensive over time by automating processes with

capital and using less labor.

Table 2.10. Most productive scale size for each capital/labor ratio.

Plastic (2520)

MPSS Labor MPSS Capital Output
Capital/Labor percentile (Value added)
10th percentile 619580 519.1 3290
25th percentile 529980 1344 3010
50th percentile 529980 2604 3185
75th percentile 529980 5617 3602
90th percentile 529980 10270 4248

Wood (2010)

MPSS Labor MPSS Capital Output
Capital/Labor percentile (Value added)
10th percentile 2531100 741.6 1659
25th percentile 1045000 1200 2142
50th percentile 867250 2712 3470
75th percentile 662700 4179 4682
90th percentile 458150 5644 5893

2.7 Conclusion

This chapter proposed the SCKLS estimator that imposes shape constraints on a local poly-

nomial estimator. We show the consistency and convergence rate of this new estimator under

monotonicity and concavity constraints, as well as its relationship with CNLS and CWB. We also

illustrate how to use SCKLS to validate the imposed shape constraints. In applications where
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out-of-sample performance is less critical and the boundary behavior is of less concern, such as

regulation applications, the CNLS estimator may be preferable because of its simplicity. In con-

trast, in cases where out-of-sample performance is important, such as survey data, the SCKLS

estimator appears to be more robust. Simulation results reveal the SCKLS estimator outperforms

CNLS and LL in most scenarios. We propose and validate the usefulness of several extensions,

including variable bandwidth and non-uniform griding, which are important to estimate functions

with non-uniform input data set which is common in manufacturing survey and census data. We

also propose a test for the imposed shape constraints based on SCKLS. Finally, we demonstrate

the SCKLS estimator empirically using Chilean manufacturing data. We compute marginal pro-

ductivity, marginal rate of substitution, most productive scale size and the effects of exporting, and

provide several economic insights.

One limitation of the proposed SCKLS estimator is its computation efficiency due to the large

number of constraints. The algorithm we proposed for reducing constraints performs well, and we

demonstrate the ability to solve large problems instances within a reasonable time. Furthermore,

our simulation results show good functional estimates even with a rough grid. Consequently, we

can make use of the flexibility of the evaluation points to reduce the computational time of the

estimator.
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3. AN AXIOMATIC NONPARAMETRIC PRODUCTION FUNCTION: MODELING

PRODUCTION IN JAPAN’S CARDBOARD INDUSTRY

3.1 Introduction

The goal of this chapter is to develop a new approach that is less dependent on functional form

assumptions to estimate a production function. Our basic idea is to use nonparametric local aver-

aging methods, but augment these methods with shape constraints that reflect economic axioms.

Nonparametric local averaging methods without shape constraints would avoid the potential for

functional form misspecification and flexibly capture the nuances of the data, but would be dif-

ficult to interpret economically and would not satisfy the basic properties, i.e. globally convex

input isoquants or a well-defined marginal product estimates. Thus, we can use a minimal set of

economic axioms which are unlikely to be violated while providing additional structure. The ax-

ioms we impose are the Regular Ultra Passum (RUP) law as the scaling property1 and that input

isoquants are both convex and non-homothetic. This new modeling approach estimates the most

productive scale size conditional on input mix.

The RUP law states that along any expansion path, the production function should first have in-

creasing returns-to-scale followed by decreasing returns-to-scale, Frisch (1964). Intuitively, when

a firms is small it tends to face increasing returns-to-scale because it can increase productivity eas-

ily through specialization and learning. In contrast, as the scale size becomes larger, a firm tends

to have decreasing returns-to-scale due to scarcity of ideal production inputs and challenges re-

lated to increasing span of control. Firms in competitive markets should operate close to the most

1As explained below, we will actually use an S-shape restriction which requires a single inflection point, but
otherwise generalizes the RUP law.
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productive scale size in the long-run to minimize the cost per unit and assure positive profits. The

RUP law will assure we have a well-defined marginal products and most productive scale sizes,

Frisch (1964).

Convex input isoquants, which are a standard assumption in production theory, are motivated

by the argument that there are optimal proportions in which inputs should be used for production

and that deviations from the optimal proportion by decreasing the level of one input, such as

capital, will require more than a proportional increase in another input, such as labor. Relaxing the

homotheticity of input isoquants allows the optimal proportions to depend on the output level. For

example, the optimal proportion of inputs for low output levels could be more labor intensive than

at higher output levels. Further, non-homothetic isoquants allows for the most productive scale size

measured along different rays from the original to exist at different output levels. Non-homothetic

isoquants allows us to more easily capture the empirical fact that productivity levels are a function

of capital intensity.

The axiomatic approach is critical for interpreting the estimates of a production function to gain

managerial insights. The production function is often used to estimate firm expansion behavior

including how many resources need to be added to expand output or how automation (i.e. changing

the capital-to-labor ratio) can be used to achieve larger scales of production. Without data and

production function estimates, managers are left to make these decisions based on a firms historical

behavior or rules-of-thumb or other approximations. The analysis of firm as a whole allows for the

accounting of synergies between inputs in the production process.

We implement our approach using data from Japan’s corrugated cardboard industry. As clas-

sified in the Japanese Census of Manufactures, the cardboard industry2 includes both cardboard

2In the Japan Standard Industrial Classification (JSIC) the corrugated cardboard industry is industry (1453).
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manufacturers and cardboard box manufacturers. The latter sector is not particularly capital in-

tensive nor does it require technical know-how to enter, thus firms focus on customer service and

supplying slightly customized products to maintain market share. Overall, the industry has a few

large firms and many smaller firms, which is a typical structure for a mature manufacturing indus-

try. The largest firms in the industry are vertically integrated and include cardboard production,

box making, and paper making.3

In the cardboard industry, like most industries, firms enter the market as small firms and must

expand over time taking advantage of capital and labor specialization or other characteristics of

the technology to be more productive, Haltiwanger et al. (2013); Foster et al. (2016). Recently,

medium and large sized firms in the industry have been acquiring smaller firms and reducing

the combined input levels without significant reductions in the combined output levels, leading to

higher productivity levels. In particular, since the medium and small size firms are operating below

the most productive scale size, they have the potential for significant increase in productivity by

increasing their scale of production, thus mergers are attractive to medium sized firms.

Several nonparametric shape constrained estimators have been proposed that combine the ad-

vantage of avoiding functional misspecification with improving the interpretability of estimation

results relative to unconstrained nonparametric methods, see for example Kuosmanen et al. (2015)

or Yagi et al. (2018). However, existing methods only allow the imposition of simple shape con-

straints such as concavity and monotonicity. These structures exclude economic phenomena such

as increasing returns to scale due to specialization, fixed costs, or learning. Thus, more general

functional structures, like the model proposed in this chapter, are desirable.

3In the Census of Manufacturing, establishments are classified by industry based on the primary product produced
in the establishment. Paper making establishments are typically specialized and do not appear in our data set. However,
vertically integrated firms that own paper producing establishments typically have larger cardboard and box making
establishments.
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There have been two previous attempts to develop estimators that impose the RUP law as

shape constraints. The first, Olesen and Ruggiero (2014) develops an algorithm to estimate a Data

Envelopment Analysis (DEA)-type estimator satisfying the RUP law and impose homotheticity on

the input isoquants. Noise is not modeled in DEA estimators and all deviations from the estimated

function are one-sided and negative. Hwangbo et al. (2015) introduce noise and estimate a scaling

function using nonparametric shape constrained methods. However, they also assume homothetic

input isoquants and do not provide statistical properties for their estimators. In conclusion, these

estimation methods place structure on production function, but the homothetic assumption is not

flexible enough to capture a variety of realistic and potential production structures.

We will use our production model to provide a description of the supply-side of the Japanese

cardboard industry as we report marginal product, marginal rate of substitution, most productive

scale size and productivity evolution. We find most productive scale size is dependent on the

capital-to-labor input factor ratio and the largest firms operate close to the largest most productive

scale size associated with a high capital-to-labor ratio. However, we also find that firms’ produc-

tivity is negatively correlated with capital-to-labor ratio, indicating firms improve productivity by

reducing capital-to-labor ratio.

We also look at productivity variation. The standard approach is to calculate productivity uses

factor elasticities as weights to aggregate the various inputs. Syverson (2004) summarizes this

approach and uses input cost shares of the individual firms to approximate the factor elasticities. He

reports that within four-digit Standard Industry Codes (SIC) industries in the U.S. manufacturing

sector, the average difference in total factor productivity (TFP) between an industry’s 90th and

10th percentile firms implies the firm at the 90th percentile of the productivity distribution makes

almost twice as much output with the same measured inputs as the 10th percentile firm. Hsieh and
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Klenow (2009) finds even larger productivity differences in China and India, with average 90-10

TFP ratios over 5:1.

We study the productivity variation in the Japanese cardboard industry and find the 90-10 TFP

ratio is 4:1. Using our approach to estimating production functions, we find the production func-

tion can explain approximately 25% of the productivity variation in the industry. This means that

because of specialization, fixed costs, and learning we expect smaller firms to have lower produc-

tivity and by allowing non-homothetic input isoquants we characterize differences in substitution

rates between inputs at different output levels. These scale and mix effects account for significant

portion of the observed productivity variation leaving a much smaller component of unexplained

productivity variation.

The remainder of this chapter is as follows. Section 3.2 introduces the proposed production

function model and its assumptions. Section 3.3 and Appendix B.2 explain the two-step estimation

procedure and the algorithm for our estimator, respectively. Section 3.4 discusses the Monte Carlo

simulation results under several different experimental settings. Section 3.5 applies our estimator

to estimate a production function for the Japanese cardboard industry. Section 3.6 concludes and

suggests future research directions.

3.2 Model

Consider the following production function model

y = g0(x), (3.1)
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where x = (x1, x2, . . . , xd)
′ is d-dimensional input vector, y is an output scalar, and g0 : Rd

+ → R+

is a production function. We can rewrite this function as

φ(y,x) = y − g0(x). (3.2)

Here we define mathematically an input isoquant,

Definition 3.1. An input isoquant V̄ (y) = {x : g0(x) = y} be the sets of input vectors capable of

producing each output vector y.

We make the following assumptions on g0 and φ:

Assumption 3.1.

(i) g0(·) is a strictly monotonically increasing function defined on a compact set.

(ii) φ(·, ·) is a twice-differentiable function.

(iii) ∂φ
∂xk

= ∂g0
∂xk
∈ (0,∞) for every k = 1, . . . , d over the domain of g0.

Under Assumption 3.1, by the implicit function theorem, there exists an implicit function Hk

such that

xk = Hk(x1, . . . , xk−1, xk+1, . . . , xd; y) = Hk(x−k; y) ∀k = 1, . . . , d, (3.3)

where x−k = {x1, . . . , xk−1, xk+1, . . . , xd} is an input vector without the k-th input.

We are interested in estimating a production function g0 having both convex input isoquants

for all output levels and that satisfies an augmented version of the RUP law. We assume input

convexity which implies the following conditions on Hk:
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Definition 3.2. An input isoquant is input-convex if for any given value for an arbitrary input xk,

then for every pair of arbitrary input vectors xa,xb ∈ Rd−1, y ∈ R+ and λ ∈ [0, 1],

(i) λHk(xa; y) + (1− λ)Hk(xb; y) ≥ Hk(λxa + (1− λ)xb; y) (Convex input isoquant),

(ii) If xa ≤ xb, then Hk(xa; y) ≥ Hk(xb; y) (Monotone decreasing input isoquant).

Intuitively, input convexity implies the existence of an optimal ratio of inputs. Deviations from the

optimal input ratios by decreasing the use of a particular input will result in more than a propor-

tional increase in other inputs. Further, larger deviations from the optimal ratio will require larger

increases in input consumption to maintain the same output level.

Another common assumption for production functions is homotheticity.

Definition 3.3. A production function g0 is homothetic if for every x and α > 0, the implicit

function Hk is homogeneous of degree one

αxk = Hk(αx1, . . . , αxk−1, αxk+1, . . . , αxd; g0(αx)) ∀k = 1, . . . , d.

Input homotheticity is a strong assumption because it restricts input elasticity to be constant

for a given input mix at all scales of production. However, by relaxing input homotheticity and

assuming only input-convexity, each isoquant can have different curvatures at a given y-level.

We refer to isoquants of this type as non-homothetic, convex input isoquants. Figure 3.1 shows

homothetic and non-homothetic isoquants for a two dimensional input vector.
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Figure 3.1. Input isoquants satisfying input convexity.

Next, we define the elasticity of scale4, ε(x), relative to a production function g0(x):

ε(x) =
d∑

k=1

∂g0(x)

∂xk

xk
g0(x)

. (3.4)

The Regular Ultra Passum (RUP) law is defined as follows:

Definition 3.4. (Førsund and Hjalmarsson (2004)) A production function g0(x) obeys the Regular

Ultra Passum law if ∂ε(x)
∂xk

< 0 for ∀k = 1, . . . , d, and for some input xa we have ε(xa) > 1, and

for some input xb we have ε(xb) < 1, where xb > xa.5,6

Intuitively, for any ray from the origin, a production function g0 has increasing returns to scale

4This variable was referred to as the passum coefficient in the seminal work of Frisch (1964), but is now commonly
referred to as the elasticity of scale.

5xa and xb are vectors such that the inequality implies that every component of xb is greater than or equal to every
component of xa.

6Note this definition of the RUP law generalizes Frisch (1964) the original definition. This definition does not
require the passum coefficient to drop below 0, thus implying congestion or that the production function is not mono-
tonically increasing. This characterization allows for a monotonically increasing production function. Also note that
although a concave production function nests within this definition,the definition does not require that the function is
"nicely concave" as defined in Ginsberg (1974).
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followed by decreasing returns to scale. However, note that in both Førsund and Hjalmarsson

(2004) and Frisch’s original definition, neither rules out the possibility of multiple inflection points,

see Appendix B.4 for a more detailed explanation. Furthermore, because the RUP law is defined

in terms of the elasticity of scale, the law does not allow the function, g0, to grow at an exponential

rate. Thus, we introduce the following definition of an S-shape function.

Definition 3.5. A production function g0 : Rd → R is S-shaped if for any v ∈ Rd
+ defining a ray

from the origin in input space αv with α > 0,∇2
vg0(αv) > 0 for αv < x∗, and∇2

vg0(αv) < 0 for

αv > x∗ along a ray from the origin, where ∇2
vg0 is the directional second derivative of g0 along

v. This implies that for any ray from the origin of direction v, there exists a single inflection point

x∗ that ∇2
vg0(x∗) = 0.

Given the definition of an S-shape function, the following lemma defines formally the relation-

ship between the RUP law and an S-shape function. Proof is provided in Appendix B.1.

Lemma 3.1. If a production function g0 : Rd → R is second-differentiable, monotonically increas-

ing and satisfies the regular ultra passum law and there exists a single inflection point x∗ where

∇2
vg0(x∗) = 0 for any ray from the origin defined by a direction v ∈ Rd

+, then g0 is S-shaped.

Figure 3.2 (a) and (b) show two examples of the production function with one-input and two-

input, respectively. Both functions satisfy the RUP law and the S-shaped definition. Furthermore,

the two-input example (i.e. d = 2) has convex input sets.

In the following, we prove that a homothetic production function which satisfies the S-shape

definition for a single ray from the origin will also satisfy the S-shape definition for any expan-

sion path. To achieve this, we require the following alternative characterization for a homothetic

production function. Proofs of all the theorems are deferred to Appendix B.1.
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Figure 3.2. Production functions satisfying both the RUP law and S-shape definition

Definition 3.6. (Alternative definition of homothetic production function) A production function

g0(x) = F (H(x)) is homothetic if

(i) Scale function F (·) is a strictly monotone increasing function, and

(ii) Core function H(·) is a homogeneous of degree 1 function which implies h(tx) = tH(x) for

all t > 0.

Define Xmax,k = maxXk for ∀k = 1, . . . , d and XM = (Xmax,1, ..., Xmax,k, ..., Xmax,d). And

also define X0 = 0. The value of the core function, g when evaluating the input vector, X , is

referred to as aggregate input, specifically xA = H(X).

Definition 3.7. A rising curve (commonly referred to as an expansion path), EP , is a series of

M + 1 input vectors, {X0, . . . ,XM} such that xA,m < xA,m+1 for every m = 0, . . . ,M − 1,

where xA,m = H(Xm). In addition, we denote
{(
H(X0), g0(X0)

)
, . . . ,

(
H(XM), g0(XM

)}
as

the core of EP .
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Lemma 3.2. Assume a production function is homothetic in inputs and the S-shape definition holds

for one particular ray from the origin. Consider any pair of rays from the origin and define two

2-D sectionals of the production function. For both rays from the origin, the S-shape definition is

satisfied and the inflection points lie on the same input isoquant with aggregate input level, x∗A.

Theorem 3.1. Assume a production function is homothetic in inputs. If the S-shape definition holds

for a single ray from the origin, then the S-shape definition will hold for the core of any expansion

path.

3.3 Estimation Algorithm

3.3.1 Framework

Given observations {Xj, yj}nj=1 satisfying yj = g0(Xj) + εj , where εj are i.i.d. noise with

zero-mean and finite variance. Our goals include the following:

1. For a given level y, estimate the isoquant function satisfying both the convex input and the

monotone decreasing input assumptions (see Definition 3.2).

2. For a given direction v ∈ Rd
+, estimate the production curve, i.e. g0(αv) for α > 0, satisfy-

ing monotonicity and S-shaped assumptions (see Definition 3.5).

3. Given the unit cost of each input as well as the total budget, tackle problems based on our

estimators of the quantities mentioned above, such as optimal resource allocation.

3.3.2 Overview

We propose an estimation algorithm for a production function satisfying both the S-shape def-

inition and input convexity without any further structural assumptions. The algorithm combines
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two different shape constrained nonparametric estimation methods. Succinctly, the algorithm is

constructed by two estimations: (1) Input isoquants for a set of y–levels, and (2) S-shape functions

on a set of rays from the origin. Algorithm 1 presents our basic algorithm which is composed of

these two estimators.7 We reference a pilot estimate which can be any estimator that will provide

an initial rough estimate of the function. The right-hand column of Algorithm 1 reports the section

numbers where the details of each step are described.

We approximate a production function g0 with isoquant estimates for a set of output levels, and

S-shape functional estimates for a set of rays from the origin as shown in Figure 3.3(a). We also

develop the interpolation procedure to obtain the functional estimates ĝ0(x) at any given input x.

Figure 3.3(b) shows the interpolated surface of the estimated production function.

Algorithm 1 Basic estimation algorithm

1: Data: observations {Xj, yj}nj=1

2: procedure (Section)
3: Initialization: (3.3.3)
4: I ← Initialize number of isoquants
5: R← Initialize number of rays
6: {y(i)}Ii=1 ← Initialize isoquant y-levels with y(1) < · · · < y(I).
7: {θ(r)}Rr=1 ← Initialize rays from origin
8: Estimation: (3.3.4)
9: For j = 1, . . . , n, let ỹj = g̃0(Xj), where g̃0 is the pilot estimator of g0

10: Project {Xj, ỹj}nj=1 to the isoquant level y(i)

11: Estimate convex isoquants by the CNLS-based estimation
12: Project observations onto the ray θ(r)

13: Estimate S-shape functions using the SCKLS-based estimator
14: return : Estimated function with minimum Mean Squared Errors

Since we estimate the S-shape function on rays from the origin, it is convenient to use a spher-

7The algorithm refers to CNLS-based and SCKLS-based estimators for a description of these methods see Ap-
pendix B.2.2 and Appendix B.2.3.2 respectively.
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ical coordinates system which is defined by the angle and distance (radius) of observed points to

the origin. Therefore, our observed input vector Xj = (Xj1, . . . , Xjd)
′ in spherical coordinates

system (rj,φj) = (rj, φj,1, . . . , φj,d−1) is defined as:

rj =
√
X2
j1 + . . .+X2

jd

φj,1 = arccos
Xj1√

X2
j1 + . . .+X2

jd

φj,2 = arccos
Xj2√

X2
j2 + . . .+X2

jd

...

φj,d−2 = arccos
Xj,d−2√

X2
j,d−2 +X2

j,d−1 +X2
jd

φj,d−1 = arccos
Xj,d−1√

X2
j,d−1 +X2

jd

,

(3.5)

where rj is the radial distance from the origin, and {φj,1 . . . φj,d−1} defines the angle of the obser-

vation.

3.3.3 Initialization

We initialize the parameters used in the estimation. The number of isoquants I and the number

of rays from the originR affect the flexibility of the estimated function (computation time increases

with the number of isoquants and rays). We initialize isoquant y-levels, {y(i)}Ii=1, and rays from

the origin, {θ(r)}Rr=1, based on the distribution of the observations. We propose three options: (1)

Evenly spaced grid, (2) Equally spaced percentile grid, and (3) Centroid of K-means cluster of

observations. To set notation, given the number of isoquants, I , and rays, R, we set the grid as

y(i) and θ(r), the locations of the isoquants and rays respectively. To overcome skewness in the
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Figure 3.3. Illustration of functional estimates.

empirical data in which there are many smaller firms and only a few large firms, we recommend

an equally spaced percentile grid or K-means cluster .

3.3.4 Two–step estimation

During the estimation step, we approximate the production function by estimating the isoquants

at a set of y-levels and estimating the S-shape functions on a set of rays from the origin. We

calculate the estimates over different tuning parameters, compute the mean squared errors (MSE)

against observations, and return the final estimates corresponding to the tuning parameters with the

minimum MSE.

3.3.4.1 Isoquant estimation

Before estimating the isoquants, we need to assign each observation {Xj, yj}nj=1 to an isoquant

y-level, y(i) based on ỹj from a pilot estimator. The purpose of the pilot estimator is to improve

the classification of observations to isoquant levels. Most well-known nonparametric estimators,

such as local linear estimator could be used. We suggest simply assigning each observation to the
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closest isoquant y-level, which means

ij = argmin
i∈{1,...,I}

(
ỹj − y(i)

)2 ∀j = 1, . . . , n, (3.6)

where ij indicates the isoquant index to which we assign observation j. Then, we define the pro-

jected observations for the ith isoquant as {Xj, y
(ij)}{j:ij=i}, where y(ij) is the output level of the

ith isoquant. Figure 3.4(a) shows the projection of each observation to the corresponding isoquant

y-level. We estimate a set of isoquants using the CNLS-based method which is a nonparamet-

ric estimation method imposing convexity for each y(i)-level. Intuitively, we estimate the convex

isoquant estimates nonparametrically without imposing any ex ante functional specification for

each y(i)-level. Figure 3.4(b) shows the isoquant estimates obtained with projected observations

{Xj, y
(ij)}. The mathematical formulation is described in Appendix B.2.2. Finally, for the esti-

mation of an isoquant at any y-level (with y ∈ [mini y
(i),maxi y

(i)]), we first select the two closet

isoquants associated with a larger and smaller output level in {y(i)}Ii=1, namely, y(i+) and y(i−),

and then return the convex combination of these two isoquants with the weights y−y(i−)

(y(i
+)−y(i−)

and

y(i
+)−y

(y(i
+)−y(i−)

respectively.

3.3.4.2 S-shape estimation

To estimate the S-shape functions on rays from the origin, we begin by project all observations

{Xj, yj}nj=1 to each ray from the origin θ(r). We use the estimated isoquants from the previous

step to project the observations. In short, we find the level of an isoquant that Xj belongs to it.

Below we also provide an alternative way of thinking about this step. Considering the observations

input level, Xj , we select the two closest isoquants associated with a larger and smaller aggregate

inputs. Here the definition of larger and smaller vectors are in terms of a proportional expansion
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(a) Projected observations to each y(i) (b) Isoquant estimates on y(i)

Figure 3.4. Isoquant estimation

or contraction of the input vector, λXj where 0 ≤ λ < ∞ with λ ≥ 1 indicating expansion and

λ ≤ 1 indicating contraction. We will refer the two closest isoquants as “sandwiching" the input

vector of interest. Then, we assign weights to these two isoquants based on the distance to the

observed input Xj along a ray from the origin through the observed points. Finally, we project

the observation with the weighted average of the two isoquant estimates. Figure 3.5(a) shows the

projection of our observations. The details are described in Appendix B.2.3.1.

Next, we use the SCKLS-based method to estimate the S-shape function on each ray from the

origin. Note that this estimation assigns two different kernel weights to each observation. The first

weight is a function of the angle(s) formed by a ray from the origin through the observation and

a ray from the origin through the current evaluation point. This will be a vector of bandwidths

if there are more than two regressors. The second weight is a function of the distance measured

along the ray between the projected observation and the evaluation point.

SCKLS-based estimation requires the selection of a smoothing parameter which we refer to
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as the bandwidth. Intuitively, a smaller bandwidth will lead to over–fitting the data, and a larger

bandwidth will lead to over–smoothing. Thus, it is crucial to select the optimal bandwidth by

balancing the bias–variance tradeoff of the estimator. In our algorithm, the bandwidth of the kernel

weights for angles, ω, is optimized via a grid search, and the bandwidth of the kernel weights for

distance along the ray, h(r), is optimized by leave-one-out cross-validation, given kernel weights

for angles. Figure 3.5(b) shows the S-shape estimates obtained with projected observations. The

mathematical details are described in Appendix B.2.3.2.

(a) Projected observations to each θ(r) (b) S-shape estimates on θ(r)

Figure 3.5. S-shape estimation

3.3.4.3 Computing functional estimates at a given input vector

The last step of Algorithm 1 obtains the functional estimates ĝ(x) at any given value of input

vector x, and computes the MSE against observations {Xj, yj}nj=1.

First we compute the weighted average of the two closest isoquants which sandwich the ob-

served input Xj . The details are given in Appendix B.2.3.1. Second, we assign weights to each
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S-shape estimate based on the angle between a given input vector x and each ray from the ori-

gin θ(r) on which we have estimated the S-shape functions followed by computing the weighted

average of the S-shape estimates and obtaining the final functional estimates on a given input x,

ĝ(x). Figure 3.3(b) shows the interpolated functional estimates. The details are given in Appendix

B.2.3.5.

Note that there may be a gap between the convex isoquant estimates and the S-shape estimates

on rays from the origin. Specifically, if the S-shape estimates do not all lie on the input isoquant for

each evaluated output level y(i), then the S-shape estimates will not match the isoquant estimates at

some isoquant y-level as indicated by the blue circle in Figure 3.6. The gap tends to be larger when

the data are noisier. However, the gaps can be assured to be zero if we impose homotheticity. In

the non-homothetic case, we can always reduce the gap to zero by using fewer rays for estimation,

although at the cost of a rougher functional estimate.8

3.3.5 Further extensions to the estimation algorithm

As stated above, Algorithm 1 may result in a production function estimate with a gap between

the convex isoquant estimates and the S-shape estimates. To address this issue, we develop several

extensions to algorithm 2A which allow us to estimate a production function by iterating between

the estimations of isoquants and S-shape functions to reduce the size and number of gaps that may

exist.

Algorithm 2A is a concise summary of our algorithm. The mathematical details and an ex-

tended description is available in Appendix B.2 and is labeled, Algorithm 2B. We use Algorithm

8When the gaps are significant, selecting the value for tuning parameters becomes a multi-criteria problem in
which we want to minimize both the largest gap and Mean Squared Error (MSE). We do this by setting a threshold
on the largest acceptable gap level and picking the tuning parameter value with the smallest MSE. For details of the
implementation see Appendix B.2.4.
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Algorithm 2A Concise summary of the advanced estimation algorithm

1: Data: observations {Xj, yj}nj=1

2: procedure
3: Initialize the parameters (B.2.1)
4: Estimate each convex isoquant by the CNLS-based method (B.2.2)
5: Estimate S-shape curve along the rays by the SCKLS-based method (B.2.3)
6: Iterate previous two steps updating the parameters in each iteration until convergence

(B.2.4)
7: return : Estimated function with minimum Mean Squared Errors

2B in the following simulation and application sections.

3.4 Simulation study

We use Monte Carlo simulations to evaluate the performance of the proposed estimator with

datasets generated by the different data generation process (DGP). We consider both homothetic

and non-homothetic functions.
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3.4.1 The setup

In our simulation, we compare the performance of the proposed estimator with a Local Linear

estimator (LL), which is an unconstrained nonparametric estimation method using kernel weights.

We run simulations using the built-in quadratic programming solver, quadprog, in MATLAB.

We define two DGPs with different functional assumptions: homothetic and non-homothetic input

isoquants. For each functional assumption, we run experiments varying the sample size and the

size of noise. For a testing set drawn from the true DGP, we measure the Root Mean Squared

Errors (RMSE) against the true function.

3.4.2 Homothetic DGP

The DGP we use has the following scale function and core function, Olesen and Ruggiero

(2014):

F (z) =
15

1 + exp(−5 log z)
(3.7)

g(X1, X2; y) =
(
β(y)X

σ−1
σ

1 + (1− β(y))X
σ−1
σ

2

) σ
σ−1

, (3.8)

where the elasticity of substitution is σ = 1.51 and the intensity of the first input, X1, is β(y) =

0.45. For the homothetic case, the value of β(y) is independent of output level y. We generate

samples from

yj = F
(
g(X1j, X2j; y

∗
j )
)

+ εj, (3.9)

where y∗j indicates a true functional value at (X1j, X2j) satisfying

y∗j = F
(
g(X1j, X2j; y

∗
j )
)

(3.10)
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with an additive noise term, ε, generated as εj ∼ N(0, σv), where σv is the standard deviation

of the additive noise. We radially generate inputs to the production function, (X1, X2), as

X = (X1, X2) = (ψ cos η, ψ sin η), (3.11)

with the modulus, ψ, generated asψ ∼ unif(0, 2.5) and angles, η, generated as η ∼ unif(0.05, π
2
−

0.05). Note this DGP specifies that inputs are generated radially and noise is additively contained

in the output. This function has homothetic input isoquants because the core function, g(·), is

independent of the output level, y.

We consider 9 scenarios varying the training set sample size (100, 500, 1000) and the standard

deviations of the noise term, σv ∈ (1.0, 2.0, 3.0). We compare our proposed estimator to the LL

estimator. To compute the bandwidths for both the LL estimators and the SCKLS estimator for

the S-shape part of our algorithm, we use Leave-one-out cross-validation (LOOCV) with the LL

estimator. LOOCV is a data-driven bandwidth selection method that has been shown to perform

well for unconstrained and constrained kernel estimators, respectively; see Stone (1977) and Yagi

et al. (2018).

We use Algorithm 2A to implement our estimator. We specify the number of isoquants and rays

as I = 5 and R = 5, and compute equally spaced percentiles to set the location of the isoquant-

level, {y(i)}Ii=1, and rays, {θ(r)}Rr=1, respectively. We use the average directional CNLS estimates

for the isoquant estimation; the details are in Appendix B.2.2.3. We initialize the bandwidth be-

tween angles, ω, as ω1 = 0.20, and increment it by ∆ω = 0.25. We iterate the procedure 20 times,

increasing ω by ∆ω in each iteration. After 20 iterations, we select the solution with the smallest

sum of squared residuals as our final estimate. We generate 100 training-testing set pairs for each
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scenario, and draw box plots9 of RMSE against the true function for both estimators shown in

Figure 3.7. The size of the testing set is 1000, and it is randomly drawn from the same distribution

as the training set.

We find that the LL estimator performs slightly better than our proposed estimator when the

noise is very small, this is likely because our estimator optimizes the fit of the estimated func-

tion only on a limited set of grid points. The LL estimator’s performance deteriorates as the noise

increases because the data-driven nature of LOOCV gives poor estimates of the bandwidth parame-

ters in noisy scenarios. The shape constraints in our iterative estimator make it robust to bandwidth

parameters and noisy data. Further, the variance in the performance of our iterative estimator is

smaller than that of LL estimator because the shape constraints reduce the estimator’s variance.

We also find that our iterative estimator has better out-of-sample performance, this is likely be-

cause the shape constraints add structures to the estimator, which helps to avoid over-fitting the

observations.

3.4.3 Non-homothetic DGP

We consider the same scale function (3.7) and core function (3.8) as defined in Section 3.4.2.

We make the function non-homothetic by redefining the β value as

β(y) = 0.25 +
y

15
× 0.30, (3.12)

where β(y) ∈ [0.25, 0.55] depends on the output level y ∈ [0, 15]. We generate the observations by

solving equation (3.10) for a given (X1j, X2j). This function is non-homothetic because the core

9We define a maximum whisker length of a box plot as [q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)], where q1 and q3

denote the 25 and 75 percentiles, respectively.
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Figure 3.7. Estimation results on the testing sets with a homothetic production function
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function g(·) is dependent on an output level y. We run simulations with same settings described

in Section 3.4.2, and draw box plots of RMSE values against the true function for each estimator

on testing set shown in Figure 3.8.

The results are similar to the homothetic production function. Again, the LL estimator has a

larger RMSE variance than our estimator. However, both estimators have larger RMSE variance

in the non-homothetic scenarios, particularly in very noisy instances. Our estimator still performs

well in terms of RMSE, which indicates its robustness to different assumptions about the produc-

tion function.

3.5 Application

In this section, we estimate the production function using firm-level industry data from Japan’s

Census of Manufactures provided by METI from 1997 to 2007, when demand for cardboard was

relatively constant. Although some researchers have used the same dataset to estimate production

functions (Ichimura et al. (2011)), they rely on strong parametric functional assumptions, whereas

we relax them and estimate a production function nonparametrically under the RUP law and input

convexity. We focus on economic insights related to the cardboard firms’ productivity and scale of

production.

3.5.1 Census of Manufactures, Japan

The annual Census of Manufactures covers all establishments with four or more employees

and is conducted by METI under the Japanese Statistics Act. We use establishment-level data with

30 or more employees since the establishment with less than 30 employees do not report capital

stock values. We use the same definition of the variables for production functions as Ichimura et al.

(2011):
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Figure 3.8. Estimation results on the testing sets with a non-homothetic production function
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• L = (sum of total regular employees10 at the end of each month)

• K = (starting amount of tangible assets11)

• y = (total amount shipped) + (ending inventory of finished and work-in-progress products)

- (starting inventory of finished and work-in-progress products) - (cost for intermediate in-

puts12)

where L,K and y indicate the labor, capital and value added, respectively, and the production

function is modeled as y = g0(L,K).

We use industry-level deflators obtained from the Japan Industrial Productivity Database (JIP)13

to convert into year 2000 values. Figure 3.9 shows the price deflator of the cardboard industry and

the deflator for Japan’s GDP. Note that the price deflator of the cardboard industry is larger than

that of GDP after 2003. This finding is consistent with larger firms shrinking their production

capacity, which led to higher cardboard prices after 2003, Iguchi (2015).

We convert establishment-level data into firm-level data by summing up the establishment-

level data which belong to the same firm. We use firm-level data because expansion decisions are

typically made at the firm-level by investing capital, labor, or merging with other firms.

The sample size of the panel data set is n = 4316, and there are approximately 400 obser-

vations in each year. We normalize each variable by dividing by the standard deviation for data

confidentiality. Positive skewness of both the input and output variables implies the existence of

many small and a few large firms. Table 3.1 reports the summary statistics.

10Regular employees include full-time, part-time, and dispatched workers who work 18 days or more per month.
11Tangible assets include machines, buildings, and vehicles.
12Intermediate inputs include raw materials, fuel and electricity.
13The JIP database is publicly available at Research Institute of Economy, Trade and Industry (REITI) (https:

//www.rieti.go.jp/en/database/jip.html)
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Figure 3.9. Price deflator (Base year = 2000)

Table 3.1. Summary Statistics of the corrugated cardboard industry (1453)

Labor Capital Value added
Mean 0.554 0.283 0.340

Skewness 10.28 11.87 11.86
10-percentile 0.217 0.024 0.059
25-percentile 0.253 0.047 0.093
50-percentile 0.334 0.100 0.158
75-percentile 0.539 0.231 0.298
90-percentile 0.861 0.519 0.567
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Figure 3.10, 3.11 and 3.12 show the evolution of each variable across the panel periods by

plotting the percentage change of each variable’s quartile mean for each year compared with 1997.

Here, we compute the quartiles by total amount produced, i.e. firms in the 75%-100% bin have

the highest total amount produced, while firms in the lower percentile bin have lower total amount

produced. We define total amount produced as:

• (total amount produced) = (total amount shipped) + (ending inventory of finished and work-

in-progress products) - (starting inventory of finished and work-in-progress products)

Intuitively, we use the total amount produced as an indicator of a firm’s scale size.

The four lines indicate from thinnest to thickest, the 0–25 percentile mean, 25–50 percentile

mean, 50–75 percentile mean, and 75–100 percentile mean, respectively. During the time period,

firms did not need to adjust their labor levels significantly while most firms reduce their capital

levels between 2004 and 2006. We can interpret this as firms in the cardboard industry realized

their over-investment in capital and readjusted for more efficient resource use. We observe that the

larger firms in our panel dataset expanded value added while reducing their capital levels.

3.5.2 The setup for our application

Before using our iterative algorithm, we specify (1) Number and location of the rays and (2)

Number and location (y-levels) of the isoquants. Table 3.1 reports significant skewness of our

dataset, i.e. many small firms and only a few large firms. An equally spaced percentile grid will

not work well because it may fail to define the rays and isoquant y-levels corresponding to the

large firms. Therefore, we use the K-means clustering method to cluster the data into K groups

because it is robust to the skewness of our data. However, since K-means clustering requires pre-

defining parameterK which is the number of clusters, we use Bayesian Information Criteria (BIC)
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Figure 3.10. Percentage change of quartile mean of labor
(by amount produced, base year = 1997)
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to balance the model complexity and explanatory power and avoid over-fitting. We iterate the

algorithm 100 times over different K, and find that K = 12 provides the lowest BIC value for our

dataset. We define the rays and isoquant y-levels as the centroid of each cluster. Figure 3.13 shows

the rays and isoquant y-levels defined by K-means clustering. There are many clusters defined for

small scale firms and labor intensive firms and there are also a few clusters and associated rays and

isoquant y-levels defined for large firms and capital intensive firms.

We initialize the bandwidth between angles as ω1 = 0.20, and increment it by ∆ω = 0.20 for

each iteration. We iterate the procedure 50 times until ω becomes large enough that the functional

estimates are stable between iterations. From the 50 estimates, we select the solution with the

smallest sum of squared residuals in our solution set as our final estimate.

3.5.3 Estimated production function and interpretation

Figure 3.14 shows graphs of: (a) the estimated input isoquants, and (b) the estimated S-shape

production function on each ray. The black lines indicate the estimates on the centroid of each

cluster defined by K-means clustering, and the red points indicate the most productive scale size

on each ray from the origin. Figure 3.14 (a) shows that the marginal rate of technical substitution

(MRTS) of labor for capital is high when the scale of production is smaller. This indicates that labor

is a more important input factor for firms operating at a smaller scale. In contrast, the isoquant

becomes flat as the scale of production increases, i.e. the MRTS is low for large firms. These

isoquants imply that capital is a more important input factor for larger firms because labor levels

need to be increased significantly to offset a small reduction in capital.

Figure 3.14 (b) shows that labor intensive firms have a much smaller most productive scale

size than capital intensive firms. This finding coincides with the production economics theory
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Figure 3.13. Centroid of each group estimated by K-means clustering
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stating that firms become more capital intensive as they grow larger by automating processes with

capital equipment and using less labor. Note that the most capital intensive ray has a smaller most

productive scale size. This is likely a result over-investment in capital. Therefore, firms near this

ray could reduce their capital intensity to increase their productivity and scale of operations.
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Figure 3.14. Estimated results of the corrugated cardboard industry

3.5.4 Analysis on productivity measure

We study how our production function estimator impacts the measures of productivity and pro-

ductivity variation. Productivity is the ratio of observed output yjt to estimated production function

at corresponding input factors, (Ljt, Kjt). Intuitively, if firms have higher productivity, they can

produce larger value added with a given amount of input factors. Productivity can measure the

firms’ deviation of output (value added) which cannot be explained by the input factors. Syverson

(2011) enumerates the primary causes of productivity dispersion as managerial practices, quality

of input factors, R&D, learning by doing, product innovation, firms’ structure decisions, or other
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external drivers.

We measure productivity using the concept of total factor productivity (TFP), defined as fol-

lows:

TFPjt =
yjt

ĝ0(Ljt, Kjt)
∀j = 1, . . . , nt and ∀t = 1, . . . , T, (3.13)

where nt is a sample size for each time period t, T denotes the panel periods, and ĝ0 is a

production function used to aggregate inputs.

First, we investigate how productivity for the cardboard industry is changing over time. Figure

3.15 and 3.16 plot the percentile change of quartile mean of productivity and capital-to-labor input

factor ratio for each year compared with 1997, respectively.

Figure 3.15 shows that the medium and large firms have significant productivity growth after

2004, whereas small firms have more stable productivity transition. In contrast, Figure 3.16 de-
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scribes that firms tend to shrink capital-to-labor ratio after 2004. Thus, we conclude that larger

firms improved their productivity significantly by adjusting their input factor ratio for more effi-

cient use of their resource. However, since the productivity of the cardboard industry is heavily

dependent on the amount of capital investment, small firms had difficulty to improve their produc-

tivity endogenously over the 11 years.

We now turn our attention to the productivity variation observed across firms within the indus-

try. We will use four methods to calculate aggregate inputs. The first two methods are described in

Syverson (2004), but we will briefly summarize them here. Aggregate input is estimated by

g0(Ljt, Kjt) = LαLjt K
αK
jt (3.14)

where αL and αK are factor elasticities used as weights to aggregate the various inputs. These
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factor elasticities can be approximated either by industry level cost shares or by individual firm

cost shares. Since we have individual firm cost shares in our data set, we calculate both.14 The third

option is to fit the production function using our axiomatic approach. We calculate the estimates,

ĝ(·) and use these values in Equation 3.13 to calculate TFP.

Table 3.2 summarizes the results of the three methods. Using the industry and firm cost shares

results in a 90-10 percentile ratio of 3.97 and 3.56, respectively. This is considerable larger than

the the value of 2.68 and 1.91 Syverson (2004) reports as an average across a variety of four digit

Standard Industry Classification (SIC) industries in the U.S. economy. However, industries like

corrugated cardboard that produce a high homogeneous product are expected to have lower pro-

ductivity ratio. We find firms in the 90th percentile of the productivity distribution makes almost

four times as much output with the same measured inputs as the 10th percentile firm. By relaxing

the parametric function form of production function expressed in equation (3.14), using our ax-

iomatic estimator, results in an approximately 25% decrease in productivity variation compared to

the industry cost share measure.

Table 3.2. The ratio of the 90th to 10th percentile productivity level for four different methods

90-10 percentile range
Industry Cost Shares 3.971

Firm Cost Shares 3.559
Axiomatic Estimator 3.167

14Because of the various units of measures used for different inputs, the scale of TFP is not easily interpretable.
Thus, we normalize each firms TFP by the median TFP for the industry, following Syverson (2004).
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3.6 Conclusion

This chapter develops an approach to estimate a general production function imposing eco-

nomic axioms, both the RUP law and the input convexity. The axioms can be stated as shape

constraints and the proposed estimator is implemented as a non-parametric shape constrained re-

gression. This approach allows considerable more flexibility then widely used parametric methods.

We use these developments to analyze a panel dataset of Japan’s cardboard industry from 1997

to 2007. We observe a capacity contraction after 2004 across most of the larger firms in the

industry. The contraction’s timing corresponds to an increase in the price index for cardboard pro-

ductions, indicating increasing market power of firms in the industry. We estimate the production

function and compute the most productive scale size and the productivity of each firm. We find

most productive scale size is significantly influence by the capital-labor ratio of the firm. In par-

ticular firms with higher capital-to-labor ratios have a larger most productive scale size than firms

with lower capital-to-labor ratios. Productivity variation is small relative to other industries and

countries. However, using an axiomatic estimator that accounts for productivity variations due to

scale and input mix reduces unexplained productivity variation by approximately 25%.

In next chapter, we plan to extend our analysis to other industries in Japan which have roughly

homogeneous outputs such as bread, coffee, concrete, plywood, and sugar. Census of Manufac-

tures data are self reported by firms and are notoriously noisy. We will test the data in each industry

to see if simpler parametric models or alternative non-parametric shape constrained models are suf-

ficient to capture the main characteristics for the data. We will study the patterns across industries

to identify which factors consistently influencing productivity.

As managers strategically plan the expansion of their firm, estimates of the most productive
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scale size, the trade-offs between manual and automated operations, and the potential outputs gains

to expansion provide critical insights to the benefit-cost analysis. The proposed axiomatic approach

imposes a minimum set of axioms that still allows for the standard interpretation of the production

function allowing managers to be better informed when taking critical planning decisions for the

firm.
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4. SHAPE CONSTRAINED NONPARAMETRIC IV ESTIMATOR AND ITS APPLICATION

TO PRODUCTION FUNCTIONS

4.1 Introduction

Endogeneity is believed to be a common problem when estimating production function since

firms’ managers determine input levels while perceiving a part of their firm specific productivity

level which is modeled as a part of the residual. Specifically, firms change variable input (labor)

levels due to their productivity level, which makes typical regression estimates biased and incon-

sistent. For instance, when firms observe the higher productivity level, then they may higher more

labors in this year to prepare for a busy period in the near future. Marschak and Andrews (1944)

were among the first to point out endogeneity of observed input demands as rational production

managers adjust their input use for technical inefficiency. Several solutions to this endogeneity

problem have been suggested. Marschak and Andrews (1944) propose to estimate a system of

demand equations, and hence the endogeneity of input variables is often referred to as the si-

multaneity problem. Other standard econometric approaches to address endogeneity of this type

include the use of instruments or panel data (e.g., Mundlak (1961); Mundlak and Hoch (1965)).

Zellner et al. (1966) were the first to discuss in detail the timing of the input consumption deci-

sions relative to when the productivity shocks are observed. The empirical industrial organization

literature has focused on this type of solution. There is other solution for endogeneity called the

control function approach which uses some proxy variables to explain a part of residuals correlated

with input. Olley and Pakes (1996) propose to avoid endogeneity of inputs by using investment as

a proxy for productivity. More recent studies in that stream include Levinsohn and Petrin (2003)

73



and Ackerberg et al. (2015) who explore the use of other proxy variables for productivity such

as material inputs. Although these approaches to deal with endogeneity play a key role in theory

and application of production economics, their models are dependent on a parametric functional

framework.

Recently, nonparametric instrumental variables (IV) approach is proposed to deal with endo-

geneity with a flexible functional form. Newey et al. (1999) uses 2–stage nonparametric estimation

with a control function approach to explain a part of residuals correlating with endogenous vari-

ables. Newey and Powell (2003) consider a more general simultaneous equation models with

series–based estimator. Kernel–based approach with Tikhonov regularization is proposed by Hall

and Horowitz (2005) and Darolles et al. (2011). Florens et al. (2018) proposed kernel–based

approach with Landweber–Fridman regularization techniques which require iterations, and they

estimate the marginal effect of instrumental variables.

In this paper, we propose a shape constrained nonparametric IV estimator which imposes a set

of shape constraints on a nonparametric IV approach. We apply the Landweber–Fridman regular-

ization to the Shape Constrained Kernel–weighted Least Squares (SCKLS) estimator developed

by Yagi et al. (2018). Furthermore, we also consider more complicated shape constraints proposed

by microeconomic theory by applying iterative S–shape algorithm proposed by Yagi et al. (2018).

We aim to improve the finite sample performance and the economic interpretability of estimated

results by imposing correctly specified shape constraints while avoiding the bias from endogeneity

issues.

We estimate production functions for the following Japanese manufacturing industries which

produce highly homogeneous products: sugar, bread, coffee, plywood, cardboard, ready-mixed

concrete and concrete products. We use full–time labor headcount as IV for the labor input since
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managers are not able to adjust full–time labors easily in Japan and is highly correlated with the

overall labor consumed by the firm. Instead, firms try to adjust the labor input through part–time

labors, and thus, we control the endogeneity in the labor input by using full–time labors as IV. The

estimation results provide a description of supply–side of Japanese manufacturing industry as we

report industry–level aggregated productivity and the most productive scale size. We find the model

specification changes the productivity estimates significantly and may lead to different interpreta-

tions and economic insights. Specifically, restrictive parametric models such as Cobb–Douglas

two–stage least squares (2SLS) are likely to be suffered from the bias due to the misspecification.

Meanwhile, models without IV will be biased in case that endogeneity exists in the data set.

The chapter is structured as follows. The assumption and model framework is described in

Section 4.2. Monte Carlo simulation results under different Data Generation Process (DGP) re-

flecting practical scenarios are shown in Section 4.3. Section 4.4 applies the proposed estimator to

analyze the productivity for the Japanese manufacturing industries. Finally, Section 4.5 concludes

and suggests potential further research directions.

4.2 Model and methodology

4.2.1 Model

Consider the following production function model

y = g0 (x) + ε, (4.1)

where x ∈ Rd1 is d1–dimensional input vector, y is an output scalar, g0(·) is a production function

to be estimated and ε is unobserved residuals. Under endogeneity, the conventional exogenous as-
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sumption on independent variables, E[ε|x] = 0, does not hold because of the correlation between

residuals and independent variables. In many of existing researches, such as Olley and Pakes

(1996) and Levinsohn and Petrin (2003), the model assumes strong parametric functional forms

on a production function g0. Here we aim to relax these restrictive assumptions by estimating

functions nonparametrically with general structures which can be stated as shape constraints such

as concavity, S–shape or monotonicity, which help to maintain the interpretability of estimates.

Given instrumental variables, z, where z ∈ Rd2 is d2–dimensional vector and satisfies the exclu-

sion restriction E[ε|z] = 0, we can take a conditional expectation of both sides of Equation (4.1)

on z,

E[y|z] = E[g0 (x) |z]. (4.2)

The conditional expectation of Equation (4.2) yields the following integral equation

E[y|z] =

∫ ∞
−∞

g0 (x) f (x|z) dx. (4.3)

where f (x|z) is a probability density function of x conditional on z. We also assume that the

random vector x, y and z are distributed based on their density function fx, fy and fz, and define

the Hilbert space of square integrable functions depend on each random vectors by L2(x), L2(y)

and L2(z).

Now we focus on estimating a production function g0(·). The mapping from g0(x) to E[y|z]

is continuous if f (x|z) is bounded; however, an inverse mapping is not continuous, which means

small changes in E[y|z] do not produce small changes in g0(·). This is referred to as the ill–posed

inverse problem and requires regularization which modifies the inverse mapping to remove the
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discontinuity. The amount of modification is controlled by a positive constant called regularization

parameter. Intuitively speaking, with a large regularization parameter, the revised inverse mapping

becomes more stable but a bad approximation for the inverse mapping. In contrast, with a small

regularization parameter, the revised inverse mapping becomes a good approximation for the in-

verse mapping but unstable. Thus, it is also important to select an optimal regularization parameter

which minimizes the trade–off between approximation and stability. See Horowitz (2014) for more

details on the ill–posed problems and solutions.

One of the regularization methods widely used in a nonparametric IV approach is called

Tikhonov regularization. Here, equation (4.2) can be written as

φ = Tg0, (4.4)

where φ = E[y|z] and T is an operator defined by Tg0 = E[g0 (x) |z]. More specifically,

• T : L2(x)→ L2(z) such that g → Tg = E[g (x) |z]

• T ∗ : L2(z)→ L2(x) such that h→ T ∗h = E[h (z) |x]

where T ∗ is called adjoint operator which satisfies a following condition:

〈Tg(z), h(z)〉 = 〈g(x), T ∗h(x)〉

Then the Tikhonov regularization is calculated by solving the following optimization problem:

min
g0
‖Tg0 − φ‖2 + δ ‖g0‖2 (4.5)
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where δ > 0 is a regularization parameter. The solution of this problem is given by

gδ0 = (δI + T ∗T )−1 T ∗r (4.6)

This is analogous to a ridge regression method widely used for solving multicollinearity problems

in the field of regression analysis. Darolles et al. (2011) applied this regularization for solving the

nonparametric IV approach with a kernel-weighted estimator. However, this regularization method

requires to compute the inversion of n×n matrix, the problems becomes difficult to solve within a

feasible time when sample size n is large. This makes Tikhonov regularization difficult to apply to

a large-scale data set such as estimating industry specific production functions from manufacturing

census data.

Alternatively, the Landweber–Fridman iterative regularization method is computationally eas-

ier than Tikhonov regularization. The Landweber–Fridman iterative method is implemented by

solving the following minimization problem:

min
g0

f (g0) =
1

2
‖Tg0 − φ‖2 . (4.7)

The iterative algorithm is given by updating g0 using the gradient of the objective function∇f (g0)

such that

g0,k+1 = g0,k − c∇f (g0)

= g0,k − cT ∗ (Tg0,k − φ)

(4.8)

where c < 1 is a positive constant called the relaxation parameter which controls the step size of

updates. This can be seen as an special case of gradient descent algorithm widely used in the field
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of mathematical optimization. For convergence of this iterative algorithm, we require following

condition on the parameter c:

‖g0,k+1 − g0,k‖2 = c ‖T ∗ (Tg0,k − φ)‖2

= c ‖T ∗ (Tg0,k − Tg)‖2

≤ c ‖T ∗T‖2 ‖g0,k − g‖2 < ‖g0,k − g‖2 .

This requires to choose a positive constant c > 0 such that c ‖T ∗T‖2 < 1. This algorithm stops

when the deviation ‖Tg0 − φ‖2 approaches to the noise level of the estimator.

Florens et al. (2018) applied Landweber–Fridman iterative method to a nonparametric IV esti-

mation where their main focus is to evaluate the marginal effects of IV regression. More specifi-

cally, they estimate the unknown operator and function with kernel regression such as Local Linear

(LL) estimator, and iterate Landweber–Fridman algorithm until some convergent conditions are

satisfied. Here, we impose the shape constraints on the nonparametric estimation to improve the

finite sample performance and the interpretability of estimation results.

4.2.2 Unconstrained estimator

We can replace the unknown functions and operators in Equation (4.8) with a local–weighted

kernel regression estimator. Here we summarize the algorithm step–by–step to estimate the uncon-

strained nonparametric IV estimator.

For each step, we implement a local–weighted kernel regression such as Local Linear estimator.

Bandwidth for each kernel estimation can be selected by data–driven methods such as leave–one–

out cross validation. We suggested to use a similar stopping criteria to Florens et al. (2018) that the

algorithm will stop when the deviation across iterations becomes small. Specifically, we consider
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Algorithm 2B Nonparametric IV estimator

1: Data: observations {Xj,Zj, yj}nj=1

2: procedure
3: Initialization:
4: k ← 0
5: Estimate a starting points g0,0 (Xj) = E[yj|Xj ]
6: Iteration:
7: while Stopping criteria are not satisfied do
8: Given an estimate from the previous iteration ĝ0,k,

estimate T ĝ0,k − φ = E[ĝ0,k(Xj)− yj|Zj]
9: Given an estimate of the previous step,

estimate T ∗
(
T̂ ĝ0,k − φ̂

)
= E[Ê[ĝ0,k(Xj)− yj|Zj]|Xj]

10: Update a production function with
ĝ0,k+1 = ĝ0,k − cT̂ ∗

(
T̂ ĝ0,k − φ̂

)
= ĝ0,k(Xj)− cÊ[Ê[ĝ0,k(Xj)− yj|Zj]|Xj]

11: k ← k + 1

12: end
13: return : A production function of the last iteration ĝ0,k

the following normalized deviation:

∥∥∥∥∥ T̂ ĝ0,k − φ̂
φ̂

∥∥∥∥∥
2

=

∥∥∥∥∥Ê[g0,k|Zj]− Ê[yj|Zj]

Ê[yj|Zj]

∥∥∥∥∥
2

, (4.9)

and we propose to stop the iteration when the difference of the normalized deviation across itera-

tions become smaller than some threshold δ > 0.

∣∣∣∣∣∣
∥∥∥∥∥ T̂ ĝ0,k−1 − φ̂

φ̂

∥∥∥∥∥
2

−

∥∥∥∥∥ T̂ ĝ0,k − φ̂
φ̂

∥∥∥∥∥
2
∣∣∣∣∣∣ < δ. (4.10)

4.2.3 Constrained estimator with SCKLS

In this section, we propose to extend the unconstrained IV estimator with the SCKLS estimator

developed by Yagi et al. (2018). The SCKLS estimator imposes shape constraints on a production
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function by restricting the function’s partial derivatives to impose economic axioms such as super-

modularity, convexity, monotonicity, and quasi-convexity. In this implementation, we focus on a

global concavity and monotonic increasing constraints allowing us to impose a basic characteristics

of a production function for matured industry, decreasing returns to scale (DRS).

Specifically, we propose to combine Step 9 and 10 in Algorithm 2B, and impose the shape

constraints on the updated production function ĝ0,k+1 when we estimate the conditional expectation

E[Ê[ĝ0,k(Xj)− yj|Zj]|Xj].

First we introduce a set of m points, {x1, . . . ,xm}, for evaluating constraints, which we call

evaluation points. Under monotonicity and concavity constraints, we define the production func-

tion estimates at k–th iteration as followed:

ĝ0,k(x; âk, b̂k) = min
i∈{1,...,m}

{
âk,i + (x− xi)′b̂k,i

}
(4.11)

where âk,i is a functional estimate and b̂k,i is a slope estimate at the evaluation point xi. This im-

plies the estimated production function is a piece–wise linear function since the functional estimate

is constructed by taking the minimum of linear interpolations between the evaluation points.

Next, we define the estimate of the conditional expectation E[Ê[ĝ0,k(Xj)− yj|Zj]|Xj] in the

spirit of Local Linear kernel estimation. Specifically, we define ãi as a function value and b̃i as

a slope of E[Ê[ĝ0,k(Xj) − yj|Zj]|xi] at the evaluation point xi, which describes the correction

term for the endogeneity. Then the SCKLS estimator for Step 9 in Algorithm 2B is formulated as

follows:
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min
ãi,b̃i

m∑
i=1

n∑
j=1

(Ê[ĝ0,k(Xj)− yj|Zj]− ãi − (Xj − xi)′b̃i)2K

(
Xj − xi
h

)

subject to (âk,i + cãi)− (âk,l + cãl) ≥
(
b̂k,i + cb̃i

)′
(xi − xl), i, l = 1, . . . ,m

b̂k,i + cb̃i ≥ 0, i = 1, . . . ,m.

(4.12)

where K
(
Xj−x
h

)
denotes a product kernel, and h is a vector of bandwidths (see Racine and Li

(2004) for more detail). Note that Ê[ĝ0,k(Xj) − yj|Zj] is given by Step 8 in Algorithm 2B, and

âi,k and b̂k,i are the values computed in the previous iteration. The first set of constraints in (4.12)

imposes concavity and the second set of constraints imposes monotonic increasing on a estimate

of the updated production function ĝ0,k+1 at each evaluation point xi. For more details about these

constraints, see Kuosmanen (2008). After solving the problem (4.12), now we can update the

production function as:

ĝ0,k+1(x; âk+1, b̂k+1) = min
i∈{1,...,m}

{
âk+1,i + (x− xi)′b̂k+1,i

}
= min

i∈{1,...,m}

{(
âk,i + cˆ̃ai

)
+ (x− xi)′

(
b̂k,i + cˆ̃bi

)} (4.13)

where ˆ̃ai and ˆ̃bi are the functional and slope estimates obtained by the optimization problem (4.12).

This corresponds to Step 10 in Algorithm 2B.

We propose to implement the SCKLS estimator in Step 9 in Algorithm 2B either (a) at last

iteration or (b) at each iteration. If we impose shape constraints only at the last iteration, we

continue to use the unconstrained estimator before the last iteration, and implement the SCKLS

estimator only once at the last iteration. If we choose to implement shape constraints at each
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iteration, we solve the SCKLS estimator defined in Equation (4.12) at each iteration in Step 9

in Algorithm 2B, and continue to update the estimates of a production function. In case that we

impose shape constraints at each iteration, we expect that the estimator will converge faster than if

the shape constraint is only imposed at the last iteration since shape constraints help to improve the

finite sample performance. We will compare the performance of these two estimators in Section

4.3 through Monte Carlo simulations.

4.2.4 Constrained estimator with S–shape estimator

In this section, we extend the unconstrained IV estimator by using the iterative S–shape esti-

mation proposed by Yagi et al. (2018). The algorithm aims to estimate the production function

satisfying both the RUP law and input convexity, which is a minimal set of economic axioms for a

production function that are unlikely to be violated. The RUP law states that along any expansion

path, the production function should first have increasing returns to scale followed by decreasing

returns to scale, Frisch (1964). These shape restrictions assure we have well-defined marginal

products and most productive scale sizes, and thus, will improve the interpretability of the estima-

tion results in addition to the improvement of the finite sample performance.

Unlike the extension with the SCKLS estimator, we cannot combine the iterative S–shape

algorithm with the estimation in Step 9 in Algorithm 2B since the S–shape function is estimated

only on the expansion rays from the origin. Thus, we propose to apply the iterative S–shape

estimator to the unconstrained IV estimator in Section 4.2.2. Intuitively, after we obtained the

unconstrained estimator ĝ0(Xj), we estimation the S–shape function with {Xj, ĝ0(Xj)}nj=1 by

using the iterative S–shape estimation. In other words, with the iterative S–shape estimation, we

aim to find the closest shape constrained estimator to the unconstrained IV estimator obtained by
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Algorithm 2B.

4.3 Simulation study

In this section, we use Monte Carlo simulations to evaluate the finite sample performance and

robustness of the proposed estimators. Data sets are randomly generated using different produc-

tion functions based on the state of industry: emerging, growing and matured.These states of the

industry correspond to different shape restrictions.

4.3.1 The setup and DGP

We compare the performance of shape constrained nonparametric IV estimator with non–IV

approach (LL, SCKLS and Iterative S–shape estimator) and unconstrained IV estimator with LL

estimator. We use MATLAB to implement these estimators and solve the quadratic programming

problems with the build–in quadratic solver, quadprog.

We use the Gaussian kernel and leave–one–out cross–validation (LOOCV) for bandwidth se-

lection. We apply LOOCV to all of local–weighted kernel estimators. For the SCKLS estimator,

we use 100 evaluation points, which implies a 10 by 10 grid. For the iterative S–shape, we use five

rays and five isoquant y–levels to approximate S–shape function with an initial bandwidth between

rays of 0.25 and the bandwidth increases by 0.25 at each iteration. See Yagi et al. (2018) for more

details. For the Landweber–Fridman regularization, we use c = 0.5 and a stopping criteria defined

in the equation (4.10) with δ = 0.01.1

Since our focus is on production function estimation, we define the DGP based on the different

states of the industry. First, we run our experiments for an emerging industry, which implies that

the most of firms experience increasing returns to scale due to the relative youth of the firms in the

1Florens et al. (2018) shows that c = 0.5 empirically provides a good balance between precision and computational
time.
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Figure 4.1. Production function used in the simulations

industry. Second, we use a production function for a growing industry, which means smaller firms

have increasing returns to scale while larger firms have decreasing returns to scale. Intuitively,

the shape of production function is S–shaped. Finally, we use a production function for a mature

industry where most of firms face decreasing returns to scale. This indicates that firms will have

decreasing marginal products as they get larger due to the matured nature of the industry and

challenges related to increasing span of control. Figure 4.1 provides the shape of a true production

function for each industry we consider in our experiments.

As shown in Figure 4.1, we focus on the production function with two–input: Labor and Cap-

ital, and denote them as XL and XK respectively. It is common that labor is correlated with the

unobserved productivity because firms can change the number of employees flexibly in the short–

term based on their productivity–level. Since we as an analyst cannot observe this productivity–

level from the census data, unobserved productivity will be included as part of the unobserved

residual, and thus, we have an endogeneity issue, E[ε|XL] 6= 0. We also assume that there is a sin-

gle instrumental variable which is full–time workers, Z. We set our output measure as value–added
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y which is expressed as a function of labor and capital,

y = g0(XL, XK) + ε.

We consider six different scenarios with different training data sizes {100, 500, 1000} and cor-

relations between labor and the IV {0.3, 0.6}. The correlation between labor and the IV describes

the strength of the IV. If the correlation is small, then the IV is weak so that the IV does not have

power to explain the variation of endogenous variable uncorrelated with the residuals. We com-

pute the root mean squared errors (RMSE) on 1,000 testing data randomly drawn from the same

distribution as the training data.

Inputs, IVs, and residuals are randomly drawn from multivariate normal distribution. Specifi-

cally,



XLj

XKj

Zj

εj


∼ N(M ,Σ) for j = 1, . . . , n
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whereM =



0.5

0.5

0.5

0


, Σ =



σ2
L ρLKσLσK ρLZσLσZ ρLεσLσε

ρLKσLσK σ2
K ρKZσKσZ 0

ρLZσLσZ ρKZσKσZ σ2
Z 0

ρLεσLσε 0 0 σ2
ε


,



σL

σK

σZ

σε


=



0.25

0.25

0.25

0.20


, and



ρLK

ρLZ

ρKZ

ρLε


=



0.30

{0.3, 0.6}

0.10

0.75


.

4.3.2 Emerging industry

In this scenario, we assume that the true production function is a Cobb–Douglas function with

increasing returns to scale.

g0 (XL, XK) = X0.8
L X0.8

K . (4.14)

We recognize the selection of coefficients of Cobb–Douglas function may be extremely large

for practical experiments. However, these parameter values demonstrate the estimator’s are robust

to different states of the industry.

Figure 4.2 shows the estimators performance over 50 simulations using box–plots2 and the

RMSE metric. For the various DGPs, the underlined estimators indicate the estimators with cor-
2We define a maximum whisker length of a box plot as [q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)], where q1 and q3

denote the 25 and 75 percentiles, respectively
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rectly specified models. For emerging industries, only LL with IV and S-shape with IV estimators

are correctly specified.

Figure 4.2 shows that the performance of IV estimators is significantly improved if we have

strong IVs, which means high correlation between the endogenous variables and the IVs ρLZ .

Furthermore, we also observe that the benefit of using models with IVs when the IVs are weak

albeit the estimators have higher variances. The S–shape IV estimator has a smaller RMSE median

and variance than the LL IV estimator, which indicates that shape constraints are helpful to improve

performance and robustness of the estimator. Even if we only impose the shape constraints on the

last iteration of the Landweber–Fridman iteration, we observe a significant improvement relative

to the unconstrained estimator. As the sample size increases, the difference between S–shape IV

and LL IV estimator becomes small due to the convergence of LL IV estimator. In contrast, for

the incorrectly specified estimators, the performance of the estimators do not significantly improve

even if we increase the sample size due to model misspecification.

4.3.3 Growing industry

We assume that the true production function has increasing returns to scale followed by de-

creasing returns to scale. We consider a similar DGP as the one presented in Olesen and Ruggiero

(2014).

g0 (XL, XK) = F (G (XL, XK)) (4.15)
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Figure 4.2. The results with an emerging industry DGP
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where

G(XL, XK) =
(
βX

σ−1
σ

L + (1− β)X
σ−1
σ

K

) σ
σ−1

F (w) =
15

1 + exp(−4 log 2w)

β = 0.45, σ = 1.51

G (·) is called a core function defining the input aggregation between labor and capital. The defini-

tion of G (·) affects the shape of input isoquants. F (·) is called a scale function defining the shape

of production function along a ray from the origin.

Figure 4.3 shows the box plot of RMSE values of each estimator for a growing industry. For

this industry, only the LL with IV and the S-shape with IV estimators have correctly specified

underlying models.

The results are similar to those for the emerging industry case. S–shape IV estimator reduces

the median RMSE and variance particularly when the data sample size is small. In contrast to the

emerging industry results, the SCKLS IV estimator performance improves. This result is due to the

true production function in the growing industry case having a region which is concave consistent

with the assumptions of SCKLS. Specifically, the production function beyond the inflection point is

correctly specified for the SCKLS estimator, thus the SCKLS estimator performance is improved.

4.3.4 Matured industry

We assume that the true production function is Cobb–Douglas with decreasing returns to scale.

g0 (XL, XK) = X0.4
L X0.4

K . (4.16)
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Figure 4.3. The results with a growing industry DGP
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Again, we recognize the selection of coefficients of Cobb–Douglas function seems small. We

purpose is to demonstrate the robustness of our estimators even in extreme scenarios.

Figure 4.4 shows the estimators performance over 50 simulations using box–plots and the

RMSE metric for a matured industry. Here, all IV estimators are correctly specified. Note that

the S–shape estimator can be globally concave by setting the inflection point to the origin.

The result shows that shape constrained IV estimators have very competitive performance. All

of shape constrained estimators have smaller median RMSE and variance than the unconstrained

IV estimator. The benefits are particularly pronounced when the sample size is small. The benefits

of imposing shape constraints at each iteration of the SCKLS IV method are slight. Therefore, we

recommend imposing the shape constraints only at the last iteration to decrease the computational

time.

4.4 Application

We estimate a set of production functions using firm–level data from Japan’s Census of Man-

ufactures provided by METI. As Foster et al. (2008) suggested, we analyze manufacturing indus-

tries which produce homogeneous physical output with small quality variation and small technol-

ogy changes over time. We select the following seven industries: raw cane sugar (sugar), bread,

coffee, plywood, corrugated cardboard box (cardboard), ready-mixed concrete and concrete prod-

ucts. We compare conventional parametric IV estimation with the proposed nonparametric shape

constrained IV estimator, and obtain economic insights regarding productivity growth and most

productivity scale size of each industry.
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Figure 4.4. The results with a matured industry DGP
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4.4.1 Census of Manufactures, Japan

The annual Census of Manufactures covers all establishments with four or more employees

and is conducted by METI under the Japanese Statistics Act. We use establishment-level data with

30 or more employees since the establishment with less than 30 employees do not report capital

stock values. We use the same definition of the variables for production functions as Ichimura et al.

(2011):

• Ljt = (sum of total regular employees3 at the end of each month)

• Kjt = (starting amount of tangible assets4)

• yjt = (total amount shipped) + (ending inventory of finished and work-in-progress products)

- (starting inventory of finished and work-in-progress products) - (cost for intermediate in-

puts5)

where Ljt,Kjt and yjt indicate the labor, capital and value added of firm j = 1, . . . , n at time

t = 1, . . . , T . Then, the production function is modeled as yjt = g0(Ljt, Kjt) for each industry.

We propose to use the number of full–time labors as the instrumental variables. While man-

agers cannot change full–time labor easily due to the restrictions from the labor union, they can

flexibly adjust labor input by hiring or firing part–time employees. There are other potential IVs

such as input price. However, input prices have very little variation across firms in this set of ho-

mogeneous product industries. Furthermore, input prices are highly correlation with capital which

is expected to be a exogenous variable. This correlation is due to the fact that highly capitalized

firms are well–organized and paying higher salary to employees.
3Regular employees include full-time, part-time, and dispatched workers who work 18 days or more per month.
4Tangible assets include machines, buildings, and vehicles.
5Intermediate inputs include raw materials, fuel and electricity.
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The use of control functions is another promising approach for the endogeneity problem by

predicting the productivity using the amount of investment (Olley and Pakes (1996)) or intermedi-

ate input (Levinsohn and Petrin (2003)). However, both of these variables potentially contain much

larger measurement errors than the headcount of full–time labors. Based on these observations, we

propose to implement our IV approach using the number of full–time labors as an instrumental

variable. Figure 4.5 shows the transition of full–time and part–time labor over time for each in-

dustry. We observe that firms tend to adjust the part–time labor, which is likely to be a cause the

endogeneity issue. The fluctuations of other variables over the observation period are described in

Appendix C.1.

We use industry–level deflators obtained from the Japan Industrial Productivity Database (JIP)6

to convert nominal values of capital and value added into real values in 2000. Then we convert

establishment-level data into firm-level data by summing up the establishment-level data which

belong to the same firm. We use firm-level data because adjustments to the endogenous variable

(labor) are typically made at the firm-level by based on the firms productivity level.

Table 4.1 shows the summary statistics of the observed data for each industry. Note that we

normalized each variable by dividing the variable by its standard deviation.7 There are relatively

few firms in sugar and coffee industries while the median of value added is larger and capital

intensity greater than other industries. This indicates that these two industries contain a few dom-

inant firms which produce most of the demand. The correlation between the headcount of total

labors and full-time labors is fairly high but not perfectly correlated, which indicates the firms

may change the labor input by adjusting the number of part–time employees. Ready-mix concrete

6The JIP database is publicly available at Research Institute of Economy, Trade and Industry (REITI) (https:
//www.rieti.go.jp/en/database/jip.html)

7 This is particular important for the iterative S–shape estimator because it is sensitive to the scale difference
between variables.
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Figure 4.5. Transition of labor input
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has a particularly small correlation value between capital and instruments (full–time labor). The

low correlation is likely caused by large fluctuations in the industry that are covered by adjusting

part–time labor.

Table 4.1. Summary statistics of homogeneous product industries

Industry Sample
size

Median of
Input ratio

(K/L)

Median of
Value Added

(y)

ρLZ ρKZ

Sugar 249 1245.9 100036.0 0.984 0.832
Bread 3681 197.8 48773.5 0.992 0.984
Coffee 378 789.8 61991.7 0.923 0.783

Plywood 1495 364.3 58362.1 0.979 0.625
Cardboard 5844 519.8 59305.6 0.983 0.936

Ready-mix concrete 1787 404.5 37602.5 0.962 0.274
Concrete products 5916 452.3 51471.6 0.979 0.645

Before estimating the production functions, we conduct hypothesis tests for correct parametric

functional specification: OLS and 2SLS with Cobb–Douglas.8 We use the parametric specification

test described in Henderson and Parmeter (2015).

Table 4.2 shows the p-value for each industry obtained using a bootstrap sample B = 1000.

The Cobb–Douglas production function cannot be rejected for coffee industry. However, the coffee

industry has a small sample of firms and the standard errors of coefficients are large. The Cobb–

Douglas 2SLS estimator cannot be rejected for the cardboard and concrete industries. However,

for other industries, these parametric specifications are likely to be violated as indicated by the low

p-values for the tests. Therefore, more flexible estimators are preferred to avoid functional form

8We obtain L̂ by estimating the first stage with OLS: L = γ0 + γ1Z + v. Then we obtain production function by
estimating second stage with Cobb-Douglas: ln(y) = β0 + β1 ln(L̂) + β2 ln(K) + ε.
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misspecification.

Table 4.2. Parametric specification test results

Industry
p-value

OLS 2SLS

Sugar 0.041** 0.045**
Bread 0.026** 0.031**
Coffee 0.127 0.042**

Plywood 0.015** 0.073*
Cardboard 0.000*** 0.207

Ready-mix concrete 0.031** 0.004***
Concrete product 0.060* 0.205

4.4.2 Estimation of production functions and interpretations

4.4.2.1 The setup

Based on our testing results, our primary model for each industry will be as follows: Coffee –

OLS, Cardboard and Concrete products – 2SLS, and for all others – the S-shape estimator with IV.

We will estimate all three models (OLS, 2SLS, and the S-shape estimator with IV) and the S-shape

estimator without IV for all industries help understand the differences for each estimator.

For the iterative S–shape algorithm, we define five rays and five isoquant y–levels by taking

10th, 30th, 50th, 70th and 90th percentile of capital/labor ratio {Kjt/Ljt}n,Tj=1,t=1 to specify the rays

and the same percentiles of value added {yjt}n,Tj=1,t=1 to specify the isoquants. We perform 50

iterates of the S–shape algorithm setting the bandwidth between rays to 0.25 and increasing the

bandwidth by 0.25 in each iteration. For Landweber–Fridman regularization, we use relaxation

parameter c = 0.5 and stopping criteria defined in the equation 4.10 with δ = 0.01.
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4.4.2.2 Productivity analysis

We estimate the productivity–level using the estimated production functions. Productivity is

measured as the ratio of observed value added yjt to the estimated production function evaluated at

the corresponding input factors, {Ljt, Kjt}. Intuitively, firms have higher productivity when they

can produce larger value added with a given amount of input factors. Productivity can be seen as

the firms’ deviation of output which cannot be explained by the input factors: managerial practices,

quality of input factors, R&D, learning by doing, product innovation, firms’ structure decision, or

other external drivers, see Syverson (2011) for more details.

To analyze the industry–level productivity transition over time, we aggregate the productivity

by computing weighting average with the firms’ share of industry output as described in Levinsohn

and Petrin (1999). Specifically, we compute the aggregated productivity ω̂t for each industry,

ω̂t =
n∑
j=1

sjtω̂jt,

where ω̂jt =
yjt

ĝ0(Ljt,Kjt)
is the estimated firm–level productivity and sjt =

Ojt∑n
i Oit

is the firms’ share

of industry output.9

Figure 4.7 shows the percentage growth of the aggregated productivity of each homogeneous

product industry estimated by Cobb–Douglas 2SLS, S–shape with IV and without IV.10 We first

see that the sugar and coffee industries are much more volatile than other industries. This due to

the small sample size of firms in these two industries and the productivity estimates likely contain

significant noise even after aggregation.

9Amount of output Ojt is the sum of amount shipped and amount of inventory increased during a year.
10To avoid having too many information in the figure, we move the estimation results of Cobb–Douglas OLS in

Appendix C.1.
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The bread industry has significant different productivity estimates between the parametric and

the nonparametric models. This can be seen as evidence of parametric misspecification. While

Cobb–Douglas 2SLS indicates that aggregated productivity is declining over time, the S–shape es-

timator shows that productivity is increasing over time. We point to this as evidence that misspecifi-

cation of the production function’s functional form may result in completely opposite conclusions.

We also find that S-shape without IV model underestimates the productivity level compared with

S-shape with IV for the bread industry. Figure 4.5 shows the labor transition over time for bread in-

dustry. We observe that the total labor level is stable while the ratio of part–time labors to full-time

labors is increasing over time. Since firms’ labor adjustments are not considered in the S–shape

without IV model, it leads to the bias in the aggregated productivity estimates.

The productivity level of cardboard and plywood industries are slightly increasing over time.

Although in 2007, the plywood industry experiences a significant drop in productivity due to the

economic crisis and declining investment in housing. Further, there are significant difference be-

tween Cobb–Douglas 2SLS and other estimators in plywood industry. Based on the hypothesis

testing results in Table 4.2, we conclude that the Cobb–Douglas 2SLS misspecifies the functional

form and overestimates the productivity level.

Ready–mix concrete and concrete products industries have a similar trend of the growth of pro-

ductivity. We observe the the transition of concrete products industry happens one year after the

transition of ready–mix concrete industry. Ready–mix concrete is more sensitive to the demand

since it is not possible to store ready–mix concrete while concrete products can be stored as inven-

tory after manufacturing. Furthermore, ready–mix concrete is sensitive to market cycles because

large–scale construction, such as bridges, dams and roads, is often postponed in times of economic

downturns.
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Figure 4.6. Transition of value added in the concrete products industry

We analyze the productivity changes in the concrete products industry by analyzing produc-

tivity changes based on the firm’s scale size. Figure 4.8 groups firms based on their output levels

in 1997 and shows the transition in productivity from 1997-2007. As shown in Figure 4.6 which

shows the transition of value added, concrete products industry itself is declining since 1997. How-

ever, Figure 4.8 shows that larger firms tend to increase the productivity level while smaller firms

are declining. This indicates that sector output tended to be reallocated from small firms to larger

firms over the 1997-2007 period. This is explained by the fact that concrete products industry are

heavily dependent on capital and most firms are operating well below most productive scale size,

Figure 4.9. Thus, it is difficult for smaller firms to improve productivity endogenously over the

observed time period.

4.4.2.3 Most productive scale size

We also analyze the optimal scale for each industry by computing the most productive scale

size (MPSS) which is the scale size maximizing the average product. Note that MPSS is not

well–defined with Cobb–Douglas 2SLS model since MPSS becomes just either zero or infinite
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depending on returns to scale. Figure 4.9 shows the estimated MPSS of two industries: bread and

concrete products with the S–shape IV estimator. Five dotted lines indicate 10th, 30th, 50th, 70th

and 90th percentile of capital/labor ratio respectively. Appendix C.1 describes the comprehensive

analysis of MPSS for all homogeneous products industries.

For the bread industry, we observe that there is the dominant firm which is operated with the

scale much larger than the MPSS. Since this firm controls a large part of the market, they can

increase their profitability even if they reduce the productivity by expanding beyond the MPSS.

This could be optimal behavior if nonlinear pricing is practiced in the bread industry. However,

note lower capital/labor ratio rays have much smaller MPSS estimates, and most labor intensive

firms are operating below MPSS. This indicates that labor intensive firms are not able to improve

the productivity just by increasing the scale size while maintaining the current input ratio. Instead,

they need to invest on capital and automate manufacturing process to increase their scale size.

The concrete products industry does not have a dominant firm although there are a few rel-

atively larger firms in the market. We observe that generally lower capital/labor ratio lines have

smaller MPSS estimates. This can be explained by the economic theory that firms become more

capital intensive as they grow larger by automating manufacturing processes. Also note that the

highest capital/labor ratio line has a slightly smaller MPSS value than the neighbor. This indicates

some firms have over–invested in capital and could reduce their capital/labor ratio and improve

productivity.

4.5 Conclusion

This chapter proposed a shape constrained IV estimator to address the endogeneity issue while

maintaining the flexible nature of nonparametric shape constrained estimators. We propose to
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Figure 4.9. Estimated MPSS for bread and concrete products industries

apply shape constraints to estimators used in a Landweber–Fridman iteration regularization algo-

rithm. This algorithm is computation feasible for different types of shape constraints such as global

concavity and S–shape.

We validate the finite sample performance of the proposed estimator through simulations under

different assumptions on the market conditions. Correctly specified shape constrained model have

better performance than unconstrained estimator particularly when sample sizes are small. Fur-

thermore, even with a weak IV, the proposed estimator has significantly better performance than

non–IV estimators.

Finally, we apply the proposed estimator to the Japanese census of manufactures to analyze

the productivity of homogeneous product industries. We compute the aggregated productivity

with three different models, and validate the significant deviations of productivity estimates across

model specifications. Specifically, Cobb–Douglas 2SLS may be biased due to the misspecification

of the functional form and the S–shape without IV estimator is likely to be biased because of the

endogeneity. We also compute the MPSS for each industry to analyze the industry market condition

and potential expansion strategy, which cannot be obtained by restrictive parametric models such
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as 2SLS Cobb–Douglas.

Potential extension of our estimator is to impose S–shape constraints on each Landweber–

Fridman iteration to improve the performance at the cost of a more computational intensive algo-

rithm. Also, we plan to clarify the theory of the proposed estimator such as consistency and rate

of convergence.
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5. CONCLUSIONS

We have developed both models and estimators for production functions with local weighting

of data and shape constraints. We developed the SCKLS estimator that imposes simple shape

constraints explaining a production process with decreasing returns to scale: global concavity and

monotonicity. Then we extended the model to the more general economic restrictions: S-shape

expansion and endogeneity.

For the SCKLS estimator, we validated the robustness of the estimator by showing the theo-

retical properties such as consistency and rate of convergence. We also proposed a test for shape

constraints to avoid a misspecification of the shape. Furthermore, we showed the improved finite

sample performance via Monte Carlo simulations. Specifically, the SCKLS estimator has better

out–of–sample performance than other existing nonparametric estimators even when data samples

are small making the SCKLS estimator useful for the analysis of survey data. The SCKLS esti-

mator can also improve the computation efficiency because the size of an optimization problem of

the SCKLS estimator is fully controllable by the density of evaluation points, and the simulated

performance is stable even with a rough grid of evaluation points.

We extended the SCKLS estimator to describe more general economic axioms allowing smaller

firms to benefit from increasing returns to scale through specialization and learning, which is re-

ferred to as an S–shape production function. We proposed the iterative algorithm to estimate a

production function satisfying the S–shape restriction, convex input sets and allowing for non–

homotheticity in input isoquants. In addition to showing the performance improvement through

Monte Carlo simulations, we applied the proposed estimator to data from the Japanese census
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of manufactures. We investigated the supply–side of the cardboard industry and reported most

productive scale size and productivity estimates.

Finally, we integrated the use of instrumental variables into our models to address the potential

endogeneity of labor. We proposed to apply shape constraints to the Landweber–Fridman regu-

larization process which is computationally less expensive than other regularization methods. We

showed the finite sample performance improvement through simulations. Furthermore, we applied

the proposed estimator to the Japanese census of manufactures to analyze the productivity of ho-

mogeneous products industries. We address the endogeneity of labor by including full–time labor

headcount as an instrument for total labor because managers typically cannot adjust full–time la-

bor easily in Japan for unexpected output shocks. We computed most productive scale size and

transition of aggregated productivity to reveal the supply–side of homogeneous products industries

in Japan.

In summary, this dissertation established the theory and application of local weighted shape

constrained estimator by imposing general economic axioms on a production function estimation.

Potential future research could focus on the estimation of a production frontier function for ef-

ficiency analysis. If systematic inefficiency is present in the data, deconvoluting the residuals,

following the stochastic frontier literature, would allow the estimation of a production frontier.

Furthermore, we could also extend our models by including firms entry/exit behaviors to describe

the industry dynamics over time.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 More on SCKLS, CNLS and CWB

In this section, we first give details on the extensions and practical considerations to SCKLS.

We then mention some recently proposed estimators that are related to SCKLS, and make connec-

tions and comparisons among these methods.

A.1.1 More on practical considerations and extensions to SCKLS

A.1.1.1 SCKLS with general constraints

We focus on global concavity/convexity and monotonicity constraints in the main manuscript.

But the SCKLS estimator can handle any types of shape constrained by imposing constraints on

decision variables {ai, bi}mi=1. We re-define the SCKLS estimator as

min
a,b

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)

subject to l(xi) ≤ ĝ(s)(xi|a, b) ≤ u(xi), i = 1, . . . ,m

(A.1)

where a = (a1, . . . , am)′ and b = (b′1, . . . , b
′
m)′. l(·) and u(·) represent lower and upper bounds

at each evaluation point respectively. s denotes the order of partial derivative to each evaluation

point xi.
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A.1.1.2 SCKLS with Local Polynomial

With the proposed estimator in (A.1), we are only able to impose the constraints by using

the functional estimate and/or first partial derivatives. For constraints involving a higher order of

derivatives, we need to formulate SCKLS estimator with a higher order local polynomial function.

For the multivariate local polynomial, we borrow the following notation from Masry (1996).

r = (r1, . . . , rd), r! = r1!× · · · rd!, r̄ =
d∑

k=1

rk,

xr = xr11 × · · · x
rd
d ,

∑
0≤r̄≤p

=

p∑
k=0

k∑
r1=0

· · ·
k∑

rd=0

, and

(Drg) (x) =
∂rg(x)

∂xr11 · · · ∂x
rd
d

With this notation, we can approximate any function g : Rd → R locally (around any x) using a

multivariate polynomial of total order p, given by

g(z) :=
∑

0≤r̄≤p

1

r!
(Dr̄g) (x) (z − x)r̄ . (A.2)

We now define the SCKLS estimator with a local polynomial function of order p as follows:

min
bi

m∑
i=1

n∑
j=1

(
yj −

∑
0≤r̄≤p

b′i(Xj − xi)r̄
)2

K

(
Xj − xi
h

)

subject to l(xi) ≤ ĝ(s)(xi|b) ≤ u(xi), i = 1, . . . ,m

(A.3)

where bi is the functional or derivative estimates at each evaluation points and b = (b′1, . . . , b
′
m)′.

When we select p = 1, then the problem becomes exactly same as the proposed estimator in (A.1).

This extension allows us to make the proposed methods more general and applicable for other
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applications of shape restricted functional estimation in which higher order derivative restricts

may be required. From a computational complexity point of view, it is still optimizing a quadratic

objective function within a convex solution space, and thus, the problem is still typically solvable

within polynomial time.

As demonstrated in Li and Racine (2007), the rate of convergence of local polynomial estimator

is the same for p = 1 and p = 2. From a theoretical perspective, one could attempt to select a

polynomial estimator with p ≥ 3 to improve its convergence performance (at least theoretical). But

that would require much stronger assumption on the smoothness of g0, and would lead to additional

computational burden1. Our experience suggests that SCKLS inherits these properties from the

local polynomial method. Therefore, in practice, with only monotonicity and concavity/convexity

constraints, we feel that it suffices to consider SCKLS with p = 1 (i.e. local linear).

A.1.1.3 SCKLS with k-nearest neighbor

Our primary application of interest is production functions estimated for census manufacturing

data where the input distributions are often highly skewed meaning there are many small establish-

ments, but relatively few large establishments2. To address this issue, we propose to use a k-nearest

neighbor (k-NN) approach in SCKLS which we will refer to as SCKLS k-NN which is in spirit

similar to the extension to the CWB-type estimator proposed by Li et al. (2016). The k-NN ap-

proach uses a smaller bandwidth for smoothing in dense data regions and a larger bandwidth when

the data is sparse. For a further description of the method, see for example Li and Racine (2007).

For any given k, the formulation of SCKLS k-NN with monotonicity and concavity constraints

1While the optimization problem is still polynomial time solvable, the number of decision variables would increase
and the constraint matrix would become significantly more dense, lending to computational challenges.

2An establishment is defined as a single physical location where business is conducted or where services or indus-
trial operations are performed.
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leads to a different weighting scheme in the objective function, as illustrated in the following.

min
ai,bi

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2w

(
‖Xj − xi‖

Rxi

)

subject to ai − al ≥ b′i(xi − xl), i, l = 1, . . . ,m

bi ≥ 0, i = 1, . . . ,m

(A.4)

where w(·) is a general weight function, ‖ · ‖ is the Euclidean norm and Rxi
denotes the Euclidean

distance between xi and k-th nearest neighbor of xi among the set of all covariates {Xj}nj=1. In

practice, k can be chosen by leave-one-out cross validation (LOOCV).

A.1.1.4 SCKLS with non-uniform grid

As noted in the paper, the SCKLS estimator requires the user to specify the number and loca-

tions of the evaluation points. We can also address the input skewness issue by constructing the

evaluation points differently, using a non-uniform grid method. To do so, we first use kernel den-

sity estimation to estimate the density function for each input dimension. Then we take the equally

spaced percentiles of the estimated density function and construct non-uniform grid. Figure A.1

demonstrates how the non-uniform grid are constructed for the 2-dimensional case. In this exam-

ple, we set the minimum and maximum of the observed inputs (with respect to each coordinate) as

the edge of the grid, and compute equally spaced percentile. When the support of the covariates

is non-regular (e.g. not a hyperrectangle), we shall limit ourselves to evaluation points inside the

convex hull of {Xj}nj=1.
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Figure A.1. Example of non-uniform grid with kernel density estimation.

A.1.2 Some related work

A.1.2.1 Convex Nonparametric Least Squares (CNLS)

Kuosmanen (2008) extends Hildreth’s least squares approach to the multivariate setting with

a multivariate input vector, and coins the term “Convex Nonparametric Least Squares” (CNLS)3.

CNLS builds upon the assumption that the true but unknown production function g0 belongs to

the class of monotonically increasing and globally concave functions, denoted by G2 in this paper.

Given the observations {Xj, yj}nj=1, a set of unique fitted values, ŷj = α̂j + β̂jXj , can be found

3A related maximum likelihood formulation was proposed by Banker and Maindiratta (1992), with its consistency
proved by Sarath and Maindiratta (1997).
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by solving the quadratic programming (QP) problem

min
α,β

n∑
j=1

(yj − (αj + β′jXj))
2

subject to αj + β′jXj ≤ αl + β′lXj, j, l = 1, . . . , n

βj ≥ 0, j = 1, . . . , n

(A.5)

where αj and βj define the intercept and slope parameters that characterize the estimated set of

hyperplanes. The inequality constraints in (A.5) can be interpreted as a system of Afriat inequali-

ties (Afriat, 1972; Varian, 1984) to impose concavity constraints. We emphasize that CNLS does

not assume or restrict the domain G2 to only piece-wise affine functions. We also note that the

functional estimates resulting from (A.5) is unique only at the observed data points. In addition,

when d = 1, Chen and Wellner (2016) and Ghosal and Sen (2016) proved that the CNLS-type

estimator attains n−1/2 pointwise rate of convergence if the true function is piece-wise linear.

Finally, we remark that CNLS is related to the method of sieves (Grenander, 1981; Chen and

Qiu, 2016) in the following way. The estimator could be rewritten as

ĝn ∈ argmin
g∈Gn

1

n

n∑
j=1

(yj − g(Xj))
2,

where Gn = {g : Rd → R | g(x) = minj∈{1...,n}(αj + β′jx), with βj ≥ 0 for j = 1, . . . , n}.

However, since the sets G1,G2, . . . are not compact, most known results on sieves do not directly

apply here.

A.1.2.2 Constrained Weighted Bootstrap (CWB)

A.1.2.2.1 Introduction Hall and Huang (2001) proposed the monotone kernel regression method
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in univariate function. Du et al. (2013) generalized this model to handle multiple general shape

constraints for multivariate functions, which they refer to as Constrained Weighted Bootstrap

(CWB). CWB estimator is constructed by introducing weights for each observed data point. The

weights are selected to minimize the distance to unconstrained estimator while satisfying the shape

constraints. The function is estimated as

ĝ(x|p) =
n∑
j=1

pjAj(x)yj (A.6)

where p = (p1, . . . , pn)′, pj is the weights introduced for each observation and Aj(x) is a local

weighting matrix (e.g. local linear kernel weighting matrix). Du et al. (2013) relaxed the re-

striction imposed by Hall and Huang (2001) that pj is non-negative and propose to calculate p

by minimizing its distance to unrestricted weights, pu = (1/n, . . . , 1/n)′, under derivative-based

shape constraints4. The problem is formulated as follows.

min
p

D(p) =
n∑
j=1

(pj − pu)2 =
n∑
j=1

(pj − 1/n)2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . ,m

(A.7)

where xi represents a set of points for evaluating constraints, the elements of s represent the order

of partial derivative, and gs(x) = [∂s1g(x) · · · ∂srg(x)]/[∂xs11 · · · ∂xsrr ] for s = (s1, s2, . . . , sr).

Here the shape restrictions (e.g. concavity/convexity and monotonicity constraints) are imposed

at a set of evaluation points {xi}mi=1 through setting appropriate lower and upper bounds to the

corresponding partial derivatives of the function. One way to interpret the CWB estimator is as

4The use of the equality constraint
∑
j pj = 1 in Du et al. (2013) is a typo, and this condition is not used by them.

In fact, it may harm the estimation procedure. Our empirical results show that this equality constraint only makes
difference in very few cases and the difference is typically small.
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a two-step process: 1) estimate an unconstrained kernel estimator; 2) find the shape constrained

function that is as close as possible (as measured by the Euclidean distance in p-space) to the un-

constrained kernel estimator. Based on our experience, CWB tends to suffer from computational

difficulties and occasionally poor estimates in small samples. We suggest changing the objective

function to minimize the distance from the estimated function to the observed data. This modifi-

cation seems to improve the estimates empirically as shown in Appendix A.5.

A.1.2.2.2 CWB estimator that minimize the distance from the observed data We propose an

extension of the CWB estimator by converting the objective function from p-space to y-space.

Instead of minimizing the distance between the unconstrained estimator and the shape restricted

functional estimate by minimizing the distance between the two functions in p-space, we propose

to minimize the distance between the observed vector of y and the shape restricted functional

estimates in y-space. The estimator, which we shall refer to as CWB in y-space, is formulated as

follows:

min
p

Dy(p) =
n∑
j=1

(yj − ĝ(Xj|p))2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . ,m,

n∑
j=1

pj = 1.

(A.8)

Since the objective function is not necessarily convex in p, this problem is a general nonlinear

optimization problem which is harder to solve.

A.1.2.2.3 Calculating the estimate of the first partial derivative Du et al. (2013) proposed the

CWB estimator which requires estimating the first partial derivatives of unconstrained functional

estimates, ĝ(1)(x|p). Here, we test two different methods of calculating the partial derivatives.

The first method is to calculate the numerical derivative, ĝ(1)(x|p) = ĝ(x+∆|p)−ĝ(x|p)
∆

, to obtain

125



the approximated derivative estimate. Racine (2016) shows that the numerical derivative is very

close to the analytic derivative. The second method is to use the slope estimates of local linear

estimator directly as a proxy for the first partial derivative. We evaluate the performance of CWB

in p-space estimator with these two different methods. Table A.1 and Table A.2 summarize the

RMSE performance against the true function on the observed points and the evaluation points

respectively. The experimental setting is based on Experiment 1 in Section 2.5.

Table A.1. RMSE on observation points for different methods to obtain ĝ(1)(x|p).

Average RMSE on the observation points
Number of observations 100 200 300 400 500

2-input
Numerical derivative 0.260 0.163 0.143 0.153 0.164
Slope estimates of LL 0.421 0.357 0.284 0.306 0.293

3-input
Numerical derivative 0.236 0.256 0.208 0.246 0.240
Slope estimates of LL 0.356 0.427 0.336 0.294 0.279

4-input
Numerical derivative 0.259 0.226 0.222 0.216 0.210
Slope estimates of LL 0.388 0.397 0.276 0.261 0.259

Table A.2. RMSE on evaluation points for different methods to obtain ĝ(1)(x|p).

Average RMSE on the evaluation points
Number of observations 100 200 300 400 500

2-input
Numerical derivative 0.284 0.188 0.157 0.176 0.193
Slope estimates of LL 0.445 0.387 0.321 0.334 0.323

3-input
Numerical derivative 0.309 0.355 0.272 0.331 0.271
Slope estimates of LL 0.438 0.507 0.403 0.371 0.363

4-input
Numerical derivative 0.408 0.381 0.354 0.333 0.308
Slope estimates of LL 0.530 0.535 0.396 0.387 0.368

The results show that CWB using the numerical derivative performs better than CWB using the
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slope estimates from the local linear kernel estimator particularly when the sample size is small.

A.1.3 A comparison between SCKLS, CNLS and CWB

Figure A.2 is meant to be illustrative of the relationship between the SCKLS, CNLS and CWB

estimators in a two-dimensional estimated ε-space where there are more than two observations,

but for the rest of the n − 2 observations, their estimated εjs are held fix. The gray area indicates

the cone of concave and monotonic functions. CNLS estimates a monotonic and concave function

while minimizing the sum of squared errors, that is, minimizing the distance from the origin to

the cone in the estimated ε-space. CWB estimates a monotonic and concave function by finding

the closest point, measured in p-space, on the cone of concave and monotonic functions to uncon-

strained kernel estimate. SCKLS minimizes a weighted function of estimated errors, and therefore

avoids overfitting the observed data. However, as shown in A.2.2, SCKLS can be interpreted as

minimizing the weighted distance from the unconstrained local linear kernel estimator to the cone

of concave and monotonic functions.

A.1.3.1 CNLS as a Special Cases of SCKLS

Let ĝn and ĝCNLSn denote the SCKLS estimator and the CNLS estimator respectively. We will

next examine the relationship between them.

Assumption A.1. The set of evaluation points is equal to the set of sample input vectors, i.e.

m = n and xi = Xi for i = 1, . . . , n.

Proposition A.1. Suppose that Assumption A.1 holds. Then, for any n, when the vector of band-

width goes to zero, i.e. ‖h‖ → 0 (where h = (h1, . . . , hd)
′), the SCKLS estimator ĝn converges to

the CNLS estimator ĝCNLSn pointwise atX1, . . . ,Xn.
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Figure A.2. Comparison of different estimators in the estimated-ε-space.

Proposition A.1 essentially says that CNLS can be viewed as a special case of SCKLS. Note

that in comparison to the CNLS estimator, our SCKLS estimator has tuning parameters, which

to some extent control the bias–variance tradeoff (in a non-trivial way given the shape restric-

tions). For reasonable values of these tuning parameters, SCKLS estimator performs better than

CNLS. See also Section 2.5 of the main manuscript. This is especially true for the estimates close

to the boundary of the input space, where imposing the shape constraint alone could lead to se-

vere overfitting of the data, and thus biased estimates. Indeed, in view of Theorem 2.3 (from

the main manuscript), we have that supS
∣∣ĝn(x) − g0(x)

∣∣ = op(1), while on the other hand,

supS
∣∣ĝCNLSn (x)− g0(x)

∣∣ does not converge to zero in probability.

Additional equivalence results can also be shown. Proposition A.2 shows the equivalence of

linear regression subject to monotonicity constraints and the SCKLS estimator when the bandwidth

vector approaches infinity.
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Proposition A.2. Given Assumption 2.1(v). For any given n, when the bandwidth vector goes to

infinity (i.e. mink=1,...,d hk →∞), the SCKLS estimator converges to the least squares estimator of

the linear regression model subject to monotonicity constraints.

A.1.3.2 CWB in y-space as a Special Cases of SCKLS

Let ĝn and ĝCWBY
n denote the SCKLS estimator and the CWB y-space estimator respectively.

We will next examine the relationship between them.

Proposition A.3. Suppose that Assumption A.1 holds. Then, for any n, when the vector of band-

width goes to zero for both the SCKLS estimator and the CWB in y-space estimator, i.e. ‖h‖ → 0

(where h = (h1, . . . , hd)
′), the SCKLS estimator ĝn converges to the CWB in y-space estimator

ĝCWBY
n pointwise atX1, . . . ,Xn.

Proposition A.3 states that SCKLS and CWB in y-space estimators converge to the same esti-

mates as ‖h‖ → 0. Combining with Proposition A.1, CNLS can be viewed as a special case of

SCKLS and CWB in y-space.

A.1.3.3 The relationship between CWB in p-space and SCKLS

Again start from the SCKLS estimator, and in view of Assumption 2.1 (v), for any sufficiently

small h, we have

K

(
Xj − xi
h

)
=


0 if xi 6= Xj,

K(0) if xi = Xj,

for ∀i, j.

Then, the objective function of the SCKLS estimator (3) is equal to
∑n

j=1(yj−aj)2K(0), and thus

argmin
a1,b1,...,an,bn

n∑
j=1

(yj − aj)2K(0) = argmin
a1,...,an

n∑
j=1

(yj − aj)2 = argmin
a1,...,an

L(g(aj))
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where L(·) =
∑n

j=1(·)2 is the squared error loss function, g(aj) = yj − aj the definition of the

residual.

Alternatively now consider the objective function of CWB, specifically D(p) =
∑n

j=1(pu −

pj)
2 =

∑n
j=1(1/n − pj)

2 = L(m(g(pj))). And let L(·) continue to be defined as above as the

squared error lost function and g(pj) as the definition of the residual. This implies thatm(·) = ·
yjn

.

Therefore, the CWB estimator can be interpreted as a projection of a local polynomial estimator to

the cone of functions which are monotonic and concave in which the direction of projection min-

imizes a specific weighting of the unconstrained local polynomial residuals in which the weights

are defined as 1
yjn

. Therefore, even if the vector of bandwidth goes to zero for the CWB in p-

space estimator, i.e. ‖h‖ → 0 (where h = (h1, . . . , hd)
′), the CWB estimator and CNLS are not

equivalent because the yj in the denominator of the weights is not a function of the bandwidth.

A.1.3.4 On the computational aspects

We also compare the computational burden of each estimators. Table A.3 shows the size of

quadratic programming problems of each estimators: SCKLS, CNLS and CWB. The size of a

quadratic programming problem of the SCKLS estimator is fully controllable because the number

of decision variables and constraints is a function of the number of evaluation points and indepen-

dent of the number of observed points. Because of this, we can solve large-scale problems with

n > 100, 000 using the SCKLS estimator while other shape constrained nonparametric estimators

might face prohibitive computational difficulties without any data pre-processing.

130



Table A.3. The size of quadratic programming problems of each estimator.

SCKLS CNLS CWB

Number of decision variables m(d+ 1) n(d+ 1) n

Number of global concavity constraints m(m−1) n(n− 1) m(m−1)

A.2 Technical proofs

A.2.1 Summary of the proof strategy

Theorems 2.1– 2.4 concern the consistency and convergence rate of the SCKLS estimator and

serve as the primary results in our theoretical development. As such, before presenting the techni-

cal details, we summarize our proof strategy as follows:

1. We rewrite the SCKLS estimator, after some manipulations, as the projection of the local

linear estimator to a convex cone of monotonic and concave functions under a certain norm.

More precisely, the SCKLS estimator

ĝn ∈ argming∈G2
‖g − g̃n‖2

n,m,

where g̃n is the local linear estimator,G2 is the set that contains all the concave and increasing

functions, and ‖ · ‖n,m is a norm defined in detail later in Appendix B.2.

2. (Theorem 2.1). Let ĝn be the SCKLS estimator and g0 ∈ G2 be the truth. Using the new

formulation of SCKLS above, we see that

‖ĝn − g̃n‖n,m ≤ ‖g0 − g̃n‖n,m.
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Moreover, by the triangular inequality, we have that

‖ĝn − g0‖n,m ≤ ‖ĝn − g̃n‖n,m + ‖g̃n − g0‖n,m ≤ 2‖g̃n − g0‖n,m.

Using the results on the uniform consistency of the local linear estimator (e.g. Fan and

Guerre (2016), see our Lemma A.1 and Lemma A.2), we can bound the RHS of the triangle

inequality equation by Op(n
−2/(4+d) log n) = op(1). Consequently, ‖ĝn − g0‖n,m converges

to zero at the same rate. To complete the proof, we show that the discrete L2 distance

between ĝn and g0 is bounded above by a constant times ‖ĝn − g0‖n,m.

3. (Theorem 2.2). Building upon Theorem 2.1, we then make use of the concavity of ĝn and

g0 to establish uniform consistency. Loosely speaking, this relies on the fact that the con-

vergence in L2 for a sequence of Lipschitz (and concave) functions implies the uniform

convergence in the interior of the domain. See Lemma A.3 and Lemma A.4 below for more

detail. Note that we only look at ĝn on the a compact subset interior of its domain, in order

to make sure that ĝn is Lipschitz there. That is also why we do not have consistency on the

boundary from the current proof strategy.

4. (Theorem 2.3). If we let the number of evaluation points, m, grow at a certain rate slower

than n, we can extend the uniform consistency result to the entire support of X . The as-

sumption on the rate of growth of m makes sure that the first partial derivative of SCKLS,

∂ĝn
∂x

(x), is bounded for some positive constant, so the SCKLS is Lipschitz over the entire

domain.

5. (Theorem 2.4). This can be viewed as a generalization of Theorem 2.2. The main ingredient
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of its proof is to establish ‖ĝn− g∗0‖n,m = op(1). Then the uniform consistency follows from

the concavity of ĝn and g∗0 via Lemma A.4.

A.2.2 Alternative definition of SCKLS

Recall that given observations {Xj, yj}nj=1 and evaluation points {xi}mi=1, the (unconstrained)

local linear estimator at xi is (ãi, b̃i) for i = 1, . . . ,m, where (ã1, b̃1, . . . , ãm, b̃m) is the (unique)

minimizer of
m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)
.

For simplicity, we assume that the bandwidth is equal for all input dimensions, i.e. h = (h, . . . , h)′.

Since the objective function is quadratic, for any (a1, b1, . . . , am, bm), its value equals

nhd
m∑
i=1

(
ãi − ai, (b̃i − bi)′h

)
Σi

 ãi − ai

(b̃i − bi)h

+ Const

where

Σi =
1

nhd

n∑
j=1

U
(Xj − xi

h

){
U
(Xj − xi

h

)}′
K

(
Xj − xi

h

)

with U(x) being the vector (1,x′)′ and

Const =
m∑
i=1

n∑
j=1

(yj − ãi − (Xj − xi)′b̃i)2K

(
Xj − xi

h

)
.

Therefore, SCKLS can be simply viewed as a minimizer of

m∑
i=1

(
ãi − ai, (b̃i − bi)′h

)
Σi

 ãi − ai

(b̃i − bi)h


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subject to the shape constraints imposed on (a1, b1, . . . , am, bm). More generally, fixing

{X1, . . . ,Xn}, {x1, . . . ,xm} and h, and define a new squared distance measure between two

functions g1, g2 as

‖g1− g2‖2
n,m =

1

m

m∑
i=1

(
g1(xi)− g2(xi),

(∂g1

∂x
(xi)−

∂g2

∂x
(xi)

)′
h
)
Σi

 g1(xi)− g2(xi)(
∂g1
∂x

(xi)− ∂g2
∂x

(xi)
)′
h

 ,

then SCKLS belongs to5

argmin
g∈G2

‖g − g̃n‖n,m

where G2 is the set that contains all the concave and increasing functions from S to R.

Below, we list some useful results on the behaviors of Σi and (ãi, b̃i). These results follow

from Fan and Guerre (2016).

Lemma A.1 (Lemma 5 of Fan and Guerre (2016), Page 508). Suppose that Assumption 1(i)-1(vi)

hold, then with probability one, there exists C > 1 such that the eigenvalues of Σi are in [1/C,C]

for all i = 1, . . . ,m for sufficiently large n.

Lemma A.2 (Proposition 7 of Fan and Guerre (2016), Page 509). Suppose that Assumption 1(i)-

1(vi) hold, then as n→∞,

sup
i=1,...,m

(
|ãi − g0(xi)|2,

∥∥∥h{b̃i − ∂g0

∂x
(xi)

}∥∥∥2)
= Op(n

−4/(4+d) log n).

5To be more precise technically, if g1−g2 is not differentiable, then ‖g1−g2‖n,m needs to be taken as the infimum
among all possible sub-gradients in the previous definition. Nevertheless, since we only consider the behavior of the
functions at finitely many points, without loss of generality, here we can restrict ourselves to differentiable functions.
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A.2.3 Proof of Theorems in Section 2.3

A.2.3.1 Proof of Theorem 1

Proof. With a sufficiently large n, the uniqueness of the estimates of ĝn(xi) and ∂ĝn
∂x

(xi) for i =

1, . . . ,m is established because our objective function corresponds to is a quadratic programming

problem with a positive definite (strictly convex) objective function with a feasible solution. See

Bertsekas (1995).

Based on our characterization of SCKLS in Appendix A.2.2, we note that the objective function

at the SCKLS estimate is smaller than or equal to that at the truth, and thus

‖ĝn − g̃n‖2
n,m ≤ ‖g0 − g̃n‖2

n,m.

Moreover, by the triangular inequality, we have that

‖ĝn − g0‖n,m ≤ ‖ĝn − g̃n‖n,m + ‖g̃n − g0‖n,m ≤ 2‖g̃n − g0‖n,m.

As such,

‖ĝn − g0‖2
n,m ≤ 4‖g̃n − g0‖2

n,m. (A.9)

Recall that the (unconstrained) local linear estimator at xi is (ãi, b̃i) for i = 1, . . . ,m. It follows
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from Lemma A.2 that

‖g̃n−g0‖2
n,m =

1

m

m∑
i=1

(
ãi−g0(xi),

(
b̃i−

∂g0

∂x
(xi)

)′
h
)
Σi

 ãi − g0(xi)(
b̃i − ∂g0

∂x
(xi)

)
h

 = Op(n
−4/(4+d) log n)

In addition, from Lemma A.1, we have that

‖ĝn − g0‖2
n,m =

1

m

m∑
i=1

(
ĝn(xi)− g0(xi),

(∂ĝn
∂x

(xi)−
∂g0

∂x
(xi)

)′
h
)
Σi

 ĝn(xi)− g0(xi)(
∂ĝn
∂x

(xi)− ∂g0
∂x

(xi)
)
h


≥ 1

Cm

m∑
i=1

(ĝn(xi)− g0(xi))
2, (A.10)

where C is the constant mentioned in the statement of Lemma A.1.

Plugging the above two equations into (A.9) yields

1

m

m∑
i=1

(ĝn(xi)− g0(xi))
2 ≤ Op(n

−4/(4+d) log n) = op(1).

A.2.3.2 Proof of Theorem 2

For the sake of clarity, we have divided the proof of Theorem 2 into several parts.

A.2.3.2.1 Some useful lemmas Here we list two useful lemmas on the convergence of convex

functions.

Lemma A.3. Suppose that f0, f1, f2, . . . : C ′ → R are Lipschitz and convex functions, where

C ′ ⊂ Rd is a compact and convex set. In addition, assume that these functions all have the same
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bound and Lipschitz constant. Then

lim
n→∞

∫
C′
{fn(x)− f0(x)}2dx = 0

implies that

lim
n→∞

sup
x∈C
|fn(x)− f0(x)| = 0

for any compact C in the interior of C ′.

Proof. Suppose that the common Lipschitz constant is M > 0. Moreover, suppose that

sup
x∈C′

inf
y∈C
‖x− y‖ =: δ.

Essentially, that means that for any x ∈ C ′, the ball of radius δ centered at x (denoted as Bδ(x))

intersects with C.

Next, suppose that supx∈C |fn(x)− f0(x)| ≥ ε for some ε > 0. Let

x∗ ∈ argmaxx∈C |fn(x)− f0(x)|.

Then for any x that lies inside the ball of radius min{δ, ε/(4M)} centered at x∗, we have that

|fn(x)− f0(x)| = |fn(x)− fn(x∗) + fn(x∗)− f0(x∗) + f0(x∗)− f0(x)|

≥ |fn(x∗)− f0(x∗)| − |fn(x)− fn(x∗)| − |f0(x∗)− f0(x)|

≥ ε− ε

4M
M − ε

4M
M =

ε

2
,
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where we made use of the Lipschitz constant for fn and f0 in the second last line above. Conse-

quently,

∫
C′
{fn(x)− f0(x)}2dx ≥

( ε
2

)2

Vol(Bmin{δ,ε/(4M)}(x
∗)) = Const.× εd+2

for any 0 < ε < 4Mδ.

But since ε > 0 is arbitrary, lim supn→∞ supx∈C |fn(x)− f0(x)| ≥ ε for any sufficiently small

ε would imply

lim sup
n→∞

∫
C′
{fn(x)− f0(x)}2dx ≥ Const.× εd+2,

violating

lim
n→∞

∫
C′
{fn(x)− f0(x)}2dx = 0.

Our proof is thus completed by contradiction.

The following Lemma A.4 can be viewed as a small extension of Lemma A.3. This is the

version that we shall use in the proof of Theorem 2.2.

Lemma A.4. Suppose that f0, f1, f2, . . . : C ′ → R are Lipschitz and convex functions (that could

be random), where C ′ ⊂ Rd is a compact and convex set. In addition, assume that these functions

all have the same bound and Lipschitz constant. Furthermore, q : C ′ → R with infx∈C′ q(x) > 0.

Then, for any fixed compact set C in the interior of C ′,

∫
C′
{fn(x)− f0(x)}2q(x)dx

p→ 0
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implies that

sup
x∈C
|fn(x)− f0(x)| p→ 0

as n→∞.

Proof. Following the arguments in the proof of Lemma A.3, we see that supx∈C |fn(x)−f0(x)| ≥

ε would entail

∫
C′
{fn(x)− f0(x)}2q(x)dx ≥

( ε
2

)2

Vol(Bmin{δ,ε/(4M)}(x
∗)) inf

x∈C
q(x) = Const.× εd+2

for any sufficiently small ε. Consequently,
∫
C′
{fn(x)− f0(x)}2q(x)dx

p→ 0 implies that

sup
x∈C
|fn(x)− f0(x)| p→ 0.

A.2.3.2.2 Lipschitz continuity of SCKLS For the reasons that will become clearer later, it is

useful to investigate the Lipschitz continuity of SCKLS before we present our proof of Theorem

2. Our finding is summarized in the following lemma. Its proof is similar to that of Proposition

4 of Lim and Glynn (2012, Page 201–202), or that of Theorem 1 of Chen and Samworth (2016,

online supplementary material, Page 2–6). We provide a concise version of the proof for the sake

of completeness. To better illustrate its main idea and intuition, below we focus on the scenario of

d = 1.

Lemma A.5. Under the assumptions of the first part of Theorem 2 (in the case where m increases

with n), for any convex and compact set C ⊂ int(S) (where int(·) denotes the interior of a set),
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there exists some constants B > 0 and M > 0 such that ĝn is B-bounded and M -Lipschitz over

C with probability one as n→∞.

Proof. As explained before, here we focus on the scenario of d = 1. Without loss of generality,

we can take S = [0, 1] and C = [δ, 1− δ] for some δ ∈ (0, 1/2).

Let B0 = sup[0,1] |g0(x)|. First, we show that the event

sup
x∈[δ,1−δ]

|ĝn(x)| ≤ 2B0 + 1 =: B

happens with probability one as n→∞.

Since ĝn is increasing, supx∈[δ,1−δ] |ĝn(x)| = max
(
|ĝn(δ)|, |ĝn(1 − δ)|

)
. In addition, due to

the monotonicity of ĝn, suppose that ĝn(δ) ≤ 0, then |ĝn(x)| ≥ |ĝn(δ)| for x ∈ [0, δ]; otherwise, if

ĝn(δ) > 0, |ĝn(x)| ≥ |ĝn(δ)| for x ∈ [δ, 2δ] (actually, this statement is true for x ∈ [δ, 1]; but for

our purpose, it suffices to only consider x ∈ [δ, 2δ]). As such, |ĝn(δ)| > 2B0 + 1 would imply that

1

m

m∑
i=1

(ĝn(xi)− g0(xi))
2 ≥

1{ĝn(δ)≤0}

m

m∑
i=1

(ĝn(xi)− g0(xi))
21{xi∈[0,δ]}

+
1{ĝn(δ)>0}

m

m∑
i=1

(ĝn(xi)− g0(xi))
21{xi∈[δ,2δ]}

≥ (B0 + 1)2

(
1{ĝn(δ)≤0}

m

m∑
i=1

1{xi∈[0,δ]} +
1{ĝn(δ)>0}

m

m∑
i=1

1{xi∈[δ,2δ]}

)

≥ (B0 + 1)2 min

(
1

m

m∑
i=1

1{xi∈[0,δ]},
1

m

m∑
i=1

1{xi∈[δ,2δ]}

)
n→∞
≥ B2

0δmin
[0,1]

q(x) > 0.

where q(·) is the density function with respect to what the empirical distribution of {x1, . . . ,xm}

converges to (see Assumption 2.2(i)). Here the last line also follows from Assumption 2.2(i). Note
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that Theorem 1 says that 1
m

∑m
i=1(ĝn(xi)−g0(xi))

2 = op(1), which would result in a contradiction.

Therefore, |ĝn(δ)| ≤ 2B0 + 1.

Furthermore, we can reapply the above argument to show that |ĝn(1− δ)| ≤ 2B0 + 1. Conse-

quently,

sup
x∈[δ,1−δ]

|ĝn(x)| ≤ 2B0 + 1 = B

happens with probability one as n→∞.

Second, note that the above proof works for any δ ∈ (0, 1/2). Therefore, we also have that

sup
x∈[δ/2,1−δ/2]

|ĝn(x)| ≤ 2B0 + 1

with probability one as n→∞.

Finally, since ĝn is concave, we note that the Lipschitz constant over [δ, 1−δ] is bounded above

by

max
( |ĝn(δ/2)− ĝn(δ)|

δ/2
,
|ĝn(1− δ/2)− ĝn(1− δ)|

δ/2

)
≤ 4(2B0 + 1)/δ =: M.

In other words, intuitively speaking, in terms of the Lipschitz constant, the most extreme case for

concave functions always occurs on the boundary. For general cases (i.e. d > 1), see for instance,

van der Vaart and Wellner (1996, Page 165, Problem 7).

A.2.3.2.3 Putting things together to prove Theorem 2

Proof.

First claim: when m increases with n.

Let C ′ be a compact and convex set such that C ⊂ int(C ′) and C ′ ⊂ int(S), where int(·)

denotes the interior of a set.
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By Lemma A.5, we have that ĝn is B-bounded and M -Lipschitz over C ′ with probability one

as n→∞. Therefore, {ĝn(x)− g0(x)}21{x∈C′} belongs to the class of functions that is bounded

and equicontinuous overC ′. By Theorem 3.1 of (Rao, 1962, Page 662) (which can also be viewed

as a generalization of the Uniform Law of Large Numbers; see also Chapter 2.4 of van der Vaart

and Wellner (1996)), we have that

∣∣∣∣∣ 1

m

m∑
i=1

(ĝn(xi)− g0(xi))
21{xi∈C′} −

∫
C′
{ĝn(x)− g0(x)}2q(x)dx

∣∣∣∣∣ p→ 0.

In addition, it follows from Theorem 2.1 that

op(1) =
1

m

m∑
i=1

(ĝn(xi)− g0(xi))
2 ≥ 1

m

m∑
i=1

(ĝn(xi)− g0(xi))
21{xi∈C′}.

Combining the above two equations together yields

∫
C′
{ĝn(x)− g0(x)}2q(x)dx = op(1).

It then follows immediately from Lemma A.4 that as n→∞,

sup
x∈C
|ĝn(x)− g0(x)| p→ 0.

Second claim: when m is fixed.
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In views of Lemma A.1 and Theorem 2.1,

1

C

m∑
i=1

[
|ĝn(xi)− g0(xi)|2 +

∥∥∥(∂ĝn
∂x

(xi)−
∂g0

∂x
(xi)

)
h
∥∥∥2
]
≤ ‖ĝn−g0‖2

n,m = Op(n
−4/(4+d) log n)

where the first inequality is from Lemma A.1, and the last equality is from Theorem 2.1.

Since m is fixed and h = O(n−1/(4+d)), it follows from that

|ĝn(xi)− g0(xi)| = Op(n
−2/(4+d) log n)

p→ 0

and

‖∂ĝn
∂x

(xi)−
∂g0

∂x
(xi)‖ = Op(n

−1/(4+d) log n)
p→ 0

for every i = 1, . . . ,m.

A.2.3.3 Proof of Theorem 3

Proof. Using Equation (A.10) but focusing on the difference between the derivatives instead, we

have that

h2

Cm

m∑
i=1

∥∥∥(∂ĝn
∂x

(xi)−
∂g0

∂x
(xi)

)∥∥∥2

≤ ‖ĝn − g0‖2
n,m = Op(n

−4/(4+d) log n)

as n→∞. It then follows from h = O(n−1/(4+d)) and Assumption 2.3 that

m∑
i=1

∥∥∥∂ĝn
∂x

(xi)−
∂g0

∂x
(xi)

∥∥∥2

= Op(h
−2mn−4/(4+d) log n) = op(1).
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This implies that maxi=1,...,m

∥∥∥∂ĝn∂x (xi)
∥∥∥
∞
≤ supx∈S

∥∥∥∂g0∂x (x)
∥∥∥
∞

+ op(1). Now since

ĝn(x) = min
i∈{1,...,m}

{
ĝn(xi) + (x− xi)′

∂ĝn
∂x

(xi)
}
,

we have that with probability one,

sup
x∈S

∥∥∥∂ĝn
∂x

(x)
∥∥∥
∞
≤M

for some M > 0, as n→∞.

For any ε > 0, we can always find a compact set Cε ⊂ S such that supx∈S infy∈Cε ‖x− y‖ <

ε
2(M+Mg0 )

, where Mg0 is the Lipschitz constant of g0. In view of Theorem 2, supx∈Cε |ĝn(x) −

g0(x)| → 0 in probability. Therefore,

sup
x∈S
|ĝn(x)− g0(x)| ≤ sup

x∈Cε
|ĝn(x)− g0(x)|+ (M +Mg0)

{
sup
x∈S

inf
y∈Cε
‖x− y‖

}
≤ ε

as n→∞. Since ε is picked arbitrarily, we have shown the consistency of ĝn over S.
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A.2.4 Proof of Theorems in Section 2.4

A.2.4.1 Proof of Theorem 4

Proof. Using the definition of SCKLS in Appendix A.2.2 and the notation in the proofs of Theorem

1 and Theorem 2, we have that

m∑
i=1

(
ãi − g∗0(xi),

(
b̃i −

∂g∗0
∂x

(xi)
)′
h
)
Σi

 ãi − g∗0(xi)(
b̃i − ∂g∗0

∂x
(xi)

)
h



≥
m∑
i=1

(
ãi − âi, (b̃i − b̂i)′h

)
Σi

 ãi − âi(
b̃i − b̂i

)
h



=
m∑
i=1

(
ãi − g∗0(xi),

(
b̃i −

∂g∗0
∂x

(xi)
)′
h
)
Σi

 ãi − g∗0(xi)(
b̃i − ∂g∗0

∂x
(xi)

)
h



+ 2
m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))
′h
)
Σi

 g∗0(xi)− âi

(
∂g∗0
∂x

(xi)− b̂i
)
h



+
m∑
i=1

(
g∗0(xi)− âi, (

∂g∗0
∂x

(xi)− b̂i)′h
)
Σi

 g∗0(xi)− âi(∂g∗0
∂x

(xi)− b̂i
)
h



where we recall that âi and b̂i are respectively the estimated value and its gradient from SCKLS at

evaluation point xi, i.e., âi = ĝn(xi) and b̂i = ∂ĝn
∂x

(xi).
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Therefore, in view of Lemma A.2, with probability one, for sufficiently large n,

2

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))
′h
)
Σi

 âi − g∗0(xi)

(b̂i − ∂g∗0
∂x

(xi))h

 (A.11)

≥ 1

m

m∑
i=1

(
g∗0(xi)− âi, (

∂g∗0
∂x

(xi)− b̂i)′h
)
Σi

 g∗0(xi)− âi(∂g∗0
∂x

(xi)− b̂i
)
h

 ≥ 1

mC

m∑
i=1

(g∗0(xi)− âi)2

(A.12)

Next, we show that the quantity in (A.11) converges to zero in probability as n → ∞. The

proof can be divided into six steps:

1. The contribution to (A.11) from evaluation points lying outside a carefully pre-chosen compact

subset S′ of the interior of S (denoted as int(S)) can be made arbitrarily small. This follows

from the Cauchy–Schwarz inequality that

1

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))
′h
)
Σi

 âi − g∗0(xi)

(b̂i − ∂g∗0
∂x

(xi))h

1{x/∈S′}

≤

√√√√√√√ 1

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))′h
)
Σi

 ãi − g∗0(xi)

(b̃i − ∂g∗0
∂x

(xi))h

1{x/∈S′} (A.13)

×

√√√√√√√ 1

m

m∑
i=1

(
âi − g∗0(xi), (b̂i −

∂g∗0
∂x

(xi))′h
)
Σi

 âi − g∗0(xi)

(b̂i − ∂g∗0
∂x

(xi))h

. (A.14)

Because of Lemma A.1 and Assumption 2.2(i), the quantity in (A.13) can be made arbitrar-

ily small by choosing S′ sufficiently close to S. In addition, applying the Cauchy–Schwarz
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inequality to (A.11) and comparing it to (A.12) yields

2

√√√√√√√ 1

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))′h
)
Σi

 ãi − g∗0(xi)

(b̃i − ∂g∗0
∂x

(xi))h



×

√√√√√√√ 1

m

m∑
i=1

(
âi − g∗0(xi), (b̂i −

∂g∗0
∂x

(xi))′h
)
Σi

 âi − g∗0(xi)

(b̂i − ∂g∗0
∂x

(xi))h



≥ 1

m

m∑
i=1

(
g∗0(xi)− âi, (

∂g∗0
∂x

(xi)− b̂i)′h
)
Σi

 g∗0(xi)− âi(∂g∗0
∂x

(xi)− b̂i
)
h

 ,

so (A.14) is no greater than

2

√√√√√√√ 1

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))′h
)
Σi

 ãi − g∗0(xi)

(b̃i − ∂g∗0
∂x

(xi))h


→ 2

{∫
S

(g0(x)− g∗0(x))2Q(dx)
}1/2

≤ 2
{∫

S

g2
0(x)Q(dx)

}1/2

.

Consequently, the claim in this step is proved.

2. We now investigate the contribution to (A.11) from evaluation points lying inside S′. Using

Lemma A.5, we have that ĝn is bounded (i.e. from both below and above) and M -Lipschitz

over S′ in probability.
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Combining this with Lemma A.1 implies that

∣∣∣∣∣ 1

m

m∑
i=1

(
ãi − g∗0(xi), (b̃i −

∂g∗0
∂x

(xi))
′h
)
Σi

 âi − g∗0(xi)(
b̂i − ∂g∗0

∂x
(xi)

)
h

1{x∈S′}

− 1

m

m∑
i=1

(
(g0 − g∗0)(xi), (

∂(g0 − g∗0)

∂x
(xi))

′h

)
Σi

 âi − g∗0(xi)(
b̂i − ∂g∗0

∂x
(xi)

)
h

1{x∈S′}

∣∣∣∣∣→ 0

in probability. As such, we can instead work on

1

m

m∑
i=1

(
(g0 − g∗0)(xi), (

∂(g0 − g∗0)

∂x
(xi))

′h

)
Σi

 âi − g∗0(xi)(
b̂i − ∂g∗0

∂x
(xi)

)
h

1{x∈S′} (A.15)

3. Next, we bound (and eliminate) the influence from the parts involving partial derivatives of g0,

g∗0 and ĝn in (A.15). Since ĝn is bounded and M -Lipschitz over S′ in probability, together with

Lemma A.2, we could bound (A.15) from above by

1

m

m∑
i=1

(g0(xi)− g∗0(xi))(ĝn(xi))− g∗0(xi))1{x∈S′} +O(h) +O(h2),

which is arbitrarily close to 1
m

∑m
i=1(g0(xi)− g∗0(xi))(ĝn(xi)− g∗0(xi))1{x∈S′} as n→∞ (i.e.

h → 0). Here we also used the fact that supi=1,...,m |Σ
(11)
i − 1| → 0, where Σ

(11)
i is the first

diagonal entry of the matrix Σi.

4. Now we re-expand ĝn from S′ to S as

ĝS
′

n (x) = min
i∈{1,...,m|xi∈S′},

{
ĝn(xi) + (x− xi)′

∂ĝn
∂x

(xi)
}
.
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Three useful facts about ĝS′n are listed below:

• ĝS′n ≥ ĝn, with ĝS′n (xi) = ĝn(xi) for any xi ∈ S′.

• there exists some B > 0 such that supx∈S ĝ
S′
n (x) ≤ B in probability. Importantly, given

that there is a common compact and convex set C such that C ⊂ S′ for all the S′ to be

considered, the constant B does not depend on the choice of S′. To see this, we note that

ĝCn = ĝn over C, which is also B′-bounded and M ′-Lipschitz over C in probability via

Lemma A.5. Then it follows that

ĝS
′

n ≤ ĝCn ≤ B′ +M ′ sup
y1,y2∈S

‖y1 − y2‖ =: B

in probability as n→∞.

• The function {(g0 − g∗0)(ĝn − g∗0)}(·) is bounded and Lipschitz over S′ in probability

(where the constants do not depend on n). So is {(g0 − g∗0)(ĝS
′

n − g∗0)}(·) over S. This

also means that {(g0 − g∗0)(ĝS
′

n − g∗0)}(·) is equicontinuous over S.

5. Returning to the quantity we mentioned at the end of Step 3, we note that

1

m

m∑
i=1

(g0(xi)− g∗0(xi))(âi − g∗0(xi)1{xi∈S′}

=
1

m

m∑
i=1

(
(g0 − g∗0)(ĝS

′

n − g∗0)
)

(xi)−
1

m

m∑
i=1

(
(g0 − g∗0)(ĝS

′

n − g∗0)
)

(xi)1{xi /∈S′}

=
1

m

m∑
i=1

(
(g0 − g∗0)(ĝS

′

n − g∗0)
)

(xi)−
1

m

m∑
i=1

(
(g0 − g∗0)(ĝn − g∗0)

)
(xi)1{xi /∈S′}

− 1

m

m∑
i=1

(
(g0 − g∗0)(ĝn − ĝS

′

n )
)

(xi)1{xi /∈S′}

= (I) + (II) + (III).
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We deal with each of these items separately.

• By the third fact listed in the above Step 4 and Theorem 3.1 of Rao (1962), (I) in the limit

(i.e. as n→∞) is at most

sup
g∈G2

∫
S

{(g0(x)− g∗0(x)}{g(x)− g∗0(x)}q(x)dx ≤ 0.

Note that g∗0 minimizes

G(g) :=

∫
S

(g0(x)− g(x))2q(x)dx

over all g ∈ G2. The previous inequality thus follows by studying the functional derivative

for the function G(·) at g∗0 in the direction of g− g∗0 (N.B. g∗0 + ε(g− g∗0) ∈ G2 for ε→ 0)

for all g ∈ G2.

• Both |(II)| and |(III)| in the limit can be arbitrarily small for S′ sufficiently close to S.

This follows from Cauchy–Schwarz inequality and an argument similar to that in Step 1.

6. We now put things together by noting that in light of Steps 1 to 5, for any ε, we can find some S′

such that the quantity in (A.11) is no bigger than ε in probability as n→∞. Since the quantity

in (A.11) is also non-negative, our claim that (A.11) converges to zero in probability is verified.

Finally, uniform consistency over any C can be shown using exactly the same approach we

demonstrated in the final stage of proving the first part of Theorem 2.2 via Lemma A.4.
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A.2.4.2 Proof of Theorem 5

Proof. Our proof can be divided into three parts.

1. The case of g0 = 0.

Using the definition of SCKLS in Appendix A.2.2, it is easy to verify that Tn = ‖ĝn − g̃n‖n,m.

For reasons that will become clear later, we denote ĝ◦n and g̃◦n the SCKLS and LL estimators

based on the same covariates, evaluation points and bandwidth used in calculating Tn, but with the

response vector (ε1, . . . , εn)′ (instead of yn) and set T ◦n = ‖g̃◦n − ĝ◦n‖n,m. Obviously, when g0 = 0

(which is the case here), ĝ◦n = ĝn, g̃
◦
n = g̃n and T ◦n = Tn.

Now, for k = 1, . . . , B, Tnk = ‖ĝnk − g̃nk‖n,m, where ĝnk and g̃nk are respectively the SCKLS

and LL estimators based on the same covariates, evaluation points and bandwidth used in calcu-

lating Tn, but with the response vector (u1k ε̃1, . . . , unk ε̃n)′. Further, we define a slightly modi-

fied bootstrap version of the test statistic as T ◦nk = ‖ĝ◦nk − g̃◦nk‖n,m, where ĝ◦nk and g̃◦nk are the

SCKLS and LL estimators based on the same covariates, evaluation points and bandwidth used

in calculating Tn, but with the response (u1kε1, . . . , unkεn)′. Let e = (|ε1|, . . . , |εn|)′ and denote

p◦n = 1
B

∑B
i=1 1{T ◦n≤T ◦nk}. Then, it follows from the symmetry of the error distribution that condi-

tioning on the values of the absolute errors (i.e. (|ε1|, . . . , |εn|)′ = e), the quantities

T ◦n , T
◦
n1, . . . , T

◦
nB

are exchangeable. Consequently, as B →∞,

P (p◦n ≤ α) = E
{
P
(
p◦n ≤ α

∣∣∣(|ε1|, . . . , |εn|)′ = e
)}
≤ bBαc+ 1

1 +B
→ α.
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Back to the elements in the quantity pn, our aim is to show that 1{Tn≤T ◦nk} ≤ 1{Tn≤Tnk+∆n} for

large n. Note that

Tnk−T ◦nk = ‖g̃nk− ĝnk‖n,m−‖g̃◦nk− ĝ◦nk‖n,m ≤ ‖g̃nk− ĝ◦nk‖n,m−‖g̃◦nk− ĝ◦nk‖n,m ≤ ‖g̃nk− g̃◦nk‖n,m

Because we estimated the error vector in Step 1 using LL (without any shape restrictions), it follows

from Proposition 7 of Fan and Guerre (2016) that supj |ε̃j − εj| ≤ Op(n
−2/(4+d) log1/2 n). By the

linearity of the LL estimator (w.r.t. the response vector), we have that supk ‖g̃nk − g̃◦nk‖2
n,m =

Op(n
−4/(4+d) log n). Consequently, with arbitrarily high probability,

inf
k=1,...,B

(Tnk + ∆n − T ◦nk) > 0

for sufficiently large n. This yields 1{T ◦n≤T ◦nk} ≤ 1{Tn≤Tnk+∆n} and thus pn ≥ p◦n. As a result,

P (pn ≤ α) ≤ P (p◦n ≤ α) ≤ α, as required.

2. The general case of g0 ∈ G2.

To relate Tn to what we investigated before (i.e. g0 = 0), we recall the definitions of ĝ◦n and g̃◦n

from the previous case, and define an additional quantity g̃†n to be the LL estimator in exactly the

same setting, but is obtained using the response vector (g0(X1), . . . , g0(Xn))′. By the linearity of

the LL, g̃n = g̃◦n + g̃†n. Since g0 is continuously twice-differentiable, we have that

Tn = ‖g̃n − ĝn‖n,m ≤ ‖g̃◦n + g̃†n − ĝ◦n − g0‖n,m ≤ ‖g̃◦n − ĝ◦n‖n,m + ‖g̃†n − g0‖n,m = T ◦n +Op(h
2).
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As a result, with arbitrarily high probability, for every k = 1, . . . , B,

Tnk + ∆n − Tn = T ◦nk − T ◦n + (Tnk − T ◦nk)− (Tn − T ◦n) + ∆n ≥ T ◦nk − T ◦n

for sufficiently large n. This also leads to 1{T ◦n≤T ◦nk} ≤ 1{Tn≤Tnk+∆n}. We could then directly apply

the argument from the previous case to conclude that P (pn ≤ α) ≤ α.

3. The case of g0 /∈ G2

Here g0 is assumed to be fixed and continuously twice-differentiable.

First, two situations are considered.

• Under Assumption 2.2(i), we recall that

g∗0 := argmin
g∈G2

∫
S

{g(x)− g0(x)}2Q(dx).

Since g0 /∈ G2, there must exists some compact set S′ ⊂ int(S) such that Q(S′) > 0 and

inf
x∈S′
|g∗0(x)− g0(x)| > δ.

Note that

T 2
n = ‖ĝn − g̃n‖2

n,m

≥ 1

m

m∑
i=1

(
ĝn(xi)− g̃n(xi),

(∂(g1 − g2)

∂x
(xi)

)′
h
)
Σi

ĝn(xi)− g̃n(xi)

∂(ĝn−g̃n)
∂x

(xi)h

1{xi∈S′}.
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Here we have that g̃n → g0 by Fan and Guerre (2016) and ĝn → g∗0 over S′ by our Theo-

rem 2.4. Since g̃n − ĝn is Lipschitz over S′, it is easy to verify (see also Step 3 of the proof

of Theorem 2.4) that the righthand side of the above display equation is bounded below by

δ2Q(S′) in the limit as n→∞ (also h→ 0). Consequently, Tn ≥ c′ in probability for some

c′ > 0.

• Now under Assumption 2.2(ii), since g0 /∈ G2 and the evaluation points are reasonably well

spread across S (i.e. Assumption 2.2(ii)), for sufficiently large and fixed m, we can always

find some evaluation points where the imposed shape constraint is violated. This means that

inf
g∈G2

‖g − g0‖n,m ≥ c

in probability for some c > 0. So we still have that

Tn = ‖ĝn − g̃n‖n,m ≥ ‖ĝn − g0‖n,m − ‖g̃n − g0‖n,m ≥ inf
g∈G2

‖g − g0‖n,m − op(1) ≥ c′

in probability for some c′ > 0.

Second, it follows from the proof for the case of g0 = 0 that

Tnk = T ◦nk + Tnk − T ◦nk ≤ ‖g̃◦nk‖n,m + ‖g̃nk − g̃◦nk‖n,m = op(1).

Finally, write Wnk = 1{Tnk+∆n>c′/2}. We note that Wn1, . . . ,WnB are exchangeable. Thus, for
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any α ∈ (0, 1), as n→∞,

P (Do not reject H0) = P

(
1

B

B∑
k=1

1{Tn≤Tnk+∆n} ≥ α

)

≤ P (Tn ≤ c′/2) + P

(
Tn > c′/2,

1

B

B∑
k=1

1{Tn≤Tnk+∆n} ≥ α

)

≤ P (Tn ≤ c′/2) + P

(
1

B

B∑
k=1

Wnk ≥ α

)

≤ P (Tn ≤ c′/2) +
E(Wn1)

α
→ 0,

where we used Markov’s inequality in the final line above. So the Type II error at the alternative

indeed converges to 0.

A.2.5 Proof of Propositions in Appendix A.1.3

A.2.5.1 Proof of Proposition A.1

Proof. In view of Assumption 2.1 (v), for any sufficiently small h, we have

K

(
Xj − xi
h

)
=


0 if xi 6= Xj,

K(0) if xi = Xj,

for ∀i, j.

Then, the objective function of (2.3) is equal to
∑n

j=1(yj − aj)2K(0), and thus

argmin
a1,b1,...,an,bn

n∑
j=1

(yj − aj)2K(0) = argmin
a1,...,an

n∑
j=1

(yj − aj)2
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Writing aj = αj+β
′
jXj and bj = βj for j = 1, . . . , n by definition. Then, quadratic programming

problem (2.3) can be rewritten as follows:

min
α,β

n∑
j=1

(yj − (αj + β′jXj))
2

subject to αj + β′jXj ≤ αl + β′lXj, j, l = 1, . . . , n

βj ≥ 0, j = 1, . . . , n

which is equivalent to the formulation of the CNLS estimator (A.5).

A.2.5.2 Proof of Proposition A.2

Proof. When mink=1,...,d hk →∞, we have

K

(
Xj − xi
h

)
= K(0) for ∀i, j. (A.16)

By substituting (A.16) into the objective function of (2.3) converges to

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K(0).

Next, we derive the minimum of the objective function in the limit. Let’s consider

argmin
a1,b1,...,am,bm

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2 (A.17)

subject to constraints. Rewrite ai + (Xj −xi)′bi = αi +β′iXj for i = 1, . . . ,m and j = 1, . . . , n.
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Then the objective function of (2.3) can be rewritten as follows with (A.17).

min
α1,β1,...,αm,βm

m∑
i=1

n∑
j=1

(yj − (αi + β′iXj))
2

subject to αi + β′ixi ≤ αl + β′lxi i, l = 1, . . . ,m

βi ≥ 0 i = 1, . . . ,m

Here, since we do not impose any weight on the objective function, it is easy to see that α1 = · · · =

αm and β1 = · · · = βm. Then the Afriat constraints become redundant, resulting in

min
α,β

n∑
j=1

(yj − (α + β′Xj))
2

subject to β ≥ 0.

A.2.5.3 Proof of Proposition A.3

Proof. In view of Assumption 2.1 (v), for any sufficiently small h, we have

K

(
Xj − xi
h

)
=


0 if xi 6= Xj,

K(0) if xi = Xj,

for ∀i, j.

Then, the objective function of the SCKLS estimator (3) is equal to
∑n

j=1(yj−aj)2K(0), and thus

argmin
a1,b1,...,an,bn

n∑
j=1

(yj − aj)2K(0) = argmin
a1,...,an

n∑
j=1

(yj − aj)2

Also consider Assumption A1 (i) from Du et al. (2013), we can say something similar for CWB
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in y-space. For any sufficiently small h, we have

Aj(xi) =


0 if xi 6= Xj,

n if xi = Xj,

for ∀i, j.

and thus

ĝ(xi|p) =
n∑
j=1

pjAj(Xi)yj = npiyi ∀i = 1, . . . , n. (A.18)

Then we can rewrite the CWB in y-space estimator as follows:

min
p

Dy(p) =
n∑
i=1

(yi − npiyi)2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . , n.

(A.19)

Recognize that if ĝn = npiyi is true, then SCKLS and CWB in y-space are equivalent. Take ĝn

as the solution to SCKLS estimator and let pi be a set of decision variables, we see ĝn = npiyi is

simply a system of n equations and n unknowns.

A.3 Testing for affinity using SCKLS

A.3.1 The procedure

To further illustrate the usefulness of SCKLS for testing other shapes, we study the problem of

testing

H0 : g0 : S → R is affine against H1 : g0 : S → R is not affine.
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The main idea of our test is motivated by Sen and Meyer (2017). The critical value of the test can

be easily computed using Monte Carlo or bootstrap methods.

To start of with, we define ĝV
n , the SCKLS estimator with only a set of convexity constraints as

min
ai,bi

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)

subject to ai − al ≤ b′i(xi − xl), i, l = 1, . . . ,m

Furthermore, ĝΛ
n , the SCKLS estimator using only a set of concavity constraints is defined as

min
ai,bi

m∑
i=1

n∑
j=1

(yj − ai − (Xj − xi)′bi)2K

(
Xj − xi
h

)

subject to ai − al ≥ b′i(xi − xl), i, l = 1, . . . ,m

We now describe our testing procedure as follows.

1. First, we run linear regression on the response against the covariates and call the least squares

fit gLn . Next, we fit the data using SCKLS (with evaluation points at x1, . . . ,xm and band-

width hn). The resulting estimators are denoted by ĝV
n and ĝΛ

n , where ĝV
n is the SCKLS

estimator using only a set of convexity constraints, while ĝΛ
n is the SCKLS estimator using

only a set of concavity constraints, all based on {Xj, yj}nj=1.We then define the test statistics

to be

Tn = max

[
1

m

m∑
i=1

{ĝV
n (xi)− gLn (xi)}2,

1

m

m∑
i=1

{ĝΛ
n (xi)− gLn (xi)}2

]
.

2. We simulate the distributional behavior of the test statistics B times under H0. For k =

1, . . . , B, we set the observations to be {Xj, yjk}nj=1 (i.e. no change in the values of the

covariates), where ynk = (y1k, . . . , ynk)
′ is drawn using the wild bootstrap procedure as
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described in Section 2.4.2 (or the ordinary bootstrap procedure if we know that the errors are

homogeneous). Then we run linear regression on ynk against the covariates and denote the

least squares fit by gLnk. Fitting the data using SCKLS (with the same set of evaluation points

and the same bandwidth as before) leads to the resulting estimators ĝV
nk and ĝΛ

nk, where ĝV
nk is

the SCKLS estimator using only the convexity constraint, while ĝΛ
nk is the SCKLS estimator

using only the concavity constraint, all based on {Xj, yjk}nj=1. So

Tnk = max

[
1

m

m∑
i=1

{ĝV
nk(xi)− gLnk(xi)}2,

1

m

m∑
i=1

{ĝΛ
nk(xi)− gLnk(xi)}2

]
.

3. The Monte Carlo p-value is defined as

pn =
1

B

B∑
k=1

1{Tn≤Tnk}.

For a test of size α ∈ (0, 1), we reject H0 if pn < α.

The intuition of the test is as follows. First, an affine function is both convex and concave.

Therefore under H0, both SCKLS estimates, ĝV
n and ĝΛ

n , should be close to the linear fit gLn , so the

value of Tn should be small. Second, a function is both convex and concave only if it is affine. So

given enough observations, we should be able to reject the null hypothesis under H1. Third, we

used the fact that Tn based on {Xj, yj}nj=1 and {Xj, εj}nj=1 are exactly the same under H0 when

simulating the distributional behavior of Tn.

Finally, we remark that in case we know that g0 is monotonically increasing a priori, we could

test H ′0 : g0 is monotonically increasing and affine using essentially the same procedure with

only minor modifications described in the following: we instead run linear regression with signed
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constraints in both Step 1 and Step 2, replace ĝV
n by the SCKLS with both the convexity and

monotonicity constraints, and replace ĝΛ
n by the SCKLS with both the concavity and monotonicity

constraints.

A.3.2 A simulation study

We now examine the finite-sample performance of the affinity test using data generated from

the following DGP:

g0(x) =
1

d

d∑
k=1

xpk (A.20)

where x = (x1, . . . , xd)
′. With n observations, for each pair (Xj, yj), each component of the

input, Xjk, is randomly and independently drawn from uniform distribution unif [0, 1], and the

additive noise, εj , is randomly and independently sampled from a normal distribution, N(0, 0.1).

We considered different sample sizes n ∈ {100, 300, 500} and vary the number of inputs d ∈

{1, 2}, and perform 100 simulations to compute the rejection rate for each scenario. We used the

ordinary bootstrap method with B = 500.

In the scenarios we considered g0 is affine if p = 1.0, and is non-linear if p ∈ {0.2, 0.5, 2, 5}.

Table A.4 show the rejection rate for each scenario with one-input and two-input at α = 0.05. We

conclude that the proposed test works well with a moderate sample size.

A.4 An algorithm for SCKLS computational performance

For a given number of evaluation points, m, SCKLS requires m(m− 1) concavity constraints.

Larger values of m provide a more flexible functional estimate, but also increase the number of

constraints quadratically, thus, the amount of time needed to solve the quadratic program also

increases quadratically. Since one can select the number of evaluation points in SCKLS, by select-
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Table A.4. Rejection rate of the affinity test using SCKLS at α = 0.05

Sample size (n) Shape Parameter (p)
Power of the Test
d = 1 d = 2

100

0.2 0.99 0.74
0.5 0.97 0.79
1.0 0.05 0.02
2.0 1.00 1.00
5.0 1.00 1.00

300

0.2 1.00 1.00
0.5 1.00 0.99
1.0 0.05 0.01
2.0 1.00 1.00
5.0 1.00 1.00

500

0.2 1.00 1.00
0.5 1.00 1.00
1.0 0.08 0.01
2.0 1.00 1.00
5.0 1.00 1.00

ing m the computational complexity can be potentially reduced relative to CNLS or estimates on

denser grids, i.e. with m(m− 1)� n(n− 1).

Further, Dantzig et al. (1954, 1959) proposed an iterative approach that reduces the size of

large-scale problems by relaxing a subset of the constraints and solving the relaxed model with

only a subset V of constraints, checking which of the excluded constraints are violated, and it-

eratively adding violated constraints to the relaxed model until an optimal solution satisfies all

constraints. Lee et al. (2013), who applied the approach to CNLS, found a significant reduction in

computational time. Computational performances also improves if a subset of the constraints can

be identified which are likely to be needed in the model. Lee et al. (2013) find the concavity con-

straints corresponding to pairs of observations that are close in terms of the `2 norm measured over

input vectors and more likely to be binding than those corresponding to the distant observations.

162



We use this insight to develop a strategy for identifying constraints to include in the initial subset

V , when solving SCKLS as described below.

Given a grid to evaluate the constraints of the SCKLS estimator, we define the initial subset

of constraints V as those constraints constructed by adjacent grid points as shown in Figure A.3.

Further, we summarize our implementation of the algorithm proposed in Lee et al. (2013) below

and label it as Algorithm 1.

x1

x
2

point of evaluation

adjacent grid points

Figure A.3. Definition of adjacent grid in two-dimensional case.

Algorithm 2C Iterative approach for SCKLS computational speedup
t⇐ 0
V ⇐ {(i, l) : xi and xl are adjacent, i < l}
Solve relaxed SCKLS with V to find initial solution {a(0)

i , b
(0)
i }mi=1

while {a(t)
i , b

(t)
i }mi=1 satisfies all constraints in (2.3) do

t⇐ t+ 1
U ⇐ {(i, l) : xi and xl do not satisfy constraints in (2.3)}
V ⇐ V ∪ U
Solve relaxed SCKLS with V to find solution {a(t)

i , b
(t)
i }mi=1

return {a(t)
i , b

(t)
i }mi=1
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A.5 Comprehensive results of existing and additional numerical experiments

We show the comprehensive results of experiments in Section 2.5 and additional experiments

to show the performance of the SCKLS estimator and its extensions. For the CWB estimator, we

use the convex optimization solver SeDuMi because quadprog was not able to solve CWB6.

For CWB estimator, we use a local linear estimator to obtain the weighting matrix Aj(x) in

(A.6). The first partial derivative of ĝ(x|p) is obtained by approximating the derivatives through

numerical differentiation ĝ(1)(x|p) = ĝ(x+∆|p)−ĝ(x|p)
∆

, where ∆ is a small positive constant7.

A.5.1 Uniform input – high signal-to-noise ratio (Experiment 1)

We compare the following seven estimators: SCKLS with fixed bandwidth, SCKLS with vari-

able bandwidth, CNLS, CWB in p-space and CWB in y-space, LL, and parametric Cobb–Douglas

function estimated via ordinary least squares (OLS). Table A.5 and Table A.6 show the RMSE of

Experiment 1 on observation points and evaluation points respectively.

Table A.7 shows the computational time of Experiment 1 for each estimator.

We also conduct simulations with different bandwidths to analyze the sensitivity of each esti-

mator to bandwidths. We estimate SCKLS with fixed bandwidth, CWB in p-space and local linear

with bandwidth h ∈ [0, 10] with an increment by 0.01 for 1-input setting, and we use bandwidth

h ∈ [0, 5] × [0, 5] with an increment by 0.25 for 2-input setting. We perform 100 simulations for

each bandwidth, and compute the optimal bandwidth with LOOCV for each simulation. Figure 2.1

displays the average RMSE of each estimator. The distribution of bandwidths selected by LOOCV

6For CWB, SeDuMi provides a better solution than quadprog, while both SeDuMi and quadprog give exactly
the same solution for SCKLS.

7Du et al. (2013) proposes to use an analytical derivative for the first partial derivative of ĝ(x|p); however, the
analytical derivative performs similarly to numerical differentiation as shown in Racine (2016). We propose two
alternative methods to compute the first partial derivative, and compared them in Appendix A.1.2.2.
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Table A.5. Comprehensive results of RMSE on observation points for Experiment 1

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.193 0.171 0.141 0.132 0.118
SCKLS variable bandwidth 0.183 0.158 0.116 0.118 0.098
CNLS 0.229 0.163 0.137 0.138 0.116
CWB in p-space 0.189 0.167 0.158 0.140 0.129
CWB in y-space 0.205 0.136 0.173 0.141 0.120
LL 0.212 0.166 0.149 0.152 0.140

Cobb–Douglas 0.078 0.075 0.048 0.039 0.043

3-input

SCKLS fixed bandwidth 0.230 0.187 0.183 0.152 0.165
SCKLS variable bandwidth 0.216 0.183 0.175 0.143 0.142
CNLS 0.294 0.202 0.189 0.173 0.168
CWB in p-space 0.228 0.221 0.210 0.183 0.172
CWB in y-space 0.209 0.362 0.218 0.154 0.160
LL 0.250 0.230 0.235 0.203 0.181

Cobb–Douglas 0.104 0.089 0.070 0.047 0.041

4-input

SCKLS fixed bandwidth 0.225 0.248 0.228 0.203 0.198
SCKLS variable bandwidth 0.217 0.219 0.210 0.180 0.179
CNLS 0.315 0.294 0.246 0.235 0.214
CWB in p-space 0.238 0.262 0.231 0.234 0.198
CWB in y-space 0.222 0.240 0.248 0.303 0.332
LL 0.256 0.297 0.252 0.240 0.226

Cobb–Douglas 0.120 0.073 0.091 0.067 0.063

are shown in the histogram. The instances when SCKLS, CWB-p, and local linear provide the low-

est RMSE are shown in light gray, gray and dark gray respectively on the histogram. For one-input

scenario, the SCKLS and CWB estimator perform similar for bandwidth between 0.25 - 2.25 as

shown by the closeness of the light gray and gray curves in (a). In contrast, for two-input scenario,

the SCKLS estimator performs better for most of the LOOCV values as shown by the majority

of the histogram colored in light gray. This indicates that LOOCV calculate for unconstrained

estimator provide bandwidths that work well for the SCKLS estimator.
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Table A.6. Comprehensive results of RMSE on evaluation points for Experiment 1

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.219 0.189 0.150 0.147 0.128
SCKLS variable bandwidth 0.212 0.176 0.125 0.132 0.103
CNLS 0.350 0.299 0.260 0.284 0.265
CWB in p-space 0.206 0.186 0.174 0.154 0.143
CWB in y-space 0.259 0.228 0.228 0.172 0.167
LL 0.247 0.182 0.167 0.171 0.156

Cobb–Douglas 0.076 0.076 0.049 0.040 0.043

3-input

SCKLS fixed bandwidth 0.283 0.231 0.238 0.213 0.215
SCKLS variable bandwidth 0.292 0.237 0.235 0.196 0.187
CNLS 0.529 0.587 0.540 0.589 0.598
CWB in p-space 0.291 0.289 0.269 0.252 0.233
CWB in y-space 0.314 0.474 0.265 0.346 0.261
LL 0.336 0.340 0.360 0.326 0.264

Cobb–Douglas 0.116 0.098 0.080 0.052 0.046

4-input

SCKLS fixed bandwidth 0.321 0.357 0.329 0.308 0.290
SCKLS variable bandwidth 0.378 0.348 0.363 0.320 0.301
CNLS 0.845 0.873 0.901 0.827 0.792
CWB in p-space 0.360 0.385 0.358 0.361 0.325
CWB in y-space 0.355 0.470 0.338 0.410 0.602
LL 0.482 0.527 0.483 0.495 0.445

Cobb–Douglas 0.146 0.091 0.115 0.081 0.080

(a) One-input (b) Two-input

Figure A.4. The histogram shows the distribution of bandwidths selected by LOOCV. The curves
show the relative performance of each estimator.
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Table A.7. Comprehensive results of computational time for Experiment 1

Average of computational time in seconds;
(percentage of Afriat constraints included

in the final optimization problem)
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 14.1 13.3 42.2 34.7 77.4
(6.14%) (5.28%) (8.86%) (7.80%) (8.31%)

SCKLS variable bandwidth 16.4 33.9 27.6 36.0 50.6
(3.47%) (3.44%) (3.34%) (3.22%) (3.53%)

CNLS 2.0 6.1 16.5 26.5 55.3
(100%) (100%) (100%) (100%) (100%)

CWB in p-space 24.1 33.2 76.6 82.3 130
(2.39%) (2.35%) (2.35%) (2.35%) (2.35%)

CWB in y-space 39.3 92.7 111 190 233
(2.35%) (2.35%) (2.35%) (2.35%) (2.36%)

3-input

SCKLS fixed bandwidth 26.9 40.4 45.5 67.3 136
(16.0%) (16.6%) (16.3%) (16.4%) (16.2%)

SCKLS variable bandwidth 20.0 42.0 37.4 47.1 58.2
(15.7%) (15.9%) (15.8%) (15.8%) (15.9%)

CNLS 3.8 16.4 37.0 82.9 161
(100%) (100%) (100%) (100%) (100%)

CWB in p-space 47.6 71.5 100 202 255
(15.5%) (15.5%) (15.5%) (15.5%) (15.5%)

CWB in y-space 120 357 443 529 424
(15.5%) (15.5%) (15.5%) (15.5%) (15.5%)

4-input

SCKLS fixed bandwidth 47.5 71.6 77.4 166 235
(40.1%) (39.9%) (39.9%) (40.0%) (39.8%)

SCKLS variable bandwidth 26.8 45.6 46.8 60.5 74.8
(39.9%) (40.0%) (39.8%) (39.9%) (39.8%)

CNLS 5.8 22.4 79.1 139.8 287.8
(100%) (100%) (100%) (100%) (100%)

CWB in p-space 68.8 136 196 327 442
(39.8%) (39.8%) (39.8%) (39.8%) (39.8%)

CWB in y-space 91.3 175 195 535 545
(39.8%) (39.8%) (39.8%) (39.8%) (39.8%)
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A.5.2 Uniform input – low signal-to-noise ratio

We consider a Cobb–Douglas production function with d-inputs and one-output,

g0(x1, . . . , xd) =
d∏

k=1

x
0.8
d
k .

For each pair (Xj, yj), each component of the input, Xjk, is randomly and independently drawn

from uniform distribution unif [1, 10], and the additive noise, εj , is randomly and independently

sampled from a normal distribution, N(0, 1.32). We consider 15 different scenarios with different

numbers of observations (100, 200, 300, 400 and 500) and input dimension (2, 3 and 4). The

number of evaluation points is fixed at 400, and set as a uniform grid. This experiment has a higher

noise level in the data generation process relative to Experiment 1.

We compare following seven estimators: SCKLS with fixed bandwidth, SCKLS with variable

bandwidth, CNLS, CWB in p-space, CWB in y-space, LL, and parametric Cobb–Douglas function

estimated via ordinary least squares (OLS). Table A.8 and Table A.9 show the RMSE of this

experiment on observation points and evaluation points respectively.
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Table A.8. RMSE on observation points for Experiment: uniform input with low signal-to-noise
ratio

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.239 0.203 0.203 0.155 0.140
SCKLS variable bandwidth 0.240 0.185 0.168 0.139 0.119
CNLS 0.279 0.231 0.194 0.168 0.151
CWB in p-space 0.314 0.215 0.237 0.275 0.151
CWB in y-space 0.241 0.229 0.173 0.178 0.206
LL 0.287 0.244 0.230 0.214 0.161

Cobb–Douglas 0.109 0.108 0.081 0.042 0.048

3-input

SCKLS fixed bandwidth 0.292 0.263 0.221 0.204 0.184
SCKLS variable bandwidth 0.281 0.242 0.198 0.180 0.175
CNLS 0.379 0.303 0.275 0.224 0.214
CWB in p-space 0.318 0.306 0.308 0.244 0.214
CWB in y-space 0.281 0.273 0.225 0.320 0.271
LL 0.333 0.306 0.288 0.259 0.214

Cobb–Douglas 0.176 0.118 0.101 0.084 0.072

4-input

SCKLS fixed bandwidth 0.317 0.291 0.249 0.241 0.254
SCKLS variable bandwidth 0.290 0.254 0.236 0.222 0.215
CNLS 0.491 0.356 0.311 0.293 0.313
CWB in p-space 0.400 0.318 0.273 0.260 0.289
CWB in y-space 0.312 0.338 0.262 0.365 0.453
LL 0.335 0.342 0.257 0.274 0.283

Cobb–Douglas 0.157 0.150 0.112 0.075 0.077
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Table A.9. RMSE on evaluation points for Experiment: uniform input with low signal-to-noise
ratio

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.253 0.225 0.222 0.172 0.160
SCKLS variable bandwidth 0.255 0.205 0.179 0.149 0.135
CNLS 0.319 0.355 0.334 0.255 0.267
CWB in p-space 0.329 0.239 0.262 0.305 0.177
CWB in y-space 0.263 0.241 0.198 0.228 0.180
LL 0.330 0.272 0.257 0.239 0.194

Cobb–Douglas 0.112 0.112 0.083 0.044 0.049

3-input

SCKLS fixed bandwidth 0.367 0.339 0.302 0.268 0.231
SCKLS variable bandwidth 0.364 0.303 0.256 0.230 0.224
CNLS 0.743 0.778 0.744 0.696 0.620
CWB in p-space 0.398 0.392 0.434 0.336 0.274
CWB in y-space 0.401 0.473 0.385 0.450 0.525
LL 0.452 0.444 0.438 0.398 0.302

Cobb–Douglas 0.202 0.130 0.110 0.093 0.079

4-input

SCKLS fixed bandwidth 0.405 0.460 0.349 0.350 0.347
SCKLS variable bandwidth 0.419 0.434 0.375 0.354 0.315
CNLS 1.019 0.950 0.985 1.043 1.106
CWB in p-space 0.514 0.520 0.393 0.390 0.452
CWB in y-space 0.514 0.513 0.425 0.501 0.708
LL 0.524 0.626 0.451 0.491 0.550

Cobb–Douglas 0.187 0.194 0.134 0.092 0.091

170



A.5.3 Different numbers of evaluation points (Experiment 2)

We compare following four estimators: SCKLS with fixed bandwidth, SCKLS with variable

bandwidth, CWB in p-space and CWB in y-space. Table A.10 and Table A.11 show the RMSEs

of Experiment 2 on observation points and evaluation points respectively. In addition, Table A.12

shows the computational time of Experiment 2 for each estimator.

Table A.10. Comprehensive results of RMSE on observation points for Experiment 2

Average of RMSE on observation points
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth 0.142 0.141 0.141
SCKLS variable bandwidth 0.113 0.112 0.112
CWB in p-space 0.149 0.151 0.156
CWB in y-space 0.225 0.122 0.129

3-input

SCKLS fixed bandwidth 0.198 0.203 0.197
SCKLS variable bandwidth 0.169 0.167 0.166
CWB in p-space 0.218 0.234 0.231
CWB in y-space 0.345 0.241 0.222

4-input

SCKLS fixed bandwidth 0.239 0.207 0.206
SCKLS variable bandwidth 0.195 0.192 0.191
CWB in p-space 0.219 0.227 0.296
CWB in y-space 0.466 0.290 0.292
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Table A.11. Comprehensive results of RMSE on evaluation points for Experiment 2

Average of RMSE on evaluation points
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth 0.181 0.164 0.158
SCKLS variable bandwidth 0.140 0.128 0.124
CWB in p-space 0.195 0.180 0.179
CWB in y-space 0.262 0.162 0.169

3-input

SCKLS fixed bandwidth 0.304 0.267 0.257
SCKLS variable bandwidth 0.242 0.213 0.205
CWB in p-space 0.332 0.329 0.302
CWB in y-space 0.792 0.582 0.559

4-input

SCKLS fixed bandwidth 0.383 0.296 0.270
SCKLS variable bandwidth 0.386 0.304 0.265
CWB in p-space 0.403 0.359 0.415
CWB in y-space 1.040 0.352 0.381

Table A.12. Comprehensive results of computational time for Experiment 2

Average of computational time in seconds;
(percentage of Afriat constraints included

in the final optimization)
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth 26.6 28.3 34
(11.7%) (6.6%) (5.4%)

SCKLS variable bandwidth 21.3 21.6 24.9
(9.9%) (4.4%) (3.2%)

CWB in p-space 41 56.5 74.2
(8.8%) (3.2%) (2.0%)

CWB in y-space 52.8 103 146
(8.8%) (3.2%) (2.0%)

3-input

SCKLS fixed bandwidth 84.8 112 134
(29.1%) (16.7%) (13.3%)

SCKLS variable bandwidth 21.1 37.2 59.1
(28.5%) (15.8%) (12.4%)

CWB in p-space 121 221 310
(28.2%) (15.5%) (12.2%)

CWB in y-space 181 625 948
(28.2%) (15.5%) (12.2%)

4-input

SCKLS fixed bandwidth 149 170 597
(62.3%) (40.0%) (27.7%)

SCKLS variable bandwidth 24.6 52.7 468
(62.1%) (39.9%) (27.5%)

CWB in p-space 175 275 729
(61.9%) (39.8%) (27.4%)

CWB in y-space 189 288 579
(61.9%) (39.8%) (27.4%)
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A.5.4 Non-uniform input

Experiment 4. We consider a Cobb–Douglas production function with d-inputs and one-output,

g0(x1, . . . , xd) =
d∏

k=1

x
0.8
d
k .

For each pair (Xj, yj), each component of the input, Xjk, is randomly and independently drawn

from a truncated exponential distribution with density function

f(x) =
3

e−3 − e−30
e−3x1{x∈[1,10]},

and the additive noise, εj , is randomly sampled from a normal distribution,N(0, 0.72). We consider

15 different scenarios with different numbers of observations (100, 200, 300, 400 and 500) and

input dimension (2, 3 and 4). The number of evaluation point is fixed at 400. Note that this

experiment only differs from Experiment 1 in that the distribution of inputs is skewed and thus

non-uniform.

We compare following seven estimators: SCKLS with fixed bandwidth with uniform/non-

uniform grid, SCKLS with variable bandwidth with uniform/non-uniform grid, CNLS, CWB in

p-space with uniform/non-uniform grid. These extension of SCKLS were presented in detail in

Appendix A.1.1. Table A.13 and Table A.14 show the RMSEs of Experiment 4 on observation

points and evaluation points respectively. A uniform grid is used like in Experiment 1. As the di-

mension of input space and the number of observations increase, SCKLS with variable bandwidth

performs better than the fixed bandwidth estimator. SCKLS with non-uniform grid performs better

than SCKLS with uniform grid for almost all scenarios, largely due to the fact that the DGP has
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non-uniform input. Consequently, we conclude that variable bandwidth methods, such as k-NN

approach, and non-uniform grid could be useful to handle skewed input data which is a common

feature of census manufacturing data which is the type of data we considered in the application of

the main manuscript.

Table A.13. RMSE on observation points for Experiment: non-uniform input

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed/uniform 0.179 0.151 0.144 0.121 0.108
SCKLS fixed/non-uniform 0.185 0.153 0.159 0.123 0.107
SCKLS variable/uniform 0.183 0.156 0.142 0.125 0.104
SCKLS variable/non-uniform 0.176 0.144 0.132 0.114 0.093
CNLS 0.193 0.160 0.140 0.130 0.117
CWB p-space/uniform 0.256 0.162 0.180 0.139 0.125
CWB p-space/non-uniform 0.243 0.160 0.174 0.135 0.125

3-input

SCKLS fixed/uniform 0.197 0.184 0.172 0.164 0.167
SCKLS fixed/non-uniform 0.200 0.181 0.173 0.161 0.172
SCKLS variable/uniform 0.212 0.187 0.170 0.175 0.170
SCKLS variable/non-uniform 0.210 0.180 0.162 0.160 0.155
CNLS 0.303 0.246 0.201 0.185 0.166
CWB p-space/uniform 0.243 0.436 0.173 0.174 0.184
CWB p-space/non-uniform 0.233 0.194 0.176 0.165 0.173

4-input

SCKLS fixed/uniform 0.219 0.211 0.196 0.209 0.187
SCKLS fixed/non-uniform 0.210 0.206 0.181 0.197 0.180
SCKLS variable/uniform 0.208 0.193 0.167 0.171 0.170
SCKLS variable/non-uniform 0.206 0.193 0.164 0.169 0.168
CNLS 0.347 0.292 0.250 0.228 0.218
CWB p-space/uniform 0.219 0.205 0.205 0.184 0.218
CWB p-space/non-uniform 0.221 0.205 0.182 0.170 0.170
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Table A.14. RMSE on evaluation points for Experiment: non-uniform input

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed/uniform 0.262 0.220 0.244 0.157 0.196
SCKLS fixed/non-uniform 0.212 0.174 0.195 0.138 0.131
SCKLS variable/uniform 0.246 0.204 0.192 0.142 0.136
SCKLS variable/non-uniform 0.193 0.160 0.145 0.120 0.100
CNLS 0.435 0.402 0.404 0.379 0.381
CWB p-space/uniform 0.422 0.287 0.376 0.246 0.264
CWB p-space/non-uniform 0.283 0.186 0.215 0.159 0.162

3-input

SCKLS fixed/uniform 0.323 0.308 0.311 0.286 0.293
SCKLS fixed/non-uniform 0.268 0.254 0.259 0.235 0.249
SCKLS variable/uniform 0.335 0.303 0.281 0.262 0.254
SCKLS variable/non-uniform 0.278 0.243 0.219 0.212 0.196
CNLS 0.828 0.824 0.828 0.786 0.782
CWB p-space/uniform 0.438 0.684 0.357 0.363 0.350
CWB p-space/non-uniform 0.315 0.265 0.257 0.235 0.242

4-input

SCKLS fixed/uniform 0.406 0.398 0.397 0.404 0.400
SCKLS fixed/non-uniform 0.339 0.343 0.333 0.371 0.331
SCKLS variable/uniform 0.417 0.423 0.368 0.364 0.356
SCKLS variable/non-uniform 0.359 0.359 0.313 0.302 0.280
CNLS 1.129 1.107 1.220 1.196 1.223
CWB p-space/uniform 0.421 0.442 0.435 0.418 0.487
CWB p-space/non-uniform 0.354 0.344 0.308 0.286 0.280
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A.5.5 Estimation with a misspecified shape

We use the DGP proposed by Olesen and Ruggiero (2014) that is consistent with the regular

ultra passum law (Frisch, 1964), which appears to have an “S”-shape.

g0(x1, x2) = F (h(x1, x2))

where the scaling function is: F (w) = 15
1+e−5 log(w) , and the linear homogeneous core function is

h(x1, x2) =
(
βx

σ−1
σ

1 + (1− β)x
σ−1
σ

2

) σ
σ−1

with β = 0.45 and σ = 1.51. For j = 1, . . . , n, input, Xj = (Xj1, Xj2)′, is generated in polar

coordinates with angles η and modulus ω independently uniformly distributed on [0.05, π/2−0.05]

and [0, 2.5], respectively. The additive noise, εj , is randomly sampled from N(0, 0.72).

Note that this DGP is not concave. Here we run this experiment to assess the performance of

each estimator in case of shape misspecification. Table A.15 and Table A.16 show the RMSEs

of this experiment on observation points and evaluation points. Figure A.5 shows the estimation

results with 1-input S-shape function from a typical run of SCKLS. The figure shows that the

SCKLS estimator results in a linear estimates for areas where concavity is violated. Here the CWB

estimator performs slightly worse when the function is misspecified.We speculate that the main

reason for this is that the optimization problem becomes too complicated to solve since intuitively

there are many binding constraints when the data is generated by the misspecified functional form,

and thus, it becomes hard for the solver to find a feasible solution and an improving direction.
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Table A.15. RMSE on observation points for Experiment: misspecified shape

Average of RMSE on observation points
Number of observations 100 200 300 400 500

SCKLS fixed bandwidth 1.424 1.435 1.405 1.392 1.421
CNLS 1.326 1.346 1.337 1.316 1.353
CWB in p-space 6.310 6.731 6.602 5.909 6.110

Table A.16. RMSE on evaluation points for Experiment: misspecified shape

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

SCKLS fixed bandwidth 1.337 1.162 1.149 1.140 1.123
CNLS 1.375 1.424 1.404 1.403 1.385
CWB in p-space 9.100 9.483 9.599 8.435 8.719
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Figure A.5. A typical run of SCKLS when the truth is S-shaped.
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A.6 Semiparametric partially linear model

A.6.1 The procedure

We develop a semiparametric partially linear model including the SCKLS estimator and a linear

function of contextual variables. The partially linear model is often used in practice. The model

estimated is represented as follows:

yj = Z ′jγ + g0(Xj) + εj

where Zj = (Zj1, Zj2, . . . , Zjl)
′ denotes contextual variables and γ = (γ1, γ2, . . . , γl)

′ is the

coefficient of contextual variables, see Johnson and Kuosmanen (2011, 2012). Then, we estimate

the coefficient of contextual variable:

γ̂ =

(
n∑
j=1

Z̃jZ̃
′
j

)−1( n∑
j=1

Z̃j ỹj

)

where Z̃j = Zj − Ê[Zj|Xj] and ỹj = yj − Ê[yj|Xj] respectively, and each conditional expecta-

tion is estimated by kernel estimation method such as local linear. Finally, we apply the SCKLS

estimator to the data {Xj, yj − Z ′jγ̂}nj=1. Robinson (1988) proved that γ̂ is n1/2-consistent for γ

and asymptotically normal under regularity conditions. For details of the partially linear model,

see Li and Racine (2007).

A.6.2 A simulation study

We show the effect of adding contextual variablesZj to the estimation performance by compar-

ing SCKLS with and without contextual variables. We use two different Cobb–Douglas production
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functions as the true DGP:

g0(x, z) =
d∏

k=1

x
0.8
d
k + zγ, (A.21)

g0(x) =
d∏

k=1

x
0.8
d
k , (A.22)

where for each (Xj, Zj, yj), the contextual variable Zj is a scalar value independent of Xj drawn

randomly and independently from uinf [0, 1], the coefficient of the contextual variable γ = 5, and

other parameters follow DGP from Experiment 1. We apply SCKLS with and without contextual

variables to the data generated by the true production function (A.21) and (A.22), respectively.

Table A.17 and Table A.18 show the RMSEs of this experiment on observation points and

evaluation points respectively. The RMSE is obtained by comparing estimates of production func-

tion and the true production function. We see that having extra contextual variables does not

deteriorate the performance of SCKLS significantly, especially when the input dimension is small

and the number of observations is large. Our findings are consistent with the work of Robinson

(1988). Since our application data in Section 2.6 has only two-input, we expect that SCKLS with

Z-variables tends not to deteriorate the estimator performance in our application.

A.7 Details on the application to the Chilean manufacturing data

In section 2.6, we applied the SCKLS estimator to the Chilean manufacturing data to estimate

a production function for plastic (2520) and wood (2010) industries. Here we provide the detailed

specification of the SCKLS estimator applied to the real data. Since the application data is skewed

as shown in Table 2.6, we use non-uniform grid of evaluation points and limit evaluation points to

be inside the convex hull of {Xj}nj=1. Figure A.6 and Figure A.7 show how we set the evaluation
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Table A.17. RMSE on observation points for experiments with/without Z-variable

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input SCKLS-Z 0.224 0.212 0.239 0.160 0.146
SCKLS 0.210 0.188 0.170 0.139 0.140

3-input SCKLS-Z 0.404 0.235 0.261 0.197 0.196
SCKLS 0.242 0.206 0.215 0.202 0.188

4-input SCKLS-Z 0.462 0.376 0.332 0.217 0.239
SCKLS 0.247 0.231 0.202 0.202 0.198

Table A.18. RMSE on evaluation points for experiments with/without Z-variable

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input SCKLS-Z 0.245 0.234 0.256 0.172 0.166
SCKLS 0.230 0.205 0.194 0.154 0.157

3-input SCKLS-Z 0.496 0.348 0.377 0.271 0.286
SCKLS 0.316 0.296 0.309 0.271 0.261

4-input SCKLS-Z 0.648 0.599 0.498 0.397 0.435
SCKLS 0.385 0.381 0.341 0.350 0.336
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Figure A.6. Proposed evaluation points with Plastic industry (2520)

points in our application. Originally we set the number of evaluation points is m = 400, but after

deleting ones which lie outside of the convex hull of {Xj}nj=1, the number is m ≈ 270 for both

industries.
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Figure A.7. Proposed evaluation points with Wood industry (2010)
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Technical proofs

B.1.1 Proof of Theorems in Section 3.2

B.1.1.1 Proof of Lemma 3.1

Proof. For simplicity, we focus on the case of d = 1. Note that following arguments can be

extended for the multiple input case with d > 1 by studying the function g0 along any direction.

Now, the elasticity of scale is defined as

ε(x) = g′0(x)
x

g0(x)
.

Next we compute the derivative of the elasticity of scale,

ε′(x) =
1

g0(x)
(xg′′0(x) + g′0(x) (1− ε(x))) . (B.1)

By Definition 3.4, we have following conditions on the elasticity of scale:

ε′(x) < 0 for ∀x

ε(xA) > 1 and ε(xB) < 1 for some xA < xB.

By using these conditions on Equation (B.1) and assumption that g0 is monotonically increas-
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ing, we have,

g′′0(x) < 0 for ∀x > xB.

Here, by the assumption that there exists a single point of inflection point x∗ such that g′′0(x∗) =

0, we have

g′′0(x) > 0 for ∀x < x∗

g′′0(x) = 0 for x = x∗

g′′0(x) < 0 for ∀x > x∗

which implies the function g0(·) is a S-shaped function define in Definition 3.5.

B.1.1.2 Proof of Lemma 3.2

Proof. First note that the S-shape function is defined for any expansion path and a ray from the

origin is a subset of the set of expansion paths. So a single inflection point exist on each 2-D sec-

tional of the production function by definition of an S-shape function. The result to be shown, the

set of inflection points lie on the same input isoquant with aggregate input level x∗A, can be stated

mathematically as

x∗A = argmax
xA∈αx

(
dF (xA)

dxA

∣∣∣∣xA = g(x)

)

for a ray vector αx, where x = (x1, . . . , xd) and the origin define a ray in input space and x∗A is

the inflection point on that ray. By the definition of homothetic we have f(x) = F (g(x)). We

substitute xA = g(x) the derivative of f with respect to xA, which is just
dF (xA)

dxA
. Notice this is

independent of the ray from the origin selected. Thus, we have the result.
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B.1.1.3 Proof of Theorem 3.1

Proof. From Lemma 3.2 we know that if the S-shape function definition holds for a ray from the

origin then it holds for any ray from the origin and the inflection point will be located on the same

isoquant. Now we just need to show for an arbitrary (non-radial) expansion path the that RUP law

holds.

By the definition of an expansion path and Lemma 3.2, we see that as we move from input

vectorXm−1 toXm we move between two input isoquants which are in the same sequential order

as they would be for an expansion path along a ray from the origin, thus the passum coefficient is

decrease, given us the desired result.

B.2 Detailed algorithm and estimation procedure

In this section, we described the advanced estimation algorithm and mathematical formulation

of each step. The algorithm is constructed by two estimations: (1) input isoquants at some y–

levels by Convex Nonparametric Least Squares (CNLS) type estimator, and (2) S-shape functions

on some rays from the origin by Shape Constrained Kernel Least Squares (SCKLS). Algorithm

2B presents the details of our advanced algorithm which is composed of three steps: Initializa-

tion, Iteration and Updating parameters. The section numbers, where the details of each step are

described, are displayed in the right column of the table.

B.2.1 Initialization

The number of isoquants I , the number of rays from the origin R, isoquant y-levels, y(i), and

rays from the origin, θ(r) can be initialized in the same way as what we discussed in section 3.3.3.

In the estimation of S-shape function on rays from the origin, we need to specify the smooth-
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Algorithm 2B Details of the advanced estimation algorithm

1: Data: observations {Xj, yj}nj=1

2: procedure (Section)
3: Initialization: (B.2.1)
4: I ← Initialize number of isoquants
5: R← Initialize number of rays
6: {y(i)}Ii=1 ← Initialize isoquant y-levels
7: {θ(r)}Rr=1 ← Initialize rays from origin
8: ω ← Initialize smoothing parameter between rays
9: Project observations {Xj, yj}nj=1 to the isoquant level y(i)

10: Estimate initial isoquants by the CNLS-based estimation (B.2.2)
11: Iteration:
12: while Termination condition not reached do
13: Project observations onto the ray θ(r) (B.2.3.1)
14: Update S-shape estimates using the SCKLS-based estimator (B.2.3.2)
15: Update isoquant estimates by the CNLS-based estimator (B.2.3.3)
16: Minimize the gap between S-shape and isoquant estimates (B.2.3.4)
17: Compute Mean Squared Errors against observations (B.2.3.5)
18: Updating parameters: (B.2.4)
19: I ← Update number of isoquants
20: R← Update number of rays from the origin
21: {y(i)}Ii=1 ← Update isoquant y-levels
22: {θ(r)}Rr=1 ← Update rays from origin
23: ω ← Update smoothing parameter between rays
24: end
25: return : Estimated function with minimum Mean Squared Errors
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ing parameter between rays, ω, which determines the weights on each observation based on the

angle between the observation and the ray from the origin on which we are currently estimating.

Instead of optimizing bandwidth between angels, ω, by grid search in Algorithm 1, we try to find

the optimal bandwidth between angles by increasing ω by some increments, ∆ω, with updating

both isoquants and S-shape estimates in each iteration of Algorithm 2B. Based on our numerical

experiments, we recommend to start from a small value and increase ω by small increment ∆ω in

each iteration. We will generate a set of estimates and select from the set. Intuitively, the S-shape

function, estimated along the ray, only uses observations close to the ray in the first iteration. As

an our algorithm progresses, the S-shape estimation step includes data more distance from the ray.

For more details of the S-shape estimation and the smoothing parameters, see Appendix B.2.3.2.

B.2.2 Estimate convex isoquants

We are interested in estimating the isoquant function H in (3.3) at a given level of output.

Assume that a set of output levels for isoquant estimation is given by

y(i), i = 1, . . . , I (B.2)

where I is the number of isoquants to be estimated. Also assume that the input data used to estimate

the isoquant at y(i) is given by

X(i), i = 1, . . . , I (B.3)

whereX(i) is subset of observations of input used for the estimation of isoquant at level y(i). X(i)

is ni×dmatrix and ni denotes the number of observations used for estimation of isoquant i at level

y(i). We have already described the procedure for specifying isoquant level y(i) in section 3.3.3 and
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how to obtain the input dataX(i) associated with the isoquant level y(i) in section 3.3.4.1.

It is common that the input data X(i) contains errors in all input dimension {X(i)
1 , . . . ,X

(i)
d }

since we just project each observation to the closest isoquant output level. We first propose to

use the existing nonparametric estimation method called Convex Nonparametric Least Squares

(CNLS) to estimate isoquants. We also propose two modifications to the CNLS estimator which

improve the performance of the isoquant estimation.

B.2.2.1 Convex Nonparametric Least Squares (CNLS)

Kuosmanen (2008) extends Hildreth’s least squares approach to the multivariate setting with

a multivariate x, and coins the term Convex Nonparametric Least Squares (CNLS). CNLS builds

upon the assumption that the true but unknown function belongs to the set of continuous, mono-

tonic increasing/decreasing and globally concave/convex functions. We describe the isoquant func-

tion H at y(i) as

X
(i)
d,j = H

(
X

(i)
−d,j; y

(i)
)

+ ej = α
(i)
j + β

(i)
j
′X

(i)
−d,j + ej, ∀j = 1, . . . , ni. (B.4)

where ej is the random error satisfying E(e) = 0, α(i)
j and β(i)

j define the intercept and slope

parameters that characterize the estimated set of hyperplanes.

We compute the CNLS estimator I times with {X(i)
−d, X

(i)
d }Ii=1, and obtain the isoquant estima-

tion X̂(i)
d = Ĥ(X

(i)
−d,j; y

(i)) = α̂
(i)
j + β̂

(i)
j
′X

(i)
−d,j at each isoquant level y(i). The CNLS estimator
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can be computed by solving the quadratic programming problem:

min
α,β

ni∑
j=1

(
X

(i)
d,j −

(
α

(i)
j + β

(i)
j
′X

(i)
−d,j

))2

subject to α
(i)
j + β

(i)
j
′X

(i)
−d,j ≥ α

(i)
l + β

(i)
l
′X

(i)
−d,j, ∀j, l = 1, . . . , ni

β
(i)
j ≤ 0, ∀j = 1, . . . , ni

(B.5)

The first inequality constraints in (B.5) can be interpreted as a system of Afriat inequalities (Afriat

(1972); Varian (1984)) to impose convexity. The second inequality constraints impose monotone

decreasing. We note that the functional estimates resulting from (B.5) is unique only for the ob-

served data points. Seijo and Sen (2011) and Lim and Glynn (2012) proved the consistency of

the CNLS estimator. Also Chen and Wellner (2016) proves that the CNLS estimator attains n−1/2

pointwise rate of convergence if the true function is piece-wise linear.

B.2.2.2 Directional CNLS

The CNLS estimator in the previous section assumes that the input data contains errors only

in the d-th input direction while all input variables are typically measured with error. Kuosmanen

and Johnson (2017) introduces the CNLS estimator within the directional distance function (DDF)

framework. The DDF indicates the distance from a given sample vector to the estimated function

in some pre-assigned direction. In our isoquant estimation, we can write the DDF function as

follows:

~D(X
(i)
−d,j, X

(i)
d,j, g

X−d , gXd) = ej, ∀j = 1, . . . , ni (B.6)

where (gX−d , gXd) ∈ Rd is the pre-assigned error direction. We can choose the error direction

(gX−d , gXd) empirically from the density of the input data so that the chosen error direction can
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explain the noise in the input data well. Note that we need to normalize input data {X(i)
−d,j, X

(i)
d }Ii=1

to have unit variance. We divide the inputs by their standard deviation. Normalizing inputs avoids

that one input, measured on a large scale, will dominate other inputs, measured on a smaller scale.

Similar to the CNLS estimator, we compute the directional CNLS estimator I times with

{X(i)
−d,j, X

(i)
d }Ii=1, and obtain the isoquant estimation at each isoquant level y(i). The directional

CNLS estimator can be computed by solving the quadratic programming problem:

min
α,β,γ

ni∑
j=1

(
γ

(i)
j X

(i)
d,j −

(
α

(i)
j + β

(i)
j
′X

(i)
−d,j

))2

subject to α
(i)
j + β

(i)
j
′X

(i)
−d,j − γ

(i)
j X

(i)
d,j ≥ α

(i)
l + β

(i)
l
′X

(i)
−d,j − γ

(i)
l X

(i)
d,j, ∀j, l = 1, . . . , ni

β
(i)
j ≤ 0, ∀j = 1, . . . , ni

γ
(i)
j ≥ 0, ∀j = 1, . . . , ni

γ
(i)
j g

Xd + β
(i)
j
′gX−d = 1, ∀j = 1, . . . , ni

(B.7)

This formulation introduces new coefficients γ(i)
j that represents marginal effects of the d-th input

X
(i)
d to the DDF. Similar to the CNLS estimator (B.5), first three constraints impose convexity and

monotonicity in all input directions respectively. The last constraints are normalization constraints

that ensure the translation property (Chambers et al. (1998)).

B.2.2.3 Averaging directional CNLS

The directional CNLS estimator in previous section assumes that the input data contains errors

in potentially all variables, but in fixed ratios such that the over all error direction is (gX−d , gXd).

However, in observed production data, the errors in different components of the input vector,X(i)
j ,

may vary in length randomly. Particularly when estimating input isoquants, observations can be
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projected to the function orthogonally as shown in Figure B.1. Noise here is mainly caused by the

projection of observations to particular isoquant level y(i). This issue will be further addressed in

Section 3.3.3.

X
1

X
2

True isoquant

Observed sample

Figure B.1. Noise which is orthogonal to the true isoquant

If we misspecified the error direction, the estimated isoquants will be biased, and the bias will

increase as the specified error direction is further from the true error direction. We propose a simple

algorithm to average out a bias from the misspecification of the error direction. We define the set

of error directions
{(
g
X−d
m , gXdm

)}M
m=1

from the distribution of the input dataX(i) where M is the

number of error directions considered.1 For each isoquant level y(i), we compute the directional

CNLS estimator (B.7) with each error direction
{(
g
X−d
m , gXdm

)}M
m=1

, and averaging them to obtain

1Based on our numerical experiments, we recommend to use M = 10 and define error directions by the equally
spaced percentile of the input ratio.
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the final isoquant estimates. The final isoquant estimates still satisfied conditions for an isoquant in

Assumption 3.2 since the average of convex monotone decreasing functions is a convex monotone

decreasing function.

Figure B.2 (a), (b) and (c) show the estimation results with CNLS, Direction CNLS and Aver-

aging direction CNLS respectively with samples generated by radial errors. The CNLS estimator

has significant bias for the observations for which noise is not only in X1. Directional CNLS and

averaging multiple estimates of directional CNLS with different directions performs better than the

CNLS estimator because these methods allow for errors in all input dimensions. Although both

extensions of CNLS do not result in a correctly specified the error direction for each observation,

the methods perform well even for small sample size as shown in Appendix B.3.
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(a) CNLS
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(b) Directional CNLS
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True Function

Observed sample

(c) Averaging directional CNLS

Figure B.2. Estimated isoquant by CNLS, Directional CNLS and Averaging directional CNLS

B.2.3 S-shape function

We are interested in estimating the S-shape function on rays from the origin as a component of

our estimation procedure. This step is composed of two sub-steps: First, we project each observa-

tion to each ray from the origin by projecting along an estimated isoquant. Second, we estimate
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the S-shape function on each ray from the origin. We describe the procedure how to obtain the

rays from the origin θ(r) in section 3.3.3.

B.2.3.1 Projecting an observation using the estimated isoquant information

Before estimating S-shape functions, we project the observations {Xj, yj}nj=1 to each ray from

the origin θ(r). We use the estimated isoquants described in Section B.2.2 to project the obser-

vations. First, for each observation, we extract the two estimated isoquants which sandwich the

observation in input space. Figure B.3(b) shows the example that two isoquants sandwiching the

observationXj .

Second, we compute the intersection of extracted isoquants and the ray from the origin to

the observation, and define distances to the isoquants below and above as r(below)
j and r

(above)
j

respectively. Then we can compute the weights ρj which is defined as

ρj =
rj − r(below)

j

r
(above)
j − r(below)

j

, j = 1, . . . , n (B.8)

where 0 ≤ ρj ≤ 1, and ρj approaches 1 as rj is closer to r(above)
j . Intuitively, we aim to use more

information from the isoquant above when the observation is closer to the isoquant above. Figure

B.3(b) also shows the definition of r(below)
j and r(above)

j . In case that the observation is below or

above the minimum or maximum isoquant, we define r(below)
j = 0 and r(above)

j = rj respectively.

Finally, we compute the intersection of extracted isoquants and each ray from the origin, and

define distances to the intersection with isoquants below and above as r(below)(r)
j and r

(above)(r)
j

respectively for r = 1, . . . , R. Then we obtain the projected observation {r(r)
j ,θ(r)}Rr=1 as follows:

r
(r)
j =

(
r

(above)(r)
j − r(below)(r)

j

)
ρj ∀r = 1, . . . , R. (B.9)
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Figure B.3(c) shows the example of projection to each ray from the origin θ(r). Intuitively, we

compute the inverse distance weighted average of two isoquants which sandwich the observation.
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(b) Two isoquants sandwich the obser-
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Figure B.3. Procedures of the projection of the observation in input space

B.2.3.2 Shape Constrained Kernel Least Squares (SCKLS)

Yagi et al. (2018) proposed the Shape Constrained Kernel-weighted Least Squares (SCKLS)

which is a kernel-based nonparametric shape constrained estimator. The SCKLS estimator is an

extension of Local Polynomial estimator (Stone (1977) and Cleveland (1979)) which imposes some

constraints on parameters which characterize the estimated function such as intercept and slope.

The SCKLS estimator introduces a set of G evaluation points to impose shape constraints on each

evaluation point. We are now interested in estimating S-shape function on each ray from the origin.

Define the evaluation points on a ray from the origin θ(r) as follows

r(r)
g ∈ {r

(r)
1 , . . . , r

(r)
G } ∀r = 1, . . . , R. (B.10)

Note that evaluation points in input space on ray r are defined by the scalar value r(r)
g which is a
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distance from the origin on the rth ray.

The objective function of the SCKLS estimator uses kernel weights, so more weight is given

to the observations that are closer to the evaluation point. In our S-shape estimation, there exist

two different weights to be considered: 1) the angle between the observation and the ray from

the origin for which we are currently estimating, 2) the distance measured along the ray after the

sample is projected using the estimated isoquant. Figure B.4 shows two different kernel weights

imposed in our S-shape estimator.
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Figure B.4. Kernel weight in the S-shape estimation

Here, we define a distance measure in angles by the relative distance to the neighboring rays in
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each ray dimension k = 1, . . . , d− 1

D
(
φjk, θ

(r)
k

)
=


φjk−θ

(r)
k

θ
(r+1)
k −θ(r)k

φjk ≥ θ
(r)
k

θ
(r)
k −φj

θ
(r)
k −θ

(r−1)
k

otherwise

(B.11)

Intuitively, the distance is greater than one if the observation is outside of the cone defined by the

adjacent rays.

For each ray from the origin θ(r), we solve the following mixed-integer quadratic programming

problem:

min
a,b,g

(r)
∗

G∑
g=1

n∑
j=1

(
yj −

(
a(r)
g + b(r)

g

(
r

(r)
j − r(r)

g

)))2

K

(
D(φj ,θ(r))

ω

)
k

(
r
(r)
j −r

(r)
g

h(r)

)

subject to a(r)
g − a

(r)
l ≤ b(r)

g

(
r(r)
g − r

(r)
l

)
∀g, l = 1, . . . , g(r)

∗ − 1

a(r)
g − a

(r)
l ≥ b(r)

g

(
r(r)
g − r

(r)
l

)
∀g, l = g(r)

∗ , . . . , G

b(r)
g ≥ 0 ∀g, l = 1, . . . , G

(B.12)

where a(r)
g is a functional estimate, b(r)

g is an estimate of the slope of the function at r(r)
g , the gth

evaluation point on the rth ray. k(·) and K(·) denote the kernel and the product kernel function

respectively. The observation which is closer to the evaluation points as measured by the angular

deviation, and along the projected ray gets more weight in the estimation. ω and h(r) are tuning

parameters for the kernel estimator which we will refer to as bandwidths. The first and second

constraints in (B.12) are the convexity and concavity constraints respectively. We also need to

estimate an index of an inflection point g(r)
∗ which is the point at which the S-shape function

switches from convex to concave. We solve the quadratic programming problem G-times, once for
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each value g(r)
∗ ∈ {1, . . . , G}, and obtain a S-shape estimation by selecting the solution which has

the minimum objective value among these G solutions.

B.2.3.3 Update isoquant estimates

After estimating the S-shape function along each ray, we need to verify whether the estimated

S-shape functions satisfy the input convexity assumption. For this purpose, we cut the S-shape

estimates at each isoquant level, y(i), and obtain intersecting points defined by radial coordinates

as {r(i)(r),θ(r)}. Figure B.5 shows how we obtain the intersecting points {r(i)(r),θ(r)}with 2-input

example. We now re–estimate the isoquants by applying the CNLS-based method to the intersec-

tions for each isoquant {r(i)(r),θ(r)}Rr=1. Note that we can convert this into Cartesian coordinate

system through the inverse of the equations shown in (3.5), and apply the CNLS-based method

explained in Appendix B.2.2.

B.2.3.4 Minimizing the gap between estimates

We now have computed both S-shape and isoquant estimates. If the S-shape estimates do not

violate the input convexity assumption, then the functional estimates of the S-shape functions and

the input isoquants should match at each isoquant y-level. However if the S-shape estimates violate

the input convexity assumption, then the S-shape estimates will not match the isoquant estimates

at some isoquant y-level as shown in Figure B.6(a) with a blue circle. Here we propose to solve

a quadratic programming problem which aims to minimize the gap between S-shape and isoquant

estimates.

In this problem, we try to modify the S-shape estimates while fixing an inflection point at the

same position as the original S-shape estimates. The objective function computes the weighted

average of two deviations: 1) a gap between original S-shape estimates and revised S-shape esti-
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Figure B.5. How to obtain intersecting points r(i)(r)

mates, and 2) a gap between revised S-shape estimates and the isoquant estimates at each isoquant

y-level. Intuitively, we want to obtain the revised S-shape estimates which is close to the origi-

nal S-shape estimates while satisfying input convexity. Figure B.6(b) shows the example that a

violation is resolved through this step.

Here, we describe the mathematical formulation. We start from redefining the evaluation points

on a ray, θ(r) as

r(r)
g ∈ {rr1, . . . , rrG} ∀g = 1, . . . , G

r
(r)

g(i)
∈ {r(1)(r), . . . , r(I)(r)} ∀i = 1, . . . , I

r
(r)
g′ ∈ {r

r
1, . . . , r

r
G} ∪ {r(1)(r), . . . , r(I)(r)} ∀g′ = 1, . . . , G′

(B.13)
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Figure B.6. Modification of S-shape estimates

where G′ = G + I. r
(r)

g(i)
is the intersecting points obtained in section B.2.3.3 and they are added

to the set of evaluation points, r(r)
g′ . We aim to minimize the gap between S-shape and isoquant

estimates by solving the following quadratic programming problem:

min
ã
(r)
g

wS · 1

R ·G

R∑
r=1

G∑
g=1

(
ã(r)
g − a(r)

g

)2
+ wI · 1

R · I

R∑
r=1

I∑
i=1

(
ã

(r)
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− y(i)

)2

subject to
ã

(r)
g+2 − ã

(r)
g+1

r
(r)
g+2 − r

(r)
g+1

≥
ã

(r)
g+1 − ã

(r)
g

r
(r)
g+1 − r

(r)
g

∀r and ∀g = 1, . . . , g(r)
∗ − 2

ã
(r)
g+2 − ã

(r)
g+1

r
(r)
g+2 − r

(r)
g+1

≤
ã

(r)
g+1 − ã

(r)
g

r
(r)
g+1 − r

(r)
g

∀r and ∀g = g(r)
∗ − 2, . . . , G

ã
(r)
g+1 ≥ ã(r)

g ∀r and ∀g = 1, . . . , G

(B.14)

where ã(r)
g denotes a revised functional estimate at a grid point g on a ray r. wS and wI are the

weights for the S-shape estimator2 and the isoquant estimator respectively satisfying wS, wI ∈
2We set wS = 0.1 and wI = 0.9 for our simulation and application to make sure the gap between isoquants and

S-shape estimates become small for every single iteration.
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[0, 1] and wS + wI = 1. The objective function computes the weighted average of two deviations:

1) a gap between original S-shape estimates and revised S-shape estimates, 2) a gap between

revised S-shape estimates evaluated at the input vectors located on the estimated isoquant and

isoquant level y(i). Intuitively, when we put more weight on the original S-shape estimate, wS is

large, the revised S-shape is close to the original S-shape, and input convexity may be violated. In

contrast, when we put more weight on the isoquant estimates, wI is large, the revised S-shape can

be far from the original S-shape, but the resulting estimate is more likely to satisfy input convexity

without any violations. Based on our numerical experiments, we recommend to set a larger value

of wI to avoid violations of the input convexity.

Constraints in (B.14) correspond to constraints in (B.12). First two constraints impose the

convexity and concavity for the RUP law, and the last constraint imposes the estimated function is

monotonically increasing.

B.2.3.5 Computing functional estimates on observations

The last step of an iteration is obtaining the functional estimates ĝ(x) at any given value of

input vector x, and compute MSE against observations {Xj, yj}nj=1. The procedure to compute

a functional estimate on x is composed of two steps: 1) Compute the weighted average of the

two closest isoquants to x, and 2) Compute the weighted average of S-shape estimates on each

ray. The first step is explained in appendix B.2.3.1. In this step, we obtain projected input data

{r(r)
j ,θ(r)}Rr=1 which is defined in equation (B.9).

Then we can compute the functional estimates ã(r)
j at projected ray {r(r)

j ,θ(r)}Rr=1 by linear

interpolating revised S-shape estimates ã(r)
g obtained in (B.14). Subsequently, we can compute the
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inverse distance weighted average of functional estimates by

ĝ(Xj) =


ã

(r)
j ∃ r such that d(θj,θ

(r)) = 0

∑R
r=1 p

(r)
j ã

(r)
j∑R

r=1 p
(r)
j

otherwise

(B.15)

where p(r)
j is the inverse distance weight defined by

p
(r)
j =

1

d(θj,θ(r))
∀r = 1, . . . , R (B.16)

where d(·) denotes a Euclidean distance function between two angles defined by

d(θj,θ
(r)) =

∥∥θj − θ(r)
∥∥ (B.17)

Finally, we can compute the MSE against observations {Xj, yj}nj=1 as

MSE =
1

n

n∑
j=1

(yj − ĝ(Xj))
2 . (B.18)

B.2.4 Updating parameters

Finally, we update the parameters for the estimation before moving forward to the next itera-

tion. We first update the parameters defining the number of both isoquants and rays to be estimated.

When the gap between isoquants and S-shape estimates is large for a certain consecutive iterations,

we delete the corresponding isoquant or ray. Specifically for any ray r, if
(
y(i)−ĝ(X(i)(r))

y(i)

)
> δ for

some isoquant i for C consecutive iterations, then delete ray r where δ is a tolerance value of
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percentage errors and C is a number of consecutive iterations allowing errors over the tolerance.34

And similarly defined for isoquant i.

We also update the bandwidth between rays, ω, used in the SCKLS-based S-shape estimation.

We update the value of ω increasing it by ∆ω in each iteration. As an iteration goes forward,

the bandwidth ω becomes larger. We continue iterations until ω becomes large enough that the

functional estimates are stable between iterations and then we select the results of the iteration with

the lowest MSE among the solutions with

(
y(i) − ĝ(X(i)(r))

y(i)

)
≤ δ ∀r = 1, . . . , R and ∀i = 1, . . . , I.

Since the algorithm start from a small value of ω, the S-shape function only uses observa-

tions close to the ray for the estimation. As the iterative algorithm proceeds, the S-shape estimator

includes observations which are more distant from the ray on which the evaluation point under

consideration lies. Thus, the estimated functions on each ray becomes more similar as the band-

width increases. If there still exists a gap between S-shape and input isoquant estimates even with

large ω, we delete the corresponding isoquant or ray following the rule described above. Thus,

the gap between the S-shape estimates and the isoquant estimates can be made arbitrarily small by

deleting isoquants. This characteristic of the algorithm will be used to prove the convergence of

our iterative algorithm because a production function estimate with only one isoquant estimate is a

homothetic production function and our estimation procedure has no gap for estimating functions

that satisfying the RUP law and are homothetic in inputs.

3We allow large errors for C = 10 iterations for our simulation studies.
4We use δ = 0.01 or δ = 0.05 in our implementation depending on the noise size of data set.
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B.3 Comparison of different input isoquant estimation methods

In section B.2.2, we introduce three different methods to estimate convex input isoquants:

Convex Nonparametric Least Squares (CNLS), Directional Convex Nonparametric Least Squares

(DCNLS) and Averaging Convex Nonparametric Least Squares (ADCNLS). In this section, we

compare the performance of these estimators through Monte Carlo simulations.

We consider the following convex isoquant with 2-input.

X2 = H(X1) =
a

X1

(B.19)

where a defines the shape of convex isoquant, and we use a = 10 in this experiment. Two-input

satisfying equation B.19 is generated by

X∗1j =

√
a

tan (ηj)
∀j = 1, . . . , n

X∗2j =
√
a · tan (ηj) ∀j = 1, . . . , n

(B.20)

where angles ηj are randomly generated by ηj ∼ unif(0.05, π
2
− 0.05). Then we generate samples

by adding noise in the direction orthogonal to the true function.

X1j = X∗1j + εj · cos
(
arctan

(
X∗1j

2/a
))
∀j = 1, . . . , n

X2j = X∗2j + εj · sin
(
arctan

(
X∗1j

2/a
))
∀j = 1, . . . , n

(B.21)

where additive noise εj is generated by εj ∼ N(0, σv).

We consider 9 different scenarios with the different training sample size n ∈ (50, 100, 200) and

the standard deviation of the noise σv ∈ (0.5, 1.0, 1.5). We use M = 10 different error directions
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for estimating ADCNLS where error directions are chosen by equally spaced percentiles of the

input ratio {X2j/X1j}nj=1. We generate 100 training-testing set pairs for each scenario, and draw

box plots of RMSE against the true function for each estimator on testing set in Figure B.7. Note

that RMSE is computed in the direction orthogonal to the true function. The size of the testing set

is 1000, and it is randomly drawn from the same distribution as the training set.

The DCNLS and ADCNLS estimators perform better than the CNLS estimator because these

estimation methods assume errors are contained in both input dimensions. Although these two

estimators still have misspecification of error directions, it helps to reduce the bias caused by the

misspecification of error directions in the CNLS estimator.

B.4 Differences Between S-shape Definition and the RUP Law

In this section, we provide an example in which a production function that satisfies the RUP

law, Definition 3.4, contains multiple inflection points.

Consider the following univariate example.

Example 1.

g(x) = x(1.8) exp (−x) exp

(
−x sin (100x)

10000

)

Then we can compute the elasticity of scale and its derivative.

ε(x) = 1.8− x{cos (100x)

100
+ 1},

Figure B.8 shows the elasticity of scale, ε(x), is monotonically decreasing on x ∈ [0, 1] from

1.8 to 0.8, which satisfies Definition 3.4. Figure B.9 shows that the production function and its

first and second derivative respectively. In Figure B.9 (a), the production function looks S-shape;

204



CNLS DCNLS ADCNLS

0.5

0.55

0.6

0.65

R
M

S
E

Sample Size: 50, Noise: 0.5

CNLS DCNLS ADCNLS

1

1.1

1.2

1.3

1.4

1.5

R
M

S
E

Sample Size: 50, Noise: 1.0

CNLS DCNLS ADCNLS

1.6

1.8

2

2.2

R
M

S
E

Sample Size: 50, Noise: 1.5

CNLS DCNLS ADCNLS

0.5

0.52

0.54

0.56

0.58

0.6

0.62

R
M

S
E

Sample Size: 100, Noise: 0.5

CNLS DCNLS ADCNLS

1

1.1

1.2

1.3

1.4

R
M

S
E

Sample Size: 100, Noise: 1.0

CNLS DCNLS ADCNLS

1.6

1.8

2

2.2

R
M

S
E

Sample Size: 100, Noise: 1.5

CNLS DCNLS ADCNLS

0.48

0.5

0.52

0.54

0.56

0.58

0.6

R
M

S
E

Sample Size: 200, Noise: 0.5

CNLS DCNLS ADCNLS

1

1.1

1.2

1.3

R
M

S
E

Sample Size: 200, Noise: 1.0

CNLS DCNLS ADCNLS

1.5

1.6

1.7

1.8

1.9

2

2.1

R
M

S
E

Sample Size: 200, Noise: 1.5

Figure B.7. Estimation results on the testing set for the isoquant estimation
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however, Figure B.9 (c) shows that the production function has a multiple inflection points as there

are multiple intersections between its second derivative g′′(x) and constant function at x = 0. So

this is a counterexample of S-shape with the RUP law. Thus, to avoid having multiple inflection

points, we added the condition on the second derivative of the function g0(·) as shown in Definition

3.5.
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Figure B.9. Production function and its derivatives
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Comprehensive results of the application to the Japanese homogeneous products in-

dustries

We show the comprehensive summary of results in Section 4.4. First, we clarify the trend of

each industry by displaying the transition of input and value added from 1997 to 2007. In the

main manuscript, we show Figure 4.5 describing the transition of the full–time and part–time labor

headcount. Here, Figures C.1 and C.2 show the transition of capital input and value added respec-

tively. These figures describe the expansion and shrinkage of each industry. Specifically, sugar,

bread, coffee and cardboard industries seem stable over years while plywood, ready–mix concrete

and concrete products industries are shrinking. Products belonging to the shrinking industries are

used for housing, construction or infrastructure whose demand was declined from 1997 to 2007

due to the Asian financial crisis and decline of youth population.

Figure C.3 shows the transition of aggregated productivity level by Cobb–Douglas OLS, Cobb–

Douglas 2SLS, S–shape without IV and S–shape with IV respectively. This is the comprehensive

results of Figure 4.7. Figure C.4 shows the estimated MPSS by S–shape with IV and S–shape

without IV models. Sugar and coffee industries have relatively noisy estimates. This is caused

by the small sample size since few observations may change the shape of production function and

MPSS estimates drastically. For bread industry, S–shape with IV and without IV models have

significantly different MPSS estimates. As shown in Figure 4.5, firms in bread industry tend to

adjust their part–time labors, and thus, total labor headcount is likely to be endogenous. Thus,
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S–shape without IV model has inaccurate MPSS estimates due to the bias from the endogeneity.

Another potential cause is that due to the lack of the variation in input ratio of observations, our

model may fail to obtain the reasonable isoquant estimates. This may be also the cause of the noisy

MPSS estimates in cardboard industry. One of the potential solutions is to select rays and isoquant

y-levels carefully to make sure each estimates can capture the characteristics in the observations.

For example, we can use K-means clustering to define the group of observations, and define the

centroid of each group as a ray and isoquant y–level. Plywood, ready–mix and concrete products

have relatively similar estimates of MPSS although there are some deviations.
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Figure C.1. Transition of capital input
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Figure C.2. Transition of value added
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Figure C.3. Percentage growth of the aggregated productivity from 1997
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