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ABSTRACT

MAX phases are layered carbides or nitrides with general formula of Mn+1AXn. In this work

we present a first principles investigation of structural, mechanical, and thermodynamic properties

of MAX phases. Up to date approximately 70 pure MAX phases are synthesized and characterized.

But the possible number of MAX phases is large when we consider different chemicals in M,

A, and X sublattices as well as the possible stacking numbers, n. First, we studied Ti3AlC2,

Ti3SiC2, and their solid solutions to understand the composition-properties relationship. Among

the pure MAX phases, the Al-containing MAX phases are some of the most important as they

are considered to be promising high-temperature applicable materials. They are known to form

continuous alumina layer when exposed to high temperature oxidizing environment, and have

excellent oxidation properties. While their overall strength is low compared to other MAX phases.

In contrast, the Si-containing MAX phases have excellent mechanical properties. Finally solid

solution MAX phases offer the opportunity to tune the thermodynamic, and mechanical properties

of MAX phases. Solid solution MAX phases were modeled using special quasirandom structures

(SQS), and calculated thermodynamic and mechanical properties using Density Functional Theory

(DFT), which is implemented in the Vienna Ab initio Simulation Package (VASP). Second, we

studied Tin+1AlCn and Tan+1AlCn systems to understand structure-properties relationship, and

to address the effect of stacking layers, and the effect of different M chemicals on deformation

behavior. Since, many MAX phases with n = 1-3 have studied, but higher order MAX phases

have not been studied in detail. Third, we studied the cleavage and shear behavior of TiC, Ti2AlC,

Ti, and graphite to understand what is MAX phases in terms of the deformation behavior. MAX

phases have a unique combination of properties, which are both of metals and ceramics, since

MAX phases have ceramic like MX layers and metal like A layers. By comparing deformation

behaviors of different types of layers materials, we studied whether the deformation behavior of

MAX phases is similar to ceramics or metals. Lastly, we studied structural and elastic properties

of (M1M2)AlC systems, and the deformation behaviors of M2AlC systems. The critical stress and
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USFE of M2AlC have a good trend in the periodic table, and the analysis suggest that some M2AlC

MAX phases have stable or metastable state in the sheared structure.
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1. INTRODUCTION

Mn+1AXn, or in short MAX, phases are a group of nanolayered hexagonal compounds, wherein

Mn+1Xn layers are interleaved with A layers. M is typically early transition metals, A is mostly

13 and 14 groups elements, and X is carbon or nitrogen. MAX phases have a unique combination

of properties, which are both of metals and ceramics. Like metals, MAX phases are relatively soft

and readily machinable with good thermal shock resistance and good damage tolerance. In addi-

tion, like ceramics, MAX phases have good chemical resistance and thermal stability [9, 10, 11].

Among the 70 pure MAX phases synthesized and characterized to date, the Al-containing

MAX phases, such as Ti2AlC and Ti3AlC2, are important as they have good thermal stability and

chemical resistance, since the passivating continuous alumina layer is formed when exposed to

high-temperature oxidation environment [12, 13, 14]. Besides , these MAX phases exhibit self

healing-behavior. The alumina layers are formed when cracks exposed to oxidizing environments

as Al migrates from Al layer to react with oxygen in atmosphere [15]. Many Al-containing MAX

phases have excellent thermal stability and chemical resistance, while these MAX phases have

relatively low strength when compared to other MAX phases. In contrast to Al-containing MAX

phases, Si-containing MAX phases, such as Ti2SiC and Ti3SiC2, have good mechanical properties

[16, 17]. The ultimate goal is that tuning the properties beyond the pure MAX phases through

making solid solution MAX phases. In this research we studied Ti3SixAl1−xC2, which has the

combination of Si and Al in the A lattice sites, to have not only good thermal stability and chemi-

cal resistance, but also have good mechanical properties.

Depending on the number of n, MAX phases have a different number of MAX stacking layers

between A layers. The higher order MAX phases have not studied in detail even though they offer

the opportunity to tune the properties like solid solutions [18]. By the example of Tin+1SiCn, it is

known that the bulk modulus is increasing from 205 GPa with n = 1, to 254 GPa with n = 4 [19].

In this research we studied Tin+1AlCn and Tan+1AlCn with n = 1 - 5. Two different interfacial

energetics, cleavage and shear, are considered to study deformation behavior to address a response
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of material to applied stress.

The M-A bond is important on deformation behavior, since the M-A bond strength is relatively

weaker than the M-X bond strength. To understand the M-A bond compare to other bonding types,

for instance, ionic bond, metallic bond, and van der Waals force, we studied cleavage and shear

behavior of TiC, Ti2AlC, Ti, and graphite.

The possible number of MAX phases are large, thus we studied structural and elastic properties of

(M1M2)AlC and deformation behaviors of M2AlC to study composition-properties relationship in

MAX phases.

In this work, we studied the structural, elastic, and thermodynamic properties, and deforma-

tion behaviors of Ti3AlC2, Ti3SiC2, and their solid solutions. We study the cleavage and shear

energetics of Tin+1AlCn and Tan+1AlCn to study the effect of the number of stacking layers and

different M chemical effect on deformation behavior. In addition, we studied the cleavage and

shear behavior of TiC, Ti2AlC, Ti, and graphene to understand deformation energetics with dif-

ferent bonding types. Lastly we studied the structural and elastic properties of (M1M2)AlC and

deformation behaviors of M2AlC to study composition-properties relationship in MAX phases.
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2. LITERATURE REVIEW

2.1 Experimental Work

In the 1960s, H. Nowotny and co-workers discovered a new class of carbide and nitride phases,

named H-phases, which is now MAX phases. The distribution of H-phases are listed in Table 2.1,

and they are synthesized by hot-pressing from powder mixtures [5, 6, 7, 8]. In the 1990s, Barsoum

et al. have reported fully dense and pure Ti3SiC2 phase, fabricated from Ti, C, and SiC powders by

hot-pressing, with a total SiC and TiCx content that was less than 1% [20]. The fully dense sample

increases the oxidation resistance. For example, the parabolic rate constant of 95% dense sample

reported by [21] et al. is roughly 3 orders higher than the fully dense sample reported by [20] et al.

One of the most importance is that Ti3SiC2 has a unique combination of properties, which is both of

metals and ceramics. Like metals, it is easily machinable, relatively soft, and an excellent electric

and thermal conductor. Like ceramics, it is elastically stiff and oxidation resistant. The Young’s

modulus of Ti3SiC2 was estimated to be 320 GPa using the resonance frequency technique shows

that it is elastically stiff material. The machinability is shown by the SEM image of the cross-

section of the threaded hole. Holes are easily drillable using commonly available high-speed steel

drill and form very precise internal thread. In the 2000s, Zhang et al. have synthesized high purity

of Ti3SiC2 from powders by spark plasma sintering (SPS), which is more competitive sintering

technique compare to the hot-pressing [22]. With the help of SPS technique, MAX phases can

be rapidly sintered under relatively low temperature and short time. The MAX phases are in the

general form of Mn+1AXn, and n = 1-6. M represents an early transition metal, A represents an A

group element, X represents carbon or nitrogen. M2AX, M3AX2, M4AX4, M5AX4, M6AX5, and

M7AX6 are referred to 211, 312, 413, 514, 615, and 716, depending on the number of n. So the

family of MAX phases is very large, and the properties of MAX phases can be tuned with different

chemical elements. To date, over 70 pure MAX phases, ternary MAX phases, are known to be

synthesized, and still the tunability is very high by synthesizing solid solution MAX phases [18].
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Ternary Carbides Ternary Nitrides

211 phases Ti2AlC, Ti2GaC, Ti2GeC, Ti2CdC, Ti2InC, Ti2SnC, Ti2TlC, Ti2PbC Ti2AlN, Ti2GaN, Ti2InN

V2AlC, V2GaC, V2GeC Zr2InN

Cr2AlC, Cr2GaC, Cr2GeC,

Zr2InC, Zr2SnC, Zr2TlC, Zr2PbC

Nb2AlC, Nb2GaC, Nb2InC, Nb2SnC

Mo2GaC

Hf2InC, Hf2SnC, Hf2TlC, Hf2PbC

Ta2AlC Ta2GaC

312 phases Ti3SiC2, Ti3GeC2

Table 2.1: 211 and 312 H-phases [5, 6, 7, 8].

2.2 Density Functional Theory (DFT)

Density Functional Theory (DFT) is a very popular quantum mechanical calculations in solid-

state physics to investigate properties of materials such as structure, free energy, elastic constants,

etc. DFT is independent of experimental data and relies on the basis of quantum mechanical

considerations known as first principles or ab initio approaches. In 1926, Erwin Schrödinger intro-

duced Schrödinger equation, which is a partial differential equation describes the wave function of

system [23]. In solid-state physics, the goal of most approaches is to solve the time-independent,

non-relativistic Schrödinger equation:

Ĥψi(
−→x 1,
−→x 2, . . . ,

−→x N ,
−→
R 1,
−→
R 2, . . . ,

−→
RM) = Eiψi(

−→x 1,
−→x 2, . . . ,

−→x N ,
−→
R 1,
−→
R 2, . . . ,

−→
RM),

(2.1)

where Ĥ is the Hamiltonian for a system consisting of M nuclei and N electrons, ψ is the wave-

function and E is the energy. The Hamiltonian is given by:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>1

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.2)
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The first and second terms describe the kinetic energy of the electrons and nuclei. The third term

represents the attractive electrostatic interaction between the electrons and nuclei. The fourth term

represents the repulsive potential due to the electron-electron interactions, and the fifth term repre-

sents the repulsive potential due to the nucleus-nucleus interactions. In 1927, Born-Oppenheimer

approximation was proposed [24]. This approximation considers the electrons move in the field of

fixed nuclei, hence the nuclear kinetic energy is zero, and their potential energy is constant. Since

the mass of nuclei is much higher than the mass of electrons, so nuclei move much slower than

electrons. Then, the electronic Hamiltonian reduces to

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

N∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
. (2.3)

The Schrödinger equation equation reduces to

Ĥelecψelec = Eelecψelec. (2.4)

, where Ĥelec is the electronic Hamiltonian, ψelec is the electronic wave function, and Eelec is the

electronic energy. Then, the total energy is the sum of the electronic energy, Eelec, and the nuclear

repulsion term, Enuc.

Enuc =
M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.5)

After invoking the Born-Oppenheimer approximation, Hartree-Fock theory was developed to solve

the electronic Schrödinger equation. When a system is in the state ψ, the variational principle

states that the energy calculated from a guessed ψ is an upper bound to the ground state energy.

Hence, the energy minimization by varying the parameters of wave function allows us to obtain

better approximation of wave function, ψ. For many electrons problem, the wave function can be
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represented by a Slater determinant.

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(−→x 1) ψ2(−→x 1) . . . ψN(−→x 1)

ψ1(−→x 2) ψ2(−→x 2) . . . ψN(−→x 2)

...
...

...

ψ1(−→x N) ψ2(−→x N) . . . ψN(−→x N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

The wave function, ψ, contains the full information of a system, and the Schrödinger equation is

successfully validated for systems like H and H2. However, ψ is a very complicated quantity that

cannot be solve many-electron problem. So much progress has been made to find approximate

solutions for many-electron problem. In 1927, shortly after the introduction of the Schrödinger

equation, the Thomas-Fermi model is developed, which is a quantum mechanical theory for the

electronic structure of many-body systems [25, 26]. In this model, the electron density plays a

central role to avoid the complication of searching for the many-electron wave function. For a

system with N particles, the electron density, ρ(−→r ), is defined as follow:

ρ(−→r ) =

∫
. . .

∫
|ψ(−→x 1,

−→x 2, . . . ,
−→x N)|2d−→x 1d

−→x 2 . . . d
−→x N . (2.7)

According to the Thomas-Fermi model, the kinetic energy, and potential energies can be expressed

as follows:

T [ρ(−→r )] =
3

10
(rπ2)2/3

∫
ρ(5/3)(−→r )d−→r , (2.8)

UeN = −Z
∫
ρ(−→r )

r
d−→r , (2.9)

Uee =
1

2

∫ ∫
ρ(−→r 1)ρ(−→r 2)

r12

d−→r 1d
−→r 2, (2.10)

where T is the kinetic energy of electrons, UeN is the attractive potential energy due to the inter-

action between electrons and nuclei, and Uee is the repulsive potential energy due to the electron-
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electron interactions. Finally the energy obtained in terms of the electron density is:

E[ρ(−→r )] =
3

10
(rπ2)2/3

∫
ρ(5/3)(−→r )d−→r − Z

∫
ρ(−→r )

r
d−→r +

1

2

∫ ∫
ρ(−→r 1)ρ(−→r 2)

r12

d−→r 1d
−→r 2.

(2.11)

In 1964, the Hohenberg-Kohn theorem confirms that the Thomas-Fermi model is correct [27].

The first Hohenberg-Kohn theorem demonstrates that the external potential Vext(−→r ) is uniquely

determined by the electron density, ρ(r). Assuming that within a given same ρ(r) for its ground

state, there were two different external potential Vext(−→r ) and V ′ext(
−→r ). There would exist two

different Hamiltonians Ĥ and Ĥ ′, ground state energiesE andE ′ with two different wave functions

ψ and ψ′. Taking ψ′ as a trial wave function for the Ĥ problem

E0 < 〈ψ′|Ĥ|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+〈ψ′|Ĥ−Ĥ ′|ψ′〉 = E ′0+

∫
ρ(−→r )[Vext(

−→r )−V ′ext(−→r )]d−→r . (2.12)

Similarly, taking ψ as a trial wave function for the Ĥ ′ problem

E ′0 < 〈ψ|Ĥ ′|ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|Ĥ ′ − Ĥ|ψ〉 = E0 +

∫
ρ(−→r )[V ′ext(

−→r )− Vext(−→r )]d−→r . (2.13)

Now addition of Eq. 12 and 13 leads to inconsistency

E0 + E ′0 < E ′0 + E0. (2.14)

Thus Vext is a unique functional of ρ(−→r ). Since Vext fixes H , in turn, the many-body ground state

is a unique functional of ρ(−→r ). Hohenberg and Kohn applied variational principles on the energy

functional, and the second Hohenberg-Kohn theorem states that the ground state density delivers

the lowest energy.

E0 ≤ E[ρ̃] = T [ρ̃] + EeN [ρ̃] + Eee[ρ̃]. (2.15)

For any trial density ρ̃, which satisfies the necessary boundary conditions such as ρ̃ ≥ 0,
∫
ρ̃(−→r )d−→r =

N , the energy associated with some external potential Ṽext represents an upper bound to the ground
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state energy E0. In 1964, Kohn-Sham equations are named after Walter Kohn and Lu Jeu Sham,

and they introduced a concept of separating unknown many-body interacting energies from the

rest, which is so called exchange-correlation energy [28]. The ground-state energy can be written

in the form of

E = Vext[
−→ρ ] + J [−→ρ ] + Ts[

−→ρ ] + EXC [−→ρ ], (2.16)

where Vext[−→ρ ] is the potential energy from the external field due to positively charged nuclei.

Vext[
−→ρ ] =

∫
ρ(−→r )VNed

−→r . (2.17)

J [−→ρ ] is the classical Coulomb potential due to the electron-electron interactions.

J [−→ρ ] =
1

2

∫ ∫
ρ(−→r 1)ρ(−→r 2)

|−→r 1 −−→r 2|
d−→r 1d

−→r 2. (2.18)

Ts[
−→ρ ] is the kinetic energy of a system of non-interacting electrons.

Ts[ρ(−→r )] = −1

2

N∑
i

〈ψi|∇2|ψi〉. (2.19)

EXC is the so-called exchange-correlation energy, which is defined as EXC = T − T0 + U − J .

If we know the exact form of EXC , the Kohn-Sham equation would lead to the exact ground-state

energy of system. However, the exact functionals for exchange and correlation are not known.

There exists a number of approximations to estimate exchange-correlation potentials. The local

density approximations (LDA) are approximations to the exchange-correlation energy functional

in the form of [29]:

ELSD
XC [n↑, n↓] =

∫
n(r)εXC(n↑(r), n↓(r))d

3r, (2.20)

where εXC(n↑(r), n↓(r)) is the known exchange-correlation energy per particle with uniform spin

densities, n↑, n↓, n = n↑ + n↓ [30]. Further εXC(n↑(r), n↓(r)) can be split into exchange and
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correlation contributions.

εXC(n↑(r), n↓(r)) = εX(n↑(r), n↓(r)) + εC(ρ(n↑(r), n↓(r)). (2.21)

Local density approximations are clearly valid when the spin densities vary slowly, but it fails

where the densities undergo rapid changes. An improvement to LDA can be made by considering

the gradient of charge densities,∇↑(r) and∇↑(r). Thus, the exchange-correlation energy so-called

generalized gradient approximations (GGA) can be written as:

EGGA
XC =

∫
f(n↑, n↓,∇n↑,∇n↑)d3r. (2.22)

In this study, the total energy calculations were carried out through the Density Functional

Theory (DFT) [28], which is implemented in the Vienna Ab-initio Simulation Package (VASP)

[31, 32]. VASP uses a plane wave basis set, and calculate the forces acting on ions using Hellmann-

Feynman theorem [33]. The interaction between ions and electrons is described by the projector

augmented-wave method [34]. The Generalized Gradient Approximation (GGA) is used for the ex-

change correlation, and the Perdew-Burke-Ernzerhof (PBE) is the simplified version of the GGA.

2.3 Special Quasirandom Structures (SQS)

The fully disordered crystalline alloys have to be obtained to investigate the solid solution of

MAX phases with tunable properties. The SQS is known as the best periodic supercell approx-

imation for a given number of atoms per supercell. In this study, the ”mcsqs” code is used to

generate SQS structures, which is implemented in the Alloy Theoretic Automated Toolkit (ATAT)

[35]. The SQS generation algorithm is based on Monte Carlo simulated annealing relaxation of

candidate configurations, with the objective of matching the largest number of random correlation

functions derived from occupancies of different sites within a given symmetrically unique cluster:

ρα(σ) = 〈Γα′(σ)〉α, (2.23)
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where the σ, σi = 0,. . . , Mi−1, denotes chemical species that occupy site i, the α, αi = 0,. . . , Mi−1,

considers particular correlation called cluster, and 〈Γα′(σ)〉 is a cluster function, defined as

〈Γα′(σ)〉 = Πγαi,Mi
(σi). (2.24)

Details of the approach can be found in Walle et al [35]. In this work, the SQS were generated to

study Ti3(SixAl1−x)C2 solid solutions, where x corresponds to 0.25, 0.5 and 0.75.

2.4 Elastic Properties

The elastic constants were estimated by stress-strain approach [36, 37, 38]. Ā is the deformed

lattice vectors when a set of strains (ε = ε1 − ε6) is applied to A, which is lattice vectors prior to

the deformation.

Ā = A

∣∣∣∣∣∣∣∣∣∣
1 + ε1

ε6
2

ε5
2

ε6
2

1 + ε2
ε4
2

ε5
2

ε4
2

1 + ε3

∣∣∣∣∣∣∣∣∣∣
. (2.25)

A set of stresses (σ = σ1−σ6) is calculated using the DFT methods, and the elastic constants were

calculated using Hooke’s law from n set of strains and the resulting stresses as shown below.

∣∣∣∣∣∣∣∣∣∣
C11 · · · C16

...
...

C61 · · · C66

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
ε1,1 · · · ε1,n

...
...

ε6,1 · · · ε6,n

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣
σ1,1 · · · σ1,n

...
...

σ6,1 · · · σ6,n

∣∣∣∣∣∣∣∣∣∣
. (2.26)

The elastic moduli of hexagonal structures were estimated based on Voigt’s approximation. A

calculation of the bulk, shear and Young’s modulus are shown as follows [39]:

BV =
2(C11 + C12) + 4C13 + C33

9
, (2.27)

GV =
M + 12C44 + 12C66

30
, (2.28)
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M = C11 + C12 + 2C33 − 4C13, (2.29)

E =
9BG

3B +G
, (2.30)

where B is bulk modulus, G is shear modulus, E is Young’s modulus.

2.5 Finite-temperature Properties

The finite-temperature thermodynamic properties can be derived from the total free energy of a

system. For the total free energy calculation, we consider vibrational and electronic contributions

and anharmonic correction. The vibrational contribution is obtained by the supercell method,

which is implemented in the ATAT package [40]. A unit cell system is fully relaxed, then sets of

supercells are generated with displacement. The forces on atoms are calculated, then compile all

the forces into the so-called dynamical matrix. The dynamical matrix has eigenvalues (frequencies)

of the normal modes of oscillation in the system, which allows to calculate phonon density of states

(PDOS). The vibrational free energy is obtained from the PDOS through the statistical mechanics

[41, 42]:

Fvib(V, T ) = kBT

∫ ∞
0

ln[2sinh(
hν

2kBT
)]g(ν)|V dν, (2.31)

where kB is Boltzmann’s constant, h is Planck’s constant, T is temperature, V is the quasi-harmonic

volume, ν is the frequency and g(ν)|V is the phonon density of states of the structure corresponding

to V.

The electronic degrees of freedom affect to the total free energy of a system. The electronic density

of states, n(ε), and the Fermi function, f, are related to the free energy of electrons by the statistical

physics as follows:

Fel(V, T ) = Eel(V, T )− TSel(V, T ). (2.32)

Eel(V, T ) =

∫
n(ε)|V fεdε−

∫ εF

n(ε)|V εdε. (2.33)

Sel(V, T ) = −kB
∫
n(ε)|V [flnf + (1− f)ln(1− f)]dε. (2.34)
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Wallace developed the anharmonic free energy equation, which is related to the expansion of the

crystal potential.

Fanhar = A2T
2 + A0 + A−2T

−2 + L. (2.35)

A2 =
3kB
Θ

(0.0078 < γ > −0.0154). (2.36)

The Gruneisen parameter, γ, and the coefficients are based on an empirical data. The anharmonic

free energy is only reasonable in the high temperature region since they ignore the last three terms,

which cannot be easily determined. Then, Oganov developed the anharmonic free energy, and

extended it to all temperature region. Using themodynamic perturbation theory he obtained an

expression for the anharmonic free energy as a function of temperature:

Fanhar
3nkB

=
a

6
[(

1

2
θ +

θ

exp(θ/T )− 1
)2 + 2(

θ

T
)2 exp(θ/T )

(exp(θ/T )− 1)2
T 2], (2.37)

where a is 1/2A2 and θ corresponds to the high temperature Harmonic Debye temperature, defined

as θ = h̄
kB

(5
3
< ω2 >)

1
2 .

The total free energy of the system is the summation of the aforementioned energy terms:

Ftotal(V, T ) = E0K(V ) + Fvib(V, T ) + Fel(V, T ) + Fanhar(V, T ), (2.38)

where E0K(V ) is the zero-temperature energy at each quasi-harmonic volume.

Thermodynamic properties can be calculated using the total free energy:

S = −∂F (T )

∂T
, CP = T

∂S

∂T
. (2.39)

2.6 Cleavage Energy

High strength and good ductility are important properties of materials. The strength of materi-

als is that how much stress a material can sustain. Ideally, the strength in a single crystal without

any defects is determined solely by the chemical bonding strength between neighboring atoms. To
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(a) z=0 (b) z=1 (c) z=2 (d) z=3

Figure 2.1: Cleavage between M and A layer under loading mode I. The cleavage distance z (Å)
for (a), (b), (c) and (d) is 0, 1, 2 and 3, respectively. Reprinted with permission from [1].

(a) (b) (c) (d) (e)

Figure 2.2: Cleavage between M and A layer under loading mode I. The (a), (b), (c), (d), and (e)
systems have 1, 2, 3, 4, and 5 unit cells, respectively, with one single cleavage surface. Reprinted
with permission from [1].
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study the strength of a material, we study the cleavage behavior based on density functional theory

under loading mode I [43] as shown in Fig. 2.1. In this model, two slabs are separated for the gen-

eration of crack. In particular, M and A layers are cleaved since M-A bond is known as relatively

weaker than M-X bond. Then systems are fully relaxed while fixing the atoms on cleavage planes

to avoid additional internal stresses, which do not correspond to the cleavage deformation. The

cleavage energy at every separation level was calculated through DFT as follows:

∆E/A = E(z)/A− E(0)/A, (2.40)

where z is the cleavage distance between M and A layers. The stress σ(z) is defined by the first

derivative,

σ(z) =

(
dE

dz

)
. (2.41)

The critical stress, σc, is the maximum value of the cleavage stress, σc=max[σ(z)], under the cleav-

age deformation. The critical stress is the required tensile stress to cut the M-A bonds, which are

atomic bonds between the given two cleavage planes. For the validation of the cleavage model,

we considered internal stresses in the unit cell, and out of the unit cell. First, to consider internal

stresses in the unit cell, we studied the elastic response of neighboring regions in the unit cell. We

consider a so-called ideal brittle cleavage, in addition to the relaxation scheme described above.

The ideal brittle cleavage is considered by cleaving M-A layer along the c direction, without allow-

ing any relaxation. The cleavage energy and stress of the ideal brittle model are compared to those

of the relaxation model to study the effect of elastic relaxation on cleavage energy, as the latter

consists of two parts: the atomic de-cohesion energy and the strain energy released in the crystal

on either side of the cleavage surface. Second, to consider internal stresses out of the unit cell, we

generated systems with 1,2,3,4, and 5 unit cells containing one single cleavage surface, as shown

in Fig. 2.2. Each of the systems with different numbers of unit cells was cleaved along c direction,

then relaxation is followed with atoms not belonging to the cleavage surfaces. The cleavage energy

and stress are calculated by equation 40 and 41 to study the effect of the system size.

14



Figure 2.3: The orthorhombic super cell (dashed line) and schematic view of pure affine, simple
affine, pure alias, and simple alias shear deformations. Reprinted with permission from [1].

2.7 Stacking Fault Energy (SFE)

Generally, the ductility of a material is related to the plastic deformation, which is controlled

by the movement of dislocations. An edge dislocation model can be produced by shearing crystal

half a lattice and carefully joining planes together. A dislocation is characterized by a Burgers

vector, which is a connection of starting and end points of a path defined by a series of lattice

vectors in a region where a line defect could exist. For an edge dislocation, The Burgers vector is

perpendicular to the dislocation line. Ab initio density functional calculations have been used to

study the response of MAX phases to shearing. The MAX phases are layered hexagonal structure,

and the most active slip system of hexagonal close packed structure is 〈21̄1̄0〉 {0001} slip system,

which describes direction and close-packed plane. The magnitude and direction of slip is described

by the Burgers vector, b = 1/3 〈21̄1̄0〉 {0001}. This dislocation can be separated into two partial

dislocations 〈11̄00〉 {0001} and 〈101̄0〉 {0001}, which are identical to 〈01̄10〉 {0001}. We present

resultant energy curves for both of the 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear deformations.

The orthorhombic supercell has generated to study shear deformations of hexagonal close

15



packed (HCP) system of Ti3AlC2, Ti3(Al0.5Si0.5)C2, Ti3SiC2 as shown in Fig. 2.3. The basal

plane of the orthorhombic system is parallel to the basal plane of hcp system. The a, b, and c

lattice vectors of the orthorhombic system is parallel to the 〈21̄1̄0〉, 〈01̄10〉, and 〈0001〉 of hcp sys-

tem. In this work, we study the shear deformation along the a and b lattice vectors of orthorhombic

system. Alias and affine shear deformation are applied to the orthorhombic system to study the

shear deformation [44]. Alias shear deformation displaces only the top most layer along the shear

direction, while affine shear deformation proportionally displaces all atoms along shear direction.

For both shear deformations, we considered simple and pure shear. Simple shear does not allow

the system to relax any degree of freedoms at sheared system. On the other hand, pure shear fully

relaxes sheared system, while only fixing the angle of shear to vanish all internal stresses do not

correspond to the shear deformation process. For the pure shear deformation we used the external

optimizer GADGET developed by Bucko et al. [45], since VASP does not allowed to carry on

relaxations under arbitrary constraints.
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3. STRUCTURAL, ELECTRONIC, MECHANICAL AND THERMODYNAMIC

PROPERTIES OF Ti3AlC2, Ti3SiC2, AND Ti3(SixAl1−x)C2

3.1 Structural and Electronic Properties

The Ti3(SixAl1−x)C2 systems form into nano-layered hexagonal structures, and the optimized

structures are shown in Fig. 3.1, visualized using VESTA. The stability of Ti3SixAl1−xC2 is con-

sidered through the calculation of formation enthalpy ∆H as given by:

∆H(Ti3(SixAl1−x)C2) = E(Ti3(SixAl1−x)C2)−nE(Ti)−nE(xSi)−nE((1−x)Al)−nE(C),

(3.1)

where E is the total energy per atom, n is a fraction of element in Ti3(SixAl1−x)C2 system, and

x is a fraction of silicon in Ti3(SixAl1−x)C2 system. The calculated formation enthalpies of

Ti3(SixAl1−x)C2 with x= 0, 0.25, 0.5, 0.75, and 1 are -0.812, -0.826, -0.838, -0.849, -0.861, re-

spectively in the unit of eV/atom.

The resultant a- and c- lattice parameters, and their experimental results [2] are shown in Fig.

3.2(a). Both of calculated and experimental results show that the a-lattice parameter is almost

constant around the value of 3 , and the c-lattice parameter is decreasing from around 18.5 to

Ti 
C 

Al 

(a) z=0

Ti 
C 

Al Si 

(b) z=1

Ti 
C 

Al Si 

(c) z=2

Ti 
C 

Al Si 

(d) z=3

Ti 
C 

Si 

(e) z=3

Figure 3.1: Crystal structure of the Ti3SixAl1−xC2 with (a) x=0, (b) x=0.25, (c) x=0.5, (d) x=0.75,
and (e) x=1. Reprinted with permission from [1].
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Figure 3.2: (a) The a- and c-lattice parameter as a function of Si composition, the solid lines
represent the calculated data using DFT while the dash lines are the experimental data retrieved
from XRD [2]. (b) Bond length of M-A, M1-X, and M2-X, where M1 is a M element near the A
element, and M2 is a M element far from the A element. Reprinted with permission from [1].

17.5 with increasing amount of Si. The M-A, M1-X, and M2-X bond lengths are shown in Fig.

3.2(b). Both M1-X, and M2-X bond lengths are almost constant, while M-A bond length is de-

creasing with increasing amount of Si. Since MAX phases are layered materials, the decreasing

c-lattice parameter with increasing amount of Si can be explained by decreasing M-A bond length,

which is atomic bond along the c-lattice direction. The substitution of Al with Si makes the M-A

bonds stronger so that the M-A bond length and c-lattice parameters are decreasing. The analysis

of Electron Localization Function (ELF), charge densities and electronic density of states (EDOS)

are carried out to demonstrate the bond strengths.

Fig. 3.3 corresponds to a 2-dimensional representation of (100) plane of the ELF for Ti3SixAl1−xC2

systems. The ELF represents the sum of the number of electrons. ELF is suitable for the obser-

vation of electrons in real space, which corresponds to chemical bonding of each atom, and it is

scaled between zero and one. As can be seen from the figure, distributions of electrons between

M-A and A-X bonds are getting higher and higher with increasing Si-content.

The (100) plane view of the charge density of Ti3(SixAl1−x)C2 is shown in Fig. 3.4, which is
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(a) x=0 (b) x=0.25 (c) x=0.5 (d) x=0.75 (e) x=1

Figure 3.3: (100) Plane view of Electron Localization Function (ELF) of the Ti3(SixAl1−x)C2 with
(a) x=0, (b) x=0.25, (c) x=0.5, (d) x=0.75, and (e) x=1. Reprinted with permission from [1].

(a) x=0 (b) x=0.25 (c) x=0.5 (d) x=0.75 (e) x=1

Figure 3.4: (100) Plane view of charge density of the Ti3SixAl1−xC2 with (a) x=0, (b) x=0.25, (c)
x=0.5, (d) x=0.75, and (e) x=1. Reprinted with permission from [1].
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Phase Ti3AlC2 Ti3Si0.25Al0.75C2 Ti3Si0.5Al0.5C2 Ti3Si0.75Al0.25C2 Ti3SiC2

Ti (d3s1) 1.905 (-2.095) 1.896 (-2.104) 1.890 (-2.11) 1.885 (-2.115) 1.883 (-2.117)

Al (s2p1) 4.156 (+1.156) 4.093 (+1.093) 4.008 (+1.008) 3.826 (+0.826)

Si (s2p2) 5.573 (+1.573) 5.539 (+1.539) 5.499 (+1.499) 5.378 (+1.378)

C (s2p2) 6.564 (+2.564) 6.550 (+2.550) 6.530 (+2.530) 6.507 (+2.507) 6.486 (+2.486)

Ti (total) 45.72 45.504 45.36 45.24 45.192

Al & Si (total) 33.248 35.704 38.188 40.646 43.024

C (total) 105.024 104.8 104.48 104.112 103.776

Table 3.1: The number of valence electrons (and charge transfer) is obtained by Bader analysis.

related to the bond strength. The charge density represents the absolute value of the charge, and

the bright regions around atoms represent that atoms are highly charged negatively or positively.

The high charge density of Si element compare to the Al element indicates that M-Si bonds are

stronger than M-Al bonds.

The number of valence electrons and charge transfer is shown in Table 3.1, which is obtained

by the Bader analysis. In Ti3(SixAl1−x)C2 systems, Ti atoms are positively charged and the total

charge density of Ti changes from 45.72 to 45.192. C atoms are negatively charged and the to-

tal charge density changes from 105.02 to 103.77. Both Ti and C total charge density are almost

constant with different amount of Si. However, the total charge density of negatively charged Al

and Si changes from 33.25 to 43.02. The increasing charge density of Al and Si means that the

M-A bonds get stronger with increasing amount of Si. This analysis demonstrates that M-A bond

strength is increasing and the c-lattice parameter is decreasing with increasing amount of Si.

The total and atom-projected electron density of states (EDOS) of Ti3(SixAl1−x)C2 are shown

in Fig. 3.5. The total EDOS of Ti3(SixAl1−x)C2 shows that Ti mostly contributes to the EDOS

at Fermi level, and atom-projected EDOS shows that it is mostly d-electrons. The electrical con-
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Figure 3.5: Calculated electronic density of states (EDOS) for (a) Ti3AlC2, (b) Ti3(Si0.25Al0.75)C2,
(c) Ti3(Si0.5Al0.5)C2, (d) Ti3(Si0.75Al0.25)C2, and (e) Ti3SiC2. The bottom panel indicates total and
atom-projected DOS. The upper panels indicate site-projected DOS. The dashed line indicates the
Fermi level. Reprinted with permission from [1].
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Figure 3.6: Comparison of Young’s modulus obtained by DFT calculations (cal.) and RUS mea-
surements (exp.). Reprinted with permission from [1].

ductivity comes from the EDOS of titanium’s d-electrons. Moreover, the peak around -2.5 eV of

atom-projected EDOS shows that p-C and d-Ti electrons are hybridized, the peak around -2.0 eV

shows that p-Si and d-Ti electrons are hybridized, and the peak around -1.0 eV shows that p-Al

and d-Ti electrons are hybridized. This analysis shows that M-X bond is stronger than M-A bond,

and it supports that why we need to focus on A layer for the cleavage and shear behaviors in the

following sections.

3.2 Elastic Properties

Under the ground state condition, the elastic constants were calculated by the stress-strain

approach based on DFT, then the bulk (B), shear (G), and Young’s (E) modulus were estimated

using Voigt’s approximation. The calculated and experimental Young’s modulus agree well and

shown in Fig. 3.6. All the calculated elastic constants and modulus are shown in Table 3.2. It

shows that B, G, and E are increasing with increasing amount of Si. Again it could be attributed

to the charge density shown in Table 3.1. In particular, the substitution of Al with Si increases the

total charge density of the A element atoms from 33.25 to 43.02. However, the total charge density

of M and X element atoms does not change significantly. The increased charge density makes the

M-A bonds stronger, and thus harder to stretch. Moreover, in the Ti3(SixAl1−x)C2 system, C11
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Phase C11 C33 C44 C12 C13 B G E

Ti3AlC2 355.45 292.89 119.03 84.63 76.03 163.02 125.17 298.98

Ti3Si0.25Al0.75C2 362.45 304.47 128.30 85.75 82.73 170.20 130.87 312.51

Ti3Si0.5Al0.5C2 365.02 317.32 136.93 90.32 90.99 176.88 133.91 320.79

Ti3Si0.75Al0.25C2 368.92 334.66 145.89 93.85 99.62 184.30 137.82 330.97

Ti3SiC2 370.47 349.71 155.43 97.22 112.11 192.61 140.78 339.60

Table 3.2: Elastic constants, bulk modulus (B), shear modulus (G), and Young’s modulus (E).

changes from 355.45 GPa to 370.47 GPa, and C33 changes from 292.89 GPa to 349.71 GPa. The

large change of C33 could be related to the large change of c lattice parameter shown in Fig. 3.2.

3.3 Finite-temperature Properties

As mentioned above, the total free energy of a system can be obtained from the ground state

energy, vibrational contribution, electronic contribution, and anharmonic correction, which is the

energy as a function of temperature and volume. Then the energy as a function of temperature and

pressure can be obtained through thermodynamic relationships.

G(T, p) = min[U(V ) + Fvib(T ;V ) + pV ], (3.2)

where V and p are the volume and pressure. It can be fitted to the integral form of the equation of

state, and the bulk modulus of Ti3(SixAl1−x)C2 were obtained as shown in Fig. 3.7(a). From 0 K to

2000 K, the bulk modulus is increasing with increasing amount of Si, since the substitution of Al

with Si makes the M-A bond stronger. Generally, the elastic modulus and thermal expansion are

inversely related. However, as shown in Fig. 3.7(b), the coefficient of thermal expansion (CTE) of

Ti3SiC2 is higher than that of Ti3AlC2. To address this phenomenon, the total and partial phonon

density of states (PDOS) were studied as shown in Fig. 3.8. The PDOS of the Ti and C show
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Figure 3.7: (a) The Bulk modulus, and (b) Coefficient of Thermal Expansion (CTE) of Ti3AlC2,
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Figure 3.8: Total and partial Phonon Density of States (PDOS) of a) Ti3AlC2 and b) Ti3SiC2. The
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denotes Al and Si. Reprinted from [3].
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Figure 3.9: (a) Free energies, and (b) heat capacities of Ti3AlC2, Ti3SiC2, and Ti3(Si0.25Al0.75)C2

as a function of temperature. Reprinted from [3].

similarity in both Ti3AlC2, and Ti3SiC2. However, the PDOS of Al and Si are different in acoustic

region (under 15THz). The area under the PDOS curve of Al and Si are 3.89 and 6.40, respectively.

The higher PDOS of the Si than the PDOS of the Al, in the acoustic region, addresses the higher

CTE of Ti3SiC2 than the CTE of Ti3AlC2.

The calculated total free energy and heat capacity of Ti3(SixAl1−x)C2 are shown in Fig. 3.9.

From 0 K to 2000 K, the total free energy is increasing with increasing amount of Al. How-

ever, the slopes are identical, since the vibrational, electronic, and anharmonic contributions of

Ti3(SixAl1−x)C2 are equal. Hence, the heat capacity derived from the total energy are identical

for Ti3(SixAl1−x)C2, which agree well with the experimented values of heat capacities by Gao et

al.[2].

3.4 Cleavage Energy

We study the cleavage and shear behavior of Ti3(SixAl1−x)C2 alloys to study the mechanical

behavior beyond the elastic region. This is to shed some light onto the experimental observations

regarding the increase in hardness in the case of Si-contained MAX phases. The knowledge about

cleavage and slip is also found to be of interest developing constitutive models aimed at predicting
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Figure 3.10: (a) Cleavage energy, (b) cleavage stress, and (c) critical stress of the Ti3(SixAl1−x)C2.
Reprinted with permission from [1].

x=0 x=0.25 x=0.5 x=0.75 x=1

Critical stress (GPa) calc 22.63 24.59 26.14 27.86 29.71

Intrinsic hardness (GPa) exp 11.4 [46] 26 [47]

Table 3.3: Calculated maximum cleavage stress (critical stress) values of Ti3(SixAl1−x)C2, and
experimentally reported intrinsic hardness of Ti3AlC2 and Ti3SiC2.
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the mechanical properties of MAX phases in the continuum limit as cleavage/slip energy as a

function of displacement and separation can be used to build cohesive zone models that account

for the highly anisotropic behavior in these materials.

Here, we present the results of our investigation of the cleavage energy in these MAX alloys.

The results of the calculated cleavage energies are shown in Fig. 3.10(a). As can be seen from this

figure, the cleavage energy sharply increases up to 1 of cleavage distance, and it is almost constant

around the cleavage distance of 3 . The cleavage stress, shown in Fig. 3.10(b), is derived from the

cleavage energy, and the maximum cleavage stress appears around the cleavage distance of 0.9 .

The critical stress (maximum cleavage stress) of Ti3(SixAl1−x)C2 increases with increasing amount

of Si, and it is shown in Fig. 3.10(c). In Table 3.3, we compared the calculated critical stress values

of Ti3AlC2 and Ti3SiC2 with nano-indentation experimental data (intrinsic hardness) and not the

Vickers hardness. When a large force is applied, Vickers hardness measurement (macroscopic

hardness) captures the effect of defect and grain boundary effects on the deformation, and it is thus

not surprising that the Vickers hardness is underestimated when compared to the intrinsic hardness

and calculated cleavage stress. One must consider, however, that there might be a few defect and

grain boundary effects on the intrinsic hardness measurement so that it is underestimated when

compared to the calculated cleavage stress [46]. Also tension-shear coupling would lower the upper

limit of the cleavage stress in an indentation experiment [48]. Our calculations do not include the

effects of defects and grain boundaries, so the calculated cleavage energy and cleavage stress show

purely the chemical effect, which is related to the bond strengths in the Ti3(SixAl1−x)C2 system.

As aforementioned above, we considered internal stresses in the unit cell, and out of the unit

cell to validate the cleavage model. First, to consider internal stresses in the unit cell, we studied

the elastic response of neighboring regions in the unit cell. Fig. 3.11 shows the cleavage energy

and stress of ideal brittle model and relaxation model. The ideal brittle model has higher cleavage

energy and stress than those of relaxation model. Particularly, the critical stress of ideal brittle

model is 23.02 GPa and that of relaxation model is 22.63 GPa. The cleavage energy of the ideal

brittle model is composed of the decohesion energy and strain energy in the system, while the
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Figure 3.11: (a) and (b) show the cleavage energy and stress of ideal brittle model and relaxation
model of Ti3AlC2. Reprinted with permission from [1].

relaxation model minimized the strain energy and the decohesion energy is dominant during the

cleavage process.

Second, to further elucidate, the effect of system size on our cleavage calculations are stud-

ied. We generated systems with 1,2,3,4, and 5 unit cells along c directions containing one single

cleavage surface. Then the cleavage energy and stress of different system sizes are calculated and

shown in Fig. 3.12. Our results suggest that the cleavage energy of all systems is increasing sharply

around 1 and converging at 3 of cleavage distance. The cleavage stress of system is derived from

the cleavage energy and shows the maximum value around 0.9 of cleavage distance. The critical

stress of 1, 2, 3, 4, and 5 unit cells in the Ti3AlC2 systems are 22.66, 22.60, 22.57, 22.54, and

22.52, respectively in the unit of GPa. These calculations suggest that the size of the system does

not affect the results of the cleavage energy and stress calculations and thus one can use a single

unit cell and obtain results that correspond to the intrinsic cleavage behavior in the large N limit.

3.5 Stacking Fault Energy (SFE)

Energy and shear stress curves under 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear deformations for

Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are presented in Fig. 3.13 and Fig. 3.14, respectively.
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Figure 3.12: (a) and (b) show the cleavage energy and stress of 1, 2, 3, 4, and 5 unicells in the
Ti3AlC2 systems with one cleavage surface. Reprinted with permission from [1].

Ti3AlC2 Ti3(Al0.5Si0.5)C2 Ti3SiC2

USFE under 〈01̄10〉 {0001} pure alias shear deformation 1.34 1.45 1.71

USFE under 〈21̄1̄0〉 {0001} pure alias shear deformation 0.56 0.79 1.02

2C44/(C11-C12) 0.879 0.997 1.138

Table 3.4: USFE in the unit of J/m2 under 〈01̄10〉 {0001} and 〈21̄1̄0〉 {0001} pure alias shear
deformation, and the anisotropy ratio for Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2.
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(a) Ti3AlC2 (b) Ti3AlC2

(c) Ti3(Al0.5Si0.5)C2 (d) Ti3(Al0.5Si0.5)C2

(e) Ti3SiC2 (f) Ti3SiC2

Figure 3.13: Energy as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under
〈01̄10〉 {0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b),
(d), and (f) are under 〈21̄1̄0〉 {0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2,
respectively. Reprinted with permission from [1].
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(a) Ti3AlC2 (b) Ti3AlC2

(c) Ti3(Al0.5Si0.5)C2 (d) Ti3(Al0.5Si0.5)C2

(e) Ti3SiC2 (f) Ti3SiC2

Figure 3.14: Stress as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under
〈01̄10〉 {0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b),
(d), and (f) are under 〈21̄1̄0〉 {0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2,
respectively. Reprinted with permission from [1].
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The energy variation is presented as a function of the fraction of the Burgers vector, fb. The

maximum energy corresponds to the unstable stacking fault energy (USFE), which can be related

to the energy needed for the dislocation nucleation. The minimum energy is the intrinsic stacking

fault energy (ISFE), which can be related to the ductility of a material. The maximum shear stress

corresponds to the ideal shear stress (ISS), which is related to the stress necessary for the formation

of stacking faults. The pure alias shear deformation is a more reliable description of dislocation

generation mechanism, since displacement is generated at the top layer, and relaxation leads to

displacement from top to lower layers. The USFE under pure alias shear deformation for Ti3AlC2,

Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are presented in Table 3.4. The USFE increases with increasing Si

so that the Ti3AlC2 is more ductile than Ti3SiC2. The anisotropy ratio, 2C44/(C11-C12), quantifies

how easy or difficult the shear deformation is. The low anisotropy ratio values in Table 3.4 suggest

that Ti3AlC2 is more ductile than the Ti3SiC2.

Under 〈01̄10〉 {0001} shear deformation, the USFE increases with increasing Si as shown in

Fig. 3.13(a), (c), and (e). Up to 30% of shear deformation, all the deformation modes are identical

except for simple alias shear. Beyond 30% of shear deformation, the energy of simple affine

shear is higher than that of pure affine and alias shear. Investigation of pure shear deformation is

important since it allows all the atoms to be fully relaxed so that the stresses do not correspond to

the shear deformation is vanished. The unit cell angles of shear are presented in Fig. 3.15(a). The

α, β, and γ are unit cell angles, and as it can be seen in Fig. 3.15(a) α is changing with constant β

and γ. The shear energetics in Fig. 3.13(a) shows that the stacking fault has generated at 1.0 and

2.3 of fb under pure alias shear deformation of Ti3AlC2. To clarify the generation of stacking fault,

α’ is shown in Fig. 3.15(a) and (b), which is the cell angle containing M and A elements. Under

pure alias shear deformation, α’ is decreasing like α, however, α’ sharply increases at 1.0 and 2.3

of fb. It represents the stacking fault has generated between M and A layers.

Under 〈21̄1̄0〉 {0001} shear deformation, the USFE increases with increasing Si as shown in

Fig. 3.13(b), (d), and (f). Up to 20 % of shear deformation, all the deformation modes are identical

except for simple alias shear. Beyond 20 % of shear deformation, the energy of simple affine shear
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Figure 3.15: (a) shows cell angles of the Ti3AlC2 system under 〈01̄10〉 {0001} pure alias shear
deformation. (b), (c), and (d) show the structure of Ti3AlC2 system under 〈01̄10〉 {0001} pure
alias shear deformation of fb = 0, 1.0, and 2.0, respectively. (e) is unit cell angles of the Ti3AlC2

system under 〈21̄1̄0〉 {0001} pure alias shear deformation. (f), (g), and (h) are the Ti3AlC2 system
under 〈21̄1̄0〉 {0001} pure alias shear deformation of fb=0, 0.44, 1.0, respectively. Red, blue, and
black atoms are Ti, Al, and C, respectively. Reprinted with permission from [1].
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(a) (b) (c) (d) (e) (f)

Figure 3.16: (010) Plane view of electron localization function (ELF) under 〈21̄1̄0〉 {0001} pure
alias shear deformation of Ti3(SixAl1−x)C2 with (a) x=0, (b) x=0.5, (c) x=1, and 〈01̄10〉 {0001}
pure alias shear deformation with (d) x=0, (e) x=0.5, and (f) x=1 at the level of USFE. Reprinted
with permission from [1].

is higher than that of pure affine and alias shear. As mentioned above, pure shear leads to a more

stable system than simple shear. The unit cell angles at various stages of shears are presented in Fig.

3.15(e). Unlike 〈01̄10〉 {0001} shear deformation, α changes around 0.5 of fb under 〈21̄1̄0〉 {0001}

shear deformation.

Both USFE under 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear deformation increase with an in-

creasing amount of Si. In addition, USFE under 〈21̄1̄0〉 {0001} shear deformation is lower than

USFE under 〈01̄10〉 {0001} shear deformation, thus 〈21̄1̄0〉 {0001} shear deformation will be

preferable under the deformation behavior. To demonstrate this, analysis of ELF and charge den-

sity were carried out. As shown in FIg. 3.16, distributions of electrons between M-A and are

getting higher with increasing Si-content under both 〈21̄1̄0〉 {0001} and 〈01̄10〉 {0001} shear de-

formations. This causes A elements to be charged more negatively with increasing amount of

Si. Fig. 3.17 shows the increased charge density of A element under both 〈21̄1̄0〉 {0001} and

〈01̄10〉 {0001} shear deformations, which makes the atomic bond between the M-A layer stronger.

The number of valence electrons per atom are shown in Table 3.5. The number of valence electrons

of M and X elements are almost constant, while that of A element is increasing with increasing
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(a) (b) (c) (d) (e) (f)

Figure 3.17: (010) Plane view of charge density under 〈21̄1̄0〉 {0001} pure alias shear deformation
of Ti3(SixAl1−x)C2 with (a) x=0, (b) x=0.5, (c) x=1, and 〈01̄10〉 {0001} pure alias shear deforma-
tion with (d) x=0, (e) x=0.5, and (f) x=1 at the level of USFE. Reprinted with permission from
[1].

Phase Ti3AlC2 Ti3(Si0.5Al0.5)C2 Ti3SiC2

〈21̄1̄0〉 pure alias shear deformation

Ti 1.91 1.90 1.89

Al & Si 4.11 4.72 5.33

C 6.58 6.55 6.51

〈01̄10〉 pure alias shear deformation

Ti 1.92 1.90 1.89

Al & Si 4.07 4.68 5.27

C 6.59 6.56 6.53

Table 3.5: The number of valence electrons per atom at the level of USFE under 〈21̄1̄0〉 {0001}
and 〈01̄10〉 {0001} pure alias shear deformations.
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Figure 3.18: Energetics of 〈21̄1̄0〉 {0001} alias shear deformation of Ti2AlC. Reprinted from [4].

amount of Si. This results in increasing USFE with increasing amount of Si. In addition, the num-

ber of valence electrons of the A element under 〈21̄1̄0〉 shear deformation is higher compared to

that of A element under 〈01̄10〉 shear deformation. Under 〈21̄1̄0〉 shear deformation, the strong

atomic bond between the M-A layer makes the system more stable than 〈01̄10〉 shear deformation,

thus 〈21̄1̄0〉 shear deformation will be preferable than 〈01̄10〉 shear deformation.

To validate the shear model, the resultant energy curves of three different calculation modes

are shown in Fig. 3.18. Here we studied Ti2AlC system, which is the most simple structure of

Tin+1AlCn to minimize the computational cost. First, we compared energetics of simple alias

model and simple alias with atomic relaxation model. The simple alias model does not allow any

relaxation under the shear deformation, while simple alias with atomic relaxation model allows the

atomic relaxation to vanish stress not corresponds to the shear deformation. The energy of atomic

relaxation model dramatically drops down compared to the simple alias model. It suggests that

the relaxation of atomic positions has to be followed during the shear deformation. Second, we

compared energetics of atomic relaxation model to the pure alias model. Like relaxation model,

pure alias model considers the atomic relaxation, while, unlike atomic relaxation model, pure alias

model also considers the structural relaxation, which include the relaxation of volume and shape.
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Up to 40 % the energy of atomic relaxation model and pure alias mode show very similar trend,

however between 40 % and 60 % the pure alias model shows much lower energy than atomic

relaxation model. It suggests that the structural relaxation plays an important role at the level of

the generation of stacking fault.
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4. THE EFFECT OF NUMBER OF STACKING LAYERS ON DEFORMATION

BEHAVIORS IN Tin+1AlCn AND Tan+1AlCn SYSTEMS

4.1 Structural and Electonic Properties

The optimized structures of Tin+1AlCn and Tan+1AlCn systems are shown in Fig. 4.1, using

VESTA. The calculated a- and c- lattice parameters are shown in Table 4.1, which agree well

with experimental and other calculated results [18]. Both a- and c- lattice parameter values of

Tan+1AlCn are higher than those of Tin+1AlCn. In addition, with the increasing number of stack-

ing layers, increasing number of n, a-lattice parameter is almost constant, while c-lattice parameter

increases. This intuitively makes sense and points to the relative insensitivity of structural param-

eters to specific stacking number, indicating strong localization of the bonding within the M-A

layers.

4.2 Cleavage energy

In Tin+1AlCn and Tan+1AlCn systems we present the cleavage energy and stress calculations

as a function of stacking number, n. The resultant cleavage energy and stress are shown in Fig.

4.2. As it is shown in Fig. 4.2(a) and 4.2(c), the cleavage energy increases sharply up to around

1 of separation, after which its rate of increase decays and in fact saturates at about 3 in both

Tin+1AlCn and Tan+1AlCn systems. The cleavage stress is derived from the cleavage energy, and

it is shown in Fig. 4.2(b) and 4.2(d). The maximum cleavage stress (critical stress) appears at

around 0.9 of separation. The critical stress of Tin+1AlCn is 23.88, 22.65, 22.55, 22.51, and 22.46

GPa with n = 1, 2, 3, 4, and 5, respectively. The critical stress of Tin+1AlCn is 28.33, 28.32, 26.29,

26.81, and 26.65 GPa with n = 1, 2, 3, 4, and 5, respectively.

The critical stress of Tan+1AlCn is higher than the critical stress of Tin+1AlCn, while the num-

ber of stacking layers (the number of n) does not significantly affect the critical stress. The slight

changes of critical stress in Tin+1AlCn and Tan+1AlCn systems with a different number of stack-

ing layers can be explained by the analysis of charge transfer of Ti, Ta, and Al in cleaved layers.
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(a) n=1 (b) n=2 (c) n=3 (d) n=4 (e) n=5

Figure 4.1: Crystal structure of the Tin+1AlCn (Tan+1AlCn) with (a) n=1, (b) n=2, (c) n=3, (d)
n=4, and (e) n=5. Red, blue, and black atoms represent Ti (Ta), Al, and C, respectively. Reprinted
from [4].

Phase Ti2AlC Ti3AlC2 Ti4AlC3 Ti5AlC4 Ti6AlC5

a 3.069 3.082 3.085 3.085 3.084

c 13.734 18.652 23.588 28.541 33.505

Phase Ta2AlC Ta3AlC2 Ta4AlC3 Ta5AlC4 Ta6AlC5

a 3.092 3.099 3.136 3.130 3.145

c 13.951 19.252 24.261 29.546 34.550

Table 4.1: The a- and c- lattice parameter values of Tin+1AlCn and Tan+1AlCn (n=1, 2, 3, 4, and
5) in the unit of .
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(a) Cleavage energy of Tin+1AlCn (b) Cleavage stress of Tin+1AlCn

(c) Cleavage energy of Tan+1AlCn (d) Cleavage stress of Tan+1AlCn
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Figure 4.2: Cleavage energy and stress of the (a), (b) Tin+1AlCn and (c), (d) Tan+1AlCn with n=1,
n=2, n=3, n=4, and n=5. (e) Charge transfer of Ti, Ta, and Al of Mn+1AlCn (M = Ti and Ta).
Reprinted from [4].
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Phase Ti2AlC Ti3AlC2 Ti4AlC3 Ti5AlC4 Ti6AlC5

Ti 2.107 (-1.893) 2.087 (-1.913) 2.091 (-1.909) 2.097 (-1.903) 2.101 (-1.899)

Al 3.813 (+0.813) 3.794 (+0.794) 3.787 (+0.787) 3.79 (+0.79) 3.792 (+0.792)

Phase Ta2AlC Ta3AlC2 Ta4AlC3 Ta5AlC4 Ta6AlC5

Ta 2.22 (-2.78) 2.276 (-2.724) 2.171 (-2.829) 2.192 (-2.808) 2.167 (-2.833)

Al 3.405 (+0.405) 3.38 (+0.38) 3.364 (+0.364) 3.381 (+0.381) 3.38 (+0.38)

Table 4.2: Calculated number of valence electrons (charge transfer) in Tin+1AlCn and Tan+1AlCn

is obtained by Bader analysis. Particularly, charge analysis of Ti, Ta, and Al in cleaved layers.

The number of valence electrons and charge transfer are shown in Table 4.2 and Fig. 4.2(e). In

the Tin+1AlCn system, the calculated charge transfer of Ti is -1.893, -1.913, -1.909, -1.903, and

-1.899, and that of Al is 0.813, 0.794, 0.787, 0.79, and 0.792 with n = 1, 2, 3, 4, and 5, respec-

tively. In Tan+1AlCn system, the calculated charge transfer of Ta is -2.78, -2.724, -2.829, -2.808,

and -2.833, and calculated charge transfer of Al is 0.405, 0.38, 0.364, 0.381, and 0.38 with n = 1,

2, 3, 4, and 5, respectively. The charge transfer of Ti, Ta, and Al changes by about 1% at most with

changing n, providing a rationalization for the fact that the critical cleavage stress in Tin+1AlCn

and Tan+1AlCn is insensitive to stacking number: the strength of the bonding between M and A

layers is highly localized within the M-A layers themselves and the stacking number does not

affect their interactions.

4.3 Stacking Fault Energy (SFE)

In the previous section, it has been shown that the 〈21̄1̄0〉{0001} alias shear deformation is

the most preferable shear deformation. Hence we present energy curves under 〈21̄1̄0〉{0001} alias

shear deformation of Tin+1AlCn and Tan+1AlCn to study chemistry and stacking layer number

effects on shear deformation. The energetics of Tin+1AlCn under simple shear deformations by

shearing M-X and M-A layers as a function of the fraction of the Burgers vector are shown in
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Figure 4.3: (a) Simple alias shear deformation energy curves of Tin+1AlCn by shearing M-X (tri-
angle) and M-A (square) layers with n = 1-5. (b) Shear energy curves of Ti2AlC under simple alias
without (square) and with (triangle) atomic relaxation, and pure alias (circle) shear deformation.
Reprinted from [4].

Fig. 4.3(a). The resultant energies for the simple alias calculations by shearing M-X layers are

much higher than those corresponding to the simple alias calculation by shearing M-A layers. This

shows that the M-X bond strength is much higher than M-A bond strength, thus M-X layers are

much more difficult to shear than M-A layers. In addition, the maximum energy is the required

energy to shear layers, and the maximum energy for shearing M-X layers changes significantly

with a different number of stacking layers. While, the maximum energy for shearing M-A layers

does not change significantly with a different number of stacking layers. The analysis suggests

that the number of stacking layers significantly affects the resultant energies under simple alias

deformation by shearing M-X layers, which corresponds to the energy required to slip M and

X layers, while the number of stacking layers does not significantly affect the resultant energies

under simple alias deformation by shearing M-A layers. The energetics of simple alias calculations

without and with atomic relaxation, and pure alias calculations are shown in Fig. 4.3(b). The

resultant energies for the simple alias calculations are much higher than those corresponding to

the pure alias calculation. The reason for this considerable overestimation is the fact that atomic

relaxations consistent with the shear deformation of the cell must be taken into account in order
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Figure 4.4: Shear energy curves of the (a) Tin+1AlCn and (b) Tan+1AlCn with n=1, n=2, n=3, n=4,
and n=5. Pure alias shear energy curves of the (c) Tin+1AlCn and (d) Tan+1AlCn with n=1, n=2,
n=3, n=4, and n=5. Reprinted from [4].

to minimize the total strain energy of the system. We note, however, that carrying out a simple

alias shear, but allowing at least local ionic relaxations is sufficient to reduce the energy barrier to

shear to values close to those obtained using the pure shear construction. Note, however, that when

carrying out the pure shear transformation no assumption as to the identity of the sheared layers

had to be made as this is a direct outcome of the constrained relaxation scheme.

The energetics of shear deformation for Tin+1AlCn and Tan+1AlCn systems are shown in Fig.

4.4. The unstable stacking fault energy (USFE), shown in Table 4.3, is the maximum energy
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Phase Ti2AlC Ti3AlC2 Ti4AlC3 Ti5AlC4 Ti6AlC5

USFE 0.588 0.607 0.589 0.556 0.555

Phase Ta2AlC Ta3AlC2 Ta4AlC3 Ta5AlC4 Ta6AlC5

USFE 1.084 1.070 0.818 0.940 0.873

Table 4.3: The Unstable Stacking Fault Energy (USFE) of Tin+1AlCn and Tan+1AlCn systems
with n = 1, 2, 3, 4, and 5 in the unit of J/m2.

during the shear process, which is the required energy for the generation of stacking fault, and can

be related to the required energy for the nucleation of dislocations [49]. In the Tin+1AlCn system,

the USFE is 0.588, 0.607, 0.589, 0.556, and 0.555 in the unit of J/m2 with n = 1, 2, 3, 4, and 5,

respectively. In Tan+1AlCn system, the USFE is 1.084, 1.070, 0.818, 0.940, and 0.873 in the unit

of J/m2 with n = 1, 2, 3, 4, and 5, respectively. The USFE of Tan+1AlCn is considerably higher

than that of Tan+1AlCn, while the number of stacking layers does not significantly affect the USFE,

which is consistent with the finding derived from the cleavage calculations. Here we note that the

same conclusion would not have been arrived at if one were to consider shear deformation of these

systems under simple alias deformation, which would predict differences of more than 30% in the

calculated values for the USFE in the case of Ta-MAX phases. Moreover, the results show that

the stacking fault is generated between M and A layers, not M and X layers, with the former pair

being the most weakly bonded of the two, as M-X bonds tend to be covalent in nature and are much

stronger than the predominantly metallic M-A bonds. Again, the generation of the stacking fault

is highly localized and it is thus reasonable that the number of stacking layers does not affect the

USFE. The difference between Ti- and Ta- MAX phases points, however, to the significant effect

of chemistry on the strength between M and A layers in MAX phases.

To better understand the slip between M and A layers under shear deformation, the bond lengths

of M-A and M-X were calculated and shown in Fig. 4.5. It has been shown that the USFE occurs

when the shear deformation has reached a magnitude of about 0.4 Burgers vector, and stacking
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Figure 4.5: M-A and M-X bond lengths of the (a) Tin+1AlCn and (b) Tan+1AlCn with n=1, n=2,
n=3, n=4, and n=5. Reprinted from [4].

fault has generated at this point as the system is unstable and incapable of resisting the formation

of this stacking defect. The figure indicates that just before the generation of the stacking fault,

the bond lengths of M-A and M-X are decreasing linearly. The decreasing in M-A bond length is

thus associated with the considerable increase in the energetics of the shear deformation profile as

the structure is being sheared. At the displacement level corresponding to the point at which the

stacking fault is generated, the M-A bond length increases sharply by about 2%, while the M-X

bond length is increased in a more parsimonious manner, indicating that the M-X layers are not

affected significantly by the formation of the stacking fault. This figure shows that stacking fault

is dominated by slip between the M and A layers.

To justify the unit cell alone is sufficient to achieve reasonable stacking fault energies, we

studied pure alias shear deformation of Ti2AlC with different system sizes. We studied the pure

alias shear deformation along 〈21̄1̄0〉{0001} of Ti2AlC with single unit cell and two unit cells

along out of plane, and it is shown in Fig. 4.6. Both single unit cell and extended unit cell show the

maximum energy, USFE, at 40 % of displacement. The USFE of the single unit cell and extended

unit cell are 0.60 and 0.62 J/m2, respectively. The calculated USFE of different cell sizes suggest

that the system size does not affect the results of shear energy significantly and thus single unit cell
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is sufficient to study shear behavior and achieve reasonable stacking fault energy.
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5. CLEAVAGE AND SHEAR BEHAVIORS OF DIFFERENT TYPES OF LAYERED

MATERIALS (TiC, Ti2AlC, Ti, GRAPHENE)

5.1 Structural and Elastic Properties of Layered Materials

In the previous sections, we studied cleavage and shear behavior of MAX phases. First, we

studied cleavage and shear behavior of Ti3AlC2 and Ti3SiC2. Si-containing MAX phases are well

known as a elastically very stiff material. The elasticity by-itself is a very important material’s

property, since it tells us how large force a material can sustain without a permanent plastic de-

formation. We want to know how the material will behavior beyond the elastic region, and we

believe that studying of the cleavage and shear behavior would be a very good starting point to

understand the plastic deformation beyond the elastic region. To better understand of the cleav-

age and shear behavior of Ti3SiC2, we studied cleavage energy and shear energy of Ti3AlC2 and

compared to those of Ti3SiC2. Particularly we choose Ti3AlC2, since the aluminium component

in MAX phases can diffuse out and form alumina oxide layer and it is expected to have a good

oxidation and thermal resistance. Ti3AlC2 is known as having a lower elastic modulus compared

to the Ti3SiC2, and it is good to study how the different chemical components affect the cleavage

and shear energy by comparing the cleavage and shear energies of Ti3SiC2 and Ti3AlC2. Then we

have the cleavage and shear behavior of Tin+1AlCn and Tan+1AlCn to understand how the different

stacking numbers, n, affect the cleavage and shear behavior. Particularly, we choose Tan+1AlCn

system, since high order Tan+1AlCn has reported as they are experimentally synthesizable.

Here we studied the cleavage and shear behavior of different types of layered materials. We

choose TiC, Ti2AlC, Ti, and graphite to study how different types of materials like ceramic, MAX

phases, metal, and van der Walls force dominant materials behave under the cleavage and shear

process. First, we generated hexagonal closed packed systems of layered materials to study how the

metal like A layer and ceramic like M-X layer are different in terms of the cleavage and shear. The

crystal structures of TiC, Ti2AlC, Ti, and graphite are shown in Fig. 5.1, and they are visualized
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Figure 5.1: Crystal structures of the (a) TiC, (b) Ti2AlC, (c) Ti, and (d) Graphene.
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by VESTA. For the calculations of TiC, Ti2AlC, and Ti systems, metallic, ionic, and covalent

bonds are dominant so that van der Waals force can be negligible. However, for the calculations

of graphite, the van der Waals force is dominant between layers, thus vdW-DF method has been

used. This method considers non-local correlation functional so that it approximately accounts for

the electronic dispersion interactions.

The elastic constants are calculated using VASP with IBRION = 6 flag. This flag allows to

determine the Hessian matrix, which is the second derivatives of the energy for atomic positions.

For the calculation of elastic constants, ISIF = 3 flag is used with IBRION = 6 flag, which allows

lattice distortions during the relaxation of systems. Then the elastic tensor is determined by the

strain-stress relationship. The calculated elastic constants of TiC, Ti2AlC, Ti, and graphite are

described below in the unit of GPa:

Cij(TiC) =



500 138 152 0 −21 0

138 492 164 0 22 0

152 164 477 0 −1 0

0 0 0 175 0 −18

−21 22 −1 0 184 0

0 0 0 −18 0 187


, (5.1)

Cij(Ti2AlC) =



302 68 64 0 0 0

68 302 64 0 0 0

64 64 268 0 0 0

0 0 0 175 0 0

0 0 0 0 175 0

0 0 0 0 0 117


, (5.2)
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Cij(Ti) =



170 94 82 0 0 0

94 170 83 0 0 0

82 83 186 0 0 0

0 0 0 39 0 0

0 0 0 0 38 0

0 0 0 0 0 39


, (5.3)

Cij(Graphite) =



1061 187 −4 0 0 0

187 1064 −6 0 0 0

−4 −6 41 0 0 0

0 0 0 425 0 0

0 0 0 0 3 0

0 0 0 0 0 3


. (5.4)

The calculated C11 and C33 of TiC are 500 GPa and 477 GPa, and those of Ti are 170 GPa and

186 GPa. The covalent bond in TiC (ceramic) material is stronger than metallic bond in Ti (metal).

The calculated C11 and C33 of Ti2AlC are 302 GPa and 268 GPa. The MAX phases have both

ceramic and metal like layers in the system, and the C11 and C33 values of Ti2AlC are in between

TiC (ceramic material) and Ti (metal material). The calculated C11 and C33 of graphene are 1061

GPa and 41 GPa. In the basal plane, the covalent bond is dominant, which is very strong, thus C11

elastic constant value of graphene is very high. However, between basal planes, the van der Waals

force is dominant, which is very weak, thus C33 elastic constant value of graphene is very low.

5.2 Cleavage Energy

In TiC, Ti2AlC, Ti, and graphite systems, we present the cleavage energy and stress calcula-

tions as a function of separation distances. The cleavage behavior is important to understand a

material’s response to the tensile load, and it can be related to the fracture behavior. In addition,

the cleavage energy is important in terms of synthesis of 2-dimensional materials from layered

materials by delamination. In 2015, Mahesh et al. reported the shear induced micromechanical
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Figure 5.2: (a) Cleavage energy and (b) cleavage stress of TiC, Ti2AlC, Ti, and graphene.

synthesis of Ti3SiC2, which is named as MAXene [50]. This work is very interesting and impor-

tant, since, generally 2-dimensional MX layers are obtained by selective etching of Al atoms from

the MAX phases. These 2-dimensional MX layers are named as MXene, and they have similar

properties with graphene. The synthesis of MXene requires toxic HF as an etchant, while the syn-

thesis of MAXene does not require any etchant. The rotational force has applied to Ti3SiC2 by the

micromechanical milling to partially exfoliate Ti3SiC2 layers, then fully exfoliated Ti3SiC2 MAX-

ene has obtained by the ultrasonication. In graphene, layers are very weakly bonded by the van

der Waals force, and simple ultrasonication can mechanically break the weakly bonded graphite

layers. In Ti3AlC2 system, layers are strongly bonded compared to the graphene, and it cannot be

delaminated by the simple ultrasonication, however, after partial exfoliation by applying rotational

force fully exfoliated Ti3SiC2 MAXene can be obtained by ultrasonication.

The resultant cleavage energy and stress of TiC, Ti2AlC, Ti, and graphite are shown in Fig. 5.2.

The cleavage energy increases sharply up to around 1 of separation for all cases, and the energy

converges to a certain value at about 3 of separation. The cleavage stress is derived from the

cleavage energy, and the maximum cleavage stress (critical stress) values of TiC, Ti2AlC, Ti, and

graphite are 66.95, 23.59, 20.51, and 2.90 in the unit of GPa, respectively. The TiC system shows

the highest value of critical stress, which shows the ionic bond in ceramic material is very strong
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Figure 5.3: Energy curves of TiC, Ti2AlC, Ti, and graphite under (a) pure alias shear deformation
and (b) simple alias shear deformation with atomic relaxation.

and hard to break. The critical stress of Ti2AlC is very close to Ti and slightly high. Generally, in

MAX phases, metal like A layers are weakly bonded compared to the ceramic like MX layers, and

weakly bonded M-A layers plays an important role during the cleavage process. Not surprisingly,

Ti2AlC shows a similar cleavage behavior to Ti. The graphene has the lowest critical stress value,

since layers are very weakly bonded with van der Waals force.

5.3 Stacking Fault Energy (SFE)

Here we present energy curves of TiC, Ti2AlC, Ti, and graphite under pure alias shear defor-

mation and simple alias shear deformation with atomic relaxation, as shown in Fig. 5.3, to study

the shear behaviors of different types of materials. In the previous section, we have compared pure

alias shear deformation, simple alias shear deformation, and simple alias shear deformation with

atomic relaxation, and the resultant energy of simple alias shear deformation is much higher than

other cases, thus here we present resultant energies of pure alias shear deformation and simple

alias shear deformation with atomic relaxation. MAX phases have both ceramic like MX layers

and metal like A layers, which causes the unique combination of properties both of ceramics and

metals. To better understand the shear behavior of MAX phases, we studied shear behaviors of ce-
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ramics and metals as well as graphite. The shear behaviors of ceramics and metals will help us to

understand the property of MAX phases shear behavior like if the shear behavior of MAX phases

is similar to ceramics or similar to metals. In addition, we study the shear behavior of graphite

to study how the shear behavior of MAX phases is different from the graphite, and see how the

ceramic like and metal like bonding in MAX phases are different from the van der Waals force.

Further, we would see if van der Waals functional really needs to be considered or not. Under

the pure alias shear deformation, the USFE of TiC, Ti2AlC, Ti, and graphite are 2.75, 0.59, 0.42,

and 0.06 in the unit of J/m2, respectively. Under the simple alias shear deformation with atomic

relaxation, the USFE of TiC, Ti2AlC, Ti, and graphite are 3.26, 0.85, 0.44, and 0.07 in the unit of

J/m2, respectively. The USFE is around the 0.5 displacement, which related to the generation of

stacking fault, and the resultant energies of pure alias shear deformation are lower than those of

simple alias shear deformation with atomic relaxation for all cases of different types of materials.

Here again, the analysis shows that the relaxation during the shear process is very important to

lower the energy and find the most stable and reliable state.

To better understand why the resultant energies under pure alias shear deformation are lower

than the resultant energies of simple alias shear deformation with atomic relaxation, we compared

pure alias shear deformation to the simple alias shear deformation with atomic relaxation. The

strain curves under simple alias shear deformation with atomic relaxation is shown in Fig. 5.4

and under pure alias shear deformation is shown in Fig. 5.5. We calculated normal strains and

shear strains. Normal strains, ε11, ε22, and ε33 are strains perpendicular to the surfaces, and shear

strains, ε12, ε13, and ε23 are strains parallel to the surfaces. Simple relaxed alias shear deformation

does not allow change of volume and shape of the system, thus only ε13 is changing linearly, while

other strains remain as zero in all cases of TiC, Ti2AlC, Ti, and graphite. The ε13 corresponds

to the displacement of the top layer to the shear direction, along a direction. Pure alias shear

deformation allows change of volume and shape of the system during the shear process, thus ε13

increases linearly with changes of other strains in all cases. In TiC system, at the level of stacking

fault generation, ε33 shows a positive value, and ε23 shows a negative value, and they are 0.03, and
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Figure 5.4: Strain curves of (a) TiC, (b) Ti2AlC, (c) Ti, and (d) graphite under simple alias shear
deformation with atomic relaxation.
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Figure 5.5: Strain curves of (a) TiC, (b) Ti2AlC, (c) Ti, and (d) graphite under pure alias shear
deformation.
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-0.02, respectively. In Ti2AlC system, at the level of stacking fault generation, ε33 shows a positive

value, and ε23 shows a negative value, and they are 0.01, and -0.06, respectively. In Ti system, at

the level of stacking fault generation, ε33 shows a positive value, and ε23 shows a negative value,

and they are 0.01, and -0.08, respectively. In TiC, Ti2AlC, and Ti systems, all have same signs of

ε33, and ε23. However, ε33 of TiC shows higher positive value than that of Ti2AlC and Ti, thus TiC

system expands more along c direction during the shear process than Ti2AlC and Ti systems. In

addition, ε23 of Ti2AlC and Ti systems show lower negative value than that of TiC, thus Ti2AlC

and Ti systems have more shear deformation than TiC system. In graphite, ε33 shows two jumps

during the shear deformation, while ε23 does not change like other systems.

Now, we want to understand why different systems are deforming in different directions with

different distances. To understand the deformation behavior, we studied stresses under simple

relaxed alias and pure alias shear deformations, shown in Fig. 5.6 and Fig. 5.7. In TiC system, at

the level of stacking fault generation, σ33 is -145.93, and σ23 is 86.08 in the unit of kB, respectively.

In Ti2AlC system, σ33 is -22.21, and σ23 is 60.30 in the unit of kB, respectively. In Ti system, σ33

is -16.45, and σ23 is 15.60 in the unit of kB, respectively. In TiC, Ti2AlC, and Ti systems, they

have negative values of σ33, and positive values of σ23, thus systems expand along c direction

and undergo shear deformation along b direction if systems consider relaxation during the shear

process, as shown in Fig. 5.5. In graphite system, σ33 shows a negative value, but σ23 is almost

zero, thus graphite expands along c direction without shear deformation along b direction. The

analysis suggests that simple relaxed alias shear deformation causes σ33 and σ23 stresses during

the shear process, and the pure alias shear deformation considers relaxation, and causes normal

and shear strains, thus σ33 and σ23 have vanished as shown in Fig. 5.7.

We calculated residual stresses to study the elasticity of shear deformation. The residual stress

shows how the stress is different from the elastic stress. The elastic stress is calculated by multi-

plication of elastic constants and strain. The residual stresses of TiC, Ti2AlC, Ti, and graphite are

shown in Fig. 5.8. Particularly, we focused on R13, which shows a degree of elasticity of shear

deformation, since top plane moves to a direction during the shear process. In TiC and Ti systems,
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Figure 5.6: Stress curves of (a) TiC, (b) Ti2AlC, (c) Ti, and (d) graphite under simple relaxed alias
shear deformation.
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Figure 5.7: Stress curves of (a) TiC, (b) Ti2AlC, (c) Ti, and (d) graphite under pure alias shear
deformation.
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Figure 5.8: Residual stress curves of (a) TiC, (b) Ti2AlC, (c) Ti, and (d) graphite under pure alias
shear deformation.
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Figure 5.9: In Ti2AlC system, coordinates of Al atoms on the first layer.

R13 increases around after 0.2 of displacement. They undergo elastic deformation up to 0.2, then

undergo plastic deformation after 0.2. In Ti2AlC system, R13 sharply increases after 0.4. The anal-

ysis suggests that the stacking fault generation is plastic deformation, but before the generation of

stacking fault, the system deforms elastically.

In the above, we studied how the unit cells deform during the shear process by calculating

strain values. Here, in Ti2AlC system, we obtained position coordinates of elements on each layer

to study how atoms move during the shear process. The position coordinates of aluminium on the

first layer is shown in Fig. 5.9. The color bar represents the shear process, and there are 4 regions,

since we have 4 aluminium atoms on the first layer. The shear is applied to the a direction, and at

the beginning of the shear deformation, aluminium moves along the a direction linearly. Then, in

the middle, aluminium atoms jump along the b direction. The analysis suggests that even though
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Figure 5.10: In Ti2AlC system, atomic positions of each layers.
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the shear is applied to the a direction, the stacking fault has generated along the b direction. The

position coordinates of elements on all layers are shown in Fig. 5.10. As we studied above, M-

A bond strength is relatively weaker than M-X bond strength, thus aluminium atoms move more

than titanium and carbon atoms. However, aluminium atoms on the fifth layer, which is a center

layer along the c direction, don’t move during the shear process. Thus, we calculated the change

of atomic positions between neighboring layers, and it is shown in Fig. 5.11. The red, blue, and

yellow markers are the change of atomic positions between aluminium and titanium atoms, and

other markers are the change of atomic positions between titanium and carbon atoms. The analysis

suggests that stacking fault has generated between aluminium and titanium layers.

63



6. HIGH-THROUGHPUT DFT CALCULATIONS

6.1 Structural and Elastic Properties of (M1M2)AlC MAX phases

In the 1960s, Nowotny and coworkers have discovered MAX phases. In 1996, Barsoum and El-

Raghy have reported a unique combination of properties, which are both of metals and ceramics.

Many experimental works are done and ongoing successfully. However, the problem is that a

family of the possible candidates of MAX phases is very large. We can consider 9 chemicals as

M element, 12 chemicals as A element, and carbon and nitrogen as X element. If we consider

only 211, 312, and 413 pure MAX phases, we have 648 possible candidates. If we move on to

the solid solution MAX phases, the number of possible candidates is extremely increasing. We

suggest a high-throughput DFT calculation as a solution to this problem. We studied (M1M2)AlC

systems, and M = Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Hf, and Ta. We

fixed Al as an A element, since aluminium containing MAX phases are expected to have good

thermal and oxidation resistance by forming alumina layer at the surface, then studied how the

different M site mixing affects structural and elastic properties. The resultant high-throughput DFT

calculations for a- and c- lattice parameters, mixing enthalpies, and Young’s modulus are shown

in Fig. 6.1. Lattice parameters of a and c of (M1M2)AlC systems are shown in Fig. 6.1(a) and

6.1(b). Basically different M elements have their own atomic radius and electron negativity, thus

(M1M2)AlC systems have different a and c lattice parameters with different M elements. Mixing

enthalpy is shown in Fig. 6.1(c), which is an energy of (M1M2)AlC subtracted from energies

of its pure elements like M1, M2, Al, and C. The negative value of mixing enthalpy means that

(M1M2)AlC system is stable upon mixing. However, to precisely study the stability of (M1M2)AlC

systems, the study of the stability of binary, ternary, and quaternary byproducts has to be followed.

Lastly, Young’s modulus of (M1M2)AlC systems are shown in Fig. 6.1(d). Here, we plot Young’s

modulus as a function of the a-lattice parameter, and it shows that if we have a specific target

Young’s modulus, we can design a-lattice parameter from different (M1M2)AlC systems. Tuning
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Figure 6.2: (a) Cleavage energy and (b) cleavage stress of the M2AlC.

lattice parameter is important in the application of a coating, since lattice mismatch stress plays an

important role in the stability of coated layer.

6.2 Cleavage and Stacking Fault Energies

Here we studied the cleavage behavior of M2AlC systems with M = Sc, Ti, V, Cr, Mn, Fe, Co,

Ni, Y, Zr, Nb, Hf, and Ta. Again aluminium is fixed as an A element and studied how different M

elements affect the cleavage behavior. Particularly we studied 211 systems, since in the previous

section we studied how different stacking numbers affect cleavage behavior, and the analysis sug-

gest that the stacking number does not significantly affect the cleavage behavior. The calculated

cleavage energy and stress are shown in Fig. 6.2. The cleavage energies increase sharply up to

around 1 of separation for all cases, and the energy converges to certain value at about 3 . The cal-

culated critical stresses are shown in Table 6.1 and Fig. 6.4, and the sequence exactly follows the

sequence of M element in periodic table. In the first row of the table, from Sc2AlC to Mn2AlC the

critical stress increases, then from Mn2AlC to Ni2AlC the critical stress decreases. In the second

row of the table, from Y2AlC to Nb2AlC the critical stress increases. Lastly, in the third row of the

table, from Hf2AlC to Ta2AlC the critical stress increases. When we compare the critical stresses

of M2AlC in the same columns, the critical stress decreases from first row to second row, then
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Sc2AlC Ti2AlC V2AlC Cr2AlC Mn2AlC Fe2AlC Co2AlC Ni2AlC

13.68 22.06 28.15 31.25 32.42 30.80 26.03 17.21

Y2AlC Zr2AlC Nb2AlC

11.01 18.86 25.60

Hf2AlC Ta2AlC

22.07 28.94

Table 6.1: The critical stress of M2AlC systems with M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb,
Hf, and Ta in the unit of GPa.

Sc2AlC Ti2AlC V2AlC Cr2AlC Mn2AlC Fe2AlC Co2AlC Ni2AlC

M -1.46 -1.99 -1.47 -0.96 +0.37 +0.67 +0.90 +0.94

Al +0.78 +0.98 +0.50 -0.06 -2.55 -2.84 -2.95 -2.98

C +2.15 +3.00 +2.44 +2.00 +1.79 +1.49 +1.14 +1.09

Y2AlC Zr2AlC Nb2AlC

M -1.49 -2.60 -1.01

Al +0.84 +1.21 +0.84

C +2.15 +3.98 +2.15

Hf2AlC Ta2AlC

M -3.02 -2.89

Al +1.36 +0.62

C +4.68 +5.16

Table 6.2: Charge transfer of M, Al, and C elements is obtained by Bader analysis for M2AlC
systems with M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Hf, and Ta.
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Figure 6.3: Shear energy curves of the M2AlC under 〈21̄1̄0〉{0001} pure alias shear deformation

the critical stress increases from second row to third row. To better understand a trend of critical

stresses, we calculated the charge transfer, which is shown in Table 6.2. Hafnium and tantalum

in third row have larger atomic volume than M elements is first and second rows. However both

hafnium and tantalum have very low charge transfer, which means they lose more electrons and

turn to highly positive charged ions. Thus both Hf2AlC and Ta2AlC in third row have high critical

stresses.

Here we studied the shear behavior of M2AlC systems with M = Sc, Ti, V, Cr, Mn, Fe, Co,

Ni, Y, Zr, Nb, Hf, and Ta. Again aluminium is fixed as an A element and studied how different M

element affect the shear behavior. The calculated shear energies are shown in Figure 6.3. Ta2AlC

system has the highest energy barrier during the shear process at around a 0.5 of displacement, and

Y2AlC has the lowest energy barrier during the shear process at around a 0.2 of displacement. The

analysis suggest that if M-A bond is strong, the USFE value is high and stacking fault is generated

at the late stage during the shear process, and if M-A bond is weak, the USFE value is low and

stacking fault is generated at the early stage during the shear process. The calculated USFE of

M2AlC systems are shown in Table 6.3 and Fig. 6.4. In the first row, USFE increases from Sc2AlC
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Sc2AlC Ti2AlC V2AlC Cr2AlC Mn2AlC Fe2AlC Co2AlC Ni2AlC

0.13 0.59 0.95 0.61 0.55 0.16 0.17 0.26

Y2AlC Zr2AlC Nb2AlC

0.05 0.41 0.91

Hf2AlC Ta2AlC

0.55 1.08

Table 6.3: The unstable stacking fault energies (USFE) of M2AlC systems with M = Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Y, Zr, Nb, Hf, and Ta in the unit of J/m2.

Figure 6.4: Critical stress and USFE of M2AlC MAX phases.
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to V2AlC, then USFE decreases from V2AlC to Fe2AlC. In the second row, USFE increases from

Y2AlC to Nb2AlC. Lastly, in the third row, USFE increases from Hf2AlC to Ta2AlC. A trend of

USFE is very similar to that of critical stress.

The shear energy curves show that the Y2AlC system has a stable sheared structure. In addition,

Fe2AlC, Co2AlC, Sc2AlC, Ni2AlC systems have a meta stable sheared structure. Thus we studied

stacking sequences of Y2AlC system. The plane view normal to the b direction and a direction are

shown in Fig. 6.5. In the plane view normal to the b direction, there is no difference on stacking

sequences before and after shearing. However, in the plane view normal normal to the a direction,

there is a stacking sequence difference before and after shearing. If we see solid, dashed, and

dotted line in the upper half and lower half planes, all the atoms are aligned in the same sequences.

However, the stacking fault has generated in the shaded region. To better understand, the Al-Y1-

Y2 stacking sequences are shown in Fig. 6.6. Before the shearing, Al-Y1-Y2 has ABA stacking

sequence. However, after the searing, Al-Y1-Y2 has ABC stacking sequence. The analysis suggests

that Y, Fe, Co, Sc, and Ni can have stable or meta stable sheared structure with ABC stacking

sequence of Al-Y1-Y2.
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Figure 6.5: Crystal structures of Y2AlC before and after shearing.
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Figure 6.6: Different stacking sequences of A, M1, M2 before and after shearing.
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7. CONCLUSIONS

First, we investigated the structural, electronic, elastic, thermodynamic, and mechanical prop-

erties of Ti3(SixAl1−x)C2 systems to understand the composition-properties relationship. The c-

lattice parameter decreases and the elastic modulus increase with increasing amount of Si. To

address this, the charge density analysis is followed, and the charge density analysis shows that the

charge density near the A element atom increases with increasing amount of Si makes the M-A

bond stronger. In addition, the critical stress and USFE increase with increasing amount of Si. The

stacking fault energy is investigated along the a and b directions, and the analysis shows that the a

direction shear deformation is more preferable than the b direction shear deformation, since the a

direction shear deformation shows lower USFE than that of the b direction shear deformation. We

considered pure alias, pure affine, simple alias, and simple affine shear deformations. The analy-

sis shows that the pure alias shear deformation is most preferable, which mean that the top layer

moves first and the displacement propagates to lower layers during the shear process.

Second, we studied the effect of number of stacking layers on deformation behaviors to under-

stand the structural-properties relationship. This study was motivated by the question of whether

the number of stacking layers in MAX phases played a important role in their intrinsic cleavage

and shear behaviors. Our results suggest that there is no significant effect of the number of stack-

ing layers on the cleavage and shear behaviors. With different stacking numbers in Tin+1AlCn and

Tan+1AlCn systems with n = 1-5, they show similar critical energies and USFE. The cleavage and

shear behaviors are dominated by the weakly bonded M-A layers, and the stacking number does

not affect significantly the M-A bond strength.

Third, we studied cleavage and shear behaviors of different types of layered materials Ti2AlC,

TiC, Ti, and graphite. The MAX phases have a unique combination of properties both of ceramics

and metals, and this study was motivated by whether the deformation behaviors of MAX phases

are similar the ceramics or metals. Our results show that the critical stress and USFE of Ti2AlC

(MAX phases) are close to those of Ti (metal). Thus, we would say the MAX phases are similar
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to metals in terms of the deformation behaviors. We also calculated the critical stress and USFE of

graphite, and they are dramatically low when compared to Ti2AlC, TiC, and Ti. This result might

be able to show why only the graphite can be fully delaminated using the simple ultra sonication.

In addition, in Ti2AlC system, we studied which and how atoms move during the shear deforma-

tion. Our results suggest that if the a direction shear is applied to the system, the Al atoms displace

along the b direction.

Lastly, we used high-throughput DFT calculations to study structural and elastic properties of

(M1M2)AlC systems with M = Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Hf, and Ta.

Our results show that lattice parameter and elastic properties can be tuned within the wide range

when we consider solid solution MAX phases. For example the a lattice parameter is in the range

from around 2.85 to around 3.45 , and the Young’s modulus is in the range from around 80 GPa

to around 320 GPa. The mixing enthalpy briefly shows the possibility of synthesis of (M1M2)AlC.

In addition we studied cleavage and shear behaviors of (M1M2)AlC. The stacking fault energy

analysis shows that some MAX phases (M = Y, Fe, Co, Sc, and Ni) have stable or meta stable

states with sheared structure. M2AlC have ABA stacking before the shear deformation, and have

ABC stacking after shear deformation. Al displaces during the shear deformation, and Al can stay

in different lattice site with stable or meta stable state if M2AlC has Y, Fe, Co, Sc, or Ni as a M

element.
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