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ABSTRACT

We study the impact of a modified expansion rate on the dark matter relic abundance and lep-

togenesis in two types of scalar-tensor theories. The first scenario is motivated from string theory

constructions, which have conformal as well as disformally coupled matter to the scalar. The

second scenario is called disformal D-brane coupling, which stems from D-brane models of cos-

mology. In both scenarios, the conformal and disformal couplings modify the expansion rate of the

universe prior to BBN. Furthermore, we investigate the effects of such couplings to the dark matter

relic abundance for a wide range of initial conditions, masses, and cross-sections. It is found that

the annihilation cross-section required to satisfy the dark matter content can differ from the ther-

mal average cross-section in the standard cosmology, which can be tested in future experiments.

In addition, we discuss how non-standard cosmologies can open new pathways for low scale lep-

togenesis. Within these scenarios direct tests of leptogenesis could also provide information on the

very early Universe evolution, corresponding to temperatures in the TeV range.
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1. INTRODUCTION

Recent cosmological data support the phenomenological Λ-Cold Dark Matter (ΛCDM ) model

of cosmology, which describes the energy density content of the universe in terms of a cosmolog-

ical constant, Λ, cold dark matter and baryonic matter. The first two components together make

up 95% of the universe’s energy density budget, while the other 5% is made of baryonic standard

model (SM) particles. This phenomenological model is complemented by the inflationary mecha-

nism, which is the most successful framework to account for the origin of structure in the universe.

After inflation, the universe reheated, providing the conditions for the hot big bang.

The predicted abundances of the light elements resulting from big bang nucleosynthesis (BBN)

are in very good agreement with available observational data [1], which strongly supports the

ΛCDM model and our understanding of the universe’s evolution back to the first few seconds

after the big bang.

However, the physics describing the universe’s evolution from the end of inflation (reheating)

to just before BBN (t . 10 s) remains relatively unconstrained. During this period, the universe

could have gone through a “non-standard” period of expansion, and still be compatible with BBN

predictions. If such modification happened at temperatures around few GeV, during the dark matter

(DM) decoupling, the DM freeze-out may have been modified with measurable consequences for

the relic DM abundances. Also, if this modification occured at a higher temperature, say few

TeV, it may have had an impact on the scale of the leptogenesis mechanism that produces the

baryon asymmetry of the universe. Indeed, one of our the main goals is to study the effect of a

“non-standard” cosmological expansion on the thermal DM freeze-out picture and on the scale of

leptogenesis.

Departures from the standard cosmology between reheating and BBN will mainly be a conse-

quence of a modified expansion rate (H̃), which can be due to a modification of General Relativ-

ity (GR). Such modifications are well motivated by attempts to embed the ΛCDM and inflation

models into a fundamental theory of gravity and particle physics, such as theories with extra-

1



dimensions, supergravity and string theory.

String theory approaches, to SM particle physics and inflation model building, generically pre-

dict the presence of several new ingredients, and in particular scalar fields with clear geometrical

interpretations. For example, type II string theory models of particle physics introduce new in-

gredients such as D-branes, where matter (and DM) is to be localised1. In D-brane constructions,

longitudinal string fluctuations are identified with the matter fields such as the SM and/or DM

particles, while transverse fluctuations correspond to scalar fields, which may play a role during

the cosmological evolution2. These scalar fields couple conformally and disformally to the mat-

ter living on the brane [3] and thus may change the cosmological expansion rate felt by matter.

The gravitational theory arising from the coupling belongs to a class of theories of gravity called

Scalar-Tensor (ST) theories.

In this work, we focus on ST theories where the gravitational interaction is mediated by both

the metric and only one scalar field. In these type of theories, the cosmological evolution deviates

from the standard expansion of the Universe at early times, but an attractor mechanism [4, 5]

relaxes the theory towards GR prior to the onset of BBN. ST theories are often formulated in one

of two frames of reference, namely, the Jordan or Einstein frames. As it is shown in [6], the most

general transformation, physically consistent, between the metrics of these frames is given by 3

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ . (1.1)

where g̃µν is metric in the Jordan frame, C(φ) is the conformal coupling, gµν is the metric in the

Einstein frame and D(φ) is the so-called disformal coupling.

The first term in (1.1) is the well-known conformal transformation which characterizes the

Brans-Dicke class of scalar-tensor theories explored in [7, 8, 9, 10, 11, 12]. The second term is

the disformal contribution, which is generic in extensions of general relativity. In particular, it

1For a review on D-brane models of particle physics see [2].
2For example, a coupled dark energy-dark matter D-brane scenario was proposed in[3].
3More generally, the functions, C and D can depend on X = 1

2 (∂φ)2 as well. We do not consider this case in the
present paper.
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arises naturally in D-brane models, as discussed in [3], in a model of coupled dark matter and dark

energy.

We will investigate two classes of ST theories in the two following chapters. In Chapter 2,

we consider the general action consider in [7, 12] and take into account the disformal coupling,

entering only through the metric. We revisit the conformal case, that is D = 0, and explore

the expansion rate modification providing new interesting results with new boundary conditions.

We further discuss the general modifications to the expansion rate due to a disformal coupling

and present an explicit non-trivial example for the case in which the conformal term in (1.1) is a

monomial. In such a case, the functions C and D are in principle independent functions, as long

as they satisfy the causality constraints: C(φ) > 0 and C(φ) + 2D(φ)X > 0 (X = 1
2
(∂φ)2) [13].

In Chapter 3, we study in detail the effects on the expansion rate of the disformal coupling in

(1.1), which arises in the case of matter localized on D-branes. In this case, the conformal and

disformal terms are closely related and dictated by the underlying theory, such as type IIB flux

compactifications in string theory. The picture we have in mind goes as follows. After string

theory inflation, reheating took place, giving rise to a thermal universe. At this stage standard

model particles and dark matter was produced. The SM would arise from stacks of D-branes at

singularities or D-branes intersecting at suitable angles [2], while DM particles could arise from

the same or a different stack of D-branes, which may be moving towards their final stable positions

in the internal six-dimensional space before the onset of BBN. From the end of inflation to BBN,

a nonstandard cosmological evolution can take place without spoiling the predictions of BBN, in

particular, a change in the expansion rate felt by the matter particles due to the D-brane conformal

and disformal couplings between the scalar field and matter fields. As we will see, due to the

coupling the expansion rate will generically be enhanced4. Let us stress that a realistic string

theory scenario would be more complicated and may include nonuniversal couplings to baryonic

and dark matter. However, it is very interesting that scalar couplings present in string theory can

give interesting modifications of the post-inflationary evolution after string inflation.

4It is interesting to notice that a phenomenological model with a faster-than-usual expansion at early times, driven
by a new cosmological species, has recently been discussed in [14].
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In this work, we show for the first time that the enhanced expansion rate can also happen due

to a purely disformal contribution or a combination of conformal and disformal terms. The former

case - a disformal enhancement - is particularly interesting as it can be interpreted in terms of an

“unwarped" compactification, which is typical of a large-volume compactification of string theory,

which is needed for perturbative control. When we identify the scale arising from the disformal

coupling with the tension of a moving D3-brane, where matter is localized, this scale is determined

by the string scale and the string coupling. Interestingly, the modification of the expansion rate can

take place at different temperature scales, depending on the value of the string scale.

The enhancement of the expansion rate, due to conformal and disformal couplings, impact the

early universe cosmology. In this thesis, we study DM phenomenology and a simple model of

leptogenesis as well. In Chapter 4, we focus on the general thermal DM freeze-out picture as an

example and study how it is modified due to the faster-than-usual expansion of the universe. We

further investigate the correlation of the annihilation cross section with the dark matter content.

In Chapter 5, we study a simple model of leptogenesis type-I seesaw and show that the enhanced

expansion rate lowers the scale of leptogenesis to few TeV.

In an attractive scenario of the cosmic history, the universe is radiation dominated prior to

BBN and dark matter is produced from the thermal bath, which was created at the end of inflation.

In this thermal picture, the observed relic density is satisfied for DM species with weak-scale

interaction rate 〈σv〉, which is around 3.0 × 10−26cm3s
−1 (or σ ∼ 1 picobarn), corresponding to

weak interactions. Despite such a small value, the Fermi-LAT and Planck experiments have been

exploring upper bounds on 〈σv〉 [15, 16]. In the future, HAWC [17] and CTA [18] will probe the

annihilation rate for a wide range of dark matter masses. It is thus worth establishing whether an

annihilation rate, larger or smaller than the standard thermal prediction, could still have a thermal

origin due a modified cosmological evolution before BBN.

Modifications to the DM relic abundances in conformally coupled scalar-tensor theories (ST),

such as generalizations of the Brans-Dicke theory, were first discussed in [7] by Catena et al.

These authors showed a faster-than-usual expansion rate, H̃ , which well before the onset of BBN,
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rapidly drops back to the standard GR expansion rate, HGR. Due to this rapid relaxation of H̃

towards HGR, they found a DM reannihilation effect: after the initial particle decoupling, the dark

matter species experienced a subsidiary period of annihilation as the expansion rate of the universe

dropped below the interaction rate. Further studies on conformally coupled ST models have been

performed in recent years in [8, 9, 10, 11, 12] (see also[19, 20, 21, 22, 23, 24, 25]).

On the other hand, one of the most popular mechanisms to explain the cosmological baryon

asymmetry is leptogenesis [26], according to which an initial lepton asymmetry is generated and

then partly converted to a baryon asymmetry by sphaleron processes [27, 28] (for reviews on the

leptogenesis mechanism see [29, 30]). In standard leptogenesis, based on type-I seesaw mecha-

nism, this initial lepton asymmetry is produced in the decay of the lightest RH neutrino, N1. In

order to produce enough CP asymmetry to account for the observed baryon asymmetry, the mass

of N1 cannot be smaller than ∼ 109 GeV [31]. Therefore, this implies that direct tests of standard

type-I seesaw leptogenesis are out of experimental reach.

This constraint is quite specific of the type-I seesaw leptogenesis and is often lost in other

models. The most direct way to go around this bound is in models where the neutrinos only couple

through a neutrinophilic Higgs which obtains a vacuum expectation value (VEV) much smaller

than the electroweak breaking VEV, vν � 174 GeV [32, 33]. Other examples and their references

are mention in Chapter 5.

Most of the models that attempt to generate the baryon asymmetry from heavy particle decays

are subject to an additional constraint. This constraint originates from a general relation between

the strength of the washout scatterings, which tend to erase any lepton number asymmetry present

in the thermal bath, and the charge conjugation parity (CP) asymmetries in the decays of the heavy

states. In this thesis, we show how this constraint can be avoided in the context of ST theories and

how the scale of leptogenesis can be as low as few TeV.

The dissertation is organized as follows:

• In Chapter 2, we introduce the ST theory conformally and disformally coupled to matter.

Then, we examine the formulation of this theory in the Einstein and Jordan frames, com-
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ment on their physical interpretation and derive the equations that describe the cosmological

evolution of the Universe. Subsequently, we discuss the expansion rate modifications caused

by the presence of the conformal and disformally coupled scalar field.

• In Chapter 3, we first briefly introduce the general D-brane-like setup. We then go directly

to the cosmological equations and discuss how the expansion rate is modified in general.

Then, we move on to the D-brane-like case, where the conformal and disformal functions are

related. We start discussing the equations in the Jordan frame as well as the initial conditions

and constraints that we use to numerically solve the full equations. We then discuss in detail

the solutions for the unwarped case, that is, a purely disformal effect (or C =const.). Next,

we discuss the warped case, using for concreteness the same conformal function used in

Chapter 2. We also comment on the result of using other functions.

• In Chapter 4, we briefly introduce the DM thermal freeze-out picture and the Boltzmann

equation (BE). Then, we investigate in detail the impact of the modified expansion rates,

described in both Chapters 2 and 3, on the dark matter relic abundance and annihilation

cross section.

• In Chapter 5 we start by motivating leptogenesis in a faster-than-usual universe, discuss some

constraints on the leptogenesis scale and then add few more comments on boosted expansion

rates. Later, we present a simple benchmark model which will be used for the leptogenesis

analysis and discuss the network of BE for leptogenesis in the modified cosmology. In our

last two sections, we present our leptogenesis results and comment on the enhancement

scales in the extensions of the SM, e.g., Minimal Supersymmetric Standard Model (MSSM).

• In Chapter 6, we finally present our conclusions.
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2. CONFORMALLY AND DISFORMALLY COUPLED SCALAR-TENSOR THEORY1

We are interested in scalar-tensor theories coupled to matter both conformally and disformally

[13]. Our motivation comes from theories with extra dimensions and in particular string theory

compactifications, where several additional scalar fields appear, from closed and open string theory

sectors of the theory [3]. Our approach in this work nonetheless will be phenomenological and

therefore our equations will be simplified. However, we present the more general set-up, which

can accommodate a realization from concrete string theory compactifications in Appendix A.

As was mentioned in chapter 1, ST theories are often formulated in one of two frames of ref-

erence, namely, the Jordan or Einstein frames. The respective advantages of these two frames are

that the scalar couplings enter through either the gravitational sector (Jordan frame) or the matter

sector (Einstein frame), leaving the other sector unaffected. In the Jordan frame matter fields, Ψ,

are coupled directly to the metric, g̃µν , which means that the matter sector of the action can be

written as SMatter = SMatter(g̃µν ,Ψ). Thus, this frame is more convenient for particle physics

considerations because the usual observables, e.g. a mass, have their standard interpretation. How-

ever, the scalar field couples to the gravitational sector producing rather cumbersome gravitational

field equations.

On the other hand, in the Einstein frame, the matter piece of the action becomes SMatter =

SMatter(gµν , φ, ∂µφ,Ψ). This implies that physical quantities associated with particles (i.e. mass)

measured in this frame have a spacetime dependency. However, the gravitational field equations

take their standard form, where the Einstein tensor is proportional to the total energy-momentum

tensor.

The most common strategy followed in the literature [7, 12] is to determine the cosmic evolu-

tion in the Einstein frame, where the cosmological equations take a more straightforward form, and

then transform the results over to the Jordan frame. As was already hinted out before, the effect

1Reprinted with permission from "Dark matter relics and the expansion rate in scalar-tensor theories” by B. Dutta,
E. Jimenez, I. Zavala, 2017. JCAP no.06, 032. Copyright SISSA Medialab Srl. All rights reserved.
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of modified gravity will enter the computation of particle physics processes through the expansion

rate, H̃ , in the Jordan frame.

The action we want to consider is given by:

SEH =
1

2κ2

∫
d4x
√
−g R−

∫
d4x
√
−g
[

1

2
(∂φ)2 + V (φ)

]
+ SMatter . (2.1)

where SMatter = −
∫
d4x
√
−g̃LM(g̃µν ,Ψ), with LM the lagrangian density of the matter sector.

Here the disformally coupled metric is given by

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ , (2.2)

and the inverse by:

g̃µν =
1

C

[
gµν − D∂µφ∂νφ

C +D(∂φ)2

]
. (2.3)

Moreover, κ2 = M−2
P = 8πG, but keep in mind that G is not in general equal to Newton’s

constant as measured by e.g. local experiments. Further, C(φ), D(φ) are functions of φ, which can

be identified as a conformal and disformal couplings of the scalar to the metric, respectively (note

that the conformal coupling is dimensionless, whereas the disformal one has units of mass−4).

The equations of motion obtained from (2.1) are:

Rµν −
1

2
gµνR = κ2

(
T φµν + Tµν

)
, (2.4)

where, in the frame relative to gµν , the energy-momentum tensors are defined as

T φµν = − 2√
−g

δSφ
δgµν

, Tµν = − 2√
−g

δ
(
−
√
−g̃LM

)
δgµν

, (2.5)

and we model the energy-momentum tensor for matter and both dark components as perfect fluids,

that is:

T iµν = Pigµν + (ρi + Pi)uµuν , (2.6)
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where ρi, Pi are the energy density and pressure for each fluid i with equation of state Pi/ρi = ωi.

For the scalar field, the energy-momentum tensor takes the form:

T φµν = −gµν
[

1

2
(∂φ)2 + V

]
+ ∂µφ ∂νφ , (2.7)

and one can define the energy density and pressure of the scalar field as:

ρφ = −1

2
(∂φ)2 + V , Pφ = −1

2
(∂φ)2 − V . (2.8)

Finally the equation of motion for the scalar field dark energy becomes:

−∇µ∇µφ+ V ′ − T µν

2

[
C ′

C
gµν +

D′

C
∂µφ∂νφ

]
+∇µ

[
D

C
T µν∂νφ

]
= 0 . (2.9)

Due to the nontrivial coupling, the individual conservation equations for the two fluids are

modified. However, the conservation equation for the full system is preserved and given in the

usual way by

∇µ

(
T µνφ + T µν

)
= 0 . (2.10)

Thus using (2.7) and the equation of motion for the scalar field we can write

∇µT
µν
φ = Q∂νφ = −∇µT

µν , (2.11)

where

Q ≡ ∇µ

[
D

C
T µλ ∂λφ

]
− T µν

2

[
C ′

C
gµν +

D′

C
∂µφ ∂νφ

]
. (2.12)

In the Jordan, as defined above, matter is conserved,

∇̃µT̃
µν = 0 , (2.13)

where ∇̃µ is the covariant derivative computed with respect to the disformal metric (2.2) with the
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Christoffel symbols given by

Γ̃µαβ = Γµαβ +
C ′

C
δµ(α∂β)φ− γ2 C

′

2C
∂µφ gαβ +

D

C
γ2 ∂µφ

[
∇α∇βφ+

(
D′

2D
−C

′

C

)
∂αφ∂βφ

]
,

(2.14)

and we have introduced the “Lorentz factor" γ defined as

γ =
1√

1 + D
C

(∂φ)2

. (2.15)

In this frame, the energy-momentum tensor is defined as

T̃ µν =
2√
−g̃

δSM
δg̃µν

(2.16)

and the disformal energy-momentum tensor can be written as:

T̃ µν = (ρ̃+ P̃ )ũµũµ + P̃ g̃µν , (2.17)

where ũµ = C−1/2γ uµ. Using (2.16), we obtain a relation between the energy momentum tensor

in both frames as:

T̃ µν = C−3γ T µν . (2.18)

Further using (2.17) we arrive at a relation among the energy densities and pressures in both

frames, given by

ρ̃ = C−2γ−1ρ , P̃ = C−2γ P, (2.19)

and therefore the equations of state in both frames are related by ω̃ = ω γ2. Note that in the pure

conformal case, D = 0, γ = 1 and therefore ω̃ = ω.
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2.1 Cosmological equations

Consider an homogeneous and isotropic FRW metric gµν ,

ds2 = −dt2 + a(t)2dxidx
i , (2.20)

where a(t) is the scale factor. In this background, the Einstein and Klein-Gordon equations be-

come, respectively

H2 =
κ2

3
[ρφ + ρ] , (2.21)

Ḣ +H2 = −κ
2

6
[ρφ + 3Pφ + ρ+ 3P ] , (2.22)

φ̈+ 3Hφ̇+ V,φ +Q0 = 0 , (2.23)

where, H = ȧ
a
, dots are derivatives with respect to t and we have denoted V,φ ≡ dV

dφ
. Also the

Lorentz factor becomes

γ = (1−D φ̇2/C)−1/2.

The continuity equations for the scalar field and matter are given by

ρ̇φ + 3H(ρφ + Pφ) = −Q0φ̇ , (2.24)

ρ̇+ 3H(ρ+ P ) = Q0 φ̇ , (2.25)

where Q0 is given by

Q0 = ρ

[
D

C
φ̈+

D

C
φ̇

(
3H +

ρ̇

ρ

)
+

(
D,φ

2C
− D

C

C,φ
C

)
φ̇2 +

C,φ
2C

(1− 3ω)

]
.

(2.26)
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Using (2.25) we can rewrite this in a more compact and useful form as

Q0 = ρ

(
γ̇

φ̇ γ
+
C,φ
2C

(1− 3ω γ2)− 3Hω
(γ2 − 1)

φ̇

)
. (2.27)

Plugging this into the (non-)conservation equation for dark matter (2.25), gives:

ρ̇+ 3H(ρ+ P γ2) = ρ

[
γ̇

γ
+
C,φ
2C

φ̇ (1− 3ωγ2)

]
. (2.28)

Using the relations for the physical proper time and the scale factors in the two frames, given by

ã = C1/2a , dτ̃ = C1/2γ−1dτ , (2.29)

we can define the disformal-frame Hubble parameter H̃ ≡ d ln ã
dτ̃

, as

H̃ =
γ

C1/2

[
H +

C,φ
2C

φ̇

]
, (2.30)

so that (2.13) takes the standard form in terms of H̃:

dρ̃

dτ̃
+ 3H̃(ρ̃+ P̃ ) = 0 . (2.31)

Equations (2.30) and (2.31) give the background evolution equations for the modified expansion

rate and matter’s density evolution.

2.2 Master equations

In order to solve the cosmological equations, it is convenient to replace time derivatives with

derivatives with respect to the number of e-folds N , defined as N = ln a/a0 and define λ = V
ρ

(=
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Ṽ
ρ̃

). With these definitions, we can rewrite the Friedmann equation (2.21) and Q0 as:

H2 =
κ2ρ

3

(1 + λ)(
1− κ2φ′2

6

) , (2.32)

Q0

ρ
=

γ2H2

2

[
2D

C
φ′′ − 2D

C
φ′
(

3ω +
κ2φ′2

2
+

3(1 + ω)B

2(1 + λ)

)
+

(
D

C

)
,φ

φ′2 +
C,φ
H2C

(γ−2 − 3ω)

]
,

(2.33)

where here we denote ′ = d/dN . Note also that (2.32) implies that κφ′ ≤ ±
√

6.

Using these equations and further defining a dimensionless scalar field ϕ = κφ, we can rewrite

(2.22) and (2.23) as:

H ′ = −H
[

3B

2(1 + λ)
(1 + ω) +

ϕ′2

2

]
, (2.34)

ϕ′′
[
1+

3H2γ2B

κ2(1 + λ)

D

C

]
+ 3ϕ′

[
1− ω 3H2γ2B

κ2(1 + λ)

D

C

]
+
H ′

H
ϕ′
[
1 +

3H2γ2B

κ2(1 + λ)

D

C

]
+

3B

1 + λ
α(ϕ)(1− 3ωγ2) +

3Bλ

(1 + λ)

V,ϕ
V

+
3H2γ2B

κ2(1 + λ)

D

C

[
(δ(ϕ)− α(ϕ))ϕ′2

]
= 0 ,

(2.35)

where we defined:

B ≡ 1− ϕ′2

6
, (2.36)

γ−2 = 1− H2

κ2

D

C
ϕ′2 , (2.37)

α(ϕ) =
d lnC1/2

dϕ
, (2.38)

δ(ϕ) =
d lnD1/2

dϕ
. (2.39)

One can solve the system of coupled equations above for H and ϕ as functions of N . However,

in some cases it is simpler to use (2.34) into (2.35) and solve the following disformal master
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equation:

2(1 + λ)

3B
ϕ′′ + (2λ+ 1− ω)ϕ′ + 2λ

d lnV

dϕ
+ 2(1− 3ω γ2)α(ϕ)

+
2γ2(1 + λ)

3B

Dρ

C

(
ϕ′′ − 3ϕ′

[
ω +

ϕ′2

6
+

(1 + ω)B

2(1 + λ)

]
+

C

2D

(
D

C

)
,ϕ

ϕ′2

)
= 0 ,

(2.40)

with γ given by:

γ−2 = 1− (1 + λ)

3B

Dρ

C
ϕ′2 . (2.41)

From (2.40) we see that the conformal case is recovered for D = 0 when the second line van-

ishes. Moreover, the disformal piece appears always together with derivatives of the scalar field,

as expected and also nontrivially coupled to the energy density. This complicates considerably the

analysis of the disformal case, as we will see below.

2.3 Modified expansion rate

The effect of the expansion rate during the early time evolution due to the presence of a scalar

field can be extracted from the Hubble parameter evolution in the Jordan frame defined as:

H̃ = d(log ã)/dτ̃ ,

which can be written using (2.29) as:

H̃ =
Hγ

C1/2
(1 + α(ϕ)ϕ′) , (2.42)

where remember that γ depends on H (or ρ) as seen from (2.37), while in the pure conformal case

D = 0 and γ = 1. Note that in principle, the factor (1 + α(ϕ)ϕ′) can be positive or negative,

indicating an expansion or contraction modified rate. We stick to positive definite values for this

factor and therefore only modified expansion rates, though, in principle, one could have a brief
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contraction period during the early universe evolution, before the onset of BBN2. Moreover, notice

that while H̃ can grow during the cosmological evolution, the null energy condition (NEC) is not

violated. This is because the Einstein frame expansion rate H is dictated by the energy density ρ

and pressure p, which obey the NEC and therefore Ḣ < 0 during the whole evolution, as it should

(see for example [35]).

We further want to relate the modified expansion rate to the expected expansion rate in general

relativity (GR), that is:

H2
GR =

κ2
GR

3
ρ̃ . (2.43)

We can do this be using the Friedmann equation (2.32) and the relation between the energy densi-

ties (2.19) to write

γ−1H2 =
κ2

κ2
GR

C2 (1 + λ)

B
H2
GR . (2.44)

Using the definition of γ (see (2.37)) into this equation, one finds a cubic equation for H2 in terms

of all the other parameters. The real positive solution to that equation can then be replaced into

(2.42) to find the modified expansion rate H̃ , which will thus be a complicated function of HGR as

we now see. The cubic equation for H takes the form:

d1H
6 −H4 + d2

2 = 0 , (2.45)

where

d1 =
D

C

ϕ′2

κ2
, d2 =

κ2

κ2
GR

C2(1 + λ)H2
GR

B
. (2.46)

The solutions to (2.45) can be written as

H2 =
1

3d1

(
1 +

(
2

∆

)1/3

+

(
∆

2

)1/3
)
, (2.47)

2See [34] for a review on scenarios with a possible contraction phase in the early universe.
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with ∆ = 2 − 27d2
1d

2
2 + d1d2

√
27(27d2

1d
2
2 − 4). The other two solutions can be obtained by

replacing

(
2

∆

)1/3

→ e2πi/3

(
2

∆

)1/3

and

(
2

∆

)1/3

→ e4πi/3

(
2

∆

)1/3

.

We are interested in real positive solutions for H2. One possibility to get this is to have the imagi-

nary part of (∆/2)1/3 vanish by requiring that ∆ > 0, which is impossible. Therefore, the way to

obtain real solutions for H is to have the imaginary parts of (∆/2)1/3 and (∆/2)−1/3 cancel each

other, leaving a real positive solution.

For this, we need that 27d2
1d

2
2 ≤ 4, which implies the following relation between the conformal

and disformal functions:

3
√

3DC ϕ′2(1 + λ)

B

H2
GR

κ2
GR

≤ 2 . (2.48)

Under this condition, we can rewrite ∆ as:

∆ = 2− 27d2
1d

2
2 + id1d2

√
27(4− 27d2

1d
2
2) ,

which allows us to define a complex number Z ≡ ∆/2 and it is easy to check that Z̄ = 2/∆ and

thus |Z|2 = 1. Denoting further Zi with i = 1, 2, 3 denoting the three solutions to H as explained

above, the solutions for H , (2.47) takes the simple form:

H2
i =

1

3d1

[
1 + Z

1/3
i + Z̄

1/3
i

]
, (2.49)

and remember that we are interested only in the real positive solution. We can now plug in (2.49),

as well as the expression for γ in terms of H into the Jordan frame expansion rate (2.42), can be

written as:

H̃2 =
κ2

κ2
GR

γ3C(1 + λ)(1 + α(ϕ)ϕ′)2

B
H2
GR , (2.50)
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where there is a non-trivial dependence of HGR encoded in

γi =
1

3d1d2

[
1 + Z

1/3
i + Z̄

1/3
i

]
. (2.51)

In the conformal case, D = 0, γ = 1 and therefore (2.50) is simply

H̃2 =
κ2

κ2
GR

C(1 + λ)(1 + α(ϕ)ϕ′)2

B
H2
GR . (2.52)

From this relation we define a speed-up parameter ξ, which will be useful below to measure the

departures from the GR expansion rate result:

ξ ≡ H̃

HGR

. (2.53)

We now revisit the conformal case, discussed originally in [7]. We first solve (numerically) the

master equation for the scalar field (2.40) in order to compute the modified expansion rate H̃ and

compare it with the standard expansion rate, HGR.

Before solving the master equation (2.40), we would like to write it in terms of Jordan frame

quantities ω̃ = ωγ2, ρ̃ = C−2γ−1ρ. Moreover, the number of e-folds N can be expressed in

terms of Jordan frame quantities as follows. In this frame, the entropy is conserved and is given

by S̃ = ã s̃, where s̃ = 2π
45
gs(T̃ )T̃ 3. So, the conservation of entropy and (2.29) show that N is a

function of temperature and the scalar field as:

N ≡ ln
a

a0

= ln

 T̃0

T̃

(
gs(T̃0)

gs(T̃ )

)1/3
+ ln

[
C0

C

]1/2

. (2.54)

Therefore, we can introduce the parameter, Ñ , defined as

Ñ ≡ ln

 T̃0

T̃

(
gs(T̃0)

gs(T̃ )

)1/3
 , (2.55)
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and transform to derivatives w.r.t. Ñ (assuming well behaved functions):

ϕ′ =
1(

1− α(ϕ) dϕ
dÑ

) dϕ
dÑ

, ϕ′′ =
1(

1− α(ϕ) dϕ
dÑ

)3

(
d2ϕ

dÑ2
+
dα

dϕ

(
dϕ

dÑ

)3
)
. (2.56)

In a slight abuse of notation and to keep expressions neat, in what follows we denote derivatives

w.r.t. Ñ with a prime ′.

2.4 Pure conformal case

We start with the pure conformal case. That is, we takeD(φ) = 0 in (2.40) and therefore γ = 1

(and ω̃ = ω). Moreover, during the radiation and matter dominated eras, of interest for us, the

potential energy of the scalar field is subdominant and thus, we take λ ∼ 0. Therefore the master

equation (2.40) simplifies to:

2

3(1− ϕ′2/6)
ϕ′′ + (1− ω̃)ϕ′ + 2(1− 3 ω̃)α(ϕ) = 0, (2.57)

which in terms of derivatives wrt Ñ takes the form:

1

3B [1− α(ϕ)ϕ′]3

(
ϕ′′ +

dα

dϕ
(ϕ′)

3

)
+

(1− ω̃)

[1− α(ϕ)ϕ′]
ϕ′ + (1− 3 ω̃)α(ϕ) = 0 ,

(2.58)

where B = 1 − (ϕ′)2

6(1−α(ϕ)ϕ′)2
. Using the relation between H̃ and HGR defined in (2.52), we can

write the speed-up parameter as

ξ =
H̃

HGR

=
C1/2(ϕ)

C1/2(ϕ0)

1

(1− α(ϕ)ϕ′)
√
B

1√
1 + α2(ϕ0)

, (2.59)
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where we have used the relation between the bare gravitational constant and that measured by local

experiments for conformally coupled theories [36]:

κ2
GR = κ2C(ϕ0)[1 + α2(ϕ0)] , (2.60)

where ϕ0 is the value of the scalar field at present time.

2.4.1 Expansion rate modification

The scalar equation in the conformal case (2.57), as function of N (for λ = 0) contains a

term which can be interpreted as an effective potential, dictated by Veff = lnC1/2. For a strictly

radiation dominated era, ω̃ = 1/3, the effective potential term vanishes and we are left with an

equation that can be solved analytically [37], giving ϕ′ ∝ e−N . That is, any initial velocity will

rapidly go to zero (remember that from the Friedmann equation (2.32), ϕ′ is constrained to be

|ϕ′| .
√

6). Therefore we explore the effects of having a non-zero initial velocity in our analysis

below. Since the scalar field is expressed in Planck units, we focus on order one or smaller field

variations ∆ϕ. One can check, using the analytic solution to (2.57) deep in the radiation era,

that for initial velocities ϕ′0 � ±
√

6, the total field displacement is of order ∆ϕ ∼ ϕ′0 [37].

However, given that we don’t know much about the theory before BBN, we explore different

initial values for (ϕ0, ϕ
′
0) and study their consequences. In particular we explore initial values ϕ0

and ϕ′0 ∈ (−1.0, 1.0).

We now concentrate on an explicit conformal factor. We use the same conformal factor as that

studied in [7], which is given by:

C(ϕ) = (1 + b e−β ϕ)2 , (2.61)

with the values b = 0.1, β = 8, which have been shown to satisfy the constraints imposed by

tests of gravity, for the parameters α, β, ξ. As we will see, the requirement of reaching the GR

expansion rate value by the time of the onset of BBN drives these parameters to very small values,
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which are thus consistent with the constraints from gravity for their values today.

As we discussed above, in the equation of motion for ϕ, with ω̃ 6= 1/3, the conformal factor

acts as an effective potential on which the scalar field moves, damped by the Hubble friction

(see (2.23)). Since any initial velocity ϕ′ goes rapidly to zero deep in the radiation era, in the

subsequent evolution of ϕ, the term (ϕ′)2 in the master equation will be negligible. In this regime,

the equation is that of a particle moving in an effective potential with a damping term. Therefore,

one can understand the evolution of ϕ from the form of the effective potential (Veff = lnC1/2)

and the initial conditions used. For the conformal function we are considering (2.61), one sees that

there is a set of initial conditions that will give rise to an interesting behavior in ϕ, and therefore

an interesting modified expansion rate in the Jordan frame H̃ (2.52), as we now explain.

In general, both the initial position and velocity of the scalar field can take any value, positive

and negative. In the runaway effective potential dictated by lnC1/2 for the conformal factor (2.61)

we consider here, we have the following possibilities. i) The scalar field starting somewhere up

in the runaway effective potential with zero initial velocity. In this case, the scalar field will roll-

down the potential, eventually stopping due to Hubble friction, at some constant value of ϕ, which

depends on its initial value. So long as (1 + α(ϕ)ϕ′) stays positive (see (2.42)), C will evolve

rapidly towards 1. More generally, the initial velocity can be different from zero. If the initial

velocity is positive, the behavior will be similar to the previous case. The field will roll-down the

effective potential towards its final terminal value.

ii) A more interesting possibility arises when one allows for negative initial velocities. In

this case, the field will start rolling-up the effective potential towards smaller values of the field,

eventually turning back down and moving towards its terminal value. It is easy to see that an

interesting effect happens when the field starts at an initial positive value. Given a sufficient initial

negative velocity the field will move towards negative values until its velocity becomes zero and

then positive again, as it rolls back down the effective potential. This change in sing for the

scalar evolution will produce a pick in the conformal function that will give rise to a non-trivial

modification of Jordan’s frame expansion rate H̃ , as we are looking for. As mentioned before, we
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are interested in (sub-)Planckian initial values (ϕ0, ϕ
′
0), such that H̃ > 0. With these requirements,

one can see that given an initial negative velocity, there is a suitable initial value of the scalar field

such that the behavior just described holds and the expansion rate H̃ has an interesting evolution

before the onset of BBN. At late times the conformal function goes to one and the GR expansion is

recovered. We show this behaviour explicitly in Figures 2.1 and 2.2 where we plot the numerical

solution for the evolution of ϕ and C(ϕ) as functions of the temperature. In these plots we find

ϕ = ϕ(T̃ ) by first solving (2.58) numerically with initial conditions (ϕ0, ϕ
′
0) = (0.2,−0.99) and

then use (2.55) to express ϕ(Ñ) as function of T̃ . As we can see, the conformal factor starts

growing towards a maximum value as ϕ moves to negative values, to rapidly drop down towards

its GR value at C → 1 as ϕ moves down the effective potential towards positive values. This

non-trivial effect will give rise to the possibility of re-annihilation, as we discuss below.
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Figure 2.1: Typical evolution of the scalar field as temperature decreases. The initial values are
(ϕ, dϕ/d Ñ) = (0.2,−0.994). Reprinted with permission from "Dark matter relics and the ex-
pansion rate in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06, 032,
Figure 1, p. 12. Copyright SISSA Medialab Srl. All rights reserved.

Based on the discussion above, we have solved the master equation (2.58), to find the scalar

field as a function of Ñ for various initial conditions, where we see the interesting behavior ex-
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Figure 2.2: Behaviour of the conformal factor, C(ϕ) as a function of the temperature for the
same initial values as in Figure 2.1. Reprinted with permission from "Dark matter relics and the
expansion rate in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06,
032, Figure 2, p. 13. Copyright SISSA Medialab Srl. All rights reserved.

plained above. The resulting modified expansion rate and its comparison with the standard case

are shown in Figure 2.3 for the same initial conditions as in Figures 2.1 and 2.2. In our numerical

exploration, we choose initial conditions for which the notch in the expansion rate (see Fig. 2.3)

occurs closer to the BBN time. This has interesting consequences for the dark matter annihilation,

as we discuss in chapter 4.

2.4.2 The equation of state parameter, ω̃

When solving the master equation (2.58), we have taken into account an important effect that

occurs during the radiation dominated era. Deep in this epoch, the equation of state is given by

ω̃ = 1/3. When a particle species in the cosmic soup becomes non-relativistic, ω̃ differs slightly

from 1/3. When the temperature of the universe drops below the rest mass of each of the particle

types, there are non-zero contributions to 1− 3ω̃. This activates the effective potential, which can

be seen in the last term of (2.58), and displaces, or “kicks“ the field along Veff .

To examine this effect in more detail, we start by writing 1− 3 ω̃ during the early stages of the
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Figure 2.3: Comparing the Hubble expansion rate H̃ in the Jordan Frame with the standard Hubble
expansion rate HGR. The presence of the scalar field enhances and decreases the expansion rate
during the radiation dominated era. This plot corresponds to initial conditions given by (ϕ0, ϕ

′
0) =

(0.2,−0.994). Reprinted with permission from "Dark matter relics and the expansion rate in scalar-
tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06, 032, Figure 3, p. 13.
Copyright SISSA Medialab Srl. All rights reserved.

universe as in [7] and [12]

1− 3 ω̃ =
ρ̃− 3 p̃

ρ̃
=
∑
A

ρ̃A − 3p̃A
ρ̃

+
ρ̃m
ρ̃
, (2.62)

where the sum runs over all particles in thermal equilibrium during the radiation dominated era and

ρ̃m is the contribution from the non-relativistic decoupled and pressureless matter. The summation

over all the particle is responsible for the kicking effect discussed above. Then, a kick function is

defined as

Σ(T̃ ) ≡
∑
A

ρ̃A − 3p̃A
ρ̃

, (2.63)
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where the energy density ρ̃A and pressure p̃A of each type A of particle are given by

ρ̃A(T̃ ) =
gA
2π2

∫ ∞
mA

(E2 −m2
A)

1/2

exp(E/T̃ )± 1
E2dE , (2.64)

p̃A(T̃ ) =
gA
6π2

∫ ∞
mA

(E2 −m2
A)

3/2

exp(E/T̃ )± 1
E2dE , (2.65)

with gA being the number of internal degrees of freedom of species of type A and the plus (minus)

sign in the integral corresponds to fermions (bosons).

After using ρ̃ ' π2geff (T̃ )T̃ 4/30, (2.64) and (2.65) Σ becomes

Σ(T̃ ) =
∑
A

15

π4

gA

geff (T̃ )
y2
A

∫ ∞
yA

dx

√
x2 − y2

A

ex ± 1
, (2.66)

where geff (T̃ ) is the total number of relativistic degrees of freedom3 and yA = mA/T̃ .

To compute (2.66), we consider the Standard Model particle spectrum. In particular, we take

into account the top quark, the Higgs boson, Z boson, W bosons, bottom quark, tau lepton, charm

quark, charged pions, neutral pion, muon lepton and the electron (See Table 2.1 for details on the

masses and internal degrees of freedom per species). As we show in Figure 2.4, Σ is mostly zero,

except when the kicks happen. Then, during the radiation dominated era, we compute the equation

of state parameter from (2.62) as ω̃ = (1− Σ(T̃ ))/34.

In Figure 2.5 we show the evolution of ω̃ between 10 TeV and 10 eV. This figure shows four

troughs, which are the “kicks” mentioned above. Each kick corresponds to the transition of one or

more particles to the non-relativistic regime. For example, the trough at around 0.5 MeV is due to

the electron, while the one at around 100 GeV is due to the heavy particles (t, H , Z and W ).

Towards the end of the radiation era, approaching the transition to the matter dominated era,

3To calculate geff we follow the numerical procedure described in Appendix A of [38].
4ρ̃ is dominated by radiation, thus ρ̃m/ρ̃ is negligible.
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Particle Mass (GeV) gA
t 173.2 12
H 125.1 1
Z 91.19 3
W± 80.39 6
b 4.18 12
τ 1.78 4
c 1.27 12
π0 0.140 12
π± 0.135 2
µ 0.106 4
e 0.000511 4

Table 2.1: Spectrum of particles used to calculate the kick function (2.66). For each particle, we
show its mass and number of internal degrees of freedom, gA.
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Figure 2.4: Thermal evolution of the kick function during the radiation dominated era. Outside the
interval of temperatures shown, Σ vanishes. Reprinted with permission from "Dark matter relics
and the expansion rate in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP
no.06, 032, Figure 10, p. 22. Copyright SISSA Medialab Srl. All rights reserved.
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(2.62) takes the approximate form:

1− 3 ω̃ ' ρ̃m
ρ̃m + ρ̃r

' 1

1 + T̃ /T̃eq
, (2.67)

where T̃eq ∼ O(10−9)GeV is the temperature at matter-radiation equality, that is, ρ̃m(T̃eq) =

ρ̃r(T̃eq). We can now combine (2.63) and (2.67) to compute the thermal evolution of (2.62) in the

radiation dominated and matter dominated eras and use it in the master equation.
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Figure 2.5: Evolution of ω̃ in (2.62) as function of temperature during the radiation dominated
era. Reprinted with permission from "Dark matter relics and the expansion rate in scalar-tensor
theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06, 032, Figure 4, p. 15. Copyright
SISSA Medialab Srl. All rights reserved.

2.4.3 Parameter Constraints

In scalar-tensor theories of gravity, there are some constraints on the parameters that need to

be taken into account. Deviations from GR can be parametrised in terms of the post-Newtonian

parameters γPN and βPN , which are given in terms of α(ϕ0) defined in (2.38) and its derivative
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α′0 = dα/dϕ|ϕ0 as [39, 40]:

γPN − 1 = − 2α2
0

1 + α2
0

, βPN − 1 =
1

2

α′0α
2
0

(1 + α2
0)2

. (2.68)

Solar system tests of gravity, including the perihelion shift of Mercury, Lunar Laser Ranging ex-

periments, and the measurements of the Shapiro time delay by the Cassini spacecraft [41, 42, 43]

indicate that α0 should be very small, with values α2
0 . 10−5, while binary pulsar observations

impose that α′0 & −4.5. The last constraint applies to the speed-up factor ξ, which has to be of

order 1 before the onset of BBN. In our examples we have α2
0 ' 2× 10−5, α′0 > 0 and ξ ≈ 1.05.

2.5 Conformal case plus a simple disformal coupling

We now discuss briefly the effect of the disformal factor in the metric (2.2) to the expansion

rate of the universe, H̃ , and compare it to the conformal modification to H̃5. Hence, we explore

D(φ) 6= 0 for the same conformal factor studied before, that is, C(ϕ) = (1 + b e−β ϕ)2 for b = 0.1,

β = 8. To investigate these modifications, we first need to look at the scalar field evolution with

temperature.

In the pure conformal case studied above, we found the thermal evolution of the scalar field

by solving the master equation (2.58) numerically, which is (2.40) for D(φ) = 0. However, to

study the effects of the disformal factor on the scalar field, it is more convenient to solve the

system of two coupled equations (2.34) and (2.35). Using these equations we find solutions for the

dimensionless scalar field ϕ, and for the expansion rate in the Einstein frame H .

Notice that solving the system of coupled equations or solving the master equation to find

the thermal evolution of the scalar field are equivalent methods (as we have explicitly checked),

because (2.40) it is nothing but a combination (2.34) and (2.35). However, while in the pure

conformal case the master equation can be made independent of H (or ρ), this is not the case for

the more general disformal case, as we can see in (2.40).

In the same way, as for the conformal case, we are interested mainly in the radiation and matter

5We leave a detailed exploration for a future publication.
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eras and therefore we can neglect the potential energy of the scalar field. Thus, we consider V ∼ 0

and λ = 0. Also, while solving the coupled equations we have to express ω in the Jordan frame by

using ω̃ = ωγ2 and transform all derivatives w.r.t. N to derivatives w.r.t. Ñ by using (2.56).

With this information, we solve the system of coupled equations numerically to find the dimen-

sionless scalar field ϕ and the Hubble parameter H , as functions of the number of e-folds Ñ (and

the temperature). We choose the same initial conditions for the scalar field and its derivative as in

the conformal case and to obtain the initial condition for H , we use (2.49).

Once we have the solutions for ϕ and H as functions of temperature, we can go back to (2.42)

and (2.37) to obtain the expansion rate for the disformal model. As an example, in Figure 2.6 we

show the effects of a disformal factor given by D(ϕ) = D0 ϕ
2 with D0 = −4.9 × 10−14. In this

plot, we illustrate the effect of the disformal contribution on the expansion rate (H̃Disformal) and

compare it to the modified expansion rate for the conformal case (H̃Conformal) and the standard

case (HGR). We use the same initial conditions as in Figures 2.1 and 2.2 for the scalar field and its

derivative.

Also, it is important to mention that for the case shown the parameter constraints described in

section 2.4.3 are satisfied. In particular we find α2
0 ' 2× 10−5, α′0 > 0 and ξ ≈ 1.02.

From our example, with C and D as indicated above, we can clearly see the differences from

the disformally modified expansion rate H̃Disformal compared to the conformally modified and

standard case, HGR. The evolution of H̃Disformal is similar to that of H̃Conformal, having an en-

hancement and a decrement compared to the standard expansion rate HGR. Moreover, the main

differences with respect to the conformal modification are the position of the notch and its shape.

The notch is moved to higher temperatures and it becomes a little bit sharper.

These differences between the expansion rates can be understood from (2.35). First, in this

equation, we see that the factor 3H2γ2BD
κ2(1+λ)C

in the coefficients of ϕ′′, ϕ′ and ϕ′2 vanishes whenD = 0.

For the disformal example shown in Figure 2.6, this factor is a very small correction to the equation,

which is reflected in the slight shape modification of H̃Disformal compared to H̃Conformal. Second,

the term proportional to δ(ϕ) plays a more important role, being responsible for the shifting of the
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2017. JCAP no.06, 032, Figure 9, p. 19. Copyright SISSA Medialab Srl. All rights reserved.

notch.
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3. DISFORMAL D-BRANE COUPLING SCENARIO1

In this chapter, we introduce the second class of ST theories, which is Disformal D-Brane

Coupling scenario. This scenario, as was pointed out in the introduction, can arise from a post-

string inflationary scenario. At this stage, the universe is already four-dimensional and moduli

associated to the compactification have been properly stabilised2. However, the relevant parameters

in the model will depend on the string theory quantities such as the string scale, string coupling

and compactification volume as we will argue.

One of the main differences between this scenario and the one studied in the previous chapter

is that the disformal coupling enters not only enter through the metric (as in the previous scenario)

but also through the action. We can see this clearly by comparing the action of the conformally

coupled ST theory, given by (2.1), and the action we consider for the disformal D-brane coupling

scenario, given below by (3.1).

The starting action we consider is given by

S = SEH + Sbrane , (3.1)

where:

SEH =
1

2κ2

∫
d4x
√
−g R, (3.2)

Sbrane = −
∫
d4x
√
−g

[
M4C2(φ)

√
1 +

D(φ)

C(φ)
(∂φ)2 + V (φ)

]
−
∫
d4x
√
−g̃LM(g̃µν) , (3.3)

where in a string setup, κ2 = M−2
P = 8πG is related to the string coupling, scale and overall

compactification volume by M2
P = 2V6

2πg2sα
′ , where M−2

s = `2
s = α′(2π)2 is the string scale, V6 is

1 Reprinted with permission from "D-brane disformal coupling and thermal dark matter” by B. Dutta, E. Jimenez,
I. Zavala, 2017. PhysRevD.96.103506. Copyright American Physical Society.

2Though these fields might be displaced from their minima, giving rise to a matter dominated regime, with inter-
esting consequences (see e.g. [44]).
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the dimensionless six-dimensional (6D) volume in string units and gs is the string coupling. Note

also that G is not in general equal to Newton’s constant as measured by e.g. local experiments.

In (3.3) we describe the brane dynamics (of transverse and longitudinal fluctuations associated

to the scalar and matter respectively) given by the Dirac-Born-Infeld (DBI) and Chern-Simons

actions for a single D3-brane. The DBI part gives rise to the noncanonically normalized scalar

field φ, associated to the single overall position, r2 =
∑6

i y
2
i , of the brane in the internal 6D

space3 with coordinates yi. In this case, the scale M is dictated by the tension of a D3-brane as

M4 = T3 = (gsα
′2(2π)3)−1 = M4

s (2π)g−1
s = g3s

8πV2
6
M4

P and thus by the string scale and coupling.

In reality, one would most likely have a stack of branes moving in the internal space. However,

to study the cosmological evolution after inflation, it is enough to model all matter living on the

moving brane as in (3.3) (see also [3, 45]) via the disformally coupled matter Lagrangian LM .

In (3.3), the disformally coupled metric g̃µν is given by the induced metric on the brane, which

for a brane moving along a single internal direction can be written as

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ . (3.4)

where the scalar field is related to the D-brane position by4 φ =
√
T3 r, and while C(φ) is dimen-

sionless, D(φ) has units of mass−4. These functions are specified by the ten-dimensional (10D)

compactification and therefore in general will be related to each other as we see below (see also

[3]).

3.1 The equations of motion

Einstein’s equations obtained from (3.1) are given by

Rµν −
1

2
gµνR = κ2

(
T φµν + Tµν

)
, (3.5)

3In general, a D3-brane can move in all six of the internal dimensions.
4For the D3-brane case, one can also consider different dimensionalities, which will add extra factors due to the

internal volumes wrapped by the brane in that case.
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where the energy-momentum tensors are defined with respect to the Einstein-frame metric gµν and

are given by

Tµν = Pgµν + (ρ+ P )uµuν , (3.6)

for matter, where ρ, P are the energy density and pressure for matter with equation of state P/ρ =

ω. For the scalar field, the energy-momentum tensor takes the form:

T φµν = −gµν
[
M4C2γ−1 + V

]
+M4CD γ∂µφ ∂νφ (3.7)

where the energy density and pressure for the scalar field are identified as:

ρφ = M4C2γ + V , Pφ = −M4C2γ−1 − V , (3.8)

and the “Lorentz factor" γ introduced above is defined by

γ ≡
(

1 +
D

C
(∂φ)2

)−1/2

. (3.9)

It will be convenient to rewrite (3.8) by introducing V ≡ V + C2M4, as

ρφ = −M
4CDγ2

γ + 1
(∂φ)2 + V , Pφ = −M

4CD γ

γ + 1
(∂φ)2 − V . (3.10)

The equation of motion for the scalar field is:

−∇µ

[
M4DCγ ∂µφ

]
+
γ−1M4C2

2

[
D,φ

D
+ 3

C,φ
C

]
+
γ M4C2

2

[
C,φ
C
− D,φ

D

]
+Vφ

−T
µν

2

[
C,φ
C
gµν +

D,φ

C
∂µφ∂νφ

]
+∇µ

[
D

C
T µν∂νφ

]
= 0 , (3.11)

where C,φ denotes derivative of C with respect to φ, and similarly for D, V . Finally, the energy-

momentum conservation equation, ∇µT
µν
tot = ∇µ

(
T µνφ + T µν

)
= 0, combined with the equation
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of motion for the scalar field allows us to define Q as

Q ≡ ∇µ

[
D

C
T µλ ∂λφ

]
− T µν

2

[
C,φ
C
gµν +

D,φ

C
∂µφ ∂νφ

]
, (3.12)

so that,∇µT
µν
φ = −∇µT

µν = Q∂νφ.

3.2 Cosmological equations

Let us now look at the cosmological evolution. We start with a FRW background metric:

ds2 = −dt2 + a2(t)dxidx
i , (3.13)

where a(t) is the scale factor in the Einstein frame. With this metric, the equations of motion

become

H2 =
κ2

3
[ρφ + ρ] , (3.14)

Ḣ +H2 = −κ
2

6
[ρφ + 3Pφ + ρ+ 3P ] , (3.15)

φ̈+ 3Hφ̇ γ−2 +
C

2D

(
D,φ

D
− C,φ

C
+ γ−2

[
5C,φ
C
− D,φ

D

]
− 4γ−3C,φ

C

)
+

1

M4CDγ3
(V,φ +Q0) = 0 ,

(3.16)

where, H = ȧ
a
, dots are derivatives with respect to t,

γ = (1−D φ̇2/C)−1/2,

and

Q0 = ρ

[
D

C
φ̈+

D

C
φ̇

(
3H +

ρ̇

ρ

)
+

(
D,φ

2C
− D

C

C,φ
C

)
φ̇2 +

C,φ
2C

(1− 3ω)

]
,

(3.17)
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where we have used the equation of state for matter P = ωρ. The continuity equations for the

scalar field and matter are given by

ρ̇φ + 3H(ρφ + Pφ) = −Q0φ̇ , (3.18)

ρ̇+ 3H(ρ+ P ) = Q0 φ̇ . (3.19)

Using (3.19), we can rewrite this as

Q0 = ρ

(
γ̇

φ̇ γ
+
C,φ
2C

(1− 3ω γ2)− 3Hω
(γ − 1)

φ̇

)
. (3.20)

Plugging this into the (non)conservation equation for matter (3.19) gives

ρ̇+ 3H(ρ+ P γ2) = ρ

[
γ̇

γ
+
C,φ
2C

φ̇ (1− 3ωγ2)

]
. (3.21)

3.3 Modified and standard expansion rates

The modified expansion rate felt by matter H̃ (which will enter into the Boltzmann equation)

is the Jordan-frame expansion rate, given in terms of Jordan (or disformal) frame quantities, and

defined with respect to the disformal metric g̃µν . In this frame, the Hubble parameter is given by:

H̃ ≡ d ln ã

dτ̃
=

γ

C1/2

[
H +

C,φ
2C

φ̇

]
. (3.22)

and it is thus a function of the Einstein-frame rateH , the scalar field and its derivatives. The proper

time and the scale factors in the Jordan and Einstein frames are related by

ã = C1/2a , dτ̃ = C1/2γ−1dτ . (3.23)
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Furthermore, the energy densities and pressures in the two frames are related by

ρ̃ = C−2γ−1ρ , P̃ = C−2γP , (3.24)

while the equation of state is given by

ω̃ = ωγ2 . (3.25)

One can check that in the Jordan frame, the continuity equation for matter takes the standard form:

dρ̃

dτ̃
+ 3H̃(ρ̃+ P̃ ) = 0 . (3.26)

To proceed further, we next swap time derivatives with derivatives with respect to the number

of efolds, N = ln a/a0, so dN = Hdt. We also define a dimensionless scalar field ϕ = κφ. In this

case, (3.22) becomes:

H̃ =
Hγ

C1/2
[1 + α(ϕ)ϕ′] , (3.27)

where a prime denotes a derivatives with respect to N and we have defined

α(ϕ) =
d lnC1/2

dϕ
. (3.28)

Note also that in terms of ϕ and N derivatives, the Lorentz factor is now given by

γ−2 = 1− H2

κ2

D

C
ϕ′2 . (3.29)

We want to compare the Jordan-frame expansion rate with that expected in GR, which is given

by

H2
GR =

κ2
GR

3
ρ̃ . (3.30)
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We can write this in terms of H , ϕ and its derivatives as follows. We first write (3.14) as (see [7]):

H2 =
κ2

3

(1 + λ)

B
ρ =

κ2

3

C2γ(1 + λ)

B
ρ̃ , (3.31)

where λ = V/ρ (= Ṽ/ρ̃),

B = 1− M4CDγ2

3(γ + 1)
ϕ′2 , (3.32)

and we have used (3.24) in the second equality of (3.31). By inserting (3.31) into (3.30), we can

write HGR entirely as a function of H,ϕ, ϕ′ as:

H2
GR =

κ2
GR

κ2

C−2B γ−1H2

(1 + λ)
. (3.33)

Therefore, once we find a solution for H and ϕ, we can compare the expansion rates H̃ with

HGR using (3.27) and (3.33). To measure the departure from the standard expansion, we recall the

speed-up factor parameter defined in (2.53):

ξ =
H̃

HGR

.

Notice that ξ can be larger or smaller than one, indicating an enhancement or reduction of H̃ with

respect to HGR. This means that H̃ can grow during the cosmological evolution. However notice

that this does not imply a violation of the the NEC. This is because the Einstein-frame expansion

rateH is dictated by the energy density ρ and pressure p, which obey the NEC and therefore Ḣ < 0

during the whole evolution, as it should (see [35]).

In the following section, we describe the procedure to solve the system of coupled equations

for H and ϕ derived from (3.15) and (3.16).
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3.3.1 Coupled equations for ϕ and H

The field equations (3.15) and (3.16) can be written as

H ′ = −H
[

3B

2(1 + λ)
(1 + ω) +

ϕ′2M4CDγ

2

]
, (3.34)

ϕ′′
[
1+

3H2γ−1B

M4CDκ2(1 + λ)

D

C

]
+ 3ϕ′

[
γ−2 − 3H2γ−1Bω

M4CDκ2(1 + λ)

D

C

]

+
H ′

H
ϕ′
[
1 +

3H2γ−1B

M4CDκ2(1 + λ)

D

C

]
+

3Bγ−3

M4CD(1 + λ)
α(ϕ)(1− 3ωγ2)

+
3Bλγ−3

M4CD(1 + λ)

V,ϕ
V

+
3H2γ−1B

M4CDκ2(1 + λ)

D

C

[
(δ(ϕ)− α(ϕ))ϕ′2

]

+
κ2

H2

C

D

[
γ−2 (5α(ϕ)− δ(ϕ)) + δ(ϕ)− α(ϕ)

(
1 + 4γ−3

)]
= 0 , (3.35)

where

δ(ϕ) =
d lnD1/2

dϕ
. (3.36)

We notice here that, contrary to the pure conformal case discussed in chapter 2, we can not elim-

inate the equation for H , and we do not end up with a single master equation for the scalar field.

Due to the disformal term, we need to consider the coupled equations for ϕ and H .

The cubic equation for H

Below we solve the equations numerically, for which we need the initial conditions for Hi

and (ϕi, ϕ
′
i). Therefore, we need to find an expression for H in terms of all other quantities and

in particular ρ̃. We can obtain this from the Friedmann equation written in terms of ρ̃ in (3.31).
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Recalling that γ depends nontrivially on H (3.29), one obtains a cubic equation for H2 given by5 :

A1H
6 + A2H

4 + A3H
2 + A4 = 0 (3.37)

where

A1 =
Dϕ′2

Cκ2
, (3.38)

A2 =
2M4CDϕ′2

3
− 1 , (3.39)

A3 =
M4C2κ2

3

(
M4CDϕ′2

3
− 2

)
, (3.40)

A4 =

(
M4κ2C2

3

)2
(1 + λ) ρ̃

M4

(
(1 + λ) ρ̃

M4
+ 2

)
. (3.41)

One of the solutions to (3.37) can be written as

H2 =
1

3A1

(
−A2 +

(
A2

2 − 3A1A3

)( 2

∆

)1/3

+

(
∆

2

)1/3
)
, (3.42)

with

∆ = −27A2
1A4 + 9A1A2A3 − 2A3

2 +

√
(−27A2

1A4 + 9A1A2A3 − 2A3
2)

2 − 4 (A2
2 − 3A1A3)

3

≡ L+
√
L2 − 4`3. (3.43)

The other two solutions can be obtained by replacing

(
2

∆

)1/3

→ e2πi/3

(
2

∆

)1/3

and

(
2

∆

)1/3

→ e4πi/3

(
2

∆

)1/3

.

We are interested in real positive solutions for H2. These can be identified by considering a com-

plex ∆, that is, 4`3 > L2, which implies a condition on ρ̃, ϕ′, and C. For this choice, the imaginary

5A similar equation was found in chapter 2, see (2.45), for the phenomenological disformal case. In that case,
A2 = −1 and A3 = 0.
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parts of (∆/2)1/3 and `(∆/2)−1/3 cancel each other6. We will use the real positive solutions in our

numerical implementations to find the initial condition for H .

3.4 D-brane Disformal Solutions

As we discussed at the beginning of the chapter, when considering a probe D3-brane moving

in a warped 10D space, which is a solution to the 10D equations of motion, C and D are related

and given in terms of the warp factor of the geometry [3]. In particular, in the normalization where

φ becomes canonically normalized once the DBI action is expanded, M4CD = 1, (see Appendix

B). Other normalizations are possible; however, the results will be equivalent. Thus in this section,

we study solutions for the D-brane conformally and disformally coupled matter with the choice

above, which implies δ(ϕ) = −α(ϕ). We start by presenting the equations of motion for this

case, followed by a discussion on the constraints and initial conditions we use in our numerical

analysis. We first discuss in detail the numerical solutions for the C = const or a pure disformal

case, followed by the C 6= const case.

3.4.1 Equations of motion and Jordan frame

We are interested in the radiation and matter dominated eras during which the potential energy

of the scalar field is subdominant. Therefore in what follows we consider λ ∼ 0. Also, to solve the

equations (3.34) and (3.35), we need to write them in terms of Jordan-frame quantities ω̃ = ωγ2

and ρ̃ = C−2γ−1ρ. After doing this, the coupled equations above become

6In this case, we can write Z = ∆
2 = L+i

√
4`3−L2

2 , then ZZ̄ = `3 and 2
∆ = Z̄

`3 and thus the imaginary parts in
(3.42) cancel out.
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H ′ = −H
[

3B

2
(1 + ω̃γ−2) +

ϕ′2

2
γ

]
, (3.44)

ϕ′′
[
1+

3H2γ−1B

M4C2κ2

]
+ 3ϕ′γ−2

[
1− 3H2γ−1B

M4C2κ2
ω̃

]
+
H ′

H
ϕ′
[
1 +

3H2γ−1B

M4C2κ2

]

−6H2γ−1B

M4C2κ2
α(ϕ)ϕ′2 + 3Bγ−3α(ϕ)(1− 3 ω̃)− 2M4C2κ2

H2

[
2γ−3 − 3γ−2 + 1

]
α(ϕ) = 0 .

(3.45)

Furthermore, we also convert derivatives with respect to N to derivatives with respect to Ñ ,

the number of e-folds in the Jordan frame by following the procedure described at the end of sec-

tion 2.3. Therefore, derivatives w.r.t. N transform to derivatives w.r.t. Ñ (assuming well behaved

functions) according to (2.56) as:

ϕ′ =
1(

1− α(ϕ) dϕ
dÑ

) dϕ
dÑ

, ϕ′′ =
1(

1− α(ϕ) dϕ
dÑ

)3

(
d2ϕ

dÑ2
+
dα

dϕ

(
dϕ

dÑ

)3
)
.

To avoid clutter we write down expressions with derivatives with respect to N , but it should be

understood that all our numerical calculations are made using derivatives with respect to Ñ .

Let us start by discussing (3.45) to understand the behavior of the solutions. Similarly to the

conformal case discussed in section 2.4, the derivative of C(ϕ) acts as an effective potential, given

by7

Veff ∼ 3(1− 3 ω̃) lnC . (3.46)

Deep in the radiation-dominated era, the equation of state is given by ω̃ = 1/3 and the effective

potential vanishes. As the temperature of the universe decreases, particle species in the cosmic

7Notice that the last term in (3.45) proportional to α is not part of an effective potential, as it vanishes when taking
the velocity terms, ϕ′ to zero (so B = 1 and γ = 1).
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soup become nonrelativistic. When the temperature of the universe drops below the rest mass of

each of the particle types, nonzero contributions to 1− 3ω̃ arise, activating the effective potential.

On the other hand, during the matter-dominated era, ω̃ = 0, and the effective potential is active

through it. In section 2.4.2 we showed how to calculate ω̃ during the radiation-dominated era, and

plotted ω̃, for the SM particle spectrum, during that era in Figure 2.5.

3.4.2 Initial conditions and parameter constraints

Before we move on to solving the coupled equations (3.44) and (3.45) to find the modified

expansion rate, H̃ , and compare it with the standard one, HGR, we stop here to describe the con-

straints and initial conditions we use in our numerical analysis.

Parameter Constraints

As was discussed in section 2.4.3, in ST theories, deviations from GR can be parametrized

in terms of the post-Newtonian parameters, γPN and βPN . In the standard conformal case, these

parameters are given in terms of α(ϕ0) and its derivative, α′0 = dα/dϕ|ϕ0 as in (2.68). Also,

Solar System tests of gravity constrain α0 to very small values of order α2
0 . 10−5, while binary

pulsar observations impose that α′0 & −4.5. Further, the relation between the bare gravitational

constant and that measured by local experiments, for conformally coupled theories, is given by

(2.60), κ2
GR = κ2C(ϕ0)[1 + α2(ϕ0)] . The strongest constraint applies to the speed-up factor ξ,

which has to be of order 1 before the onset of BBN [37].

For the phenomenological disformal case, Solar System constraints and the ratio κGR/κ have

been studied for constant D in Ref. [46]. In particular, they found κ2
GR = κ2(1 + 3Υ/2), where

Υ ∝ ϕ′20 . As we will see, all solutions we found have ϕ′ ≈ 0 at the onset of BBN. Therefore, for

the constant disformal case, κ2
GR = κ2. For the C 6= const case, on the other hand, we will use the

constraints on α above requiring that the standard expansion rate is recovered well before the onset

of BBN. This is what we need to ensure that the predictions of the standard cosmological model

are not modified.
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Initial conditions and the scale M

To find the numerical solutions, we need to fix the initial conditions for H,ϕ, ϕ′. Since ϕ is

given in Planck units, we take ϕi, ϕ′i . 1. To find the initial value for H , based on the initial

variables ϕi, ϕ′i and ρ̃i, we need a real positive solution to (3.37), which can be found from (3.42)

for the case CDM4 = 1. In this case the coefficients Ai simplify greatly.

Writing (3.43) as

∆ = L+ i
√
L ,

where now we have

L = 2 + 2ϕ′2 − 7

3
ϕ′4 +

2

27
ϕ′6 − 3ϕ′4R , (3.47)

L = 4`3 − L2 = −ϕ
′4

9
(1 +R)

[
81ϕ′4R− (3 + 4ϕ′2)(ϕ′2 − 6)2

]
, (3.48)

` =

(
1 +

ϕ′2

3

)2

, (3.49)

R =
ρ̃

M4

(
ρ̃

M4
+ 2

)
. (3.50)

From here it is not hard to see that L can be either positive or negative and we require that L > 0

for ∆ to be complex, as required to find real positive solutions. In terms of the initial values for

ϕ′i
8, this requirement implies

R ≤ (3 + 4ϕ′2i )(ϕ′2i − 6)2

81ϕ′4i
. (3.51)

Recalling that during the radiation-dominated era the energy density is given by ρ̃(T̃ ) = π
30
geff (T̃ )T̃ 4,

once we fix ϕ′i and the initial temperature Ti, the value of M is bound via (3.51). Indeed, (3.51), is

satisfied for ρ̃i/M4 in the interval
(

0,−1 + 2
9ϕ′2i

√
(3 + ϕ′2i )3

)
. Or, in terms of Ti and ϕ′i, the value

of M lies in the interval: ( 3 π geff (T̃i)ϕ
′2
i

−90ϕ′2i + 20
√

(3 + ϕ′2i )3

)1/4

T̃i ,+∞

 . (3.52)

8Recall that in our numerical solutions we take derivatives w.r.t. Ñ , so ϕ′i should be read as ϕ′
i

1−α(ϕi)
.
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As an example, we show the lower bound for M as a function of (ϕ′i)
2 in Figure 3.1 for the

initial temperature of 1.0 TeV. For simplicity, we take C = 1, so that derivatives with respect to

N and Ñ are the same. As can be seen from (3.52) and Figure 3.1, for a given initial condition

Ti, the closer ϕ′i goes to
√

6, the larger the values of M , and vice versa. Also, the larger the value

of Ti, the larger also the lower bound of M . In the D-brane-like scenario, as was described at

the beginning of the chapter, the scale M is related to the string coupling and scale (or the six-

dimensional volume) as M = Ms(2πg
−1
s )1/4. Therefore, we see that the scale decreases for small

string scales (large compactification volumes) and small string couplings, which are needed for the

string perturbative description to be valid. We will come back to this point below.

Figure 3.1: Lower bound for M (see (3.52)) as a function of (ϕ′i)
2 for C = 1. Reprinted with

permission from "D-brane disformal coupling and thermal dark matter” by B. Dutta, E. Jimenez,
I. Zavala, 2017. PhysRevD.96.103506, Figure 2, p. 9. Copyright American Physical Society.

3.4.3 Pure disformal case, C = const.

We are now ready to discuss in detail the numerical solutions for H and ϕ and use them to

compute the modified expansion rate. We start with the case C(ϕ) = const which can be under-

stood as a pure disformal case, which is presented here for the first time. Indeed, notice that in this

43



case γ 6= 1, which precisely carries the disformal (or derivative) effect, while α = 0 (which carries

the conformal effect)

Without loss of generality we can take C(ϕ) = 1 and therefore D(ϕ) = 1
M4 . Comparing with

the phenomenological case studied in chapter 2, one could think that an arbitrary choice of the

function D there (with C = 1) would give different results. However, we expect that the effects of

an arbitrary function, in that case, can be encoded in the choice of the scale M here, and therefore

will give similar results to those presented here.

For C = 1, the system of coupled equations reduces to the following form,

H ′ = −H
[

3

2
(1 + ω̃γ−2)B +

ϕ′2

2
γ

]
, (3.53)

ϕ′′
[
1+

3H2γ−1B

M4κ2

]
+ 3ϕ′γ−2

[
1− 3H2γ−1B

M4κ2
ω̃

]
+
H ′

H
ϕ′
[
1 +

3H2γ−1B

M4κ2

]
= 0 . (3.54)

As expected, the effective potential is flat, since α = 0 (see discussion above). We solve these

equations numerically to find the dimensionless scalar field ϕ and the Hubble parameter H , as

functions of Ñ . We have explored a wide range of initial conditions for ϕ and ϕ′ and values of the

scale M . To find the initial condition for H (Hi), we use the appropriate real positive solution of

(3.37), as was pointed out earlier. We find that at most two of the solutions (3.37) for Hi, are real

and positive. For these two Hi’s, the corresponding initial value of γ (γi) is obtained using (3.29)

(setting M4CD = 1). We find that one of these γi’s is usually of order one while the other is 1 or 2

orders of magnitude larger (sometimes even larger). We find that the solutions to (3.53) and (3.54)

that obey the necessary constraints are those with γi ∼ 1. Once we have found the solutions for ϕ

and H , we go back to (3.27) to obtain the expansion rate in the Jordan frame.

Before looking into the full numerical solutions, let us take a closer look at the ratio between

the modified expansion rate and the standard rate, ξ. For C = const this becomes

ξ =
γ3/2

B1/2
. (3.55)
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Since γ,B ≥ 1, it is clear that ξ ≥ 1, that is, H̃ ≥ HGR. In other words, in this case, the expansion

rate is always enhanced with respect to the standard evolution. Moreover, this enhancement is

driven by γ and B. As soon as γ > 1, there will be a nontrivial disformal enhancement.

In Figure 3.2 we show the resulting modified expansion rate for different values of ϕ′ and the

mass scale M . In these plots, we use ϕi = 0.2, but any value in the interval (0, 1) and appropriate

choices of ϕ′i and the mass scale M , will give similar results. As we can see in Figure 3.2, H̃

(colored lines) is always enhanced with respect to the standard expansion rate (black line), HGR,

as discussed above. From (3.55) and Figure 3.3, it is clear that the ratio ξ is always greater than

or equal to 1. Moreover, as the temperature decreases, the ratio ξ grows from a value close to 1

(recall that γi ∼ 1), reaches a maximum where γ is maximal and eventually decreases towards one

before BBN. The maximum value of the ratio increases and moves to lower temperatures as the

mass scale M becomes smaller.

We can understand this behavior by looking at the evolution of the factor f = 3H2γ−1B
M4κ2

, in-

side the square brackets of (3.54). We have seen numerically that this factor evolves as f(T̃ ) w

3geff (T̃ )

10

(
T̃
M

)4

as temperature decreases (see Figure 3.6). For the scaleM and temperatures plotted

in Figure 3.2, f(T̃ ) starts much bigger than one (up to f(T̃i) w 109) and decreases as the tempera-

ture decreases. The bigger the scale M , the earlier f(T̃ ) becomes of order 1. While f(T̃ ) is bigger

than 1, ξ increases, the velocity of the scalar field ϕ′ increases slowly, and thus the scalar field in-

creases very slowly too (see Figure 3.3 and 3.4). As f(T̃ ) approaches 1, ξ reaches a maximum and

the scalar field starts increasing faster. Then, as the temperature decreases further, f(T̃ ) becomes

smaller than 1. Meanwhile, H̃ starts converging towards HGR (that is, ξ starts decreasing) while

the scalar field keeps increasing. Finally, when H̃ becomes of order HGR, f(T̃ ) is much smaller

than 1 and the scalar field starts moving towards a final constant value.

We see the behavior described above in Figures 3.3 and 3.4. For instance, for the plot corre-

sponding to M = 106GeV, f(T̃ ) is approximately 3geff (T̃ )

10

(
T̃

106 GeV

)4

, which becomes 1 at around

T̃ = 50 GeV. Between 1000 GeV and 50 GeV, H̃ differs from HGR and in this range the scalar

field increases very slowly, looking almost constant. For lower temperatures, between 50 GeV
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Figure 3.2: Modified expansion rate for the pure disformal case, C = 1. We show different
boundary conditions and values of the scale parameter. The initial value of the scalar field for
all the curves is ϕi = 0.2. The black lines in all plots represent the standard expansion rate
HGR. Reprinted with permission from "D-brane disformal coupling and thermal dark matter” by
B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Figure 3, p. 10. Copyright American
Physical Society.
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Figure 3.3: Speed-up factor, ξ = H̃/HGR, as function of temperature for the expansion rates
shown in the bottom left plot in Figure 3.2. The initial conditions chosen are ϕi = 0.2 and ϕ′i =
0.002. Reprinted with permission from "D-brane disformal coupling and thermal dark matter” by
B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Figure 4, p. 10. Copyright American
Physical Society.

and 1 GeV, H̃ converges towards HGR and the scalar field increases faster while for temperatures

smaller than 1 GeV, H̃ ∼ HGR and the scalar field reaches its final value.

All the cases shown in Figure 3.2 satisfy the constraints discussed in section 3.4.2. In particular,

ϕ′BBN = 0 (so Υ = 0) and the speed-up factor ξ is equal to 1 prior to BBN as shown in Figure 3.3.

For scales M smaller than 10 GeV the last condition is not satisfied, that is ξ > 1 by the onset of

BBN. Therefore, scales M smaller than 10 GeV are discarded.

As we have mentioned, if we consider larger values ofM than the ones presented in Figure 3.2,

the enhancement of the expansion rate will occur earlier, at higher temperatures, as long as M is

smaller than T̃i. We illustrate this in Figure 3.5. Here we show a series of plots were the mass scale

takes values up to order EeV. This figure shows that the speed-up factor ξ, has the same behavior

as long as the ratio T̃i/M does not change. For instance, see all the green lines T̃i/M=58.8.

3.4.4 Conformal and disformal case C 6= const

We now move to the case where the conformal coupling is not constant, so both conformal and

disformal effects are turned on. For concreteness we consider the same conformal coupling as that
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Figure 3.4: Scalar field as a function of temperature. The initial conditions chosen are ϕi = 0.2
and ϕ′i = 0.002. These solutions of Eqs. (3.53) and (3.54) correspond to the expansion rates shown
in the bottom left plot in Figure 3.2. Reprinted with permission from "D-brane disformal coupling
and thermal dark matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Figure
5, p. 10. Copyright American Physical Society.

studied in chapter 2, which is given by (2.61) as

C(ϕ) = (1 + b e−β ϕ)2 , (3.56)

with the values b = 0.1, β = 8. We have also analysed other functions such asC = (b ϕ2+c)2 with

b = 4, 8, 15, c = 1. However it is harder to find numerical solutions for this and other functions,

which satisfy the phenomenological constraints. In those cases, the effect on the expansion rate H̃

was smaller with respect to the case where C is given by (3.56).

As mentioned in section 3.4.1, the conformal term acts as an effective potential, or force, in

(3.45), given by Eq. (3.46). This effective force can be neglected when the factor fC = 3H2γ−1B
M4C2κ2

is much larger than 1, as can be seen from (3.45). In this regime, the evolution of the scalar field

is given by a flat effective potential, and the scalar field stays approximately constant. When fC

is becomes of order 1 or smaller and ω̃ 6= 1/3, the evolution of the scalar field is driven by the

effective potential (3.46) and by the Hubble friction term.
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Figure 3.5: Modified expansion rate for the pure disformal case, C = 1, for larger values of M as
compared to Fig. 3.2. For these plots, ϕi = 0.2 and ϕ′i = 2 × 10−5. Reprinted with permission
from "D-brane disformal coupling and thermal dark matter” by B. Dutta, E. Jimenez, I. Zavala,
2017. PhysRevD.96.103506, Figure 6, p. 11. Copyright American Physical Society.
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Figure 3.6: Evolution of the factor f as a function of temperature for C = const case (left) and
C 6= const. (fC , right). The initial conditions chosen in the left plot are shown in Figure 3.2, while
in the right plot ϕi = 0.2 and ϕ′i = −0.004. Reprinted with permission from "D-brane disformal
coupling and thermal dark matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506,
Figure 7, p. 12. Copyright American Physical Society.

For the conformal coupling (3.56), the effective potential allows for an interesting behavior,

according to the choice of initial conditions chosen 2.4.1. That is, for negative initial velocities,

ϕ′i < 0, the scalar field will start rolling up the effective potential towards smaller values. After

reaching a maximum point, it will turn back down the effective potential, eventually reaching its

final value. This behavior in the scalar field sources a nontrivial behavior in C and (importantly)

its derivative α, and therefore in the modified expansion rate H̃ . Indeed, when C 6= const., the

speed-up factor, ξ, becomes

ξ =
κ

κGR

C1/2γ3/2

B1/2
[1 + α(ϕ)ϕ′] . (3.57)

It is not hard to see that for the initial conditions above, due to the factor inside the parentheses,

ξ can become less than one during the evolution. Recalling that ξ = H̃/HGR, ξ < 1 implies that

H̃ < HGR, as shown in the explicit solutions below.

Let us now take a closer look at the evolution of fC with temperature. Numerically, we found

that when fC & 1 it behaves as fC(T̃ ) w 3geff (T̃ )

10

(
T̃
M

)4

. But when fC < 1 then it evolves as

fC(T̃ ) w h(T̃ )
3geff (T̃ )

10

(
T̃
M

)4

, where h(T̃ ) is a function that measures the enhancement of H̃ ,
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Figure 3.7: Scalar field as a function of temperature for different values of M . The conformal
coupling is (1 + 0.1 e−8ϕ)2 and the initial conditions chosen are ϕi = 0.2 and ϕ′i = −0.004.
These solutions of Eqs. (3.44) and (3.45) correspond to the expansion rates shown in the right
plot of Figure 3.8. Reprinted with permission from "D-brane disformal coupling and thermal dark
matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Figure 8, p. 12. Copyright
American Physical Society.

which is larger than 1 and depends on the scale M (see right plot in Figure 3.6). When fC � 1,

the effective force is negligible and the scalar field stays roughly constant. As fC decreases and

approaches and/or becomes smaller than 1, the effective force takes over the evolution of the scalar

field. The velocity of the scalar field starts decreasing (we use small negative velocities), and

for suitable values, the scalar field goes up the effective potential and comes back down again as

described above.

In Figure 3.7 we plot the full numerical solution for the scalar field for ϕi = 0.2 and an initial

velocity ϕ′ = −0.004. The red, green and blue curves (scale masses smaller than T̃i = 1000 GeV)

show the scalar field going up the effective potential toward smaller values of the field, and then

rolling down its terminal value., while for the brown curve (M =1000 GeV), the scalar field stays

almost constant because for this value of M its initial velocity is not negative enough to move the

field up the effective potential.

The effect of the scalar field on the modified expansion rate is shown in Figure 3.8 (the black
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Figure 3.8: Modified expansion rate for the case C = 1 + 0.1e−8ϕ. The initial value of the scalar
field for all the curves is ϕi = 0.2. Also, ϕ′i = −0.004 for the plot on the left and ϕ′i = −0.4 for
the plot on the right. Reprinted with permission from "D-brane disformal coupling and thermal
dark matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Figure 9, p. 13.
Copyright American Physical Society.

straight line is HGR). The left plot shows H̃ corresponding to the scalar field solutions in Figure

3.7. For these solutions, the factor fC is initially much bigger than 1 and as the temperature

decreases it passes one (around 200 GeV) and keeps decreasing to very small values. For some

values of M , the scalar field goes up and down the effective potential, producing the enhancement

and the little notch in H̃ (blue), where ξ < 1 as explained above. On the other hand, in the right

plots, fC is initially of order 1 and then decreases to negligible values. The initial velocity used

(ϕ′ = −0.4) is sufficiently negative to produce the enhancement and notch in H̃ for some of the

M values (green and blue).

Let us mention another point about the right plot in Figure 3.8. For the brown curve corre-

sponding to M = 5000 GeV, the enhancement is very small, and since the factor fC decreases as

the mass scale M increases, choosing larger values of M would give a similar result, for the same

choice of initial conditions. Indeed, as M → ∞, fC = 3H2γ−1B
M4C2κ2

→ 0 and we recover the pure

conformal case in (3.45). Notice that the last term in this equation vanishes when M increases,

since γ → 1 as M increases. So, by dropping all terms proportional to fC and the last term in

(3.45) ones recovers the master conformal case equation, (2.57), studied in section 2.4. Thus, for
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a very large value of M , we will recover the results of section 2.4, by suitably changing the initial

conditions for ϕi and ϕ′i.

Let us finally comment on the differences between the present case (conformal plus disformal)

and the pure disformal and pure conformal cases, where there is no derivative interaction. We saw

in the previous subsection that in the pure disformal case the enhancement in the expansion rate

can be produced at any temperature (see Figure 3.5), by suitably changing the value of the scale

M . However, in the present C 6= 1 case, this does not happen at any scale since ω 6= 1/3 is needed

and we get ω 6= 1/3 when SM particles become nonrelativistic. This is due to the last term in

(3.45), which makes the evolution of ϕ′ go to zero very fast, effectively making γ ∼ 1 throughout

the evolution and thus an ineffective disformal enhancement. However, new physics at a higher

scale causing a change in ω̃ can introduce an enhancement at that scale. This will be similar to the

case with the additionalM scale associated with the D-brane models. The conformal enhancement

is effective so long as the effective potential (3.46) is active, that is, whenever ω 6= 1/3 (see Figure

2.5).

3.5 Post-inflationary string cosmology

The period after the end of inflation, from reheating up to the onset of BBN remains largely un-

constrained. Let us now connect our results with a post-inflationary toy model of string cosmology

and discuss the implications in terms of the parameters of the theory.

As described in the introduction of this chapter, we imagine a toy model where matter is cou-

pled conformally and disformally to a scalar field, associated to an overall position of a (stack of)

D-brane(s) in the internal six-dimensional compact space in a warped type IIB string compacti-

fication. In this case, we can relate the scale M to the tension of a D3-brane T3 (for example),

and thus to the string coupling gs and the string scale Ms (or the six-dimensional volume V6) as

M = T
1/4
3 = Ms(2πg

−1
s )1/4. The pure disformal case C = 1 is very interesting and would cor-

respond to a large-volume compactification, where the warping due to the presence of fluxes can

be ignored [47, 48]. In this case, the lowest value we used for M that is relevant for the DM relic

abundance (as we will see in the next chapter) was ∼ 10 GeV and the largest (with a large effect)
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was M ∼ 300 GeV. For string couplings of order gs ∼ 10−4, these give string scales ∼ 1 − 20

GeV and thus exponentially large volumes V6 ∼ 1025 − 1027, that is, a very low string scale and

very weakly coupled compactification. On the other hand, for larger values of M , or larger val-

ues of the string scale, the enhancement on the expansion rate will occur earlier in the universe’s

evolution (see Fig. 3.5). For example, the largest value we used, M ∼ 1010 GeV, for gs ∼ 10−4

would give Ms ∼ 109 GeV, volumes of order V6 ∼ 1010 and the expansion enhancement occurs

at around T̃ ∼ 1010 GeV. Therefore, depending on the string scale, coupling and compactification,

we may expect the early pre-BBN cosmology to be affected at different epochs with interesting

consequences for the post-inflationary string cosmological evolution. This will also be connected

to string inflation, which usually requires large string scales (see Ref. [49] for a review).

Of course a more realistic model may involve, for example, other parameters of the theory

in the scale M (due for example to higher-dimensional D-branes wrapping the internal space),

nonuniversal couplings among the scalar (or scalars) to SM matter and DM as briefly discussed

in Ref. [12] for the pure conformal case, etc. However, we find it very interesting that scalar

couplings present in string theory can give important predictions for the post-inflationary evolution

after string inflation.

Let us finally stress that the cosmological implications of conformal and disformal couplings

in scalar-tensor theories are in any case very interesting from a more phenomenological point of

view. Here we have taken a further step in making progress to address these implications and have

presented the disformal effects for the first time.
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4. DARK MATTER RELIC ABUNDANCES IN SCALAR-TENSOR THEORIES1

A popular framework to understand the origin of DM is the thermal relic scenario. In this

scenario, at very early times when the universe was at a very high temperature, thermal equilibrium

was obtained and the number density of DM particles χ was roughly equal to the number density

of photons. During equilibrium, the dark matter number density decayed exponentially as neqχ ∼

e−mχ/T for a non-relativistic DM candidate, where mχ is the mass of the DM particle χ. As the

universe cooled down as it expanded, DM interactions became less frequent and eventually, the

DM interaction rate dropped below the expansion rate (Γχ < H). At this point, the density number

froze-out, and the universe was left with a “relic" of DM particles.

Therefore, the dependence of the number density at the time of freeze-out is crucial to deter-

mine the DM relic abundance. The longer the DM particles remain in equilibrium, the lower its

density will be at freeze-out and vice-versa. In the standard ΛCDM scenario, particle freeze-out

happens during the radiation era and DM species with weak scale interaction cross-section freeze-

out with an abundance that matches the current observed value. The weakness of the interactions

is reflected in the predicted thermally-averaged annihilation cross section, 〈σv〉, which is around

3.0 × 10−26cm3s−1. Despite such a small value, the Fermi-LAT and Planck experiments have

been exploring upper bounds on 〈σv〉 (see [15, 16]). From observations, it appears that the anni-

hilation cross-section can be smaller than the thermal average value for lower dark matter masses

(≤ 100 GeV), whereas an annihilation cross-section larger than the thermal average value can still

be allowed for larger DM mass.

If, from future measurements, 〈σv〉 6= 3.0×10−26cm3s−1 is established, what can we say about

the origin of the dark matter? Can it still be the thermal dark matter or do we need non-thermal

origin of dark matter? In the case of non-thermal origin, the DM can arise from the decay of a

1Sections 4.1 and 4.2 of this chapter are reprinted with permission from "Dark matter relics and the expansion rate
in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06, 032. Copyright SISSA Medialab Srl.
All rights reserved. Section 4.3 of this chapter is reprinted with permission from "D-brane disformal coupling and
thermal dark matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506, Copyright American Physical
Society.
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heavy particle, e.g., moduli, and can satisfy the DM content with any value of 〈σv〉. The primary

motivation of this chapter is to show that the DM content can still have a thermal origin with larger

or smaller 〈σv〉 by utilizing non-standard cosmology.

4.1 Impact of the modified expansion rate on relic abundances

After presenting the ST models in chapters 2 and 3, and how the presence of the scalar field

changes the cosmic evolution of the universe, we are ready to discuss the impact of the modified

expansion rates on the relic abundance of dark matter species. For a dark matter species χ with

mass mχ and annihilation cross-section 〈σv〉, where v is the relative velocity, the dark matter

number density nχ evolves according to the Boltzmann equation

dnχ
dt

= −3H̃nχ − 〈σv〉
(
n2
χ − (neqχ )2

)
, (4.1)

where, as we have discussed above, the relevant expansion rate is the Jordan frame one, which

can give interesting effects due to the presence of the scalar field. Further neqχ is the equilibrium

number density. We can rewrite this equation in terms of x = mχ/T̃

dY

dx
= − s̃〈σv〉

xH̃

(
Y 2 − Y 2

eq

)
, (4.2)

where, Y = nχ
s̃

, s̃ = 2π
45
gs(T̃ )T̃ 3.

4.2 Dark Matter relics in the pure conformal scenario

In this section, we discuss the modifications to the DM relic abundances due a faster-than-

usual expansion rate, which is caused by the presence of a scalar field coupled conformal and

disformally to matter. In particular, we study the effect of the expansion rate, H̃Conformal, discussed

in chapter 2, which is shown in Figure 2.6. Also, at the end of this section, we comment the effect

of H̃Disformal presented in the same figure.

Numerical solutions to (4.2), with the expansion rate H̃Conformal shown in Figure 2.6, were

found for dark matter particles with masses ranging from 5 GeV to 1000 GeV. For instance, we
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Mass (GeV) 〈σv〉Conformal(×10−26cm3/s) 〈σv〉Standard(×10−26cm3/s)
1000 9.57 2.23
130 1.68 2.04

Table 4.1: Annihilation cross-section for masses of 1000 GeV and 130 GeV in the conformal and
standard scenarios.

show solutions in Figures 4.1 and 4.2 for two different masses. As we can see from (4.2), the

annihilation cross-section influences the evolution of the abundance Y . The current value of Y

determines the present dark matter content of the universe. This can be seen clearly by recalling

the current value of the energy density parameter Ω0 = ρ0
ρc,0

= mY0 s0
ρc,0

, where ρc,0 and s0 are the

well-known current values of the critical energy density and the entropy density of the universe,

respectively. So, for every single mass, the thermally-averaged annihilation cross section, 〈σv〉,

was chosen such as the current DM content of the universe is 27 %, so Ω0 = 0.27.

In Figure 4.3 we show the annihilation cross-section, 〈σv〉Conformal, found for all masses and

compare it to the annihilation cross sections for the standard cosmology model, 〈σv〉Standard. As

it is shown, for large masses, 〈σv〉Conformal is larger than 〈σv〉Standard, up to a factor of four. As

the mass decreases 〈σv〉Conformal decreases up to the point where it is smaller than 〈σv〉Standard.

Then, for masses smaller than 100 GeV, 〈σv〉Conformal ≈ 〈σv〉Standard. Thus, we have found that

the annihilation cross-sections can be larger or smaller than the thermal average cross-section. Just

to give an example of larger and smaller cross-section, in Table 4.1 we compare the numerical

values of 〈σv〉Conformal and 〈σv〉Standard for two dark matter masses, 1000 GeV and 130 GeV.

Figures 4.1 and 4.2 show the evolution of the abundance Ỹ (x) for DM particles with masses

130 GeV and 1000 GeV, respectively. These figures also include the abundance YGR(x) calculated

in the standard cosmology model and the equilibrium abundance YEq(x).

The temperature evolution of the abundance for a 130 GeV mass is not noticeably affected

by the presence of the scalar field φ. In this case, Ỹ and YGR are almost indistinguishable from

one another. On the other hand, the scalar field φ has a prominent effect on the temperature
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Figure 4.1: Evolution of the abundance as temperature changes for a DM particle of mass 130
GeV. Reprinted with permission from "Dark matter relics and the expansion rate in scalar-tensor
theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06, 032, Figure 5, p. 16. Copyright
SISSA Medialab Srl. All rights reserved.

evolution of the abundance for a 1000 GeV DM particle. First of all, the freeze-out happens

earlier than expected due to the enhancement of the expansion rate, H̃ . Then, an unusual effect

appears. As the temperature decreases, H̃ becomes smaller than the interaction rate2 Γ̃ and a short

period of annihilation starts again called “re-annihilation”. The re-annihilation process reduces the

abundance of dark matter until a second and final freeze-out happens. After this final freeze-out,

the abundance remains constant.

The re-annihilation phase can be described better by discussing the relation between the ex-

pansion rate H̃ and the interaction rate Γ̃. The first freeze-out happens when Γ̃ becomes smaller

than H̃ which can be seen in Figure 4.4 to happen around a temperature of 50 GeV for a 1000

GeV particle. Then, near to 7 GeV, H̃ drops below Γ̃, and so the re-annihilation process starts and

goes on until the second freeze-out occurs. Around 2 GeV H̃ becomes much larger than Γ̃ and so

the abundance becomes almost constant. Our analysis shows that, as found in [7], re-annihilation

2The interaction rate is defined as Γ̃ ≡ 〈σv〉Conformal s̃ Ỹ .
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Figure 4.2: Abundance for a mass of 1000 GeV. Reprinted with permission from "Dark matter
relics and the expansion rate in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017.
JCAP no.06, 032, Figure 6, p. 17. Copyright SISSA Medialab Srl. All rights reserved.
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Figure 4.3: Annihilation cross section as function of mass. The presence of the scalar field en-
hances the 〈σv〉 for large masses, and diminishes 〈σv〉 for masses around 130 GeV, while small
mass the effect is almost negligible. Reprinted with permission from "Dark matter relics and the
expansion rate in scalar-tensor theories” by B. Dutta, E. Jimenez, I. Zavala, 2017. JCAP no.06,
032, Figure 7, p. 17. Copyright SISSA Medialab Srl. All rights reserved.

occurs for this particular choice of the conformal factor. However, we found that when fully inte-

grating the master equation, the re-annihilation occurs only for very large masses of the dark matter
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Figure 4.4: Expansion rate (as in Figure 2.3) and interaction rate as function of temperature. The
interaction rate, Γ̃, is given by 〈σv〉Conformal s̃ Ỹ . We use Ỹ from Figures 4.1 and 4.2 and the
values of 〈σv〉Conformal presented previously for 130 GeV and 1000 GeV masses. Reprinted with
permission from "Dark matter relics and the expansion rate in scalar-tensor theories” by B. Dutta,
E. Jimenez, I. Zavala, 2017. JCAP no.06, 032, Figure 8, p. 18. Copyright SISSA Medialab Srl.
All rights reserved.

particles (in [7] it was found for m = 50GeV). On the other hand, in [12], no re-annihilation was

found3, which was probably due to the initial conditions used and the values of the DM masses

explored.

We have seen that the enhancement of H̃ allows bigger values of 〈σv〉 for particles with masses

within a certain range, and also, the notch of H̃ implies smaller 〈σv〉 for particles with masses

within a small interval (see Figure 4.3). Thus, the location and shape of the notch determine for

which masses the annihilation cross section is smaller. In the disformal scenario (see H̃Disformal in

Figure 2.6), the notch has been moved to higher temperatures, which allows particles with higher

masses to have smaller and larger annihilation cross sections for the observed DM content.

3Although [12] used a different conformal factor to [7], we expect the re-annihilation effect to be present also in
that case.
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4.3 Dark Matter relics in the disformal D-brane coupling scenario

Since we computed the modified expansion rate in the disformal D-brane coupling scenario in

Chapter 3, we can now move on to discuss its impact and implications on the dark matter relic

abundance and cross section. In this section, we focus on the case C = const. since the C 6= const.

case gives similar results to those studied in the previous section, as we discuss below.

As a concrete example, we solve (4.2) numerically, for the expansion rate corresponding to

M = 12 GeV shown in the top left plot of Figure 3.2 and for dark matter particles with masses

ranging from 10 GeV to 5000 GeV. Other choices of M would give similar results. In Figure 4.5

we show the solution for a DM particle of mass mχ = 100 GeV. In this plot, we also include

the abundance YGR(x) calculated in the standard cosmology model and the abundance when dark

matter particles are in thermal equilibrium, YEq(x).

Figure 4.5: Abundance Ỹ for a dark matter particle with a mass of 100 GeV. Reprinted with
permission from "D-brane disformal coupling and thermal dark matter” by B. Dutta, E. Jimenez,
I. Zavala, 2017. PhysRevD.96.103506, Figure 10, p. 14. Copyright American Physical Society.
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In the plot, we can see how the modification of the expansion rate gives rise to an earlier

than standard freeze-out (see Figure 4.5 around x = 20). This is due to the enhancement of the

expansion rate H̃ . As the temperature decreases (x increases), H̃ becomes comparable to the

interaction rate4 Γ̃ and for a small period, between x = 20 and x = 1000, the abundance decreases

slowly until it becomes constant. It is interesting to notice that a similar behavior was found in

[14], where an extra scalar species drives a faster than usual expansion rate, giving rise to a similar

behavior in the relic abundance. The comparison between H̃ (brown) and Γ̃ (purple) can be seen

in Figure 4.6. Between around 5 GeV (x = 20) and 0.1 GeV (x = 1000), H̃ and Γ̃ are close to

each other as temperature decreases.

In Figure 4.6, we also show the interaction rate for two other DM particle masses, 600 GeV

(green) and 2500 GeV (red). Notice that for the three masses shown, once the interaction rate

becomes smaller than the expansion rate H̃ (brown), it always stays smaller than it. Therefore,

there is no reannihilation effect. However, reannihilation can occur for the C 6= const. case, where

after the first freeze-out Γ̃ can overcome H̃ due to ξ < 1, and later become smaller again.

Let us now turn our attention to the dark matter annihilation cross sections that we have used

when solving the Boltzmann equation (4.2). To determine 〈σv〉 numerically, we required that the

observed dark matter density today be Ω0 = 0.27. The present dark matter content of the universe

is determined by the current value of the relic abundance. This can be obtained from the current

value of the energy density parameter Ω0 = ρ0
ρc,0

= mY0 s0
ρc,0

. Here ρc,0 and s0 are the well-known

current values of the critical energy density and the entropy density of the universe, respectively.

The resulting annihilation cross sections, found in this way, are shown in Figure 4.7 for dark

matter masses between 10 GeV and 5000 GeV. In this figure, we also show the effect that different

values of M have on 〈σv〉. The values of M chosen correspond to the expansion rates H̃ shown

in Figure 3.2. We compare this to the annihilation cross sections 〈σv〉GR predicted by the standard

cosmology model (black line), which is around 2.1× 10−26cm3/s.

The behavior of the cross section 〈σv〉 in Figure 4.7 shows an enhancement with respect to the

4The interaction rate is defined as Γ̃ ≡ 〈σv〉 s̃ Ỹ .
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Figure 4.6: Expansion rate corresponding to M = 12 GeV shown in the top left plot of Figure 3.2,
and interaction rates of 100 GeV (purple), 600 GeV (green) and 2500 GeV (red) GeV DM particle
masses as a function of temperature. The interaction rate Γ̃ is given by 〈σv〉s̃Ỹ . Reprinted with
permission from "D-brane disformal coupling and thermal dark matter” by B. Dutta, E. Jimenez,
I. Zavala, 2017. PhysRevD.96.103506, Figure 11, p. 14. Copyright American Physical Society.

standard case, with a maximum that moves towards larger DM masses as the scale M increases.

Therefore, the smaller the scaleM the larger the annihilation cross section 〈σv〉 for the DM masses

shown in the figure.

As was discussed, a modification to the expansion rate of the universe prior to BBN has tremen-

dous consequences on the abundance, Ỹ , of DM particles. This modification implies that the

thermally-averaged annihilation cross section, 〈σv〉, differs significantly from the one predicted by

the standard cosmological model, which is approximately 3.0× 10−26cm3/s.
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Figure 4.7: 〈σv〉 as function of dark matter particle mass. 〈σv〉GR predicted by the standard cos-
mology model correspond to the black line, while the colored lines correspond to 〈σv〉 predicted by
using the expansion rates (shown in Figure 3.2), representing mass scales of M = 12 (brown), 34
(red), 106 (green) and 333 GeV (blue). Reprinted with permission from "D-brane disformal cou-
pling and thermal dark matter” by B. Dutta, E. Jimenez, I. Zavala, 2017. PhysRevD.96.103506,
Figure 12, p. 14. Copyright American Physical Society.
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5. LEPTOGENESIS IN A FASTER-THAN-USUAL UNIVERSE1

The cosmological baryon asymmetry is very elegantly explained via the leptogenesis mecha-

nism [26] according to which an initial asymmetry is generated in lepton number and then partly

converted in a baryon number asymmetry by B + L violating sphaleron processes [27, 28] which,

above the temperature of the electroweak (EW) phase transition, proceed with in-equilibrium rates

(for reviews on the leptogenesis mechanism see [29, 30]). A very attractive feature of the standard

leptogenesis realization based on the type-I seesaw [50, 51, 52, 53] is that it provides a semi-

quantitative relation connecting the out-of-equilibrium condition [54] for the decays of the heavy

right-handed (RH) neutrinos with the light neutrino mass scale. RH neutrino decays can be suf-

ficiently out of equilibrium if mν ∼ 10−2±1 eV, which is in beautiful agreement with neutrino

oscillation data. On the other hand, type-I seesaw leptogenesis has also an unpleasant facet. A

lepton asymmetry is preferably generated in the decay of the lightest RH neutrino N1 since they

generally occur at temperatures when the dynamics of the heavier N2,3 neutrino is no more effi-

cient. However, the CP asymmetry in N1 decays is bounded by the following relation [31]:

|ε1| ≤
3

16π

M1

v2

∆m2
⊕

m1 +m3

, (5.1)

whereM1 is theN1 mass, v ∼ 174 GeV is the SM electroweak (EW) breaking vacuum expectation

value (VEV), ∆m2
⊕ ∼ 2.4×10−3 eV2 is the atmospheric neutrino mass square difference, andm1,3

are the lightest and heaviest light neutrino masses, which are bounded by cosmological data to lie

not much above ∼ 10−1 eV. Since a minimum CP asymmetry |ε1| >∼ few × 10−7 is required to

account quantitatively for the observed baryon asymmetry, the N1 mass cannot lie much below

109 GeV.2 The conclusion that the CP asymmetry is too small to explain the baryon asymmetry if

1The contents of this chapter appear in "A cosmological pathway to testable leptogenesis” by Bhaskar Dutta, Chee
Sheng Fong, Esteban Jimenez and Enrico Nardi. arXiv: 1804.07676. This article was submitted to JCAP.

2The bound (5.1) can be somewhat weakened if the RH neutrinos masses are not sufficiently hierarchical [55], if
N2,3 decays also contribute to the generation of a lepton asymmetry [56], or if flavor effects [57, 58, 59] play a relevant
role [60, 61]. However, the main conclusion regarding non-testability of the type-I seesaw leptogenesis model does
not change.
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the leptogenesis scale is too low, implies that direct tests of the standard type-I seesaw leptogenesis

are out of experimental reach. Since the argument does not involve any cosmological input, it holds

regardless of the assumed cosmological model.

In more generic realization of leptogenesis (5.1) does not necessarily hold: the simple rela-

tion between the CP asymmetries and the light neutrino masses is in fact quite specific of the

type-I seesaw and is often lost in other models. The most direct way to relax this bound is to

rescale v in (5.1) and this can be realized in a model where neutrinos only couple through a neu-

trinophilic Higgs which obtains a VEV vν � v [32, 33]. Other examples are the inert scalar

doublet model [62] complemented with heavy Majorana neutrinos [63], as well as many other

models, see [64, 65, 61, 66, 67, 68, 69] for a sample list. Still, the vast majority of models that

attempt to generate the baryon asymmetry from heavy particle decays are subject to an additional

constraint which, although less tight than the one implied by (5.1), is much more general. This con-

straint stems from a general relation between the strength of the washout scatterings which tend

to erase any lepton number asymmetry present in the thermal bath, and the CP asymmetries in the

decays of the heavy states. To our knowledge, in standard cosmologies only models which invoke

a resonant enhancement of the CP asymmetries [70, 71, 72, 68, 73] can evade the corresponding

bound and bring leptogenesis from heavy particle decays down to a testable scale [74].

In this chapter we point out that this conclusion can be avoided if, in the very early stages, the

cosmological history of the Universe is described by an ST theory [75, 76, 77] rather than by GR.

As we have seen, the cosmic expansion rate is boosted in both the pure conformal case and the

disformal D-brane coupling scenario. The magnitude of the enhancement depends on boundary

conditions and it can be a few orders of magnitude larger compared to the standard GR expansion.

We will make use of this enhancement in the expansion rate in our study of leptogenesis.

Differently, from the case of DM, for which the typical decoupling temperature falls in the

few GeV range, the generation of a baryon asymmetry via leptogenesis must occur above the EW

scale before the EW sphaleron processes get out of equilibrium. Since a leptogenesis scale up to a

couple of TeV might still be within the reach of collider tests, we are interested in modifications of
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the standard cosmology at temperatures in the range 100 GeV− few TeV. Indeed, due to the larger

scale in the game, we find that in the framework of conformally coupled ST theories the modified

expansion does allow to lower the scale for successful leptogenesis down to M1
<∼ 1 TeV. Hence,

in our analysis, we will mainly focus on conformally coupled ST theories since this conclusion

holds also for ST theories with disformal couplings.

5.1 Constraints on the leptogenesis scale

The quantum field theory conditions required in order that loop diagrams can generate a lepton

(L) number (or any other global quantum number) violating CP asymmetry in the decays of an

heavy state X are: (i) complex couplings between X and the particles running in the loop (say

Y and Z); (ii) a CP even phase from the loop factors, which only arises if the Y, Z propagators

inside the loops can go on-shell; (iii) L violation inside the loop. Condition (ii) then implies that Y

and Z can also participate as external asymptotic states in scattering processes, and condition (iii)

implies that these scatterings are necessarily L violating. This means that decay CP asymmetries

unavoidably imply L violating washout scatterings [63, 65]. Since the same couplings enter both

in the expression for the CP asymmetries and for the washout scattering rates, it is not surprising

that a quantitative relation between CP asymmetries and scattering rates can be worked out. A

general expression for this relation has been obtained in [65] and reads:

Γ(Y Z ↔ Ȳ Z̄) ≈ 64

π
T

(
T

MX

)n
ε2X , (5.2)

where Γ is the rate of the ∆L = 2 washout scatterings, εX is the CP asymmetry in X decays,

and n = 0 for a scalar X decaying into two scalars Y, Z; n = 2 for a fermion X decaying

into a fermion and scalar pair, and n = 4 for a scalar X decaying into two fermions. Note that

(5.2) relates scattering washout rates to CP asymmetries without any reference to the cosmological

model. In relation to successful leptogenesis, cosmology enters through the requirement that at the
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relevant temperature T ∼MX the washout rates do not attain thermal equilibrium:

Γ(Y Z ↔ Ȳ Z̄) <∼ H̃(T )
∣∣
T∼MX

, (5.3)

where we parametrize the deviations of the expansion in terms of a temperature dependent function

ξ(T ) multiplying the canonical GR expansion rate H(T ) = 1.66
√
g∗ T

2/MP (with g? the relativis-

tic degrees of freedom and MP = 1.22 × 1019 GeV), namely H̃(T ) = ξ(T )H(T ) (two examples

of ξ(T ) are given in Figure 5.1) .

In the relevant temperature range T ∼MX the out-of-equilibrium condition (5.3) yields:

MX
>∼ 1.2MP

ε2X
ξ(MX)

. (5.4)

Assuming as a benchmark value εX >∼ 10−7 as the lowest possible CP asymmetry able to explain

nb/nγ ∼ 10−10, we see that standard cosmology with ξ(T ) = 1 yields the (conservative) limit

MX
>∼ 1.4 · 105 GeV, so that in any generic model of leptogenesis from heavy particle decays

the relevant scale lies well above experimental reach. As an example, we see from the left plot of

Figure 5.1 that in modified ST cosmologies the function ξ(T ) can remain of order 102 in an interval

centered at T ∼ TeV and spanning about two orders of magnitude in z = TeV/T . Because of

the boosted expansion, in the relevant temperature range, the dynamical processes that govern

leptogenesis, in particular, the ∆L = 2 washout processes discussed above, can more easily go out

of equilibrium, rendering viable scales as low asMX . TeV for which direct tests can be foreseen.

5.2 A few comments on the modified expansion rate and the general Boltzman equation for

RH neutrinos

In Section 2.4 we described the pure conformal scenario in ST theories and mentioned that the

modified expansion rate depends on the initial conditions of the scalar field and initial temperature,

the effective potential, and the particle content of the cosmic plasma (through the equation of state

parameter ω̃).
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In general, both the initial position and velocity of the scalar field can take any positive or neg-

ative values. The most interesting result arises when considering negative velocities. In this case,

the field will start rolling-up the effective potential towards smaller values of the field, eventually

turning back down and moving towards its final value. So, if the field starts at a positive value, and

given a sufficiently negative initial velocity, it will move towards negative values until its velocity

becomes zero and then positive again, as it rolls back down the effective potential. This change in

sign for the scalar field will produce a peak in the conformal coupling, which will give rise to a

non-trivial modification of the expansion rate ξ 6= 1 (see (2.53)). This particular behavior is shown

again, for a new set of initial conditions, in Figure 5.1.

The equation of state parameter ω̃ plays an important role in locating the temperature at which

the speedup factor, ξ, drops back to 1. Slight variations from the radiation dominated value,

ω̃ = 1/3, appear when particles become non-relativistic. So, to calculate ω̃, as discussed in Section

(2.4.2), one has to take into account all the SM particles and, depending on the specific SM exten-

sions one is dealing with, one would add RH neutrinos, supersymmetric partners or other types of

heavy species.

Another interesting scenario yielding modified Hubble parameters is the disformal D-brane

coupling scenario, which was studied extensively in Chapter 3. In Figure 5.1 we also present

the speedup factor ξ in this scenario (thin red lines). Recall, M plays the most important role

in the location and shape of ξ. The maximum ξ happens close to a temperature equal to M . It

is interesting to notice that by rescaling M , ξ moves to a higher (or lower) temperature without

changing shape.

Due to the fact that, as in GR, also in ST cosmologies the total entropy is conserved, adapting

the BE for leptogenesis to ST cosmologies is rather straightforward. Considering just the BE for

the evolution of the RH neutrinos density nN including only decays and inverse decays will suffice

to illustrate this. Denoting with a the scale factor, the BE reads:

a−3d(nNa
3)

dt
= 〈ΓN〉(neq

N − nN) , (5.5)
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Figure 5.1: Two examples for the speedup factor ξ(z) for conformal (thick blue lines) and disformal
(thin red lines) scenarios, as a function of z = 1 TeV/T with T the temperature. Left plot: ξ(z) in a
conformal scenario with initial conditions (ϕi, ϕ

′
i) = (0.8,−1.83) and initial temperature 100 TeV,

and in a disformal scenario with (ϕi, ϕ
′
i) = (0.2,−2 × 10−6) and a mass scale M = 2.5 TeV.

Right plot: ξ(z) in a conformal and disformal scenario with initial conditions as before, but initial
temperature T = 105 TeV, and M = 2500 TeV for the disformal case.

where 〈ΓN〉 is the thermal averaged decay rate and neq
N the equilibrium density. We use the fiducial

variable z = MN/T with T the temperature, and write the time derivative as:

d

dt
= z

(
1

z

dz

dt

)
d

dz
= z

(
1

a

da

dt

)
d

dz
= zH̃

d

dz
. (5.6)

The second step relies on entropy conservation d(sa3)/dt = 0 with s ∝ T 3 the entropy density

which implies the usual temperature-scale factor relation T ∝ 1/a, while H̃ is the physical Hubble

parameter defined as the rate of change of the physical length scale. The rest is standard: denoting

by γN = neq
N 〈ΓN〉 the density of the reaction, and normalizing the particle number densities to the

entropic density as YN = nN/s we have:

dYN
dz

=
1

szH̃

(
1− YN

Y eq
N

)
γN =

1

szH

(
1− YN

Y eq
N

)
γN
ξ(z)

. (5.7)

In the second equation we have rewritten H̃ = H ξ(z) with H = HGR and ξ(z) > 1 the T -

dependent speedup factor, to put in evidence how in the BE its effect is equivalent to “slowing

down” the decay and inverse decay reactions, favoring the enforcement of the out-of-equilibrium
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condition.

In the next section, we will show how a simple (non-resonant) leptogenesis model, when em-

bedded in a non-standard cosmology characterized by a boosted expansion rate allows getting

around the constraint (5.4). It is interesting to remark that if a particle physics model can be ex-

perimentally established as responsible for the cosmological baryon asymmetry via (non-resonant)

baryogenesis via decays of TeV scale particles, this would constitute a direct evidence of non-

standard cosmology in a temperature range unreachable by all other cosmological probes (DM

freeze-out, EW phase transition, etc.).

5.3 A simple test model

Besides the generic constraint in (5.4), the type-I (non-resonant) leptogenesis is subject to

(5.1) from neutrino mass. In order to get around the latter, a simple way is to assume that the

VEV responsible for the neutrino masses is much smaller than the full EW breaking VEV: vν �

v ∼ 174 GeV. By requiring a sufficient CP asymmetry ε1 & 10−7, the scale M1 ∼ 1 TeV can be

reached for vν <∼ 0.2 GeV. One has to introduce an ad hoc Higgs field with 〈Hν〉 = vν coupled to

RH neutrinos Nj as λjαN̄jLαHν , and forbid the couplings with the standard Higgs H via some Z2

or U(1) symmetry (a U(1) softly broken might be preferable to avoid domain wall problems with

a spontaneously broken Z2). Such model exists, see for example [32], or [33] for various different

possibilities (in the last paper, Model Type I with m2
12 > 0 and λ5 = 0 is probably the best option).

Although the ‘neutrinophilic’ VEV model (we will denote it as vν-model) might not represent the

most elegant possibility, its structure remains very similar to the standard type-I see-saw model,

with the advantage that it minimizes the differences with respect to the standard leptogenesis case,

rendering it suitable as a test model to illustrate the effects of non-standard cosmologies.3 The

usual seesaw formula still holds:

mν ' λT
v2
ν

M
λ, (5.8)

3Some ∆L = 1 2 ↔ 2 washouts involving the top quark, like Q3LL ↔ NtR and Q3Lt̄R ↔ NL̄ will be absent,
since Hν does not couple to the top-quark. This has no major impact in determining the viable leptogenesis scale.
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and so does the Casas Ibarra parametrization of the Yukawa couplings:

λjα =
1

vν

√
MjRjβ

√
mβ(U †)βα , (5.9)

with Mj and mβ the heavy and light neutrino mass eigenvalues, U the neutrino mixing matrix, and

R a generic complex orthogonal matrix (RRT = I).

Let us consider (5.8). In the usual seesaw with the SM VEV v ∼ 174 GeV, to allow for a

low value of M while still ensuring mν
<∼ 0.1 eV, one has to take tiny Yukawa couplings λ, which

in turn imply tiny CP asymmetries.4 In the vν-model instead, the couplings λ can be large since

it is vν that is small, and thus the CP asymmetries can be also large. However, if the scale M1

is low, leptogenesis will occur when the Universe expansion is slower, and then the ∆L = 2

washouts LH ↔ L̄H̄ or LL ↔ H̄H̄ that are mediated by the same Yukawa couplings can attain

thermal equilibrium, realizing the situation in which leptogenesis cannot be successful because of

the constraint discussed in Section 5.1.

In order to illustrate these constraints in the GR, we show in Figure 5.2 the bounds on the light-

est RH neutrino mass M1 from leptogenesis in the vν-model as a function of washout parameter

defined as

K1 =
ΓN1

H

∣∣∣∣
T=M1

(5.10)

where ΓN1 = (λλ†)11M1

8π
is the total decay width of N1. Outside these regions, one cannot generate

sufficient baryon asymmetry. Notice that for K1 = 1, the effective neutrino mass is

meff ≡
(λλ†)11v

2
ν

M1

= 3.6× 10−8

√
g?

110.75

( vν
1 GeV

)2

eV. (5.11)

This implies that even in the strong washout regime K1 � 1, the lightest light neutrino remains

essentially massless i.e. m1 ≈ 0.

4One could arrange for cancellations in the matrix multiplications to keep the coupling λ sizable [78, 79]. However,
this requires exponential fine-tunings in the phases of the complex angles of the R matrix in (5.9) [80, 81] which,
moreover, unless protected by some specific symmetry, are unstable under quantum corrections [82].
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In Figure 5.2, the red/thick and blue/thin lines correspond respectively to values of vν = 1, 2

GeV.5 The solid lines are for the case of vanishing initial N1 abundance YN1(0) = 0 while dotted

lines for thermal initial N1 abundance YN1(0) = Y eq
N1

(0). The horizontal dashed lines refer to

the absolute lower bounds obtained for the respective vν if leptogenesis proceeds with YN1(0) =

Y eq
N1

(0) in the absence of washout (or in the weak washout regime K1 � 1). The lower and upper

bounds are respectively due to (5.1) and ∆L = 2 washout scattering discussed in Section 5.1.

Notice that one cannot lower the scale of M1 indefinitely by lowing vν , at some point, the washout

will be too strong to generate sufficient baryon asymmetry. This is the case for vν = 1 GeV where

no solution exists for the case of YN1(0) = 0. In this case, one arrives at lower bound on M1 of

few times 105 GeV in agreement with the estimation in Section 5.1.6

5.4 Boltzmann equations in modified cosmology

In the following, we will describe a particle X in term of abundance YX ≡ nX/s defined as its

number density nX normalized over entropic density s = 2π2

45
g?T

3. We will fix g? = 110.75 for the

SM with an additional (neutrinophilic) Higgs doublet. Taking into account the modification due to

speedup factor as discussed in (5.7), the BEs for YN1 and Y∆α with ∆α ≡ B
3
− Lα can be written

down as follows7

sξHz
dYN1

dz
= −γN1

(
YN1

Y eq
N1

− 1

)
, (5.12)

sξHz
dY∆α

dz
= −ε1αγN1

(
YN1

Y eq
N1

− 1

)
+

1

2
P1αγN1

(
Y∆`α

Yf
+
Y∆Hν

Yb

)
+γαα22

(
Y∆`α

Yf
+
Y∆Hν

Yb

)
+
∑
β 6=α

γαβ22

(
Y∆`α

2Yf
+
Y∆`β

2Yf
+
Y∆Hν

Yb

)
, (5.13)

where we have defined z ≡ M1

T
, Yf ≡ 15

8π2g?
and Yb ≡ 15

4π2g?
. In the above, Y∆`α and Y∆Hν refer

to abundances per gauge degrees of freedom. Explicitly, the total thermal averaged decay reaction

5The results are obtained from solving eqs. (5.12) and (5.18) by setting ξ = 1 and the heaviest neutrino mass
m3 = 0.05 eV. For further details, refer to Section 5.4.

6Our results for YN1(0) = Y eq
N1

(0) are also consistent with the estimation in refs. [32, 33].
7To avoid double counting in the BE for Y∆α

, we have subtracted off the CP-violating ∆L = 2 scattering involving
on-shell N1 and ignored the off-shell contribution [83, 84].
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Figure 5.2: The bounds on M1 for vν = 1, 2 GeV (red/thick, blue/thin lines) as a function of K1

defined in (5.10). Outside these closed regimes, one cannot obtain sufficient baryon asymmetry.
The solid lines are for zero initial abundance of N1 while dotted lines for thermal initial abundance
of N1. The horizontal dashed lines are the absolute lower bounds obtained for the respective vν
which correspond to having thermal initial abundance of N1 and no washout.

density γN1 is given by

γN1 =
∑
α

γN1→`αHν = neq
N1

ΓN1

K1(z)

K2(z)
, (5.14)

where Kn(z) refers to the modified Bessel function of second type of order n and the branching

ratio for N1 decay to lepton of flavor α as P1α ≡
γN1→`αHν

γN1
. The ∆L = 2 washout mediated by
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off-shell Ni is described by γαβ22 .8 In order to minimize the complication from flavor effects and

focus solely on the effect of ST cosmology, we choose the democratic flavor structure as follows

ε1e = ε1µ = ε1τ ≡
ε1
3
, (5.15)

P1e = P1µ = P1τ =
1

3
, (5.16)

γαβ22 ≡ 1

9
γ22, (5.17)

where ε1 ≡
∑

α ε1α and γ22 ≡
∑

αβ γ
αβ
22 . With the above assumptions, the BE for Y∆α becomes

sξHz
dY∆α

dz
= −1

3
γN1ε1

(
YN1

Y eq
N1

− 1

)
+

1

6
γN1

(
Y∆`α

Yf
+
Y∆Hν

Yb

)
+

1

9
γ22

(
Y∆`α

Yf
+
Y∆Hν

Yb

)
+

1

9
γ22

(
Y∆`α

Yf
+ 2

Y∆Hν

Yb
+

1

2

∑
β 6=α

Y∆`β

Yf

)
.(5.18)

For M2,3 �M1, the total CP parameter is given by [87]

ε1 ' − 3

16π

∑
j>1

Im
[(
λλ†
)2

1j

]
(λλ†)11

M1

Mj

, (5.19)

and using (5.9), one can derive the Davidson-Ibarra bound [31]

|ε1| ≤
3

16π

M1

v2
ν

(m3 −m1) ≡ εmax
1 , (5.20)

as introduced in (5.1) but with v → vν . We further parametrize the off-shell ∆L = 2 washout

mediated by Ni valid for T < Mi as follows

γ22 ≡
n

π3

Tr
[
mνm

†
ν

]
v4
ν

T 3 =
nM3

1

π3z3

∑
im

2
i

v4
ν

, (5.21)

8The ∆L = 1 scatterings involving gauge bosons are not considered since to consider them consistently, one also
needs to consider CP violation in them which will result in a small net effect [85, 86]. As for flavor changing but
∆L = 0 scatterings, their rates go as T 5

M4
i

for T < Mi which are less important than that of ∆L = 2 reactions which

go as T 3

M2
i

for T < Mi. Furthermore, in the following, we will consider democratic flavor structure where they are
either not relevant or in thermal equilibrium and can be dropped from the BEs.
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where n = 2
π2T

3. As shown in (5.11), the lightest light neutrino mass m1 can be neglected and we

can rewrite the above in term of (5.20) as follows

γ22 '
256n

9π

M1

z3
εmax,2

1 . (5.22)

From the above, we see that the ∆L = 2 washout is indeed proportional to εmax,2
1 as argued in

(5.2), so that M1 remains bounded from below by the general lower limit given in (5.4). As in

the standard type-I seesaw, also in the present case an upper bound on M1 exists, which follows

from the requirement that ∆L = 2 washout scatterings will not become too strong to erase the

asymmetry. (5.21) shows that once the neutrino mass scale mi is fixed, for each value of vν there is

a limiting upper value ofM1 for which γ22 remains sufficiently out of equilibrium. However, while

in the standard case this hints to a loose upper limit of order∼ 1014 GeV, due to the large hierarchy

vν/v <∼ 10−2 and to the quartic dependence on the VEV values, in the neutrinophilic VEV model

the corresponding constraint is much stronger.

For the spectator effects [88, 89], we consider the temperature regime T . 105 GeV where

all Yukawa interactions are in chemical equilibrium. We further assume that Hν does not carry a

conserved charge9 and we have


Y∆`e

Y∆`µ

Y∆`τ

 =
1

207


−64 5 5

5 −64 5

5 5 −64




Y∆e

Y∆µ

Y∆τ

 , (5.23)

Y∆Hν = − 2

23

(
Y∆e + Y∆µ + Y∆τ

)
. (5.24)

9This can be due to fast interactions induced by λ5

(
H†Hν

)2
in the scalar potential.
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Substituting the result above into (5.18) and summing over α on both sides, the BE becomes

sξHz
dY∆

dz
= −γN1ε1

(
YN1

Y eq
N1

− 1

)
+

1

6
γN1

(
− 6

23

Y∆

Yf
− 6

23

Y∆

Yb

)
+

1

9
γ22

(
− 6

23

Y∆

Yf
− 6

23

Y∆

Yb

)
+

2

9
γ22

(
− 6

23

Y∆

Yf
− 6

23

Y∆

Yb

)
= −γN1ε1

(
YN1

Y eq
N1

− 1

)
− 3

23
(γN1 + 2γ22)

Y∆

Yf
, (5.25)

where we have defined Y∆ ≡ Y∆e + Y∆µ + Y∆τ . In [90], assuming the SM, it was obtained that

the EW sphaleron processes freeze out at TEWSp = 132 GeV after the EW symmetry breaking at

Tc = 159 GeV. Assuming the EW symmetry breaking also happens before TEWSp in vν-model, we

have [91, 92]

Y∆B =
30

97
Y∆, (5.26)

excluding the contributions from heavy charged (neutrinophilic) Higgs and top quark.

5.5 Results

The asymmetry Y∆ can be parametrized in term of efficiency factor η = η(K1, vν ,m3,M1) as

follows

Y∆ = ε1Y
eq,0
N1

η, (5.27)

where Y eq,0
N1
≡ Y eq

N1
(0) = 45

π4g?
. The above parametrization is convenient because once we substi-

tute it into (5.25), for temperature-independent ε1, the BE becomes independent of ε1. The final

asymmetry is obtained by evaluating the final efficiency η = η(z → ∞). In the case with an

initial thermal abundance of N1, one saturates to the maximal efficiency η = 1 in the limit of weak

washout K1 � 1 and small ∆L = 2 washout. As we will see in more detail later, as M1 gets close

to the EW sphaleron freezeout temperature TEWSp, one might not be able to saturate the efficiency

factor because the baryon asymmetry will be frozen before all N1 can decay.
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Using (5.20) and (5.26), the maximal asymmetry is given by

Y max
∆B =

30

97

3

16π

M1m3

v2
ν

Y eq,0
N1

η. (5.28)

Setting Y max
∆B = Y obs

∆B = 8.7× 10−11, we can derive both upper and lower bounds on M1. Starting

from a very small M1 while keeping the ∆L = 2 washout under control, the CP parameter might

be too small and we need to increase M1 until Y max
∆B = Y obs

∆B , which gives us the lower bound

on M1. As we continue to increase M1, eventually the ∆L = 2 washout (5.21) will become too

strong until which we are no longer able to obtain sufficient baryon asymmetry and this gives us

an upper bound on M1. As we explain below (5.22), this upper bound is specific to the model we

have chosen due to neutrino mass constraint. In other words, from the following equation

M1η (K1, vν ,m3,M1) =
97

30

16π

3

v2
ν

m3

Y obs
∆B

Y eq,0
N1

, (5.29)

for a given vν and m3, we can have no solution, one solution, or two solutions for M1. The two

solutions will correspond to upper and lower bounds on M1. Notice that as we go to smaller M1,

the EW sphaleron freezeout temperature becomes relevant and we fix this to be TEWSp = 132 GeV

after which the value of baryon asymmetry will be frozen.

It is important to note the temperature where speedup happens is crucial for leptogenesis. As

discussed in Section 5.2, while the regime of speedup for the conformal case depends on initial

temperature and ϕ field configurations, the regime of speedup for the disformal case depends on a

new mass scale MD. Besides this point, the qualitative effect of the speedup for both scenarios on

leptogenesis remains the same. Hence we will only illustrate the result for speedup factor for the

conformal case as shown in the left plot of Figure 5.1. In this example where speedup happens in

the range 10 GeV < T < 105 GeV, it will affect leptogenesis with M1 which falls in the relevant

mass range.

Our main results are presented in Figure 5.3 in the K1 −M1 plane for a fixed m3 = 0.05 eV

and vν = 0.1, 1 GeV (red/thick, blue/thin lines) where outside these closed regime, one cannot
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Figure 5.3: The bounds on M1 for vν = 0.1, 1 GeV (red/thick, blue/thin lines) as a function of K1

defined in (5.10). Outside the closed regimes, one cannot obtain sufficient baryon asymmetry. The
solid lines are for zero initial abundance ofN1 while dotted lines for thermal initial abundance. The
horizontal dashed lines represent the absolute lower bounds on M1 for the respective vν obtained
with initial thermal abundance of N1 and no washout.

obtain sufficient baryon asymmetry. The solid lines are for YN1(0) = 0 while dotted lines for

YN1(0) = Y eq
N1

(0). The horizontal dashed lines are the absolute lower bounds obtained for the

respective vν which correspond to having YN1(0) = Y eq
N1

(0) and no washout. For YN1(0) = 0

and small K1, due to the speedup in the Hubble expansion, the inverse decay is not efficient in

populating N1. Less N1 results in less asymmetry being produced and hence M1 needs to increase

correspondingly to enhance the CP violation. As one goes to larger K1, N1 is more efficiently
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populated and one is allowed to have smaller M1. Crucially, in all cases, ∆L = 2 washout is

suppressed sufficiently due to the speedup factor ξ as evidence from the fact that one is able to

obtain successful leptogenesis forM1 much below 105 GeV ( Figure 5.2). In fact, a smaller speedup

in the early times (see Figure 5.1) allows an efficient washout of an initial ‘wrong’ sign asymmetry

(generated during the production of N1) by ∆L = 2 scattering and one ends up enhancing the final

asymmetry. Instead of a curse, ∆L = 2 becomes a blessing. Numerically, we found the lowest M1

to be around 350 GeV which corresponds to vν ∼ 0.03 GeV and K1 ∼ 3000.

As a final remark, notice that the behaviors of M1 lower bounds for YN1(0) = Y eq
N1

(0) for

small K1 are different for the case of vν = 0.1, 1 GeV. In the small K1 regime, we expect them

to approach the absolute lower bounds (the horizontal dashed lines). While this happens for the

case of vν = 1 GeV, the lower bound actually moves away from the horizontal line for the case of

vν = 0.1 GeV. The reason is that for M1 ∼ TeV and small K1, the decays happen very late close

to the EW sphaleron freezeout temperature TEWSp. When we reach this temperature, the baryon

asymmetry will be frozen before all N1 can decay, resulting in smaller final asymmetry.

5.6 Minimal Supersymmetric Standard Model and Right-handed Neutrinos

In section 3.4.3, we mentioned that the scale for the enhanced expansion rate can be moved

around as a function of the new scale associated withD(ϕ) term in the disformal D-brane coupling

scenario. In the conformal case, an extension of the SM can change the enhancement scale. In this

section, we discuss the scale for enhancement in the cases of MSSM and SM with 3 RH neutrinos.

In the left plot of Figure 5.1, we show the speedup factor, in the conformal scenario, for one

set of values for ϕ and ϕ′ at an initial temperature of 100 TeV considering only the SM particle

spectrum. If we add three 10 TeV RH neutrinos, the speedup factor and its slope at around 1 TeV

are the same as in the SM case, but ξ drops to 1 slightly earlier.

We now add the RH neutrinos to the spectrum of the SM and MSSM. In Figure 5.4, we show

the enhancements for various values of ϕ′ and initial temperatures. We add three RH neutrinos

at ∼ 10 TeV in the particle spectrum along with the SM (solid lines). In the bottom panel of the

figure, we show ω̃ as a function of z (blue solid line) and we find a new small trough at around
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10 TeV due to the new RH neutrinos. The other dips in ω̃ are due to the SM particles. The

expansion rate increases when ϕ′ increases, however, if ϕ′ is too large, the speedup factor does not

get reduced to 1 before the BBN. As mentioned before, a sudden drop of the enhancement factor to

the standard GR value occurs due to the troughs in ω̃, which create an attractive effective potential

when ω̃ 6= 1/3. For large initial values of ϕ′, the scalar field overcomes this attractive potential

and the enhancement factor never reduces to one.

In Figure 5.4, left plot, we consider an initial temperature of 100 TeV. The expansion rate can

be enhanced by a factor of 100, or more, for temperatures between 100 GeV and 1 TeV. If, however,

we increase the initial temperature to 105 TeV or higher, the enhancement scale moves to a higher

temperature and enhancements bigger than 100 can occur for temperatures between 1 TeV and 104

TeV. At higher temperature, the Hubble friction slows down the scalar field faster, and since the

attractive effective potential kicks in early, due to the trough in ω̃ caused by the RH neutrinos (at

around 10 TeV), the enhancement factor drops to one at a higher temperature.

Using dotted lines in Figure 5.4, we show the speedup factors due to the MSSM particles,

where we keep the SUSY partners of the SM particles at around 1 TeV and, for illustration, three

RH neutrinos (and their SUSY partners) at ∼ 10 TeV. In the panel below the figure, we show ω̃

(red dotted line) for MSSM + 3 RH neutrinos and we find a new deep trough in ω̃ at around 1 TeV

due to the SUSY particles (we put all of them together). The other dips are due to the SM particles.

Like before, we find that the enhancement and its slope does not change much compared to the SM

case but the speedup factor reduces to one for higher temperature.

It is also important to mention, no matter what particle spectrum we consider, that the initial

value of the scalar field does not play a relevant roll in the shape and slope of the speedup factor,

as long as this value is positive and order one.

We find that an enhancement of the expansion rate with an initial temperature at 102−3 TeV

is most effective in producing a successful leptogenesis, with the enhancement scale around TeV,

caused by the SM particle spectrum. Now, the initial temperature is set by the inflation scale. In

the case of the MSSM, it is shown that the thermal leptogenesis constraint from the type I seesaw
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is TR > 106 TeV [93, 94]. This bound conflicts with the cosmological gravitino bound for unstable

gravitinos. For a gravitino mass closer to a 100 GeV DM mass, BBN implies stringent upper bound

on reheating temperature ≤ O(1)× 102 TeV [95]. Based on our analysis, this low reheating scale

is very helpful to have the leptogenesis scale to be around 1 TeV.

Figure 5.4: Speedup factor ξ(z) as a function of z = 1 TeV/T for SM+3 RH neutrinos (solid lines)
and MSSM+3 RH neutrinos (dotted lines) for various values of ϕ′. The RH neutrinos mass value is
10 TeV, and the initial temperatures are 105 GeV (left plot) and 108 GeV (right plot). The bottom
figure shows the equation of state parameter ω̃ for the two cases.
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6. CONCLUSIONS

Since it is difficult to probe the universe between inflation and the onset of BBN, the evolution

of the universe is mostly unconstrained during this period. Origins of DM, baryon abundances,

etc, crucially depend on the evolution history around that time. During this epoch, the expansion

rate can be different in ST theories compared to the standard cosmology even though the universe

is still radiation dominated.

Scalar-tensor theories where the gravitational interaction is mediated by both the metric and

scalar fields arise commonly in modifications of GR. The prototype example is the Brans-Dicke

theory where the metric and a scalar field are related via the conformal coupling as g̃µν = C(φ)gµν .

However, the most general physically consistent relation between the two metrics includes a dis-

formal (or derivative) coupling [13]: g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ.

Both couplings C and D can give rise to a different expansion rate from the standard cosmo-

logical model in the early universe, and still be in agreement with current constraints from BBN

and gravity. In particular, BBN imposes a strong constraint on the speed-up parameter, ξ, which

needs to be very close to one before the onset of BBN.

In Chapter 2, we explored an ST theory coupled both conformally and disformally to matter.

For the pure conformal case, we investigated a conformal factor of the type C = (1 + b e−β ϕ)2.

We found the modified expansion rate, H̃ , during the radiation dominated. When comparing the

expansion rate, H̃ , to the standard expansion rate, HGR, we found that the speed-up factor, ξ =

H̃
HGR

, increases up to 200 and then become of order 1 prior to BBN (see Figure 2.3).

We also started to investigate the effects on the early evolution of a disformal factor in the

metric (2.2). We noticed that in order to have a consistent solution, i.e. a real positive H̃ , the

conformal and disformal factors need to satisfy a very specific relation, (2.48). We studied the

effect of a disformal factor by turning on a small disformal contribution to the conformal case,

given by D(ϕ) = −4.9 × 10−14ϕ2. We found, in Section 2.5, that when both, the conformal and

disformal function, are turned on, H̃ has a very similar profile as for the pure conformal case, with
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an enhancement and a notch compared to the standard expansion rate. However, the position of

the notch changes. The disformal factor is moving the notch to higher temperatures.

In Chapter 3 we introduce the disformal D-brane coupling scenario. In this case, the functions

C and D are closely related and are dictated by another theory, for example, type IIB string theory.

Moreover, the scalar field has a geometrical origin in terms of the transverse fluctuations of the

D-brane, while matter lives on the brane and it comes from the longitudinal fluctuations. In this

chapter, we investigated the modification to the expansion rate due to the disformally coupled

scalar, where D = 1/M4C (Figures 3.2, 3.5 and 3.8).

We numerically solved the coupled equations forH and ϕ ( see (3.44) and (3.45)) and used this

to find the modified expansion rate. We noted that contrary to the purely conformal case, in the

presence of the disformal term it is not possible to eliminate H from the system to solve a single

master equation, as in Section 2.4. So we needed to carefully take into account both equations as

well as the initial conditions for H . This introduced a cubic equation for H in terms of the other

parameters (ϕ, ρ̃) and a lower bound for the scale M , given the initial conditions for (ϕi, ρ̃i) (see

Section 3.4.2).

In section 3.4.3 we presented for the first time the purely disformal case corresponding to

C = const. where the modification to the expansion rate is fully driven by the derivative coupling

through γ (see Eq. (3.55)). For the disformal D-brane coupling scenario, the expansion rate is

always faster-than-usual (Figure 3.2). We found that the larger the value of the new scale M the

earlier the enhancement in the expansion rate appears (Figure 3.5). Therefore, depending on the

value of M , the modified expansion rate can occur at a different temperature in the early universe.

We also found that the expansion rate can be up to∼ 1000 times bigger than the standard GR case.

Again, we studied the effect ofM on the profiles of the expansion rates. We considered in detail

for concreteness only the conformal function used in Chapter 2. For this function, the numerical

analysis is relatively simple; however, there is in principle no obstruction to find similar effects

for other functions. We looked at the function C = (bx2 + c)2 (for b = 4, 8, 15, c = 1), which

can be a toy model for a smooth warp factor in a string theory setup. For this example, we found
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a relatively small enhancement with ξ ∼ 4. We expect that a wider search of parameters and

conformal functions will give rise to a larger enhancement as well as a decrease in the modified

expansion rate.

As we showed in Chapter 4, the enhanced expansion rate has important consequences on the

evolution of the abundance of dark matter particles. So, we also investigated the effect on the

abundance of dark matter particles. In the pure conformal ST scenario, we observed that for

dark matter particles of large mass, the particles undergo a second annihilation process and then

freeze-out once and for all in (see Figure 4.2). Moreover, we found that for large masses the

annihilation cross-section has to be up to four times larger than that of standard cosmology models

in order to satisfy the dark matter content of the universe of 27 %. On the other hand, for small

masses, this re-annihilation process is not present, but we found that for masses around 130 GeV,

the annihilation cross-section can be smaller than the annihilation cross-section for the standard

cosmological model (see Figure 4.3).

For the disformal D-brane coupling scenario, the modified expansion rate is always enhanced

with respect to the standard one (Figure 3.2), which implies an anticipated freeze-out and an en-

hancement of the cross section 〈σv〉 (Figure 4.7). For the C 6= const case (section 3.4.4) we saw

that it is possible to have an enhancement as well as a reduction of the expansion rate with respect

to the standard case, that is ξ > 1 and ξ < 1 (Fig. 3.8). This diminution gives the possibility of

a reannihilation process, as in the conformal and disformal cases studied in Chapter 2. Thus the

effect on the relic abundance and annihilation rate is analogous.

Finally, in Chapter 5 we study leptogenesis in a faster-than-usual cosmic expansion. The scale

of leptogenesis in the case of a typical type I seesaw model is very high and is out of reach for

the ongoing experimental facilities. However, many models with a much lower leptogenesis scale

exist where the RH neutrino masses arise due to new physics around multi-TeV scale. In these

models, it is found that (if no resonant enhancement of CP asymmetries is assumed), there exists

a lower bound on the scale of leptogenesis which is ∼ 10 TeV under the assumption of an initial

thermal abundance for RH neutrinos along with no washout. The lower bound increases in the case
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of zero initial abundance. This conclusion changes in ST theories with an enhanced expansion rate

which helps the leptogenesis models to be probed in the ongoing experiments.

In the case of an enhanced expansion, the requirement of a larger washout scattering rate de-

mands the scale of leptogenesis to be smaller since the scattering rate is inversely proportional to

Mn where the exact value of n (≥ 0) depends on the details of the initial and final state particle

properties. We used a toy model of leptogenesis to manifest the lowering of the leptogenesis scale

due to an enhanced expansion rate. In this model, the RH neutrinos do not couple to the SM Higgs,

instead, they couple to a new Higgs. We found that the scale of leptogenesis can be lowered down

to ∼ TeV for both zero and thermal initial abundances for the RH neutrinos for a wide range of

model parameter space which allows these models to be probed at the ongoing experimental facil-

ities. In some parameter space of the model, we showed that an enhancement of the expansion rate

can lower the leptogenesis scale down to∼ 400 GeV. The existence of an enhanced expansion rate

between 100 GeV to a few TeV due to the SM particle spectrum (plus the RH neutrinos) in the case

of a conformal modification of the metric is crucial to lowering the scale of leptogenesis. If an en-

hancement happens at a higher scale, the scale of leptogenesis is not lowered and an enhancement

at a smaller scale is also not helpful in lowering the leptogenesis scale with the correct amount of

asymmetry since the EW sphaleron freezeout occurs at around 130 GeV. All of our findings for

this model should apply to any leptogenesis model.
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APPENDIX A

GENERAL DISFORMAL SET-UP

The general scalar-tensor action coupled to matter, which can include a realisation in string

theory compactifications is given by:

S = SEH + Sφ + Sm , (A.1)

where:

SEH =
1

2κ2

∫
d4x
√
−g R, (A.2)

Sφ = −
∫
d4x
√
−g

[
b

2
(∂φ)2 +M41̧2(φ)

√
1 +

1. (φ)

1̧(φ)
(∂φ)2 + V (φ)

]
, (A.3)

Sm = −
∫
d4x
√
−g̃LDM(g̃µν) , (A.4)

and the disformally coupled metric is given by

g̃µν = C2(φ)gµν +D2(φ)∂µφ∂νφ . (A.5)

b is a constant equal to 1 or 0, depending on the model one wants to consider; Ci(φ), Di(φ) are

functions of φ, which can be identified as conformal and disformal couplings of the scalar to the

metric, respectively. Finally, we have introduced the mass scale M to keep units right (remember

that the conformal coupling is dimensionless, whereas the disformal has units of Mass−4.)

The connection of the general action (A.1) to the different models in the literature can be

obtained as follows: the caseC1 = D2,D1 = D2, b = 0 arises when considering a D-brane moving

along an extra dimension. This case was studied in [3] as a model of a coupled dark matter dark

energy sector scenario, where scaling solutions arise naturally. Note that in this case, the kinetic
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term for the scalar field, identified with dark energy for example, is automatically non-canonical

and dictated by the DBI action (see [3]). On the other hand, phenomenological models considering

a disformal coupling between matter and a scalar field, usually consider a canonical kinetic term,

and therefore, in that case, C1 = D1 = 0 and b = 1 (C1 can be taken to be non-zero and will be part

of the scalar potential). Furthermore, the widely studied case of a conformal coupling is obtained

for b = 1, C1 = D1 = D2 = 0 or, as in the case of a D-brane for example1, simply considering

small velocities with b = 0, C1 = C2 and D1 = D2, and normalising canonically the scalar field

(see Appendix B).

Finally, let us clarify further our nomenclature on frames. The action in (A.1) is written in the

Einstein frame, which in string theory, is usually related to the frame in which the dilaton and the

graviton degrees of freedom are decoupled. From this point of view, the dilaton field as well as

all other moduli fields not relevant for the cosmological discussion are considered as stabilised,

massive, and are therefore decoupled from the low energy effective theory. In the literature of

scalar-tensor theories however (including conformal and disformal couplings), the Einstein and

Jordan frames are identified with respect to the (usually single) scalar field to which gravity is

coupled. In this paper, we follow this and call “Jordan" or “disformal frame" the frame in which

dark matter is coupled only to the metric g̃µν , rather than to the metric gµν and a scalar field φ.

The equations of motion obtained from (A.1) are (2.4):

Rµν −
1

2
gµνR = κ2

(
T φµν + TDMµν

)
, (A.6)

where in the frame relative to gµν the energy momentum tensors are defined in (2.5) and (2.6). The

energy-momentum tensor for the scalar field in the general case is modified from (2.7) to:

T φµν = −gµν
[
M4C2

1γ
−1
1 +

b

2
(∂φ)2 + V

]
+
(
M4C1D1 γ1 + b

)
∂µφ ∂νφ , (A.7)

1For the system corresponding to a D-brane moving in a typically warped compactification in string theory, the
functions C(φ) and D(φ) are identified with powers of the so-called warp factor, usually denoted as h(φ). In this
approach, the longitudinal and transverse fluctuations of the D-brane are identified with the dark matter and dark
energy fluids respectively [3].
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where now the energy density and pressure are given by:

ρφ = − b
2

(∂φ)2 +M4C2
1γ1 + V , Pφ = − b

2
(∂φ)2 −M4C2

1γ
−1
1 − V , (A.8)

and the “Lorentz factor" γ1 introduced above is defined by

γ1 ≡
(

1 +
D1

C1

(∂φ)2

)−1/2

. (A.9)

We can rewrite (A.8) in a more succinct way, by defining V ≡ V + C2
1M

4

ρφ = −
[
b

2
+
M4C1D1γ1

γ + 1

]
(∂φ)2 + V , Pφ = −

[
b

2
+
M4C1D1γ

−1
1

γ + 1

]
(∂φ)2 − V . (A.10)

The equation of motion for the scalar field becomes (compare with (2.9))

−∇µ

[
(M4D1C1γ1 + b) ∂µφ

]
+
γ−1

1 M4C2
1

2

[
D′1
D1

+ 3
C ′1
C1

]
+
γ1M

4C2
1

2

[
C ′1
C1

− D′1
D1

]
+V ′

−T
µν

2

[
C ′2
C2

gµν +
D′2
C2

∂µφ∂νφ

]
+∇µ

[
D2

C2

T µν∂νφ

]
= 0 .

(A.11)

Finally, the energy-momentum conservation equation gives rise to (2.11), whereQ now is given

in terms of C2, D2:

Q ≡ ∇µ

[
D2

C2

T µλ ∂λφ

]
− T µν

2

[
C ′2
C2

gµν +
D′2
C2

∂µφ ∂νφ

]
. (A.12)
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General cosmological equations

The equations of motion for the general system in an FRW background become:

H2 =
κ2

3
[ρφ + ρ] , (A.13)

Ḣ +H2 = −κ
2

6
[ρφ + 3Pφ + ρ+ 3P ] , (A.14)

φ̈

[
1 +

b

M4C1D1γ3
1

]
+ 3Hφ̇ γ−2

1

[
b

M4C1D1γ1

+ 1

]
+
C1

2D1

(
γ−2

1

[
5C ′1
C1

− D′1
D1

]
+
D′1
D1

− C ′1
C1

− 4γ−3
1

C ′

C

)
+

1

M4C1D1γ3
1

(V ′ +Q0) = 0 ,

(A.15)

where, H = ȧ
a
, dots are derivatives with respect to t, ′ = d/dφ and

γ1 = (1−D1 φ̇
2/C1)−1/2.

We also have the continuity equations for the scalar field and matter given by

ρ̇φ + 3H(ρφ + Pφ) = −Q0φ̇ , (A.16)

ρ̇+ 3H(ρ+ P ) = Q0 φ̇ . (A.17)

where Q0 is given by

Q0 = ρ

[
D2

C2

φ̈+
D2

C2

φ̇

(
3H +

ρ̇

ρ

)
+

(
D′2
2C2

− D2

C2

C ′2
C2

)
φ̇2 +

C ′2
2C2

(1− 3ω)

]
.

(A.18)

Using (A.17) we can rewrite this in a more compact and useful form as

Q0 = ρ

(
γ̇2

φ̇ γ2

+
C ′2
2C2

(1− 3ω γ2
2)− 3Hω

(γ2 − 1)

φ̇

)
, (A.19)
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where

γ2 = (1−D2 φ̇
2/C2)−1/2.

Plugging this into the (non-)conservation equation for dark matter (A.17), gives:

ρ̇+ 3H(ρ+ P γ2
2) = ρ

[
γ̇2

γ2

+
C ′2
2C2

φ̇ (1− 3ωγ2
2)

]
. (A.20)

The energy densities and pressures in the Einstein and Jordan frames are now related similarly

to (2.19), replacing γ → γ2:

ρ̃ = C−2
2 γ−1

2 ρ , P̃ = C−2
2 γ2 P, (A.21)

and therefore the equation of states in both frames are related by ω̃ = ωγ2
2 . Similarly the physical

proper time and the scale factors in the two frames are related via γ2:

ã = C
1/2
2 a , dτ̃ = C

1/2
2 γ−1

2 dτ . (A.22)

Defining the disformal frame Hubble parameter H̃ ≡ d ln ã
dτ̃

, gives:

H̃ =
γ2

C
1/2
2

[
H +

C ′2
2C2

φ̇

]
. (A.23)

To solve the equations of motion one now can proceed as in section 2.2 to write the equations

in terms of derivatives w.r.t. the number of e-folds N and consider different cases by choosing

appropriately the parameters b, Ci, Di.
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APPENDIX B

THE CONFORMAL CASE IN D-BRANE SCENARIOS

In this section we show how to recover the pure conformal case from the D-brane picture, that

is, b = 0, C1 = C2, D1 = D2. We start by expanding the square root in the scalar part of the action

(A.1). Doing this we get

Sφ = −
∫
d4x
√
−g
[
M4C2

1

(
1 +

D1

2C1

(∂φ)2 + . . .

)
+ V (φ)

]
= −

∫
d4x
√
−g
[
M4C1D1

2
(∂φ)2 +M4C2

1(φ) + V (φ) + . . .

]
= −

∫
d4x
√
−g
[
M4C1D1

2
(∂φ)2 + V(φ) + . . .

]
. (B.1)

On the other hand, the matter Lagrangean takes the form

SDM = −
∫
d4x
√
−g̃LDM(g̃µν)

= −
∫
d4x
√
−g C2

1(φ)

(
1 +

D1

2C1

(∂φ)2 + . . .

)
LDM(g̃µν)

= −
∫
d4x
√
−g C2

1(φ)LDM(g̃µν) + . . . = −
∫
d4x
√
−g̃LDM(g̃µν) + . . .

(B.2)

where now g̃µν = C1(φ)gµν (and we have used that det g̃µν = C4
1(1 +D1/C1(∂φ)2)).

Finally, to compare the D-brane case with the pure conformal case, we need to canonically

normalise φ. Calling ϕ the canonically normalised field, this is obtained from φ as

ϕ =

∫
M2
√
D1C1 dφ . (B.3)

It is clear that when D1 = 1/(M4C1), ϕ = φ and therefore the action for the scalar field

(B.1) is already in the required form. We can now take the limit γ → 1 into the equations of
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motion (A.13)-(A.15) and make the identification D1 = 1/(M4C1) to recover the conformal case

equations of motion. Note that in this limit Q0 → ρC ′1/2C1, and is independent of D1 (see (A.19)

with C1 = C2, D1 = D2).
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