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ABSTRACT 

 

Golden retriever muscular dystrophy (GRMD) is a spontaneous X-linked canine model of 

Duchenne muscular dystrophy (DMD) with the affected animals developing a progressively fatal 

disease, similar to the human condition. As a genetically homologous animal model, GRMD has 

increasingly been used in natural history studies and studies assessing treatment outcome. There 

is a great demand for accurate outcome measures across all disease stages to improve the 

understanding of natural history and to facilitate clinical trials. Histology images are widely used 

for accurate outcome measures across all disease stages. With a highly invasive method as ground-

truth, a variety of non-invasive methods are frequently assessed to extract information 

corresponding to biological characteristics. Due to high soft-tissue contrast images, MRI is 

commonly preferred imaging modality to assess GRMD. Spatial correspondence between 

histology and MRI is a critical step in the quantitative evaluation of skeletal muscle in GRMD. 

Registration becomes technically challenging due to non-orthogonal histology section orientation, 

section distortion, and the different image contrast and resolution. This research dissertation 

proposed a framework for accurate histology to MRI registration and textural analysis methods to 

describe non-invasive MRI biomarkers utilizing multi-sequence MRI images. The experiments 

showed that textural features of qualitative and quantitative MRI images can be reliably used for 

disease assessments and treatment monitoring. 
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CHAPTER I  

INTRODUCTION 

 

The muscles are structural body elements responsible for the movement. The muscles are 

divided into three major groups according to their location and functions; cardiac muscles (the 

heart), smooth muscles (located along with the blood vessels and hollow internal organs) and 

skeletal muscles (located mostly along the bones) [1]. Skeletal muscles are the largest muscle 

group with 30-40 percent of the body mass [2]. Additionally, the skeletal muscles are the only 

muscle group voluntarily controlled by the somatic nervous system, in contrast, involuntary 

muscles that contract without conscious control [1]. 

Atrophy and weakness of the skeletal muscles are the most common indications of 

muscular diseases, i.e. muscular dystrophy and inflammatory myopathy [3, 4]. Muscular atrophy 

is a process of degeneration of the muscle cells and decrease of the muscle mass. The muscle 

atrophy is mostly caused by reduced physical activity due to situations causing restricted 

movement, cancers, myopathies, and several other diseases. The decrease in muscle mass volume 

triggers the muscle weakness. Furthermore, reduced levels of potassium and other electrolytes may 

also cause the muscle weaknesses. 

Muscular myopathy is a general term for a group of conditions affecting skeletal muscles 

[5], and are divided into two general groups; genetic and non-genetic muscular disorders [6]. Non-

genetic disorders involve autoimmune changes or the changes caused by specific medicines and 

hormonal disorders. The genetic myopathies congenital, metabolic or periodic myopathies [7], are 

caused by gene mutations severely affecting the muscular system of the individuals. Muscular 

dystrophies are the best researched inherited diseases. The congenital myopathies are autosomal 
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dominant diseases that the mutated genes are transferred in different ways: i.e. X-linked, autosomal 

dominant or recessive [8]. The metabolic myopathies are occurred due to lack of a required 

substance to maintain muscle functions.  

 

 

 
Table 1.1. The occurrence of nine X-linked recessive muscular dystrophy disorders 

Muscular Dystrophies Occurrence References 

Duchenne and Becker MD 

1 in 3500-5000 worldwide. 400-600 

male patients are born in the US each 

year 

[9-11] 

Myotonic MD 1 in 8000 in worldwide  [12] 

Limb-girdle MD 1 in 14500 to 123000 worldwide  [13] 

Facioscapulohumeral MD 1 in 20000 worldwide  [14] 

Emery-dreifuss MD 1 in 100000 worldwide [15, 16] 

Oculopharyngeal MD 

1 in 100000 in Europe.  

1 in 1000 in Quebec, Canada among 

the French-Canadian population.  

1 in 700 Jewish population of Bukaran 

in Israel  

[17, 18]  

 

 

 

[18, 19]. 

Congenital MD   

Fukuyama CMD 2-4 in 100000 in Japan  [20]. 

LMNA CMD 
Only 50 patients are recorded in 

medical history  

[21] 

Distal MD 1 in 440000 in Japan  [22, 23] 

 

 

 

Muscular Dystrophies 

History of the muscular dystrophy starts with an essay reporting progressive muscle 

weakness in male patients (published by Sir Charles Bell in 1830), and a publication of Semmola 

in 1834 describing clinical features, and a report by Conte and Gioia in 1836 on a recessive muscle 

weakness, replacement of muscle tissue with adipose and other connective tissues and damages 

[24]. The following articles published in the 1850s mentioned the early death of boys with 

progressive muscle weaknesses. The name of the disease was given after the French neurologist 



 

3 

 

Duchenne de Boulogne who studied the recessive muscle weakness of thirteen boys with the most 

common muscular dystrophy currently known as Duchenne muscular dystrophy [25]. 

 

 

 

 

Figure 1.1. Illustration of X-linked disorder transfer to next generation 

 

 

 

Muscular dystrophy is the group of genetic disorders caused due to alteration of specific 

gene sequences [25-28]. The muscular dystrophy diseases can be passed to the next generation 

with the transfer of altered genes. Besides, a gene mutation can occur spontaneously by 

environmental effects and cause to the formation of the disease in the families without known 

dystrophy history. Recently, there are more than thirty types of dystrophies described in the 

literature and they’re grouped in nine major groups; Duchenne, Becker, Emery-dreifuss, Limb-

girdle, Facioscapulohumeral, Myotonic, Oculopharyngeal and Distal muscular dystrophy [26, 29, 

30], for prevalence, see Table 1.1 [9-23].  



 

4 

 

The major types of muscular dystrophies are specified according to their inheritance type: 

recessive, dominant and sex-linked. Figure 1.1 illustrates the transfer of mutated gene to the next 

generation. In the recessively inherited disorders (e.g. limb-girdle dystrophies), the same gene on 

both parents is mutated. According to the number of transferred mutated genes, the child becomes 

either a patient or a carrier. In dominantly inherited disorders (e.g. facioscapulohumeral and 

oculopharyngeal dystrophy), only one gene is involved in developing the condition. Sex-linked 

disorders are occurred due to a gene mutation on the X chromosome. Due to a low probability of 

gene mutation on both X chromosomes, in general, the males are the patient of this types of 

disorder, and females are the carriers for this group of diseases. Duchenne and Becker muscular 

dystrophies are X-linked muscle disorders. Among all types of muscular dystrophy diseases, 

Duchenne type muscular dystrophy is the most common and severe type of muscular dystrophy 

[26, 31], and therefore it’s selected as the topics of this study.  

Duchenne Muscular Dystrophy 

Duchenne Muscular Dystrophy (DMD) is the most common dystrophy type connected to 

the X-linked inheritance and it affects exclusively male infants due to dystrophin type protein 

deficiency [32-34]. Dystrophin protein is responsible to keep muscle fibers intact and acquainted 

with a chemical signal transfer in cells [35]. Therefore, with insufficient dystrophin produced, 

muscle fibers lose their structural shape and functionality over time [35]. A representation for 

dystrophin glycoprotein complex components and membranes in skeletal muscle is shown in 

Figure 1.2. Dystrophin protein mostly expressed in skeletal and cardiac muscles [36]. The 

structural integrity of a damaged muscle depends on a fine balance between destruction and 

regeneration of the muscle tissue. In normal muscle repair, fibers are removed by inflammatory 

cells and they’re repaired or replaced with satellite cells that form muscle cells later. In DMD case, 
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the amount of satellite cells reduces or they lost their ability forming muscle cells and the muscular 

tissue is replaced by fat or fibrosis tissues.  

 

 

 

 

Figure 1.2. The components of dystrophin glycoprotein complex with other membranes in skeletal muscle.  

Reprinted with permission of Neuromuscular Disorders [37]. 

 

 

 

 

Figure 1.3. The severity of DMD disease progression. (a) show the percentage of patients using wheelchair 

varying ages and (b) demonstrates the number of deaths at varying age groups in DMD disease (adapted 

from [38]). 
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DMD disorder shows faster progression and increased severity than other muscular 

dystophies [39]. Although DMD and BMD is caused by a mutation on dystrophin gene, the 

severity of these dystrophies significantly differs. DMD is caused by out-frame mutations which 

causes absence of less than 5% of regular level of dystrophin protein is absent in DMD patients 

[40]. On the other hand, BMD which is caused by in-frame mutations on dystrophin gene, is less 

severe due to partial-wild-type dystrophin function (10% to 40% dystrophin of the normal amount) 

[41]. 

 

 

 

 

Figure 1.4. The number of DMD patients identified by national DMD network agencies of the countries 

registered to Treat-NMD network. The data is presented in sorted form (highest to lowest).  

Reprinted with permission from Human Mutation [42]. 

 

 

 

Although DMD disease is an inherited disease, It may be seen in families without any 

DMD disease in family history due to somatic mutations [43]. It causes progressive muscle 
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weaknesses and loss of muscle functions starting at lower limbs muscles and then spreads to the 

other muscle groups including heart and respiration muscles [32-34]. Due to continuous muscle 

atrophy and weaknesses, the patients are restricted to wheelchairs at earlier teenage years (Figure 

1.3 (a)) and ends with death during young adulthood varying ages among the patients (Figure 1.3 

(b)) [38, 44].  

Figure 1.4 illustrates the incidence of DMD worldwide. To provide better access the 

findings related to disease and treatments methods and to accelerate the preclinical and clinical 

developments in the neuromuscular field, a global network connecting the local DMD registries 

from thirty-one countries was established in the UK [42].  

 

 

 

 

Figure 1.5. Number of males with DMD or BMD in 6 US states identified by MD STARnet from 1991 to 

2010 (adapted from Romitte et al. [45]). 
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Figure 1.5 illustrates the incidence of DMD and BMD in six states of United States, as 

identified by MD STARnet Muscular Dystrophy Surveillance, Tracking, and Research Network 

[45].  

The number of DMD and BMD cases between 5 and 9 years was given in Figure 1.6 (a). 

The total number of 528 DMD and 171 BMD patients were grouped based on their birth years. In 

Figure 1.6 (b), the number of DMD and BMD patients were presented in groups according to their 

ages. While the number of DMD patients within first two age groups (toddler to teenage years) 

was increased, a significant decrease was observed during last two stages of age terms. The number 

of BMD patients were increased for first three stages and decreased in the last term of the ages. 

Figure 1.6 (a) and (b) showed that the DMD occurs more frequently than BMD disease. 

 

 

 

 

Figure 1.6. The number of DMD and BMD patients identified by MD STARnet. (a) Patients aged between 

5 and 9 grouped according to the year of birth. (b) The patients with age of 5 to 24 (adapted from Romitte 

et al. [45]). 

 

 

 

Currently, there is no approved treatment that can prevent or reverse the effects of DMD 

disorder. However, there are several drugs, gene, and cell therapies utilized to reduce effects of the 

disease and improve quality and span of life for the DMD patients [46, 47]. In [48], Kim et al. 

illustrated the clinical responses for two different treatment options for short-term and long-term 
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usage. Although short-term drug usage doesn’t significantly affect the lifespan, long-term use of 

both drugs delayed the loss of ambulation within the patients. 

Animal Models of DMD 

Generally, the complexity of diseases prevents researchers to find alternative methods in 

replacement of living animals [25]. Therefore, the animal models are still required to improve 

understanding the biology of the diseases and facilitate the clinical trials. The literature describes 

almost sixty animal models described for DMD disorder. [49]. Among the animal models 

described in the literature, a mouse model (MDX, [50]) and canine model (GRMD, [51]) were the 

most studied animal models of Duchenne muscular dystrophy. The MDX model, discovered in the 

early 1980s, is the most commonly used animal model for clinical research studies. However, the 

severity of the condition in MDX mice is milder than DMD patients. GRMD, discovered in the 

late 1980s, was the first and most widely used canine model in clinical research studies. The 

clinical and histological studies showed remarkable similarities between GRMD and DMD 

diseases [49, 52]. Besides, animals with GRMD disorder are severely affected similar to human 

DMD patients and their lifespan was affected about the same rate with DMD patients [49]. 

Therefore, GRMD model is commonly used in clinical trials.  

Diagnosis  

DMD is diagnosed by physical tests to analyze weakness of the muscles, blood test to 

measure creatine kinase (CK) level, muscle biopsy, or by genetic tests to examine mutations of 

dystrophin gene [53]. There is a great demand for accurate outcome measures across all disease 

stages to improve the understanding of natural history and to facilitate clinical trials. Histology 

images are widely used for accurate outcome measures across all disease stages. With a highly 
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invasive method as ground-truth, a variety of non-invasive methods are frequently assessed to 

extract information corresponding to biological characteristics. 

There are several non-invasive imaging modalities which have potential to be used to 

diagnose DMD disorder; CT, PET, US, and MRI [54-57]. In CT imaging modality, multiple X-

ray measurements are collected to generate a cross-sectional image of the organs. The intensity of 

the image is formed based on the attenuation of the X-ray signals captured by the receivers. The 

high sensitivity of CT resolution to density variation between the tissues makes it suitable for tissue 

analyses. In DMD disorder, CT is used to detect structural changes in muscle tissue such as fat 

deposition [54]. However, X-ray exposure and insensitivity for separation of adipose and 

connective tissue of the muscles limit the usage of CT in DMD studies, especially for younger 

patients [58].  

In PET imaging, gamma rays scattered from injected radioactive tracer collided with 

electrons are captured by the scanner. Based on the substance of the radioactive material, various 

metabolic activities can be captured with uptake level of radioactive tracer. In DMD disorder, 

muscle tissue is replaced with connective tissue and fat. Due to an increase of metabolically 

inactive fibrosis tissue, radio-labeled substance uptake level decrease can be useful for analysis of 

skeletal muscle tissues for DMD [55]. However, increased uptake level with fat deposition limits 

the usage of PET imaging for DMD disease [59]. 

In US imaging, the backscattered echoes are used to generate an image of the internal 

organs utilizing the reflected signals based on the density of the organs. US imaging is 

advantageous in medical diagnosis due to absence of ionizing radiation, low cost and portability. 

In DMD, US was used to examine muscle involvement to determine suitable muscle tissues for 
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biopsy as analyzing the backscattered signals [56, 60]. However, usage of US method is limited in 

the analysis of superficial muscle groups. 

In MRI scanner, the protons in the human body were aligned with the direction of the 

strong magnetic field. When an RF pulse was applied, the alignment of the protons was changed. 

After RF pulse was turned off, the protons return to the equilibrium state with different rates among 

the tissues. The varying recovery times enable to characterize the tissues with various disease 

models. The high soft tissue contrast and absence of ionizing radiation makes MRI imaging one 

of the most promising alternative non-invasive methods for analysis of skeletal muscles [61]. In 

addition, deeper organs can be imaged easily and accurately using MRI. Therefore, MRI imaging 

technique is widely used to diagnose DMD disease using various MRI sequences [53, 57, 62-74]. 

In GRMD disease, fat and fibrosis deposition show radical changes similar to DMD which makes 

GRMD hard to diagnose [75]. The studies completed on GRMD subjects can be separated into 

two groups: i.e. qualitative and quantitative [61, 75-89]. The qualitative analysis methods include 

subjective grading of structural MRI images using an MRI grading scale [58, 88-90]. T1w images 

and post-contrast images are widely evaluated based on visual inspection of structural alterations 

i.e. fat infiltration. On the other hand, quantitative image analysis techniques evaluate the 

quantitative measurements of MRI images (T1w or T2w) or maps (T1 and T2 values, water and fat 

fractions, and tissue diffusivity) and track changes among different stages of the disease [76, 78, 

85-87, 91]. A variety of studies were focused on detection of imaging biomarkers based on 

interpretation of qualitative and quantitative MRI data [61, 64, 76, 87, 92-94]. In early stages of 

GRMD disease, T1 relaxation time is increased due to increased muscle free water molecules 

compared to healthy subjects caused by consecutive muscle degeneration-regeneration processes 

[61, 83]. T1 relaxation time decreases in the following stages due to the replacement of muscle 
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with fat and connective tissues. T2 relaxation time decreases with the disease progression [58]. T2 

values in the tissues of fat and connective tissue also necrotic cells are all longer than muscle 

tissues. Therefore, fat or fibrosis cannot be easily separated from necrosis [83]. Although fat 

deposition progressively occurs during disease stages, GRMD subjects do not show the similar 

level of fat deposition as seen in DMD patients [95]. The studies using DTI MRI showed decreased 

FA, ADC and increased MD for selected muscle types in DMD patients [70]. Besides, a correlation 

between fat infiltration and ADC, FA values was observed in DMD patients [68]. 

In DMD disease, muscle groups are affected by varying severity and speed [90, 96]. 

Therefore, studies have investigated the effects of the DMD disease on different skeletal muscles 

to determine the most vulnerable muscle groups that provide larger difference during the disease 

progression [61, 89, 90, 96, 97]. 

Quantitative MRI-based Imaging Biomarkers 

Multiple research groups use texture analysis of MRI images to determine effects of 

GRMD disease on skeletal muscles [61, 73, 78, 81, 82]. The general hypothesis of the studies is 

that the structural changes in muscle tissue will be reflected in MRI images. Therefore, disease 

effects may be captured with extracted features of grayscale MRI data. The first order statistics 

[98], co-occurrence matrix [99], run-length matrix [100] and Zernike/Legendre moments of the 

MRI data was extracted from T1w or T2w images [61, 73, 81, 82]. The presented results show that 

MRI has the potential for diagnosis of GRMD disease using textural analyses [73, 79, 81, 82].  

The signal intensity of MRI images is determined by the biological changes seen on 

histology images. The understanding the effects of histological changes on MRI images will 

improve the connection between histology and MRI. Therefore, the direct relationship between 
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histological details and MRI characteristics should be interpreted for sensitive and robust non-

invasive MRI biomarkers for GRMD disease. 

Outline of the thesis  

The aim of this thesis was to develop and evaluate quantitative, texture-based imaging 

biomarkers extracted from ex vivo qMRI, reflecting the changes in aging GRMD pectineus 

muscles. The procedure defined in this thesis was addressed following questions: 

• What kind of methods are needed to align a histology slice with an ex vivo MRI 

volume?  

• Which MRI imaging sequences provides a better understanding of the disease 

progression in pectineus muscles? 

• Which textural analysis methods of MRI sequences result in better performance for 

assessment of clinical outcomes for GRMD disease? 

• Which locally extracted features from quantitative MRI images utilizes the MPI as a 

biomarker of GRMD disease among age groups?  

Chapter 2 presents a method for accurate registration of a 2D high-resolution histology 

image and 3D MRI volume of healthy and GRMD muscles. The aim of this study is to provide a 

framework for an accurate histology image localization in 3D MRI volume. The methodology of 

this study combines standardized MRI and histology data acquisition and processing methods, 

interactive orientation initialization, an improved similarity metric for multimodality images and 

increasing complexity of transformation. In this study, the proposed registration process was 

completed in three consecutive steps increasing the degrees of freedom incrementally. Accurate 

registration of histology slice and MRI volume enables to investigate the localized correlation 

between MRI modalities and biological tissue classes [101-103]. 
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Chapter 3 represents a study examining textural features of two qualitative (T1w and T2w) 

and four quantitative MRI images (T1m, T2m, Dixon water fraction, Dixon fat fraction) for 

assessing the disease severity while reducing MRI imaging time and cost. Total of forty-one 

textural features using five different methods is extracted from six MRI images acquired with a 3T 

clinical scanner. Using an SVM based classification approach, the performance of the classifier 

was evaluated with MRI modality feature pairs to detect potential MRI biomarkers. 

In Chapter 4, an automatically generated muscle percentage index as an imaging biomarker 

of muscle degeneration in GRMD was proposed. The MPI was generated by a machine learning 

classification process created by random forest approach using quantitative MRI images (T1m, 

T2m, two Dixon maps, and four DTI maps) of nine GRMD samples. While using three type of 

texture descriptor features (local binary pattern, gray-level co-occurrence matrix, gray-level run-

length matrix) and a gradient image (histogram of oriented gradients) of raw qMRI images as input 

for the classification models, segmented histology image labels were used as output classes 

(muscle, non-muscle). All eight qMRI maps were co-registered and resampled to the same spatial 

resolution, and co-registered with histology validated class labels (muscle and non-muscle). The 

classification performance across different stages in the natural history of GRMD was evaluated 

using optimized models in a leave-one-out cross-validation approach. MPI was generated from a 

final classification result, for each sample separately, by a morphological filter as pruning method 

was evaluated as a noninvasive biomarker for different aged dogs.  

Chapter 5 summarizes the main results for clinical, experimental studies and contributions 

of the thesis, and discusses the obtained performances of completed studies. Furthermore, it also 

provides the recommendations for future research. 
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CHAPTER II  

NEW SIMILARITY METRIC FOR REGISTRATION OF MRI TO HISTOLOGY: GOLDEN 

RETRIEVER MUSCULAR DYSTROPHY IMAGING 

 

Duchenne muscular dystrophy is a fatal X-linked muscle disorder affecting ~1 in 4000-

6000 newborn males [1]. Affected boys have mutations in the DMD gene, which results in absence 

of cytoskeletal protein dystrophin and progressive degeneration of skeletal and cardiac muscles 

[2]. Golden retriever muscular dystrophy is a spontaneous X-linked canine model of DMD, with 

affected dogs developing a progressive, fatal disease similar to the human condition [3, 4]. As a 

genetically homologous animal model, GRMD has increasingly been used in therapeutic 

preclinical trials [3, 4]. 

Current outcome measures in DMD are suboptimal. Muscle biopsy, used to provide the 

ground-truth information, is invasive and limited in its coverage by specimen size. Functional and 

muscle strength assessments are susceptible to rater variability [5, 6]. MRI is commonly used as a 

non-invasive alternative to providing meaningful information on disease progression and treatment 

response [6-20]. Although earlier studies identified various MRI biomarkers based on whole 

muscle volumes, they lacked an adequate validation procedure [6-10, 15-19]. Thorough 

understanding of the MRI biomarkers of DMD involves an accurate spatial correlation of MRI and 

histology, offering means to verify MRI findings. On the other hand, to create histological images, 

a muscle sample must be processed through multiple steps: biopsy, fixation by formalin followed 

by dehydration, paraffin embedding, sectioning, and rehydration during staining. An important 

side effect of this process is the significant tissue deformation, which inevitably changes tissue 

appearance. This severely complicates the registration of MRI to histological images. The 
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registration is additionally complicated by inherent differences in image intensity and resolution 

between histological color images and grayscale MRI images.  

The field of multi-modality registration has evolved considerably in recent years. Still, the 

literature specifically dealing with registration of histology to MRI is limited. The first attempts to 

register histology and MRI were part of an effort to establish brain atlases, starting with affine 

registration [21] and advancing to piece-wise affine models [22]. Although affine registration 

achieved good initial results in these applications, it was inadequate to deal with non-linear 

distortions that occur during tissue excision and histological processing. Elastic registration to link 

MRI with histology using surface matching has also been considered but has been limited to the 

global matching of MRI volumes [23, 24].  

Other studies of point-based registration using manually placed landmarks [25] are time-

consuming and prone to inter-observer variability due to human interaction. These methods have 

been divided into three general categories: 3D-to-3D, 2D-to-2D and 2D-to-3D registration [26-

28]. The first category, 3D-to-3D, registers consecutive histology images to reconstructed color 

3D histology data sets and registers these to either ex vivo MRI or in vivo MRI [29-32] with a 

maximum registration accuracy of 0.7-3 mm. These studies have been used to register pancreatic 

tumors [29], prostate [30, 31] and lungs [32]. The second category of methods, 2D-to-2D, employs 

a histology to MRI slice registration in a 2D manner [33, 34]. Histologic images were registered 

to in vivo MRI images of the human prostate with an accuracy of 0.91%-0.93% assessed by dice 

similarity. The last category of registration methods, 2D-to-3D, is based on aligning a single 2D 

histology image with a 3D volume [23, 35-38]. The 2D histology images of brain [35, 36], prostate 

[37], and bone grafts [38] were registered to ex vivo [35-38] or in vivo [23, 37] volumes. These 

publications use a different level of registration complexity ranging from rigid [36], through point 
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matching [23], to full elastic registration [35, 37]. All these publications require manual 

initialization, with manual [23, 37] or automatic [23, 35] annotation of whole organ [23, 37] or 

internal landmarks [23]. However, all the publications lack a comprehensive and detailed 

validation of registration accuracy. They evaluate the quality of the registrations by a similarity 

measure to assess global alignment [36, 37], by evaluation of the size of a specific region [23], by 

comparison to manual position [38], or by use of anatomical landmarks [35]. 

Intensity-based similarity metrics and optimization algorithms are used to evaluate 

registration performance. In cases of multi-modal registrations, differences in image acquisition 

mechanisms produce analogous changes in image content [36]. Therefore, the similarity metric is 

critical for a successful multi-modal registration. Among various similarity metrics used for image 

registration [27, 28, 36, 39], mutual information is most frequently used in multi-modal image 

registrations [27, 28], especially for medical images [26]. However, the structural information is 

not sufficiently reflected in the MI, potentially leading to inaccurate registrations. An attempt to 

use an internal structure in a multi-modal images registration process proposed utilization of the 

normalized gradient field as a metric [40]. When tested under perfectly controlled environment, 

NGF produced good registration results for the affine linear transformation. Unfortunately, its 

performance tends to decrease in applications with large elastic deformations. In addition, 

registration accuracy is massively affected by the initial position of the 2D histology image due to 

an optimization problem during the registration process. Careful specimen preparation and cutting 

plane positioning can help alleviate this problem [41]. 

To overcome these limitations and to provide accurate registration between 2D histology 

images and 3D MRI volume, we propose a registration framework based upon interactive 

initialization in 3D MRI volume [42] and a gradient-based addition to the MI metric. The 
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experimental setup ensures detection of the angle and position of a 2D histology image. Employing 

such extensive measures is essential to find the 3D orientation of skeletal muscle specimens.  

The aim of this work was to develop a slice-to-volume registration framework that can 

reliably and efficiently align a single histology image with a 3D MRI volume acquired from ex 

vivo normal and pathological skeletal muscle samples. Specifically, an interactive procedure using 

a 3D mouse was implemented to determine the initial position of the 2D histology images in the 

3D space of the cross-sectional MRI slices. In addition, a new similarity metric was proposed 

combining mutual information and local gradient information. 

 

 

 

 

Figure 2.1. Overview of the data processing and image registration steps. The initial location of the 

histology image is determined via user guidance. Then, affine and elastic transformation models are used 

for registration 
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Materials and Methods 

Figure 2.1 is a schematic overview of the proposed registration methodology, consisting of 

initialization, followed by affine and elastic registration of the MRI and histology data. The 

proposed methodology starts with pre-processing histology and MRI data. Subsequently, an 

interactive alignment and affine transformation are used to produce the most likely orientation of 

the MRI slice to match the histological image. Finally, a non-rigid B-spline transformation is used 

to refine the registration between 3D MRI volume and histology image. 

All datasets were processed by the same procedure detailed in the foregoing section using 

an in-house developed software based upon Matlab® (Version 9.1.0, MathWorks Inc., Natick, 

Massachusetts, USA). Different registration steps were performed using either Matlab® or Elastix 

(Version 4.8) [43].  

Animals 

Studies were completed on dogs from a colony maintained at Texas A&M University and 

were approved by the Institutional Animal Care and Use Committee protocol (2015-01110) under 

established standards [44, 45]. Pectineus muscles were taken at necropsy from 9 GRMD [4] and 

one healthy dog. The canines ranged between 3 and 48 months in age, i.e., three 3 months old, two 

12 months old, one each 15, 18, 42, and 48 months old, and one healthy adult dog. The pectineus 

muscle samples (average size 12 mm × 20 mm × 45 mm) were extracted and fixed at their resting 

length. They are stored in formalin-filled containers prior to MRI acquisitions. On MRI imaging 

day, they are removed from the containers and prepared for MRI imaging. 
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Image Acquisition 

MRI 

A 40 cm bore 4.7T Varian Bruker scanner equipped with enhanced gradient system and an 

in-house developed birdcage coil was used for image acquisitions over a 30 mm  30 mm field of 

view and a matrix size of 256  256 [46]. The T1-weighted images were acquired with TR = 268 

ms, TE = 6.1 ms, FA = 72°, and 4 averages using a conventional gradient echo sequence. The T2-

weighted images were acquired with TR = 3 s, TE = 40 ms and 1 average using conventional spin 

echo MRI sequence. Twenty transverse slices were acquired at a resolution of 117.19 µm  117.19 

µm  1 mm. 

 

 

 

    

Figure 2.2. A representative set of T1-weighted images of a GRMD dog muscle and the 3D rendering of 

same muscle volume 
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Histology 

Before imaging, each sample was removed from formalin, rinsed with saline, dried, and 

placed into a 50-ml centrifuge tube. To reduce potential motion artifacts caused by vibrations 

occurring during high-resolution MRI scans, tubes were filled with agarose gel (0.8 gr of Agarose 

[Apex, USA] with 100-ml of plain water). When MRI images acquired, samples are removed from 

the containers and cleaned to prepare for sectioning. A muscle block is generated from each muscle 

in the middle. Two consecutive (5 m) slices were cut from midsection using a microtome. The 

sections were stained with Masson’s trichrome dye, which stains skeletal muscle tissue red/pink, 

fibrotic tissue (including collagen) blue, and fat or areas of tissue separation voids clear (appears 

white in images) [47]. The slides were digitally scanned (Hamamatsu NanoZoomer 2.0-HT 

pathology scanner) at 40x optical zoom and stored in a (tailed) proprietary image file format with 

a maximum pixel resolution of 0.23 µm. 

Image Pre-processing 

MRI 

After MRI images acquired, they are inspected to identify potential artifacts. The mask 

images were required to remove background effects and define an interested region in MRI slices. 

The MRI masks for each slice were generated from T1w images by using local adaptive 

thresholding method [48] and then refined by a morphological binary operation (opening) followed 

by active contour algorithm with 15 iterations [25, 26]. A representative set of twenty T1w MRI 

slices (left) and the 3D rendering of the MRI volume (right) are presented in Figure 2.3. 

Histology 

Differences in resolution between histology images and MRI increases the computational 

complexity and may hamper convergence of the registration procedure [49]. To match the MRI 
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resolution more accurately, histology images were exported from the proprietary image format at 

10x optical zoom resolution (pixel size 0.93 µm) using NDPITools [50].  

 

 

 

 

Figure 2.3. Original histology slice (left) and masked version (right) 

 

 

 

Due to histologic processing, histology sections may have a range of artifacts, including 

stain clumping, tissue separation along facial planes, and/or tissue folding [51]. To minimize the 

influence of artifacts on registration quality, a histology mask for each sample was generated 

automatically in down-sampled images (pixel size 0.93 µm) by employing Otsu’s global threshold 

[52]. This segmentation was pruned by morphological operations (erosion and dilation) and refined 

by an active contour method with 150 iterations for each individual sample [53]. A representative 

raw and masked histology images are presented in Figure 2.3.  

Trichrome stained histology images contain three color channels (RGB) to represent 

skeletal muscle (red/pink), fibrotic tissue and collagen (blue) and fat/non-staining background 

(usually appearing clear/white in images) [47]. To optimally exploit the information in histology 

images, considering the fibrosis and muscle tissue, the information content of separate image 

channels and transformed image models were evaluated. In the registration procedure, we used the 
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hue-component in the registration process as it provides the best separation between signal 

intensities of tissues of interest and presumably the best image contrast. After the final registration 

step, each transformation was applied on all components to reconstruct a co-registered RGB color 

image. 

Image Registration 

By processing of histology sections, muscle sample undergoes the deformation with 

respect to its original shape imaged by MRI. To compensate for the deformation between 3D-MRI 

and histology image, we developed a registration framework consisting of three distinct steps: 

1) Interactive alignment 

2) Slice-to-volume affine registration 

3) Slice-to-slice non-rigid registration 

For the two latter registration steps, multi-parametric MRI (consisting of T1w and T2w MR 

and corresponding mask) was used as a fixed image, while the hue-component of the histology 

image (and corresponding mask) was used as a moving image. A similarity metric for medical 

registration problems, mutual information (MI), is a global measure and does not consider the local 

image gradients. Local image structures such as edges can be effectively captured using a 

Laplacian filter. To overcome the limitations of MI, we employed a new similarity metric 

combining mutual information and correlation of local structure in the images, referred to as MIC. 

 
(2.1) 

where I1 is the multi-parametric MRI slice, I2 is the hue-component of the histology image, 

L1 is the corresponding multi-parametric MRI slice (I1) after Laplacian filtering (kernel size of 3), 

and L2 is hue-component of the histology image (I2) after Laplacian filtering (kernel size of 3). M1 

     1 2 1 1 2 2 1 2, , ,S I I M I I M L L 



 

36 

 

is the mutual information [54] between I1 and I2, and M2 is the Pearson’s correlation [55] between 

L1 and L2.  

Mutual information between the MRI and histology images was computed separately for 

both sequences in multi-parametric MRI, i.e., T1w versus histology, and T2w versus histology. 

Correspondingly, Pearson correlation was calculated independently for both T1w and T2w 

sequences. The calculated four metrics were weighted equally to compute the similarity measure 

between MRI and histology. 

Step 1: Interactive Alignment 

The objective of this step was to define an oblique MRI slice with the highest correlation 

to the histology image as validated by an observer. Achieving the global alignment in this step 

helps to avoid local registration minima and facilitate fast and efficient convergence of the 

subsequent registration steps. In our previous work, an interactive alignment procedure was 

developed using a smartphone as a control device [42]. In this study, we substituted the smartphone 

with a 3D mouse (SpaceNavigator, 3DConnexion, USA) as it enables oblique slice selection in an 

efficient yet user-friendly approach. This allowed for simultaneous control of six degrees of 

freedom, i.e., rotation, translation, plus the zoom and pan actions. The user is provided with visual 

feedback in the form of two fused color overlays, both consisting of the current raw MRI slice 

overlaid by the raw histologic image.  

Interactive alignment procedure generates the oblique MRI slice interpolated using a cubic 

kernel (FOV: 300 pixels  300 pixels) and a pixel size of 117.19 µm  117.19 µm  0.10 mm. 

Additionally, this step registers the histology image with four degrees of freedom. We initiated the 

registration by using four different oblique slices in MRI defined by four observers independently. 
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The registration process was completed separately for each parameter set determined by different 

users. 

Step 2: Slice-to-Volume Affine Registration 

For this iterative step, we used Matlab®. The oblique MRI plane, defined during interactive 

alignment, was used to initialize the optimization algorithm to search through the MRI volume 

iteratively by applying translation and rotation. During this process, rotation angles were limited 

to 30º and translation parameters to 10 mm. Simultaneously, the histology image was scaled in 

both directions. To avoid local registration minima and to decrease computation time, an 

optimization scheme was used based upon pattern search algorithm [56]. The PS algorithm 

generates a grid around the initialized point with the boundary constraints for each parameter to 

be optimized and then using an adaptive method to change the direction of scaling with step size. 

The PS algorithm stops when one of the following conditions is met: the mesh size is less than   

10-3; the number of iterations is greater than 800; the number of function evaluations is more than 

14k, or the change of the proposed similarity metric is less than 10-4. 

Step 3: Slice-to-Slice Non-Rigid Registration 

Non-rigid registration in this step was completed by utilizing Elastix [43]. A B-spline 

deformable registration with a three-level image-pyramid was used to minimize deformations. An 

adaptive stochastic gradient descent algorithm was selected for optimization of the deformable 

transformation parameters with the proposed similarity metric for non-rigid registration. The 

control points for B-spline transformation were placed every 10 pixels in each direction and were 

re-positioned (during the registration process) according to the registration accuracy. The stopping 

criterion was selected as a similarity metric with a value less than 10-6. The proposed similarity 

metric was utilized during the non-rigid registration step. 
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Evaluation 

Evaluation of Registration Accuracy 

To validate the proposed metric, compared to classical mutual information, we have 

evaluated the registration accuracy for both metrics separately. Furthermore, the benefit of multi-

modal registration approach was also evaluated by performing three registration experiments (for 

each metric) using different MRI data: T1w, T2w, and the combination of T1w and T2w. For all 

separate registrations, four observers used visual inspection with a moving quadrant view for 

qualitative evaluation of the resulting alignment. In addition, the registration was quantitatively 

evaluated using the distance from anatomical landmarks (e.g., characteristic features in the skeletal 

muscle sample) for all individual registration experiments separately. For the quantitative 

evaluation of each sample, five clearly identifiable anatomical landmark points were defined 

before registration by an experienced observer on the histology image. Subsequently, after final 

registration, five observers independently annotated the corresponding anatomical landmark points 

in MRI for each registration experiment and for all 10 samples. To evaluate registration accuracy, 

the root mean squared distance between the corresponding landmark points in MRI and the 

histology was calculated after all three registration steps separately. For each registration and each 

observer, we averaged all landmark points and evaluated for four different registrations. The 

selected landmark locations on the MRI image were transformed back to previous steps to 

calculate the RMS distance of earlier steps. Additionally, the inter-observer variability was 

estimated by computing the RMS distance between the corresponding landmark points (in each 

sample independently) for all five observers after the final registration step. 
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Evaluation of Reference Plane 

The reference plane greatly facilitates the registration procedure. Differences in reference 

plane position between the two images, after the second step in the registration procedure, 

measured the initial reference plane error. To quantify the error in reference plane positioning, the 

out-of-plane angulation was estimated as the rotation component of the rigid registration for the 

second step. The effects of the out-of-plane angular change on final registration step was 

investigated using statistical analyses defined in the next section. 

Surface Change 

Global surface change of the histology image was established by computing the 

determinant of the corresponding transformation for the second step and the third step: 

 (2.2) 

where Ao, and Ar represent the cross-sectional area before and after registration, 

respectively. 

Statistical Analysis 

Random effects models were fitted with the RMS as the dependent variable and the 

Bootstrap Information Criterion (BIC) was used for model selection. The model parameters were 

estimated through restricted maximum likelihood estimation. Likelihood ratio tests were used to 

compare the differences between the effects of the three steps. Residuals were checked for the 

goodness of fit of the models. Statistical analysis was performed using R version 3.3.3 (2017 The 

R Foundation for Statistical Computing). Furthermore, the Cohen’s d effect size was calculated 

between the first two steps of the registration procedure. To summarize the data, mean and standard 

deviation were calculated for each step and user. 
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Table 2.1. Average root mean squared distances (pixels) for the different registration steps for all 

registration experiments averaged over all 10 samples and for all four initializations. Detailed results of 

RMS measures after step 2 and after step 3 are presented in Table A1 (Appendix A). (MI: Mutual 

information, MIC: Proposed similarity metric) 

Similarity 

Metric 
MRI image  Step 1   Step 2   Step 3 

MI 

T1w   4.40±0.60  4.80±0.75 

T2w 4.36±1.87  4.65±0.47  4.87±0.52 

T1w & T2w   4.55±0.39  4.83±0.46 

       

MIC 

T1w   4.29±0.37  3.78±0.62 

T2w 4.36±1.87  4.11±0.60  3.52±1.18 

T1w & T2w   3.11±0.37  1.27±0.75 

 

 

 

Results 

Evaluation of Registration Accuracy 

The proposed registration framework was used to register pectineus muscle samples from 

10 dogs (nine GRMD and one normal) for both metrics (using MI and MIC) separately. The 

quantitative evaluation (registration error) is presented in Table 2.1 as RMS distance averaged over 

the ten samples after all registration steps for all registrations, and with different MRI images (T1w, 

T2w, and the combination of T1w and T2w). For proposed registration framework (including MI 

and dual MRI), RMS distance (presenting maximum accuracy among four initializations) was 

provided in the Table A1 (Appendix A) for all samples separately. For three samples, one landmark 

point (selected in the histology image before the registration) was not visible in MRI after the final 

registration step. For these three samples, we averaged the RMS for remaining four landmark 

points. 

In case of MI metric, the registration accuracy remained unchanged regardless of the 

increase in the degree of freedom or data input. However, in case of MIC metric, the registration 
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accuracy clearly increased with additional MRI sequences. The average RMS decreased from 4.36 

pixels (511.49 µm) after the first step to 1.27 pixels (148.83 µm) after the third step. Besides 

increasing accuracy by decreasing registration error, we also observed a significant decrease in 

variance after the third step for all samples. On average, the final accuracy of 148.83 µm 

corresponds to a surface populated by 3-15 healthy muscle cells [57]. The supplementary table 

shows the detailed results for all ten samples and all four observers separately for an experiment 

using MIC metric and a combination of T1w and T2w MRI. The best out of four registrations for 

each sample yielded the RMS error of 128.48 ± 25.39 µm (averaged for all 10 skeletal muscle 

samples). There was no significant difference in registration accuracy between the healthy sample 

(RMS distance of 125.67 µm) and diseased samples with an average RMS distance of 128.79 µm. 

 

 

 

 

Figure 2.4. The RMS error for all individual samples averaged over five landmark points except samples 

1, 3, 10 (4 landmark points) for all four registrations, five observers, and all six different registration 

experiments.  
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Figure 2.4 illustrates the RMS error for all ten samples individually as assessed by five 

observers independently. A significant decrease in RMS distance was observed between every step 

of the registration process. 

 

 

 

 

Figure 2.5. Final registration results for GRMD (left panel) and normal dog (right panel) samples. In each 

group, the left image presents the initial image and the registered image is shown on the right. T1-weighted, 

T2-weighted and histology images of the GRMD (a, b, and c) and normal dog (d, e, and f), respectively, are 

shown. 

 

 

 

For proposed registration framework (including MI and dual MRI), we assessed the 

uncertainty of manual annotations by the inter-observer variability as RMS error for all 

corresponding landmark points (in MRI) and for each landmark point in histology. The inter-

observer variability after the final registration step was assessed at 1.5 ± 0.83 pixels. Resulting 

original and post-registration images were illustrated for two samples: GRMD (Figure 2.5-left) 
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and normal (Figure 2.5-right) with Figure 2.6 detailing the registration results. The checkerboard 

views illustrate a good alignment for the registered histology image with 3D-T1w MRI (Figure 

2.6-left), and 3D-T2w MRI (Figure 2.6-right). 

 

 

 

 

Figure 2.6. Checkerboard images of the sample show the matching curved line structure of histology and 

T1w MRI images (left) and of histology and T2w MRI (right). The figure illustrates the results of the 

proposed registration framework (including MIC and dual MRI). 

 

 

 

The statistical analysis of the registration accuracy showed no significant effect of the 

initial orientation of the oblique MRI slice to the final registration. The users (initializing the 

registrations by choosing an oblique MRI slice) were statistically modeled with both as a fixed 

effect (p=0.08) and as a random effect (p=0.27). Furthermore, Cohen’s d-effect size of 1.153 was 

assessed between the first two steps of the registration procedure. 

 

 

 
Table 2.2. The angulation difference after first and second steps of the registration process averaged for all 

four registrations and all ten samples 

 Step 1  Step 2 

 |θº|  |θº| 

Average 4.36  5.64 

Minimum 0.00  0.00 

Maximum 15.00  21.02 
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Table 2.3 Summarized surface change in histology images averaged for all four registrations 

 after 1st step  after 2nd step  after 3rd step 

 ΔA (%) abs(ΔA)  ΔA (%) abs(ΔA)  ΔA (%) abs(ΔA) 

sample 1 7.4 7.4   -1.57 1.57   -6.28 6.28 

sample 2 -9.9 9.9   -1.48 1.48   -6.74 6.74 

sample 3 -16.8 16.8   -1.97 1.97   -5.53 5.53 

sample 4 0.0 0.0   -0.86 1.24   -3.66 3.66 

sample 5 -20.8 20.8   -2.96 2.96   -1.23 2.53 

sample 6 -4.6 4.6   -0.22 0.22   -1.48 2.77 

sample 7 0.0 0.0   -1.13 2.04   -1.51 2.80 

sample 8 -10.2 10.2   0.05 0.66   -2.48 3.77 

sample 9 -8.1 8.1   -0.21 0.81   -3.33 3.33 

sample 10 24.1 24.1   -0.24 0.24   -2.77 2.77 

                 

average -3.9 10.2   -1.1 1.3   -3.5 4.0 

min -20.8 0.0   -3.0 0.2   -6.7 2.5 
max 24.1 24.1   0.0 3.0   -1.2 6.7 

 

 

 

 

Evaluation of Reference Plane 

The angular change in the reference plane (θº) was assessed after the first step and second 

step in the registration process. Table 2.2 shows the average absolute reference plane compared to 

original MRI orientation. To determine the relationship between angulation difference and 

registration accuracy after each step, random effects models were fitted with registration accuracy 

as the dependent variable. The results showed that the angulation difference was not significant on 

the registration accuracy calculated after first and second steps of the framework (p=1.0). 

Furthermore, there was no significant difference between the steps (p=0.2018). 

Histological Surface Change 

On average, the cross-sectional area of the histology images decreased after final 

registration by 3.5% (this change ranged between 1.2% and 6.7%). The same decreasing trend was 
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observed for all samples. Table 2.3 showed the change in cross-sectional area for the ten samples 

as average for all four independent registration experiments. 

Discussions and Conclusions 

Noninvasive tools for skeletal muscle evaluation are critically needed to assess MRI in 

therapeutic protocols for muscular dystrophy and other myopathies. Therefore, it is essential that 

the selected biomarkers are robust in detecting (small and subtle) differences between degrees of 

muscle involvement.  

In this study, we present a multi-modality registration scheme with a new similarity metric 

to co-register histology with MRI. The proposed method features a 3D mouse-controlled slice 

localization to select a slice orientation as a starting point for registration. Another unique feature 

of the method is the similarity metric that combines mutual information and local gradients. 

Specifically, multi-modal MRI and Laplacian histology hue-images were used for the registration 

to incorporate local texture information. Both T1w and T2w MRI images were included in the 

similarity metric calculation. The proposed metric, between MRI and histology images, was 

calculated for T1w and T2w MRI separately and was equally weighted during affine and 

deformable registrations. We performed four separate registrations for each sample, each one with 

an oblique plane initiated by a different observer independently. The registration quality, evaluated 

by remaining RMS error, demonstrated the superiority of MIC to MI that is considered a state-of-

the-art distance measure for multi-modal image registration. During evaluation of the registration 

accuracy, visible structures were validated qualitatively and quantitatively by assessing the inner 

anatomical landmarks based on RMS distances. The results were evaluated by five observers to 

reduce bias in the manual selection of landmarks after the registrations. The average registration 

accuracy was evaluated to 148.83 µm (1.27 pixels) after the final registration step with an inter-
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observer variability of 1.5 ± 0.83 pixels. This demonstrated the average accuracy was slightly 

under the inter-observer variability. However, when compared to the best out of four registrations 

for each sample (128.48 ± 25.39 µm), the registration accuracy was well under the inter-observer 

variability.  

This study represents a successful and efficient initial step to establish a registration method 

to align a single histology image with 3D MRI volume data, enabling extraction of histology 

validated imaging biomarkers of GRMD skeletal muscle. The quantitative registration results 

show that the proposed method can be used to register different modality images successfully with 

low misalignment errors. Eventually, data obtained with this process should provide a better 

understanding of the effects of GRMD on skeletal muscle in preclinical treatment trials. This will 

allow accurate monitoring of disease progression and assessment of treatment effects without 

highly invasive biopsy procedures.  
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CHAPTER III  

TEXTURE AS IMAGING BIOMARKER FOR DISEASE SEVERITY IN GRMD 

 

Duchenne muscular dystrophy is an X-linked genetic disorder caused by dystrophin protein 

deficiency [1]. The incidence of DMD is ~4000-6000 newborn males worldwide making it the 

most common form of muscular dystrophy [2]. Dystrophic muscles undergo repeated cycles of 

degeneration and are ultimately replaced by fat and connective tissue. Golden retriever muscular 

dystrophy is a genetically homologous DMD model that has similar phenotypic features [3]. 

Studies in GRMD dogs have helped to define efficacy and side effects of potential treatment 

options [4-8]. Various biomarkers have been developed to assess disease progression in both DMD 

and GRMD. Functional tests such as quantitative force measurements and the 6-minute-walk test 

give evidence of improvement but are prone to observer variability [9, 10]. Muscle biopsy 

traditionally provide ground truth information related to histopathological features but is invasive, 

generally limited to a single time point and specific region of the muscle [11]. This has led to 

efforts to identify quantitative, ideally noninvasive methods that could be tracked longitudinally 

in clinical trials. 

Numerous studies have utilized magnetic resonance imaging (MRI) to monitor disease 

progression and treatment outcomes in pre-clinical [12-17] and clinical [18-21] studies. 

Quantitative MRI protocols such as T1-map, T2-map, water/fat images obtained from the Dixon 

sequence, and several diffusion tensor imaging parameters have also been used to assess muscle 

quality [22-27]. Studies have shown significant differences in muscle volume and cross-sectional 

area between healthy and diseased subjects in animal models [28-31], and in human subjects [32-

36]. Imaging biomarkers in these and other studies have behaved differently across muscle types 
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and stages of the disease [20, 28, 37]. During DMD disease progression, higher T1 relaxation time 

was observed early in the disease course due to increased muscle free water associated with 

necrosis, but then decreased because of fibrosis and fat infiltration. In addition, several tissue types 

(i.e. necrotic, fatty and fibrotic) have longer T2 relaxation time, making a differentiation between 

necrosis from fibrosis difficult. Clinical studies showed an increase in muscle fat fraction in DMD 

patients compared to healthy controls [25, 38, 39]. A positive correlation between age and fat 

fraction was also observed in DMD patients [25]. However, fat-infiltration was not observed at 

similar levels in GRMD subjects. On the other hand, significant differences of fractional 

anisotropy, apparent diffusion coefficient and mean diffusivity values were observed in clinical 

studies [40, 41]. As FA value was negatively correlated with muscle strength and fat-infiltration, 

a positive correlation with age was obtained. ADC values were positively correlated with muscle 

strength and fat infiltration but negatively correlated with age. Additionally, a significant increase 

in MD values occurred among DMD patients [40]. 

Muscle in DMD undergoes cycles of degeneration and regeneration, with associated 

inflammation, fat deposition, and fibrosis over time [42-44]. The wide range of lesions causes 

muscle heterogeneity in the MRI images [45, 46] potentially detectable by changes in muscle 

texture. Initial studies of heterogeneity focused on either T1-weighted or T2-weighted MRI images 

to differentiate between diseased and healthy subjects in clinical studies [47]. As an example, 

Zhang et. al. [47] use wavelet-based features and soft-margin support vector machines approach 

to assess the heterogeneity of T1w and T2w MRI images. They differentiate between healthy 

subjects and DMD patients with a classification accuracy of 92.9%. A number of studies have 

assessed texture features in GRMD dogs. In prior collaborations involving our group, Fan et. al. 

[15] and Wang et. al. [31] assessed first order statistics and texture in T2w MRI to characterize 
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GRMD and healthy dogs at 3, 6 and 9 months of age. A different group assessed texture features 

(Zernike and Legendre moments) on selected regions of interest in T2w MRI to differentiate 

between GRMD and healthy subjects at seven ages [48]. Maximum (100%) accuracy was reached 

using SVM approach at 5, 6, and 8 months among the seven age categories. Duda et. al. [49] 

assessed a total of 39 different texture features (first order statistics, normalized autocorrelation 

coefficient, gradient matrix, co-occurrence matrix, run-length matrix, gray level difference matrix, 

fractal dimension, entropy of laws’ masks) in either raw MRI images (T1w and T2w) or gradient 

images to differentiate between GRMD and healthy subjects with a maximum accuracy of 95.8%. 

In this study, we collected MRI images of ex vivo pectineus muscle samples with a clinical 

3T Siemens Verio whole-body MRI scanner. Five groups of features of two qualitative and four 

quantitative MRI images were extracted. We used a classification approach to investigate the 

contribution of different qMRI sequences and also tested texture analysis as an imaging biomarker 

to differentiate between two age categories of GRMD muscles.  

Materials and Methods 

In this study, we hypothesized that heterogeneity in qMRI images can be used to grade the 

severity of DMD muscle lesions based on age, with the assumption that older dogs should have 

more severe lesions. To test our hypothesis, we developed a classification-based framework 

(Figure 3.1) that included three distinctive steps. First, MRI sequences were acquired, co-

registered, and a set of qMRI images were generated. Second, a mask was generated to define a 

ROI, and heterogeneity features were extracted on the ROI. The final step involved building an 

SVM-based classifier. 
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Figure 3.1. The framework represents the overall process of texture analysis to select MRI modality and 

textural features 

 

 

 

Animals 

The image data were collected from nine GRMD dogs from a colony at Texas A&M 

University under Institutional Animal Care and Use Committee (IACUC) protocol 2015-01110 

under established standards [4, 50]. Pectineus muscle samples were removed from GRMD dogs 

during necropsy. The details were described in the second chapter of this dissertation [51]. 

MRI Image Acquisition 

For MRI acquisitions, we used a clinical (3T Siemens Verio) whole-body MRI scanner and 

a small size loop coil (40 mm diameter). The MRI sequences acquired (36 slices with FOV of 50 

mm × 50 mm), listed in Table 3.1, include T1-weighted, T2-weighted, two-point Dixon (D2p), T1-

map, and T2-map sequences.  
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Table 3.1. MRI acquisition parameters on clinical 3T MRI scanner 

MRI 

Sequence 
TR (ms) TE (ms) FA (°) Averages 

Resolution 

(µm) 

Total time 

(min) 

T1w 16.7 5.51 4 9 195.31 25 

T2w 3500 60 - 1 195.31 4 

T1m 16.7 5.51 4, 21 9 195.31 51 

T2m 3500 15-90 - 1 195.31 15 

Dixon 710 38 140 6 195.31 37 

 

 

 

Image Processing and Registration 

To reduce effects of bias-field artifacts, each 3D MRI image was corrected using the 

N4ITK algorithm [52]. The algorithm minimizes field inhomogeneity effects using a B-spline 

algorithm, with a multiresolution approach, to identify a smooth multiplicative field. Subsequently, 

all 3D MRI volumes were co-registered by applying an affine transformation using Elastix [53]. 

The middle MRI slices were used in further analysis. The T1w image slice was used to generate a 

mask by morphological processing followed by thresholding. This initial mask was refined by a 

snake voxel-based approach to define the ROI for further processing [54]. T1m images were 

calculated using the Despot1 method [55], T2m images were estimated using a linear least squares 

regression algorithm, and D2p water fraction (DWf) and fat fraction (DFf) images were estimated 

using one base and one frequency shifted image [56]. Figure 3.2 shows a representative set of two 

qualitative and four quantitative images from one muscle sample. 
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Figure 3.2. Qualitative and quantitative middle MRI slices of the sample from a 15 month-old GRMD dog 

acquired with the 3T clinical scanner: T1w (a), T2w (b), T1m (c), T2m (d), D2p water fraction (e) and D2p 

fat fraction (f) images. 

 

 

 

Feature Extraction 

In this study, we quantify the heterogeneity of the muscle tissue by extracting different 

texture descriptors from MRI images. For each MRI data (T1w, T2w, T1m, T2m, DWf, DFf), we 

computed 41 texture features listed in Table 3.2 and detailed in Table B1 (Appendix B). The 

calculated features are stored sequentially and used in the experiments by combining features up 

to 3 feature group. 

 

 

 
Table 3.2. Features calculated from 3T MRI images 

Feature combinations Number of features (Pixelwise) 

First order statistical features 6 

Gray level co-occurrence matrix 6 

Gray level run-length matrix features  7 

Local binary pattern features 10 

Wavelet transform based features 12 
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First Order Statistical Features 

These methods characterize the muscle tissue by non-spatial descriptors, such as the gray-

level frequency distributions. In this study, we used six FOS features: mean, standard deviation, 

third moment, entropy, skewness, and kurtosis for all samples. The features are calculated from 

normalized histograms of the grayscale MRI images.  

Gray Level Co-occurrence Matrix 

Co-occurrence matrix is one of the most popular texture analysis methods which describes 

the spatial relationship of pixels as the frequency of the occurring gray levels [57]. It’s widely used 

for analysis of textures in images. GLCM measure can be calculated in different directions. For 

this study, we calculated GLCM in four main directions (0°, 45°, 135°, 180°), and average them 

to analyze the information for different directions together. We calculated six GLCM features: 

homogeneity, contrast, correlation, diagonal, entropy and energy using average GLCM data. 

Gray Level Run-length Matrix 

Run length encoding enables to define representative high-level statistical features as 

detecting the repetition of gray level intensities in the defined direction. GRLM calculates the 

length of intensity runs in four main directions (0°, 45°, 135°, 180°) [58]. In this study, we averaged 

the GRLM data calculated in four main directions and then calculated 11 GRLM features using 

the averaged GRLM matrix: short run emphasis, long run emphasis, gray-level nonuniformity, run 

length nonuniformity, run percentage, low gray-level run emphasis, high gray-level run emphasis, 

short-run low gray-level run emphasis, short-run high gray-level run emphasis, long run low gray-

level run emphasis, and long run high gray-level run emphasis. 
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Local Binary Patterns 

Local binary pattern method is one of the most popular texture operators due to its 

simplicity, efficiency, and robustness of monotonic illumination variations [59]. In LBP method, 

all pixels of the image are labeled as the sum of the weighted mask by comparing them with their 

neighbor pixels. Some LBP patterns i.e. edges, curves, flat areas, and spot occur more frequently 

than other patterns. Therefore, uniform patterns are commonly used to reduce the length of the 

descriptors defined by LBP method. In this study, we used the approach proposed by Ojala et. al. 

[60]. Utilizing LBP method, Ten LBP features (1-10) were calculated using eight neighborhood 

pixels for each MRI images. 

Wavelet Transform 

Wavelet transform represents signals by splitting into multiple frequency scales using 

different basis functions resulting in a signal with a half size of the original one described as high 

and low-frequency details. In this study, we used the Daubechies basis function with overlapping 

windows providing a reflection of all intensity variations between pixels. In two-dimensional 

wavelet, four quarter sized images were generated using a pair of linear filters. The mean, variance 

and power measures of the resulting four sub-images were computed to describe the textual 

description of the images.  

Classification Framework 

Data for classification were grouped according to subject ages: the samples between 3 and 

12 months were considered the young group and remaining samples between 15 and 48 months 

were considered the adult group. A total of 41 features (Table 3.2) for each MRI dataset were used 

for the classification. Weighted MRI, T1 and T2 MRI maps and Dixon MRI maps were studied in 

three separate experiments to outline their potential for severity grading. Each experiment reports 
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classification accuracy of textures as an imaging biomarker. In each experiment, we used a kernel-

based SVM method [61] to assess the performance of increasing number of features. To assess the 

classification quality, a linear kernel in a leave-one-out cross-validation framework was used. The 

kernel parameters were optimized using a heuristic approach and the penalty factor was optimized 

empirically. The classification accuracy was averaged over nine experiments for each kernel 

parameter and penalty factor.  

Even though accuracy is widely used to validate the classification performance, this metric 

is not always optimal [62]. Alternative metrics such as sensitivity and specificity have also been 

used to evaluate the classification model in diagnostic imaging [62, 63]. Therefore, accuracy, 

sensitivity, and specificity measures were all tracked during the training. In this research study, 

young subjects were selected as the negative class while adult samples were labeled as the positive 

class. The classification framework was used to identify disease effects related to age of the 

subjects. Sensitivity was used as a measure for correct detection rate of young subjects and 

specificity was the measure of correct detection of old subjects. To assess the performance of the 

classifier, we validated performance accuracy for all three metrics during the test phase. For each 

experiment separately, the number of features was increased incrementally from single MRI to a 

combination of MRI sequences in each sub-group. All experiments were completed using Matlab® 

(Version 9.1.0, MathWorks Inc., Natick, Massachusetts, USA).  

Results 

To assess the potential of weighted MRI images (quantified by texture features) as a 

biomarker of disease severity, we maximized accuracy, sensitivity, and specificity during the 

training processes. Table B1 (Appendix B) lists all textural features used in this study.  
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Experiment I: Weighted MRI as an Imaging Biomarker for Severity Grading 

Table 3.3 lists the highest performance metrics for one, two, or three texture features 

separately. Table B2 (Appendix B) lists all textural features, with the highest validation accuracy 

shown in Table 3.3 for the incrementally added number of features.  

With only one feature used, the average validation accuracy was 88.9% for a T1w image 

and the combination of T1w and T2w images. Maximizing sensitivity during the training slightly 

decreased the validation accuracy, while maximizing accuracy or specificity provided the same 

validation results. The average validation accuracy of 88.9% was reached using a single feature 

from FOS (3th moment) or WT (mean of approximation detail image, or variance of diagonal detail 

image) for a T1w image and GRLM (low gray level run emphasis) or WT (mean of approximation 

detail image) for a combination of T1w and T2w images.  

 

 

 
Table 3.3. The validation accuracy for clinical 3T MRI data for maximized accuracy, sensitivity and 

specificity illustrating increased accuracy by increasing number of features in all three MRI sets for 

weighted T1 and T2 images. 

 

 

 

If two textural features were used, the average validation accuracy increased to 100% for 

T1w image and the combination of T1w and T2w images. Maximizing any of the three metrics 

during training provided the same results. A validation accuracy of 100% was reached for several 

feature pairs for T1w images (21 different feature combinations) and a combination of T1w and 

    Number of Features 

    1 
 

2 
 

3 
  

Acc. Se. Sp. 
 

Acc. Se. Sp. 
 

Acc. Se. Sp. 

MRI 

T1w 88.9 88.9 88.9 
 

100 100 100 
 

100 100 100 

T2w 77.8 66.7 77.8 
 

88.9 88.9 88.9 
 

100 100 100 

Both 88.9 88.9 88.9   100 100 100   100 100 100 
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T2w images (24 different feature combinations), see Table B2 (Appendix B). Figure 3.3 (left) 

presents the results of a classification model for incrementally adding a number of features and for 

all three weighted images separately. Figure 3.3 (right) presents a scatterplot for two features with 

maximum validation accuracy: i.e. WT (variance of detail image) and FOS (entropy) for T1w 

image.  

 

 

 

 

Figure 3.3. Classification results using features of only T1w, only T2w, or combined features of T1w and 

T2w illustrating increasing validation accuracy as a function of increasing number of features in all three 

MRI sets (a). The scatter plot of the most accurate texture features in T1w images on clinical 3T data (b). 

The decision boundary of SVM is drawn in green. 

 

 

 

For a triplet of features, the average validation accuracy was 100% for all three MRI 

options regardless of the metrics maximized during the training. Table B2 (Appendix B) 

summarizes all triplets with maximal validation accuracy for T1w (470 different feature 

combinations), T2w (7 different feature combinations), and a combination of T1w and T2w (348 

different feature combinations). 
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Experiment II: T1 and T2 MRI Map as an Imaging Biomarker for Severity Grading 

Table 3.4 lists the highest performance metrics for one, two, or three texture features 

separately. Table B3 (Appendix B) lists all textural features, with the highest validation accuracy 

shown in Table 3.4 for the incrementally added number of features.  

With only one feature, the highest validation accuracy (100%) was obtained with the 

combination of T1m and T2m images using WT (power of diagonal detail image) regardless of the 

metrics used during training. For separate parametric maps, the validation accuracy was 88.9% for 

T2m (5 different feature combinations) and 66.7% for T1m, (20 different feature combinations). 

 

 

 
Table 3.4. The validation accuracy for clinical 3T MRI data for maximized accuracy, sensitivity and 

specificity illustrating increased accuracy by increasing number of features in all three MRI sets for 

parametric T1m and T2m images. 

    Number of Features 

    1 
 

2 
 

3 
  

Acc. Se. Sp. 
 

Acc. Se. Sp. 
 

Acc. Se. Sp. 

MRI 

T1m 66.7 66.7 66.7 
 

88.9 88.9 88.9 
 

100 100 100 

T2m 88.9 88.9 77.8 
 

100 100 100 
 

100 100 100 

Both 100 100 100   100 100 100   100 100 100 

 

 

 

With two textural features used, the validation accuracy increased to 100% for T2m and 

combination of T1m and T2m images. The highest validation accuracy for T2m images was 

obtained by a combination of LBP features (2&10 or 4&6). There are several combinations of 

texture features providing maximum accuracy for a combination of T1w and T2w images, i.e. 

GRLM and WT, LBP and two different features form WT. Figure 3.4 (left) shows the results of 

the classification model of incrementally adding the number of features and for all three map 
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images separately. Figure 3.4 (right) shows a scatterplot for texture in T1m and T2m quantified by 

WT (power of diagonal detail image). 

For a triplet of texture features, regardless of the performance metrics used during 

classification, resulted in 100% validation accuracy for all three MRI image inputs. Table B3 

(Appendix B) summarizes all triplets with maximal validation accuracy for T1m (4 different 

feature combinations), T2m (21 different feature combinations), and a combination of T1m and 

T2m (43 different feature combinations). 

 

 

 

 

Figure 3.4. Classification results using features of only T1m, only T2m, or combined features of T1m and 

T2m illustrating increasing validation accuracy as a function of increasing number of features in all three 

MRI sets (a). The scatter plot of the most accurate texture features in T1m and T2m images on clinical 3T 

data (b). The decision boundary of SVM is drawn in green. 

 

 

 

Experiment III: Dixon MRI Maps as an Imaging Biomarker for Severity Grading 

Table 3.5 lists the highest performance metrics for one, two, or three texture features 

separately. Table B4 (Appendix B) lists all textural features, with the highest validation accuracy 

shown in Table 3.5 for the incrementally added number of features.  
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Using one texture feature, WT (mean of horizontal detail image), extracted from DWf maps 

provided a validation accuracy of 77.8%. There were 23 texture features, extracted from DFf maps, 

with validation accuracy of 66.7% and slightly increased to 77.8% with LBP (5) feature as 

specificity measure used during the training process. Using a combination of Dixon maps 

increased the accuracy to 100% when assessed by GRLM (short run emphasis). 

 

 

 

Table 3.5. The validation accuracy for clinical 3T MRI data for maximized accuracy, sensitivity 

and specificity illustrating increased accuracy by increasing number of features in all three MRI 

sets for Dixon (water and fat) images. 

   Number of Features 

  
 

1 2 
 

3 
  

Acc. Se. Sp. 
 

Acc. Se. Sp. 
 

Acc. Se. Sp. 

MRI 

DWf 77.8 77.8 77.8 
 

88.9 88.9 88.9 
 

100 100 100 

DFf 66.7 66.7 77.8 
 

100 100 100 
 

100 100 100 

Both 100 100 100   100 100 100   100 100 100 

 

 

 

Two texture features combined improved the validation accuracy to 88.9% for DWf map 

(5 different feature combinations). The validation accuracy for texture features extracted from DFf 

was 100% for 11 different feature combinations, and for a combination of both Dixon maps (23 

different feature combinations). Figure 3.5 (left) shows the results of the classification model of 

incrementally adding a number of features and for all three Dixon images separately. Figure 3.5 

(right) presents a scatterplot for two features of a DFf image with maximum validation accuracy: 

i.e. WT (variance and power of vertical detail images).  
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Figure 3.5. Classification results using features of only DWf, only DFf, or combined features of DWf and 

DFf illustrating increasing validation accuracy as a function of increasing number of features in all three 

MRI sets (a). The scatter plot of the most accurate texture features in DFf images on clinical 3T data (b). 

The decision boundary of SVM drawn in green. 

 

 

 

For a triplet of features with D2p images, 100% validation accuracy was obtained 

regardless of performance metrics or map. Among the feature groups, GRLM features had the 

most common features with maximized accuracy.  

Discussions and Conclusions 

Evaluation of subtle changes in skeletal muscle using non-invasive imaging techniques 

such as MRI has great potential for assessment of clinical outcomes and disease progression in 

GRMD. In this study, we assessed a texture analysis approach to identify imaging biomarkers that 

tracked with disease severity and optimum MRI modalities to reduce imaging time and 

computation cost. A single MRI image or combination of several MRI images quantified using 

five group of features (first order statistics, gray level co-occurrence matrix, gray level run-length 

matrix features, local binary pattern features, and wavelet transform based features) was used to 

assess complex MRI characteristics. We used a soft margin based SVM approach to classify the 

MRI data in a leave-one-out approach.  
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The MRI images were analyzed in three experimental setups: weighted image (T1w and 

T2w), parametric maps (T1m and T2m), and Dixon maps (water and fat). Our results showed that 

T1w images provided better discrimination than T2w images and that calculating two texture 

features on T1w MRI images provided excellent results (100% accuracy). In contrast, if only one 

texture feature from either T1w or T2w was analyzed, the highest accuracy was 88.9% and 77.8%, 

respectively. Combining T1w and T2w image features did not significantly influence the results. 

For MRI parametric maps, use of two texture features (LBP) to quantify heterogeneity in T2m 

produced 100% accuracy. In contrast to weighted MRI images, merging parametric maps (T1m 

and T2m) improved the classification accuracy (100%). Combining Dixon parametric maps (water 

and fat fraction) provided 100% accuracy when quantified using texture descriptor extracted from 

the gray-level run-length matrix. Similarly, a combination of the gray-level run-length matrix, 

local binary patterns, and wavelet-based descriptors or gray-level run-length matrix features in 

combination with first order statistics, local binary patterns or wavelet-based descriptors, or gray-

level co-occurrence matrix in combination with wavelet-based descriptors was 100% accurate for 

fat-fraction map. In all cases, using three texture features was 100% accurate in grading GRMD 

severity.  

For sake of the analysis, we divided the muscles into two groups based on age. The 

assumption was that older dogs would have more severe lesions. Given that disease progression 

varies among GRMD dogs, there was potential for overlap between the two age groups. However, 

the two groups generally had distinctive MRI features that allowed us to test our approach. The 

study was also limited by the relatively low number of samples, which is common with large 

animal preclinical studies. As a result, there was considerable variation among the ages of the two 

disease groups, which undoubtedly reduced the robustness and sensitivity of the approach.  
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In summary, this study assessed a number of texture descriptors as potential non-invasive 

MRI biomarkers for grading disease severity reflected in aging effects in GRMD dogs. The 

classification results showed high validation accuracy regardless of the type of metrics used in 

training. Furthermore, combining features of multiple MRI images improved classification 

accuracy. We were unable to reach 100% accuracy when only one MRI sequence was used in 

combination with a single texture feature. However, use of one texture feature in combination with 

two MRI parametric maps was 100% accurate for longitudinal and transverse parametric maps and 

for Dixon fat and water fractions. Analysis of two texture features in combination with one MRI 

sequence was 100% accurate with single T1-weighted images, T2 parametric map and Dixon fat 

fraction. Considering the scan-time and complexity of calculating texture features, T2m images 

provided better accuracy with lower acquisition time than other MRI sequences. The accuracy of 

T1w and T1m images was same when nine averages were used due to the reduced signal to noise 

ratio. On the other hand, Dixon fat fraction and combination of Dixon images provided similar 

validation accuracies when six averages were used to improve the signal to noise ratio. However, 

the increase in acquisition time could potentially lead to movement artifacts during clinical 

acquisition. Accordingly, analysis of T2m images has greater potential as a non-invasive biomarker 

for assessment of severity of GRMD disease. 
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CHAPTER IV  

MUSCLE PERCENTAGE INDEX AS AN IMAGING BIOMARKER FOR 

QUANTIFICATION OF MUSCLE DEGENERATION IN GRMD: MACHINE LEARNING 

APPROACH 

 

There is a great demand for accurate outcome measures across all disease stages to improve 

the understanding of natural history and to facilitate the inclusion of a large range of participants 

in clinical trials. Current outcome measures are suboptimal: e.g., functional and muscle strength 

assessments are susceptible to rater variability [1, 2]. A vast variety of studies have utilized 

histological sections (paraffin and freshly-frozen) with different histochemical enzymes as an 

accurate ground-truth information (the gold standard) for assessment of the therapeutic response 

in DMD [3]. In DMD, inflammatory processes and subsequent fat replacement of muscle tissue is 

identified as a useful endpoint in clinical therapeutic trials, although progression in different 

muscle groups is reported to be uneven [4]. These processes in dystrophic muscles are quantifiable 

in histology images, though often assessed qualitatively [5]. The quantitative parameters for 

specific histological features (e.g. myofiber necrosis, fibrosis and fatty connective tissue, muscle) 

usually include the number of fibers or percentage of a feature of interest in the cross-section area 

[6]. The morphometric assessment of these parameters evolved from early manual methods [7], 

trough digitized planimetry [8, 9], to semi-automated [10] and completely automated methods 

[11]. However, these histopathological approaches have considerable drawbacks: i.e., highly 

invasive, a limited amount of coverage by specimen size, and unreliable representation of the 

overall disease state or therapeutic progress due to the variability of muscle involvement during 

the disease progression [12].  
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A variety of MRI protocols have evolved as a non-invasive alternative to provide useful 

information on natural disease progression and assessment of treatment response in pre-clinical [5, 

13-17] and clinical [18-21] DMD studies. Quantitative mapping of MRI data has emerged as an 

attempt to quantify this process and use it as a non-invasive imaging biomarker. This includes the 

following parametric maps: T1-relaxation time and T2-relaxation time, water and fat maps using 

Dixon approach, and diffusion-weighted imaging [18, 22-27]. The data can be acquired using 

sequences with or without fat suppression. To assess disease progression and response to 

treatment, a vast majority of publications reports first order statistics based on (manually 

segmented) muscle volume in a number of parametric maps. Imaging biomarkers, i.e. total volume, 

cross-sectional area and muscle volume index, are observed as significantly different between 

healthy and diseased subjects in animal models [25, 28-30] and human studies [25, 31-35]. 

However, the same biomarkers are inconsistent between different muscle groups across the disease 

states [20, 25, 36]. Moreover, the current methods are often not automated and therefore are 

irreproducible and non-robust.  

Even though it is long known that different processes (i.e., inflammation, degeneration, 

regeneration) are involved during the disease progression in DMD [1, 37, 38], this information has 

not been integrated to produce a single non-invasive imaging biomarker. Therefore, as a first 

attempt to identify an automated and a robust MRI biomarker, we develop and validate a 

classification-based segmentation framework reporting the muscle percentage index. This 

framework uses spatial information derived from multi-parametric qMRI. Data used in this study 

include eight qMRI maps: T1-relaxation map, T2-relaxation map, Dixon fat volume fraction, Dixon 

water volume fraction, and four DTI maps (apparent diffusion coefficient, fractional anisotropy, 

mean diffusivity and trace diffusivity). Specifically, using this qMRI data, we developed a Random 
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Forest-based binary classification (muscle versus non-muscle) framework based on histology-

inspired classification labels. We aim to demonstrate that this segmentation framework exhibits 

consistent performance across different disease stages in the natural history of GRMD. The 

classification results were validated by MRI data from nine ex-vivo GRMD samples and 

corresponding histopathological images (co-registered to MRI data with an accuracy of 128.48 ± 

25.39 µm). In our opinion, this automated imaging biomarker (based on qMRI) is suitable for an 

accurate assessment of disease progression, and potentially also for early assessment of changes 

due to treatment interventions. 

Materials and Methods 

Histology images provide cellular level anatomy using specific staining processes, thereby 

providing the ground-truth and reflecting the microscopic level of tissue structures. On the other 

hand, MRI captures anatomical and physiological changes of the tissue using the strong 

electromagnetic field. In this study, we hypothesize that multi-sequence MRI images reflect the 

histological findings. To validate this hypothesis, we used an approach illustrated in Figure 4.1: i.e., 

imaging multi-sequence MRI and taking histology images for nine ex-vivo samples of Golden 

Retriever Muscular Dystrophy animal model. This study was carried out under the approval of the 

Ethical Committee at the Texas A&M University (IACUC protocol 2015-01110) conform to the 

general requirements regarding animal studies [20, 39, 40]. Muscle samples were stained by using 

Mason’s trichrome stain (staining muscle as red, fibrosis as blue, and fat or areas of tissue 

separation voids as clear appearing white in images) [41, 42], and digitized using a Hamamatsu 

pathology scanner at 0.23 μm resolution. The detailed information of histology image acquisition 

was described in Chapter 2.  
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Figure 4.1. A block diagram illustrating experimental setup: starting with data acquisition, processing, 

masking, segmentation, registration, classification. 

 

 

 

MRI Acquisition 

Prior to imaging, the samples were placed into 50 ml centrifuge tubes and filled with 7% 

concentrated agarose gel composition to minimize the motion artifacts due to vibrations caused by 

the strong magnetic field during multiple MRI acquisitions [43-46]. The MRI images were 

acquired using an experimental 4.7T Varian Bruker scanner (40 cm horizontal bore and in-house 

developed birdcage coil system) with a FOV of 30 mm × 30 mm. The imaging protocol, total 

scanning time 195 min for each sample (listed in Table 4.1) consisted of:  

• Morphological T1w sequence 

• Morphological T2w sequence 

• T1m sequence: 2D multi-slice, gradient echo with four averages. 
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• T2m sequence: 2D spin echo.  

• 3-point Dixon sequence: T2w, 2D spin echo with a base image and 2-frequency 

shifted images [47] 

• Diffusion Weighted Imaging sequence: T2w, 2D spin echo with 6 directions, pulse 

magnitude of 8.5 G/cm, a pulse duration of (δ) 25 ms, and spacing (Δ) of 25 ms and 

B=574 s/mm2. 

 

 

 
Table 4.1. MR image acquisition protocol 

Sequence TR (ms) TE 

(ms) 

FA (◦) Averages Matrix Resolution Scan time (min) 

T1w 268 6.1 21 & 72 4 256×256 0.1172 38 

T2w 3000 20-80 (Δ20) - 1 256×256 0.1172 62 

3-point Dixon 1000 40 - 1 256×256 0.1172 26 

DTI 3000 68 - 1 128×128 0.2344 69 

 

 

 

Image Processing and Registration 

Digitized histology images were used in conjunction with a color-based segmentation 

algorithm to generate muscle and non-muscle masks (containing muscle, and combined fibrosis, 

fat and interstitial space) automatically [48]. T1m, also referred to as T1w longitudinal relaxation 

map, was generated using two T1w spoiled gradient echo MR images (with two different flip 

angles) in a linear least squares regression approach known as Despot1 method [49]. T2m, also 

referred to as T2w transverse relaxation map, was generated using four SE images (with four 

different TE) in a linear least squares regression algorithm after logarithmic transformation of raw 

data. Two Dixon maps -water, and fat [47]- were converted into two fractions: i.e., water volume 

fraction (DWf) and fat volume fraction (DFf) [50]. The DTI images were processed using Camino 
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diffusion MRI toolkit [50] to produce apparent diffusion coefficient (ADC), fractional anisotropy 

(FA), mean diffusivity (MD), and trace diffusivity (TrD). Finally, all DTI map images were 

resampled to match T1w image resolution. Figure 4.2 shows eight quantitative MRI maps used in 

classification experiments: i.e., T1m, T2m, DWf, DFf, ADC, FA, MD, TrD. To facilitate 

registrations and classifications, both MRI and histology images were masked [51]. These masks 

are also used to facilitate the classification experiments (training, validation, and testing the 

results). The masked histology images (raw and segmented) are presented in Figure 4.3. 

 

 

 

 

Figure 4.2. MRI map images corresponding to histology slice. (a) T1-map, (b) T2-map, (c) Dixon water 

volume fraction image, (d) Dixon fat volume fraction image, (e) ADC, (f) FA, (g) MD and (h) TrD. 

 

 

 

Aligning a 2D histology slice with a 3D MRI volume data is a challenging process due to 

multiple limitations such as uncertain image orientation, determining the efficient similarity metric 

for multi-modality images, and tissue deformations. To address these issues, a 3-step registration 

framework was proposed in Chapter 2 consisting of: 

1) Interactive alignment 
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2) Slice-to-Volume Affine Registration 

3) Slice-to-Slice Non-Rigid Registration 

 

 

 

 

Figure 4.3. Trichrome stained raw histology image (left) and segmented histology image (right) where red 

represents muscle tissue, blue remarks the fibrosis tissue, and white shows the interstitial tissue. 

 

 

 

This comprehensive registration approach provides an accurate pixel-wise registration 

between 2D histology and multi-parametric 3D MRI data. The registration method uses the 

intensity based and structural similarities obtained from 3D T1w and T2w MRI data for aligning 

2D histology image to generate corresponding a 2D MRI image. The registration accuracy was 

validated by 5 observers calculating the Euclidean distance of five distinctive structural landmark 

points on MRI corresponding to the initially defined landmarks on histology images for four 

different initializations. For each sample, we used the registration result with a maximum accuracy 

of 1.096 ± 0.216 pixels (128.48 µm). 

Extraction of Features 

Local Binary Patterns 

Originally proposed by Ojala et al. [52] and later modified to a rotation and scale invariant 

approach [53]. LBP represents local texture. In its simplest form, it integrates the information from 
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eight neighborhood pixels by utilizing one-pixel radial filter approach. A pixel-wise LBP was 

calculated for each MRI map.  

Gray-level Co-occurrence Matrix 

GLCM also referred to as grey-tone spatial-dependence matrix or second-order histogram, 

was originally proposed by Haralick et al [54]. When divided by the total number of neighboring 

pixels in the image, co-occurrence matrix estimates the joint probability of two pixels at a certain 

distance along a given direction having a particular gray value. We built the co-occurrence matrix 

in a 5×5 sliding-window neighborhood by averaging four angular directions at distance one. This 

information was then summarized by nine statistical parameters including contrast, correlation, 

energy, entropy, homogeneity, sum averages, sum variance, difference variance, and normalized 

inverse difference moment. This produced a set of 9 GLCM-based pixel-wise features for each 

parametric MRI map.  

Gray-level Run-length Matrix 

Originally proposed by Galloway [55], GRLM is subsidiary to the observation that a coarse 

texture would have relatively longer gray level runs compared to a fine texture. This matrix 

provides information about runs of pixels with the same gray level values in the specific direction. 

We constructed GRLM in a 5×5 neighborhood sliding-window averaging four angular directions. 

This information was summarized by 11 statistical parameters including short run emphasis, long 

run emphasis gray-level nonuniformity, run length nonuniformity, run percentage, low gray-level 

run emphasis (LGRE), high gray-level run emphasis, short-run low gray-level run emphasis, short-

run high gray-level run emphasis, long run low gray-level run emphasis, and long run high gray-

level run emphasis. 
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Histogram of Oriented Gradient 

Originally proposed in a patent application by McConnell [56, 57], HOG assesses local 

object appearance and shape within an image by summarizing intensity gradients binned into their 

approximate direction. We computed the HOG features in 2×2-cell blocks and bin resulting 

gradient magnitude into 9 gradient orientations [58]. This resulted in a feature vector (length 36) 

for each pixel in all pixel maps separately. 

Classification Experiment 

All eight quantitative MRI maps (T1m, T2m, DWf, DFf, ADC, FA MD, TrD) were within 

the same framework: i.e., they were co-registered and resampled to the same spatial resolution. 

Histology validated [48] class labels (muscle and non-muscle), co-registered with MRI through an 

accurate registration procedure were used as class labels during the classification experiments. 

Class labels separate the data into two classes: i.e., muscle (positive class) and non-muscle 

(negative class). The size of class labels was unbalanced with the ratio of positive to negative 

instances ranging from 3:1 (adult GRMD) to 27:1 (young GRMD). To evaluate the classification 

performance across different stages in the natural history of GRMD, we have performed a separate 

classification of each sample in a leave-one-out cross-validation setup.  

Our experiment uses a leave-one-sample-out classification approach to train and validate 

the models for segmentation of pixels representing muscle. This segmentation was validated using 

the accurately registered histology images with the objective to assess the classification accuracy 

independently. To deal with overfitting towards majority class (muscle) during the training phase, 

we first under-sample the data from the over-represented class (muscle). A random under-sampling 

of 4000 muscle data points from each sample reduces the class distribution skewness in leave-one-

out training data by 54%. For all classifications, we used a total of 58 features for all eight qMRI 
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images (Table 4.2): i.e. raw qMRI images, three types of texture descriptors (local binary pattern, 

gray-level co-occurrence matrix, gray-level run-length matrix), and a gradient image (histogram 

of oriented gradients). We use a random forest (RF) classifier [59] approach with labeled training 

data, and the underlying features (incorporating spatial context) to train and validate binary 

classifier. A total of nine RF classifiers were separately trained and optimized through repeated 

10-fold cross-validation. There were two optimization parameters related to RF, namely, the 

number of predictors tried at each split and the number of total decision trees required to build the 

random forest. The parameters of RF algorithm are optimized evaluating the performance of the 

generated models with each candidate parameter set using hold-out validation approach [60]. The 

final RF models were then built using the optimized parameters and used to classify the 

corresponding left-out samples. The accuracy, specificity, and sensitivity were calculated for each 

binary segmentation. 

 

 

 
Table 4.2. Different types of features and the corresponding number of features. 

Feature combinations Number of features 

Gray value content 8 

Gradient information (HOG) features 288 

Texture features (LBP + GLCM + GRLM) 168 

 

 

 

The resulting segmentation was pruned by a morphological erosion using a line structuring 

element averaged over four orthogonal directions. The length of the line operator is optimized for 

each sample separately according to the thickness of the non-muscle structures. The pruned 

classification (segmented muscle region) is used to calculate muscle percentage index, using 

equation (4.1). 
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∑ 𝑚𝑢𝑠𝑐𝑙𝑒 𝑡𝑖𝑠𝑠𝑢𝑒𝑠

∑ 𝑚𝑢𝑠𝑐𝑙𝑒 + ∑ 𝑛𝑜𝑛 − 𝑚𝑢𝑠𝑐𝑙𝑒
 ×  100       (4.1) 

 

 

 

 

Figure 4.4. Averaged confusion matrix over all nine GRMD samples 

 

 

 

Results 

In our experiment, we used all 58 available features for each qMRI (illustrated in Table 

4.2), amounting to a total of 464 features, to classify all pixels as muscle or non-muscle. The raw 

classification results were pruned to refine isolated pixels afterward. The segmentation quality 

after pruning was improved as it eliminated a considerable number of isolated non-muscle points 

which improves overall sensitivity of the proposed method. The confusion matrix, averaged over 

all nine samples (Figure 4.4) shows 93.5% of muscle points classified correctly, making 6.5% of 

total muscles incorrectly classified as non-muscles. However, 69.5% of non-muscle pixels were 

incorrectly classified as muscle, resulting in a 30.5% correct classification for non-muscles. 
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Table 4.3 reports the final results including the individual and average sensitivity, 

specificity and accuracy, MPIgt, and MPI derived from qMRI data. We observed a negative 

correlation (correlation coefficient of -0.79) between the age and MPIgt, with MPIgt for young 

animals significantly higher (average 84%) than MPIgt for old animals (average 70%) as measured 

by two-tailed student T-test assuming unequal variances (p=0.05). Correspondingly, we observed 

a weaker negative correlation (correlation coefficient of -0.33) between the age and MPI, with MPI 

for young samples higher (average 92%) than MPIgt for old samples (average 90%). 

 

 

 
Table 4.3. Muscle percentage index derived from histology and MRI data for nine GRMD samples 

Age 

months 

Age 

category 
MPIgt MPI 

Sensitivity 

 

Specificity Accuracy 

3 Young 0.81 0.90 0.93 0.22 0.80 

12 Young 0.85 0.95 0.97 0.14 0.84 

12 Young 0.84 0.97 0.98 0.11 0.85 

15 Young 0.81 0.86 0.90 0.34 0.80 

3 Young 0.82 0.98 0.99 0.08 0.83 

42 Adult 0.76 0.83 0.92 0.44 0.80 

3 Young 0.92 0.87 0.90 0.50 0.87 

18 Adult 0.71 0.94 0.98 0.17 0.76 

48 Adult 0.62 0.92 0.95 0.13 0.64 

Average 0.95 0.24 0.80 

 

 

 

A negative correlation between age and accuracy is observed (correlation coefficient of -

0.75), ranging from -0.36 for young samples to -0.99 for old samples, implying lower accuracy for 

old samples. Correspondingly, this is also reflected in a boxplot (Figure 4.5) illustrating the 

difference between MPIgt and MPI for both age categories. There is no significant difference 

between MPI for young (average 0.86%) and adult (average 0.82%) samples as measured by two-
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tailed student T-test assuming unequal variances (p=0.7). On average, MPI showed an 

overestimation of 9.8% for young samples. 

 

 

 

 

Figure 4.5. Boxplot illustrating true and predicted Muscle Percentage Index for two GRMD categories, i.e. 

young (3-15 months) and adult (18- 48 months) 

 

 

 

We observed a positive correlation (correlation coefficient of 0.73), between MPIgt and 

MPI for young samples, and a negative correlation (correlation coefficient of -0.91), between 

MPIgt and MPI for adult samples. Figure 4.6 shows the histology and MRI provided muscle 

segmentation for a young (15 months old) GRMD sample, constituting of 81% muscle tissue. The 

rest of the tissues (19%) was classified as non-muscle (representing fat, fiber or interstitial tissues).  
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Overall, the MPI derived from qMRI using this classification approach was overestimated 

by 16.5%, with 9.8% for young samples and 29.9% for adult samples. The variance of this 

overestimation was for adult samples was twice the variance observed for young samples. 

 

 

 

 

Figure 4.6. Histology derived (left) and multi-sequence MRI derived (right) muscle segmentation for a 

sample of 15 months old GRMD dog. The red color indicates the healthy muscle tissues, whereas the blue 

color specifies non-muscle locations. 

 

 

 

Discussion 

Past attempts to quantify MPI using MRI were based on manual segmentation [22-29], 

while a handful of them focused on semi-automated computerized method [17]. Vohra et al. [25] 

labeled the muscle regions as contractile and non-contractile as segmenting T1w MRI images with 

a threshold selected by maximizing the entropy within the classes after manual segmentation of 

muscle groups. The validation of class segmentation was measured using interclass correlation 

coefficient varying values for muscle groups 0.81-1 for contractile and 0.87-1 for non-contractile 

class. They reported a significant difference of non-contractile CSA between control and DMD 

patients. Wokke et. al. [31] used contractile CSA (assessed by an arbitrary threshold) to 

differentiate healthy and DMD patients. They observed a significant increase of contractile CSA 
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with aging for healthy patients but not for DMD patients. Godi et.al. [35] segmented muscles on 

T1w images manually and then calculated the MVI measure using thresholding the segmented 

muscle region to assess disease progression. They presented a significant decrease on MVI 

measure between control and DMD patients, also they observed a decrease of MVI with aging 

among the DMD patient group.  

In our method, we utilized different texture and gradient analysis components in a random 

forest classification framework to calculate MPI as an imaging biomarker to assess the DMD 

disease progression. Due to the automated muscle segmentation scheme, the current method 

presents a reproducible framework not limited by manual segmentation. The important difference 

to previous literature is that the current method is validated by histopathologic images, absent in 

any of the previous methods. Histology inspired validation provides a strong evidence of the 

accuracy for the automatically generated MPI as an imaging biomarker for disease progression. 

Another contribution of the present study is that it combines different levels of information in 

qMRI images (gray values, texture, and gradients), and utilize the predictive power of RF 

algorithm to classify tissue as muscles and non-muscles. The features constituted the final feature 

set without any attempt for feature selection. The rationale behind was to utilize the texture and 

gradient analysis information as maximum as possible in distinguishing between muscle and non-

muscle regions. The localized texture analysis discovers the patterns of neighboring pixels in 

qMRI maps. As the skeletal muscle structure slowly degenerates into fat and fibrosis tissues in 

DMD, neighborhood texture difference serves an important marker to indicate the presence of 

other non-muscle components at the surrounding of muscle tissues.  

In terms of performance, our method overestimated the MPI by 16.5%, with 9.8% for 

young samples and 29.9% for adult samples. The variance of this overestimation was for adult 
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samples was twice the variance observed for young samples. Majority of samples experience low 

specificity due to overprediction of muscle classes. Particularly, low SP was observed for four 

young samples (3 and 12 months), and moderate SP for two young samples (3 and 15 months). 

The significant amount difference between the muscle and remaining tissues limited the number 

of instances for each class which directly affected the accuracy of the classification. Additionally, 

the non-muscle tissue in the classification experiment mostly provided by adult sample which was 

deformed during the pathological processes due to loss of structural completeness. On the other 

hand, the missing tissue regions occurred in the region of samples was assigned in the non-muscle 

tissue class which may cause ambiguity for the classifier model due to the ambiguity of tissue type 

in those regions. Among the age groups of GRMD subjects, a slight decrease in classification 

accuracy was observed as increasing age of groups with a linear fashion (83.3 % to 72 %). The 

youngest littermates show slightly varying accuracies between 83% and 87%. Older subjects show 

closer accuracies within the age groups except for adult subject group due to the oldest GRMD 

sample which has undergone a significant level of tissue distortions during pathological processes. 

Histology derived segmentation clearly depicts the lack of well-defined non-muscle 

regions in most of the 3 months old samples as the disease is only in onset state. The disease may 

have progressed in a bit older samples (e.g. 12 months) and manifested in a larger proportion of 

non-muscle tissues, but the non-muscle composition may not be as same as an adult sample (e.g. 

42 months or 48 months). Note that in our study, more than half of the non-muscle examples 

emerged from the adult samples. We also observed a considerable number of isolated non-muscle 

points in young samples, a possible indication of the disease onset state may have been removed 

by the pruning step, resulting in a lower SP and an over-estimation of MPI. Having a relatively 

small dataset, consisting of six young and three adult samples, muscle and non-muscle classes 
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having an odd distribution (3.66:1). To balance the class ratio during the training, we adopted a 

simple approach of random under-sampling of an equal number of muscle points, rather than 

creating using oversampling. We apprehend that the non-muscle classification accuracy may 

improve by including additional samples. 

Conclusions and Future Perspectives 

The current method uses a classification based automated muscle segmentation to calculate 

the MPI as a potential MRI marker to assess the disease severity in DMD. Our assessment of MPI 

demonstrated that histology derived mean muscle percentage index is significantly different in two 

age categories. Our classification based automatic muscle segmentation framework achieved an 

average accuracy of 80% utilizing 58 features derived from all MRI parametric sequences and five 

different texture descriptors. The significant level of sensitivity for the classification model was 

obtained for each sample while the lower level of specificity was observed potentially affected due 

to the lower number of training examples. Histology-inspired validation on young and adult 

samples demonstrated a close similarity between ground truth and predicted muscle tissues.  

Finally, this study leads to important research avenues. For instance, unlike a crude binary 

classification, a more suitable approach for muscle segmentation could be to identify the functional 

relationships between the tissue composition and MRI parametric pixel maps of dystrophic 

muscles. It would also be interesting to assess the efficacy of T1w and T2w images, in combination 

with parametric maps or at the individual level, for automated muscle segmentation. 
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CHAPTER V  

SUMMARY AND GENERAL DISCUSSION 

 

DMD disease affects the muscular tissue severely and causes structural changes in the 

muscles fibers. The clinical observation of the disease progression is assessed with invasive 

methods including, blood test, genetic evaluations, and muscle biopsies. The repetition of these 

techniques is limited due to the complexity and invasiveness of these procedures, MRI imaging 

has potential to provide valuable information about the muscular tissues due to a high soft tissue 

contrast capability. MRI imaging has a multitude of different sequences, all reflecting different 

properties of the scanned tissues. To increase the reproducibility of the evaluation in the DMD 

disease, identification of the quantitative MRI biomarkers become an important and required goal. 

The quantitative MRI parameters showed the suitability of MRI images for diagnosis of the 

disease. However, they do not correlate directly with biological changes in muscular tissues. On 

the other hand, the texture analysis presents an excellent computational method to assess 

heterogeneity in biomedical images. Therefore, texture analysis of MRI images has a potential to 

produce robust and sensitive identifiers for assessment of muscle changes during the progression 

and potential treatment of DMD diseases.  

The aim of this thesis is to develop and evaluate quantitative, texture-based imaging 

biomarkers extracted form qMRI, reflecting the changes in aging GRMD muscle. The procedure 

defined in this thesis was addressed following questions: 

• What kind of methods are needed to align a histology slice with an MRI volume?  

• Which MRI imaging sequences provides a better understanding of the disease 

progression? 
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• Which textural analysis methods of MRI sequences result in better performance for 

assessment of clinical outcomes for GRMD disease? 

• Which locally extracted features from quantitative MRI images utilizes the MPI as a 

biomarker of GRMD disease among age groups?  

Chapter 1 presents the introduction of this thesis and outlines the principle concepts 

included in this thesis. That includes a detailed introduction to muscular dystrophies, the biological 

background of the Duchenne muscular dystrophy, animal models of DMD, noninvasive imaging 

modalities used in DMD, and qualitative and quantitative methods available to diagnose GRMD. 

Chapter 2 introduces a framework to generate an oblique MRI slice from 3D T1w and T2w 

MRI image and to co-register these slices to a 2D histology image. The primary elements of the 

methodology are 1) interactive histology and MRI volume alignment for initialization, 2) utilizing 

T1w and T2w images for a better image, 3) a similarity metric combining mutual information and 

gradient information, and 4) elastic registration of histology images and multi-sequence MRI 

images. The framework includes three consecutive registration steps. The initial alignment of the 

histology slice in 3D volume determined by users using a 3D mouse and the orientation parameters 

were tuned using non-gradient based optimization technique. In the final step of the framework, 

employed elastic registration reduces the deformation effects on the histology images. For 

evaluation of the registration framework, four different registration experiments were completed 

with four users initializing the registration procedure. The registration results were validated by 

five different observers defining five distinct landmark points on the resulting MRI image obtained 

after registration. The Euclidean distance was used to calculate RMS error as misalignment 

measure. The resulting average accuracy was 148.83 ± 34.96 µm and the best accuracy was 128.48 
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± 25.39 µm for 10 samples. The detailed registration results for the experiments are provided in 

Table A1 (Appendix A). 

• For evaluation of the proposed similarity metric, a total of 48 experiments was 

completed; i.e. individual and both MRI images as input for proposed similarity metric 

and mutual information using four initializations by the users.  

• The accuracy of each registration experiment was evaluated by five observers.  

• This work was used as the initial step for MRI quantification based on the biological 

tissue contents. The spatial alignment of histology and MRI images enables the 

quantitative studies aiming to research localized correspondence between invasive 

biological findings and noninvasive imaging modality results.  

Chapter 3 investigates disease severity in GRMD disease using textural analysis methods 

with multi-metric quantitative MRI images using data acquired with 3T Siemens Verio clinical 

scanner. Total of forty-one textural features was generated using five different feature extraction 

methods: i.e. first order statistics, gray level co-occurrence matrix based features, run-length 

matrix based features, local binary patterns and statistics of wavelet transformed images. Utilizing 

a soft-margin support vector machines approach, the textural features of two qualitative (T1w and 

T2w) and 4 quantitative MRI parameter images (T1m, T2m, Dixon water fraction, and Dixon fat 

fraction) are analyzed to select imaging modality and feature method for GRMD disease 

evaluation. The cross-validated classification model performances for qualitative (T1w and T2w), 

quantitative MRI relaxation (T1m and T2m) and Dixon (Water and muscle fraction) images are 

compared. Among these imaging groups and feature methods, T2 relaxation maps showed the 

100% classification accuracy for disease severity assessment. The detailed list of the feature 
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methods resulting in the highest accuracy w provided in Table B2, Table B3 and Table B4 

(Appendix B).  

Chapter 4 uses muscle percentage index as an imaging biomarker to quantify muscle 

degeneration in GRMD disease employing a machine learning approach. The MRI form nine 

GRMD muscle samples scanned using an experimental 4.7T Varian Bruker MRI scanner. 

Trichrome stained histology images of each muscle were segmented into two classes: muscle and 

non-muscle. In our earlier study, we measured the correlation of MRI and histology image using 

both 3T and 4.7T MRI data. The 3T MRI data did not show a coherent correlation between MRI 

and tissue compositions (muscle, fibrosis) obtained from histology images. Therefore, 4.7T MRI 

data was used in this study. The histology images were registered to 3D MRI volume data and 

corresponding quantitative MRI images for all sequences, T1 (T1m), T2 (T2m), Dixon (Water and 

fat mass fraction) and DTI (FA, ADC, MD, and TrD). Total of 464 features (58 features from each 

qMRI data) was generated from MRI images for the whole sample using four feature extraction 

methods (local binary patterns, gray-level co-occurrence matrix, gray-level run-length matrix, 

HOG features). The classifier models were optimized in a leave-one-out cross-validation approach, 

to evaluate the classification performance across different stages of GRMD. MPI was generated 

from a final classification result, for each sample separately, by a morphological filter as pruning 

method. The muscle class was compensated in muscle percentage index as a biomarker for disease 

progression. The classification experiments were completed with an average classification 

accuracy of 80% for nine GRMD muscle samples across all age categories (3 - 48) providing a 

validated MRI-based imaging biomarker for assessment of disease severity. The results showed 

that muscle percentage index reflects the biological observations of histology images.  
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Quantification of tissue changes in MRI images has the potential to improve disease 

diagnosis, monitoring the disease progression, evaluation of severity and predicting the clinical 

outcomes. The main challenge is to identify the suitable MRI imaging modality and the 

quantitative measure method for clinical applications. 

This thesis contributes several methods to address this challenge. First, we developed a 

method to link a high-resolution histology image and low-resolution MRI volume data accurately. 

This method will provide the direct analysis of MRI image characteristics and biological changes 

on histology images. This study demonstrated that signatures of multi-metric MRI images 

provided a better correspondence between MRI and histology images. Therefore, we hypothesize 

that combination of information obtained from multiple MRI modalities may support better 

understanding effects of the altering tissues. 

Second, we demonstrated that textural analysis of quantitative MRI images showed 

potential as a valuable non-invasive method for disease detection and evaluation of disease 

progression of GRMD disease. The preclinical studies included in this study presented that clinical 

outcomes and treatment effects may be monitored and assessed by the textural features obtained 

with five different feature extraction methods. In addition, we showed that the quantitative MRI 

images can be used to classify the tissue content of the muscle samples and automatically generated 

MPI measure reflected the changes of muscle content change throughout the disease.  

The processes of development and implementation of disease biomarkers for GRMD 

disease diagnosis, severity grading, monitoring treatment response and clinical outcome prediction 

requires carefully designed strategy. The general approach of the studies focused on textural 

analysis was to extract features using T1w or T2w images for diagnosis without including 

additional information from other qualitative and quantitative MRI data. The effects of the GRMD 
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disease may not be detected using only one imaging data due to multiple changes in tissues and 

these images are not robust to environmental changes. Other studies analyzed the variation of 

quantitative MRI metric changes of whole muscle data for diagnosis and monitoring the disease 

progression. The alteration of the muscle tissue throughout the stages of the GRMD disease affect 

the quantitative parameters differently; therefore, averages of the quantitative metrics may not 

reflect the disease progression. Many studies used the muscle tissue volume change for diagnosis 

and disease severity. However, muscle content was segmented either manually or using simple 

thresholding on MRI images. These methods are lack of histology image validation and don’t 

evaluate the relationship between histology and MRI data.  

To develop non-invasive MRI biomarkers utilizing heterogeneity on muscle textures for 

disease severity assessment and response monitoring, a carefully selected validation method is 

required. Additionally, a balanced number of subjects and features, combination of multi-sequence 

MRI data and independent test datasets will be improving the validity of determined biomarkers. 

Future studies need to give carefully design experiments selecting these requirements for reliably 

accurate performances. 

In conclusion, monitoring outcomes of treatments and prediction of outcomes using non-

invasive MRI biomarkers using tissue heterogeneity could be widely used in clinical applications. 

These imaging biomarkers could be used to detect most suitable treatment options for the patients, 

individually. For clinical approval, further studies using large-scale datasets are required. 
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APPENDIX A  

DETAILED REGISTRATION RESULTS 

 

Table A1. Detailed registration accuracy assessments for each experiment (T1w, T2w) with MI and MIC 

metrics by five observers 

Sample MRI Observer 1  Observer 2  Observer 3  Observer 4  Observer 5 

  MI MIC  MI MIC  MI MIC  MI MIC  MI MIC 

1 

T1w 5.68 5.58  5.54 4.47  6.28 6.28  7.46 5.28  5.79 6.85 

T2w 6.84 4.95  5.74 4.46  6.60 6.30  8.31 8.33  7.53 7.17 

Multi 6.43 2.80  7.15 2.70  7.76 2.74  7.56 2.50  7.53 3.83 

2 

T1w 5.69 3.16  3.38 3.66  3.83 4.39  3.67 3.00  4.89 4.68 

T2w 3.83 3.38  3.70 3.59  4.51 3.67  2.82 3.97  5.94 6.53 

Multi 4.27 2.26  4.12 2.31  5.39 1.95  5.32 2.16  7.75 3.27 

3 

T1w 4.58 4.47  2.92 4.02  4.04 4.55  3.55 4.74  5.05 4.71 

T2w 4.90 2.86  4.12 3.96  4.16 2.96  4.01 3.07  6.02 3.81 

Multi 4.43 2.90  4.18 2.94  4.70 2.80  4.12 2.72  4.38 3.35 

4 

T1w 4.15 4.23  2.21 3.12  3.73 4.35  3.27 3.26  3.88 4.16 

T2w 3.66 3.66  2.90 2.72  4.47 4.02  3.56 3.24  3.90 3.95 

Multi 4.03 2.50  2.89 2.52  3.91 2.57  2.67 2.48  3.41 3.43 

5 

T1w 5.29 4.07  3.37 4.10  2.79 4.26  3.48 4.02  3.61 4.68 

T2w 4.28 4.54  3.16 3.64  3.93 3.94  4.58 4.49  4.16 5.08 

Multi 3.26 3.08  2.73 3.19  3.40 3.33  3.72 3.30  3.88 3.72 

6 

T1w 4.54 4.67  4.05 5.99  4.00 5.03  4.63 5.80  3.96 6.12 

T2w 3.92 2.92  5.30 4.05  3.69 2.92  4.30 4.87  4.59 3.82 

Multi 4.29 2.40  5.00 2.70  3.13 2.53  4.62 2.65  5.01 2.69 

7 

T1w 4.07 4.65  2.02 3.58  3.35 3.51  3.34 4.25  4.01 4.03 

T2w 4.32 3.28  3.19 2.91  2.93 3.24  2.69 3.30  3.80 3.95 

Multi 3.87 3.17  3.31 3.32  2.71 3.17  3.28 2.81  4.52 4.25 

8 

T1w 3.49 2.54  1.97 1.75  1.94 2.60  3.02 2.53  1.68 2.47 

T2w 2.61 1.85  2.27 2.37  2.04 2.47  2.52 1.96  3.51 3.57 

Multi 2.09 1.78  2.34 1.90  2.12 1.56  2.00 1.76  3.01 2.98 

9 

T1w 5.79 2.54  2.70 1.75  2.64 2.60  2.54 2.53  6.14 2.47 

T2w 6.27 1.85  3.10 2.37  4.14 2.47  2.07 1.96  4.80 3.57 

Multi 3.32 1.78  3.00 1.90  3.99 1.56  3.58 1.76  5.06 2.98 

10 

T1w 8.41 3.18  7.78 3.21  8.86 3.26  8.43 2.96  8.44 5.97 

T2w 9.23 2.53  8.03 4.43  8.42 3.79  8.56 3.42  8.50 6.40 

Multi 7.23 2.18  7.58 2.18  8.05 2.28  7.63 2.35  7.62 2.97 
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APPENDIX B 

DETAILED LIST OF TEXTURAL ANALYSIS STUDY 

 

Table B1. List of textural features 

  Nomenclature Description 

F
ir

st
 o

rd
er

 

st
a

ti
st

ic
s 

(F
O

S
) MN Mean 

STD Standard deviation 

3rdM Third Moment 

ENT1 Entropy 

KRT Kurtosis 

SKW Skewness 

G
ra

y
 l

ev
el

 c
o

-

o
cc

u
rr

en
ce

 m
a
tr

ix
 

(G
L

C
M

) 

HMO Homogeneity 

CNT Contrast 

CRR Correlation 

DIA Diagonal 

ENT2 Entropy 

EGR Energy 

G
ra

y
 l

ev
el

 r
u

n
-l

en
g
th

 

m
a
tr

ix
 (

G
R

L
M

) SRE Short run emphasis 

LRE Long run emphasis 

RLN Run length non-uniformity 

RP Run percentage 

GLN Gray level non-uniformity 

LGRE low gray level run emphasis 

HGRE high gray level run emphasis 

L
o

ca
l 

b
in

a
ry

 p
a
tt

er
n

s 
(L

B
P

) LBP1 Local binary pattern 1 

LBP2 Local binary pattern 2 

LBP3 Local binary pattern 3 

LBP4 Local binary pattern 4 

LBP5 Local binary pattern 5 

LBP6 Local binary pattern 6 

LBP7 Local binary pattern 7 

LBP8 Local binary pattern 8 

LBP9 Local binary pattern 9 

LBP10 Local binary pattern 10 

W
a

v
el

et
 

tr
a
n

sf
o

rm
 (

W
L

) CAM Mean of approximation detail image 

CHM Mean of horizontal detail image 

CVM Mean of vertical detail image 

CDM Mean of Diagonal detail image 

CAV Variance of approximation detail image 

CHV Variance of horizontal detail image 
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CVV Variance of vertical detail image 

CDV Variance of Diagonal detail image 

CAE Energy of approximation detail image 

CHE Energy of horizontal detail image 

CVE Energy of vertical detail image 

CDE Energy of Diagonal detail image 

 

  



 

110 

 

Table B2. List of features for maximized accuracy for T1w and T2w images 

 

T1w T2w Both

3rdM 3rdM LGRE ENT1 CDV STD CDV ENT1 LGRE MN ENT1 CDV 3rdM LGRE CDV MN ENT1 CDV

CAM CAM HMO CDV 3rdM CNT ENT1 CDV MN HMO CDV DIA CHV CVE MN HMO CDV

CDV CNT CHM 3rdM CDV HMO CDV MN CNT CDV RP LGRE CDE MN CNT CDV

CNT CDV LGRE LBP1 CNT CDV MN CRR CDV RP CAM CDE MN CRR CDV

CRR CDV LBP3 CVM CRR CDV MN ENT2 CDV GLN CHV CVE MN DIA CDV

DIA CDV LBP5 CVM DIA CDV MN EGR CDV HGRE CHV CVE MN ENT2 CDV

ENT2 CDV ENT2 CDV MN LBP2 CDV LBP1 CAM CHE MN EGR CDV

EGR CDV EGR CDV MN LBP3 CDV MN SRE CDV

GLN CDV RP CVV MN LBP6 CDV MN RP CVV

HGRE CDV GLN CDV MN CVM CDV MN RP CDV

LBP2 CDV LGRE CHE MN CDV CAE MN LGRE CDV

LBP3 CDV HGRE CDV MN CDV CDE MN LBP3 CDV

LBP4 CDV LBP1 CDV ENT1 KRT CDV MN LBP7 CDV

LBP6 CDV LBP2 CDV ENT1 SKW CDV MN CDM CDV

LBP7 CAV LBP3 CDV ENT1 HMO CDV MN CAV CDV

LBP8 CDV LBP5 CDV ENT1 CNT CDV MN CHV CDV

LBP10 CDV LBP7 CDV ENT1 CRR CDV MN CVV CDV

CVM CDV CVM CDV ENT1 DIA CDV ENT1 SKW CDV

CHV CDV CDM CDV ENT1 ENT2 CDV ENT1 HMO LGRE

CDV CAE CDM CDE ENT1 EGR CDV ENT1 HMO CDV

CDV CDE CAV CDV ENT1 SRE CDV ENT1 CNT CDV

CHV CDV ENT1 LRE CDV ENT1 CRR LGRE

CVV CDV ENT1 RLN CDV ENT1 CRR CDV

CDV CDE ENT1 GLN CDV ENT1 DIA CDV

ENT1 LGRE CDV ENT1 ENT2 LGRE

ENT1 LGRE CAE ENT1 ENT2 CDV

ENT1 HGRE CDV ENT1 EGR LGRE

ENT1 LBP1 CDV ENT1 EGR CDV

ENT1 LBP2 CDV ENT1 RLN CDV

ENT1 LBP3 CDV ENT1 RP CDV

ENT1 LBP4 CDV ENT1 GLN CDV

ENT1 LBP5 CDV ENT1 LGRE CAM

ENT1 LBP6 CDV ENT1 LGRE CDV

ENT1 LBP7 CDV ENT1 HGRE CDV

ENT1 LBP8 CDV ENT1 LBP1 CDV

ENT1 LBP9 CDV ENT1 LBP2 CDV

ENT1 LBP10 CDV ENT1 LBP3 CDV

ENT1 CAM CDV ENT1 LBP5 CDV

ENT1 CHM CDV ENT1 LBP7 CDV

ENT1 CVM CDV ENT1 LBP8 CDV

ENT1 CDM CDV ENT1 CAM CDV

ENT1 CAV CDV ENT1 CHM CAV

ENT1 CHV CDV ENT1 CHM CDV

ENT1 CVV CDV ENT1 CVM CDV

ENT1 CDV CAE ENT1 CDM CDV

ENT1 CDV CVE ENT1 CAV CDV

ENT1 CDV CDE ENT1 CHV CDV

KRT HMO CDV ENT1 CVV CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued  

 

T1w T2w Both

KRT CNT CDV KRT DIA CDV

KRT CRR CDV KRT LGRE CDV

KRT DIA CDV KRT CAM CDV

KRT ENT2 CDV KRT CDM CDV

KRT EGR CDV KRT CHV CDV

KRT GLN CDV SKW HMO CDV

KRT HGRE CDV SKW CNT CDV

KRT LBP3 CDV SKW CRR CDV

KRT LBP6 CDV SKW DIA CDV

KRT LBP8 CDV SKW ENT2 CDV

KRT CVM CDV SKW EGR CDV

KRT CHV CDV SKW GLN CDV

KRT CDV CAE SKW LGRE CDV

KRT CDV CDE SKW HGRE CDV

SKW HMO CDV SKW LBP2 CDV

SKW CNT CDV SKW CAM CDV

SKW CRR CDV SKW CDM CDV

SKW DIA CDV SKW CHV CDV

SKW ENT2 CDV SKW CVV CDV

SKW EGR CDV HMO CNT CDV

SKW GLN CDV HMO CRR CDV

SKW HGRE CDV HMO DIA CDV

SKW LBP2 CDV HMO ENT2 CDV

SKW LBP3 CDV HMO EGR CDV

SKW LBP4 CDV HMO RLN CDV

SKW LBP6 CDV HMO RP CDV

SKW LBP8 CDV HMO GLN CDV

SKW CVM CDV HMO LGRE CDV

SKW CHV CDV HMO HGRE CDV

SKW CDV CAE HMO LBP1 CDV

SKW CDV CDE HMO LBP2 CDV

HMO CNT CDV HMO LBP3 CDV

HMO CRR CDV HMO LBP4 CDV

HMO DIA CDV HMO LBP5 CDV

HMO ENT2 CDV HMO LBP7 CDV

HMO EGR CDV HMO LBP8 CDV

HMO LRE CDV HMO CAM CDV

HMO RLN CDV HMO CHM CDV

HMO GLN CDV HMO CVM CDV

HMO LGRE CDV HMO CDM CDV

HMO LGRE CAE HMO CAV CDV

HMO HGRE CDV HMO CHV CDV

HMO LBP1 CDV HMO CVV CDV

HMO LBP2 CDV HMO CDV CDE

HMO LBP3 CDV CNT CRR CDV

HMO LBP4 CDV CNT DIA CDV

HMO LBP5 CDV CNT ENT2 CDV

HMO LBP6 CDV CNT EGR CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

HMO LBP7 CDV CNT RLN CDV

HMO LBP8 CDV CNT RP CDV

HMO LBP9 CDV CNT GLN CDV

HMO LBP10 CDV CNT LGRE CDV

HMO CAM CDV CNT HGRE CDV

HMO CHM CDV CNT LBP1 CDV

HMO CVM CDV CNT LBP2 CDV

HMO CDM CDV CNT LBP3 CDV

HMO CAV CDV CNT LBP4 CDV

HMO CHV CDV CNT LBP7 CDV

HMO CVV CDV CNT LBP10 CDV

HMO CDV CAE CNT CAM CDV

HMO CDV CVE CNT CHM CDV

HMO CDV CDE CNT CVM CDV

CNT CRR CDV CNT CDM CDV

CNT DIA CDV CNT CAV CDV

CNT ENT2 CDV CNT CHV CDV

CNT EGR CDV CNT CVV CDV

CNT LRE CDV CNT CDV CAE

CNT RLN CDV CNT CDV CHE

CNT GLN CDV CNT CDV CDE

CNT LGRE CDV CRR DIA CDV

CNT LGRE CAE CRR ENT2 CDV

CNT HGRE CDV CRR EGR CDV

CNT LBP1 CDV CRR RLN CDV

CNT LBP2 CDV CRR RP CDV

CNT LBP3 CDV CRR GLN CDV

CNT LBP4 CDV CRR LGRE CDV

CNT LBP5 CDV CRR HGRE CDV

CNT LBP6 CDV CRR LBP1 CDV

CNT LBP7 CDV CRR LBP2 CDV

CNT LBP8 CDV CRR LBP3 CDV

CNT LBP9 CDV CRR LBP4 CDV

CNT LBP10 CDV CRR LBP5 CDV

CNT CAM CDV CRR LBP7 CDV

CNT CHM CDV CRR LBP8 CDV

CNT CVM CDV CRR CAM CDV

CNT CDM CDV CRR CHM CAV

CNT CHV CDV CRR CHM CDV

CNT CVV CDV CRR CVM CDV

CNT CDV CAE CRR CDM CDV

CNT CDV CHE CRR CAV CDV

CNT CDV CVE CRR CHV CDV

CNT CDV CDE CRR CVV CDV

CRR DIA CDV CRR CDV CDE

CRR ENT2 CDV DIA ENT2 CDV

CRR EGR CDV DIA EGR CDV

CRR LRE CDV DIA RP CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

CRR RLN CDV DIA GLN CDV

CRR GLN CDV DIA LGRE CDV

CRR LGRE CDV DIA HGRE CDV

CRR LGRE CAE DIA LBP1 CDV

CRR HGRE CDV DIA LBP2 CDV

CRR LBP1 CDV DIA LBP3 CDV

CRR LBP2 CDV DIA LBP5 CDV

CRR LBP3 CDV DIA LBP7 CDV

CRR LBP4 CDV DIA CAM CDV

CRR LBP5 CDV DIA CHM CDV

CRR LBP6 CDV DIA CVM CDV

CRR LBP7 CDV DIA CDM CDV

CRR LBP8 CDV DIA CAV CDV

CRR LBP9 CDV DIA CHV CDV

CRR LBP10 CDV DIA CVV CDV

CRR CAM CDV DIA CDV CAE

CRR CHM CDV DIA CDV CDE

CRR CVM CDV ENT2 EGR CDV

CRR CDM CDV ENT2 RLN CDV

CRR CAV CDV ENT2 RP CDV

CRR CHV CDV ENT2 GLN CDV

CRR CVV CDV ENT2 LGRE CDV

CRR CDV CAE ENT2 HGRE CDV

CRR CDV CVE ENT2 LBP1 CDV

CRR CDV CDE ENT2 LBP2 CDV

DIA ENT2 CDV ENT2 LBP3 CDV

DIA EGR CDV ENT2 LBP4 CDV

DIA LRE CDV ENT2 LBP5 CDV

DIA RLN CDV ENT2 LBP7 CDV

DIA GLN CDV ENT2 LBP8 CDV

DIA LGRE CDV ENT2 CAM CDV

DIA LGRE CAE ENT2 CHM CAV

DIA HGRE CDV ENT2 CHM CDV

DIA LBP1 CDV ENT2 CVM CDV

DIA LBP2 CDV ENT2 CDM CDV

DIA LBP3 CDV ENT2 CAV CDV

DIA LBP4 CDV ENT2 CHV CDV

DIA LBP5 CDV ENT2 CVV CDV

DIA LBP6 CDV ENT2 CDV CDE

DIA LBP7 CDV EGR RLN CDV

DIA LBP8 CDV EGR RP CDV

DIA LBP9 CDV EGR GLN CDV

DIA LBP10 CDV EGR LGRE CDV

DIA CAM CDV EGR HGRE CDV

DIA CHM CDV EGR LBP1 CDV

DIA CVM CDV EGR LBP2 CDV

DIA CDM CDV EGR LBP3 CDV

DIA CAV CDV EGR LBP4 CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

DIA CHV CDV EGR LBP5 CDV

DIA CVV CDV EGR LBP7 CDV

DIA CDV CAE EGR LBP8 CDV

DIA CDV CVE EGR CAM CDV

DIA CDV CDE EGR CHM CDV

ENT2 EGR CDV EGR CVM CDV

ENT2 LRE CDV EGR CDM CDV

ENT2 RLN CDV EGR CAV CDV

ENT2 GLN CDV EGR CHV CDV

ENT2 LGRE CDV EGR CVV CDV

ENT2 LGRE CAE EGR CDV CDE

ENT2 HGRE CDV LRE CAM CDV

ENT2 LBP1 CDV LRE CAV CDV

ENT2 LBP2 CDV LRE CHV CDV

ENT2 LBP3 CDV RLN RP CVV

ENT2 LBP4 CDV RLN GLN CDV

ENT2 LBP5 CDV RLN LGRE CDV

ENT2 LBP6 CDV RLN HGRE CDV

ENT2 LBP7 CDV RLN LBP2 CDV

ENT2 LBP8 CDV RLN CAV CDV

ENT2 LBP9 CDV RLN CHV CDV

ENT2 LBP10 CDV RP GLN CDV

ENT2 CAM CDV RP HGRE CDV

ENT2 CHM CDV RP LBP2 CDV

ENT2 CVM CDV RP LBP7 CVV

ENT2 CDM CDV RP CVV CDV

ENT2 CAV CDV GLN LGRE CDV

ENT2 CHV CDV GLN HGRE CDV

ENT2 CVV CDV GLN LBP1 CDV

ENT2 CDV CAE GLN LBP2 CDV

ENT2 CDV CVE GLN LBP3 CDV

ENT2 CDV CDE GLN LBP7 CDV

EGR LRE CDV GLN CAM CDV

EGR RLN CDV GLN CHM CDV

EGR GLN CDV GLN CVM CDV

EGR LGRE CDV GLN CDM CDV

EGR LGRE CAE GLN CAV CDV

EGR HGRE CDV GLN CHV CDV

EGR LBP1 CDV GLN CVV CDV

EGR LBP2 CDV GLN CDV CDE

EGR LBP3 CDV LGRE HGRE CDV

EGR LBP4 CDV LGRE LBP1 CDV

EGR LBP5 CDV LGRE LBP2 CDV

EGR LBP6 CDV LGRE LBP3 CDV

EGR LBP7 CDV LGRE LBP5 CDV

EGR LBP8 CDV LGRE LBP7 CDV

EGR LBP9 CDV LGRE CAM CVV

EGR LBP10 CDV LGRE CAM CAE

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

EGR CAM CDV LGRE CAM CHE

EGR CHM CDV LGRE CAM CDE

EGR CVM CDV LGRE CHM CVV

EGR CDM CDV LGRE CHM CDE

EGR CAV CDV LGRE CVM CDV

EGR CHV CDV LGRE CDM CDV

EGR CVV CDV LGRE CDM CDE

EGR CDV CAE LGRE CAV CDV

EGR CDV CVE LGRE CAV CHE

EGR CDV CDE LGRE CHV CDV

SRE LBP3 CDV LGRE CVV CDV

SRE CDV CAE LGRE CDV CAE

LRE GLN CDV LGRE CDV CDE

LRE HGRE CDV HGRE LBP1 CDV

LRE LBP2 CDV HGRE LBP2 CDV

LRE LBP3 CDV HGRE LBP3 CDV

LRE LBP4 CDV HGRE LBP7 CDV

LRE LBP6 CDV HGRE CAM CDV

LRE LBP8 CDV HGRE CHM CDV

LRE LBP10 CDV HGRE CVM CDV

LRE CVM CDV HGRE CDM CDV

LRE CHV CDV HGRE CAV CDV

LRE CDV CAE HGRE CHV CDV

LRE CDV CDE HGRE CVV CDV

RLN GLN CDV HGRE CDV CDE

RLN HGRE CDV LBP1 LBP2 CDV

RLN LBP2 CDV LBP1 LBP3 CDV

RLN LBP3 CDV LBP1 CHM CDV

RLN LBP4 CDV LBP1 CDM CVE

RLN LBP6 CDV LBP1 CAV CDV

RLN LBP7 CAV LBP1 CVV CDV

RLN LBP8 CDV LBP1 CDV CDE

RLN LBP10 CDV LBP2 LBP3 CDV

RLN CVM CDV LBP2 CAM CDV

RLN CHV CDV LBP2 CAV CDV

RLN CDV CAE LBP2 CHV CDV

RLN CDV CDE LBP2 CVV CDV

RP LBP2 CDV LBP2 CDV CDE

RP LBP3 CDV LBP3 CAM CDV

RP CDV CAE LBP3 CHM CDV

GLN LGRE CDV LBP3 CAV CDV

GLN LGRE CAE LBP3 CHV CDV

GLN HGRE CDV LBP3 CVV CDV

GLN LBP1 CDV LBP3 CDV CAE

GLN LBP2 CDV LBP3 CDV CHE

GLN LBP3 CDV LBP3 CDV CVE

GLN LBP4 CDV LBP3 CDV CDE

GLN LBP5 CDV LBP4 CAV CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

GLN LBP6 CDV LBP4 CHV CDV

GLN LBP7 CDV LBP5 CAM CDV

GLN LBP8 CDV LBP5 CHM CDV

GLN LBP9 CDV LBP5 CAV CDV

GLN LBP10 CDV LBP5 CHV CDV

GLN CAM CDV LBP5 CVV CDV

GLN CHM CDV LBP5 CDV CVE

GLN CVM CDV LBP5 CDV CDE

GLN CDM CDV LBP6 CAV CDV

GLN CAV CDV LBP6 CHV CDV

GLN CHV CDV LBP7 CAM CDV

GLN CVV CDV LBP7 CHM CDV

GLN CDV CAE LBP7 CAV CDV

GLN CDV CVE LBP7 CHV CDV

GLN CDV CDE LBP7 CVV CDV

LGRE HGRE CDV LBP7 CDV CDE

LGRE HGRE CAE LBP8 CDM CDE

LGRE LBP2 CDV LBP8 CAV CDV

LGRE LBP3 CDV LBP8 CHV CDV

LGRE LBP4 CDV LBP9 CHV CDV

LGRE LBP4 CAE LBP10 CAV CDV

LGRE LBP6 CDV LBP10 CHV CDV

LGRE LBP7 CAE CAM CVM CDV

LGRE LBP8 CDV CAM CDM CDV

LGRE LBP9 CAV CAM CAV CDV

LGRE LBP10 CDV CAM CAV CHE

LGRE LBP10 CAE CAM CHV CDV

LGRE CHM CAE CAM CVV CDV

LGRE CVM CDV CAM CDV CAE

LGRE CHV CDV CHM CVM CDV

LGRE CDV CAE CHM CAV CDV

LGRE CDV CDE CHM CAV CVE

HGRE LBP1 CDV CHM CAV CDE

HGRE LBP2 CDV CHM CHV CDV

HGRE LBP3 CDV CHM CHV CDE

HGRE LBP4 CDV CHM CVV CDV

HGRE LBP5 CDV CHM CDV CDE

HGRE LBP6 CDV CVM CAV CDV

HGRE LBP7 CDV CVM CHV CDV

HGRE LBP8 CDV CVM CDV CDE

HGRE LBP9 CDV CDM CAV CDV

HGRE LBP10 CDV CDM CAV CDE

HGRE CAM CDV CDM CHV CDV

HGRE CHM CDV CDM CVV CDV

HGRE CVM CDV CDM CDV CAE

HGRE CDM CDV CDM CDV CHE

HGRE CAV CDV CDM CDV CVE

HGRE CHV CDV CDM CDV CDE

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

HGRE CVV CDV CAV CHV CDV

HGRE CDV CAE CAV CVV CDV

HGRE CDV CVE CAV CVV CDE

HGRE CDV CDE CAV CDV CHE

LBP1 LBP2 CDV CAV CDV CVE

LBP1 LBP3 CDV CAV CDV CDE

LBP1 LBP4 CDV CHV CVV CDV

LBP1 LBP6 CDV CHV CDV CAE

LBP1 LBP8 CDV CHV CDV CHE

LBP1 LBP10 CDV CHV CDV CVE

LBP1 CVM CDV CHV CDV CDE

LBP1 CHV CDV CVV CDV CAE

LBP1 CDV CAE

LBP1 CDV CDE

LBP2 LBP3 CDV

LBP2 LBP4 CDV

LBP2 LBP5 CDV

LBP2 LBP6 CDV

LBP2 LBP7 CDV

LBP2 LBP8 CDV

LBP2 LBP9 CDV

LBP2 LBP10 CDV

LBP2 CAM CDV

LBP2 CVM CDV

LBP2 CAV CDV

LBP2 CHV CDV

LBP2 CVV CDV

LBP2 CDV CAE

LBP2 CDV CVE

LBP2 CDV CDE

LBP3 LBP4 CDV

LBP3 LBP5 CDV

LBP3 LBP6 CDV

LBP3 LBP7 CDV

LBP3 LBP9 CDV

LBP3 LBP10 CDV

LBP3 CVM CDV

LBP3 CDM CHE

LBP3 CAV CDV

LBP3 CHV CDV

LBP3 CVV CDV

LBP3 CDV CAE

LBP3 CDV CVE

LBP3 CDV CDE

LBP4 LBP5 CDV

LBP4 LBP6 CDV

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

T1w T2w Both

LBP4 LBP7 CDV

LBP4 LBP8 CDV

LBP4 LBP9 CDV

LBP4 LBP10 CDV

LBP4 CAM CDV

LBP4 CVM CDV

LBP4 CAV CDV

LBP4 CHV CDV

LBP4 CVV CDV

LBP4 CDV CAE

LBP4 CDV CDE

LBP5 LBP6 CDV

LBP5 LBP8 CDV

LBP5 LBP10 CDV

LBP5 CVM CDV

LBP5 CHV CDV

LBP5 CDV CAE

LBP5 CDV CDE

LBP6 LBP7 CDV

LBP6 LBP8 CDV

LBP6 LBP10 CDV

LBP6 CVM CDV

LBP6 CHV CDV

LBP6 CVV CDV

LBP6 CDV CAE

LBP6 CDV CVE

LBP6 CDV CDE

LBP7 LBP8 CDV

LBP7 LBP10 CDV

LBP7 CVM CDV

LBP7 CHV CDV

LBP7 CDV CAE

LBP7 CDV CDE

LBP8 LBP9 CDV

LBP8 LBP10 CDV

LBP8 CAM CDV

LBP8 CVM CDV

LBP8 CAV CDV

LBP8 CHV CDV

LBP8 CVV CDV

LBP8 CDV CAE

LBP8 CDV CDE

LBP9 LBP10 CDV

LBP9 CAM CDV

LBP9 CVM CDV

LBP9 CAV CDV

LBP9 CHV CDV

LBP9 CDV CAE

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B2. Continued 

 

 

 

 

T1w T2w Both

LBP10 CAM CDV

LBP10 CVM CDV

LBP10 CAV CDV

LBP10 CHV CDV

LBP10 CVV CDV

LBP10 CDV CAE

LBP10 CDV CDE

CAM CHM CAE

CAM CVM CDV

CAM CHV CDV

CAM CDV CAE

CAM CDV CDE

CHM CVM CDV

CHM CHV CDV

CHM CDV CAE

CHM CDV CDE

CVM CDM CDV

CVM CAV CDV

CVM CHV CDV

CVM CVV CDV

CVM CDV CAE

CVM CDV CHE

CVM CDV CVE

CVM CDV CDE

CDM CHV CDV

CDM CDV CAE

CDM CDV CDE

CAV CHV CDV

CAV CDV CAE

CAV CDV CDE

CHV CVV CDV

CHV CDV CAE

CHV CDV CHE

CHV CDV CVE

CHV CDV CDE

CVV CDV CAE

CVV CDV CDE

CDV CAE CVE

CDV CAE CDE

CDV CVE CDE

1 textural features 2 textural features 3 textural features

T1w T2w Both T1w T2w Both
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Table B3. List of features for maximized accuracy for T1m and T2m images 

 

 

 

 

T1m T2m Both

STD MN CDE STD LGRE LBP2 LBP10 SRE CDE STD LGRE CAM HMO RLN LBP10 STD LBP1 CDE

3rdM SKW LGRE CHM LBP4 LBP6 RLN CDE 3rdM LGRE CAM CNT RLN LBP2 3rdM LBP1 CDE

ENT1 LGRE LBP9 CDE LBP7 CDE RLN LBP5 CVM CNT RLN LBP10 3rdM LBP2 CDE

HMO CHM CVM CDE LGRE CVM CDE CRR RLN LBP10 3rdM LBP6 CDE

ENT2 CVE CHV CDE DIA RLN LBP10 3rdM LBP9 CDE

EGR DIA LBP2 LBP10 3rdM LBP10 CDE

RLN ENT2 RLN LBP10 KRT LBP1 LBP6

LBP1 EGR RLN LBP10 KRT LBP1 LBP8

LBP4 RLN LBP5 LBP10 KRT LBP1 CDE

LBP6 RLN LBP10 CAE SKW LBP1 CDE

LBP8 GLN LBP8 CDE HMO SRE CDE

LBP9 HGRE LBP8 CDE ENT2 SRE CDE

LBP10 LBP1 LBP6 CVM EGR SRE CDE

CAM LBP1 LBP6 CDE SRE LBP2 CDE

CHM LBP1 LBP9 CVM SRE LBP3 CDE

CDM LBP1 LBP9 CAE SRE LBP4 CDE

CHV LBP2 LBP5 LBP10 SRE LBP6 CDE

CDV LBP4 LBP7 CDE SRE LBP10 CDE

CAE LBP6 LBP9 CDE SRE CDM CDE

CHE LBP6 CAE CDE SRE CAV CDE

LBP8 LBP9 CVM SRE CHV CDE

SRE CDV CDE

SRE CAE CDE

RLN LBP7 CDE

RLN LBP9 CDE

LBP1 CVM CHV

LBP2 LBP7 CDE

LBP2 CHV CDE

LBP4 CVM CDE

LBP4 CHV CDE

LBP5 LBP6 CDE

LBP5 LBP8 CDE

LBP5 LBP9 CDE

LBP5 LBP10 CDE

LBP6 LBP7 CDE

LBP6 CHV CDE

LBP7 LBP8 CDE

LBP9 CHV CDE

LBP10 CHV CDE

CVM CAV CDE

CVM CHV CDE

CAV CHV CDE

CHV CAE CDE

1 textural features 2 textural features 3 textural features

T1m T2m Both T1m T2m Both
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Table B4. List of features for maximized accuracy for DWf and DFf images 

 

DWf DFf Both

CHM 3rdM SRE MN CHM 3rdM SRE 3rdM LBP5 MN ENT1 CAM MN SRE CHE 3rdM ENT1 CDE

ENT1 HMO CHM HMO CVE 3rdM LBP7 MN ENT1 CHM MN CVV CHE 3rdM SRE LBP5

HMO EGR CHM CNT CDE HMO SRE MN ENT1 CVE MN CVV CVE 3rdM SRE LBP7

CNT CAM CHM ENT2 CVE CRR SRE MN HMO CVE STD SRE CHE 3rdM SRE CVE

CRR CHM CHE EGR CVE ENT2 SRE MN CRR CVE STD SRE CVE 3rdM RLN LBP5

DIA SRE LRE EGR SRE MN ENT2 CVE 3rdM SRE CHE 3rdM RLN CVE

ENT2 SRE CVE SRE RLN MN EGR CVE 3rdM SRE CVE 3rdM RLN CDE

EGR RLN LBP10 SRE GLN 3rdM LBP4 CVV 3rdM CVV CVE 3rdM RP CVE

SRE LBP4 LBP10 SRE LGRE ENT1 GLN CHM ENT1 HMO CVE 3rdM GLN CDE

LRE CVV CVE SRE HGRE ENT1 GLN CAE ENT1 CNT CDE 3rdM HGRE CDE

RLN CVE CDE SRE LBP3 ENT1 LGRE CHM ENT1 ENT2 CVE 3rdM LBP5 LBP7

GLN SRE LBP4 ENT1 HGRE CHM ENT1 EGR CVE 3rdM LBP5 CHM

HGRE SRE LBP9 ENT1 HGRE CAE ENT1 SRE RP 3rdM LBP5 CDM

LBP1 SRE CAM ENT1 CAM CHM ENT1 SRE CVE 3rdM LBP5 CVV

LBP5 SRE CAV ENT1 CHM CHE ENT1 LBP4 CVE 3rdM LBP5 CDV

LBP9 SRE CHV ENT1 CHM CVE ENT1 CVV CVE 3rdM LBP5 CHE

CHM SRE CVV HMO GLN CHM ENT1 CVE CDE 3rdM LBP5 CVE

CDM SRE CHE HMO LGRE CHM KRT CHV CVE 3rdM LBP5 CDE

CAV SRE CVE HMO HGRE CHM KRT CVV CVE 3rdM LBP7 CAM

CHV LBP5 CHM HMO CAM CHM SKW CHV CVE 3rdM LBP7 CHM

CDV LBP7 CHM HMO CHM CHE SKW CVV CVE 3rdM LBP7 CDM

CVE LBP10 CHM HMO CHM CVE HMO CRR CVE 3rdM LBP7 CAV

CHM CVE HMO CHM CDE HMO ENT2 CVE 3rdM LBP7 CDV

CRR CAM CHM HMO EGR CVE 3rdM LBP7 CHE

CRR CHM CVE HMO SRE RP 3rdM LBP7 CVE

CRR CHM CDE HMO SRE LBP10 3rdM LBP7 CDE

DIA CAM CHM HMO SRE CVE 3rdM LBP10 CDE

DIA CHM CVE HMO RP CVE 3rdM CVV CVE

ENT2 CAM CHM HMO GLN CVE 3rdM CVE CDE

ENT2 CHM CVE HMO HGRE CVE ENT1 GLN CAV

ENT2 CHM CDE HMO CVV CVE ENT1 HGRE CAV

EGR GLN CHM HMO CVE CDE ENT1 LBP7 CHM

EGR LGRE CHM CNT LBP4 CDE ENT1 CHM CDE

EGR HGRE CHM CNT CHM CDE HMO CRR SRE

EGR CAM CHM CNT CDM CDE HMO ENT2 SRE

EGR CHM CHE CRR EGR CVE HMO EGR SRE

EGR CHM CVE CRR SRE RP HMO SRE RLN

EGR CHM CDE CRR SRE CVE HMO SRE CHV

SRE CHM CHE CRR RP CVE HMO GLN CAV

GLN CAM CHM CRR CVV CVE HMO HGRE CAV

HGRE CAM CHM CRR CVE CDE HMO LBP7 CHM

LBP5 CHM CVE DIA CHM CDE CNT SRE CHE

DIA CDM CDE CNT LBP5 CHM

ENT2 EGR CVE CNT CHM CDM

ENT2 SRE RP CRR ENT2 SRE

ENT2 SRE CVE CRR EGR SRE

ENT2 GLN CVE CRR SRE RLN

Both

1 textural features 2 textural features 3 textural features

DWf DFf Both DWf DFf
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Table B4. Continued 

 

DWf DFf Both

ENT2 HGRE CVE CRR SRE CHV

ENT2 CVV CVE CRR SRE CVV

ENT2 CVE CDE CRR SRE CVE

EGR SRE RP CRR GLN CAV

EGR SRE LBP10 CRR HGRE CAV

EGR SRE CVE DIA RLN CHE

EGR RP CVE DIA LBP5 CHM

EGR GLN CVE DIA LBP5 CHE

EGR HGRE CVE DIA LBP7 CHM

EGR CVV CVE DIA LBP7 CHE

EGR CVE CDE DIA CHE CVE

SRE LRE LBP6 DIA CVE CDE

SRE LRE CAM ENT2 EGR SRE

SRE LRE CDM ENT2 SRE RLN

SRE LRE CAV ENT2 SRE CHV

SRE LRE CVV ENT2 GLN CAV

SRE LRE CHE ENT2 HGRE CAV

SRE LRE CVE ENT2 LBP7 CHM

SRE RLN RP EGR SRE RLN

SRE RLN CVE EGR SRE CHV

SRE RP GLN EGR GLN CAV

SRE RP HGRE EGR HGRE CAV

SRE RP LBP4 EGR LBP7 CHM

SRE RP LBP5 SRE LRE CVE

SRE RP LBP6 SRE RLN CHV

SRE RP LBP7 SRE RLN CVE

SRE RP LBP8 SRE RP CVE

SRE RP LBP9 SRE GLN HGRE

SRE RP LBP10 SRE GLN LBP3

SRE RP CVM SRE GLN LBP7

SRE RP CHV SRE GLN LBP9

SRE RP CVV SRE GLN CHM

SRE RP CVE SRE GLN CVM

SRE GLN CVV SRE GLN CAV

SRE GLN CVE SRE GLN CVV

SRE HGRE CVV SRE GLN CAE

SRE HGRE CVE SRE GLN CVE

SRE LBP2 CVV SRE GLN CDE

SRE LBP2 CVE SRE LGRE CAV

SRE LBP4 CVE SRE HGRE LBP3

SRE LBP6 CVV SRE HGRE LBP7

SRE LBP6 CVE SRE HGRE LBP9

SRE LBP8 CVE SRE HGRE CHM

SRE LBP9 CVE SRE HGRE CVM

SRE LBP10 CVM SRE HGRE CAV

SRE LBP10 CVV SRE HGRE CVV

SRE LBP10 CVE SRE HGRE CAE

2 textural features 3 textural features

DWf DFf Both DWf DFf Both

1 textural features
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Table B4. Continued 

 

DWf DFf Both

SRE CHM CVE SRE HGRE CVE

SRE CVM CVV SRE HGRE CDE

SRE CVM CVE SRE LBP5 CHM

SRE CHV CVV SRE LBP5 CHV

SRE CHV CVE SRE LBP5 CHE

SRE CVV CVE SRE LBP5 CDE

SRE CVV CDE SRE LBP6 CVE

SRE CAE CHE SRE LBP7 CHM

SRE CAE CVE SRE LBP7 CHV

SRE CVE CDE SRE LBP7 CDE

LRE CVV CVE SRE LBP9 CVE

RLN LBP3 CDE SRE LBP10 CVV

RLN LBP4 LBP10 SRE LBP10 CVE

RLN LBP6 LBP10 SRE CAM CAV

RLN LBP9 LBP10 SRE CHM CVE

RLN CVV CVE SRE CDM CAV

RP LBP10 CVM SRE CDM CVE

RP LBP10 CVE SRE CHV CVV

RP CVV CVE SRE CHV CVE

GLN CVV CVE SRE CVV CVE

GLN CVE CDE SRE CVV CDE

HGRE CVV CVE LRE LBP5 CHM

HGRE CVE CDE RLN GLN CHM

LBP2 CHM CDE RLN HGRE CHM

LBP2 CVV CVE RLN LBP7 CHM

LBP3 LBP5 CDE RP LBP5 CHM

LBP3 LBP6 CDE RP CHM CDM

LBP3 LBP7 CDE RP CHM CVE

LBP3 LBP9 CDE GLN HGRE CAV

LBP3 CVM CDE GLN LBP4 CHM

LBP4 LBP5 LBP10 GLN LBP5 CHM

LBP4 LBP10 CAV GLN LBP5 CVM

LBP4 LBP10 CHV GLN LBP5 CAV

LBP4 LBP10 CAE GLN LBP5 CHV

LBP4 CVV CVE GLN LBP6 CHM

LBP5 LBP6 LBP10 GLN LBP7 CHM

LBP5 CHM CVE GLN LBP7 CVM

LBP5 CAV CDE GLN LBP7 CAV

LBP6 CVV CVE GLN LBP9 CHV

LBP7 LBP8 CDE GLN LBP10 CHM

LBP7 LBP10 CDE GLN CHM CDM

LBP7 CHM CVE GLN CHM CHV

LBP7 CAV CDE GLN CHM CVV

LBP7 CHV CDE GLN CHM CVE

LBP8 CVV CVE GLN CHM CDE

LBP9 CVV CVE GLN CVM CAV

LBP10 CVV CVE GLN CVM CVE

1 textural features 2 textural features 3 textural features

DWf DFf Both DWf DFf Both
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Table B4. Continued  

 

DWf DFf Both

LBP10 CVE CDE GLN CAV CHV

CAM CVV CVE GLN CAV CVE

CHM CVV CVE HGRE LBP4 CHM

CVM CVV CVE HGRE LBP5 CHM

CDM CVV CVE HGRE LBP5 CVM

CHV CVV CVE HGRE LBP5 CAV

CVV CVE CDE HGRE LBP5 CHV

HGRE LBP6 CHM

HGRE LBP7 CHM

HGRE LBP7 CVM

HGRE LBP7 CAV

HGRE LBP9 CHV

HGRE LBP10 CHM

HGRE CHM CDM

HGRE CHM CHV

HGRE CHM CVV

HGRE CHM CVE

HGRE CHM CDE

HGRE CVM CAV

HGRE CVM CVE

HGRE CAV CHV

HGRE CAV CVE

LBP1 LBP4 CHM

LBP1 LBP5 CHM

LBP1 LBP7 CHM

LBP1 CHM CDM

LBP1 CHM CAV

LBP1 CHM CVE

LBP1 CHM CDE

LBP2 LBP5 CHM

LBP2 LBP7 CHM

LBP2 CHM CVE

LBP2 CHM CDE

LBP3 CHM CVE

LBP4 LBP7 CHM

LBP4 CHM CVE

LBP4 CHM CDE

LBP5 LBP7 CHM

LBP5 LBP10 CHM

LBP5 CHM CDM

LBP5 CHM CVV

LBP5 CHM CDV

LBP5 CHM CHE

LBP5 CHM CVE

LBP5 CHM CDE

LBP7 CAM CHM

LBP7 CHM CDM

1 textural features 2 textural features 3 textural features

DWf DFf Both DWf DFf Both
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Table B4. Continued 

 

 

DWf DFf Both

LBP7 CHM CAV

LBP7 CHM CHV

LBP7 CHM CVV

LBP7 CHM CDV

LBP7 CHM CHE

LBP7 CHM CVE

LBP7 CHM CDE

LBP7 CHV CDE

CHM CDM CVE

CHM CAV CVE

CHM CHV CVE

CHM CVV CVE

CHM CDV CVE

CHM CVE CDE

CDM CVV CVE

1 textural features 2 textural features 3 textural features

DWf DFf Both DWf DFf Both


