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ABSTRACT 

 

 Designing perioperative analgesic regimen for ruminants is problematic as pain 

assessment is difficult and pregnancy adds additional considerations. The aim of this 

study was to assess the nociceptive properties of intramuscularly administered 

buprenorphine and transdermally administered fentanyl utilizing a composite pain score 

system. To better confirm that the observed abnormal behavior was related to pain, the 

current study attempted to characterize the nociceptive properties of the analgesic agents 

at a given plasma drug concentration, which has not previously been done.  Additionally, 

the study characterized transplacental movement of analgesic agents via fetal plasma 

drug concentrations.  

 In this study, we compared intramuscularly administered buprenorphine at a dose of 

0.01 mg/kg every 8 hours for 48 hours starting at induction for surgery (n=6) to 

transdermal fentanyl patches (n=6) applied in the dorsal thorax region 24 hours before 

surgery at a dose of 2µg/kg/hr for postoperative pain. Ewe blood samples were collected 

and signs of pain and sedation were measured 24 hours before surgery (time -24), 

induction to surgery (time 0), and 2, 4, 6, 8, 12, 24, 36, 48 hours after. Using an 

indwelling fetal arterial catheter that was placed during the surgery, fetal blood pressure 

was recorded and blood samples were collected. Drug concentrations were measured in 

maternal and fetal plasma and amniotic fluid. The buprenorphine treated ewes exhibited 

more pain consistent behaviors than those treated with fentanyl, and their postoperative 

pain scores were significantly higher than the preoperative value. There were also 

significant differences in cardiovascular variables from the anesthesia records between 
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the two groups. Overall, transdermal administration of fentanyl provided adequate 

analgesia with little adverse effects, making it a candidate for optimal postoperative pain 

management in sheep.  
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NOMENCLATURE 

 

AVB Atrioventricular block 

BUP Buprenorphine treatment 

CI Cardiac index 

CO Cardiac output 

CRI Constant rate infusion 

CVP Central venous pressure 

DEX Dexmedetomidine 

FENT Fentanyl treatment 

HR Heart rate 

ICU Intensive care unit 

IM Intramuscular 

IV Intravenous 

LD Loading dose 

MACiso Minimum alveolar concentration of isoflurane 

MACISO Minimum alveolar concentration of isoflurane 

MAP Mean arterial pressure 

MED Medetomidine 

OMT Oral transmucosal route 

PaCO2 Partial pressure of carbon dioxide 

PAP Pulmonary artery pressure 

PVR Pulmonary vascular resistance 
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SAP Systolic arterial pressure  
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TFP Transdermal fentanyl patch  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Overview 

Dexmedetomidine (DEX) is an alpha2 agonist that was introduced into clinical practice as 

a short-term medication for sedation and analgesia. It has a wide application in veterinary and 

human medicine: as a premedication, an anesthetic adjunct, and as a perioperative sedative and 

analgesic. Alpha2 agonists elicit their effects by binding to their corresponding receptor subtypes 

located throughout the central nervous system and periphery. However, there are considerable 

interspecies differences in the diversity and distribution of alpha2 adrenoreceptor subtypes.  

1.1.1 Alpha-2 Adrenoceptor 

 Alpha adrenoreceptors are located throughout the central nervous system and peripheral 

tissues, and they are divided into two subtypes; alpha1 which exerts excitatory functions and 

alpha2 that mainly produces inhibitory functions such as sedation, analgesia, and muscle 

relaxation. The magnitude of these effects is dependent on the affinity and selectivity of the 

alpha2 agonists between alpha1 and alpha2. DEX has a dose-dependent alpha2-adrenocreceptor 

selectivity. When administered at low to medium doses at slow infusion rates, DEX is a highly 

selective alpha2 agonist, almost 8 times more specific than clonidine, making it a much more 

effective sedative and analgesic agent (Gertler, Brown, Mitchell, & Silvius, 2001). At higher 

doses or in rapid infusions, both alpha1- and alpha2-adrenoreceptor activates are observed. 

Numerous alpha2 adrenoreceptor subtypes have been found, alpha2A, alpha2B, alpha2C, and 

alpha2D, and there are interspecies differences in receptor subtypes, distributions, and densities 

leading to differences in DEX dosing regimens and clinically relevant effects.   
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1.1.2 Aim 

The goal of this review was to provide an understanding of the current role and the side 

effects associated with DEX in different species. Rather than focusing on the physiologic and 

pharmacologic bases of DEX, this article describes the clinical application of this agent and its 

relevant adverse effects.  

 

1.2 Humans  

1.2.1. Uses 

DEX is commonly used as a sedative in human practice, especially in the intensive care 

unit (ICU) setting, because it is analgesic and anxiolytic, has a rapid onset, procures sedation 

with hemodynamic stability, and allows postoperative patients to remain sedated but easily 

aroused with stimulation (Giovannitti, Thoms, & Crawford, 2015; Venn & Grounds, 2001). It 

has been used as a sole sedative agent and as an adjunct for noninvasive and invasive procedures, 

respectively (Rao, Sudhakar, & Subramanyam, 2012; Tobias, 2008). DEX infusion dosing, 

described as Loading Dose/Maintenance, as per manufacturer recommendations is as follows: 

1µg/kg over 10 minutes/ 0.2-0.7µg/kg/hr for adult ICU sedation, 1µg/kg over 10 minutes/ 

0.6µg/kg/hr and titrated with doses from 0.2-1.0µg/kg/hr for adult procedural sedation, 0.5µg/kg 

over 10 minutes/consider dose reduction for patients over 65 years of age, and 0.25-0.5µg/kg in 

slow divided doses/consider dose reduction in patients with impaired hepatic or renal function 

(PRECEDEX, 2013). In conscious patients, increasing concentrations of DEX results in 

progressive increases in sedation (Ebert, Hall, Barney, Uhrich, & Colinco, 2000). Administering 

DEX as a bolus injection of 0.25-0.5µg/kg in slow divided doses produces a noticeable 

mellowing effect within 15- 30 minutes without a transient increase in blood pressure 
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(Giovannitti et al., 2015). When administered at a higher dose, clinically effective onset of 

sedation generally occurs within 10-15 minutes. At higher plasma concentrations, and thus a 

greater sedation state, DEX appears to compromise the ability to recall and recognize events, so 

lower concentrations may be useful in providing sedation while preserving memory (Ebert et al., 

2000). The use of low dose constant rate infusion (CRI), without a loading dose (LD), for 

sedation in intubated patients who were already sedated with opiates and benzodiazepines, 

demonstrated cardiovascular safety, with minimal cardiovascular effects observed (Cummings et 

al., 2015; Tobias, 2008). When co-administered with agents such as opioids, benzodiazepines, 

and propofol, DEX induced sedation is enhanced (Giovannitti et al., 2015). 

It has been demonstrated that DEX provides a moderate analgesic and analgesic-sparing 

effects in humans (Cortinez et al., 2004; Jaakola, Salonen, Lehtinen, & Scheinin, 1991). 

Determined by cold-pressor testing in volunteers, the analgesic effects elicited from DEX appear 

to have a linear relationship with dose, as increasing the dose leads to a decrease in pain 

sensation (Ebert et al., 2000). When administered as a 0.5µg/kg/h infusion, DEX has specific 

analgesic effects and provides visceral pain relief (Cortinez et al., 2004). Single administration of 

DEX also elicits an analgesic effect on ischemic pain; however, an apparent ceiling effect has 

been observed at a dose of 0.5µg/kg (Jaakola et al., 1991). The analgesic-sparing effects of DEX 

for post-surgical pain have been well documented (M. S. Aho, Erkola, Scheinin, Lehtinen, & 

Korttila, 1991; Arain, Ruehlow, Uhrich, & Ebert, 2004; Rao et al., 2012). Patients who were 

scheduled for major surgical procedures and received a LD of 1µg/kg over 10 minutes followed 

by a CRI of 0.4µg/kg/hr of DEX required 66% less morphine postoperatively, when compared to 

patients without DEX treatment (Arain et al., 2004). Similarly, a single premedication injection 

of 1µg/kg of DEX in patients undergoing abdominal surgery, resulted in a significant reduction 
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in postoperative morphine consumption for up to 24 hours (Unlugenc, Gunduz, Guler, Yagmur, 

& Isik, 2005).  

DEX is widely used as a premedication agent because of its perioperative benefits. It has 

been shown to blunt responses to intubation and extubation, provide a stable hemodynamic 

profile, exert anesthetic-sparing effects, and to potentiate the anesthetic effects of intraoperative 

anesthetics (M. Aho, Lehtinen, Erkola, Kallio, & Korttila, 1991; Khan et al., 1999; Patel, 

Engineer, Shah, & Madhu, 2013; Rao et al., 2012; Scheinin, Lindgren, Randell, Scheinin, & 

Scheinin, 1992) Endotracheal intubation induces hemodynamic responses; however, anesthetic 

premedication of 0.6µg/kg IV DEX has been shown to attenuate, but did not completely blunt, 

the sypathoadrenal stimulation that occurs during tracheal intubation (Jaakola et al., 1991; 

Scheinin et al., 1992).  The potent sympatholytic properties of DEX also aid in promoting 

hemodynamic stability and protect against radical cardiovascular fluctuations intraoperatively 

(Hogue et al., 2002; Rao et al., 2012). Induction and inhalant anesthetic requirements are reduced 

in patients receiving DEX (M. S. Aho et al., 1991; Scheinin et al., 1992). As a single 

intravenously (IV) premedication bolus, DEX treatment has been reported to reduce the 

isoflurane requirements by 25% (M. Aho et al., 1991). An intraoperative infusion of DEX has 

also been shown to reduce the isoflurane requirement by 25%-50% in a dose-related manner (M. 

S. Aho et al., 1991; Khan et al., 1999). Similarly, a 20% reduction in sevoflurane requirement 

has been reported in patients receiving DEX as an adjuvant in general anesthesia (Patel et al., 

2013). DEX also facilitates a smooth recovery, and this in combination with the other benefits 

mentioned, makes it a favorable perioperative agent (Rao et al., 2012). 

There is a growing interest in the use of DEX for sedation of patients with traumatic brain 

injuries because of its role as a neuroprotective agent, (Erdman et al., 2014; Handlogten, Sharpe, 
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Brost, Parney, & Pasternak, 2015; Tobias, 2008). Beneficial effects of DEX administration on 

the central nervous system include a protective effect during ischemia, no effect on intracranial 

pressure, and a reduction of cerebral blood flow. Various animal models have been used in 

attempt to characterize these effects, and while blunting of endogenous catecholamine release 

during ischemia appears to play a role, further investigation on the underlying mechanisms is 

needed (Chalikonda, 2009; Sugita, Okabe, & Sakamoto, 2013). Typical hemodynamic effects, 

such as bradycardia and a biphasic change in blood pressure have been observed with DEX 

administration to neuropathic patients; however, they were generally well tolerated (Tobias, 

2008) 

1.2.2 Adverse Effects 

 Common adverse effects of DEX include hypotension, hypertension, bradycardia, atrial 

fibrillation, and hypoxia (Arain et al., 2004; Gertler et al., 2001). Typically, these are mild and 

appear in a dose-related manner. Increasing concentrations of DEX through continuous IV 

infusion resulted in progressive cardiovascular changes in healthy volunteers (Ebert et al., 2000).  

At lower plasma concentrations, <2.0ng/ml, a progressive decrease in heart rate (HR) and cardiac 

output (CO) was observed, as well as a significant decrease in mean arterial pressure (MAP). 

Higher concentrations of DEX, >2.0ng/ml, caused a significant decrease in HR and CO while 

increasing central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), 

pulmonary artery pressure (PAP), pulmonary vascular resistance (PVR) and systemic vascular 

resistance (SVR) (Ebert et al., 2000). Additionally, the potential for systemic and pulmonary 

hypertension is a concern related to high DEX concentrations.  

 Minimal effects of DEX on the respiratory system have been observed in humans, but 

when they do, it appears to be dose-related (Belleville, Ward, Bloor, & Maze, 1992; Ebert et al., 
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2000). A rapid infusion of high dose DEX in healthy volunteers has shown to produce a slight 

increase in PaCO2 and a decrease in minute ventilation, with little change in ventilatory frequency 

(Ebert et al., 2000; Khan et al., 1999). The respiratory effects of DEX are thought to be more of a 

reflection of its sedative properties rather than direct respiratory depression.  

 

1.3 Dogs 

1.3.1 Uses 

Sedation induced by DEX appears to be suitable for diagnostic and therapeutic 

procedures in dogs for which moderate to deep sedation is required, and the degree of sedation is 

dose-dependent (Kuusela et al., 2001). Dogs receiving 0.2µg/kg of DEX IV appeared to only be 

lightly sedated while those receiving 20µg/kg were deeply sedated, as determined by a sedation 

score system (Kuusela et al., 2001). The IV administration of 15µg/kg of DEX provides peak 

sedation within 15 minutes that lasts at a clinically acceptable level for approximately 120 

minutes (M. Granholm, McKusick, Westerholm, & Aspegren, 2007). When administered 

intramuscularly (IM) at 30µk/kg, peak sedation occurs within 30 minutes and is within clinical 

range for 180 minutes (M. Granholm et al., 2007).  

DEX has been shown to provide analgesia in a dose-dependent manner when 

administered to dogs as a single IV or IM injection. The degree of analgesia, determined by a 

score system, in dogs receiving DEX IV at a dose of 20µg/kg was found to be very prominent; 

however, no analgesic effect was apparent in dogs receiving 0.2µg/kg (Kuusela et al., 2001). 

Clinically relevant analgesic effects in dogs are noticed 5-15 minutes after IV and 15-30 minutes 

after DEX IM injection, and the duration of analgesia is approximately 45 minutes (M. 

Granholm et al., 2007). The pedal withdrawal test has been used to compare the analgesic effects 
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of IM administered DEX to medetomidine (MED) at equipotent doses and found that DEX 

initially had lower scores until after the observed peak; then, the analgesic scores tended to be 

higher in the DEX treatment group (M. Granholm et al., 2007; Kuusela et al., 2000). This was 

not observed when the agents were administered IV, and thus could possibly be explained by 

differences in pharmacokinetics.  

Anesthetic-sparing effects of DEX are observed in dogs and appear to be dose-dependent. 

The propofol requirement for induction in dogs that received a premedication dose of 20µg/kg of 

DEX IV was reduced by almost 87% when compared to dogs that had only received 0.2µg/kg 

(Kuusela et al., 2001). Moreover, the same study reported a high premedication dose of DEX 

reduced the isoflurane requirement by 85% when compared to the low dose. The influence of 

DEX on cardiovascular-stability in anesthetized dogs also appears to be dose-dependent, with a 

moderate level dose, 2µk/kg, resulting in greater stability (Kuusela et al., 2001).   

1.3.2 Adverse Effects  

Typical DEX cardiovascular effects have been reported in conscious dogs following 

single IV or IM administration of DEX. A significant decrease in the HR has been shown to 

occur within 15 minutes after administration in both IM and IV routes and persisted for 

approximately 180 minutes (M. Granholm et al., 2007).  When used as a premedicant for 

propofol-isoflurane/propofol anesthesia, dogs were bradycardic after receiving DEX for 

approximately three hours, and it was not influenced by inhalant anesthetic (Kuusela, Raekallio, 

Hietanen, Huttula, & Vainio, 2002). The use of propofol as an induction agent has shown to 

attenuate DEX induced bradycardia; however, prominent bradycardia still persisted in dogs 

premedicated with a high dose of DEX (Kuusela et al., 2001). The effect of DEX on HR appears 

to last longer than its sedative and analgesic effects and should be kept in mind during 
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postoperative monitoring. The development of second-degree atrioventricular-blocks (AVB) 

during the premedication period have been recorded in dogs receiving 10µk/kg IM, but the 

blocks decreased or vanished after the induction of anesthesia (Kuusela et al., 2002). DEX 

exhibits a biphasic blood pressure response in a dose-dependent manner in propofol-

isoflurane/propofol anesthetized dogs (Kuusela et al., 2001). Additionally, induction with 

propofol on DEX premedicated dogs has shown to significantly decrease MAP, regardless of the 

DEX dose used (Kuusela et al., 2001). Administration of atipamezole has shown to partially 

reverse the cardiorespiratory effects of DEX (M. Granholm et al., 2007). 

Respiratory depression from DEX is considered to be minimal; however, a study using 

client-owned dogs observed a significant decrease, below baseline, in respiratory rate following a 

single IV or IM administration of 15µk/kg and 30µk/kg, respectively (M. Granholm et al., 2007). 

This finding may be associated with the excitement and stress of preprocedural handling in a 

veterinary hospital rather than a direct effect of DEX, but nevertheless it was observed.  

A decrease in rectal temperature has been associated with DEX administration in dogs. 

Although their temperature remained within clinically acceptable limits, dogs should be kept 

warm during the procedure and recovery (M. Granholm et al., 2007). 

 

1.4 Cats  

1.4.1 Uses 

The effects of DEX on sedation in cats has been described, and a single IM injection at 

0.04mg/kg has been shown to be effective and safe in clinically healthy cats requiring sedation 

and analgesia for minor procedures (Mikael Granholm, McKusick, Westerholm, & Aspegrén, 

2006). A single dose of 0.04mg/kg administered via oral transmucosally (OTM) has also been 
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shown to produce sedative effects with similar time of onset, intensity, and duration as the IM 

route (Slingsby, Taylor, & Monroe, 2009). A single intravenously administered bolus has also 

shown to induce sedation, and while the sedative effect, determined by a sedation score system, 

did not depend on the dose, the duration of sedation was dose dependent (Pypendop & Ilkiw, 

2014). Studies using low doses of DEX, 0.005-0.05mg/kg, have shown an increase in sedation 

with an increase in dose; however, Ansah et al. described the dose-dependent sedative effect to 

be limited (Ansah, Raekallio, & Vainio, 2000). The authors compared sedative effects elicited 

during a 50-minute CRI dosed at 0.25, 1.0, and 4.0µg/kg/min, and it appeared that an increase in 

serum concentration beyond a certain level leads to the reversal of sedation (Ansah et al., 2000). 

The reversal was noticed in the highest dose group and could be the result of drug interaction 

with alpha-1 adrenoceptors or desensitization of alpha-2-adrenergic receptors following 

continuous exposure. A co-administration of DEX with buprenorphine has shown to enhance the 

sedative effects (Slingsby, Murrell, & Taylor, 2010).  

In a clinical trial, it has been demonstrated that administration of a single IM dose of 

DEX (0.04mg/kg) resulted in clinically effective analgesia (Mikael Granholm et al., 2006). 

However, its use a single agent may not be ideal for more invasive procedures, such as 

castrations. Evaluation of the analgesic effects of DEX via score systems suggests DEX produces 

dose-dependent analgesic effects and duration (Ansah et al., 2000; Mikael Granholm et al., 

2006). Thermal threshold testing has shown DEX to provide adequate antinociceptive effects 

after a bolus administration of 0.04mg/kg IM or OTM, as well as doses ranging from 0.005-

0.05mg/kg via IV (Pypendop & Ilkiw, 2014; Slingsby et al., 2009).  In those studies, a thermal 

antinociceptive effect was found 35, 30, and ~2 minutes following IM, OTM, and IV 

administration, respectively. The average duration of analgesia following IM and OTM 
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administration was 61.3 and 98.8 minutes, which is similar to the duration observed, ~60 

minutes, following IV bolus of 0.005mg/kg and 0.02mg/kg. However, the thermal 

antinociceptive effect of 0.05mg/kg via IV bolus lasted nearly two hours (Pypendop & Ilkiw, 

2014). In a study evaluating the antinociceptive effects of DEX co-administered with 

buprenorphine in IV bolus, dosed at 0.02mg/kg and 0.01mg/kg, respectively, found that the 

combination produced greater analgesia with earlier onset and a longer duration than either agent 

alone (Slingsby et al., 2010).  

Anesthetic sparing effects of DEX in cats appears to be dependent on regimen (CRI or as 

premedication) and/or dose. When administered as a low dose CRI in propofol-isoflurane 

anesthetized cats, DEX did not significantly affect the dose or propofol required for induction 

(Simon, Scallan, Coursey, Kiehl, & Moore, 2018; Souza et al., 2010). However, when utilized as 

a premedication, administered as a high, single dose (IM, IV, and OTM), DEX reduced the 

induction requirement of propofol by approximately 44%-58% (McSweeney, Martin, Ramsey, & 

McKusick, 2012; Mendes, Selmi, Barbudo-Selmi, Lins, & Figueiredo, 2003). Moreover, 

preanesthetic administration of DEX has been shown to significantly reduce the dose of 

ketamine necessary to intubate cats by approximately 77%-85% the current FDA approved dose 

(McSweeney et al., 2012). That study also reported an increase in intubation success rate in DEX 

treated cats (89%) compared with the placebo group (11%).  

The relationship between plasma DEX concentration and the minimum alveolar 

concentration of isoflurane (MACISO) has been examined using target-controlled IV infusions 

and reported a plasma-concentration dependent decrease in MACISO (Escobar, Pypendop, Siao, 

Stanley, & Ilkiw, 2012). A low dose LD followed by CRI, 0.5µk/kg and 0.5µk/kg/hr, 

respectively, on propofol-isoflurane anesthetized cats found an overall reduction in end-tidal 
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isoflurane requirement by 21%(Simon et al., 2018). A similar reduction was also noticed in cats 

undergoing propofol-isoflurane anesthesia with epidural lidocaine, who received DEX epidural 

and CRI (Souza et al., 2010). 

The effects of DEX on anesthetic recovery is variable. When administered at a LD of 

0.5µk/kg followed by a 0.5µk/kg /hr CRI during propofol-isoflurane anesthesia no significant 

effects on recovery were found (Simon et al., 2018). In contrast, a separate study using a higher 

LD, 4µk/kg, found DEX to increase the duration of recovery and improve its quality (Mendes et 

al., 2003; Souza et al., 2010). The preanesthetic single IV administration of DEX at a high dose 

was shown to provide a better quality of recovery yet did not increase the duration (Mendes et 

al., 2003). 

Through the use of score systems, DEX has shown to produced good muscle relaxation 

when administered as a single IM injection or as a CRI via IV (Ansah et al., 2000; Scrollavezza, 

Tambella, Vullo, & Piccionello, 2009). The effects of DEX on seizure threshold in anesthetized 

cats has also been investigated and found that high-dose DEX reduced seizure threshold 

(Miyazaki et al., 1999). 

1.4.2 Adverse Effects  

The cardiovascular effects of DEX in cats have been reported in the literature; decrease in 

HR, cardiac index (CI), and stroke index (SI) with an increase in SVR and CVP (Pypendop, 

Honkavaara, & Ilkiw, 2017). The DEX induced decrease in HR in cats is thought to be little 

influenced by dose, as the observed magnitudes of this effect appear similar through a range of 

doses; however, the higher doses appear to result in a longer duration of the effect (Ansah et al., 

2000; M. Granholm et al., 2007; Monteiro, Campagnol, Parrilha, & Furlan, 2009). 

Cardiorespiratory studies in cats treated with DEX show atypical effects on mean arterial 
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pressure compared to the typical biphasic effect reported in other species. A study evaluating 

blood pressure response to DEX in cats receiving either 15µk/kg or 30µk/kg IM observed a 

slight decrease in systolic arterial pressure (SAP) after administration followed by a continual 

gradual decrease, regardless of the dose (Monteiro et al., 2009). In other studies, cats receiving 

25µk/kg (either IV bolus or IM) resulted in a significant increase in SAP, which is in agreement 

with DEX vasoconstriction properties at alpa2-adrenoceptors on vascular smooth muscle (Mikael 

Granholm et al., 2006; Pypendop et al., 2017). Premedication with atropine or co-administration 

with MK-467, an alpha2 adrenoreecptor antagonist, has been shown to improve the 

hemodynamics when compared to DEX alone; however, further studies are needed to evaluate 

the cardiovascular effects (Monteiro et al., 2009; Pypendop et al., 2017). Hemodynamic effects 

related to IV target-controlled CRI administration of DEX in isoflurane-anesthetized cats was 

found to decrease HR and CI and increase SVR, which is in agreement with the findings in the 

conscious state (Pypendop & Verstegen, 2001). 

It has been reported that DEX decreases respiratory rate similar to that of medetomidine, 

whether its administered as a single IM injection or an IV CRI (Ansah et al., 2000; Mikael 

Granholm et al., 2006; Monteiro et al., 2009). However, there is discrepancy about the 

relationship between drug concentration and magnitude of effect and further research is 

warranted.  

Emesis is observed in the majority of studies evaluating DEX in cats, with some studies 

documenting 67%-83% of those receiving DEX vomiting (Monteiro et al., 2009; Slingsby et al., 

2009). In contrast, another study has reported a smaller incidence of 8% (Mikael Granholm et al., 

2006). While DEX administration in cats has shown to cause vomiting, the fasting state of the 

cats prior to injection may impact the prevalence.  
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1.5 Equine 

1.5.1 Uses  

In equine practice, standing protocols are preferred over general anesthesia, and so the 

beneficial profile of DEX, with a short half-life and rapid distribution, makes it a potential 

option. Using head height above the ground as a quantitative measure of the degree of sedation 

in horses, DEX provided clinically relevant sedation within 5 minutes after the initiation of a 

CRI, dosed at 5µk/kg/hr, with the maximum effect reached within 15 minutes (Medeiros et al., 

2017). A study comparing the sedative effects of DEX to MED found that more than 50% of the 

horses administered DEX, 3.5µk/kg IV, required one or more supplemental doses to meet 

sedation criteria for induction (Sacks, Ringer, Bischofberger, Berchtold, & Bettschart-

Wolfensberger, 2017). They further reported the dose necessary to fulfill sedation criteria prior 

to anesthesia induction was approximately 4µk/kg (range, 4-9µk/kg). Similar studies have 

reported the same findings, suggesting a slightly higher dose might be preferable in order to 

obtain acceptable sedation prior to intubation (Miguel G. Marcilla, Schauvliege, Segaert, 

Duchateau, & Gasthuys, 2012). The administration of 5µk/kg of DEX via epidural provided a 

moderate degree of sedation in donkeys undergoing surgical procedures in the perinea region, 

and the DEX induced sedation had a longer duration compared to xylazine (Hamed, Abouelnasr, 

Ibrahim, & El-khodery, 2017).  

Mechanical nociceptive threshold testing has shown DEX to induce analgesic effects in 

horses for 30 minutes following a 5µk/kg IV bolus (Rezende, Grimsrud, Stanley, Steffey, & 

Mama, 2015). When administered as three escalating IV CRIs, 2, 4, and 6µk/kg/hr, DEX 

increased the nociceptive threshold to single and repeated stimulation at the two higher doses and 

increased nociceptive tolerance at all CRI levels (Risberg, Spadavecchia, Ranheim, Krontveit, & 
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Haga, 2014). Furthermore, the antinociceptive effects observed in that study persisted for 30 

minutes after the CRI. A study on the effects of epidural DEX, 5µk/kg, in donkeys found that 

DEX induced more potent antinociceptive effect with a faster onset and longer duration than 

xylazine (Hamed et al., 2017).  

Although DEX has been shown to reduce anesthetic requirements in several other 

species, a study administering an IV bolus of DEX followed by a CRI, 1.75µk/kg/hr, to 

isoflurane-anesthetized horses failed to reduce the dose of isoflurane required for maintenance 

(Miguel G. Marcilla et al., 2012). A similar study comparing a CRI of morphine to DEX, at the 

same dose previously reported, found that inhalant anesthetic requirement between the two 

regimens was only significantly different 60 minutes after start of infusion (Gozalo-Marcilla, 

Steblaj, Schauvliege, Duchateau, & Gasthuys, 2013). However, the authors did report that horses 

receiving DEX appeared to maintain a more stable surgical depth of anesthesia, required lower 

doses of ketamine, and presented better quality recoveries, which suggest potential benefits of 

DEX as an anesthetic adjuvant. An improvement in recovery quality has also been observed in 

diazepam+ketamine/isoflurane anesthetized horses that received a LD and CRI of DEX, when 

compared to those receiving MED or saline (Sacks et al., 2017). Furthermore, horses receiving 

DEX as a bolus premedication, CRI during anesthesia, and an IV bolus at the end of the surgical 

procedure had significantly higher recovery scores and longer times to sternal recumbency and 

first attempt to stand, when compared to horses that did not receive DEX (Miguel G. Marcilla et 

al., 2012).  

1.5.2 Adverse Effects 

DEX administered as a LD of 3.5µk/kg followed by a CRI of 5µk/kg/hr in conscious 

horses has been shown to decrease HR, CI, SAP, and MPAP while increasing SVRI, yet all 
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values remained within clinically acceptable limits (Medeiros et al., 2017). In the same study, all 

horses receiving DEX developed AVBs, and this was thought to be attributed to the IV bolus of 

3.5µk/kg. Typical DEX associated cardiovascular effects in anesthetized horses have been 

recorded but appear to remain within clinically acceptable limits and the magnitude of change 

does not appear to be dose-dependent (Miguel Gozalo Marcilla, Schauvliege, Duchateau, & 

Gasthuys, 2010; Miguel G. Marcilla et al., 2012).  

Respiratory depression has been observed in horses receiving a CRI of 5µk/kg/hr, and 

respiratory rate continued to be lower for 30 minutes after infusion (Medeiros et al., 2017). The 

co-administration of butorphanol does not appear to have a significant influence on DEX 

induced ventilatory effects (Medeiros et al., 2017). 

Decreased gastrointestinal motility following DEX administration has been described in 

the literature (Koenig, Martin, Nykamp, & Mintchev, 2008; C. Zullian, Menozzi, Pozzoli, Poli, 

& Bertini, 2011). In horses receiving 5µk/kg IV bolus, significant decreases in borborygmic 

values were observed following administration; however, no clinically significant effects, such 

as colic, were reported (Rezende et al., 2015). 

 

1.6 Small Ruminants 

1.6.1 Uses 

DEX has been used as a premedication prior to general anesthesia in sheep (Carroll & 

Hartsfield, 1996; Kastner, 2006; Kutter, Kastner, Bettschart-Wolfensberger, & Huhtinen, 2006). 

Through the use of a sedation score system, 0.005mg/kg of DEX administered IV has been 

shown to provide a clinically significant degree of sedation within 15 minutes, lasting an average 

of 45 minutes (Borges et al., 2016). When administered IM, at a dose of 15µg/kg, DEX provided 
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sheep with moderate to severe degree of sedation within 20 minutes after injection (Kastner, 

Boller, Kutter, Akens, & Bettschart-Wolfensberger, 2001). The concurrent administration of 

DEX, 0.005mg/kg IV, with methadone, morphine, or butorphanol in sheep does not appear to 

enhance sedation; however, the combinations did prolong the duration of sedation compared to 

sole administration of DEX (Borges et al., 2016). 

Pain management is difficult in this cohort because of their atypical anatomy and the lack 

of literature investigating the efficacy of analgesic agents. Results from small ruminant clinical 

studies indicate alpha2 agonist elicit analgesic effects; however, these agents alone are not 

sufficient for painful and major surgical procedures (Shah, Ding, & Hu, 2014). A dose as low of 

MED, 5µg/kg, has been shown to produce a significant analgesic effect to mechanical stimulus 

for 60 minutes (Muge, Chambers, Livingston, & Waterman, 1994). In a comparison study 

between DEX and MED, an equipotent dose of 1:2 was proposed for sheep, and so, a dose of 

2.5µg/kg could potentially provide clinically relevant analgesia; however, further research in 

ruminant pain management is needed (Kastner, Von Rechenberg, Keller, & Bettschart-

Wolfensberger, 2001). 

DEX produced anesthetic-sparing effects in sheep are similar to those caused by MED 

(Kastner, Von Rechenberg, et al., 2001). A single pre-medication dose of 5µg/kg DEX IV has 

been reported to reduce the isoflurane requirement by approximately 30% in ketamine-isoflurane 

anesthetized sheep (Kastner, Von Rechenberg, et al., 2001). A similar reduction was observed in 

sheep premedicated with 15µk/kg IM 30 minutes before induction with ketamine (Kastner, 

Boller, et al., 2001).  

The use of DEX as a sedative prior to euthanasia has been debated because it has been 

thought that DEX induced decrease in cardiac output slows the circulation of euthanasia solution, 
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thus leading to a slower euthanasia compared to those unpremeditated. This has been 

demonstrated in other species; however, euthanasia was not affected by the administration of 

5µk/kg of DEX to sheep five minutes prior to an injection of euthanasia solution, compared to 

those not treated with DEX (Barletta et al., 2018). In the same study, vocalization during 

euthanasia was only observed in sheep receiving DEX, and thus it is advised to warn the owner 

and other personal of the possibility of vocalization.  

1.6.2 Adverse Effects 

A significant decrease in heart rate has been associated with DEX administration in 

conscious sheep (Borges et al., 2016). Low dose DEX administration IM or IV to conscious 

sheep does not significantly alter blood pressure, contradicting the typical biphasic effect noticed 

in other species (Borges et al., 2016; Kastner, Boller, et al., 2001). This could be attributed to the 

low dose administered rather than the species, and so further investigation is needed. In 

sevoflurane-anesthetized goats and sheep, DEX administration has been associated with a 

decrease in HR and CO and an increase in CVP (Kutter et al., 2006). Studies have shown the 

magnitude and duration of cardiopulmonary changes in response to DEX to be different between 

sheep and goats, suggesting a species-specific difference in sensitivity to the centrally mediated 

cardiovascular effects of DEX (Kästner et al., 2007; Kutter et al., 2006). 

Respiratory depression and hypoxemia are possible adverse effects of alpha-2 agonists 

administration in ruminants (A., A., & A., 1986; Kutter et al., 2006). The pathological 

mechanisms behind these adverse effects are thought to be caused by consecutive alveolar 

hypoventilation and impairment of gas exchange due to pulmonary edema (Kastner, Von 

Rechenberg, et al., 2001). Impaired oxygenation appears to be mediated by peripherally located 

alpha-2 adrenoreceptors that respond in a dose-dependent manner (A. et al., 1986). Studies in 
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sheep suggests hydrostatic stress may be the underlying cause of pulmonary edema formation 

caused by DEX (Kastner, Ohlerth, Pospischil, Boller, & Huhtinen, 2007). Specifically, to this 

cohort, ventilation and PaO2 are additionally compromised because of the abnormal position 

these animals are typically placed in while anesthetized. This position promotes ventilation-

perfusion mismatching and restricts diaphragmatic excursion by abdominal contents (Carroll & 

Hartsfield, 1996). The prevalence of clinically obvious pulmonary changes in goats is sparse and 

highly variable; however similar changes in pulmonary hemodynamics of both sheep and goats 

have been observed (Kutter et al., 2006).  

 

1.7 Conclusion 

DEX is commonly used in veterinary and human practice for sedation, analgesia, and as 

an anesthetic adjuvant. The pharmacological activities of DEX in different species are almost 

similar, but some differences exist due to species specific differences in alpha2-adrenoreceptor 

subtypes, distributions, and densities.  
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2. INTRODUCTION 

 

Sheep have become a common animal model, particularly in surgery and fetal-

development research (Pape & Madry, 2013; Washburn, Tress, Lunde, Chen, & Cudd, 2013; 

Wilson & Cudd, 2011). In such research, intra and postoperative pain management are of utmost 

importance; not just to ensure animal welfare, but also to avoid the consequences of untreated 

pain. Early pain recognition contributes to optimum recovery by allowing analgesics to 

maximize their anti-nociceptive potential before the initial afferent pain barrage, thus preventing 

all the consequences of untreated pain and the establishment of chronic pain. The utilization of a 

pain scoring system facilitates early detection of pain. Although there is not a validated score 

system in sheep, multidimensional scoring systems are superior to a simple visual analog scale 

(Musk, Catanchin, Usuda, Woodward, & Kemp, 2017; Musk et al., 2014; Stasiak, Maul, French, 

Hellyer, & VandeWoude, 2003). 

Regimens containing combinations of non-steroidal anti-inflammatory drugs (NSAIDs) 

and opioids are most commonly used for perioperative analgesia. Buprenorphine is a partial mu 

agonist, with a potency at least 30 times that of morphine and a long duration of action, which 

allows for extended dosing intervals. Fentanyl is a short acting full mu agonist 80 to 100 times as 

potent as morphine. The transdermal fentanyl patch (TFP) is a promising alternative because it is 

designed to release fentanyl in a sustained rate to produce stable plasma concentrations for a 

prolonged period of time, decreasing the chances of variable concentrations often found with 

periodic intravenous and intramuscular injections of opioids. Potential non-analgesic effects 

elicited by these agents must also be considered. 
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Analgesics are often administered to sheep, and other species, on the basis of data derived 

from human studies, and the proposed doses may not provide adequate analgesia in sheep. 

Variability in drug disposition and bioavailability from route of administration further 

complicates evaluation of efficacy of the agents at the suggested dose. Although the 

pharmacokinetics of TFP in a sheep model have previously been described, factors such as patch 

location, ewe body composition, and pregnancy vary widely among studies and warrant further 

investigation to better characterize the maternal and fetal plasma fentanyl concentrations from 

TFP use (Heikkinen et al., 2015; Jen, Dyson, Lester, & Nemzek, 2017); the literature regarding 

the efficacy of TFP in pregnant sheep is limited. There is also a need to assess the effectiveness 

of the TFP in sheep to a more established analgesic drug, such as buprenorphine. 

In humans, the TFP is increasingly being used to treat chronic pain. There are few reports 

of its use during pregnancy, and its safety has not been established in this population of patients. 

Buprenorphine’s effects on the fetus are not completely understood, yet it is frequently utilized 

for medication-assisted treatment in cases of opioid use disorder in pregnant women (Chavan, 

Ashford, Wiggins, Lofwall, & Critchfield, 2017).  This creates the need to characterize and 

understand both the maternal and fetal effects of fentanyl and buprenorphine.   This study will 

not only provide much needed information on analgesia in veterinary patients, but since sheep 

are a highly translational model for human pregnancy  (Pape & Madry, 2013; Washburn et al., 

2013; Wilson & Cudd, 2011), results can also offer some clues about its use in pregnant women 

and potential fetal fetus.  

The goal of this study was to compare intraoperative and postoperative analgesic effects 

of TFP, applied in a novel location, to the effects of buprenorphine in pregnant ewes. In addition, 
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to examine the influence of those analgesics on anesthesia and to characterize plasma drug 

concentrations and placental transfer.  
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3. MATERIALS AND METHODS 

 

3.1 Animals 

Twelve pregnant Suffolk-cross ewes (ages 2-4 years) with time-dated pregnancies 

underwent anesthesia and surgery, which was approved by Texas A&M University Institutional 

Animal Care and Use Committee. All ewes were examined and weighed upon arrival, and then 

acclimatized and housed in individual indoor pens and fed a commercially prepared pelleted feed 

and Bermuda grass hay throughout the study.  

Twenty-four hours before the planned surgery, each sheep was randomly assigned into 

one of two treatment groups. The buprenorphine-treated ewes (n=6) received buprenorphine 

hydrochloride (Par Pharmaceuticals Companies, Spring Valley, NY) intramuscularly at a dose of 

0.01 mg/kg every 8 hours for 48 hours starting at induction for surgery (time 0), and a placebo 

patch, containing no drugs, was applied to each ewe. Each sheep in the fentanyl group (n=6) 

received a combination of fentanyl patches (Mylan Pharmaceuticals, Morgantown, WV) 24 

hours before surgery (time -24) to achieve a dose of 2µg/kg/hr. All patches were applied at the 

dorsal thorax area of the ewes. Before application, the area was clipped, cleaned with isopropyl 

alcohol, and allowed to air dry. It was covered with an adhesive bandage (Elastikon, Johnson & 

Johnson, New Brunswick, NJ) and vet wrap (Tape Pet Flex, Andover, Salisbury, MA) and 

further secured with tubular netting (Stretch Net N84, Nich Marketers, Gulf Breeze, FL).  

 

3.2 Surgical Instrumentation 

On gestation day 115 (+/- 2 days), calculated from an observed breeding date and later 

confirmed with ultrasound, the pregnant sheep underwent anesthesia and surgery for fetal 
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catheterization. Ewes were fasted for 24 hours prior to surgery. Anesthesia was induced 

intravenously with a combination of midazolam (0.35 mg/kg, Akorn, Lake Forest, IL) and 

ketamine hydrochloride (4mg/kg, Zetamine™, VetOne, Boise, ID), supplemented as needed in 

order to intubate the trachea of the ewes. The sheep were positioned in dorsal recumbency, and 

anesthesia was maintained with isoflurane (Fluriso, VetOne, Boise, ID) delivered in oxygen by a 

small animal anesthesia machine (Matrx™ Model 3000, Midmark, Orchard Park, NY). Ringer’s 

lactate solution was administered through a jugular catheter throughout anesthesia at 5mL/kg/hr.  

Standard surgical techniques previously described (Cudd, Chen, Parnell, & West, 2001) 

were used to catheterize the fetal cranial tibial arteries and saphenous veins and advance to the 

abdominal aorta and inferior vena cava, respectively. To collect amniotic fluid, a catheter was 

designed and constructed from 3/32” inner diameter, 5/32” outer diameter polyvinyl chloride 

tubing (TygonÒ #ADF00004) with added perforations. The tubing was sutured to the inside of a 

fenestrated golf ball (Wilson UltraÒ whiffle golf balls) to prevent the fetal membranes from 

collapsing over and obstructing the holes in the tubing (Figure B-1). During surgery, the 

amniotic catheter was sutured to the skin over the fetal tarsus, with the golf ball end floating 

inside the amniotic cavity. Using a trocar, all catheters were exteriorized in the right flank of the 

ewe, where they were retained in a cloth pouch. All ewes received flunixin meglumine (1mg/kg, 

Banamine®, Merck Animal Health, Summit, NJ) intravenously and tulathromycin (2.5mg/kg, 

Draxxin®, Zoetis US, Parsippany, New Jersey) subcutaneously prior to surgery. After surgery, 

anesthesia was discontinued, ewes were placed in sternal position and allowed to recover. Once 

the sheep began to swallow and lift their heads, they were extubated.  
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3.3 Anesthetic Monitoring 

An individual blinded to treatment and independent of the person adjusting the isoflurane 

settings recorded anesthetic variables. Heart rate, ventilation rate, hemoglobin saturation (SpO2), 

and body (esophageal) temperature were monitored during surgery using a Datascope Passport® 

2 monitor (Mindray, Mahwah, NJ). Blood pressure was measured non-invasively with an 

inflatable cuff (Cardell Veterinary Monitor, 9401 BP., Midmark, Dayton, OH) placed on the 

metacarpal region and systolic, diastolic, and mean blood pressures were recorded. The end-tidal 

isoflurane concentration (EtISO) and end-tidal carbon dioxide concentration (EtCO2) were 

measured using a Datex Capnomac Ultima monitor (Instrumentarium Corp., Helsinki, Finland), 

calibrated before each experiment. A separate individual, blinded to treatment, adjusted the 

isoflurane vaporizer settings to maintain an adequate depth of anesthesia throughout surgery. 

Times were recorded for the following markers: induction, intubation, start of surgery, end of 

surgery, extubation, and standing; induction was set as time zero.  

 

3.4 Analgesic Measures and Maternal Sample Collection 

An individual blinded to treatment group assessed each sheep for pain. Ewe heart rate, 

respiratory rate, and rectal temperature were measured and behavioral indicators of pain and 

sedation were recorded using a modification of the Stasiak et al. (2003) composite scoring 

system (Table A-1 & A-2). Each of the five criterion, comfort, movement, appetite, posture, and 

response to palpation of surgical incision, was scored on a scale of 0-3, with a score of one or 

greater indicating abnormal behavior. These scores were added together for a total score, with a 

maximum possible total of 15; rescue analgesia was planned if scores exceeded a value of 8. 

Sedation was scored based on posture and demeanor, using a scale of 1-10, with 10 being most 
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sedated. The first assessment was made 24 hours before surgery (t=-24), before the fentanyl or 

placebo patch was placed. Assessments were repeated immediately before induction of 

anesthesia (t=0) and at 4, 6, 8, 12, 24, 36, and 48 hours after induction. Consumption was 

determined by subtracting the remaining amounts of feed and water from the standard ration 

each ewe received. Blood samples from the ewe jugular vein (5 mL) were collected into lithium 

heparin tubes before the patches were applied (t= -24) and at the following time points: 0, 2, 4, 6, 

8, 12, 24, 36, 48, 72, 122, and 288 hours. The blood samples were immediately centrifuged, and 

then plasma samples were stored at -80°C until analysis.  

 

3.5 Fetal Sample Collection 

At time points 4, 8, 12, 24, 36, and 48 hours, the indwelling fetal arterial catheter and 

amniotic catheter were accessed to measure blood pressure and collect samples. Before 

sampling, all catheters were cleaned with iodine scrub and isopropyl alcohol, and waste fluid was 

removed from the line. Fetal arterial blood samples (1.0mL) were collected into lithium heparin 

tubes, and amniotic fluid (1.5mL) was collected into polystyrene tubes without additives. Blood 

samples were immediately separated via centrifugation, and all samples were stored at -80C until 

analysis. An additional fetal arterial blood sample (~0.5mL) was collected to analyze blood gas 

chemistries using an i-Stat portable clinical analyzer (model 300A, Abbott, Inc., Princeton, 

NJ). The fetal blood pressure was recorded using a PowerLab® data acquisition system 

(PowerLab 8/30, model ML870), and from this, fetal heart rate, diastolic pressure, systolic 

pressure, and mean arterial pressure were determined using LabChart® software 

(ADInstruments, Inc., Colorado Springs, CO). After collection, the amniotic catheter was flushed 

with saline, and the arterial catheter was flushed with heparinized saline.   
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3.6 Sample Analysis 

3.6.1 Standards, Materials, and Reagents 

Negative sheep plasma and amniotic fluid were obtained from untreated sheep used in 

this study.  Fentanyl (#F-013) and buprenorphine (#B-902) reference materials were obtained 

from Cerilliant (Round Rock, Texas USA). The internal standard, mepivacaine, was obtained 

from Sigma (St. Louis, MO, USA).  A 0.05M potassium phosphate (K2HPO4) solution was made 

by adding 4.36 g potassium phosphate monobasic to 500 mL RO-DI water and agitating until 

dissolved.  The enzyme used for hydrolysis was β-glucuronidase obtained from limpets (Patella 

vulgata, G8132-1MU) from Sigma.  A solution was made by adding 1 bottle to 200 mL reverse-

osmosis deionized water (RO-DI) water, sourced in-house, and stirring to mix.  An acetate 

buffer, pH 5.0 ± 0.2 was made by adding 272 g sodium acetate trihydrate (CH3CONa) to 1800 

mL RO-DI water.  The pH of the acetate buffer was adjusted with 66 mL glacial acetic acid. All 

chemicals and reagents were ACS grade and obtained from VWR Scientific, Randor, PA USA. 

3.6.2 Sample Preparation: Plasma 

Using 1 mL negative sheep plasma and 1 mL RO-DI water, the calibration curve was 

made accordingly, with calibration points at 0.05, 0.1, 0.5, 1, 10, 50, and 100 ng/mL for fentanyl 

and buprenorphine.  To each sample, 50 µL of each internal standard was added. Mepivacaine 

was used as the internal standard for buprenorphine and fentanyl.  All buprenorphine, fentanyl, 

and mepivacaine working solutions were made in RO-DI water.  

Samples were extracted by solid phase extraction (SPE) using the SPEWare CEREX48 

Processor (SPEWare Corp., Baldwin Park, CA, USA). Water wettable polymer (WWP) solid 

phase extraction cartridges, 3 mL, (SPEWare #12-170418) were used.  The SPE cartridges were 
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conditioned with 1 mL methanol and 1 mL RO-DI water.  Samples were added to cartridges and 

allowed to filter through at 1-2 mL/min.  Cartridges were washed with 1 mL RO-DI water and 

dried at full pressure (80 psi) for approximately 10 minutes.  Samples were eluted with 1 mL 

methanol and dried to a residue under nitrogen at 45°C.  Sample residues were reconstituted in 

100 µL of mobile phase A (0.1% formic acid in water) prior to analysis by LC/MS (liquid 

chromatography/mass spectrometry).  Ten microliters were injected. 

3.6.3 Sample Preparation: Amniotic Fluid 

All samples were centrifuged at 13,800 x g for 3 minutes before aliquoting 1 mL for 

extraction in order to pellet particulate matter for a cleaner extraction.  The calibration curve was 

made using the same solutions and internal standards used in the plasma assay but using 1 mL 

negative amniotic fluid.  The calibration curve for buprenorphine and fentanyl used the same 

concentrations as the plasma assay.  Because amniotic fluid may contain some fetal urine, and 

thus phase II metabolism (glucuronidation) products, enzyme hydrolysis of the amniotic fluid 

samples was used to increase the recovery of the parent drug.  To each sample, 0.4 mL acetate 

buffer (pH 5.0 ± 0.2) and 0.2 mL β-glucuronidase were added and samples vortexed to mix.  The 

samples were heated at 60°C for 2.5 hours and allowed to cool to room temperature before 

proceeding to SPE. 

Because of the viscous nature of amniotic fluid, UCT XTracT DAU 3 mL SPE cartridges 

were used (XRDAH203, United Chemical Company, Bristol, PA USA).  All samples and 

solvents were allowed to filter through the cartridge by gravity.  Using the SPEWare CEREX48 

Processor, the cartridges were conditioned with 1 mL methanol, 1 mL RO-DI water, and 1 mL 

acetate buffer (pH 5.0 ± 0.2).  Samples were applied to the cartridge and allowed to filter 

through. Then the cartridges were washed with 1 mL RO-DI water and 2 mL acetate buffer (pH 
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5.0 ± 0.2) and dried for 10 minutes at 45°C and pressure at 80 psi.  Samples were eluted with 1.5 

mL dichloromethane:isopropanol:ammonium hydroxide (78:20:12) and dried at 45°C.  Residues 

were reconstituted in 100 µL of mobile phase A prior to analysis by LC/MS.  Ten microliters 

were injected. 

3.6.4 Instrumental Parameters 

Samples were analyzed with a Thermo Q Exactive Plus Orbitrap LC/MS system (Thermo 

Instruments, San Jose, CA USA).  The analytes were separated using an Agilent Eclipse Plus 

C18 2.1 x 50 mm, 1.8 µm column (#959757-902, Agilent Technologies, Santa Clara, CA USA). 

The mobile phases consisted of 0.1% formic acid in water (mobile phase A) and 0.1% formic 

acid in acetonitrile (mobile phase B).  The gradient began at 5%B and increased to 95%B to 8.0 

minutes with a flow of 250 µL/min, held ratio from 8.0 to 8.6 minutes, then resumed 5%B until 

reaching 9.3 minutes.  The LC/MS used a HESI ion source in positive ion mode and a mass 

resolution of 17,500.  Buprenorphine and fentanyl used a collision energy of 15 eV.  This assay 

used high resolution accurate mass spectrometry (HRAMS) with 4 decimal places; 

buprenorphine 468.3106m/z, fentanyl 337.2271m/z, and 247.1802m/z. Fragment values for 

buprenorphine, fentanyl, and mepivacaine were none, 188.1430, and 98.0967, respectively. 

 

3.7 Pharmacokinetics 

Non-compartmental analysis was performed using industry standard software (Phoenix 

WinNonLin 8.0.0.3176, Certara, Princeton, NJ) to estimate various pharmacokinetic parameters 

of fentanyl or buprenorphine in plasma of each ewe and fetus. The following parameters were 

estimated: time of observed peak plasma drug concentration (Tmax), observed peak drug 

concentration (Cmax), apparent elimination half-life (t1/2, calculated as ln(2)/λz, λz being the first-
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order rate constant associated with the terminal portion of the time-concentration curve as 

estimated by linear regression of time vs. log concentration (AUC0-last, calculated by the linear 

trapezoidal rule), area under the time-concentration curve from time zero extrapolated to infinity 

(AUC0-inf, calculated by adding the last observed concentration divided by λz to the AUC0-last), 

area under the moment curve from time zero to last observed concentration (AUMC0-last), area 

under the moment curve from time zero extrapolated to infinity (AUMC0-inf), mean resident time 

estimated using time zero to last observed concentrations (MRT0-last, calculated as AUMC0-last 

/AUC0-last), and mean residence time estimated using time zero to infinity (MRT0-inf, calculated 

as AUMC0-inf /AUC0-inf).  

 

3.8 Data Analysis 

Data was compared using a two-way ANOVA with a Fisher’s LSD test and trends were 

observed using linear regression (Prism 7, GraphPad Software Inc., La Jolla, CA). Significance 

was set at p < 0.05. Pharmacokinetic parameters are presented as median (range) while other data 

is presented as mean ± SD. 
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4. RESULTS 

 

4.1 Analgesic Effects 

There was no significant difference in the overall postoperative total pain scores averaged 

across time points between FENT (1.6 ± 0.4) and BUP groups (2.3 ± 1.3) (Figure B-2). 

However, pain scores from BUP tended to be higher than FENT (p=0.06) and were significantly 

higher than their preoperative value (t=-24) at 4, 12, 24, 36, and 48 hours. Specifically, when the 

ewes had returned to their pen following recovery (t=4), those in BUP group had significantly 

higher pain scores (BUP = 4 ± 3.2 and FENT 1 ± 1.3) (p=0.01) and heart rates (BUP= 129 ±  

22.2bpm and FENT = 101.4 ± 22.4bpm) (p=0.04) than FENT ewes. FENT ewes consumed more 

feed (73.3 ± 24.4%) on the day of surgery compared to BUP ewes (42.0 ± 35.9%) (p=0.0396); 

however, both treatment groups showed significant decreases in feed consumption 

postoperatively compared to preoperative consumption (Figure B-3). All sheep completed the 

study without requiring administration of rescue analgesia. Sedation scores did not differ 

between treatment groups (FENT score = 0.57 ±  0.5 and BUP score = 1.0 ± 1.0), and neither 

group had a significant change in sedation after analgesic administration.  

 

4.2 Intra-Anesthetic Effects 

BUP ewes exhibited significantly higher intraoperative heart rate (BUP = 113 ± 5.4bpm 

and FENT = 91.3 ± 4.7bpm) and mean arterial pressure (BUP= 85 ± 4.8mmHg and FENT = 72.7 

± 8.3mmHg) than FENT ewes (p<0.0001 and p<0.001 respectively) (Table A-3). End-tidal 

isoflurane concentration also was significantly higher in BUP (1.4 ± 0.3) than FENT (1.1 ± 0.2) 

(p=0.0001). Treatment group did not influence average surgery duration (96.5 ± 4.24 minutes) 
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and all surgeries proceeded without complications. On average, BUP ewes took an additional 

24.33 ± 10.62 minutes to be extubated (p=0.0269). The time from extubation to standing was 

also 30.6 ± 11.63 minutes longer in the BUP group (p=0.0118) (Figure B-3). It was noted that 

four of the six fentanyl-treated ewes exhibited excitatory behavior during recovery, but light 

manual restraint was sufficient to control them. 

 

4.3 Pharmacokinetic/ Plasma Sample Analysis 

Median estimated pharmacokinetic parameters in ewes and fetuses for buprenorphine 

(n=6) and for fentanyl (n=5) are presented in Table A-4 & A-5. Parameters could not be 

calculated for three of the fetuses for buprenorphine because of the relatively unchanging 

concentrations of drug over time, and thus were excluded from the pharmacokinetic values 

reported. One ewe in the fentanyl group showed atypical time-concentration curve and thus was 

not included in the median estimated parameters, but the values are reported separately (Table A-

5). Mean concentrations of both drugs from ewe and fetal plasma are outlined in Figure B-4 & 

B-5. 

 

4.4 Fetal Effects 

The heart rate, mean arterial pressure, and blood gas chemistries did not differ 

significantly between treatment groups and values represented fetal viability. In both groups, 

higher fentanyl or buprenorphine concentration moderately correlated with lower heart rate 

values (p=0.0188 and p=0.0209, respectively) (Figure B-6). The average fetal plasma 

buprenorphine concentration was 0.06 ± 0.04ng/ml, and it was significantly lower than the 

maternal concentrations at 4 and 8 hours (p=<0.0001 and p=0.0022) and remained lower 
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throughout the study but of no significance. The fetal plasma fentanyl concentration, average 

0.34 ± 0.11ng/ml, was significantly lower than the maternal concentration throughout the 

postoperative period (Figure B-4 & B-5). Regarding the amniotic samples, buprenorphine was 

detected in all ewe amniotic samples, with average concentration 8.48 ± 9.31ng/ml (Figure B-7). 

Fentanyl was only detected in three ewes with an average concentration of 1.03 ± 0.82ng/ml 

(Figure B-8). 
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5. CONCLUSION 

Results of this study indicated the TFP provided equivalent to superior analgesia 

compared to buprenorphine, without noticeable adverse effects, suggesting fentanyl via 

transdermal administration could be considered as a viable option for perioperative pain 

management in pregnant sheep. Furthermore, we were able to evaluate how these drugs impacted 

anesthesia and measure the maternal and fetal drug concentrations.    

 

5.1 Analgesia 

Pain is defined as an unpleasant sensory and emotional experience, associated with actual 

or potential tissue damage (Merskey, 1979). Antinociceptive properties of the analgesic agents 

were assessed utilizing a composite pain score system previously utilized in other sheep studies 

(Musk et al., 2017; Musk et al., 2014; Stasiak et al., 2003). This score system recognizes pain as 

a multidimensional experience; incorporating behavior, physiology, and productivity to detect 

and capture the intensity of pain. The use of pain scores, or any scaled assessment, is inevitably 

imperfect due to atypical animal housing, interobserver variability, and subjective scoring. 

Because it is difficult to provide an environment that allows normal flock behavior, an evaluation 

of “normal” was attempted by obtaining baseline scores 24 hours before surgery in the same 

environment where they would be kept for the duration of the study. Furthermore, in an effort to 

increase consistency, the same observer scored all the animals through the study, and objective 

parameters, such as ewe vital signs, feed intake, and response to palpation of the wound, were 

also measured.  

In the current study, both analgesic agents’ regimens exceeded the minimum effective 

concentration that has been extrapolated from human studies for its use in sheep (Jen et al., 2017; 
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Chiara Zullian et al., 2016). However, the TFP appeared to have a more profound analgesic 

effect, which is consistent with the findings of a study using nonpregnant sheep (Ahern, Soma, 

Boston, & Schaer, 2009). Ewes in the buprenorphine group may have had a ceiling analgesic 

effect related to the partial agonist activity, as demonstrated by the higher post-operative pain 

scores compared to pre-operatives scores. In comparison, fentanyl did not have a ceiling effect, 

which may explain why postoperative pain scores in fentanyl-treated ewes did not differ from 

their preoperative values. 

To better confirm that the observed abnormal behavior was related to pain, the current 

study attempted to characterize the nociceptive properties of the analgesic agents at a given 

plasma drug concentration, which has not previously been reported. The observed relationship 

between maximum drug concentration and the lowest recorded postoperative pain score for each 

treatment group substantiates the use of this pain score as a reliable means of capturing and 

measuring pain in this species. Furthermore, as none of the sheep received rescue analgesia, even 

when the plasma drug concentrations were at their lowest, we can speculate those concentrations 

are associated with analgesia in sheep. Plasma concentrations associated with pain relief in sheep 

have not been established, and although further research is warranted, these findings could be 

used in comparison with estimates extrapolated from human studies to better understand the 

therapeutic range of these agents in sheep. 

 

5.2 Pharmacokinetics 

Plasma buprenorphine concentration in the ewe was within the suggested therapeutic 

range one hour after administration and remained above throughout the post-operative period. 

The observed lagged absorption and variability in Cmax can be expected with intramuscular 
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administration. The profile of intravenously administered buprenorphine in non-pregnant sheep 

has previously been described; however, the lack of parallelism and limited parameters reported 

makes it difficult to directly compare the studies (Nolan, Livingston, & Waterman, 1987). 

Overall, both studies showed a rapid decline in plasma concentration after reaching Cmax, 

followed by a slower, steadier phase. These profiles indicate that buprenorphine is rapidly 

distributed throughout the body before reaching steady-state.   

The reported plasma fentanyl concentrations surpassed that which has been extrapolated 

from humans for analgesia in sheep, 0.5 ng/mL, within 24 hours of application and was 

maintained for 72 hours after patch application (Ahern et al., 2009; Musk et al., 2017). The 

observed Tmax supports the suggested optimal time for patch placement to be between 12 and 

36 hours prior to surgery (Christou, Oliver, Rawlinson, & Walsh, 2015; Musk et al., 2017). The 

higher intra-operative fentanyl concentrations observed in this study are consistent with previous 

findings and could be the result of an increase in absorption and/or a decrease in elimination 

from anesthetics (Heikkinen et al., 2015), though this is unlikely since a similar study using a 

TFP on the dorsal thorax of ewes without anesthesia obtained similar concentrations to those 

achieved in our study (Jen et al., 2017).   Although there was not a significant difference in the 

plasma fentanyl concentrations obtained at induction and its peak two hours later, fentanyl 

absorption during anesthesia could have been increased due to additional pressure on the patch 

from the ewe lying in dorsal recumbency while anesthetized.   

The highly lipophilic nature of fentanyl facilitates transdermal administration, but as 

such, drug distribution and the resulting plasma fentanyl concentrations is highly variable in 

sheep studies (Ahern, Soma, Rudy, Uboh, & Schaer, 2010; Heikkinen et al., 2015; Musk et al., 

2017).  Transdermal delivery systems, like the one used in this and previous studies, store the 
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drug in a reservoir to develop a concentration gradient, facilitating movement of the drug 

through the skin and into circulation. The anatomical site of TFP application can impact the 

absorption of fentanyl because the permeability of the skin is affected by the composition of the 

skin, temperature, skin blood flow, and preexisting damage to the skin (Lane, 2013).  Sheep skin 

is composed of the epidermis, dermis, and hypodermis. Within the epidermis is the highly 

lipophilic stratum cornuem that acts as a second depot for drug absorption. In sheep, the stratum 

corneum ranges from 2-30µm thick depending on the hydration status of the animal, allowing for 

variability in absorption (Jen et al., 2017). In addition, fat composition within the hypodermis is 

patient specific, and it affects the volume of distribution, and thus the elimination of drugs, 

further contributing to the inter-individual pharmacokinetic variability of transdermal drugs.  

We placed the TFP on the dorsal thorax region, at the withers, because the skin 

temperature and pressure on the patch at that site would remain relatively constant regardless of 

the sheep’s position postoperatively, and it could not be easily manipulated by the sheep. This 

site was previously utilized in a study using TFP on non-pregnant sheep, and the 

pharmacokinetic parameters reported parallel closely with those found in the current study (Jen 

et al., 2017). Other published pharmacokinetic data for TFP in sheep vary considerably. Many 

studies applied the patch to the ewe antebrachium and reported faster transdermal absorption 

rates yet lower plasma fentanyl concentrations (Ahern et al., 2010; Heikkinen et al., 2015; Musk 

et al., 2017). The apparent differences in transdermal absorption rate and elimination rate 

between antebrachium applied and dorsal thorax applied patches may be explained by the skin 

composition at those sites. Sheep body condition is scored based on fat and muscle composition 

along the vertebrae, indicating excess body fat is deposited along the back. Adipose tissue 

sequesters lipophilic drugs and could explain the longer time it took for fentanyl to reach 
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systemic circulation and be eliminated from the body when the patch was applied in the dorsal 

thorax region.  

The method of sample analysis is an additional variable that should be taken into 

consideration when comparing plasma fentanyl concentrations between studies. In the current 

study, LC-MS analysis was used to detect fentanyl and buprenorphine within the fluid samples, 

but not all studies utilize this method because of the cost associated and the limited ability to 

process samples within the lab. Instead, labs choose to utilize commercially available human 

fentanyl ELISA kits, which are known to cross-react with drug metabolites. A fentanyl 

pharmacokinetic study on sheep utilized both methods of sample analysis for comparison and 

found that although the data generated from the ELISA correlated with the LC-MS data, the 

absolute values were lower than those from LC-MS (Jen et al., 2017). The resulting 

pharmacokinetic parameters from the LC-MS analysis in that study are similar to the values 

reported here. 

 

5.3 Fetal 

Transplacental passage of drugs depends on placental structure and drug pharmacology. 

A human in vitro study found that less than 10% of the maternal buprenorphine dose was 

transferred to the fetus and that initial transplacental transfer was minimal due to placental tissue 

sequestering (T. Nanovskaya, Deshmukh, Brooks, & Ahmed, 2002). Following initial 

buprenorphine administration, maternal concentrations increased to a peak before declining to a 

plateau 12 hours after. Buprenorphine concentrations in the fetus did not follow this trend; 

instead, their levels remained steady throughout treatment. Therefore, an initial rate, 2%, and 

plateau rate, 8%, was calculated to describe the placental transfer of buprenorphine. Since 
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fentanyl is of similar solubility and also metabolized by CYP34A, it can be assumed that it is 

metabolized and sequestered in the placenta to some extent as well (T. Nanovskaya et al., 2002). 

Transplacental fentanyl studies using a sheep model have shown fetal concentrations to range 

from 50% to 80% that of the maternal concentration (Heikkinen et al., 2015; Musk et al., 2017). 

Throughout the current study, the fetal-to-maternal fentanyl concentration ratios at given time 

points ranged from 13% to 25%. The fetal fentanyl values fell into similar ranges reported in 

previous sheep studies, and fentanyl accumulation was also not observed (Heikkinen et al., 2017; 

Musk et al., 2017). Therefore, the lower ratios observed in this study are likely due to the higher 

maternal fentanyl concentrations. This suggests a transplacental rate limiting step is involved in 

the cross of fentanyl (Sastry, 1995).  

Distribution in the fetal compartment relies on the drug composition. Both drugs are 

highly lipid soluble and readily cross the placenta where they are equally distributed throughout 

fetal tissue. However, the two agents differ in their protein affinity; buprenorphine primarily 

binds to glycoproteins while fentanyl primarily binds to albumin (T. N. Nanovskaya, Bowen, 

Patrikeeva, Hankins, & Ahmed, 2009; Wiesner, Taeger, & Peter, 1996). Fetal urine is excreted 

into the allantoic cavity, which has been found to be highly concentrated with plasma proteins, 

specifically albumin (Wales & Murdoch, 1973). This would allow fentanyl to bind and become 

trapped in the allantoic fluid, preventing diffusion into the amniotic cavity, possibly explaining 

why fentanyl was not detected in all amniotic samples. Buprenorphine binds to alpha and beta 

globulins; however, the presence of those plasma proteins in allantoic fluid is minute. Therefore, 

buprenorphine could have readily passed into the amniotic cavity, where the fluid is highly 

saturated with globulin proteins (Tong et al., 2009). The molecular weight of buprenorphine may 

have also prevented any intramembranous reabsorption from amniotic fluid back into fetal 
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circulation, further adding to accumulation within amniotic fluid (Thorburn, 1994). This in 

combination with protein binding could explain why the detected buprenorphine concentration in 

amniotic fluid was so high; however, further investigation is needed.  

The novel amniotic catheter proved to be an effective technique for collecting amnion 

and remained functional throughout the study. Buprenorphine was detected in all amniotic 

samples from the respective ewes, yet fentanyl was detectable in only three of the six ewes’ 

amniotic fluid. The concentrations for both drugs were sporadic, showing no clear correlation or 

pattern. Although no literature is available on buprenorphine, to the authors’ knowledge, there 

have been two human studies attempting to characterize fentanyl in amniotic fluid (Cooper, 

Jauniaux, Gulbis, Quick, & Bromley, 1999; Shannon et al., 1998). Those studies showed similar 

concentration variability in the detected samples and also had patients with undetected fentanyl 

concentrations in the amnion.  

Recorded fetal heart rate and blood pressure suggests the fetuses were stable, and these 

parameters did not differ based on the analgesic administered to the ewe. The correlation 

between drug concentration and fetal heart rate is consistent with findings in human studies, 

showing fentanyl or buprenorphine exposure to increase the risk of fetal heart rate deceleration 

(Gaiser, McHugh, Cheek, & Gutsche, 2005; Ngamprasertwong et al., 2016).   

 

5.4 Anesthetic Monitoring 

Analgesic agent appeared to influence the anesthetized ewe’s cardiovascular system, yet 

the recorded values remained in adequate ranges and were similar to those reported in pregnant 

ewes under similar conditions (Mohamadnia, Hughes, & Clarke, 2008). A previous study 

comparing intramuscular buprenorphine to TFP applied 12 hours before surgery, did not find any 
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intraoperative differences based on treatment group (Ahern et al., 2009); while this report did 

measure plasma fentanyl concentrations, it is presumed that the fentanyl concentrations in the 

current study were higher in the anesthetized ewe’s circulation, and thus a had greater impact on 

anesthesia. Ewes in both groups achieved cardiovascular stability, suggesting that buprenorphine 

and fentanyl both provided analgesia during the surgical procedure. Similar hemodynamic values 

have been reported in sheep following fentanyl administration intravenously and through the 

patch system (Funes et al., 2015; Lepiz et al., 2017). 

Fentanyl-induced isoflurane MAC sparing effects were previously reported in sheep and 

are consistent with the current findings (Funes et al., 2015). The previous report did not record 

recovery times; however, in the current study, ewes receiving fentanyl were also extubated and 

standing sooner than those treated with buprenorphine. Because they required less anesthetic, 

rapid recovery may be explained by a relatively faster wash out of isoflurane from the ewe’s 

body. It was also noted that several fentanyl-treated ewes appeared to experience excitation 

during recovery; however, the recovery qualities were clinically acceptable and this observation 

should just be a precaution when using the transdermal fentanyl patch for invasive surgical 

procedures.  

 

5.5 Clinical Application  

In veterinary medicine, drug availability, financial costs, and administration protocol 

associated with treatment plays a role in designing perioperative regimens. Because both 

fentanyl and buprenorphine are controlled substances, schedule II and III classes, respectively, 

the availability of these drugs may be a concern. In addition, fentanyl’s high potential for abuse 

is a liability the clinician should take into consideration.  In the current study, postoperative 
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treatment with buprenorphine averaged $241.47 per ewe and transdermal fentanyl averaged 

$57.89. Using transdermal fentanyl would decrease the price of analgesic treatment by almost 

75%, while providing adequate analgesia. Another important consideration when choosing an 

analgesic regimen is the amount of animal handling required, as handling adds additional stress 

to the animal and increases time and labor required for patient care. The fentanyl patch required 

extra skin preparation and bandaging materials for application, yet no additional handling was 

needed through the postoperative period; this could be particularly beneficial in a clinical setting 

when an animal is ready to be discharged but still needs pain medication. In contrast, 

buprenorphine administration necessitated restrain of the ewe and administration of an 

intramuscular injection every eight hours, for 48 hours.   

 

5.6 Summary 

In conclusion, transdermal fentanyl patch application to the dorsal thorax region 24 hours 

before surgery required less time, labor, patient handling, and costs than buprenorphine. It 

provides a noninvasive method of continuous analgesic administration while maintaining 

adequate plasma fentanyl concentrations, with intra and post-operative analgesic effects 

equivalent, or superior, to those produced by buprenorphine. Fetal opioid’s exposition is higher 

with fentanyl; however, no cardiovascular side effects were detected with either analgesic. 

Further research is necessary to follow up later potential pre and postnatal effects. Furthermore, 

additional considerations concerning anesthetic technique, patient pregnancy, costs, and animal 

handling should be taken into account when designing perioperative analgesic regimens. The use 

of composite pain scoring system coincides with opioid maternal plasma levels. 
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APPENDIX A 

PAIN SCORE CATEGORIES  
Comfort  

0 Awake and alert, interested in surroundings 
1 Dull, not very interested in surroundings, rises readily when approached 
2 Depressed, not at all interested in surroundings, lethargic, ears drooped, not chewing cud, 

teeth grinding 
3 Recumbent, no response when approached, fixed look and staring or eyes half closed, little 

response when gently prodded 
Movement  

0 Standing or gets up from sitting as soon as approached, full weight bearing 
1 Does not get up promptly when approached, able to stand 
2 Standing and walking with assistance 
3 Recumbent, unable to stand 

Palpation of Wound  
0 Normal in posture, no response to palpation of abdominal wound 
1 Slight tucking of abdomen, slight flinching of the skin and abdominal muscle when gently 

palpating the wound, turns head 
2 Moderate tucking up of abdomen, moderate flinching of the skin and abdominal muscle 

when gently palpating the abdominal wound, attempts to walk away 
3 Severe tucking up of abdomen, guarding wound, kicks, abdominal muscles very tense, 

attempts to walk away 
Feeding/appetite  

0 Eating and drinking normally, ruminating and normal rumen sounds 
1 Some decrease in food and water intake, ruminating 
2 Minimal food and water intake, quiet/infrequent rumen sounds 
3 Not eating or drinking at all, no rumination  

Posture:  
Standing  

0 Normal standing/walking 
1 Slightly abnormal standing/walking 
2 Extremely abnormal standing/walking 
3 ‘Statue standing’ immobile standing with an obvious withdraw from interaction 

Sternal  
O Sternal lying, head up 
1 Sternal lying, head down 
2 Abnormal lying, partial leg extension 
3 Abnormal lying, full leg extension 

Lateral  
2 Lateral position, head up 
3 Lateral position, head down 

Table A-1. Pain score parameters for pregnant ewes.  
Categorical scores were added together for a total pain score, maximum of 15.  
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SEDATION SCORE VARIABLES  
0 Standing, alert, normal behavior 
1 Standing, alert, reduced head and ear movements 
2 Standing, slight head drop 
3 Standing, moderate head drop 
4 Standing, severe head drop, ataxia 
5 Standing, severe head drop, severe ataxia (stumbling)  
6 Sternal recumbency, head up 
7 Sternal recumbency, unable to support head 
8 Lateral recumbency, occasional attempts to obtain sternal recumbency 
9 Lateral recumbency, uncoordinated head and leg movements 

10 Lateral recumbency, no movements  

Table A-2. Sedation score system for pregnant ewes. 
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Variable Buprenorphine Fentanyl 

MAP (mmHg)* 85.0  ± 4.79 72.7 ± 8.28 

HR (bpm)* 113  ± 5.37 91.3  ± 4.75 

etCO2 (%)* 43.5 ± 1.68 40.3  ± 2.98 

SpO2 (%) 93.8  ± 1.61 94.5  ± 1.39 

Iso (%)* 1.42  ± 0.28 1.16  ± 0.23 

Table A-3. Intraoperative data obtained from anesthetized sheep.  
Ewes were treated for pain with buprenorphine, IM, (n=6) or transdermally administered 
fentanyl (n=6). Data is presented as mean ± SD and * denotes p<0.05 between treatment. 
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Parameters Maternal Fetal 

Tmax (hr) 4.5 (26-32) 5 (28-32) 

Cmax (ng) 3.62 (0.5-17.9) 0.07 (0.06-0.12) 

Λz (/hr) 0.01 (0.01-0.03) 0.002 (0.002-0.01) 

t1/2λz hr 60.0 (26.3-121) 197 (78-281) 

AUC0-last (hr*ng/mL) 132 (32.4-381) 8.1 (2.8-18.3) 

AUC0-inf (hr*ng/mL) 134 (70.7-385) 28.1 (19.8-35.1) 

AUC % Extrap (%) 24.1 (1.1-66.4) 47.8 (31.9-69.1) 

MRTlast (hr) 299 (33.4-905) X 

MRT0-inf (hr) 300 (33.6-901) 646 (322-1388) 

Table A-4. Pharmacokinetic parameter estimates of buprenorphine in pregnant ewes.  
Values are represented as median (range). X denotes values that were not calculated.  
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Parameters Maternal Fetal Atypical Ewe Atypical Fetus 

Tmax (hr) 26 (24-72) 32 (28-60) 48 12 

Cmax (ng) 4.15 (2.1-7.9) 0.72 (0.5-0.8) 0.3 0.1 

Λz (/hr) 0.03 (0.017-0.049) 0.04 (0.01-0.09) X X 

t1/2λz hr 21.5 (14.3-40.2) 18.8 (8.1-38.8) X X 

AUC0-last (hr*ng/mL) 180 (81.4-326) 23.0 (15.8-35.7) 3.4 0.2 

AUC0-inf (hr*ng/mL) 211.6 (186-331) 34.4 (21.6-54.2) X X 

AUC % Extrap (%) 5.19 (1.7-18.2) 9.5 (0.8-53.9) X X 

MRTlast (hr) 44.9 (41.1-61.0) 49.1 (31.1-60.6) 56 0.2 

MRT0-inf (hr) 55.7 (43.9-64.9) 61.7 (33.8-101.2) X X 

AUMC0-last (hr*ng*ng/ml) 7626 (9124-19857) 1168 (608-2162) 188 8 

AUMC0-inf (hr*ng*ng/ml) 11083 (9248-21007) 2215 (730-4186) X X 

Table A-5. Pharmacokinetic parameter estimates of fentanyl in pregnant ewes.  
Values are represented as median (range). X denotes values that were not calculated.  
Ewe and fetus with atypical time-concentration curve were excluded from group analysis. 
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APPENDIX B 

 

 
Figure B-1. Catheter used for collecting amniotic fluid. 
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Figure B-2. Ewe plasma drug concentration with parallel pain score at each time point.  
Top: Ewe mean ± SD plasma concentration of buprenorphine and fentanyl.  
Bottom: Mean total pain score for each treatment group. Ewes were anesthetized during time 2, 
so pain score was not assigned. * denotes significant difference, p<.05, from preoperative value 
(t=-24) 
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Figure B-3. Average feed consumption of pregnant ewes.  
Data is shown as a percent of feed consumed from what was available to the ewe. Preoperative 
and postoperative values are averaged over two days. *denotes significant difference, p<0.05, 
from preoperative value. Bracket denotes significant difference, p<0.05, between treatment 
groups. 
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Figure B-4. Average times between designated surgical markers.  
*denotes significant difference, p<0.05, between treatment groups. 
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Figure B-5. Ewe and fetus mean serum concentration of buprenorphine.  
* denotes significant difference, p<0.05, between maternal/fetal plasma drug concentration. 
 

 

 

 

0 2 4* 6 8* 12 24 36 48
0

1

2

3

4

5

Time Point (hours)

[Buprenorphine]
(ng/ml)

Fetal
Maternal



 

 66 

 

Figure B-6. Ewe and fetus mean serum concentration of fentanyl.  
* denotes significant difference, p<0.05, between maternal/fetal plasma drug concentration. 
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Figure B-7. Fetal heart rate in correlation with fetal plasma drug concentration.  
Top: Fetal heart rate, mean ± SD.  
Bottom: Fetal serum concentration, mean ± SD, following buprenorphine or fentanyl 
administration in pregnant ewes. 
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Figure B-8. Amniotic fluid and ewe plasma buprenorphine concentration.  
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Figure B-9. Amniotic fluid and ewe plasma fentanyl concentration.  
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