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ABSTRACT

Quantum measurement is the cornerstone of quantum computing and quantum information. It

has many exciting applications. Various quantum optical systems are key to experimental physics

because of their high precision and well controllability. In this dissertation, we focus on study of

quantum measurement and its applications in quantum optical systems. We first study the fun-

damental trade-off relation between information gain and fidelity during successive weak QND

measurement. Then we evaluate the effectiveness of quantum measurement reversal on quantum

state protection under non-ideal detection efficiency. A linear optical setup is proposed for experi-

mental verification of our result. Finally, we explore the performance of non-Gaussian two-mode

entangled states for quantum illumination, which is an application of quantum state discrimination.

For successive weak QND measurements, we show that the information gain increases mono-

tonically with respect to the number of measurements. Meanwhile the fidelity shows oscillatory

decreasing behavior, which results from interference terms between photon numbers. We conclude

that a greater information gain does not always imply a worse fidelity. For non-ideal quantum mea-

surement reversal, we derive how quantum states evolve in quantum reversal under finite effective

monitoring efficiency. Fidelity and concurrence are then calculated to evaluate the effectiveness

of state protection using reversal. Generally the performance is weakened by finite monitoring

efficiency. The negative effect of measurement reversal can dominate under certain conditions. A

criterion that decides whether to apply state protection using measurement reversal is given. As

for quantum illumination, we conclude that non-Gaussian operations can enhance the performance,

i.e., achieve lower error probability by introducing both stronger entanglement and larger average

photon numbers. However, if the signal strength is a concern, two-mode squeezed states (TMSS)

performs better than other non-Gaussian states under the same output signal strength. When ap-

plying a coherent superposition of photon subtraction and photon addition to enhance quantum

illumination, we show that optimal error probability is achieved by an asymmetrical operation.
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1. INTRODUCTION

Quantum measurement lies in the core of fundamental quantum physics. It has many appli-

cations in quantum information, quantum computation, quantum metrology, and quantum con-

trol [1, 2, 3, 4]. Quantum optical systems are important platforms for physical implementations of

these applications [5, 6].

One fundamental and practical problem in quantum information processing is the trade-off

relation between information gain and state disturbance during quantum measurement. In order to

obtain information of a quantum system, we must make measurements on it, which will inevitably

bring disturbance to the system at the same time. In projective measurement, which is also named

Von Neumann measurement [7], the system collapses to one of the eigenstates corresponding to

the observable to be measured. In generalized quantum measurement, the measurement strength

can be controlled such that a weak measurement can be made. In weak measurement, states will

collapse partially rather than completely to eigenstates. As a sacrifice, little information is extracted

during week measurement.

The trade-off relation between information and disturbance has been studied from various as-

pects [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The information gain can quantified by estimation

fidelity [9, 11, 13, 17], by mutual information [12], and by change of entropy [8, 15, 16]. The

output fidelity with respect to an initial state can be used as a measure of disturbance. The re-

versibility has also been studied [18, 19, 20, 21, 22, 23, 24, 25, 26] as a measure of disturbance.

A quantitative balance between information gain and disturbance has been studied under different

circumstances [8, 9, 11, 12, 13, 14, 15, 16, 17].

Quantum coherence and quantum entanglement are key quantum resources for quantum infor-

mation processing [1]. However, they are vulnerable to quantum decoherence. Various protections

methods have been proposed to protect them against decoherence to realize practical quantum

technologies, including quantum error correction [27, 28, 29, 30, 31], surface codes [32, 33],

topological quantum computation [34, 35, 36, 37], decoherence-free subspace [38, 39, 40], and
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dynamical decoupling [41, 42, 43, 44, 45]. Recently, suppressing amplitude-damping decoherence

using partial measurement and quantum reversal [46, 47, 48, 49] has been proposed. Reversing

quantum states has been studied on solid-state qubits [50, 51], cavity field states [52], polarized

photonic qubits [53], and bi-particle entanglement states [54] in the latest decade. The underlying

fact of quantum reversal is that quantum states may collapses partially after a weak measure-

ment. If the states are monitored, uncollapsed outcomes of measurement can be collected exclu-

sively and reversed by proper operations. Quantum reversal can also be realized with quantum

gates [55, 56, 57, 58].

Later, a three-stage protocol [59] is proposed to protect quantum states from amplitude damp-

ing. Firstly it applies a monitored partial measurement to bring a qubit closer to its ground

state in a coherent but non-unitary way [60, 59]. Thus the qubit is less vulnerable in the later

amplitude-damping process. After that uncollapsed states will be selected and recovered by the

usual quantum reversal method. Following the linear optical setup proposed by Q. Sun, et al .

[54], the protocol has been demonstrated experimentally to protect photonic qubits [61] and their

entanglement [62, 63, 64] from artificially generated damping. Meanwhile it has been realized

to protect practical superconducting qubits [65] against energy relaxation. The protocol has also

been applied to manipulate and enhance two-qubit entanglement [66, 67], and some other appli-

cations [68, 69, 70, 71]. Similar protocols have been proposed to protect quantum states against

other decoherence processes like generalized amplitude damping [72] and depolarization[73].

To monitor the state of a target system which needs protection is the crucial key of the three-

stage protection. The monitoring efficiency must be 100% to collect all the uncollapsed states

and discard all the collapsed ones. A strong projective measurement on the target system will

obviously destroy their states. Thus an auxiliary system which can interact with the target system

in a controllable manner is necessary. In recent studies, fields outside a leaky cavity [52] and

a qubit whose state can be swapped with that of the target qubit [65] are utilized as auxiliary

systems. The former uses an ideal photon detector to monitor the fields. The latter requires a

readout of the states of superconducting qubits, whose fidelity varies from 88% to 98% in up-to-
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date technology [65, 74]. Detection-free method with perfect 100% efficiency is implemented in

linear optical systems [53, 54, 61, 62, 63, 64]. However, it may not be applied to other physical

schemes straightforwardly.

Non-Gaussian quantum resources play importance roles in quantum information [75]. Photon

subtraction and photon addition can generate non-Gaussian states with enhanced entanglement and

quantum correlation [76, 77, 78]. Entanglement is regarded as the key resource assisting quantum

illumination [79, 80, 81]. It has been shown that a photon-subtracted TMSS can achieve lower

error probability [82], where the performance is compared under the same squeezing strength of

detecting states. Coherent superposition of photon subtraction and addition can enhance entan-

glement more than mere subtraction and addition, particularly in small squeezing regime [83, 84],

in which quantum illumination also has the most advantages [79, 81, 80]. Thus we could expect

coherent superposition of photon subtraction and addition can enhance quantum illumination more

than other non-Gaussian operations.

The above paragraph shows that our physical intuition on how to choose better detecting states

is obtained from looking into entanglement of states. It has to be mention that besides entangle-

ment, mutual information and quantum discord [85, 86] have also been shown to be the source

assisting quantum illumination [87, 88, 89]. Quantum discord explains the resilience of quantum

illumination in entanglement-breaking channel. Here we only focus on comparison of entangle-

ment, which will be shown in our results to give useful hints on choosing better detecting states for

quantum illumination.

Non-Gaussian resources play importance roles in quantum information [75]. Photon subtrac-

tion and photon addition can generate non-Gaussian states which have enhanced entanglement

and quantum correlation [76, 77, 78]. As entanglement is regarded as the key resource assisting

quantum illumination, it has been showed that a photon-subtracted TMSS can achieve lower error

probability [82], where the performance is compared under the same squeezing strength of detect-

ing states. A coherent superposition of photon subtraction and addition can enhance entanglement

more than mere subtraction and addition, particularly in small squeezing regime [83, 84], where
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quantum illumination also performs most effectively [79, 81, 80]. Thus we can expect a coherent

operation can enhance quantum illumination more than other non-Gaussian operations.

This dissertation is organized as follows. In Chapter 2, we show the trade-off relation between

information gain and fidelity with a weak quantum non-demolition model. Photonic qubit states

and coherent states are used as quantum system to be measured. In Chapter 3, we study the

non-ideal quantum measurement reversal and its applications in quantum state and entanglement

protection. We verify our theory and results in a linear optical system. In Chapter 4, we compare

the performance of various non-Gaussian states for quantum illumination. Finally, we give our

summary and conclusion in Chapter 5.
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2. TRADE-OFF BETWEEN INFORMATION GAIN AND FIDELITY UNDER WEAK

MEASUREMENTS ∗

In this chapter, we study the tradeoff between the information gain and the output fidelity in

a QND measurement of photon numbers [90]. In a QND measurement based on a cavity-QED

setup, the measurement outcomes are binary, i.e., distinction between two atomic states, and an

initial cavity state may collapse to a Fock state only after many successive measurements [91]. In

this respect, a single QND measurement in our study is a weak measurement and the measurement

strength can be adjusted by changing the experimental parameters.

We consider that the cavity is initially prepared in an unknown pure state |ψ〉 with a given

probability density p(ψ). The information gain may be quantified as the decrease of the Shannon

entropy of the cavity state under the QND measurement, i.e. mutual information. We also in-

troduce another measure of information gain, which is closely related to the concept of classical

fidelity. We then investigate the tradeoff relation between the information gain on the unknown

state and the disturbance of the state by varying the coupling strength or the number of successive

measurements. Our results show that more information gain does not always lead to worse fidelity.

This chapter is organized as follows. In Sec. 2.1, we present our scheme for a QND measure-

ment of photon numbers and give general expressions for information gain and output fidelity after

N sequential measurements. We illustrate the tradeoff relations with two specific classes of cavity

states in Sec. 2.2.

2.1 The scheme and theory analysis

2.1.1 QND measurements of photon numbers

We first introduce the scheme used for a QND measurement of photon numbers based on a

cavity-QED setup [90]. This scheme makes it possible to gain information on the distribution of

∗Reprinted with permission from “Trade-off between information gain and fidelity under weak measurements” by
Longfei Fan, Wenchao Ge, Hyunchul Nha, and M. Suhail Zubairy, Phys. Rev. A 92, 022114 (2015), Copyright [2015]
by the American Physical Society.
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photon numbers of a cavity field without absorbing the photons (Fig. 2.1). Suppose that the state

of the system prepared in a high-Q cavity (C in Fig. 2.1) is a pure state |ψ〉 with its probability

distribution p(ψ). A three level atom (measuring device), with the level diagram in Fig. 2.2, is

initially prepared in the |e〉 state. The initial state of the system and the device is given by

ρsd = ρs ⊗ ρd =
∑
ψ

p(ψ)|ψ〉〈ψ| ⊗ |e〉〈e|, (2.1)

where p(ψ) is the probability of each state |ψ〉 to be prepared inside the cavity. In the remainder

of this article, we use the term “information” to refer how well we know about which state |ψ〉 is

prepared in the cavity out of the ensemble
∑

ψ p(ψ)|ψ〉〈ψ|. That is to say, we measure a single

system to guess which |ψ〉 is the most likely input state given a measurement output.

ie

ef




i

f

e

C
1R 2R DO

Figure 2.1: QND measurement scheme. The field is initially prepared in a high-Q cavity C inter-
acting with traveling atoms. The atoms are prepared and velocity-selected in the box O, then pass
through the three cavities. In each cavity of R1 and R2, the atom undergoes a π/2 transformation.
Finally, the ionized counter D detects whether each atom is in state |e〉 or state |f〉.

Inside the cavity, the atom interacts with the field, which is described by

H =
1

2
~ωieσz + ~ωa†a+ ~g

(
aσ+ + a†σ−

)
, (2.2)

where a (a†) is the cavity photon annihilation (creation) operator, σ− = |e〉〈i|, σ+ = |i〉〈e|, σz =

σ+σ− − σ−σ+, and g the atom-cavity coupling strength. The atomic level |f〉 is not involved in

the interaction. When the cavity-field frequency ω is detuned by an amount ∆ from the atomic
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Figure 2.2: Atom levels used for detecting states of the cavity field.

transition frequency ωie, the effective interaction becomes a dispersive coupling described by[5]

V =
~g2

∆
a†a|e〉〈e|. (2.3)

After an interaction time τ , the evolution operator is given by

UI = exp(−iV τ/~) = exp
(
−iϕa†a|e〉〈e|

)
, (2.4)

where ϕ ≡ g2τ/∆ is the phase shift caused by one photon, which characterizes the coupling

strength between the atom and the field. This interaction leads to a phase shift on |e〉 state, which

is proportional to the photon numbers.

The phase shift can be detected with Ramsey interferometric method [92], in which the atom

undergoes Uπ/2 transformations before and after the cavity C, where

Uπ/2 =
1√
2

(|e〉〈e|+ |f〉〈f |+ i|e〉〈f |+ i|f〉〈e|) (2.5)

Finally, we use an ionized detector to make a projective measurement on the atom represented by

the operators

Pm = |m〉〈m|, m = e, f. (2.6)
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Given the outcome m, the operation made is described by

Um = PmUπ/2UIUπ/2. (2.7)

After such an operation, the density operator evolves to

ρsd,m = UmρsdU
†
m. (2.8)

We are interested in the state of the system only. Tracing over the device and normalizing, we

obtain the density operator of the system

ρs,m =
Trd(UmρsdU

†
m)

Tr(UmρsdU
†
m)

=
MmρsM

†
m

Trs(MmρsM
†
m)
, (2.9)

where Trs (Trd) denotes tracing over the system (device) and Tr represents tracing over both the

system and the device. The measurement operators Mm are derived according to Kraus represen-

tation theory as

Me = 〈e|Ue|e〉 =
[
exp
(
−iϕa†a

)
− 1
]
/2,

Mf = 〈f |Uf |e〉 =
[
exp
(
−iϕa†a

)
+ 1
]
/2.

(2.10)

In the Fock-state basis, they can be expressed by

Me =
nmax∑
n=0

exp(−inϕ)− 1

2
|n〉〈n|,

Mf =
nmax∑
n=0

exp(−inϕ) + 1

2
|n〉〈n|.

(2.11)

It can be readily checked that the relation
∑

m=e,f M
†
mMm = I is satisfied, implying that our QND

measurement is a general quantum measurement with two outcomes.
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The probability of obtaining outcome m is given by

p(m) = Trs(MmρsM
†
m) =

∑
ψ

p(ψ)p(m|ψ), (2.12)

where the conditional probability of output m given input |ψ〉 is

p(m|ψ) ≡ Trs(Mm|ψ〉〈ψ|M †
m). (2.13)

2.1.2 Measurements with N successive atoms

Suppose now that we make N successive QND measurements. Given that Ne atoms are found

in |e〉 state and Nf = N −Ne atoms in |f〉 state, the state of the cavity field becomes (we omit the

symbol s on the density operator of the system in the remaining part.)

ρNe =
MNeρM

†
Ne

Trs(MNeρM
†
Ne

)
, (2.14)

where the measurement operator reads

MNe = MNe
e MN−Ne

f . (2.15)

We here assume that the coupling strength ϕ is the same for each measurement for simplicity.

We note that Me and Mf commute with each other, so the order of the operators does not affect

the results. From an information-theoretic perspective, it means that no extra information can be

obtained by keeping record of the sequence of measurement outputs, therefore one only needs to

count Ne, the number of atoms in |e〉. There are CNe
N ≡ N !

Ne!(N−Ne)! cases to obtain Ne counts and

it follows
N∑

Ne=0

CNe
N M †

Ne
MNe = I, (2.16)

meaning that counting the number Ne also represents a general quantum measurement with N + 1

different outcomes.
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The probability to get output Ne is

p(Ne) ≡ CNe
N Trs(MNeρM

†
Ne

) =
∑
ψ

p(ψ)p(Ne|ψ), (2.17)

where the conditional probability of Ne given ψ is

p(Ne|ψ) ≡ CNe
N Trs(MNe |ψ〉〈ψ|M †

Ne
) (2.18)

In Fock-state basis, a random state can be expressed as |ψk〉 =
∑nmax

n=0 b
k
n|n〉. The above probability

is then expressed as

P (Ne|ψk) = CNe
N

∑
n

|bkn|2c2Ne
n d2(N−Ne)

n , (2.19)

where cn = sin
(
nϕ
2

)
, and dn = cos

(
nϕ
2

)
.

2.1.3 Information gain via the mutual information

Next we introduce a measure of information gain—mutual information. Suppose that we have

a black box (an operation) with an input port and an output port. The input random variable x

is chosen from a set {x ∈ X} with a prior probability p(x). The output is chosen from the set

{y ∈ Y }. The black box is modeled by transfer probability p(y|x). Shannon entropy [93] for the

set {x ∈ X} is defined as

H(X) = −
∑
x

p(x) log2 p(x), (2.20)

which quantifies the lack of information on events X . Given an output y, we obtain a conditional

probability p(x|y) = p(y|x)p(x)/p(y), which leads to the conditional entropy

H(X|Y ) = −
∑
y

p(y)
∑
x

p(x|y) log2 p(x|y). (2.21)

The conditional probability measures how much information for X is still missing after we have

known Y . Thus the difference between the original entropy H(X) and the conditional entropy

H(X|Y ) may be regarded as the information gain. This so-called mutual information [93, 94, 95]
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is defined by

I (X;Y ) = H(X)−H(X|Y )

=
∑
x

∑
y

p (x, y) log2

p (x, y)

p(x)p(y)
,

(2.22)

In our case, the input random variable is chosen from all possible cavity states {|ψk〉} with

a prior probability p(ψk). The output random variable is the count Ne under N measurements.

Eq (2.22) is then written by replacing x → ψk, and y → Ne, which gives the mutual information

as

IM =
N∑

Ne=0

∑
k

p(Ne|ψk)p(ψk) log2

p(Ne|ψk)
p(Ne)

. (2.23)

Plugging Eqs. (2.17) and (2.19) into Eq. (2.23), we can calculate the information gain.

2.1.4 Information gain via the probability overlap

Instead of the mutual information IM in Eq. (2.23) adopting the entropies of relevant proba-

bility distributions, we may characterize the information gain in another form, which can have a

conceptual connection to fidelity. Given two probability distributions p1(x) and p2(x), their dis-

tinction can be measured by 1 − F 2
c , where Fc is the classical fidelity quantifying their overlap

as

Fc(p1, p2) =
∑
x

√
p1(x)p2(x). (2.24)

If the probability distribution p1 = p(ψk|Ne) conditioned on the measurement outcome Ne be-

comes more distinguishable from a completely random distribution p2(x) = 1/N than the initial

distribution p1 = p(ψk), it may represent information gain through our QND measurement. Thus,

using

IF [p(x)] ≡ 1−
(∑

x

√
p(x)/N

)2

. (2.25)

we may define another measure of information gain as

IF =
∑
k

p(ψk)
∑
Ne

p(Ne)IF [p(ψk|Ne)]− IF [p(ψk)], (2.26)
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where the subscript F refers to the conceptual connection to fidelity. In this paper, we use two

quantifiers IM in Eq. (2.23) and IF in Eq. (2.26) to measure information gain under QND mea-

surements.

2.1.5 Fidelity

On the other hand, we use the output fidelity as a measure of disturbance due to quantum

measurement. The fidelity [9] of the output state is defined to be the average overlap between the

input state |ψk〉 and the output state MNe|ψk〉, given by

F =
∑
k

p(ψk)
N∑

Ne=0

CNe
N |〈ψk|MNe |ψk〉|2. (2.27)

By substituting Eq. (2.15), we obtain the expression of fidelity in Fock state basis as

F =
∑
k

p(ψk)
N∑

Ne=0

CNe
N

∣∣∣∣∣
nmax∑
n

|bkn|2e−
iNnϕ

2 cNen dN−Nen

∣∣∣∣∣
2

. (2.28)

2.2 Tradeoff relations

Having obtained the general expressions for the information gain and the output fidelity, we

now consider some classes of states to investigate the tradeoff relation under varying experimental

conditions.

2.2.1 Photonic qubit states

We here consider an initial state of the cavity field as an unknown superposition of the vacuum

and the single-photon states chosen from the following mixture with probability density p(θ, φ),

ρ =
∑
θ,φ

p(θ, φ)|ψθ,φ〉〈ψθ,φ|, (2.29)

where the photonic qubit state

|ψθ,φ〉 = cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉. (2.30)
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We assume that this unknown state is uniformly distributed in the Bloch sphere so that the proba-

bility density is

p(θ, φ) = 1/4π. (2.31)

Since it is a continuous distribution, we convert the summation to an integral as

∑
θ,φ

p(θ, φ)→ 1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ, (2.32)

and study the tradeoff under different coupling strengthes and the number of measurements. It is

straightforward to obtain

F (N,ϕ) =
2

3
+

1

3
cos(Nϕ/2) cosN(ϕ/2),

IM(N,ϕ) = 1− 1

2 ln 2
− 1

2
cos4N(ϕ/2) log2 cos2N(ϕ/2)

×
[
1− cos2N(ϕ/2)

]−1 − 1

2

[
1 + cos2N(ϕ/2)

]
× log2

[
1 + cos2N(ϕ/2)

]
,

IF (N,ϕ) = 1− π2

128
− 4

9

[
1 +

cos2N(ϕ/2)

1 + cosN(ϕ/2)

]2

+
π2

128
cos2N(ϕ/2),

(2.33)

where the information gain and the output fidelity are given as functions of measurement strength

ϕ ≡ g2τ/∆ after N successive measurements.

First, we consider a single measurement N = 1 with one atom passing through the cavity.

Both the quantifiers IM and IF of information gain increase monotonically with the measurement

strength ϕ ∈ [0, π] while the output fidelity F decreases monotonically as shown in Fig. 2.3. When

ϕ = π, the QND scheme becomes a photon-number-parity measurement, as seen from Eq. (2.11)

with e−inϕ±1
2

= (−1)n±1
2

. Detecting the atom to be in |e〉 or |f〉 designates the cavity photon-number

to be odd or even, respectively. In the case of a qubit state, this parity measurement effectively

distinguishes |0〉 and |1〉. We obtain the highest information gain and the lowest fidelity when
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Figure 2.3: F , IM , and IF with respect to measurement strength ϕ under a single measurement
on a qubit. As the measurement strength increases, the fidelity monotonically decreases while the
information gain increases. When ϕ = π, the measurement discriminates the states |0〉 and |1〉
perfectly, so the largest information gain is obtained..

applying this parity measurement.

Second, we consider the case of successively performing the QND measurements many times

for a given measurement strength ϕ = g2τ/∆. We see from Eq. (2.33) that IM(N,ϕ) and IF (N,ϕ)

monotonically increase with the number N of measurements, whereas F (N,ϕ) exhibit an oscil-

lating behavior, as illustrated in Fig. 2.4. As the number N of successive measurements increases,

we also see that a more information gain does not always entail a more disturbance of the state, as

evidenced by the oscillating behavior with respect to N .

From Eq. (2.33), for ϕ 6= π, the limiting values of the information gain (IM = 1− 1
2 ln 2
≈ 0.28

and IF = 1 − 4
9
− π2

128
≈ 0.48) and the output fidelity (F = 2

3
) are achieved as the number of

measurements becomes increasingly large as shown in Fig. 2.4. For ϕ = π (parity measurement),

these values are achieved only with a single measurement N = 1. It indicates that the parity

measurement extracts the most information from an unknown qubit state and leaves the state most

deeply disturbed.
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Figure 2.4: F , IM , and IF with respect to measurement times N under a successive measurement
on a qubit with measurement strength ϕ = π/32. More measurements result in a larger information
gain and a less fidelity, while the fidelity also shows an oscillating behavior.

2.2.2 Coherent states

Next we consider that the cavity field is prepared in an unknown coherent state |α〉 ≡ ||α|eiβ〉

with a probability density p(|α|, β), i.e.,

ρ =
∑
|α|,β

p(|α|, β)||α|eiβ〉〈|α|eiβ|, (2.34)

where a coherent state is given by

|α〉 = e−
|α|2
2

∑
n=0

αn√
n!
|n〉. (2.35)

We assume that the coherent state of complex amplitude α = |α|eiβ is prepared with a Gaussian

distribution

p(|α|, β) =
1

2π

1√
2πσ|α|

exp

[
−(|α| − |α0|)2

2σ2

]
, (2.36)
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i.e., its magnitude |α| has a distribution centered at |α0| with a width σ, whereas its phase β is

randomly distributed over [0, 2π]. Since it is a continuous distribution, we convert the summation

to an integral as ∑
|α|,β

p(|α|, β)→ A

∫ ∞
0

|α|d|α|
∫ 2π

0

dβ p(|α|, β), (2.37)

where A is a normalized factor.

In this case, the analytical expressions of the information gain and the fidelity are tedious to

obtain, thus we study the numerical results of those quantities. As an illustration, we consider the

case that the initial coherent state distribution is centered at |α0| = 0 with σ2 = 2.

First, for a single measurement N = 1, we plot the information gain and the fidelity versus the

measurement strength ϕ in Fig. 2.5. We observe that the fidelity decreases when the measurement

strength increases, which is similar to the qubit case. At ϕ = π, the fidelity is the minimum since

most elements of Me and Mf shown in Eq. (2.11) are zero. However, the information gain at

ϕ = π is not maximum, because such a measurement can only discriminate odd or even number

states, e.g. it cannot discriminate n = 1 or n = 3. From the plot we see that the maximum points

are around π/8 for both kinds of information gain.

Second, we consider successive weak measurements with ϕ = π/32 for the same Gaussian

distribution with |α0| = 0 and σ2 = 2. As shown in Fig. 2.6, the information gain and the

output fidelity behave similarly to those of the qubit case. IM and IF increase monotonically with

the number of measurements, while the curve of fidelity exhibits a decreasing trend but with an

oscillating behavior. The information gain in both forms IM and IF increases monotonically with

respect to N for all values of ϕ as illustrated in Fig. 2.7.

The optimal ϕopt to obtain the highest information gain depends on the range of possible photon

numbers. It may be ascribed to the mechanism of the QND measurements on photon numbers. It

discriminates photon numbers n by a mapping from Ne to n. To accomplish this task best, it is

required that n and Ne are bijective, i.e. a one-to-one correspondence between n and Ne must be

established. The analytical relation is given by the conditional probability in Eq. (2.19). If the

factors c2
n = sin2(nϕ/2) and d2

n = cos2(nϕ/2) are monotonous in each range of π for nϕ, then

16



0.6

0.7

0.8

0.9

1.0

π/4 π/2 3π/4 π
0.0

0.1

0.2

0.3

F
id
el
it
y
F

In
fo

G
a
in
I M
,
I F

ϕ

Coherent States σ2 = 2, N = 1

F
IM
IF × 4

Figure 2.5: Tradeoff relation under a single measurement on coherent states (|α0| = 0, σ2 = 2).
IF is multiplied by 4 for convenience of comparison.F , IM , and IF with respect to measurement
strength ϕ under a single measurement. The fidelity decreases when ϕ increases. The peaks of
IM and IF slightly depart from each other, however, both of them are around π/8 (b) F , IM ,
and IF with respect to measurement times N under a successive measurement on a qubit with
measurement strength ϕ = π/32. More measurements result in a larger information gain and a
less fidelity, while the fidelity also shows an oscillating behavior.

n and Ne are bijective. If ϕ > π/(nmax − nmin), we could not discriminate n perfectly, because

two different n could be mapped to the same Ne. In the opposite limit, too small ϕ means weaker

measurement, resulting in less information gain. Therefore, the optimal ϕ is estimated to be

ϕopt ≈
π

nmax − nmin

(2.38)

This again explains why the optimal ϕ is π for qubit states (nmax − nmin = 1). For the prior

Gaussian distribution of coherent states with zero mean and σ2 variance, the range of |α| can be cut

off at about
√

2σ. The photon number of the coherent state is then effectively distributed between

0 and 2σ2 + 2σ. Therefore the optimal measurement strength to obtain the highest information
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Figure 2.6: Tradeoff relation under a successive measurement on coherent states (|α0| = 0, σ2 =
2). IF is multiplied by 4 for convenience of comparison.F , IM , and IF with respect to measurement
timesN under a successive measurement when ϕ = π/32. The results are similar to those for qubit
states shown in Fig. 2.4.

gain can be estimated as

ϕopt ≈
π

2σ2 + 2σ
. (2.39)

For succussive measurements, ϕopt shifts a little leftward with the increase of measurement times,

but is still around π/(2σ2 + 2σ) as shown in Fig. 2.7. To see the dependence on σ, we plot the

information gains IM and IF after a single measurement versus ϕ for different σ in Fig. 2.8. We

observe that with a larger σ the optimal ϕ becomes smaller. The analytical ansatz values are

ϕopt ≈ 1.3, 0.79, 0.46, 0.26, and 0.15. The peak values for IM are ϕMopt ≈ 1.37, 0.80, 0.47, 0.28

and 0.16, while those for IF are ϕFopt ≈ 0.91, 0.52, 0.30, 0.17 and 0.10. Therefore ϕopt in Eq. (39)

is a very good estimate of ϕMopt. A larger cutoff than
√

2σ can be chosen to better fit ϕFopt, and the

discrepancy between the peaks of IM and IF may be due to their different context as information

measures.

Through our QND measurements, we gain informaion on which states are more probable to be

the initial state. In other words, given different measurement outputs, the conditional probability
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Figure 2.7: Information gain IM and IF with respect to measurement strength ϕ under successive
measurements with different times (N = 1, 2, 4, 8, 16) on coherent states (|α0| = 0, σ2 = 2). The
optimal values agree with results in Eq. (2.39), although they deviate slightly when N increases.

density distributions become different from, and sharper (with less Shannon entropy) than, the

prior probability distribution. To see this, we plot in Fig. 2.9 the conditional probability density

distributions after 8 successive weak measurements with the numerically obtained optimal ϕMopt =
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0.3523. As a comparison, we also plot the prior probability distribution in the same figure with a

solid line. We observe that these conditional curves are well separated and sharper than the prior
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distribution. Each peak indicates a most probable |α|.
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red solid curve represents the prior distribution. The other nine curves are conditional ones given
the outcomes Ne = 0, 1, ..., 8, from left to right. Each peak indicates a most probable |α|.
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3. INFLUENCE OF MONITORING EFFICIENCY ON STATES PROTECTION USING

PARTIAL MEASUREMENT AND QUANTUM REVERSAL ∗

Decoherence can be caused by amplitude damping, phase damping, and depolarization. In

this chapter, we focus on fighting against amplitude-damping decoherence using the three-state

protection. We study how it is affected by finite monitoring efficiency. We apply the protocol to

protect single-qubit states and two-qubit entangled states. We evaluate the effects of the protocol

by comparing fidelity and concurrence under different conditions. We show that the protection

can have either weakened positive effect or completely negative effect. We then give a criterion to

decide whether to apply the protocol. An optimal strategy of setting parameters to obtain the best

protection effect is also studied.

This chapter is organized as follows. In Sec. 3.1, the ideal protocol of the three-stage protection

which combine partial measurement and quantum reversal is reviewed. In Sec. 3.2, the general

theory of the protocol under finite monitoring efficiency is given. Then it is applied to two specific

kinds of states to study its effects. In Sec. 3.3, a linear optical setup to verify our theory and results

is proposed.

3.1 Ideal three-stage protection

3.1.1 Amplitude damping and its reversal

Assume that we have a two-level atom (the target system) inside a leaky cavity. Field outside

(the auxiliary system) is a vacuum in zero temperature. The exited state of the atom will decay

exponentially with time [96], which can be characterized by energy relaxation time T1. Such a

process is generally characterized by a quantum operation known as amplitude damping. If we

only consider the state evolution of the atom, a damping process of strength d is described by a

∗Reprinted with permission from “Influence of monitoring efficiency on states protection using partial measure-
ment and quantum reversal” by Longfei Fan and M. Suhail Zubairy, Journal of Physics B 49 (23), 235504 (2016),
Copyright [2016] by the IOP Publishing.
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map from an input state ρ0 to an output state ρAD [1],

ρAD = E0ρ0E
†
0 + E1ρ0E

†
1, (3.1)

where the Kraus operators are given by

E0(d) =

1 0

0
√

1− d

 , E1(d) =

0
√
d

0 0

 . (3.2)

The damping strength depends on the time τ as d = 1 − e−τ/T1 . The subscript ‘0’ indicates

the outcome with no photon leaking, and vice versa. The target system collapses only when the

outcome ‘1’ is observed. Therefore this is a partially collapsed operation.

It is noticed that the operator E0 is invertible, which means that the corresponding operation is

reversible. Its inverse operator can be expressed in terms of itself and two Pauli σx operators [60,

53, 52],

E−1
0 = σxE0σx/

√
1− d. (3.3)

If a photon is detected by the detector outside, we know the state is collapsed (the second term

in Eq. (3.1)) and it will be discarded. Only the first term is allowed for further processing.

We call such an operation a monitored partial measurement. Then by making two σx rotations

in between with another monitored partial measurement, we can restore the target system as

(σxE0σxE0)ρ0(σxE0σxE0)†/(1 − d) ≡ ρ0, where the factor 1 − d is the probability of restor-

ing states.

3.1.2 Three-stage protection by partial measurement and quantum reversal

In the three-stage protection [59, 61, 62, 65, 63, 64], the probability amplitude of the excited

state |1〉 of a target qubit is reduced by a coherent but non-unitary operation before any further

processes. It makes the qubit less vulnerable to later amplitude-damping process. Applying a

monitored partial measurement (E0) can fulfill this task [59, 61, 62, 65, 63, 64], as it reduces the
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probability amplitude of |1〉 by a factor of
√

1− d. Together with the following free amplitude

damping and quantum reversal, the whole three-stage protection is shown as follows

ρ0
E0−−→
ps

ρ1
AD−−→
d

ρ2
σx−−→ E0−−→

pr

σx−−→ ρ3 (3.4)

The first stage is a monitored partial measurement with strength of ps, which brings the qubit far

away from its excited state. In the second stage, the qubit damps freely with strength of d. The

third stage is a quantum reversal operation, including two σx rotations in between with another

monitored partial measurement with strength of pr. Assume that the input qubit state is |ψ0〉 =

α |0〉 + β |1〉. If the qubit does not decay in the second damping stage, its density matrix evolves

to ρr, which is given by

 (1− pr)|α|2,
√

(1− ps)(1− d)(1− pr)αβ
∗√

(1− ps)(1− d)(1− pr)α
∗β, (1− ps)(1− d)|β|2

 . (3.5)

Let (1−pr) = (1−ps)(1−d), we have ρr ≡ ρ0 after normalization. Therefore the qubit is restored.

The reversibility R is defined to be the ratio of restored qubits to all the input qubits and is given

by

R = Tr[ρr] = (1− ps)(1− d). (3.6)

The monitored partial measurement itself is also an amplitude-damping, which makes the damping

strength stronger and decreases the proportion of uncollapsed states. Therefore the reversibility is

modified by a factor of 1 − ps. The success rate is defined to be the ratio of restored qubits to all

the collected qubits and is given by

S =
Tr[ρr]

Tr[ρ3]
=

1

1 + d(1− ps)|β|2
. (3.7)

It is noticed that both R and S are modified by the factor of 1 − ps. As ps increases from 0 to

1, R decreases from 1 − d to 0. Meanwhile, S increases from 1/[1 + d|β|2] to 1. Therefore by
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introducing the monitored partial measurement of strength ps in the first stage, higher success rate

is achieved at the expense of reversibility.

3.2 Three-stage protection under non-ideal monitoring

The three-stage protection depends crucially on the monitoring efficiency. Usually it is hard to

reach 100% efficiency. In a recent experiment performed on superconducting circuits, the three-

stage protocol is applied to protect phase qubits [65]. In this work, the monitoring operation is

fulfilled as follows. First the state of a target qubit is swapped with a field state inside a resonator

probabilistically. This is analogous to a leaky cavity. Then a full swap between the field state

and an auxiliary qubit state is followed. If the auxiliary qubit is finally detected to be at the ex-

cited state, one can know that target qubit decays. Therefore the readout fidelity of the auxiliary

qubit is equivalent to the monitoring efficiency. The readout fidelity of ground states is about 95%,

and that of exited states is about 90% [65]. In the linear optical demonstration of the three-stage

protection [54, 61, 62, 63, 64], once a photon is detected in the tomography stage, it must have

not leaked in the previous stages. This automatically ensures 100% monitoring efficiency. How-

ever, similar detection-free methods may not be feasible for other experimental implementations

straightforwardly.

Therefore it is of great necessary to study how finite monitoring efficiency influences the per-

formance of the three-stage protection. We assume that the readout fidelity of an outcome ‘1’ is

η1. It means that if a photon leaks, we may not observe it with a probability of η̄1 = 1− η1. Thus

collapsed states can be allowed into further processes with the probability of η̄1. We also assume

that the readout fidelity of an outcome ‘0’ is η0. It means that even if no photon leaks, we may

still observe one (dark count) with a probability of 1 − η0. In a short, η0 and η1 determine how

much proportion of uncollapsed and collapsed states is collected into further processes. Thus after

a non-ideal monitored partial measurement, the states ρ0 evolves to (without normalization)

η0E0ρ0E
†
0 + η̄1E1ρ0E

†
1. (3.8)
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Without loss of generality, we introduce an effective monitoring efficiency η for convenience,

which is defined by

1− η = η̄ ≡ η̄1/η0. (3.9)

After the normalization, the state is given by

ρ(η̄) =
1

A

[
E0ρ0E

†
0 + η̄E1ρ0E

†
1

]
. (3.10)

where A is a normalization factor.

3.2.1 Protection of single-qubit states

Now the effective monitoring efficiency is η, the protocol of the three-stage protection shown

in Eq. (3.4) should be modified to

ρ0
AD−−→
ps,η

ρ1
AD−−→
d

ρ2
σx−−→ AD−−→

pr,η

σx−−→ ρ3, (3.11)

where η indicates that the state evolution in the first and the third stage is described by Eq. (3.10).

E0 above the arrows is also replaced by ‘AD’, because both outcomes ‘0’ and ‘1’ are possible if

an outcome ‘0’ is observed under non-ideal monitoring . To restore states, it is still required that

1− pr = (1− d)(1− p). The final density matrix after normalization is given by

ρ3 =
1

A

|α|2 +M |β|2 αβ∗

α∗β |β|2 + η̄N
[
|α|2 +M |β|2

]
 , (3.12)

where the factors are given by

M = d(1− ps) + η̄ps,

N = 1/[(1− d)(1− ps)]− 1,

A = 1 +M |β|2 + η̄N
[
|α|2 +M |β|2

]
.

(3.13)
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The factor M can be regarded as an equivalent damping strength qualitatively. For ideal pro-

tection where η̄ = 0, M reduces to d(1 − ps). Damping strength d is suppressed by ps as ex-

pected. For non-ideal protection where η̄ 6= 0, a new term η̄ps introduces extra damping strength.

Equivalent damping strength which is larger than the original d should be avoided in practice, i.e.

M = d+ (η̄ − d)ps < d. Therefor η̄ < d should be satisfied to get positive protection.

Next we consider some quantities which can measure the performance of the three-stage pro-

tection of a single qubit. The reversibility R is given by

R = η2
0 Tr

[
Erρ0E

†
r

]
= η2

0(1− d)(1− ps), (3.14)

where the operatorEr = σxE0(pr)σxE0(d)E0(ps). η2
0 is introduce because of non-ideal collections

happen twice in the first and the third stages. The success rate S is given by

S =
[
1 +M |β|2 + η̄N

(
|α|2 +M |β|2

)]−1
. (3.15)

The output fidelity between initial states and final states is given by

F = Tr
[
ρ

1
2
0 ρ3ρ

† 1
2

0

]
=

1

A

[
1 + (M + η̄N)|α|2|β|2 + η̄MN |β|4

] (3.16)

By setting η̄0 = 0 and η̄1 = 0, we find that the reversibility R and the success rate S re-

duces to the same expressions given in Sec. 3.1.2. Under finite effective monitoring efficiency,

the reversibility R is modified by a factor of η2
0 as explained above. Meanwhile, the success rate

S decreases with respect to η̄. This can be seen from that both M and N are non-negative and

increase with respect to η̄. The output fidelity of a successful restoration is 1, otherwise it is less

than 1. Therefore the output fidelity should also decrease with respect to η̄ as like what the success

rate does. This can also be seen from its analytical expression.

To see how does the effective monitoring efficiency and other parameters affect the perfor-
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mance of the three-stage protocol quantitatively, we illustrate some numerical examples for fidelity

and success rate in Fig. 3.1. We find that they show rather different behavior under non-ideal ef-

ficiency compared with that under ideal efficiency. They no longer saturate the unity when ps

approaches 1, instead they drop to their worst values. As ps becomes larger, the extra damping

strength introduced by it dominates over the positive effect it has brought. This phenomenon be-

comes distinct especially when d itself is relatively small.

We find that there exist a critical η̄ and an optimal ps. When η̄ is less than the critical value

η̄c, both fidelity and success rate increase monotonically in the interval from 0 to a positive popt
s .

Meanwhile if η̄ ≥ η̄c, the fidelity and success rate decrease monotonically with respect to ps in

the full interval of [0, 1]. The optimal popt
s shall be zero in such a case. Thus applying the first

monitored partial measurement (setting ps > 0) has negative effect. By solving ∂S/∂ps

∣∣
ps=0

= 0,

we obtain that

η̄c =
1

2

[
d− 1

d|β|2
+

√(
d− 1

d|β|2
)2

+ 4(1− d)

]
. (3.17)

The values of η̄c under different d and |β| are illustrated in Fig. 3.2. We notice that the proto-

col is able to tolerate lower monitoring efficiency under larger |β|. The reason is that amplitude

damping only affects exited states. When |β| is larger, the damping will cause more destruction,

making the effect of protection more distinct. We also notice that the η̄c is hill-shaped with respect

to damping strength d. In one hand, the positive effect of the three-stage protection dominates over

its negative effect under large damping strength. In the other hand, more uncollapsed states are

collected under non-ideal monitoring if the damping strength becomes larger. These two factors

exert opposite influence and keep balance around d = 0.65, so we get a hill-shaped curve of η̄c with

respect to d. The supremum of η̄c is about 0.2956, which is reached at point (|β| = 1, d = 0.6478).

If η̄ is larger than its supremum, ps must be zero to avoid worse decoherence whatever |β| and

d are. Therefore a small enough value of η̄ is required to get positive protection effect for most

conditions.

When the above critical condition for the effective monitoring efficiency is satisfied, a positive
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Figure 3.1: Fidelity and success rate with respect to ps under different effective monitoring effi-
ciency in the three-stage protection of a single-qubit state initially prepared at |ϕ〉 = (|0〉+|1〉)/

√
2.

The damping strength d = 0.5, and the corresponding η̄c = 0.14. The fidelity and success rate
do not increase monotonically with respect to ps in the full interval of [0, 1] as like in the ideal
case (solid line). When the effective monitoring efficiency is greater than the critical value, they
decrease after optimal points and finally reach their minimum values. Under the critical value
η < 1− η̄c = 0.86, they decrease monotonically in the full interval of [0, 1].
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Figure 3.2: Critical value η̄c with respect to different amplitude-damping strength d and probability
amplitude |β|. The supremum of η̄c is about 0.2956, which is reached when |β| = 1, d = 0.6478.

optimal popt
s is possible. By solving ∂S/∂ps = 0, we give that

popt
s = 1−

√
η̄
(
1− η|β|2

)
η|β|2(1− d)(d− η̄)

. (3.18)

In the denominator, it seems that the term d − η̄ may be negative and cause an irrational result.

However in the previous discussion of the equivalent damping strength M in Eq. (3.13), we have

already pointed out qualitatively that the condition η̄ < d should be satisfied. We have also proved

strictly that η̄ < η̄c < d using the expression for η̄c, which gives a stronger and tighter condition

than η̄ < d. The proof is straightforward, so we omit it here. In Fig. 3.3, we illustrate some

numerical curves of popt
s with respect to the effective monitoring efficiency under different damping

strength. We set |β|2 = 0.5 for the initial state. With damping strength fixed, the optimal ps

decreases from 1 to 0 as η̄ increases from 0 to its critical value. Beyond the critical value, popt
s

should always be zero. The intersections of the curves and the x-axis are just the critical values of

η̄. Actually, by solving popt
s = 0, we can reproduce the result in Eq. (3.17).
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Figure 3.3: Optimal ps of obtaining the best success rate with respect to the effective efficiency η̄
under different damping strength d. We set |β|2 = 0.5 for initial states. popt

s decreases from 1 to 0
as η̄ increase from 0 to its critical value. And beyond the critical value, popt

s keeps zero.

3.2.2 Protection of two-qubit entangled states

Next we consider the influence of the non-ideal monitoring on the protection of two-qubit

entangled states. The three-stage protection of such states has been demonstrated experimentally in

linear optical system [62] under ideal monitoring efficiency. A general two-qubit state is described

by

|ϕ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 . (3.19)

And ρ0 = |ϕ〉 〈ϕ|. The dynamics of entanglement has been investigated in details for the state

α |00〉 + δ |11〉 [97]. We assume that there occurs amplitude damping for both qubits locally and

independently. Therefore the amplitude-damping process for the whole system can be described

by four Kraus operators as follows

ρAD =
∑
i,j=0,1

Eijρ0E
†
ij,

Eij(p1, p2) = Ei(p1)⊗ Ej(p2), i, j = 0, 1.

(3.20)
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If the effective monitoring efficiency η is less than 1 and no photons are detected, the state collapses

partially to a mixed state given by

ρAD
η̄ =

∑
i,j=0,1

η̄i+jEijρ0E
†
ij. (3.21)

These two qubits undergo the three-stage protection locally and independently shown as follows

ρ0
AD−−−−−→

ps1,ps2; η
ρ1

AD−−−→
d1,d2

ρ2
σx−−→ AD−−−−−→

pr1,pr2; η

σx−−→ ρ3. (3.22)

For simplicity, we set ps1 = ps2 = ps, d1 = d2 = d, and pr1 = pr2 = pr. Again, we ensure the

requirement for successful reversal that 1− pr = (1− d)(1− ps).

Now we consider two specific entangled systems. Firstly, if the initial state is prepared at

ρβγ0 = (β |01〉+ γ |10〉)(β∗ 〈01|+ γ∗ 〈10|), (3.23)

then it finally evolves to the following state according to the procedure shown in Eq. (3.22),

ρβγ3 =
1

A1



e1 0 0 0

0 a1 b1 0

0 b∗1 c1 0

0 0 0 f1


, (3.24)

where the factors are given by

a1 = |β|2 + η̄MN, b1 = βγ∗,

c1 = |γ|2 + η̄MN,

e1 = M, f1 = η̄N(1 + η̄MN),

A1 = M + (1 + η̄N)(1 + η̄MN).

(3.25)
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The factors M and N have been given in Eq. (3.13). Secondly if the initial state is prepared at

ραδ0 = (α |00〉+ δ |11〉)(α∗ 〈00|+ δ∗ 〈11|), (3.26)

then it finally evolves to

ραδ3 =
1

A2



a2 0 0 b2

0 e2 0 0

0 0 f2 0

b∗2 0 0 c2


, (3.27)

where the factors are given by

a2 = |α|2 +M2|δ|2, b2 = αδ∗,

c2 = η̄2N2|α|2 + (1 + η̄MN)2|δ|2,

e2 = f2 = η̄N
(
|α|2 +M2|δ|2

)
+M |δ|2,

A2 = (1 + η̄N)2|α|2 + (1 +M + η̄MN)2|δ|2.

(3.28)

To evaluate the performance of the three-stage protection on entangled states, we utilize the

concurrence as a measure of entanglement, which is defined by [98]

C(ρ) = Max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
. (3.29)

The quantities λ1, . . . , λ4 are the eigenvalues of ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) in decreasing order, where

σy is the Pauli-y operator. The concurrence of an arbitrary two-qubits state is C = |αβ − γδ|. For

a damping two-qubit state without any protection, concurrence becomes [99]

C(d) = Max
{

0, 2(1− d)(|αδ − γβ| − d|δ|2)
}
. (3.30)
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Figure 3.4: Concurrence with respect to damping strength d in the protection of two-qubit entan-
gled states (a) |ϕ0〉 = (|00〉+ |11〉)/

√
2 and (b) |ϕ0〉 = (|01〉+ |10〉)/

√
2 under different effective

efficiency η. The solid blue line shows the result for states that undergo free amplitude damping
alone. For the rest curves, the three-stage protection protocol is applied and we set ps = 0.5. The
protocol still works to recover the concurrence under larger d, but whose effects suffers a lot when
the efficiency is non-ideal. Under smaller damping strength d and lower efficiency η, the protocol
fails to protect the entanglement.
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Figure 3.5: Concurrence with respect to damping strength d in the protection of two-qubit entan-
gled states (a) |ϕ0〉 = (|00〉 + |11〉)/

√
2 and (b) |ϕ0〉 = (|01〉 + |10〉)/

√
2 under different ps. The

solid blue line shows the result for states that undergo free amplitude damping alone. For the rest
curves, the three-stage protection protocol is applied and we set η = 0.9. It is shown that the pro-
tocol still work to recover the entanglement when the detection efficiency is non-ideal, especially
for larger d. However, under smaller d and larger ps, the ‘protection’ makes concurrence worse.
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The concurrence of the states ρβγ3 and ραδ3 are given by

Cβγ = Max

{
0, 2
|β||γ| −

√
η̄MN(1 + η̄MN)

M + (1 + η̄N)(1 + η̄MN)

}
,

Cαδ = Max

{
0, 2

|α||δ| −M |δ|2 − η̄N
(
|α|2 +M2|δ|2

)
(1 + η̄N)2|α|2 + (1 +M + η̄MN)2|δ|2

}
.

(3.31)

Some numerical results are illustrated in Fig. 3.4 and Fig. 3.5. It shows that, under certain

conditions, the three-stage protocol helps recover the change of concurrence caused by amplitude

damping. However when the effective monitoring efficiency is less than 100%, the effect of the

protocol is weakened distinctly. The results can be even worse than that given in Eq. (3.30),

especially when the strength d itself is small. The cross points of the solid blue curve with the

other curves give the critical value of d. Lower efficiency η and larger ps result in a greater critical

value. If d is less than its critical value, it is better to abandon the monitored partial measurement

applied in the first-stage. Because it brings more destructive effect than protective effect due to the

extra amplitude-damping strength it introduces.

3.3 A proposal for experimental verification

To experimentally verify our theory on the three-stage protection under non-ideal monitoring,

a continuously varied effective efficiency is necessary. We can modify the superconducting cir-

cuits experiment [65] by intentionally accepting some collapsed states to lower the monitoring

efficiency. However the efficiency cannot reach 100%, since the maximum readout fidelity is only

about 90%. Furthermore some other decoherence sources are difficult to be isolated. To see the

influence of effective monitoring efficiency exclusively, we can implement the linear optical setup

proposed by Q. Sun, et al . [54] with a few modifications. Even though the amplitude damping

in this setup is intentionally generated, it is a good experimental platform for studying the perfor-

mance of three-stage protection because of its well controllability [61, 62, 63, 64]. The parameters

like damping strength and the effective monitoring efficiency can be adjusted to any necessary

values to fulfill a complete test.
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Figure 3.6: The proposed experimental set-up for demonstrating non-ideal monitored partial mea-
surement. Part I is a Sagnac-like interferometer composed of one polarization beam splitter (PBS),
three mirrors, and two half-wave plates (HWP). The strength of amplitude damping is controlled
by angle value θ. The two outputs of Part I, P0 and P1, will be incoherently mixed at the beam
splitter (BS), as the difference of path-length is set to be sufficiently larger than the coherent length
of a single photon. A set of Brewster-angle plates is inserted to reflect out the horizontally polar-
ized photons in path P1 with a probability of η. Setting η = 0, we get free amplitude damping.
Otherwise we get non-ideally monitored partial measurement. Removing path P1 (setting η = 1
equivalently), we get ideally monitored amplitude damping since all collapsed states are discarded.
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The modified setup is illustrated in Fig. 3.6. Input photons are prepared at a superposition of

polarized photonic state α |H〉 + β |V 〉. We regard |H〉 as |0〉 and |V 〉 as |1〉. The horizontally

polarized photon goes through the interferometer for phase matching, and is transmitted into P0

when it comes back to the PBS. The vertically polarized photon is reflected by the polarizing beam

splitter (PBS) and then rotated by the half-wave plate (HWP) by an angle of θ. It corresponds to

the map, |1〉 → cos(2θ) |1〉 + sin(2θ) |0〉. When it comes back to the PBS, cos(2θ) |1〉 is reflected

into P0 and sin(2θ) |0〉 is transmitted into P1. The angle value θ controls the amplitude-damping

strength as d = sin2(2θ). At P0, the photons are coherently superposed to |0〉 + cos(2θ) |1〉,

meanwhile at P1, we get sin(2θ) |0〉. The length difference of P0 and P1 is intentionally set to

be sufficiently larger than the coherent length (∼ 140µm for a typical linear optical setup) of a

single photon, so they will be mixed incoherently by the beam splitter (BS). Finally we obtain the

amplitude-damping state given in Eq. (3.1).

In additional to the above setup, we insert a set of Brewster-angle plates in the path P1. It

reflects out and thus discards the horizontally polarized photons in the path P1 with a probability

of η, which is just the effective monitoring efficiency. Therefore we obtain the modified state

described in Eq. (3.10). Taking off P1 and collecting the output P0 exclusively, we can implement

an ideal monitored partial measurement. In summary, by adjusting Part II, we can implement

free amplitude damping, ideally and non-ideally monitored partial measurement. Using another

two HWPs to implement σx rotations, we have all the key elements required for the three-stage

protection. Preparation and tomography of states can also be implemented using common methods.
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4. QUANTUM ILLUMINATION USING NON-GAUSSIAN STATES GENERATED BY

PHOTON SUBTRACTION AND PHOTON ADDITION ∗

In this chapter, we apply various two-mode entangled states to quantum illumination, particu-

larly the non-Gaussian states obtained by photon subtraction and photon addition. We then study

error probability of each state with respect to squeezing strength and signal strength of the detect-

ing states respectively. The performance is evaluated by the Helstrom limit [100] and the quantum

Chernoff bound [101]. The entanglement strength is measured by von Neumann entropy of reduced

density operators. We show that under the same squeezing strength, non-Gaussian states can en-

hance quantum illumination because of larger entanglement and signal strength. However, TMSS

performs better than other non-Gaussian states if the comparison is made under the same signal

strength. We also show that the ratios of photons allocated between each mode of the two-mode

entangled states also affect the performance of quantum illumination, even when entanglement

strength is the same.

This chapter is organized as follows. In Sec. 4.1.1, we give a brief review of quantum illumina-

tion and its equivalent model. In Sec. 4.1.2, we introduce various non-Gaussian states and discuss

their properties. In Sec. 4.2 we compare their performance in quantum illumination under different

conditions. In Sec. 4.3, we study the performance of asymmetrical two-mode entangled states.

4.1 Quantum illumination and non-Gaussian states

4.1.1 Quantum illumination

The task of quantum illumination is to determine the existence of a low-reflective object which

is embedded in a noisy thermal bath. Its equivalent model is illustrated in Fig. 4.1. The two-mode

entangled photon state ρAB is used as the detecting state. The mode B (signal) is sent for detecting

the suspect object, i.e. it can be reflected back by the object if there presents one. The mode A

∗Reprinted with permission from “Quantum illumination using non-Gaussian states generated by photon subtrac-
tion and photon addition” by Longfei Fan and M. Suhail Zubairy, Phys. Rev. A 98, 012319 (2018), Copyright [2018]
by the American Physical Society.
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(idler) is retained to be measured together with the returned signal B′. The suspect object can be

modeled by a beam splitter with low reflectance R. The thermal noise C, whose average photon

number is Nth, will enter the final measurement device M if no object is present. If an object is

present, the thermal noise is mixed with B by the beam splitter. In the latter, the average photon

number of the thermal noise is adjusted to be N ′th = Nth

1−R to make compensation for the loss during

mixing.

Figure 4.1: Model of quantum illumination

Let the creation operators for the idler, the signal, and the thermal noise be aA, aB, and aC .

The output modes are labeled by aB′ and aC′ as shown in Fig 4.1. The two-mode mixing operator

U(ξ) = exp
(
ξa†BaC − ξ∗aBa†C

)
describes the beam splitter, where ξ = arcsin

√
R. Thus we

have aB′ = cos(ξ)aC − sin(ξ)aB. Two possible output states ρ0 and ρ1 can enter the measurement

device M , depending on whether the suspect object is absent or present.

Object absent : ρ0 = TrB[ρAB]⊗ ρC ,

Object present : ρ1 = TrC [UρAB ⊗ ρCU †].
(4.1)

Now the measurement deviceM has to infer whether an object is present or not by discriminat-

ing above two states. The performance of discrimination can be measured by the error probability
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of inference. Here we suppose that the suspect object is equally absent and present. If we have

N identical copies of entangled states for detection, the optimal error probability is given by the

Helstrom limit [100]

Perr,N =
1

2

(
1− 1

2

∥∥ρ⊗N0 − ρ⊗N1

∥∥) . (4.2)

It is usually hard to be evaluated because of the high dimensionality. Another difficulty is that it

is not monotonic for the tensor power. An asymptotically tight upper bound, which is called the

quantum Chernoff bound (QCB) [101], is easier to evaluate and is given by

Perr,N ≤
1

2
PN

QCB =
1

2

{
min

0≤t≤1
Tr
[
ρt0 ρ

1−t
1

]}N
. (4.3)

We will use the above two quantities to measure of performance of quantum illumination. Mean-

time the entanglement of a detecting state can be measured by von Neumann entropy of reduced

density operators, which is given by

E(|ψAB〉) = −Tr[ρA ln ρA] = −Tr[ρB ln ρB], (4.4)

where the reduced density operators ρA = TrB |ψAB〉 〈ψAB| and ρB = TrA |ψAB〉 〈ψAB|. We will

use the term ‘entropy of entanglement’ and the label E for it in remaining parts of our manuscript.

4.1.2 Non-Gaussian entangled states

Two-mode squeezed state (TMSS) is a widely used entanglement state in continuous-variable

quantum information [102, 103]. It is a Gaussian state and is given by

|TMSS〉 =
√

1− λ2

∞∑
n=0

λn |n〉 |n〉 , (4.5)

where λ = tanh s and s is the squeezing parameter. Quantum illumination has been realized

experimentally with TMSS as the entangled detecting photon source [80, 104, 105, 106, 107]. As

entanglement is regarded as the key quantum resource of quantum illumination, we expect that

41



detecting states with enhanced entanglement can achieve lower error probability.

A combination of photon-subtraction and photon-addition operations can generate various non-

Gaussian entangled states which have enhanced entanglement [76, 77]. Here we will study photon-

subtraction (PS), photon-addition (PA), photon-subtraction-following-addition (PSA), and photon-

addition-following-subtraction (PAS) states. It has also been shown that a coherent superposition

of both photon subtraction and photon addition [83] leads to the strongest enhancement of entan-

glement under small squeezing strength [84]. We call the non-Gaussian state generated by such an

operation a ‘PCS’ state for short. The former four kind of states are given by

âb̂ |TMSS〉 .=
√
A1

∞∑
n=0

(n+ 1)λn |n〉 |n〉 ,

â†b̂† |TMSS〉 .=
√
A1

∞∑
n=0

(n+ 1)λn |n+ 1〉 |n+ 1〉 ,

ââ†b̂b̂† |TMSS〉 .=
√
A2

∞∑
n=0

(n+ 1)2λn |n〉 |n〉 ,

â†âb̂†b̂ |TMSS〉 .=
√
A2

∞∑
n=0

(n+ 1)2λn |n+ 1〉 |n+ 1〉 ,

(4.6)

where the .
= means that left-hand side equal right-hand side after normalization. The normalization

factors are given by

A1 =
(1− λ2)3

1 + λ2
, A2 =

(1− λ2)5

1 + 11λ2 + 11λ4 + λ6
. (4.7)

The PCS state is given by [84]

(
taâ+ raâ

†) (tbb̂+ rbb̂
†
)
|TMSS〉

.
=
√
A3

∞∑
n=0

λn
[
λtatb(n+ 1) |n〉 |n〉

+ λtarb
√

(n+ 1)(n+ 2) |n〉 |n+ 2〉

+ λratb
√

(n+ 1)(n+ 2) |n+ 2〉 |n〉

+ rarb(n+ 1) |n+ 1〉 |n+ 1〉
]
,

(4.8)
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where t2i + r2
i = 1 (i = a, b) and the normalization factor is given by

A3 =
(1− λ2)3

λ2(1 + |tar∗b + rat∗b |) + |tatbλ2 + rarb|2
. (4.9)

Some properties of these non-Gaussian states have been discussed in previous study [77, 84].

However, the previous discussion on PCS states is limited to symmetrical ones, where ra = rb

holds. Here we discuss these states with a focus on their entanglement and photon numbers,

particularly for asymmetrical PCS states. We illustrate the entropy of entanglement E in Fig. 4.2a

and the total average photon number 〈n〉 in Fig. 4.2b for each state with respect to λ. It is shown

that for a given λ, PS and PA have the same entropy of entanglement E, however, PA has one more

photon per mode than that of PS. Similar results are observed for PSA and PAS. Meanwhile PSA

(PAS) has larger entanglement than PS (PA). Therefore, non-Gaussian operations not only enhance

entanglement, but also bring larger average photon numbers, i.e., signal strength.

The properties of PCS are somehow complicated because of free choices on ra and rb. In

Fig. 4.2, for each λ, we choose the pair of ra and rb which leads to the largest entropy of entangle-

ment E for plotting. With such choices, the PCS state has the most enhanced entanglement than

any other state under small squeezing strength where λ / 0.15 as shown in Fig. 4.2a. In region

from λ ≈ 0.15 to λ ≈ 0.35, its entanglement becomes less than that of PAS and PSA, but still

larger than entanglement of others. When λ ' 0.35, the optimal PCS reduces to PA or PS. That

is to say, there are two optimal choices which lead to the largest entanglement: ra = rb = 0 and

ra = rb = 1. In Fig. 4.2b, The curve of PCS start from point (0, 1.0), then it goes between those

of PS and PA until the point λ ≈ 0.05. For λ from 0.05 to 0.35, the curve of PCS almost overlaps

with that of PA (ra = rb = 1). Our numerical results show that values of ra and rb are very close

to 1.0. For λ ' 0.35, the optimal PCS reduce to either PA or PS as mentioned earlier. For plotting

we choose to set ra = rb = 1, so the curve of PCS overlaps exactly with that of PA for λ ' 0.35.

It would a practical consideration to achieve better detecting performance with minimum signal

strength. To get some insights, we plot entanglement per used photon E/ 〈n〉 with respect to λ in

43



0.0 0.2 0.4 0.6
λ

0.0

0.5

1.0

1.5

2.0

E

TMSS
PS
PA
PSA
PAS
PCS

(a) Entanglement of E

0.0 0.2 0.4 0.6
λ

0

2

4

6

〈n
〉

TMSS
PS
PA
PSA
PAS
PCS

(b) Average photon numbers 〈n〉

Figure 4.2: Entropy of entanglement E and signal strength 〈n〉 for TMSS and non-Gaussian states
under given values of λ ranging from 0.0 to 0.6. (a) Comparison of entanglement E among states
with respect to λ. Here we have extra notes for PCS states. As a PCS state is determined by three
variable ra, rb, and λ, its entanglement E still varies with respect to ra and rb when λ is given.
In this figure, the curve of PCS states shows the maximum E can be obtained for each λ, i.e., the
optimal pairs of ra and rb for each λ are used for plotting the curve of PCS states. (b) Comparison
of average photon numbers 〈n〉 among states with respect to λ. The values of ra and rb used for
PCS states for each given λ are the same with those used in Fig. 4.2a, i.e. the optimal ones result
in the largest entanglement.
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Figure 4.3: Comparison of E/ 〈n〉 among states with respect to λ. The values of ra and rb used for
PCS states for each given λ are the same with those used in Fig. 4.2a.

Fig. 4.3 for all these states. It is shown that TMSS is the most ‘efficient’ one to obtain entanglement

with the least photon numbers. We could expect that TMSS would perform best for quantum

illumination if we have constraints on signal strength.

PCS states are interesting as they have free choices on ra and rb. Four examples to show how

entanglement depends on ra and rb are illustrated in Fig. 4.4. It is obvious that the mode A and B

are equivalent so that the plots are symmetrical around the anti-diagonal. Numerical results show

that for λ / 0.05, the optimal choices are symmetrical states so that ra = rb. Then the optimal

points move to the edge as λ increases, i.e., ra = 1 or rb = 1. Finally the optimal points stay on

two anti-diagonal vertices.

4.2 Comparison of performance

Photon subtracted two-mode squeezed state (PS-TMSS) has been compared with TMSS for

quantum illumination [82]. The comparison between these two kind of states was made under the

same squeezing strength of detecting states. Here we extend the comparison to all non-Gaussian

states we have mentioned in Eq. (4.6) and Eq. (4.8). We carry out numerical calculations of the
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Figure 4.4: Entropy of entanglement with respect to ra and rb for PCS states under four different
values of λ. All four sub-plots are symmetrical about ra = rb. Optimal points which have the
largest entanglement have been labeled in each plot by solid yellow dots. They are: (0.100, 0.100)
for λ = 0.01, (0.211, 1.00) and (1.00, 0.211) for λ = 0.15, (0.451, 1.00) and (1.00, 0.451) for
λ = 0.30, (0.0, 0.0) and (1.0, 1.0) for λ = 0.45.
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quantum Chernoff bound and the Helstrom limit forN = 1 using Eq. (4.2) and Eq. (4.3) to evaluate

the performance. We first make comparison of performance under the same squeezing strength in

Sec. 4.2.1 as like what has been done in the Ref. [82]. Then, in Sec. 4.2.2 we make comparison

under the signal strength of mode B.

Setup: As mentioned in Ref. [79, 80], quantum illumination shows its advantage under low

signal-to-noise ratios. Also it has to mention that these two mode states approaches classical-state

behavior when their signal strength is large enough [80]. Therefore, throughout our numerical

calculations, we set up a scenario with low signal-to-noise ratios. The reflectance of suspect object

R = 0.01. The average photon numbers of thermal noise has a relatively large value thatNth = 1.0.

Values of λ are also limited to be below 0.6 in order to keep the signal strength of detection states

small enough. In such a scenario, error probability for detection using one copy of state is close to

0.5, as the signal is too weak to distinguish between two possible output states.

Methods: We use Python, NumPy, Scipy, and the QuTiP [108, 109] toolbox for numerical

calculations. Matplotlib and Seaborn are used for plotting figures. First, we create all these two

mode states shown in Eq. (4.5)(4.6)(4.8) by summation of tensor product of fock states over n

from 0 to 31. For example in Python script, after “import numpy as np” and “import qutip as qu”,

we can create a TMSS by “tmss = qu.Qobj(numpy.sum([lambda ** n * qu.tensor(qu.basis(n_max,

n), qu.basis(n_max, n)) for n in np.arange(n_max)])).unit()”, where “n_max = 32” is the truncated

photon number. All the states used for numerical calculation are normalized by “.unit()”. The

two mode mixing operator U(ξ) = exp
(
ξa†BaC − ξ∗aBa†C

)
can be created by first creating a

destroy operator “a = qu.destroy(n_max)” and then “U = s * qu.tensor(a.dag(), a) - np.conj(s) *

qu.tensor(a, a.dag())”. With these density matrix and operators created, we can obtain ρ0 and ρ1

shown in Eq. (4.1), and the Helstrom limit shown in Eq. (4.2). It can be done straightforwardly

using methods of tensor product, partial trace, and trace norm, which are pre-defined in the QuTiP

toolbox. The numerical calculation of quantum Chernoff bound takes some extra efforts as optimal

t needs to be found. It is fulfilled by using the “minimize” method from “scipy.optimize”.
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4.2.1 Under the same squeezing strength

We first study how performance changes with respect to λ and then compare the performance

of different states under the same λ. The results for quantum Chernoff bound and Helstrom limit

are illustrated in Fig. 4.5a and Fig. 4.5b respectively. The two figures show similar results and

conclusions. First we discuss the states except PCS. The rank of performance, from the top to the

bottom, is in the order of PAS, PSA, PA, PS, and TMSS. The ranking order can be understood by

looking into Fig. 4.2. For a given value of λ, PSA and PAS have the most enhanced entanglement,

then PS and PA follow. TMSS has the smallest entropy of entanglement. Meanwhile PAS (PA)

has larger signal strength than PSA (PS). As both the entanglement strength and the signal strength

affect the performance, it explains why we get the ranking order mentioned above.

In Fig. 4.5, we plot two curves for PCS states, labeled by “PCS-etgl" and “PCS-opt" respec-

tively. For the curve of “PCS-etgl", we choose those ra and rb which leads to the largest entangle-

ment as like what we do in Fig. 4.2. Meanwhile the ‘PCS-opt’ curve is the lowest error probability

a PCS state can achieve given a specific λ. In the region where λ is smaller than about 0.17,

PCS outperforms all other states, which results from its advantage in both entanglement and sig-

nal strength as shown in Fig. 4.2. We find the similar stairs jumping at about the same positions

(λ ≈ 0.05) in both Fig. 4.5 and Fig. 4.2b, which indicates the signal strength has an impact on the

performance.

The deviation between curves of “PCS-etgl" and “PCS-opt" also shows that entanglement is

not the only factor determining the performance of quantum illumination. The choices of ra and rb

which result in the largest entanglement do not always lead to the lowest quantum Chernoff bound,

because the signal strength also matters. Here is an example for the case where λ = 0.0995 (such

that 〈nB〉 = 0.01 for TMSS), Nth = 1.0, and R = 0.01. The optimal points which have the largest

entanglement are A (0.140, 1.0) and B (1.0, 0.140). The corresponding quantum Chernoff bounds

are 0.499124 and 0.499550 respectively. Meanwhile, the lowest quantum Chernoff bound can be

achieved under the same λ is 0.499081, which is obtained at the point C (0.118, 0.950). It is very

close to point A, which has the maximum entanglement. Point C has entanglement of 0.688 and
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(a) Quantum Chernoff bounds with respect to λ for quantum illumiantion using a
single copy of detecting state (N = 1). Here we set Nth = 1.0 and R = 0.01.
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(b) Helstrom limits with respect to λ for quantum illumiantion using a single copy
of detecting state (N = 1). Here we set Nth = 1.0 and R = 0.01.

Figure 4.5: (a) Quantum Chernoff bound and (b) Helstrom limit with respect to λ for quantum
illumination using a single copy of detecting state (N = 1). Here we have some extra notes for PCS
states. It shown that two curves for PCS states are plotted in both sub-plots (a) and (b). The points
for the curve of “PCS-etgl" are constituted with PCS states which have the largest entanglement
under a given λ, i.e., the ra and rb used here are the same with what we use for plotting Fig. 4.2a.
Meanwhile, the curve of “PCS-opt" shows the optimal lowest quantum Chernoff bound which a
PCS state can reach for each specific value of λ.
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〈nB〉 of 1.544. Meanwhile point A has entanglement of 0.699 and 〈nB〉 of 1.529. Even though the

former one has less entanglement strength, it has larger signal strength. The overall effect makes

point C achieve the lowest quantum Chernoff bound.

In summary, we could further improve the performance of quantum illumination by applying

various non-Gaussian operations, as such operation can enhance the entanglement and the sig-

nal strength of the detecting states at the same time. Among all these non-Gaussian states, PCS

performs the best under small squeezing strength, as it can enhance the entanglement by the most.

4.2.2 Under the same signal strength

From Fig. 4.2 we learn that non-Gaussian operations on TMSS will not only enhance entangle-

ment, but also bring larger average photon numbers. Both factors can enhance the performance of

quantum illumination. The former is quantum effect, while the latter is purely classical. Further-

more, in practice we would like to achieve the same performance with less power, particularly less

power of the mode B. As a large detecting signal can also be detected by the other party we would

like to detect, which exposes ourselves. As the mode B is sent out for detection, a constraint on its

signal strength could be a practical consideration.

As entanglement is the key resource of quantum illumination, we first explore how the entropy

of entanglementE varies with respect to different states under the same the signal strength of mode

B. The results are shown in Fig. 4.6. We find that TMSS has the largest E than any other states

under the same 〈nB〉. PCS can has different values of E even for the same 〈nB〉 because of the

multiple choices of ra and rb, so we show points of PCS with scatter plot. An upper boundary of

all possible PCS points is observed, which exactly overlap with the curve of PS. Therefore, given

an arbitrary value of 〈nB〉, the optimally chosen PCS states can only perform as best as PS states.

No PCS state can achieves larger E than TMSS. The states constituting the “PCS-etgl" curve in

Fig. 4.6 are the same with what we use in Fig. 4.2. It is far below the upper boundary. Since their

ra and rb are optimized for each λ, they are no more the optimal choices for a given 〈nB〉. Given

the same 〈nB〉, the optimal PCS which has the largest entanglement reduce to a PS state.

The above results forE vs. 〈nB〉 give us some clue on the strategy of how to choose the optimal
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Figure 4.6: Entropy of entanglement vs. average photon number 〈nB〉 of the mode B. ra and
rb are sampled for PCS states, therefore we get scattered points. TMSS has the largest entropy of
entanglement among these states when they all have the same 〈nB〉. The points of PCS are bounded
by the curve of PS from the top. (Notice that states used for plotting ‘PCS-etlg’ are optimized for
each λ, they are no more the optimal states with the largest entanglement for each 〈nB〉. For the
same 〈nB〉, PCS states can have different combinations of ra, rb, and λ, so we observe the u-turn
shape of the ‘PCS-etgl’ curve around 1.6.)
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(a) In this figure, we compare Quantum Chernoff bounds among states excpet PCS
under the same signal strenght, i.e., the same average photon number 〈nB〉 of the
mode B. It is shown that given the same 〈nB〉, detecting using TMSS can get the
lowest quantum Chernoff bound.

(b) Here we shown quantum Chernoff bounds of PCS states with respect to the
signal strength of detecting states. Again we sample ra and rb to plot scattered
points. It is shown that these scattered points of PCS states are bounded by the
curve of PS state from the bottom.

Figure 4.7: Quantum Chernoff bound with respect to the signal strength, i.e., the average photon
number 〈nB〉 of the mode B. Recall that the mode B is sent out for detection
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detecting state. We would choose TMSS, as it has the largest entanglement under the same 〈nB〉.

We illustrate in Fig. 4.7 how quantum Chernoff bound changes with respect to 〈nB〉 to show that

our strategy is correct. TMSS achieves the lowest quantum Chernoff bound among these states

under the same 〈nB〉. then PS and PSA follows. PA and PAS fall far behind, particularly for

〈nB〉 < 1. Their minimum 〈nB〉 is 1.0, however, the curves of other states start form (0.0, 0.5). In

Fig. 4.7b, PCS states with different values of ra and rb are sampled and shown with scatter plot.

It is clearly seen that these scatter points are bounded by the curve of PS as like what we have

observed in Fig. 4.6. So under the same 〈nB〉, the optimal PCS state which achieves the lowest

quantum Chernoff bound reduce to a PS state. The results shown here is rather different from the

results shown in Fig. 4.5, where comparisons are made under the same squeezing strength. We get

reversed ranking order from that in Sec. 4.2.1.

So the strategy of choosing optimal states for detecting depends on what constraints we have

on states. First if we can choose detecting states freely, TMSS is the optimal one. If these is

a constraint on the signal strength of mode B, TMSS can achieve the lowest quantum Chernoff

bound for a given value of 〈nB〉 as shown in Fig. 4.7a. Meanwhile if there is no constraint on

the signal strength of mode B, TMSS is still the one cost the least detecting power when the same

quantum Chernoff bound is obtained. Second if only have limited TMSS sources available in

our lab, we could consider applying additional non-Gaussian operations on TMSS to obtain better

performance.

It is notices that Fig. 4.7a is like a mirroring of Fig. 4.6 about the x-axis. Meantime in Sec. 4.2.1,

Fig. 4.5a is like a mirroring of Fig. 4.2a. Both Fig. 4.6 and Fig. 4.2a show how entanglement

changes. It again indicates that entanglement is the key quantum resource behind quantum illu-

mination. Form the curves of entanglement, we can predict how well states perform in quantum

illumination.

4.3 Asymmetrical PCS states

We have mentioned in Sec. 4.2.1 that the PCS states which have the largest entanglement under

the same λ do not always result in the best performance. Here we show with an example to explain
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the reason behind. First, we notice that the model of quantum illumination shown in Fig. 4.1

is asymmetrical, because the signal mode B and the idler mode A go through rather different

channels. Second, recall that the PCS states can have asymmetrical operations on the two modes

respectively as

PCS =
√
N3

(
taâ+ raâ

†) (tbb̂+ rbb̂
†
)
|TMSS〉 (4.10)

By setting unequal values for ra and rb, we get asymmetrical PCS states. One aspect of asymmetry

is that two modes can have different average photon numbers. We show how the average photon

numbers of two modes change with respect to ra and rb in Fig. 4.8, where we set λ = 0.0995. It is

not strange that each mode achieve the largest average photon number if its coefficient ri(i = a, b)

for the creation operator is 1.0. As the mode B is sent out for detection, it must be large enough to

resist noise.
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Figure 4.8: Average photon numbers of each mode for PCS states with respect to ra and rb. (left)
Average photon numbers 〈nA〉 of the mode A, which is retained in the lab. (right) Average photon
numbers 〈nB〉 of the mode B, which is sent out for detection. Here we set λ = 0.0995 in both
the left and the right sub-plots. For comparison, TMSS with the same value of λ has an average
photon number of 0.1 for each mode.

An example is illustrated in Fig. 4.9 to show how entanglement and signal strength affect the
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performance of quantum illumination with PCS states. The parameters we set are Nth = 1.0,

R = 0.01, and λ = 0.0995. The entropy of entanglement E is symmetrical with respect to the

anti-diagonal, where ra = rb. There is a symmetrical L-shaped dark red band, where the state has

larger entropy of entanglement. However, the quantum Chernoff bound is not symmetrical about

the anti-diagonal. There is still a L-shaped band, which matches roughly the L-shaped band shown

in the figure of E. However, the optimal area which has lower quantum Chernoff bound moves

to the bottom right corner of the L-shaped band, where 〈nB〉 is larger as shown in Fig. 4.8. The

results for the quantum Chernoff bound are as expected, because both the entanglement and the

signal strength affect the performance of quantum illumination. Therefore when we use PCS states

for quantum illumination, an asymmetrical one where 〈nB〉 > 〈nA〉 will outperform symmetrical

input states where 〈nB〉 = 〈nA〉.
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Figure 4.9: (left) Entropy of entanglement for PCS states with respect to ra and rb. (right) Quantum
Chernoff bound for PCS states with respect to ra and rb. In both the right and the left sub-plots,
we set Nth = 1.0, R = 0.01, and λ = 0.0995.

The results shown here again prove our conclusion that both the entanglement and the signal

strength of the detecting state would affect the error probability of quantum illumination. From

the quantum side of view, larger amount of entanglement results in larger quantum correlations
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between two modes. From the classical side of view, stronger signals are less vulnerable to noisy

and lossy environment.
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5. SUMMARY AND CONCLUSIONS

We have studied the trade-off relation between information gain and output fidelity for the case

of a QND measurement of photon numbers based on a cavity-QED setup. The information gain

has been quantified either by IM based on the mutual information or by IF based on the concept

of classical fidelity. In particular, we have investigated from an information theoretic viewpoint

how the information gain and the output fidelity behave as we vary the measurement strength or

the number N of successive measurements. We have shown that both the information quantifiers

IM and IF exhibit very similar behaviors for all cases considered here (qubit states and coherent

states), thus the trade-off relation between information gain and the output fidelity remains almost

the same regardless of the measure of information gain.

To illustrate our analysis, we have considered two specific classes of initial states – qubit states

and coherent states. In either case, the cavity is initially prepared in an unknown pure state with

a certain probability. For a single weak measurement, the optimal measurement strength depends

on the range of all possible photon numbers and a stronger measurement does not necessarily lead

to more information gain. For the case of successive weak measurements, the information gain

increases monotonically with respect to the number N of measurements, while the fidelity shows

an oscillatory decreasing behavior. This results from the interference terms with different photon

numbers. Thus, more information gain does not always lead to a worse fidelity. This may deserve

further study to gain more insight into the trade-off relation occurring in quantum measurements,

which may also have some practical implications.

When it comes to state protection using quantum measurement reversal, we first reviewed

the ideal three-stage protection using monitored partial measurement and quantum reversal. We

pointed out that it does not actually ‘suppress’ amplitude damping, but just selects and restores

uncollapsed states and discards the others. So it is required that the monitoring efficiency, on which

the selection relies on, should be perfectly 100%. Then we studied how quantum states evolve

under three-stage protection with finite effective monitoring efficiency. Single-qubit states and
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two-qubits entangled states were studied. Fidelity and concurrence were calculated to evaluate the

performance. Theoretical expressions were derived, and specific numerical results were illustrated

in plots. A criterion that decides whether to use the three-stage protection was given. The optimal

strategy of applying the protocol was also studied.

Monitoring efficiency influences the effects of the three-stage protection a lot and should be

considered carefully in practice. Introducing a monitored partial measurement of strength ps at the

first stage has dichotomy effects especially under finite monitoring efficiency. In one hand, it brings

qubits closer to the ground state and makes them less vulnerable to amplitude damping. In the other

hand, the monitored partial measurement itself is also a amplitude-damping process, therefore it in-

troduces extra equivalent damping strength. Such negative effect becomes distinct under non-ideal

monitoring. Generally the effect of the three-stage protection is weakened under finite monitoring

efficiency. And the negative effect dominates when the original amplitude-damping strength d is

weaker and ps is strong. If the criterion for η̄ given in Eq. (3.17) cannot be satisfied, it is better

to seek other protection protocols for help. A detection-free monitoring protocol similar to what

is demonstrated in the linear optical setup could be a good solution. However, its feasibility for

other physical implementations still needs to be studied. A general detection-free protocol may be

of interest for further research.

We also explored the performance of different two-mode entangled states for quantum illu-

mination, including TMSS and non-Gaussian states obtained by applying photon subtraction and

photon addition operations to TMSS. We evaluated the Helstrom limits and the quantum Chernoff

bounds with respect to squeezing strength and signal strength. Then we compare the performance

of these non-Gaussian states. We also explored the performance of asymmetrical PCS states gen-

erated by an asymmetrical coherent superposition of both photon subtraction and addition.

We conclude that non-Gaussian operations can enhance the performance of quantum illumi-

nation, i.e., obtain lower error probability, by introducing both larger entanglement and larger

average photon numbers. Both factors affect the performance of quantum illumination, the for-

mer is a quantum effect, and the latter is a classical one. However, if the signal strength must
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be constrained, TMSS performs the best given the same average photon number. When choosing

PCS as the detecting state, we would consider an asymmetrical configurations to achieve lower

error probability by making the signal (mode B) stronger than the idler (mode A). It is also pos-

sible to make many other kinds asymmetrical non-Gaussian states beside PCS stats. For example

by two photon-subtraction operations on one mode and just one photon-addition on the other. The

asymmetrical properties of the quantum illumination channel need further study to find the optimal

detecting states.
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APPENDIX A

EFFECTIVE DISPERSIVE ATOM-FIELD INTERACTION IN THE QND MEASUREMENT

Consider a three-level atomic system in a cascade configuration [90, 5]. The transitions |i〉 →

|e〉 and |e〉 → |f〉 are allowed, and the transition |i〉 → |f〉 is forbidden. The frequency of cavity

field ω is detuned from ωie by an amount ∆ = µ−ωie. ∆ is small compared with other transitions.

|i〉 and |e〉 are affected by the atom-field coupling, meanwhile |f〉 is not affected. Neglecting the

Figure A.1: Atomic Levels

far detuned level |f〉, we find the Hamiltonian for the atom-field interaction is given by

H =
1

2
~ωieσz + ~ωaa† + ~g

(
σ+a+ a†σ−

)
, (A.1)

where σz = |i〉〈i| − |e〉〈e|, σ+ = |i〉〈e|, and σ− = |e〉〈i|. The Hamiltonian matrix in the basis of

dressed states |i, n− 1〉 → |e, n〉 is given by

Hn = ~

(n− 1)ω + ωie
2

g
√
n

g
√
n nω − ωie

2

 (A.2)
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The eigen equation is Hn |ψn〉 = En |ψn〉. The eigen values can be obtained by solving

det

(n− 1)ω + ωie
2
− En

~ g
√
n

g
√
n nω − ωie

2
− En

~

 = 0, (A.3)

which turns to be

E2
n

~2
− (2n− 1)ω

En
~

+
1

4
(2n− 1)2 ω2 − ∆2

4
− g2n = 0. (A.4)

The solutions are

En± = ~
(
n− 1

2

)
ω ± 1

2
Ωn, (A.5)

where Ωn =
√

∆2 + 4g2n. The corresponding eigenstates are

|ψn+〉 = cos
φ

2
|i, n− 1〉+ sin

φ

2
|e, n〉 ,

|ψn−〉 = − sin
φ

2
|i, n− 1〉+ cos

φ

2
|e, n〉 ,

(A.6)

where

φ = arctan

(
−2g
√
n

∆

)
, sin

φ

2
=

√
Ωn + ∆

2Ωn

, and cos
φ

2
=

√
Ωn −∆

2Ωn

. (A.7)

Now we consider the case where ∆ is large compared with 2g
√
n, so that

2g
√
n

∆
� 1, φ→ π−, sin

φ

2
≈ 1, cos

φ

2
≈ 0, and Ωn ≈ ∆ +

2g2n

∆
(A.8)

Therefore the eigenstates and corresponding eigenvalues become

|ψn+〉 = |e, n〉 , En+ = ~
(
nω − 1

2
ωie

)
+

~g2n

∆

|ψn−〉 = |i, n− 1〉 , En− = ~
[
(n− 1)ω +

1

2
ωie

]
− ~g2n

∆

(A.9)
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We find that photon numbers are not changed, except that the energy levels are perturbed by either

positive and negative ~g2n
∆

for |e, n〉 and |i, n− 1〉. The energy shift per photon for |e, n〉 is

δ =
~g2

∆
. (A.10)

Therefor there is a coupling between cavity photon numbers and atomic level |e〉, whose strength

is measured by δ. We can write the interaction Hamiltonian as

HI =
~g2

∆
a†a⊗ |e〉〈e| . (A.11)

If we consider the atomic Hilbert space spanned by |e〉 and |f〉. The state |f〉 is not affected by the

coupling. Therefore we have the effective Hamiltonian given by

H =
~
2
ωefσz + ~ωa†a+

~g2

∆
a†aσ+σ−, (A.12)

where σz = |e〉〈e| − |f〉〈f |, σ+ = |e〉〈f |, and σ− = |f〉〈e|.
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APPENDIX B

HELSTROM LIMIT AND QUANTUM CHERNOFF BOUND

B.1 Quantum state discrimination

Let us assume that a given quantum states is secretly prepared either in state ρ0 or ρ1 with

probabilities π0 and π1 respectively. An observer’s task is to perform any possible quantum mea-

surement to make the “best" guess on the state’s true identity. If the“best" here means the minimum

error probability, we should find a proper set of {Eb} to minimize

Pe ≡ min
{Êb}

∑
b

min
{
π0tr(ρ̂0Êb), π1tr(ρ̂1Êb)

}
. (B.1)

If we make a binary-valued POVM {E0, E1} on the state, we get the minimum error probability

as [110]

Pe = π0 tr(ρ̂0Ê1) + π1 tr(ρ̂1Ê0). (B.2)

B.2 Helstrom limit

The optimal error probability to distinguish two quantum states is given by the Helstrom

limit [111],

Pe =
1

2
(1− tr|π1ρ1 − π0ρ0|) =

1

2
(1− ‖π1ρ1 − π0ρ0‖1) , (B.3)

where |A| =
(
A†A

) 1
2 , i.e. the norm of A. It can be proved as follows. First we introduce a

Hermitian operator

Γ ≡ π1ρ1 − π0ρ0 =
d∑

k=1

λk |k〉〈k| (B.4)
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Using the fact that E0 + E1 = I , we get

Pe = π0tr
(
ρ̂0(I − Ê0)

)
+ π1tr(ρ̂1Ê0)

= π0trρ̂0 − π0tr(ρ̂0Ê0) + π1tr(ρ̂1Ê0)

= π0 + tr
(

(π1ρ̂1 − π0ρ̂0)Ê0

)
= π0 + tr

(
ΓE0

)
= π1 − tr

(
ΓE1

)
.

(B.5)

Using the spectral decomposition of Γ, we have

Pe = π0 +
d∑
k

λk〈k|E0|k〉 = π1 −
d∑
k

λk〈k|E1|k〉 (B.6)

To make Pe as small as possible, we would like such a condition that
∑d

k λk〈k|E0|k〉 is as small as

possible and that
∑d

k λk〈k|E1|k〉 is as large as possible. Γ is neither positive- nor negative-definite,

suppose that

λk < 0 for 1 ≤ k < k0

λk = 0 for k0 ≤ k < k1

λk > 0 for k1 ≤ k ≤ d.

(B.7)

To satisfy the optimal condition mentioned above, the optimal measurement operators can be con-

structed as follows

E0 =

k0−1∑
k = 1

|k〉〈k|, E1 =
d∑

k = k0

|k〉〈k| (B.8)

Therefore we have

Pe = π0 −
k0−1∑
k = 1

|λk| = π1 −
d∑

k = k0

|λk|. (B.9)

Add two terms together, we get

Pe =
1

2

(
1−

∑
k

|λk|
)

=
1

2
(1− Tr|Γ|) , (B.10)
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where |Γ| =
(
Γ†Γ
) 1

2 , i.e. the norm of Γ. The trace norm Tr|A| ranges from 0 to 1, therefore

error probability ranges from 0 (two states are orthogonal therefore perfectly distinguishable) to

0.5 (random guessing).

If there are N > 1 identical copies of the quantum state upon which meascurements can be

performed. One could imagine making a sophisticated measurement on all N quantum systems at

once. The Helstrom operator becomes

ΓN = π1ρ
⊗N
1 − π0ρ

⊗N
0 , (B.11)

which is hard to evaluate because of high dimensionality. One more drawback is that the Helstrom

limit is not monotonicity under taking tensor powers. One can easily find states ρ, σ, ρ′, σ′ such

that tr|ρ− σ| < tr|ρ′ − σ′| but tr|ρ⊗2 − σ⊗2| > tr|ρ′⊗2 − σ′⊗2|.

For the trace distance and quantum fidelity for states ρ0 and ρ1, we have the following relation

1

2
Tr|ρ0 − ρ1| ≤

√
1−

(
Tr

√
ρ

1/2
0 ρ1ρ

1/2
0

)2

. (B.12)

When π0 = π1 = 0.5, we can derive that

Pe(N) ≥ 1

2

(
1−

√
1− Tr

[
ρ

1/2
0 ρ

1/2
1

]2N
)
, (B.13)

which gives a lower bound for the Helstrom limit.

B.3 Quantum chernoff bound

Given N identical copies of a state drawn from ρ0 and ρ1 with probability π0 and π1 respectively,

the Helstrom limit is given by

Pe =
1

2

(
1− tr|π1ρ

⊗N
1 − π0ρ

⊗N
0 |
)
. (B.14)
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The quantum Chernoff bound [101] gives an asymptotically tight uppper bound for the Helstrom

limit.

Pe(N) ≤ λNQCB, (B.15)

where

λQCB = min
0≤s≤1

Tr|ρs0ρ1−s
1 |. (B.16)

It can be proved that Tr [A+B − |A−B|] /2 ≤ Tr|AsB1−s|. Now let A = π0ρ
⊗N
0 and B =

π1ρ
⊗N
1 , we have

Tr[π0ρ
⊗N
0 + π1ρ

⊗N
1 − |A−B|]/2 ≤ Tr|πs0π1−s

1 ρs⊗N0 ρ
(1−s)⊗N
1 |

[π0(Trρ0)N + π1(Trρ1)N − Tr|A−B|]/2 ≤ πs0π1−s
1 Tr|ρs0ρ1−s

1 |N

1

2
(1− Tr|A−B|) ≤ min

0≤s≤1
Tr|ρs0ρ1−s

1 |N
(B.17)

The last equation is exactly

Pe(N) ≤ λNQCB (B.18)
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APPENDIX C

CODE SAMPLE FOR NUMERICAL CALCULATIONS

C.1 Code sample for creating density matrix in laser2mode.py

""" two-mode laser, TMSS and non-Gaussian states """

import qutip as qu

import numpy as np

class LaserTwoMode(object):

"""A class for two-mode lasers"""

def __init__(self, l, n_max):

"""

To initialize a two-mode state.

Parameters

----------

l: float

lambda factor defined in equations of states

n_max: integer

maximum photon number for calculation is n_max - 1

Return

-----

ValueError:

when n_max is not valid

"""
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if n_max > 0:

self.n_max = n_max

self.lmd = l

self.state_name = None

self.state = None

else:

raise ValueError("N must be a positive integer.")

class TMSS(LaserTwoMode):

"""

Two-mode squeezed state |TMSS \rangle = sum_0^n \lambda^n |n,

n\rangle

Parameters

----------

l: double float

state parameter, for TMSS l = tanh(s), where s is the squeezed para

n_max: positive int

photon truncation number as we are doing numerical calculation

expr.set_input_laser(s_name, l) i.e. photon numbers can be in [0,

n_max - 1]

Return

------

qutip.Qobj()

a qutip object, a TMSS in bra form (column vector)

"""

def __init__(self, l, n_max):

super().__init__(l, n_max)

self.state_name = "TMSS"
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self.state = qu.Qobj(np.sum([l ** n * qu.tensor(qu.basis(n_max,

n), qu.basis(n_max, n))

for n in np.arange(n_max)[::-1]])).unit()

self.num = qu.expect(qu.num(self.n_max), self.state.ptrace(0)) *

2

self.exact_num = l ** 2 / (- l ** 2 + 1) * 2

self.entanglement = qu.entropy_vn(self.state.ptrace(0))

class PS(LaserTwoMode):

def __init__(self, l, n_max):

"""

Photon subtracted state |PS> = a b |TMSS>

Parameters

----------

l: double float

state parameter, for TMSS l = tanh(s), where s is the squeezed

para

n_max: positive int

photon truncation number as we are doing numerical calculation

i.e. photon numbers can be in [0, n_max - 1]

Return

------

qutip.Qobj()

a qutip object, a photon subtracted state in bra form

"""

super().__init__(l, n_max)

self.state_name = "PS"
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self.state = qu.Qobj(np.sum([(n + 1) * l ** n *

qu.tensor(qu.basis(n_max, n), qu.basis(n_max, n))

for n in np.arange(n_max)[::-1]])).unit()

self.num = qu.expect(qu.num(self.n_max), self.state.ptrace(0)) *

2

self.exact_num = 4 * l ** 2 * (l ** 2 + 2) / (1 - l ** 4)

self.entanglement = qu.entropy_vn(self.state.ptrace(0))

C.2 Code sample for running simulations qi.py

""" Quantum Illumination """

import numpy as np

import qutip as qu

from scipy.sparse import spdiags

from scipy.optimize import minimize

from qutip.sparse import sp_eigs

from qillumi import laser2mode as l2m

class QIExpr(object):

"""

Automatically numerical quantum illumination experiment

"""

def __init__(self, n_max):

"""

Initialize the QuIllumin object.

Set the maximum photon number used for numerical simulation

"""
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self.n_max = n_max # Fock numbers are in [0, n_max - 1]

self.laser = None # laser used for experiment

self.reflectance = None # reflectance of the beam splitter

self.nth = None # average photon number of the thermal state

self.thermal_0 = None # thermal state where an object may be

embedded in

self.thermal_1 = None # thermal state adjusted by the reflection

factor

self.qhb = None

self.qcb = [0.5, 0.5]

def __create_laser(self, name, l, rs=False):

"""

Setup the entangled laser source for detection

"""

laser = None

if name == ’TMSS’:

laser = l2m.TMSS(l, self.n_max)

elif name == ’PS’:

laser = l2m.PS(l, self.n_max)

elif name == ’PA’:

laser = l2m.PA(l, self.n_max)

elif name == ’PSA’:

laser = l2m.PSA(l, self.n_max)

elif name == ’PAS’:

laser = l2m.PAS(l, self.n_max)

elif name == "PCS":

laser = l2m.PCS(l, self.n_max, rs)
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return laser

def set_input_laser(self, state_name, lmd, rs=False):

"""

Setup the two-mode entangled laser as input

Parameters

----------

state_name: string

to specific what kind of laser as an input

lmd: float

lambda parameter for the laser, lmd = (N / (1 + N)) ** 0.5

rs: 2-elements tuple of float

used for PCS state

Returns

-------

no return, alternate self.laser inplace

"""

self.laser = self.__create_laser(state_name, lmd, rs)

def set_environment(self, reflectance, nth):

"""

Set up the thermal noise bath

Parameters

----------

reflectance: float

reflectance of the possibly-exciting target object

nth: float

average photon number of the thermal noise
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Returns

-------

no return, alternate self.thermal_0 and self.thermal_1 inplace

"""

self.reflectance = reflectance

self.nth = nth

self.thermal_0 = qu.thermal_dm(self.n_max, nth)

self.thermal_1 = qu.thermal_dm(self.n_max, nth / (1 -

self.reflectance))

def __evolve_rho0(self):

"""

Output state rho 0 if an object is absent

"""

rho_ab = qu.ket2dm(self.laser.state)

return qu.tensor(rho_ab.ptrace(0), self.thermal_0) # rho_A

(index 0) is kept here.

def __evolve_rho1(self):

"""

Output state rho 1 if an object is present

"""

rho_ab = qu.ket2dm(self.laser.state)

rho_abc = qu.tensor(rho_ab, self.thermal_1)

xi = np.arcsin(np.sqrt(self.reflectance))

# state A unchanged, tm_mixing acted on state B and thermal

op = qu.tensor(qu.qeye(self.n_max), l2m.tm_mix(xi, self.n_max))
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rho_1 = op * rho_abc * op.dag()

# Notice that we kept 0, and 1, as the order of a, b, c is kept

after

# mixing when we use the second labeling method

return rho_1.ptrace([0, 2]) # keep A and B’ (index 0, 2 for the

second labeling method)

def qu_helstrom(rho0, rho1, p0=0.5, M=1):

""" Calculate Helstrom error probability

which is defined as

P_e = 0.5 (1 - ||p1 * rho1 - p0 * rho0||)

pi_0, rho_0: state 1 and its a priori probability pi_0

pi_1, rho_1: state 2 and its a priori probability pi_1

M: number of copies

|| rho || is the trace norm

"""

if M == 1:

q1 = 0.5 * (1 - ((1 - p0) * rho1 - p0 * rho0).norm())

return q1

else:

pass # TODO: for those M != 1

def qcb_s(s, rho0, rho1):

"""

Tr[rho ** s - rho ** (1 - s)]
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"""

return (power(rho0, s) * power(rho1, 1 - s)).tr().real

def qu_chernoff(rho0, rho1, approx=False):

""" Approximated Q for QCB

Actually the trace of sqrt(rho_1) * sqrt(rho_2)

"""

if approx:

# s = 0.5

return 0.5, (rho0.sqrtm() * rho1.sqrtm()).tr().real

else:

res = minimize(qcb_s, np.array([0.5]), args=(rho0, rho1,),

method=’L-BFGS-B’, bounds=[(0, 1)])

s = res.x[0]

if 0 <= s <= 1:

return s, qcb_s(s, rho0, rho1)

else:

raise ValueError("s should be within [0, 1].")
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