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ABSTRACT 

The insistent threat of natural disasters has invoked a plethora of literature on the 

vulnerability of communities. Understanding the role socio-demographics play in disaster 

adjustment is becoming an increasingly important aspect for disaster adaptation. This thesis 

examines the spatial adjustments of socially vulnerable populations to the 2008 Hurricane 

Ike by estimating the effects of damage on the changes of socially vulnerable populations 

between 2000 and 2015. This is done in an effort to address the inequality in disaster 

impacts across vulnerable segments of the population. Block groups within Galveston 

County are used to quantitatively index the drivers of social vulnerability in order to 

analyze the correlation with inundation levels brought by Hurricane  Ike. Furthermore, 

multivariate statistical models are used to understand household-level adjustments to 

different types of flood zones and inundation levels. Particular attention is given to the 

spatial error dependence and models are adjusted for spatial autocorrelation. Local 

Indicators of Spatial Autocorrelation (LISA) are also conducted to understand the spatial 

relationships between social vulnerability and damages. Overall, the results of regression 

models indicate that Socially Vulnerable populations have moved out of high damage 

areas. The LISA model also indicated a decrease in the clustering of social vulnerability in 

areas with high levels of inundation. These adjustments offer important insights into the 

recovery of Galveston County post Ike and can help inform disaster policy.  
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CHAPTER I  

INTRODUCTION  

 

 

1.1 Introduction   

Disasters, while commonly seen as external and arbitrary, bearing no mind to the social 

situation of race or class, are inadvertently spatial phenomena and are not spatially random. In 

fact, the social constructs which oppress populations are exceedingly relevant in the context of 

disasters, and the ability to adapt, withstand and recover from a disaster event is linked to social 

infrastructure (Elliott and Pais, 2006). Among disasters floods, including storm surge events, are 

some of the most persistent and costly (Brody et al., 2007). These events are expected to become 

more severe and frequent with climate change and the resultant sea level rise (IPCC, 2007).  

The threat of more extreme and frequent floods and surge events are further exacerbated 

by growing populations on the coast. Living on the coast provides many benefits including 

access to jobs and resources, as well as quality lifestyle brought by water amenity. Not 

surprisingly, coastal regions are some of the fastest growing areas globally (Creel, 2003 ). 

Approximately 3 billion people live within 200 kilometers of a coastline, and that number is 

predicted to double by the year 2025, exposing a greater number of people to coastal hazards and 

disasters (Creel, 2003 ). Biophysical hazards become disasters when when they intersect with 

human lives and livelihood (Nakagawa and Shaw, 2004; Perry and Quarantelli 2005; Quarantelli, 

1989; Quarantelli and Dynes 1977; Smith, 2006). However, the degree of impacts depends on 

various factors including socio-economic conditions of the region (Cutter, 1996) and its adaptive 

capacity to absorb persistent disturbances, such as Hurricanes, and retain vital economic and 

social structures (Adger et al., 2005; Holling, 1973; Walker, Holling, and Carpenter, 2004).  

While assets (e.g., homes and business) at risk can increase the potential for economic losses, the 
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brunt of this loss is particularly felt by socially vulnerable populations because they may lack the 

resources to readily adapt (Brooks et al., 2005). Moreover, poor institutions (both the social and 

public) could further degrade the adaptive capacity (Wijkman and Timberlake, 1988.) Adaptive 

capacity refers to the action of a system to manage, cope or adjust to changing conditions, in this 

case hazards (Smit and Pilifosova, 2003)  

Given preponderant scientific consensus that flooding is going to become more frequent 

and damaging, understanding the socio-economic drivers of vulnerability and adaptive capacity 

of vulnerable segments of population are critical and will help to identify the challenges of 

disaster adaptation and inform public policy pertinent to disaster management and planning.  

1.2 Study area  

Galveston County, which is located on the upper Texas Gulf Coast about 25 miles south 

of Houston, is a large metropolitan area encompassing the Galveston bay, East bay, and West 

Bay (Figure 1). It is bounded by Harris and Chambers counties to the North and Brazoria County 

to the West. To the East and South, it is bounded by The Gulf of Mexico. Fourteen cities make 

up the County, including:  Galveston, Dickinson, Bolivar, Clear Lake Shores, Kemah, La 

Marque, Bacliff, Jamaica Beach, Tiki Island, Bayou Vista, Santa Fe, Hitchcock and San Leon. 

The area is rich in architecture and history, and its citizens have a strong sense of place and are 

protective of its unique character and distinct identity (City of Galveston, 2009).  Unsurprisingly 

the majority of the economy is reliant on the various natural resources and the most prevalent 

industries in the area include: fishing, shipping via ports, petrochemical, and tourism (City of 

Galveston, 2009). Geographically the County is 874 square miles, and a large portion of 

Galveston County is Galveston island, a low lying micro tidal barrier island. 
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Despite the many benefits of coastal living there is a high risk for coastal storms in 

Galveston County. In fact, the South Eastern Gulf of Mexico is one of the most Hurricane  and 

flood prone areas in the United States, and on average this area experiences a major Hurricane  

every 15 year (Roth, 2000). Galveston bay, which corresponds to the study area, experienced 

sixteen Hurricanes since 1850. Due to rising sea levels the National Oceanic and Atmospheric 

Administration (NOAA) predicts that the frequency of surge events in this region will increase 

dramatically and surge events could become as frequent 200 days a year with 80 to 100% 

attributed to higher tides (NOAA, 2018). While disasters could overwhelm communities, they 

also open up a window of opportunity in the recovery phase to rebuild more resilient (Holling, 

2001). The seawall in Galveston island is a good illustration of a proactive public response to 

avoid future losses. The wall was built in response to the 1900 storm, the deadliest ever recorded 

Hurricane s in U.S. history, responsible for approximately 8000 fatalities.  Along with the 

seawall, following Hurricane Carla in 1961, Texas City constructed a levee system to protect 

Figure 2  Hurricane Ike Inundation levels by 

block group 

Figure 1: Galveston County 
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valuable industrial infrastructure. Despite mitigation efforts, this area continues to be 

overwhelmed by coastal storms and Hurricanes.  In an effort to delineate effective policy 

recommendations for coastal resilience this thesis analyzes the second most recent Hurricane to 

cause storm surge in the area, Hurricane Ike.  In September of 2008 Hurricane  Ike, a category 2 

storm, made landfall on the Texas coast causing 195 deaths and 29.6 billion dollars in damages 

(Hayden, 2010). However, waves and surge played the biggest role in damage for this storm 

(Kennedy et al., 2011).   Hurricane Ike had surge levels comparable to a category 5 storm, 

causing most of Galveston County to be inundated, with the average inundation level of 3.54 

feet, and the highest reaching 10 feet. Spatial distribution of depth is presented in Figure 2. 

Given size of its impacts, Hurricane Ike provides a natural experiment to analyze the changes in 

specific social conditions contributing to social vulnerability and post-disaster adjustment 

patterns. This will aid in policy recommendations for resilient recovery following surge events.   

1.3 Research Purpose and Objectives  

This study statistically examines the spatial distribution of socially vulnerable 

populations with relation to Hurricane  Ike inundation levels in Galveston County. The 152 block 

groups1 within the County are used to quantitatively analyze the correlation of social 

vulnerability with inundation levels. Inundation levels are used as a proxy to describe damage as 

there is no consistent data for damage across block groups.  Multivariate statistical models are 

used to understand adjustment across the segments of socially vulnerable populations by flood 

zones and inundation levels.  

Specifically, I address the following research question:  

                                                 
1 Only block groups which were consistent between years 2000 and 2015 were used for comparison.  
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• What are spatial adjustment patterns to disasters across vulnerable segments of 

population, and how can the impact of persistent storm surge events to socially 

vulnerable populations be mitigated? 

 To address this research question, this thesis has several research objectives. First, I 

identify the factors that influence social vulnerability and household adjustments to disaster. 

Second, I construct a social vulnerability index for 2000 and 2015 and statistically examine their 

changes along with the changes of socio-demographic make-up of Galveston County across 

damaged block group over time. Third, I determine the changes in clustering of socially 

vulnerable populations across space between the years 2000 and 2015.  

The following literature review section outlines the relevant literature. Next, the research 

methods section describes the data analysis process. The following section presents results, and 

the final section discusses the results relative to existing research and presents policy 

recommendations.  

 



 

6 

 

CHAPTER II  

LITERATURE REVIEW   

           This section reviews the relevant literature and methodological approaches to 

understanding social vulnerability to disasters, household adjustments based on changes in 

concentrations, as well as addresses the issues of social isolation and benefits of social mixing 

for disaster resiliency. 

2.1 Social Vulnerability   

Situational exposure and biophysical risk are not necessarily the only underlying factors 

for being “vulnerable” to a disaster event: social factors also contribute to vulnerability. Broadly, 

vulnerability can better be described as the inability to cope with a situation without external 

help (Brooks, 2003). More specifically, vulnerability can be defined as the state that exists within 

a system before a hazard event and communities ability to cope with hazards once they occur 

(Pelling, 2006). Therefore, vulnerability exists within a system independently of external hazards 

(Pelling, 2006). Further, social vulnerability is the social components (i.e. income, age, etc.), 

which amplify the negative outcomes post hazard. The interaction between a vulnerable social 

system and hazard, biophysical or otherwise, produces outcomes which can be measured in 

terms of physical or economic loss (Brooks and Adger, 2003).  

Moreover, vulnerability is not distributed equally across the population. Social 

dimensions which create inequalities in access to opportunities for certain groups and 

communities cause unequal exposure to risk and cannot simply be ignored in the context of 

natural disasters (Varley, 1994). Marginalized populations, or those with limited access to 

resources and political representation, are typically more susceptible to disaster as they have a 

lesser adaptive capacity (Daniels, Kettl, and Kunreuther, 2011; Smit and Pilifosova, 2003; 

Adger, 2003).   
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Social inequities construct the larger idea of social vulnerability. Social vulnerability has 

been described in a variety of ways but in the context of a disaster it has been defined as the 

susceptibility of marginalized groups risk for loss (Cutter, 2003). Researchers are in consensus 

about attributes of social vulnerability, including the lack of access to resources, limited access to 

political power, lack of social capital, poor building stock i.e. structural soundness and 

occupancy density, and age (Cutter, 1996; Cutter, 2003; Adger, 1999; Bohle, Downing, and 

Watts, 1994; Flanagan, 2011).  

 Of different age groups elderly and children are the most vulnerable groups in disaster 

events. The latter lack the ability to protect themselves because of lack of resources and 

information (Bohle et al.,1994; Flanagan, 2011; Cutter, 1996). While the former live on fixed 

incomes and may have health, problems effecting their cognitive and physical abilities to prepare 

and respond (Eidson et al. 1990; Schmidlin and King 1995; Morrow 1999; Peek-Asa et al. 2003; 

White et al. 2006; McGuire et al. 2007; Rosenkoetter et al. 2007; Flanagan, 2011).  

Racial and Ethnic minorities in particular are challenged by natural calamities. Inequities 

for these groups are typically social, political, and economic, affecting their ability to prepare, 

cope, respond and recover from disaster (Flanagan, 2011; Elliot and Pais, 2006, Cutter et al., 

2003). The consequence of these inequalities is especially evident in housing. These groups tend 

to live in housing which is usually more densely occupied, less structurally sound, and in areas 

which are more susceptible to hazard (Flanagan, 2011; Elliot and Pais, 2006; Cutter et al., 2003).  

Finally, socioeconomic status affects both the hazard perception as well as the ability to 

prepare for (e.g. purchase hazard insurance, afford hazard-proof housing) and recover after a 

disaster (Fothergill, 2004; Flanagan, 2011; Elliot and Pais, 2006; Cutter et al., 2003).   

In order to quantify the various drivers of social vulnerability, composite indices, which 

aggregate multiple proxy indicators of social vulnerability into a single index, are created.  The 
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techniques for creation of these indices vary greatly in normalization, aggregation, weighting and 

component retention. There are three ways in which social vulnerability can be quantified 

through the creation of indices: (1) a deductive approach; (2) an inductive approach; and (3) a 

hierarchical approach. The deductive approach selects a limited number of variables deductively 

to create and index based on prior knowledge (Yoon, 2012). In order to normalize the data for 

the deductive approach there are a few methods of linear aggregation techniques used. These 

include the z-score transformation method, maximum value transformation method, and the Min-

Max rescaling transformation method. The z-score transformation method takes the summation 

of individual variables z-scores to create a composite social vulnerability score (For e.g., see 

Zahran et al., 2008). The second method is the maximum value transformation method which is 

the ratio of the value of variable (Xi) to the maximum value for the variable (Xmax) (For e.g., 

see Cutter et al., 2000, Wu et al., 2002, and Chakraborty et al., 2005). The third method used in 

the deductive approach is the Min-Max rescaling transformation. This method decomposes each 

variable into a range between zero and one by subtracting the minimum value (Xmin) and 

divides by the range of indicator values (Xmax) and subtracts the minimum value (Xmin) (For 

e.g., see Cutter et al., 2010, and Bernard 2007). The second way that social vulnerability can be 

indexed is the inductive approach. This approach differs as it is not limited in the number of 

variables selected (Yoon, 2012). Deductive approach variables are normalized using factor 

analysis or principal component analysis (PCA). PCA is an aggregation technique which 

transforms variables by reducing the dataset into a smaller set of inter-correlated components 

(For e.g., see Cutter et al., 2003, Boruff et al., 2005, Boruff and Cutter, 2010, Cutter and Finch 

2008, and Rygel et al., 2006). The third method used to create social vulnerability indices is the 

hierarchical approach. This approach uses ten to twenty indicators which are separated into sub-

indices (Tate 2012; Vincent 2004; Chakraborty et al. 2005; Hebb and Mortsch 2007; Flanagan 
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et al. 2011; Mustafa et al. 2011). Hierarchical approach variables are typically normalized 

using the min max rescaling method or Factor analysis (Tate, 2012). For this study the 

inductive method is used and variables are normalized using PCA. This method is used 

because it is most commonly found in the literature and offers the greatest ability to compare 

indices between years (Cutter et al., 2008).  

2.1.1 Mapping Social Vulnerability   

Social vulnerability is a spatial phenomenon; therefore, the practical application of these 

indices is through the use of maps. The usage of mapping allows researchers and policy makers 

to geographically identify the areas that may be in need of special attention, which is exceedingly 

relevant in the context of disasters.  Current research maps social vulnerability at the block group 

level, the smallest level at which census data is collected. However, the approach of mapping at 

such a small spatial scale is not without limitation. The availability of social and economic 

measures needed to construct a social vulnerability index are not always readily available at the 

block group level as opposed to the data on census tract, or County level (Schmidtlein et al., 

2008). However, the small spatial scale of block-groups offers the best representation of 

population needs for emergency managers and city planners. Several past studies have used 

block group level data to create social vulnerability indices (for e.g., see Van Zandt (2012) for 

Galveston County, TX, Rygel et al., (2006) for Hampton Roads, VA, Chakraborty et al., (2005) 

for Hillsborough County, FL.) While these studies use the block group level to analyze social 

vulnerability they to not look at the spatial adjustments of housholds temporally which is done in 

this Thesis.  

2.2 Household Adjustments  

           The ways in which households respond to disasters largely depend on their entitlements 

and assets, financial capacity, access to political power, and social capital (Bohle, Downing, and 



 

10 

 

Watts, 1994; Cutter, 1996). The latter refers to the networking, cultural and societal norms, and 

trust within social and economic activities (Nakagawa and Shaw, 2004). Following disaster there 

is often large dislocations of populations, and so examining the adjustments and drivers of 

adjustment is important for delineating effective disaster recovery policy (Davlasheridze and Fan 

2017; Coffman and Noy, 2011; Lynham, Noy, and Page 2017; Smith et al., 2006; Anttila-

Hughes and Hsiang, 2013).  

           Extant research highlights a few adjustment options including moving out of harm’s way, 

self-protection, and insurance (Smith et al. 2006; Davlasheridze and Fan 2017). While moving 

out of harm’s way may be the best option, availability of resources represents impediment to 

mobility for many and in particular for those economically disadvantaged. However, empirical 

evidence also indicates that not everyone who possesses financial resources relocates. For 

example, wealthier people may choose to return back and rebuild because they can afford 

rebuilding. Importantly, they return because they are able to self-protect (e.g., retrofitting homes) 

and insure (Varley, 1994). Low income households are also suggested to remain in damaged 

areas because of lack of resources to relocate and depressed housing market post-disaster (Smith 

et al., 2006). The lack of resources also implies that this segment of population is less likely to 

retrofit, hazard-proof homes or self-insure.  

           Home maintenance is a costly endeavor and may be less important for some than more 

immediate needs. Hazard protection, such as retrofitting of homes by investing in Hurricane  

shutters, elevating homes, filling etc., are also expensive and may not be top priority for resource 

constrained. While self-insuring, which entails putting money to the side in the event of 

misfortune, is not an option for the resource constrained. Hence, it is expected dwellings for poor 
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population to remain vulnerable to future hazard events. (Fothergill et al., 2004; Flanagan et al., 

2011; Cutter et al., 2003)  

               Households adjustments are not only influenced by their own financial resources (e.g., 

income), but governmental assistance and other financial resources following disaster 

(Davlasheridze and Fan, 2017; Kousky et al., 2018). Research indicates that public disaster aid 

can create perverse incentives by dissuading private individuals from undertaking self-

protection/self-insurance measures or purchasing private insurance in anticipation of disaster aid 

(Davlasheridze and Miao, forthcoming). Few recent studies empirically examine the effect public 

disaster aid has on the purchasing of private insurance. For example, Kousky et al., (2018) found 

that federal disaster grants given to individuals as housing and other needs assistance reduces 

flood insurance coverage. Davlasheridze and Miao (forthcoming) also examine this effect but 

focusing on Public Assistance (PA) programs of Federal Emergency Management Agency 

(FEMA), which targets community rehabilitation through post-disaster cleanup and 

infrastructure recovery. Their study suggests reduced insurance policies in response to increased 

PA program spending even though PA grants do not directly compensate individuals for their 

losses. Two possible explanation for such responses are discussed; one that PA signals federal 

disaster bail-out and may discourage private risk management in a similar manner as individual 

assistance does and second, public projects funded via PA grants could alter the risk perception 

of individuals (e.g., people may feel secure after large public investment in flood protection 

infrastructure).  Public projects targeting infrastructure recovery can incentivize homeowners to 

stay in high risk areas and businesses to reopen (Kunreuther, 2001; Lewis and Nickerson,1989; 

Baade, Bauman, and Matheson, 2007; Kousky and Zeckhauser, 2006; Davlasheridze and Fan, 

2017). However, public projects such as home buyouts, often initiated after a major disaster, 



 

12 

 

which seek to permanently relocate housing away from hazardous areas force relocation, and can 

reduce hazard vulnerability (Binder et al., 2015). 

While it is not recognized in research, social memory of communities, commonly 

referred to as shared experiences of social groups, also plays a role in how households respond to 

natural disasters (Tidball et al., 2010; Adger et al.,2005). The social memory of a community in a 

disaster-prone area is important because it helps people understand how to respond (evacuate or 

stay), cope (adjust to the situation before and after) and recover based on the lessons learned 

from past disturbances (Chamlee-Wright, 2013; Colten and Sumpter, 2008). These memories, 

when shared through social learning processes are important for the rebuilding and 

reorganization phase post-disaster (Olsson, Folke, and Berkes, 2004).  

2.3 Public housing, social mixing and gentrification  

Post disaster household adjustments can lead to further isolation of vulnerable groups. 

Socially vulnerable groups may be unequally exposed to displacement following disaster (Myers 

et al., 2011). In particular for Galveston County, one determinant of displacement may be the 

loss of public housing. Following Hurricane Ike, four public housing units on Galveston island 

were destroyed, causing 569 units to be demolished (Walters, 2018; Hamideh and Rongerude, 

2018). In April of 2009 the city made plans for recovery, which included the rebuilding of all 

destroyed public housing, but as of 2015 less than half had been rebuilt. The stalling of 

rebuilding is ultimately linked to the negative push back by the community (Walters, 2018; 

Hamideh and Rongerude, 2018). Community push back is not uncommon with public housing 

projects for a variety of reasons (Rohe and Burby, 1988) Specifically, many scholars address 

systematic social isolation or the negative “neighborhood effect” commonly associated with 

American ghettos (Watt, 2017). By living in segregated neighborhoods residents are limited in 

their access to resources, ability to escape poverty, and job opportunities which can lead to 
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higher crime rates (Rohe and Burby, 1988). This is specifically apparent for minorities for 

example living in the inner city (Sampson and Wilson, 1995). The effects of urban poverty and 

social isolation became hypervivid in the context of natural disasters in 2005 when Hurricane  

Katrina devastated New Orleans (Cutter et al., 2010). The underlying issues of urban poverty 

were exposed by news broadcasters as the cameras panned to the fetid living conditions of the 

poorest of the poor, trapped in homes and apartments as they had no means to evacuate 

(Jonkman et al., 2009) 

The scenes in New Orleans following Hurricane  Katrina displayed the devastating 

effects of urban poverty and the unequal exposures felt by income limited groups. However, 

urban poverty is not isolated to coastal regions, it is widespread throughout the Nation. Many 

social scientists agree that one of the leading causes of urban poverty is the spatial concentration 

of mono tenure estates (Watt, 2017; Gallie et al., 2010; Rankman and Quane, 2000). There has 

been a significant research and public focus on social mixing and revitalization policies, both 

urban and rural, to combat the issues of socially isolated housing, specifically the HOPE VI 

programs (Elliott et al., 2004). The HOPE VI program is federal program which focusses on 

replacing inner city public housing structures with integrated subsidized communities (Elliott et 

al., 2005; National Commission on Severely Distressed Public Housing, 1992). The idea is that 

the mixed tenure communities will give low income or marginalized groups better access to 

resources, political power, and greater ability to escape poverty through interaction with the 

middle class (National Commission on Severely Distressed Public Housing, 1992).  However, 

the widespread demolition of public housing in an effort to revitalize urban areas has often lead 

to the replacement of tenure as opposed to tenure mixing, where low mono-tenure estates are 

consequently taken over by middle mono-tenure estates, as well as the displacement of low 
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income populations (Popkin et al., 2007; Keene and Geronimus, 202011; Goetz2010; Byrne, 

2003).  

It is important, however, to note that gentrification does not solely occur based on urban 

policy. Natural and Disaster induced fluctuation in the housing markets can incentivize 

“outsiders” to take advantage of low cost housing as investment opportunities. Effectively 

changing the income stratification for the area which can lead to a “push out” effect for lower 

income residents as housing prices and taxes increase, and small businesses are replaced by big 

box stores.  This is currently the challenge faced by Port Aransas, Texas, which was devastated 

by Hurricane  Harvey in August of 2017. There has been a large influx of investors to this small 

coastal community threatening to change its identity, with many residents worried their town will 

soon become the “Florida Key’s” of the Gulf (Crow, 2018). The influx of investors to coastal 

communities not only threatens to reshape community identity, it can degrade social memory of 

communities. Moreover, the stagnation in public housing recovery may significantly contribute 

to the long-term post Ike adjustments for Galveston County because of inadequate access to 

housing resources, and changes in tenure stratification due to investment opportunities post 

disaster.  

Current research builds on past research; adopts a similar approach and examines 

adjustment patterns across socioeconomic groups in Galveston County and in response to 

Hurricane  Ike. It further extends the existing research by incorporating clustering of socially 

vulnerable populations in space. Throughout, the maintained hypothesis is that socially 

vulnerable populations will be more geographically concentrated in high risk and high damage 

areas following a disaster incident because of inability to leave, inability to rebuild, opportunistic 

adjustments in housing markets, and partially due to potential perverse incentives associated with 

disaster assistance programs.  
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CHAPTER III 

METHODOLOGY  

3.1 Data Description   

Data for this study came from various sources including American Community Survey of 

U.S. Census Bureau, Houston Galveston Area Council, The Harris County Flood Control 

District, and The Federal Emergency Management Agency (FEMA). 

Socio-economic and demographic block group level data for Galveston County for the 

years 2000 and 2015 were drawn from the Census American Community Survey (U.S. Census 

Bureau; American Community Survey, 2000; 2015). The variables used included race and 

ethnicity, number of people below poverty level,  female population ,  count  female headed 

households, count of renters, count of  owners, count of persons  with no vehicle, count  under 5 

years old, count  65 and older, count of  unemployed, number  receiving social security income, 

and count  without a high school diploma. These counts were converted into percentages and, the 

changes in percentages over the two periods were calculated. There were changes in block group 

lines from 2000 to 2015. Specifically, there were 211 block groups in 2000 and only 194 block 

groups in 2015. Only block groups that were matched between the two periods were considered 

for analysis.  

 Hurricane  Ike inundation level data were obtained from The Harris County Flood 

Control District. The data were spatially joined with the Block group shapefile in order to display 

average inundation levels by block group. Five levels of inundation were created including (i) 

less than 2ft; (ii) 2-4ft; (iii) 4- 6ft; (iv) 6- 8ft; and (v) 8-10ft (Figure 2). Categorizing inundation 

at different levels is intended to capture the varying degrees of effects inundation on changes in 

socio-economic characteristics of households across block groups and over-time.   
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Flood zone areas were drawn from the FEMA (FEMA, 2017). Flood zone data was 

spatial joined with block group data in ArcGIS and the percentage areas for each flood zone class 

were calculated. For this research, three different flood risk zones were created: (i) A zones (ii) X 

zones and (ii) V zones. A zone represents areas with a 1% annual chance of flooding in the 100-

year flood plain, V zones represent coastal areas in the 100-year flood plain with a 1% annual 

chance of flooding and coastal velocity hazard,  and X zone represents moderate to low risk 

areas outside of the 1% and 0.2% chance of annual flooding outside of the 500 year floodplain 

(FEMA, 2017). Flood zones in the model capture the already existing “objective” risk for 

flooding in the block group.  

  

Count of various socio-economic and demographic indicators were converted into 

percentages. Tables 1 and 2 report their summary statistics corresponding to years 2000 and 

2015 respectively. After creating percent’s thirteen of the variables, percent under 5 out of the 

total population , percent 65 and older out of the total population, percent renter occupied out of 

total housing , percent owner occupied out of total housing,  percent in poverty out of total 

population, percent female headed household out of total population, percent unemployed out of 

total employed population, percent female out of total population, percent not white out of total 

population, percent with no high school diploma out of population 25 and older, percentage of 

mobile homes out of total housing, percent receiving social security out of total population, and 

percent with no vehicle out of total population (Table 1 and 2) are used to to conduct principal 

component analysis, discussed in the following section and create Social Vulnerability (SV) 

indices. 

Lastly, The differences for the variables between the years 2000 and 2015 are taken 

(Table 3) in order to conduct regression analysis, which is discussed in subsection 3.4 below. In 
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order for the social vulnerability indices to be compared between the two years they were 

transformed into z-scores. This approach for comparability follows the approach taken by Cutter 

and Finch 2007 in their paper “Temporal and spatial changes in social vulnerability to natural 

hazards.” The difference between the transformed z-scores for SV indices was found for 2000 to 

2015, these are the values for regression analysis, discussed below.  

 

 

Table 1: Summary statistics 2000 

    Shares in 2000   

Variable Mean Std.Dev Min Max 

Percent in poverty  26.731 16.389 0 86.769 
Percent female headed household  44.109 18.355 0 94.659 
Percent no vehicle  10.280 11.653 0 69.733 
Percent unemployed 4.544 3.461 0 20.552 
Percent owner 64.769 22.511 1.780 100 
Percent receiving social security 
income  25.447 10.937 0 63.099 
Percent renter 35.230 22.511 0 98.219 
Percent of mobile homes 5.965 10.876 0 55.670 
Percent not white 42.801 26.209 3.618 100 
Percent 5 years and under  7.955 3.362 0 17.078 
Percent 65 years and older  12.611 6.958 0 43.444 
Percent female  51.332 4.680 27.298 65.119 
Percent with less than a 12th grade 
education  23.176 13.152 0 62.205 
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Table 2: Summary statistics 2015 

    Shares in 2015   

Variable Mean Std.Dev Min Max 

Percent in poverty  20.124 14.761 0 78.626 
Percent female headed household  15.096 11.081 0 57.209 
Percent no vehicle  8.659 10.507 0 71.756 
Percent unemployed 5.431 4.470 0 22.403 
Percent owner 62.996 24.237 5.549 100 
Percent receiving social security income  30.164 12.800 0 72.875 
Percent renter 37.004 24.237 0 94.450 
Percent of mobile homes 4.755 9.959 0 62.897 
Percent not white 45.392 23.934 0 100 
Percent 5 years and under  5.847 4.416 0 19.846 
Percent 65 years and older  14.492 7.930 0 39.930 
Percent female  51.012 6.383 22.227 68.845 
Percent with less than a 12th grade education  15.676 11.495 0 51.726 
          

 

Table 3: Summary Statistics and descriptions of variable differences  

 

 

 

Variable Description Mean Std.Dev Min Max

Dpctyoung The Difference in percent of the population 5 years and under from 2000 to 2015 -1.83291 5.228121 -17.07819 14.44945

Lpctyoung The Lag in percent of the population 5 years and under from 2000 to 2015 7.661277 3.294458 0 17.07819

Dpctold The Difference in percent of the population 65 and older from 2000 to 2015 1.656063 7.732376 -14.09782 34.8163

Lpctold The Lag in percent of the population 65 and older from 2000 to 2015 13.30119 6.805092 2.28321 43.44392

Dpercentren The Difference in percent of renter occupied housing units  from 2000 to 2015 2.978593 14.11201 -32.65145 41.29247

Lpercentren The Lag in percent of renter occupied housing units  from 2000 to 2015 37.41027 22.2659 1.22449 89.47928

Dpctowner The Difference in percent of owner occupied housing units  from 2000 to 2015 -2.978593 14.11201 -41.29247 32.65146

Lpctowner The Lag  in percent of owner occupied housing units  from 2000 to 2015 62.58973 22.2659 10.52072 98.77551

Dpctheadfemale The Difference in percent of female headed households  from 2000 to 2015 -29.65245 17.33242 -78.9632 9.99205

Lpctheadfemale The Lag in percent of female headed households  from 2000 to 2015 45.6382 16.71891 10.64815 84.39491

Dpctunemployed The Difference in percent of the popuation that is unemployed from 2000 to 2015 1.096139 5.452442 -20.55215 19.21534

Lpctunemployed The Lag in percent of the popuation that is unemployed from 2000 to 2015 4.686873 3.486315 0 20.55215

Dpctfemale The Difference in percent of female population from 2000 to 2015 0.3291956 7.350708 -33.02339 20.7777

Lpctfemale The Lag in percent of female population from 2000 to 2015 51.01873 4.718675 27.29821 59.93538

Dpctnotwhite The Difference in percent of the population that is not White from 2000 to 2015 5.306354 18.01012 -44.81467 53.08733

Lpctnotwhite The Lag in percent of the population that is not White from 2000 to 2015 43.17182 26.20435 3.618421 100

Dpctpoverty The Difference in percent of the population in poverty from 2000 to 2015 -5.377944 13.60433 -44.63659 38.80289

Lpctpoverty The Lag in percent of the population in poverty from 2000 to 2015 27.69473 15.3168 1.354582 72.95598

Dpctunder12 The Difference in percent of the population  with less than a highschool education from  2000 to 2015 -5.837317 11.68792 -39.52747 31.1288

Lpctunder12 The Lag in percent of the population  with less than a highschool education from  2000 to 2015 23.08382 12.31185 0 54.00844

Dpctmobilehome The Difference in percentage of mobile homes  from  2000 to 2015 -0.7214189 5.836099 -20.23161 21.63763

Lpctmobile The Lag in percentage of mobile homes  from  2000 to 2015 5.833261 10.71807 0 53.62903

Dpctsocials The Difference in percentage of the population receiving Social Security Benefits from  2000 to 2015 4.754415 12.35438 -28.57691 44.22518

Lpctsocials The Lag  in percentage of the population receiving Social Security Benefits from  2000 to 2015 26.4096 10.92725 3.904382 63.09859

Dpctnovehicle The Difference in percentage of the population without a vehicle from  2000 to 2015 -0.7613047 9.887895 -50.56689 34.17949

Lpctnovehicle The Lag in percentage of the population without a vehicle from  2000 to 2015 10.60341 11.35327 0 62.55411

DSV The Difference in Social Vulnerability from 2000 to 2015 0.0107883 0.6939685 -2.312634 1.679574

LSV The Lag in Social Vulnerability from 2000 to 2015 0.0542656 0.6678734 -1.510437 2.160639
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3.2 Principal Component Analysis 

To construct social vulnerability indices, principal component analysis (PCA) was 

employed.  PCA was developed by Karl Pearson in 1901 as a means to understand the 

relationships between independent variables in a least squared regression (Pearson, 1901). PCA 

is a rotation of the axis of original variables’ coordinate system to new orthogonal axes, principal 

axes, where the new axes match with the directions of maximum variation within the initial 

dataset. The maximum variation of the projected points represents the first principal axis, or 

principal component. Successive principal axes, which are orthogonal to the previous ones and 

maximize the variation, are determined to find the components of independent variables which 

describe maximum variation (Campbell and Atchley, 1981). PCA extracts the dominant patterns 

within a data matrix to create a smaller set of uncorrelated components (figure 3).  

 

 

Figure 3 Diagram for Principal component analysis 
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For this study, in order to retain the most influential components which described most of 

the variance within the data, the components were retained based on the Kaiser criterion, i.e.  

components for which eigenvalues were greater than or equal to 1. 

3.3 Construction of SV  

The variables used in the construction of the Social Vulnerability index (SV) included 

block group level percentages for female population, female headed households, renters, owner, 

population with no vehicle, population under 5 years old, and population 65 and older, 

population unemployed, population receiving social security income, and percent with less than 

high school degree.  Once the components were identified using PCA for each year the 

unweighted average of the components was taken to create SV index where each factor was 

assumed to have the same contribution to the block group’s overall social vulnerability, with 

positive values of SV indicating higher levels and negative values indicating lower levels of 

social vulnerability, respectively.  

3.4 OLS Model  

The regression analysis was used in order to examine the effects of Hurricane  Ike on the 

changes in socio-economic and demographic makeup of the block groups. To understand this 

effect the regression model was specified in equation (1) that follows:  

𝑦𝑗,2015
𝑘 -𝑦𝑗,2000

𝑘 = 𝛽0 +  𝛽1(𝑦𝑗,2000
𝑘 ) + 𝛽2𝑅𝑖𝑠𝑘𝑗 + ∑ 𝛾𝑗𝐷𝑗

5
𝑗=1 + 𝑒  (1) 

Where 𝑦𝑗,𝑡
𝑘 represents the proportion of households (or people) of type k in the census block j in 

time period t (t corresponds to 2000 and 2015 years). Household type k includes percent of 

people under 5 years, percent 65 and older, percent renter occupied units, percent owner 

occupied, percent of people in poverty, percent female headed household, percent unemployed, 

percent female population, percent non-white, percent with less than high school diploma, 

percentage of mobile homes, percent people receiving social security, and percent of people with 
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no vehicle. We also estimate the model in which 𝑦𝑗,𝑡
𝑘  corresponds to SV index for block group j 

at time t. Where Dj is the vector for five inundation levels capturing varying degree of impacts of 

Hurricane  Ike, where the omitted category is level one inundation (i.e., less than 2 feet).  It is 

expected that with increasing level of inundation the SV will increase. Last, Risk is the variable 

that captures inherent risk of flooding, represented by the two types of flood zones (A and V). 

The moderate and no flood risk zones are omitted levels. e is the error term assumed to be 

normally distributed.  

3.5 Simple OLS vs. Spatial Model 

Spatial autocorrelation within a set of variables can threaten the validity of OLS 

regression models. The presence of spatial error  indicates that the error term across different 

spatial units are spatially correlated, violating the assumption of uncorrelated errors. If there is 

spatial lag in the model the dependent variable y in blockgroup  i is affected by the independent 

variables in both block groups  i and j, and again the assumption of uncorrelated errors is 

violated. In such instances, a spatial autoregressive model is used to account for the 

autocorrelation in either the error or the lag of the dependent variable. 

In order to test for spatial autocorrelation spatial diagnostics were conducted based on the  

Lagrange Multiplier test. The two different models, one for lag dependent variable and one for 

error spatial correlation were estimated.  The spatial model that accounts for spatial lag 

dependency is specified by equation (2) and the model for spatial error is specified as equation 

(3) as follows:   

𝑦𝑗,2015
𝑘 -𝑦𝑗,2000

𝑘 = 𝛽0 + 𝜌𝑊𝑦 +𝛽1(𝑦𝑗,2000
𝑘 ) + 𝛽2𝑅𝑖𝑠𝑘𝑗 + 𝛽3𝐷𝑗 + µ  (2) 

𝑦𝑗,2015
𝑘 -𝑦𝑗,2000

𝑘 = 𝛽0 +  𝛽1(𝑦𝑗,2000
𝑘 ) + 𝛽2𝑅𝑖𝑠𝑘𝑗 + 𝛽3𝐷𝑗 +  𝜀 (3) 

 𝜀 = 𝜆𝑊𝜀 + µ 
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In equation (2) W 𝑦𝑗,𝑡
𝑘 represents the dependent variable as described in sub-section 3.4.1  

and  houshold type k represents the independent variables described in subsection 3.4.1.  Where 

𝑊𝑦 is the spatially- lagged y’s (i.e. 𝑦2015
𝑘 -𝑦2000

𝑘 ) and W corresponds to spatial weights 

matrix. 𝜌 is the coefficient associated with the spatial lag variable. 

In equation (3)  𝜀 corresponds to a spatially weighted error term, where 𝜆 is the autoregressive 

coefficient, 𝑊𝜀 is the spatial lag for the errors, and µ is another error term.  

3.6 Spatial Autocorrelation   

 In order to make more robust assumptions about the spatial concentrations of socially 

vulnerable populations a bivariate Local Indicator of Spatial Autocorrelation (LISA) was used. 

The LISA method was developed by Luc Anselin in 1995 as the means to understand the 

significance of clustering of similar values in a location surrounding a particular observation and 

at what extent there is correlation (Anselin, 1995).  Broadly, the LISA is used here to find the 

similarity and significance of SV in a spatial location with inundation at a neighboring location.  

A bivariate LISA specified by equation (4) was used to analyze the spatial 

autocorrelation between Social Vulnerability (SV) and average Hurricane  Ike inundation levels  

𝐼𝑙 = 𝑧𝑥𝑖
∑ 𝑤𝑖𝑗𝑧𝑦𝑗

𝑁

𝐽=1𝐽≠𝑖
  (4) 

 

Where, 𝐼𝑙 is the local Moran's I, and x and y are two variables of interest measured as the 

average inundation (rather than levels of inundation) and social vulnerability at neighborhood i 

and j, respectively. Similarly, zx and zy represent the standardized z-scores for variables SV and 

inundation, respectively. The term wij is the weight matrix corresponding to the distance weights 

from block group i centroid to the 1st order neighboring block group block group j centroids. 

LISA and weight matrices were created in GeoDa.   
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This analysis used 99 permutations and a first order Queen’s contiguity matrix, where wij 

corresponds the distance weight between location i and location j. Spatial autocorrelation was 

run for years 2000 and 2015 separately in order to identify statistically significant hotspots of 

correlation with average inundation at different time periods.  
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CHAPTER IV 

RESULTS  

4.1 Principal Component Analysis  

Through the conduction of principal component analysis, the thirteen variables were 

condensed into sets of uncorrelated components. For the year 2000 four components were 

retained based on the Kaiser retention method, with eigenvalues greater than one (figure 4). The 

components were given general names to describe them, although more individual variables 

were loaded onto these components (Table 4). Overall the four components described 63% of the 

variation. For the year 2015 six components with eigenvalues greater than one were retained 

(figure 5). The naming of these components differed from the year 2000 as the loadings on the 

components were not the same (Table 5). Overall the six retained components described 70.5% 

of the variation in the year 2015.  

 

 
Figure 4 Eigenvalues for the year 2000 components  
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Table 4: 2000 Variable loadings 

 
FACTOR PERCENT VARIANCE 

EXPLAINED  
DOMINANT VARIABLE  

 MARGINALIZED POPULATION  27.1 Percent Not White  
DEPENDENT POPULATION 16.99 Percent 65 and older  
POPULATION WITH LIMITED 
EDUCATION 

10.58 Percent under a 12th grade 
education  

POPULATION WITH LIMITED MOBILITY  8.65 Percent no Vehicle  

 

 

 

 
 

Figure 5 Eigenvalues for the year 2015 components 

 

 

 

Table 5: 2015 Variable Loadings  

FACTOR  PERCENT VARIANCE 
EXPLAINED  

DOMINANT VARIABLE  

POPULTION IN DENSELY OCCUPIED 
HOUSING 

19.96 Percent renter  

DEPENDENT POPULATION 14 Percent 65 and older 
POPULATION IN LESS STRUCTURALLY 
SOUND HOUSING  

10.58 Percent mobile homes 

MARGINALIZED POPULATION 9.78 Percent Female  
POPULATION WITH DEPENDENTS  8.37 Percent Female Headed 

Household 
POPULATION WITH LIMITED FINANCIAL 
STABILITY 

7.88 Percent Unemployed 
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4.2 Social Vulnerability Index  

Components were aggregated for both years by averaging in order to create a composite index 

which captures social vulnerability.  The resulting index for the year 2000 ranged from 

 -1.51 to 2.16 with positive values being more vulnerable block groups and negative values 

indicating less vulnerable block groups (Table 6) The resulting index for the year 2015 ranged 

from -1.08 to 1.35 with the positive block groups being less vulnerable and the negative block 

groups being more vulnerable (Table 6)  

Table 6: Summary statistics for SV 

Variable  Std.Dev  Mean  Min  Max 

2000 SV 0.6679 0.0543 -1.5104 2.1606 

2015 SV  0.4821 0.065 -1.0818 1.3462 

 

  

4.3 Spatial Autocorrelation Tests  

The results for the autoregressive testing indicated that there were six models which violated 

OLS assumptions (Table 7). Five of the models had autocorrelation in the lag of the dependent 

variable, those included and were corrected based on equation (2) and one model with 

autocorrelation in the error term, which were corrected based on equation (3).  
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Table 7: Autocorrelation Tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 LM  Value Probability 

Dpctyoung    

LM LAG 3.318 0.069* 

LM ERROR 2.244 0.134 

 Dpctold   

LM LAG 0.569 0.451 

LM ERROR 0.162 0.687 

Dpctrenter   

LM LAG 4.088 0.043** 

LM ERROR 2.212 0.137 

Dpctowner   

LM LAG 4.088 0.043** 

LM ERROR 2.212 0.137 

Dpctheadfemale   

LM LAG 0.062 0.804 

LM ERROR 4.933 0.026** 

Dpctnotwhite   

LM LAG 0.005 0.942 

LM ERROR 1.754 0.185 

Dpctpoverty   

LM LAG 3.741 0.053* 

LM ERROR 0.169 0.681 

Dpctunder12   

LM LAG 0.05 0.824 

LM ERROR 2.021 0.155 

Dpctmobilehome   

LM LAG 0.723 0.395 

LM ERROR 0.016 0.9 

Dpctsocials   

LM LAG 1.346 0.246 

LM ERROR 0.717 0.397 

Dpctnovehicle   

LM LAG 3.19 0.074* 

LM ERROR 0.059 0.808 

Dpctfemale   

LM LAG 2.312 0.128 

LM ERROR 0.997 0.318 

Dpctunemployed   

LM LAG 0.342 0.559 

LM ERROR 0.003 0.956 

Dsv   

LM LAG 2.061 0.151 

LM ERROR 0 0.985 
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4.4 Regressions  

The results for regressions are presented first as Tables 6 through 10 from models defined in 

equation (1), and equation (2) and (3); column headings indicate the change in the dependent 

variable from 2000 to 2015. Table 8 reports regression coefficients for the difference in SV 

model. The results reveal that social vulnerability decrease in a statistically significant manner in 

inundation level 3, 4 and 5 relative to level 1 and no significant change was observed in block 

groups falling under inundation level 2 relative to level 1. The results also show a statistically 

significant increase of socially vulnerability in A-zones, relative to X-zones. 

 These results are contradictory to the hypothesis but may elude to a longer adjustment time 

period or may be influenced by unobservable factors. Further investigation into the drivers of 

social vulnerability are presented in Tables 9 - 12.  

Table 8: Regression Coefficients for SV 

 Difference of social 

Vulnerability indices (z-

scores) 

Lag of Social Vulnerability -0.548*** 

 (0.080) 

Percent A-zone 0.009*** 

 (0.004) 

Percent V-zone 0.005 

 (0.006) 

Inundation zone 2 -0.216 

 (0.207) 

Inundation zone 3  -0.810*** 

 (0.305) 

Inundation zone 4 -0.983** 

 (0.391) 

Inundation zone 5  -1.111** 

 (0.520) 

R2 0.270 

N 152 

 

 

  

 

Standard errors in parenthesis. Column headings correspond to the dependent variable used in the estimation and represents the 

change between 2015 and 2000 
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To understand what has contributed to a decline in social vulnerability regression 

coefficients from the  models in which dependent variable corresponds to changes in various 

housing levels are analyzed. The results are presented in Table 9, and reveal that the percentage 

of renter occupied housing units decreased in a statistically significant way in inundation level 3 

(i.e. indundation 4-6ft) areas, relative to inundation level 1. The results for the difference in 

percentage of mobile homes show a statistically significant increase in inundation level 3 areas 

relative to inundation level 1.  There are no statistically significant changes in flood zones.  

 

Table 9: Regression Coefficients for Housing  

 

Standard errors in parenthesis. Column headings correspond to the dependent variable used in the estimation and represents the change between 

2015 and 2000 

 

Results presented in Table 10 show the adjustments of populations by income level. 

Significant declines, indicated by negative and statistically significant coefficients associated 

 Percent Renter Spatial lag 

(Percent Renter) 

Percent Owner Spatial lag 

(Percent Owner) 

Percent Mobile 

homes  

Spatial error 
(Percent Mobile 

homes) 

A-zone 0.048 0.049 -0.048 -0.049 -0.034 -0.034 

 (0.057) (0.92) (0.84) (0.92) (1.49) (1.52) 
V-zone -0.039 -0.039 0.039 0.039 0.023 0.023 

 (0.088) (0.47) (0.44) (0.47) (0.66) (0.67) 

Inundation 
cat 2 

-3.247 -5.238* 3.247 5.238* -0.451 -0.490 

 (3.205) (1.70) (1.01) (1.70) (0.34) (0.37) 

Inundation 
cat 3 

-7.207 -9.698** 7.207 9.698** 3.260* 3.263* 

 (4.831) (2.10) (1.49) (2.10) (1.67) (1.71) 
Inundation 

cat 4 

-2.468 -4.130 2.468 4.130 2.708 2.705 

 (6.095) (0.72) (0.40) (0.72) (1.10) (1.13) 
Inundation 

cat 5 

-2.803 -4.518 2.803 4.518 -0.100 -0.115 

 (8.051) (0.60) (0.35) (0.60) (0.03) (0.04) 
Lag 

Percent 

Renter 

-0.161*** 

(0.056) 

-0.162*** 

(3.09) 

    

       

Lag 

Percent 
Owner 

  -0.161*** (2.85) -0.162*** (3.09)   

       

Lag 
Percent 

Mobile 

Homes 

    -0.155*** (3.52) -0.160*** (3.15) 

R2 0.08 0.073 0.073 0.08 0.14 0.12 
N   152 152 152 152 152 152 

       

* p<0.1; ** p<0.05; *** p<0.01 
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with inundation levels 2, 3,4, and 5 are found for percent receiving social security benefits, 

relative to inundation level 1. Results also reveal a statistically significant decrease in percent 

unemployed for inundation level 3 relative to level 1. Damage coefficients for percent poverty 

show a statistically significant decrease in inundation levels 2 and 3 relative to level 1. Overall 

the income factors: Percent Receiving Social Security, Percent Unemployed, and  

Percent in Poverty, which drive social vulnerability are seen to decline in moderately damaged 

areas post Hurricane  Ike. There is also a statistically significant increase in the population in 

poverty for A-zones, relative to X-zones.  For flood- zone areas there is a statistically significant 

increase in V-zones, relative to X-zones for the population receiving social security. 

 

Table 10: Regression Coefficients for Income  

 

* p<0.1; ** p<0.05; *** p<0.01 

Standard errors in parenthesis. Column headings correspond to the dependent variable used in the estimation and represents 

the change between 2015 and 2000 
 

 

  Percent receiving 

Social security  

Percent unemployed  Percent Poverty Spatial Lag (Percent 

Poverty) 

 A-zone 0.050 0.024 0.101** 0.088** 

  (0.044) (1.30) (2.11) (1.97) 

 V-zone 0.215*** -0.027 -0.060 -0.076 
  (0.073) (0.91) (0.81) (1.10) 

 Inundation cat 2 -5.247** 

(2.635) 

-1.186 

(1.10) 

-4.808* 

(1.73) 

-5.646** 

(2.17) 
      

 Inundation cat 3 -7.801** 

(3.899) 

-3.223** 

(1.99) 

-9.142** 

(2.23) 

-9.314** 

(2.44) 
      

 Inundation cat 4 -10.784** 
(4.977) 

-2.346 
(1.14) 

-6.735 
(1.30) 

-6.629 
(1.37) 

      

 Inundation cat 5 -13.141** 
(6.547) 

-3.407 
(1.27) 

-2.111 
(0.31) 

-2.356 
(0.37) 

      

 Lag  
Percent Social 

security 

-0.589*** 
(0.089) 

   

      
 Lag Percent 

unemployed 

 -0.850*** 

(7.55) 

  

      
 Lag Percent Poverty   -0.453*** 

(6.80) 

-0.468*** 

(7.52) 

      

 R2 0.24 0.31 0.29 0.27 
 N 152 152 152 152 
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          Table 11 reports regression coefficients based on age factors. There is not statistically 

significant change for populations 65 and older in any of the inundation levels. However, results 

reveal a statistically significant decrease for populations 5 and under in inundation levels 3 and 4 

relative to level 1. Moreover, there is also an increase in the population 65 and over for V-zones, 

relative to X-zones, which is also supported by the increased population receiving social security 

income in these zones.  

 

 

Table 11: Regression Coefficients for Age

 
Standard errors in parenthesis. Column headings correspond to the dependent variable used in the estimation and represents 

the change between 2015 and 2000 

 

In Table 12 the results for marginalized populations are reported. Results indicate that the 

percentage of the female population decreased in a statistically significant manner for inundation 

levels 3 and 4, relative to inundation level 1. Results also reveal that the percentage of not white 

  Percent 65 

and older 

Percent 5 or 

less 

Spatial Lag 

(Percent 5 or 

less) 

 A-zone 0.026 0.016 0.014 

  (0.028) (0.91) (0.86) 

 V-zone 0.136*** -0.005 0.003 

  (0.046) (0.16) (0.10) 

 Inundation cat 2 -0.674 -0.184 -0.412 

  (1.665) (0.18) (0.42) 

 Inundation cat 3 -1.126 -2.572* -2.960** 

  (2.488) (1.66) (2.02) 

 Inundation cat 4 -2.204 -3.922** -4.386** 

  (3.166) (1.99) (2.36) 

 Inundation cat 5 -6.077 -2.308 -2.863 

  (4.131) (0.90) (1.18) 

 Lag Percent 65 

and older  

-0.518*** 

(0.089) 

  

     

 Lag Percent 5 or 

less 

 -0.842*** 

(7.30) 

-0.791*** 

(7.18) 

     

 R2 0.21 0.31 0.30 

 N 152 152 152 

* p<0.1; ** p<0.05; *** p<0.01 
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population decreased in inundation levels 2 and 3 relative to level one. Similarly, the results for 

the percent of female headed households also decreased in a statistically significant manner for 

inundation levels 2 and 3 relative to level 1. However, there is no significant change for the 

percentage of the population with no vehicle for any of the inundation levels examined.  

 

Table 12: Regression Coefficients for Marginalized populations  

 Percent Female  Percent not white  Percent less 

than 12th grade 

Percent no 

vehicle  

Spatial Lag 

(Percent no 

Vehicle) 

Percent Female 

headed household  

Spatial Error 

(Percent Female 

headed 

household) 

A-zone 0.031 0.063 0.042 0.057 0.048 0.037 0.037 

 (0.026) (0.97) (1.08) (1.62) (1.49) (0.81) (0.83) 

V-zone 0.079* -0.185* -0.073 -0.064 -0.080 -0.106 -0.105 

 (0.041) (1.87) (1.19) (1.17) (1.59) (1.55) (1.56) 

Inundation 

cat 2 

-0.315 

(1.499) 

-6.336* 

(1.67) 

-0.907 

(0.40) 

1.058 

(0.53) 

1.255 

(0.68) 

-4.966* 

(1.93) 

-4.594* 

(1.66) 

        

Inundation 

cat 3 

-1.866 

(2.252) 

-11.666** 

(2.07) 

-5.270 

(1.56) 

-2.551 

(0.85) 

-2.179 

(0.79) 

-6.969* 

(1.80) 

-6.443* 

(1.65) 

        

Inundation 

cat 4 

-6.253** 

(2.851) 

-10.179 

(1.43) 

-3.481 

(0.82) 

-1.790 

(0.47) 

-1.016 

(0.29) 

-7.636 

(1.56) 

-7.123 

(1.50) 

        

Inundation 

cat 5 

-7.469* 

(3.783) 

-7.394 

(0.79) 

5.715 

(1.02) 

-1.834 

(0.37) 

-1.174 

(0.25) 

-5.196 

(0.79) 

-4.596 

(0.73) 

        

Lag 

Percent 

Female 

-0.782*** 

(0.116) 

      

        

Lag 

Percent 

not white 

 -0.379*** 

(6.88) 

     

        

Lag 

Percent 

less than 

12th grade 

  -0.495*** 

(7.54) 

    

        

Lag 

Percent no 

vehicle 

   -0.458*** 

(7.01) 

-0.440*** 

(7.28) 

  

        

Lag 

Percent 

Female 

headed 

household 

     -0.836*** 

(14.50) 

-0.853*** 

(14.34) 

R2 0.26 0.28 0.35 0.28 0.26 0.62 0.60 

N 152 152 152 152 152 152 152 

* p<0.1; ** p<0.05; *** p<0.01 

Standard errors in parenthesis. Column headings correspond to the dependent variable used in the estimation and represents the change between 

2015 and 2000 

 

4.5 LISA 

       In an effort to further explore the relationship between inundation and SV the LISA method 

was used. Results for the LISA indicate that for the year 2000 17 block groups had high values 

of vulnerability near high values of inundation, 11 block groups had low values of vulnerability 

near low values of inundation, 19 block groups had low values of vulnerability near high values 
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of inundation, and 16 block groups had high values of vulnerability near now values of 

inundation (figure 7).  

          For the year 2015, 16 block groups had high values of vulnerability near high values of 

inundation, 10 block groups had low values of vulnerability near low levels of inundation, 18 

block groups had low values of vulnerability near high values of inundation and 16 block groups 

had high values of vulnerability near low values of inundation (figure 8). The comparisons 

between the years is represented in figure 6.  

 

Figure 6 Clustering of SV with Inundation for 2000 and 2015 
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Figure 7 Clustering of SV and inundation 

2000 

Figure 8 Clustering of SV and inundation 

2015 
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CHAPTER V  

DISCUSSION AND CONCLUSIONS  

 

                 The objective of this study was to identify spatial and temporal adjustment patterns to 

disasters across vulnerable segments of population. Findings in this paper offer important 

insights into the adjustments of socially vulnerable populations in Galveston County following 

Hurricane  Ike in 2008.  Overall, the results reveal a statistically significant decrease in both the 

indexed components of social vulnerability and the individual drivers of it in hazard-vulnerable 

block groups.  The results for LISA compliment the regression results and confirms that the 

clustering of social vulnerability with inundation has decreased from 2000 to 2015. These results 

seem to contradict past studies which indicate that adjustments tend to be heterogeneous across 

income classes; low income populations tend to stay in high damage areas, middle income 

households move out of harm’s way, and high-income households rebuild and insure (Smith et 

al., 2006; Davlasheridze and Fan, 2017). This study did not find that the drivers of social 

vulnerability, or the indexed components behaved in a similar fashion to those in New Orleans 

following Hurricane  Katrina (Davlasheridze and Fan, 2017), or Miami-Dade following 

Hurricane  Andrew (Smith et al., 2006). While it may be impetuous to expect similar results for 

very different geographic areas, with differing social makeup and scales of impact, searching for 

redundancy in disaster adjustments can aid in policy creation.  

      As mentioned, this study is limited by spatial scale, block groups within a single County, 

which may not capture the overall County to County migratory effect following Hurricane  Ike. 

While multiple studies have shown that adjustments at a small scale are heterogeneous based on 

income, studies at larger scales, i.e. County to County migrations reveal that drivers of social 

vulnerability, specifically racial minorities, poor, less educated, and female headed households 
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are disproportionally subject to larger scale displacement (Morrow-Jones, 1991; Belcher and 

Bates, 1983; Fordham 1999; Haas et al., 1977; Myers et al., 2011).  

         Furthermore, the loss of social and economic infrastructure, especially the temporary loss 

of tourism-based jobs may have prompted groups to take advantage of job opportunities 

elsewhere. Regardless of low housing costs post disaster, if there are lessened job opportunities 

following disaster there is little motivation for people to live in those areas. The overall trend in 

decrease in high inundation zones could be merely a snap shot of a much larger scale adjustment 

following Hurricane  Ike in 2008. 

          Another likely explanation of overall decrease in vulnerability may be the combination of 

the loss of public housing on Galveston island, and the changes in housing tenure due to coastal 

gentrification from investors. However, the exploration of these causalities is at present not 

possible with current Census data. Because the recovery of public housing has not yet been 

completed it is not possible to conclude whether this loss of housing has drastically affected the 

long-term post disaster composition of Galveston County. However, a recent study done in 

Galveston County shows that there is in fact a change in demographic and socioeconomic 

composition due to the changes in public housing (Hamideh and Rongerude, 2018).  Further 

study is warranted once the public housing has been fully recovered and enough time has passed 

to explore long-term adjustments to housing recovery. 

 While the decline in overall social vulnerability is indicative of resilient recovery, such 

major changes can also be indicative of an overall change of a community identity. The loss of 

populations with long established roots in coastal communities, means the social memory of 

these groups may also be lost.  Persons with multiple disaster experiences are essential for 

community information transfer, i.e. word of mouth on hazardous areas, evacuation and 

preparation knowledge. However, revitalization can also mean greater resilience. With the large 
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influx of money going into properties, businesses, etc. the people living in the community will 

have greater means and better access to political powers. Moreover, it is at present uncertain 

what effect these changes will have for future resilience and more research on these changes is 

necessary to make such substantial claims. 

This study makes significant contributions to existing literature by integrating the usage 

of a social vulnerability index and building upon the various methodological approaches to the 

hazard of place model developed by Cutter et al. (2003). Utilizing the social vulnerability model 

to examine the adjustment of populations provides a link between the bodies of work on social 

vulnerability and household adjustments to disasters. Further, another important contribution is 

the consideration of spatial effects. Because adjustments post disaster are a spatial phenomenon 

accommodating for the spatial effects and spatial dependence allows for more robust statistical 

modeling. Along with accounting for the spatial effects this study examines spatially driven 

correlations as a means to analyze post disaster adjustment. Theoretically, this is an important 

contribution as the adjustments of populations are spatially motivated and occur on a geographic 

scale.  

Communities are extremely complex social systems, especially in disaster events, and the 

quantitative measures for social vulnerability and methodological approaches for assessing 

adjustments are not without limitation. Further research should be undertaken in order to 

understand the many motivators of adjustments, and limitations for composite measures of social 

vulnerability.  

Taking advantage of location specific sources of resilience, social capital, and social 

integration can lessen vulnerabilities to disaster. Specifically, racial integration and revitalization 

projects which focus on heterogeneity in housing tenure can help to mitigate place- based social 

exclusion, increase community capital and decrease vulnerability to disaster events. The current 
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reconstruction of public housing has had a large focus on social mixing which is a beneficial step 

towards resiliency. In the face of threatened risk due to rising sea levels more complex 

understanding of social motivations for adjustment and vulnerability should be explored and will 

be an important extension of the current study. 
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