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ABSTRACT 

Historic ceramics are some of the most important artifacts in archaeological studies 

because of their prevalence and the wealth of information they can provide about a site.  

However, identifying certain types of historic ceramics, such as creamware, pearlware, and 

whiteware, can be very difficult due to the gradual evolutionary processes that took place in the 

English ceramic industry during the 18th and 19th centuries.  Additional difficulties arise when 

other white- and off-white-colored ware types, such as porcelain, are also considered.  This 

research tested a potential non-destructive method of ceramic identification using a portable X-

ray fluorescence (pXRF) spectrometer by examining the glazes of these four ceramic categories: 

creamware, pearlware, whiteware, and porcelain. 

Multiple XRF configurations were used on each ceramic sherd to target specific ranges of 

elements.  Using both qualitative and semi-quantitative methods of analysis, these scans revealed 

that, although this method did not offer an irrefutable technique for identifying these ceramics, 

many aspects of the results indicated promising routes of analysis.  Two ware types in particular, 

porcelain and creamware, were both more easily identifiable based on spectrum analysis for the 

former and trends in manganese and magnesium net photon counts for the latter.  The findings 

from this investigation offer insights into a potential application of pXRF technology for quick, 

non-destructive historic ceramic identification. 
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CHAPTER I 

INTRODUCTION 

 

 Archaeology is a scientific investigation into the past, and the tools and methods used to 

interpret data are grounded in scientific research; however, within archaeology there is always 

the possibility for error.  Many aspects of studying an archaeological site remain interpretive.  

Artifact identification is often one of those aspects.  Certainly, artifacts can be measured and 

described in any number of ways, and they can be categorized according to these observations, 

but often these observations cannot lead the archaeologist to definitive answers.  If an 

archaeologist does not know how to properly identify one type of ceramic ware from another, no 

amount of measuring will be helpful during visual or physical analysis.  Ceramic glazes can be a 

good diagnostic tool.  For instance, certain distinguishing characteristics include blue color 

pooling in joints on pearlware ceramics and yellow pooling on creamware ceramics.  Once again 

though, if a ceramic sherd is small or possesses no distinguishing visual characteristics, proper 

identification is made even more difficult.  It is therefore necessary that either every 

archaeologist be extensively trained in ceramic identification, or that a scientific procedure be 

used for the process that erases any doubt or error concerning proper artifact identification.   

 This research intends to address this issue by assessing the utility of using X-ray 

fluorescence (XRF) analysis to test the plausibility of accurately identifying historic ceramic 

wares based on the composition of ceramic glazes.  Ceramics are ubiquitous within 

archaeological excavations from the historical period, but the transformations and 

standardizations made in the British ceramic industry during the Industrial Revolution created 

multiple categories of wares that are visually difficult to distinguish from one another.  This 
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difficulty is compounded when only fragments of ceramics are recovered.  Decorations may not 

be visible, or the vessel type may be unknown, and all that the archaeologist has to go off of is an 

assemblage of white- or slightly off white-colored sherds.  Analysis of ceramic pastes requires 

databases of known kilns and is difficult and often inconclusive.  Through elemental analysis of 

historic ceramic glazes this study will attempt to provide an alternative to the guesswork of 

ceramic identification.  The method was tested with a portable XRF (pXRF) spectrometer.  

These devices allow for greater flexibility for either in situ analysis in the field or off-site 

analysis in a laboratory.  A Bruker Tracer III-SD portable XRF model was used during this 

research. 

Importance of the Project 

Part of the importance of this research lies in the practical applications afforded historical 

archaeologists.  X-ray fluorescent spectrometers have been used in archaeology for several 

decades now.  Recently though, the use of X-ray fluorescent spectrometry within archaeology 

has grown significantly, in part because of the introduction of portable spectrometers.  In 

particular, the trend of decreasing costs for owning and operating a portable XRF device has 

made them particularly suitable for cultural resource management entities, as well as universities 

and museums.  The ease with which these devices can be used for in situ analysis offers greater 

opportunities for more archaeologists to learn how to implement them in their research.  It is 

important to note that this “point and shoot” ease of use can lead to the false sense that the 

machine always produces usable results; however, a certain amount of introduction and training 

must be given to archaeologists in order to understand and analyze the data produced by pXRF 

spectrometers.  With that in mind, meaningful data analysis can be obtained by any archaeologist 
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who has been properly introduced to the basic principles of XRF spectrometry.  The use of a 

pXRF spectrometer for this research would therefore allow for widespread practical applications. 

A successful outcome within this research could influence future archaeological 

investigations, but only if the information were available to the archaeological community.  An 

exciting possibility for this sort of XRF research is the production of a shareable database that 

can be used by others, as is often done with obsidian XRF data such as the Wavema 

Archaeological Research Project Obsidian XRF Database from The Digital Archaeological 

Record (Liebmann 2016).  This would allow others to compare research and reference the 

calibrations used for scanning the ceramic sherds.  Sharing data and research is the only way to 

improve and standardize techniques, particularly for those involving scientific equipment such as 

XRF spectrometers, which may be widely used but with various settings and calibrations.  The 

potential for this manner of research rests not only in its practicality but also in its ability to be 

distributed. 

A third important element within this research is the importance it holds for the author.  

Analysis and identification of historic ceramic wares has always been a personal difficulty and I 

have long hoped to better familiarize myself with them.  This research topic, introduced to me 

by, at the time a PhD candidate and now Dr. Christopher Dostal, a faculty member of Texas 

A&M University, offered the perfect opportunity to do just that.  It also offered a wonderful 

chance to learn how to operate a portable XRF spectrometer.  Due to the increasing use of XRF 

in archaeology and conservation, learning how to operate this device and analyze the data was an 

opportunity that could not be missed.  The outcome of this research may prove beneficial for 

future archaeological investigations, and importantly, it has certainly proved beneficial for my 

understanding of historical ceramics and learning new technical skills. 
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CHAPTER II 

X-RAY FLUORESCENCE SPECTROMETRY, AN OVERVIEW 

 

Concepts: Physics and Chemistry  

As previously mentioned, an introduction into the principles of XRF spectrometry is 

necessary before the device can be used and the data can be interpreted.  A brief description of 

the physics at play and how an XRF spectrometer works follows. 

X-rays make up part of the electromagnetic spectrum, which also includes visible light, 

ultraviolet light, infrared, and radio waves (Moens et al. 2000:56).  Just as with visible light, X-

rays function both as waves and as particles, called photons, and can be measured in both 

formats.  When described as a wave, electromagnetic radiation is characterized by its 

wavelength, which directly correlate to the energy of the radiation.  The wavelength is 

determined by the distance between consecutive crests.  Shorter wavelengths will have a shorter 

distance between crests and will therefore travel at a higher frequency.  The higher the frequency 

at which radiation is traveling, the greater the energy it will have.  X-rays have high energy, short 

wavelengths, and high frequency (Shackley 2011:16).  The wavelength of electromagnetic 

radiation is measured in metric units, and the only portion of the X-ray spectral range used for 

fluorescence analysis falls between 10 and 0.01 nanometers (1 nm = 1 x 10⁻⁹ m).  In terms of 

energy, which is measured in electron-volts (eV), this corresponds to between 0.1 and 100 keV, 

or kiloelectron-volts (Moens et al. 2000:56-57). 
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FIGURE 1. Electromagnetic radiation spectrum (IR=infrared, VIS=visible light, UV=ultraviolet, 

VUV=vacuum ultraviolet, EUV=extreme ultraviolet). (Langhoff and Simionovici 2006: 34) 

The purpose of X-ray fluorescence is to “identify and quantify the chemical elements” 

within a material sample (Artioli 2010:34).  This is accomplished by the production of X-rays, 

which are projected towards the material sample with the objective of removing electrons from 

the inner shells of the material’s atoms.  Atoms consist of protons, neutrons, and electrons.  The 

positively charged protons and neutrally charged neutrons make up the nucleus of an atom, and 

the number of protons within an atom’s nucleus dictates its atomic number, or Z number, and the 

element it represents.  These values are arranged numerically in the periodic table of elements.  

Surrounding the nucleus are the electrons which move around the nucleus in different shells.  

These shells are groups of atomic orbitals, labeled alphabetically beginning with the letter K; 

therefore, the shell closest to the nucleus is the K shell, the next closest is the L shell, and so on.  

In each shell electrons require a different amount of energy to stay in orbit around the nucleus.  

Electrons closer to the nucleus need less energy to stay in place than electrons further from the 

nucleus.  Additionally, these energy differences are “known and fixed” (Shackley 2011:16).  
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This knowledge is one of the most important concepts for the foundation of X-ray fluorescence 

analysis. 

 The X-rays produced in the XRF analyzer are projected towards the sample being 

analyzed with enough energy to penetrate the atoms within that sample and remove electrons 

from the innermost shells (Moens et al. 2000:57).  This X-radiation energy must be greater than 

the binding energy of an electron shell, in order to remove the electron (Čechák and Leonhardt 

2006:55).  Each shell requires a different amount of energy to dislodge an electron from it, and 

these energies are different for each element.  Removing electrons from a stable atom produces 

an unstable ion, and electrons from shells further from the nucleus move in to fill that void and 

stabilize the atom (Shackley 2011:17).  During this instance the atom is relaxed from an excited 

state, where the electron has been dislodged, to a ground state, when the void is filled by outer 

shell electrons, and the atom stabilizes once again by emitting a photon with characteristic 

energy (Artioli 2010:30).   

In most instances, an electron from the K shell is removed and then replaced by an 

electron from the adjacent L shell, resulting in a Kα peak on the spectrum.  Additionally, though 

less commonly, an electron from the M shell can replace the one lost on the K shell, resulting in 

a Kβ peak.  Each kind of peak has its own unique energy signature.  These basic principles also 

apply to instances when an electron from the L shell is dislodged.  In that instance a Lα peak 

would represent an electron from the M shell replacing an electron lost on the L shell (Moens et 

al. 2000:57-58). 
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FIGURE 2. Electron shell transitions. (Moens et al. 2000:58) 

The importance of the shell’s individual energy levels comes into play the moment an 

electron from an outer shell drops down to an inner shell as it now requires less energy than it 

originally had to stay in orbit.  This excess of energy is released in the form of secondary 

radiation, or photon particles, in the X-ray region of the electromagnetic spectrum.  This process 

of re-emitting radiation is called fluorescence, referring to the glow emitted by the photons 

(Moens et al. 2000:57; Artioli 2010:32,34).  The wavelength of these secondary X-rays is unique 

to each element.  The elemental composition of a sample is detected by the energy released from 

secondary radiation, which corresponds to the atomic number of an element.  This information is 

then displayed graphically by an X-ray spectrum (Moens et al. 2000:57-58).  The x-axis displays 
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the keV energy, indicating what elements are present, and the y-axis displays the net photon 

count for each element, which are represented as peaks on the spectrum. 

FIGURE 3. A spectrum produced from XRF; each peak represents a different energy level 

detected by the spectrometer. (Spectrum by author using ARTAX, 2018.) 

It is vital to note that a number of things can happen during this interaction other than the 

one described above.  This is the ideal interaction that reveals the chemical composition of the 

sample; however, the X-rays do not always remove electrons from the inner shell of the atoms.  

In these instances, either “background” or scattering may be produced, and these will show up on 

the X-ray spectrum.  The term “background” is used to describe “noise that appears in the 

spectra due to deceleration of electrons as they strike the anode of the X-ray tube” (Shackley 

2011:23-24).  This “noise” is also referred to as bremsstrahlung, German for “braking radiation.”  

The scattering process taking place causes a continuous background and is more severe when 

analyzing elements of low atomic numbers.  Depending on the instrument being used it may be 
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impossible to analyze any element below atomic number Z=11, sodium (Na), in a reliable way 

(Bruker 2016:9: Shackley 2011:24). 

FIGURE 4. Example of bremsstrahlung in a spectrum, resulting in a distorted peaking shape on 

both ends. (Spectrum by author using ARTAX, 2018.) 

Two additional forms of scattering, or reflection, appear on the spectra created by XRF.  

Rayleigh scattering results in the appearance of the peak of the anode material on the spectra.  

This occurs as X-ray photons coming off of the anode interact with the atoms of the sample 

without producing secondary fluorescent X-rays.  The primary X-rays do not lose energy but are 

redirected towards the detector of the XRF device, creating a peak on the line spectrum of the 

anode material.  This is also known as elastic or coherent scatter.  Compton scattering, also 

referred to as inelastic or incoherent scattering, will occur as the incident X-rays interact with the 

atoms of the sample.  In this case photons from the X-ray tube do lose energy as they strike an 

electron from an outer shell.  These photons are picked up by the detector with an energy reading 
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slightly below that of the anode material.  Each detector will have a different peak, known as a 

Compton peak, depending on the anode and the settings of the X-ray tube, and these must be 

known and understood by the operator to ensure accurate data interpretation.  The Bruker Tracer 

III-SD model used in this research has a Compton peak around 19 keV as a result of its rhodium 

(Rh) anode.  The effects of scattering can be reduced by placing filters between the X-ray source 

and the sample (Bruker 2016:10; Shackley 2011:22-23). 

Applications in Archaeology 

 While portable spectrometers are the latest technology in the field of X-ray fluorescence 

spectrometry, this method of scientific investigation has been in use for many years.  X-ray 

fluorescence has been used in archaeology for many applications and for many decades.  

Archaeologists have been supplementing their research with XRF spectrometry since the 1960s 

for analyzing a range of materials (Frahm and Doonan 2013:1426).  These include but are not 

limited to soils, rocks, metals, ceramics, and obsidian.  One of the most important roles XRF has 

had in archaeology is its use in provenance studies, particularly for ceramic and obsidian artifacts 

(Davies et al. 2011:46; Moens et al. 2000:68-69).  Scientists have used XRF spectrometry on 

obsidian to determine the specific volcanic locale of the raw material, and they have applied the 

same principles to clay to find its source of origin for ceramics artifacts.  Knowing the source of 

the material informs researchers as to where the site inhabitants may have come from, travelled 

to, or traded with, enhancing archaeologists’ perspectives on the people they are studying. 

Portable X-ray Fluorescence Spectrometers 

 With the advent of portable XRF spectrometers, the application of this science in 

archaeological studies became more widespread.  There are a variety of portable devices 
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available today, allowing for easier access for archaeologists (Frahm and Doonan 2013:1425).  

Since archaeology is an amalgamation of several different fields such as history, geology, 

chemistry, and biology, researchers use techniques and equipment from each of these fields to 

formulate and supplement their work.  The use of pXRF spectrometers, which have grown 

primarily out of the geology profession, has been no different.  Archaeologists were quick to 

realize its potential for their research because it was developed for timely, non-destructive study 

of various materials.  This allowed for rapid analysis in situ, whether at an excavation in the 

field, or at a museum analyzing materials that must not be destroyed (Liritzis and Zacharias 

2011:109; Ceccarelli et al. 2016:253).  In addition to the applications XRF was initially used for 

in archaeology, the growth of portable spectrometers increased the range of its uses to include 

on-site material characterization.  The portability factor had an impact on conservation science, 

analysis of pigments, and authentication testing (Liritzis and Zacharias 2011:112-114).  Without 

the restrictions of a laboratory setting, archaeologists are able to gather data in a myriad of 

settings, and the reduction in size of the detector does not equate to a loss of performance.  In 

fact, “many PXRF systems currently on the market have superior detector resolution and 

electronics than laboratory-based instruments manufactured 5-10 years ago” (Speakman and 

Shackley 2013:1436). 

Limitations Using Portable X-ray Fluorescence Spectrometers 

Although portable X-ray fluorescence spectrometers offer a more approachable option for 

buying and operating this brand of scientific instrumentation, they are not without their own set 

of limitations.  The ease of use of pXRF devices is in fact a growing concern because it promotes 

a “point-and-shoot” mentality amongst new researchers; these machines appear straightforward 

enough that little to no proper training seems necessary, simply point the device at a sample, run 
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the scan, and see the results appear on a screen (Hunt and Speakman 2015:638).  The opposite is 

true, but such devices are advertised in ways that can mislead archaeologists.  X-ray fluorescence 

spectrometers work best when properly calibrated to the material being studied.  In regards to the 

analysis of archaeological ceramics, 

The ability to generate accurate and reliable compositional data for archaeological 

ceramics and sediments by pXRF requires a matrix matched calibration and a material 

specific analytical protocol.  … Analysis of unprepared samples is not fully quantitative 

using a pXRF spectrometer because of the heterogenous nature of ceramic and sediment 

samples and matrix effects which prevent X-rays from interacting with the unprepared 

sample in the same way as the prepared calibration standards.  This differential 

interaction or response to the X-rays causes the analytical software to over or 

undercalculate elemental concentrations in the sample material (Hunt and Speakman 

2015:637). 

Hunt and Speakman (2015) were referring to analysis of ceramic body materials and 

sediments, but the issues concerning pXRF analysis are true for any material and were a factor 

within this research.  Portable XRF spectrometers come with a number of out of the box 

calibrations, but these are “not always appropriate for archaeological materials analysis” (Hunt & 

Speakman 2015:626).  However, beneficial qualitative data can be obtained through the use of 

pXRF spectrometers even when the calibrations do not allow for reliable quantitative data.  

Determining the compositional characterization of ceramic glazes within this research was not 

intended to ascertain the material point of origin, but rather the human-manufactured 

categorization of a ceramic ware type.  The aforementioned out of the box calibrations were 

relied upon during this research.  These do not provide the high-quality data a specifically 
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calibrated machine could, but this aspect provided another component to test the ease of use for 

this method of ceramic identification. 

One of the most pressing concerns with pXRF analysis was previously mentioned—that 

of an untrained operator.  Not only is safety paramount when operating a radiation producing 

device, but these concerns also encompass the experience levels of archaeological pXRF users in 

regards to their knowledge of X-ray physics, statistics, or chemistry, all of which are involved in 

XRF analysis (Speakman and Shackley 2013:1435).  An experienced introduction to the topic is 

necessary before any analysis should be undertaken, which I too received before beginning this 

research.  As in any endeavor, more experience usually leads to better results.  Since this was my 

first independent research using XRF, this investigation may have suffered from that pitfall.  

However, this investigative research also tested the difficulty of employing this method of 

ceramic identification for archaeologists newly trained in X-ray fluorescence spectrometry. 

Another limitation that portable XRF spectrometers present is the scatter caused by 

unprepared samples.  Benchtop spectrometer analysis is done with specifically prepared samples 

that are designed to limit interference.  A smooth, flat surface is best, which means that samples 

are ground and formed into pellets to create this ideal surface for traditional spectrometers.  

Portable devices are popular because they can be used to test material outside of a laboratory 

setting and they can be used non-destructively, but these benefits complicate the ideal parameters 

of X-ray fluorescence analysis.  Unprepared samples may suffer from surface contamination 

such as corrosion products on metals, or their surfaces may be too rough.  The use of such 

samples introduces chemical contamination and matrix effects (Hunt and Speakman 2015:627).  

The effects from sample flatness and surface texture are recognized as one of the more difficult 

issues pertaining to in situ pXRF analysis (Liritzis and Zacharias 2011:132).  All of the sherds 
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used in this research came from collections that have already been cleaned and conserved.  While 

surface contamination from soil or dirt was not an issue, surface flatness still presented a 

potential difficulty.  During every scan the flattest portion of each sherd was set on the 

spectrometer, but the analysis of unmodified artifacts with rough surfaces still likely contributed 

to scattering. 

There is one limitation of pXRF spectrometer use that could actually favor the focus of 

this research.  It has been debated how successful its application is for studying ceramics due to 

the scattering caused by their uneven surfaces (Ceccarelli et al. 2016:253).  However, one aspect 

remains advantageous in its use on ceramic glazes.  The incident radiation of X-ray fluorescence 

has limited penetration into the sample.  Therefore, the elements found on and near the surface of 

a sample are predominantly detected, which was ideal for this investigation into ceramic glazes 

(Ceccarelli 2016:254).  There was less chance of detecting elements from the ceramic body for 

this reason.  The depth of analysis increases with higher energy, and elements with higher atomic 

energies can be detected further into a sample than elements with lower atomic energies.  

Elements with low energies, or low Z numbers, are less likely to have been affected by the 

underlying ceramic body and focusing on these could prove more valuable during analysis of 

surface glazes. 
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CHAPTER III 

HISTORIC CERAMICS 

Research Focus: From When and Where 

“Pottery was perhaps the first craft to be transformed to an industry” (Rado 1969:207).  

This research focused on those ceramics that grew from the industrialization processes that swept 

across Western Europe during the mid-18th century.  England was the hub of industrialization 

during the onset of the Industrial Revolution’s first phase, which began around 1760 and lasted 

until approximately 1880.  A growing population, a portion of which was developing into a 

newly-founded middle class, contributed to England’s workforce, technological innovations, and 

changing production systems (Stearns 2013:14-15, 25).  The country was transformed, not only 

in manufacturing, but also in agriculture, trade and economy, and the demand for goods (Young 

1999:10-11).  

England’s preeminence in industrialization extended to ceramic production, and it 

dominated the market for refined earthenwares during this period (Majewski and O’Brien 

1987:114).  It was during this period that creamware, pearlware, and whiteware were developed 

and popularized; each ceramic type will be individually discussed later in the text.  Pottery of 

this nature is abundant throughout archaeological excavations in the United States and across the 

globe.  There were U. S. ceramic factories during this time, but the dominance of the English 

products left little room for profitable competition; however, distinguishing between English 

ceramics and their American imitations can be difficult (Denker and Denker 1982:138).  
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Ceramics of English origin provided the bulk of the ceramic selection for this study, though 

several may also have been of U. S. origin. 

A contributing factor for the popularity of these ceramic types was the trend to imitate 

Oriental, or Chinese and Japanese, porcelain.  Porcelain influenced European ceramics both 

aesthetically and technologically, and English potters sought out new materials to lighten the 

color of their products (Clow and Clow 1958:328; Majewski and O’Brien 1987:116).  The quest 

to create a lighter, whiter ware to imitate porcelain produced a number of early attempts.  Tin-

enamel glazes, which had long been used by potters, created a white exterior glaze on red or buff 

clay bodies.  Later, a white-firing kaolin clay was used for white salt-glazed stoneware vessels.  

Mixing white-firing clay with calcined flint produced a suitable earthenware clay body that 

would later be covered with a clear lead glaze (Clow and Clow 1958:346-347).  Following these 

advancements from the industrial era, traditional ceramic practices such as tin-enamel glazing 

soon began to disappear (Caiger-Smith 1973:189). 

English pottery “went through an evolution in paste and decoration that in theory would 

make ceramic pieces ideal temporal markers for sorting archaeological assemblages” (Majewski 

and O’Brien 1987:98-99).  The basis for that theory is understandable, that specific ware types 

have distinctive attributes that tell them apart, but the practice of applying that theory to 

archaeological studies is where problems arise.  This period in ceramic history is revolutionary, 

marking a dramatic shift in manufacturing techniques and ceramic design.  The sheer output of 

English ceramics also makes this period particularly important to study because these wares are 

unearthed in most archaeological contexts.  However, the level of subjectivity that also arises 

when categorizing these wares is troubling, strengthening the argument for a scientific approach 

to ceramic classification. 
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Ceramic Sample 

The ceramic sherds used in this research were gathered from resources readily available 

within the department.  Three ceramic assemblages were pulled from for sampling; these 

included the Port Royal, Jamaica excavations, the CSS Georgia excavations, and a typology 

collection assembled by Dr. Donny Hamilton.  Select sherds that were plainly identifiable as 

creamware, pearlware, or whiteware based on visual diagnostic criteria, such as blue pooling in 

crevices on pearlware, were pulled from each assemblage for testing.  Included is a brief 

description of each assemblage. 

Port Royal 

Port Royal was England’s most important economic New World establishment during the 

latter half of the 17th century.  The Jamaican port was successful in part because of its protective 

harbor as well as its involvement in “officially sanctioned privateering” during that period 

(Hamilton 1984:11).  It was also vital to the trades in sugar, natural resources, and slaves.  

However, on 7 June 1692 an earthquake struck and about 66% of the city suddenly sank below 

the water, into the harbor.  During the event around 2000 people died and another 3000 perished 

soon after of disease and injury (Hamilton 1984:12).  Indeed, the strength of the Spanish 

presence in the Caribbean limited the options for English settlements, and the area where Port 

Royal was established was unfit for a city.  It has been continually challenged by natural forces, 

including “47 hurricanes and major storms, at least nine earthquakes of major or moderate 

intensity, as well as two major fires” between the years 1597 and 1994 (Dewolf 1998:26).  Due 

to the catastrophic nature of the 1692 earthquake, Port Royal is a uniquely preserved 17th-

century site because much of it appears to have sunk straight down without major lateral 

movement as a result of liquefaction during the earthquake. 
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The Institute of Nautical Archaeology was invited by the Jamaican government in 1978 

to begin new excavations of Port Royal.  In cooperation with Texas A&M University and the 

Jamaica National Heritage Trust, excavations took place from 1981 to 1990 under the direction 

of Dr. Donny Hamilton (Donachie 2001:20; Hamilton 1984:15).  The excavated material has 

since been used in numerous theses and dissertations at Texas A&M University.  Although Port 

Royal is a 17th-century site, artifacts post-dating the site were recovered as archaeologists 

excavated down to their target layer.  The site consisted of three levels.  The uppermost was 

Layer 1, which contained primarily 20th-century material.  Just below that was Layer 2 with 

artifacts primarily from the 18th and early 19th centuries, mixed in with some 17th-century 

artifacts.  Finally, Layer 3 was the bottommost layer on which the city was actually built.  It 

consisted mostly of the floors of the 17th-century structures and contemporary artifacts 

(Donachie 2001:21).  Ceramics used during this research will likely have been recovered from 

Layer 2. 

CSS Georgia 

During the American Civil War, in 1862, the ironclad vessel CSS Georgia was built for 

the protection of Savannah.  Heavily armored and armed, the vessel was composed of a barge-

like structure fitted with an inclined wooden roof that was then covered with interlocking iron 

railroad T-rails as protective plating.  Georgia was built through the efforts of the Ladies 

Gunboat Association; women from Savannah, Augusta, and other areas of Georgia helped to 

raise over $115,000 for the construction of the vessel.  Two years later it was intentionally sunk 

by the Confederates.  On 20 December 1864 the CSS Georgia was scuttled in the Savannah 

River to prevent the Union from capturing it after Union troops had taken Fort Jackson (Garrison 

and Anuskiewicz:74,78). 
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Since then the wreck has been damaged by salvaging and dredging activities.  Most 

recently, the planned deepening of the river as part of the Savannah Harbor Expansion Project 

posed a serious threat to the site as it would completely destroy what remains of the ship.  Since 

the site is listed on the National Register of Historic Places, the threat of destruction warranted 

the necessity of excavation.  Headed by the U.S. Army Corps of Engineers, two field seasons 

(2015 and 2017) have thus far worked on excavating the vessel and its associated artifacts.  

These artifacts are currently undergoing conservation at the Conservation Research Laboratory at 

Texas A&M University.  The ceramic assemblage recovered from the site is sizable and diverse, 

ranging from Native American coarse earthenware sherds to modern ceramic pieces.  Ceramic 

specimen that have already undergone excavation from the 2015 field season were selected for 

testing in this research. 

Typology Collection 

Following the excavations at Port Royal, Dr. Donny Hamilton created a ceramic typology 

to appropriately identify and label sherds for processing and research purposes.  Certain ware 

types were given numerical numbers which were further delineated by decoration type through 

decimal numbers.  For instance, a creamware sherd would be labelled “7” to identify it as 

creamware.  If it were undecorated, “.10” would be added, resulting in “7.10.”  Following this 

method, a pearlware sherd with green transfer printed decoration would be labelled “8.62” and a 

Chinese porcelain sherd decorated with the Willow pattern would be labelled “1.17.”  Every 

ware type was given a number, and subsequent decimal numbers were applied to describe 

variations.  From these efforts, select ceramic specimens were pulled from the excavation 

material and used as representative samples.  Nearly every category is represented in this 

separate typology collection.  Although Port Royal material forms the core of the typology 
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collection, additional ceramic material has been added to it from other archaeological sources.  

Since this collection has already been neatly categorized and sorted, selecting suitable material to 

test was straightforward. 
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CHAPTER IV 

A LOOK AT CERAMICS AND THEIR GLAZES 

Glaze Attributes 

As previously mentioned, this study will be examining the glazes of different types of 

ceramics.  Therefore, it is important to understand the structural and chemical attributes of glazes 

and why they are important for ceramic vessels.  Glazes become fused to the body of a ceramic 

vessel by firing them in a kiln; ceramics are generally fired in a kiln twice.  The first time the 

clay body is fired without a glaze in what is known as the bisque, or biscuit, firing.  The second 

firing, known as the glost firing, is done with the glaze applied to the ceramic body (Rice 

1987:99).  This double-firing technique was not always used in English ceramic production but 

was introduced to the Staffordshire region by Enoch Booth around 1750.  It steadily spread and 

gained popularity throughout England; potters preferred it over the single-firing method and salt-

glazing technique used on stoneware vessels because it was easier and more economical (Clow 

and Clow 1958:348-349). 

Glazes serve multiple functions.  They are primarily applied in order to create a non-

porous surface.  Pottery that is not fired at sufficiently high temperatures to vitrify the clay will 

remain porous.  Glazes serve to make these vessels impervious as well as mechanically stronger, 

more resistant to chemicals and scratching, smoother, and more attractive (Rhodes 1957:56; 

Singer and Singer 1963:525).  They are able to accomplish this because glazes are a special form 

of glass that “forms a highly viscous coating melted or fused at high temperatures onto a ceramic 

body” (Rice 1987:98).  The composition of the clay and the glaze must have complimentary rates 
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of shrinkage in order to fuse correctly; if the glaze shrinks too much it can cause crazing and 

cracking, while shrinking too slowly will not allow it to fuse properly. 

Glazes are essentially glass, but in order to adhere to the surface of a ceramic vessel they 

must be adjusted to meet that particular function.  The viscosity of glazes must be increased so 

that they do not run off the vessel during firing.  This is accomplished by the addition of 

aluminum oxide (Al₂O₃) (Rhodes 1957:55).  Chemical components in glazes are utilized and 

described as oxides; these elements have been chemically combined with oxygen through natural 

processes (Rhodes 1957:61).  The molecular formula for each element described in this section 

will be given in its oxide form.  There are three components that make up a glaze: network 

formers, network modifiers, and intermediates (Rice 1987:98).  The majority of the structure of a 

glaze is comprised of the network formers, and silica (SiO₂) is the primary former for most 

glazes.  Additional formers include boron (B₂O₃) and phosphorous (P₂O₅).  The second 

component, modifiers, are typically added to lower the melting point of the network formers, 

thus acting as fluxes.  Silica has a very high melting point, around 1710°C, and modifiers such as 

sodium (Na₂O), potassium (K₂O), lead (PbO), calcium (CaO), and magnesium (MgO) are 

commonly added to reduce the firing temperature needed to melt the glaze.  Finally, 

intermediates such as aluminum (Al₂O₃), lead (PbO), zinc (ZnO), zirconium (ZrO₂), and 

cadmium (CdO) “are oxides that replace part of the silica and usually serve one or both of two 

functions.  One is to increase the viscosity (stiffness) of the glaze, which was originally lowered 

by adding fluxes. … A second function of intermediates is to strengthen the glaze in firing” 

(Rice 1987:99).  In some instances, certain elements serve several purposes and may represent 

more than one component in a glaze.  Lead may act as a modifier by lowering the melting 
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temperature of the glaze, and it may act as an intermediate by strengthening the glaze during 

firing. 

Refined Earthenware 

This investigation into ceramic glaze materials focused on three forms of refined 

earthenware: creamware, pearlware, and whiteware.  The fundamental aspects of glazes were 

mentioned in the previous section; this section will describe the chemical details of refined 

earthenware glazes in more detail.  Earthenware vessels have unvitrified bodies that have not 

become glass-like, as is the case with porcelain (Rice 1987:5).  During the double-firing method, 

the biscuit firing temperature for earthenwares such as those listed above is around 1050-1150°C.  

The second glost firing temperature is lower, usually around 950-1050°C (Rado 1969:4). 

The reason for this lower glost firing temperature is because of the primary modifier, or 

flux, used in earthenware glazes.  Lead (PbO) has been used as one of the principal fluxing 

ingredient for glazes across the world because it reliably produces a blemish-free glaze.  

However, it does become volatile above 1200°C and cannot be used in high-firing glazes 

(Rhodes 1957:66).  It can also cause lead poisoning through the food and drink prepared and 

served in such dishes if not fired to the correctly determined temperatures.  Lead glazes were in 

use from Rome to China as early as the Han Dynasty (ca. 206 B.C.) (Clow and Clow 1958:332).  

Its dependability is one reason for its wide-spread use, another is its contribution to appearance.  

Lead will create a glaze with a brilliant finish (Rado 1969:112).  It is also versatile.  Alone in a 

silica glaze, lead creates a clear, colorless product.  It can then be easily colored by the addition 

of ingredients such as iron, cobalt, or manganese.  It can also be given a white or opaque 

appearance with the addition of tin ash, or stannic oxide (Clow and Clow 1958:333). 
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The three primary ingredients in earthenware glazes are silica, alumina, and lead oxide.  

Depending on the recipe and material sources for the glaze, proportions of these and the 

remaining ingredients will differ.  Differences will occur naturally within ware types, due to 

manufacturing differences, but will these be too great to define a specific ware type?  The 

proportions of main ingredients may not reveal significant differences in ware type, but the 

proportions of minor and trace ingredients may.  For an earthenware glaze these ingredients 

could include feldspars, which have an alumino-silicate framework in which different elements 

fill the cavities to create different feldspars.  Potassium (K₂O) results in potash feldspar 

(K₂O.Al₂O₃.6SiO₂), sodium (Na₂O) in soda feldspar (Na₂O. Al₂O₃.6SiO₂), and calcium (CaO) in 

lime feldspar (CaO. Al₂O₃.6SiO₂) (Rado 1969:31-32).  Carbonates may also be present, such as 

calcium carbonate (CaO.CO₂), magnesium carbonate (MgO.CO₂), or barium carbonate 

(BaO.CO₂), though the last can cause disproportionate shrinking and is rarely used (Rado 

1969:36-37).  Table 1 lists various raw materials used in ceramic glazes.  X-ray fluorescence will 

allow us to determine the elements found within a glaze, but not specifically the origin of the raw 

materials those elements originate from. 

TABLE 1 Raw Materials Used in Ceramic Glazes 

Oxide Desired Raw Material Other Oxides Introduced 

Silica (SiO₂) Crystal Quartz, Quartz Sand, 

Flint 

China Clay 

All Feldspathic and 

Micaceous Minerals 

Wollastonite 

Talc 

Zircon 

- 

Al₂O₃ 

K₂O, Na₂O, Li₂O, and Al₂O₃ 

CaO 

MgO 

ZrO₂ 
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TABLE 1, CONTINUED 

Oxide Desired Raw Material Other Oxides Introduced 

Alumina (Al₂O₃) China Clay 

All Feldspathic and 

Micaceous Minerals 

Corundum 

Aluminum Hydrate 

SiO₂ 

K₂O, Na₂O, Li₂O, and Al₂O₃ 

- 

- 

Potash (K₂O) Potash Feldspar 

Nepheline Syenite, Cornish 

Stone 

Potassium Nitrate 

Potassium Carbonate 

Al₂O₃ and SiO₂ 

Na₂O, Al₂O₃, and SiO₂ 

- 

- 

Soda (Na₂O) Soda Feldspar 

Nepheline Syenite, Cornish 

Stone 

Sodium Carbonate 

Borax 

Al₂O₃ and SiO₂ 

K₂O, Al₂O₃, and SiO₂ 

- 

B₂O₃ 

Lithia (Li₂O) Spodumene, Petalite 

Lepidolite 

Amblygonite 

Lithium Carbonate 

Al₂O₃ and SiO₂ 

K₂O, Al₂O₃, and SiO₂ 

Al₂O₃, P₂O₅ 

- 

Lime (CaO) Wollastonite (rarely) 

Lime Feldspar (very rarely) 

Calcium Carbonate (viz. 

Chalk, Limestone, Marble) 

Dolomite 

Calcium Borate 

SiO₂ 

Al₂O₃ and SiO₂ 

- 

MgO 

B₂O₃ 

Magnesia (MgO) Talc 

Magnesium Carbonate (viz. 

Magnesite) 

Dolomite 

SiO₂ 

- 

CaO 

Baria (BaO) Barium Feldspar (Celsian, 

very rarely) 

Barium Carbonate 

Barium Sulphate (Barytes) 

Al₂O₃ and SiO₂ 

- 

- 

Strontia (SrO) Strontium Carbonate - 

Zinc Oxide (ZnO) Zinc Oxide 

Zinc Carbonate 

- 

- 

Lead Oxide (PbO) Lead Oxide, Red Lead, Lead 

Dioxide, Lead Carbonate, 

etc. 

- 

Boric Oxide (B₂O₃) Boric Oxide 

Borax 

Calcium Borate 

- 

Na₂O 

CaO 
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TABLE 1, CONTINUED 

Oxide Desired Raw Material Other Oxides Introduced 

Tin Oxide (SnO₂) Tin Oxide - 

Zirconia (ZrO₂) Zirconia 

Zircon 

- 

SiO₂ 

Source: Rado (1969:129). 

Porcelain 

 Refined earthenware ceramics were the main focus of this research, and one the reasons 

for this is the difficulty in distinguishing them by appearance.  This difficulty increases when 

dealing with small, broken sherds.  An additional category of ceramics, porcelain, may therefore 

also be difficult to identify when small and undecorated specimens are being analyzed, 

particularly for the novice student or technician.  A small sample of porcelain ceramics were 

included in this study for this reason.  The sample size was smaller and less emphasis was given 

to porcelain; the goal was simply to determine the major difference between earthenware and 

porcelain glazes in order to provide a simple guideline for comparing them. 

 Less analysis went into the porcelain sample used in this study, but it is important to 

understand the variances that are present in porcelain studies.  There are several categories of 

ware that are included within the porcelain classification, such as hard-paste porcelain, soft-paste 

porcelain, and bone china.  These differ in ingredients and firing temperatures.  The data 

gathered from the porcelain samples will likely reflect this, but little effort was spent on 

distinguishing between porcelain types because the emphasis of this research was refined 

earthenware ceramics.  The classic example of porcelain is hard-paste and originated in China 

and Japan.  Most of the sample tested appeared to be of this type.  It differs from earthenware 

because its body is composed of the purest of clays called china clay or kaolin (Rado 1969:7, 
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15).  A traditional composition for this porcelain body is 50% kaolin, 25% feldspathic rock 

known as china stone or petuntse, and 25% quartz (Rado 1969:177; Rice 1987:6; Young 

1999:17). 

The appearance of porcelain sherds can be difficult to differentiate from white refined 

earthenware sherds.  The clay has little or no additives or discoloring oxides, such as iron oxide, 

that will discolor it, and therefore fires white.  The glaze does not need any additional coloring 

agents to produce a white finish over the body (Rado 1969:15, 18).  The amount of iron is so 

low, around 0.5%, that the firing atmosphere actually produces a bluish-white tint.  Hard-paste 

porcelain is fired in a reducing atmosphere, which lacks oxygen.  Within this atmosphere the 

small amount of ferric oxide in the clay is reduced to ferrous oxide, providing a bluer tint rather 

than the greyish-yellow tint iron typically produces in ceramics (Rado 1969:98, 117).  During 

firing, which is usually done in a single operation for hard-paste porcelain, temperatures reach 

between 1300°-1400°C, causing the body to vitrify and appear translucent.  The body and glaze 

also fuse at such temperatures because the “glaze is chemically allied to the feldspathic materials 

of the body” (Young 1999:16-18).  As this occurs the body “takes up a large amount of the 

glaze” but the glaze usually appears separate from the body “in a translucent line” (Majewski 

and O’Brien 1987:128). 

Glazes for hard-paste porcelain are typically feldspathic, consisting of silica, alumina, 

and petuntse.  They may be mixed with sand, quartz, lime, or potash (Majewski and O’Brien 

1987:110).  They differ starkly from glazes used on refined earthenware ceramics in that they 

contain no lead or boron compounds (Rado 1969:179).  Hard-paste porcelain is fired at such high 

temperatures that lead would become volatile and cannot be used.  Recognizing porcelain glazes 

compared to earthenware glazes using XRF should prove straightforward because of this 
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important variation.  However, it seemed necessary to briefly include them in this study because 

of their popularity and the potential to mistake them with refined earthenware types based on 

visual cues. 
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CHAPTER V 

CERAMIC WARES: DESCRIPTIONS AND BACKGROUNDS 

 

Creamware 

 A brief overview of each ware types history is necessary in order to appreciate the 

similarities that make identification challenging.  Such challenges stem from the continuity of 

form and decoration that began in England with white, salt-glazed stoneware, which was 

prevalent prior to the introduction of creamware, and persisted through the popularity of 

creamware and pearlware (Majewski and O’Brien 1987:116).  As industrial manufacturing 

transformed the ceramic industry and refined earthenwares became more easily produced, the 

popularity of the higher priced, white salt-glazed stoneware waned under the influence of less 

expensive creamware, or cream-colored earthenware (Clow and Clow 1958:353).  The perfection 

of a thin, double-fired, cream-colored earthenware that was dipped in a clear lead glaze was 

transformative and one of the most important developments for ceramics during the 18th century 

(Noël Hume 1969:123). 

 Creamware, a term never used by potters or merchant of the time but instead coined by 

archaeologists (more on this will be discussed in a later section), owes its pale yellow-cream 

coloring to the high content of lead present in the glaze (Majewski and O’Brien 1987:117; 

Cushion 1976:87).  After its initial introduction, “production expanded rapidly between 1750 and 

1760” (Clow and Clow 1958:350).  The ware was not invented by renowned potter Josiah 

Wedgwood, but he is credited with its refinement and perfection by 1762.  It is often referred to 

as “Queen’s ware” after Wedgwood notably sold a tea set to England’s Queen Charlotte, an act 
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that helped cement the ware’s success and popularity.  Earlier products are noted to, generally, 

be deeper yellow in color.  Pieces that date to the late 18th century and early 19th century tend to 

be paler, nearing the whiteness that later wares would achieve.  This difference appears most 

pronounced by about 1785 (Noël Hume 1969:125-126).  The later pieces are some of the more 

difficult ones to distinguish from pearlware or whiteware.  Creamware’s popularity continued to 

rise; by the end of the 18th century it enjoyed massive success in England and abroad (Majewski 

and O’Brien 1987:117).  However, the rate of innovation for ceramics was increasing as quickly 

as trends were shifting, and creamware’s popularity began to fade just as white salt-glazed 

stoneware’s had before it. 

Pearlware 

 In contrast to creamware, pearlware was in fact developed by Wedgwood as he 

experimented with ways to create a whiter ware.  He offset the natural yellow tint of creamware 

through the addition of a small amount of cobalt to the glaze as well as increasing the flint 

content in the body.  Archaeologists today call it pearlware, Wedgwood termed the ware “Pearl 

White” (Noël Hume 1969:128).  Introduced in 1779, it contributed greatly to the decline in 

popularity of creamware (Majewski and O’Brien 1987:118).   Pearlware is said to resemble hard-

paste porcelain, except for its lack of translucency.  The desire for porcelain was a contributing 

factor for its development.  Creamware had saturated the market, causing a decline in its 

demand.  Coupled with that was England’s protective tariffs against the importation of foreign 

porcelain.  (Miller 1980:15-16).  This context allowed pearlware to proliferate the market, and it 

almost instantly became widespread.  On archaeological sites of the early 19th-century pearlware 

is the most common ceramic type found (Noël Hume 1969:129-130).  Typical dates of 

prominent use range from 1780 to about 1830 (Sussman 1977:105).  However, due to continuing 
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developments in the ceramic industry pearlware too was falling out of fashion by 1820 or so 

(Noël Hume 1969:130). 

Prior to pearlware the body of refined earthenware ceramics were still naturally yellow or 

cream colored.  Wedgwood added a small amount of cobalt oxide to the glaze which 

accomplished two things: first, it whitened the appearance of the ceramics in the same manner 

that bluing laundry creates a whiter looking product, second, it created a slightly blue-tinted 

ceramic that was indicative of the highly sought after Chinese porcelain wares.  The addition of 

the cobalt gave the glaze a slight “bluish” tinge that is characteristic of pearlware and a more 

concentrated blue color that puddles in the crevices and junction of the vessel (Majewski and 

O’Brien 1987:118).  Very little cobalt is needed to act as a bluing agent—less than 0.001% is 

effective (Rado 1969:145). 

Similar to creamware, pearlware displays pattern of change throughout its production, 

though every manufacturer will differ.  Pearlware of the 18th century tends to be “characterized 

by a light, cream-white fabric covered with a thin, soft, blue- or blue/green-tinged glaze” while 

19th-century pearlware “is heavier and whiter with a harder, more brilliant glaze that may vary 

from deeply blue-tinged to almost colorless” (Sussman 1977:105-106).  The trend towards a 

whiter ware continued as pearlware progressively evolved into whiteware, a gradual and 

undefinable transition that creates difficulties when attempting to identify ceramics.  The clear 

presence of blue pooling therefore outlined the distinction between pearlware and whiteware in 

this study. 
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Whiteware 

 This English refined earthenware continuum that grew out of industrial techniques 

culminated with the manufacture of whiteware vessels.  As the name suggests, whiteware is 

almost pure white in color.  Its creation is not credited to a single potter nor does it have a single 

date of conception, instead it developed gradually from various potters during the early 19th 

century.  The transition from pearlware to whiteware is indistinct; the fashion of white ceramics 

led potters to modify their formulas.  For glazes this meant “creating a range of products with 

gradually decreasing amounts of bluing in the glaze” (Miller 1980:16).  In some instances, it is 

possible that the amount of cobalt in the glaze decreased while the amount of cobalt in the body 

increased, creating a whiter body (Majewski and O’Brien 1987:120). 

 While there is not a well-defined transition from pearlware to whiteware, it is clear that 

whiteware was developing by the 1820s and possibly as early as 1810. (Miller 1980:2).  This 

appears to have been influenced by the rising production of bone china in England, an altered 

form of porcelain that used bone ash in the body to contribute to its white color (Majewski and 

O’Brien 1987:119; Young 1999:68).  Bone china had been introduced around 1800 and is 

credited to potter Josiah Spode.  The popularity of this product demonstrated the continued 

appeal for white ceramics, influencing earthenware potters to tinker with their recipes and 

transition from pearlware whiteware (Miller 1980:17). 

Porcelain 

 The traditional Chinese hard-paste porcelain wares had been imported to Europe since the 

14th century, though it was not until the 17th century and increased trading with the Far East that 

their popularity intensified (Young 1999:14).  Hard-paste porcelain had been produced in China 
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since the 9th century and European attempts to re-create it were unsuccessful until about 1718 

(Cushion 1976:16).  Following the breakthrough of this technological barrier, hard-paste 

porcelain became widely manufactured throughout continental Europe (Majewski and O’Brien 

1987:127).  This form of porcelain was unrivalled by most other European ceramics because it 

was technically superior; vessels were thinner, of a finer quality, waterproof, and could have 

more elaborate decorations.  Only with the introduction of cream-colored wares did hard-paste 

porcelain have a realistic competitor (Young 1999:15). 

While England also had a number of factories producing hard-paste porcelain, imitations 

known as soft-paste porcelains were widely manufactured.  These included bone china, steatitic 

or soaprock wares, and a glassy form of porcelain, all of which were made from different 

ingredients, and fired at lower temperatures, than traditional porcelain (Young 1999:17-18).  Of 

these, bone china became particularly fashionable within England and most English pottery 

factories were producing this form of porcelain at the beginning of the 19th century (Young 

1999:68).  It is so named because bone ash was used as an ingredient in the body, roughly 50%; 

it may have first been used to try and whiten the color of the body, though it also strengthened 

the paste for firing (Cushion 1976:18; Young 1999:17).  Although technological improvements 

in the manufacture of refined earthenware led to more competition with porcelain, it always 

retained a favored position in the market. 

In reference to this investigation, porcelain samples have not been noted as either hard-

paste or soft-paste, though some of them have been reasonably identified.  There was no effort to 

source or date them either.  Their inclusion in this investigation was not to distinguish between 

porcelain types, but rather to offer a comparison against the three refined earthenware types.  A 

short description of the different types of porcelain helps to understand and identify variations 
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that may occur when sampling sherds using XRF.  Although not immediately pertinent, it may 

prove helpful in the future to pursue an investigation like this with porcelain varieties, especially 

for 19th-century porcelains which are more difficult to categorize according to source (Majewski 

and O’Brien 1987:127). 

Archaeological Classification of Ceramic Wares 

As mentioned in the Introduction, fundamental to the topic of this research are the 

complexities associated with classifying archaeological ceramic specimens.  Classifying earlier 

ceramic material tended to be easier; a typology for 17th- and 18th-century sites was developed 

that broadly separated ceramics into three categories: porcelain, stoneware, and earthenware.  

Each of these had their own subdivisions, but the variety of color and decoration made 

classification fairly straightforward.  The changes that took place in England’s ceramic 

manufacturing during the second half of the 18th century and the continuity throughout the 

following ceramic evolution subsequently meant that classification of 19th-century ceramics 

became more difficult.  Wares had to be classified according to slight variations of color, such as 

cream or blue, even when the differences could be extremely subtle (Miller 1980:1-2). 

According to Miller (1980:17), the typology that was created for 19th-century 

classification includes three groups: clearly whiteware, clearly pearlware, and something in 

between.  The condition of the sherd and the elements of the vessel still intact may or may not 

allow an archaeologist to properly identify it as pearlware or whiteware.  Although he did not 

include creamware into his initial categorization, Miller (1991:1) later described the additional 

difficulties of distinguishing creamware by the 1830s because it was “considerably lighter in 

color and would be classified as a whiteware by most archaeologists.”  He referred to creamware 

as CC ware, for cream-colored, a term used in both potters’ and merchants’ records by 1790.  
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These three categories of ware types are widely used in archaeological research, but few sources 

can actually agree on the criteria and definitions for sorting them (Majewski and O’Brien 

1987:99, 105).  This stems from the continuous nature of ceramic technological development at 

the time when ceramic wares were not in fact “static entities” (Majewski and O’Brien 1987:106).  

Potters were often making subtle and thoughtful changes to their products in order to achieve a 

desired outcome; the scientific and systematic approach to ceramic production meant that the 

transition from one ware type to another could be incremental, making current classification 

standards disputable. 

The level of subjectivity in the categorization of these specific ceramics can create 

problems in any research.  The descriptions of these ware types may appear straightforward on 

paper, but the practice of classifying actual sherds allows for human interpretation to affect the 

results.  Just as Miller (1980:2) described, if you present an assemblage of early 19th-century 

ceramics to six archaeologists and ask them to sort by ware type, you will receive six different 

accounts of the assemblage.  Despite such a degree of subjectivity, this form of ceramic typology 

is still widely used, and in the context of this research some very straightforward guidelines were 

applied for categorizing ceramics.  Sherds with crevices in the molded decoration or at the 

junction of a footring or handle were sought out to identify blue pooling so that whiteware and 

pearlware could be easily distinguished.  Older creamware samples were used because of their 

tendency to be darker and more clearly recognizable as cream-colored.  Yellow pooling in 

crevices was also used as a means of identifying creamware.  Some sherds without crevices or 

corners had previously been sorted, particularly those from the typology collection, and were 

included in the sampling.  Once again, porcelain samples were not specifically sorted by their 

variations of ware types. 
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An important aspect to bear in mind with archaeological ceramic studies is the 

discrepancies between archaeological terms and historical terms used to describe pottery.  As 

previously mentioned, the term pearlware is heavily used by archaeologists but was rarely used 

historically.  Instead, the original “Pearl White Ware” and variations thereof were used, though it 

is not always clear as to what kind of pottery was being described in these records (Miller 

1980:3).  It can be difficult to discern the classification system used by potters and merchants of 

the time, and the archaeologically assigned typologies “may have little or nothing in common 

with how ceramics were cataloged, marketed, and purchased” (Majewski and O’Brien 1987:99).  

Ware-based sorting is historically-based, but not historically-accurate; “terms like pearlware, 

whiteware … rarely appear in the price lists and account books” (Miller 1980:3).  Nonetheless, 

ware-based sorting is widely used and is an effective form of categorization for archaeological 

research. 

There is a more specific form of ceramic classification centered on decoration and vessel 

form, and that is arguably a better technique for detailed ceramic identification.  Looking back 

into the historical record, decoration was the determining factor for the prices for pottery by the 

1790s (Miller 1980:3).  While detailed ceramic analysis should absolutely take decoration and 

form into account, some ceramic samples cannot be appropriately studied in this way.  Broken 

sherds of all shapes and sizes are recovered from archaeological excavations, many of them 

without any identifiable features or decorations on them.  In these cases, it is necessary to utilize 

the simplified ware classification that archaeologists have used for years.  Projects may also not 

have the time or funding to conduct in-depth analysis of their ceramic assemblage and may rely 

on a quick, ware-based typological system.  Ceramic ware identification is only one aspect of a 
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more complex ceramic analysis that archaeologists can use, but it is particularly helpful with 

assemblage chronology and remains a relevant and useful tool for ceramic identification. 
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CHAPTER VI 

RESEARCH METHODS 

 

Equipment and Settings 

 As explained above, the project began with the selection of ceramic sherds for testing 

from the three assemblages previously mentioned in this text.  Elemental analysis was conducted 

using the Bruker Tracer III-SD portable XRF model.  This piece of equipment is operated 

through the Analytical Archaeology Lab in the Center for Maritime Archaeology and 

Conservation at Texas A&M University.  This handheld device was used in a benchtop stand for 

analysis in the lab, but it is fully capable of functioning in the field or any non-laboratory setting 

through battery-powered operation.  This pXRF spectrometer is fitted with a rhodium (Rh) anode 

target and a palladium (Pd) collimator, a device that narrows a beam of particles.  Therefore, on 

every spectrum produced from this device there are peaks for rhodium and palladium; in general, 

when choosing any XRF spectrometer, it is important to know what elements you may encounter 

and select a machine that is not fitted with components that will interfere with that research.  

Rhodium and palladium are scarcely found when analyzing archaeological materials, so it is 

suitably applied to this kind of analysis. 

 The spectrometer has several settings that can be adjusted to target specific elements for 

analysis.  Three different scans were taken of each sherd to focus on a range of elements.  

Adjustments to voltage, expressed in kilo-electron volts (keV), determine the energy of the X-

rays being sent towards the sample and thus the elements that will be detected.  Higher voltages 
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can detect elements with higher energies, or elements with higher Z (atomic) numbers.  These 

higher energies are also able to penetrate further into a sample than the lower energies. 

FIGURE 5. The periodic table of elements with X-ray energies provided for each element.  The 

atomic number in the top left corner of each element tile represents its Z number. (Bruker 2015) 

Amperage is a measurement of the intensity of an electric current, or the flow of electrons 

towards the anode target.  Increasing the amperage increases the number of electrons produced 

and the number of interactions that occur with the sample, though this will cause more 

bremsstrahlung interference.  When analyzing elements with higher Z numbers the amperage 
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should be lower to reduce that background radiation.  The count time for each scan was kept the 

same in this instance.  Times may generally range from 10 seconds to 10 minutes, with shorter 

count times used for qualitative analysis and longer count times used more for quantitative 

analysis, searching for PPM (parts per million) concentrations of minor elements (Shackley 

2011:31).  The Bruker Tracer III-SD has the option to pull a vacuum within the chamber of the 

machine in order to cut down on interference from elements within the air, and this is preferred 

for analysis of low Z elements.  The air around the sample is not under vacuum, just the air 

within the device.  Filters may be used to help block certain elements from dominating the 

spectrum and allow others to be seen.  Only one filter was used on one scan performed during 

this research.  The green filter provided by Bruker is 1 mm aluminum (Al), 1 mm titanium (Ti), 

and 6 mm copper (Cu), and is used to help block low energy X-rays and concentrate on high Z 

number elements.  The details for each scan are listed in Table 2. 

TABLE 2  Spectrometer Specifications for Each Scan 

Scan Voltage 

(keV) 

Amperage 

(µA) 

Time 

(seconds) 

Vacuum Filter 

1- General 

Analysis 

40 30 60 Yes No 

2- High Z 

Numbers 

40 11.5 60 No Yes - Green 

3- Low Z 

Numbers 

15 30 60 Yes No 

Each of these voltage and amperage settings were chosen for their appropriateness for 

targeting certain elements and programmed into the spectrometer.  The samples were placed on 

the scanner as flatly as possible to minimize atmosphere interference.  If a sherd had any form of 

color decoration in the glaze, this area was avoided.  Areas with undecorated glaze were selected 
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to compare the differences from one ware type to the next; painted and transfer-printed 

decorations give very different concentrations of coloring elements in comparison to samples 

with a basic clear glaze.  The first scan was done in order to obtain a general analysis of the 

samples, providing a wider range of elemental analysis.  The second scan concentrated on high Z 

number elements.  This scan may prove to be the least helpful simply because of the 

overwhelming amount of lead (Pb) in the earthenware glazes; there may be little additional 

information beyond the concentrations of lead.  The third scan focused on elements with low Z 

numbers, concentrating on the elements with atomic numbers below copper (Z=29) on the 

periodic table of elements.  This scan may be the most significant because of its narrow focus on 

low Z elements.  The fact that this scan was at a lower energy also ensures that it did not 

penetrate very far into the sample.  This helped to concentrate on the glaze and minimize the 

chances that elements from the ceramic body were detected. 

The computer program used during analysis with the spectrometer was S1PXRF.  The 

Bruker Tracer III was run from the computer using this software, and a spectrum was produced 

from each scan.  While this software also has analytical capabilities, it was not used to analyze 

the spectrums produced from the ceramic sampling.  Instead, another Bruker program called 

ARTAX was used for spectrum analysis.  Within each category of ware type the spectrums were 

examined and elements were identified according to the X-ray peaks on the spectrums.  The 

results of these analyses were then exported into Excel spreadsheets for further statistical 

evaluation. 

Forms of Analysis 

It is important to note that XRF data can be used for different levels of analysis: 

qualitative, semi-quantitative, and quantitative.  Qualitative measurements are the simplest and 
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reveal what elements are in the sample; quantitative measurements reveal the amount of each 

element in the sample (Dostal 2015:6).  Quantitative analysis requires specifically calibrated 

reference data obtained from known specimens to compare data and obtain parts per million 

(ppm) elemental measurements.  This is the most precise form of measurement.  Semi-

quantitative measurements can be obtained with uncalibrated data; while it will not give precise 

measurements for each element, it can still be used to produce net photon counts for each 

element, which can then be compared and used in statistical analysis.  Both qualitative and semi-

quantitative measurements were used in this research.  Qualitative data was measured directly 

from the spectrums produced from each scan and primarily involved elemental identification.  

Semi-quantitative analysis was used to compare net photon counts of specific elements to 

determine if there were any identifiable differences.  These last kinds of measurements are only 

comparable if the same settings are used to scan each sherd, which in this case they were. 

Testing Goals and Considerations 

In the event that a successful method of ware identification is found using this method, 

the next stage to test the legitimacy of this method would involve blind testing.  First the author 

would analyze spectrums from sherds scanned by others using the same equipment and settings 

to see if they could be accurately identified.  If that proves successful, the next stage of testing 

would involve participants with little to no XRF experience.  The author would educate them on 

the theory, the methods, and the results of this study, and would provide spectrums for them to 

analyze.  The importance of this study lies not only it the ability to scientifically identify ceramic 

wares, but in the replicability of this method by others. 

There are a few factors to consider during analysis, in addition to the concerns mentioned 

earlier about the archaeological classification system of ware types.  The first has been 
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previously mentioned but bears repeating.  This study is investigating the differences in glaze 

composition, but there is always the possibility that the X-rays are interacting with elements 

from the body of the ceramic.  Penetration distance cannot be accurately measured in this case, 

but it is known that XRF scans performed at higher energies will penetrate further into the 

sample than those at lower energies.  The third scan, targeting low Z numbers, will therefore 

have the least amount of interference from the ceramic body than any of the other scans.  

Another consideration is what effect conservation has had on these sherds.  Cleaning and 

consolidating sherds may put them into contact with various chemicals and substances, and the 

effects of this process on XRF data is unknown.  No effort was made to try and account for those 

effects in the data collected in this study, but it is an important consideration to keep in mind.  

Lastly and once again, there may be user error due to the fact that this is the first XRF study 

performed by the author. 
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CHAPTER VII 

ANALYSIS 

Once the ceramics were collected from the three sources of archaeological material 

previously listed, they were sorted by ware type and assigned a new sample number for easy 

identification purposes.  Table 3 lists every sample of creamware, pearlware, whiteware, and 

porcelain that was tested.  Repeated artifact numbers indicate that there was more than one sherd 

with this number.  The additional sherds are indicated by a number in parentheses after the 

artifact number.  Also, several sherds selected from the typology collection did not have an 

artifact number so these were simply referred to as “Unlabeled” and assigned a corresponding 

number. 

TABLE 3  Ceramic Sample Selection 

Sample # Artifact # Ware Type 

1 CSSG 3226.3 (1) Whiteware 

2 CSSG 3226.3 (2) Whiteware 

3 CSSG 2295.1 Whiteware 

4 CSSG 3278.1 Whiteware 

5 CSSG 2251.1 Whiteware 

6 CSSG 3058.2 Whiteware 

7 CSSG 2010.2 Whiteware 

8 PR87 582 9.10 Whiteware 

9 PR87 572 9.10 Whiteware 

10 PR87 311 9.10 Whiteware 

11 PR89 891 9.10 Whiteware 

12 PR87 282 9.10 Whiteware 

13 PR87 284-1 9.10 Whiteware 

14 PR87 351 9.10 Whiteware 

15 CSSG 2746.2 Pearlware 

16 CSSG 2624.4 Pearlware 

17 CSSG 2286.3 Pearlware 

18 PR89 884-3 8.61 Pearlware 
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TABLE 3, CONTINUED 

Sample # Artifact # Ware Type 

19 PR89 7/6-3 8.72 Pearlware 

20 PR89 602 8.72 Pearlware 

21 BG 5-1-3 8.41 Pearlware 

22 Unlabeled 1 Pearlware 

23 Unlabeled 2 Pearlware 

24 BG 5-1-0 Pearlware 

25 5-2-1 (1) Pearlware 

26 5-2-1 (2) Pearlware 

27 CSSG 3294.3 Creamware 

28 7.24 Creamware 

29 PR 5-4-3 Creamware 

30 7.21 Creamware 

31 4-1-3 Creamware 

32 5-4-2 (1) Creamware 

33 5-4-2 (2) Creamware 

34 Unlabeled 3 Creamware 

35 Unlabeled 4 Creamware 

36 Unlabeled 5 Creamware 

37 Unlabeled 6 Creamware 

38 CSSG 3083 Porcelain 

39 1.11 Porcelain 

40 1.12 Porcelain 

41 Unlabeled 7 Porcelain 

42 Unlabeled 8 Porcelain 

43 Unlabeled 9 Porcelain 

44 1.22 (1) Porcelain 

45 1.22 (2) Porcelain 

46 1.23 Porcelain 

47 1.21 Porcelain 

 

Qualitative Analysis 

Identifying Porcelain 

 A few significant points were made apparent through qualitative analysis of the 

spectrums.  The most noteworthy was the stark difference between the refined earthenware 

ceramics and porcelain, particularly on both the general analysis and high Z scans.  The lead 

present in the glazes of these refined earthenware types translated into the high Lα peaks at 10.5 
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keV and Lβ peaks at 12.6 keV for lead dominating these spectrums.  Except for Sample 5, which 

appeared to be the only refined earthenware sample with a notable Kα (8.6 keV) peak for zinc, 

every other spectrum had its most prominent peaks for lead. 

FIGURE 6. All refined earthenware general analysis spectrums, with prominent Lα (10.5 keV) 

and Lβ (12.6 keV) lead peaks. (Spectrum by author using ARTAX, 2018.) 
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FIGURE 7. All refined earthenware general analysis spectrums, including a label for the 

noticeable Kα (8.6 keV) peak for zinc for sample 5. (Spectrum by author using ARTAX, 2018.) 

 

FIGURE 8. All refined earthenware high Z spectrums, with prominent Lα (10.5 keV) and Lβ 

(12.6 keV) lead peaks. (Spectrum by author using ARTAX, 2018.) 

 

 By comparison, porcelain glazes should contain no lead.  The general analysis spectrums 

for porcelain differed markedly from those for any of the refined earthenware types in that both 

iron (Kα, 6.4 keV) and silicon (Kα, 1.7 keV) peaks were the most prominent.  The high Z 
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spectrums were even more distinguishable through the intensity of the bremsstrahlung.  

Porcelain glazes contain fewer high Z elements than those for creamware, pearlware, and 

whiteware.  Although it is within the bremsstrahlung region, the peak for palladium (Kα, 21.1 

keV), caused by the palladium collimator within the spectrometer instrumentation, was the most 

significant within the high Z spectrums for porcelain.  The next two noticeable elements were 

rubidium (Kα, 13.3 keV) and iron (Kα, 6.4 keV).  An interesting note among these samples was 

that there were significant Lα and Lβ lead peaks for samples 40 and 47.  The source of this lead 

was unclear, but it is clear that there was much less of it detected in the porcelain glazes than the 

refined earthenware glazes. 

 

 

FIGURE 9. Porcelain general analysis spectrums.  Labels indicate the most prominent peaks, 

silicon and iron. (Spectrum by author using ARTAX, 2018.) 
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FIGURE 10. Porcelain high Z spectrums.  The most distinguishable peak is palladium (Kα, 21.1 

keV) in the bremsstrahlung region.  Other notable peaks include iron (Kα, 6.4 keV) and 

rubidium (Kα, 13.3 keV).  Samples 40 and 47 both display strong Lα and Lβ peaks for lead. 

(Spectrum by author using ARTAX, 2018.) 

 

 Qualitatively, using this method of analysis, it was very easy to distinguish between 

refined earthenware glazes used on creamware, pearlware, and whiteware and those used on 

porcelain.  Although a couple of porcelain sherds appeared to have lead peaks on the high Z 

scan, the overall composition of the porcelain spectrums was very different than that of the 

refined earthenware spectrums.  Both the high peak for palladium and the strong bremsstrahlung 

curve in the porcelain high Z spectrums made them distinguishable.  Similarly, the high peaks 

for iron and silicon made the porcelain general analysis spectrums distinguishable from the other 

wares.  If an archaeologist cannot appropriately categorize a sherd as either porcelain or one of 

these similarly light-colored refined earthenwares, this method offers an option for suitable 

ceramic ware identification. 
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 In a similar manner, lead also allowed us to differentiate the porcelain glazes when 

analyzed using the low Z settings.  Every spectrum representing refined earthenware glazes 

displayed Lα and Lβ lead peaks on the right side of the spectrum, whereas there were no such 

peaks present on the porcelain low Z spectrums.  For each of these methods, porcelain has been 

undeniably identifiable when comparing spectrums against those of refined earthenware.  In 

some cases, when a sherd is too small to have any identifiable features, or when an archaeologist 

is not proficient in distinguishing porcelain from other white-colored, lead-glazed ceramics such 

as creamware, pearlware, or whiteware, the use of any of these XRF parameters should be 

sufficient in quickly determining if the sherd is porcelain or not. 

 

 

FIGURE 11. All refined earthenware low Z spectrums, with label to indicate Lα (10.5 keV), Lβ 

(12.6 keV), and Mα (2.3 keV) lead peaks. (Spectrum by author using ARTAX, 2018.) 
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FIGURE 12. Porcelain low Z spectrums.  None of these have Lα (10.5 keV) or Lβ (12.6 keV) 

lead peaks, indicating one way to identify porcelain using this technique with these settings. 

(Spectrum by author using ARTAX, 2018.) 

 

Refined Earthenware 

 Differentiation between creamware, pearlware, and whiteware through qualitative 

analysis of the spectrums produced with X-ray fluorescence spectrometry was less 

straightforward and produced ambiguous results.  The overall elemental composition of the 

glazes was so similar to one another, except for a few of the sherds sampled, that attributing a 

ware type to a specific spectrum seemed impossible.  Each of the three scans produced similarly 

vague results, and the only anomalies were three whiteware sherds, samples 3, 4, and 5.  Samples 

3 and 4 displayed noticeable peaks for tin (Sn) in all three scans, and sample 5 stood out as the 

only sherd with very high zinc (Zn) peaks appearing on all three scans.  In an industry that was 

always seeking improvement, these variations may stem from differences in glaze formulas, or 

they may be attributed to the fact that lead, tin, zinc, and pewter, an alloy of tin and copper, can 
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be difficult to distinguish visually and could have easily been confused in manufacture, during 

the mixing of the glazes. 

 

 

FIGURE 13. All refined earthenware general analysis spectrums. There is very little difference 

beyond peak intensity between the spectrums of the three ware types. (Spectrum by author using 

ARTAX, 2018.) 
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FIGURE 14. A closer look at the low voltage range of all refined earthenware general analysis 

spectrums. Both tin (Lα, 3.4 keV) peaks from samples 3 and 4 and zinc (Kα, 8.6 keV and Kβ, 9.5 

keV) peaks from sample 5 are indicated; these are the only striking variations in all of the refined 

earthenware spectrums. (Spectrum by author using ARTAX, 2018.) 

 

 

 

 

 

Sn 

Zn 
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FIGURE 15. A closer look at the high voltage range of all refined earthenware general analysis 

spectrums. Compton’s peak, which appears because of inelastic scattering in every spectrum, is 

highlighted. Tin (Kα, 25.2 keV) peaks are also highlighted for samples 3 and 4. (Spectrum by 

author using ARTAX, 2018.) 

 

 

FIGURE 16. All refined earthenware high Z spectrums. As with the general analysis spectrums, 

the zinc (Kα, 8.6 keV) peaks for sample 5 and tin (Kβ, 28.4 keV) peaks for samples 3 and 4 are 

the only obvious differences. (Spectrum by author using ARTAX, 2018.) 

Compton’s Peak 
Sn 

Zn Sn 
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FIGURE 17. All refined earthenware low Z spectrums. Samples 3 and 4 are highlighted with 

their tin (Lα, 3.4 keV) peak and sample 5 is highlighted with its zinc (Kα, 8.6 keV and Kβ, 9.5 

keV) peaks. (Spectrum by author using ARTAX, 2018.) 

 

 Although it may seem that there was a substantial amount of peak height variation when 

looking at all of the refined earthenware spectrums at once, that variation did not disappear when 

looking at the spectrums of individual ware types.  Creamware, pearlware, and whiteware each 

appeared to have the same elemental peaks and there was noticeable peak height variation within 

each ware type.  Through qualitative analysis of peak height, it was not possible to differentiate 

between these three ceramic wares based on their glazes. 
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Creamware 

 
Pearlware 

 
Whiteware 

 

FIGURE 18. A portion of the general analysis spectrums of each ware type.  There are similar 

peak height variances in each ware type for different elements such as silicon (Si), potassium 

(K), calcium (Ca), and iron (Fe). (Spectrums by author using ARTAX, 2018.) 

 

Semi-Quantitative Analysis 

 

 Data exportation from ARTAX to Excel allowed for more in-depth statistical analysis.  

These spreadsheets displayed the net photon count of every element associated with a peak on 

the spectrum of each ceramic sample.  This research compared broad categories of ceramic 

wares and therefore the XRF data did not have specific calibrations and could not be 
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quantitatively analyzed as % concentrations or parts per million measurements.  In fact, data 

obtained from pXRF spectrometers are not necessarily ideal for that form of analysis as the 

samples are not prepared specifically and there is more chance for interference from other 

sources.  Despite this fact, the data gathered from pXRF spectrometers can still be used in semi-

quantitative analysis and handheld/portable XRF spectrometers are commonly used in 

archaeological research.  Statistical tools can be used to interpret the data and assumptions may 

be made about the data based on the use of these tools.  The data used in the following graphic 

representations have been normalized.  Each elemental net photon count has been normalized to, 

or divided by, the net photon count for rhodium (Rh), our anode X-ray target material, to help 

partially correct for sample density differences and X-ray absorption. 

Characteristics of Porcelain 

 Qualitative analysis already showed that porcelain spectrums were easily recognizable 

compared against creamware, pearlware, and whiteware spectrums.  Porcelain spectrums had 

higher peaks at different energies because of the differences in glaze composition and were 

readily distinguished by these features.  In addition to the positive results of this qualitative 

analysis, a few semi-quantitative characteristics were explored for additional comparative 

purposes. 

 Since porcelain ceramic glaze composition was quite different from that of creamware, 

pearlware, and whiteware, X-rays interacted with certain elements more or less often than they 

did for the lead-based glazes.  As illustrated by the general analysis spectrums above, refined 

earthenware spectrums were distinguishable by their lead peaks whereas porcelain spectrums 

generally had higher peaks for silicon (Si), potassium (K), calcium (C), and/or iron (Fe).  In a 

few of these instances this also translated to higher average net photon counts for these elements, 
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when compared to the other ceramic ware types using the general analysis settings.  This is true 

for silicon, potassium, and iron, as well as aluminum (Al). 

 The box and whisker charts below illustrate the photon count range of each of these 

elements.  Potassium counts in porcelain were much higher with the general analysis scan than 

they were for any of the other ceramic types.  They had a normalized range of 2.2-4.6, while the 

highest normalized measurement for any of the refined earthenware samples was 1.5.  With the 

exception of potassium, there was overlap between ware types for each of the other elements.  In 

porcelain, each of the other elements displayed had higher average normalized photon counts 

than the averages of creamware, pearlware, and whiteware; while this is an interesting 

observation about porcelain glazes, the overlap between each of the ware type categories means 

that analyzing these elements would not necessarily grant much clarity about what kind of 

ceramic is being tested.  Using semi-quantitative analysis, in this instance only potassium 

seemed a likely indicator for a positive porcelain identification. 
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FIGURE 19. Box and whisker plots for each ware type with the general analysis scan.  

Normalized net photon counts for aluminum (Al), iron (Fe), potassium (K), and silicon (Si). 

(Graphs by author using Excel, 2018) 

 

 There were similar results in regards to potassium when looking at the low Z data.  The 

majority of the normalized net photon counts for porcelain was greater than those for the three 

refined earthenware categories.  Only one sample was low enough to overlap.  These results 

were less conclusive than those of the general analysis test but helped to reinforce the potential 

usefulness of observing potassium levels to identify porcelain.  Other elements of interest 

included copper (Cu) and nickel (Ni).  In the porcelain samples these two elements had the 

opposite characteristics of potassium and had some of the lowest net photon counts of the four 

ceramic ware types.  There was still overlap with other ceramic wares, particularly with the 
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whiteware samples, but the low counts for copper and nickel in porcelain appeared to be 

important properties to consider when comparing ceramic wares using XRF data. 

 

 

    

FIGURE 20. Box and whisker plots for each ware type with the low Z scan.  Normalized net 

photon counts for potassium (K), copper (Cu), and nickel (Ni). (Graphs by author using Excel, 

2018) 

 

 

Creamware, Pearlware, and Whiteware 

 

 The qualitative observations made of the refined earthenware data did not provide 

insightful information into defining XRF characteristics for each ware category.  The semi-

quantitative analysis of the refined earthenware categories offered more discerning qualities 

about each ware type, but it too proved unsuccessful in revealing a method for ware 
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identification.  One of the biggest challenges in this research was the variability in the sample 

selection.  Each selection of sherds from a particular ware group was varied in its origin and 

therefore its source materials.  Differences in materials can still produce comparable ceramics 

that are categorized equivalently by archaeologists.  This diversity of origin that led to 

complications in establishing an identification method using these techniques.  Regardless of the 

inconclusive nature of these results, there were still several observed trends in these data that 

bear mentioning. 

 The general analysis scan seemed to indicate that the ingredients in the glazes on 

creamware were more different from pearlware and whiteware than the latter two were from 

each other.  There were many instances when the levels of elements detected in the creamware 

samples were consistently lower than the levels detected in the pearlware and whiteware 

samples.  These included aluminum (Al), calcium (Ca), copper (Cu), iron (Fe), and manganese 

(Mn).  In almost every case there was overlap in the amount of photon counts between the ware 

types; however, this overlap could at times be attributed to an outlier within the creamware 

samples.  The exception was manganese, which had no overlap of values.  The highest 

normalized net photon count for creamware was .048 while the lowest count for whiteware was 

.051 and the lowest for pearlware was .067.  While these values were very close in scale, the lack 

of overlap and the very small range of values for manganese in creamware measured using this 

scan suggest that it may be a useful element to observe in further attempts at ware identification.   
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FIGURE 21. Box and whisker plots for each refined earthenware type with the general analysis 

scan.  Normalized net photon counts for aluminum (Al), copper (Cu), iron (Fe), and manganese 

(Mn).  Creamware has consistently lower photon counts for each of these elements, particularly 

manganese. (Graphs by author using Excel, 2018) 

 

 When the values from the porcelain samples were added, almost each of these trends 

remained the same.  Creamware had reliably low photon counts compared to the other ware 

types for each of these elements except copper, which porcelain shared similarly low counts for.  

Manganese remained the most promising element for observation in distinguishing creamware 

with normalized net photon values of 0.05 and lower. 
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FIGURE 22. Box and whisker plots for all ware types with the general analysis scan.  

Normalized net photon counts for aluminum (Al), copper (Cu), iron (Fe), and manganese (Mn). 

(Graphs by author using Excel, 2018) 

 

 Calcium also had a very small range of values in the creamware general analysis scan if 

two outlier samples were excluded, sample 27 and sample 28.  On the other hand, pearlware and 

whiteware had a much wider range of photon detection values.  Even with the outliers included, 

the highest normalized photon value for creamware was 3.92.  Half of the pearlware samples 

valued higher than that and over 70% of the whiteware samples were higher.  When excluding 

the outliers, 83% of pearlware and 100% of whiteware samples had higher calcium values than 

that of creamware.  The range of pearlware and whiteware values set them apart from creamware 

in this instance. 
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FIGURE 23. Box and whisker plots of normalized net photon counts for calcium (Ca) for each 

refined earthenware type with the general analysis scan.  Samples 27 and 28, outliers in the 

creamware data, were excluded from the second graph.  The third graph includes porcelain 

calcium values. (Graphs by author using Excel, 2018) 

 

 As already mentioned, lead was a base for refined earthenware ceramic glazes during the 

18th century and into the 19th century, and the qualitative analysis demonstrated that lead was 

overwhelmingly detected in the general analysis and high Z scans.  Observations from the high Z 

scan revealed that all three ware types had net photon counts for lead at the Lα energy level that 

fell within similar ranges.  This was particularly true for pearlware and whiteware, though more 

pearlware samples sat higher in this range and more whiteware samples were found lower in the 

range, so their averages differed greatly.  Interestingly, most of the creamware samples had the 
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highest lead counts and only two samples had lower values than the average value for pearlware.  

These averages seemed to indicate a trend for lower levels of lead in earthenware glaze through 

time, with creamware having the highest average and whiteware having the least average.  This 

is an expected trend to observe in glaze compositions, though it should be reiterated that these 

numbers do not represent % concentrations of elements in the glaze.   

 

 

FIGURE 24. Box and whisker plots of normalized net photon counts for lead (Pb), at the Lα 

energy level, for each refined earthenware type with the high Z scan. (Graphs by author using 

Excel, 2018) 

 

 One of the elements of interest at the beginning of this research was cobalt.  Cobalt was 

added to refined earthenware lead-based glazes used on creamware to give it a whiter 

appearance, leading to the production of what is today called pearlware.  An early hypothesis 

during the onset of this investigation was that analysis of cobalt might prove an important 

element in distinguishing these wares from one another.  Data from the low Z scan did not 

support this hypothesis.  On average, pearlware did have higher photon counts than the other two 

ware types, but both creamware and whiteware each had an outlier with very high cobalt photon 

counts.  Removing these outliers revealed that whiteware had a consistently lower photon count 
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for cobalt and creamware photon counts resided almost entirely within the range of pearlware 

counts.  This form of data analysis, which is meant to be relatively quick and straightforward, did 

not provide a means of distinguishing between these three ware types.  A more detailed analysis 

into the % concentration of cobalt within each sample might lead to success, but analysis of that 

kind would require specific calibrations for each ceramic type that go beyond the means of this 

investigation. 

 

 

FIGURE 25. Box and whisker plots of normalized net photon counts for cobalt (Co) for each 

refined earthenware type with the low Z scan.  Outliers in the creamware (sample 32) and 

whiteware (sample 11) data were excluded from the second graph. (Graphs by author using 

Excel, 2018) 

 

 While examination into cobalt did not yield definitive differences between creamware, 

pearlware, and whiteware, another element did present interesting data.  Looking once again at 

the low Z data, magnesium (Mg) counts in both pearlware and whiteware were generally very 

low compared to those of creamware.  There was an outlier in pearlware and in whiteware, but 

aside from these, every other sample had a lower magnesium photon count than the average 

count for creamware.  Whiteware in particular had consistently low counts of magnesium.  There 



67 

 

was overlap for all three ware types, but higher magnesium normalized net photon counts, 

predominantly 0.02 or higher, appeared to be likely indicators that the sherd was creamware. 

 

 

FIGURE 26. Box and whisker plots of normalized net photon counts for magnesium (Mg) for 

each refined earthenware type with the low Z scan.  Outliers in the pearlware (sample 15) and 

whiteware (sample 12) data were excluded from the second graph. (Graphs by author using 

Excel, 2018) 
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CHAPTER VIII 

CONCLUSION 

 

 The premise of this investigation was to determine if, using a portable X-ray fluorescence 

spectrometer, it is possible to easily identify the ware type of certain kinds of historic ceramics 

by analyzing their glazes.  The ceramics in question included creamware, pearlware, whiteware, 

and porcelain, which can often be misidentified by archaeologists due to either the 

archaeologist’s lack of experience with ceramics or the ceramic sherds limited diagnostic 

attributes.  The popularity of porcelain from China and Japan led to an evolutionary trend in 

European ceramics, which England spearheaded during the Industrial Revolution, and spawned 

the creation of whiter and whiter refined earthenware ceramics.  These three ware types, 

creamware, pearlware, and whiteware, are abundant on archaeological sites worldwide due to the 

domination of the English ceramic industry during the 18th and 19th centuries.  Although other 

features such as vessel type and decoration can be more informative about the socio-economical 

aspects of an archaeological site, the identification of ware type, particularly distinguishing 

between these three refined earthenware types, is most important in developing a chronology and 

age of a site. 

 The analysis of both qualitative and semi-quantitative data yielded mixed results.  Due to 

these results and the lack of a well-defined identification method, the blind tests were omitted 

from the testing procedure.  The qualitative examination of spectrums produced from the pXRF 

spectrometer allowed me to conclude: 

1. Porcelain was easily distinguishable from the other wares because these refined 

earthenwares have lead-based glazes and lead peaks surpassed all others on their 
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spectrums.  In addition, porcelain was recognizable in the high Z scan by the strong 

bremsstrahlung region around 18-25 keV. 

2. Qualitative analysis of creamware, pearlware, and whiteware spectrums did not offer 

conclusive evidence for identification as each ware type shared similar peak patterns and 

peak heights differed throughout all three of the sample selections. 

 

 Semi-quantitative analysis revealed additional information about trends in the normalized 

net photon counts of particular elements: 

1. Potassium (K) was the most informative element of interest for distinguishing porcelain; 

the range for potassium values from the general analysis scan was isolated at 2.2-4.6 with 

no overlap from the lower values of the other ware categories. 

2. Manganese (Mn) was similar for creamware as a distinguishing element; creamware had 

the lowest values which ranged from 0.021-0.048. 

3. Cobalt (Co) had been an element of interest at the onset of the study, but the data from 

the low Z scan did not indicate that it can be used in this method to distinguish between 

creamware, pearlware, and whiteware. 

4. Magnesium (Mg) counts were much more revealing, indicating that pearlware and 

whiteware usually have a much smaller range of values than creamware. 

 

 Although the primary goal of this research was not achieved, valuable information was 

gathered nonetheless: 

a) The easiest of the white- and cream-colored ceramics to identify using this method was 

porcelain. 
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b) Of the refined earthenware categories, creamware was the most distinct and may be 

identifiable through analysis of a few different elements such as manganese and 

magnesium, using different spectrometer settings. 

 

 Portable XRF spectrometers are not a standard piece of equipment for every 

archaeological investigation, but their applications in archaeology continues to expand due to the 

ease of use, portability, and cost-effectiveness of these machines.  The ease with which XRF data 

may be shared is also beneficial for the entire archaeological community.  Although the outcome 

of this research was mixed, the data collected could prove beneficial to other researchers, and 

providing access to this data would be one of the next stages of this research.  Sites such as The 

Digital Archaeological Record offer resources for researchers to share and access data such as 

these.  Applications such as this may not necessarily be immediately practicable, but as the 

employment of XRF and pXRF devices in archaeology increases and researchers are educated on 

the processes utilized in XRF analysis, similar procedures may become common practice in 

future settings. 
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