
THE STRETCH-ENGINE

A METHOD FOR CREATING EXAGGERATION IN

ANIMATION THROUGH SQUASH AND STRETCH

A Thesis

by

ZAID HAMED IBRAHIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

In fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tim McLaughlin
Committee Members, Frederic Parke
 John Keyser
Head of Department, Tim McLaughlin

August 2018

Major Subject: Visualization

Copyright © 2018 Zaid Hamed Ibrahim

ii

ABSTRACT

Animators exaggerate character motion to emphasize personality and actions.

Exaggeration is expressed by pushing a character’s pose, changing the action’s timing, or

by changing a character’s form. This last method, referred to as squash and stretch, creates

the most noticeable change in exaggeration. This work introduces a prototype tool, the

Stretch-Engine, to create exaggeration in motion by focusing solely on squash and stretch

to control changes in a character’s form. It does this by displaying a limbs' path of motion

and altering the shape of that path to create a change in the limb’s form. This paper provides

information on tools that exist to create animation and exaggeration, then discusses the

functionality and effectiveness of these tools and how they influenced the design of the

Stretch-Engine. This method is then evaluated by comparing animations of realistic motion

to versions created with the Stretch-Engine. These stretched versions displayed

exaggerated results for their realistic counterparts, creating similar effects to Looney Tunes

animation. This method fits within the animator’s workflow and helps new artists visualize

and control squash and stretch to create exaggeration.

iii

DEDICATION

This thesis is dedicated to my wife Monica, who stood by me, and my family, who

always encouraged me. Thank you all for believing in me and supporting me as I work

towards my dream.

iv

ACKNOWLEGEMENTS

This project could not have been achieved without the incredible support of the faculty

and staff at Texas A&M’s Visualization department. I would personally like to thank my

committee chair, Prof. Tim McLaughlin, who guided and supported me as I developed the

ideas for this project. Without his help, this project would have never been completed. I

would also like to thank my other committee members, Dr. Frederic Parke, and Dr. John

Keyser for their advice and counsel.

I would like to also thank my friends, colleagues, and family for their support

throughout my academic career at Texas A&M. Specifically Joshua Seal, Soumitra

Goswami, Rushil Kekre and Nicholas Forasiepi. Your help and support were invaluable

and I could not have succeeded without it.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of chair Professor Tim

McLaughlin and Dr. Frederic Parke of the Department of Visualization and Dr. John

Keyser of the Department of Computer Science.

All work for the thesis project was completed independently by the student, with edits

made to the paper by Dr. Frederic Parke of the Department of Visualization and Monica

Parshley and Alya Ibrahim and Texas A&M’s University Writing Center.

Funding Sources

There are no outside funding contributions to acknowledge related to the research and

compilation of this document.

vi

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION .. iii

ACKNOWLEGEMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

1. INTRODUCTION ... 1

1.1 Purpose .. 2

1.2 Significance .. 2

1.3 Terminology ... 3

2. BACKGROUND AND RELATED WORK ... 5

2.1 Realistic Approaches .. 7

2.2 Non-Realistic Approaches .. 12

3. METHODOLOGY .. 23

3.1 Objectives ... 23

4. IMPLEMENTATION .. 24

4.1 The Stretch-Engine Rig .. 25

4.2 Cartoon Observations .. 30

4.3 Functionality of the Stretch-Engine .. 33

4.3.1 Curve Development ... 33
4.3.2 The Exaggerated Path of Motion ... 36

vii

4.3.3 Building Exaggeration ... 38
4.3.4 Interpolation and Easing .. 42
4.3.5 Exaggeration User Interface .. 45

4.4 Roadblocks and Solutions .. 51

5. EVALUATIONS AND RESULTS ... 54

5.1 Exaggeration of a Single Limb Action ... 54

5.2 Exaggeration of a Pair of Limbs Actions .. 58

5.3 Exaggeration of a Full Body Action ... 63

6. CONCLUSIONS.. 70

6.1 Future Work ... 71

REFERENCES .. 74

APPENDIX A .. 77

APPENDIX B .. 87

viii

LIST OF FIGURES

Page

Figure 1 Example sketch of limb exaggeration through squash and stretch
based on Looney Tunes episode “To Duck or Not to Duck.” 3

Figure 2 Comparison of the center of mass path created from hand-made
animation (blue) and the ballistic path calculation (red) 11

Figure 3 Examples of different walking gaits for a variety of bipedal creatures
created through the physics-based simulation .. 12

Figure 4 Results of animating two soft body forms. The H swings side to side
and the I maintains balance by lowering its center of mass 12

Figure 5 Comparison of exaggeration using Wang et al. animation filter (top)
and Kwan and Lee’s time-shift filter (bottom) 16

Figure 6 Result of gate becoming more cartoon-like through warping the
characters skeletal structure .. 17

Figure 7 Results of changes to a walk cycle through poses using an example-
based technique ... 17

Figure 8 Comparison between original and edited motion data 21

Figure 9 Example of a 2D drawing applied to a 3D character to create a
stylized walk ... 22

Figure 10 The effect of the space-time curve on a 3D character’s motion 22

Figure 11 The Locator Structure, Joint Structure and Stretch-Engine Model 27

Figure 12 The IK and Distance Ruler along the Left Arm joint structure 27

Figure 13 The squash and stretch effect in the arm as the controller moves
passed the default length ... 28

Figure 14 The volume preserving feature in the character’s arm 29

Figure 15 The two cases for finding the position of P2 ... 39

Figure 16 The resulting triangles created from both scale cases 40

Figure 17 The angles found within either triangle used to calculate P2 41

file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994002
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994002
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994003
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994003
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994004
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994004
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994005
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994005
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994006
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994006
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994007
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994007
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994008
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994008
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994009
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994010
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994010
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994011
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994012
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994013
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994014
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994014
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994015
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994016
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994017
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994018

ix

Figure 18 The Exaggerated Motion Path (blue curve) of the Right Arm 42

Figure 19 An example trail broken down to show the length between each point
and the origin point ... 43

Figure 20 The differences in shape of the remap curve when using a linear curve,
spline curve and an eased spline curve ... 44

Figure 21 The Exaggeration Interface provided by the Stretch-Engine 45

Figure 22 Section 7 of the interface with both ease-in and ease-out selected 48

Figure 23 The Remap Tool within the Maya interface displaying the remap
curve .. 49

Figure 24 The effect of changing the ease-in points position along the remap
curve. ... 50

Figure 25 Simple (top) and Refined (middle) test results at the point of impact
compared to the example sketch of Daffy Duck (bottom) 58

Figure 26 Simple (top) and Refined (middle) results at the apex of the swing
compared to the example sketch of Sylvester the Cat (bottom) 63

Figure 27 Simple (top) and Refined (middle) results of the leap compared to the
example sketch of Wile E. Cayote (bottom) ... 68

Figure 28 Simple (left) and Refined (right) results of the landing compared to the
example sketch of Wile E. Cayote (middle) ... 68

file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994019
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994020
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994020
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994021
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994021
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994022
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994023
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994024
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994024
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994025
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994025
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994026
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994026
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994027
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994027
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994028
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994028
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994029
file:///C:/Users/zaidi/Documents/Thesis/Documents/Zaid_Ibrahim_Thesis_Final_v2.docx%23_Toc520994029

1

1. INTRODUCTION1

Animators rely on an understanding of the principles of animation [1] to create the

motion and emotion in their work. These principles were developed by the animators at

Disney Animation and became a framework for what to do when practicing animation. By

keeping these principles in mind, artists could create appealing motion and develop their

own style of work. However, determining whether or not a certain principle was important

in the creation of their artistic style would be difficult without proper training. This paper

chooses to discuss the importance of one principle in particular, squash and stretch,

described as “One of the most important principles of animation” in the book The Illusion

of Life by Frank Thomas and Ollie Johnston.

To better understand the importance of squash and stretch, a brief overview of existing

tools that focus on this principle is discussed. Some of these tools focus on using

simulations to control animation and the degree of squash and stretch. The final result is

an automatically created motion with little or no manual input from the user. These tools

may use realistic physics in the calculations that affect squash and stretch, or they may use

other techniques to create cartoon-like effects. The other techniques include tools that allow

the user to visualize the changes squash and stretch can have on the overall animation and

provide the user with controls to affect these changes. These tools produce exaggerated

animation results, but they all have shortcomings, all of which were considered

when developing this method.

1 Parts of this section are reprinted with permission from “The stretch-engine: a method for adjusting the
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings of
the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N. Spencer
(Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://doi.org/10.1145/3099564.3106639

2

1.1 Purpose

The purpose of this paper is to describe a method to create exaggeration in realistic

motion by controlling changes in a character’s form through squash and stretch. The

Stretch-Engine is a tool developed to achieve this goal by generating a 3D motion curve

that visualizes a limbs path of motion and changes the shape of that path to impose squash

and stretch on the character’s limb. The Stretch-Engine also contains a procedurally

generated bipedal rig that has the ability to squash and stretch its limbs as well as a graphic

user interface (GUI) to create 3D motion paths and control the form of these curves. The

code used to build the Stretch-Engine is written in Python and is integrated into the existing

Maya animation software.

1.2 Significance

The Stretch-Engine allows animators to control changes in a character’s form by

changing the degree of squash and stretch through altering a limb’s path of motion. With

access to more control in squash and stretch, animators are able to develop better quality

exaggerated motion. The result is an efficient way of controlling squash and stretch during

animation of bipedal characters. The Stretch-Engine is demonstrated using three

animations based on realistic motion that employs squash and stretch to create exaggerated

versions.

3

1.3 Terminology

There are specific terms and phrases used that describe certain processes of

development when creating an animation tool. This paper includes some of this

nomenclature and uses it to explain the components of the animation tool. For this paper,

the terminology used and their definitions are listed below:

A Rig is the process and end result of taking a static geometric model, creating an

internal digital skeleton, a relationship between the geometry and skeleton, and adding a

set of controls that the animator can use to manipulate the character around.

A Locator is an object within the Maya interface that visually represents a point in 3D

space. It can contain translation, rotation and scale data.

IK, or inverse kinematics, is the mathematical process of determining movements of an

object based on the motion of its end effector.

A Controller, in the context of this paper, is an end effector for an IK chain within a

rig. Allows the animator to interact with and animate their characters.

Figure 1: Example sketch of limb exaggeration through squash and stretch based on Looney Tunes
episode “To Duck or Not to Duck.” Episode released March 6, 1943; Directed by Charles M. Jones.

4

A Curve is a 3D line based on user created keyframes that defines the path of motion

that the end effector follows. It is a combination of user input and software generation. The

curve is displayed by the software interface.

Geometry is a collection of surfaces organized in a hierarchical structure that forms the

character body.

Joints are Maya defined objects where the articulation of the character occurs, the pivot

points. Connected to the geometry by weighting functions allowing it to move and deform

the character.

Bipedal, a term used to define an animal that walks on two legs.

Right-Hand Coordinate System, or the positive x, y, and z axes, point left, right, and

forward, respectively. Positive rotation is counterclockwise about the axis of rotation.

A Spline is a smooth curve that passes through or near a set of fit points. Defined with

either fit points or control vertices.

Keyframes transform objects or skeletons over time by setting keys, arbitrary markers

that specify property values of an object at specific times.

In the terms of this paper, a Tool is a set of functions contained within a user interface

that provides the user with resources to complete a specific task

5

2. BACKGROUND AND RELATED WORK

As animation developed, certain expressions were used repeatedly. Such expressions

included “aiming,” “overlapping” and “pose to pose.” These expressions suggested that

certain animation procedures were becoming specialized and were being given names.

These terms were used over and over again, becoming verbs and then nouns. Physical

aspects were being used to describe drawing techniques, such as “Look how stretchy that

character is.” These terms were ways animators described the success of their work and

their peers [1].

As time went on, animators would continue to search for better methods of explaining

drawings to one another. These methods were ways to teach others what they have learned

and what was successful in producing appealing animations. These methods were

techniques they had learned to follow and became a set of guidelines they could quantify

and study. Animators used these guidelines as references for new projects they would work

on. Although these techniques may not always create the expected result, they allowed for

structure and reassurance in the creative process.

As each of these techniques were named, they were analyzed, deconstructed and

perfected. They became the foundation for new animators to follow and improve their

skills. These techniques later become the twelve fundamental principles of animation:

Squash and Stretch, Anticipation, Staging, Pose to Pose, Follow Through, Slow In and

Slow Out, Arcs, Timing, Exaggeration, Solid Drawing and Appeal. As described in the

book The Illusion of Life, the most important of these principles is Squash and Stretch [1].

6

An example of “Squash and stretch” is when an object is stretched as it approaches a

collision, squashed as it collides, and then stretched again as it rebounds [3]. The purpose

of this principle is to give a sense of weight and flexibility to an object. When an object,

like a chair, is moved, there is a rigidity in its form that is emphasized by its movement.

Anything composed of flesh, however, shows deformation of its shape when progressing

through an action. The “squashed” position of an object depicts its form bunched up and

pushed together when a compressive force is applied. The “stretched” position shows the

object in an extended position but with a similar shape to its original form. Figure 1 is an

example of such a stretch, Daffy Duck’s arm is stretched out to emphasize the punch’s

impact.

Animators apply the principles of animation to create their own style of animation.

Such styles range from closely following reality, such as the work by Hayao Myazaki, to

breaking as many physical constraints as possible, such as “The Amazing World of

Gumball” created by Ben Bocquelet. This change in style is most noticeable when using

squash and stretch. It can also emphasize the effect exaggeration has on motion. A

character’s torso may be slightly compressed when hit in the head or the torso may

completely flatten along with the head. The difference is the desired effect the animator

wants to produce, or how “cartoony” the character is meant to be. This is the artistic impact

squash and stretch has on animation. When studying tools used for animation, there are

two different approaches. These can be defined as (1) animation based in physical realism

and (2) animation controlled by artistic preference.

7

2.1 Realistic Approaches

When creating tools for animation, one approach focuses on physics-based simulations

to calculate animation realistically. This approach means that all motion created is done by

a physics-based process rather than being created manually. As a result, physics-based

characters and objects interact in accordance with the laws of physics. Physics-based

simulations, which create all forms of motion without the use of motion capture data, have

been a topic of interest in the animation industry for quite some time but have not been

adopted widely in expressive character animation. Currently, physics-based simulations

are time and resource intensive, making manual or motion capture approaches the more

efficient option.

There are many techniques that rely on physics-based calculations; one example is the

method created by Geijtenbeek [25]. He developed a physics-based simulation to animate

bipedal characters with the use of biomechanical constraints. These constraints are based

on results from biomechanics research to help create the perception of naturalness. Without

the use of these constraints, simulated characters move in ways that are physically valid

but seem stiff or robotic. Geijtenbeek’s technique created visually appealing walk cycles

and performed well for a number of differently shaped bipedal characters. Although this

technique creates satisfying animation, it did not take into account form deformations such

as squash and stretch.

Hahn [12] developed an early system that simulated the dynamic interaction among

rigid bodies. This system took various forces, such as elasticity, friction, mass, and

moments of inertia to produce rolling and sliding. This technique helped animators create

8

realistic results by using equations developed to developed to calculate the aforementioned

forces. This method also adjusted the physical calculations to create the desired animation

if the realistic values could achieve them. The final result will be an animation that follows

realistic or pseudo-realistic motion based on the physical attributes assigned to the object.

These pseudo-realistic results refrain from manipulating the object’s form and can only be

created if the laws of physics are manipulated to create the desired effect.

Mordatch et al. [14] created a trajectory optimization approach to animate human

activities that are driven by the lower body. This approach was based on contact-invariant

optimization, a technique that smooths out discontinuities in the specified objectives to

create a single optimized search for possible motion trajectories. The goal of this project

was to automatically create realistic, lower body motion, such as running and jumping.

These optimizations evaluated the contact positions and forces of the character’s feet to

calculate the resulting motion in the rest of the body. The technique used these physical

calculations to move the character’s feet and, from these movements, calculated motion for

the body. Like Geijtenbeek it could not alter the body’s geometric form as the calculations

relied on that structure to remain constant.

Shapiro and Lee [11] developed an interactive system that helped animators create

more physically realistic motion by assuming the character obeys the laws of physics. This

method was designed to inform animators of the changes needed to make motions of an

animated character physically correct. Their tool used physical characteristics such as

center of mass, angular momentum and balance to create an optimal motion path. The

system comprises of two tools that were integrated into keyframe-based animation

9

software. The first is a ballistic path tool that compares the character’s path of motion based

on the originally created animation to a new path generated by the system. This ballistic

path allows an animator to adjust the original motion to create a more physically correct

animation. Figure 2 shows an example of an original motion path (blue) compared to the

new ballistic path (red) of an animated character. The second tool is an angular momentum

tool that rotates a character’s global orientation to achieve the desired angular momentum.

The degree of rotation is calculated using velocity, inertia, and momentum values based on

the character’s root, the highest joint in the character’s joint hierarchy. The character is

rotated without affecting the animation of each body part to preserve the animation style.

Their tool allowed the animator to visualize and control changes in a manually created

animation and could even adjust exaggerated animations to fit within a live environment.

However, it does not include a feature to alter form when working with exaggerated

animations.

Chenney et al. [3] simulated squash and stretch for simple bodies, basic geometry, and

shapes by using velocity and collision parameters. This approach focused on creating a

procedural animation system by using pseudo-realistic physics calculations that simulated

object movements through space. By applying the velocity and collision parameters, they

were able to calculate how the object’s form would change during motion and visualized

the resulting squash and stretch. The animator could control an object’s motion through a

set of parameters that affected features of the motion, such as the degree of squash and

stretch. Although this technique was able to produce appealing squash and stretch, it

10

focused solely on animating simple shapes rather than more complex objects, such as a

bipedal character.

Tan et al. [26] created a method of animating soft body characters, which are geometric

models that do not contain a skeleton, through volume preservation and muscle contraction

calculations. The characters used contained dense topology, the geometric structure that

makes up the objects geometry, that allowed the form to shift and bend into any position.

They also contained muscles fibers that controlled changes in form by contracting and

relaxing. Due to the high topology and large set of muscles fibers that controlled these

characters, moving characters by hand could be quite difficult. To manually animate the

user would have to modify each fiber individually to create movement in the soft body.

Due to this complexity these soft body are animated by setting goals, such as moving a

point along the character to a new position, by setting a trajectory for the center of mass,

or by regulating the character’s linear or angular momentum. These goals are analyzed by

a physics solver to determine a change in muscle fiber position. After the new muscle

conditions are determined the solver is run again, resulting in a moving soft body. This

method, although complicated, produced satisfying soft body character movement.

However, this method was designed solely for simple soft body creatures and while it could

be used for sections of bipedal characters, such as the tongue, it would not be the optimal

controller for animating a full body character.

These physics-based tools were effective in simulating motion under realistic

conditions. They provided calculations to create physically correct motion and some tools

allowed manipulation of these calculations to create changes in the results. Others showed

11

representations of changes in motion to compare differences in results; many of the

discussed methods could be applied a variety of characters. However, the methods that

produced satisfying animations for complex characters did so without deforming the

affected objects geometry. Those that could produce squash and stretch were only able to

create the effect with simple geometric shapes, or the effect was to create realistic squash

and stretch for characters that did not contain a rigid form.

The ability to deform complex geometry is required when creating squash and stretch

animation in animated characters. Due to the wide variety of artistic styles that rely on

changes in a character’s form, a system based on physical realistic constraints may not

create the cartoon-like animation desired by the artist. For this reason, the Stretch-Engine

focuses on non-realistic approaches to calculate animation which emulates traditional

animation techniques.

Figure 2: Comparison of the center of mass path created from hand-made animation
(blue) and the ballistic path calculation (red). Reprinted from Practical Character

Physics for Animators [11].

12

2.2 Non-Realistic Approaches

A non-realistic approach to animation focuses on producing an expected style of

animation rather than an animation that follows the laws of physics. Because of this focus

on style, many of these approaches allow the character’s geometry to deform and create

poses that the actual physiology of an object could not achieve. These techniques can also

Figure 3: Examples of different walking gaits for a variety of bipedal creatures created
through the physics-based simulation. Reprinted from Animating virtual characters using

physics-based simulation [25].

Figure 4: Results of animating two soft body forms. The H swings side to side and the I maintains
balance by lowering its center of mass. Reprinted from Soft body locomotion [26].

13

receive their initial data from a variety of sources. These sources include inputted values

for motion tracking data, two-dimensional drawings, video files and procedural

calculations.

An example of a non-realistic approach is one created by Roberts and Mallett [5] that

resolved squash and stretch using an ‘example based’ technique, in which the resulting

deformation was generated from a set of poses. A “pose” was defined using a number of

dimensions such as position, velocity, and acceleration. The user adjusted these parameters

to create a new pose for the selected object. To create changes in form, the user could

iterate through the existing animation and change these parameters to create new poses at

different times. The software then applied these poses to the original animation to create

the cartoon-like animation. This approach created animations that squash and stretch to

exaggerate motion and allowed animators to see changes applied with real-time feedback.

However, each time a pose is created a duplicate mesh is placed within the scene. If the

animation requires numerous pose changes, the scene file can become heavy and cluttered.

Wang et al. [7] used an inverted Laplacian of Gaussian (LoG) filter to alter inputted

realistic motion data to create exaggerated actions. The filter created a smooth and inverted

version of the motion data’s acceleration and replaced the original data’s acceleration with

the newly created one. The new acceleration altered the character’s movement by having

it move further away from the start position and then overshoot the stop position. This

created the effect of anticipation and follow-through that was not there in the original data.

Another part of their method is a calculation that slightly time shifts the LoG filter for the

boundary points of an object. This time shift caused the character to reach positions earlier

14

or later than in the original motion data, which deformed the character’s geometry, creating

squash and stretch and resulted in a more exaggerated motion. The animations created by

the cartoon animation filter produced satisfying results and could affect other forms of

input data, such as a 2D image sequence, but it is a one parameter system that gave the

animator little control over the change in data. This lack of user input may not be practical

when manually animating a 3D animation.

Kwon and Lee [8] created a two-part filter that used motion capture data and converted

it to rubber-like exaggerated motion. The first part of the filter created trajectory-based

motion exaggeration, a distorted version of their character’s motion created by stretching

the trajectory and link constraints of each joint in 3D space. However, the stretching could

create errors due to the change in each links length. To minimize errors, they used an

algorithm called Fast Joint Hierarchy Correction. This algorithm measured how far the

new trajectory exceeded the original link constraints length, then corrected each joint

position in the hierarchy. This process is iterative and continued until it reached the chain’s

root joint. This decreased the total link length after each iteration to adjust the margin of

error. They could also modify the error threshold to control the amount of exaggeration.

The second part of their filter divided these joint links into small, equal length unit joints

that are used to mimic the bending effect of rubber. This new set of joints became a sub-

joint hierarchy of the original joint chain and could change the exaggerated motion into a

rubber-like motion using Bézier Curve Interpolation to reposition the sub-joints. By

controlling the joint structure and their links while providing a sub-set of joints to reshape

15

the geometry, their method was able to alter realistic motion data to create a rubber-like

exaggeration.

Kwon and Lee [4] created another filter that simulates squash and stretch by optimizing

spatial and temporal data from motion capture data. They specified that the filter altered

realistic motion data because cartoon animation requires motion that is based on realism,

but these cartoon motions cannot be achieved in a realistic environment. Their filter

calculated squash and stretch poses by using a time-warping function on the position data

of a character’s individual joints. This allowed them to stretch the geometry of a character

at the appropriate time by having a joint reach a certain position earlier or later in time.

Figure 5 shows an example of motion data retargeted for a 3D character by two methods:

the cartoon animation filter created by Wang et al., and Kwan and Lee’s time-shift filter,

and how each method effected the initial motion data. Both methods developed by Kwan

and Lee read in realistic motion data and altered that data in some way to produce a cartoon-

like animation. However, their results do not express how this filter would affect a

manually created 3D animation or if it could be used to alter a character’s motion during

the animation process.

Savoye [6] created a motion capture system that filtered a rigid-skeletal data’s Euler

and Euclidian representations to create a more cartoon-like output. Unlike other techniques,

this method added non-rigid effects to an existing captured skeletal structure to create a

more cartoon-like animation. They use shearing and stretching distortion to apply these

non-rigid warps to the skeletal topology. Before applying these warps, they refered to the

original motion data’s skeletal structure as Euclidian joint coordinates. These coordinates

16

are numeric references for each joint that they can alter. They use a Euler filter to alter each

joint within the skeletal structure by rotating their numeric references. By using these

mathematical representations for positions and rotation, the artist could apply warping

features to a rigid-skeletal shape making it more cartoon-like. Figure 6 shows the change

in a model’s gait after applying these calculations. This technique created squash and

stretch effects independently of a character’s skin layer by altering the physics of a rigid

skeleton. However, it focused on using motion capture data as the input and, like Kwan

and Lee, it does not mention how this technique affected hand-made animations.

Figure 5: Comparison of exaggeration using Wang et al. animation filter (top) and Kwan and Lee’s
time-shift filter (bottom). Reprinted from The squash-and-stretch filter for character animation [4].

17

Figure 6: Result of gate becoming more cartoon-like through warping the characters skeletal
structure. Reprinted from Stretchable cartoon editing for skeletal captured animations [6].

Figure 7: Results of changes to a walk cycle through poses using an example-based technique. Reprinted
from A pose space for squash and stretch deformation [5].

18

Ansara [15] used an algorithm to adjust the animation curves of motion capture data to

exaggerate realistic motion. This algorithm allowed the user to adjust the motion capture

data’s high and low points. These points reflected the animated character’s joints maximum

and minimum rotation. Once the user had determined these new points, the algorithm

adjusted the original motion data using cubic interpolation to create a new animation. The

data was adjusted using a 2D curve-based user interface to quickly edit and visualize the

changes applied to the animation. It consisted of a gray curve that showed the motion data’s

default position, and a red curve that allowed user adjustments. Both curves are displayed

along a 2D grid in which X denotes time and Y denotes the amount of change. The user

manipulated these curves using arrows that translated along the grid. The further the arrows

moved along the Y axis, the more intense the maximums and minimums become; moving

further along the X axis slowed the animation down. Their algorithm was effective in

reducing the realism of their motion data and user studies found the curve-based interface

easy to use and understand. However, their cartoon-like animation is not a result of squash

and stretch; the exaggeration of joint rotations resulted in more expressive poses without

geometry deformations.

Another system developed by Guay et al. [10] allowed animators to sketch coordinated

motion using a single stroke called the space-time curve that affected the character’s

animation. This technique used a matching algorithm to drive the motion of a 3D character

along the space-time curve by computing a dynamic line of action. This line of action drove

the character’s motion along the drawn curve. The line of action did this by affecting a

specific body line in the character model (spine, torso, tail etc.) and having that line move

19

across the space-time curve. Figure 10 shows an example of this space-time curve and line

of action. Both the line of action and space-time curve could be adjusted by over-sketching

or adding secondary lines. These secondary lines could also be used to affect other body-

lines, such as wings on a dragon. The speed at which the space-time curve was drawn

directly affected the model’s form by squashing or stretching the character’s skeleton (the

skeleton stretched if the curve is drawn fast and squashed if the curve is drawn slow). To

add further control, they added what they call space-time cans. Since orientation is difficult

to determine in a 2D space, these cans direct the twisting character’s orientation based on

how they are placed along the curve. Through user studies they were able to determine that

this technique produced animations faster than using keyframe animation techniques. It

was also useful to users who have never animated before. However, they note that this

technique is only useful for simple characters with few body parts due to their tool focusing

on the motion of a single line.

Another technique developed by Bregler et al. [13] captured motion from traditionally

animated cartoons and retargeted it onto 3D models, 2D drawings, and photographs. The

input data was a video file containing the motion and a user-defined set of key-shapes

chosen from the video. The video file was then turned into motion data and the key-shapes

inputted by the user are connected to output key-shapes set by the user for the new

character. The motion data was then mapped to the new character using the reference key-

shapes, maintaining the time and motion from the original source. Figure 9 displays the

results of their method using a 2D reference to pose their 3D model. By using already

20

established animations or drawings, the artist could produce cartoon-like movement for

their own characters.

Li et al. [9] developed a similar system that used artist sketches to repose and simulate

squash and stretch of their characters. This technique allowed an artist to redraw key

features of an animation, such as silhouette curves over the rendered images of the original

animation. The drawings were then integrated into the animation by altering the model’s

skeleton to match the drawn pose, and then warping the model’s geometry to match the

shape. Both of these techniques (Bregler et al. and Li et al.) provided a direct medium for

artists to express creative opinion by taking into account their own artistic preferences.

They also produced satisfying cartoon-like motion if the input material used is of good

quality animation. However, if the artist wished to change the affect applied to the 3D

model they would have to create a new set of 2D drawings for the system to analyze and

make changes. Neither of these techniques contained the functionality to quickly adjust

poses within a three-dimensional medium.

All of these techniques produced satisfying, exaggerated, and cartoon-like animations

by enhancing the path of motion, deforming the skeleton of their character, or by deforming

the geometry to create squash and stretch. However, some of these techniques do not

discuss how their functions would affect a hand-made animation or even if it could use

such data as an input. Those that could use an animator’s work as input data overwrote the

original animation, requiring the animator to create a new input if the new, edited versions

were unsuccessful. Also, some of these methods would populate a scene with all created

references, which could negatively impact the tool’s performance. The Stretch-Engine’s

21

design is focused on creating squash and stretch in realistic motion but also to be used

within the animation process. This secondary goal sets a standard for the method to be

lightweight and to provide straightforward controls.

When studying these methods to exaggerate animation some of them stood out. These

methods included the non-realistic methods developed by Guay et al. [10], Ansara [15] and

the realistic method developed by Shapiro and Lee [11]. Each of these systems contained

a visual reference that allowed the animators to view exactly how their input was affecting

the animation. They displayed curves that related to either the animation curve data or the

paths of motion for their characters, and then allowed the animator to alter those curves to

create new results. By combining a design that implements the use of interactive curves

that alter animation and the flexibility of a non-realistic approach for geometry

deformation, the Stretch-Engine can achieve both of its goals by controlling the changes in

squash and stretch by manipulating a character’s motion paths.

Figure 8: Comparison between original and edited motion data. Changes made using the
Curve Interface (right), Default curve (grey) and Modified Curve (red). Reprinted from
Adding Cartoon-like Motion to Realistic Animations [15].

22

Figure 9: Example of a 2D drawing applied to a 3D character to create a stylized walk. Reprinted
from Turning to the masters: motion capturing cartoons [13].

Figure 10: The effect of the space-time curve on a 3D character’s motion. The warp (red)
produces a line of action along the drawn line that the model follows. Squash and stretch is
controlled by how fast the line is drawn, the faster the more stretched the model. Reprinted
from Space-time sketching of character animation [10].

23

3. METHODOLOGY

This paper outlines the development of a prototype tool that controls squash and stretch

and applies these changes to an animation. The goal is to create exaggerated character

motion by giving the animator control over changes in a character’s form. The tool

developed to demonstrate this goal is designed to work within the framework of an existing

animation software, Maya, which is to be used within a production environment. Previous

tools, such as the ones mentioned in the related works section, either create realistic

animations using physics-based calculations or create exaggerated animations that

produced a specific cartoon-like results. The tools in the related works section were studied

and, from this study, four research objects were created.

3.1 Objectives

1. To design a bipedal-humanoid rig that is capable of performing squash and stretch

along each limb and contains controls for animation. This rig excludes facial animation,

as the method focus is exaggerating body motion.

2. To observe and record changes in known animations to determine specifications of a

prototype tool. This study focuses on the animated series “The Looney Tunes Show.”

3. To develop a prototype tool in Python that creates squash and stretch in the rig while

giving animators control over these changes using a motion path-based controller.

4. To provide results demonstrating exaggerated versions of animations based on realistic

animations created using the prototype tool.

24

4. IMPLEMENTATION2

This project describes a method that allows animators to control changes in squash and

stretch to create exaggerated motion. The Stretch-Engine is a prototype built to test this

method and consists of three parts, the first part consists of a bipedal character rig that can

perform squash and stretch. The second part is a set of observations determined from

studying Looney Tunes animation during moments of squash and stretch. The third part is

a user interface with the ability to adjust animation using 3D curves that show a limb’s path

of motion. The animator can use the interface and curves to control the squash and

stretch of a character’s limbs by scaling and manipulating the shape of these new curves.

The prototype is developed using Python and MEL commands to integrate smoothly

with the Maya animation system. Python is a widely used programming language for

general-purpose programming. Python has a design philosophy that emphasizes code

readability and contains a syntax that allows programmers to express concepts in fewer

lines of code than other languages, such as C++ and Java [24]. Python scripting can be

used for many tasks in Maya, from running simple commands to developing plug-ins, and

several different Maya-related libraries are available for different tasks.

The Maya Embedded Language, or MEL, is a scripting language used to simplify tasks

within the Maya interface. MEL offers a method of speeding up complicated or repetitive

2 Parts of this section are reprinted with permission from “The stretch-engine: a method for adjusting the
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings
of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N.
Spencer (Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://
doi.org/10.1145/3099564.3106639

25

tasks by executing commands within Maya’s command line [23]. This language allows

tools built with it to use functions developed within the Maya interface. Most tasks within

Maya’s graphical user interface (GUI - a visual way of interacting with a computer using

items such as windows, icons, and menus) can be performed using MEL commands as well

as some that are not available within the GUI.

The flexibility of Python and the variety of commands provided by MEL make them

the most appropriate languages for the Stretch-Engine code. The Stretch-Engine code is

made up of two major scripts, the Stretch-Engine Rig and the Exaggeration Interface.

4.1 The Stretch-Engine Rig

When first developing the Stretch-Engine, research focused on creating the Stretch-

Engine Rig. For the rig to perform optimally it would need to be simple to use and able to

perform deformations required for squash and stretch. The structure for the rig would also

need to reflect characters from “Looney Tunes” animation as they were the subjects used

to create a range for stretching. Due to the structure requirements, the rig is a bipedal rig

and reflects the general form of Looney Tunes characters like Bugs Bunny and Daffy Duck.

The design of this bipedal rig can be broken down into three sections, the joint structure,

the IK systems required for limb motion, and the controls for each limb.

The first step in creating the rig’s joint structure is generating locators. Locators are

objects within the Maya interface that save transformation data such as position, rotation,

and scale. These locators create the position and rotation data that the joints use when being

26

created. The use of locators in generating the rig was to allow the user to adjust the joint

positions and fit them to any model they wish to use for animation.

The joint structure contains minimal sets of joints for simplicity and to optimize

efficiency when running the rig script. The original position data for the locators is set to

match the Stretch-Engine Dummy, a model that is used in this thesis to animate the motion

studies and view the Stretch-Engine results. The model reflects a bipedal character

structure and is designed with the intention to perform squash and stretch. Figure 11 shows

the locator, joint and geometry structure of the Stretch-Engine. Once the locators are in

place the user can run the rig script to build the joints, IK systems, and controls.

The rig’s IK system is made with simple, rotation and spline IK solvers. These solvers

are defined in the Maya interface and are used for different forms of transformation. The

rig’s arms and legs use a rotation IK solver, allowing a pivot to be placed that creates

motion such as turning the elbows and knees. The neck uses a simple IK solver to allow

the head to translate while moving the neck in the respective direction. The spine uses a

spline IK solver, allowing multiple controls to be placed along it to create the diverse

motions of a person’s torso such as arching back and bending over.

Each limb section (arms, legs, neck, and spine) needs to perform deformations for the

desired changes in squash and stretch. To create changes in form without any internal

calculation issues, each limb section contains a separate joint structure that is bound to the

geometry. While the IK joints for each limb determines motion, these Binding joints scale

and deform the geometry. This allows the binding joints to squash and stretch the geometry

27

while keeping the calculations for the IK systems unaffected, allowing the original joints

to perform proper limb motion.

Each limb structure contains a distance ruler, an object in Maya that measures the

distance between two points, to create the changes in squash and stretch. To properly

calculate the length of each limb the ruler’s start and end points need to cover the limb’s

entire joint structure. Figure 12 displays the distance ruler along the left arm’s joints. The

area covered for the arms is from the shoulder to the wrist, the legs are from the hip to the

ankle, the spine is from the spine’s base to the spine’s tip, and the neck is from the base of

the neck to the base of the skull. To maintain an accurate distance of the limbs total length,

the recommended starting position for each limb is where the limb is completely straight.

Figure 11: The Locator Structure, Joint Structure and Stretch-Engine Model.

Figure 12: The IK and Distance Ruler along the Left Arm joint structure.

28

This paper uses the arm structure as the primary example when discussing the distance

ruler and its effect. The arms joints are scaled to create the physical change in the arm.

When the distance between the shoulder and the wrist extends, or contracts, the arm

stretches and squashes respectively. The fraction of change between the new position and

old position is a numeric representation of the change in squash and stretch. This fraction

is then applied to the rig joints, scaling them and emphasizing the change in form along the

joint structure’s longitudinal axis. This means if the arm is moved past its default

straightened length it changes shape. If the arm’s size is greater than the default length the

arm stretches along the arm’s length and if this size is less than the default length the arm

squashes. Figure 13 shows how this change in position affects the left arms geometry.

Figure 13: The squash and stretch effect in the arm as the controller moves passed the
default length. Default length (top), Squash length (middle), Stretched length (bottom).

29

To provide more flexibility, the fraction of change is also used to calculate an

approximate amount for volume preservation. This amount inversely affects the arm’s

width and height compared to the change in length. Figure 14 shows an example of the

volume preservation along the left arm. This effect is similar to stretching a rubber band;

the further the arm extends, the thinner it becomes and the more the arm is compressed the

thicker it becomes. The rig is meant to give the animator as much control over the resulting

animation as possible, and although volume preservation is not prominent in Looney Tunes

animation, this feature is provided as an extra form of control for animators to use in their

animation.

The controls are the final elements added to the rig. These controls, shapes made using

Maya curves and attached to sections of the rig, allow the animator to manipulate the rig

Figure 14: The volume preserving feature in the character’s arm. The arm becomes
thicker as the limb squashes (top) and thinner as the limb stretches (bottom).

30

structure and create their desired animation. The controls also contain attributes for more

defined animation poses, such as curling the hand into a fist or rolling the ball of the foot.

Each limb controller also contains attributes for switching the squash and stretch and

volume preserving features on and off. The controls are designed to be simple so as to not

distract the animator or block the model’s geometry. This way the animator may focus on

creating their desired animation while being able to view the changes they make. The

Stretch-Engine Rig is integrated into the Stretch-Engine’s user interface for quick access

and to assist with the workflow for creating squash and stretch.

4.2 Cartoon Observations

 “Looney Tunes” animations from the years 1940 to 1960 were studied to find a range

of scale that determines the amount of squash and stretch available to users. The limbs of

Looney Tunes characters, such as Bugs Bunny and Daffy Duck, were measured during

relaxed poses and stretched poses to find this range. The animated character’s limb length

during its relaxed pose is set as their default limb length, and any alteration during

exaggerated actions to their limb’s size was considered for their stretch length.

Each episode was studied frame by frame to measure the full extent of changes in the

subject’s limbs. Due to the multiple sources for these videos, standard measurements of

length did not carry over from one video to another. For this reason, the unit of

measurement used in these observations is based on the character’s arm length in the

current episode (i.e. one unit equals the length of the characters arm in the default position).

Any change measured is in relation to this unit of scale to create accurate limbs deformation

31

values. Table 1 shows the measurements found for each character during exaggerated

moments and the episodes of Looney Tunes animations used in the study.

Episode Name;

Director(s);

Date Released

Character
Default Limb

Size (DLS)
Action

Stretch Limb

Size (SLS)

Change =

SLS/DLS

Duck Amuck;
Charles M. Jones;
Feb 28, 1953 [16]

Daffy Duck
Arm: 1 unit

Torso: 1 unit
Legs: 0.67 unit

Angrily
Jumping
Around

Arm: 2 unit
Torso: 2 unit
Leg: 1.34 unit

Arm: 2

Torso: 2

Leg: 2

Fast and Furry-
ous;

Charles M. Jones;
Sep 17, 1949 [17]

Wile E
Cayote

Arm: 1 unit
Torso: 1 unit
Legs: 1 unit

Painting Wall
Arm: 2.25 unit
Torso: 1.75 unit
Legs: 1.5 unit

Arm: 2.25

Torso: 1.75

Leg: 1.5

Tortoise Wins by
A Hare;

Robert Clampett;
Feb 20, 1943 [18]

Bugs
Bunny

Arms: 1 unit
Torso: 1.4 unit

Legs: 1 unit

Complaining
about

Tortoise

Arms: 2.4 unit
Torso: 1.82 unit
Legs: 1.6 unit

Arm: 2.4

Torso: 1.3

Leg: 1.6

The Great Piggy
Bank Robbery;

Robert Clampett;
July 20, 1946 [19]

Daffy Duck
Arms: 1 unit
Torso: 1 unit
Legs: 0.5 unit

Scared by
Neon Noodle

Arms: 2 unit
Torso: 1.5 unit

Legs: 2 unit

Arm: 2

Torso: 1.5

Leg: 4

Stop! Look! and
Hasten!;

Charles M. Jones;
April 30, 1955

[20]

Wile E
Cayote

Arm: 1 unit
Torso: 1.25

unit
Legs: 1 unit

Pouncing to
catch a fly

Arms: 2 unit
Torso: 1.4 unit

Legs: 2 unit

Arm: 2

Torso: 1.12

Legs: 2

What’s Opera
Doc?;

Charles M. Jones;
July 6, 1957 [21]

Bugs
Bunny

Arms: 1 unit
Torso: 1 unit
Legs: 1 unit

Dancing with
Elmer

Arms: 1.4 unit
Torso: 1.4 unit
Legs: 1.4 unit

Arm: 1.4

Torso: 1.4

Leg: 1.4

Table 1: Results of studying Looney Tunes episodes and how their characters were stretched
to exaggerate their actions. A “Unit” is the size of the character’s arm, from shoulder to wrist,
during rest pose.

32

After averaging Table 1’s Change value for each limb, we see the average change per

unit is 2.008 for the arms, 1.512 for the torso, and 2.083 for the legs. Based on these results

and from studying other episodes of Looney Tunes animation, four common traits were

found. These traits have become key observations in the development of the Stretch-

Engine’s range of scale:

1. When a character’s limbs are stretched for the exaggeration of an action, they become

approximately twice their default size.

2. Torso stretching seems to compliment the change in limb size rather than make up the

entirety of the exaggeration. Resulting in a torso stretch less than or equal to the stretch

of the limbs.

3. Characters do not squash unless they are under the influence of another object, such as

an anvil falling on top of a character or being hit with a heavy object.

4. In extreme cases such as being pulled by a rocket, the character’s limbs stretch to

approximately five times their default limb size.

These observations determine that an appropriate range of scale for squash and stretch

falls between zero, when a limb has become completely squashed, and five, in case of an

extreme change in stretching. When set to a range of two for example, the limb reaches

twice the default length at its most extreme position. The observations also show that

different limbs scale differently based on the desired intensity of action, such as the case

for the torso.

33

The range of scale found in this study is used to create the exaggerated path of motion.

The exaggerated path is used to create the desired change in a limbs motion path and is the

key controller in squash and stretch provided by the Stretch-Engine.

4.3 Functionality of the Stretch-Engine

4.3.1 Curve Development

When first developing the curve creation function for the Stretch-Engine, the built-in

function Create Editable Motion Trail within the Maya interface seemed to be the best

solution in providing animators with a control and visual reference for motion. This

function allows an animator to create a motion trail for the selected object and alter the

objects position along this line. Each keyframe for the object is represented by spheres, or

timing beads, along the curve. As the animator moves these beads in space, the curve and

object update to match this new position.

The animator can specify how much of the animation the trail affects by setting a range

of frames or the entire timeline. The trail also contained an increment value that changes

how the trail is drawn and how the position data is sampled. For example, if the increment

is set to 1 every frame is sampled and given a point along the curve while keyframes in this

timeline are given a bead, but if set to 5 every fifth frame would be sampled and placed

along the curve but even if a keyframe does not fall along this line that keyframe is still

given a sphere.

Maya’s editable motion trail also contains a few extra features such as pre and post

frames, always draw/draw when selected, trail thickness, key size and show frame

34

numbers. These features affect how the curve is drawn and how the animator views the

editable motion trail. Setting a value for pre and post frames has the curve drawn that many

frames before or after the current frame. This gives the curve an effect of being drawn and

erased as the animation plays. The attributes “always draw” and “draw when selected” are

the curves “Pinning” type.

The term “Pinning” does not fully explain what function this feature has on the editable

motion trail. Maya defines this term as how the motion trail is drawn in the scene. Setting

it to “always drawn” has the curve displayed even when its respective object is not selected,

and “drawn when selected” displays the motion trail only when the respective object is

selected. The last three attributes are cosmetic changes that affect the editable motion trail.

The “Trail Thickness” attribute adjusts the drawn curve’s thickness while the “Key Size”

attribute affects the size of the keyframe representations along the curve. The “Show Frame

Number” attribute adds geometry to the trail to show keyframe numbers above the

respective keyframe along the trail.

These features give the animator a variety of ways to control Maya’s motion trail to

match their specifications. The motion trail also smoothly updates the selected object’s

position while providing a visual representation of the change in space. It seemed the most

viable option for the Stretch-Engine, however after some tests it was found that the trails

shape cannot be affected in any way other than moving the beads, providing two major

problems.

The first problem was that moving the beads directly affected the objects position. This

made it difficult to provide a preview of the change in animation as the curve was

35

immediately affecting the position data. The second was that the curve could not be scaled,

a feature that is an important part of the Stretch-Engine’s design concept. The exact change

in the limbs motion path to create the required squash or stretch can be displayed by

creating a secondary curve, a scaled version of the original curve. Based on these

observations, the motion trail used in the Stretch-Engine was built from scratch and

designed to satisfy a set of goals.

These goals were created based on studying Maya’s editable motion trail, and

incorporate some features found in the trail and ones that were missing:

1. The motion trail created for the Stretch-Engine would need to accurately reflect the

selected limb’s path of motion.

2. The trail would need to be allowed to change shape without immediately repositioning

the controller.

3. The trail scales and changes the selected limb’s size based on the range of scale.

4. Like Maya’s motion trail, the Stretch-Engine’s trail can be edited manually to provide

another degree of control over the resulting animation.

Based on these goals (providing an accurate visual reference, the ability to preview

changes in animation, to change the selected limb length by the desired scale, and to give

the animator manual control over the curve) the Stretch-Engine generates a three-

dimensional motion path with a structure that is based on the selected limb’s keyframed

controller positions, its path of motion. This curve is called the Exaggerated Motion Path

36

and it gives an animator the ability to adjust exaggeration through squash and stretch by

changing a limbs path of motion.

4.3.2 The Exaggerated Path of Motion

To give the animator a point of reference, another path is created called the original

path of motion. This path has no effect on the animation other than visualizing the selected

controllers keyed animation before changes are made. The exaggerated path of motion is

created similarly to this original path, but the key difference is its ability to alter and scale

the exaggerated path using controllers that are provided to the user. The first step in creating

this curve is to find the keyframe data for the desired timeframe. This data is queried using

the following function:

This code queries the selected range of time using the startFrame and endFrame inputs

and finds all keyframes within the range specified for the selected object, obj. This returns

a set of frames where keyframes exist but the set is unordered. The set is then placed within

a list and the list is sorted to return an ordered list of frames from earliest to latest. The

order of these keyframes specifies the curve shape and in doing so sets the created curve’s

origin point as the start keyframe’s data.

An option is available to reverse the curve, this sets the order of frames from end to

start in the case that the animator would like the curves origin point to begin from the final

frame. This allows scaling to occur in the opposite direction of motion, which is useful for

37

actions where the limbs are being pulled away, such as the case when a Looney Tunes

character is being dragged offscreen by a rocket or some form of outside force.

To obtain the selected controller’s transformation values the code iterates through the

sorted list for its entire length. It does this by moving through the frame of time specified

by the start and end frames to each of the keyframes within the list, and the selected

controller’s position is queried at the respective moments in the timeline. These position

values make up the control points, these are points along the curve that make up the path

of motion’s shape. The controller is then set to follow along this curve by using a locator.

The controller is attached to the motion path by a locator that is keyed to each curve’s

control point. This sets the locator to move in space along the curve as the timeline is

adjusted. The controller follows this locator in space so that it too can move along the

curve. This creates an animation based on the curve’s shape. Both the exaggerated path

and the original path of motion consists of one of these locators and these locators both

contain influences on the selected controller. The influence on each curve can be adjusted

by the system, allowing the animator to view the new animation along the exaggerated

curve while also being able to easily return to the original path of motion.

The exaggerated path of motion is an interpolated version of the original path of motion

and a scaled version that takes into consideration the range of scale set by the animator.

This interpolation can be affected by easing, an effect that makes animations feel more

natural through easing-in, slowly starting and accelerating, or easing out, quickly starting

and decelerating. Easing provides a way for the animator to control the change between the

original length and the new length from the exaggerated version. For more control over

38

this path of motion, the animator can set the motion path scales along the X, Y and Z axes

of the exaggerated path. This is important in actions that only need to be stretched in one

or two degrees of motion rather than apply a change in all degrees.

The exaggerated path of motion also contains controllers or control spheres along each

point within the curve. These control spheres allow the animator to change the curve’s

shape and give the animator the ability to control the change in squash and stretch by

manually pulling the curve control spheres in the direction they desire. This can be useful

for making minor adjustments to the new path of motion or to reshape the curve if the old

path of motion was undesirable. When the animator has created the motion path’s new

shape they can then re-connect the controller to follow the new shape and can view the

resulting animation.

The exaggerated curve’s effect is a transition between the selected limb’s original

length to the limb’s scaled length that takes place over the set time line, where at the starting

frame the limb reflects the original path of motion and the end frame the limb reflects the

exaggerated path of motion.

4.3.3 Building Exaggeration

The exaggerated path of motion works by having the final point create the desired

change in size for the selected limb. This is achieved by having the distance between the

controller and the base joint equal to the new length set by the scale. This position is

somewhere between two points, the position of the limbs controller during the action and

a new position of that controller when scaling the entire motion trail by the set scale. The

39

reason the point is between these two positions is because the position found when scaling

the trail creates too long or too short of a change in size for the selected limb.

To calculate the appropriate position the Stretch-Engine views the information it has as

a triangle. This triangle is made up of three points; the base joint P0, the final position of

the limbs controller along the original motion trail, P1, and the respective position along

the fully scaled motion trail, P3. The length, L3, of the limb when at P3 is either larger or

smaller than the required limb size, the scale S times the original length L1, if this scale is

greater than or less than 1. There exists a motion trail scaled by an unknown value, S’, that

has a final point P2 that creates the change in length L2 that equals S*L. This point is

somewhere between the points P1 and P3 and along the line made by these points. Diagram

1 shows the two separate cases based on the set scale S and the triangles created from the

motion trails.

Figure 15: The two cases for finding the position of P2. The left image is how a triangle is
determined for a scale greater than 1 and the right is for a scale less than 1.

40

To calculate P2 the Stretch-Engine breaks these triangles down to the smaller triangle

with P2 as one of the corners and L2 as one of the sides. It then uses the Law of Sine to

find the coordinates of P2, however before we can use the Law of Sine all angles within

the smaller triangle need to be identified. The angle B is the largest angle within either

triangle and is the angle between vectors V0 and V1. Diagram 2 shows the breakdown of

each triangle and how V0 and V1 change based on the scale.

Once V0 and V1 are calculated, angle B is calculated using the dot product. After

testing the code, it was found that calculating angle B using the smaller triangles P0-P2-P1

when S > 1 and P0-P2-P3 when S < 1 provided the system with the correct position of P2.

Through my research the best assessment of why this solution works is because in either

Figure 16: The resulting triangles created from both scale cases. It displays the vectors V0
and V1 as well as the magnitude for those vectors.

41

of these cases we can assure that L2 is between P1 and P3. If the triangle P0-P2-P1 was

used when S < 1, the angle at P0 would be calculated as the largest angle and P2 would fall

past P3, creating a much smaller length than L3. There may be a case were this solution

fails however we have yet to find such a case, and for that reason this solution is used to

calculate angle B.

Diagram 3 shows how the Stretch-Engine uses the Law of Sine and the angle B to find

the length between ether P1 and P2 or P3 and P2 based on scale S. This length is then used

to find P2 by multiplying it by the normalized vector V1 to find the vector V2 of P1 or P3

with P2. The coordinates of P2 can then be found by adding P1 or P3 to V2.

Figure 17: The angles found within either triangle used to calculate P2. Includes a breakdown
of the Law of Sine calculation for finding the side a between p and P2.

42

The scale S is equal to the difference between length OP3 and OP1, O is the shard

origin point of each motion trail. The scale S’ that is needed to create the motion trail T2

and ends with point P2 is then equal to the difference between length OP2 and OP1. Once

S’ is found the Stretch-Engine creates a new version of the original motion trail scaled by

the value. This new version is the exaggerated motion trail before interpolation with the

original motion trail and the effects of ease-in and ease-out set by the animator, or the fully

exaggerated version.

4.3.4 Interpolation and Easing

To create the gradual change from the original curve to the exaggerated curve the

Stretch-Engine creates a linear scale. This scale is calculated using the points that make up

the original motion trail by using the total length of the curve and the length of each point

from the origin point along the curve. Diagram 4 shows an example of this concept and

Figure 18: The Exaggerated Motion Path (blue curve) of the Right Arm. The controller
path is scaled by 2 in all dimensions (X, Y, Z) with control spheres along each keyframe.

43

how the lengths of each point are collected. By dividing each of these lengths by the total

length a range of ratios from 0 to 1 is created, this becomes the linear scale.

This ratio decides how much influence the original curve and the fully exaggerated

version have on each of these points. Applying ratios to their respective points along the

original version and fully exaggerated version, then adding these results together results in

the coordinates of the points that make up the final version of the exaggerated curve. Points

that have ratios closer to 0 lean closer to the original positions, while points that have ratios

closer to 1 lean more towards the fully exaggerated positions

Before this addition takes place, the linear scale is run through a remap tool; the remap

tool is a Maya function that uses an input range and reproduces results based on a different

Figure 19: An example trail broken down to show the length between each point and the
origin point. Along with how these lengths are calculated into a set of ratios from 0 to 1.

44

output range. It also contains a curve that represents how values within this range are

remapped. The curve is set to a spline curve to represent the easing effect and create a more

natural transition. For the purpose of the Stretch-Engine the input and output ranges are the

same, 0-1. The curve is the feature of this tool that is manipulated to reassign ratio values

to each point.

Through the remap, the user can apply the easing effect to the final version of the

exaggerated motion trail. By selecting ease-in or ease-out the Stretch-Engine places new

points along the remap curve to change its shape resulting in a new range of ratios that

represents the ease effect set by the user. Diagram 5 shows the difference between a linear

scale curve, the spline curve and a curve with an ease-in and ease-out point.

These new ratio values are applied when calculating the final version of the exaggerated

curve. The result is a scaled version of the original motion trail that gradually changes until

the final point along the trail equals to the position of the limbs controller that creates a

change in length equal to the set scale.

Figure 20: The differences in shape of the remap curve when using
a linear curve, spline curve and an eased spline curve.

45

The exaggerated path of motion and the amount of easing applied to the path can be

created using the Stretch-Engine interface. This interface also contains additional utilities

to allow the animator to edit and control their animation.

4.3.5 Exaggeration User Interface

Figure 21: The Exaggeration Interface provided by the Stretch-Engine. Outlined are
the 7 parts of the interface provide the animator with control over the motion trails.

46

The Exaggeration Interface is the main user interface for controlling the commands

provided by the Stretch-Engine. It contains all the necessary controls to create the motion

trails discussed in previous section that allow the animator to control changes in squash

and stretch. The interface can be broken down into seven sections that are individually

outlined in Figure. The next few paragraphs discuss each of these sections individually.

Section 1 consists of three buttons related to the Stretch-Engine rig. The first button

generates the locators that represent the position and rotation coordinates of the rigs joint

structure. The second button generates the joint structure and builds the respective IKs and

controls that make up the rig. The final button provides the animator with a quick and

efficient way to reset all the rigs controls to their default position.

Section 2 consists of a limb diagram for selecting the limbs respective controller within

the Stretch-Engine rig. While providing an easy way to select controllers it also notifies

the Stretch-Engine of the limb controller that the curves are applied to. The functions for

the limb diagram are the selectBody() and deselectBody() functions. These functions select

or deselect an image while identifying the limb controller that reflects the selected image.

This section also contains two buttons, the first is used to finalizing the resulting animation

based on the generated motion trails and the second deletes these trails, returning the

animation to its unedited state. The finalizeNewMotion() function is run when pressing the

“Apply New Motion” button. This function iterates through the timeframe selected and re-

key the position of the selected controller based on the motion path it is following. The

deleteAnimCurve() function is run when pressing the “Delete Motion Trails” button. This

function deletes the curves generated within the Maya interface along with their locators

47

removing their influence of the selected controller and resets that controller to its original

positions.

Section 3 is where the animator selects the frame range they wish to adjust. It contains

a button that runs the script for creating the original motion path for this selected time range

and for some extra customization there is a slider for setting the curve color. The start frame

and end frame inputs are saved to global variables that are used in each function when

generating curves. For the original motion path, when pressing the “Create Motion Trail”

button the createAnimCurve() function is run. createAnimCurve() is a custom function

developed for the Stretch-Engine. The function iterates through the timeframe and uses the

sorting function highlighted in the Exaggerated Path of Motion section to find all times

that contain a keyframe for the selected controller. For each of these keyframes it saves the

position data of this controller and constructs a curve with control points based on these

position values. The curve generated follows the original path of motion created by the

animator and is the color of the color slider.

Section 4 contains the controls for generating the exaggerated path of motion. Here the

user can select the axes they desire for the scale and the curve using check-box inputs. The

user can also set the scale to be applied to the curve using a slider. This slider reflects the

range of scale found in the cartoon observations and can be scaled by a value of 0 to 5, or

0% to 500% of the limb’s length. Setting the curve axis and scale value are required settings

to generate the exaggerated curve. The createExagCurve() function is run when pressing

the “Create Exaggerated Trail” button. Similar to the createAnimCurve() this function uses

the timeframe set by the animator but instead of iterate through the controllers keyframes

48

it duplicates the original path of motion and identifies the control vertices, CVs, within the

curve. CVs are the points in space that make up the shape of the three-dimension curve. In

the case of the Stretch-Engine, CVs reflect the position data of the selected controller. By

moving these CVs, the animator can manipulate the shape of the curve. To give the

animator this ability the function also builds controllers that are able to move the CVs of

the editable path.

Section 5 contains the optional controls for exaggerated path of motion. This is where

the animator can apply the effects of easing to the shape of the generated curve. Normally

easing is represented by a visual representation such as the curve diagram previously used,

however there were complications when trying to create such a controller. In this section

numeric values represent the position along the spline curve within the remap. The curve

is a 2-dimensional curve and for the explanation of the position values of the ease-in and

ease-out points are expressed in terms of the X and Y dimensions. Figure 17 shows a

version of section 7 with both ease-in and ease-out turned on.

Figure 22: Section 7 of the interface with both ease-in and ease-out selected. The
sliders determine the position of the point along the remap curve.

49

When checking either the ease-in or ease-out boxes a point is created along the remap

curve. The percent of ease is the selected points position along the X-axis while the value

of ease is the points position along the Y-axis. Percent states how long the selected ease is

present along the curve. The larger the percent the further along the X-axis the point is. For

ease-in the higher the percent the further to the right the point is while ease-out is further

left. Value states how much ease affects the curve. The larger the value the higher the

selected ease is along the curve. Ease-in starts lower on the curve as it slows down the

change from the original trail to the exaggerated trail, while ease-out begins higher on the

curve. To match their effects on the curve, ease-in has a minimum value of 0 and a

maximum value of 0.5 while ease-out has a minimum value of 0.5 and a maximum value

Figure 23: The Remap Tool within the Maya interface displaying the remap
curve. The values to the left are the ones set by the animator for the ease-in point.

50

of 1.0. Figure 19 shows the effect on the remap curve of a change in percent and a change

in value for the ease-in point. When the exaggerated curve is created it runs the setEase()

function that reads in the ease-in and ease-out fields then restructures the remap curve based

on the inputted values.

When the animator manipulates the shape of the exaggerated curve manually the

locator needs to be updated to match the new CV positions to have the controller follow

along the new curve. By pressing the “Connect to Exaggerated Trail” button the custom

function, connectExagCurve(), identifies the new CVs of the exaggerated curve and

repositions the locator. The locator is then set to follow the orientation of the newly shaped

path resulting in the controller following along the new path.

Section 6 allows the animator to adjust the influences between the original path of

motion and the exaggerated path using a slider. The custom function, setCurveBlend(), is

run when the “Change Blend Amount” button is pressed. This function reads in the value

set by the trail blend slider and adjusts influences accordingly. By setting the influence to

1 the animator can view a fifty percent split between each curve. Setting the influence to 0

shows the animation along the original path of motion while setting the influence to 2

shows the animation along the exaggerated path of motion.

Figure 24: The effect of changing the ease-in points position along the remap curve. The first
shows a change in percent while the second shows a change in value.

51

Section 7 of the exaggeration interface is the graph editor. The graph editor is a

graphical representation of the animated attributes within a scene. This allows the animator

to adjust the animation curves and the keyframes of their animation. The graph editor

within the Stretch-Engine is the same as Maya’s built in graph editor. To connect the graph

editor to the Exaggeration Interface the MEL functions getPanel() and scriptedPanel() are

used. A scripted panel is one that is predefined in the Maya interface and contains pre-

made tools and menus within the panel. The getPanel() function identifies the type of

scripted panel needed, in this case the type is graphEditor, and returns a list of panels with

that type. For Maya’s graph editor, it is the first object within the list returned by

getPanel(). The scriptedPanel() function is then able to use the panel found and can set it

to fit within the Exaggeration Interfaces window. Connecting the graph editor to the

interface allows the animator to have all the necessary controls in one location to assist in

ease of use when creating squash and stretch. An added feature of the graph editor is that

the animator can also adjust the timing of their animation to speed up or slow down the

desired animation.

4.4 Roadblocks and Solutions

While developing the Stretch-Engine there were numerous roadblocks that took time

to solve. These problems ranged from building a suitable rig system to strange shapes of

the resulting motion paths. This section discusses those roadblocks and the solutions

created to ensure a functioning tool.

52

The first roadblock was encountered when developing an appropriate way to stretch

the limb structures. When first attempting stretching, there was only one set of joints for

each limb segment. As the controller moved in space this initial joint structure would

attempt to stretch and match the controller’s position. However, this caused an internal

calculation issue with the limbs IK system. As a result, Maya would flood the user with

warnings and the joints would fail to stretch properly.

To solve this problem, a secondary joint system was created and this joint structure

would scale to match the controller. The scaled joint structure would then follow the IK

joint structure to properly move the geometry of the selected limb. By creating two joint

structures, the IK system would be able to perform its calculations without issue and the

second joint structure could scale correctly.

The second roadblock was identifying the keyframes of a selected controller for the

timeframe set by the animator. At first, the MEL command keyframe() was used to retrieve

the position data of the controller. The keyframe command is able to tell the user how many

keyframes exist within a section of time specified. It is also able to tell a user which

attribute has been keyed during that time frame. However, this function alone was not

enough to find the controller’s position data.

The online community at stackoverflow.com assisted in identifying the need to list and

sort the data returned by the keyframe() function for the specified timeframe. The solution

to this roadblock is the section of code displayed in the “Paths of Motion” section of this

paper. This section of code returns a sorted list of keyframes, from the set start to the end

frames, that can later be used to query the position information of the selected controller.

53

The final roadblock was a strange path of motion that would not follow the torso or

neck controller in 3D space. As detailed in earlier sections, a path of motion is made up of

CVs that are based on the selected controllers’ positions in space. Initially this was done

by finding the “world space” position of the selected controller and using this data to draw

the new curve. The exaggerated curves would then return the position in “local space” for

the selected controller.

World space is the coordinate system for the entire scene. Its origin is at the center of

the scene and each position is relative to this point. Local space is the coordinate system

from the point of view of an object, meaning the origin point is the object’s pivot point.

This worked for all controllers except for the torso and neck controller. At first it seemed

the problem was because of their positions in the rig structure. They were under the

influence of the center of mass controller, causing them to move in space as the center of

mass controller moved in space. However, it was due to the controllers’ transformations

being frozen.

Freezing an object’s transformations resets all of its transformation data to zero and

sets the object’s world space position as its current pivot location in the scene. To fix this

problem, a temporary locator would be created that follows the controller during the

creation of the original motion path. A locator’s transformations are always relative to

world space positions and cannot be frozen. This creates an accurate set of position data

during the required timeframe. The position data would then be taken from the locator,

creating the proper motion path for the selected controller.

54

5. EVALUATIONS AND RESULTS

The evaluations of this method are conducted by comparing animations based on

realistic actions with edited and exaggerated versions. The exaggerated versions are created

using the developed prototype tool, the Stretch-Engine. This method aims to improve

animator control over the changes in squash and stretch and display that change through

motion paths while providing a flexible, user-friendly tool. This section discusses the

development of three example animations and how the tool is used to create their

exaggerated versions. Each animation is designed to match a physically realistic action

from live action videos with the intent of exaggerating a section of the action to create a

similar effect to Looney Tunes animations. Videos of the tests and their results can be

found at http://www.zaidhibrahim.com/stretch-engine.

5.1 Exaggeration of a Single Limb Action

The first test focuses on one part of the body, an arm, to show that the tool can handle

a simple change in the limb length. The character is performing a one-two punch

combination in this test. The animation is based on a live action video of a professional

boxer, Amir Imam, knocking out his opponent, Fernando Angulo [27]. In the created

animation, there is only one character performing the punch action. For Test 1, the left arm

is stretched to exaggerate the punch.

The animation consists of the character bouncing in place on the balls of its feet; The

character’s hands are close to its chest, providing cover. Halfway through the animation,

the character throws a straight punch with the left hand then a right hook. Both punches

55

are aimed towards the opponent's head. In Test 1 only the straight punch is exaggerated to

change the intensity.

When first creating the exaggerated action, the section containing the straight punch

has a scale value of 2, or a 200% change in limb length. During Test 1, the Stretch-Engine

is able to generate the original path of motion and the exaggerated path of motion quickly,

and the changes applied can be seen clearly. No changes are made to the shape of the

exaggerated path and the easing feature is turned off. The result of this simplified

exaggerated path of motion is a more intense punch with a change in limb length equal to

twice the original length during the final position of the punch.

When the arm is scaled, all dimensions of motion during this action also scale gradually

as the arm moves closer to the final position. Because of this, the characters lead up to the

final position is also scaled. This scaling is most obvious in the Y dimensions of the

controller’s position. If the desired action has a lead up similar to the original action but

ended in a stretched position, the exaggerated curve needs to avoid scaling the Y

dimension. The animator is able to do this through the Exaggeration Interface and can turn

off any axis to remove stretching in the specified dimension.

The lead up also changes because the stretch switch is turned on during the exaggerated

action. When activated the amount of stretch is based on the ratio values calculated when

building the exaggerated path. This prevents the arm from immediately squashing or

stretching during the beginning part of the animation as the ratio is closer to 0; this allows

it to gradually transition to a full stretch as the arm completes its action and the ratio turns

to 1. To achieve the desired effect, the animator can change the deformation ratio caused

56

by the stretch switch through Maya’s graph editor. By selecting the attribute “Stretch

Switch” within the graph editor, the animator can see the keyframes that the attribute

affects and what value it has at that keyframe.

Although the change in scale applied during the Simple Approach increases the

intensity of the punch, a 200% change in limb length does not create a change in length

similar to the example animation from Looney Tunes. The example from Looney Tunes is

the punch from Daffy Duck in “To Duck or Not to Duck” as it makes contact with Elmer

Fudd. The deformation of Daffy Duck’s arm is larger than two times the arms’ original

length, based upon methods of measurement described in the previous section. By

increasing the scale applied to the arm, the test animation can create a better match to the

Looney Tunes example. Based on this and the difference in lead up, a refined animation

test is done that applies the change in scale while excluding the animation’s Y dimension.

For this Refined Approach, redrawing the exaggerated path of motion without scaling

the Y dimension allows the lead up to remain the same while continuing to smoothly lead

into the stretch. The created stretch increases the intensity of the punch similar to the simple

test but now the stretch does not affect the rest of the animation as strongly as before. The

intensity of the action increases even more when using a scale value of 3, or 300% change

in limb length. By combining these two features, a new exaggerated path can be created

that achieves the larger intensity while keeping the lead up similar to the original animation.

Both the original and the exaggerated path of motion reflect the differences in positions of

the left arm, and the animator may freely compare the difference between the two.

57

Each approach, simple and refined, is timed to see how long it takes to either create the

exaggerated path or to edit and adjust it. The steps for creating the exaggeration in both

approaches include selecting the limb to scale, finding the appropriate time range, and

creating the exaggerated path of motion. For Test 1 both approaches take approximately

one minute, with the assumption that the animator understands how the Stretch-Engine

works. If we exclude the knowledge of scaling the refined path by 300%, the refined

approach takes a minute and a half to complete while the animator tests different scales.

In the case of Test 1 the animated action is quite simple, however factors play in based

on animators’ preference that can make adjusting it more complicated. In terms of this

animation, scaling the original path by 200% in all dimensions does not create the desired

effect. The Stretch-Engine is able to control how the stretch affected the dimensions of the

animation by containing inputs that allow the animator to set which dimensions are scaled.

The Stretch-Engine is also able to rebuild the exaggerated path of motion quickly, allowing

testing of different scales to find a scale that created the desired intensity. It also provides

another point of control through the graph editor by displaying the degree of squash and

stretch along the animation through the stretch switch.

Daffy Duck’s punch in “To Duck or Not to Duck” is used to compare the exaggeration

of the straight punch. The change in scale of Daffy Duck’s arm as it hits Elmer Fudd is

meant to increase its intensity, creating the effect of a much stronger punch. By increasing

the scale of the dummy arm in Test 1 we create a similar change in intensity. Also, the

change in deformation of the dummy arm is similar to the deformation in Daffy Ducks arm,

58

increasing the length without changing the thickness of the limb. Based on these results,

Test 1 of the Stretch-Engine achieves the intended goal of the method.

5.2 Exaggeration of a Pair of Limbs Actions

The second test focuses on both arms of the character to show that the tool can handle

changes to a pair of limbs. In this test, the character is swinging a baseball bat as if to hit

an incoming pitch. The animation is based on a live action video of home runs and uses the

swing stylized by professional baseball player Jose Bautista [28]. In the created animation,

the character is holding an object of approximate size to a baseball bat and swings as if

hitting a ball. During this test both arms are stretched to exaggerate the swing.

Figure 25: Simple (top) and Refined (middle) test results at the point of impact
compared to the example sketch of Daffy Duck (bottom). Sketch based on the episode
“To Duck or Not to Duck” released March 6, 1943; Directed by Charles M. Jones.

59

In the reference animation, the character shifts its weight while waiting for the pitch.

The character then pulls the bat back and swings as if to hit a ball. After the hit, it looks at

where the ball travels while the arms start to relax. To create an exaggerated animation,

both arms need to be scaled to emphasize the bat swing. The bat is animated using a

constraint that allows it to follow both of the arms’ controllers. This constraint is influenced

by both arm controllers for the beginning of the animation, but changes influence to only

follow the left arm once the hit occurs. This allows the bat’s position to update

automatically and still follow the arm controllers once the stretch is applied. Although the

bat follows along, the limbs need to be holding the bat during the exaggerated action.

Similar to Test 1, a simplified approach is used that only scales the limbs and a refined

approach that makes additional adjustments; both approaches use a scale value of 2, a 200%

change in limb length.

Like the simple approach in Test 1 the arms are stretched by a scale value between 0%

and 500%, in this case 200%. The difference in Test 2 is that two limbs are now scaled and

these limbs are affecting another object. We first create an exaggerated motion path for

each arm and give each motion path a different color to differentiate the curves. The

Stretch-Engine is able to generate both of these paths quickly and efficiently. The result is

a more exaggerated swing in which there is a change in each arm’s length equal to twice

that limbs length.

Once the motion paths are created for the simple approach, there is some separation

between the hands during the final parts of the motion. This separation is due to the change

in scale; as the dimensions are scaled the distance between both hands is also scaled. The

60

separation can be adjusted in two ways: by scaling the left arm by a percent other than 200

or by using the control spheres to manually adjust the shape of the motion path. Changing

the scale requires a few tests to see which scale best fits and can still result in a curve that

creates separation, just less than the initial scale. The alternative method of using the

control spheres requires fewer iterations, as the animator can see what the new curve shape

looks like. They also only need to adjust the keyframes where the separation occurs rather

than the entire motion path.

Another concern to address is if the animator likes the scale of the new motion path but

feels as if the stretch begins too soon. They can remove a dimension in scaling so less of

the curve is affected, but that also affects the final position. In this case they can use the

easing feature within the Stretch-Engine. This allows the animator to set a percent of ease

that changes the path to either reflect the shape of the original path for a longer period or

transition into the exaggerated path more quickly. This causes a more sudden change in

squash and stretch compared to the gradual change from start frame to end frame.

In the refined approach, the easing feature is used to create a more sudden effect for

this change in exaggeration. By setting an ease-in of 60% the animation has the swing

follow the original path for the majority of the selected time frame, and then applies the

stretch during the last few frames. The effect is a more sudden change in limb length at the

apex of the swing. This effect is applied to both arms to keep a consistent transition between

the pair of limbs. Once these changes are made, we use the right-hand exaggerated path as

a reference for manually adjusting the left-hand motion path. After manipulating the left-

61

hand path, both arms hold the bat throughout the animation as it changes to a stretched

position before hitting the ball.

Similar to Test 1, each approach in Test 2 is timed to see how long they take. The steps

for creating the exaggeration in both approaches include selecting the limb to scale, finding

the appropriate time range, and creating the exaggerated path of motion. However, the steps

are repeated based on the number of limbs. The refined test also includes additional steps

for easing the paths and adjusting the left-hand path manually. For Test 2, the simple

approach takes two minutes to complete due to the addition of a second motion path and

the steps being repeated to create it. The refined approach takes three and a half minutes to

complete. The reason for this increase in time is due to the additional work of manually

adjusting the motion path and testing which easing values create the desired effect.

In the simple approach the exaggerated path has proven useful in creating quick and

accurate changings in scale. The Stretch-Engine is also able to create paths for the pair of

limbs to edit animation simultaneously. In the refined approach we see how the easing

feature can be used to control the change in squash and stretch to either slow down or speed

up the change in limb length. In this case we used the ease-in feature to slow down the

initial transition, speeding up the change in stretch during the final moments of the swing

to create a more sudden action.

The simple approach also demonstrates that in cases where the limbs are holding an

object, differences in position can cause separation between the limbs when they are scaled.

However, in the refined approach we saw the flexibility of the exaggerated motion path as

the separation is fixed using the control spheres that are generated along the path. By using

62

the manual controls, the animator can manipulate either limbs’ exaggerated path to create

the appropriate shape for their desired action. This new shape can be made to match the

second limbs movement or any other movement based on the animator’s design.

When comparing the exaggeration of the swing we use a clip of Sylvester the Cat

swinging an axe in “Hop, Look Listen.” In this clip Sylvester chases Hippety Hopper and

tries to hit him. When Sylvester reaches for Hippety or when pulling back to strike his arm

stretches. When the animations are compared, the dummy arms stretch in a similar manner

to Sylvester’s in terms of length. Also, the bat swing with easing reflects the timing of

stretch to Sylvester’s, as his arm does not stretch throughout the swing but near the end.

After reviewing the footage, it can be said that the reason for the change in Sylvester’s arm

length is the same as the bat test, to increase the intensity of the swing. Based on these

results, Test 2 of the Stretch-Engine achieves the intended goal of the method.

63

5.3 Exaggeration of a Full Body Action

The third test contains a full body action in which the tool focuses on stretching

multiple limbs of the body as well as the torso. In this animation test, the character is

performing a free running action where it dives over a small ledge, catches itself on the

next ledge, and uses its momentum to launch forward and land onto a final platform. The

animation is based on a segment of a larger, live action compilation video showing different

styles of parkour actions [29]. In the created animation, the character is running over

Figure 26: Simple (top) and Refined (middle) results at the apex of the swing compared
to the example sketch of Sylvester the Cat (bottom). Sketch based on the episode “Hop,
Look and Listen” released April 17, 1948; Directed by Robert McKimson.

64

geometric shapes to represent the ledges and platforms in the real video. To create

exaggeration in this animation, the arms and legs are stretched during the first leap while

the entire body is stretched during the landing.

The simple approach for Test 3 consists of scaling the limbs during the leap and landing

by a scale value of 2, a 200% change in limb length. For the initial leap the arms and legs

are stretched. As the character approaches the first ledge, it jumps forward and catches

itself on the second ledge. As the character travels between the ledges, it leads its

movement with its hands while keeping the rest of the body straight. The legs follow the

arc of the body during the jump and then come towards the center of the body as the

character catches themselves. For this sequence, an exaggerated motion path is created for

each of the characters limbs.

The exaggerated motion path creates squash and stretch by scaling outward from the

curve’s pivot point. This point is the first keyframe position of the limb found during the

range of time set by the animator. This means the curve scales from the starting keyframe.

For example, when scaling with the start frame as the pivot, the curve grows outward from

the start and the new end position is further past the position at the original end keyframe,

creating the change in length. Scaling out from the start frame works well for actions that

stretch with the direction of motion. However, if a limb needs to scale opposite the direction

of motion then scaling out from the start frame may not create the desired effect.

For the leap section of the animation the legs require a stretch opposite the direction of

motion. This type of stretching appears as if the legs are lagging behind the center of mass

of the body. To create this effect, the path of motion needs to be stretched from the end

65

frame towards the start frame. The animator can do this by checking the “Set Pivot to End

Frame” box. This reverses the order of the list of keyframes from the selected time line,

generating the motion paths with the last frame as the origin point. The result is an original

and exaggerated path of motion with the pivot at the end frame and, for this test, a change

in scale for the legs of the character away from the body.

With this in mind, the steps for the legs begin by identifying the time range for both

legs, identifying the direction of stretch, reversing the pivot point of their exaggerated

paths, and creating the exaggerated path for each leg. The paths are assigned different

colors to identify the limbs to which they are connected. Before finalizing the leg

animation, we move to the arms and repeat the previous steps. Once each limb has been

exaggerated they are finalized to update their animation. We then move to the landing and

follow the same steps as in the leap, but now include the spine and the neck. The spine and

neck are stretched by a scale of 200% and, once each exaggerated path has been completed

we finalize the animation.

A scale of 200% increases the exaggeration for both the leap and the landing, however,

such a change in scale is too large for the length of distance the character travels. A smaller

scale fits more closely, as the limbs are able to stretch but not so far beyond the area the

character travels. For example, during the leap the legs should stretch backwards, but no

further than where the character starts its jump. As for the arms they should stretch up to

the second ledge and not past it.

During the landing the arms, legs, torso, and neck stretch as the character moves

towards the lower ledge. In this case, the amount of scaling is also determined by the area

66

of space available for the character to stretch. The stretch should be contained within the

area from the second ledge and end once the character makes contact with the lower ledge.

The stretched limb should also follow a path that creates a smooth transition with the non-

stretched animation. The shape of the torso should also follow this rule. The middle and

bottom torso controllers should be repositioned to better fit the new shape of the spine.

Although the Stretch-Engine is able to create curves for all parts of the body and edit

them simultaneously, creating these curves for all limbs of the body at one time obstructs

too much of the scene. The scene becomes clustered once the number of paths generated

goes beyond three sets. For this reason, it is suggested to use two or three sets of paths to

keep the Maya window clean and allow the best environment for editing exaggeration.

These observations, scaling within a confined space and minimizing trails, were

considered before creating the refined approach. Since a scale of 200% is too large for the

area, a scale value of 1.5, or 150% change in limb length, is used. This scale created a

stretch that fits better within the scene while still creating exaggeration. It also contained a

smoother transition between the exaggerated poses and the normal animation. When

creating these poses, pairs of limbs were adjusted rather than exaggerating the entire body

at one time. This allowed for a clearer observation of the changes to the body. Small edits

were also made to the spine, the middle and bottom controllers, to better match the new

shape of the torso. These adjustments allowed for smoother motion that better incorporated

exaggeration that matched the character’s environment.

In terms of time, Test 3 takes significantly longer to complete than Test 1 and 2. This

is due to the additional exaggeration for the landing. When comparing the leap and landing

67

as separate animation tests, they take about the same time to complete as Test 2. The simple

test of the leap takes two and a half minutes while the simple test of the landing takes three

and a half minutes. The refined test for the leap takes around two and a half minutes as well

but can be completed faster if all motion paths were generated at the same time. The refined

test for the landing takes four and a half minutes to complete with the additional work

required to adjust the torso controllers and edit limbs in sets.

Examples of Wile E. Coyote are used to compare the leap and landing to Looney Tunes

animation. For the leap we use an action from the episode “Beep Beep.” In this clip Wile

is chasing the Road Runner and leaps to grab him. Wile stretches towards the Road Runner

but misses as he zooms off screen. When the animations are compared, the dummy arms

reach toward the second ledge in a similar manner to Wile and the dummy’s leg stretch

emphasizes the action. For the landing we use a scene from “Rushing Roulette.” In this

scene, Wile is using spring shoes to increase his speed but almost falls off a cliff. The Road

Runner sneaks up and scares Wile as he looks over the edge, and in response he jumps off.

As Wile falls off screen his entire body stretches, including his neck and torso. When

comparing the animations, the dummy landing creates a similar change in length as it

approaches the final platform. Both actions, the leap and landing, stretch to emphasize the

actions like the scenes from these episodes. Based on these results Test 3 of the Stretch-

Engine achieves the intended goal of the method.

68

Figure 27: Simple (top) and Refined (middle) results of the leap compared to the example sketch
of Wile E. Cayote (bottom). Sketch based on the episode “Beep, Beep” released May 24, 1952;
Directed by Charles M. Jones.

Figure 28: Simple (left) and Refined (right) results of the landing compared to the example sketch of Wile
E. Cayote (middle). Sketch based on the episode “Rushing Roulette” released July 31, 1965; Directed by
Robert McKimson.

69

In each of these animation tests, the Stretch-Engine is able to create exaggeration by

effectively controlling changes in squash and stretch. The animator is able to create

stretching in all limbs of the body while having control on when the stretching starts and

ends. The animator can quickly create exaggeration using the exaggerated path and can

also make adjustments easily and manually using the curve controllers. The Stretch-Engine

tools and functions, such as the easing feature, provide it with an addition level of control

to better refine these animations. It can also quickly and effectively produce these paths of

motion and can handle single, pairs, or multiple limb adjustments. Through these tests the

Stretch-Engine demonstrates the effectiveness of exaggerating motion by squash and

stretching limbs through altering paths of motion. The tests also show that an animator can

use the Stretch-Engine to create exaggerated motion based on their artistic design.

70

6. CONCLUSIONS3

To summarize, exaggeration is an important part in creating stylized animation. It

requires knowledge of the principles of animation, particularly squash and stretch, to

achieve a desired result. When creating animations, stylized or realistic, there are a variety

of tools that exist to assist animators in their work. Some use physical realistic calculations

to simulate animation and others use non-realistic calculations to exaggerate animation by

including squash and stretch. Although the tools included in these methods were effective,

they lacked certain features that could benefit animators. The physically realistic methods

did not have the flexibility to create deformations in a character and when they did create

deformations it was only with simple geometry. The non-realistic methods lacked the

flexibility to be used within an animator’s workflow; they instead overwrote the entire

animation to create their exaggerated results.

In conclusion, this paper details a new method to address these issues and assist

animators in the creation of exaggerated motion. This method is demonstrated using a

prototype software tool called the Stretch-Engine that contains the flexibility to work

within an animator’s workflow and deform bipedal characters. The prototype focuses on

creating exaggeration by giving the artist control over the changes in squash and stretch to

scale a character’s geometry. The method goals aim towards helping newer artists

understand how squash and stretch effects exaggeration. However, it can also be used by

more experienced artists, as the prototype was designed to fit within the animator’s

3 Parts of this section are reprinted with permission from “ The stretch-engine: a method for adjusting the
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings of
the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N. Spencer
(Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://doi.org/10.1145/3099564.3106639

71

curves. The Stretch-Engine is written using Python and MEL commands and built within

the Maya interface, giving it the capability to be used in an animation process.

The generated 3D curves act as references and controls for the changes in squash and

stretch. They reflect the selected limb’s current movements to display its path of motion.

To create exaggeration this motion path can be scaled, resulting in a scaled change in the

selected limbs length, to either squash or stretch the geometry. The scales available are

based on a range of scales found by studying the animation style of Looney Tunes

animations. This exaggerated motion path also contains controls for manually adjusting the

shape of the motion path. By using this exaggerated motion path, the animator can control

the degree of squash and stretch they wish to apply to their animation.

Using this exaggerated motion path and other tools within the Stretch-Engine, such as

an easing function to slow or speed up changes in scale, animators are able to develop

stylized exaggerated motion by deforming the limbs of a bipedal character. When tested,

the Stretch-Engine created well-defined exaggerations for animations based on realistic

actions and these new versions show similar deformations to examples from Looney Tunes

animation. These results show that this method is capable of creating exaggerated versions

of motion quickly and efficiently while working with the animator, achieving its goal.

6.1 Future Work

The Stretch-Engine can be a functional basis for future work and improvements

because it is written in Python. Python code is flexible and is primarily used when

customizing plugins. This flexibility gives the Stretch-Engine the ability to be edited to

workflow. The changes in squash and stretch are made through the use of generated 3D

72

work within animation tools other than Maya, such as Autodesk’s 3ds Max and Maxon’s

Cinema4D. There are also multiple extensions, such as a range of style or additional rigs,

that can be added to this method in the future to improve exaggeration through changes in

squash and stretch.

The Stretch-Engine’s range of scale is based on Looney Tunes animation but Looney

Tunes is just one of numerous animation styles. By expanding the styles of animation

supported by the tool, the animator can benefit from a variety of resources. A “Style

Selector” could be created to change the range of scale that the scaled curves are based

upon. This slider could include multiple styles of animation, such as art by Tex Avery,

Disney Animation and Hayao Miyazaki. When the desired style is selected it adjusts the

scale slider to match the minimum and maximum squash and stretch for the new style.

Currently the Stretch-Engine is limited to bipedal characters, but animation contains a

variety of interesting characters with multiple limbs. Creating additional rigs for different

creatures, such as quadrupeds and insects, for animation can expand the Stretch-Engine’s

functionality. These rigs could be included within the Stretch-Engine interface and

selection of a specific rig would change the tool’s limb diagram. This would broaden the

range of characters an animator may use instead of limiting the tool to bipedal characters.

The Stretch-Engine provides multiple curves to assist animators in controlling squash

and stretch. However, it does not contain the ability to evaluate the animation based on the

73

camera angle. The perceived intensity of stretch is dependent on the line of action relative

to the camera’s view. For example, a punch that is stretched and viewed from the side

seems more intense than a punch viewed directly in front. This is because in a side view,

the camera is highlighting the line of action of the punch. A function could be created to

take into account the effect that camera angles have on the resulting animation. This could

then develop the best exaggeration curve for the required action based on this camera angle.

The easing function within the Stretch-Engine is currently represented numerically.

However, this feature in animation is better represented visually through the use of curves

or diagrams. To better highlight this feature a visual representation that can be altered by

the animator would better serve in expressing this features functionality. This visual feature

would also be easier to understand at first glance compared to testing and viewing the

results of the numeric equivalent.

74

REFERENCES

1. Thomas, Frank and Johnston, Ollie, Disney Animation – The Illusion of Life, Abbeville
Press, New York, 1981.

2. Lasseter, John. “Principles of traditional animation applied to 3D computer
animation.” SIGGRAPH (1987).

3. Chenney, Stephen, Mark Pingel, Rob Iverson and Marcin Szymański. “Simulating
cartoon style animation.” NPAR (2002).

4. Kwon, Ji-yong and In-Kwon Lee. “The squash-and-stretch filter for character
animation.” SIGGRAPH ASIA Posters (2009).

5. Roberts, Richard and Byron Mallett. “A pose space for squash and stretch
deformation.” 2013 28th International Conference on Image and Vision Computing

New Zealand (IVCNZ 2013) (2013): 166-171.

6. Savoye, Yann. “Stretchable cartoon editing for skeletal captured animations.” SA

'11(2011).

7. Wang, Jue, Steven M. Drucker, Maneesh Agrawala and Michael F. Cohen. “The
cartoon animation filter.” ACM Trans. Graph. 25 (2006): 1169-1173.

8. Kwon, Ji-yong and In-Kwon Lee. “Exaggerating Character Motions Using Sub-Joint
Hierarchy.” Comput. Graph. Forum 27 (2008): 1677-1686.

9. Li, Yin, Michael Gleicher, Ying-Qing Xu and Harry Shum. “Stylizing motion with
drawings.” Symposium on Computer Animation (2003).

10. Guay, Martin, Rémi Ronfard, Michael Gleicher and Marie-Paule Cani. “Space-time
sketching of character animation.” ACM Trans. Graph. 34 (2015): 118:1-118:10.

75

11. Shapiro, Ari and Sung-Hee Lee. “Practical Character Physics for Animators.” IEEE

Computer Graphics and Applications 31 (2009): 45-55.

12. Hahn, James K.. “Realistic animation of rigid bodies.” SIGGRAPH (1988).

13. Bregler, Christoph, Lorie Loeb, Erika Chuang and Hrishi Deshpande. “Turning to the
masters: motion capturing cartoons.” ACM Trans. Graph. 21 (2002): 399-407.

14. Mordatch, Igor, Jack M. Wang, Emanuel Todorov and Vladlen Koltun. “Animating
human lower limbs using contact-invariant optimization.” ACM Trans. Graph. 32
(2013): 203:1-203:8.

15. Ansara, Rufino R. and Chris Joslin. “Adding Cartoon-like Motion to Realistic
Animations.” VISIGRAPP (2017).

16. Cavalier, Stephen. “The world history of animation.” University of California Press,
2011, pp. 160

17. Cavalier, Stephen. “The world history of animation.” University of California Press,
2011, pp. 152

18. Cavalier, Stephen. “The world history of animation.” University of California Press,
2011, pp. 122

19. Furniss, Maureen. “A new history of animation.” Thames & Hudson, 2016, pp. 134

20. Samerdyke, Michael. “Cartoon Carnival: A Critical Guide to the Best Cartoons from
Warner Brothers, MGM, Walter Lantz and DePatie-Freleng.” 2013.

21. Furniss, Maureen. “A new history of animation.” Thames & Hudson, 2016, pp. 129

22. Jones, Chuck. “Chuck Amuck: The life and times of an animated cartoonist.”
Macmillan, 1999.

76

23. “MEL for programmers.” Autodesk Knowledge Network. 2014.
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/Bac
kground_MEL_for_programmers.htm,topicNumber=d30e788742

24. “Python in Maya.” Autodesk Knowledge Network. 2017.
http://help.autodesk.com/view/MAYAUL/2017/ENU/?guid=GUID-C0F27A50-
3DD6-454C-A4D1-9E3C44B3C990

25. Geijtenbeek, T. H. O. M. A. S. “Animating virtual characters using physics-based
simulation.” Diss. Utrecht University, 2013.

26. Tan, Jie, Greg Turk, and C. Karen Liu. "Soft body locomotion." ACM Transactions on

Graphics (TOG) 31.4 (2012): 26.

27. editinKing. “Top 20 Boxing Knockouts of 2015 | Number 16 Amir Imam vs Fernando
Angulo.” Online video clip. Youtube, 28 Dec. 2015.
https://www.youtube.com/watch?v=JG2OY_7B-gI&t=121s

28. ProSwingNY. “2011 MLB Home Run Derby Slow Motion Baseball Swings” Online
video clip. Youtube, 15 Jul. 2011. https://www.youtube.com/watch?v=NrpyBrbu8co

29. Kick-Tube TV. “Most Dangerous Parkour Jumps.” Online video clip. Youtube, 01 Oct.
2014. https://www.youtube.com/watch?v=TQe01rxUisk

77

APPENDIX A

Python and MEL Scripting

The Python language allows for a flexible coding basis for the Stretch-Engine scripts

while MEL provides access to the base commands within Maya. Below are definitions of

the functions created using Python and the MEL commands that were used. The definitions

for the Python functions are based on their purpose while the MEL definitions are from the

MEL command reference in the Autodesk Knowledge Network.

(http://help.autodesk.com/cloudhelp/2017/ENU/Maya-Tech-Docs/Commands/)

Python Functions Created

The follow functions are those written for the functionality of the Stretch-Engine. They

are listed in the order that they appear starting with the Stretch-Engine Rig script and then

the Exaggeration Interface script.

• distanceCalc() – This function takes two points and calculates their distance in 3D

space. It returns a value equal to this distance.

• generateLocs() – This function generates the locators that are used to build the rigs joint

structure. Locators are named to match the joints they create and are placed in space

along the Dummy model used in the tests.

• buildRig() – This function is used to create the Stretch-Engine rig. It first builds the

rigs joint structure, then creates IK constraints along with the stretch functionality, and

lastly adds the controllers to the rig structure.

78

• controlShapes() – The first function within buildRig(), when called it builds a curve

based on a predetermined shape. Inputs are pointCircle, feet, hands, crescent, circle,

spiral box, box, fourArrows, and lollipop.

• setDKeys() – The second function within buildRig(), it is used to enhance Maya’s

setDrivenKeyframe() command. It allows the user to place a maximum and minimum

value for the connected attributes, creating a range.

• hideLockAtt() – the third function within buildRig(), it takes an object and an attribute

(translate, rotate, scale) and locks and hides the x, y and z values.

• resetRig() – This function resets all of the rig controllers to their default attribute values.

This places the rig into its default pose.

• createAnimCurve() – This function creates an animation curve within the scene that

reflects the selected controllers path of motion. It uses a range of time and keyframe

information to generate the curve.

• createExagCurve() – This function creates a scaled version of the original motion curve

within the scene. It also creates curve control spheres that are used to edit the shape of

the exaggerated curve. The exaggerated path creates a gradual stretch in the selected

limb that ends at a length equal to the original length times the scale set by the user.

• connectExagCurve() – This function connects the selected controller to the exaggerated

path after it has been adjusted using the curve control spheres.

• setEase() – This function applies the Ease-in and Ease-out values set by the user to the

remap. This remap is applied to the ratios used in calculating the exaggerated path. The

result is a different transition from original motion to scaled motion.

79

• setCurveBlend() – This function sets the weighted blend between the original and

exaggerated path. The value 0 sets motion the original path while the value 2 sets

motion to the exaggerated path.

• finalizeNewMotion() – This function updates the keyframes of the selected object to

match the new motion.

• deleteAnimCurve() – This function deletes all generated curves.

• selectBody() – This function highlights the selected limb from the body diagram and

updates the Interfaces text field to display the limbs controller. It also removes the

highlight from a previously selected limb.

• unselectBody() – This function removes the highlight from a selected body icon if it is

selected again and removes the controller name from the Interface text field.

All python functions have several parameters that affect the result of the function.

Depending on a parameter’s position within a functions parenthesis a parameter will be

used differently. The following example shows the layout of a Python Function.

connectExagCurve(leftArm, 10, 25, 2)

This function connects the left arm controller to it’s exaggerated path after it has been

manually adjusted. The start frame is frame 10 and the end frame is 25, altering the

keyframes within this timeframe. The blend value is set to 2, fully connecting the controller

to the exaggerated path.

80

MEL Commands Used

The following are MEL commands that are used with the Python functions. They are

listed in the order that they appear within the starting with the Stretch-Engine Rig script

and then the Exaggeration Interface script.

• spaceLocator() – The command creates a locator at the specified position in space. By

default it is created at (0,0,0).

• xform() – This command can be used query/set any element in a transformation node.

It can also be used to query some values that cannot be set directly such as the

transformation matrix or the bounding box. It can also set both pivot points to

convenient values.

• parent() – This command parents (moves) objects under a new group, removes objects

from an existing group, or adds/removes parents.

• curve() – The curve command creates a new curve from a list of control vertices (CVs).

A string is returned containing the pathname to the newly created curve. You can create

a curve from points either in world space or object (local) space, either with weights or

without. You can replace an existing curve by using the "-r/replace" flag. You can

append a point to an existing curve by using the "-a/append" flag.

• duplicate() – This command duplicates the given objects. If no objects are given, then

the selected list is duplicated.

• scale() – The scale command is used to change the sizes of geometric objects.

81

• rotate() – The rotate command is used to change the rotation of geometric objects. The

rotation values are specified as Euler angles (rx, ry, rz). The values are interpreted based

on the current working unit for Angular measurements. Most often this is degrees.

• move() – The move command is used to change the positions of geometric objects. The

default behavior, when no objects or flags are passed, is to do an absolute move on each

currently selected object in the world space.

• makeIdentity() – This command is a quick way to reset the selected transform and all

of its children down to the shape level by the identity transformation. You can also

specify which of transform, rotate or scale is applied down from the selected transform.

The identity transformation means:

• setAttr() – Sets the value of a dependency node attribute.

• getAttr() – This command returns the value of the named object's attribute. UI units are

used where applicable.

• connectAttr() – Connect the attributes of two dependency nodes and return the names

of the two connected attributes. The connected attributes must be of compatible types.

First argument is the source attribute, second one is the destination.

• addAttr() – This command is used to add a dynamic attribute to a node or nodes. Either

the longName or the shortName or both must be specified. If neither a dataType nor an

attributeType is specified, a double attribute will be added. The dataType flag can be

specified more than once indicating that any of the supplied types will be accepted

(logical-or).

82

• setDrivenKeyframe() – This command sets a driven keyframe. A driven keyframe is

similar to a regular keyframe. However, while a standard keyframe always has an x-

axis of time in the graph editor, for a drivenkeyframe the user may choose any attribute

as the x-axis of the graph editor.

o For example, you can keyframe the emission of a faucet so that it emits when

the faucet handle is rotated. The faucet emission in this example is called the

driven attribute. The handle rotation is called the driver.

• setKeyfame() – This command creates keyframes for the specified objects, or the active

objects if none are specified on the command line.

• joint() – The joint command is used to create, edit, and query, joints within Maya. If

the object is not specified, the currently selected object will be used.

• connectJoint() – This command will connect two skeletons based on the two selected

joints. The first selected joint can be made a child of the parent of the second selected

joint or a child of the second selected joint, depending on the flags used.

• distanceDimension() – This command is used to create a distance dimension to display

the distance between two specified points.

• ikHandle() – The handle command is used to create, edit, and query a handle within

Maya. The standard edit (-e) and query (-q) flags are used for edit and query functions.

If there are 2 joints selected and neither -startJoint nor -endEffector flags are not

specified, then the handle will be created from the selected joints.

• createNode() – This command creates a new node in the dependency graph of the

specified type. Used to create multiplyDivide nodes to calculate stretching.

83

• shadingNode() – This command creates a new node in the dependency graph of the

specified type. The shadingNode command classifies any node as a shader, texture

light, post process, or utility so that it can be properly organized in the multi-lister.

Specifically used to create the Remap for the exaggerated path and a Color Blend node

used in calculating stretch.

• pointConstraint() – Constrain an object's position to the position of the target object or

to the average position of a number of targets.

• orientConstraint() – Constrain an object's orientation to match the orientation of the

target or the average of a number of targets.

• parentConstraint() – Constrain an object's position and rotation so that it behaves as if

it were a child of the target object(s). In the case of multiple targets, the overall position

and rotation of the constrained object is the weighted average of each target's

contribution to its position and rotation.

• poleVectorConstraint() – Constrains the poleVector of an ikRPsolve handle to point at

a target object or at the average position of a number of targets.

• expression() – This command describes an expression that belongs to the current scene.

The expression is a block of code of unlimited length with a C-like syntax that can

perform conversions, mathematical operations, and logical decision making on any

numeric attribute(s) in the scene. One expression can read and alter any number of

numeric attributes. Theoretically, every expression in a scene can be combined into one

long expression, but it is recommended that they are separated for ease of use and

editing, as well as efficiency.

84

• window() – This command creates a new window but leaves it invisible. It is most

efficient to add the window's elements and then make it visible with the showWindow

command. The window can have an optional menu bar. Also, the title bar and

minimize/maximize buttons can be turned on or off. If the title bar is off, then you

cannot have minimize or maximize buttons.

• showWindow() – Make a window visible. If no window is specified then the current

window (most recently created) is used. See also

the window command's vis/visible flag.

• formLayout() – This command creates a form layout control. A form layout allows

absolute and relative positioning of the controls that are its immediate children.

Controls have four edges: top, left, bottom and right. There are only two directions that

children can be positioned in, right-left and up-down. The attach flags take the direction

of an attachment from the argument that names the edge to attach. Any or all edges of

a child may be attached.

• rowColumnLayout() – This command creates a rowColumn layout. A rowColumn

layout positions children in either a row or column format. A column layout allows you

set text alignment, attachments and offsets for each column in the layout. Every

member of a column will have the same alignment, attachment and offsets. Likewise,

the row allows setting of these attributes for each row in the layout. Every member of

a row will have the same attributes. The layout must be either a row or column format.

85

• paneLayout() – This command creates a pane layout. A pane layout may have any

number of children but at any one time only certain children may be visible, as

determined by the current layout configuration.

o For example, a horizontally split pane shows only two children, one on top of

the other and a visible separator between the two. The separator may be moved

to vary the size of each pane.

• getPanel() – This command returns panel and panel configuration information.

• scriptedPanel() – This command will create an instance of the specified

scriptedPanelType. A panel is a collection of UI objects (buttons, fields, graphical

views) that are grouped together. A panel can be moved around as a group within the

application interface and torn off to exist in its own window. The panel takes care of

maintaining the state of its UI when it is relocated or recreated. A scripted panel is a

panel that is defined in MEL, with all of the required callbacks available as MEL proc's.

MEL commands use flags as inputs, flags modify how a command works. When using

MEL commands with Python, flags are represented by named arguments followed by a

value. For example, a flag has a name and is followed by an equal sign (=) then the value

for that flag is placed after the equal sign. Also, a flag’s position does not affect the result

of the MEL command. The following example shows the layout of a MEL command.

floatSliderGrp(label='Scale', field=True, width=300, cw=(1,100), min=0, max=5,

value=1, step=0.01)

86

A slider that returns float values is created and labeled Scale. Following the label is a

text field that shows the sliders current value. The slider has a width of 300 pixels and the

first column has a width of 100 pixels, this column contains the label and text field. The

slider has a minimum value of 0, a maximum of 5 and an initial value of 1. The slider

values change in 0.01 increments.

87

APPENDIX B

Stretch-Engine Installation

For the best performance it is recommended to run the Stretch-Engine within Maya

2015 and newer versions, because script development began with the 2015 version and

then moved to later versions as the project developed. A few steps are needed to ensure

that the prototype works correctly within Maya’s workspace, a read-me file with the steps

is included with the folder containing the prototype scripts. The steps for installation are

also described here.

1. Go to http://www.zaidhibrahim.com/stretch-engine

2. Download the file stretchEnginePackage. This folder contains all files needed to install

the prototype along with the dummy model.

3. Place the python file “StretchEngineRigScript” within the Maya directory’s scripts

folder. \Users\<username>\Documents\maya\scripts

4. Create a new folder within the Maya directory space and name it stretchEngine.

\Users\<username>\Documents\maya\stretchEngine\bodyIcons

5. Copy the entire Python script “ExaggerationInterfaceScript” within Maya’s Script

Editor.

6. Execute the script in the Script Editor. This will compile all functions of the Stretch-

Engine.

7. Once executed the Exaggeration Interface will appear and be ready to use.

88

The interface script will need to be executed each time you open a new session of Maya.

The Script Editor automatically saves its state, or whatever code was in the editor the last

time it was opened, and the interface script should still be inside it. The interface resets

whenever it is executed but the icons and path creation should connect correctly if the

Stretch-Engine Rig or one with the same naming conventions are being used. In case the

script is no longer within the Script Editor, it is suggested to save the interface script in

your default scripts folder and follow the same instructions above to activate the tool.

