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ABSTRACT 

Animators exaggerate character motion to emphasize personality and actions. 

Exaggeration is expressed by pushing a character’s pose, changing the action’s timing, or 

by changing a character’s form. This last method, referred to as squash and stretch, creates 

the most noticeable change in exaggeration. This work introduces a prototype tool, the 

Stretch-Engine, to create exaggeration in motion by focusing solely on squash and stretch 

to control changes in a character’s form. It does this by displaying a limbs' path of motion 

and altering the shape of that path to create a change in the limb’s form. This paper provides 

information on tools that exist to create animation and exaggeration, then discusses the 

functionality and effectiveness of these tools and how they influenced the design of the 

Stretch-Engine. This method is then evaluated by comparing animations of realistic motion 

to versions created with the Stretch-Engine. These stretched versions displayed 

exaggerated results for their realistic counterparts, creating similar effects to Looney Tunes 

animation. This method fits within the animator’s workflow and helps new artists visualize 

and control squash and stretch to create exaggeration. 
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1. INTRODUCTION1

Animators rely on an understanding of the principles of animation [1] to create the 

motion and emotion in their work. These principles were developed by the animators at 

Disney Animation and became a framework for what to do when practicing animation. By 

keeping these principles in mind, artists could create appealing motion and develop their 

own style of work. However, determining whether or not a certain principle was important 

in the creation of their artistic style would be difficult without proper training. This paper 

chooses to discuss the importance of one principle in particular, squash and stretch, 

described as “One of the most important principles of animation” in the book The Illusion 

of Life by Frank Thomas and Ollie Johnston. 

To better understand the importance of squash and stretch, a brief overview of existing 

tools that focus on this principle is discussed. Some of these tools focus on using 

simulations to control animation and the degree of squash and stretch. The final result is 

an automatically created motion with little or no manual input from the user. These tools 

may use realistic physics in the calculations that affect squash and stretch, or they may use 

other techniques to create cartoon-like effects. The other techniques include tools that allow 

the user to visualize the changes squash and stretch can have on the overall animation and 

provide the user with controls to affect these changes. These tools produce exaggerated 

animation results, but they all have shortcomings, all of which were considered 

when developing this method.  

1 Parts of this section are reprinted with permission from “The stretch-engine: a method for adjusting the 
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings of 
the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N. Spencer 
(Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://doi.org/10.1145/3099564.3106639  
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1.1 Purpose 

The purpose of this paper is to describe a method to create exaggeration in realistic 

motion by controlling changes in a character’s form through squash and stretch. The 

Stretch-Engine is a tool developed to achieve this goal by generating a 3D motion curve 

that visualizes a limbs path of motion and changes the shape of that path to impose squash 

and stretch on the character’s limb. The Stretch-Engine also contains a procedurally 

generated bipedal rig that has the ability to squash and stretch its limbs as well as a graphic 

user interface (GUI) to create 3D motion paths and control the form of these curves. The 

code used to build the Stretch-Engine is written in Python and is integrated into the existing 

Maya animation software.

1.2 Significance 

The Stretch-Engine allows animators to control changes in a character’s form by 

changing the degree of squash and stretch through altering a limb’s path of motion. With 

access to more control in squash and stretch, animators are able to develop better quality 

exaggerated motion. The result is an efficient way of controlling squash and stretch during 

animation of bipedal characters. The Stretch-Engine is demonstrated using three 

animations based on realistic motion that employs squash and stretch to create exaggerated 

versions. 
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1.3 Terminology 

There are specific terms and phrases used that describe certain processes of 

development when creating an animation tool. This paper includes some of this 

nomenclature and uses it to explain the components of the animation tool. For this paper, 

the terminology used and their definitions are listed below: 

 

A Rig is the process and end result of taking a static geometric model, creating an 

internal digital skeleton, a relationship between the geometry and skeleton, and adding a 

set of controls that the animator can use to manipulate the character around. 

A Locator is an object within the Maya interface that visually represents a point in 3D 

space. It can contain translation, rotation and scale data. 

IK, or inverse kinematics, is the mathematical process of determining movements of an 

object based on the motion of its end effector.   

A Controller, in the context of this paper, is an end effector for an IK chain within a 

rig. Allows the animator to interact with and animate their characters. 

Figure 1: Example sketch of limb exaggeration through squash and stretch based on Looney Tunes 
episode “To Duck or Not to Duck.” Episode released March 6, 1943; Directed by Charles M. Jones. 
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A Curve is a 3D line based on user created keyframes that defines the path of motion 

that the end effector follows. It is a combination of user input and software generation. The 

curve is displayed by the software interface. 

Geometry is a collection of surfaces organized in a hierarchical structure that forms the 

character body. 

Joints are Maya defined objects where the articulation of the character occurs, the pivot 

points. Connected to the geometry by weighting functions allowing it to move and deform 

the character. 

Bipedal, a term used to define an animal that walks on two legs. 

Right-Hand Coordinate System, or the positive x, y, and z axes, point left, right, and 

forward, respectively. Positive rotation is counterclockwise about the axis of rotation. 

A Spline is a smooth curve that passes through or near a set of fit points. Defined with 

either fit points or control vertices. 

Keyframes transform objects or skeletons over time by setting keys, arbitrary markers 

that specify property values of an object at specific times. 

In the terms of this paper, a Tool is a set of functions contained within a user interface 

that provides the user with resources to complete a specific task 
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2. BACKGROUND AND RELATED WORK 

 

As animation developed, certain expressions were used repeatedly. Such expressions 

included “aiming,” “overlapping” and “pose to pose.” These expressions suggested that 

certain animation procedures were becoming specialized and were being given names. 

These terms were used over and over again, becoming verbs and then nouns. Physical 

aspects were being used to describe drawing techniques, such as “Look how stretchy that 

character is.” These terms were ways animators described the success of their work and 

their peers [1]. 

As time went on, animators would continue to search for better methods of explaining 

drawings to one another. These methods were ways to teach others what they have learned 

and what was successful in producing appealing animations. These methods were 

techniques they had learned to follow and became a set of guidelines they could quantify 

and study. Animators used these guidelines as references for new projects they would work 

on. Although these techniques may not always create the expected result, they allowed for 

structure and reassurance in the creative process. 

As each of these techniques were named, they were analyzed, deconstructed and 

perfected. They became the foundation for new animators to follow and improve their 

skills. These techniques later become the twelve fundamental principles of animation: 

Squash and Stretch, Anticipation, Staging, Pose to Pose, Follow Through, Slow In and 

Slow Out, Arcs, Timing, Exaggeration, Solid Drawing and Appeal. As described in the 

book The Illusion of Life, the most important of these principles is Squash and Stretch [1]. 
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An example of “Squash and stretch” is when an object is stretched as it approaches a 

collision, squashed as it collides, and then stretched again as it rebounds [3]. The purpose 

of this principle is to give a sense of weight and flexibility to an object. When an object, 

like a chair, is moved, there is a rigidity in its form that is emphasized by its movement. 

Anything composed of flesh, however, shows deformation of its shape when progressing 

through an action. The “squashed” position of an object depicts its form bunched up and 

pushed together when a compressive force is applied. The “stretched” position shows the 

object in an extended position but with a similar shape to its original form. Figure 1 is an 

example of such a stretch, Daffy Duck’s arm is stretched out to emphasize the punch’s 

impact.  

Animators apply the principles of animation to create their own style of animation. 

Such styles range from closely following reality, such as the work by Hayao Myazaki, to 

breaking as many physical constraints as possible, such as “The Amazing World of 

Gumball” created by Ben Bocquelet. This change in style is most noticeable when using 

squash and stretch. It can also emphasize the effect exaggeration has on motion. A 

character’s torso may be slightly compressed when hit in the head or the torso may 

completely flatten along with the head. The difference is the desired effect the animator 

wants to produce, or how “cartoony” the character is meant to be. This is the artistic impact 

squash and stretch has on animation. When studying tools used for animation, there are 

two different approaches. These can be defined as (1) animation based in physical realism 

and (2) animation controlled by artistic preference. 
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2.1 Realistic Approaches 

When creating tools for animation, one approach focuses on physics-based simulations 

to calculate animation realistically. This approach means that all motion created is done by 

a physics-based process rather than being created manually. As a result, physics-based 

characters and objects interact in accordance with the laws of physics. Physics-based 

simulations, which create all forms of motion without the use of motion capture data, have 

been a topic of interest in the animation industry for quite some time but have not been 

adopted widely in expressive character animation. Currently, physics-based simulations 

are time and resource intensive, making manual or motion capture approaches the more 

efficient option. 

There are many techniques that rely on physics-based calculations; one example is the 

method created by Geijtenbeek [25]. He developed a physics-based simulation to animate 

bipedal characters with the use of biomechanical constraints. These constraints are based 

on results from biomechanics research to help create the perception of naturalness. Without 

the use of these constraints, simulated characters move in ways that are physically valid 

but seem stiff or robotic. Geijtenbeek’s technique created visually appealing walk cycles 

and performed well for a number of differently shaped bipedal characters. Although this 

technique creates satisfying animation, it did not take into account form deformations such 

as squash and stretch. 

Hahn [12] developed an early system that simulated the dynamic interaction among 

rigid bodies. This system took various forces, such as elasticity, friction, mass, and 

moments of inertia to produce rolling and sliding. This technique helped animators create 
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realistic results by using equations developed to developed to calculate the aforementioned 

forces. This method also adjusted the physical calculations to create the desired animation 

if the realistic values could achieve them. The final result will be an animation that follows 

realistic or pseudo-realistic motion based on the physical attributes assigned to the object. 

These pseudo-realistic results refrain from manipulating the object’s form and can only be 

created if the laws of physics are manipulated to create the desired effect. 

Mordatch et al. [14] created a trajectory optimization approach to animate human 

activities that are driven by the lower body. This approach was based on contact-invariant 

optimization, a technique that smooths out discontinuities in the specified objectives to 

create a single optimized search for possible motion trajectories. The goal of this project 

was to automatically create realistic, lower body motion, such as running and jumping. 

These optimizations evaluated the contact positions and forces of the character’s feet to 

calculate the resulting motion in the rest of the body. The technique used these physical 

calculations to move the character’s feet and, from these movements, calculated motion for 

the body. Like Geijtenbeek it could not alter the body’s geometric form as the calculations 

relied on that structure to remain constant. 

Shapiro and Lee [11] developed an interactive system that helped animators create 

more physically realistic motion by assuming the character obeys the laws of physics. This 

method was designed to inform animators of the changes needed to make motions of an 

animated character physically correct. Their tool used physical characteristics such as 

center of mass, angular momentum and balance to create an optimal motion path. The 

system comprises of two tools that were integrated into keyframe-based animation 
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software. The first is a ballistic path tool that compares the character’s path of motion based 

on the originally created animation to a new path generated by the system. This ballistic 

path allows an animator to adjust the original motion to create a more physically correct 

animation. Figure 2 shows an example of an original motion path (blue) compared to the 

new ballistic path (red) of an animated character. The second tool is an angular momentum 

tool that rotates a character’s global orientation to achieve the desired angular momentum. 

The degree of rotation is calculated using velocity, inertia, and momentum values based on 

the character’s root, the highest joint in the character’s joint hierarchy. The character is 

rotated without affecting the animation of each body part to preserve the animation style. 

Their tool allowed the animator to visualize and control changes in a manually created 

animation and could even adjust exaggerated animations to fit within a live environment. 

However, it does not include a feature to alter form when working with exaggerated 

animations. 

Chenney et al. [3] simulated squash and stretch for simple bodies, basic geometry, and 

shapes by using velocity and collision parameters. This approach focused on creating a 

procedural animation system by using pseudo-realistic physics calculations that simulated 

object movements through space. By applying the velocity and collision parameters, they 

were able to calculate how the object’s form would change during motion and visualized 

the resulting squash and stretch. The animator could control an object’s motion through a 

set of parameters that affected features of the motion, such as the degree of squash and 

stretch. Although this technique was able to produce appealing squash and stretch, it 
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focused solely on animating simple shapes rather than more complex objects, such as a 

bipedal character. 

Tan et al. [26] created a method of animating soft body characters, which are geometric 

models that do not contain a skeleton, through volume preservation and muscle contraction 

calculations. The characters used contained dense topology, the geometric structure that 

makes up the objects geometry, that allowed the form to shift and bend into any position. 

They also contained muscles fibers that controlled changes in form by contracting and 

relaxing. Due to the high topology and large set of muscles fibers that controlled these 

characters, moving characters by hand could be quite difficult. To manually animate the 

user would have to modify each fiber individually to create movement in the soft body. 

Due to this complexity these soft body are animated by setting goals, such as moving a 

point along the character to a new position, by setting a trajectory for the center of mass, 

or by regulating the character’s linear or angular momentum. These goals are analyzed by 

a physics solver to determine a change in muscle fiber position. After the new muscle 

conditions are determined the solver is run again, resulting in a moving soft body. This 

method, although complicated, produced satisfying soft body character movement. 

However, this method was designed solely for simple soft body creatures and while it could 

be used for sections of bipedal characters, such as the tongue, it would not be the optimal 

controller for animating a full body character. 

These physics-based tools were effective in simulating motion under realistic 

conditions. They provided calculations to create physically correct motion and some tools 

allowed manipulation of these calculations to create changes in the results. Others showed 
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representations of changes in motion to compare differences in results; many of the 

discussed methods could be applied a variety of characters. However, the methods that 

produced satisfying animations for complex characters did so without deforming the 

affected objects geometry. Those that could produce squash and stretch were only able to 

create the effect with simple geometric shapes, or the effect was to create realistic squash 

and stretch for characters that did not contain a rigid form.  

The ability to deform complex geometry is required when creating squash and stretch 

animation in animated characters. Due to the wide variety of artistic styles that rely on 

changes in a character’s form, a system based on physical realistic constraints may not 

create the cartoon-like animation desired by the artist. For this reason, the Stretch-Engine 

focuses on non-realistic approaches to calculate animation which emulates traditional 

animation techniques. 

 

Figure 2: Comparison of the center of mass path created from hand-made animation 
(blue) and the ballistic path calculation (red). Reprinted from Practical Character 

Physics for Animators [11]. 
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2.2 Non-Realistic Approaches 

A non-realistic approach to animation focuses on producing an expected style of 

animation rather than an animation that follows the laws of physics. Because of this focus 

on style, many of these approaches allow the character’s geometry to deform and create 

poses that the actual physiology of an object could not achieve. These techniques can also 

Figure 3: Examples of different walking gaits for a variety of bipedal creatures created 
through the physics-based simulation. Reprinted from Animating virtual characters using 

physics-based simulation [25]. 

Figure 4: Results of animating two soft body forms. The H swings side to side and the I maintains 
balance by lowering its center of mass. Reprinted from Soft body locomotion [26]. 
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receive their initial data from a variety of sources. These sources include inputted values 

for motion tracking data, two-dimensional drawings, video files and procedural 

calculations. 

An example of a non-realistic approach is one created by Roberts and Mallett [5] that 

resolved squash and stretch using an ‘example based’ technique, in which the resulting 

deformation was generated from a set of poses. A “pose” was defined using a number of 

dimensions such as position, velocity, and acceleration. The user adjusted these parameters 

to create a new pose for the selected object. To create changes in form, the user could 

iterate through the existing animation and change these parameters to create new poses at 

different times. The software then applied these poses to the original animation to create 

the cartoon-like animation. This approach created animations that squash and stretch to 

exaggerate motion and allowed animators to see changes applied with real-time feedback. 

However, each time a pose is created a duplicate mesh is placed within the scene. If the 

animation requires numerous pose changes, the scene file can become heavy and cluttered.  

Wang et al. [7] used an inverted Laplacian of Gaussian (LoG) filter to alter inputted 

realistic motion data to create exaggerated actions. The filter created a smooth and inverted 

version of the motion data’s acceleration and replaced the original data’s acceleration with 

the newly created one. The new acceleration altered the character’s movement by having 

it move further away from the start position and then overshoot the stop position. This 

created the effect of anticipation and follow-through that was not there in the original data. 

Another part of their method is a calculation that slightly time shifts the LoG filter for the 

boundary points of an object. This time shift caused the character to reach positions earlier 
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or later than in the original motion data, which deformed the character’s geometry, creating 

squash and stretch and resulted in a more exaggerated motion. The animations created by 

the cartoon animation filter produced satisfying results and could affect other forms of 

input data, such as a 2D image sequence, but it is a one parameter system that gave the 

animator little control over the change in data. This lack of user input may not be practical 

when manually animating a 3D animation.  

Kwon and Lee [8] created a two-part filter that used motion capture data and converted 

it to rubber-like exaggerated motion. The first part of the filter created trajectory-based 

motion exaggeration, a distorted version of their character’s motion created by stretching 

the trajectory and link constraints of each joint in 3D space. However, the stretching could 

create errors due to the change in each links length. To minimize errors, they used an 

algorithm called Fast Joint Hierarchy Correction. This algorithm measured how far the 

new trajectory exceeded the original link constraints length, then corrected each joint 

position in the hierarchy. This process is iterative and continued until it reached the chain’s 

root joint. This decreased the total link length after each iteration to adjust the margin of 

error. They could also modify the error threshold to control the amount of exaggeration. 

The second part of their filter divided these joint links into small, equal length unit joints 

that are used to mimic the bending effect of rubber. This new set of joints became a sub-

joint hierarchy of the original joint chain and could change the exaggerated motion into a 

rubber-like motion using Bézier Curve Interpolation to reposition the sub-joints. By 

controlling the joint structure and their links while providing a sub-set of joints to reshape 
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the geometry, their method was able to alter realistic motion data to create a rubber-like 

exaggeration. 

Kwon and Lee [4] created another filter that simulates squash and stretch by optimizing 

spatial and temporal data from motion capture data. They specified that the filter altered 

realistic motion data because cartoon animation requires motion that is based on realism, 

but these cartoon motions cannot be achieved in a realistic environment. Their filter 

calculated squash and stretch poses by using a time-warping function on the position data 

of a character’s individual joints. This allowed them to stretch the geometry of a character 

at the appropriate time by having a joint reach a certain position earlier or later in time. 

Figure 5 shows an example of motion data retargeted for a 3D character by two methods: 

the cartoon animation filter created by Wang et al., and Kwan and Lee’s time-shift filter, 

and how each method effected the initial motion data. Both methods developed by Kwan 

and Lee read in realistic motion data and altered that data in some way to produce a cartoon-

like animation. However, their results do not express how this filter would affect a 

manually created 3D animation or if it could be used to alter a character’s motion during 

the animation process. 

Savoye [6] created a motion capture system that filtered a rigid-skeletal data’s Euler 

and Euclidian representations to create a more cartoon-like output. Unlike other techniques, 

this method added non-rigid effects to an existing captured skeletal structure to create a 

more cartoon-like animation. They use shearing and stretching distortion to apply these 

non-rigid warps to the skeletal topology. Before applying these warps, they refered to the 

original motion data’s skeletal structure as Euclidian joint coordinates. These coordinates 
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are numeric references for each joint that they can alter. They use a Euler filter to alter each 

joint within the skeletal structure by rotating their numeric references. By using these 

mathematical representations for positions and rotation, the artist could apply warping 

features to a rigid-skeletal shape making it more cartoon-like. Figure 6 shows the change 

in a model’s gait after applying these calculations. This technique created squash and 

stretch effects independently of a character’s skin layer by altering the physics of a rigid 

skeleton. However, it focused on using motion capture data as the input and, like Kwan 

and Lee, it does not mention how this technique affected hand-made animations.  

 

 

 

 

 

 

Figure 5: Comparison of exaggeration using Wang et al. animation filter (top) and Kwan and Lee’s 
time-shift filter (bottom). Reprinted from The squash-and-stretch filter for character animation [4]. 
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Figure 6: Result of gate becoming more cartoon-like through warping the characters skeletal 
structure. Reprinted from Stretchable cartoon editing for skeletal captured animations [6]. 

Figure 7: Results of changes to a walk cycle through poses using an example-based technique. Reprinted 
from A pose space for squash and stretch deformation [5]. 
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Ansara [15] used an algorithm to adjust the animation curves of motion capture data to 

exaggerate realistic motion. This algorithm allowed the user to adjust the motion capture 

data’s high and low points. These points reflected the animated character’s joints maximum 

and minimum rotation. Once the user had determined these new points, the algorithm 

adjusted the original motion data using cubic interpolation to create a new animation. The 

data was adjusted using a 2D curve-based user interface to quickly edit and visualize the 

changes applied to the animation. It consisted of a gray curve that showed the motion data’s 

default position, and a red curve that allowed user adjustments. Both curves are displayed 

along a 2D grid in which X denotes time and Y denotes the amount of change. The user 

manipulated these curves using arrows that translated along the grid. The further the arrows 

moved along the Y axis, the more intense the maximums and minimums become; moving 

further along the X axis slowed the animation down. Their algorithm was effective in 

reducing the realism of their motion data and user studies found the curve-based interface 

easy to use and understand. However, their cartoon-like animation is not a result of squash 

and stretch; the exaggeration of joint rotations resulted in more expressive poses without 

geometry deformations. 

Another system developed by Guay et al. [10] allowed animators to sketch coordinated 

motion using a single stroke called the space-time curve that affected the character’s 

animation. This technique used a matching algorithm to drive the motion of a 3D character 

along the space-time curve by computing a dynamic line of action. This line of action drove 

the character’s motion along the drawn curve. The line of action did this by affecting a 

specific body line in the character model (spine, torso, tail etc.) and having that line move 
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across the space-time curve. Figure 10 shows an example of this space-time curve and line 

of action. Both the line of action and space-time curve could be adjusted by over-sketching 

or adding secondary lines. These secondary lines could also be used to affect other body-

lines, such as wings on a dragon. The speed at which the space-time curve was drawn 

directly affected the model’s form by squashing or stretching the character’s skeleton (the 

skeleton stretched if the curve is drawn fast and squashed if the curve is drawn slow). To 

add further control, they added what they call space-time cans. Since orientation is difficult 

to determine in a 2D space, these cans direct the twisting character’s orientation based on 

how they are placed along the curve. Through user studies they were able to determine that 

this technique produced animations faster than using keyframe animation techniques. It 

was also useful to users who have never animated before. However, they note that this 

technique is only useful for simple characters with few body parts due to their tool focusing 

on the motion of a single line. 

Another technique developed by Bregler et al. [13] captured motion from traditionally 

animated cartoons and retargeted it onto 3D models, 2D drawings, and photographs. The 

input data was a video file containing the motion and a user-defined set of key-shapes 

chosen from the video. The video file was then turned into motion data and the key-shapes 

inputted by the user are connected to output key-shapes set by the user for the new 

character. The motion data was then mapped to the new character using the reference key-

shapes, maintaining the time and motion from the original source. Figure 9 displays the 

results of their method using a 2D reference to pose their 3D model. By using already 
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established animations or drawings, the artist could produce cartoon-like movement for 

their own characters.  

Li et al. [9] developed a similar system that used artist sketches to repose and simulate 

squash and stretch of their characters. This technique allowed an artist to redraw key 

features of an animation, such as silhouette curves over the rendered images of the original 

animation. The drawings were then integrated into the animation by altering the model’s 

skeleton to match the drawn pose, and then warping the model’s geometry to match the 

shape. Both of these techniques (Bregler et al. and Li et al.) provided a direct medium for 

artists to express creative opinion by taking into account their own artistic preferences. 

They also produced satisfying cartoon-like motion if the input material used is of good 

quality animation. However, if the artist wished to change the affect applied to the 3D 

model they would have to create a new set of 2D drawings for the system to analyze and 

make changes. Neither of these techniques contained the functionality to quickly adjust 

poses within a three-dimensional medium. 

All of these techniques produced satisfying, exaggerated, and cartoon-like animations 

by enhancing the path of motion, deforming the skeleton of their character, or by deforming 

the geometry to create squash and stretch. However, some of these techniques do not 

discuss how their functions would affect a hand-made animation or even if it could use 

such data as an input. Those that could use an animator’s work as input data overwrote the 

original animation, requiring the animator to create a new input if the new, edited versions 

were unsuccessful. Also, some of these methods would populate a scene with all created 

references, which could negatively impact the tool’s performance. The Stretch-Engine’s 
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design is focused on creating squash and stretch in realistic motion but also to be used 

within the animation process. This secondary goal sets a standard for the method to be 

lightweight and to provide straightforward controls.  

When studying these methods to exaggerate animation some of them stood out. These 

methods included the non-realistic methods developed by Guay et al. [10], Ansara [15] and 

the realistic method developed by Shapiro and Lee [11]. Each of these systems contained 

a visual reference that allowed the animators to view exactly how their input was affecting 

the animation. They displayed curves that related to either the animation curve data or the 

paths of motion for their characters, and then allowed the animator to alter those curves to 

create new results. By combining a design that implements the use of interactive curves 

that alter animation and the flexibility of a non-realistic approach for geometry 

deformation, the Stretch-Engine can achieve both of its goals by controlling the changes in 

squash and stretch by manipulating a character’s motion paths. 

 

Figure 8: Comparison between original and edited motion data. Changes made using the 
Curve Interface (right), Default curve (grey) and Modified Curve (red). Reprinted from 
Adding Cartoon-like Motion to Realistic Animations [15]. 
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Figure 9: Example of a 2D drawing applied to a 3D character to create a stylized walk. Reprinted 
from Turning to the masters: motion capturing cartoons [13]. 

Figure 10: The effect of the space-time curve on a 3D character’s motion. The warp (red) 
produces a line of action along the drawn line that the model follows. Squash and stretch is 
controlled by how fast the line is drawn, the faster the more stretched the model. Reprinted 
from Space-time sketching of character animation [10]. 
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3. METHODOLOGY 

 

This paper outlines the development of a prototype tool that controls squash and stretch 

and applies these changes to an animation. The goal is to create exaggerated character 

motion by giving the animator control over changes in a character’s form. The tool 

developed to demonstrate this goal is designed to work within the framework of an existing 

animation software, Maya, which is to be used within a production environment. Previous 

tools, such as the ones mentioned in the related works section, either create realistic 

animations using physics-based calculations or create exaggerated animations that 

produced a specific cartoon-like results. The tools in the related works section were studied 

and, from this study, four research objects were created. 

 

3.1 Objectives 

1. To design a bipedal-humanoid rig that is capable of performing squash and stretch 

along each limb and contains controls for animation. This rig excludes facial animation, 

as the method focus is exaggerating body motion.  

2. To observe and record changes in known animations to determine specifications of a 

prototype tool. This study focuses on the animated series “The Looney Tunes Show.”  

3. To develop a prototype tool in Python that creates squash and stretch in the rig while 

giving animators control over these changes using a motion path-based controller. 

4. To provide results demonstrating exaggerated versions of animations based on realistic 

animations created using the prototype tool. 
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4. IMPLEMENTATION2

This project describes a method that allows animators to control changes in squash and 

stretch to create exaggerated motion. The Stretch-Engine is a prototype built to test this 

method and consists of three parts, the first part consists of a bipedal character rig that can 

perform squash and stretch. The second part is a set of observations determined from 

studying Looney Tunes animation during moments of squash and stretch. The third part is 

a user interface with the ability to adjust animation using 3D curves that show a limb’s path 

of motion. The animator can use the interface and curves to control the squash and 

stretch of a character’s limbs by scaling and manipulating the shape of these new curves. 

The prototype is developed using Python and MEL commands to integrate smoothly 

with the Maya animation system. Python is a widely used programming language for 

general-purpose programming. Python has a design philosophy that emphasizes code 

readability and contains a syntax that allows programmers to express concepts in fewer 

lines of code than other languages, such as C++ and Java [24]. Python scripting can be 

used for many tasks in Maya, from running simple commands to developing plug-ins, and 

several different Maya-related libraries are available for different tasks. 

The Maya Embedded Language, or MEL, is a scripting language used to simplify tasks 

within the Maya interface. MEL offers a method of speeding up complicated or repetitive 

2 Parts of this section are reprinted with permission from “The stretch-engine: a method for adjusting the 
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings 
of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N. 
Spencer (Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://
doi.org/10.1145/3099564.3106639
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tasks by executing commands within Maya’s command line [23]. This language allows 

tools built with it to use functions developed within the Maya interface. Most tasks within 

Maya’s graphical user interface (GUI - a visual way of interacting with a computer using 

items such as windows, icons, and menus) can be performed using MEL commands as well 

as some that are not available within the GUI.  

The flexibility of Python and the variety of commands provided by MEL make them 

the most appropriate languages for the Stretch-Engine code. The Stretch-Engine code is 

made up of two major scripts, the Stretch-Engine Rig and the Exaggeration Interface.  

 

4.1 The Stretch-Engine Rig 

When first developing the Stretch-Engine, research focused on creating the Stretch-

Engine Rig. For the rig to perform optimally it would need to be simple to use and able to 

perform deformations required for squash and stretch. The structure for the rig would also 

need to reflect characters from “Looney Tunes” animation as they were the subjects used 

to create a range for stretching. Due to the structure requirements, the rig is a bipedal rig 

and reflects the general form of Looney Tunes characters like Bugs Bunny and Daffy Duck. 

The design of this bipedal rig can be broken down into three sections, the joint structure, 

the IK systems required for limb motion, and the controls for each limb.  

The first step in creating the rig’s joint structure is generating locators. Locators are 

objects within the Maya interface that save transformation data such as position, rotation, 

and scale. These locators create the position and rotation data that the joints use when being 
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created. The use of locators in generating the rig was to allow the user to adjust the joint 

positions and fit them to any model they wish to use for animation.  

The joint structure contains minimal sets of joints for simplicity and to optimize 

efficiency when running the rig script. The original position data for the locators is set to 

match the Stretch-Engine Dummy, a model that is used in this thesis to animate the motion 

studies and view the Stretch-Engine results. The model reflects a bipedal character 

structure and is designed with the intention to perform squash and stretch. Figure 11 shows 

the locator, joint and geometry structure of the Stretch-Engine. Once the locators are in 

place the user can run the rig script to build the joints, IK systems, and controls.  

The rig’s IK system is made with simple, rotation and spline IK solvers. These solvers 

are defined in the Maya interface and are used for different forms of transformation. The 

rig’s arms and legs use a rotation IK solver, allowing a pivot to be placed that creates 

motion such as turning the elbows and knees. The neck uses a simple IK solver to allow 

the head to translate while moving the neck in the respective direction. The spine uses a 

spline IK solver, allowing multiple controls to be placed along it to create the diverse 

motions of a person’s torso such as arching back and bending over.  

Each limb section (arms, legs, neck, and spine) needs to perform deformations for the 

desired changes in squash and stretch. To create changes in form without any internal 

calculation issues, each limb section contains a separate joint structure that is bound to the 

geometry. While the IK joints for each limb determines motion, these Binding joints scale 

and deform the geometry. This allows the binding joints to squash and stretch the geometry 
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while keeping the calculations for the IK systems unaffected, allowing the original joints 

to perform proper limb motion. 

 

Each limb structure contains a distance ruler, an object in Maya that measures the 

distance between two points, to create the changes in squash and stretch. To properly 

calculate the length of each limb the ruler’s start and end points need to cover the limb’s 

entire joint structure. Figure 12 displays the distance ruler along the left arm’s joints. The 

area covered for the arms is from the shoulder to the wrist, the legs are from the hip to the 

ankle, the spine is from the spine’s base to the spine’s tip, and the neck is from the base of 

the neck to the base of the skull. To maintain an accurate distance of the limbs total length, 

the recommended starting position for each limb is where the limb is completely straight.  

Figure 11: The Locator Structure, Joint Structure and Stretch-Engine Model. 

Figure 12: The IK and Distance Ruler along the Left Arm joint structure. 
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This paper uses the arm structure as the primary example when discussing the distance 

ruler and its effect. The arms joints are scaled to create the physical change in the arm. 

When the distance between the shoulder and the wrist extends, or contracts, the arm 

stretches and squashes respectively. The fraction of change between the new position and 

old position is a numeric representation of the change in squash and stretch. This fraction 

is then applied to the rig joints, scaling them and emphasizing the change in form along the 

joint structure’s longitudinal axis. This means if the arm is moved past its default 

straightened length it changes shape. If the arm’s size is greater than the default length the 

arm stretches along the arm’s length and if this size is less than the default length the arm 

squashes. Figure 13 shows how this change in position affects the left arms geometry. 

Figure 13: The squash and stretch effect in the arm as the controller moves passed the 
default length. Default length (top), Squash length (middle), Stretched length (bottom). 
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To provide more flexibility, the fraction of change is also used to calculate an 

approximate amount for volume preservation. This amount inversely affects the arm’s 

width and height compared to the change in length. Figure 14 shows an example of the 

volume preservation along the left arm. This effect is similar to stretching a rubber band; 

the further the arm extends, the thinner it becomes and the more the arm is compressed the 

thicker it becomes. The rig is meant to give the animator as much control over the resulting 

animation as possible, and although volume preservation is not prominent in Looney Tunes 

animation, this feature is provided as an extra form of control for animators to use in their 

animation.  

 

The controls are the final elements added to the rig. These controls, shapes made using 

Maya curves and attached to sections of the rig, allow the animator to manipulate the rig 

Figure 14: The volume preserving feature in the character’s arm. The arm becomes 
thicker as the limb squashes (top) and thinner as the limb stretches (bottom). 
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structure and create their desired animation. The controls also contain attributes for more 

defined animation poses, such as curling the hand into a fist or rolling the ball of the foot. 

Each limb controller also contains attributes for switching the squash and stretch and 

volume preserving features on and off. The controls are designed to be simple so as to not 

distract the animator or block the model’s geometry. This way the animator may focus on 

creating their desired animation while being able to view the changes they make. The 

Stretch-Engine Rig is integrated into the Stretch-Engine’s user interface for quick access 

and to assist with the workflow for creating squash and stretch. 

 

4.2 Cartoon Observations 

 “Looney Tunes” animations from the years 1940 to 1960 were studied to find a range 

of scale that determines the amount of squash and stretch available to users. The limbs of 

Looney Tunes characters, such as Bugs Bunny and Daffy Duck, were measured during 

relaxed poses and stretched poses to find this range. The animated character’s limb length 

during its relaxed pose is set as their default limb length, and any alteration during 

exaggerated actions to their limb’s size was considered for their stretch length.  

Each episode was studied frame by frame to measure the full extent of changes in the 

subject’s limbs. Due to the multiple sources for these videos, standard measurements of 

length did not carry over from one video to another. For this reason, the unit of 

measurement used in these observations is based on the character’s arm length in the 

current episode (i.e. one unit equals the length of the characters arm in the default position). 

Any change measured is in relation to this unit of scale to create accurate limbs deformation 
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values. Table 1 shows the measurements found for each character during exaggerated 

moments and the episodes of Looney Tunes animations used in the study. 

 

Episode Name; 

Director(s); 

Date Released 

Character 
Default Limb 

Size (DLS) 
Action 

Stretch Limb 

Size (SLS) 

Change = 

SLS/DLS 

Duck Amuck; 
Charles M. Jones; 
Feb 28, 1953 [16] 

Daffy Duck 
Arm: 1 unit 

Torso: 1 unit 
Legs: 0.67 unit 

Angrily 
Jumping 
Around 

Arm: 2 unit 
Torso: 2 unit 
Leg: 1.34 unit 

Arm: 2 

Torso: 2 

Leg: 2 

Fast and Furry-
ous; 

Charles M. Jones; 
Sep 17, 1949 [17] 

Wile E 
Cayote 

Arm: 1 unit 
Torso: 1 unit 
Legs: 1 unit 

Painting Wall 
Arm: 2.25 unit 
Torso: 1.75 unit 
Legs: 1.5 unit 

Arm: 2.25 

Torso: 1.75 

Leg: 1.5 

Tortoise Wins by 
A Hare; 

Robert Clampett; 
Feb 20, 1943 [18] 

Bugs 
Bunny 

Arms: 1 unit 
Torso: 1.4 unit 

Legs: 1 unit 

Complaining 
about 

Tortoise 

Arms: 2.4 unit 
Torso: 1.82 unit 
Legs: 1.6 unit 

Arm: 2.4 

Torso: 1.3 

Leg: 1.6 

The Great Piggy 
Bank Robbery; 

Robert Clampett; 
July 20, 1946 [19] 

Daffy Duck 
Arms: 1 unit 
Torso: 1 unit 
Legs: 0.5 unit 

Scared by 
Neon Noodle 

Arms: 2 unit 
Torso: 1.5 unit 

Legs: 2 unit 

Arm: 2 

Torso: 1.5 

Leg: 4 

Stop! Look! and 
Hasten!; 

Charles M. Jones; 
April 30, 1955 

[20] 

Wile E 
Cayote 

Arm: 1 unit 
Torso: 1.25 

unit 
Legs: 1 unit 

Pouncing to 
catch a fly 

Arms: 2 unit 
Torso: 1.4 unit 

Legs: 2 unit 

Arm: 2 

Torso: 1.12 

Legs: 2 

What’s Opera 
Doc?; 

Charles M. Jones; 
July 6, 1957 [21] 

Bugs 
Bunny 

Arms: 1 unit 
Torso: 1 unit 
Legs: 1 unit 

Dancing with 
Elmer 

Arms: 1.4 unit 
Torso: 1.4 unit 
Legs: 1.4 unit 

Arm: 1.4 

Torso: 1.4 

Leg: 1.4 

 

Table 1: Results of studying Looney Tunes episodes and how their characters were stretched 
to exaggerate their actions. A “Unit” is the size of the character’s arm, from shoulder to wrist, 
during rest pose. 
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After averaging Table 1’s Change value for each limb, we see the average change per 

unit is 2.008 for the arms, 1.512 for the torso, and 2.083 for the legs. Based on these results 

and from studying other episodes of Looney Tunes animation, four common traits were 

found. These traits have become key observations in the development of the Stretch-

Engine’s range of scale: 

 

1. When a character’s limbs are stretched for the exaggeration of an action, they become 

approximately twice their default size.  

2. Torso stretching seems to compliment the change in limb size rather than make up the 

entirety of the exaggeration. Resulting in a torso stretch less than or equal to the stretch 

of the limbs. 

3. Characters do not squash unless they are under the influence of another object, such as 

an anvil falling on top of a character or being hit with a heavy object. 

4. In extreme cases such as being pulled by a rocket, the character’s limbs stretch to 

approximately five times their default limb size. 

 

These observations determine that an appropriate range of scale for squash and stretch 

falls between zero, when a limb has become completely squashed, and five, in case of an 

extreme change in stretching. When set to a range of two for example, the limb reaches 

twice the default length at its most extreme position. The observations also show that 

different limbs scale differently based on the desired intensity of action, such as the case 

for the torso.  
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The range of scale found in this study is used to create the exaggerated path of motion. 

The exaggerated path is used to create the desired change in a limbs motion path and is the 

key controller in squash and stretch provided by the Stretch-Engine. 

 

4.3 Functionality of the Stretch-Engine 

4.3.1 Curve Development 

When first developing the curve creation function for the Stretch-Engine, the built-in 

function Create Editable Motion Trail within the Maya interface seemed to be the best 

solution in providing animators with a control and visual reference for motion. This 

function allows an animator to create a motion trail for the selected object and alter the 

objects position along this line. Each keyframe for the object is represented by spheres, or 

timing beads, along the curve. As the animator moves these beads in space, the curve and 

object update to match this new position.  

The animator can specify how much of the animation the trail affects by setting a range 

of frames or the entire timeline. The trail also contained an increment value that changes 

how the trail is drawn and how the position data is sampled. For example, if the increment 

is set to 1 every frame is sampled and given a point along the curve while keyframes in this 

timeline are given a bead, but if set to 5 every fifth frame would be sampled and placed 

along the curve but even if a keyframe does not fall along this line that keyframe is still 

given a sphere.  

Maya’s editable motion trail also contains a few extra features such as pre and post 

frames, always draw/draw when selected, trail thickness, key size and show frame 
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numbers. These features affect how the curve is drawn and how the animator views the 

editable motion trail. Setting a value for pre and post frames has the curve drawn that many 

frames before or after the current frame. This gives the curve an effect of being drawn and 

erased as the animation plays. The attributes “always draw” and “draw when selected” are 

the curves “Pinning” type.  

The term “Pinning” does not fully explain what function this feature has on the editable 

motion trail.  Maya defines this term as how the motion trail is drawn in the scene. Setting 

it to “always drawn” has the curve displayed even when its respective object is not selected, 

and “drawn when selected” displays the motion trail only when the respective object is 

selected. The last three attributes are cosmetic changes that affect the editable motion trail. 

The “Trail Thickness” attribute adjusts the drawn curve’s thickness while the “Key Size” 

attribute affects the size of the keyframe representations along the curve. The “Show Frame 

Number” attribute adds geometry to the trail to show keyframe numbers above the 

respective keyframe along the trail. 

These features give the animator a variety of ways to control Maya’s motion trail to 

match their specifications. The motion trail also smoothly updates the selected object’s 

position while providing a visual representation of the change in space. It seemed the most 

viable option for the Stretch-Engine, however after some tests it was found that the trails 

shape cannot be affected in any way other than moving the beads, providing two major 

problems.  

The first problem was that moving the beads directly affected the objects position. This 

made it difficult to provide a preview of the change in animation as the curve was 
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immediately affecting the position data. The second was that the curve could not be scaled, 

a feature that is an important part of the Stretch-Engine’s design concept. The exact change 

in the limbs motion path to create the required squash or stretch can be displayed by 

creating a secondary curve, a scaled version of the original curve. Based on these 

observations, the motion trail used in the Stretch-Engine was built from scratch and 

designed to satisfy a set of goals.  

 

These goals were created based on studying Maya’s editable motion trail, and 

incorporate some features found in the trail and ones that were missing: 

1. The motion trail created for the Stretch-Engine would need to accurately reflect the 

selected limb’s path of motion.  

2. The trail would need to be allowed to change shape without immediately repositioning 

the controller.  

3. The trail scales and changes the selected limb’s size based on the range of scale.  

4. Like Maya’s motion trail, the Stretch-Engine’s trail can be edited manually to provide 

another degree of control over the resulting animation. 

 

Based on these goals (providing an accurate visual reference, the ability to preview 

changes in animation, to change the selected limb length by the desired scale, and to give 

the animator manual control over the curve) the Stretch-Engine generates a three-

dimensional motion path with a structure that is based on the selected limb’s keyframed 

controller positions, its path of motion. This curve is called the Exaggerated Motion Path 
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and it gives an animator the ability to adjust exaggeration through squash and stretch by 

changing a limbs path of motion. 

 

4.3.2 The Exaggerated Path of Motion 

To give the animator a point of reference, another path is created called the original 

path of motion. This path has no effect on the animation other than visualizing the selected 

controllers keyed animation before changes are made. The exaggerated path of motion is 

created similarly to this original path, but the key difference is its ability to alter and scale 

the exaggerated path using controllers that are provided to the user. The first step in creating 

this curve is to find the keyframe data for the desired timeframe. This data is queried using 

the following function: 

 

This code queries the selected range of time using the startFrame and endFrame inputs 

and finds all keyframes within the range specified for the selected object, obj. This returns 

a set of frames where keyframes exist but the set is unordered. The set is then placed within 

a list and the list is sorted to return an ordered list of frames from earliest to latest. The 

order of these keyframes specifies the curve shape and in doing so sets the created curve’s 

origin point as the start keyframe’s data.  

An option is available to reverse the curve, this sets the order of frames from end to 

start in the case that the animator would like the curves origin point to begin from the final 

frame. This allows scaling to occur in the opposite direction of motion, which is useful for 
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actions where the limbs are being pulled away, such as the case when a Looney Tunes 

character is being dragged offscreen by a rocket or some form of outside force. 

To obtain the selected controller’s transformation values the code iterates through the 

sorted list for its entire length. It does this by moving through the frame of time specified 

by the start and end frames to each of the keyframes within the list, and the selected 

controller’s position is queried at the respective moments in the timeline. These position 

values make up the control points, these are points along the curve that make up the path 

of motion’s shape. The controller is then set to follow along this curve by using a locator. 

The controller is attached to the motion path by a locator that is keyed to each curve’s 

control point. This sets the locator to move in space along the curve as the timeline is 

adjusted. The controller follows this locator in space so that it too can move along the 

curve. This creates an animation based on the curve’s shape. Both the exaggerated path 

and the original path of motion consists of one of these locators and these locators both 

contain influences on the selected controller. The influence on each curve can be adjusted 

by the system, allowing the animator to view the new animation along the exaggerated 

curve while also being able to easily return to the original path of motion. 

The exaggerated path of motion is an interpolated version of the original path of motion 

and a scaled version that takes into consideration the range of scale set by the animator. 

This interpolation can be affected by easing, an effect that makes animations feel more 

natural through easing-in, slowly starting and accelerating, or easing out, quickly starting 

and decelerating. Easing provides a way for the animator to control the change between the 

original length and the new length from the exaggerated version. For more control over 
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this path of motion, the animator can set the motion path scales along the X, Y and Z axes 

of the exaggerated path. This is important in actions that only need to be stretched in one 

or two degrees of motion rather than apply a change in all degrees.  

The exaggerated path of motion also contains controllers or control spheres along each 

point within the curve. These control spheres allow the animator to change the curve’s 

shape and give the animator the ability to control the change in squash and stretch by 

manually pulling the curve control spheres in the direction they desire. This can be useful 

for making minor adjustments to the new path of motion or to reshape the curve if the old 

path of motion was undesirable. When the animator has created the motion path’s new 

shape they can then re-connect the controller to follow the new shape and can view the 

resulting animation. 

The exaggerated curve’s effect is a transition between the selected limb’s original 

length to the limb’s scaled length that takes place over the set time line, where at the starting 

frame the limb reflects the original path of motion and the end frame the limb reflects the 

exaggerated path of motion.  

 

4.3.3 Building Exaggeration 

The exaggerated path of motion works by having the final point create the desired 

change in size for the selected limb. This is achieved by having the distance between the 

controller and the base joint equal to the new length set by the scale. This position is 

somewhere between two points, the position of the limbs controller during the action and 

a new position of that controller when scaling the entire motion trail by the set scale. The 
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reason the point is between these two positions is because the position found when scaling 

the trail creates too long or too short of a change in size for the selected limb.  

 

To calculate the appropriate position the Stretch-Engine views the information it has as 

a triangle. This triangle is made up of three points; the base joint P0, the final position of 

the limbs controller along the original motion trail, P1, and the respective position along 

the fully scaled motion trail, P3. The length, L3, of the limb when at P3 is either larger or 

smaller than the required limb size, the scale S times the original length L1, if this scale is 

greater than or less than 1. There exists a motion trail scaled by an unknown value, S’, that 

has a final point P2 that creates the change in length L2 that equals S*L. This point is 

somewhere between the points P1 and P3 and along the line made by these points. Diagram 

1 shows the two separate cases based on the set scale S and the triangles created from the 

motion trails.  

Figure 15: The two cases for finding the position of P2. The left image is how a triangle is 
determined for a scale greater than 1 and the right is for a scale less than 1. 
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To calculate P2 the Stretch-Engine breaks these triangles down to the smaller triangle 

with P2 as one of the corners and L2 as one of the sides. It then uses the Law of Sine to 

find the coordinates of P2, however before we can use the Law of Sine all angles within 

the smaller triangle need to be identified. The angle B is the largest angle within either 

triangle and is the angle between vectors V0 and V1. Diagram 2 shows the breakdown of 

each triangle and how V0 and V1 change based on the scale. 

 

Once V0 and V1 are calculated, angle B is calculated using the dot product. After 

testing the code, it was found that calculating angle B using the smaller triangles P0-P2-P1 

when S > 1 and P0-P2-P3 when S < 1 provided the system with the correct position of P2. 

Through my research the best assessment of why this solution works is because in either 

Figure 16: The resulting triangles created from both scale cases. It displays the vectors V0 
and V1 as well as the magnitude for those vectors. 
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of these cases we can assure that L2 is between P1 and P3. If the triangle P0-P2-P1 was 

used when S < 1, the angle at P0 would be calculated as the largest angle and P2 would fall 

past P3, creating a much smaller length than L3. There may be a case were this solution 

fails however we have yet to find such a case, and for that reason this solution is used to 

calculate angle B. 

 

Diagram 3 shows how the Stretch-Engine uses the Law of Sine and the angle B to find 

the length between ether P1 and P2 or P3 and P2 based on scale S. This length is then used 

to find P2 by multiplying it by the normalized vector V1 to find the vector V2 of P1 or P3 

with P2. The coordinates of P2 can then be found by adding P1 or P3 to V2. 

Figure 17: The angles found within either triangle used to calculate P2. Includes a breakdown 
of the Law of Sine calculation for finding the side a between p and P2. 
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The scale S is equal to the difference between length OP3 and OP1, O is the shard 

origin point of each motion trail. The scale S’ that is needed to create the motion trail T2 

and ends with point P2 is then equal to the difference between length OP2 and OP1. Once 

S’ is found the Stretch-Engine creates a new version of the original motion trail scaled by 

the value. This new version is the exaggerated motion trail before interpolation with the 

original motion trail and the effects of ease-in and ease-out set by the animator, or the fully 

exaggerated version. 

 

4.3.4 Interpolation and Easing 

To create the gradual change from the original curve to the exaggerated curve the 

Stretch-Engine creates a linear scale. This scale is calculated using the points that make up 

the original motion trail by using the total length of the curve and the length of each point 

from the origin point along the curve. Diagram 4 shows an example of this concept and 

Figure 18: The Exaggerated Motion Path (blue curve) of the Right Arm. The controller 
path is scaled by 2 in all dimensions (X, Y, Z) with control spheres along each keyframe. 
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how the lengths of each point are collected. By dividing each of these lengths by the total 

length a range of ratios from 0 to 1 is created, this becomes the linear scale.  

 

This ratio decides how much influence the original curve and the fully exaggerated 

version have on each of these points. Applying ratios to their respective points along the 

original version and fully exaggerated version, then adding these results together results in 

the coordinates of the points that make up the final version of the exaggerated curve. Points 

that have ratios closer to 0 lean closer to the original positions, while points that have ratios 

closer to 1 lean more towards the fully exaggerated positions 

 

Before this addition takes place, the linear scale is run through a remap tool; the remap 

tool is a Maya function that uses an input range and reproduces results based on a different 

Figure 19: An example trail broken down to show the length between each point and the 
origin point. Along with how these lengths are calculated into a set of ratios from 0 to 1. 
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output range. It also contains a curve that represents how values within this range are 

remapped. The curve is set to a spline curve to represent the easing effect and create a more 

natural transition. For the purpose of the Stretch-Engine the input and output ranges are the 

same, 0-1. The curve is the feature of this tool that is manipulated to reassign ratio values 

to each point.  

Through the remap, the user can apply the easing effect to the final version of the 

exaggerated motion trail. By selecting ease-in or ease-out the Stretch-Engine places new 

points along the remap curve to change its shape resulting in a new range of ratios that 

represents the ease effect set by the user. Diagram 5 shows the difference between a linear 

scale curve, the spline curve and a curve with an ease-in and ease-out point. 

These new ratio values are applied when calculating the final version of the exaggerated 

curve. The result is a scaled version of the original motion trail that gradually changes until 

the final point along the trail equals to the position of the limbs controller that creates a 

change in length equal to the set scale. 

 

Figure 20: The differences in shape of the remap curve when using 
a linear curve, spline curve and an eased spline curve. 
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The exaggerated path of motion and the amount of easing applied to the path can be 

created using the Stretch-Engine interface. This interface also contains additional utilities 

to allow the animator to edit and control their animation. 

 

4.3.5 Exaggeration User Interface 

 

Figure 21: The Exaggeration Interface provided by the Stretch-Engine. Outlined are 
the 7 parts of the interface provide the animator with control over the motion trails. 
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The Exaggeration Interface is the main user interface for controlling the commands 

provided by the Stretch-Engine. It contains all the necessary controls to create the motion 

trails discussed in previous section that allow the animator to control changes in squash 

and stretch. The interface can be broken down into seven sections that are individually 

outlined in Figure. The next few paragraphs discuss each of these sections individually. 

Section 1 consists of three buttons related to the Stretch-Engine rig. The first button 

generates the locators that represent the position and rotation coordinates of the rigs joint 

structure. The second button generates the joint structure and builds the respective IKs and 

controls that make up the rig. The final button provides the animator with a quick and 

efficient way to reset all the rigs controls to their default position. 

Section 2 consists of a limb diagram for selecting the limbs respective controller within 

the Stretch-Engine rig. While providing an easy way to select controllers it also notifies 

the Stretch-Engine of the limb controller that the curves are applied to. The functions for 

the limb diagram are the selectBody() and deselectBody() functions. These functions select 

or deselect an image while identifying the limb controller that reflects the selected image. 

This section also contains two buttons, the first is used to finalizing the resulting animation 

based on the generated motion trails and the second deletes these trails, returning the 

animation to its unedited state. The finalizeNewMotion() function is run when pressing the 

“Apply New Motion” button. This function iterates through the timeframe selected and re-

key the position of the selected controller based on the motion path it is following. The 

deleteAnimCurve() function is run when pressing the “Delete Motion Trails” button. This 

function deletes the curves generated within the Maya interface along with their locators 
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removing their influence of the selected controller and resets that controller to its original 

positions. 

Section 3 is where the animator selects the frame range they wish to adjust. It contains 

a button that runs the script for creating the original motion path for this selected time range 

and for some extra customization there is a slider for setting the curve color. The start frame 

and end frame inputs are saved to global variables that are used in each function when 

generating curves. For the original motion path, when pressing the “Create Motion Trail” 

button the createAnimCurve() function is run. createAnimCurve() is a custom function 

developed for the Stretch-Engine. The function iterates through the timeframe and uses the 

sorting function highlighted in the Exaggerated Path of Motion section to find all times 

that contain a keyframe for the selected controller. For each of these keyframes it saves the 

position data of this controller and constructs a curve with control points based on these 

position values. The curve generated follows the original path of motion created by the 

animator and is the color of the color slider. 

Section 4 contains the controls for generating the exaggerated path of motion. Here the 

user can select the axes they desire for the scale and the curve using check-box inputs. The 

user can also set the scale to be applied to the curve using a slider. This slider reflects the 

range of scale found in the cartoon observations and can be scaled by a value of 0 to 5, or 

0% to 500% of the limb’s length. Setting the curve axis and scale value are required settings 

to generate the exaggerated curve. The createExagCurve() function is run when pressing 

the “Create Exaggerated Trail” button. Similar to the createAnimCurve() this function uses 

the timeframe set by the animator but instead of iterate through the controllers keyframes 
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it duplicates the original path of motion and identifies the control vertices, CVs, within the 

curve. CVs are the points in space that make up the shape of the three-dimension curve. In 

the case of the Stretch-Engine, CVs reflect the position data of the selected controller. By 

moving these CVs, the animator can manipulate the shape of the curve. To give the 

animator this ability the function also builds controllers that are able to move the CVs of 

the editable path. 

Section 5 contains the optional controls for exaggerated path of motion. This is where 

the animator can apply the effects of easing to the shape of the generated curve. Normally 

easing is represented by a visual representation such as the curve diagram previously used, 

however there were complications when trying to create such a controller. In this section 

numeric values represent the position along the spline curve within the remap. The curve 

is a 2-dimensional curve and for the explanation of the position values of the ease-in and 

ease-out points are expressed in terms of the X and Y dimensions. Figure 17 shows a 

version of section 7 with both ease-in and ease-out turned on. 

Figure 22: Section 7 of the interface with both ease-in and ease-out selected. The 
sliders determine the position of the point along the remap curve. 
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When checking either the ease-in or ease-out boxes a point is created along the remap 

curve. The percent of ease is the selected points position along the X-axis while the value 

of ease is the points position along the Y-axis. Percent states how long the selected ease is 

present along the curve. The larger the percent the further along the X-axis the point is. For 

ease-in the higher the percent the further to the right the point is while ease-out is further 

left. Value states how much ease affects the curve. The larger the value the higher the 

selected ease is along the curve. Ease-in starts lower on the curve as it slows down the 

change from the original trail to the exaggerated trail, while ease-out begins higher on the 

curve. To match their effects on the curve, ease-in has a minimum value of 0 and a 

maximum value of 0.5 while ease-out has a minimum value of 0.5 and a maximum value 

Figure 23: The Remap Tool within the Maya interface displaying the remap 
curve. The values to the left are the ones set by the animator for the ease-in point. 
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of 1.0. Figure 19 shows the effect on the remap curve of a change in percent and a change 

in value for the ease-in point. When the exaggerated curve is created it runs the setEase() 

function that reads in the ease-in and ease-out fields then restructures the remap curve based 

on the inputted values. 

 

When the animator manipulates the shape of the exaggerated curve manually the 

locator needs to be updated to match the new CV positions to have the controller follow 

along the new curve. By pressing the “Connect to Exaggerated Trail” button the custom 

function, connectExagCurve(), identifies the new CVs of the exaggerated curve and 

repositions the locator. The locator is then set to follow the orientation of the newly shaped 

path resulting in the controller following along the new path.  

Section 6 allows the animator to adjust the influences between the original path of 

motion and the exaggerated path using a slider. The custom function, setCurveBlend(), is 

run when the “Change Blend Amount” button is pressed. This function reads in the value 

set by the trail blend slider and adjusts influences accordingly. By setting the influence to 

1 the animator can view a fifty percent split between each curve. Setting the influence to 0 

shows the animation along the original path of motion while setting the influence to 2 

shows the animation along the exaggerated path of motion. 

Figure 24: The effect of changing the ease-in points position along the remap curve. The first 
shows a change in percent while the second shows a change in value. 
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Section 7 of the exaggeration interface is the graph editor. The graph editor is a 

graphical representation of the animated attributes within a scene. This allows the animator 

to adjust the animation curves and the keyframes of their animation. The graph editor 

within the Stretch-Engine is the same as Maya’s built in graph editor. To connect the graph 

editor to the Exaggeration Interface the MEL functions getPanel() and scriptedPanel() are 

used. A scripted panel is one that is predefined in the Maya interface and contains pre-

made tools and menus within the panel. The getPanel() function identifies the type of 

scripted panel needed, in this case the type is graphEditor, and returns a list of panels with 

that type. For Maya’s graph editor, it is the first object within the list returned by 

getPanel(). The scriptedPanel() function is then able to use the panel found and can set it 

to fit within the Exaggeration Interfaces window. Connecting the graph editor to the 

interface allows the animator to have all the necessary controls in one location to assist in 

ease of use when creating squash and stretch. An added feature of the graph editor is that 

the animator can also adjust the timing of their animation to speed up or slow down the 

desired animation. 

 

4.4 Roadblocks and Solutions 

While developing the Stretch-Engine there were numerous roadblocks that took time 

to solve. These problems ranged from building a suitable rig system to strange shapes of 

the resulting motion paths. This section discusses those roadblocks and the solutions 

created to ensure a functioning tool. 
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The first roadblock was encountered when developing an appropriate way to stretch 

the limb structures. When first attempting stretching, there was only one set of joints for 

each limb segment. As the controller moved in space this initial joint structure would 

attempt to stretch and match the controller’s position. However, this caused an internal 

calculation issue with the limbs IK system. As a result, Maya would flood the user with 

warnings and the joints would fail to stretch properly.  

To solve this problem, a secondary joint system was created and this joint structure 

would scale to match the controller. The scaled joint structure would then follow the IK 

joint structure to properly move the geometry of the selected limb. By creating two joint 

structures, the IK system would be able to perform its calculations without issue and the 

second joint structure could scale correctly. 

The second roadblock was identifying the keyframes of a selected controller for the 

timeframe set by the animator. At first, the MEL command keyframe() was used to retrieve 

the position data of the controller. The keyframe command is able to tell the user how many 

keyframes exist within a section of time specified. It is also able to tell a user which 

attribute has been keyed during that time frame. However, this function alone was not 

enough to find the controller’s position data. 

The online community at stackoverflow.com assisted in identifying the need to list and 

sort the data returned by the keyframe() function for the specified timeframe. The solution 

to this roadblock is the section of code displayed in the “Paths of Motion” section of this 

paper. This section of code returns a sorted list of keyframes, from the set start to the end 

frames, that can later be used to query the position information of the selected controller. 
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The final roadblock was a strange path of motion that would not follow the torso or 

neck controller in 3D space. As detailed in earlier sections, a path of motion is made up of 

CVs that are based on the selected controllers’ positions in space. Initially this was done 

by finding the “world space” position of the selected controller and using this data to draw 

the new curve. The exaggerated curves would then return the position in “local space” for 

the selected controller.  

World space is the coordinate system for the entire scene. Its origin is at the center of 

the scene and each position is relative to this point. Local space is the coordinate system 

from the point of view of an object, meaning the origin point is the object’s pivot point. 

This worked for all controllers except for the torso and neck controller. At first it seemed 

the problem was because of their positions in the rig structure. They were under the 

influence of the center of mass controller, causing them to move in space as the center of 

mass controller moved in space. However, it was due to the controllers’ transformations 

being frozen.  

Freezing an object’s transformations resets all of its transformation data to zero and 

sets the object’s world space position as its current pivot location in the scene. To fix this 

problem, a temporary locator would be created that follows the controller during the 

creation of the original motion path. A locator’s transformations are always relative to 

world space positions and cannot be frozen. This creates an accurate set of position data 

during the required timeframe. The position data would then be taken from the locator, 

creating the proper motion path for the selected controller. 
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5. EVALUATIONS AND RESULTS 

The evaluations of this method are conducted by comparing animations based on 

realistic actions with edited and exaggerated versions. The exaggerated versions are created 

using the developed prototype tool, the Stretch-Engine. This method aims to improve 

animator control over the changes in squash and stretch and display that change through 

motion paths while providing a flexible, user-friendly tool. This section discusses the 

development of three example animations and how the tool is used to create their 

exaggerated versions. Each animation is designed to match a physically realistic action 

from live action videos with the intent of exaggerating a section of the action to create a 

similar effect to Looney Tunes animations. Videos of the tests and their results can be 

found at http://www.zaidhibrahim.com/stretch-engine. 

 

5.1 Exaggeration of a Single Limb Action 

The first test focuses on one part of the body, an arm, to show that the tool can handle 

a simple change in the limb length. The character is performing a one-two punch 

combination in this test. The animation is based on a live action video of a professional 

boxer, Amir Imam, knocking out his opponent, Fernando Angulo [27]. In the created 

animation, there is only one character performing the punch action. For Test 1, the left arm 

is stretched to exaggerate the punch.  

The animation consists of the character bouncing in place on the balls of its feet; The 

character’s hands are close to its chest, providing cover. Halfway through the animation, 

the character throws a straight punch with the left hand then a right hook. Both punches 
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are aimed towards the opponent's head. In Test 1 only the straight punch is exaggerated to 

change the intensity.  

When first creating the exaggerated action, the section containing the straight punch 

has a scale value of 2, or a 200% change in limb length. During Test 1, the Stretch-Engine 

is able to generate the original path of motion and the exaggerated path of motion quickly, 

and the changes applied can be seen clearly. No changes are made to the shape of the 

exaggerated path and the easing feature is turned off. The result of this simplified 

exaggerated path of motion is a more intense punch with a change in limb length equal to 

twice the original length during the final position of the punch.  

When the arm is scaled, all dimensions of motion during this action also scale gradually 

as the arm moves closer to the final position. Because of this, the characters lead up to the 

final position is also scaled. This scaling is most obvious in the Y dimensions of the 

controller’s position. If the desired action has a lead up similar to the original action but 

ended in a stretched position, the exaggerated curve needs to avoid scaling the Y 

dimension. The animator is able to do this through the Exaggeration Interface and can turn 

off any axis to remove stretching in the specified dimension. 

The lead up also changes because the stretch switch is turned on during the exaggerated 

action. When activated the amount of stretch is based on the ratio values calculated when 

building the exaggerated path. This prevents the arm from immediately squashing or 

stretching during the beginning part of the animation as the ratio is closer to 0; this allows 

it to gradually transition to a full stretch as the arm completes its action and the ratio turns 

to 1. To achieve the desired effect, the animator can change the deformation ratio caused 
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by the stretch switch through Maya’s graph editor. By selecting the attribute “Stretch 

Switch” within the graph editor, the animator can see the keyframes that the attribute 

affects and what value it has at that keyframe.  

Although the change in scale applied during the Simple Approach increases the 

intensity of the punch, a 200% change in limb length does not create a change in length 

similar to the example animation from Looney Tunes. The example from Looney Tunes is 

the punch from Daffy Duck in “To Duck or Not to Duck” as it makes contact with Elmer 

Fudd. The deformation of Daffy Duck’s arm is larger than two times the arms’ original 

length, based upon methods of measurement described in the previous section. By 

increasing the scale applied to the arm, the test animation can create a better match to the 

Looney Tunes example. Based on this and the difference in lead up, a refined animation 

test is done that applies the change in scale while excluding the animation’s Y dimension. 

For this Refined Approach, redrawing the exaggerated path of motion without scaling 

the Y dimension allows the lead up to remain the same while continuing to smoothly lead 

into the stretch. The created stretch increases the intensity of the punch similar to the simple 

test but now the stretch does not affect the rest of the animation as strongly as before. The 

intensity of the action increases even more when using a scale value of 3, or 300% change 

in limb length. By combining these two features, a new exaggerated path can be created 

that achieves the larger intensity while keeping the lead up similar to the original animation. 

Both the original and the exaggerated path of motion reflect the differences in positions of 

the left arm, and the animator may freely compare the difference between the two.  
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Each approach, simple and refined, is timed to see how long it takes to either create the 

exaggerated path or to edit and adjust it. The steps for creating the exaggeration in both 

approaches include selecting the limb to scale, finding the appropriate time range, and 

creating the exaggerated path of motion. For Test 1 both approaches take approximately 

one minute, with the assumption that the animator understands how the Stretch-Engine 

works. If we exclude the knowledge of scaling the refined path by 300%, the refined 

approach takes a minute and a half to complete while the animator tests different scales. 

In the case of Test 1 the animated action is quite simple, however factors play in based 

on animators’ preference that can make adjusting it more complicated. In terms of this 

animation, scaling the original path by 200% in all dimensions does not create the desired 

effect. The Stretch-Engine is able to control how the stretch affected the dimensions of the 

animation by containing inputs that allow the animator to set which dimensions are scaled. 

The Stretch-Engine is also able to rebuild the exaggerated path of motion quickly, allowing 

testing of different scales to find a scale that created the desired intensity. It also provides 

another point of control through the graph editor by displaying the degree of squash and 

stretch along the animation through the stretch switch. 

Daffy Duck’s punch in “To Duck or Not to Duck” is used to compare the exaggeration 

of the straight punch. The change in scale of Daffy Duck’s arm as it hits Elmer Fudd is 

meant to increase its intensity, creating the effect of a much stronger punch. By increasing 

the scale of the dummy arm in Test 1 we create a similar change in intensity. Also, the 

change in deformation of the dummy arm is similar to the deformation in Daffy Ducks arm, 
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increasing the length without changing the thickness of the limb. Based on these results, 

Test 1 of the Stretch-Engine achieves the intended goal of the method. 

 

5.2 Exaggeration of a Pair of Limbs Actions 

The second test focuses on both arms of the character to show that the tool can handle 

changes to a pair of limbs. In this test, the character is swinging a baseball bat as if to hit 

an incoming pitch. The animation is based on a live action video of home runs and uses the 

swing stylized by professional baseball player Jose Bautista [28]. In the created animation, 

the character is holding an object of approximate size to a baseball bat and swings as if 

hitting a ball. During this test both arms are stretched to exaggerate the swing. 

Figure 25: Simple (top) and Refined (middle) test results at the point of impact 
compared to the example sketch of Daffy Duck (bottom). Sketch based on the episode 
“To Duck or Not to Duck” released March 6, 1943; Directed by Charles M. Jones. 
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In the reference animation, the character shifts its weight while waiting for the pitch. 

The character then pulls the bat back and swings as if to hit a ball. After the hit, it looks at 

where the ball travels while the arms start to relax. To create an exaggerated animation, 

both arms need to be scaled to emphasize the bat swing. The bat is animated using a 

constraint that allows it to follow both of the arms’ controllers. This constraint is influenced 

by both arm controllers for the beginning of the animation, but changes influence to only 

follow the left arm once the hit occurs. This allows the bat’s position to update 

automatically and still follow the arm controllers once the stretch is applied. Although the 

bat follows along, the limbs need to be holding the bat during the exaggerated action. 

Similar to Test 1, a simplified approach is used that only scales the limbs and a refined 

approach that makes additional adjustments; both approaches use a scale value of 2, a 200% 

change in limb length. 

Like the simple approach in Test 1 the arms are stretched by a scale value between 0% 

and 500%, in this case 200%. The difference in Test 2 is that two limbs are now scaled and 

these limbs are affecting another object. We first create an exaggerated motion path for 

each arm and give each motion path a different color to differentiate the curves. The 

Stretch-Engine is able to generate both of these paths quickly and efficiently. The result is 

a more exaggerated swing in which there is a change in each arm’s length equal to twice 

that limbs length.  

Once the motion paths are created for the simple approach, there is some separation 

between the hands during the final parts of the motion. This separation is due to the change 

in scale; as the dimensions are scaled the distance between both hands is also scaled. The 
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separation can be adjusted in two ways: by scaling the left arm by a percent other than 200 

or by using the control spheres to manually adjust the shape of the motion path. Changing 

the scale requires a few tests to see which scale best fits and can still result in a curve that 

creates separation, just less than the initial scale. The alternative method of using the 

control spheres requires fewer iterations, as the animator can see what the new curve shape 

looks like. They also only need to adjust the keyframes where the separation occurs rather 

than the entire motion path.  

Another concern to address is if the animator likes the scale of the new motion path but 

feels as if the stretch begins too soon. They can remove a dimension in scaling so less of 

the curve is affected, but that also affects the final position. In this case they can use the 

easing feature within the Stretch-Engine. This allows the animator to set a percent of ease 

that changes the path to either reflect the shape of the original path for a longer period or 

transition into the exaggerated path more quickly. This causes a more sudden change in 

squash and stretch compared to the gradual change from start frame to end frame. 

In the refined approach, the easing feature is used to create a more sudden effect for 

this change in exaggeration. By setting an ease-in of 60% the animation has the swing 

follow the original path for the majority of the selected time frame, and then applies the 

stretch during the last few frames. The effect is a more sudden change in limb length at the 

apex of the swing. This effect is applied to both arms to keep a consistent transition between 

the pair of limbs. Once these changes are made, we use the right-hand exaggerated path as 

a reference for manually adjusting the left-hand motion path. After manipulating the left-
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hand path, both arms hold the bat throughout the animation as it changes to a stretched 

position before hitting the ball. 

Similar to Test 1, each approach in Test 2 is timed to see how long they take. The steps 

for creating the exaggeration in both approaches include selecting the limb to scale, finding 

the appropriate time range, and creating the exaggerated path of motion. However, the steps 

are repeated based on the number of limbs. The refined test also includes additional steps 

for easing the paths and adjusting the left-hand path manually. For Test 2, the simple 

approach takes two minutes to complete due to the addition of a second motion path and 

the steps being repeated to create it. The refined approach takes three and a half minutes to 

complete. The reason for this increase in time is due to the additional work of manually 

adjusting the motion path and testing which easing values create the desired effect.  

In the simple approach the exaggerated path has proven useful in creating quick and 

accurate changings in scale. The Stretch-Engine is also able to create paths for the pair of 

limbs to edit animation simultaneously. In the refined approach we see how the easing 

feature can be used to control the change in squash and stretch to either slow down or speed 

up the change in limb length. In this case we used the ease-in feature to slow down the 

initial transition, speeding up the change in stretch during the final moments of the swing 

to create a more sudden action.  

The simple approach also demonstrates that in cases where the limbs are holding an 

object, differences in position can cause separation between the limbs when they are scaled. 

However, in the refined approach we saw the flexibility of the exaggerated motion path as 

the separation is fixed using the control spheres that are generated along the path. By using 
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the manual controls, the animator can manipulate either limbs’ exaggerated path to create 

the appropriate shape for their desired action. This new shape can be made to match the 

second limbs movement or any other movement based on the animator’s design. 

When comparing the exaggeration of the swing we use a clip of Sylvester the Cat 

swinging an axe in “Hop, Look Listen.” In this clip Sylvester chases Hippety Hopper and 

tries to hit him. When Sylvester reaches for Hippety or when pulling back to strike his arm 

stretches. When the animations are compared, the dummy arms stretch in a similar manner 

to Sylvester’s in terms of length. Also, the bat swing with easing reflects the timing of 

stretch to Sylvester’s, as his arm does not stretch throughout the swing but near the end. 

After reviewing the footage, it can be said that the reason for the change in Sylvester’s arm 

length is the same as the bat test, to increase the intensity of the swing. Based on these 

results, Test 2 of the Stretch-Engine achieves the intended goal of the method. 

 

 

 

 

 

 

 

 



 

63 
 

 

5.3 Exaggeration of a Full Body Action 

The third test contains a full body action in which the tool focuses on stretching 

multiple limbs of the body as well as the torso. In this animation test, the character is 

performing a free running action where it dives over a small ledge, catches itself on the 

next ledge, and uses its momentum to launch forward and land onto a final platform. The 

animation is based on a segment of a larger, live action compilation video showing different 

styles of parkour actions [29]. In the created animation, the character is running over 

Figure 26: Simple (top) and Refined (middle) results at the apex of the swing compared 
to the example sketch of Sylvester the Cat (bottom). Sketch based on the episode “Hop, 
Look and Listen” released April 17, 1948; Directed by Robert McKimson. 
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geometric shapes to represent the ledges and platforms in the real video. To create 

exaggeration in this animation, the arms and legs are stretched during the first leap while 

the entire body is stretched during the landing. 

The simple approach for Test 3 consists of scaling the limbs during the leap and landing 

by a scale value of 2, a 200% change in limb length. For the initial leap the arms and legs 

are stretched. As the character approaches the first ledge, it jumps forward and catches 

itself on the second ledge. As the character travels between the ledges, it leads its 

movement with its hands while keeping the rest of the body straight. The legs follow the 

arc of the body during the jump and then come towards the center of the body as the 

character catches themselves. For this sequence, an exaggerated motion path is created for 

each of the characters limbs. 

The exaggerated motion path creates squash and stretch by scaling outward from the 

curve’s pivot point. This point is the first keyframe position of the limb found during the 

range of time set by the animator. This means the curve scales from the starting keyframe. 

For example, when scaling with the start frame as the pivot, the curve grows outward from 

the start and the new end position is further past the position at the original end keyframe, 

creating the change in length. Scaling out from the start frame works well for actions that 

stretch with the direction of motion. However, if a limb needs to scale opposite the direction 

of motion then scaling out from the start frame may not create the desired effect. 

For the leap section of the animation the legs require a stretch opposite the direction of 

motion. This type of stretching appears as if the legs are lagging behind the center of mass 

of the body. To create this effect, the path of motion needs to be stretched from the end 
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frame towards the start frame. The animator can do this by checking the “Set Pivot to End 

Frame” box. This reverses the order of the list of keyframes from the selected time line, 

generating the motion paths with the last frame as the origin point. The result is an original 

and exaggerated path of motion with the pivot at the end frame and, for this test, a change 

in scale for the legs of the character away from the body.  

With this in mind, the steps for the legs begin by identifying the time range for both 

legs, identifying the direction of stretch, reversing the pivot point of their exaggerated 

paths, and creating the exaggerated path for each leg. The paths are assigned different 

colors to identify the limbs to which they are connected. Before finalizing the leg 

animation, we move to the arms and repeat the previous steps. Once each limb has been 

exaggerated they are finalized to update their animation. We then move to the landing and 

follow the same steps as in the leap, but now include the spine and the neck. The spine and 

neck are stretched by a scale of 200% and, once each exaggerated path has been completed 

we finalize the animation. 

A scale of 200% increases the exaggeration for both the leap and the landing, however, 

such a change in scale is too large for the length of distance the character travels. A smaller 

scale fits more closely, as the limbs are able to stretch but not so far beyond the area the 

character travels. For example, during the leap the legs should stretch backwards, but no 

further than where the character starts its jump. As for the arms they should stretch up to 

the second ledge and not past it. 

During the landing the arms, legs, torso, and neck stretch as the character moves 

towards the lower ledge. In this case, the amount of scaling is also determined by the area 
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of space available for the character to stretch. The stretch should be contained within the 

area from the second ledge and end once the character makes contact with the lower ledge. 

The stretched limb should also follow a path that creates a smooth transition with the non-

stretched animation. The shape of the torso should also follow this rule. The middle and 

bottom torso controllers should be repositioned to better fit the new shape of the spine. 

Although the Stretch-Engine is able to create curves for all parts of the body and edit 

them simultaneously, creating these curves for all limbs of the body at one time obstructs 

too much of the scene. The scene becomes clustered once the number of paths generated 

goes beyond three sets. For this reason, it is suggested to use two or three sets of paths to 

keep the Maya window clean and allow the best environment for editing exaggeration. 

These observations, scaling within a confined space and minimizing trails, were 

considered before creating the refined approach. Since a scale of 200% is too large for the 

area, a scale value of 1.5, or 150% change in limb length, is used. This scale created a 

stretch that fits better within the scene while still creating exaggeration. It also contained a 

smoother transition between the exaggerated poses and the normal animation. When 

creating these poses, pairs of limbs were adjusted rather than exaggerating the entire body 

at one time. This allowed for a clearer observation of the changes to the body. Small edits 

were also made to the spine, the middle and bottom controllers, to better match the new 

shape of the torso. These adjustments allowed for smoother motion that better incorporated 

exaggeration that matched the character’s environment. 

In terms of time, Test 3 takes significantly longer to complete than Test 1 and 2. This 

is due to the additional exaggeration for the landing. When comparing the leap and landing 



 

67 
 

as separate animation tests, they take about the same time to complete as Test 2. The simple 

test of the leap takes two and a half minutes while the simple test of the landing takes three 

and a half minutes. The refined test for the leap takes around two and a half minutes as well 

but can be completed faster if all motion paths were generated at the same time. The refined 

test for the landing takes four and a half minutes to complete with the additional work 

required to adjust the torso controllers and edit limbs in sets. 

Examples of Wile E. Coyote are used to compare the leap and landing to Looney Tunes 

animation. For the leap we use an action from the episode “Beep Beep.” In this clip Wile 

is chasing the Road Runner and leaps to grab him. Wile stretches towards the Road Runner 

but misses as he zooms off screen. When the animations are compared, the dummy arms 

reach toward the second ledge in a similar manner to Wile and the dummy’s leg stretch 

emphasizes the action. For the landing we use a scene from “Rushing Roulette.” In this 

scene, Wile is using spring shoes to increase his speed but almost falls off a cliff. The Road 

Runner sneaks up and scares Wile as he looks over the edge, and in response he jumps off. 

As Wile falls off screen his entire body stretches, including his neck and torso. When 

comparing the animations, the dummy landing creates a similar change in length as it 

approaches the final platform. Both actions, the leap and landing, stretch to emphasize the 

actions like the scenes from these episodes. Based on these results Test 3 of the Stretch-

Engine achieves the intended goal of the method. 
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Figure 27: Simple (top) and Refined (middle) results of the leap compared to the example sketch 
of Wile E. Cayote (bottom). Sketch based on the episode “Beep, Beep” released May 24, 1952; 
Directed by Charles M. Jones. 

Figure 28: Simple (left) and Refined (right) results of the landing compared to the example sketch of Wile 
E. Cayote (middle). Sketch based on the episode “Rushing Roulette” released July 31, 1965; Directed by 
Robert McKimson. 
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In each of these animation tests, the Stretch-Engine is able to create exaggeration by 

effectively controlling changes in squash and stretch. The animator is able to create 

stretching in all limbs of the body while having control on when the stretching starts and 

ends. The animator can quickly create exaggeration using the exaggerated path and can 

also make adjustments easily and manually using the curve controllers. The Stretch-Engine 

tools and functions, such as the easing feature, provide it with an addition level of control 

to better refine these animations. It can also quickly and effectively produce these paths of 

motion and can handle single, pairs, or multiple limb adjustments. Through these tests the 

Stretch-Engine demonstrates the effectiveness of exaggerating motion by squash and 

stretching limbs through altering paths of motion. The tests also show that an animator can 

use the Stretch-Engine to create exaggerated motion based on their artistic design. 
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6. CONCLUSIONS3

To summarize, exaggeration is an important part in creating stylized animation. It 

requires knowledge of the principles of animation, particularly squash and stretch, to 

achieve a desired result. When creating animations, stylized or realistic, there are a variety 

of tools that exist to assist animators in their work. Some use physical realistic calculations 

to simulate animation and others use non-realistic calculations to exaggerate animation by 

including squash and stretch. Although the tools included in these methods were effective, 

they lacked certain features that could benefit animators. The physically realistic methods 

did not have the flexibility to create deformations in a character and when they did create 

deformations it was only with simple geometry. The non-realistic methods lacked the 

flexibility to be used within an animator’s workflow; they instead overwrote the entire 

animation to create their exaggerated results. 

In conclusion, this paper details a new method to address these issues and assist 

animators in the creation of exaggerated motion. This method is demonstrated using a 

prototype software tool called the Stretch-Engine that contains the flexibility to work 

within an animator’s workflow and deform bipedal characters. The prototype focuses on 

creating exaggeration by giving the artist control over the changes in squash and stretch to 

scale a character’s geometry. The method goals aim towards helping newer artists 

understand how squash and stretch effects exaggeration. However, it can also be used by 

more experienced artists, as the prototype was designed to fit within the animator’s 

3 Parts of this section are reprinted with permission from “ The stretch-engine: a method for adjusting the 
exaggeration of bipedal characters through squash and stretch” by Zaid H Ibrahim, 2017. In Proceedings of 
the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17), Stephen N. Spencer 
(Ed.). ACM, New York, NY, USA, Article 30, 2 pages. DOI: https://doi.org/10.1145/3099564.3106639
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curves. The Stretch-Engine is written using Python and MEL commands and built within 

the Maya interface, giving it the capability to be used in an animation process. 

The generated 3D curves act as references and controls for the changes in squash and 

stretch. They reflect the selected limb’s current movements to display its path of motion. 

To create exaggeration this motion path can be scaled, resulting in a scaled change in the 

selected limbs length, to either squash or stretch the geometry. The scales available are 

based on a range of scales found by studying the animation style of Looney Tunes 

animations. This exaggerated motion path also contains controls for manually adjusting the 

shape of the motion path. By using this exaggerated motion path, the animator can control 

the degree of squash and stretch they wish to apply to their animation. 

Using this exaggerated motion path and other tools within the Stretch-Engine, such as 

an easing function to slow or speed up changes in scale, animators are able to develop 

stylized exaggerated motion by deforming the limbs of a bipedal character. When tested, 

the Stretch-Engine created well-defined exaggerations for animations based on realistic 

actions and these new versions show similar deformations to examples from Looney Tunes 

animation. These results show that this method is capable of creating exaggerated versions 

of motion quickly and efficiently while working with the animator, achieving its goal. 

6.1 Future Work 

The Stretch-Engine can be a functional basis for future work and improvements 

because it is written in Python. Python code is flexible and is primarily used when 

customizing plugins. This flexibility gives the Stretch-Engine the ability to be edited to 

workflow. The changes in squash and stretch are made through the use of generated 3D 
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work within animation tools other than Maya, such as Autodesk’s 3ds Max and Maxon’s 

Cinema4D. There are also multiple extensions, such as a range of style or additional rigs, 

that can be added to this method in the future to improve exaggeration through changes in 

squash and stretch. 

The Stretch-Engine’s range of scale is based on Looney Tunes animation but Looney 

Tunes is just one of numerous animation styles. By expanding the styles of animation 

supported by the tool, the animator can benefit from a variety of resources. A “Style 

Selector” could be created to change the range of scale that the scaled curves are based 

upon. This slider could include multiple styles of animation, such as art by Tex Avery, 

Disney Animation and Hayao Miyazaki. When the desired style is selected it adjusts the 

scale slider to match the minimum and maximum squash and stretch for the new style. 

Currently the Stretch-Engine is limited to bipedal characters, but animation contains a 

variety of interesting characters with multiple limbs. Creating additional rigs for different 

creatures, such as quadrupeds and insects, for animation can expand the Stretch-Engine’s 

functionality. These rigs could be included within the Stretch-Engine interface and 

selection of a specific rig would change the tool’s limb diagram. This would broaden the 

range of characters an animator may use instead of limiting the tool to bipedal characters. 

The Stretch-Engine provides multiple curves to assist animators in controlling squash 

and stretch. However, it does not contain the ability to evaluate the animation based on the 
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camera angle. The perceived intensity of stretch is dependent on the line of action relative 

to the camera’s view. For example, a punch that is stretched and viewed from the side 

seems more intense than a punch viewed directly in front. This is because in a side view, 

the camera is highlighting the line of action of the punch. A function could be created to 

take into account the effect that camera angles have on the resulting animation. This could 

then develop the best exaggeration curve for the required action based on this camera angle. 

The easing function within the Stretch-Engine is currently represented numerically. 

However, this feature in animation is better represented visually through the use of curves 

or diagrams. To better highlight this feature a visual representation that can be altered by 

the animator would better serve in expressing this features functionality. This visual feature 

would also be easier to understand at first glance compared to testing and viewing the 

results of the numeric equivalent. 
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APPENDIX A 

Python and MEL Scripting 

The Python language allows for a flexible coding basis for the Stretch-Engine scripts 

while MEL provides access to the base commands within Maya. Below are definitions of 

the functions created using Python and the MEL commands that were used. The definitions 

for the Python functions are based on their purpose while the MEL definitions are from the 

MEL command reference in the Autodesk Knowledge Network. 

(http://help.autodesk.com/cloudhelp/2017/ENU/Maya-Tech-Docs/Commands/) 

 

Python Functions Created 

The follow functions are those written for the functionality of the Stretch-Engine. They 

are listed in the order that they appear starting with the Stretch-Engine Rig script and then 

the Exaggeration Interface script. 

 

• distanceCalc() – This function takes two points and calculates their distance in 3D 

space. It returns a value equal to this distance. 

• generateLocs() – This function generates the locators that are used to build the rigs joint 

structure. Locators are named to match the joints they create and are placed in space 

along the Dummy model used in the tests. 

• buildRig() – This function is used to create the Stretch-Engine rig. It first builds the 

rigs joint structure, then creates IK constraints along with the stretch functionality, and 

lastly adds the controllers to the rig structure. 
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• controlShapes() – The first function within buildRig(), when called it builds a curve 

based on a predetermined shape. Inputs are pointCircle, feet, hands, crescent, circle, 

spiral box, box, fourArrows, and lollipop. 

• setDKeys() – The second function within buildRig(), it is used to enhance Maya’s 

setDrivenKeyframe() command. It allows the user to place a maximum and minimum 

value for the connected attributes, creating a range.  

• hideLockAtt() – the third function within buildRig(), it takes an object and an attribute 

(translate, rotate, scale) and locks and hides the x, y and z values. 

• resetRig() – This function resets all of the rig controllers to their default attribute values. 

This places the rig into its default pose. 

• createAnimCurve() – This function creates an animation curve within the scene that 

reflects the selected controllers path of motion. It uses a range of time and keyframe 

information to generate the curve. 

• createExagCurve() – This function creates a scaled version of the original motion curve 

within the scene. It also creates curve control spheres that are used to edit the shape of 

the exaggerated curve. The exaggerated path creates a gradual stretch in the selected 

limb that ends at a length equal to the original length times the scale set by the user.  

• connectExagCurve() – This function connects the selected controller to the exaggerated 

path after it has been adjusted using the curve control spheres. 

• setEase() – This function applies the Ease-in and Ease-out values set by the user to the 

remap. This remap is applied to the ratios used in calculating the exaggerated path. The 

result is a different transition from original motion to scaled motion. 
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• setCurveBlend() – This function sets the weighted blend between the original and 

exaggerated path. The value 0 sets motion the original path while the value 2 sets 

motion to the exaggerated path. 

• finalizeNewMotion() – This function updates the keyframes of the selected object to 

match the new motion. 

• deleteAnimCurve() – This function deletes all generated curves. 

• selectBody() – This function highlights the selected limb from the body diagram and 

updates the Interfaces text field to display the limbs controller. It also removes the 

highlight from a previously selected limb. 

• unselectBody() – This function removes the highlight from a selected body icon if it is 

selected again and removes the controller name from the Interface text field. 

 

All python functions have several parameters that affect the result of the function. 

Depending on a parameter’s position within a functions parenthesis a parameter will be 

used differently. The following example shows the layout of a Python Function. 

 

connectExagCurve( leftArm, 10, 25, 2 ) 

 

This function connects the left arm controller to it’s exaggerated path after it has been 

manually adjusted. The start frame is frame 10 and the end frame is 25, altering the 

keyframes within this timeframe. The blend value is set to 2, fully connecting the controller 

to the exaggerated path. 
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MEL Commands Used 

The following are MEL commands that are used with the Python functions. They are 

listed in the order that they appear within the starting with the Stretch-Engine Rig script 

and then the Exaggeration Interface script. 

 

• spaceLocator() – The command creates a locator at the specified position in space. By 

default it is created at (0,0,0). 

• xform() – This command can be used query/set any element in a transformation node. 

It can also be used to query some values that cannot be set directly such as the 

transformation matrix or the bounding box. It can also set both pivot points to 

convenient values. 

• parent() – This command parents (moves) objects under a new group, removes objects 

from an existing group, or adds/removes parents. 

• curve() – The curve command creates a new curve from a list of control vertices (CVs). 

A string is returned containing the pathname to the newly created curve. You can create 

a curve from points either in world space or object (local) space, either with weights or 

without. You can replace an existing curve by using the "-r/replace" flag. You can 

append a point to an existing curve by using the "-a/append" flag. 

• duplicate() – This command duplicates the given objects. If no objects are given, then 

the selected list is duplicated. 

• scale() – The scale command is used to change the sizes of geometric objects. 
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• rotate() – The rotate command is used to change the rotation of geometric objects. The 

rotation values are specified as Euler angles (rx, ry, rz). The values are interpreted based 

on the current working unit for Angular measurements. Most often this is degrees. 

• move() – The move command is used to change the positions of geometric objects. The 

default behavior, when no objects or flags are passed, is to do an absolute move on each 

currently selected object in the world space.  

• makeIdentity() – This command is a quick way to reset the selected transform and all 

of its children down to the shape level by the identity transformation. You can also 

specify which of transform, rotate or scale is applied down from the selected transform. 

The identity transformation means: 

• setAttr() – Sets the value of a dependency node attribute.  

• getAttr() – This command returns the value of the named object's attribute. UI units are 

used where applicable.  

• connectAttr() – Connect the attributes of two dependency nodes and return the names 

of the two connected attributes. The connected attributes must be of compatible types. 

First argument is the source attribute, second one is the destination. 

• addAttr() – This command is used to add a dynamic attribute to a node or nodes. Either 

the longName or the shortName or both must be specified. If neither a dataType nor an 

attributeType is specified, a double attribute will be added. The dataType flag can be 

specified more than once indicating that any of the supplied types will be accepted 

(logical-or). 
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• setDrivenKeyframe() – This command sets a driven keyframe. A driven keyframe is 

similar to a regular keyframe. However, while a standard keyframe always has an x-

axis of time in the graph editor, for a drivenkeyframe the user may choose any attribute 

as the x-axis of the graph editor.  

o For example, you can keyframe the emission of a faucet so that it emits when 

the faucet handle is rotated. The faucet emission in this example is called the 

driven attribute. The handle rotation is called the driver.  

• setKeyfame() – This command creates keyframes for the specified objects, or the active 

objects if none are specified on the command line. 

• joint() – The joint command is used to create, edit, and query, joints within Maya. If 

the object is not specified, the currently selected object will be used. 

• connectJoint() – This command will connect two skeletons based on the two selected 

joints. The first selected joint can be made a child of the parent of the second selected 

joint or a child of the second selected joint, depending on the flags used. 

• distanceDimension() – This command is used to create a distance dimension to display 

the distance between two specified points. 

• ikHandle() – The handle command is used to create, edit, and query a handle within 

Maya. The standard edit (-e) and query (-q) flags are used for edit and query functions. 

If there are 2 joints selected and neither -startJoint nor -endEffector flags are not 

specified, then the handle will be created from the selected joints. 

• createNode() – This command creates a new node in the dependency graph of the 

specified type. Used to create multiplyDivide nodes to calculate stretching. 
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• shadingNode() – This command creates a new node in the dependency graph of the 

specified type. The shadingNode command classifies any node as a shader, texture 

light, post process, or utility so that it can be properly organized in the multi-lister. 

Specifically used to create the Remap for the exaggerated path and a Color Blend node 

used in calculating stretch. 

• pointConstraint() – Constrain an object's position to the position of the target object or 

to the average position of a number of targets. 

• orientConstraint() – Constrain an object's orientation to match the orientation of the 

target or the average of a number of targets. 

• parentConstraint() – Constrain an object's position and rotation so that it behaves as if 

it were a child of the target object(s). In the case of multiple targets, the overall position 

and rotation of the constrained object is the weighted average of each target's 

contribution to its position and rotation. 

• poleVectorConstraint() – Constrains the poleVector of an ikRPsolve handle to point at 

a target object or at the average position of a number of targets. 

• expression() – This command describes an expression that belongs to the current scene. 

The expression is a block of code of unlimited length with a C-like syntax that can 

perform conversions, mathematical operations, and logical decision making on any 

numeric attribute(s) in the scene. One expression can read and alter any number of 

numeric attributes. Theoretically, every expression in a scene can be combined into one 

long expression, but it is recommended that they are separated for ease of use and 

editing, as well as efficiency. 
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• window() – This command creates a new window but leaves it invisible. It is most 

efficient to add the window's elements and then make it visible with the showWindow 

command. The window can have an optional menu bar. Also, the title bar and 

minimize/maximize buttons can be turned on or off. If the title bar is off, then you 

cannot have minimize or maximize buttons. 

• showWindow() – Make a window visible. If no window is specified then the current 

window (most recently created) is used. See also 

the window command's vis/visible flag. 

• formLayout() – This command creates a form layout control. A form layout allows 

absolute and relative positioning of the controls that are its immediate children. 

Controls have four edges: top, left, bottom and right. There are only two directions that 

children can be positioned in, right-left and up-down. The attach flags take the direction 

of an attachment from the argument that names the edge to attach. Any or all edges of 

a child may be attached.  

• rowColumnLayout() – This command creates a rowColumn layout. A rowColumn 

layout positions children in either a row or column format. A column layout allows you 

set text alignment, attachments and offsets for each column in the layout. Every 

member of a column will have the same alignment, attachment and offsets. Likewise, 

the row allows setting of these attributes for each row in the layout. Every member of 

a row will have the same attributes. The layout must be either a row or column format.  
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• paneLayout() – This command creates a pane layout. A pane layout may have any 

number of children but at any one time only certain children may be visible, as 

determined by the current layout configuration. 

o For example, a horizontally split pane shows only two children, one on top of 

the other and a visible separator between the two. The separator may be moved 

to vary the size of each pane.  

• getPanel() – This command returns panel and panel configuration information. 

• scriptedPanel() – This command will create an instance of the specified 

scriptedPanelType. A panel is a collection of UI objects (buttons, fields, graphical 

views) that are grouped together. A panel can be moved around as a group within the 

application interface and torn off to exist in its own window. The panel takes care of 

maintaining the state of its UI when it is relocated or recreated. A scripted panel is a 

panel that is defined in MEL, with all of the required callbacks available as MEL proc's. 

 

MEL commands use flags as inputs, flags modify how a command works. When using 

MEL commands with Python, flags are represented by named arguments followed by a 

value. For example, a flag has a name and is followed by an equal sign (=) then the value 

for that flag is placed after the equal sign. Also, a flag’s position does not affect the result 

of the MEL command. The following example shows the layout of a MEL command. 

 

floatSliderGrp( label='Scale', field=True, width=300, cw=(1,100), min=0, max=5, 

value=1, step=0.01 ) 
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A slider that returns float values is created and labeled Scale. Following the label is a 

text field that shows the sliders current value. The slider has a width of 300 pixels and the 

first column has a width of 100 pixels, this column contains the label and text field. The 

slider has a minimum value of 0, a maximum of 5 and an initial value of 1. The slider 

values change in 0.01 increments. 
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APPENDIX B 

Stretch-Engine Installation 

For the best performance it is recommended to run the Stretch-Engine within Maya 

2015 and newer versions, because script development began with the 2015 version and 

then moved to later versions as the project developed. A few steps are needed to ensure 

that the prototype works correctly within Maya’s workspace, a read-me file with the steps 

is included with the folder containing the prototype scripts. The steps for installation are 

also described here. 

 

1. Go to http://www.zaidhibrahim.com/stretch-engine  

2. Download the file stretchEnginePackage. This folder contains all files needed to install 

the prototype along with the dummy model. 

3. Place the python file “StretchEngineRigScript” within the Maya directory’s scripts 

folder. \Users\<username>\Documents\maya\scripts 

4. Create a new folder within the Maya directory space and name it stretchEngine. 

\Users\<username>\Documents\maya\stretchEngine\bodyIcons 

5. Copy the entire Python script “ExaggerationInterfaceScript” within Maya’s Script 

Editor. 

6. Execute the script in the Script Editor. This will compile all functions of the Stretch-

Engine. 

7. Once executed the Exaggeration Interface will appear and be ready to use. 
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The interface script will need to be executed each time you open a new session of Maya. 

The Script Editor automatically saves its state, or whatever code was in the editor the last 

time it was opened, and the interface script should still be inside it. The interface resets 

whenever it is executed but the icons and path creation should connect correctly if the 

Stretch-Engine Rig or one with the same naming conventions are being used. In case the 

script is no longer within the Script Editor, it is suggested to save the interface script in 

your default scripts folder and follow the same instructions above to activate the tool. 




