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ABSTRACT

The dissertation introduces a computational approach to classifying low rank modular cate-

gories up to their modular data. The modular data of a modular category is a pair of matrices,

(S, T ). Virtually all the numerical information of the category is contained within or derived from

the modular data. The modular data satisfy a variety of criteria that Bruillard, Ng, Rowell, and

Wang call the admissibility criteria. Of note is the Galois group of the S matrix is an abelian group

that acts faithfully on the columns of the eigenvalue matrix, s = (
Sij

S0j
). This gives an injection from

Gal(Q(S),Q) → Symr, where r is the rank of the category. Our approach begins by listing all the

possible abelian subgroups of Sym6 and building all the possible modular data for each group. We

run each set of modular data through a series of Gröbner basis calculations until we either find a

contradiction or solve for the modular data.

The effectiveness of this approach is shown by the two main results. The first is a complete

classification of rank 6 non-self-dual and non-integral modular tensor categories, specifically any

rank 6 non-integral non-self-dual modular category is isomorphic to a tensor product The second

is a partial classification of the subgroups of Sym6 that give rise to self-dual non-integral modular

tensor categories. Specifically, we show that the following groups have no associated modular

category, ⟨(01234)⟩, ⟨(0123)⟩, ⟨(01)(23), (02)(13)⟩, ⟨(0123)(45)⟩, ⟨(012), (345)⟩, ⟨(01), (2345)⟩,

⟨(01)(2345)⟩, ⟨(01), (23)(45), (24)(35)⟩, ⟨(01)(23)(45), (24)(35)⟩, ⟨(01)(23)(45)⟩, or ⟨(01)(23),

(23)(45)⟩. It is known that following groups do have categories associated with them, ⟨(012)⟩,

⟨(01)(23)⟩, ⟨(012)(345)⟩, ⟨(01)(23)(45), (02)(13)⟩, and ⟨(012345)⟩. It is unknown but conjectured

that the following groups do not have a modular category associated to them, ⟨(01)⟩, ⟨(01), (234)⟩,

and ⟨(01), (23)(45)⟩.
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1. INTRODUCTION

The classification of fusion categories, and in particular modular tensor categories (MTC) has

been an active research area for more than 20 years. Classifying fusion categories is a very broad

problem, much like the classification of all finite groups. Much like one might try to instead

classify all finite simple groups instead of all finite groups, one might try to classify all modular

categories instead of the more broad fusion categories. A natural step when classifying groups is

to fix the size of the group and classify all groups of that size. Similarly, we can fix the rank, r, of

a modular category and try to classify all the modular categories with that rank.

In 2016, Bruillard, Ng, Rowell, and Wang proved that there are finitely many MTC for a given

rank[1]. In the same year they completed the classification of all modular categories through rank

5[2]. We have extended the classification with a partial classification of rank 6 and have created a

computer assisted classification method to continue this classification program for low rank MTC.

A modular tensor category, C, is a non-degenerate ribbon fusion category over C. Let ΠC be

the set of isomorphism classes of simple objects of the modular category C. The rank of C is the

finite number r = |ΠC|. Some standard references for modular categories are Lectures on Tensor

Categories [3], Tensor Categories [4], and Quantum Invariants of Knots and 3-Manifolds [5].

Every MTC has a pair of associated matrices, (S, T ), called the modular data. The modular

data determine virtually all the numerical invariants of the category. The modular data are both

r × r square matrices. The S matrix can be used to immediately find both the dimension of the

simple objects but also the Frobenius-Perron dimension of the simple objects (FPdim). Those

dimensions can then be used to find the global dimension of the category and the Frobenius-Perron

dimension of the category. Going farther, the S-matrix determines the fusion rules of the category.

This is important because previous classifications of various fusion categories was done up to the

fusion rules. Classifying all possible modular data is then at least as strong as classifying the

possible fusion rules. Bruillard, Ng, Rowell, and Wang also determined a set of criteria that these

two matrices must satisfy. They call it admissibility criteria. They conjecture that if two matrices

1



are admissible then there is an associated MTC. [1][2]

The modular data also have a rich Galois structure. In particular, Gal(Q(S)/Q) ≤ Gal(Q(T )/Q).

The T matrix is a diagonal matrix with roots of unity on the diagonal. Therefore, G = Gal(Q(S)/Q)

is isomorphic to a subgroup of (Z/NZ)×, where N is the smallest positive integer such that, TN =

Id. Note that this group is therefore abelian. There is a related matrix, s = (sij) =
( Sij

S0j

)
, which

we call the eigenvalue matrix. It turns out that G permutes the columns of s faithfully. This gives

an injection into the symmetric group on r letters, Symr. Abelian subgroups of Symr are well

understood and easy to list. Furthermore, G acts on the entries of S. This combined with some

other symmetries of the S matrix means that instead of 42 unknown entries of S and T , there might

actually only be 18.

In short, our method first determines a list of abelian subgroups of Symr. Then, for a given

subgroup, we build the possible S and T matrices. We enter certain polynomial relations of the

modular data into a Gröbner basis algorithm (GBA) and factor the result. We look for contradic-

tions to the admissibility criteria and if we don’t find any, refine the list of polynomials that are fed

into the GBA in a variety of ways. We continue this until we have solved for the modular data or

have proven the modular data is inadmissible. On the next page is a naive flowchart that illustrates

this procedure.

We have two results. The first is a complete classification of non-integral, non-self-dual, mod-

ular tensor categories (NI-NSD-MTC) of rank 6. Namely, all NI-NSD-MTC of rank 6 are iso-

morphic to a tensor product of the Fibonacci MTC and Z3 MTC (or their Galois conjugates). The

second is a partial classification of the abelian subgroups of Sym6 that do have a non-integral,

self-dual, modular tensor category (NI-SD-MTC) associated to them. Up to a relabeling of the

simple objects the groups that are known to realize a MTC are ⟨(012)⟩, ⟨(01)(23)⟩, ⟨(012345)⟩,

⟨(01)(23)(45), (02)(13)(45)⟩, and ⟨(012)(345)⟩.

2



Figure 1.1: Naive Flowchart
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2. PREVIOUS RESULTS

Modular categories have a lot of rich structure. But this makes them somewhat rare. Most of

our classification method is eliminating possible modular data. We collect information that will do

one of two things, either determine a polynomial relation to feed into the Gröbner basis algorithm

or a fact about one the unknown constants that can be used to refine the Gröbner basis that is

outputted.

Definition 1. For a pair of matrices (S, T ) for which there exists a modular category with modular

(S, T ), we will say (S, T ) is realizable modular data.[1]

Definition 2. Let S, T ∈ GLr(C) and define constants, di := S0i, θi := Tii, D2 :=
∑

i d
2
i , and

p± :=
∑

i S
2
0iθ

±1
i . The pair (S, T ) is an admissible modular data of rank r if they satisfy the

following conditions:

(i) di ∈ R, S = St, and SS̄ = D2Id. Ti,j = δi,jθi with N := ord(T ) < ∞

(ii) (ST )3 = p+S
2, p+p− = D2, and p+

p−
is a root of unity

(iii) Nk
i,j :=

1
D2

∑r−1
a=0

SiaSjaS̄ka

S0a
∈ N for all 0 ≤ i, j, k ≤ (r − 1)

(iv) θiθjSij =
∑r−1

k=0N
k
i∗jdkθk, where i∗ is the unique label such that N0

ii∗ = 1.

(v) νn(k) := 1
D2

∑r−1
i,j=0N

k
ijdidj

(
θi
θj

)n. Then ν2(k) = 0 if k ̸= k∗ and ν2(k) = ±1 if k = k∗.

Moreover, νn(k) ∈ Z
[
e2πi/N

]
(vi) Q(S) ⊂ Q(T ) = Q(e2πi/N) = QN , Gal(Q(T )/Q) is isomorphic to an abelian subgroup of

Symr and Gal(Q(T )/Q(S)) ∼= (Z/2Z)l for some integer l.

(vii) The prime divisors of D2 and N coincide in Z[e2πi/N ]

[1]
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There are two facts that it is assumed the reader knows when looking at the list above. First the

0 label is unique and we label the r isomorphism classes of simple objects from 0 to r − 1. The 0

object is often referred to as the vacuum because of the application of fusion categories to theoreti-

cal physics. For this thesis, it is just important to remember that this is the only isomorphism class

that cannot be relabeled. The second is the ∗ is an involution. It’s map that takes a label to its dual

label. For the purposes of the work in this paper, all we need to know is that it is an involution,

namely (i∗)∗ = i. Note that N0
00 =

1
D2

∑
a d

2
a = 1 =⇒ 0∗ = 0.

A Gröbner basis algorithm takes a collection of polynomials and outputs a basis for the ideal

of the polynomials that share the same solution as the initial collection over a given field. We use

the field of rational numbers. Our approach is to factor this output and look at the parts of the basis

that have distinct factors. For example, We might see d2(p2+D2) as a polynomial in the outputted

basis. From the admissibility criteria, d2 ̸= 0 (look at (iii)). Therefore, p2 +D2 must be 0. Now,

we can add, p2 + D2 as a relation and rerun the GBA. Eventually we hope to either solve for the

entries of (S, T ) or to find a contradiction.

The admissibility criteria give a foundation for building candidate pairs (S, T ), particularly,

(i) and (ii). The first important fact, S is self transpose. This immediately reduces the number

of variables to solve for in the modular data. Not immediately clear in the admissibility criteria

above, S also has these two properties, Sij = Si∗j∗ and S̄ij = Si∗j . Second, we get two polynomial

relations, SS̄ = D2Id (orthogonality relations) and pS2 = (ST )3 (twist relations). These

relations will be the foundations for the attempts to solve the modular data. In this thesis, we do

not use (iii) and (iv). These can be useful relations, but they introduce the variables, Nk
ij that must

be solved for. There is an important use for (v). It pairs with a theorem from Ng to give a powerful

new relation. The theorem is at the moment unpublished but has been presented in at least two

conferences.

Theorem 1. If p does not divide N = ord(T ) for a modular category, C, then there exists a simple

object such that,
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X2 =
∑
i

νp(Xi)Xi.

Moreover, the label of X in ΠC is in the orbit of 0. [6]

Point (vi) is a product of the strong Galois symmetries at play. The Galois symmetries are

possibly what makes this classification attempt feasible. The isomorphism from Gal(Q(S)/Q) to

some abelian subgroup of Symr is our starting point towards building modular data candidates. The

restriction of Gal(QW(T )/Q(S)) will give important information about N , the order of T . The

prime divisors of N are important later when considering the representation theory of a possible

modular category.

Theorem 2. Let (S, T ) be a realizable modular data. Then,

(a) (S, T ) is admissible.

(b) (σ(S), σ(T )) is realizable [1]

This theorem is very useful, particularly (b). Part (a) says exactly what we expect, that the

admissibility criteria is necessary (it may not be sufficient) for a pair of matrices to be modular

data for some MTC. But part (b) allows for assumptions when classifying the data. It might be that

(σ(S), σ(T )) has a desirable property that (S, T ) do not. A common property that appears in this

manner is that for some σ, σ(S0i) ≥ 1 for all i. This says that for S ′ = σ(S), d′i = S ′
0i ≥ 1.

Theorem 3. Let G = Gal(Q(S)/Q) in Symr for some realizable S. Then,

• For every σ ∈ G, there is a sign function ϵσ : ΠC →±1 such that,

Sij = ϵσ(σ(i))ϵσ(j)Sσ(i)σ−1(j).

• If r is even, then
∏r−1

i=0 ϵσ(i) = (−1)σ.

[7]
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This is a slight abuse of notation. Throughout this paper we will use G and its image in Symr

interchangeably. This makes reading lines like the first bullet point easier by not adding extra

symbols. This theorem is the last fundamental result that makes this process feasible. Much like

the fact that S is self dual, the first bullet point reduces the number of variables of the S matrix.

It also potentially adds variables in the choices of the sign function. However, it turns out that

the already known symmetries of the S-matrix combined with this bullet point put significant

restrictions on the values of ϵσ(i) related to each other. A priori it appears that for rank 6, there are

26 choices of the sign function. In practice there are usually less than 8 relevant choices of the sign

function. This makes it more expedient to treat each choice of the sign function as its own modular

data candidate. Doing so eliminates the need to use variables for ϵσ(i) and frequently sign choices

lead to virtually identical contradictions.

Definition 3. The fusion matrices, Ni, are defined to be (Ni)kj = Nk
ij .

Definition 4. Let sij =
Sij

S0j
, then we call s the eigenvalue matrix.

The eigenvalue matrix is so named because it contains the eigenvalues of Ni in the ith row,

in particular this means that the entries of s and S are algebraic integers. This isn’t immediately

obvious until noticing that point (iii) of definition 2 (called the Verlinde Formula) can be rewritten

as SNiS
−1 = Di where Di = (δab

Sia

S0a
)ab. This shows that the S matrix diagonalizes Ni, and the

diagonal is the ith row of the eigenvalue matrix. The eigenvalue matrix is also where the isomor-

phism into Symr. The isomorphism comes from the fact that S simultaneously diagonalizes all

of the fusion matrices and thus Gal(Q(S)/Q) permutes the columns of s [8]. Another immediate

fact from this formula is that Q(S) is a Galois extension of Q. It should be clear that Q(S) and

Q(s) are the same field. The entries of s are fractions of the entries in S, and all the entries is S

are products of entries in s. But each row of s is the entire set of eigenvalues of an integer matrix.

Therefore, Q(S) is the splitting field of the characteristic polynomial of the integer matrices, Ni.

Those polynomials are in Z[x], so the field extension is Galois.

We know that the fusion matrices have non-negative integer entries, i.e. they have a Frobenius-

Perron eigenvalue, a positive real eigenvalue that is larger in modulus than any eigenvalue (real
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or complex). For fusion categories this is called the FPdim of Xi, where Xi is the isomorphism

class of simple object of label i. For a fusion category C, the FPdim(C =
∑

FPdim(Xi)
2. One of

the columns of s will contain the FPdim of Xi in the ith row [1]. We will call the corresponding

column of S the FPcol.

Since the entries in the FPcol are just a product of di and the FPdims, then the FPcol is entirely

negative or entirely positive depending on the sign of di. Then the orthogonality relations imply

that there cannot be two columns of S where each entry has the same sign. Also, since neither di

nor any FPdim can be 0, the FPcol has no 0’s as entries.

I add a corollary to theorem 2.

Corollary 4. The eigenvalue matrix of σ(S) is σ(s).

Proof: Let S ′ = σ(S) and d′i = S ′
0i. This follows immediately once we write Sij as disij .

Then, σ(Sij) = σ(di)σ(sij). But, di = S0i =⇒ σ(di) = d′i. Thus it’s clear that the eigenvalue

matrix of S ′ is σ(s). □

This corollary shows that (σ(S), σ(T )) have the same associated subgroup of Symr as (S, T ).

If the FPcol of S is column i. Then for purposes of classification, we can instead consider

(σ(S), σ(T )) and therefore assume the FPcol is any column with label in the orbit of i. In, S

the FPcol can often be shown to be the in the orbit 0. Therefore without loss of generality we

assume the FPcol is column 0 and that di ≥ 1 for all i.

Definition: A fusion category, C is to be

(i) weakly integral if FPdim(C) ∈ Z.

(ii) integral if FPdim(Xi) ∈ Z for all i ∈ ΠC

(iii) pointed if FPdim(Xi) = 1 for all i ∈ ΠC

Theorem 5. Let C be a modular category. Then, C is integral if and only if di ∈ Z for all i ∈ ΠC if

and only if O0 = {0}. [2]
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Weakly integral modular categories have been classified up through rank 7. In particular for

rank 6 this means that the only abelian subgroups of Sym6 to consider are the ones that move 0.

Definition 5. A modular category is self dual if i∗ = i for all i ∈ ΠC .

Now look at the admissibility criteria again to see that this is equivalent to saying that C is self

dual if and only if S is a real matrix. Recall that the admissibility criteria imply that S̄ij = Si∗j .

So, if C is self dual then for all i, j ∈ ΠC, S̄ij = Sij =⇒ S is real. This leads to an important fact

about G, complex conjugation (which is always in the Galois group), corresponds switching dual

labels. Therefore, in a non-self-dual category, there must exist an element of G that switches dual

labels.

Theorem 6. For i ∈ ΠC , if j ∈ Oi then i and j are both self-dual labels or are both non-self-dual

labels. [2]

This theorem gives a bit more structure to potential subgroups of Sym6 when considering the

non-self-dual cases. Recall that the admissibility criteria forces 0∗ = 0 and that in the non-integral

cases, the 0 label is not fixed. This means for rank 6 there are 0, 1, or 2 pair of non-self-dual classes

of simple objects.

Theorem 7. If σ2 = Id and ϵσ is the corresponding sign function, σ fixes at least one element of

ΠC , then ϵσ(i) = ϵσ(σ(i)).[2]

We’ve chosen to use notation from [7], Sij = ϵσ(σ(i))ϵσ(j)Sσ(i)σ−1(j). But, [2] uses Sij =

ϵσ(i)ϵσ−1(j)Sσ(i)σ−1(j). These ϵσ are defined slightly differently. But this conclusion still holds. To

see this, let α be the sign function that corresponds to σ under [7] and β/β−1 be the sign functions

that correspond to σ and σ−1 respectively from [2]. Now, since σ is assumed to be an involution,

β = β−1. Let j be fixed by σ and i ∈ ΠC . Observe,

9



S0j = α(σ(0))α(j)Sσ(0)j = α(σ(0))α(j)α(σ2(0)α(j)S0j =⇒ α(0)α(σ(0)) = 1

=⇒ α0 = α(σ(0))

S0i = α(σ(0))α(i)Sσ(0)σ−1(i) = β(0)β(i)Sσ(0)σ−1(i) =⇒ α(0)α(i) = β(0)β(i)

Si0 = α(σ(i))α(0)Sσ(i)σ−1(0) = β(i)β(0)Sσ(i)σ−1(0) =⇒ α(σ(i))α(0) = β(i)β(0)

=⇒ α(i) = α(σ(i))

Recall that a priori there are 26 possibilities for the sign function corresponding to σ. We should

first note, that for the symmetries of the S matrix, we care about ϵσ(i)ϵσ(j) for all i, j ∈ ΠC . This

means that for computations we can assume ϵ0 = 1. But that still leaves 25 possibilities. Theorems

like this are helpful in reducing that even farther. Then, much like the first line in the above

calculation we can get similar relations to continue to reduce the number of possibilities.
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3. PRELIMINARY RESULTS

This section contains original work that again primarily serves the same two functions as the

facts from the previous section.

Definition: The s-polynomial of sij is
∏

k∈O(j)(x − sik), where O(j) is the orbit of j under

the permutation action of G on the columns of s.

Note that di ∈ Gal(S/Q) and di ∈ Gal(s/Q) =⇒ Gal(S/Q) = Gal(s/Q).

Theorem 8. The s-polynomial has integer coefficients and is a power of the minimal polynomial

of sij .

Proof: This is clear. The Galois group clearly permutes the linear factors of the s-polynomials.

Therefore the polynomial itself is fixed by the entire group, i.e. the coefficients are rational num-

bers. They are also sums of products of algebraic integers and therefore algebraic integers them-

selves. Thus, the coefficients are integers. Note that the leading coefficient is necessarily a one.

Therefore all irreducible factors over Z[x] also have a leading coefficient of one, i.e. they are all

minimal polynomials of some algebraic integer in the given orbit. But each term in the given orbit

necessarily have the same minimal polynomial. The only possible irreducible factor is the minimal

polynomial of Sij

S0j
. □

These s-polynomials introduce new variables and relations for the Gröbner basis calculations.

Specifically, the variables are the coefficients of the s-polynomials. The new variables mean a more

complicated polynomial ideal, but it also introduces new information to be used when looking at

the factored basis. Namely, that the new variables are integers.

Theorem 9. If σ = (01) is in the Galois group, and the rank, r, of the MTC is at least five, then

i) 1
d1

+ d1, D2/d1 and d2i /d1 are rational integers for i ≥ 2.

ii) There exist i, j ≥ 2 such that ϵi = −ϵj , and in this case Sij = 0.

iii) d1 > 0

iv) θ1 = 1
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Proof: This is a generalization of Lemma 3.6 from [2]. The proof is nearly identical, but by

not requiring the Galois group to be generated by (01), we no longer immediately force the FPcol

to be S0 or S1 where Sk is the kth column of S, although it does still turn out to be the case.

First we must show that the orbit of 0 is in fact {0, 1}. Suppose τ(0) ̸= 0 or 1. Then, τστ−1 =

(τ(0)τ(1)) ̸= (01). But then τ /∈ G since G is abelian.

By 3.5 of [2] we see that S11 = 1. Then by the s-polynomial of d1, (d1 + 1
d1
) ∈ Z. Consider

the s-polynomial of dj for j ≥ 2. This shows that
d2j
d1

∈ Z. Then, D2

d1
= ( 1

d1
+ d1) +

∑
j≥2

d2j
d1

∈ Z.

For ii) note that S1j = ϵ0ϵjdj and apply orthogonality of the columns to get, 2d1 =
∑r−1

j=2 ϵ0ϵjd
2
j ,

divide by d1 and get 2 =
∑r−1

j=2 ϵ0ϵjd
2
j/d1. Note that d2j/d1 has the same sign for all j ≥ 2. Since

the rank is at least 5 and we can’t have 2 be the sum of 3 or more integers of the same sign, we see

there must be some i, j ≥ 2 such that, ϵi = −ϵj .

But now, observe that Sij = ϵiϵjSij = −Sij =⇒ Sij = 0.

iii) An immediate consequence is that every column except S0 and S1 must have a 0 entry.

Therefore either S0 or S1 is the FPcol and is strictly positive, i.e. d1 > 0 since it’s in both columns

(a priori S1 could be strictly negative but since 1 is in S1 we know it can’t be strictly negative).

iv) Take, the twist equation (for simplicity let p = p+), 0 = pSij where i, j are the indexes

given in ii). Then, we see that,

0 = pSij = θiθj(didj − θ1didj + 0) = θiθjdidj(1− θ1)

This implies that θ1 = 1. □

This theorem allows many groups to be tackled simultaneously. By only looking at the struc-

ture of S given by (01) and the choices on the corresponding sign function ϵ, we can potentially

eliminate all groups that contain (01) at once. This would be difficult without knowing more about

the S matrix, except the choices on the sign function provide 0’s as entries in the S matrix and

greatly simplify many of the polynomial relations found in the orthogonality and twist relations.

Corollary 10. Let (01) ∈ G. Let σ = (01).
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i) If ϵi ̸= ϵj for all j ̸= i, 2 ≤ j ≤ r − 1, then θ2i + θi + 1 = 0.

ii) If ϵi ̸= ϵj for all j ̸= i, i∗, 2 ≤ j ≤ r − 1 and i ̸= i∗, then θ2i + 1 = 0.

Proof: i) Let’s assume ϵ2 ̸= ϵj for j > 2. By theorem 3, S2j = 0. Let zd2 = S22. We know that

z is an integer because z = S22

d2
is fixed by all elements of the Galois group (or is possibly moved

to the 0’s that populate the rest of the row and is therefore 0, itself an integer). Let Sk be the kth

column of S. Then S0 · S2 = 0 = d2(1 + ϵ1ϵ2d1 + zd2) =⇒ 1 + ϵ2d1 + zd2 = 0.

pSij = θiθj
∑r−1

k=0 SkiSkjθk. Then, using pS00, pS01, pS02, pS22 and the relation, 1 + ϵ1ϵ2d1 +

zd2, we can deduce,

pz2 = θ2z
2(θ2 − 1)

pz2 = z2 + 2θ2

Which gives,

0 = z2θ22 + θ2(2− z2) + z2(1)

an integer polynomial of θ2, i.e. the minimal polynomial, f , of θ2 divides it. A quick check

shows that θ2 isn’t ±1. If θ2 = 1 =⇒ p = 0. If θ2 = −1 =⇒ p = 2 =⇒ D2 = 4 < 5. But we

can assume D2 ≥ 5 because we can assume the FPcol is column 0 and therefore di ≥ 1 for all i.

f = x2 + x
2− z2

z2
+ 1

is the minimal polynomial of θ2 =⇒ 2−z2

z2
= 0,±1. Both, 0 and -1 give contradictions. If 0,

then z isn’t an integer. If -1, then 2 = 0. So, θ2 is a third root of unity.

ii) Assume for simplicity, 2∗ = 3 and ϵ2 ̸= ϵi for all i > 3. Let ϵ = ϵ0ϵ2. Note that 0 =
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S0 · S2 = d2(1 + ϵd1 + a1 + a2) =⇒ 1 + ϵd1 = −(a1 + a2). Then,

pS20 = pd2 = θ2(d2 + ϵd1d2 + θ2d2a1 + θ2d2a2)

=⇒ p = θ2(a1 + a2)(θ2 − 1).

=⇒ p(a1 + a2) = θ2(a1 + a2)
2(θ2 − 1)

pS22 = pa1 = θ22(d
2
2 + d22 + θ2a

2
1 + θ2a

2
2)

pS23 = pa2 = θ22(d
2
2 + d22 + θ2a1a2 + θ2a2a1)

=⇒ p(a1 + a2) = θ22(4d
2
2 + θ2(a1 + a2)

2)

But then,

p(a1 + a2) = p(a1 + a2) =⇒

θ2(a1 + a2)
2(θ2 − 1) = θ22(4d

2
2 + θ2(a1 + a2)

2)

(a1 + a2)
2(θ2 − 1) = θ2(4d

2
2 + θ2(a1 + a2)

2)

Let z = (a1+a2)2

d22
. Arrange as a polynomial of θ2 and divide through by d22:

zθ22 + θ2(4− z) + z = 0

Observe that a1+a2
d2

is an integer by the s-polynomial of a1
d2

(recall that the rest of row 2 after

column 3 is entirely filled with 0’s and therefore cannot be in the orbit of column 2). Therefore z is

an integer and a perfect square. This also forces the polynomial above to have integer coefficients,

i.e. the minimal polynomial of θ2, min(θ2), must divide zx2 + x(4 − z) + z. We immediately

know that the degree of min(θ2) is either 1 or 2. If the degree is 1, then θ2 = ±1. If θ2 = 1, then,

0 = p = θ2(a1 + a2)(θ2 − 1). If θ2 = −1, then zθ22 + θ2(4 − z) + z = 0 =⇒ z + z − 4 + z =

0 =⇒ 3z = 4. But then z is not an integer.

Since we can conclude that the degree of min(θ2) = 2, then zx2 + x(4− z) + z = z ∗min(θ2),
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i.e. min(θ2) = x2 + x4−z
z

+ 1. Now, θ2 is a root of unity, and all minimal polynomials of degree 2

of roots of unity are known, we say that 4−z
z

= 0,±1. If 4−z
z

= 1 =⇒ z = 2. But 2 isn’t a perfect

square. If 4−z
z

= −1 =⇒ 4 = 0. If 4−z
z

= 0 =⇒ z = 4 =⇒ min(θ2 = θ22 + 1. □

This corollary, provides some additional information but about the T matrix. Such informa-

tion about T matrix very frequently leads to a near solution of the modular data or an immediate

contradiction.

Theorem 11. Let A = {a | Xa is SD}. Let B = {b | Xb is NSD}. Let ϵ be the sign function for σ

and δ be the sign function for τ .

i) For all σ ∈ G, ϵb = ϵb∗ for all b ∈ B.

ii) Furthermore, if for all a ∈ A, τ(a) = σ(a) and for all b ∈ B, τ(b) = σ(b) or σ(b)∗ then

ϵiϵj = δiδj for all i, j. If this is true we say ϵ = δ.

Proof: i) First note that σ(b∗) = σ(b)∗. This is easy to observe since G is abelian and complex

conjugation is always in the Galois group. Let γ be complex conjugation, i.e. γ(i) = i∗. Then,

σ(b∗) = σγ(b) = γσ(b) = σ(b)∗. Combine this with, S0b = S0b∗ ∀ b ∈ {0, 1, ..., r − 1}, and then

observe:

ϵσ(0)ϵbSσ(0)σ−1(b) = S0b = S0b∗ = ϵσ(0)ϵb∗Sσ(0)σ−1(b∗)

= ϵσ(0)ϵb∗Sσ(0)σ−1(b)∗ = ϵσ(0)ϵb∗Sσ(0)σ−1(b)

Since S0b ̸= 0, Sσ(0)σ−1(b) ̸= 0 =⇒ ϵb = ϵb∗ .

ii) Now assume σ and τ as in part ii). But then, σ−1 and τ−1 must share the same assumptions.

Note that it’s enough to show ϵσ(0)ϵi = δσ(0)δj for all j. Because what this really means is that all

possible combination of products agree. But that’s the same as finding out which j’s agree with a

fixed i. In this case the fixed i is σ(0) = τ(0).

So, observe S0a = ϵσ(0)ϵaSσ(0)σ−1(a) = δσ(0)δaSτ(0)τ−1(a) = δσ(0)δaSσ(0)σ−1(a) =⇒ ϵσ(0)ϵa =

δτ(0)δa because S0a ̸= 0.

This result holds clearly then if σ(b) = τ(b). So assume σ(b) = τ(b)∗.
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Similarly, S0b = ϵσ(0)ϵbSσ(0)σ−1(b) = δσ(0)δbSτ(0)τ−1(b) = δσ(0)δbSσ(0)σ−1(b)∗ = δσ(0)δbSσ(0)σ−1(b)

=⇒ ϵσ(0)ϵa = δτ(0)δb because S0b ̸= 0. □

The first point further restricts the possible choices for the sign functions in the non-self-dual

case. It continues a pattern for objects related to dual labels, di = di∗ , θi = θi∗ , and now ϵ(i) =

ϵ(i∗).

The second point’s use is a bit more subtle. It also gives more restrictions on ϵ because now

ϵ must satisfy Sij = ϵ(σ(i))ϵ(j)Sσ(i)σ−1(j) for two slightly different σ. Under certain sign choices

this may yet again force certain entries of the S matrix to be 0.

Theorem 12 (C, Munoz). Let σ = (012) ∈ G. Let r ≥ 5

i) There are four sign choices,

1) ϵ0 = ϵ1 = ϵ2 = ϵ3 2) ϵ0 = ϵ1 ̸= ϵ2 = ϵ3

3) ϵ0 = ϵ2 ̸= ϵ1 = ϵ3 4) ϵ0 = ϵ3 ̸= ϵ1 = ϵ2
ii) When classifying modular data, we may assume sign choice 3.

Proof: i) Observe, if i ≥ 3, S0i = ϵ1ϵiS1i = ϵ1ϵ2S2i = ϵ0ϵ1ϵ2ϵiS0i =⇒ ϵ0ϵ1ϵ2ϵi = 1 and

ϵ3 = ϵj for all j ≥ 3. This leaves the 4 sign choices above.

ii) Assuming sign choice 1, there are no sign changes throughout the S-matrix as variables are

moved around by σ. This means for every column there are at least the other columns with the

exact same entries but possibly in different rows. Therefore, each set of three columns would share

the same signs of the corresponding entries. Consider the FPcol, it’s entirely negative or entirely

positive, and so would be two other columns, this is already stated to be a contradiction.

Let j > 2, then as shown above S0j = dj , S1j = ϵ1ϵ3, S2j = ϵ1ϵ2. Recall ϵ0ϵ1ϵ2ϵ3 = 1. Now

in sign choices 2 through 4 at least one of S1j and S2j will be negative. This means that for every

column j where j > 2, the column contains both dj and −dj and cannot be all negative or all

positive. Thus no such column can be the FPcol. The FPcol must be either the 0, 1, or 2 column.

Those labels share an orbit. For the purposes of classifying the modular data, we can assume the

FPcol is column 0 and therefore that di ≥ 1 for all i.

Under sign choice 2, C0 ·C1 =⇒ d1+ d2− d1d2 =
∑r−1

i=3 d
2
i ≥ 2. But the surface, x+ y−xy
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has a maximum value of 1 under the restriction, d1, d2 ≥ 1. Therefore both sign choices 1 and 2

are impossible.

Finally, sign choices 3 and 4 are actually relabelings of each other, via switching labels 1 and

2. Let S3 be the matrix of sign choice 3 and similarly S4 be the matrix of sign choice 4.

First if i ≥ 3, S3i1 = S4i2 = di and S3i2 = S4i1 = −di. Now we need to check that

S312 = S412, S322 = S411, and S322 = S411 remembering that in S4 we switch d1 and d2.

Indeed, S312 = S412 = −1, S322 = d1 and S411 = d2, and S311 = −d2 and S422 = −d1. This

shows that S3 and S4 are the same matrix up to switching labels 1 and 2. □

This theorem may appear to have limited use, but it does apply to all ranks ≥ 5.

Per the previous theorems, the Galois group of a MTC is an abelian subgroup of Sym6, recall

that the labeling starts at 0 and goes to 5. The orbit of self dual labels is entirely self dual and

therefore the orbit of NSD labels are entirely NSD. The trivial object must always be labeled by

0 and is self dual. But, we are free to choose a labeling for the other objects. In a NSD rank 6

category there can be one pair or two pair of NSD objects.

Theorem 13. 1) If C is a rank 6 NI-NSD-MTC with two pair of simple objects, then it has

one of the following Galois Groups (up to relabeling): ⟨(01), (23), (45)⟩, ⟨(01)(23), (23)(45)⟩,

⟨(01), (23)(45)⟩, ⟨(01)(2435)⟩, ⟨(01), (2435)⟩, ⟨(01), (23)(45), (24)(35)⟩, and ⟨ (01)(24)(35),

(23)(45)⟩

2) If C is a NI-NSD-MTC with one pair of NSD objects, then it has one of the following

Galois Groups (up to relabeling): ⟨(01), (23), (45)⟩, ⟨(01)(23), (45)⟩, ⟨(012), (45)⟩, ⟨(01), (45)⟩,

⟨(01)(23), (02)(13), (45)⟩, and ⟨(0213), (45)⟩

If the are two pair of NSD objects, let 2∗ = 3 and 4∗ = 5. If there is one pair of NSD objects

let 4∗ = 5. We know that NSD categories necessarily have complex entries in the S matrix in the

columns with NSD labels. We also know from the S matrix symmetries that complex conjugation

switches columns. Therefore, (23), (45) ∈ G or (45) ∈ G. Since the MTC is NI, the 0 label is not

fixed. I will choose the orbit of 0 to be the first k labels, where k is the size of the orbit. Under

these restrictions the possible Galois groups are the ones listed or are relabelings of the non-trivial
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SD objects.

□

Theorem 14. If C is a rank 6 NI-SD-MTC, then it has one of the following Galois Groups (up to

relabeling): ⟨(01234)⟩, ⟨(012345)⟩, ⟨(0123)⟩, ⟨(01)(23), (02)(13)⟩, ⟨(0123)(45)⟩, ⟨(01)(23)(45),

(02)(13)⟩, ⟨(012)⟩, ⟨(012), (345)⟩, ⟨(012)(345)⟩, ⟨(01), (2345)⟩, ⟨(01)(2345)⟩, ⟨(01), (23)(45),

(24)(35)⟩,

⟨(01)(23)(45), (24)(35)⟩, ⟨(01), (234)⟩, ⟨(01)(23)⟩, ⟨(01), (23)(45)⟩, ⟨(01)(23)(45)⟩, ⟨(01)(23),

(23)(45)⟩, or ⟨(01)⟩.

There is only one group each where the size of the orbit of the 0 label is 5 or 6, G = ⟨(01234)⟩

or ⟨(012345)⟩. If the size of the orbit of the 0 label is 4, then restricted to the orbit of the 0 label,

G = ⟨(0123)⟩ or ⟨(01)(23), (02)(13)⟩. From an earlier theorem, (45) /∈ G. So, when viewing the

action of G on all of the labels, G = ⟨(0123)(45)⟩ or ⟨(01)(23)(45), (02)(13)⟩.

If the size of the orbit of the 0 label is 3, and the size of the orbit of the 3 label is 1 or 3,

G = ⟨(012)⟩, ⟨(012), (345)⟩, or ⟨(012)(345)⟩. All groups with an orbit of size 3 for the 0 label and

2 for the 3 label will have a two-cycle that fixes 0. Therefore there are none.

Assume the orbit of the 0 label is {0, 1}. If the size of the orbit of the 2 label is 4, then

G = ⟨(01), (2345)⟩, ⟨(01)(2345)⟩, ⟨(01), (23)(45), (24)(35)⟩, or ⟨(01)(23)(45), (24)(35)⟩. If the

size of the 2 label is 3, then G = ⟨(01), (234)⟩. If the the size of the obrit of the 2 label is 2, then

G = ⟨(01)(23)⟩, ⟨(01), (23)(45)⟩, ⟨(01)(23)(45)⟩, or ⟨(01)(23), (23)(45)⟩. Finally that leaves

G = ⟨(01)⟩. □
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4. NON-INTEGRAL, NON-SELF-DUAL, MODULAR CATEGORIES

The remaining sections are heavy on computation. Here are some notes to help understand the

presented notes. In order to avoid confusion when looking at the factored Gröbner bases, I use

D for D2. In all groups, ϵ is the corresponding sign function for the indicated σ. If necessary,

δ is the corresponding sign function for the indicated τ . Also, ϵi = ϵ(i) to visually simplify the

results. I will also ti = θi to make the code easier to read and copy over. The first Gröbner basis

run (unless otherwise stated) is run with the ideal generated by the orthogonality and the twist

relations. The files for each computation and the output are available upon request. The code is

nearly identical for each group. The only differences being the slight changes in the initial data

(the ring, the S/T matrices, and occasionally an extra relation for the first Gröbner calculation) and

what new polynomial relations taken from the previous Gröbner basis run. All the code is run a

Macbook Pro using Macaulay2 v 1.8.2. A sample is found on the next page.

We first initialize the ploynomial ring over the rational numbers. Then we define S. The A

matrix is S̄. Thus, S ∗ A = W is, SS̄ = D2Id, the orthogonality relations. We definte T . In

this sample, we included some additional relations, f1 and f2, that are included in the first GBA.

These were relations we were able to deduce before running the GBA the first time. Next comes the

definition of the first ideal and the first Grobner calculation. After the Grobner calculation we have

the program output the factored bases in a visually readable format. In particular we added a flag

that can be searched for when a polynomial has at least two factors. For every factor after the first

one, && is outputted. The polynomials that factor are the most common source of contradictions,

as it happened in the sample code. But as shown in the naive flowchart in the introduction, they

can give new relations too. In that case, we label each new relation hk for some integer k, starting

at 1. Then a second ideal would be constructed, I2 = I1 + ideal(h1 . . . hk), and the GBA run again.

Theorem 15. There are no rank 6 NSD-NI-MTC’s with (01) ∈ G.

Proof Given theorems 9 and 10, we know that if ϵi ̸= ϵj for 2 ≤ i, j ≤ 5 then Sij = 0. We
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Figure 4.1: Sample Code
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also know that at least one pair must exist. The three S-matrices below represent all the possible

choices (up to relabelings) for ϵi ̸= ϵj given the MTC is NSD (recall ϵi = ϵi∗). In all three cases

we also know that t1 = 1.

S1 =



1 d1 d2 d2 d4 d4

d1 1 d2 d2 −d4 −d4

d2 d2 a1 a2 0 0

d2 d2 a2 a1 0 0

d4 −d4 0 0 b1 b2

d4 −d4 0 0 b2 b1


S1 is the only possible matrix for two pair of NSD objects. We can assume that both t2 and t4

are primitive 4th roots of unity, i.e. t22 + 1 = t24 + 1 = 0.

S2 =



1 d1 d2 d3 d4 d4

d1 1 ϵ0ϵ2d2 ϵ0ϵ3d3 ϵ0ϵ4d4 ϵ0ϵ4d4

d2 ϵ0ϵ2d2 a1 a2 0 0

d3 ϵ0ϵ3d3 a2 a3 0 0

d4 ϵ0ϵ4d4 0 0 b1 b2

d4 ϵ0ϵ4d4 0 0 b2 b1


S2 assumes that 4∗ = 5 and that ϵ2 = ϵ3 ̸= ϵ4. We can then assume that t24 + 1 = 0.

S3 =



1 d1 d2 d3 d4 d4

d1 1 ϵ0ϵ2d2 ϵ0ϵ3d3 ϵ0ϵ4d4 ϵ0ϵ4d4

d2 ϵ0ϵ2d2 z1d2 0 0 0

d3 ϵ0ϵ3d3 0 z2d3 z3d4 z3d4

d4 ϵ0ϵ4d4 0 z4d3 b1 b2

d4 ϵ0ϵ4d4 0 z4d4 b2 b1


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S3 assumes that 4∗ = 5 and that ϵ2 ̸= ϵ3 = ϵ4. We can then assume that t22 + t2 + 1 = 0.

Observe, S43 = S4∗3 = S53 and S43 = S34. Therefore, z3d4 = z4d3.

Table 4.1 gives the details of each GBA calculation for S − 1, S − 2, and S − 3. Let, e = ϵ0ϵ2.

Table 4.1: (01)

Step: Zero Factor

S1-1 N/A

Contradiction: Empty Variety

S2-1 pD

Contradiction: p,D ̸= 0

S3-1 p2 +D

d2z1 − d1e+ 1

z21 − 1

Deduction 1 z1 − e = 0

S3-2 2pt2 − 3d2e+ p

2d2t2 + pe+ d2

d3z2 + 2d4z4 + d2e+ 2

S3-3 pt34 − a1 + a2

Deduction 2 (a1 − a2)
2 −D = 0

S3-4 D

Contradiction: D ̸= 0

Note that since columns 2-5 all have a 0, we can assume the FPcol is the 0 column and therefore,

di ≥ 1 for all i ∈ ΠC .

Deduction 1: If z1 ̸= e then ±(d2 + d1) = ±1. But since both d1 and d2 are ≥ 1, this is a

contradiction. Therefore z1 = e.
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Deduction 2: ||p|| = D =⇒ ||pt4|| = D =⇒ ||a2 − a1|| = D =⇒ (a1 − a2)
2 −D = 0 □

Theorem 16. There is no rank 6 NI-NSD-MTC associated with G = ⟨(01)(2435)⟩

Proof If σ = (01)(2435), observe, S02 = ϵ1ϵ2S15 = ϵ1ϵ2ϵ1ϵ4S03 =⇒ ϵ0ϵ1ϵ2ϵ4 = 1.

1) ϵ0 = ϵ1 = ϵ2 = ϵ4 2) ϵ0 = ϵ1 ̸= ϵ2 = ϵ4

3) ϵ0 = ϵ2 ̸= ϵ1 = ϵ4 4) ϵ0 = ϵ4 ̸= ϵ1 = ϵ2

S =



1 d1 d2 d2 d4 d4

d1 ϵ0ϵ1 ϵ1ϵ4d4 ϵ1ϵ4d4 ϵ1ϵ2d2 ϵ1ϵ2d2

d2 ϵ1ϵ4d4 a1 a2 c1 c2

d2 ϵ1ϵ4d4 a2 a1 c2 c1

d4 ϵ1ϵ2d2 c1 c2 ϵ2ϵ4a2 ϵ2ϵ4a1

d4 ϵ1ϵ2d2 c2 c1 ϵ2ϵ4a1 ϵ2ϵ4a2


Case 1 fails as it often will, 0 = S0 · S1 is a sum of positive real numbers (Si is the ith column

of S). Since columns 2 through 5 have complex numbers we know that column 0 or column 1 is

the FPcol. We can always assume the FPcol is another column in the same orbit under the action

of G, i.e. we can assume that the FPcol is column 0. In case 2, S0 · S1 implies, 1
2
= d2d4

d1
. But

this is a contradiction because d2d4
d1

is an integer based on the s-polynomial of d2. Then case 4 is a

relabeling of case 3.

After one run of the GBA, we get c1 − c2 = 0. The action of G on the eigenvalue matrix

says that c1
d2

7→ −a2
d4

7→ c2
d2

7→ −a1
d4

. Since c1 = c2 =⇒ a1 = a2. But then, c1 = c2 = c̄1 and

a1 = a2 = ā1 =⇒ S is real. All NSD-MTC have some non-real entries in S. □

Theorem 17. There is no rank 6 NI-NSD-MTC associated with G = ⟨(01)(23), (23)(45)⟩

Proof If σ = (01)(23), then ϵ0 = ϵ1. This leaves 4 sign choices.

1) ϵ0 = ϵ2 = ϵ4 2) ϵ0 = ϵ2 ̸= ϵ4 3) ϵ0 = ϵ4 ̸= ϵ2 4) ϵ0 ̸= ϵ2 = ϵ4
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S =



1 d1 d2 d2 d4 d4

d1 1 ϵ0ϵ2d2 ϵ0ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ4d4

d2 ϵ0ϵ2d2 a1 a2 a5 ϵ2ϵ4a5

d2 ϵ0ϵ2d2 a2 a1 ϵ2ϵ4a5 a5

d4 ϵ0ϵ4d4 a5 ϵ2ϵ4a5 a3 a4

d4 ϵ0ϵ4d4 ϵ2ϵ4a5 a5 a4 a3



Suppose sign choice 1 or 4 is true. Then orthogonality of the first two columns says that

±d1 =
d22
d1

+
d24
d1

. But by the s-polynomials of d2 and d4 we know that d22
d1

and d24
d1

are integers.

Therefore, d1 is an integer. Note that d1 maps to 1
d1

so, d1 = 1
d1

=⇒ d1 = ±1. Therefore d22
d1

and
d24
d1

are the same sign. But 1 is not a sum of two positive or two negative integers. Sign choice 3 is

a relabeling of sign choice 2.

Note that if a5 = 0, then the S-matrix is identical to S1 in theorem 13. That theorem was based

on theorem 15. The work for theorem 10 doesn’t require (01) ∈ G, but that the orbit of 0 is {0, 1}

and the existence of the appropriate 0’s. And, a5 = 0 gives us the needed 0’s for the results of

theorem 10 to still be true. So, the work done eliminating S1 holds here. Thus, we can assume

a5 ̸= 0. Table 4.2 gives the details of each GBA calculation for sign choice 2.
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Table 4.2: (01)(23),(23)(45)-2

Gröbner Basis Run Zero Factor

(01)(23),(23)(45)-2-1 a1 − a2 + a3 − a4

d1 − a3 − a4 − 1

d1 + a1 + a2 + 1

t1 − 1

(01)(23),(23)(45)-2-2 p2 −D

6a25 +D

(01)(23),(23)(45)-2-3 D − 5p+ 4

(01)(23),(23)(45)-2-4 p− 4

(t2 + 1)(t4 + 1)

(t24 − t4 + 1)(t4 + 1)

Deduction t4 + 1 = 0

(01)(23),(23)(45)-2-5 d2

Contradiction: d2 ̸= 0

Deduction: In the output of (01)(23),(23)(45)-2-4, many of the relevant polynomials had p− 1

as a factor. It’s always true that ||p||2 = D. Therefore, p − 1 = 0 =⇒ D − 1 = 0. But, since

only columns 0 and 1 have all real entries, the FPcol is either column 0 or 1. Since both are in the

same orbit, we may assume the FPcol is column 0 and therefore that di ≥ 1 =⇒ D ≥ 6. Thus,

p− 1 ̸= 0. If t4+1 ̸= 0 =⇒ t2+1 = t24− t4+1 = 0 =⇒ N = 6. But, G cannot be a subgroup

of Gal(QN/Q) for N = 2 or N = 6, as neither have a subgroup of order 4. □

Theorem 18. There is no rank 6 NI-NSD-MTC associated with G = ⟨(0213), (45)⟩.

Proof Let σ = (0213), then S04 = ϵ2ϵ4S24 = ϵ1ϵ2S14 = ϵ1ϵ2ϵ3ϵ4S34 = ϵ0ϵ1ϵ2ϵ3S04 =⇒

ϵ0ϵ1ϵ2ϵ3 = 1. This gives 8 sign choices.
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1) ϵ0 = ϵ1 = ϵ2 = ϵ3 = ϵ4 2) ϵ0 = ϵ1 = ϵ2 = ϵ3 ̸= ϵ4 3) ϵ0 = ϵ1 ̸= ϵ2 = ϵ3 = ϵ4

4) ϵ0 = ϵ1 = ϵ4 ̸= ϵ2 = ϵ3 5) ϵ0 = ϵ2 ̸= ϵ1 = ϵ3 = ϵ4 6) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3

7) ϵ0 = ϵ3 ̸= ϵ1 = ϵ2 = ϵ4 8) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2
Sign choices 1 and 2 give at least 2 columns with all positive entries. Choice 4 is a relabeling

of choice 3. Similarly, choice 8 is a relabeling of choice 7.

S =



1 d1 d2 d3 d4 d4

d1 1 ϵ0ϵ1d3 ϵ0ϵ1d2 ϵ1ϵ2d4 ϵ1ϵ2d4

d2 ϵ0ϵ1d3 ϵ0ϵ3d1 ϵ0ϵ2 ϵ2ϵ4d4 ϵ2ϵ4d4

d3 ϵ0ϵ1d2 ϵ0ϵ2 ϵ0ϵ3d1 ϵ0ϵ4d4 ϵ0ϵ4d4

d4 ϵ1ϵ2d4 ϵ2ϵ4d4 ϵ0ϵ4d4 a1 a2

d4 ϵ1ϵ2d4 ϵ2ϵ4d4 ϵ0ϵ4d4 a2 a1


The non-self-dual columns must contain some non-real entry. The self dual columns must

contain only real entries. Therefore, a1 and a2 are non-real. Tables 4.3, 4.4, 4.5, and 4.6 give the

details of each GBA calculation for sign choices 3, 5, 6, and 7 respectively.

Table 4.3: (0213),(45)-3

Gröbner Basis Run Zero Factor(s)

(0213),(45)-3-1 h1

(0213),(45)-3-2 h2, h3, h4

(0213),(45)-3-3 h5, h6

(0213),(45)-3-4 h7, h8, h9

(0213),(45)-3-5 d2 − d3 + a2

Contradiction: a2 is non-real
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Table 4.4: (0213),(45)-5

Gröbner Basis Run Zero Factor(s)

(0213),(45)-5-1 h1, . . . , h8

(0213),(45)-5-2 h9

(0213),(45)-5-3 d2 + d3 − a2

Contradiction: a2 is non-real

Table 4.5: (0213),(45)-6

Gröbner Basis Run Zero Factor(s)

(0213),(45)-6-1 h1, . . . , h10

(0213),(45)-6-2 h11

(0213),(45)-6-3 d2 + d3 + a2

Contradiction: a2 is real

Table 4.6: (0213),(45)-7

Gröbner Basis Run Zero Factor(s)

(0213),(45)-7-1 h1, . . . , h8

(0213),(45)-7-2 h9

(0213),(45)-7-3 h10, h11, h12

(0213),(45)-7-4 d2 − d3 + a2

Contradiction: a2 is non-real
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□

Theorem 19. There is no rank 6 NI-NSD-MTC associated with G = ⟨(01)(23), (02)(13), (45)⟩.

Proof Let σ = (01)(23) and τ = (02)(13). Then ϵ0 = ϵ1, ϵ2 = ϵ3, ϵ4 = ϵ5 and δ0 = δ2, δ1 =

δ3, δ4 = δ5. Note that

S03 = ϵ0ϵ2S12 = δ0δ1S21 =⇒ ϵ0ϵ2 = δ0δ1

.

S =



1 d1 d2 d3 d4 d4

d1 1 ϵ0ϵ2d3 ϵ0ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ4d4

d2 ϵ0ϵ2d3 1 ϵ0ϵ2 δ0δ4d4 δ0δ4d4

d3 ϵ0ϵ2d2 ϵ0ϵ2d1 1 ϵ0ϵ4δ1δ4d4 ϵ0ϵ4δ1δ4d4

d4 ϵ0ϵ4d4 δ0δ4d4 ϵ0ϵ4δ1δ4d4 a1 a2

d4 ϵ0ϵ4d4 δ0δ4d4 ϵ0ϵ4δ1δ4d4 a2 a1


This leaves 8 cases,

1) ϵ0 = ϵ2 = ϵ4 2) ϵ0 = ϵ2 = ϵ4 3) ϵ0 = ϵ2 ̸= ϵ4 4) ϵ0 = ϵ2 ̸= ϵ4

δ0 = δ1 = δ4 δ0 = δ1 ̸= δ4 δ0 = δ1 ̸= δ4 δ0 = δ1 = δ4

5) ϵ0 = ϵ4 ̸= ϵ2 6) ϵ0 = ϵ4 ̸= ϵ2 7) ϵ0 ̸= ϵ2 = ϵ4 8) ϵ0 ̸= ϵ2 = ϵ4

δ0 = δ4 ̸= δ1 δ0 ̸= δ1 = δ4 δ0 ̸= δ1 = δ4 δ0 = δ4 ̸= δ1
Since columns 4 and 5 must have non-real entries, the FPcol must be either 0,1,2 or 3. But they

share an orbit, so we may assume that the FPcol is column 0 and that di > 0 for all i. Cases 1-4

leave at least two columns with all positive entries, but this is only allowable for the FPcol. Cases

6 and 8 are relabelings of case 5.

Note, if d2 − 1 = 0, then d1 + d3 = 0, because −d3
d1

is a Galois conjugate of d2. But we can

assume that all di ≥ 1. Therefore d2 ̸= 1. Then, h2 = −D+(d3+1)2 and h3 = −D+(d2−1)2 =⇒

(d3 + 1)2 = (d2 − 1)2. But digeq1 =⇒ d3 + 1 = d2 − 1. Then h3 = d3 + 1 − d2 + 1 = 0. In
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sign choice 7, h1 + h3 = d1 − d3 = 0. But −d3
d1

= −1 is a Galois conjugate of d2. Tables 4.7 and

4.8 gives the details of each GBA calculation for sign choices 5 and 7 respectively.

Table 4.7: (01)(23),(02)(13),(45)-5

Gröbner Basis Run Zero Factor(s)

(01)(23),(02)(13),(45)-5-1 h1, h2

(d2− 1)(−D + (d2 − 1)2

Deduction h3 = 0

(01)(23),(02)(13),(45)-5-2 D

Contradiction: D ̸= 0

Table 4.8: (01)(23),(02)(13),(45)-7

Gröbner Basis Run Zero Factor (s)

(01)(23),(02)(13),(45)-7-1 h1, h2

(01)(23),(02)(13),(45)-7-2 h3

Deduction d2 + 1 = 0

Contradiction: d2 > 0

□

Theorem 20. There is no rank 6 NI-NSD-MTC associated with G = ⟨(012), (45)⟩.

Proof We know that ϵ0 = ϵ2 ̸= ϵ1 = ϵ4. So,
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S =



1 d1 d2 d3 d4 d4

d1 −d2 −1 d3 d4 d4

d2 −1 d1 −d3 −d4 −d4

d3 d3 −d3 z1d3 z2d4 z2d4

d4 d4 −d4 z3d3 a1 a2

d4 d4 −d4 z3d3 a2 a1



One run of the GBA yields, t3 − t4 = 0. Adding that relation and running the GBA one more

time yields, d4z3 − a1 = 0. But that forces a1 to be real and it must be non-real. □.

Theorem 21. There is no rank 6 NI-NSD-MTC associated with G = ⟨(01)(23), (45)⟩.

Proof Let σ = (01)(23). Since σ2 = Id and σ fixes labels 4 and 5, ϵ0 = ϵ1 and ϵ2 = ϵ3. Since

4∗ = 5, ϵ4 = ϵ5. This gives 4 sign choices,

1) ϵ0 = ϵ2 = ϵ4 2) ϵ0 = ϵ2 ̸= ϵ4 3) ϵ0 ̸= ϵ2 = ϵ4 4) ϵ0 = ϵ4 ̸= ϵ2

S =



1 d1 d2 d3 d4 d4

d1 1 ϵ0ϵ2d3 ϵ0ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ4d4

d2 ϵ0ϵ2d3 a1 a2 a3 a3

d3 ϵ0ϵ2d2 a2 a1 ϵ2ϵ4a3 ϵ2ϵ4a3

d4 ϵ0ϵ4d4 a3 ϵ2ϵ4a3 a4 a5

d4 ϵ0ϵ4d4 a3 ϵ2ϵ4a3 a5 a4


In case 1, there will always be at least two columns that are all positive or all negative. We

cannot assume that the FPcol is column 0. However, we can assume it’s either column 0 or column

2. If it’s column 0, then both column and 0 and column 1 are all positive and 0 = S0 · S1 is

therefore a sum of positive real numbers. If the FPcol is column 2, then column 2 is entirely

positive or negative. But column three has the same entries but in a different order. In either choice
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(±), 0 = S2 · S3 is a sum of positive real numbers.

In all three remaining cases we’ll show that 1, t1, t2, t3, and t4 are all distinct, and that t1 + 1

and t2 + t3 are not both 0 at the same time. This is enough, but we’ll need some results from the

next section to say why.

In all cases we suppose t1 − 1 = 0. This is the most difficult case to eliminate. Progressing

through successive runs of the GBA often yields products such as, (t2 − t3)(d2z2 − d3z3) = 0 (z2

and z3 are the coefficients of the s-polynomial of d3). Supposing that t2 − t3 = 0 eventually yields

that the category must be integral. Therefore we assume d2z2 − d3z3 = 0. In sign choice 3 such

products were encountered. Sign choices 3 and 4 had 2 each. After each of those it was much

more straight forward. If t2 − 1 = t3 − t1 = 0, then in three runs of the GBA we get pD = 0. If

t2 − t3 = 0 we get a contradiction in two runs of the GBA. Since we’re free to switch the labels

2 and 3, This shows that 1, t1, t2, t3, t4 are distinct. Next suppose t1 + 1 = t2 + t3 = 0. Then, the

GBA immediately yields that p = 0. This is indeed enough to show there are no NI-NSD-MTC of

rank 6 with Galois group ⟨(01)(23), (45)⟩, however we need the results from theorems 25 and 26

to prove it. □
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5. NON-INTEGRAL, SELF-DUAL, MODULAR CATEGORIES

5.1 REPRESENTATION THEORY

Often the orthogonality and twist relations aren’t enough. But there is a way to deduce a set of

possible relations on the entries of the T matrix through modular representations. As an abstract

group, SL(2,Z) ∼= ⟨s, t | s4 = 1, (st)3 = s2⟩. The standard choice is,

s :=

0 −1

1 0

 and t :=

1 1

0 1


If (S, T ) are the modular data of a category, C, then let η : GL(ΠC,C) → PGL(ΠC,C) be

the natural surjection. Then, ρ̄(s) = η(S) and ρ̄(t) = η(T ) defines a projective representation of

SL(2,Z).

Definition 6. A modular representation, ρ : GL(ΠC,C) → GL(ΠC,C), is a representation of

SL(2,Z) such that, ¯rho = η ◦ ρ. We call (s, t), where s = ρ(s) and t = ρ(t) a normalized

modular pair. [2]

Modular representations do exist, [9] gives a construction. Moreover, they construct the com-

plete set. In any modular representation, t 7→ x
ζ
T , where x12 = 1 and ζ6 = p+

p−
=⇒ x

ζ
is a root of

unity. Therefore, t = ρ(t) = γT for some root of unity γ.

Theorem 22. Let C be a modular category of rank r, with T -matrix of order N . Suppose (s, t) is

normalized modular pair of C. Set t = (δijti) and n = ord(t). Then,

(a) N | n | 12N and s, t ∈ Glr(Qn). Moreover,

(b) (Galois Symmetry) for σ ∈ Gal(Qn/Q), σ2(ti) = tσ(i) [2]

Here we begin to see where we can get information about T . The next theorem will tell us why,

but it’s very useful to simply know which entries of T are distinct. And since t = γT , if the entries

of t are distinct then so are the entries of T .
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Theorem 23. Let C be a modular category of rank, r, and ρ : SL(2,Z) → GL(r,C) a modular

representation of C. Then ρ cannot be isomorphic to a direct sum of two representations wit disjoint

t-spectra. [2]

Now we see that whether the entries of T overlap affects the structure of a modular representa-

tion. But the entries of T don’t just affect the structure of the representation in that way, the order

of the T matrix also has an important impact.

Theorem 24. Let (S, T ) be the modular data of the modular category C with N = ord(T ). Then

N is minimal such that the projective representation ρ̄C of SL(2,Z) associated with the modular

data can be factored through SL(2,Z/NZ). [2]

A lot is known about SL(2,Z/pλZ) representations in low rank. In fact usually the t-spectra

is known for all representations when p and r and small enough. The t-spectra may be known,

but we cannot make any immediate assumptions about the ordering, i.e. we will not know which

element of the spectra is t0. Note that since T0 = 1, then clearly t0 = γ. Fortunately, while we

may not be able to deduce exactly what any particular entry of T is, we can deduce some relations

on T , that may or may not depend on which element is γ.

Sometimes, we will not directly appeal to a particular representation. Eholzer who has com-

piled most of the relevant t-spectra in various tables in [10] and [11]. Bruillard, Ng, Rowell, and

Wang have taken parts of Eholzer’s tables and condensed them into a very helpful and more ex-

plicit list in [2]. Most helpful though is Eholzer’s table 12 in [11]. In it are the all simple and

non-degenerate strong fusion algebras. For this thesis this means that if a group has completely

disjoin t-spectra (this is the non-degeneracy condition) and also that we can show it isn’t the Galois

group of a product category that’s enough.

To apply these theorems, we first determine how the T spectra may overlap based on Galois

symmetry. For example, if σ = (01)(23) and θ0 = θ2, then Galois symmetry says that θ1 = θ3.

We try to eliminate cases with the most overlap first. Usually there’s a very small number of them

and one or two runs of the GBA is enough to find a contradiction. In most cases we will be able
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to conclude there is exactly k pairs of i, j such that θi = θj and i ̸= j, and then draw strong

conclusions about the number of possible direct summands of ρ. Recall that G is a subgroup of

Gal(QN/Q) and that Gal(QN/Q)/G ∼= (Z/2Z)k for some integer k. This severely restricts the

possible values of N and n. Then we must use the known representations to attempt to piece

together the possible t-spectras of ρ. For shorthand, we’ll use the dimension to represent the

subrepresentations. For example a 6 dimensional representation may break down as a direct sum

of two subrepresentations in the following ways, 1 ⊕ 5, 2 ⊕ 4, and 3 ⊕ 3. But remember the

subrepresentations must be factored to get to the Z/pλZ irreducible representations. This means

that 2⊕ 4 might break down as a 2⊕ 2⊗ 2. If we find a combination of irreducible representations

that meet all the criteria, we then deduce whatever relations on the t-spectra we can and add them

the GBA. If we do not find a combination, then we have the contradiction we need to eliminate the

group.

Lemma 25. If n divides 48, and σ ∈ Gal(Qn/Q) such that σ has order 4. Then for any primitive

16th or 48th root of unity, ζ ∈ Qn, σ2(ζ) = ±ζ .

Proof: Let σ, τ ∈ Gal(Qn,Q) ∼= (Z/2Z)kn ⊕ Z/4Z, where k16 = 1 and k48 = 2. Suppose

both σ and τ are of order 4, then when viewed under the isomorphism, it’s clear that σ2 = τ 2.

To prove the lemma, we need only prove it’s true for one element of order 4. Moreover, suppose

that σ2(ζn) = −ζn, where ζn = e2πi/n. Then note that all other primitive nth roots of unity are

odd powers of ζn. Therefore, σ2(ζ2l+1
n ) = (−1)2l+1ζ2l+1

n = −ζ2l+1
n . So, we need only show that

for one σ, σ2(ζn) = −ζn. If n = 16, then let σ(ζ16) = ζ316 =⇒ σ2(ζ16) = ζ916 = −ζ16.

Such a σ exists because ζ316 is also a primitive 16th root of unity. Similarly, if n = 48, then let

σ(ζ48) = ζ548 =⇒ σ2(ζ48) = ζ2548 = −ζ48. □

Lemma 26. If 5 divides n and 16 does not and there are at most two pair of identical ti, then

1) The reduced and factored of any modular representation must fit the following dimensions,

ρ = 6, 1⊕ 5, 2⊕ 4, 2⊕ 2⊗ 2, 1⊕ 1⊕ 4, 1⊕ 1⊕ 2⊗ 2, or 3⊕ 3.

2) If ρ = 6 or 1⊕ 5, then the t-spectra = α⊗ {1, 1, ζ5, ζ45 , ζ25 , ζ35}
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3) If ρ = 2⊕ 4 or 1⊕ 1⊕ 4, then the t-spectra = α⊗ {ζ5, ζ45 , ζ5, ζ45 , ζ25 , ζ35}

4) If ρ = 2⊕2⊗2 or 1⊕1⊕2⊗2, then the t-spectra = α⊗{α1ζ5, α1ζ
4
5 , α1ζ5, α1ζ

4
5 , α2ζ5, α2ζ

4
5}.

5) If ρ = 3⊕ 3, then the t-spectra is the same as 1) or the t-spectra = α⊗ {1, 1, α1, α2, ζ5, ζ
4
5}

Where, ζ5 is any primitive 5th root of unity, α is some unknown 24th root of unity, and α1, α2

are both a, 2nd, 3rd, 4th, or 8th root of unity.

Proof: The first point follows immediately from theorem 5.3. There are at most 3 possible

summands of ρ when reduced. Otherwise, we could group them in such away to have rho as the

direct summand of two subrepresentations without overlapping t-spectra. As a reminder, 2 ⊗ 2 is

a 4 dimensional representation, that has been factored into two different prime powers. In all the

cases listed in point 1, there could be other 1 dimensional factors. Those have been left off for

simplicity, as the restriction on overlapping t-spectra from theorem 5.3 almost always forces them

to be removed when factoring γ out of the t-spectra to get the T -spectra.

To work on the remaining points, we need to note that if ζ5 appears anywhere then a corre-

sponding ζ45 must appear. This is true because of Galois symmetry. Let σ ∈ Gal(Qn/Q) such that

σ has order 4. Then if ζ5 appears σ2(ζ5) = ζ45 must appear in a similar manner, i.e. if αζ5 is in the

t-spectra, then αζ45 must be too. For simplicity we’ll use ζ5 and ζ45 unless we need to distinguish

two different pairs of 5th roots. Finally, since 5 divides n, one such pair exist, i.e. we only consider

the representations of dimension greater than 1. Then by [10], the possible order representations

are, {ζ5, ζ45}, {1, ζ5, ζ45}, {ζ5, ζ45ζ25 , ζ35}, {1, ζ5, ζ45 , ζ25 , ζ35}, and {1, 1, ζ5, ζ45 , ζ25 , ζ35}.

The points then follow from combining these representations in all allowable ways. Note that

for 2 ⊗ 2, this must break down as {α1, α2} ⊗ {ζ5, ζ45}, where α1 and α2 are both prime power

roots of unity. For example they couldn’t be primitive 6th roots of unity. But α could be a primitive

6th root since it could be a product of multiple different 1 dimensional factors. However, that will

have no affect on the T -matrix as it will be factored out with γ.

It may appear that we left off one possibility, 2⊕2⊕2. A priori, this is a possible decomposition

of ρ with the assumed overlap in the t-spectra. However, ζ5 and ζ45 are forced to appear in all three

summands. This forces the t-spectra to have 3 identical pairs of γti’s. □
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5.2 NON-SELF-DUAL

Proof of Theorem 19 continued:

We can now finish off the proof of theorem 19. We know that 1, t1, t2, t3, t4 are distinct. Galois

symmetry tells us that we have some element of order 4 in Gal(Qn/Q) and that’s the exponent

of the group. Cyclotomic extensions are well known. The only cyclotomic Galois groups with

elements of order 4 and no higher, means either 5 or 16 divides n. We also know that all elements

of order 4 are liftings of σ = (01)(23). If both 5 and 16 divide n the corresponding elements of

order 4 would act differently on the t spectra. This forces only 5 or 16 not both to divide n. If 16

divides n, then by lemma 25 and Galois symmetry, t1+1 = t2+ t3 = 0. We’ve already eliminated

that case. Looking at lemma 26, specifically the ones with at most 1 pair of identical ti, we see that

either N = 5 or the t-spectra is {1, 1, α1, α2, ζ5, ζ
4
5}. Suppose N = 5. Observe that Gal(QN/Q)

has no subgroup isomorphic to Z/2Z× Z/2Z. Then suppose the t-spectra is {1, 1, α1, α2, ζ5, ζ
4
5}.

Let Σ be a lifting of σ = (01)(23). Since t1 ̸= 1 and t2 ̸= t3, Σ2 moves γ, γt1, γt2, and γt3. But,

all elements squared will fix, 1, 1, α1, and α2. Therefore the Galois symmetry doesn’t lineup. And

5 can’t divide n either. □

Theorem 27. All rank 6 non-integral, non-self-dual categories are product categories.

Proof Already shown, all rank 6 NI-NSD-MTC, have ⟨(01)(24)(35), (23)(45)⟩ as their Galois

group up to a relabeling of the classes of simple objects. Let σ = (01)(24)(35)⟩.

S =



1 d1 d2 d2 d4 d4

d1 ϵ0ϵ1 ϵ1ϵ4d4 ϵ1ϵ4d4 ϵ1ϵ2d2 ϵ1ϵ2d2

d2 ϵ1ϵ4d4 a1 a2 a3 a4

d2 ϵ1ϵ4d4 a2 a1 a4 a3

d4 ϵ1ϵ2d2 a3 a4 ϵ2ϵ4a1 ϵ2ϵ4a2

d4 ϵ1ϵ2d2 a4 a3 ϵ2ϵ4a2 ϵ2ϵ4a1


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Observe that S02 = ϵ1ϵ2S14 = ϵ1ϵ2ϵ0ϵ4S02. Therefore, ϵ0ϵ1ϵ2ϵ4 = 1. Suppose ϵ0 = ϵ1 =⇒

ϵ2 = ϵ4. Then check orthogonality of the first two columns to see that, 2d1 + ϵ0ϵ24d2d4 = 0 =⇒
−ϵ0ϵ2

2
= d2d4

d1
∈ Z by the s-polynomial of d2. Thus we get that ϵ0 ̸= ϵ1 and ϵ2 ̸= ϵ4.Since we can

relabel the dual pairs, 2 7→ 4 and 3 7→ 5, we can suppose ϵ4 = ϵ0.

The typical GBA is not immediately helpful. So we need to try to understand the entries of the

T matrix in order to apply the representation theory theorems. To that end we need to show that,

1, t1, t2, and t4 are distinct.

Suppose, t1− 1 = 0 then one run of the GBA yields pD = 0. Let t2− 1 = 0 =⇒ t4− t1 = 0.

Then the GBA yields t24 − 1 = 0 =⇒ N = 1 or 2 (Galois Symmetry). Let t4 − 1 = 0 =⇒

t2 − t1 = 0. The GBA then yields t22 − 1 = 0, again N = 1 or 2. Let t2 − t4 = 0. The GBA

yields, t1 − 1 = 0, but we’ve already shown that doesn’t happen. Therefore, 5 or 16 divide n but

not both and there at most 2 pair of identical ti. Suppose 16 divides n. Then, t1 +1 = t2 + t4 = 0.

After two runs of the GBA, we get t34 − a1 − a2 = 0 =⇒ t34 s real. Then N is 2 or 6. But then

Gal(QNQ) would not have a subgroup of order 4. Thus, 5 divides n.

We use the possible t-spectra from lemma 26, α⊗ {ζ5, ζ45 , ζ5,ζ45 , ζ
2
5 , ζ

3
5} and α⊗ {α1ζ5, α1ζ

4
5 ,

α1ζ5, α1ζ
4
5 , α2ζ5, α2ζ

4
5}. These are the only two that have two pair of identical ti.

Suppose the t-spectra is α⊗{ζ5, ζ45 , ζ5, ζ45 , ζ25 , ζ35}. Then the T -spectra is {1, ζ5, ζ25 , ζ25 , ζ45 , ζ45}.

Then, t41 + t31 + t21 + t1 + 1 = (t21 − t2)(t21 − t4) = (t22 − t4)(t
2
4 − t2) = 0. In both the products the

factors on the left occur at the same time as do the factors on the right. In either case, one run of

the GBA yields, p = 0.

Suppose the t-spectra is α⊗{α1ζ5, α1ζ
4
5 , α1ζ5, α1ζ

4
5 , α2ζ5, α2ζ

4
5}. Then the T -spectra is {1, ζ35 ,

β, β, βζ35 , βζ
3
5}, where β = α1/α2. Then, t41 + t31 + t21 + t1 + 1 = (t2t1 − t4)(t4t1 − t2) = 0. Note

that α1 and α2 came from the same prime power representation. Therefore β is a primitive 2nd,

3rd, 4th or 8th root of unity.

Let t4t1 − t2 = 0. Since t4 = β, (t4 + 1)(t24 + 1)(t24 + t4 + 1)(t44 + 1) = 0. If t4 + 1 = 0

or t24 + 1 = 0, one run of the GBA yields p = 0. If t24 + t4 + 1 = 0, two runs of the GBA yield,

d4−1 = 0. But then d2 = −d1. Since columns 2 through 5 necessarily have some non-real entries,
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we can assume the FPcol is column 0 and that di > 0 for all i. If t44 + 1 = 0, then two runs of the

GBA yields an empty variety.

Now, let t2t1 − t4 = 0. We do the same process. Start with t2 + 1 = 0 and t22 + 1 = 0. Both

immediately give p = 0. If t42 + 1 = 0, then two runs of the GBA returns an empty variety. Let

t22 + t2 + 1 = 0. Two runs of the GBA yield d2 − 1 = 0 =⇒ d4 − d1 = 0 and also that t2 = a1.

This is enough to fill out the entire S-matrix. The missing elements at this point are a3 and a4.

But Galois actions on the eigenvalue matrix fill that in for us. Note, that s42 = a3 because d2 = 1.

Adding in the coefficients of the s-polynomial for d1 returns d21 ± d1 − 1 = 0. But since we can

assume that d1 ≥ 0, we can assume d1 is the golden ratio. Then, σ we can tell sends ϕ to −1/ϕ,

where ϕ is the golden ratio. Observer that σ(a3) = −t2
ϕ

=⇒ a3 = ϕt2. And similarly a4 = ϕt̄2.

Without loss of generality,

S =



1 ϕ 1 1 ϕ ϕ

ϕ −1 ϕ ϕ −1 −1

1 ϕ t2 t̄2 ϕt2 ϕt̄2

1 ϕ t̄2 t2 ϕt̄2 ϕt2

ϕ −1 ϕt2 ϕt̄2 t2 t̄2

ϕ −1 ϕt̄2 ϕt2 t̄2 t2


Since the submatrix associated with the pointed subcategory is invertible, it is a modular sub-

category and hence is a product of the modular data of Fibonocci MTC and the Z3 MTC [12].

Descriptions of those categories can be found in [7] □

5.3 SELF DUAL

Lemma 28. Let C be a rank NI-SD-MTC. If C is a product category, then without loss of generality

the Galois group is one of ⟨(01)(23)⟩, ⟨(01)(23)(45), (02)(13)⟩, ⟨(012)(345)⟩, or ⟨(012345)⟩.

Proof: In [7], Rowell, Strong, and Wang classify all MTC’s up to rank 4. If C is a product

category, then it must be a product of a 2 dimenstional and a 3 dimensional category. It should be

clear that both products must be SD, otherwise the S matrix will have non-real entries and therefore
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C would be NSD. The 2 dimensional categories given in [7] are the Semion, and Fibonacci. Both

are SD. The 3 dimensional SD categories are Ising, (A1, 2), and (A1, 5) 1
2
. The S matrix is the same

for both Ising and (A1, 2). This means the products will yield the same Galois groups. We only

need to consider the products of Semion/Fibonacci and Ising/(A1, 5) 1
2
.

Semion ⊗ Ising gives ⟨(01)(23)⟩. Semion ⊗ (A1, 5) 1
2

gives ⟨(012)(345)⟩. Fibonacci ⊗ Ising

gives ⟨(01)(23)(45), (02)(13)⟩. Lastly, Fibonacci ⊗ (A1, 5) 1
2

gives ⟨(012345)⟩. □

Theorem 29. There is no rank 6 NI-SD-MTC associated with G = ⟨(0123)⟩.

Proof: Let σ = (0123). Then,

S04 = ϵ1ϵ4S14 = ϵ1ϵ2S24 = ϵ1ϵ2ϵ3ϵ4S34 = ϵ1ϵ2ϵ3ϵ0S04 =⇒ ϵ1ϵ2ϵ3ϵ0 = 1

But,
∏

ϵi = −1 =⇒ ϵ4 ̸= ϵ5 =⇒ S45 = ϵ4ϵ5S45 =⇒ S45 = 0. WLOG, ϵ4 = ϵ0. This gives

4 sign choices,

1) ϵ0 = ϵ1 = ϵ2 = ϵ3 = ϵ4 ̸= ϵ5 2) ϵ0 = ϵ1 = ϵ4 ̸= ϵ2 = ϵ3 = ϵ5

3) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3 = ϵ5 4) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2 = ϵ5

S =



1 d1 d2 d3 d4 d5

d1 ϵ1ϵ2d2 ϵ1ϵ3d3 ϵ0ϵ1 ϵ1ϵ4d4 ϵ1ϵ5d5

d2 ϵ1ϵ3d3 1 ϵ0ϵ2d1 ϵ1ϵ2d4 ϵ1ϵ2d5

d3 ϵ0ϵ1 ϵ0ϵ2d1 ϵ1ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ5d5

d4 ϵ1ϵ4d4 ϵ1ϵ2d4 ϵ0ϵ4d4 a1 0

d5 ϵ1ϵ5d5 ϵ1ϵ2d5 ϵ0ϵ5d5 0 a2


The FPcol cannot be column 4 or 5 since both have 0’s. The other four columns share an orbit

so we may assume that the FPcol is column 0 and di > 0 for all i. In choice 1, 0 = S0 ·S2 is a sum

of positive real numbers.

Note that Galois symmetry implies that if t3 − 1 = 0 or t2 − t3 = 0, then t1, t2, t3 = 1. Each

sign choice requires the same deduction, namely after a series of runs of the GBA, the polynomial,
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(t3 − 1)(t3 − t2)(t2 +1) appears. The first two factors always occur at the same time as previously

stated. They all lead to the same contradiction, therefore, t2 + 1 = 0 and by Galois symmetry,

t1 + t3 = 0 as well.

In all three sign choices, after the 4th run of the GBA, it’s shown that a1 = a2 = 0. Then

Orthogonality relations show 4d24 = 4d25 = D. But, since di > 0 =⇒ d4 = d5. Therefore they

should have the same Galois Conjugates in the same order in the eigenvalue matrix. In choice 2,

the first Galois conjugates for d4 and d5 respectively are d4
d1

and −d5
d1

. In choice 3, the corresponding

ones are −d4
d1

and d5
d1

. Finally in case 4, −d4
d1

and d5
d1

. □

Theorem 30. There is no rank 6 NI-SD-MTC associated with G = ⟨(01234)⟩.

Proof: If ti = tj for any i ̸= j =⇒ ti = 1 for all 0 ≤ i < 5. If t5 = ti for any

i ̸= 5 =⇒ ti = 1 for all i.So, assume ti = 1 for all 0 ≤ i < 5. Finding a contradiction for this

is enough to show all ti are distinct. Let σ = (01234). Also note that if σ = (01234),
∏

ϵi = 1.

Then,

S =



1 d1 d2 d3 d4 d5

d1 ϵ1ϵ2d2 ϵ1ϵ3d3 ϵ1ϵ4d4 ϵ0ϵ1 ϵ1ϵ5d5

d2 ϵ1ϵ3d3 ϵ0ϵ5d4 ϵ3ϵ5 ϵ0ϵ2d1 ϵ1ϵ2d5

d3 ϵ1ϵ4d4 ϵ3ϵ5 ϵ1ϵ5d1 ϵ0ϵ3d2 ϵ0ϵ4d5

d4 ϵ0ϵ1 ϵ0ϵ2d1 ϵ0ϵ3d2 ϵ0ϵ4d3 ϵ0ϵ5d5

d5 ϵ1ϵ5d5 ϵ1ϵ2d5 ϵ0ϵ4d5 ϵ0ϵ5d5 zd5



But after one run of the GBA, we get that p = 0. Therefore all ti are distinct. Since they are all

distinct, this group cannot yield a modular category. By lemma this is not a product category. So if

there is any MTC, C, with Galois group ⟨(01234)⟩, it will be nondegenerate and prime. According

to [11] the only strong modular fusion algebra of dimension 6 described in table 12 is of level 9.

But, Gal(Q9/Q) doesn’t have a subgroup of order 5. □
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Theorem 31. There is no rank 6 NI-SD-MTC associated with G = ⟨(01)(2345)⟩.

Proof: Let σ = (01)(2345). Then, S02 = ϵ1ϵ2S15 = ϵ0ϵ1ϵ2ϵ5S04 = ϵ0ϵ2ϵ4ϵ5S13 = ϵ2ϵ3ϵ4ϵ5S02 =⇒

ϵ2ϵ3ϵ4ϵ5 = 1. But,
∏

ϵi = 1 =⇒ ϵ0 = ϵ1. This gives,

S =



1 d1 · · ·

d1 1

d2 ϵ0ϵ3d3

d3 ϵ0ϵ3d2

ϵ2ϵ5d2 ϵ0ϵ4d3

ϵ2ϵ3d3 ϵ0ϵ2d2 · · ·



Now, orthogonality of the first two columns gives, 0 = 2d1 + 4ϵ0ϵ3d2d3, or −ϵ0ϵ3
2

= d2d3
d1

. But,

d2d3
d1

is an integer. □

Theorem 32. There is no rank 6 NI-SD-MTC associated with G = ⟨(01)(23), (23)(45)⟩.

Proof: Let σ = (01)(23) and τ = (23)(45). Then ϵ0 = ϵ1, ϵ2 = ϵ3, δ2 = δ3, and δ4 = δ5. But,∏
ϵi =

∏
δi = 1 =⇒ ϵ4 = ϵ5 and δ0 = δ1.

Then,

S =



1 d1 d2 δ0δ2d2 d4 δ0δ4d4

d1 1 ϵ0ϵ2δ0δ2d2 ϵ0ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ4δ0δ4d4

d2 ϵ0ϵ2δ0δ2d2 a1 a2 a3 ϵ2ϵ4δ2δ4a3

δ0δ2d2 ϵ0ϵ2d2 a2 a1 ϵ2ϵ4a3 δ2δ4a3

d4 ϵ0ϵ4d4 a3 ϵ2ϵ4a3 a4 a5

δ0δ4d4 ϵ0ϵ4δ0δ4d4 ϵ2ϵ4δ2δ4a3 δ2δ4a3 a5 a4


Orthoganaility of column 0 and column 1 give, −1 =

d22
d1
ϵ0ϵ2δ0δ2 +

d24
d1
ϵ0ϵ4. But d22

d1
and d24

d1
are

integers with the same sign. Therefore, ϵ0ϵ2δ0δ2 ̸= ϵ0ϵ4 =⇒ ϵ2ϵ4 ̸= δ0δ2.This leaves 8 sign
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choices.
1) ϵ0 = ϵ2 = ϵ4 2) ϵ0 = ϵ2 = ϵ4 3) ϵ0 = ϵ2 ̸= ϵ4 4) ϵ0 = ϵ2 ̸= ϵ4

δ0 = δ4 ̸= δ2 δ0 ̸= δ2 = δ4 δ0 = δ2 = δ4 δ0 = δ2 ̸= δ4

5) ϵ0 = ϵ4 ̸= ϵ2 6) ϵ0 = ϵ4 ̸= ϵ2 7) ϵ0 ̸= ϵ2 = ϵ4 8) ϵ0 ̸= ϵ2 = ϵ4

δ0 = δ2 = δ4 δ0 = δ2 ̸= δ4 δ0 = δ4 ̸= δ2 δ0 ̸= δ2 = δ4
Choices 4, 8, 5 and 7 are relabelings of choices 1, 2, 3, and 6 respectively. Sign choice 6 does

not have a column that can be all positive or all negative. Sign choices 1 and 2 have positive d2

and negative d2 in columns 0 through 3. Therefore none of those columns be entirely positive or

entirely negative. The FPcol, must be either column 4 or 5. Either way, a3 can’t be 0. In sign choice

3 the reverse is true. Both positive and negative a3 appear in columns 2 through 5. Therefore we

can assume the FPcol is column 0.

In all cases we’ll show that both 5 and 16 must divide n. We’ll do this by showing that there

are two elements of Gal(Qn/Q) that act differently on the t-spectra via Galois symmetry. If only

one of 5 or 16 divide n, then all elements of order 4 would act on the t-spectra the same via Galois

symmetry. Recall that the action of σ acts via σ2.

Let C be a an MTC with G = ⟨(01)(23), (23)(45)⟩. If both 16 and 5 divide n and give

rise to σ’s that act differently, then both must have subrepresentations of dimension greater than

one appearing in the decomposition and factorization of any modular representation of C. The

allowable representations of order 16 have dimension 3 or 6. If it’s dimension 6, there isn’t

enough room in the t-spectra for both 5 and 16 to divide n. Therefore we assume ρ = 2 ⊗ 3

where he 2-dimensional factor is order 5 and the 3 dimensional factor has order 16. This gives,

{ζ5, ζ45} ⊗ {ζ8, ζ16,−ζ16} = {ζ5ζ8, ζ45ζ8, ζ5ζ16, ζ25ζ16,−ζ5ζ16,−ζ45ζ16}. But the Galois symmetry

of ⟨(01)(23), (23)(45)⟩ clearly doesn’t lineup with this t-spectra.

To show that both 5 and 16 divide n, we must show that some pair liftings of σ, τ , or στ act

differently on the t-spectra via Galois symmetry. It will be enough then to show that there is at

most 1 pair of identical ti’s in {1, t1, t2, t3, t4, t5}.

If t2 − 1 = 0 =⇒ t3 − t1 = 0 by Galois symmetry of σ. But then, by Galois symmetry of τ ,

γt0 is fixed by liftings of τ 2. But since t0 = t2, γt2 must also be fixed by liftings of τ 2. But liftings
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of τ 2 are supposed to map γt2 to γt3 =⇒ t2 = t3 =⇒ t1 = 1. Similar observations show that

if ti = tj where i and j are in different orbits then all ti in either orbit are identical. Therefore

it’s enough to show the following three cases lead to contradictions, t1 − 1 = t2 − t3 = 0,

t1 − 1 = t4 − t5 = 0, and t2 − t3 = t4 − t5 = 0.

The work for sign choices 1 and 2 are identical as a3 ̸= 0 in both choices. One run of the GBA

assuming that t1 − 1 = 0, yields t2 − t3 = t4 − t5. Two more runs of the GBA and it turns out

that all ti = 1 and therefore N = 1. This implies the Galois group is trivial. Next we assume that

t2 − t3 = t4 − t5 = 0. One run yields that t1 − 1 = 0. But that puts us back into the first case

which we’ve already eliminated.

Sign choice 3 is a little more involved. If t1 − 1 = t2 − t3 = 0, then one run of the GBA

yields a3(t4 − t5). We first assume t4 − t5 = 0. After two runs of the GBA we can conclude

that both t2 and t4 are 6th roots of unity (not necessarily primitive). Therefore N divides 6. But

Gal(Q6/mathbbQ) does not have a proper subgroup of order 4.

At this point we know that t4 − t5 is not 0. This implies, either 5 or 16 but not both divide n. If

5 divides n, then we appeal to lemma 26. We need to find a possible t-spectra that has exactly pair

of γti that are moved by τ 2, but exactly two pair of identical γti. Such a t-spectra doesn’t exist.

Therefore, 16 divides n and t4 + t5 = 0. Adding that relation and a3 = 0 into the GBA yields,

4d24 − D = 4a25 − D = a4 + a5 = 0, i.e. ±d4 = a5 = −a6. But this immediately implies that

columns 4 and 5 of the eigenvalue matrix are integer columns and therefore fixed by G.

Next we suppose t1 − 1 = t4 − t5 = 0. Since we’ve already eliminated t1 − 1 = t2 − t3 =

t4 − t5 = 0 we can assume t2 − t3 ̸= 0. It’s still true that 5 doesn’t divide n. So, 16 must and

t2 + t3 = 0. Adding t1 − 1 = t4 − t5 = t2 + t3 = 0 to the GBA and running it twice, yields a

similar contradiction, but in columns 2 and 3.

Finally we enter the relations, t1 + 1 = t2 − t3 = t4 − t5 = 0 and one run of the GBA yields

D = 0. □

Theorem 33. There is no rank 6 NI-SD-MTC associated with G = ⟨(01)(23), (02)(13)⟩.
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Proof: Let σ = (01)(23) and τ = (02)(13). Then ϵ0 = ϵ1, ϵ2 = ϵ3, δ0 = δ2, and δ1 = δ3. But,∏
ϵi =

∏
δi = 1 =⇒ ϵ4 = ϵ5 and δ4 = δ5. Note that S03 = ϵ0ϵ2S12 = δ0δ1S21 =⇒ ϵ0ϵ2 = δ0δ1.

Then,

S =



1 d1 d2 d3 d4 d5

d1 1 ϵ0ϵ2d3 ϵ0ϵ2d2 ϵ0ϵ4d4 ϵ0ϵ4d5

d2 ϵ0ϵ2d3 1 ϵ0ϵ2d1 δ1δ4d4 δ1δ4d5

d3 ϵ0ϵ2d2 ϵ0ϵ2d1 1 ϵ0ϵ4δ0δ4d4 ϵ0ϵ4δ0δ4d5

d4 ϵ0ϵ4d4 δ0δ4d4 ϵ0ϵ4δ1δ4d4 z1d4 z2d5

d5 ϵ0ϵ4d5 δ0δ4d5 ϵ0ϵ4δ1δ4d5 z3d4 z4d5


This leaves 8 cases.

1) ϵ0 = ϵ2 = ϵ4 2) ϵ0 = ϵ2 = ϵ4 3) ϵ0 = ϵ2 ̸= ϵ4 4) ϵ0 = ϵ2 ̸= ϵ4

δ0 = δ1 = δ4 δ0 = δ1 ̸= δ4 δ0 = δ1 = δ4 δ0 = δ1 ̸= δ4

5) ϵ0 = ϵ4 ̸= ϵ2 6) ϵ0 = ϵ4 ̸= ϵ2 7) ϵ0 ̸= ϵ2 = ϵ4 8) ϵ0 ̸= ϵ2 = ϵ4

δ0 = δ4 ̸= δ1 δ0 ̸= δ1 = δ4 δ0 = δ4 ̸= δ1 δ0 ̸= δ1 = δ4
Cases 1, 2, 3, and 4 have two columns of all positive entries. Cases 6 and 7 are relabelings of

case 5. We can assume that the FPcol is column 0. If it were columns 4 or 5, then the FPdims

would all be integers and therefore the category would be integral. Then, the remaining labels

share an orbit. Thus we can assume di ≥ 1 for all i.

For sign choice 5: One run of the GBA yields, d24+d25+2d2−2d3 = 0 =⇒ d3 > d2. But it also

yields, (d3+1)2−D = (d2−1)((d2−1)2−D) = 0. If d2−1 = 0 =⇒ d3
d1

= 1 =⇒ d3+d1 = 0.

But, both are positive. So, (d3 + 1)2 −D = (d2 − 1)2 −D =⇒ (d2 − 1)2 = (d3 + 1)2. But since

digeq1 =⇒ d2 − 1 = d3 + 1 =⇒ d2 > d3, giving a contradiction.

For sign choice 8: One run of the GBA yields, (d2+1)2−D = (d3+1)2−D = 0 =⇒ d2 = d3.

But −d3
d2

= −1 is a Galois Conjugate of d1, i.e. d1 = −1. But di ≥ 1, gives a contradiction.

Theorem 34. There is no rank 6 NI-SD-MTC associated with G = ⟨(0123)(45)⟩.
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Proof: Let σ = (0123)(45). Then consider, S04 = ϵ1ϵ5S15 = ϵ1ϵ5ϵ2ϵ4S24 = ϵ1ϵ2ϵ4ϵ3S35 =

ϵ1ϵ2ϵ3ϵ0S04 =⇒ ϵ0ϵ1ϵ2ϵ3 = 1. But,
∏

ϵi = 1 =⇒ ϵ4 = ϵ5. If ϵ0 = ϵ1 = ϵ2 = ϵ3, then there will

be at least two columns where every entry has the same sign. This leaves 6 sign choices.

1) ϵ0 = ϵ1 = ϵ4 ̸= ϵ2 = ϵ3 2) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3 3) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2

4) ϵ0 = ϵ1 ̸= ϵ2 = ϵ3 = ϵ4 5) ϵ0 = ϵ2 ̸= ϵ1 = ϵ3 = ϵ4 6) ϵ0 = ϵ3 ̸= ϵ1 = ϵ2 = ϵ4

S =



1 d1 d2 d3 d4 d5

d1 ϵ1ϵ2d2 ϵ1ϵ3d3 ϵ0ϵ1 ϵ1ϵ4d5 ϵ1ϵ4d4

d2 ϵ1ϵ3d3 1 ϵ0ϵ2d1 ϵ1ϵ2d4 ϵ1ϵ2d5

d3 ϵ0ϵ1 ϵ0ϵ2d1 ϵ1ϵ2d2 ϵ0ϵ4d5 ϵ0ϵ4d4

d4 ϵ1ϵ4d5 ϵ1ϵ2d4 ϵ0ϵ4d5 a1 a2

d5 ϵ1ϵ4d4 ϵ1ϵ2d5 ϵ0ϵ4d4 a2 a1



Then, sign choices 2 and 5 are relabelings of each other as are 3 and 6. We will show that all

the ti are distinct. By Galois symmetry, if t1 = 1 or t3 = 1, then t1 = t2 = t3 = 1. If t2 = 1, then

t1 = t3. If t4 = 1 or t5 = 1, then t1 = t3 and t2 = 1. To show all ti distinct it suffices to show that

t3, t2 ̸= 1 and t4 ̸= t5, due to Galois symmetry.

All four sign choices follow a similar pattern. A first run of the Gröbner basis algorithm yields

two polynomials with three interesting factors, two of which are t3−1 and t4−t5. This is naturally

helpful since we’re already trying to eliminate both of those cases. Successfully doing so will give

more relations when considering t2 − 1 = 0. In all sign choices when assuming t4 − t5 = 0,

h4 = 4d25 + a21 + a22 − D. This relation implies that d24 = d25. We can assume the FP column is

column 0 and therefore that di ≥ 1 =⇒ d4 = d5.

In sign choices 1, 2, and 4 under the same assumption, the 7th run of the GBA, yields t25−t2 and

t1t3 − t2 as relations. Recall from Galois symmetry, σ2(γti) = γtσ(i). Since, t0 = 1, σ2(γ) = t1

and σ4(γ) = t2. Note, σ4(γt2) = t0 =⇒ σ4(t2) =
1
t2

. But, σ4(t2) = σ8(t5) = t5 =⇒ 1
t2

=

t5 =⇒ t32 = 1. But if this is true, then N = 1 or 6. In either case, Z×
N does not have a cyclic

subgroup of order 4. In all sign choices all other contradictions necessary to eliminate a subcase
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involved showing a non-zero element (or a product) such as p or d4d5 was 0. Most of the time

this was directly given as a result of the GBA. But the final contradiction in each sign choice came

from the GBA yielding a2 = 0. Then, by the Galois action on the eigenvalue matrix, a1 = 0. Then

0 = S4 · S5 = 4d4d5. But neither d4 nor d5 can be zero. Therefore all ti’s are distinct. This is

enough due to [11] since it is also not a product category nor listed on his table □

Theorem 35. There is no rank 6 NI-SD-MTC associated with G = ⟨(012), (345)⟩.

Proof: Let σ = (012). We know there is only one sign choice, ϵ0 = ϵ2 ̸= ϵ1 = ϵ3 because of

theorem 12. Let τ = (345). Consider, S01 = δ0δ1S01 =⇒ δ0 = δ1. Similarly, S02 = δ0δ2 =⇒

δ0 = δ1 = δ2. Then,
∏

δi = 1 =⇒ δ0δ3δ4δ5 = 1. This gives,

S =



1 d1 d2 d3 δ0δ3d3 δ3δ4d3

d1 −d2 −1 d3 δ0δ3d3 δ3δ4d3

d2 −1 d1 −d3 −δ0δ3d3 −δ3δ4d3

d3 d3 −d3 a1 a2 a3

δ0δ3d3 δ0δ3d3 −δ0δ3d3 a2 δ4δ5a3 δ3δ4a1

δ3δ4d3 δ3δ4d3 −δ3δ4d3 a3 δ3δ4a1 δ3δ5a2


Instead of going into sign choices of the δ function, we include the restrictions in the GBA,

δ2i = 1 and δ0δ3δ4δ5 = 1. Then one run of the GBA yields, t3D = 0 and neither can be. This is a

contradictions. □

Theorem 36. There is no rank 6 NI-SD-MTC associated with G = ⟨(01)(23)(45), (24)(35)⟩.

Proof: Let σ = (01)(23)(45) and τ = (24)(35). Then, S02 = ϵ1ϵ2S13, S20 = ϵ3ϵ0S31,

S04 = ϵ1ϵ4S15, S40 = ϵ5ϵ0S51, and
∏

ϵi = −1 =⇒ ϵ0ϵ1 = ϵ2ϵ3 = ϵ4ϵ5 = −1. Also note that

δ2 = δ4, δ3 = δ5, and
∏

δi = 1 =⇒ δ0 = δ1.
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S02 = ϵ1ϵ2S13 = ϵ1ϵ2δ0δ3S15

S02 = δ0δ2S04 = δ0δ2ϵ1ϵ4S15 =⇒ δ2δ3 = ϵ2ϵ4

S03 = ϵ1ϵ3S12 = ϵ1ϵ3δ0δ2S14

S03 = δ0δ3S05 = δ0δ3ϵ1ϵ5S14 =⇒ δ2δ3 = ϵ3ϵ5

This gives 8 sign choices:

1) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3 = ϵ5 2) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3 = ϵ5

δ0 = δ2 = δ4 δ0 ̸= δ2 = δ3

3) ϵ0 = ϵ2 = ϵ5 ̸= ϵ1 = ϵ3 = ϵ4 4) ϵ0 = ϵ2 = ϵ5 ̸= ϵ1 = ϵ3 = ϵ4

δ0 = δ2 ̸= δ3 δ0 = δ3 ̸= δ2

5) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2 = ϵ5 6) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2 = ϵ5

δ0 = δ2 ̸= δ3 δ0 = δ3 ̸= δ2

7) ϵ0 = ϵ3 = ϵ5 ̸= ϵ1 = ϵ2 = ϵ4 8) ϵ0 = ϵ3 = ϵ5 ̸= ϵ1 = ϵ2 = ϵ4

δ0 = δ2 = δ3 δ0 ̸= δ2 = δ3

S =



1 d1 d2 d3 δ0δ2d2 δ0δ3d3

d1 −1 ϵ1ϵ3d3 ϵ1ϵ2d2 ϵ1ϵ5δ0δ3d3 ϵ1ϵ4δ0δ2d2

d2 ϵ1ϵ3d3 a1 a2 a3 a4

d3 ϵ1ϵ2d2 a2 −a1 ϵ3ϵ5a4 ϵ3ϵ4a3

δ0δ2d2 ϵ1ϵ5δ0δ3d3 a3 ϵ3ϵ5a4 a1 ϵ3ϵ5a2

δ0δ3d3 ϵ1ϵ4δ0δ2d2 a4 ϵ3ϵ4a3 ϵ3ϵ5a2 −a1


For relabelings, switch labels 2 and 3 and also switch labels 4 and 5. Doing so gives, sign

choices 7, 8, 6, and 5 as relabelings of 1, 2, 3, and 4 respectively. We eliminate this group by

showing that for all sign choices the ti’s are distinct. Without loss of generality, we only need to

show, t1, t2, t3 ̸= 1 and t3, t4, t5 ̸= t2. Unless specified, all sign choices yielded the same results

from the GBA.
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Assume, t1 = 1. After one run of the GBA, we get that t2 − t4 = t3 − t5 = t4 + t5 + 1 = 0.

This means that t4 and t5 are complex conjugates and the real part is -1/2. The only complex units

with real part -1/2 are the two primitive third roots of unity. Therefore, N = 3. The Galois group

of Ga,(Q(ζ3)/Q) ∼= Z/2Z, which doesn’t have a subgroup of order 4.

If, t2 = 1. Then by Galois symmetry, t1 − t3 = t2 − t4 = t3 − t5 = 0. Similarly if t3 = 1,

then, t1 − t2 = t2 − t4 = t3 − t5 = 0. After one run of the GBA, we get t25 − 1 = 0 and t24 − 1

respectively. Both then imply that N = 1 or 2. But, Q(ζi) = Q for i = 1, 2. Thus the Galois group

is trivial and doesn’t have a subgroup of order 4.

If t2 = t3 then by Galois symmetry, t4 = t5. After one run of the GBA, we get that pD = 0.

Note that by Galois symmetry, t2 = t4 ⇐⇒ t3 = t4 and t2 = t5 ⇐⇒ t3 = t4. If t2 = t5,

then after one run of the GBA, we get that t1 − 1 = 0, which we’ve already shown leads to a

contradiction.

The final case, t2 = t4, is the most involved. We can assume that 1, t1, t2, and t3 are all distinct.

Then, using Galois symmetry, we can conclude that all elements of Gal(Qn/Q) have order 1, 2,

or 4 and any element of order 4 is a lifting of σ and all liftings of σ have order 4. This means that

n divides 240, and that 5 or 16 divide n. Both cannot divide n, otherwise the elements of order 4

projections onto Gal(Qn/Q) would have different images in Sym6.

Suppose 5 divides n. We must now appeal to the modular representations. We know that 5

divides n so we begin there. Under the assumption we have exactly two pairs of identical elements

in the t-spectra. Both of these pairs must be moved by all the liftings of σ2. The final two elements

in the t-spectra are also moved to each other under the same liftings (i.e. every element in the

t-spectra will be moved).

These two pair also mean that the modular representation can only be decomposed into a direct

sum of at most 3 subrepresentations. This is due to the restriction of overlapping t-spectra. All

the Z/5Z representations of dimension 5 or 6 give exactly one pair of identical elements in the t-

spectra. Any combination including a Z/5Z representation of dimension 3 will have two elements

fixed.
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From lemma 26 there are two possible t-spectra, {α1} ⊗ {ζ5, ζ45 , ζ5, ζ45 , ζ25 , ζ35} or {α1ζ5, α1ζ
4
5 ,

α1ζ5, α1ζ
4
5 , α2, ζ5, α2ζ

4
5}, ζ5 is any primitive 5th root of unity and α1, α2 are some 24th roots of

unity. Recall that the t-spectra is just γ ⊗ T -spectra for some root of unity γ. Since the T -spectra

contains 1, then the t-spectra contains γ. Then it’s clear that no matter which element of the first

possible t-spectra is γ, all factors of α1 will be removed, leaving T 5 = 1 or N = 5. However,

Gal(Q5/Q) is a cyclic group of order 4 and therefore does not contain a subgroup isomorphic to

Z/2Z⊕ Z/2Z.

Consider, {α1ζ5, α1ζ
4
5 , α1ζ5, α1ζ

4
5 , α2, ζ5, α2ζ

4
5}. Under the current assumptions, the 1 in the T -

spectra is unique, i.e. without loss of generality γ = α2ζ5 and the T -spectra = {1, ζ35 , α, αζ35 , α, αζ35},

where α = α1α2. This gives us the following new relations for the GBA, t41 + t31 + t21 + t1 + 1 = 0

and (t3 − t1t2)(t2 − t1t3) = 0.

In all 4 sign choices of the S-matrix, this breaks down into two cases, t3 − t1t2 = 0 and

t2 − t1t3 = 0. Both cases require 2 runs of the GBA each. The first run yields a1 + a3 + 1 =

Dt25 + p(1 + t4 + t− t5 − 1) = 0 (as the case or the sign choice varies, the signs may change or t4

and t5 may switch places). The second run yields, t24 + 2a3 − t4 + 1 = 0 (as the case or the sign

choice changes, the sign of 2a3 may change or t4 may be replaced with t5).

Consider, t24 − t4 = −2a3 − 1. This implies that t24 − t4 is real because the entries of S are real

in all self-dual modular categories. Thus, t24 = t4 or t24 = −t̄4 =⇒ t4 = 1 or −t4t̄4 = t34 = −1.

If t4 = 1, then a3 = −1/2 (or positive 1/2 depending on case and sign choice). But then a3

would not be an algebraic integer. If t34 = −1 =⇒ t24 − t4 + 1 = 0 =⇒ a3 = 0. But

a3 = 0 =⇒ a1, a2, a4 = 0 as well. Then, orthogonality relations imply that d22 + d23 −D = 0 and

1 + d21 + 2d22 + 2d23 −D = 0. Together, these imply that 1 + d21 + d22 + d23 = 0. This is a sum of

positive real numbers. It cannot be equal to 0.

Now suppose 16 divides n =⇒ n = 16 or 48. From the lemma proved earlier, this implies

t2 + t3 = 0. This provides an extra relation for the GBA. After two runs, each sign choice yielded

Dd2d3 = 0.

Therefore in any sign choice ti ̸= tj for i ̸= j. □
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Theorem 37. There is no rank 6 NI-SD-MTC associated with ⟨(01), (2345)⟩ or ⟨(01), (23)(45),

(24)(35)⟩.

Proof: Let σ = (01). From theorem 9, for any 2 ≤ i, j ≤ 5 such that ϵi ̸= ϵj , Sij = 0, and such

a pair, i, j exist. Due to relabeling we can assume the following two cases, ϵ5 ̸= ϵi for 2 ≤ i < 5

and ϵ0 = ϵ1 = ϵ2 = ϵ3 ̸= ϵ4 = ϵ5. In the first case, let ϵ = ϵ0ϵ2. This gives the following two

matrices,

S1 =



1 d1 d2 d3 d4 d5

d1 1 ϵd2 ϵd3 ϵd4 −ϵd5

d2 ϵd2 a1 a2 a3 0

d3 ϵd3 a2 a4 a5 0

d4 ϵd4 a3 a5 a6 0

d5 −ϵd5 0 0 0 a7


, S2 =



1 d1 d2 d3 d4 d5

d1 1 d2 d3 −d4 −d5

d2 d2 a1 a2 0 0

d3 d3 a2 a3 0 0

d4 −d4 0 0 a4 a5

d5 −d5 0 0 a5 a6


A priori, there are 5 possible Galois groups that contain (01). We’ll show that S1 and S2 only

allow for 1 group each aside from G = ⟨(01)⟩. Note in both matrices each row starting with row

2 has a 0. Consider the groups, ⟨(01), (2345)⟩ and ⟨(01), (23)(45), (24)(35)⟩. Both of those show

the orbit of column 2 is the columns 2 through 5. This would force ai = 0 for all i in both S1 and

S2. In particular S2 · S3 = 2d2d3 = 0 by the orthogonality relations (S2 and S3 are the second

and third column of either S1 or S2). But neither d2 nor d3 are 0. So, neither ⟨(01), (2345)⟩ nor

⟨(01), (23)(45), (24)(35)⟩ is possible. Indeed, in the case of S1 the only possible groups are ⟨(01)⟩

and ⟨(01), (234)⟩. And in the case of S2 the only possible groups are ⟨(01)⟩ and ⟨(01), (23)(45)⟩.

□

Theorem 38. There is no rank 6 NI-SD-MTC associated with G = ⟨(01)(23)(45)⟩.
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Proof: This particular group is a subgroup of two Galois groups that do indeed have associated

categories. So this group is much more difficult to prove no category is associated with it. Let σ =

(01)(23)(45). Then, S02 = ϵ0ϵ1ϵ2ϵ3S02 and S04 = ϵ0ϵ1ϵ4ϵ5S04. But then, ϵ0ϵ1ϵ2ϵ3 = ϵ0ϵ1ϵ4ϵ5 =

1 =⇒ ϵ0ϵ1 = ϵ2ϵ3 = ϵ4ϵ5. Note that,
∏

ϵi = −1 =⇒ ϵ0 ̸= ϵ1, ϵ2 ̸= ϵ3, and ϵ4 ̸= ϵ5. This gives 4

sign choices.

1) ϵ0 = ϵ2 = ϵ4 ̸= ϵ1 = ϵ3 = ϵ5 2) ϵ0 = ϵ2 = ϵ5 ̸= ϵ1 = ϵ3 = ϵ4

3) ϵ0 = ϵ3 = ϵ4 ̸= ϵ1 = ϵ2 = ϵ5 4) ϵ0 = ϵ3 = ϵ5 ̸= ϵ1 = ϵ2 = ϵ4
But all cases are relabelings of each other. We approach this group with representation theory

from the beginning. At the same time we focus on what separates this group from the larger groups

that do have associated categories, the s-polynomials of the various entries. Combined with the

variety of cases from representation theory, this is enough to eliminate this group.

First we establish some preliminary restrictions on the T -spectra. We want to say there at most

two pair of identical ti’s. To do so we rule 4 and 6 identical ti and three pair of identical ti. If

ti = 1 for all i, one run of the GBA yields p = 0. If t1 = t2 = t3 = 1, t1 = t4 = t5 = 1, or

t2 = t3 = t4 = t5, then the GBA yields pD = 0. If t1 = 1, t2 = t3, and t4 = t5, then the GBA

yields p = 0. If t1 = 1, t2 = t4, and t3 = t5 or t1 = 1, t2 = t5, and t3 = t4, then the GBA yields

t4 + t5 + 1 = 0. But that implies that t4 and t5 are primitive 3rd roots of unity and N = 3. Then,

Gal(QN/Q) does not have a proper subgroup of order 2.

If t3 = 1, t2 = t1, and t4 = t5 then the GBA yields, b2(t2 + t5 + 1) = 0. If t2 + t5 + 1 = 0

then N = 3. Therefore b2 = 0 =⇒ b1 = 0. The GBA also yields, d3b2t2 − 2d5c2t5 + d3b2 = 0.

Since b2 = 0, this simplifies to 2d5c2t5 = 0 =⇒ c2 = 0 =⇒ c1 = 0. But then, D = S4 · S4 =

d24 + d25 =⇒ 1+ d21 + d22 + d23 = 0, a sum of positive real numbers. Similar contradiction is found

if t2 = 1, t3 = t1, and t4 = t5.

If t5 = 1, t4 = t1, and t2 = t3, then the GBA yields a2(t3+ t4+1) = 0. Again, t3+ t4+1 =⇒

N = 3 =⇒ a2 = 0 =⇒ a1 = 0. The GBA also yields a2c1t4−a1c2t4+c2pt4−a2c1+a1c2+c2p =

0 =⇒ c2p(t4 + 1) = 0. But, c2 = 0 yields a similar contradiction to the previous one, therefore,

t4 + 1 = 0. The GBA also yielded, b1t4 + b1 + t3 = 0 =⇒ t3 = 0. A similar contradiction

is found if t4 = 1, t5 = t1, and t2 = t3. Now we can assume that there are at most two pair of
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identical ti’s. But also Galois symmetry now implies that either 5 or 16 divide n but not both.

Suppose 16 divides n. We can then assume that if t1 ̸= 1, then t1 = −1, if t2 ̸= t3, then

t2 = −t3, and if t4 ̸= t5 then t4 = −t5. We begin by considering all the possible ways there

could be 2 pair of identical ti and then all the ways there could be 1 pair of identical ti. These

will all lead to contradictions. That will leave us with 16 divides n implies that all the ti are

distinct. This is enough to say that the any modular representation cannot be decomposed as a

direct sum of subrepresentations . But, [11] says that the smallest representation of order 16 has

dimension 6, i.e not only does ρ not decompose, it doesn’t factor either (1 dimensional factors are

still allowed). Eholzer calls this simple and nondegenerate. In his table 12 in [11] there is only

one simple nondegenerate representation that is admissible of dimension 6, and the order of its t

matrix is 9.

We used relations to define the coefficients of the s-polynomials. These were coded in and

labeled as f ’s as other s-polynomial coefficients have been in other groups. But we also used

relations that were labeled g’s. These defined the elements of the eigenvalue matrix s. A first GBA

was run to give relations labeled with k’s. These are immediate consequences of the orthogonality

relations when put in terms of both the eigenvalue matrix and the S-matrix entries.

If t1 − 1 = t2 − t3 = t4 + t5 = 0 then, after 3 runs of the GBA and using the g’s and k’s

described above, we determined that d3 was an integer and therefore, d1d3 + d2 = 0. One more

run and we were able to conclude that d1 = d2, and eventually that d1 is an int, which implies

d1 =
−1
d1

=⇒ d21 = −1. But S is a real matrix. A similar contradiction was found in similar steps

when t1 − 1 = t2 + t3 = t4 − t5 = 0.

If t2 − 1 = t3 − t1 = t1 + 1 = t4 + t5 = 0, then (a1 + 1)(p2 −D) = b2(p
2 −D) = 0. If c2 and

p2 −D aren’t 0, then, b2 = a1 + 1 = 0 =⇒ b1 = 0. This eventually leads again to d21 = −1 and

therefore p−D = 0. This shows p is real. Eventually the GBA yields 2d2d3t5 − d1pt5 + 2d4d5 −

2d1t5 = 0 =⇒ t5 is real, because p is also real. Similar steps lead to similar contradictions

for t3 − 1 = t2 − t1 = t1 + 1 = t4 + t5 = 0, t4 − 1 = t5 − t1 = t1 + 1 = t2 + t3 = 0, and

t5 − 1 = t4 − t1 = t1 + 1 = t2 + t3 = 0.
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If t2 − t3 = t4 − t5 = t1 + 1 = 0, the GBA yields an empty variety.

If t2 − t4 = t3 − t5 = t1 + 1, then the GBA yields 12 relations of the form (p2 −D)(XXXX)

= 0. If p2 − D = 0, then after one run of the GBA we deduce that D − 4 = 0. But this yields,

(t5 + 1)(d23 + d25) = 0. If t5 + 1 = 0, then N = 2 and d23 + d25 is a sum of positive real numbers

and therefore can’t be 0. So, the 12 XXXX relations must be 0. The GBA immediately yields

d5D = 0. Similar steps lead to a similar contradiction if t2 − t5 = t3 − t4 = t1 + 1 = 0.

If t1− 1 = t2+ t3 = t4+ t5 = 0, then the GBA yields p = 0. If t1+1 = t2− t3 = t4+ t5 = 0,

then the GBA yields pD = 0. If t1 + 1 = t2 + t3 = t4 − t5 = 0, then the GBA yields Dd5 = 0.

Therefore if 16 divides n, all the ti are distinct.

Suppose 5 divides n. We will work down the list from lemma 26. In each possible t-spectra,

we’ll have subcases depending on what element of the t-spectra is γ. Most of the time without

loss of generality, there will be two choices for γ. The choice of γ will determine what t1 is. The

Galois symmetry will determine what t2 and t3 are, but not which is which, i.e. we will have even

more subcases. Luckily, all the subcases will be handled in similar manners. Also as a reminder,

we can relabel the indexes by switching 2 and 4 and switching 3 and 5. This will help keep the

number of subcases somewhat manageable.

At a certain point we will use [6]. We will show that N = 5 and thus, 2 is relatively prime

to N . In point (v) of definition 2, we see that ν2(i) = ±1 if i∗ = i. Our supposed category

is self-dual, so this holds. But NG’s theorem actually forces ν2(i) = 1, since you can’t have

negative coefficients in a direct sum. The orbit of 0 is {0, 1}. We know that X2
0 = X0 ̸=

∑
i Xi.

Therefore, we can conclude that X2
1 =

∑
i Xi. Passing through to the dim(X2

1 ), implies that

d21 = 1+ d1 + d2 + d3 + d4 + d5, under the correct assumptions. There will be other times that we

use (vii) from definition 2 as well. This group represents the first time either of these results are

needed in the thesis. The f ’s as before define the coefficients of the s-polynomials of particular

elements of S or s.

If the t-spectra is α⊗ {1, 1, ζ5, ζ45 , ζ25 , ζ35} =⇒ the T -spectra is {1, 1, ζ5, ζ45 , ζ25 , ζ35} or {1, ζ35 ,

ζ45 , ζ45 , ζ5, ζ25}.
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Suppose the T -spectra is {1, 1, ζ5, ζ45 , ζ25 , ζ35}. Then, t1− 1 = t42− t3 = t44− t5 = t42+ t32+ t22+

t2 + 1 = 0. But also, (t22 − t4)(t
2
2 − t5) = 0. Now suppose t22 − t4 = 0. In the second run of the

GBA we add all 16 f ’s and it yields, z211 = 2z215. But then clearly z11 is not an integer. As similar

contradiction is found if t22 − t5 = 0.

Suppose the T -spectra is {1, ζ35 , ζ45 , ζ45 , ζ5, ζ25}. Then, t2 − t3 = t41 + t31 + t21 + t1 + 1 = 0. We

also get, (t1t4 − 1)(t1t5 − 1) = (t2t5 − 1)(t2t4 − 1) = (t25 − t4)(t
2
4 − t5) = 0. In all three products,

the first terms happen at the same time and the second terms happen at the same time.

Suppose, t1t4 − 1 = t2t5 − 1 = t25 − t4 = 0. Then, after a few runs where we deduce that

b1 − t3 − t5 − 1 = 0 and that 2t3 + t4 + 2 is not 0 (both t3 and t4 are 5th roots), we show that z6

which is the algebraic norm of d4, d5 is 2. But (vii) of definition 2 says that the prime ideals of di

are also prime ideals of D and N . But the ideal generated by 2 is clearly not a divisor of the ideal

generated by 5. A similar contradiction is found if t1t5 − 1 = t2t4 − 1 = t24 − t5 = 0.

Thus (2) of lemma 26 is not possible. Suppose the t-spectra is {ζ5, ζ45 , ζ5, ζ45 , ζ25 , ζ35}. Then the

T -spectra is {1, ζ35 , 1, ζ35 , ζ5, ζ25} or {1, ζ35 , ζ5, ζ25 , ζ5, ζ25}.

Suppose the T -spectra is {ζ5, ζ45 , ζ5, ζ45 , ζ25 , ζ35}. Then, t41 + t31 + t21 + t1 + 1 = 0. Here we have

two cases to deal with, (t2 − 1)(t3 − 1) = 0 and (t24 − t5)(t
2
5 − t4) = 0. But these two cases are

independent. Suppose t2 − 1 = 0 =⇒ t3 − t1 = 0. And also suppose t24 − t5 = 0.

The first run of the GBA provides enough new relations that the the second run would produce

an ideal of 1 dimension. In some sense this means that there is 1 degree of freedom and that if

we had one more useful relation we could then tell the GBA to attempt to solve for a specific

variable. That’s exactly what we do. Adding NG’s relation, is enough to get a 0 dimension ideal.

So, attempting to solve for one variable will work. Until this point we’ve been using the default

monomial order of Macaulay2. The default ordering is a graded ordering by degree and then within

a degree is ordered by a lexigraphical ordering based on the variables chosen for the polynomial

ring at the beginning. To make use of NG’s relation, we’ll define a new polynomial ring and

use a new monomial order called Eliminate. We’ll tell Macaulay to try to eliminate the first 17

variables (there are 18 in our polynomial ring). Doing so with a 0 dimensional ideal guarantees the
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first polynomial will be a polynomial of the 18th variable, in this case c2. The GBA does indeed

yield a polynomial in c2, it has a handful of factors, most of which have leading coefficient that

is not 1. Since c2 is an algebraic integer, none of those irreducible factors can be 0. This leaves,

c2(c2 − 1) = 0. If c2 = 0 =⇒ c1 = 0. Together with another relation from the first run of the

GBA also force b1 = b2 = 0. But then D = d24 + d25 =⇒ 0 = 1 + d21 + d22 + d23. If c2 − 1 = 0,

then d25 − 2 = 0. But 2 doesn’t divide 5. Similar contradictions are found for the other subcases.

Suppose the T -spectra is {1, ζ35 , ζ5, ζ25 , ζ5, ζ25}. Then t41 + t31 + t21 + t1 + 1 = t2t3 − t1 = 0. We

again have two independent cases, (t2 − t4)(t2 − t5) = 0 and (t2t1 − 1)(t3t1 − 1) = 0. Suppose

t2 − t4 = 0 =⇒ t3 − t5 = 0. Also suppose that t3t1 − 1 = 0 =⇒ t22 − t3 = 0. After two runs of

the GBA (and adding the f ’s into the second run), we get that z3 + z6 + 3 = 0. But z3 and z6 are

the algebraic norms of d2 and d4 respectively. They must share their prime divisors with N , i.e.

they must be powers of 5 (0 is an allowed power). But no two powers of 5 will ever differ by 3. A

similar contradiction is found in the other subcases.

Suppose the t-spectra is α⊗ {α1ζ5, α1ζ
4
5 , α1ζ5, α1ζ

4
5 , α2ζ5, α2ζ

4
5}. Then without loss of gener-

ality, the T -spectra is {1, ζ5, 1, ζ5, α, αζ5} or {1, ζ5, α, αζ5, α, αζ5} where α is some primitive 2nd,

3rd, 4th, or 8th root of unity.

Suppose the T -spectra is {1, ζ5, 1, ζ5, α, αζ5}. Then t41 + t31 + t21 + t1 + 1 = 0. Once again, we

have two independent cases, (t2 − 1)(t3 − 1) = 0 and (t4t1 − t5)(t5t1 − t4) = 0. Even after those

4 cases, each will have 4 subcases based on α. In all cases when α is a 3rd or 4th root of unity we

get a straightforward contradiction. The contradiction associated to α being a primitive 8th root is

more interesting. After 3 runs of the GBA we get that α is real or t35 − 1 = 0 (possibly t34 − 1 = 0

depending on subcases). But α is a primitive 8th root and can’t be real and t5 is a primitive 40th

root.

Finally if α = −1 we have some deviation in the subcases. Three of them have σ(d1) = −1/d1

and +1/d1. But one subcase, t2 − 1 = t4t1 − t5 = α + 1 = 0, doesn’t immediately have that

contradiction. It actually allows for the modular data to be factored as a tensor product.

The modular data factors a tensor product of Fibonacci category, see a description in [7] and
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an integral matrix. Since Fibonacci is known to be modular the other matrix is an integer matrix,

but there are no self dual integral MTC of rank three.

Suppose the T -spectra is {1, ζ5, α, αζ5, α, αζ5}. Then t41+ t31+ t21+ t1+1 = 0. One more time

we have 2 independent cases, (t2 − t4)(t2 − t5) = 0 and (t2t1 − t3)(t3t1 − t2) = 0. Each subcase

requires 3 runs of the GBA and yields something like, t24−a1− b1− t4− 1 = 0. But then t24− t4 is

real. This means that t4 − 1 = 0 or t4 is a primitive 6th root. But t4 is α (in this particular subcase,

in others we might switch t5 and t4). And α cannot be a primitive 6th root of unity.

Suppose the t-spectra is α ⊗ {1, 1, α1, α2, ζ5, ζ
4
5}. But this doesn’t fit the Galois symmetry of

⟨(01)(23)(45)⟩. Take the α1 and α2 pair. They differ, so according to the Galois symmetry, if Σ is a

lifting σ = (01)(23)(45), then Σ2(α1) = α2. But since α1 is some 24th root of unity, Σ2(α1) = α1

for all Σ. □
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6. CONCLUSION

In this dissertation, we showed the efficacy of using a computational approach based on the

admissibility criteria in [2] to classify low rank modular categories by giving a partial classification

of rank 6 modular categories. Using the Galois structure and action on the eigenvalue matrix, we

constructed all the possible abelian subgroups of Sym6 for two pair of non-self-dual simple objects,

one pair of non-self-dual objects, and the case where all simple objects are self-dual.

Our approach begins by fixing a subgroup of Symr and then building all the possible modular

data based on the Galois symmetry of the S matrix, Sij = ϵ(σ(i)ϵ(j)Sσ(i)σ−1(j). Here σ is an

element of the image of Gal(Q(S)/Q) in Symr and ϵ is a sign function dependent on the choice

of σ. Then, we run an initial Gröbner basis calculation, (GBA), using the orthogonality and twist

relations found in definition 2.

The output of a (GBA) is a basis for the ideal of polynomials generated by the input. Given

ideal conditions a basis would lead to solving the modular data. It isn’t a surprise that we do

not begin with ideal conditions. Much of the facts in the admissibility criteria are not algebraic,

i.e. they cannot be written in terms of a polynomial. For example, S0j > 0 for all j, but there

is no polynomial that has only the positive real numbers as a solution. Therefore we often ran

multiple GBA calculations. In-between each, we factored the output and looked at the results that

factored. If a polynomial in the output did indeed factor, we used the admissibility criteria to try

to determine if one factor was never allowed to be zero. The most common examples were in the

form of S0jhi for some j. Then, hi was added to the next GBA calculation. The process stops

when a contradiction is found (i.e. no category is associated with the given pair of S and T ), or the

modular data is solved. The most common contradiction came in from some element of the output

forcing one of the following elements to be 0; dj, p, or D.

We showed that a rank 6, non-integral, and non-self-dual category is isomorphic to a product of

two modular categories. We did this by first eliminating the following groups as described above,

for two pair of non-self-dual objects: ⟨(01), (23), (45)⟩, ⟨(01)(23), (23)(45)⟩, ⟨(01), (23)(45)⟩,
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⟨(01)(2435)⟩, ⟨(01), (2435)⟩, and ⟨(01), (23)(45), (24)(35)⟩, for one pair of non-self-dual objects:

⟨(01), (23), (45)⟩, ⟨(012), (45)⟩, ⟨(01), (45)⟩, ⟨(01)(23), (02)(13), (45)⟩, and ⟨(0213), (45)⟩. The

remaining two groups, ⟨(01)(23), (45)⟩ (one pair of NSD objects) and ⟨(01)(24)(35), (23)(45)⟩

(two pair of NSD objects) required the use of representation theory. Representation theory allowed

us to eliminate ⟨(01)(23), (45)⟩ and prove that all modular data from the group ⟨(01)(24)(35),

(23)(45)⟩ is a tensor product of two modular categories of rank 2 and 3.

Similarly we eliminated the following groups assuming all simple objects are self-dual, ⟨(0123)⟩,

⟨(01234)⟩, ⟨(01)(23), (02)(13)⟩, ⟨(0123)(45)⟩, ⟨(012), (345)⟩, ⟨(01), (2345)⟩, ⟨(01)(2345)⟩, ⟨(01),

(23)(45), (24)(35)⟩, ⟨(01)(23)(45), (24)(35)⟩, ⟨(01)(23)(45)⟩, or ⟨(01)(23), (23)(45)⟩. It is known

that following groups do have categories associated with them, ⟨(012)⟩, ⟨(01)(23)⟩, ⟨(012)(345)⟩,

⟨(01)(23)(45), (02)(13)⟩, and ⟨(012345)⟩. It is unknown but we conjecture that the following

groups do not have a modular category associated to them, ⟨(01)⟩, ⟨(01), (234)⟩, and ⟨(01), (23)(45)⟩.

The approach described in this thesis has a natural extension to classifying modular categories

of other low rank. Specifically I intend to complete the classification of rank 6 in the self-dual case

and then attempt a classification of non-integral rank 7 modular categories. It is also possible that

this approach can be adapted to classify low rank fusion categories with slightly different structure

such as super modular categories.
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APPENDIX A

IDEALS AND POLYNOMIALS USED IN THE GBA

In this appendix, we include all the necessary details to reproduce my calculations using

Macaulay2 version 1.8.2. In particular we list all the relations used for the GBA at each step

and if the GBA is stopped at a certain degree, that is included as well.

The first part appearing is the intialization of ring of polynomials used. In Macaulay2 you

also define the monomial order in the same command. We used the default monomial order which

is a graded by the degree and then a lexigraphical order within the degree based on the order of

the entries in the ring command. In one group it was necessary to change monomial orderings

in between certain runs of the GBA. In that group both rings are given and it’s indicated on the

appropriate table when to use the second monomial order. The variable labels typically follow a

similar pattern from group to group. The dimensions are always labeled di, for some i. The other

entries of the S-matrix follow next, usually labeled ai. But sometimes labeled bi and ci as well.

Then comes p followed by the twists ti. Last is any extra variables needed such as an e to represent

an ϵ. Anything labeled with zi is in most subcases of the given group an integer (usually always an

integer).

The next piece is only included when used, the initial relations. These relations are labeled with

f ’s or g′s. They are relations that can be deduced without the aid of the GBA. Most frequently

these relations are used to define the coefficients of s-polynomials, which are known to be integers.

They also include deductions about the ti in the cases that we have theorems that for example say

ti is a 4th root of unity, we might see f2 = t42 +1. These are not used in every GBA, but it should

be clear which ones they are used in based on the commands that create each ideal.

The next piece is the list of relations come from running the GBA that will be used in some

future GBA run. After each run of the GBA, we evaluate the elements of the basis that factor.

Often a factor can be shown to be nonzero, and therefore the other factor is 0. That factor is then
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added to the GBA.

The final piece is a table of the necessary information to run the GBA. The input is an ideal,

that’s given in the first column of the table. The second column is an optional input to the GBA

command. You can tell the GBA to stop after completing all the calculations of a certain degree.

The resulting polynomials are still in the ideal and therefore still useful. In each ideal, the collec-

tion of polynomials is needed. The first polynomial will almost always just be the orthogonality

relations and the twist relations. The second ideal might be defined as, I2 = I1 + ideal(h1,h2).

In this case it’s saying take everything from ideal I1, but add these two new relations h1 and h2.

Those two new relations would’ve been found in the first run of the GBA.

A.1 NON-SELF-DUAL

For NSD cases an additional matrix A is used. It is constructed to be S̄. A matrix W is

constructed to be DId. The orthogonality relations are encoded, SA-W. I’ll use O to represent

them. The twist relations are encoded pS-TSTST. I’ll use TW to represent them. As often as

possible, Macaulay2 syntax is used.

Group: If (01) ∈ G:

There are three different cases, S1, S2 and S3.

S1:

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,b1,b2,p,t2,t4,e];

Initial relations:

f1 = t22 + 1

f2 = t42 + 1
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Table A.1: (01)-S1

Ideal DegreeLimit

I1 = ideal(O,TW,f1,f2) None

S2:

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,a3,b1,b2,p,t2,t3,t4,e];

Initial relations:

f1 = e2 − 1;

f2 = t42 + 1

Table A.2: (01)-S2

Ideal DegreeLimit

I1 = ideal(O,TW,f1,f2) None

S3 :

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,z1,z2,z3,z4,p,t2,t3,t4,e];

Initial relations:

f1 = t22 + t2 + 1

f2 = −z3d4 + z4d3

f3 = e2 − 1

GBA relations:

h1 = p2 +D; h2 = z12 − 1; h3 = d2z1− d1e+ 1; h4 = e− z1;

h5 = 2pt2− 3d2e+ p; h6 = 2d2t2 + pe+ d2; h7 = d3z2 + 2d4z4 + d2e+ 2;
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h8 = pt43 − a1 + a2; h9 = (a1− a2)2 −D;

Table A.3: (01)-S3

Ideal DegreeLimit

I1 = ideal(O,TW,f1,f2,f3) 10

I2 = I1 + ideal(h1,h2,h3,h4) 9

I3 = I2 + ideal(h5,h6,h7) 9

I4 = I3 + ideal(h8,h9) None

Group: ⟨(01)(2435)⟩:

Only one case required GBA calculations: (01)(2435)-3

Ring: R = QQ[D,d1,d2,d4,a1,a2,c1,c2,p,t1,t2,t4,z,z1,z2,z3,z4,z5,z6,z7];

Table A.4: (01)(2435)

Ideal DegreeLimit

I1 = ideal(O,TW) 9

Group: ⟨(01)(23), (23)(45)⟩:

(01)(23),(23)(45)-2

Ring: R = QQ[D,d1,d2,d4,a1,a2,a3,a4,a5,t1,t2,t4,p];

GBA relations:
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h1 = a1− a2 + a3− a4; h2 = d1− a3− a4− 1; h3 = d1 + a1 + a2 + 1; h4 = t1− 1;

h5 = p2 −D; h6 = 6a52 +D; h7 = D − 5p+ 4; h8 = p− 4; h9 = t4 + 1;

Table A.5: (01)(23),(23)(45)-2

Ideal DegreeLimit

I1 = ideal(O,TW) 9

I2 = I1+ideal(h1,h2,h3,h4) None

I3 = I2+ideal(h5,h6) None

I4 = I3+ideal(h7) None

I5 = I4+ideal(h8,h9) None

Group: ⟨(0213), (45)⟩:

There are 4 cases, (0213),(45)-3, (0213),(45)-5, (0213),(45)-6, and (0213),(45)-7

(0213),(45)-3

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,p,t1,t2,t3,t4];

GBA relations:

h1 = d1− d2 + d3− a1− a2− 1;

h2 = d2t1t4− d3t1t4 + a1t1t4 + a2t1t4− d2t2t4 + d3t3t4− a1t42 − a2t42 + t1t4 + p− t4;

h3 = d3t1t2− d2t1t3− 2d2t2t3 + 2d3t2t3− 2a1t2t3− 2a2t2t3− d2t2 + d3t3− 2t2t3 + 2t1;

h4 = Dd2t1t4−Dd3t1t4 +Da1t1t4 +Da2t1t4−Dt2t3t4 + a1a2p− a22p+Dt1t4;

h5 = d2t1− d3t1 + d2t2 + d3t2− d2t3− d3t3− d2 + d3− 2t1 + 2;

h6 = 2d2t2t3− 2d3t2t3+2a1t2t3+2a2t2t3−a1t1t4−a2t1t4− t12+2d2t2− 2d3t3+2t2t3+

a1t4 + a2t4− 2t1 + 1;

h7 = t2t3− t1; h8 = a1t1 + a2t1− d3t2 + d2t3 + t1t4 + d2− d3 + 2t1− t4− 2;

h9 = a1t42 + a2t42 − a1t4− a2t4 + t1t4 + t1− t4− 1;
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Table A.6: (0213),(45)-3

Ideal DegreeLimit

I1 = ideal(O,TW) 8

I2 = I1 + ideal(h1) 8

I3 = I2 + ideal(h2,h3,h4) 7

I4 = I3 + ideal(h5,h6) 7

I5 = I4 + ideal(h7,h8,h9) 7

(0213),(45)-5

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,p,t1,t2,t3,t4];

GBA relations:

h1 = d1 + d2 + d3− a1− a2− 1; h2 = d1a1 + d2a1 + d3a1− 3a1a2 + a22 +D − a1;

h3 = d22 + d32 − d2a1− d3a1− d2a2− d3a2 + 2a1a2−D − 2d2− 2d3 + 2a1 + 2a2 + 2;

h4 = d2t1t4 + d3t1t4− a1t1t4− a2t1t4− d2t2t4− d3t3t4 + a1t42 + a2t42 − t1t4− p+ t4;

h5 = d3t1t2 + d2t1t3− 2d1t2t3 + d2t2 + d3t3 + 2t1;

h6 = Dd1t1t4−Dt2t3t4 + a1a2p− a22p;

h7 = 2d2t2t3+2d3t2t3− 2a1t2t3− 2a2t2t3+ a1t1t4+ a2t1t4+ t12+2d2t2+2d3t3− 2t2t3−

a1t4− a2t4 + 2t1− 1;

h8 = d2t1t3− d2t32 − d3t32 + a1t32 + a2t32 − a1t3t4− a2t3t4+ d2t1+ d3t1− a1t1− a2t1−

d2t2− t2t3 + t32 + a1t4 + a2t4− t1 + 1;

h9 = d2t1 + d3t1 + d2t2− d3t2− d2t3 + d3t3− d2− d3 + 2t1− 2;
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Table A.7: (0213),(45)-5

Ideal DegreeLimit

I1 = ideal(O,TW) 8

I2 = I1 + ideal(h1,h2,h3,h4,h5,h6,h7,h8) 7

I3 = I2 + ideal(h9) 7

(0213),(45)-6

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,p,t1,t2,t3,t4];

GBA relations:

h1 = d1− d2− d3− a1− a2− 1; h2 = d1a1− d2a1− d3a1− 3a1a2 + a22 +D − a1;

h3 = d22 + d32 + d2a1 + d3a1 + d2a2 + d3a2 + 2a1a2−D + 2d2 + 2d3 + 2a1 + 2a2 + 2;

h4 = d2t1t4 + d3t1t4 + a1t1t4 + a2t1t4− d2t2t4− d3t3t4− a1t42 − a2t42 + t1t4 + p− t4;

h5 = d3t1t2 + d2t1t3 + 2d1t2t3 + d2t2 + d3t3− 2t1;

h6 = d22a1 + d32a1 + 3d2a1a2 + 3d3a1a2− d2a22 − d3a22 + 4a1a22 − 2a23 −Dd2−Dd3−

Da1 + 2d2a1 + 2d3a1− 2Da2 + 6a1a2− 2a22 − 2D + 2a1;

h7 = 4d33 + 4d32a1 + 4d32a2 + 2d2a1a2 + 8d3a1a2 + 6a1a22 − 2a23 −Dd2− 4Dd3 + 4d32 −

Da1+ 4d2a1+ 8d3a1− 3Da2+ 4d2a2+ 8d3a2+ 14a1a2− 3D+8d2+ 12d3+ 8a1+ 8a2+ 4;

h8 = Dd1t1t4−Dt2t3t4 + a1a2p− a22p;

h9 = 2d2t2t3+2d3t2t3+2a1t2t3+2a2t2t3− a1t1t4− a2t1t4− t12+2d2t2+2d3t3+2t2t3+

a1t4 + a2t4− 2t1 + 1;

h10 = d2t1t3− d2t32− d3t32− a1t32− a2t32+ a1t3t4+ a2t3t4+ d2t1+ d3t1+ a1t1+ a2t1−

d2t2 + t2t3− t32 − a1t4− a2t4 + t1− 1;

h11 = d2t1 + d3t1 + d2t2− d3t2− d2t3 + d3t3− d2− d3− 2t1 + 2;
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Table A.8: (0213),(45)-6

Ideal DegreeLimit

I1 = ideal(O,TW) 8

I2 = I1+ ideal(h1,h2,h3,h4,h5,h6,h7,h8,h9,h10) 7

I3 = I2 + ideal(h11) 7

(0213),(45)-7

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,p,t1,t2,t3,t4];

GBA relations:

h1 = d1 + d2− d3 + a1 + a2 + 1; h2 = d1a1 + d2a1− d3a1 + 3a1a2− a22 −D + a1;

h3 = d22 + d32 + d2a1− d3a1 + d2a2− d3a2 + 2a1a2−D + 2d2− 2d3 + 2a1 + 2a2 + 2;

h4 = d2t1t4− d3t1t4 + a1t1t4 + a2t1t4− d2t2t4 + d3t3t4− a1t42 − a2t42 + t1t4 + p− t4;

h5 = d3t1t2− d2t1t3 + 2d1t2t3− d2t2 + d3t3 + 2t1;

h6 = d22a1 + d32a1 + 3d2a1a2− 3d3a1a2− d2a22 + d3a22 + 4a1a22 − 2a23 −Dd2 +Dd3−

Da1 + 2d2a1− 2d3a1− 2Da2 + 6a1a2− 2a22 − 2D + 2a1;

h7 = Dd1t1t4 +Dt2t3t4− a1a2p+ a22p;

h8 = 2d2t2t3− 2d3t2t3+2a1t2t3+2a2t2t3−a1t1t4−a2t1t4− t12+2d2t2− 2d3t3+2t2t3+

a1t4 + a2t4− 2t1 + 1;

h9 = d2t1− d3t1 + d2t2 + d3t2− d2t3− d3t3− d2 + d3− 2t1 + 2;

h10 = t2t3− t1; h11 = a1t1 + a2t1− d3t2 + d2t3 + t1t4 + d2− d3 + 2t1− t4− 2;

h12 = a1t42 + a2t42 − a1t4− a2t4 + t1t4 + t1− t4− 1;
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Table A.9: (0213),(45)-7

Ideal DegreeLimit

I1 = ideal(O,TW) 8

I2 = I1 + ideal(h1,h2,h3,h4,h5,h6,h7,h8) 7

I3 = I2 + ideal(h9) 7

I4 = I3 + ideal(h10,h11,h12) 7

Group: ⟨(01)(23), (02)(13), (45)⟩

There are two cases: (01)(23),(02)(13),(45)-5 and (01)(23),(02)(13),(45)-7

(01)(23),(02)(13),(45)-5

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2];

GBA relations:

h1 = d1 + d2− d3 + a1 + a2 + 1; h2 = d32 −D + 2d3 + 1; h3 = d3 + 1− d2 + 1;

Table A.10: (01)(23),(02)(13),(45)-5

Ideal DegreeLimit

I1 = ideal(O) None

I2 = I1+ideal(h1,h2,h3) None

(01)(23),(02)(13),(45)-7

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2];

GBA relations:

h1 = d1− d2 + d3 + a1 + a2 + 1; h2 = d22 −D + 2d2 + 1; h3 = d2− 2d3− a1− a2− 1;
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Table A.11: (01)(23),(02)(13),(45)-7

Ideal DegreeLimit

I1 = ideal(O) None

I2 = I1 + ideal(h1,h2) None

Group: ⟨(012), (45)⟩:

(012),(45)-3

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,p,t1,t2,t3,t4,z1,z2,z3];

Initial relations:

f1 = d3z3− d4z2;

GBA relations:

h1 = t3− t4;

Table A.12: (012),(45)-3

Ideal DegreeLimit

I1 = ideal(O,TW,f1) 9

I2 = I1 + ideal(h1) 9

Group: ⟨(01)(23), (45)⟩

There are three cases, (01)(23),(45)-2, (01)(23),(45)-3, (01)(23),(45)-4

(01)(23),(45)-2

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,e0,e2,e4,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z];

GBA relations:
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h1 = t1− 1; h2 = z6 + z7; h3 = a3; h4 = z; h5 = t42 + 1; h6 = d1 + a1 + a2 + 1;

h7 = d2z6−d3z7; h8 = d2z6−d3z7; h9 = d2−d3; h10 = a3; h11 = z; h12 = t42+1;

h13 = z7; h14 = p2 +D; h15 = t2− t3; h17 = a3; h18 = z; h19 = t42 + 1;

h20 = z8− z10+1; h21 = a3z3+d2z4−d3z4 h22 = z2− z4+1; h23 = z1z10+2z10z−

z1 + z6;

h24 = 2t3z10− 2t4z10− p− 2t3 + 2; h25 = d4z9 + a1z10 + a2z10 + 2z10;

h26 = d4a3− a3z9 + z10z; h27 = z10z2 − z4z10 + z4; h28 = z1z2 − z6z2 + z4z6 + 2z4z;

h29 = a1z − a2z + a4z + a5z − d2 + d3; h30 = d2z − d3z − a1− a2− a4− a5− 2;

h31 = a1z6− a1z7 + 2a3z9 + z6− z7; h32 = Dt33 + p2; h33 = z3z9z − z4z6 + z4z7;

h34 = a1z3z + 2a3z4 + z3z; h35 = t2− 1; h36 = t3− t1; h37 = d4a2− d3a3;

h38 = d2a2−d4a3+d3; h39 = d3d4−d1a3; h40 = d4a1−d2a3−d4p; h41 = Dt3t4−p2;

h42 = d2a3 + d4a4 + d4; h43 = a1 + a4− p+ 1; h44 = t42 − t3; h45 = t2− t3;

h46 = t12 − 2t1t3− p+ t1; h47 = d2a5t3− d3a5t3− 2d4a3t4; h48 = t3− t4;

h49 = p+t1−2t4+1; h50 = Dt4−p+t1−2t4+1; h51 = pt1−t1+2t4−1; h52 = t1+1;

h53 = a3; h54 = t1 + 1; h55 = t2 + t3;
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Table A.13: (01)(23),(45)-2

Ideal DegreeLimit

I0 = ideal(O,f,f6,f7,f8) None

I1 = I0 + ideal(h1,TW) 7

I2 = I1 + ideal(h2) 7

I3 = I2 + ideal(h3,h4,h5) None

I4 = I1 + ideal(h6,h7) 7

I5 = I4 + ideal(h8,h9) None

I6 = I5 + ideal(h10,h11,h12,h13,h14) None

I7 = I1 + ideal(h6,h15) 7

I8 = I7 + ideal(h17,h18,h19) 8

I9 = I7 + ideal(h16,f1,f2,f3,f4,f9,f10) 7

I10 = I9 + ideal(h20,. . .,h28) 7

I11 = ideal(O,TW,h1,h6,h15,h32) 10

I12 = ideal(O,TW,h35,h36) 9

I13 = I12 + ideal(h37,. . .,h44) None

I14 = ideal(O,TW,h45) 8

I15 = I14 + ideal(h46,h47,h48) None

I16 = I15 + ideal(h49,. . .,h53) None

I17 = ideal(O,TW,h54,h55) None

(01)(23),(45)-3

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,z1,z2,z3,z4,z5,z6,z7,z8,z9];

Initial relations:

f1 = −a3 + z1d4; g1 = −z2d1 + d3 − d1d2; g2 = −z3d1 + d2 − d1d3; g3 = −z4d1 +

d2d3; g4 = z5d1 + d12 + 1; g5 = −z6d1 + d4 − d1d4; g6 = −z7d1 + d42; g7 =
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z8d2d3 + a3(d2 + d3); g8 = −z9d2d3 + a32;

GBA relations:

h1 = t1− 1; h2 = z2− z3; h2 = d1 + a1− a2 + 1; h3 = t2− t3;

h4 = a1z1 + a2z1 + a4z1 + a5z1 + d2 + d3; h5 = d2z1 + d3z1 + a1− a2 + a4 + a5 + 2;

h6 = z1z6z8+z2z9+z3z9; h7 = z7−1; h7 = a3z8+d2z9+d3z9; h8 = a1z8−2d4z9+z8;

h9 = z1z6z8+ z2z9+ z3z9; h10 = Dt33+ p2; h11 = p2−D; h12 = t3+1; h1 = t2− 1;

h2 = t3− t1; h3 = d4a2− d3a3; h4 = d2a2 + d4a3 + d3; h5 = d3d4 + d1a3;

h6 = d4a1− d2a3− d4p; h7 = p2 −D; h1 = t2− t3; h2 = z2− z3; h3 = d1 + 1;

h2 = d1 + a1− a2 + 1; h3 = z7− 1; h3 = a1z1 + a2z1 + a4z1 + a5z1 + d2 + d3;

h4 = d2z1+d3z1+a1−a2+a4+a5+2; h5 = z1z6z8+z2z9+z3z9; h6 = a3z8+d2z9+d3z9;

h7 = a1z8− 2d4z9 + z8; h8 = 2d3t1t3 + t1t3z3 + d3p+ pz3;

h9 = Dd3+Dz3+d2z5−2d2z7+2d3z7−2d3; h10 = t1t4z5−a1p+a2p−2t1t4+pz5−2p;

h11 = a3t1t4z5− 2a3t1t4− pz1z6− 2a3p; h1 = t1 + 1; h2 = t2 + t3;
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Table A.14: (01)(23),(23)(45)-3

Ideal DegreeLimit

I1 = ideal(O,f1,g1,g2,g3) None

I2 = I1 + ideal(h1,TW) 7

I3 = I2 + ideal(h2) 7

I4 = I2 + ideal(h2,h3,g4,. . .,g8) 7

I5 = I4 + ideal(h4,h5,h6) 7

I6 = I5 + ideal(h7) 7

I7 = I5 + ideal(h7,h8,h9,h10) 9

I8 = I7 + ideal(h11) 9

I9 = I8 + ideal(h12) 9

I10 = ideal(O,TW,h1,h2) 8

I11 = I10 + ideal(h3,h4,h5,h6) 8

I12 = I11 + ideal(h7) None

I13 = I1 + ideal(h1,TWg4,g5,g6,g7,g8) 7

I14 = I13 + ideal(h2,h3) None

I15 = I13 + ideal(h2) 8

I16 = I15 + ideal(h3) 8

I17 = I15 + ideal(h3,h4,h5,h6,h7) 8

I18 = I17 + ideal(h8,h9,h10,h11) 7

I19 = ideal(h1,h2,O,TW) None

(01)(23),(45)-4

Ring: R = QQ[D,d1,d2,d3,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,z1,z2,z3,z4,z5,z6,z7,z8,z9];

Initial relations:

f1 = −a3 + z1d4; g1 = −z2d1 + d3 − d1d2; g2 = −z3d1 + d2 − d1d3; g3 = −z4d1 +
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d2d3; g4 = z5d1 + d12 + 1; g5 = −z6d1 + d4 − d1d4; g6 = −z7d1 + d42; g7 =

z8d2d3 + a3(d2 + d3); g8 = −z9d2d3 + a32;

GBA relations:

h1 = a1z1−a2z1+a4z1+a5z1+d2−d3; h2 = d2z1−d3z1+d1+a4+a5+1;h3 = t1−1; h4 =

t2− t3; h5 = z2+z3; h6 = d2+d3; h7 = d1+p−1; h8 = d3p+pz3+d2−d3−z3;h9 =

a3z1− a3z3− d4z4; h4 = t2− t3; h5 = d1− a1− a2− 1; h6 = Dt33 + p2; h4 = d2z2−

d3z3;h5 = a3; h6 = z1; h7 = a4−a5−p; h8 = z3; h9 = p2+D; h10 = a1+a2; h11 =

D−4z4;h12 = 2a5+p+2; h13 = z4−3; h14 = a22−z4; h15 = t2+t3; h5 = z2+z3; h6 =

d2+d3;h7 = p2−D; h8 = d1+p−1; h9 = z3;h5 = z2−z3; h6 = d1−a1−a2−1;h1 =

a1z1−a2z1+a4z1+a5z1+d2−d3; h2 = d2z1−d3z1+d1+a4+a5+1; h3 = t2−1; h4 =

t3−t1;h5 = d3z2+d1z4+a2; h6 = d2z2+pz4+a1−p−z4; h7 = a2z1+a2z2−d3z4;h8 =

d3z1−a2; h9 = d1z1+d3; h10 = d1−a2+a4+a5−z4+1; h11 = d4a3+d3z4−d3;h12 =

d4a2−d3a3; h13 = d2a2+d3z4; h14 = d3d4+d1a3; h15 = d4a1−d2a3−d4p;h1 = a1z1−

a2z1+a4z1+a5z1+d2−d3; h2 = d2z1−d3z1+d1+a4+a5+1; h3 = t1+1;h4 = t2+t3;
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Table A.15: (01)(23),(23)(45)-4

Ideal DegreeLimit

I1 = ideal(O,TW,f1,g1,g2,g3) 7

I2 = I1 + ideal(h1,h2,h3) 7

I3 = I2 + ideal(h4,h5) 8

I4 = I3 + ideal(h6,h7,h8,h9) 9

I5 = I2 + ideal(h4,h5,g4,g5,g6,g7,g8) 8

I6 = I5 + ideal(h6) None

I7 = I2 + ideal(h4) 8

I8 = I7 + ideal(h5,h6) None

I9 = I8 + ideal(h7,h8,h9) None

I10 = I9 + ideal(h10,h11,h12,h13,h14,h15) None

I11 = I7 + ideal(h5) 8

I12 = I11 + ideal(h6,h7,h8,h9) None

I13 = I7 + ideal(h5,h6) 8

I14 = I1 + ideal(h1,h2,h3,h4) 8

I15 = I14 + ideal(h5,. . .,h15) None

I16 = I1 + ideal(h1,h2,h3,h4) 8

Group: ⟨(01)(24)(35), (23)(45)⟩

Ring: R = QQ[D,d1,d2,d4,a1,a2,a3,a4,p,t1,t2,t4,z1];

Initial relations:

f1 = d12 + z1d1− 1;

GBA relations:

h1 = t1− 1; h2 = t2− t4; h3 = t2− 1; h4 = t4− t1; h5 = t4− 1; h6 = t2− t1;
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h7 = t1 + 1; h8 = t2 + t4; h9 = p2 +D; h10 = t14 + t13 + t12 + t1 + 1; h11 = t22 − t4;

h12 = t12 − t2; h13 = t14 + t13 + t12 + t1 + 1; h14 = t42 − t2; h15 = t12 − t4;

h16 = t14 + t13 + t12 + t1 + 1; h17 = t1t4− t2; h18 = t4 + 1; h19 = t42 + 1;

h20 = t42 + t4 + 1; h22 = a2− t4− 1; h23 = a1 + t4; h24 = d4a3 + d4a4 + d2; h25 =

a1 + a2− 1;

h26 = t44+1; h27 = d4a3+d4a4+d2; h28 = a1+a2− 1; h29 = t14+ t13+ t12+ t1+1;

h30 = t1t2− t4; h31 = t2 + 1; h32 = t22 + 1; h33 = t24 + 1;

h34 = d2a3+ d2a4+ d4; h35 = a1+ a2+1; h36 = t22 + t2+1; h37 = d2a3+ d2a4+ d4;

h38 = a1 + a2 + 1; h39 = d2− 1; h40 = d4− d1;
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Table A.16: (01)(24)(35),(23)(45)

Ideal DegreeLimit

I0 = ideal(O,TW); No GBA Run

I1 = I0 + ideal(h1) None

I2 = I0 + ideal(h2) None

I3 = I0 + ideal(h3,h4) None

I4 = I0 + ideal(h5,h6) None

I5 = I0 + ideal(h7,h8) None

I6 = I5 + ideal(h9) None

I7 = I0 + ideal(h10,h11,h12) None

I8 = I0 + ideal(h13,h14,h15) None

I9 = I0 + ideal(h16,h17,h18) None

I10 = I0 + ideal(h16,h17,h19) None

I11 = I0 + ideal(h16,h17,h20) 9

I12 = I11 + ideal(h22,h23,h24,h25) None

I13 = I0 + ideal(h16,h17,h26) 9

I14 = I13 + ideal(h27,h28) None

I15 = I0 + ideal(h29,h30,h31) None

I16 = I0 + ideal(h29,h30,h32) None

I17 = I0 + ideal(h29,h30,h33) 9

I18 = I17 + ideal(h34,h35) None

I19 = I0 + ideal(h29,h30,h36) 9

I20 = I19 + ideal(h37,h38) None

I21 = I20 + ideal(h39,h40,f4) None
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A.2 SELF DUAL

Group: ⟨(0123)⟩, all three sign choices have the same information save the GBA relations.

Ring: R = QQ[D,d1,d2,d3,d4,d5,a1,a2,p,t1,t2,t3,t4,t5];

GBA relations:

Sign Choice 2:

h1 = d1+d2+d3−a2−1; h2 = d1−d2+d3+a1+1; h3 = t1− t2+ t3−1; h4 = t1−1;

h5 = t2− 1; h6 = t3− 1; h7 = t2 + 1; h8 = t1 + t3;

Sign Choice 3:

h1 = d1−d2−d3+a2+1; h2 = d1+d2−d3−a1−1; h3 = t1− t2+ t3−1; h4 = t1−1;

h5 = t2− 1; h6 = t3− 1; h7 = t2 + 1; h8 = t1 + t3;

Sign Choice 4:

h1 = d1+d2−d3+a2+1; h2 = d1−d2−d3−a1−1; h3 = t1− t2+ t3−1; h4 = t1−1;

h5 = t2− 1; h6 = t3− 1; h7 = t2 + 1; h8 = t1 + t3;

Table A.17: (0123)SD

Ideal DegreeLimit

I1 = ideal(O,TW) 7

I2 = I1 + ideal(h1,h2,h3) 7

I3 = I2 + ideal(h4,h5,h6) None

I4 = I2 + ideal(h7,h8) None

Group: ⟨(01234)⟩

Ring: R = QQ[D,d1,d2,d3,d4,d5,z,p,t1,t2,t3,t4,t5,e0,e1,e2,e3,e4,e5];

Initial relations:
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f1 = e0e1e2e3e4e5− 1; f2 = e02 − 1; f3 = e12 − 1; f4 = e22 − 1;

f5 = e32 − 1; f6 = e42 − 1; f7 = e52 − 1;

GBA relations:

h1 = t1− 1; h2 = t2− 1; h3 = t3− 1; h4 = t4− 1;

Table A.18: (01234)SD

Ideal DegreeLimit

I1 = ideal(O,TW,f1,f2,f3,f4,f5,f6,f7,h1,h2,h3,h4) 7

Group: (01)(23), (23)(45)⟩ There are 3 sign choices that require the GBA.

(01)(23),(23)(45)-1

Ring: R = QQ[D,d1,d2,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,t5];

GBA relations:

h1 = a1+ a2+ a4− a5; h2 = d1+ a4+ a5+ 1; h3 = d1− a1+ a2− 1; h4 = a2− a5− 1;

h5 = t1−1; h6 = t2−t3; h7 = t4−t5; h8 = p2+D; h9 = t5−1; h10 = t2−t3; h11 =

t4− t5;

Table A.19: (01)(23),(23)(45)SD-1

Ideal DegreeLimit

I1 = ideal(O,TW) 7

I2 = I1 + ideal(h1,h2,h3,h4,h5) 10

I3 = I2 + ideal(h6,h7) None

I4 = I3 + ideal(h8,h9) None

I5 = I1 + ideal(h1,h2,h3,h4,h10,h11) 8
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(01)(23),(23)(45)-2

Ring: R = QQ[D,d1,d2,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,t5];

GBA relations:

h1 = a1+ a2+ a4− a5; h2 = d1+ a4− a5+ 1; h3 = d1− a1+ a2− 1; h4 = a2+ a5− 1;

h5 = t1−1; h6 = t2−t3; h7 = t4−t5; h8 = p2+D; h9 = t5−1; h10 = t2−t3; h11 =

t4− t5;

Table A.20: (01)(23),(23)(45)SD-2

Ideal DegreeLimit

I1 = ideal(O,TW) 7

I2 = I1 + ideal(h1,h2,h3,h4,h5) 10

I3 = I2 + ideal(h6,h7) None

I4 = I3 + ideal(h8,h9) None

I5 = I1 + ideal(h1,h2,h3,h4,h10,h11) 8

(01)(23),(23)(45)-3

Ring: R = QQ[D,d1,d2,d4,a1,a2,a3,a4,a5,p,t1,t2,t3,t4,t5];

Initial relations:

g1 = z1d4 + a4 + a5; g2 = z2d4− a4a5; g3 = z3d1− d2d1− d2;

g4 = z4d1− d22; g5 = z5d1− d4d1 + d4; g6 = z6d1− d42;

GBA relations:

h1 = d1− a4− a5− 1; h2 = d1 + a1 + a2 + 1; h3 = t1− 1; h4 = t2− t3; h5 = t4− t5;

h6 = p2 −D; h7 = a3; h8 = Dt53 + p2; h9 = a3; h10 = p2 −D; h11 = t4 + t5;
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h12 = t1− 1; h13 = t4− t5 h14 = t2+ t3; h15 = a4+a5+2; h16 = a3; h17 = p2−D;

h18 = t2− t3; h19 = t4− t5; h20 = t1 + 1;

Table A.21: (01)(23),(23)(45)SD-3

Ideal DegreeLimit

I1 = ideal(O,TW) 7

I2 = I1 + ideal(h1,h2,h3,h4) 10

I3 = I2 + ideal(h5) None

I4 = I3 + ideal(h6,h7,h8) None

I5 = I2 + ideal(h9,h10,h11) None

I6 = I1 + ideal(h1,h2,h12,h13,h14) None

I7 = I6 + ideal(h15,h16,h17) None

I8 = I1 + ideal(h1,h2,h18,h19,h20) None

Group: (01)(23),(02)(13), both sign choices use the same setup.

Ring: R = QQ[D,d1,d2,d3,d4,d5,p,t1,t2,t3,t4,t5,z1,z2,z3,z4];

Initial relations:

f1 = z2d5− z3d4

Table A.22: (01)(23),(02)(13)SD

Ideal DegreeLimit

I1 = ideal(O,TW,f1) 7
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Group: ⟨(0123)(45)⟩ This has 4 sign choices used for the GBA. But they only differ slightly in

their GBA relations.

Ring: R = QQ[D,d1,d2,d3,d4,d5,a1,a2,p,t1,t2,t3,t4,t5];

GBA relations:

(0123)(45)-1

h1 = d22 − d2a1− d1a2− d3a2− a22 − 2d2 + a1 + 1;

h2 = d3t1t2 + d1t2t3 + 2a2t4t5 + d1t1 + d3t3;

h3 = t1− 1; h4 = t2− 1; h5 = t3− 1; h6 = t4− t5; h7 = 4d52 + a12 + a22 −D;

h8 = d4− d5; h9 = a1t1t52 + a1t2t52 + a1t3t52 − 4a1t53 + a1t52 + 2p;

h10 = a1t53 − d2t2t5 + t1t3t5− p; h11 = 2Da1t53 − a12p+ a22p−Dp;

h12 = Dd5t53 − d5a1p+ d4a2p; h13 = d1− d2 + d3 + a1 + a2 + 1;

h14 = d1a1− d2a1 + d3a1 + 3a1a2− a22 +D + a1;

h15 = 2d2d3− 2d32 − 2d3a1− 2d3a2− a1a2− 2d2− 2d3;

h16 = d2t1t3− a2t52 − t2;

h17 = a1t1 + a1t2 + a1t3− 2a1t5− 2a2t5 + a1; h18 = a2t52 − d2t2 + t1t3;

h19 = d2− a1− 1; h20 = d2− a2− 1; h21 = d2− a1− 1;

h22 = d1 + d3 + a2; h23 = t2− 1; h24 = t1− t3;

(0123)(45)-2

h1 = d22−d2a1+d1a2−d3a2−a22−2d2+a1+1; h2 = d3t1t2−d1t2t3+2a2t4t5−d1t1+d3t3;

h3 = t1− 1; h4 = t2− 1; h5 = t3− 1; h6 = t4− t5; h7 = 4d52 + a12 + a22 −D;

h8 = d4− d5; h9 = a1t1t52 + a1t2t52 + a1t3t52 − 4a1t53 + a1t52 + 2p;

h10 = a1t53 − d2t2t5 + t1t3t5− p; h11 = 2Da1t53 − a12p+ a22p−Dp;

h12 = Dd5t53 − d5a1p + d4a2p; h13 = d1 + d2 − d3 − a1 − a2 − 1;h14 = d1a1 + d2a1 −

d3a1− 3a1a2 + a22 −D − a1;

h15 = 2d2d3− 2d32 − 2d3a1− 2d3a2− a1a2− 2d2− 2d3;

h16 = d2t1t3− a2t52 − t2;

h17 = a1t1 + a1t2 + a1t3− 2a1t5− 2a2t5 + a1;
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h18 = a2t52 − d2t2 + t1t3; h19 = d2− a1− 1;

h20 = d2− a2− 1; h21 = d2− a1− 1; h22 = d1− d3− a2;

h23 = t2− 1; h24 = t1− t3;

(0123)(45)-3

h1 = d22 + d2a1 + d1a2− d3a2− a22 + 2d2 + a1 + 1;

h2 = d3t1t2− d1t2t3 + 2a2t4t5− d1t1 + d3t3;

h3 = t1− 1; h4 = t2− 1; h5 = t3− 1; h6 = t4− t5; h7 = 4d52 + a12 + a22 −D;

h8 = d4− d5; h9 = a1t1t52 + a1t2t52 + a1t3t52 − 4a1t53 + a1t52 + 2p;

h10 = a1t53 + d2t2t5 + t1t3t5− p; h11 = 2Da1t53 − a12p+ a22p−Dp;

h12 = Dd5t53 − d5a1p+ d4a2p; h13 = d1− d2− d3− a1− a2− 1;

h14 = d1a1− d2a1− d3a1− 3a1a2 + a22 −D − a1;

h15 = 2d2d3 + 2d32 + 2d3a1 + 2d3a2 + a1a2− 2d2 + 2d3;

h16 = d2t1t3 + a2t52 + t2;

h17 = a1t1 + a1t2 + a1t3− 2a1t5− 2a2t5 + a1;

h18 = a2t52 + d2t2 + t1t3; h19 = d2 + a1 + 1;

h20 = d2 + a1 + 1; h21 = d2 + a1 + 1; h22 = d1− d3− a2;

h23 = t2− 1; h24 = t1− t3;

(0123)(45)-4

h1 = d22 − d2a1 + d1a2 + d3a2− a22 − 2d2 + a1 + 1;

h2 = d3t1t2 + d1t2t3− 2a2t4t5 + d1t1 + d3t3; h3 = t1− 1; h4 = t2− 1; h5 = t3− 1;

h6 = t4− t5; h7 = 4d52 + a12 + a22 −D; h8 = d4− d5;

h9 = a1t1t52 + a1t2t52 + a1t3t52 − 4a1t53 + a1t52 + 2p;

h10 = a1t53 − d2t2t5 + t1t3t5− p; h11 = 2Da1t53 − a12p+ a22p−Dp;

h12 = Dd5t53 − d5a1p+ d4a2p; h13 = d1 + d2 + d3− a1− a2− 1;

h14 = d1a1 + d2a1 + d3a1− 3a1a2 + a22 −D − a1;

h15 = 2d2d3 + 2d32 − 2d3a1− 2d3a2 + a1a2 + 2d2− 2d3;

h16 = d2t1t3− a2t52 − t2; h17 = a1t1 + a1t2 + a1t3− 2a1t5− 2a2t5 + a1;
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h18 = a2t52 − d2t2 + t1t3; h19 = d2− a1− 1; h20 = d2− a2− 1;

h21 = d2− a1− 1; h22 = d1 + d3− a2; h23 = t2− 1; h24 = t1− t3;

Table A.23: (0123)(45)SD

Ideal DegreeLimit

I1 = ideal(O,TW) 7

I2 = I1 + ideal(h1,h2,h3,h4,h5) None

I3 = I1 + ideal(h1,h2,h6) 7

I4 = I3 + ideal(h7,h8,h9,h10,h11,h12) 7

I5 = I4 + ideal(h13,h14,h15,h16,h17,h18) 7

I6 = I5 + ideal(h19) 7

I7 = I5 + ideal(h20) None

I8 = I1 + ideal(h1,h2,h21,h22,h23,h24) None

Group: ⟨(012), (345)⟩

Ring: R = QQ[D,d1,d2,d3,a1,a2,a3,p,t1,t2,t3,del0,del3,del4,del5];

Initial relations:

f1 = del02 − 1; f2 = del32 − 1; f3 = del42 − 1;

f4 = del52 − 1; f5 = del0del3del4del5− 1;

Table A.24: (012),(345)SD

Ideal DegreeLimit

I1 = ideal(O,TW,f1,f2,f3,f4,f5); 11
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Group: ⟨(01)(23)(45)⟩

This group is broken up into 7 parts. One part of preliminaries, one part for the assumption 16

divides n, and 5 parts for the assumption 5 divides n.

(01)(23)(45)-T

Ring: R = QQ[D,d1,d2,d3,d4,d5,a1,a2,b1,b2,c1,c2,p,t1,t2,t3,t4,t5];

Table A.25: (01)(23)(45)SD-T

Ideal DegreeLimit

I0 = ideal(O,TW) No GBA run

I1 = I0 + ideal(t1-1,t2-1,t3-1,t4-1,t5-1) None

I2 = I0 + ideal(t1-1,t2-1,t3-1) None

I3 = I0 + ideal(t1-1,t4-1,t5-1) None

I4 = I0 + ideal(t2-t3,t4-t5,t2-t4) None

I5 = I0 + ideal(t1-1,t2-t3,t4-t5) 9

I6 = I0 + ideal(t1-1,t2-t4,t3-t5) 9

I7 = I0 + ideal(t1-1,t2-t5,t3-t4) 9

I8 = I0 + ideal(t1-t2,1-t3,t4-t5) 9

I9 = I0 + ideal(t1-t3,t2-1,t4-t5) 9

I10 = I0 + ideal(t1-t4,1-t5,t2-t3) 9

I11 = I0 + ideal(t1-t5,1-t4,t2-t3) 9

(01)(23)(45)-16

Ring: R = QQ[D,d1,d2,d3,d4,d5,a1,a2,b1,b2,c1,c2,p,t1,t2,t3,t4,t5,

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,z1,z2,z3,z4,z5,z6,z7];

Initial relations:
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f1 = z1d1 + d1d2 + d3; f2 = −z2d1 + d2− d1d3; f3 = −z3d1 + d2d3;

f4 = z4d1 + d1d4 + d5; f5 = −z5d1 + d4− d1d5; f6 = −z6d1 + d4d5;

f7 = d12+ z7d1− 1; g1 = a1−x1d2; g2 = a2−x2d2; g3 = c1−x3d2; g4 = c2−x4d2;

g5 = a2−x5d3; g6 = a1+x6d3; g7 = c2−x7d3; g8 = c1+x8d3; g9 = c1−x9d4; g10 =

c2− x10d4; g11 = b1− x11d4; g12 = b2− x12d4; g13 = c2− x13d5;

g14 = c1 + x14d5; g15 = b2− x15d5; g16 = b1 + x16d5;

GBA relations:

k1 = x11x15 + x12x16; k2 = x12x14 + x9x15; k3 = x11x14− x9x16;

k4 = x12x13− x10x15; k5 = x11x13 + x10x16; k6 = x9x13 + x10x14;

k7 = x8x13− x7x14; k8 = x3x13 + x4x14; k9 = x7x9 + x8x10; k10 = x4x9− x3x10;

k11 = x3x7 + x4x8; k12 = x4x6 + x1x7; k13 = x3x6− x1x8;

k14 = x4x5− x2x7; k15 = x3x5 + x2x8; k16 = x1x5 + x2x6;

h1 = t3 + 1; h2 = b1; h3 = b2; h4 = 2c12 + 2c22 −D; h5 = Dt52 − p2;

h6 = a2pt3− 2c1c2t5; h7 = 2d4d5p+Dd1t5; h8 = 2d2d3− d1a1− a2;

h9 = d5a1 + d4a2 + d3c1 + d2c2; h10 = d4a1− d5a2 + d2c1− d3c2;

h11 = 2d3d5 + a1c1 + d1c2 + a2c2− c1; h12 = 2d2d5 + d1c1− a2c1 + a1c2 + c2;

h13 = d1x10 + d1x14− 2d2; h14 = d1d3 + d2 h15 = d1x6 + 2d2− x5;

h16 = d1x1−2d3+x2; h17 = x10−x14; h18 = x6+x14; h19 = x2+x14; h20 = a1+1;

h21 = d5 + x8; h22 = d4 + x7; h23 = d1 + a2; h24 = t5 + 1; h25 = a2; h26 = a1;

h27 = 2c12 + 2c22 −D; h28 = Dt32 − p2; h29 = 2d2d3p+Dd1t3;

h30 = 2c1c2t3− b2pt5; h31 = 2d4d5− d1b1− b2; h32 = d3b1 + d2b2 + d5c1 + d4c2;

h33 = d2b1− d3b2 + d4c1− d5c2; h34 = 2d3d5 + b1c1 + d1c2 + b2c2− c1;

h35 = 2d2d5 + d1c1 + b2c1− b1c2 + c2; h36 = d1 + a2; h37 = 2d52 + 2c22 −D;

h38 = 2c12 + 2c22 −D; h39 = d4c1 + d5c2; h40 = 4a22 −D + 4;

h41 = d5a2− d2c1; h42 = d4a2 + d2c2; h43 = d2d5− a2c1;

h44 = d3d1 + d2; h45 = d1− a2; h46 = 2c12 + 2c22 −D; h47 = d5c1− d4c2;
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h48 = 4a22 −D + 4; h49 = d5a2 + d3c2; h50 = d4a2 + d3c1; h51 = d4d5− c1c2;

h52 = d3d5 + a2c2; h53 = d1d2− d3; h54 = d1 + b2; h55 = 2d32 + 2c22 −D;

h56 = 2c12 + 2c22 −D; h57 = d2c1 + d3c2; h58 = 4b22 −D + 4;

h59 = d3b2− d4c1; h60 = d2b2 + d4c2; h61 = d5b2− d4; h62 = d1d5 + d4;

h63 = 4c22t3−Dt3 + 2p; h64 = 2d3c2t3− d4p; h65 = d1− b2; h66 = d3c1− d2c2;

h67 = 4b22 −D + 4; h68 = d3b2 + d5c2; h69 = d2b2 + d5c1; h70 = d3d5 + b2c2;

h71 = d2d5 + b2c1; h72 = d2d3− c1c2; h73 = p2 −D; h74 = p2 −D;

h75 = D − 4; h76 = p+ 2; h77 = d1c1− c2; h78 = d3b2− d5c2; h79 = d2b2− d4c2;

h80 = d3b1− d5c1; h81 = d2b1− d4c1; h82 = d1b1− b2; h83 = d5a2− d3c2;

h84 = d4a2− d2c2; h85 = d5a1− d3c1; h86 = d4a1− d2c1; h87 = d1a1− a2;

h88 = d2d5− c2; h89 = p2 −D; h90 = D − 4; h91 = p+ 2; h92 = d1c1 + c2;

h93 = d3b2 + d4c1; h94 = d2b2− d5c1; h95 = d3b1− d4c2; h96 = d2b1 + d5c2;

h97 = d1b1− b2; h98 = d5a2 + d2c1; h99 = d4a2− d3c1; h100 = d5a1− d2c2;

h101 = d4a1 + d3c2; h102 = d1a1− a2; h103 = d3d5 + c1;
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Table A.26: (01)(23)(45)SD-16

Ideal DegreeLimit

I0 = ideal(O,g1. . .,g16) 7

I0 = ideal(O,TW) No GBA Run

I1 = I0 + ideal(t1-1,t2-t3,t4+t5) 9

I2 = I1 + ideal(h1,. . .,h8) None

I3 = I2 + ideal(h9,. . .,h12,g1,. . .,g16,k1,. . .,k16,x11,x12,x15,x16) None

I4 = I3 + ideal(h13,. . .,h16) None

I5 = I4 + ideal(h17,. . .,h23,f1,. . .,f7) None

I6 = I0 + ideal(t1-1,t2+t3,t4-t5) 9

I7 = I6 + ideal(h24,. . .,h31) None

I8 = I7 + ideal(h32,. . .,h35,f1,. . .,f7,g1,ldots,g16,k1,. . .,k16,x1,x2,x5,x6) None

I9 = I0 + ideal(t2-1,t3-t1,t1+1,t4+t5) 9

I10 = I9 + ideal(b1,b2,a1+1) None

I11 = I10 + ideal(h36,. . .,h44,g1,. . .,g16,k1,. . .,k16,x11,x12,x15,x16) None

I12 = I9 + ideal(p2-D) 9

I13 = I0 + ideal(t3-1,t2-t1,t1+1,t4+t5) 9

I14 = I13 + ideal(b1,b2,a1-1) None

I15 = I14 + ideal(h45,. . .,h53,g1,. . .,g16,k1,. . .,k16,x11,x12,x15,x16) None

I16 = I13 + ideal(p2-D) 9

I17 = I0 + ideal(t4-1,t5-t1,t1+1,t2+t3) 9

I18 = I17 + ideal(a1,a2,b1+1) None
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Table A.27: (01)(23)(45)SD-16-2

Ideal DegreeLimit

I19 = I18 + ideal(h54,. . .,h64,g1,. . .,g16,k1,. . .,k16,x1,x2,x5,x6,f1,. . .,f7) None

I20 = I17 + ideal(p2 −D) 9

I21 = I0 + ideal(t5-1,t4-t1,t1+1,t2+t3) 9

I22 = I21 + ideal(a1,a2,b1-1) None

I23 = I22 + ideal(h65,. . .,h72,g1,. . .,g16,k1,. . .,k16,x1,x2,x5,x6,f1,. . .,f7) None

I24 = I21 + ideal(h73) None

I25 = I0 + ideal(t2-t3,t4-t5,t1+1) None

I26 = I0 + ideal(t2-t4,t3-t5,t1+1,t2+t3) 9

I27 = I26 + ideal(h74) 8

I28 = I27 + ideal(h75,h76) 8

I29 = I26 + ideal(h77,. . .,h88) None

I30 = I0 + ideal(t2-t5,t3-t4,t1+1,t2+t3) 9

I31 = I30 + ideal(h89) 8

I32 = I31 + ideal(h90,h91) 8

I33 = I30 + ideal(h92,. . .,h103) None

I34 = I0 + ideal(t1-1,t2+t3,t4+t5) 9

I35 = I0 + ideal(t1+1,t2-t3,t4+t5) 9

I36 = I0 + ideal(t1+1,t2+t3,t4-t5) 8

(01)(23)(45)-5-1

Ring: R = QQ[D,d1,d2,d3,d4,d5,a1,a2,b1,b2,c1,c2,p,t1,t2,t3,t4,t5,z1,z2,z3,z4,z5,z6,z7];

R2 = QQ[D,d1,d2,d3,d4,d5,p,t1,t2,t3,t4,t5,a1,a2,b1,b2,c1,c2,MonomialOrder=>Eliminate 17]

Initial relations:

f1 = z1d1 + d1d2 + d3; f2 = −z2d1 + d2− d1d3; f3 = −z3d1 + d2d3;
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f4 = z4d1+d1d4+d5; f5 = −z5d1+d4−d1d5; f6 = −z6d1+d4d5; f7 = d12+z7d1−1;

f8 = z8d1 + a1d1 + a2; f9 = −z9d1 − a2d1 + a1; f10 = −z10d1 + a1a2; f11 =

z11d1 + c1d1 + c2;

f12 = −z12d1− c2d1 + c1; f13 = −z13d1 + c1c2; f14 = z14d1 + b1d1 + b2;

f15 = −z15d1− b2d1 + b1; f16 = −z16d1 + b1b2;

Ng’s relation: NG = 1 + d1 + d2 + d3 + d4 + d5− d12;

GBA relations:

h1 = t1− 1; h2 = t24 + t23 + t22 + t2 + 1; h3 = t24 − t3; h4 = t44 − t5;

h5 = t22 − t4; h6 = pt4− pt5 + 5a1; h7 = p2 +D; h8 = b2t4 + b2t5 + a2;

h9 = a2t4 + a2t5 + a2 + b2; h10 = b2t3− a2t5− a2; h11 = 5b1t3 + pt5− p;

h12 = 5a1p−Dt4 +Dt5; h13 = b1c1 + b2c2; h14 = a2c1− a1c2;

h15 = a1c1− a2c2 + b2c2; h16 = 2b1b2 + c1c2; h17 = d3a2− d2b1 + d5c2;

h18 = d2a2 + d3b1 + d4c2; h19 = d5a1− d4b2 + d3c1; h20 = d4a1 + d5b2 + d2c1;

h21 = d3a1 + d2b2 + d5c1; ‘h22 = d2a1− d3b2 + d4c1; h23 = d4d5− d1a1− a2;

h24 = d2d3 + d1b1 + b2; h25 = t22 − t5; h26 = pt4− pt5− 5a1; h27 = p2 +D;

h28 = b2t4 + b2t5− a2; h29 = a2t4 + a2t5 + a2− b2; h30 = b2t3− a2t5 + b2;

h31 = 5a1p+Dt4−Dt5; h32 = b2c1− b1c2; h33 = b1c1 + a2c2− b2c2;

h34 = a2c1 + a1c2 + b1c2; h35 = a1c1 + a2c2; h36 = 2b1b2− c1c2;

h37 = 2a1a2 + c1c2; h38 = d5a2− d4b1− d2c1; h39 = d4a2 + d5b1 + d3c1;

h40 = d3a2 + d2b1 + d4c1; h41 = d2a2− d3b1− d5c1; h42 = d5a1 + d4b2 + d2c2;

h43 = d4a1− d5b2− d3c2; h44 = d3a1− d2b2− d4c2; h45 = d2a1 + d3b2 + d5c2;

h46 = d4d5 + d1a1 + a2; h47 = d2d3− d1b1− b2; h48 = t2− t3;

h49 = t14+ t13+ t12+ t1+1; h50 = 1+ t1+ t2+ t4+ t5; h51 = t1t4− 1; h52 = t2t5− 1;

h53 = t52 − t4; h54 = d5a2− d3c2; h55 = d4a2− d2c2; h56 = d5a1− d2c2;

h57 = d4a1 + d3c2; h58 = b1− t3− t5− 1; h59 = 2d5 + z5; h60 = d1d5 + d4;

h61 = t2− t3; h62 = t14 + t13 + t12 + t1+ 1; h63 = 1+ t1+ t2+ t4+ t5; h64 = t1t5− 1;

h65 = t2t4− 1; h66 = t42 − t5; h67 = 5pt4 +Dt5 + 5pt5−D; h68 = Dt4−Dt5− 5pt5;
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h69 = 5pt3+2Dt5+5pt5+3D+10p; h70 = Dt3−D−5p; h71 = 5pt1−3Dt5−5pt5−2D−5p;

h72 = Dt1+2Dt5+5pt5+2D+5p; h73 = p2+D+5p; h74 = 5b1p−3Dt5−10pt5−2D−5p;

h75 = Dp+ 3Dt5 + 10pt5 + 2D − 5p; h76 = Db1 +Dt5 + 5pt5 + 2D + 5p;

h77 = 5pt52 + 2Dt5 + 5pt5 + 3D + 10p; h78 = Dt52 −D − 5p; h79 = t2− 1;

h80 = t3− t1; h81 = t14 + t13 + t12 + t1 + 1; h82 = t4t5− t1; h83 = t42 − t5;

h84 = t1t5−1; h84 = 5b1p−2Dt3−Dt5−2D; h85 = 5a1p−3Dt3−Dt4−2Dt5−4D+5p;

h86 = b2c1 + 3a1c2− 5b1c2 + 3c2; h87 = a1c1− 2b1c1 + b2c2 + c1;

h88 = a1b2− b1b2 + c1c2− b2t3− b2t5− b2; h89 = d5b1− 2d4b2− 3d2c2− 3d5;

h90 = d4b1− 2d5b2− d2c1− d4; h91 = d2b1 + d5c2; h92 = d5a1− 3d4b2− 5d2c2− 4d5;

h93 = d4a1− 3d5b2− 2d2c1− d4; h94 = d2a1− d4c1 + 2d5c2 + d2;

h95 = d3d5 + 2b1c1 + a2c2− b2c2; h96 = d2d5− a1c2 + 3b1c2− 2c2;

h97 = 5b2c2t5− c1pt5− 5b1c1 + 10b2c2 + c1p; h98 = 5d5c2t5 + 4d2pt5 + 10d4c1 + d2p;

h99 = 5d4c1t5+d2pt5+10d4c1−5d5c2−d2p; h100 = 5d5b2t5−d4pt5−5d2c1+d4p−5d4;

h101 = d4c2t4 + d2b2t5 + d4c2t5 + d2b2 + d4c2;

h102 = d2b2t4− 2d2b2t5− d4c2t5− 2d2b2− d4c2; h103 = d2b2t3+ d2b2t5+ 2d2b2+ d4c2;

h104 = 25b1b2c2−Dc1t3−Dc1t5− 3Dc1; h105 = 25d4b2c2−Dd2t3−Dd2t5 + 2Dd2;

h106 = c2− 1; h107 = t52 − t4; h108 = t1t4− 1; h109 = 5b1p+ 2Dt3 +Dt4 + 2D;

h110 = 5a1p− 3Dt3− 2Dt4−Dt5− 4D + 5p; h111 = b2c1 + a1c2 + 2b1c2 + c2;

h112 = 3a1c1 + 5b1c1 + b2c2 + 3c1; h113 = a1b2 + b1b2 + c1c2− b2t3− b2t4− b2;

h114 = d5b1+2d4b2+d2c2+d5; h115 = d4b1+2d5b2+3d2c1+3d4; h116 = d2b1−d4c1;

h117 = d5a1− 3d4b2− 2d2c2− d5; h118 = d4a1− 3d5b2− 5d2c1− 4d4;

h119 = d2a1 + 2d4c1− d5c2 + d2; h120 = 3d3d5 + 2b1c1 + 3a2c2 + b2c2;

h121 = d2d5− a1c2− 3b1c2− 2c2; h122 = d4c2t4 + d2b2t5 + 2d4c2t5 + d4c2;

h123 = d2b2t4− d2b2t5− d4c2t5 + d2b2; h124 = 25b1b2c2−Dc1t3−Dc1t4 + 2Dc1;

h125 = 25d4b2c2−Dd2t3−Dd2t4 + 2Dd2;
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Table A.28: (01)(23)(45)SD-5-1

Ideal DegreeLimit

I0 = ideal(O,TW); No GBA Run

I1 = I0 + ideal(h1,. . .,h5) None

I2 = I1 + ideal(h6,. . .,h24,f1,. . .,f16) None

I3 = I0 + ideal(h1,. . .,h4,h25) None

I4 = I3 + ideal(h26,. . .,h47,f1,. . .,f16) None

I5 = I0 + ideal(h48,. . .,h53); None

I6 = I5 + ideal(h54,. . .,h57) None

I7 = I5 + ideal(h58,f1,. . .,f7) 7

I8 = I7 + ideal(h59,h60) 9

I9 = I0 + ideal(h61,. . .,h66) 9

I10 = I9 + ideal(h67,. . .,h78) 9

I11 = I0 + ideal(h79,. . .,h84) None

Use R2

I12 = I11 + ideal(h85,. . .,h105,NG) None

I13 = I12 + ideal(h106) None

I14 = I0 + ideal(h79,. . .,h82,h107,h108) None

Use R2

I15 = I14 + ideal(h109,. . .,h125,NG) None

(01)(23)(45)-5-2

GBA relations:

h1 = t3− 1; h2 = t2− t1; h3 = t14 + t13 + t12 + t1 + 1; h4 = t4t5− t1;

h5 = t42 − t5; h6 = t1t5− 1; h7 = 5b1p− 2Dt2−Dt5− 2D;

h8 = 5a1p+ 3Dt2 +Dt4 + 2Dt5 + 4D − 5p; h9 = b2c1 + a1c2 + 2b1c2− c2;
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h10 = 3a1c1 + 5b1c1 + b2c2− 3c1; h11 = a1b2 + b1b2 + c1c2 + b2t2 + b2t5 + b2;

h12 = d5b1− 2d4b2 + 3d3c1− 3d5; h13 = d4b1− 2d5b2− d3c2− d4; h14 = d3b1− d5c1;

h15 = d5a1 + 3d4b2− 5d3c1 + 4d5; h16 = d4a1 + 3d5b2 + 2d3c2 + d4;

h17 = d3a1 + 2d5c1 + d4c2− d3; h18 = 3d3d5− 4b1c1 + b2c2 + 3c1;

h19 = d2d5− a2c1 + a1c2− c2; h20 = 5d4c2t5 + d3pt5 + 5d5c1 + 10d4c2− d3p;

h21 = 5d5c1t5− 4d3pt5− 10d4c2− d3p; h22 = 5d5b2t5− d4pt5− 5d3c2 + d4p− 5d4;

h23 = d5c2t4 + d3b2t5 + d5c2t5 + d3b2 + d5c2; h24 = d3b2t2 + d3b2t5 + 2d3b2 + d5c2;

h25 = 25b1b2c2−Dc1t2−Dc1t5 + 2Dc1; h26 = 25d5b2c2−Dd3t2−Dd3t5 + 2Dd3;

h27 = t52 − t4; h28 = t1t4− 1; h29 = 5b1p+ 2Dt2 +Dt4 + 2D;

h30 = 5a1p+ 3Dt2 + 2Dt4 +Dt5 + 4D − 5p; h31 = b2c1 + 3a1c2− 5b1c2− 3c2;

h32 = a1c1− 2b1c1 + b2c2− c1; h33 = a1b2− b1b2 + c1c2 + b2t2 + b2t4 + b2;

h34 = d5b1 + 2d4b2− d3c1 + d5; h35 = d4b1 + 2d5b2 + 3d3c2 + 3d4; h36 = d3b1− d4c2;

h37 = d5a1 + 3d4b2− 2d3c1 + d5; h38 = d4a1 + 3d5b2 + 5d3c2 + 4d4;

h39 = d3a1− d5c1− 2d4c2− d3; h40 = d3d5 + b1c1 + b2c2 + c1;

h41 = d2d5− a2c1− a1c2 + b1c2 + c2; h42 = d5c2t4 + d3b2t5 + 2d5c2t5 + d5c2;

h43 = d3b2t4− d3b2t5− d5c2t5 + d3b2; h44 = 25b1b2c2−Dc1t2−Dc1t4− 3Dc1;

h45 = 25d5b2c2−Dd3t2−Dd3t4 + 2Dd3; h46 = c2 + 1; h47 = t2− t4; h48 = t3− t5;

h49 = t2t3− t1; h50 = t14 + t13 + t12 + t1 + 1; h51 = t3t1− 1; h52 = t22 − t3;

h53 = d3b2− d5c2; h54 = d2b2− d4c2; h55 = d5a2− d3c2; h56 = d4a2− d2c2;

h57 = c1; h58 = a1 + b1− t1− t5; h59 = t2t1− 1; h60 = t32 − t2;

h61 = Dt4 + 2Dt5 + 2D − 5p; h62 = 5pt1− 2Dt5− 3D + 10p; h63 = d3d5 + c1;

h64 = d1c2+ d2d4; h65 = a1+ b1+ t1+ t4; h66 = p− 4t1− 3t4− 2t5− 6; h67 = t2− t5;

h68 = t3− t4; h69 = t2t3− t1; h70 = t14 + t13 + t12 + t1 + 1; h71 = t3t1− 1;

h72 = t22 − t3; h73 = Dt4 + 2Dt5 + 2D − 5p; h74 = 5pt1− 2Dt5− 3D + 10p;

h75 = d2d5− c2; h76 = p− 4t1− 3t4− 2t5− 6; h77 = t2t1− 1; h78 = t32 − t2;
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Table A.29: (01)(23)(45)SD-5-2

Ideal DegreeLimit

I1 = I0 + ideal(h1,. . .,h6) None

Use R2

I2 = I1 + ideal(h7,. . .,h26,NG) None

I3 = I0 + ideal(h1,. . .,h4,h27,h28); None

Use R2

I4 = I3 + ideal(h29,. . .,h45,NG) None

I5 = I4 + ideal(h46) None

I6 = I0 + ideal(h47,. . .,h52) None

I7 = I6 + ideal(h53,. . .,h57) None

I8 = I6 + ideal(h58,f1,. . .,f7) 8

I9 = I0 + ideal(h47,. . .,h60) None

I10 = I9 + ideal(h61,. . .,h66,f1,. . .,f7); None

I11 = I0 + ideal(h67,. . .,h72) None

I12 = I11 + ideal(h73,. . .,h76,f1,. . .,f7) None

I13 = I0 + ideal(h67,. . .,h78,f1,. . .,f7) None

(01)(23)(45)-5-3

GBA relations:

h1 = t14 + t13 + t12 + t1 + 1; h2 = t2− 1; h3 = t3− t1; h4 = t4t1− t5;

h5 = d5c1− d4c2; h6 = b2c1− b1c2; h7 = d5b1− d4b2; h8 = d4b2 + d2c2 + d5;

h9 = d4b1 + d2c1 + d4; h10 = d3d5 + a2c2 + b2c2; h11 = d2d5 + a1c2 + b1c2;

h12 = Dt53 − p2; h13 = t4 + 1; h14 = a1− b1 + 1; h15 = b1b2− c1c2 + b2;

h16 = d2b2 + d4c2; h17 = d5a1 + d2c2 + 2d5; h18 = d4a1 + d2c1 + 2d4;

h19 = d2b1+d4c1; h20 = a2−d1a1; h21 = b2−b1d1; h22 = 2d4+z4; h23 = d5−d1d4;
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h24 = 2z2z7 + z1; h25 = 2z5z7 + z4; h26 = z4z7 + 2z5; h27 = z2z4− z1z5;

h28 = z1z4− 4z2z5; h29 = t42 + 1; h30 = t42 + t4 + 1; h31 = t44 + 1;

h32 = d3a1− d2a2 + d3b1− d2b2; h33 = d1a1 + d1b1− a2b1 + a1b2− a2− b2;

h34 = d32 − d1a2− d1b2− a2b2− b22; h35 = d2d3− a2b1− b1b2− a2− b2;

h36 = b1pt3 + b1pt4− b1pt5−Dt52 − b1p;

h37 = b22t3− d52t4− b12t4− b22t4− c22t4 + d52t5 + c22t5 + b12 + b1p+Dt4;

h38 = a1p2 + b1p2 +Da1t3 +Db1t3−Dpt3−Dp+ p2 +Dt3;

h39 = b1t42t5− b1t4t52 − b1t4t5 + b1t52 − pt4;

h40 = d4a2c2t4− d3c1c2t4− d2a2b2− d3b1b2− d3b2;

h41 = b1t3t5 + b1t4t5− b1t52 − b1t5− p; h42 = t5t1− t4; h43 = d5c1− d4c2;

h44 = b1c1 + b2c2; h45 = d4b1 + d5b2; h46 = d5b2 + d2c1 + d4;

h47 = d5b1− d2c2− d5; h48 = d3d5 + a2c2− b2c2; h49 = d2d5 + a1c2− b1c2;

h50 = Dt43 − p2; h51 = t5 + 1; h52 = a1 + b1 + 1; h53 = a1c1− b2c2 + c1;

h54 = b1b2+ c1c2− b2; h55 = d2b2+d4c2; h56 = d2b1−d5c2; h57 = d5a1+d2c2+2d5;

h58 = d4a1 + d2c1 + 2d4; h59 = d2a1 + d5c2 + d2; h60 = a2− d1a1; h61 = b2− b1d1;

h62 = t52 + 1; h63 = t52 + t5 + 1; h64 = t54 + 1; h65 = d3a1− d2a2− d3b1 + d2b2;

h66 = d1a1− d1b1 + a2b1− a1b2− a2 + b2; h67 = d32 − d1a2 + d1b2 + a2b2− b22;

h68 = d2d3 + a2b1− b1b2− a2 + b2;

h69 = b22t3 − d52t4 − b12t4 − b22t4 − c22t4 + d52t5 + c22t5 + b12 − b1p + Dt4;h70 =

a1p2 − b1p2 +Da1t3−Db1t3−Dpt3−Dp+ p2 +Dt3;

h71 = b22t4t5 + b12t52 − b22t4− b12t5 + b1p;

h72 = d4a2c2t5− d3c1c2t5− d2a2b2 + d3b1b2− d3b2;

h73 = d4d5t3t4− b2t32 − d4d5t4− b2p+ b2t3;
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Table A.30: (01)(23)(45)SD-5-3

Ideal DegreeLimit

I1 = I0 + ideal(h1,. . .,h4) 8

I2 = I1 + ideal(h5,h6,h7) 8

I3 = I2 + ideal(h8,. . .,h13) None

I4 = I3 + ideal(h14,. . .,h19,f1,. . .,f7) None

I5 = I4 + ideal(h20,h21) None

I6 = I5 + ideal(h22,. . .,h28,f8,. . .,f16) None

I7 = I2 + ideal(h8,. . .,h12,h29) 9

I8 = I2 + ideal(h8,. . .,h12,h30) 9

I9 = I2 + ideal(h8,. . .,h12,h31) 8

I10 = I9 + ideal(h32,. . .,h35) 7

I11 = I10 + ideal(h37,. . .,h41) 8

I12 = I0 + ideal(h1,h2,h3,h42) 8

I13 = I12 + ideal(h43,h44,h45) 8

I14 = I13 + ideal(h46,. . .,h51) None

I15 = I14 + ideal(h52,. . .,h59,f1,. . .,f7) None

I16 = I15 + ideal(h60,h61) None

I17 = I13 + ideal(h46,. . .,h50,h62) 9

I18 = I13 + ideal(h46,. . .,h50,h63) 10

I19 = I13 + ideal(h46,. . .,h50,h64) 8

I20 = I19 + ideal(h65,. . .,h68) 7

I21 = I20 + ideal(h69,. . .,h73) 7

(01)(23)(45)-5-4

GBA relations:
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h1 = t14 + t13 + t12 + t1 + 1; h2 = t3− 1; h3 = t2− t1; h4 = t4t1− t5;

h5 = d4c1 + d5c2; h6 = b1c1 + b2c2; h7 = d5b1− d4b2; h8 = d4b2− d3c1 + d5;

h9 = d4b1 + d3c2 + d4; h10 = d3d5 + a1c1 + b2c2; h11 = d2d5− a2c1 + b2c1;

h12 = Dt53 − p2; h13 = t4 + 1; h14 = a1 + b1− 1; h15 = a1c1− b2c2− c1;

h16 = b1b2+ c1c2+ b2; h17 = d3b2+d5c2; h18 = d3b1+d4c2; h19 = d5a1+d3c1−2d5;

h20 = d4a1− d3c2− 2d4 h21 = d3a1− d4c2− d3; h22 = a2− d1a1; h23 = b2− b1d1;

h24 = t42 + 1; h25 = t42 + t4 + 1; h26 = t44 + 1; h27 = d2a1 + d3a2− d2b1− d3b2;

h28 = d1a1− d1b1− a2b1 + a1b2− a2 + b2; h29 = d32 + a1b1− b12 + a1− b1;

h30 = d2d3− a2b1 + b1b2− a2 + b2;

h31 = b22t2− d52t4− b12t4− b22t4− c12t4 + d52t5 + c12t5 + b12 + b1p+Dt4;

h32 = a1p2 − b1p2 +Da1t2−Db1t2 +Dpt2 +Dp− p2 −Dt2;

h33 = d5a2c2t4 + d2c1c2t4− d3a2b2− d2b1b2− d2b2;

h34 = a12 − d1a2 + a22 − a1b1 + b12 + d1b2− a2b2 + b22 + c12 + c22 −D − a1 + b1;

h35 = b1b2t22 + d4d5t2t5− c1c2t2t5− b1b2t2− d4d5t5 + c1c2t5− b2p;

h36 = d4d5t4t5 + b1b2t4t5− c1c2t4t5− d4d5t52 − b1b2t52 + c1c2t52 + b2pt4− b2p;

h37 = t5t1− t4; h38 = d4c1 + d5c2; h39 = b2c1− b1c2; h40 = d4b1 + d5b2;

h41 = d5b2 + d3c2 + d4; h42 = d5b1 + d3c1− d5; h43 = d3d5 + a1c1 + b1c1;

h44 = d2d5− a2c1− b1c2; h45 = Dt43 − p2; h46 = t5 + 1; h47 = a1− b1− 1;

h48 = b1b2− c1c2− b2; h49 = d3b2 + d5c2; h50 = d5a1 + d3c1− 2d5;

h51 = d4a1− d3c2− 2d4; h52 = 2b1− z3 + z6 + 1; h53 = a2− d1a1; h54 = b2− b1d1;

h55 = t52 + 1; h56 = t52 + t5 + 1; h57 = t54 + 1; h58 = d2a1 + d3a2 + d2b1 + d3b2;

h59 = d1a1 + d1b1 + a2b1− a1b2− a2− b2; h60 = d32 − a1b1− b12 + a1 + b1;

h61 = d2d3 + a2b1 + b1b2− a2− b2; h62 = d32 − a1b1− b12 + a1 + b1;

h63 = a12 − d1a2 + a22 + a1b1 + b12 − d1b2 + a2b2 + b22 + c12 + c22 −D − a1− b1;

h64 = b1t2t4− b1t42 + b1t4t5− b1t4 + p; h65 = b1pt2− b1pt4 +Dt42 + b1pt5− b1p;

h66 = b22t2− d52t4− b12t4− b22t4− c12t4 + d52t5 + c12t5 + b12 − b1p+Dt4;

h67 = a1p2 + b1p2 +Da1t2 +Db1t2 +Dpt2 +Dp− p2 −Dt2;
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h68 = b1t42t5− b1t4t52 − b1t42 + b1t4t5− pt5;

h69 = d5a2c2t5 + d2c1c2t5− d3a2b2 + d2b1b2− d2b2;

h70 = b1t2t42 − b1t43 + b1t4t52 − b1t4t5 + pt4 + pt5;

Table A.31: (01)(23)(45)SD-5-4

Ideal DegreeLimit

I1 = I0 + ideal(h1,. . .,h4) 8

I2 = I1 + ideal(h5,h6,h7) 8

I3 = I2 + ideal(h8,. . .,h13) None

I4 = I3 + ideal(h14,. . .,h21,f1,. . .,f7) None

I5 = I4 + ideal(h22,h23) None

I6 = I2 + ideal(h8,. . .,h12,h24) 9

I7 = I2 + ideal(h8,. . .,h12,h25) 9

I8 = I2 + ideal(h8,. . .,h12,h26) 8

I9 = I8 + ideal(h27,. . .,h30) 7

I10 = I9 + ideal(h31,. . .,h36) 8

I11 = I0 + ideal(h1,h2,h3,h37) 8

I12 = I11 + ideal(h38,h39,h40) 8

I13 = I12 + ideal(h41,. . .,h46) None

I14 = I13 + ideal(h47,. . .,h51,f1,. . .,f7) None

I15 = I14 + ideal(h52,h53,h54) None

I16 = I12 + ideal(h41,. . .,h45,h55) 9

I17 = I12 + ideal(h41,. . .,h45,h56) 10

I18 = I12 + ideal(h41,. . .,h45,h57) 8

I19 = I18 + ideal(h58,. . .,h62) 7

I20 = I19 + ideal(h63,. . .,h70) 8
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(01)(23)(45)-5-5

GBA relations:

h1 = t14 + t13 + t12 + t1 + 1; h2 = t2− t4; h3 = t3− t5; h4 = t2t1− t3;

h5 = d5b1 − d4b2 + d3c1 − d2c2; h6 = d3a1 − d2a2 + d5c1 − d4c2; h7 = a2c1 − b2c1 −

a1c2 + b1c2;

h8 = d4b2 + d2c2 + d5; h9 = d4b1 + d2c1 + d4; h10 = d2a2 + d4c2 + d3;

h11 = d2a1 + d4c1 + d2; h12 = t1t5 + t4t5− t52 + p− t5;

h13 = t12 + t42 −Dt5− t52 + 2p− 2t1− 2t4 + 2t5 + 1; h14 = Dt52 + pt1 + pt4− pt5− p;

h15 = t42t5− t4t52 + pt4− t4t5 + t52; h16 = t3t1− t2; h17 = a2c1− b2c1− a1c2 + b1c2;

h18 = d4b1+d5b2+d2c1+d3c2; h19 = d2a1+d3a2+d4c1+d5c2; h20 = d4b1+d2c1−d4;

h21 = d2a1 + d4c1− d2; h22 = t1t4− t42 + t4t5 + p− t4;

h23 = t12 −Dt4− t42 + t52 + 2p− 2t1 + 2t4− 2t5 + 1; h24 = d32t5 + d52t5 + t52 − t5 + 1;

h25 = Dt42 + pt1− pt4 + pt5− p; h26 = 2d3d5t4 + 3d3d5t5 + 2c1t1 + 3c1;

h27 = d3t52+d3b1−d5c1−d3t5; h28 = t14+t13+t12+t1+1; h29 = t3−t4; h30 = t2−t5;

h31 = t2t1− t3; h32 = a1c1 + b1c1 + a2c2 + b2c2; h33 = d4b1 + d5b2 + d2c1 + d3c2;

h34 = d3a1−d2a2+d5c1−d4c2; h35 = d4b1+d5b2+d2c1+d3c2; h36 = d4b1+d3c2−d4;

h37 = d3a1− d4c2 + d3; h38 = t1t4− t42 + t4t5 + p− t4;

h39 = t12−Dt4− t42+ t52+2p−2t1+2t4−2t5+1; h40 = t42t5− t4t52− t42−pt5+ t4t5;

h41 = Dt4t5+ t4t52− t53−pt5−2t4t5+2t52+p+ t4− t5; h42 = Dt42+pt1−pt4+pt5−p;

h43 = d5t52 − d5a1 + d2c2− d5t5; h44 = t3t1− t2; h45 = a1c1 + b1c1 + a2c2 + b2c2;

h46 = d5b1−d4b2+d3c1−d2c2; h47 = d2a1+d3a2+d4c1+d5c2; h48 = d4b2−d3c1+d5;

h49 = d4b1 + d3c2 + d4; h50 = d3a2 + d4c1 + d2; h51 = d3a1− d4c2− d3;

h52 = t1t5 + t4t5− t52 + p− t5; h53 = t12 + t42 −Dt5− t52 + 2p− 2t1− 2t4 + 2t5 + 1;

h54 = Dt52 + pt1 + pt4− pt5− p; h55 = t42t5− t4t52 + pt4− t4t5 + t52;
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Table A.32: (01)(23)(45)SD-5-5

Ideal DegreeLimit

I1 = I0 + ideal(h1,. . .,h4) 8

I2 = I1 + ideal(h5,. . .,h11) 9

I3 = I2 + ideal(h12,. . .,h15) 9

I4 = I0 + ideal(h1,h2,h3,h16) 8

I5 = I4 + ideal(h17,. . .,h21) 9

I6 = I5 + ideal(h22,. . .,h27) 9

I7 = I0 + ideal(h28,. . .,h31) 8

I8 = I7 + ideal(h32,. . .,h37) 9

I9 = I8 + ideal(h38,. . .,h43) 9

I10 = I0 + ideal(h28,h29,h30,h44) 8

I11 = I10 + ideal(h45,. . .,h51) 9

I12 = I11 + ideal(h52,. . .,h55) 9
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