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ABSTRACT 

Adobe is an inexpensive material widely used in developing countries such as Peru. Its 

use as construction material does not demand expertise.  Unfortunately, buildings constructed 

using adobe have a record of poor behavior when subject to strong ground motion.  There are 

several ways to reinforce adobe buildings.  For instance, black and nylon mesh can be introduced 

to improve the structural integrity. This research investigation studies the behavior of a one-story 

adobe building subjected to the 1970 Peruvian earthquake.  Experiments were performed at the 

Catholic University of Peru (PUCP) and examined the undamaged and damaged conditions of a 

one-story adobe building.  The experimental data from the phase 2 excitation case (60 mm 

maximum displacement) was analyzed and compared with ABAQUS models. 

A variety of statistical and transform methodologies are available to study problems in 

structural dynamics and this study explores their use in modeling and characterizing the 

excitation and response of this building.  A brief introduction regarding applications of Fourier 

and Wavelet transforms, and statistical methodology used in structural dynamics is presented.  

This is followed by a discussion of the mechanical properties of adobe building materials and the 

development of the ABAQUS building models.  The data and the corresponding numerical 

predictions area characterized in terms of the frequency content, cross-correlation, Root Mean 

Square Error (RMSE) and Statistical peak ground acceleration (SPGA).  The analysis results 

included estimates of the structural natural frequencies and corresponding modal information.  In 

addition, PDF and CDF plots of the response behavior were used to characterize time series to 

compare the experimental measurements and the numerical simulations.  Finally, both Fourier 

and wavelet analyses were used to characterize frequency content and the latter method was used 

to investigate time as well as relation to natural frequencies in the numerical models. 
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1 INTRODUCTION 

 

1.1 Fourier and Wavelet Transforms in Structural Dynamics 

Several methods in Structural Dynamics are available to help us interpret the behavior of 

structures subjected to earthquake motion. Both time domain and frequency domain analysis 

methods are widely used, but they are not effective in analyzing variations of power or frequency 

content variation in time. A more recent development, Wavelet analysis provides a powerful tool 

that can be utilized to analyze time series. Fourier transforms the entire duration of a signal; 

however, there is no way to detect if a local frequency oscillation occurring at several 

frequencies located throughout the entire signal or just at a certain period. This limitation is 

overcome by means of the Wavelet analysis, which divides a signal into its constituent parts 

(Newland, 1996). 

Time history analysis methods are most commonly used to interpret recorded earthquake 

signals of structures. However, parameters such as stiffness and critical damping ratios can vary 

depending on the frequency content. The typical Fourier Transformation (FT) methods are best 

used to understand the behavior of linear systems in the frequency domain (Clough and Penzien, 

1995). Thus, this method is not adequate alone when trying to evaluate variations in frequency 

content (Bradford, Yang, and Heaton, 2006). Real earthquake activity results in structural 

response behavior that encompasses nonlinear behavior, variations in frequency content and 

dynamics parameters, and structural damage. Thus, frequency/time domain methods help 

understand the dynamic behavior of structures and can aid in the detection of possible structural 

damage.  
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Time/frequency domain models have been developed, as shown in Figure 1.1. These 

methods include the time domain, frequency domain, Short-time Fourier Transformation 

(STFT), and wavelet analysis. The time domain model characterizes the signal while frequency 

domain methods reveal important information regarding frequency content and frequency-

dependent amplitude (Montejo and Suarez, 2006). The STFT can be used to reveal 

frequency/time methods assuming linear behavior. Wavelet methods are an extension of the 

Fourier method and are suitable to study nonlinear systems, while stochastic dynamic analysis 

can contribute to a better understanding via obtain power spectra (Politis, 2000). Non-linear 

behavior of structures can be analyzed by means of time/frequency methods. Research has 

shown that time domain methods and frequency domain methods alone do not always provide 

adequate results to interpret complex behavior. Combined frequency-time studies are 

recommended for earthquake applications, especially to detect changes in frequency content and 

damage (Politis et al, 2000).   

 

 

Figure 1.1. Time and frequency models’ representations (Reprinted from Politis, 2000). 
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Several time-frequency methods based on Fourier transform have been developed such as 

the Wavelet and Wigner-Ville transform. The energy distribution by means of the Wavelet 

Transform method was studied according to different scales after the 2001 (Moment Magnitude: 

Mw = 8.4) Chilean earthquake (Boroschek and Comte, 2004). The evolution of the frequency 

content with the Wigner-Ville Transform (WVT) was studied on both linear and nonlinear 

models subjected to synthetic earthquakes on a twenty-story building and the Millikan Library 

on Caltech campus. The WVT numerical analysis provided an estimation of the damage of the 

structures after severe earthquake (Bradford, Yang and Heaton, 2006).   Using the WVD 

transform method provided insight into signal interferences due to its quadratic nature, while 

traditional methods such as the short time Fourier transform have difficulties with having fixed 

windows (Li et al. 2009).  In addition, the WVD and SFT methods provide more information that 

is needed and computations might take long time (Newland, 1996). The Wavelet Transform 

(WT) has appeared as tool that overcomes those drawbacks and has several advantages. It can 

help identify data segments for analysis in which important information can be hidden. Another 

great advantage is that it requires less computational effort compared to the Wigner Ville 

Method. Moreover, the Wavelet transform can be used in the detection of progressive damage in 

structures considering both linear and nonlinear FEM analysis. (Li et al. 2009).  This feature is 

very important for Structural Health Monitoring. 

Regarding the power spectral density (PSD), it provides a reduction in the signals. 

However, further reduction is sometimes necessary for a better extraction of signals 

characteristics. Spectral moments have been widely used in this reduction and applied to 

stationary random processes such as vocal range, ocean wave, and fatigue failure analysis 



 

4 

  

(Alamdari et al. 2016). This research will focus on the application of wavelet and power spectral 

density analysis to investigate the response of adobe masonry structural design. 

1.2 Building materials 

Adobe is one of the oldest building materials and it is widely used in regions such as 

Latin America, The Middle East, and northern-and-southern Africa. In Peru, adobe dwellings 

comprise around 40% of total buildings, especially in rural areas where sometimes is the only 

material available for construction (Bariola and Sozen, 1990). Adobe is widely used because of 

its cost, availability, good thermal and acoustic isolation (Tarque et al. 2014). There are several 

important dynamic properties regarding adobe as construction material and that contribute 

towards to high seismic vulnerability. First, adobe masonry walls are heavy and engender great 

inertial forces. Second, adobe masonry is a relatively weak structural material and therefore 

cannot resist these great forces. In addition, adobe is a brittle and fragile material; it can collapse 

suddenly without warning (Blondet et al. 2006).   

 

 

Figure 1.2. Typical adobe buildings in the world.  
A) One story dwelling in Iran (Reprinted from Kumar, 2002). B) Two-story adobe building in 
Cusco, Peru (Reprinted from Blondet, M. et al. 2004). 
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Nylon is an inexpensive material that is widely available in rural areas. It is also easy to 

incorporate it for wall reinforcement; it does not require any special expertise (Blondet et al. 

2017).  One important parameter to take into account is the diameter of the nylon string. In fact, 

wall covering constrains the string diameter for construction. E080 Adobe Peruvian code states 

that covering should be between 15 and 20 mm. In Peru, it is recommended to use 5/32” nylon 

strings for reinforcement due to its availability in poor areas (Mattson, 2015). The modulus of 

Elasticity for nylon strings obtained from experimentation is E = 60 MPa (Blondet et al. 2017).  

The concrete ring foundation was used to transport the adobe model from construction 

site to the shaking table test. The modulus of Elasticity of concrete is E = 20 GPa.  

There are several studies regarding the material properties of adobe. For instance, the 

adobe masonry properties were used in a numerical nonlinear model regarding damaged 

plasticity (Tarque et al. 2014).  

 

Table 1.1. Material properties for adobe masonry (Reprinted from Tarque et al. 2014). 
Elastic Tension Compression 

E  υ ϒ  ft  Gf  fc  Gf  
(MPa)  (N/mm3) (MPa) (N/mm) (MPa) (N/mm) 

200 0.20 2x10-5 0.04 0.01 0.45 0.16 
 

Where E is the modulus of elasticity; υ is the Poisson ratio; ϒ is the volumetric weight, ft is the 

tensile strength; fc is the compressive strength; and Gf is the fracture energy.  

The mechanical properties of adobe material can be obtained by means of dynamic tests 

such as the typical simple compressive and diagonal compressive tests (Silveira et al. 2015). 

Figure 1.3 shows these two typical tests on laboratory. 
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Figure 1.3. Typical tests on adobe masonry. A) Simple compression. B) Diagonal 
compression (Reprinted from Blondet, M. et al. 2015). 

 

The compressive tests bring about typical mechanical properties of adobe material as 

presented by Silveira (2015); the results are shown in Table 1.2. 

 

Table 1.2. Material properties for adobe masonry (Reprinted from Silveira et al. 2015). 
Simple Compression Diagonal Compression 

E  υ fc fs  G  
(MPa)  (MPa) (MPa) (MPa) 

750 0.16 0.33 0.026 0.41 
 

Where E is the modulus of elasticity, fc is the compressive strength, fs is shear strength; and G is 

the modulus of rigidity. In fact, the values are similar regarding the study performed by Tarque 

(2014). Nonetheless, there is some discrepancy regarding the modulus of Elasticity.  

For adobe structures, the yield criterion is recommended to obtain a nonlinear stress-strain 

constitutive law; nonlinear expressions consider the reduced strength of adobe material 

representing softening and hardening plots. An exponential model for uniaxial tension and 
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parabolic expression for uniaxial compression is recommended for analysis. Figure 1.4 shows the 

constitutive stress-strain law which were obtained from mechanical tests and recommended to 

model the nonlinear behavior of adobe material (Tarque et al. 2014).  

 

 

Figure 1.4. Constitutive stress- strain-law for adobe material. Left: uniaxial tensile 
behavior. Right: uniaxial compressive behavior (Reprinted from Tarque et al. 2014). 

 

Over the years, there has been many tests on full-scale adobe buildings to study the 

behavior of reinforced and unreinforced earthen dwelling subjected to seismic activity. For 

instance, a full-scale adobe model, whose walls were reinforced with nylon strips, was tested on 

the shaking table of the Structural Laboratory of the Catholic University in Peru (PUCP). Nylon 

strings were used for vertical and horizontal reinforcement in adobe structures which were 

subjected to seismic excitation. The reinforcement was deemed to be good because it provided 

additional structural strength and avoided the total collapse of adobe walls (Blondet et al. 2017). 

Biaxial geogrid mesh was also considered on the reinforcement of adobe dwellings. However, 

the nylon strips provided an inexpensive and easily available solution (Figure 1.5). 
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Figure 1.5. Reinforcement on adobe full-scale models. A) Nylon strip. B) Biaxial geogrid 
mesh (Reprinted from Blondet al. 2017). 

 

1.3 Research objectives 

The primary objective of this research is to analyze the response behavior of a typical one-story 

adobe dwelling subjected to seismic simulation which represents random excitation (strong ground 

motion). In particular, the focus is on comparing the results obtained from experimental data and the 

ones brought about by ABAQUS software. The data content gives relevant information: implications 

from statistical pdf and cdf plots, spectral content obtained from Fourier analysis, and the use of 

wavelet transforms to discern trends in time-frequency analysis. Provided that adobe is an 

inexpensive material widely used in rural areas of developing countries such as Peru, literature 

survey of adobe as building material and experiment tests were pursued in this research. For instance, 

seismic simulations on full-scale adobe models are presented. Thus, mathematical formulation 

involving Fourier approach and Wavelet Transform as well as Statistical analysis is presented. 

Afterwards, a one-story adobe building structure was studied; it was subjected to seismic simulation 

at the Catholic University of Peru; cracks appeared in the building. The dwelling was retrofitted and 

then subjected to a second seismic simulation.  Accelerometers and linear variable displacement 
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transducers were installed to monitor the structural behavior of the building in both experiments. 

These devices provided time domain results for both the undamaged and retrofitted adobe model. 

Hence, ABAQUS software was used to model both the original and repaired adobe structure. The 

results from experiments and ABAQUS numerical simulations were used to generate statistical plots, 

estimate natural frequencies and modes for the undamaged model, and provide spectral and wavelet 

analysis.   
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2 MATHEMATICAL FORMULATION OVERVIEW 

2.1 Fourier Approach 

Any arbitrary load function can be expressed in terms of periodic terms by means of the 

Fourier series representation. Figure 2.1  shows an arbitrary load which was extended by means 

of a period ‘Tp’; this procedure brings about artificial load. As ‘Tp’ increases and tends to 

infinite, the spurious function disappears (Clough and Penzien, 1995). 

 

 

Figure 2.1. Arbitrary load represented by Fourier series (Reprinted from Clough and 
Pienzen, 1995) 

 

The inverse and direct Fourier transformations can be expressed in terms of the 

continuous frequency function 𝜔. Clough (1995) presents these equations. 

 𝑝 𝑡 = %
&'

𝑃 𝑖𝜔 𝑒+,-𝑑𝜔/0
10 a (2.1) 

 
 𝑃 𝑖𝜔 = 𝑝 𝑡 𝑒1+,-𝑑𝑡/0

10 a	 (2.2) 
   

Where 𝑷 𝑖𝜔 /2𝜋	stands for the complex amplitude at frequency 𝜔 per unit of 𝜔. 
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An important definition is the Fourier Amplitude Spectrum which can be expressed by 

means of the classical Fourier Series transformation. The following equation represents the 

definition (Sokolov, 2002).  

 X f = x t e1&=>?@dt = X f/0
10 e1>B(?)a	 (2.3) 

 

Where X(f) is the Fourier amplitude spectrum related to time series signal x(t); ϕ(f) is the phase 

spectrum.  

Regarding a signal such as earthquake motion, the Direct Fourier Transform (DFT) is 

recommended. Figure 2.2 shows the discretization of an arbitrary loading sampled at N points; 

the n value varies from 0 to N-1; the N value is usually an integer power of 2 (Barroso, 2017). 

 

 

Figure 2.2. Discretization of a non-periodic force (Reprinted from Barroso, 2017) 
 

There are multiple forms to express the DFT of the load. One common way is shown. 

 P Ω = 𝑃 n∆Ω = 𝑝 𝑘∆𝑡 𝑒
JKLMNO

PQ1%
RST ∆𝑡aa	 (2.4) 
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Where the 𝑇 period is defined by 

 𝑇 = 𝑁∆𝑡 = &'
∆W

a (2.5) 

 
The DFT of the unit impulse function can be expressed similarly.  

 H Ω = 𝐻 n∆Ω = ℎ 𝑘∆𝑡 𝑒
JKLMNO

PQ1%
RST ∆𝑡aa	 (2.6) 

 

Then, the structural response in the frequency domain is obtained 

 𝑋 Ω = 𝐻 Ω ∗ 𝑃 Ω  (2.7) 
 

 𝑋 n∆Ω = 𝐻 n∆Ω ∗ 𝑃 n∆Ω  (2.8) 
 

Afterwards, the response in the time domain x(t) can be assessed by means of the 

Discrete Inverse Fourier Transform related to the response.  

 x(t) = 𝑥 k∆t = 𝑋 nΩ 𝑒
KLMNO
PQ1%

RST ∆𝛺aa	 (2.9) 

 

The amount of computation effort required by the DFT is greatly reduced by means of 

the Fast Fourier Transformation (FFT) which can work with any arbitrary N quantity. For 

instance, if N=210, the FFT method requires only 0.5% of computational effort related to 

standard assessment (Chopra, 2007). 

 

2.2 Wavelet approach 

Identifying dynamic properties such a stiffness and critical damping ratio is really 

important to understand the response behavior and possible damage in the structure. Time – 

frequency representation (TFR) such as the Wavelet transform allows identification of separation 

of these components taking into account time and frequency domains. A wavelet is a real or 
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complex oscillatory function which is located on both time and frequency domain (Gaviria and 

Montejo, 2017).  In fact, one disadvantage of the DFT and FFT methods is that they do not show 

time resolution. The Wavelet tools methods allow local analysis of signals; a desired time 

interval can be zoomed and analyzed (Ghodrati et al. 2009).   

A wavelet function W(x) can be defined by means of a dilatation function which expands 

horizontally a determined function. For instance, ϕ(x) can represent the dilatated version of 

ϕ(2x); ϕ(x) has the same height but is extended twice the horizontal scale of x. The following 

equation defines the wavelet function equation (Newland, 1996): 

 𝑊 𝑥 = −𝑐3𝜙 𝑥 + 𝑐2𝜙 2𝑥 − 1 − 𝑐1𝜙 2𝑥 − 2 +
𝑐0𝜙 2𝑥 − 3 aa	

(2.10) 

 

Where c0, c1, c2 and c3 are numerical constants; they take positive and negative values. This set 

of coefficients must satisfy properties such as unit area, accuracy and form an orthogonal 

wavelet system; these properties are expressed in the following equations: 

 𝑐R = 2Q1%
RST aa	 (2.11) 

 
 (−1)R𝑘h𝑐R = 0; 𝑟 = 0,1,2… ,𝑁/2 − 1Q1%

RST aa	 (2.12) 
 
 𝑐R𝑐R/&h = 0; 𝑟 ≠ 0Q1%

RST 	𝑎𝑛𝑑	𝑟 = 1,2… ,𝑁/2 − 1aa	 (2.13) 
 

There are two types of Wavelet transform that have been used especially for dynamic 

identification purposed. The most common is the Complex Morlet Wavelet (Grossman, A. and 

Morlet J., 1984). The following equation expresses the formulation which is clearly an 

exponential decay.   

 𝜓qrstuvwxrhuv- 𝑡 = 𝜋𝑓z 1T.|T𝑒&'}~�1-K/~�aa	 (2.14) 
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Where fb is the frequency bandwidth; fc is the central frequency related to the mother wavelet 

function. The other commonly used wavelet is the Gabor transformed defined as it follows. 

 𝜓��zrh 𝑡 = 𝜋𝜎& 1T.&|𝑒�}-1-K/ &�K aa	 (2.15) 
 

Where σ is the frequency bandwidth; η is the central frequency related to the mother wavelet 

function. The two wavelet approaches are similar regarding exponential decay; they are 

proportional and there is no advantage regarding using one or another in the Continuous Wavelet 

Transform (CWT) method (Gaviria and Montejo, 2017). 

One of the most common Wavelet Transform tools that are used to identify dynamic 

properties is the Continuous Wavelet Transform (CWT). The CWT works with two Morlet 

mother functions: the complex Morlet and the Gabor Wavelet.   CWT is defined as a convolution 

of the signal x(t) and the short/amplified version of mother wavelet ψ.  

 𝜓�,z 𝑡 = %
�
𝜓 -1z

�
  

 

(2.16) 

 
 𝑊𝑇 𝑎, 𝑏 = 𝑥 𝑡 𝜓�,z 𝑡 𝑑𝑡

/0
10   

 
(2.17) 

Where WT is the matrix of wavelet coefficients related to ‘a’ scale and ‘b’ time location. The 

mother wavelet function should be chosen carefully for success in the analysis. (Gaviria and 

Montejo, 2017).  The mother wavelet function should take into account two conditions: neutral 

mean and limited energy. These conditions are expressed in the following equations, 

respectively. 

 𝜓�,z 𝑡 𝑑𝑡 = 0/0
10 ; 𝜓�,z 𝑡

&𝑑𝑡 < ∞/0
10 aa	 (2.18) 
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On the other hand, the Discrete Wavelet algorithm is used to solve the compute the 

coefficients: 

 𝑎T = 𝑓 𝑥 𝜙 𝑥 𝑑𝑥%
T aa	 (2.19) 

 
 𝑎&�/R = 2} 𝑓 𝑥 𝑊 2}𝑥 − 𝑘 𝑑𝑥%

T aa	 (2.20) 
 

Where f(x) is a periodic signal; ϕ(x) is the scaling function; and W(2jx-k) are the wavelet 

functions related to the interval 0<x<1. Hence, the former coefficients should follow the 

orthogonality properties. 

After choosing a wavelet function, it is important to define a set of scales. The sets are 

discrete for orthogonal scales; these sets are arbitrary for not orthogonal wavelet, though. It is 

recommended to expressed scales in terms of power of two (Torrance and Compo, 1998). 

 𝑠} = 𝑠�2}��; 𝑗 = 0,1, … , 𝐽aa	 (2.21) 
 

 𝐽 = 𝛿}
1%log	&(𝑁𝛿𝑡/𝑠�); 𝑗 = 0,1, … , 𝐽aa	 (2.22) 

 

Where sj and J are the smallest and largest possible scale, respectively; δj is the factor for 

scaling (it is usually 0.50 for Morlet Wavelet and could have greater values for other wavelet 

functions); and N is the number of points.  

In addition, MATLAB’s CWT method relies on an expansion of an integral related to a 

time interval j and x(j) fixed for analysis. 

 𝑊𝑇 𝑎, 𝑏 = %
�

𝑥(𝑗) 𝜓 -1z
�

𝑑𝑡 − 𝜓 -1z
�

𝑑𝑡}
10

}/%
10} aa	 (2.23) 

 

The program evaluates the former equation by means of assessing just once the integrals. 

In addition, a discrete number of points in the analysis is considered by means of a precision 
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parameter. If this parameter increases, a better discretization and therefore enhanced computation 

work is obtained (Gaviria and Montejo, 2017).  

2.3 Statistical characterization 

Spectral Moment 

Spectral moments are parameters that recover information directly from the Fourier 

Spectrum without any further manipulation; they are useful for nonstationary stochastic methods. 

As a matter of fact, they can characterize signals which are covered in Gaussian process such as 

a noise environment. The spectral moments up to the 4th order give information about the 

process; higher order moments are generally not useful (Alamdari et al. 2016). The nth spectral 

moment related to a sensor at location j and Power Spectral Density (PSD) of the response ( 

𝑆ww�	)	can be expressed by the following equation. 

 𝜆w�
� = 𝜔 �𝑆ww� 𝜔 𝑑𝜔/0

10 aa	 (2.24) 
 
For a discretized signal, the nth spectral moment can be expressed by 
 

 𝜆w�
� = &

QO��
𝑆ww� 𝑘

R
�-

�
; 1 ≤ 𝑗 ≤ 0.50𝑁T.|Q

T aa	 (2.25) 

 
Where 𝑆ww� is the discrete double-sided spectral density with N points, and dt is the sampling 

period for the referred signal.  

Theoretical spectrum and significance levels 

An appropriate background spectrum is required to determine significance levels. For 

geophysical phenomena background spectrum, it is recommended to use white noise (with flat 

spectrum) or red noise (with decreasing frequency and increasing power spectrum). The discrete 

Fourier spectrum can be modeled and normalized according to autoregressive process (Torrence 

and Compo, 1998): 
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 𝑃R =
%1�K

%/�K1&����	(&'R/Q)
; 𝑘 = 0,1, … . , 𝑁/2aa	 (2.26) 

 

where Pk is the Fourier Power Spectrum; α is the lag-1 autocorrelation.  An appropriate 

correlation brings about a red-noise spectrum; α=0 induces a white-noise spectrum. 

Significance levels are associated with terms such as confidence intervals and null 

hypothesis. For example, a 95% confidence-interval is related to a confidence range about a 

determined value. In addition, the null hypothesis is a statement that would be tested. For 

instance, a null hypothesis for wavelet spectrum assumes that the time signal has a mean power 

spectrum if a peak in the wavelet spectrum is significantly above the background spectrum. 

The distribution for the Wavelet distribution can be expressed as it follows: 
 

 𝑊� 𝑠 & /𝜎& → 0.50𝑃R𝜆&aa	 (2.27) 
 

where Wn(s) is the wavelet power spectrum related to time n and scale s.   

In addition, the boundary terms for the confidence interval for Wn2(s) is expressed. 

 &
 K(T.|Tt)

𝑊� 𝑠 & < Wn& s < &
 K(%1T.|Tt)

𝑊� 𝑠 &aa	 (2.28) 

 

where p is the significance level (p = 0.10 represents a 90% confidence interval); λ2 is the chi-

square distribution evaluated at 0.50p and 1- 0.50p.  

Wavelet smoothing can be done according to time averaging and scale averaging. 

Smoothing the wavelet spectrum in time scale provides some advantages. First, Fourier spectrum 

approximates the wavelet spectrum; the amount of necessary smoothing decreases as scale 

parameter increases in wavelet transform. Second, smoothing allows the increasing of peaks 

significance in the wavelet spectrum. On the other hand, smoothing in average scale provides 
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some benefits. For instance, one is able to identify the fluctuations in power over range scale. 

Hence, the degrees of freedom of the points are increased and a relationship between 

significance levels and power is required for the analysis. The global time-averaged wavelet 

spectrum and scaled-averaged theoretical spectrum are given by: 

 𝑊&(𝑠) = (%
Q
) 𝑊� 𝑠 &Q1%

�ST aa	 (2.29) 

 𝑃 = 𝑆�£vh�¤v (𝑃}/𝑠})
}K
}S}� aa	 (2.30) 

   
where sj scale; Pj is the theoretical spectrum associated with sj.; Saverage is the scale-averaged 

parameter.  

 
Parameters for frequency content on seismic signals 

There are some parameters that can be used to characterize the frequency content of 

earthquake signals (Rathje et al. 1998). These parameters are directly affected by earthquake 

magnitude and site conditions. The first parameter to study is the mean period (Tm). 

 𝑇s = qMKM (%/~M)
qMKM

	𝑓𝑜𝑟	0.25	𝐻𝑧 ≤ 𝑓+ ≤ 20	𝐻𝑧aa	 (2.31) 

   
Where Ci is the Fourier amplitude value of the entire accelerogram; the parameter fi is related to 

the frequencies between 0.25 and 20 Hz from the Discrete Fourier transform (DFT). The 

parameter Tm is similar to the mean square frequency.  

Another parameter to consider is the predominant period (Tp) which is defined as the 

period in which the maximum horizontal acceleration (MHA) occurs in an Acceleration 

Response Spectrum working with 5% damping.  

In addition, the frequency parameter ‘smoothed spectral predominant period’ To is 

defined by means of the following expression. 

 𝑇� =
§M∗u� ¨© §M ∗ª ¨© §M 1%.&Txª«O¬®

M¯�
u� ¨© §M ∗ª ¨© §M 1%.&Txª«O¬®

M¯�
aa	 (2.32) 
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Where nPer is the number of periods which were taken for the response spectrum; Ti is each 

discrete period in the response spectrum; MHA is the maximum horizontal acceleration; and H is 

the Heaviside function (H(x) = 0 for x<0 and H(x) =1 for x>0).  

Another parameter to highlight is the average period (Tavg) which is similar to Tm, but 

the periods are equally spaced considering the horizontal axis. It is expressed as it follows. 

 
𝑇�£¤ =

𝑇+ 𝑆� 𝑇+ /𝑃𝐺𝐴 &
+

𝑆� 𝑇+ /𝑃𝐺𝐴 &
+

	; 	0.05	 ≤ 𝑇+ ≤ 4	𝑠; ∆𝑇+ < 0.05	𝑠	
(2.33) 

 

Where PGA is the peak ground acceleration. Regarding the former expression, long periods, 

which are equally spaced, bring about dependent spectral accelerations because this feature 

depends on the natural frequency of a SDOF system (Rathje, Abrahamson, and Bray, 2004). The 

predominant period (Tp) has great variation for historical records. Conversely, the mean period 

(Tm) and smooth spectral predominant period (To) are considered to be more reliable; the mean 

period is preferred because it depends directly on the acceleration time history.  

Histogram distribution 

An adequate number of bins in histograms is important for informative purposes. There 

are many methods to obtain the number of bins for a histogram. In practice, it is recommended to 

use a number of bins approximately equal to the square root of the total of observations 

(Montgomery and Runger, 2015).  

The histogram and normal fit distribution can be obtained by means of the Freedman-

Diaconis rule which minimizes the difference between the theoretical probability distribution and 

the distribution obtained from analysis (Freedman et al. 2007). The optimal bins size is evaluated 

according to the following equation. 
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 ℎ𝑏𝑖𝑛𝑠 = 2 ∗ 𝐼𝑄𝑅(𝑥 𝑡 )/(𝑛%/¶)aa	 (2.34) 

Where hbins is the bins size; IQR (x(t)) is the interquartile range of the signal; n is the number of 

data points.   

Then, the optimal number of histogram bins is obtained. 

 𝑛𝑏𝑖𝑛𝑠 = 𝑅𝑎𝑛𝑔𝑒(𝑥 𝑡 )/ℎ𝑏𝑖𝑛𝑠aa	 (2.35) 

Cross correlation 

The cross-correlation method is used to compare data sets considering time sequence (Cooper, 

G.H.R, 2017). The cross correlation of two continuous functions is denoted by the following: 

 (𝑓 ∗ 𝑔)(𝜏) = 𝑓 𝑡 𝑔(𝑡 + 𝜏)𝑑𝑡 = 0/0
10 aa	 (2.36) 

 

Where 𝑓 𝑡  is the complex conjugate function of f(t); τ is the lag (shift). 

For two time series, the linear correlation can be expressed as it follows: 

 
𝑟 =

(𝑋+ − 𝑋)(𝑌+ − 𝑌)+

𝑋+ − 𝑋 & 𝑌+ − 𝑌	 &++
	 ;		

(2.37) 

 

Where Xi and Yi are the time-series vectors; 𝑋  and 𝑌 are the mean values for each time-series 

vector. 

Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is one way to quantify the difference between and 

estimator and the observation. This parameter could be used to measure how well predicted 

values approximates real observations. 

 𝑅𝑀𝑆𝐸 = (𝐹+ − 𝑂+)&/𝑁Q
+S% aa	 (2.38) 

 

Where N is the number of pair observations; Fi is the forecast value; and Oi is each observation.  
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Goodness of fit for Peak Ground Acceleration (SPGA) 

One way to compare synthetic acceleration and real ground motion is by means of evaluating 

how well the synthetic record predicts the peak ground acceleration of the real event (Anderson, 

2004).  

 𝑆𝑃𝐺𝐴 = 𝑆 𝐴1, 𝐴2 = 10𝑒𝑥𝑝 −( «%1«&
¾>¿ «%,«&

)& aa	 (2.39) 

 

Where A1 is the maximum absolute acceleration for the ground motion; A2 is the maximum 

absolute acceleration for the synthetic record. The factor 10 is used to have values within a 

comfortable range. Table 2.1 shows the possible scores and goodness-of fit interpretation for 

peak ground accelerations.  

 

Table 2.1. Goodness-of-fit coefficient for PGA on seismic records (Reprinted from 
Anderson, 2004)  

Score Goodness-of-fit 

10 Perfect 
8-10 Excellent 
6-8 Good 
4-6 Fair fit 
0-4 Poor 
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3 PREVIOUS EXPERIMENTAL STUDY 

3.1 Full-scale adobe model description 

A one-story full-scale adobe dwelling was built and subjected to seismic simulation at the 

Structures Laboratory at the Pontifical Catholic University of Peru (PUCP). The building was 

subjected to the 1970 Peruvian scaled acceleration earthquake signal; the shaking table platform 

allows a maximum displacement of 150 mm and 1.60 g acceleration; its maximum weight 

capacity is 160 kN. Cracks were induced in the adobe structure. Afterwards, the building was 

repaired by means of grout injection and reinforced with nylon ropes. A second seismic 

simulation was performed on the retrofitted model (Blondet et al. 2017).  The model comprises 

0.25 m thick adobe walls and has a 3 x 3 floor area. The material properties are specified 

according to Table 1.1 (Tarque et al. 2014).  Figure 3.1 shows the adobe dwelling before the first 

shaking test (left) and after repair and reinforcement ready for a second seismic test (right). 

 

  

Figure 3.1. One-story adobe building. Left. Building before first seismic test. Right. 
Damaged building (retrofitted) ready for second seismic test (Reprinted from Blondet et al. 
2017). 
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The full-scale adobe model includes several building materials: concrete foundation ring, 

adobe masonry, timber roof and tiles. The earthquake signal direction was parallel to the lateral 

walls plane -left and right walls - (Figure 3.2).  

 

 

Figure 3.2. 3D Scheme for the one-story adobe building under seismic excitation. 
 

3.2 Ground Acceleration 

The ground acceleration signal is derived from the 31 May 1970 Peruvian earthquake (M 

= 7.75) component registered in Lima, Peru. Figure 3.3 shows the 30 second and scaled (0.3g) 

signal used for the model analysis; the signal was applied on the direction of the excitation 

(Blondet et al. 2004). 
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Figure 3.3. 1970 Peruvian earthquake ground acceleration signal (0.3 g scaled). 
 

The peak ground acceleration (PGA) of the 1970 Peruvian was 0.10 g (registered in 

Lima, 240 miles from epicenter) and lasted around 45 seconds (Saragoni et al. 2014). Table 3.1 

shows the Moment Magnitude (Mw) and PGA (maximum recorded) for some common 

earthquakes compared with the 1970 Peruvian event. 

 

Table 3.1. The 1970 Peruvian earthquake compared with other seismic events 
Earthquake Date Magnitude 

 
Maximum 

PGA 
  (Mw) (g) 

El Centro  1940 6.90 0.30 
Huaraz, Peru 1970 7.75 0.10 
Kobe 1995 6.90 0.80 
Chile 2010 8.80 0.78 

 

The Fast Fourier Transform (FFT) MATLAB command was used to evaluate the Fourier 

Transformation of the earthquake signal. The transformation considered a sample frequency fs = 

200 Hz (dt = 0.005 s) for the FFT command (Figure 3.4).  
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Figure 3.4. Fourier Amplitude Spectrum of the 1970 Peruvian earthquake (0.3g scaled) 
with sampling frequency fs = 200 Hz. Fast Fourier Transformation (FFT) 
 

The dominant frequencies are located around 2, 3 and 4 Hz approximately. The peak 

value is related to the 3.5 Hz frequency content. 

3.3 Shaking table tests 

A real earthquake presents six directions (three rotations and three translation 

displacements). Nevertheless, the shaking table at the Catholic University of Peru (PUCP) has 

one direction movement for the simulations. Therefore, the energy in the shaking test is different 

from what could be expected in a real earthquake.  

Hence, the PUCP’s shaking table displacement (phase) is associated with an earthquake 

class as shown in Table 3.2 (Bossio, 2010).   
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Table 3.2. Test phases at PUCP’s shaking table  
Phase Displacement Earthquake 

ID  Maximum Intensity   
 (mm) (level) 

Phase 1 30 Minor 
Phase 2* 60 Light 
Phase 3 90 Moderate 
Phase 4 130 Severe 

      *Used for this research project. 

 

The full-scale adobe model was subjected to two shaking tests. The first test was 

performed on the original undamaged model (phases 1 and 2).  After repair and retrofitting, the 

adobe dwelling was subjected to a second shaking test (phases 1, 2, 3 and 4 twice). Before each 

shaking test, a free vibration movement was performed with a 1.50 mm rectangular pulse signal. 

The phase 2 data content was used for the present research analysis. 

3.4 Instrumentation 

The two seismic simulations considered the same instrument configurations: 10 

accelerometers and 8 linear variable displacement transducers (LVDT). The acceleration and 

displacement results for the shaking table were also measured (A0 and D0) to obtain relative 

displacements and accelerations. Figure 3.5 shows the plan and 3D view of the instrumentation.  

The devices located on the top of the model are of particular interest due to their 

magnitude. Accelerometers 1 and 2 are located on the right and left top wall, respectively on 

planes parallel to the shaking direction. Accelerometers 3 and 4 are located on the front and back 

wall, respectively of the adobe structure and are placed on planes perpendicular to shaking 



 

27 

 

direction. Hence, Accelerometer 0 is located on the shaking table platform and it is used to 

confirm the accuracy of the excitation. 

 

 

Figure 3.5. Instrumentation on full-scale adobe model. 
 

3.5 Interpretation of the experimental data 

The two seismic simulations provided data for phase 1 (D = 30 mm) and phase 2 (D = 60 

mm). Statistical analysis was performed for the experimental accelerometers signals regarding 

phase 2. Parameters such as standard deviation, skewness and kurtosis were obtained. 

Accelerometers 1 and 2, located at the top of the building and parallel to shaking direction, 

provide high acceleration values. Provided that they also offer high relative displacement values 

after seismic simulation, these signals give relevant information for analysis. 

3.5.1 Response of the undamaged structure 

Table 3.3 shows the statistics for the first seismic test on the undamaged full-scale adobe model 

(Phase 2 with Displacement = 60 mm).  
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Table 3.3. Statistics on accelerometers response after first seismic test (phase 2)  
Accelerometer Acceleration Statistics 

ID  Maximum Minimum   Standard  Skewness  Kurtosis  
 (g) (g) Dev. (g)  Coeff-3 

A0 0.532 -0.639 0.144 -0.190 1.853 
A1 1.009 -1.206 0.344 -0.390 0.864 
A2 0.954 -0.873 0.256 -0.061 1.287 
A3 1.347 -1.778 0.358 -0.197 1.232 
A4 1.356 -0.865 0.295 0.668 1.255 
A5 0.838 -0.668 0.193 0.353 1.501 
A6 1.089 -0.750 0.271 0.447 0.920 
A7 1.035 -0.655 0.226 0.487 1.395 
A8 0.669 -0.551 0.178 0.224 1.175 
A9 0.603 -0.927 0.226 -0.748 1.516 
A10 0.547 -0.686 0.169 -0.419 1.602 

 

Negative skewness stands for long left tails while positive skewness represents long right 

tails. A0 (control accelerometer) presents a small skewness value. This issue is due to the signal 

and shaking direction. 

The kurtosis for a normal standard distribution is 3; small kurtosis represents light-tailed 

distribution while positive kurtosis values (higher than 4) stands for somewhat heavy-tailed 

distribution. The former table clearly shows heavy-tailed distribution especially for 

accelerometers A0. A1 and A2, located at the top of the building and parallel to shaking 

direction, present heavy tails. 

3.5.2 Response of the retrofitted structure 

Another statistical analysis is provided for the second seismic test for the cracked-and-

repaired full-scale adobe model (Phase 2 with Displacement = 60 mm).   
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Table 3.4. Statistics on accelerometers response after second seismic test (phase 2)  
Accelerometer Acceleration Statistics 

ID  Maximum Minimum   Standard  Skewness  Kurtosis  
 (g) (g) Dev. (g)  Coeff-3 

A0 0.509 -0.711 0.140 -0.264 2.054 
A1 1.145 -1.165 0.350 -0.217 1.323 
A2 0.653 -0.706 0.165 0.227 1.829 
A3 1.619 -2.250 0.486 -0.409 1.342 
A4 1.223 -1.349 0.351 0.051 0.932 
A5 0.699 -0.882 0.238 -0.453 1.053 
A6 1.199 -0.811 0.297 0.548 1.189 
A7 0.714 -0.709 0.200 0.048 1.138 
A8 0.758 -0.686 0.197 0.521 1.320 
A9 0.511 -0.737 0.168 -0.194 1.285 
A10 0.558 -0.721 0.172 -0.118 1.383 

 

A0 (control accelerometer) presents a relative bigger skewness (asymmetry) value on the 

retrofitted model compared to the undamaged structure. Damage in the structure could have 

contributed to the difference. A1 presents smaller skewness in the retrofitted model while A2 

presents a bigger one compared with the original model. The interaction among adobe blocks on 

the second test (retrofitted model) could have contributed towards this effect.  

3.5.3 Comparison between original and retrofitted experimental response 

To compare the similarity of two discrete time series signals, the cross-correlation 

method is used. This method is applied to the acceleration response for the undamaged model 

and the one related to the retrofitted model; both responses are studied for phase 2 with 

displacement D = 60 mm. Table 3.5 shows the results for the cross-correlation considering lag 0 

seconds for the two signals, and response on retrofitted model shifted 5 seconds from the 

undamaged model. 
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Table 3.5. Cross-correlation for acceleration on original and retrofitted model  
Accelerometer Cross correlation 

ID  At lag 0 s At lag 5 s   
   

A0 0.91 0.80 
A1 0.99 0.82 
A2 -0.97 -0.80 
A3 0.99 0.83 
A4 0.99 0.82 
A5 -0.99 -0.83 
A6 0.98 0.83 
A7 0.99 0.83 
A8 0.99 0.83 
A9 0.99 0.83 
A10 -0.99 -0.83 

 

High cross correlation stands for most similarity in signals (approximation to 1 or -1). 

Accelerometers 1 and 2 (parallel to shaking direction) have similar correlation values at lag 0 s 

(0.99 and -0.97; the signals after the first and second seismic test are somewhat similar. The 

difference could have been brought about because of the damage and therefore retrofitted 

behavior of the adobe house.  
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4 ABAQUS MODEL OF A ONE-STORY ADOBE STRUCTURE 

ABAQUS software allows users to analyze and model different types of structures. 

ABAQUS work with modules which define geometry, material properties, mesh, monitoring, 

and results (ABAQUS, 2018). For instance, this software provides the characterization of 

mechanical properties of different materials such as adobe. In fact, its modulus of elasticity, 

weight per volume and Poisson ratio can be defined.  

The full-scale adobe dwelling was modeled by means of ABAQUS; the software brings 

about several response results. For example, time-history displacements, accelerations and modal 

parameters can be obtained. Time-domain plots will be of interest for the Fourier and Wavelet 

transform methods. 

4.1 First shaking test: original structure 

The first shaking test was performed on the full-scale original undamaged model. 

ABAQUS was used to model the different materials and properties in the adobe dwelling. For 

instance, the concrete ring, adobe walls, and timber roof were represented (Figure 4.1). 

 

Figure 4.1.ABAQUS Full-scale original adobe model under seismic excitation. Left. 
Assembly model. Right. Mesh representation. 
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Figure 4.2 shows the details regarding the left and back wall. Concrete ring, adobe walls 

and roof are joined by means of a TIE constraint which works well with dissimilar regions.   

 

Figure 4.2. ABAQUS Full-scale undamaged adobe model under seismic excitation: Left 
wall and back wall representation. 

 

Openings such as the front wall and lateral windows are modeled. Hence, the timber 

collar beam and joists were represented; the rectangular central opening at the top of the roof 

allows the transportation from construction site to shaking table (Figure 4.3). 

 

 

Figure 4.3. ABAQUS Full-scale original adobe model under seismic excitation: Front Wall 
and timber roof representation. 
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4.2 Second shaking test: retrofitted structure 

After the first seismic simulation, the adobe dwelling presented cracked adobe blocks. 

Then, the cracks were repaired by means of liquid mud and walls were reinforced with horizontal 

and vertical nylon strings. Next, the repaired-and-retrofitted adobe model was subjected to a 

second seismic test. Adobe blocks and horizontal nylon strings were modeled (Figure 4.4). 

 

 

Figure 4.4. ABAQUS Full-scale cracked adobe model. Left. Assembly model. Right. Mesh 
representation. 
 

After the first seismic test, 14 adobe blocks detached from the main structure. For instance, two 

adobe blocks located both on the front and left wall are shown (Figure 4.5). 
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Figure 4.5. Adobe blocks on ABAQUS adobe cracked building. 
 

Horizontal nylon strings were modeled by means of stringer property on each adobe 

block. For analysis, the ¼” string has an elasticity modulus (E) = 60 MPa (Blondet et al. 2017). 

Figure 4.6 shows the details regarding the left and back wall. Vertical lines represent cut planes 

on ABAQUS adobe blocks. Concrete ring, adobe walls and roof are joined by means of TIE 

constraint which works well with dissimilar surfaces.   

 

 

Figure 4.6. ABAQUS Full-scale retrofitted adobe model: Left wall and back wall 
representation. 
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4.3 Experimental and predicted acceleration 

ABAQUS software provides time history responses for both the first and second shaking 

tests. For comparison purposes, phase 2 (D = 60 mm) for both shaking tests was studied for 

accelerometers 1 and 2; these accelerometers are located on the top of the right and left wall, 

respectively.  Then, plots such as the Fourier Amplitude and Power Spectral Density were 

obtained. Comparison between experimental and numerical data is presented. 

4.3.1 Accelerometer 1 

After the two shaking tests (phase 2 with D = 60 mm), the accelerometer 1 registered 

similar time-history responses for both the experiment and numerical data (Figure 4.7 and Figure 

4.8). The peak acceleration response is around 1g for the experiment data and the numerical 

simulations.  

 

   

Figure 4.7. Accelerometer 1 response on original model (test and numerical model). Left: 
Experiment test. Right: ABAQUS numerical model. 
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Figure 4.8. Accelerometer 1 response on retrofitted model (test and numerical model). Left: 
Experiment test. Right: ABAQUS numerical model. 

To compare the similarity of two discrete time series signals, the cross-correlation 

method can be used. This method is applied to the acceleration response provided by the 

experiment and the ABAQUS model; both responses are studied for phase 2 with displacement 

D = 60 mm. Table 4.1 shows the results for the cross-correlation considering lag 0 and shifted 5 

seconds for the response in accelerometer 1 for the undamaged and retrofitted model. The Root 

Mean Square Error (RMSE) is also presented. 

 

Table 4.1. Comparative analysis for acceleration 1 on test and ABAQUS  
Accelerometer1 Cross-correlation RMSE SPGA 

Building  At lag 0 s At lag 5 s   Abaqus-test Parameter 
     

Original 0.98 0.83 0.61 9.87 
Retrofitted -0.98 -0.82 0.52 9.36 

 

High cross correlation stands for most similarity in signals. Accelerometer 1 (parallel to 

shaking direction) shows high correlation (0.98) for the original and retrofitted model in 
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ABAQUS. Hence, the cross-correlation value at lag 5 s decreases for the models. The RMSE for 

the undamaged model is bigger than the retrofitted model. The SPGA coefficient represents an 

excellent fit (8 – 10) por the predicted Peak Ground Acceleration (PGA) in the numerical 

simulations. 

In addition, the Fast Fourier Transformation provides the Amplitude Spectrum of the 

acceleration signals for both shaking tests. The FFT consider dt = 0.005 s (f = 200 Hz) for the 

real experiment and for the numerical simulations. (Figure 4.9 and Figure 4.10).  

  

Figure 4.9. Fourier Amplitude Spectrum for Accelerometer 1 (original model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 

  

Figure 4.10. Fourier Amplitude Spectrum for Accelerometer 1 (retrofitted model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 
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The FFT transform shows that there is a peak around 3.5 Hz for the experiments in the 

original models; this value is similar to the one obtained from ground motion signal (3.5 Hz). On 

the other hand, the transform plots are similar for both ABAQUS simulations. Peaks are detected 

for 4Hz (both simulations). Hence, Power Spectral Densities (PSD) curves for both tests are 

shown (Figure 4.11 and Figure 4.12).  

 

  

Figure 4.11. Power Spectral Density (PSD) for accelerometer 1 (original model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 
 

  

Figure 4.12. Power Spectral Density (PSD) for accelerometer 1 (retrofitted model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 
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The experiments on both the original and retrofitted adobe house bring about similar 

plots for the power spectral density; a maximum power/frequency 120 db/Hz is detected for the 

real tests. Regarding numerical simulation, the retrofit technique brings a peak around 90 db/Hz.  

4.3.2 Accelerometer 2 

After the two shaking tests (phase 2 with D = 60 mm), the accelerometer 2 registered 

similar time-history responses for test data and numerical simulation (Figure 4.13 and Figure 

4.14). The peak acceleration response is around 1g for the undamaged model. For the retrofitted 

adobe house, it approximates 0.6 g and 1.2 g for the test and numerical simulation, respectively.  

  

Figure 4.13. Accelerometer 2 response on undamaged model (test and numerical model). 
Left: Experiment test. Right: ABAQUS numerical model. 
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Figure 4.14. Accelerometer 2 response on retrofitted model (test and numerical model).  
Left: Experiment test. Right: ABAQUS numerical model. 
 

The similarity of the discrete time signals for both cases (original and retrofitted model) 

is evaluated by means of the cross-correlation method. This method is applied comparing the 

acceleration response provided by the experiment and the ABAQUS model; both responses are 

studied for phase 2 with displacement D = 60 mm. Table 4.2 shows the results for the cross-

correlation considering lag 0 seconds and lag 5 seconds (retrofitted model shifted from the 

original one) for the response in accelerometer 2. The Root Mean Square Error (RMSE) is also 

presented. 

 

Table 4.2. Comparative analysis for acceleration 2 on test and ABAQUS  
Accelerometer1 Cross correlation RMSE SPGA 

Building  At lag 0 s At lag 5 s   Abaqus-test Parameter 
     

Original 0.98 0.82 0.55 9.20 
Retrofitted 0.96 0.83 0.70 4.12 
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High cross correlation stands for most similarity in signals. Accelerometer 2 (parallel to 

shaking direction) shows high correlation for the original and retrofitted model in ABAQUS. At 

lag 5 s, the correlation is similar in both conditions (0.83); this feature is similar to the ones 

observed in accelerometer 1. Regarding the RMSE, the original model provided a lower value 

compared to the retrofitted one. The SPGA coefficient provides an excellent fit (8-10) for the 

original model and a fair fit (4 – 6) for the retrofitted model regarding the predicted PGA in the 

numerical simulations. 

Fast Fourier Transformation provides the Amplitude Spectrum of the acceleration signals 

for both shaking tests. The FFT considers dt = 0.005 s (f = 200 Hz) for the real experiment and 

the numerical simulation. (Figure 4.15 and Figure 4.16).  

  

Figure 4.15. Fourier Amplitude Spectrum for Accelerometer 2 (original model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 
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Figure 4.16. Fourier Amplitude Spectrum for Accelerometer 2 (retrofitted model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 

 

The FFT transform shows that there is a peak around 3.5 Hz for the experiments in the 

original and retrofitted models; the ground motion signal shows a similar behavior. On the other 

hand, the transform plots are not similar for the ABAQUS simulations. Peaks are detected for 3.5 

and 5 Hz (original and retrofitted model, respectively). Hence, Power Spectral Densities (PSD) 

curves for both tests are shown (Figure 4.17 and Figure 4.18).  

 

  



 

43 

 

Figure 4.17. Power Spectral Density (PSD) for accelerometer 2 (original model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 

 

  

Figure 4.18. Power Spectral Density (PSD) for accelerometer 2 (retrofitted model). Left: 
Experiment (phase 2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 

 

The experiments on both the original and retrofitted adobe house bring about similar 

plots for the power spectral density; a maximum power/frequency 120 db/Hz is detected for the 

real test (original and retrofitted structure) and around 70 db/Hz for the ABAQUS models.  

4.4 Natural Frequency estimation 

ABAQUS software brings about the natural frequency modes for the whole original 

undamaged one-story adobe model by means of frequency (eigenvalue) extraction. The 

eigenvalue extraction is a linear procedure which gives the natural frequencies and then the 

corresponding modes. The first six natural frequencies for the undamaged model are obtained 

(Table 4.3).  
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Table 4.3. Estimated frequencies for undamaged adobe model   
Mode Frequency  

 (Hz) 
First 2.44 

Second 3.27 
Third 3.44 
Fourth 3.68 
Fifth 3.83 
Sixth 4.17 

 

The dominant frequencies related to the ground acceleration input are approximately 2, 3 

and 4 Hz. The first modes do provide resonance effect in the adobe model; therefore, damages 

are likely to be amplified. First mode is associated with big bending effects on the back wall. The 

second and third modes show strong bending effects on the left and right walls (lateral walls) 

close to the central opening; high bending effects are appreciated close to the back wall. Hence, 

the fourth and fifth modes bring about high displacements in the central part of the front wall. 

Regarding the sixth mode, displacements in both the front and back wall are notorious (Figure 

4.19).  
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Figure 4.19. Estimation of the first six modes for the undamaged one–story adobe building. 
A) 2.44 Hz B) 3.27 Hz C) 3.44 Hz D) 3.68 Hz E) 3.83 Hz F) 4.17 Hz. 
 

ABAQUS also provides the natural frequency modes for the whole retrofitted one-story 

adobe model by means of frequency (eigenvalue) extraction. The first six natural frequencies for 

the are shown (Table 4.4).  

 

Table 4.4. Estimated frequencies for retrofitted adobe model   
Mode Frequency  

 (Hz) 
First 4.54 

Second 4.81 
Third 5.40 
Fourth 6.40 
Fifth 6.84 
Sixth 7.04 
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The dominant frequencies related to the ground acceleration input are approximately 2, 3 

and 4 Hz. In the retrofitted adobe model, the first two modes do provide resonance effect in the 

adobe model. First mode is associated with bending effects on the left wall. The second and third 

modes show strong bending effects on the right wall (close to the central window) and in the 

back wall. Hence, the fourth mode depicts bending in the left and right (lateral walls); the fifth 

mode shows displacement in the base of the front wall. Regarding the sixth mode, bending in 

two opposite corners (close to the central window) is notorious (Figure 4.20).  

 

Figure 4.20. Estimation of the first six modes for the retrofitted one–story adobe building. 
A) 4.54 Hz B) 4.81 Hz C) 5.40 Hz D) 6.40 Hz E) 6.84 Hz F) 7.04 Hz. 
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5 STATISTICAL ANALYSIS 

5.1 Ground acceleration 

The two shaking tests consider phase 1 (D = 30 mm) and phase 2 (D =60 mm). Regarding 

phase 2, the 1970 (0.6 g scaled) Peruvian ground acceleration was analyzed according to 

formulas 3.1 and 3.2 to obtain the optimal bin size (0.1213 m/s2), and optimal number of bins 

(91), respectively. For practical purposes, the analysis considered 0.10 m/s2 for bin size and 

therefore 111 number of bins.  

The probability distribution function (pdf) and cumulative distribution function (cdf) were 

obtained by means of MATLAB script. The basic idea for continuous data is that, for very large 

samples, the histogram distribution approximates a continuous function (pdf) associated with a 

random variable (Cline, 2017). Figure 5.1 shows the histogram (density distribution) and normal 

fit for the 0.6g scaled ground acceleration signal. The distribution shows symmetry and light tails 

with the optimal number of bins. However, zero acceleration provides high density distribution. 

 

Figure 5.1. Density distribution and normal fit for the 0.6g scaled ground acceleration. 	
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The histogram distribution brings about several statistics. Table 6.1 shows the results for 

the 0.60g scaled acceleration signal.  

 

Table 5.1. Statistics for the 0.60 g scaled ground acceleration signal  
Acceleration Statistics 

Maximum Minimum   Standard  Skewness  Kurtosis  
(g) (g) Dev. (g)   

0.524 -0.600 0.119 -0.214 -2.432 
 

The scaled signal shows a kurtosis value close to a Gaussian distribution (kurtosis = 3). In 

fact, negative kurtosis depicts light-tailed distribution as it is shown in the histogram. 

As acceleration values increases, the cumulative probability enhances. The cumulative 

distribution function (cdf) is obtained for the 0.6g ground acceleration signal (Figure 5.2).  

 

 

Figure 5.2. Cumulative Distribution Function (cdf) for the 0.6g scaled ground acceleration.  
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5.2 First shaking test: original structure 

The pdf and cdf distribution were obtained for accelerometers 1 and 2 for both the 

ABAQUS and experiment data (second phase D = 60 mm).  Figure 5.3 shows that the ABAQUS 

model is relatively close to the real data regarding accelerometer 1; the pdf shows symmetry in 

both curves and the cdf depicts close approximation. The difference between the experiment and 

the model can be brought about due to the assumptions in the numerical model and the particular 

instrumentation. 

 

 

Figure 5.3. Shaking test on original structure: pdf and cdf for accelerometer 1 (ABAQUS 
and experimental data).  
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Regarding accelerometer 2, the numerical model provides similar values related to 

experimental data for both the pdf and cdf (Figure 5.4).  The probability function depicts values 

similar to accelerometer 1 (ABAQUS model). 

 

 

Figure 5.4. Shaking test on original structure: pdf and cdf for accelerometer 2 (ABAQUS 
and experimental data).  

 

Regarding statistics, the accelerometers 1 and 2 provided similar results compared to the 

ones obtained from the real experiment (Table 5.2).   
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Table 5.2. Statistics on accelerometers after seismic test on original model (phase 2)  
Accelerometer Acceleration Statistics 

ID  Maximum Minimum   Standard  Skewness  Kurtosis  
 (g) (g) Dev. (g)  Coeff. -3 

A1 – Test 1.009 -1.206 0.344 -0.390 0.864 
A2 – Test 0.954 -0.873 0.256 -0.061 1.287 

A1 - Abaqus 1.039 -1.022 0.209 0.043 1.090 
A2 - Abaqus 1.035 -1.032 0.210 0.041 1.081 

 

The ABAQUS model brings about a relative good approximation for the real experiment. 

The Kurtosis coefficient depicts heavy-tailed distribution; the negative skewness depicts left 

asymmetry (test) and right asymmetry (ABAQUS models).  

5.3 Second shaking test: retrofitted model 

The second shaking test, performed on the retrofitted adobe model, gives interesting 

results. The pdf and cdf distribution were obtained for accelerometers 1 and 2 for the ABAQUS 

and experiment data (second phase D = 60 mm).  For accelerometer 1, the ABAQUS model is 

relatively close to the real data (pdf); the distribution shows symmetry in both curves and the cdf 

depicts close approximation (Figure 5.5). 
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Figure 5.5. Shaking test on retrofitted structure: pdf and cdf for accelerometer 1 
(ABAQUS and experimental data).  

 

For accelerometer 2, the ABAQUS model provides a pdf distribution with values less than 

the observed ones (experiment). However, the cdf plot is similar for the ABAQUS and 

experiment data (Figure 5.6).  
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Figure 5.6. Shaking test on retrofitted structure: pdf and cdf for accelerometer 2 
(ABAQUS and experimental data).  

 

Accelerometers 1 and 2 show similar values for the pdf and cdf distribution provided that 

they are located at the top of the adobe full-scale model (lateral walls). After retrofitting and 

second shaking test, accelerometer 1 shows a similar behavior for pdf and cdf. However, 

accelerometer 2 shows an increment for the pdf values after the second shaking test. The 

difference among the real test data and the results from ABAQUS is due the fact that the model 

tries to simulate the nonlinear behavior of the adobe structure subjected to seismic behavior. 

Several issues should be considered such as the interaction among adobe blocks, the friction 

coefficient, the nonlinear properties of adobe material, and possible damage in the overall adobe 

structure.  

Hence, accelerometers 1 and 2 provide similar statistics in ABAQUS compared to the ones 

obtained from the real experiment on the retrofitted adobe dwelling (Table 5.3).   
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Table 5.3. Statistics on accelerometers after seismic test on retrofitted model (phase 2)  
Accelerometer Acceleration Statistics 

ID  Maximum Minimum   Standard  Skewness  Kurtosis  
 (g) (g) Dev. (g)  Coeff. -3 

A1 – Test 1.145 -1.165 0.350 -0.217 1.323 
A2 - Test 0.653 -0.706 0.165 0.227 1.829 

A1 - Abaqus 0.595 -0.578 0.191 0.090 0.964 
A2 - Abaqus 1.252 -0.840 0.315 0.162 0.948 

 
The ABAQUS model brings about a relative fair approximation for the real experiment. The 

Kurtosis coefficient depicts heavy-tailed distribution; positive skewness depicts right asymmetry.  
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6 WAVELET ANALYSIS 

ABAQUS software brought about acceleration responses for all instruments locations 

related to the full-scaled adobe model for both the first and second shaking table test. 

Accelerometers 1 and 2, which are located at the top of the module and parallel to shaking 

direction are analyzed; accelerometer 1 is located at the right wall, and accelerometer 2 is located 

at the left one. The wavelet analysis considers the two seismic tests performed on the adobe 

model: First shaking test (phase 2 with D = 60 mm), and second shaking test (phase 2 with D = 

60 mm).  

6.1 Accelerometer 1 

MATLAB provides the time-frequency representation of acceleration responses. The 

cone of influence, where edge effects are significant, is shown for both tests (Figure 6.1 and 

Figure 6.2). The Analytic CWT Scalogram was obtained by means of Morlet Wavelet transform.  

 

  

Figure 6.1. Analytic CWT for Accelerometer 1 (original model). Left: Experiment (phase 2, 
D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  
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Figure 6.2. Analytic CWT for Accelerometer 1 (retrofitted model). Left: Experiment (phase 
2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  
 

The ABAQUS model detects the high frequency content with high acceleration located in 

the range 5 to 15 s (nearby f = 4 Hz). Provided that the software gives the estimated first mode 

(2.44 Hz) and sixth mode (4.17 Hz), the wavelet analysis proved to be effective in detecting the 

frequency content that occurs on the real test. Regarding the retrofitted model, the estimated first 

frequency (f = 4.54 Hz) is detected in both test and numerical simulation. The Continuous 

Wavelet Transform (CWT) shows a linear y-axis for comparison (Figure 6.3 and Figure 6.4). 
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Figure 6.3. CWT for Accelerometer 1 (original model). Left: Experiment (phase 2, D = 60 
mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  

 

Figure 6.4. CWT for Accelerometer 1 (retrofitted model). Left: Experiment (phase 2, D = 60 
mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  
 

6.2 Accelerometer 2 

MATLAB provides the time-frequency representation of acceleration responses. The 

cone of influence (logarithmical border), where edge effects are significant, is shown for both 

tests in accelerometer 2 signal (Figure 6.5 and Figure 6.6). The Analytic CWT Scalogram was 

obtained by means of Morlet Wavelet transform.  



 

58 

 

 

Figure 6.5. Analytic CWT for Accelerometer 2 (original model). Left: Experiment (phase 2, 
D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 
 

 

Figure 6.6. Analytic CWT for Accelerometer 2 (retrofitted model). Left: Experiment (phase 
2, D = 60 mm). Right: ABAQUS simulation (phase 2, D = 60 mm). 

 

The ABAQUS model detects the frequency content associated with high acceleration 

located in the range 5 to 20 s; this high content is located nearby f = 4 Hz. Provided that the 

estimated fifth (3.83 Hz) and sixth frequencies on the original model (4.17 Hz) are close to the 

observed frequency, the wavelet analysis proved to be effective in detect frequency content that 

occurs on the real test. Regarding the retrofitted model, the estimated first frequency (f = 4.54 
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Hz) is detected in the experiment. However, the numerical simulation in Accelerometer 2 does 

not approximate the test; it gives higher values for response acceleration. The Continuous 

Wavelet Transform (CWT) using Morlet Wavelet shows the detection of the frequency in a 

linear y-scale (Figure 6.7 and Figure 6.8).  

 

  

Figure 6.7. CWT for Accelerometer 2 (original model). Left: Experiment (phase 2, D = 60 
mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  
 

  

Figure 6.8. CWT for Accelerometer 2 (retrofitted model). Left: Experiment (phase 2, D = 60 
mm). Right: ABAQUS simulation (phase 2, D = 60 mm).  
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The acceleration slightly changed after the test on the retrofitted model (0.50g to 0.35g) at f = 4 

Hz level. The simulation shows an increment in the overall peak acceleration. 
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7 SUMMARY AND CONCLUSIONS 

One and two story buildings constructed with adobe structures can be found in many 

countries throughout the world as noted in the introductory discussion.  This research study was 

motivated by the students’ interest in pursuing a topic relevant to his home country and the 

availability of time series data from a shake-table test of a full-scale one-story adobe structure 

conducted by Department of Civil Engineering at the Catholic University of Peru.  This research 

investigation began with a literature review focused upon developing a better understanding of 

adobe as building material and it structural characteristics.  The objective was to then use this 

information in order to develop a finite element model of the shake-table full scale structure and 

to compare its dynamic response characteristics for both the original undamaged structure and 

the repaired structure that were subject to the strong ground motion modeled in the experiment. 

In particular, two acceleration measurements at the same elevation on opposite wall were 

selected for analysis. 

An accurate finite element model representation of a one-story adobe structure was quite 

involved as these structures consist of a concrete foundation, adobe walls and a timber roof. 

Constitutive nonlinear models for tension and compression used in the modeling of the adobe 

walls and linear models were used to characterize both the concrete and timber.  ABAQUS 

models provide important tools needed to characterize the behavior of adobe structures subjected 

to seismic behavior.  Block interaction can be represented in the software and output results such 

as displacements and accelerations can be predicted. The nonlinear behavior of adobe material 

should be carefully considered in any simulation, especially for the retrofitted model. 

Statistical PDF and CDF distributions were used to compare numerical simulations with the 

experimental data.  Further, cross-correlation was used in the comparison of two acceleration 
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signals, and the Root Mean Square Error (RMSE) was introduced to provide a measure of 

difference in two-time series.  Wavelet analysis was introduced to provide new insights for both 

structural conditions allowing the detection of changes in frequency content with time.  The 

results show a closer correlation for the original undamaged adobe structure.   However, the  

Wavelet analysis for the retrofitted structure showed a discrepancy between the data and the 

model.  These results highlight the difficulty in modeling buildings constructed using adobe 

especially when attempting to model damaged/retrofitted adobe structures.  Some of the 

observed discrepancies can be attributed to the issues related to the material consistency and 

construction process.  Thus, before attempting to predict the behavior of more complex adobe 

building structures such as a two-story adobe building more research focused on addressing 

adobe material variability and a better understanding of repair techniques and their modeling is 

required. 
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