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ABSTRACT 

 

 

 This study was conducted to test the hypothesis that dietary supplementation with 

0.4% L-arginine between days 14 and 30 of gestation would enhance survival and 

development of conceptuses (embryo and its extra-embryonic membranes) in gilts. Gilts 

were bred at the onset of second estrus and fed twice daily 1 kg of a corn- and soybean 

meal-based diet containing 12% crude protein beginning on day 0 of gestation (the day 

of breeding). Either 0.4% L-arginine or an isonitrogenous amount of L-alanine (control) 

was supplemented to the basal diet from days 14 to 30 of gestation. At day 30 of 

gestation, gilts were hysterectomized and euthanized to obtain uteri, conceptuses and 

fetal fluids. Placental water transport was determined by using Ussing chambers. 

Concentrations of AAs in fetal fluids and maternal plasma were determined by HPLC. 

Total RNA and protein were extracted from the frozen tissues. Quantitative RT-PCR and 

western blotting were performed to determine the changes in gene expression at mRNA 

and protein levels. Porcine trophectoderm (PTr2) cells were cultured in medium with 

different concentrations of arginine to determine water transport and cGMP production. 

 Compared to the control group, arginine supplementation increased (P < 0.05) 

embryonic survival from 87.3% in the control group to 96.5% in the arginine group. 

Allantoic fluid volume was increased by 25% and amniotic fluid volume was increased 

by 48% in the arginine group. The placentae of arginine-supplemented gilts were more 

vascularized in terms of the number and size of blood vessels. Compared to the control 
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group, arginine supplementation increased (P < 0.05) the number of placental blood 

vessels; placental expression of angiogenic factors VEGFA120, VEGFR1, VEGFR2, 

eNOS, PlGF, GTP-CH and FGF-2; and placental transport of water. We conclude that 

dietary arginine supplementation to pigs between days 14 and 30 of gestation improves 

survival and development of the conceptuses through stimulating placental water 

transport and angiogenesis. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Pigs experience high rates of embryonic mortality, especially during the peri-

implantation period of gestation (Bazer et al. 2011; Edwards et al. 2012). Maternal 

nutrition plays an important role in embryonic survival and development, especially 

maternal dietary intake of amino acids (AA) (Wu et al. 2017).  Both low and high 

dietary protein intake can adversely affect fetal development and embryonic death due to 

deficiencies and imbalances of amino acids (Herring et al. 2018; Ji et al. 2017). 

Specifically, arginine is a “conditionally essential AA” in the diet that is important for 

optimal embryonic/fetal development and survival by affecting placental growth and 

development (Hou et al. 2015; Wu et al. 2010). Arginine produces nitric oxide (NO) and 

polyamines, which are essential for placental angiogenesis (Wu et al. 2010). 

Angiogenesis, defined as sprouting new blood vessels from existing ones (Chen and 

Zheng 2014), is essential for increasing utero-placental blood flow from mother to fetus 

to exchange water, nutrients, and waste (Reynolds et al. 2006). Arginine is also a 

precursor for synthesis of polyamines, ornithine, creatine, homoarginine and agmatine 

(Hou et al. 2016; Wu et al. 2013, 2016). These biologically important molecules are 

essential for growth and survival of the conceptus (Wu et al. 2017). 
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Maternal dietary protein intake 

Both maternal under-nutrition and over-nutrition can be detrimental to the developing 

fetus. Specifically, insufficient or excessive maternal dietary protein intake can cause 

lifelong consequences for the neonate due to fetal programming. Fetal programming 

refers to the heritable changes in gene expression without changes in DNA sequences 

within the genome (Ji et al. 2017). Malnutrition alters expression of the fetal genome, 

leading to metabolic disorders, organ dysfunction, hormonal imbalances and cell 

signaling defects (Ji et al. 2017). 

Amino acids (AAs) are essential for synthesis of proteins and other nitrogenous 

substances such as catecholamines, creatine, dopamine, nitric oxide (NO), polyamines 

and thyroid hormones (Wu et al. 2017). Additionally, certain AAs are responsible for 

regulating cell signaling and metabolic pathways. Low maternal intake of dietary protein 

is linked to intrauterine growth restriction (IUGR) of the conceptus (embryo/fetus and 

placenta), as well as reduced postnatal growth and feed efficiency (Ji et al. 2017). The 

placenta requires adequate levels of AAs for proper growth and development to supply 

nutrients to the fetus (Wu et al. 2017). With low dietary protein intake, the limited 

supply of AAs to the placenta results in placental insufficiency and consequently IUGR 

(Herring et al. 2018). High maternal dietary protein intake is also linked to IUGR and 

can cause fetal or neonatal death due to ammonia toxicity. Like low intake of dietary 

protein, high intake results in AA excesses during pregnancy (Ji et al. 2017). In all 

species studied, including swine, cattle and rodents, high concentrations of ammonia in 

plasma increase embryonic death (Herring et al. 2018). Ammonia is a product of AA 
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catabolism, and high dietary protein intake leads to toxic levels of ammonia in  plasma 

(Wu 2013). Excess production of other metabolites of AAs, such as hydrogen sulfde, 

homocysteine and indoles, may also impair embryonic/fetal survival and growth (Wu 

2016; Taylor 2016). 

 There is growing interest in the functional roles of certain AAs in mammalian 

pregnancies (Palencia et al. 2018; Wu et al. 2017). One of these AAs is L-arginine (Arg), 

which has been properly recognized as a “conditionally essential AA” in the diet, 

especially for embryonic growth and survival (Wu et al. 2016). As noted previously, Arg 

is a precursor to biologically important substances such as polyamines, ornithine, 

proline, glutamate, agmatine, creatine and NO (Wu 2013). Arg is also required for 

hepatic urea synthesis to remove ammonia from the liver and blood. Of interest, this AA 

regulates protein synthesis in skeletal muscle and placenta by activating mechanistic 

target of rapamycin (mTOR) signaling, stimulating the secretion of growth hormone and 

insulin, and enhancing anti-oxidative signaling and the cellular redox state (Bazer et al. 

2014; Kong et al. 2012; Kim et al. 2013; Wu 2013). Results of recent studies indicate 

that Arg enhances placental angiogenesis and growth to improve blood flow across the 

placenta, thereby increasing nutrient transfer from the mother to her fetus (Wu et al. 

2017). NO and polyamines are also necessary for implantation (Chwalisz and Garfield 

2000), and they are known to regulate steroid hormone synthesis and stimulate cell 

proliferation and migration in the conceptus (Bazer et al. 2010; Ducsay and Myers 2011; 

Kim et al. 2013). Because of these beneficial effects of Arg during gestation, dietary 

supplementation of Arg has been found to improve reproductive performance and 
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increase embryonic survival and growth in swine, sheep, rats and mice (Palencia et al. 

2018; Wu et al. 2013). For dietary supplementation, Arg is administered as the neutral 

salt Arg-HCl to maintain a physiological acid-base balance (Wu et al. 2016). 

 Pigs experience high rates of embryonic loss and neonatal deaths, which are 

greatly influenced by maternal nutrition (Bazer et al. 2012). For example, 14% crude 

protein (CP) diets are commonly fed to gestating gilts and sows on many farms 

worldwide; however, 14-18% CP is considered high dietary protein intake and is 

detrimental to embryonic development (Ji et al. 2017). This level of dietary protein 

creates a toxic environment for the fetus due to high levels of ammonia and possibly 

other metabolites in the plasma (Wu et al. 2013). Also, high dietary protein intake 

reduces skeletal muscle fiber size and number in newborn piglets (Wu et al. 2006; 2010). 

For this reason, it is recommended that gestating gilts are fed about 50% of their ad 

libitum feed intake (Kim et al. 2009). When sows are fed greater than 50% of ad libitum 

feed intake, there is a significant increase in embryonic loss resulting from gaining 

excessive subcutaneous white adipose tissue (WAT) and oxidative stress (Ji et al. 2017). 

Fifty percent of ad libitum feed intake equates to 2 to 2.2 kg of feed per day consisting of 

12% crude protein (CP). Consequently, specific AAs are deficient in a 12% CP diet (Ji et 

al. 2017). Interestingly, 24% of newborn piglets from crossbred sows fed a 12% CP diet 

are considered IUGR, weighing less than 1.1 kg (Ji et al. 2017). IUGR piglets have an 

extremely high risk of mortality before weaning (Wu et al. 2006).  

Arginine is an example of an AA deficient in a 12% CP diet that is important for 

proper placental growth (Wu et al. 2013). Also, glutamate, glycine and cysteine are 
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required for the synthesis of glutathione, which is an essential antioxidant (Wu 2013). 

Since increasing dietary CP above 12% is detrimental, supplementing certain AAs to the 

basal diet may help to overcome AA deficiencies (Wu et al. 2017). Placental 

angiogenesis occurs rapidly between days 20 and 40 of gestation in pigs; therefore 

dietary Arg supplementation during this period could improve the growth and 

development of the placental vasculature by increasing NO production (Li et al 2014). Li 

et al. (2014) found that supplementation of a 2 kg corn-soybean meal based diet with 

0.4% or 0.8% Arg between days 14 and 25 of gestation increased placental growth, 

number and diameter of placental blood vessels and number of viable fetuses by 2 per 

litter. Also, multiple studies conducted in different countries have shown that Arg 

supplementation between day 30 of gestation and farrowing increases litter size and litter 

birth weight (Wu et al. 2013; Wu et al. 2017). Arg supplementation during late gestation 

(days 90 to 114) also increased birth weights of live piglets (Wu et al. 2017). 

Supplementation with greater than 2% Arg may cause antagonism between Arg and Lys 

and increase harmful levels of ammonia (Wu 2013), and consequently none of the 

beneficial effects seen with lower doses of Arg may be observed.  

 A study conducted by Rehfeldt et al. (2012) indicated the negative impacts that 

maternal under-nutrition and over-nutrition have on postnatal growth in IUGR piglets 

(2012). The gestating gilts fed a high protein diet (30% CP) produced piglets with IUGR. 

At day 83 of age, the piglets had increased brain weights and decreased thymus and bone 

weights compared to the offspring of the gilts fed the control diet (12.1% CP).  As an 

organ of the immune system, a small thymus gland may be associated with decreased 
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immune function (Wu et al. 2012). At day 188 of age, these piglets had increased liver 

weights compared to the control piglets, which may lead to metabolic dysfunction when 

they are used for breeding (Rehfeldt et al. 2012). The gestating gilts fed a low protein 

diet (6.5% CP) also produced piglets with IUGR, but those piglets showed compensatory 

gain that was maintained from day 83 to day 188 of age (Rehfeldt et al. 2012). However, 

these piglets had a larger proportion of body fat and decreased numbers of skeletal 

muscle fibers, skeletal muscle mass and total muscular DNA compared to the control 

piglets (Rehfeldt et al. 2012). Altmann et al. (2013) found that both low and high protein 

diets fed to gestating sows affected their expression of metabolic genes including 

glucocorticoid receptor NR3C1, peroxisome proliferator-activated receptor alpha 

(PPARα), insulin receptor (INSR), PPAR gamma coactivator 1-alpha (PGC1α), 3-

hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and cytochrome P450 2C34 

(CYP2C34). Fetal expression of NR3C1 increased as a consequence of increased 

glucocorticoid activity in sows fed a low protein diet, which also affected expression of 

INSR, PPARα, PGC1α and HMGCR in fetuses from sows fed either a high or low 

protein diet compared to fetuses from control-fed sows, possibly resulting in changes in 

lipid metabolism in the offspring.  

 Both low and high maternal dietary protein intake cause an imbalance of AAs, 

which may lead to embryonic loss or impaired growth and development of the 

conceptus. Surviving IUGR neonates likely face lifelong consequences as a result of 

maternal malnutrition. To overcome the harmful consequences of maternal malnutrition, 

dietary supplementation with Arg and Gln during specific stages of gestation can help 
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fulfill the requirements of both mother and fetus (Wu et al. 2010). In numerous animal 

and human studies, dietary Arg supplementation during pregnancy improved embryonic 

survival and growth by increasing placental angiogenesis and blood flow, promoting 

embryonic protein synthesis, preventing IUGR, and increasing litter size.  

Placental angiogenesis 

Development of the placental vasculature is essential for proper exchange of water, 

nutrients, respiratory gases and waste between the mother and fetus (Chen and Zheng 

2014). The placental vasculature develops via angiogenesis, which is defined as the 

formation of blood vessels from existing ones (Reynolds and Redmer 2001). 

Angiogenesis and vasodilation in the placenta, as well as in the uterus, are primarily 

responsible for increasing utero-placental blood flow (Reynolds et al. 2006). The 

placenta contains many pro-angiogenic and anti-angiogenic factors for regulation of this 

process. Important pro-angiogenic factors found in the placenta include vascular 

endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF2), placental growth 

factor (PlGF), endocrine gland-derived-VEGF, transforming growth factor-β1 (TGFB1), 

leptin and angiopoietins (Chen and Zheng 2014). The conventional form of VEGF, or 

VEGFA, is universally found at angiogenic sites where it can release endothelial cells 

for migration and proliferation by breaking down the extracellular matrix (Chen and 

Zheng 2014). VEGF also stimulates NO production from the endothelial cells of the 

placental arteries (Chen and Zheng 2014). It has been found that placental artery 

endothelial cells also express VEGF receptors 1 (VEGFR1) and 2 (VEGFR2) (Chen and 

Zheng 2014). VEGFR2 is the primary VEGF-family receptor associated with 
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angiogenesis (Nieminen et al. 2014). As a receptor tyrosine kinase, VEGFR2 is activated 

via auto-phosphorylation and stimulates many signaling cascades responsible for cell 

survival, proliferation and migration (Nieminen et al. 2014). These pathways include the 

PI3K/Akt pathway, eNOS and the phospholipase Cγ-MAPK pathway (Nieminen et al. 

2014). As a member of the VEGF family, PlGF acts by binding VEGFR1 (Sanchis et al. 

2015). FGF-2 is also an important stimulator of angiogenesis in the placenta (Reynolds 

and Redmer 2001). NO is a potent vasodilator and is necessary for placental 

angiogenesis (Chen and Zheng 2014). Placental NO comes form the conversion of L-

arginine to L-citrulline by endothelial nitric oxide synthase (eNOS) (Chen and Zheng 

2014).  Vasodilation and angiogenesis are critical for sufficient utero-placental blood 

flow. By stimulating NO production, VEGF and FGF-2 are also regulators of utero-

placental blood flow (Reynolds and Redmer 2001). Improper development of the 

placental vasculature leads to placental insufficiency, or improper nutrient exchange 

from the mother to the fetus, which may result in IUGR or embryonic/fetal death 

(Herring et al. 2018).  

Placental water transport 

Aquaporins (AQP) are plasma membrane proteins that allow for rapid transport of water  

across membranes, and they are also essential for placental development (Zhu et al. 

2015). Water requirements of the fetus are very high due to its exponential rate of 

growth (Damiano 2011). However, the transport of substances across the placenta is 

very selective indicating the importance of AQP for placental water transport (Damiano 

2011). The maternal-fetal fluid balance is critical for maintaining homeostasis of  
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amniotic fluid, which is positively correlated with embryonic survival and growth (Zhu 

et al. 2015). There are 13 isoforms of mRNAs for AQP that have been discovered in 

mammals, 12 of which are expressed in the female reproductive tract (Zhu et al. 2015). 

These isoforms can be categorized into three subgroups: classical aquaporins, 

aquaglyceroporins and super-aquaporins (Damiano 2011). The classical aquaporins 

(AQP 0, 1, 2, 4, 5, 6 and 8) are highly selective to water transport, but some are also 

permeable to CO2, O2, NO and anions (Zhu et al. 2015). The aquaglyceroporins (AQP 3, 

7, 9, and 10) are selective to transport of water, glycerol, urea, ammonia and other small 

solutes (Zhu et al. 2015). The role of super-aquaporins (AQP 11 and 12) is unclear (Zhu 

et al. 2015). AQP expression is mediated by multiple signaling pathways, including 

cAMP, mitogen-activated protein kinases (MAPK), protein kinase C (PKC), and 

phosphatidylinositide 3-kinases (PI3K)/protein kinase B (Akt)/mechanistic target of 

rapamycin (mTOR). At present, little is known about effects of AA nutrition on 

expression of AQPs in placental tissues of any species. 

Summary and objective 

Regulation of maternal dietary protein intake during pregnancy is essential for proper 

embryonic survival, growth and development. Specific AAs are required for certain 

processes involved in pregnancy, including implantation, placental growth and 

angiogenesis, and the transfer of water and nutrients from mother to fetus (Wu et al. 

2006). Understanding the role of maternal dietary protein intake can have great 

economical benefits in the livestock industry by increasing reproductive success and 

litter size. Although the timing and dose of arginine supplementation to pregnant gilts 
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has been studied, the exact mechanism through which it increases embryonic survival is 

not fully understood. This study was conducted to test the hypothesis that dietary 

supplementation with 0.4% L-arginine to gilts between days 14 and 30 of gestation 

would increase embryonic survival and development by stimulating placental 

angiogenesis and placental transport of water.  
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CHAPTER II 

DIETARY SUPPLEMENTATION OF 0.4% ARGININE BETWEEN DAYS 14 

AND 30 OF GESTATION ENHANCES CONCEPTUS SURVIVAL, GROWTH 

AND DEVELOPMENT IN GILTS 

Introduction 

Arginine is a “conditionally essential AA” in the diet that has important functions 

that affect placental growth and development and, therefore, is important for optimal 

conceptus development (Hou et al. 2015; Wu et al. 2010). Arginine is a precursor for 

synthesis of polyamines, ornithine, creatine, agmatine and nitric oxide (NO) (Hou et al. 

2016; Wu et al. 2013, 2016). NO is essential for placental angiogenesis, which is defined 

as sprouting new blood vessels from existing ones (Wu et al. 2010; Chen and Zheng 

2014). Placental angiogenesis is necessary for increasing utero-placental blood flow 

from mother to fetus to exchange water, nutrients and waste (Wu et al. 2010).  

Previous studies have shown that dietary supplementation with arginine to gilts 

during specific periods of gestation can decrease embryonic mortality. Mateo et al. 

(2007) reported that supplementation of 0.83% L-arginine between days 30 and 114 of 

gestation increased litter size in gilts by 2. Li et al. (2014) found that supplementation of 

0.4% and 0.8% L-arginine between days 14 and 25 of gestation also increased litter size 

in gilts by 2 and the volume of amniotic fluid in conceptuses. However, supplementation 

with 0.8% Arg from days 0 to 25 impaired embryonic survival showing the importance 

of timing of arginine supplementation. Supplementation of arginine too early 
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compromised follicle development on the ovaries, which reduced the number of corpora 

lutea (CL) and concentrations of progesterone in maternal plasma (Li et al. 2010). 

Aquaporins (AQP) also affect exchange of water and nutrients from mother to 

fetus by allowing for rapid transport of water across membranes (Zhu et al. 2015). There 

are 13 isoforms of mRNAs for AQP that have been discovered in mammals, and 12 have 

been discovered in the female reproductive tract (Zhu et al. 2015). AQP expression is 

regulated by several different signaling pathways, such as cAMP, mitogen-activated 

protein kinases (MAPK), protein kinase C (PKC), and phosphatidylinositide 3-kinases 

(PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR). Little is known 

about the effects of AA nutrition on expression of AQPs in placental tissue of any 

species, but previous studies have found that arginine supplementation increases 

expression of mTOR (Li et al. 2014). 

This study was conducted to test the hypothesis that dietary supplementation with 

L-arginine between days 14 to 30 of gestation would ameliorate the high rates of 

embryonic loss that pigs experience during the peri-implantation period by increasing 

expression of pro-angiogenic factors and AQPs (Edwards et al. 2012).  

Materials and methods 

Experimental design 

Fourteen sexually mature crossbred gilts (Yorkshire X Landrace sows and Duroc X 

Hampshire boars) were bred at onset of their second estrus and 12 h later. Day of 

breeding was recorded as day 0 of gestation. Gilts were group-housed and had free 

access to water throughout the experiment. Following breeding, gilts were assigned 
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randomly to one of two treatment groups, 0.0% arginine (control) or 0.4% arginine 

(Ajinomoto Co., Inc., Tokyo, Japan), with 7 gilts in each treatment group. All gilts were  

fed 1 kg of a corn- and soybean meal-based diet containing 12% crude protein twice-

daily beginning on day 0 of gestation. The basal diet contained 0.7% arginine, as 

analyzed by HPLC (Li et al. 2010). Gilts were fed individually and either 0.4% L-

arginine or an isonitrogenous amount of L-alanine was supplemented to the basal diet 

between days 14 and 30 of gestation. An isonitrogenous amount of 0.83% L-alanine (as 

L-alanine-HCl, Ajinomoto Co., Inc., Tokyo, Japan) and 0.43% cornstarch was added to 

the 0.0% and 0.4% arginine diets, respectively, as top dressing. 

Hysterectomy and tissue collection 

On day 30 of gestation, gilts were fed either L-arginine-HCl or L-alanine, and then 

euthanized and hysterectomized within 30 min of death. Gilts were anesthetized with an 

intramuscular injection of 10 mg Telazol (Zoetis, USA) per kg of body weight and then 

a surgical plane of anesthesia was established and maintained with inhalation of 1-5% 

isofluorane (Wu et al. 1996). Blood was collected from both uterine vein and artery 

before euthanasia, and after euthanasia gilts were hysterectomized to obtain uteri and 

conceptuses. Euthanasia was achieved by intra-cardiac injection of saturated KCl.  The 

number of CL, number of live fetuses, placental weight, fetal body weight, fetal length, 

fetal liver weight, volumes of amniotic and allantoic fluid, and number and diameter of 

placental blood vessels was measured as described previously (Wu et al. 1996, 2017). 

For each variable, the mean of the six placental measurements was calculated to 

represent the value for the gilt.  Samples of placenta, endometrium, CL, fetal liver and 
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muscle, and maternal tissues was either snap frozen in liquid nitrogen, fixed in 4% 

paraformaldehyde, or embedded in OCT and snap frozen in liquid nitrogen. 

Placental vasculature measurements 

Briefly, a picture was taken of each placenta. Three placentae (from the first, middle, 

and last fetuses within the left uterine horn) and three placentae (from the first, middle, 

and last fetuses within the right uterine horn) from each gilt were used to count the total 

number of blood vessels per 1 cm2, and to measure the diameter of the central blood 

vessel under a microscope (40×objective). 

Determination of placental and PTr2 water transport 

Transport of 3H2O was measured using Ussing chambers (Physiologic Instruments, San 

Diego, CA) containing 5 ml of oxygenated (95% O2/5% CO2) Krebs buffer, as well as 

physiological concentrations of amino acids and glucose.  Sections of placental 

(chorioallantois) tissue  (1 cm2) were mounted onto Ussing chambers, followed by the 

addition of 0.2 µCi 3H2O to the “mucosal” side of each chamber.  Thereafter, 20 µl 

aliquots of solution were obtained from the “serosal” side of the chamber at 5, 10 and 15 

min to determine transport of 3H2O across the placenta. Radioactivity was determined 

using a liquid scintillation counter (Li et al. 2016). 

RNA extraction, reverse transcription and quantitative PCR 

Placental tissue was homogenized with TRIzol (Invitrogen, USA), and RNA was 

extracted with chloroform and precipitated with isopropanol. RNA was washed with 

75% ethanol. Total RNA was measured using a NanoDrop ND 1000 spectrophotometer.  

The cDNA was synthesized using the SuperScript First Strand Synthesis System for RT-
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PCR (Invitrogen, USA). RT-qPCR was performed using the SYBR Green and the 

Applied Biosystems 7900HT Real Time PCR system. Tubulin was used as the 

housekeeping gene (Steinhauser et al. 2017). The sequences of forward and reverse 

primers used are provided in Table 2.1. The relative expression values were calculated 

using the ΔΔCt method (Fu et al. 2006). 
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Table 2.1 Sequences of primers used for quantitative RT-PCR. 

Gene Primer sequence Accession number 

eNOS3 Forward: 5’- ATCTTCAGCCCCAAACGGAG -3’ 

Reverse: 5’- TTTCCACCGAGAGGACCGTA -3’ 

NM_214295.1 

VEGF120 Forward: 5’- AAGGCCAGCACATAGGAGAG -3’ 

Reverse: 5’- CCTCGGCTTGTCACATTTTT-3’ 

KJ729036 

VEGF164 Forward: 5’- GAGGCAAGAAAATCCCTGTG -3’ 

Reverse: 5’- TCACATCTGCAAGTACGTTCG- 3’ 

NM214084 

VEGFR1 Forward: 5’- CACCCCGGAAATCTATCAGATC -3’ 

Reverse: 5’- GAGTACGTGAAGCCGCTGTTG -3’ 

EU714325.1 

VEGFR2 Forward: 5’- GAAATGGCTTCATCCTCCAA -3’ 

Reverse: 5’- CAAGGAAGACTTGGCTCAGG -3’ 

AF513909.1 

GTP-CH-1 Forward: 5’- AGTTCTTGGCCTCAGCAAAC -3’ 

Reverse: 5’ TGCTTCAACCACTACTCCGAC -3’ 

XM_021102249.1 

PlGF Forward: 5’- CATCGTGTCTGTGTACCCCA -3’ 

Reverse: 5’- TGACATTGACCGTCTCCACG -3’ 

FJ177137.1 

FGF-2 Forward: 5’- GTGCAAACCGTTACCTTGCT -3’ 

Reverse: 5’- ACTGCCCAGTTCGTTTCAGT -3’ 

NM_001001855.2	

AQP1 Forward: 5’- TTGGGCTGAGCATTGCCACGC -3’ 

Reverse: 5’- CAGCGAGTTCAGGCCAAGGGAGTT -3’ 

(68) 

AQP2 Forward: 5’- TCAACCCTGCCGTGACTGTAG -3’ 

Reverse: 5’- GTTGTTGCTGAGGGCATTGAC -3’ 

EU636238.1	

AQP3 Forward: 5’- ACCCTTATCCTCGTGATGTTT -3’ 

Reverse: 5’- CATTCGCATCTACTCCTTGTG -3’ 

HQ888860.1	

AQP4 Forward: 5’- TCTGGCTATGCTTATCTTTGTCC -3’ 

Reverse: 5’- CGATGCTAATCTTCCTGGTGC -3’ 

NM_001110423.1	

AQP5 Forward: 5’- TGAGTCCGAGGAGGATTGGG -3’ 

Reverse: 5’- GAGGCTTCGCTGTCATCTGTTT -3’ 

NM_001110424.1	

AQP6 Forward: 5’- TCTGGATGACTGTCAGCAAAGC -3’ 

Reverse: 5’- TCTCTCGGATGTCCTCAGGTATG -3’ 

NM_001128467.1	

AQP7 Forward: 5’- ATAAGGCACTTCAGCAGACATC -3’ 

Reverse: 5’- AAACTTCTTCCAGGACATTCG -3’ 

NM_001113438.1	

AQP8 

 
Forward: 5’- GGTGCCATCAACAAGAAGACG -3’ 

Reverse: 5’- CCGATAAAGAACCTGATGAGCC -3’ 

EU220426.1	
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Table 2.1 continued 

Gene Primer sequence Accession number 

AQP9 Forward: 5’- TTTGCTGATGGAAAACTGCTC -3’ 

Reverse: 5’- CTCTGGTTTGTCCTCCGATTGT -3’ 

NM_001112684.1	

AQP10 Forward: 5’- TGGGCGTTATACTAGCCATCTAC -3’ 

Reverse: 5’- GGTTGGGCACAGTTTACTTCCT -3’ 

EU582021	

AQP11 Forward: 5’- CGTCTTGGAGTTTCTGGCTACC -3’ 

Reverse: 5’- CCTGTCCCTGACGTGATACTTG -3’ 

EU220425	
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Western blot analyses 

Frozen placentae (approximately 200 mg) were homogenized at 4oC with a model 

PRO200 homogenizer (PRO Scientific, Oxford, CT) in 1.5 ml of lysis TM buffer (pH 

7.9) containing MgCl2, KCl, EDTA, sucrose, glycerol, sodium deoxycholate, NP-40, 

sodium orthovanadate, and a protease inhibitor cocktail (Set I, Calbiochem, La Jolla, 

CA). The lysates were centrifuged at 10,000 x g and 4°C for 5 min. The supernatant 

fluid was transferred to 1.5 ml tubes and centrifuged at 12,000 x g and 4°C for 5 min. 

The supernatant fluid was used for protein assay and western blot analyses. Protein 

concentrations were measured using the Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific Inc., USA) with bovine serum albumin as the standard. Proteins were 

denatured in 2X Laemmli Sample Buffer (Bio-Rad, Hercules, CA) with 10% 

mercaptoethanol. Denatured proteins (30 µg) were loaded into Any kD™ Mini-

PROTEAN® TGX™ Precast Gels (Bio-Rad, USA). Electrophoresis was conducted at 

120V for 70 min in Electrophoresis Buffer (25mM Tris, 192 mM glycine, and 10% 

SDS). Proteins were transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA) 

in Transfer Buffer (25 mM Tris, 192 mM glycine, and 20% methanol) at 100V for 75 

min using the Bio-Rad Transblot apparatus (Hercules, CA). Membranes were blocked in 

5% nonfat dry milk or 5% BSA, which were dissolved in Tris-buffered saline-Tween 

solution (TBST; 20 mM Tris, 150 mM NaCl, pH 7.6, and 0.1% Tween-20) for 1 h at 

room temperature. The membranes were incubated with primary antibodies (Table 2.2) 

overnight at 4°C with gentle rocking. After being washed three times with TBST, the 

membranes were incubated at room temperature for 1 h with a secondary antibody (1.0 
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mg/mL Goat Anti-Mouse IgG or Goat Anti-Rabbit IgG, KPL, Gaithersburg, MD) at 

1:10,000. Finally, the membranes were washed three times with TBS, followed by 

development using Supersignal West Dura Extended Duration Substrate according to the 

manufacturer’s instructions (Thermo Fisher Scientific Inc., USA). Western blots were 

quantified by measuring the intensity of target protein bands using a ChemiDoc XRS 

system and Quantity One software (Bio-Rad, Hercules, CA). Images for β-actin were 

used as a loading control to normalize the relative abundance of target proteins. 
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Table 2.2 Information on antibodies used for western blotting. 

Protein Company Catalog No. Dilution Molecular 

Weight (kDa) 

PlGF abcam ab74778 1:1000 25 

VEGFR2 abcam ab2349 1:2000 152 

eNOS Bioss 13074R 1:2000 140 

p-eNOS Cell Signaling 

Technology 

9571S 1:2000 140 

GTP-CH-1 Abbiotec 250680 1:2000 32 

FGF-2 abcam ab8880 1:2000 18 

p-VEGFR2 Cell Signaling 

Technology 

24785 1:1000 152 

VEGFR1    151 

AQP1 EMD Millipore AB2219 1:2000 28, 35-60 

AQP2 Santa Cruz 

Biotechnology 

sc515770 1:2000 29, 35-45 

AQP4 ThermoFisher PA5-36521 1:200 35 

AQP5 Sigma A115544 1:2000 42 

AQP8 Sigma SAB1403559 1:2000 54 

β-actin GeneTex GTX26276 1:2000 43 
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Immunofluorescence 

Paraffin embedded sections (5 µm) of the uterine-placental interface were adhered to 

slides, deparaffinized and rehydrated in CitriSolv, ethanol, and water. For antigen 

unmasking, the sections were brought to a boil in a 10mM Sodium Citrate Buffer 

solution. The sections were then washed in PBS 3 times for 5 min each, blocked with 

10% normal goat serum, and then the sections were incubated with rabbit anti-AQP1 (5 

µg/ml) or mouse anti-AQP8 (5 µg/ml) overnight at 4°C and detected with fluorescein-

conjugated goat anti-rabbit IgG (1:250) for one hour (Chemicon International). Slides 

were then overlaid with Prolong Gold Anti-fade mounting reagent containing DAPI 

(Molecular Probes) and a coverslip. Images were taken using an Axioplan 2 microscope 

(Carl Zeiss, Thornwood, NY) interfaced with a Axioplan HR digital camera. 

Photographic plates were assembled using Adobe Photoshop (version 6.0, Adobe 

Systems Inc., San Jose, CA). 

Analysis of amino acids, fructose, glucose and glycerol 

Amino acids in plasma from uterine arterial plasma and amniotic and allantoic fluids 

were analyzed by HPLC methods involving precolumn derivatization with o-

phthaldialdehyde (Li et al. 2010).  Glucose and glycerol in the allantoic fluid, amniotic 

fluid and maternal plasma from the uterine artery was determined using enzymatic 

fluorometric methods (Wu et al. 2005; Tekwe et al. 2013). Fructose in the allantoic fluid, 

amniotic fluid and maternal plasma from the uterine artery was determined using 

EnzyChrom™ Fructose Assay Kit (BioAssay Systems, Hayward, CA).  
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pTr2 cell culture 

An established porcine trophectoderm (pTr2) cell line was cultured in 75-cm2 flasks with 

15 ml of DMEM/F-12 containing 5% fetal bovine serum (FBS), 1% P/S, 0.05% insulin 

and 5 ng/mL epidermal growth factor (Kong et al. 2012). The medium was changed 

every 2 days, and when cells reach confluence they were collected using 0.125% trypsin. 

Cells were then used for determination of cGMP production. 

Determination of cGMP production in pTr2 cells 

The pTr2 cells were seeded onto a 96-well plate in Arg-free DMEM at between 104-106 

cells/ml and incubated overnight at 37°C. Then, 0, 0.1, 0.25 or 0.5 mM Arg was added to 

the medium and cultured for 24 h at 37°C. cGMP production was determined using the 

Amersham cGMP Enzymeimmunoassay Biotrak (EIA) System (GE Healthcare, 

Buckinghamshire, UK). 

Statistical analyses 

Embryonic survival was compared between the two groups using Chi-square analysis 

(Steel and Torrie 1980).  Parameters of reproductive efficiency, concentrations of amino 

acids, glucose, fructose and glycerol and placental water transport were compared 

between the two groups, and gene expression and protein expression changes were 

analyzed using the unpaired t-test (Steel and Torrie 1980). Water transport by PTr2 cells 

and cGMP production by PTr2 cells were analyzed using one-way ANOVA (Steel and 

Torrie 1980). Probability values ≤ 0.05 were considered statistically significant.  

 

 



 

 23 

Results 

Reproductive performance of gilts 

After supplementation of 0% (control) or 0.4% arginine from days 14 to 30 of gestation, 

gilts were euthanized and hysterectomized to assess reproductive performance. Maternal 

body weight, uterine weight, maternal liver weight, number of CL and relative weights 

of fetal livers were measured at the time of necropsy and were not significantly different 

between the 0.4% arginine-treated and control gilts. Embryonic survival rates were 

calculated as number of live fetuses per number of CL present on the ovaries at the time 

of necropsy. Embryonic survival for gilts in the 0.4% arginine-supplemented group was 

9.2% greater than that for the control gilts (P < 0.05) (Table 2.3). The average allantoic 

fluid volume (ALF) for gilts in the 0.4% arginine-supplemented group was 25.3% 

greater than that for gilts in the control group (P < 0.05) (Table 2.3). The average 

amniotic fluid volume (AMF) for gilts in the 0.4% arginine-supplemented group was 

48.1% greater than that for gilts in the control group (P < 0.05) (Table 2.3). 
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Table 2.3 Reproductive performance and placental angiogenesis of gilts fed diets 

supplemented with 0% (control) or 0.4% L-arginine from days 14 to 30 of gestation. 

Variable Control 0.4% Arginine P-value 

No. of corpora lutea 15 ± 0.82 13.4 ± 0.90 0.222 

No. of live fetuses 13.2 ± 0.98 12.6 ± 0.64 0.609 

Embryonic survival rate, % 87.3 ± 0.04 96.5 ± 0.02* <0.001 

Total volume of allantoic fluid, ml 187.4 ± 10.1 234.8 ± 17.3*  0.045 

Total volume of amniotic fluid, ml 1.16 ± 0.07 1.71 ± 0.12* 0.003 

Average number of placental 9.40 ± 0.52 11.7 ± 0.59* 0.015 

    blood vessels per cm2 

Average diameter of placental 7.15 ± 0.26 8.26 ± 0.32*  0.023 

    blood vessels, mm  

Data are mean values ± SEM, n=6 (control) and n=7 (0.4% arginine). The asterisks 

indicate that effects of treatment were significant (P < 0.05).  Embryonic survival was 

calculated as number of live fetuses per number of corpora lutea present on the ovaries at 

the time of necropsy on day 30 of gestation.  

 

 

Placental angiogenesis 

Angiogenesis in the placenta was determined by counting the number of blood vessels 

present and measuring their diameter. The average number of blood vessels per cm2 of 



 

 25 

placentae in the 0.4% arginine-supplemented group was 24.5% greater than that for 

placentae of gilts in the control group (P < 0.05) (Table 2.3). The average diameter of the 

blood vessels in placentae of the 0.4% arginine-supplemented group was 16% greater 

than that for placentae of gilts in the control group (P < 0.05) (Table 2.3). As shown in 

Figure 2.1, the placental blood vessels for 0.4% arginine-supplemented gilts (B) were 

more developed and more abundant than blood vessels in placentae from control gilts 

(A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 26 

 

 

 

Fig. 2.1 Placental blood vessels at day 30 of gestation in gilts fed diets supplemented 

with either: (A) 0% (control) or (B) 0.4% arginine. 
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Concentrations of amino acids in maternal uterine arterial plasma on day 30 of 

gestation  

Concentrations of glutamate, asparagine, serine, threonine, alanine, tyrosine, methionine 

and valine were lower (P < 0.05) in gilts supplemented with 0.4% arginine compared to 

the control group (Table 2.4). Concentration of arginine was higher (P < 0.05) in gilts 

supplemented with 0.4% arginine compared to the control gilts. All other amino acids 

measured did not differ between treatment groups.  

Concentrations of amino acids in amniotic fluid on day 30 of gestation 

Concentration of taurine was less (P < 0.05) and concentration of tryptophan was greater  

(P < 0.05) in amniotic fluid from gilts supplemented with 0.4% arginine compared to the 

control gilts (Table 2.5).  Concentrations of all other amino acids measured did not differ 

between treatment groups. 

Concentrations of amino acids in allantoic fluid on day 30 of gestation  

Concentration of arginine and tryptophan was greater (P < 0.05) and that for methionine 

was less  (P < 0.05) in allantoic fluid from gilts supplemented with 0.4% arginine 

compared to the control gilts (Table 2.6). Concentrations of all other amino acids did not 

differ between treatment groups.  

Concentrations of glucose, fructose and glycerol on day 30 of gestation 

Concentrations of glucose and fructose in AMF did not differ between treatment groups, 

but concentrations of glycerol were less  (P < 0.05) in AMF from gilts supplemented 

with 0.4% arginine compared to the control group (Table 2.7). Concentrations of 
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glucose, fructose and glycerol in ALF and maternal uterine arterial plasma did not differ 

between treatment groups. 

Total amounts of amino acids in amniotic fluid and allantoic fluid on day 30 of 

gestation 

Total amounts of aspartate, glutamate, glycine, threonine, β-alanine, tryptophan, 

methionine, phenylalanine and leucine were greater (P < 0.05) in the amniotic fluid from 

gilts supplemented with 0.4% arginine, compared to control gilts (Table 2.8). Total 

amounts of aspartate, asparagine, serine, glutamine, histidine, glycine, threonine, 

arginine, tyrosine, tryptophan, valine and lysine were greater (P < 0.05) in the allantoic 

fluid from gilts supplemented with 0.4% arginine, compared to control gilts (Table 2.9). 
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Table 2.4 Concentrations of amino acids (nmol/ml) in uterine arterial plasma on day 30 

of gestation for gilts fed a diet supplemented with 0 or 0.4% L-arginine (Arg) between 

days 14 and 30 of gestation. 

Amino Acid Control 0.4% Arg P-value 

Asp 15.9 ± 1.9 11.9 ± 1.5 0.116 

Glu 213 ± 6.9 165 ± 14 0.014 

Asn 44.1 ± 3.0 30.4 ± 2.2 0.003 

Ser 108 ± 5.6 79.8 ± 4.1 0.002 

Gln 376 ± 30 309 ± 21 0.09 

His 68.3 ± 2.9 57.9 ± 3.6 0.051 

Gly 750 ± 58 631 ± 26 0.071 

Thr 99.9 ± 5.6 67.4 ± 4.4 0.001 

Cit 71.5 ± 6.2 63.5 ± 4.1 0.291 

Arg 140 ± 5.3 170 ± 9.6 0.021 

β-Ala 7.21 ± 0.6 7.00 ± 0.7 0.816 

Tau 129 ± 22 128 ± 48 0.995 

Ala 852 ± 160 269 ± 21 0.002 

Tyr 71.1 ± 4.4 54.8 ± 3.4 0.013 

Trp 53.4 ± 5.0 60.3 ± 1.2 0.175 

Met 50.7 ± 1.3 45.8 ± 1.2 0.015 

Val 213 ± 8.0 176 ± 6.8 0.005 

Phe 57.0 ± 1.9 50.6 ± 2.2 0.056 

Ile 90.6 ± 3.1 77.9 ± 5.0 0.061 

Leu 191 ± 2.1 187 ± 4.6 0.406 

Orn 87.3 ± 8.8 88.3 ± 10 0.946 

Lys 140 ± 11 122 ± 8.9 0.237 

Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values < 0.05 were 

considered significant. 
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Table 2.5 Concentrations of amino acids (nmol/ml) in amniotic fluid on day 30 of 

gestation for gilts fed a diet supplemented with 0 or 0.4% L-arginine (Arg) between days 

14 and 30 of gestation. 

Amino Acid Control 0.4% Arg P-value 

Asp 20.6 ± 1.2 17.6 ± 2.2 0.272 

Glu 227 ± 19 201 ± 28 0.459 

Asn 59.5 ± 4.3 54.6 ± 5.0 0.478 

Ser 420 ± 14 358 ± 25 0.067 

Gln 831 ± 52 693 ± 72 0.163 

His 58.3 ± 3.4 48.8 ± 5.2 0.163 

Gly 298 ± 14 269 ± 13 0.156 

Thr 250 ± 22 224 ± 20 0.386 

Cit 10.4 ± 1.6 7.79 ± 1.0 0.178 

Arg 175 ± 5.7 158 ± 17 0.4 

β-Ala 7.79 ± 0.7 7.75 ± 0.1 0.965 

Tau 265 ± 29 176 ± 13 0.015 

Ala 254 ± 8.4 229 ± 14 0.161 

Tyr 52.7 ± 5.2 52.2 ± 4.6 0.944 

Trp 14.5 ± 1.2 36.0 ± 1.2 0.0001 

Met 72.5 ± 0.9 67.8 ± 3.2 0.206 

Val 194 ± 17 185 ± 17 0.718 

Phe 68.0 ± 4.6 70.7 ± 6.0 0.733 

Ile 56.1 ± 6.1 50.5 ± 5.4 0.499 

Leu 155 ± 5.2 162 ± 6.2 0.426 

Orn 102 ± 7.2 88.6 ± 11 0.301 

Lys 223 ± 15 188 ± 20 0.218 

Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values < 0.05 were 

considered significant. 
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Table 2.6 Concentrations (nmol/ml) of amino acids in allantoic fluid on day 30 of 

gestation for gilts fed a diet supplemented with 0 or 0.4% L-arginine (Arg) between days 

14 and 30 of gestation. 

Amino Acid Control 0.4% Arg P-value 

Asp 3.38 ± 0.5 4.92 ± 0.7 0.107 

Glu 52.3 ± 13 71.5 ± 12 0.304 

Asn 29.0 ± 5.0 40.3 ± 4.5 0.122 

Ser 230 ± 38 314 ± 23 0.085 

Gln 245 ± 42 333 ± 39 0.158 

His 42.1 ± 6.5 51.9 ± 5.4 0.271 

Gly 367 ± 47 486 ± 31 0.055 

Thr 85.3 ± 10 121 ± 14 0.066 

Cit 7.85 ± 1.5 9.25 ± 1.0 0.446 

Arg 152 ± 19 227 ± 16 0.014 

β-Ala 20.0 ± 2.1 21.0 ± 1.4 0.695 

Tau 399 ± 13 417 ± 34 0.656 

Ala 105 ± 22 119 ± 12 0.558 

Tyr 24.3 ± 4.0 26.3 ± 1.6 0.618 

Trp 9.55 ± 2.5 33.2 ± 1.9 0.0001 

Met 32.6 ± 2.1 21.9 ± 3.8 0.041 

Val 48.0 ± 7.6 55.5 ± 5.7 0.44 

Phe 17.8 ± 3.6 20.3 ± 2.3 0.55 

Ile 15.2 ± 2.6 13.9 ± 1.8 0.692 

Leu 119 ± 3.8 122 ± 4.4 0.562 

Orn 119 ± 19 110 ± 14 0.687 

Lys 276 ± 30 274 ± 50 0.976 

Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values< 0.05 were 

considered significant. 



 

 32 

Table 2.7 Concentrations of glucose, fructose and glycerol in allantoic fluid, amniotic 

fluid and maternal uterine arterial plasma on day 30 of gestation for gilts fed a diet 

supplemented with 0 or 0.4% L-arginine (Arg) from days 14 to 30 of gestation. 

Variable Control 0.4% Arg P-value 
Concentrations in ALF 

        Glucose, nmol/ml 1319 ± 845 1635 ± 373 0.389 
     Fructose, nmol/ml 2435 ± 245 2234 ± 117 0.477 
     Glycerol, nmol/ml 221 ± 35 155 ± 20 0.114 
Concentrations in AMF 

        Glucose, nmol/ml 1448 ± 83 1392 ± 82 0.642 
     Fructose, nmol/ml 2436 ± 307 1954 ± 70 0.157 
     Glycerol, nmol/ml 129 ± 10 82.1 ± 6.1 0.002 
Concentrations in plasma 

        Glucose, nmol/ml 5472 ± 106 5170 ± 81 0.273 
     Fructose, nmol/ml 500 ± 59 503 ± 51 0.973 
     Glycerol, nmol/ml 101 ± 11 124 ± 12 0.190 
Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values < 0.05 were 

considered significant.  
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Table 2.8 Total amounts (nmol/amniotic fluid) of amino acids in amniotic fluid on day 

30 of gestation for gilts fed a diet supplemented with 0 or 0.4% L-arginine (Arg) from 

days 14 to 30 of gestation. 

Amino Acid Control 0.4% Arg P-value 

Asp 23.9 ± 2.0 34.8 ± 4.2 0.049 

Glu 242 ± 11 310 ± 37 < 0.0001 

Asn 76.3 ± 4.8 93.0 ± 9.9 0.179 

Ser 516 ± 15 609 ± 47 0.107 

Gln 1050 ± 79 1070 ± 120 0.896 

His 67.9 ± 6.3 76.8 ± 11 0.517 

Gly 343 ± 22 429 ± 26 0.031 

Thr 250 ± 20 383 ± 50 0.041 

Cit 11.8 ± 0.8 13.5 ± 2.2 0.511 

Arg 211 ± 7.7 236 ± 23 0.357 

β-Ala 8.90 ± 0.7 11.9 ± 1.0 0.037 

Tau 333 ± 28 277 ± 19 0.118 

Ala 317 ± 14 367 ± 21 0.083 

Tyr 67.3 ± 5.9 89.0 ± 9.1 0.081 

Trp 16.7 ± 1.9 57.6 ± 3.2 < 0.0001 

Met 89.1 ± 2.3 149 ± 5.3 < 0.0001 

Val 254 ± 11 292 ± 31 0.303 

Phe 86.3 ± 4.8 121 ± 12 0.029 

Ile 73.9 ± 2.9 86.2 ± 11 0.337 

Leu 194 ± 7.9 274 ± 10 0.0001 

Orn 118 ± 12 133 ± 16 0.482 

Lys 274 ± 20 291 ± 33 0.681 

Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values< 0.05 were 

considered significant. 
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Table 2.9 Total amounts (µmol/allantoic fluid) of amino acids in allantoic fluid on day 

30 of gestation for gilts fed a diet supplemented with 0 or 0.4% L-arginine (Arg) from 

days 14 to 30 of gestation. 

Amino Acid Control 0.4% Arg P-value 

Asp 0.56 ± 0.04 1.16 ± 0.11 0.001 

Glu 9.80 ± 2.0 12.3 ± 1.1 0.278 

Asn 5.44 ± 0.72 9.54 ± 0.38 0.0003 

Ser 38.6 ± 4.5 69.9 ± 4.2 0.0004 

Gln 46.2 ± 6.4 74.0 ± 7.1 0.015 

His 7.94 ± 1.0 11.5 ± 1.0 0.029 

Gly 75.5 ± 3.6 108 ± 9.5 0.012 

Thr 16.2 ± 1.5 29.1 ± 1.6 0.0001 

Cit 1.66 ± 0.2 2.13 ± 0.3 0.235 

Arg 29.8 ± 2.7 56.7 ± 1.8 <0.0001 

β-Ala 3.86 ± 0.4 4.72 ± 0.4 0.159 

Tau 76.9 ± 5.4 95.8 ± 12 0.203 

Ala 22.2 ± 2.9 26.2 ± 1.5 0.227 

Tyr 4.57 ± 0.6 5.88 ± 0.3 0.066 

Trp 2.07 ± 0.4 7.46 ± 0.6 <0.0001 

Met 6.25 ± 0.4 5.09 ± 1.0 0.334 

Val 9.08 ± 1.1 12.3 ± 1.0 0.05 

Phe 3.33 ± 0.5 4.48 ± 0.4 0.096 

Ile 2.88 ± 0.4 3.07 ± 0.3 0.706 

Leu 23.0 ± 1.4 27.5 ± 1.7 0.071 

Orn 19.4 ± 1.7 25.1 ± 3.7 0.231 

Lys 47.4 ± 1.4 72.7 ± 6.4 0.004 

Values are means plus SEM; n=6 (Control) or n=7 (0.4% Arg). P-values< 0.05 were 

considered significant. 
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Expression of pro-angiogenic factors in the placenta 

qPCR was performed on placental tissue from gilts at day 30 of gestation supplemented 

with either 0% (control) or 0.4% arginine in their diet from day 14 to day 30 of gestation 

to analyze factors associated with angiogenesis (Table 2.10). Vascular endothelial 

growth factor A 120 (VEGFA120) and VEGFA164 are two isoforms of VEGF measured 

in this study.  Expression of VEGFA120 mRNA was greater (P < 0.05) in placentae 

from the 0.4% arginine-supplemented compared to control gilts. Expression of mRNAs 

for VEGF receptors 1 and 2 were also more abundant in placentae from the 0.4% 

arginine-supplemented gilts than those from gilts in the control group.  Expression of 

mRNA for GTP cyclohydrolase-1 (GTP-CH-1), an enzyme responsible for synthesis of 

BH4, was more highly expressed in placentae of gilts supplemented with 0.4% arginine, 

compared to placentae from control gilts, however, mRNA expression of endothelial 

nitric oxide synthase (eNOS) did not differ between treatment groups. Another 

angiogenic-related growth factor, placental growth factor (PlGF), was also more highly 

expressed in placentae of gilts supplemented with 0.4% arginine, compared to placentae 

from control gilts. mRNA expression of fibroblast growth factor-2 (FGF-2) did not differ 

between treatment groups. Protein abundance of VEGFR1, VEGFR2, p-VEGFR2, 

eNOS, p-eNOS, GTP-CH-1, and PlGF did not differ between treatment groups (Figure 

2.2). 
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Table 2.10 Relative expression of mRNAs for pro-angiogenic genes in the placentae of 

gilts fed a diet supplemented with 0.4% arginine versus 0% arginine.  

Gene Fold change P-value 
VEGFA120 1.17 0.031 
VEGFA164 0.99 0.948 
VEGFR1 4.45 0.008 
VEGFR2 3.73 0.0003 
eNOS 1.14 0.145 
PlGF 1.97 < 0.0001 
GTP-CH-1 1.26 0.001 
FGF-2 0.96 0.144 

Relative expression of genes for VEGFA120, VEGFA164, VEGF-R1, VEGF-R2, 

eNOS3, PIGF, GTP-CH-1, and FGF-2 in placentae of gilts supplemented with 0.4% 

arginine compared to gilts supplemented with 0% arginine (control) between days 14 

and 30 of gestation.  Differences in expression of VEGFA120, VEGF-R1, VEGF-R2, 

PIGF, and GTP-CH-1 were greater for gilts in the 0.4% arginine group compared to the 

control group. Expression of VEGFA164, eNOS and FGF-2 were not affected by 

treatment. The abundances of mRNAs was measured by qPCR using SYBR Green. Data 

are expressed as means  ± SEM, n=7 (control) and n=9 (0.4% arginine), by the ΔΔCt 

method. P-values < 0.05 were considered significant. 
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Fig. 2.2 Relative abundances of pro-angiogenic proteins in placentae of gilts 

supplemented with 0% (Control) or 0.4% arginine (Arg) between days 14 and 30 of 

gestation. The abundance of  β-actin protein was used to normalize values for the 

relative abundance of target proteins. (A) VEGFR1; (B) VEGFR2; (C) p-VEGFR2; (D) 

PlGF; (E) eNOS; (F) p-eNOS; (G) GTP-CH-1.  
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Expression of aquaporins for transport of water in the placenta 

Expression of mRNAs for aquaporins by placentae from gilts supplemented with either 

0% (control) or 0.4% arginine from day 14 to day 30 of gestation (Table 2.11).  

Expression of mRNAs for AQPs 1, 2, 3, 4, 5, 8, 9, and 11 were detected in placentae of 

gilts on Day 30 of gestation. Expression of mRNAs for AQP1, AQP3, AQP5, AQP8 and 

AQP9 was greater for placentae from gilts in the 0.4% arginine-supplemented group 

compared to placentae from gilts in the control group (P < 0.05). Expression of mRNA 

for AQP2 was lower for placentae from gilts in the 0.4% arginine-supplemented group 

compared to placentae from gilts in the control group. The abundance of AQP5 protein 

was more abundant (P < 0.05) in placentae from arginine-supplemented, compared with 

the control gilts (2.02 ± 0.23 vs 1.33 ±0.1 AU) (Figure 2.3). 
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Table 2.11 Relative fold-change in expression of mRNAs for aquaporins (AQPs) in 

placentae of gilts supplemented with 0.4% versus 0% arginine.  

Gene Fold Change P-value 
AQP1 2.8 0.002 
AQP2 0.83 0.0002 
AQP3 1.37 0.05 
AQP4 8.37 0.131 
AQP5 4.86 0.05 
AQP8 1.65 0.004 
AQP9 1.27 0.02 
AQP11 1.14 0.806 

Effects of treatment on fold-change in expression of genes for AQP 1, 2, 3, 4, 5, 8, 9, 

and 11in placentae of gilts supplemented with 0.4% or 0% arginine between days 14 and 

30 of gestation.  The fold-change in expression of mRNAs for AQP1, AQP2, AQP3, 

AQP5, AQP8 and AQP9 were significant, but fold-changes in expression of mRNAs for 

AQP4 and AQP11 were not affected by treatment.  The abundances of expression of 

mRNAs were measured by qPCR using SYBR Green. Data are expressed as means  ± 

SEM, n=7 (control) and n=9 (0.4% arginine), by the ΔΔCt method. P-values < 0.05 were 

considered significant.  
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Fig. 2.3 Relative abundances of AQP proteins in placentae of gilts supplemented with 

0% (Control) or 0.4% arginine (Arg) between days 14 and 30 of gestation. The 

abundance of  β-actin protein was used to normalize the relative abundances of target 

proteins. (A) AQP1; (B) AQP2; (C) AQP4; (D) AQP5; (E) AQP8. 

 

 

Localization of AQPs in placentae of gilts on days 15, 20, 25, 40 and 90 of gestation 

AQP1 protein is highly expressed in all endothelial cells of both the uterine and 

placental vasculatures from day 15 to day 90 of pregnancy (Figure 2.4). AQP1 

expression was also observed in RBCs and the smooth muscle cells of the myometrium. 

Interestingly, only the smooth muscle cells in the myometrium showed expression of 

AQP1, as there was no expression of AQP1 in the smooth muscle cells of the tunica 

media of blood vessels. The AQP8 protein is expressed in the tunica media of both 

uterine and placental blood vessels throughout pregnancy, and expression in smooth 

muscle cells is limited to the tunica media and is not observed in the myometrium 

(Figure 2.5). AQP8 is also expressed in the trophectoderm on day 15 and abundance 

decreases between days 15 and 25 of gestation. AQP8 protein is expressed within the 

chorionic cells of areolae and stromal cells in the allantois on day 40, with expression 

increasing through day 90 of gestation. 
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Fig. 2.4 Immunofluorescence microscopy for aquaporin 1 (AQP1; green) at the uterine-

placental interface of gilts on days 15 (D15), 20, 30, 40, and 90 of pregnancy. AQP1 

protein is localized to all endothelial cells within both uterine and placental tissues, to 

the myometrium and within red blood cells. Nuclei are stained with DAPI for histologic 

reference.  The D40 rabbit IgG (Rb IgG) panel serves as the negative control. Width of 

fields for microscopic images captured at 10X is 940 µm. Width of fields for 

microscopic images captured at 40X is 230 µm.  Legend: LE, luminal epithelium; GE, 

glandular epithelium; ST, stroma; BV, blood vessel; Tr, trophectoderm; CE, chorionic 

epithelium; RBC, red blood cells; SMC, smooth muscle cells. 
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Fig. 2.5 Immunofluorescence microscopy for aquaporin 8 (AQP8; red) at the uterine-

placental interface of gilts on days 15 (D15), 20, 30, 40, and 90 of pregnancy. AQP8 

protein is localized to the trophectoderm on days 15 and 20, the tunica media of blood 

vessels within both uterine and placental tissues, to placental areolae, and cells within 

the allantois on days 40 and 90 of gestation. Nuclei are stained with DAPI for 

histological reference.  The day 20 mouse IgG (Ms IgG) panel serves as the negative 

control. Width of fields for microscopic images captured at 10X is 940 µm. Width of 

fields for microscopic images captured at 40X is 230 µm.  Legend: LE, luminal 

epithelium; GE, glandular epithelium; ST, stroma; BV, blood vessel; Tr, trophectoderm; 

CE, chorionic epithelium; TM, tunica media. 
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Placental transport of 3H2O 

Tritiated water (3H2O) was readily transported from the “mucosal” to the “serosal” side 

of placentae in Ussing chambers. The rates of net water transfer by placentae in the 

arginine group were 34.6% greater than for placentae from gilts in the control group (P < 

0.05) (Table 2.12).  

 

 

Table 2.12 Rates of net water transport by placentae from gilts fed a diet supplemented 

with 0% (control) or 0.4% L-arginine from days 14 to 30 of gestation. 

Time (min) Control 0.4% Arginine P-value 

5  0.370 ± 0.025 0.498 ± 0.036* 0.018 

10 0.373 ± 0.021 0.502 ± 0.033* 0.009 

15 0.368 ± 0.027 0.496 ± 0.030* 0.010 

Data, µl/mg wet tissue/min, are mean values ± SEM, n=6 (control) and n=7 (0.4% 

arginine). Water transport was measured using 3H2O in Ussing chambers to assess 

movement of 3H2O from the mucosal to the serosal side of the placental tissue.  
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cGMP production by PTr2 cells 

The production of cGMP by PTr2 cells was very low in all treatment groups (Table 

2.13). However, cGMP production by PTr2 cells cultured in medium containing 0.5 mM 

arginine was less  (P < 0.05) than for PTr2 cells cultured in medium containing 0.0 mM, 

0.1 mM and 0.25 mM arginine.  

 

 

Table 2.13 Effects of arginine on cGMP concentration and NO synthesis in pTr2 cells. 

 Variable Arginine Concentration 

 
0.1 mM 0.25 mM 0.5 mM 

cGMP in tissue, 
fmol/mg protein 55.0 ± 3.9c 142 ± 10b 196 ± 12a 

NO synthesis, 
pmol/h/106 cells 15.8 ± 1.0c 72.2 ± 4.1b 94.6 ± 5.3a 

Values are means ± SEM, n = 8. a-b: Values with different superscript letters within a 

row are different (P < 0.05), as analyzed by one-way ANOVA and the Student-Newman-

Keuls multiple comparison test. 
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CHAPTER III 

CONCLUSIONS 

Because swine experience high embryonic mortality during early gestation, a 

management practice to ameliorate such loss would be highly beneficial to both the 

swine industry and researchers. A corn- and soybean meal-based diet containing 12% 

crude protein is considered optimal to provide essential amino acids while preventing 

hyperammonemia and associated embryonic deaths in gestating pigs (Wu et al., 2017). 

However, a gestation diet containing 12% crude protein does not meet dietary 

requirements for arginine (Wu et al. 2017). Thus, supplementing the maternal diet with 

this deficient amino acid is an effective way to enhance growth and development of the 

conceptus without detrimental effects of high amounts of crude protein in the diet (Wu et 

al. 2013). Most embryonic loss in pigs occurs before day 30 of gestation, making this 

time period an appropriate target for improvement of reproductive performance 

(Edwards et al. 2012). However, Li et al. discovered that 0.8% arginine supplementation 

from days 0 to 25 interfered with follicle development and this decreased number of CL, 

resulting in a decrease in litter size (2010). Excessive intake of L-arginine too early in 

gestation led to reduced concentrations of progesterone in maternal plasma (Li et al. 

2010). In a subsequent study, Li et al. (2014) reported that 0.4% and 0.8% arginine 

supplementation from days 14 to 25 of gestation increased litter size by two piglets and 

increased volumes of AMF and the concentration of arginine in the ALF and AMF, 

compared to the control gilts.  The dose of arginine supplementation is important to 

prevent an amino acid imbalance. Therefore, total dietary arginine should be less than 
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2% so that the ratio of arginine to lysine is less than three to prevent competition for 

transport into cells between these two amino acids (Wu et al. 2013).  We used 0.4% 

arginine in the present study, because this dose is sufficient for enhancing survival and 

development of conceptuses in gestating gilts (Li et al. 2014). 

 Arginine is a nutritionally essential amino acid especially for gestating mammals, 

as it is the precursor for NO, ornithine, polyamines, creatine and agmatine (Wu et al. 

2013).  NO is a potent vasodilator and stimulator of angiogenesis that increases in the 

placenta during pregnancy to increase utero-placental blood flow and placental exchange 

of nutrients and gases (Chen and Zheng, 2014). Specifically, NO enhances blood flow 

through dilation of the blood vessels and an increase in placental angiogenesis (Wu et al. 

2013, 2017). The placental vasculature is responsible for nutrient and gas exchange 

between mother and fetus, as well as removal of fetal metabolic waste (Chen and Zheng 

2014). Our results suggest that arginine can increase placental angiogenesis by 

increasing expression of pro-angiogenic factors, such as VEGFA120, VEGFR1, 

VEGFR2, eNOS, PlGF, GTP-CH-1 and FGF2. VEGFA is the conventional form of the 

VEGF family that acts on endothelial cells to allow their migration and proliferation 

along with increasing endothelial production of NO  (Chen and Zheng 2014). 

VEGFA120 and VEGFA164 are splice variants of VEGFA that are expressed in the 

porcine placenta to increase vascular permeability (Vonnahme et al. 2001). VEGFA 

binds to VEGF receptors 1 and 2 (Roskoski Jr. 2008). PlGF is also part of the VEGF 

family that acts in synergy with VEGF to promote angiogenesis (Sanchis et al. 2015).  

eNOS converts arginine to NO in endothelial cells (Wu et al. 2013). GTP-CH-1 is 
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involved in the production of BH4, which, as an essential cofactor for eNOS, is 

necessary for conversion of arginine to NO (Jobgen et al. 2006). Arginine can increase 

the bioavailability and synthesis of BH4, thereby increasing production of NO (Wu et al. 

2013). In addition to NO, arginine supplementation increased the activity of ODC1 and 

the synthesis of polyamines in the placenta, which also stimulates angiogenesis (Wu et 

al. 2004). Augmenting the expression of these pro-angiogenic factors increases 

angiogenic activity in the placenta, resulting in a more highly developed placental 

vasculature. Therefore, more water and nutrients can be transported by the placenta to 

increase growth, development and survival of the conceptus.   

 The twelve AQPs (AQP 1-12) expressed in the female reproductive tract can be 

classified into three different subgroups. AQPs 1, 2, 4, 5, 6 and 8 are classical 

aquaporins that are highly selective for transport of water. AQPs 3, 7, 9 and 10 are 

aquaglyceroporins that transport urea, glycerol and other small solutes in addition to 

water. AQPs 11 and 12 are superaquaporins for which a function has not been 

established. Zhu et al. (2015) discovered that AQPs 1, 3, 4, 5, 6, 7, 8, 9 and 11 are 

expressed in the porcine placentae on day 25 of gestation.  In the present study, AQPs 1, 

2, 3, 4, 5, 8, 9, and 11 were expressed in the placentae of gilts on day 30 of gestation. To 

our knowledge, this is the first report of AQP 2 being expressed in the porcine placenta 

on day 30 of gestation.  These results suggest that arginine supplementation can increase 

placental water transport by increasing expression of AQPs 1, 3, 4, and 5. Of note, 

dietary supplementation with arginine enhanced both the abundance of AQP1 in the 

placenta and placental water transport. AQPs are essential for maintaining the balance 
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between production of amniotic fluid and its reabsorption for optimal development of 

the embryo/fetus (Zhu et al. 2015). These findings were consistent with our observation 

that volumes of both AMF and ALF increased in response to dietary supplementation 

with 0.4% L-arginine to gestating gilts (Li et al. 2014). 

 In 1986, while examining human erythrocytes, Benga et al. localized the first 

water channel protein (WCP). It was not until 1992, however, that its water transport 

property was identified by the Agre group, leading to the name aquaporin 1 (AQP1) 

(Benga 2012). There are many hypotheses about the function of AQP1 in the membranes 

of red blood cells (RBCs), one of which states that AQP1 is responsible for undulations 

or “flickering” of the RBC membrane, which helps in moving the RBCs through 

capillaries. The second states that the high permeability of RBC membranes allows for 

concomitant displacement of water molecules when rapid exchange of ions and solutes 

occurs (Benga 2012). Mobasheri and Marples (2004) later studied the expression of 

AQP1 using tissue microarray technology and found that AQP1 is expressed in 

endothelial cells throughout the human body. This expression is expected because AQP1 

is responsible for the high water permeability of the endothelium, which helps with 

maintaining water and ion homeostasis for numerous functions including cell 

differentiation, proliferation, secretion, and apoptosis (Mobasheri and Marples 2004). 

These are all crucial functions for uterine stromal cells and cells located in the 

conceptus, supporting the need for AQP1 to be expressed in the uterine vasculature and 

within the developing conceptus. Lastly, AQP1 expression in the myometrium of the 

uterus has been shown by Lindsay and Murphy in rats (2004). This expression is 
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believed to play a role in decreasing the size of the uterine lumen to assist in positioning 

of the blastocyst and implantation. In rodents, the uterine lumen closes down to form an 

implantation chamber and previous reports have speculated that AQP1 in the 

myometrium could allow water into the cells, leading to swelling of the muscle and 

closing of the lumen (Gannon et al. 2000). It has also been suggested that increased 

expression of AQP1 in the mesometrial muscle rather than the antimesometrial 

myometrium could initiate contraction or cause swelling which could contribute to the 

antimesometrial location of the implanting blastocyst (Lindsay and Murphy 2004). 

Along with the data in the rat, Skowronska et al. showed that AQP1 mRNA and protein 

were expressed in the myometrium of pigs in explant cultures by real-time PCR and 

Western Blot analyses, respectively (2015). This localization in the smooth muscle cells 

of the myometrium is novel and we believe the presence of AQP1 in these cells assists in 

readying the uterus for pregnancy.  

 Aquaporin 8 (AQP8), like AQP1, is a water transporter, but AQP8 also transports 

hydrogen peroxide through multiple membranes, including the plasma membranes of 

cells (Bertolotti et al. 2013). In low concentrations, hydrogen peroxide is important for 

normal growth factor signaling, suggesting multiple other potential functions for AQP8 

in trophectoderm cells of the elongating and implanting conceptus, the tunica media of 

blood vessels, the chorionic epithelium of areolae, and stromal cells of the allantois (Bae 

et al. 1997). When ovariectomized rats were administered both estrogen and corn oil 

(control), AQP8 protein was expressed in the stromal cells of the endometrium and in 

the myometrium (Jablonski et al. 2003). Based on quantitative real-time PCR data, sheep 
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conceptuses express AQP8 mRNA beginning on day 27 and expression is maintained 

throughout the remainder of gestation (Liu et al., 2004). Klein et al. (2013) also reported 

expression of AQP8 mRNA in uteri of mares on day 14 of pregnancy. However, the 

present results are the first to reveal AQP8 localization in uteri and conceptuses of pigs.  

Jablonski et al. (2003) proposed that AQP8 in the rat uterus is responsible for shuttling 

water between the myometrium and stroma of the endometrium, and Liu et al. (2004) 

proposed that AQP8 in the sheep conceptus was partially responsible for the high water 

permeability of the placenta. The present results suggest that AQP8 in the pig uterus, 

specifically the smooth muscle cells of the tunica media in blood vessels, the 

trophectoderm cells of the early conceptus, placental areolae, and allantois, may play a 

similar role to AQP8 in the rat uterus and sheep conceptus in the transport of water from 

the maternal circulation to the chorioallantois during pregnancy. This is supported by our 

AQP1 results indicating that AQP1 protein is expressed in erythrocytes and endothelial 

cells of the uterine and placental vasculatures.  Therefore, using AQP1 and AQP8 alone, 

cells can potentially transport water from the uterine vasculature, through the tunica 

intima and tunica media, across the chorion and either through the tunica media and 

tunica intima of placental blood vessels or into the allantois for utilization within the 

stromal compartment of the placenta.  Indeed, the reverse is also possible, and may 

explain the changing volumes of allantoic fluid and hydration of placental connective 

tissues during pregnancy in pigs (Knight et al. 1977). To date, a water transporter has not 

been localized to the endometrial LE, but it is expected that uterine LE express one or 

more water transporters. The localization of AQP8 protein in epithelial cells of the 
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amnion and allantois of canines has been suggested to mediate fluid transfer across fetal 

membranes (Aralla et al. 2012). Knight et al. (1977) showed that there are dynamic 

changes in allantoic fluid volume in pigs throughout pregnancy and that those changes 

are responsible for expanding the chorioallantoic membranes and allowing them to 

establish intimate contact with a maximum amount of endometrial surface area. This 

agrees with our immunofluorescence results showing AQP8 protein in the allantois of 

pigs later in pregnancy and suggests that it is involved in water transport within the 

placenta. Lastly, localization of AQP8 protein in the placental areolae associated with 

the opening of the uterine glands in the pig endometrium is novel and important because 

there is significant transport of water and other nutrients through the areolae throughout 

pregnancy (Bazer et al. 2012). We suggest that AQP8 is at least partly responsible for 

the transport of water through the chorionic epithelium of the areolae. 

 AQP expression is associated with the exchange of fluids between mother and 

conceptus and homeostasis of amniotic fluid (Zhu et al. 2015). Increased angiogenic 

activity in response to 0.4% L-arginine supplementation increases utero-placental blood 

flow to supply water and nutrients to the utero-placental interface where AQPs are 

present to increase water and solute transport resulting in increases in volumes of 

amniotic and allantoic fluid. Total volumes of AMF and ALF are positively correlated 

with placental development that is a prerequisite for conceptus survival and growth 

during later stages of gestation (Bazer and Johnson, 2014; Zhu et al. 2015).  

 Concentrations of most amino acids in the ALF and AMF did not differ between 

the control and the 0.4% arginine supplemented gilts, which was similarly reported in 
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previous studies (Li et al. 2010; 2014). However, in the plasma obtained from the uterine 

artery, glutamate, asparagine, serine, threonine, alanine, methionine and valine were 

lower in the 0.4% arginine supplemented compared with the control gilts. It is possible 

that rates of synthesis of these amino acids were greater or rates of degradation were 

lower in the whole body of control gilts that received isonitrogenous amounts of alanine 

compared to the gilts supplemented with 0.4% arginine. Embryonic survival was still 

greater in gilts supplemented with 0.4% arginine than control gilts even though 

circulating levels of these amino acids were lower in the 0.4% arginine supplemented 

gilts compared to control gilts. Arginine supplementation increased the concentration of 

arginine in the maternal uterine arterial plasma and the allantoic fluid. Glucose and 

fructose concentrations in the ALF, AMF and plasma did not differ between treatment 

groups, but glycerol concentrations were greater in the plasma of the 0.4% arginine 

supplemented gilts. This finding may indicate that more glycerol was being converted to 

glucose for utilization by the arginine-supplemented gilts. 

 On the other hand, total amounts of many amino acids were greater in the 

amniotic and allantoic fluid from gilts supplemented with 0.4% arginine compared to 

control gilts. Specifically, in the amniotic fluid, aspartate, glutamate, glycine, threonine, 

β-alanine, tryptophan, methionine, phenylalanine and leucine were greater (P < 0.05) in 

the arginine-supplemented gilts compared to the control. Also, in the allantoic fluid, 

aspartate, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, 

tryptophan, valine and lysine were greater in the arginine-supplemented group compared 

to the controls. Higher amounts of these amino acids in the fetal fluids may result from 
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increases in their transport across the placenta and possibly contribute to increased 

embryonic/fetal survival and growth. 

 In conclusion, results of the present study revealed that 0.4% L-arginine 

supplementation to gilts between days 14 and 30 of gestation increased embryonic 

survival by 28%, and increased amniotic and allantoic fluid volumes by 48.1% and 

25.3%, respectively. Also, 0.4% L-arginine supplementation increased synthesis of NO 

and polyamines, expression of pro-angiogenic factors VEGF120, VEGFR1, VEGFR2, 

eNOS, PlGF, FGF-2 and GTP-CH-1 and AQP 1, 3, 4 and 5, as well as numbers of blood 

vessels and water transport by the placenta. Those effects of dietary arginine elucidated 

the multitude of mechanisms whereby dietary arginine supplementation significantly 

enhances embryonic survival during the peri-implantation period of pregnancy, as well 

as subsequent growth and development of the conceptus during the later stages of 

gestation (Figure 2.6).  The findings have important nutritional implications for 

increasing reproductive performance in swine and other mammalian species by 

increasing birth weights and survivability of newborn during the neonatal period of life. 
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Figure 2.6 Proposed mechanisms whereby dietary arginine supplementation improves 

survival and growth of conceptuses in gestating swine. 
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