PRESSURE AND RATE-TRANSIENT PERFORMANCE BEHAVIORS OF A
HORIZONTAL WELL INTERCEPTING MULTIPLE HYDRAULIC FRACTURES

WITHIN A SHALE RESERVOIR

A Dissertation
by

ALEX RODRIGO VALDES-PEREZ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Thomas A. Blasingame

Committee Members, Maria A. Barrufet
Jean-Luc Guermond
Peter Valko

Head of Department, Jeff Spath

August 2018

Major Subject: Petroleum Engineering

Copyright 2018 Alex Rodrigo Valdes-Perez



ABSTRACT

The primary goal of this work is to develop semi-analytical models to predict the pressure and rate
performance behaviors of unconventional reservoirs — specifically, shale reservoirs. In these
types of reservoirs, there are multi-scale heterogeneities that can hinder the modeling and the
diagnostic analyses. Additionally, the use of large stimulation treatments can further complicate
the modeling of these heterogeneous reservoir systems. Our approach is to extend the existing
models for a multi-fractured horizontal well (MFHW) in a homogenous reservoir to consider the

fractal reservoir scenario.

This work presents the detailed derivation of the model of a horizontal well intercepting a single
finite-conductivity fracture within a fractal reservoir. The solution of this model is semi-analytical.
This is developed by discretizing the hydraulic fracture, which defines a system of equations, the
solution of which provides the pressure at any position inside the fracture. The shape of the
imposed hydraulic fracture can be either circular or rectangular. By modifying the solution in the
Laplace domain of the diffusivity equation for the reservoir, we have investigated different
reservoir conditions, such as single porosity fractal reservoirs with typical or anomalous diffusions

and double porosity reservoirs with typical diffusion.

We have extended the semi-analytical solution for a horizontal well intercepting a single finite-
conductivity fracture to the MFHW case. For this purpose, we have used the principle of
superposition in space. We show that the pressure transient response of a MFHW within a fractal

reservoir can exhibit a maximum of four (4) distinct periods of flow — (1) fracture (dominated)

il



flow, (2) early fracture-reservoir interaction, (3) late fracture-reservoir interaction, and (4)

reservoir-dominated flow.

To provide an alternative explanation to the anomalous diffusion phenomenon in petroleum
reservoirs, we have also developed a double porosity model considering matrix blocks with fractal
geometry and a fractal fracture network. We assumed transient interporosity transfer conditions
and we modeled it using the classical convolution scheme given in the literature. Under particular
conditions, the resulting model acquires a similar mathematical shape to the so-called anomalous

diffusion equation.
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CHAPTER 1

INTRODUCTION

In this chapter, we present the general overview of this dissertation. We divided this chapter into
three sections. In the first section, we state the motivation of this research problem and define the
strategy that we followed to find a solution. Finally, we define the basic, and recurrent, concepts

used in this work in the third section.

1.1. Research Problem

To produce the hydrocarbons contained in highly heterogeneous formations with low/ultralow
permeability, such as shale oil and shale gas reservoirs, two main strategies have been
implemented: (1) drill horizontal wells to maximize the flowing area and to minimize the number
of wells, and (2) stimulate the horizontal well by large hydraulic fracturing treatments that creates

multiple hydraulic fractures along the wellbore.

The system created by a horizontal well intercepting multiple hydraulic fractures within a shale
gas/oil reservoir becomes a challenging system to model for flow diagnosis purposes given three
factors: (1) the heterogeneous and low/ultralow permeability nature of the reservoir, (2) the
geometry of the well and fractures, and (3) the properties of the petroleum fluids. In this work, we
will address the first two factors to develop diffusivity models and semi-analytical solutions to be

used for flow diagnosis.

Some authors have suggested the use of fractal models as the best practice to depict the transient

performance behavior of highly heterogeneous reservoirs (e.g., Naturally Fractured Reservoir and



shale reservoirs). Therefore, we modeled the flow of petroleum fluids within a shale reservoir as
a fractal object (Chang et al., 1990). In Chapter II, we introduce the classic models related to this

topic.

To model the flow towards the horizontal well intercepting multiple hydraulic fractures, we will
use the approach proposed by Larsen et al. (1994), which applies the principle of superposition in
space to extend the models developed for a horizontal well intercepting a single finite-conductivity

hydraulic fracture to the multifractured horizontal well case (MFHW).

In Chapter III, we present the pressure and rate transient analyses for a horizontal well intercepting
a single finite-conductivity fracture. We investigated two conditions for the geometry of the
hydraulic fractures and three conditions of the reservoir. For the geometry of the hydraulic
fractures, we assumed them to be either (1) circular transverse or (2) rectangular longitudinal. For
the reservoir, we consider the three cases: (1) single porosity fractal reservoir with typical
diffusion, (2) double porosity reservoir with typical diffusion, and (3) single porosity fractal

reservoir with anomalous diffusion.

In Chapter IV, we apply the principle of superposition in space to extend the finite-conductivity
fracture models presented in Chapter III to horizontal wells intercepting multiple hydraulic
fractures. We restricted our pressure and rate transient analyses to single porosity fractal reservoirs

with typical diffusion.

As an attempt to provide a physical explanation to the anomalous diffusion phenomenon in shale

reservoirs, we introduce the double fractal model in Chapter V. This model considers a double



porosity reservoir with transient interporosity transfer, where both the fracture network and the

matrix blocks are fractal objects.

We summarize our conclusion and recommendations in Chapter VI. Additionally, we provide an
outline for the future work related to the modeling of wells intercepting hydraulic fractures in

fractal reservoirs.

1.2. Research Objectives

The main objectives of this dissertation are:

e To develop semi-analytical reservoir models to predict the pressure and rate-transient
performance behaviors of a horizontal well intercepting multiple hydraulic fractures within
an unconventional reservoir— specifically, shale reservoirs.

e To investigate the combined effect of the parameters of an unconventional reservoir (i.e.,
fractal dimension, conductivity index and/or anomalous diffusivity exponent) and the
characteristics of the hydraulic fracture (fracture geometry and conductivity) on the flow
periods of a horizontal well intercepting multiple hydraulic fractures within a fractal
reservoir.

e To derive diagnostic interpretation relations to estimate the parameters of the hydraulic

fractures for the evaluation of hydraulic fracturing treatments.

1.3. Basic Concepts

In this section, we define the fundamental concepts used in this work. It is not our objective to

discuss these concepts in depth (which can be very abstract), but to provide a review and references



that are helpful to understand the fundamental theory behind this dissertation and some of the

methods used in it.

Unconventional reservoirs

These are hydrocarbon reservoirs that must be stimulated to be able to produce at commercially
viable flowrates. This classification is comprehensive and includes resources such as shale oil/gas
reservoirs, heavy oil reservoirs, tight sands reservoirs, etc. In this work, we delimitated our

research to shale reservoirs.

Shale reservoirs are highly heterogeneous media that need massive hydraulic fracturing treatments,
due to their low porosity and permeability, to produce at economic flowrates. To model the
transient performance behavior in these types of reservoirs, some authors have suggested that the

use of fractal models is the most appropriate practice given their highly heterogeneous nature.

Fractals

Mandelbrot (1977) defined a fractal as a family of shapes with irregular and fragmented patterns.
These irregularities are statistical and identical at all scales. The number of shapes (n) approaches

to infinity as their size (/) approaches to zero. This relation is defined as:

where D is the fractal dimension.

Fractals in Petroleum Reservoir Engineering

The application of the fractal theory in petroleum reservoir engineering became popular in the

1990s, but the mathematical models with similar definition to Eq. 1.1 have been used for over fifty
4



years. Sahimi et al. (1990) presented a review of the applications of the fractal geometry theory

in reservoir engineering.

Based on the definition of fractals proposed by Mandelbrot, we can extend such a concept to
petroleum reservoirs as follows: a fractal reservoir can be defined as the family of permeable sites
(e.g. lithofacies with hydrocarbon content) with irregular shapes and fragmented patterns which
are identical at all scales (sizes). Therefore, the number of the permeable sites is related to a

characteristic length (e.g. pore radius), R, using a power-law function:

NCRY = R Tl et (1.2)

where o is the density of the permeable sites and Dy is the fractal dimension of the reservoir. A
log-log plot of Eq. 1.2 will yield a straight line with a D1 slope. Based on the expression given
by Eq. 1.2, the porosity and the permeability for a fractal reservoir can also be modeled as power-
law functions (see Appendix B for details). The porosity of a fractal reservoir has been defined

as space-dependent by:

BR) = By R T T et (1.3)

where ¢ is a reference porosity and d is the Euclidean dimension of the reservoir. Given that there
is relation between the permeability and the porosity of a reservoir, the fundamental Darcy's law

should also be modified to a power-law expression. This is given by:

N (1.4)

R=0" 0 R’



where Vs is the volume of the permeable sites and ko is a reference permeability. The parameter S

in Eq., 1.4 deserves special attention. It is defined as:

where @1is the conductivity index, which depicts the connectivity between the permeable sites. It
can acquire values equal or greater than zero. A value of zero represents that the permeable sites

are perfectly connected, whereas a high value represents poorly connected permeable sites.

Doe (1991) defined the spatial dimension of the reservoir as a manner to describe irregular patterns
of flow (e.g., sublinear or hyperspherical flow). Although the author pointed out that this
parameter is not necessarily related to the possible fractal nature of the reservoir, we believe that
the spatial dimension can be related to £, given that these parameters have similar influence in the
pressure and pressure derivative functions of their corresponding models (fractal and fractional

models).

Anomalous Diffusion

This concept is related to the random walk theory. It is defined as a process where the mean-
square displacement of a random walker is given by a power law function. This is mathematically

defined as (Metzler et al., 1994):

where d,, is the anomalous diffusion exponent.



Fracture Conductivity

This parameter is used for the evaluation of hydraulic fracturing treatments. It is defined by the
product of the permeability, k7, and the width, w, of the hydraulic fracture. In this sense, the fracture
conductivity is a concept analogous to the flow capacity of a homogenous reservoir. The

dimensionless form of the fracture conductivity can be defined by:

where /. is a reference length and £ is the permeability of the reservoir. In general, a hydraulic
fracture with a large F.p-value (e.g., 300 for a fracture in a cylindrical reservoir) is classified as an

infinite-conductivity fracture, which is the desired outcome.

Laplace Transform

The Laplace transform is the standard method in petroleum engineering to obtain the analytical
solutions of reservoir models. For a function f{7) defined in the real domain, the Laplace transform

1s defined as:

9]

flu)= (I) Lt (1.8)

Duhamel's Principle

Using this principle, the dimensionless wellbore pressure, pwpc{fp), can be related with the

dimensionless flowrate, gwp(?p), in the Laplace domain as follows:



Gwp (1) 1 (1.9)
10/ A RPN .
“2I3WD,cr (u)

This principle permits to obtain the constant-pressure solution of a reservoir model by using the

constant-rate solution and vice-versa.

Wellbore Storage

This effect depicts the capability of a wellbore to store or unload a volume of fluids, when it is

subjected to a change in the pressure. It can be included using the relation in the Laplace domain:

Dyp(U)+s
1+ Cp[pyp () +51°

[_)WD(uaS>CD) =

where Cp is the dimensionless wellbore storage coefficient, s is the skin (additional drop of

pressure) around the wellbore and p..p(u) is the constant-rate solution of a reservoir model.

Numerical Inversion of the Laplace Transform

Most of the reservoir models are solved analytically in the Laplace domain due to the fact that it
allows the use of Duhamel's principle (Eq. 1.6) and/or the inclusion of the wellbore storage effects
(Eq. 1.7). However, the resulting equations become problematic when inverting from the Laplace
domain to the real domain. Therefore, a numerical method to express the solution in the real
domain should be applied. The standard methods in petroleum industry are the ones based on

Gaver's algorithm (Gaver, 1965).

Based on the probability theory, Gaver (1965) developed an algorithm that estimate the inverse

Laplace transform. Later, Stehfest (1970) modified Gaver's work by utilizing the Salzer



summation as an accelerator of convergence. This resulted in the algorithm for numerical

inversion of the Laplace transform defined by:

£ = 2] ]zvvl-f{h‘g,}, ................................................................................................. (1.11)

roi=l
where N is an even number of terms to be used and the coefficients V; are calculated using the

expression:

V. /2N K22k
-

gy TNV R KR iR (1.12)

The use of a large number of terms, &V, can cause numerical instability in the algorithm due to the
limitations of the programming software. In Fig. 1.1, we present an example of this numerical

instability by comparing the exponential integral function in the real domain:

2
1
f()= _EEi [_Z_t] (where @ is a POSItIVE CONSLANL),..........cveveeveererereereeeeeeeeereeeereeeeeee e (1.13)

and the numerical inversion of its Laplace transform is given by:

1/2
f(s)=@, ............................................................................................................. (1.14)

for different values of N.

In the example presented in Fig. 1.1, we can see that the Stehfest algorithm can show divergence

when using a high number of approximation terms, N.



In general, the numerical instability, or divergence, of the Stehfest algorithm is the result of
truncation errors. This can be exacerbated by the type of the function to be inverted, e.g., equations
that involve very high or very low arguments of the exponential function, power-law functions,

special functions, etc.

As an alternative to the Stehfest algorithm, Valko ef al. (2004) investigated non-linear methods to
accelerate the convergence of the Gaver algorithm. They implemented the Wynn-Rho algorithm
as a convergence accelerator in Mathematica and concluded that the use of this approach provides
accurate results in the numerical inversion of a function in the Laplace domain by reducing the

propagation of truncation errors.

Numerical Stability of the Stehfest Algorithm
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Figure 1.1 — Example of the Numerical Stability of the Stehfest algorithm.
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CHAPTER 11

LITERATURE REVIEW

The analysis of pressure-transient data as a method to evaluate fracturing jobs has been topic of
research for over forty years. During the 1970s decade, the attention was focused on the problem
of vertical wells intercepting vertical fractures and the techniques to analyze the pressure-transient
data from these type of wells were presented. In the 1990s decade, these techniques were extended
to horizontal wells intercepting multiple vertical fractures within homogeneous reservoirs. Given
the development and increase in production of shale oil and shale gas reservoirs in the last decade,
some authors have extended the methods and techniques used in conventional reservoirs to

unconventional reservoirs.

In this chapter, we have summarized the classic works related to the analysis of pressure-transient
data of wells intercepting hydraulic fractures and the models used to depict the performance
behavior of unconventional reservoirs — specifically, fractal reservoirs and reservoirs with

anomalous diffusion.

2.1. Vertical Wells Intercepting Hydraulic Fractures

Gringarten et al. (1974) applied Green and Source Functions to develop solutions for the problem
of a well intercepting a vertical fracture within a homogeneous reservoir. The authors considered
two cases: (1) infinite conductivity and (2) uniform flux fractures. The solution for the first case
was obtained semi-analytically by discretizing the fracture into segments and establishing a system

of equations whose solution provides the pressure-transient behavior anywhere in the fracture. For

11



the second case, the solution was derived by superimposing the line-source solution along the

fracture length.

The uniform flux solution provides an exact solution at early times and it implicitly assumes that
pressure will vary along the fracture. Gringarten et al. (1974) found that the infinite conductivity
pressure-transient behavior at the wellbore can be reproduced by evaluating the uniform flux
solution at a dimensionless position in the fracture, xp, equal to 0.732. Houze et al (1988) extended
these ideas to double porosity reservoirs considering both, transient and pseudosteady-state

interporosity transfers.

Cinco-Ley et al. (1978) presented a general semi-analytical solution for the pressure-transient
response of a vertical well intersecting a vertical finite conductivity hydraulic fracture within a
homogenous reservoir. This model can reproduce several flow periods observed in wells
intercepting a hydraulic fracture by varying the dimensionless fracture conductivity. The authors
concluded that the assumption of infinite conductivity applies only when the dimensionless
fracture conductivity is equal to or greater than 300. This contribution improved the diagnosis of

fracturing jobs, allowing the identification long and/or low permeability fractures.

Cinco-Ley et al. (1981a) identified the flow periods generated by the finite conductivity fracture
model and introduced the concepts of fracture linear flow and bilinear flow, which were used as a
diagnostic technique of pressure-transient data. The flow periods that can be observed in a vertical

hydraulic fracture are:

12



1. Fracture Linear flow: At "very early transient" times the pressure derivative signature shows

a half-slope straight line that corresponds to a linear flow occurring in the hydraulic fracture.

This period is theoretical and is not observed in practice.

2. Bilinear flow: For low values of the dimensionless conductivity of the fracture, at "early
transient" times the pressure derivative signature shows a quarter-slope straight line that
corresponds to two linear flows acting simultaneously: a linear flow in the hydraulic fracture

and a linear flow from the formation to the fracture.

3. Pseudo-Linear flow: For intermediate and high values of the dimensionless conductivity of

the fracture, at "intermediate transient" times the linear flow from the formation to the

fracture dominates and the pressure derivative signature shows a half-slope straight line.

4. Pseudo-Radial flow: At "late transient" times the pressure derivative signature exhibits a

zero-slope that corresponds to a flow dominated by the reservoir.

Cinco-Ley et al. (1981b) included the effects of damage for a vertical well intercepting a hydraulic
fracture. The authors considered two types of damage conditions: (1) damaged zone around
fracture caused by loss of fluid in the formation (fracture skin), and (2) damaged zone around
wellbore caused by crushing, embedding or loss of proppant within the fracture (chocked fracture

skin).

Cinco-Ley et al. (1981b) pointed out the differences between the pressure-transient response at
early times of a finite conductivity fracture and a hydraulic fracture affected by any of the two
types of damage mentioned before. They found that for small values of the fracture skin, the

pressure-transient response approximates to the infinite conductivity fracture case, whereas for

13



large values the response converges to the uniform flux case. Additionally, Wong et al. (1986)
and Valdes-Perez et al. (2011) studied the impact of the fracture skin in the pressure-transient and
pressure derivative behaviors of the bilinear model and presented techniques to analyze pressure-

transient data.

Lee et al. (1986) developed a trilinear flow model to provide an analytical approach to the finite
conductivity fracture model. In their paper, Lee et al. (1986) found the solutions for both constant-
pressure and constant-rate cases, including the effects of fracture skin, wellbore storage and
fracture storage. This approximate model can match the "early time" period of the finite

conductivity fracture model for two logarithmic cycles.

Cinco-Ley et al. (1988) extended the finite conductivity fracture model to double porosity
reservoirs. In their development, the authors considered both transient and pseudosteady-state
interporosity transfers. Based on a fully analytical model for "early times," Cinco-Ley et al. (1988)
found that under certain circumstances this type of system can yield a one-eight-slope (trilinear
flow) in the log-log pressure-transient and pressure derivative plot and not one-quarter (bilinear
flow) as in the homogeneous case. Similarly for "intermediate times," a quarter-slope (bilinear

flow) could be shown instead a one-half-slope (pseudo-linear flow).

To provide an expression simpler to compute than the semi-analytical solution to the finite
conductivity fracture model, Blasingame et al. (1993) combined the trilinear solution developed
by Lee et al. (1986) and the alternative uniform flux solution obtained by Ozkan et al. (1991) to
develop an equivalent solution in the Laplace domain valid for values of the dimensionless fracture

conductivity greater than 0.5.
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Cossio et al. (2013) presented an application of the fractal theory to provide an improved semi-
analytical solution for the flow of a single fluid within a single vertical fracture that fully penetrates
a homogeneous infinite-acting reservoir. The authors modified the trilinear flow model (Lee et
al., 1986) to introduce fractal parameters in each one of the three regions. The essence of this
work is the modification of the diffusivity equation for linear flow to include both permeability
and porosity as distance-dependent properties using power-law models. This diffusivity equation
was analytically solved for a closed system and validated with a 1D finite-volume black-oil
reservoir simulator. The authors verified their fractal-based trilinear solution with the solution

developed by Cinco-Ley et al. (1988).

2.2. Horizontal Wells Intercepting Hydraulic Fractures

Larsen ef al. (1991) developed a semi-analytical model of a horizontal well intersecting a finite
conductivity vertical fracture within a 3D homogenous reservoir (see the detailed derivation of
these models in Appendix A). The authors considered two geometries for the fracture: (1) circular
fracture perpendicular to the axis of the wellbore (Fig. 2.1) and (2) rectangular fracture parallel to

the axis of the wellbore (Fig. 2.2).

Fig. 2.3 and Fig 2.4 show the pressure-transient behavior of the radial and rectangular fractures,
respectively. Based on these models, the authors investigated the flow periods that can exist in the
pressure-transient response of horizontal wells with multiple vertical fractures (Larsen et al. 1994).
They found that at early flow periods (before pressure interference between fractures occur), the
pressure-transient behavior of a multi-fractured horizontal well can be appropriately analyzed

using the single fracture models.
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Figure 2.1 — Vertical circular hydraulic fracture transverse to the axis of a horizontal well
within an infinite 3D reservoir.
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Figure 2.2 — Vertical rectangular hydraulic fracture longitudinal to the axis of a horizontal

well within an infinite 3D reservoir.
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Pressure Transient Performance Behavior of a Horizontal Well Intercepting
a Single Transverse Circular Hydraulic Fracture in a Spherical Reservoir with Infinite Thickness
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Figure 2.3 — Schematic example of the pressure and pressure derivative of a horizontal well
intercepting a single circular transverse finite conductivity fracture within a 3D
reservoir.
Pressure Transient Performance Behavior of a Horizontal Well Intercepting
a Single Longitudinal Rectangular Hydraulic Fracture in a Spherical Reservoir with Infinite Thickness
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Figure 2.4 — Schematic example of the pressure and pressure derivative of a horizontal well

intercepting a single rectangular longitudinal finite conductivity fracture within
a 3D reservoir.
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Raghavan et al. (1997) applied the commingled-reservoir concepts to single fracture solutions and
developed a model to analyze the pressure-transient response of a multi-fractured horizontal well
in a homogeneous reservoir. Using this approach, the authors concluded (similar to Larsen et al.
1994) that a multi-fractured well behaves as an equivalent well intercepting a single fracture with
an equivalent conductivity and fracture length equal to the distance between the hydraulic fractures
at the edges, where the lowest rate towards the wellbore comes from the hydraulic fractures at the

center of the well, whereas the highest production is observed in the outermost fractures.

Based on the point source solution developed by Ozkan et al. (1991), Chen et al. (1997) derived
expressions for pressure distribution caused by a multi-fractured horizontal wells in reservoirs with
rectangular shape. A discussion of the flow geometries and regimes that may appear (depending
on the properties/characteristics of the hydraulic fractures) in these sort of well completion-
reservoir configurations was presented. According to the authors, the main objective of this work
was the development of an algorithm capable of incorporating boundary effects without relying

on approximations or the use of image wells.

Similar to the developments made by Lee et al. (1986), Brown et al. (2011) derived a trilinear flow
solution for the pressure-transient analysis of multi-fractured horizontal wells in unconventional
shale reservoirs. The authors divided the reservoir into three subsystems (hydraulic fracture, inner

and outer reservoir zones) with the following characteristics:

e Each hydraulic fracture is considered to be a finite conductivity porous medium
e Double porosity behavior in the inner reservoir zone (zone between hydraulic fractures) with

transient interporosity transfer
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e Linear flow in a homogenous reservoir in the outer reservoir zone.

This approach was verified with more rigorous analytical (Chen et al. 1997 and Raghavan et al.
1997) and numerical (Medeiros et al. 2008) solutions. One application of this model was presented
by Ozkan ef al. (2011), who studied the impact of reservoir properties such as permeability in the

transient performance of a fractured horizontal-well drilled in an unconventional reservoir.

Ozcan et al. (2014) modified the inner reservoir zone of the trilinear model proposed by Brown et
al. (2011) to include the effects of a nano-porous media by using an anomalous diffusivity model,

based on the fractional derivative in time.

2.3. Vertical Wells within Fractal Reservoirs

Barker (1988) presented a generalized diffusivity model for hydraulic tests. The author presented
the constant flow rate and constant head (constant pressure) solutions for this model. The solutions
are given in terms of Modified Bessel Functions. This model and its solutions are able to represent
the transient performance (pressure and flow rate) of the flow of a Newtonian fluid in linear, radial
or spherical systems. This work is helpful as background to understand the solutions of the

diffusivity models for fractal reservoirs.

Based on the work of O'Shaughnessy et al. (1985), Chang et al. (1990) developed a diffusivity
equation to represent the flow of a single phase fluid within a fractal reservoir (Fig. 2.5). The
system was idealized as a Naturally Fractured Reservoir (NFR) and two cases were studied: (1)
without matrix participation, and (2) with pseudosteady-state interporosity transfer. The authors
presented the analytical solution for the first case, whereas for the second case the solution was

numerical. Appendix D shows the development of this model (case 1) and its procedure of solution
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using the Laplace transform. Fig. 2.6 shows the pressure-transient and pressure derivative for a
vertical well within a fractal reservoir for selected values of the fractal dimension, Dy, and the

conductivity index, 6.

o
9%3%%

Figure 2.5 — Schematic of a vertical well within a reservoir with fractal fracture network.
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Pressure Transient Behavior of a Vertical Well in a Fractal Reservoir for Selected values of the Fractal Dimension
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Figure 2.6 — Schematic example of the pressure and pressure derivative of a vertical well
within a fractal reservoir for selected values of the fractal dimension (Dy) and
fixed conductivity index (6=0).

Doe (1991) analyzed the impact of the spatial dimension on constant-pressure tests. The spatial
dimension describes the variation in the exposed to flow area with distance from the well and the
reservoir properties (heterogeneities). Defining r as the distance from the well, the area exposed
to flow for linear flow varies proportionally to #’ (i.e., the area remains unchanged). For radial
flow, the area exposed to flow changes linearly (i.e., proportionally to 7/). For spherical flow, the
area exposed to flow changes proportionally to 7°. The author pointed out that fractional dimension
may or may not indicate fractal reservoir geometries and can be classified as sublinear flow when
the exponent of the distance from the well is less than zero and as hyperspherical if it is greater

than two.

Acuna et al. (1991) proposed a numerical method to represent natural fracturing processes with

fractal geometry. The authors used the "Iteration Function System" technique (Barnsley, 1988)
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and concepts from the theory of fragmentation to create "numerical fractal fracture networks." The
authors created several cases of 2D synthetic fractal fracture networks. For each case, they
simulated the pressure-transient response of a well intercepting one of these networks assuming

single phase flow of a slightly compressible fluid.

Abbaszadeh (1995) developed a three region composite model divided into three regions. The
inner and the outer regions were considered to be radial and the middle region was considered to
be fractal. This model attempted to represent phenomena such as precipitation of solids, chemical
dissolution processes, matrix acidizing, etc., in the pressure-transient response of a vertical well.
The author presented an example of the application of the solution to this model using real data
from the Prudhoe Bay reservoir, where laboratory studies of the reservoir indicate precipitation of

scales and organic material in the vicinity of producer wells.

Acuna et al. (1995) presented analyses of real well tests from NFRs located in western Venezuela,
Monterey formation and Geyser geothermal field, applying the model developed by Chang et al.
(1990). Based on the power-law response of the real pressure-transient data, the authors
determined the range of fractal parameters (mass fractal dimension and conductivity index).
Subsequently, they used the fractal parameters determined from the analyses to generate fracture

networks of the reservoirs, using techniques previously presented by Acuna et al. (1991).

Olarewaju (1996) proposed a method to build a heterogeneous reservoir permeability field with
stochastic fractal functions. The author used the Weiestrass Mandelbrot fractal unconditional
simulation method to generate the permeability field. Such a method is based on the fractional
Brownian motion (fBm), given that the processes that follow fBm are selfisimilar. The input

parameters to generate such field are obtained from pressure-transient data (effective permeability,
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fractal dimension and conductivity index). To estimate the input parameters, Olarewaju (1996)
developed a double porosity model, considering transient interporosity transfer. He obtained an
analytical solution in Laplace domain that is able to reproduce the three flow periods of an infinite
double porosity reservoir (flow in fracture network, interaction between porous media, and single

system behavior).

Based on the works of Chang et al. (1990) and Olarewaju (1996), Flamenco-Lopez et al. (2001)
deduced approximate analytical solutions for late transient times for a double porosity system (i.e.,
when the double porosity reservoir behaves as a single system) and for pseudosteady-state flow
period (boundary dominated). One of the conclusions of this work was the necessity of analyzing
transient and pseudosteady state flow periods to properly characterize a fractal reservoir. In a
revised version of this paper (Flamenco-Lopez et al. 2003), the authors included a trial and error

methodology to estimate the fractal parameters during transient regime.

To investigate the production decline behavior in fractal reservoirs, Camacho-Velazquez et al.
(2008) obtained the constant pressure analytical solutions for the models proposed by Chang et al.
(1990). The authors developed approximate analytical solutions for the single and double porosity

models for both, transient and pseudosteady-state flow periods.

2.4. Wells Intercepting Hydraulic Fractures within Fractal Reservoirs

The first work related to wells intercepting a hydraulic fracture in fractal reservoirs was developed
by Beier (1994). Motivated by the fractal behavior observed in the pressure-transient response in

wells from the San Andres formation, Beier (1994) derived the infinite conductivity and the
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uniform flux solutions for a vertical well using a similar approach as the one used by Gringarten

et al. (1974) and the fractal model presented by Chang et al. (1990).

Beier (1994) found that this well-reservoir configuration exhibits two power-law flowing periods.
The first one corresponds to a distortion in the formation linear flow due to the superimposed flow
of the reservoir towards the plane of the fracture, whereas the second one corresponds to the flow
dominated by the fractal reservoir. Fig. 2.7 shows an example of the two power-law flowing
periods generated by a vertical well intercepted by a hydraulic fracture within a fractal reservoir.
At early times (formation linear flow), the pressure and pressure derivative exhibit a three-

quarters-slope, whereas at late times (infinite-fractal reservoir) a half-slope is observed.

Pressure Transient Behavior of a Vertical Well Intercepting a Hydraulic Fracture
in a Fractal Reservoir for Selected values of the Fractal Dimension
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Figure 2.7 — Schematic example of the pressure and pressure derivative of a vertical well

intercepting a uniform flux hydraulic fracture within a fractal reservoir for
selected values of the fractal dimension (Dy) and fixed conductivity index (6=0).
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2.5. Reservoir Models considering Anomalous Diffusion

In 1994, Metzler et al. presented a generalization of the diffusion model of a fractal structure
developed by O'Shaugnessy et al. (1985). Such a generalization consists in the inclusion of the
"anomalous diffusion" concept in the diffusion equation for fractal media. The anomalous
diffusivity phenomenon is modeled by a fractional derivative of a probability density function.
The authors showed that the solution to their anomalous diffusion model considering an infinite
fractal object is given by Fox's H-functions, of which asymptotic case when the time tends to

infinite is given by an stretched exponential.

Camacho-Velazquez et al. (2008) introduced the concept of anomalous diffusion in the petroleum
reservoir engineering, and derived constant-pressure and constant-rate solutions for the analysis of
pressure-rate performance behavior in fractal reservoirs. The authors presented complete solutions
in Laplace domain in terms of Modified Bessel Functions and developed asymptotic solutions in
the real domain, defined by power-law functions. Fig. 2.8 and Fig 2.9 show the pressure and rate-
transient behaviors, respectively, of a vertical well within a fractal reservoir with anomalous

diffusion.
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Pressure Transient Performance Behavior of a Vertical Well in a Fractal Reservoir with Anomalous Diffusion (Camacho-Velazquez et al. 2008)
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Figure 2.8 — Schematic example of the pressure and pressure derivative of a vertical well
within a fractal reservoir with anomalous diffusion for selected values of the
conductivity index (6) and fixed fractal dimension (D=2.5).

Rate Transient Performance Behavior of a Vertical Well in a Fractal Reservoir with A Dif ion (C: et al. 2008)
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Figure 2.9 — Schematic example of the rate and rate derivative of a vertical well within a

fractal reservoir with anomalous diffusion for selected values of the conductivity
index (6) and fixed fractal dimension (D=2.5).
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Razminia et al. (2014) extended the model presented by Camacho-Velazquez et al. (2008) to
double porosity reservoirs with pseudosteady interporosity transfer, to composite radial systems

(Razminia ef al. 2015a), and to vertical wells intercepting a uniform flux fracture (Razminia et al.

2015b).

Raghavan (2012a) modeled a 2D diffusivity equation considering anomalous diffusion
phenomenon assuming a time-dependent version of Darcy's Law. Such a variation of the Darcy's
Law is modeled by a convolution integral of the gradient of the pressure weighted by a power-law
function of the time. Raghavan (2012a) presented the "constant-rate" solution for the proposed
diffusivity model, considering an infinite reservoir. The "constant-rate" solution for this type of
models implies a time-dependent inner boundary condition that creates a power-law behavior of
the pressure and pressure derivative functions (see Fig. 2.10). The development of this model and
its solution is shown in Appendix F. Raghavan (2012b) and Raghavan et al. (2013) applied this

approach to the fractured well and multi-fractured —horizontal well cases, respectively.

27



Pressure Transient Performance Behavior of a Vertical Well
in a Fractal Reservoir with Anomalous Diffusion (Raghavan, 2012a)
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Figure 2.10  — Schematic example of the pressure and pressure derivative of a vertical well

within a 2D reservoir with anomalous diffusion for selected values of the
anomalous diffusion index ().
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CHAPTER III
PRESSURE AND RATE-TRANSIENT BEHAVIOR OF A HORIZONTAL WELL
INTERCEPTING A SINGLE HYDRAULIC FRACTURE WITHIN A FRACTAL

RESERVOIR!

In this chapter, we present a summary of the semi-analytical solution for the pressure and rate
transient behaviors of a horizontal well intercepting a single finite-conductivity hydraulic fracture
(either circular or rectangular fracture) within a fractal reservoir considering either single or
naturally-fractured/dual porosity reservoir conditions. Naturally-fractured/dual porosity and
anomalous diffusion effects are included by modifying the solution of the diffusivity equation for
the reservoir in the Laplace domain. The detailed derivations of these models are presented in

Appendix D.

3.1. Model Assumptions

Similar to Larsen et al. (1991), we have considered two geometries for the hydraulic fractures.
Fig. 3.1a shows the schematics of a horizontal well intercepting a circular transverse hydraulic
fracture within a fractal reservoir and Fig. 3.1b shows the rectangular longitudinal hydraulic

fracture case. The assumptions of the systems are summarized in Table 3.1.

! Reprinted with permission from "Pressure-Transient Behavior of a Horizontal Well with a Finite-Conductivity
Fracture within a Fractal Reservoir" by Valdes-Perez, A. R., Larsen, L., and Blasingame, T.A., 2018. SPE Canada
Unconventional Resources Conference Proceedings, SPE-189814-MS. Copyright [2018] by Society of Petroleum
Engineers, Inc.
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Figure 3.1

Table 3.1
Medium

N%i" zﬁ/‘r st , \?ﬂm ] N

— a. Vertical circular hydraulic fracture transverse to the axis of a horizontal well
within an infinite fractal reservoir, and b. Vertical rectangular hydraulic fracture
longitudinal to the axis of a horizontal well within an infinite fractal reservoir.

— Assumptions used to develop the proposed reservoir models

Assumptions

e Flow to the wellbore occurs only through the hydraulic fracture.
e Pressure-squared gradients are negligible.
e The well produces at constant flowrate, gw.

All . LI
e Uniform initial pressure, pi.
e Single slightly-compressible fluid flow with constant compressibility, c,, and constant
viscosity, /L
® Closed facture of constant half-length (71 for the circular fracture or xr for the rectangular
Hydraulic fracture).
Fracture e Flow obeys Darcy's Law.
e The fracture has constant properties: compressibility, c¢s, permeability, k7, porosity, ¢, width,
w.
e Unbounded fractal reservoir of D~dimension.
R . e Flow obeys modified Darcy's Law for fractal systems of #-conductivity index.
eservoir . o . )
® Both porosity and permeability vary according to power law functions.
e The reservoir has constant formation compressibility, c.
Matrix bﬁ)cks e Finite and single size Euclidean matrix block (either slabs or spheres).
frz(lréilltl;l;?i/glial e Flow obeys Darcy's Law. '
. . ® The matrix blocks have constant properties: compressibility, cma, permeability, kma, porosity,
porosity reservoir
Case) ¢ma.
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The flow of fluids in the hydraulic fracture and in the fractal reservoir is governed by its
corresponding diffusivity equation. For a circular fracture, the flow is modeled by the diffusivity

equation in radial coordinates with a source term. This equation in its dimensionless form is:

1o [ 6sz>,cr}+ 2 {%ﬂ} L DA . oo (3.1
zp=0

 orp orp Fep | P2p - - np  Oip

For the rectangular fracture case, the flow is modeled by the diffusivity equation for a linear system

with a source term, written in dimensionless form, our starting point is given as:

2
°p fD,cr N 2 {apD,cr } _ b op fD,cr
o, fepl ®p |,y 1w ap

The flow within the fractal reservoir considering typical diffusion (Chang et al., 1990) is modeled

by:

1 0 |:R'B PD.cr :| _ TPD1CE + aeeeeee e e e et e e e e e e ettt e e e e e e ettt e e e e e e e et taeeeeeeeeenane (3.3)
RZD)f_l BRD D aRD 8tD

For the case of a fractal reservoir considering anomalous diffusion (Camacho-Velazquez et al.,

2008), the flow model is:

1 0 { Vi pD,cr } a?/pD,cr
D/ Rp -
Ry oRp ORp o)

where y=2/[ #+2]. The definitions of the dimensionless variables are summarized in Table 3.2.
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3.2. Development of the Models and Solution Procedure

Given that the source term in the left hand side of Eq. 3.1 and Eq. 3.2 is variable, the solution for
this "coupled" model has to be semi-analytical. The procedure we have used is the same applied

by Larsen et al. (1991). The workflow of this procedure is:

1.Discretize the fracture into N-segments. The discretization permits us to approximate the source

term to a constant value for each segment. For a j-segment of a circular fracture, the diffusivity

equation is approximated as

aVD

1 0 . P ,cr _2mhp ._Lapr,cr
rp aI’D b

—_— D_
Fp 7 np ap

whereas for a j-segment of a rectangular fracture, the diffusivity equation is approximated as

2
o%p 27h 1 op
R (3.6)
N Oip

5x% Fep

2.0btain the analytical general solutions in the Laplace domain for each one of the segments of

the hydraulic fracture. Given that the source term is approximated to a constant value, Eqgs. 3.5

and 3.6 can be solved using the Laplace transform. The general solution for a j-segment of the

circular fracture is:

> [_u [[u_|_27Dum SRR 3.7
pr,cr,j(rDsu):AjK0|:rD %:|+le0|:VD nfD:|— uFCD ﬁDj ( )
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Table 3.2 — Dimensionless variables for the model of a horizontal well intercepting a single
finite conductivity fracture within a fractal reservoir.

Dimensionless Variable Definition
. . R tm) 2mkohl p; — p(R,1)]
Pressure in the fractal reservoir pD,cr( Dstp) = 0
qyBuLy
_ 2mkohlp; ~ p(y,1)]
Pressure in the hydraulic fracture PDcr (wp.ip)= 0
qyBuLy
D. f -3
Fractal reservoir rate Sq9p = 4—”[3} 24r
XD s L, dw
p=—__
Time D= D)
+0
doticiLy
Position in the circular fracture rp=rlry
Position in the z-direction zp =z/L,
Position in the x-direction xp=x/L,
Position in the fractal reservoir Rp=R/L,
Fracture length along the wellbore Yp=y/xy
Height hp =h/L,
.. k Fw
Fracture conductivity F.p =
kL,
0
kewL
Fracture fractal conductivity F — [
fheD i
Fractal hydraulic diffusivity of the _ pocik Ly
hydraulic fracture D=7y rerko
0
k L
Hydraulic diffusivity of the matrix blocks NMmaD = M
ko ﬂ)¢mactma
_— Popcyp
Storativity ratio =
90 b Ctfb + PmaCima
Fracture area A /D= A fmahma
Matrix block size MpaD =Mna ! Ly
kgl
Interporosity skin Sint = "¢ ¢
kg hma

Where L, is the reference length. For the circular fracture it is equal to 7; whereas

for a rectangular fracture it is xr.



For a j-segment of a rectangular fracture, the general solution is:

B [u [ u 27hpn o (3.8)
o = A _ B _ e secesssccccesssccccnrsaccnn .
P.cr,j(xp,u)=A; exl{ xp _77j }Jr j exp{xo 7 } wF & pj

3.Define a system of equations for 3N-unknowns. Since constants A;, B; and dgp; are unknowns

for each j-segment, a system of 3N equations must be defined and solved to determine such

constants. The system of equations is defined by:

e Applying the inner boundary condition (constant-rate) to the general solution governing

segment 1. For a circular fracture:

L P Der s (3.9)
2o _ FneD
D=I'wD
For a rectangular fracture:
P D,cr,]
{%1 S amrersn S, (3.10)
XD 0 fheDY D

e Applying the outer boundary condition (closed fracture) to the general solution governing

segment N:

[apﬂv,cr,zv} 0 e (3.11)
9D ¢p=l1

Where &p=rp for a circular fracture and &p=xp for a rectangular fracture:

e Establishing pressure continuity at each of the interfaces:

P D.cr, j—1Dj~1:W) = D fD,cr, j(SDj—1>1) +ovoeveririiiieisiicie (3.12)



e Establishing the flowrate continuity at each of the interfaces:

op i op ;
{%} {%} .................................................................... (3.13)
D lep=¢pigy D lep=¢pjy

e Establishing pressure continuity between each segment of the fracture and the fractal reservoir.

DDcr, jEDjstt) = PD ey, j(EDjsl) s eeeeseereetinissintintisis st (3.14)

where &p” is the middle point in the segment. The pressure in the fractal reservoir is the result
of superimposing the constant rate solution of the diffusivity equation for fractal reservoirs over

the area, 4, of the segment (see Appendix D for more details).

For a fractal reservoir considering typical diffusivity, the pressure behavior is given by:

dA (where v=[1-81[6+2]). .. (3.15)

Sanh 0+21 -
Pp,er(Rpu) = ——D-D. ]{ ! } j RAPV2k

[o+2]r-vi| Vu | 4P

A

2]/2 2\/_]

Similarly, for a fractal reservoir considering anomalous diffusion:

Gphp [ 0+2 " an-pr2, | plov212 2072 |, (3.16)
PD.erRD-1) = 1 o v]|: y/z} LRD {R o2 |“

These models can be extended to the naturally-fractured/dual porosity reservoir case as:

1_
Y2

PD cr(R

v
&thD 6+2
0+2

[9+2]1“1 V| Juf ()

[9+2 12 2uf () }

where the interporosity transfer function is defined by:
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1- A g shma s
Py =au? st 2“’] PEUImaD AmaD ) e, (3.18)

hmaD Sint

NmaD

1+ EWmaD > hmabD 1)

For slab matrix blocks:

h
Z0lmaD ) = — > ) =D e A (3.19)
PmaD u 2 MmaD

and for spherical matrix blocks:

h
8(MmaD > hmap »4) = 1 N,W_aD coth| 14D } = _2 " TmaD PPN (3.20)
hmaD u 2 NMmaD hmabD u

Eq. 3.18 considers the anomalous diffusion phenomenon. To restrict it to the typical diffusion

case, ¥ should be equal to unity and considered to be independent of the conductivity index, 6.

4.Solve the system of equations and evaluate the solution at the wellbore. For the results presented
in this dissertation, we have used the "mldivide" function of MATLAB. Once the constants A4;,
Bj and ogp; (j=1,...,N) are determined, the solution is evaluated at the wellbore. For a circular

fracture, the pressure at the wellbore is determined by:

_ 27hp1 D
pr’cr,l(er,u)_AIKO{VWD [« }BI,{W [« } DD g ovveeesseiveeesssssseeeee (3.21)
/D 7D ubep

Similarly, for a rectangular fracture:

— 2rhp
Pp.eraOu)= A+ B —— D Sy +seeseesesensensaneasentet ettt (3.22)

cD
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The wellbore storage effects can be included using the classic (constant) wellbore storage
relation in the Laplace domain presented in Chapter I. To include the skin effect (i.e., using a
choked fracture) for the circular fracture case, the effective wellbore radius should be used. For
the rectangular fracture case, the skin factor should be added to the dimensionless drop of

pressure without wellbore storage:

]_?WD(u,S,CfD =0) :ﬁWD(u,CfD = 0) S s (3.23)

5.Apply the Stehfest algorithm to numerically invert the Laplace domain solution.

The Stehfest algorithm is implemented in MATLAB and has been tested for consistency and
accuracy. In addition to the dimensionless pressure and rate solutions, we can also use the
Stehfest algorithm to provide both the cumulative and the derivative of any given formulation in

the Laplace domain.

Constant-Pressure Solution

As defined in Chapter I, Duhamel's principle is used to obtain the models for rate-transient analysis
(constant pressure solution) from the models for pressure-transient analysis (constant rate
solution). The dimensionless cumulative production at a given time is computed by integrating

the dimensionless rate profile as presented in Chapter 1.
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3.3. Results and Discussion

Single Porosity Fractal Reservoirs

In this section we present the results of our sensitivity analyses which consider the influence of
key parameters for the fractal reservoir and the hydraulic fracture in terms of the pressure and rate
transient performance behaviors. Based on the configuration of the system, the expected

diagnostic signatures for our proposed semi-analytical solution are:

e Period 1 (Fracture flow): Radial or linear flow (depending on the geometry of the fracture)
at very early times. As in classic studies for the case of a single finite-conductivity
fracture, this period will never be observed in practice.

e Period 2 (Fracture-reservoir interaction): "Radial-Fractal" or "Linear-Fractal" at
intermediate-transient times. This period can be subdivided into two sub-periods: (1)
early-intermediate and (2) late-intermediate. The early-intermediate period is analogous
to the bilinear flow regime for a finite-conductivity vertical fracture in an infinite-acting
homogeneous reservoir, whereas the late-intermediate is analogous to the formation-
linear flow regime observed at most times for a case with a very high conductivity vertical
fracture and at later times for cases with a medium to high conductivity vertical fracture.

e Period 3 (Reservoir dominated flow): "Pseudo-Fractal" flow. This flow period is
dominated by the reservoir and yields power-law behavior (i.e., a straight line in the

pressure drop and pressure derivative functions versus time on a log-log plot).
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The schematics for the expected diagnostic signatures (i.e., the dimensionless pressure and
dimensionless pressure derivative functions for the constant rate case) for the circular and

rectangular fracture cases are shown in Fig 3.2 and Fig 3.3, respectively.

Expected Pressure Transient Performance Behavior of a
Horizontal Well Intercepting a Circular Finite Conductivity Fracture
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Legend:
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Figure 3.2 — Schematic example of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity within a single porosity fractal reservoir (constant
rate case).
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Figure 3.3

In Fig. 3.4, we show the impact of the fractal dimension of the reservoir (Dy) on the behavior of
the dimensionless pressure and dimensionless pressure derivative functions (constant rate case)
for the circular fracture case, considering a "low" dimensionless conductivity. Based on the

pressure derivative response, we observe that at late-transient times (dimensionless times greater

— Schematic example of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity within a single porosity fractal reservoir
(constant rate case).

107

107?

Dimensionless Time, t,

than 1), pseudo-fractal flow is exhibited for all cases.

(dimensionless times < 1072), for a fractal dimension of 1.5, a power-law response is observed,
instead of the expected radial fracture flow regime. For each of the cases shown in Fig. 3.4 only
one sub-period of flow is observed at intermediate-transient times. These "sub-periods" exhibit a

power-law behavior that is the result of the interaction between the fractal reservoir and the circular

fracture.
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Sensitivity Analysis of the Fractal Dimension on the Pressure Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.4 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the fractal dimension (Dy) (constant rate case).

Fig. 3.5 shows the (constant pressure) rate-transient case for the example presented in Fig. 3.4. At
late-transient times (i.e., dimensionless times > 7), this case exhibits higher flowrates at higher
values of the fractal dimension. However; at early and intermediate-transient times (dimensionless
times < 7), the well exhibits higher flowrates at lower values of the fractal dimension. This
behavior implies that the cumulative production of the well is higher for low values of the fractal
dimension until a certain point in time, after which the cumulative production is higher for high

values of the fractal dimension (see Fig. 3.6 for the cumulative production behavior).
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Sensitivity Analysis of the Fractal Dimension on the Rate Transient Performance Behavior
of a Circular Finite-Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.5 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting a single circular hydraulic fracture of
finite conductivity in a fractal reservoir considering typical (constant) diffusion,
for selected values of the fractal dimension (Dy) (constant pressure case).
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Figure 3.6 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single circular hydraulic fracture of finite
conductivity in a fractal reservoir considering typical (constant) diffusion, for
selected values of the fractal dimension (Dy). (constant pressure case)

42



Similar to our previous comparisons for the circular fracture case, we now consider the rectangular
fracture case — and we begin with the constant rate solution for the rectangular fracture case (as
shown in Fig. 3.7) where we plot the dimensionless pressure and dimensionless pressure derivative
functions. We do note a "spectra" of solutions based on the given fractal dimension (Dy) — in
particular, the fractal dimension case of 2.5 shows the most "aggressive" behavior, where the Dy=
1.5 case is the most "conservative." We present the constant pressure cases (i.e., the dimensionless
rate and dimensionless rate derivative profiles) in Fig. 3.8 and the dimensionless cumulative
production profile is shown in Fig. 3.9 — and we also note the "aggressive" and "conservative"

behaviors as caused by the fractal dimension parameter (Dy) for these cases.

Sensitivity Analysis of the Fractal Dimension on the Pressure Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion

-5 -4 -3 2 -1 0 1 2 3 4 5 6

10 10 10 10 10 10 10 10 10 10 10 10

Legend:
(—) Puper
(—) dpyp,c/dinty

Dimensionless Pressure,p,,p
Dimensionless Pressure Derivative, dp,,/dint,

Parameters:

6
7 =10
F.p=50
Y =1

Dimensionless Time, t,

Figure 3.7 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a fractal reservoir considering typical
(constant) diffusion, for selected values of the fractal dimension (Dy). (constant
rate case).
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Sensitivity Analysis of the Fractal Dimension on the Rate Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.8 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the fractal dimension (Dy). (constant pressure
case).

Sensitivity Analysis of the Fractal Dimension on the Cumulative Production
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Figure 3.9 — Log-log plot of the dimensionless cumulative production for a horizontal well
intercepting a single rectangular hydraulic fracture of finite conductivity in a
fractal reservoir consider-ing typical (constant) diffusion, for selected values of
the fractal dimension (Dy). (constant pressure case).
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We next consider the impact of the (fractal) conductivity index (&) on the proposed constant rate
and constant pressure solutions — and we begin with the constant rate, circular fracture case where
the dimensionless pressure and dimensionless pressure derivative functions are shown in Fig. 3.10.
The influence of the conductivity index () is similar to that for the fractal dimension case (Dy —
however; in the case of the conductivity index the features are much more "subtle" compared to
the fractal dimension cases. The constant pressure cases are shown in Fig. 3.11 (i.e., the
dimensionless rate and dimensionless rate derivative functions) and Fig. 3.12 (the dimensionless
cumulative production functions) — and much like the constant rate cases, the influence of the
conductivity index (&) tends to be very precise, as in the case of the dimensionless rate derivative
functions (Fig. 3.11), which are essentially parallel over the entire time scale. Lastly, the
dimensionless cumulative production profiles shown in Fig. 3.12 have very little independent

character (i.e., the trends are almost indistinguishable over time).

Sensitivity Analysis of the Conductivity Index on the Pressure Transient Performance Behavior
of a Circular Finite-Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.10 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the conductivity index (6). (constant rate case)
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Sensitivity Analysis of the Conductivity Index on the Rate Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.11 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting a single circular hydraulic fracture of
finite conductivity in a fractal reservoir considering typical (constant) diffusion,
for selected values of the conductivity index (6). (constant pressure case).

Analysis of the C y Index on the Cumulative Production
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5

3 2 1 o 1 2 3 4

10 10 10° 10 10 10 10 10 10
10" T T T T T T T T T T T T T T T T Ty 10°
E Parameters: E
L o=10°  mp=2 ]
L Fo=15 D;=25 i
| re=00  cp=0 ,
10 E / E 10
z% B / 9
10" 3 4 E 10"
10° E £ 10°
3 F E
10" 3 E 10"
§ F E
[ 05 h
10° 3 6=0.75 = 10°
0° PRI EEETTIT BT EETTTTT R METTTT I
10* 10° 10° 10" 10° 10' 10° 10° 10°
Dimensionless Time, ,
Figure 3.12 — Log-log plot of the dimensionless cumulative production for a horizontal well

intercepting a single circular hydraulic fracture of finite conductivity in a fractal
reservoir considering typical (constant) diffusion, for selected values of the
conductivity index (6). (constant pressure case).
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Finally, we consider the influence of the conductivity index () for the constant rate and constant
pressure cases for the case of a rectangular fracture of finite conductivity (see Figs. 3.13 and 3.14,
respectively). In Fig. 3.13 we note that both the dimensionless pressure and the dimensionless
pressure derivative functions are dominated by the "linear flow" feature (1:2 slope) at early times
(i.e., for tp < 102), then by the fracture-reservoir transient regime, followed by the fractal-

influenced reservoir behavior.

We next present the constant pressure solution in Fig. 3.14 (i.e., the dimensionless rate and
dimensionless rate derivative functions) and we immediately note that these cases are essentially
"mirror images" of their corresponding constant rate cases. This behavior is probably due to the
uniqueness of this selection of parameters for this particular model. To finish this suite of
comparisons, we present the dimensionless cumulative production profile for our selected cases
(Fig. 3.15) and we find that all of the proposed flow regimes are observed — in particular, the
early-time "linear flow" feature (1:2 slope) for #p < 1072, then the fracture-reservoir transient

regime, then the fractal-influenced reservoir behavior.
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Sensitivity Analysis of the Conductivity Index on the Pressure Transient Performance Behavior
of a Rectangular Finite-Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.13 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a fractal reservoir considering typical
(constant) diffusion, for selected values of the conductivity index (). (constant
rate case)

Sensitivity Analysis of the Conductivity Index on the Rate Transient Performance Behavior
of a Rectangular Finite-Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.14 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the conductivity index (6). (constant pressure
case).
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Sensitivity Analysis of the Conductivity Index on the Cumulative Production
of a Rectangular Finite-Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.15 — Log-log plot of the dimensionless cumulative production for a horizontal well

intercepting a single rectangular hydraulic fracture of finite conductivity in a
fractal reservoir considering typical (constant) diffusion, for selected values of
the conductivity index (6). (con-stant pressure case).

In Fig. 3.16, we illustrate the effect of the dimensionless fracture conductivity on our proposed
solutions, in particular for the dimensionless pressure and dimensionless pressure derivative
functions for the circular fracture case (constant rate case). Analogous to the non-fractal models,
we have observed that the flow within the fractal reservoir dominates during all periods of flow at
very low values of the dimensionless fracture conductivity (F.p=1 in Fig. 3.16). At high values of
conductivity (e.g., Fep=150), the three expected periods of flow are well defined: (1) fracture flow
for dimensionless time < 1072, (2) fracture-reservoir interaction period for dimensionless times
between 102 and 10, and (3) pseudo-fractal flow for dimensionless times > 10. For intermediate
values of dimensionless fracture conductivity (e.g., F.p=10), the fracture flow and the interaction
periods yield the expected power-law signatures, where this is a result of a narrower (or perhaps,

shorter) fracture.
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Sensitivity Analysis of the Dimensionless Fracture Conductivity on the Pressure Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.16 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the dimensionless fracture conductivity (Fep).
(constant rate case)

Fig. 3.17 shows the influence of the dimensionless fracture conductivity on the rate-transient
performance behavior for the circular fracture case — specifically the dimensionless rate and
dimensionless rate derivative functions (constant pressure case). As expected, the highest
dimensionless flowrate and dimensionless cumulative production profiles (see Fig. 3.18 for the
dimensionless cumulative production profiles) are given by the higher values of the dimensionless
fracture conductivity. We believe that the dispersions observed in the dimensionless rate
derivative functions for dimensionless times > 30 as shown in Fig. 3.17 for the lowest
dimensionless fracture conductivity case (i.e., Fep=1) are the result of numerical instabilities for
small arguments of the modified Bessel functions in the solution for this particular case. The
Stehfest algorithm (for numerical inversion) will amplify small scale instabilities, particularly for

any derivative functions.
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Sensitivity Analysis of the Dimensionless Fracture Conductivity on the Rate Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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finite conductivity in a fractal reservoir considering typical (constant) diffusion,
for selected values of the dimensionless fracture conductivity (Fep). (constant
pressure case).
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The sensitivity analyses considering variations in the dimensionless fracture conductivity on our
proposed solutions for the rectangular fracture case are shown in Fig. 3.19 and Fig. 3.20,
respectively. Again we use the dimensionless pressure (constant rate case) and dimensionless rate
(constant pressure) solutions as appropriate. Using these plots we observe that the rectangular
fracture cases have a very unusual "late-time" effect in that, for the constant rate case, the
dimensionless pressure function appears to flatten, but the dimensionless pressure derivative
function exhibits an approximate 1/4 slope that is decreasing (see Fig. 3.19). A similar feature is

observed for the constant pressure case in Fig. 3.20.

Sensitivity Analysis of the Dimensionless Fracture Conductivity on the Pressure Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a fractal reservoir considering typical
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conductivity (Fcp). (constant rate case)
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Sensitivity Analysis of the Dimensionless Fracture Conductivity on the Rate Transient Performance Behavior

of a Rectangular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
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Figure 3.20 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a fractal reservoir considering typical (constant)
diffusion, for selected values of the dimensionless fracture conductivity (Fep).
(constant pressure case).

The characteristic signature (i.e., unit-slope in the dimensionless pressure derivative function) of
the "transition to reservoir" effect is observed over the dimensionless time period from 102 to
10! in Fig. 3.19. We also note abrupt changes in the dimensionless rate derivative function over
the dimensionless time period from 102 to 10! (see Fig. 3.20) we believe that this is also a
consequence of the "transition to reservoir" effect. The dimensionless cumulative production
profile is shown in Fig. 3.21, where we note that the early transient flow is dominated by the Fe.p-
value (i.e., the higher the F.p value the higher the production during this period), we also not that
the unit slope in the dimensionless cumulative production profile for dimensionless times > 10

reflect an essentially constant flowrate at late times.

53



Sensitivity Analysis of the Dimensionless Fracture Conductivity on the Cumulative Production
of a Rectangular Finite Conductivity Fracture in a Fractal Reservoir considering Typical Diffusion
7 -6 5 -4 3 2 -1 0 1 2 3 4 5 6

20 10 10° 10 10° 10° 10 10 10 10 10 10 10 10°
10 10
Parameters:
6
o bm=10°  hp=2 o
D,=25  6=0
Yo=1 Cp=0
10 10
2
2
£ 10 10’
2
2
o
3
2 10 g 10’
o
5 /
2
2
©
s 10 % 10'
E /
3 /
"
2 10° — 10°
=
o
o
S 4 "
g w0 10
a
F.p,=1000 |50 F.p=10
10” 10?
10° 10°
10 3 2 1 0 1 2 3 4 5 510
107 10°  10° 10t 10 10’ 10 10 10 10 10 10 10 10

Dimensionless Time, tp

Figure 3.21 — Log-log plot of the dimensionless cumulative production for a horizontal well
intercepting a single rectangular hydraulic fracture of finite conductivity in a
fractal reservoir considering typical (constant) diffusion, for selected values of
the dimensionless fracture conductivity (Fep). (constant pressure case)

Naturally Fractured Porosity/Dual Porosity Fractal Reservoir with Typical Diffusion

To extend these models to naturally-fractured/dual porosity reservoirs, we have used the reservoir
model presented by Valdes-Perez (2013), considering the "slab" model for the fracture-matrix
systems of all of the cases considered in this work. This model considers transient interporosity
transfer and can reproduce pseudosteady-state interporosity transfer conditions at high values of
interporosity skin. Regardless of the interporosity transfer conditions, the model solution (as
represented by the dimensionless pressure and dimensionless pressure derivative signatures) yields
three distinct flow periods, as governed by the model parameters. A schematic log-log plot of the

dimensionless pressure and dimensionless pressure derivative functions is shown in Fig. 3.22.
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The following flow periods are evident for these case:

e Period 1 —

e Period 2 —

e Period 3 —

(fractal fracture network flow): Early-fractal flow — this period of flow is
dominated by the properties of the fractal network and exhibits a power-law
signature in both the dimensionless pressure and dimensionless pressure
derivative functions (see Fig. 3.22).

(interaction between the fractal fracture network and the matrix blocks): The
matrix blocks contribute fluid to the fractal fracture network.  The
dimensionless pressure and dimensionless pressure derivative functions exhibit
a "combined" power-law behavior, different from the behavior observed in
Period 1.

(single porosity fractal reservoir flow): Both porous media (i.e., the fractal
fracture network and the matrix blocks) behave as a (total) single porosity
fractal system. The dimensionless pressure and dimensionless pressure
derivative functions should exhibit the same power-law behavior as that

observed in Period 1.

As presented by Cinco-Ley ef al. (1988), a finite conductivity hydraulic fracture within a naturally-

fractured/dual porosity reservoir can exhibit a maximum of twelve (12) sub-periods of flow. The

number of sub-periods of flow that may be observed depends on the properties of the hydraulic

fracture and the reservoir.
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Pressure-Transient Behavior of a Double Porosity Reservoir
with Fractal Fracture Network considering Transient Interporosity Transfer
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Figure 3.22 — Schematic example — Naturally fractured/dual porosity reservoir with a fractal

fracture network, dimensionless pressure and dimensionless pressure derivative
functions (various characteristic flow regimes are highlighted). (constant rate
case)

In this section, we present selected cases that show the influence of the naturally-fractured/dual
porosity effects on the transient performance of a horizontal well intercepting a single finite

conductivity fracture.

Sensitivity to the 7m..p-Parameter: Circular Fracture Case

The plot shown in Fig. 3.23 presents three (constant rate) cases of the dimensionless hydraulic
diffusivity of the matrix (7mqepn): (1) high (7mep =10%), (2) intermediate (1071%), and (3) low (10°'°).
These three cases exhibit radial flow (in the fracture) at early times (dimensionless times < 107).
At intermediate-transient times (dimensionless times within the range 107 to 107), the
dimensionless pressure derivative signatures exhibit a power-law behavior, and we note that the
slope is less steep for low 77mqp -values. At late-transient times (dimensionless times > 107%), the

naturally-fractured/dual porosity reservoir component dominates the flow behavior.
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Sensitivity Analysis of the Dimensionless Hydraulic Diffusivity of the Matrix on the Pressure Transient Performance
Behavior of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.23 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the dimensionless hydraulic
diffusivity of the matrix (7m.p). (constant rate case)

The constant pressure cases are shown in Figs. 3.24 and 3.25. In Fig. 3.24 we present the
dimensionless rate and dimensionless rate derivative functions for the constant rate example cases
presented in Fig. 3.23. As expected, the trends in Fig. 3.24 confirm that the influence of the
dimensionless hydraulic diffusivity of the matrix (7..p) in the sense that the lower the value of the
nmep-parameter, the lower the rate performance of these cases. The dimensionless cumulative
production cases are presented in Fig. 3.25 and although there is little character in these curves, it

is clear that the highest production corresponds to the highest value of the 7,.p -parameter.
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Sensitivity Analysis of the Dimensionless Hydraulic Diffusivity of the Matrix on the Rate Transient Performance
Behavior of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.24 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting a single circular hydraulic fracture of
finite conductivity in a dual porosity fractal reservoir considering typical
(constant) diffusion, for selected values of the dimensionless hydraulic
diffusivity of the matrix (7m.p). (constant pressure case)

Sensitivity Analysis of the Dimensionless Hydraulic Diffusivity of the Matrix on the Cumulative Production

of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.25 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single circular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the dimensionless hydraulic diffusivity of the
matrix (7map). (constant pressure case).
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Sensitivity to the 7m.p-Parameter: Rectangular Fracture Case

In Fig. 3.26 we present three (constant rate) cases for the rectangular fracture case where we
have varied the dimensionless hydraulic diffusivity of the matrix (7.ap) as follows: (1) high
(17map =107), (2) intermediate (1071?), and (3) low (10-2°). These three cases exhibit linear flow (in
the fracture) at very early times (dimensionless times < 107). At intermediate-transient times
(dimensionless times within the range 10 to 102), the dimensionless pressure derivative signatures
exhibit an apparent "transient radial flow" behavior, but we understand that this could also be
interpreted as a very shallow power-law behavior. Lastly, we observe the influence of the
naturally-fractured/dual porosity reservoir component, which manifests a late-time radial flow
regime for dimensionless times > 10*. We acknowledge that these behaviors are uniquely
dependent on the selection of the input parameters, and we can clearly see the evidence of the
dimensionless hydraulic diffusivity of the matrix parameter (77..p) during the intermediate and late

times.
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Sensitivity Analysis of the Dimensionless Hydraulic Diffusivity of the Matrix on the Pressure Transient Performance
Behavior of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.26 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir
considering typical (constant) diffusion, for selected values of the dimensionless
hydraulic diffusivity of the matrix (7map). (constant rate case)

The constant pressure cases are shown in Figs. 3.27 and 3.28. The dimensionless rate and
dimensionless rate derivative functions reflect very closely the behaviors exhibited for the constant
rate example cases presented in Fig. 3.26 (with the anomalies in the dimensionless rate derivative
functions for the 7u.p-parameter values of 1012 and 102 duly noted — these are artifacts of the
character of the dimensionless rate for these cases). In Fig. 3.28 we present the dimensionless

cumulative production and we clearly note that the 7map = 10712 and 102 cases are quite similar

across the entire time-scale, but that these cases differ significantly from the 7.0 = 10 case.

60



Sensitivity Analysis of the Dimensionless Hydraulic Diffusivity of the Matrix on the Rate Transient Performance
Behavior of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.27 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the dimensionless hydraulic
diffusivity of the matrix (7m.p). (constant pressure case)
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Figure 3.28 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single circular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the dimensionless hydraulic diffusivity of the

matrix (77map). (constant pressure case)

61



Sensitivity to the w-Parameter: Circular Fracture Case

In this section we consider the influence of the storativity ratio () for the naturally-fractured/dual
porosity reservoir component of the solution. We first consider the constant rate cases for a single
circular fracture of finite conductivity where we have varied the storativity ratio () as follows:
@ =1 (high/homogeneous), @ = 10 (intermediate), and @ = 107'¢ (very low) as shown in Fig.3.
29. Asexpected, each case exhibits radial flow (in the fracture) at early times (dimensionless times
< 10%). At intermediate-transient times (dimensionless times within the range 10 to 10°), the
dimensionless pressure derivative signatures exhibit a near-unity power-law behavior which
reflects the transition to the fractal solution component. At late-transient times (dimensionless
times > 10') we observe an approximate slope of 1:4 in the dimensionless pressure derivative
profiles, which suggests that the response is now dominated by the fractal reservoir solution

component.

We next present the constant pressure cases in Figs. 3.30 and 3.31 (i.e., the dimensionless rate and
dimensionless rate derivative functions are shown in Fig. 3.30 and the dimensionless cumulative
production is shown in Fig. 3.31). In relative terms, the dimensionless rate profiles in Fig. 3.30
roughly reflect the same features we observed for the dimensionless pressure solutions in Fig.
3.29. However; the dimensionless rate derivative profiles shown in Fig. 3.30 are significantly
affected by the "transition" features observed in the dimensionless rate profiles — in short, the
dimensionless rate derivative profiles exhibit numerous artifacts that could make interpretation of

these trends non-unique.
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Sensitivity Analysis of the Storativity Ratio on the Pressure Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.29 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the storativity ratio (w).
(constant rate case)

Sensitivity Analysis of the Storativity Ratio on the Rate Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.30 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single circular hydraulic fracture of
finite conductivity in a dual porosity fractal reservoir considering typical
(constant) diffusion, for selected values of the storativity ratio (w). (constant
pressure case)
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Sensitivity Analysis of the Storativity Ratio on the Cumulative Production
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.31 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single circular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the storativity ratio (w). (constant pressure case)

In Fig. 3.31, we present the dimensionless cumulative production for these cases and we note that
each case is strongly distinctive and that the behavior of these functions is uniquely related to the

storativity ratio (®) for the naturally-fractured/dual porosity reservoir component of the solution.

Sensitivity to the e-Parameter: Rectangular Fracture Case

We continue to consider the influence of the storativity ratio (@) on the naturally-fractured/dual
porosity reservoir component of the solution, but now we move to the constant rate cases for a
single rectangular fracture of finite conductivity. We use the following cases for the storativity
ratio (w):w = 1 (high’homogeneous), @ = 10 (intermediate), and @ = 107'° (very low), where the

dimensionless pressure and dimensionless pressure derivative profiles for these cases are shown
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in Fig. 3.32. At very early times (dimensionless times < 107 to 102, depending on the w-
parameter), we observe linear flow (in the fracture). Similar to the circular fracture case, for
intermediate-transient times (dimensionless times within the range 10 to 107 for the @ = 10"* and
10°1° cases, and dimensionless times within the range 10! to 10 for the @ = 10° case) we observe
a near-unity power-law behavior in the dimensionless pressure derivative signatures, which
reflects the transition to the fractal solution component. At late-transient times (dimensionless
times depending on the w-parameter) we observe a very low power-law slope of 1:10 in the

dimensionless pressure derivative profiles for the @= 10° and 10 cases.

The constant pressure cases are presented in Figs. 3.33 and 3.34 (i.e., the dimensionless rate and
dimensionless rate derivative functions are shown in Fig. 3.33 and the dimensionless cumulative
production is shown in Fig. 3.34). As with the circular fracture case, the dimensionless rate
profiles in Fig. 3.33 roughly reflect the same features we observed for the dimensionless pressure
solutions in Fig. 3.32 — and again (as in the circular fracture case), the dimensionless rate
derivative profiles shown in Fig. 3.33 are significantly affected by the "transition" features
observed in the dimensionless rate profiles. The dimensionless cumulative production profiles for
these cases are shown in Fig. 3.34, and as with the circular fracture cases, we note that each trend
is quite unique and we believe that the behavior of these functions is exceptionally related to the

storativity ratio () for the naturally-fractured/dual porosity reservoir component of the solution.
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Sensitivity Analysis of the Storativity Ratio on the Pressure Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.32 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir
considering typical (constant) diffusion, for selected values of the for selected
values of the storativity ratio (w). (constant rate case)

Sensitivity Analysis of the Storativity Ratio on the Rate Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.33 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the storativity ratio (w).
(constant pressure case).
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Sensitivity Analysis of the Storativity Ratio on the Cumulative Production
of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.34 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single rectangular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the storativity ratio (w). (constant pressure case).

Sensitivity to the S;.~Parameter: Circular Fracture Case

In this section we consider the influence of the interporosity skin (Si) on the naturally-
fractured/dual porosity reservoir component of the solution. This is a fairly straightforward
exercise, but it is important to recognize that the interporosity skin (Six) is not an actual reservoir
parameter, but is instead, an "additional/imposed" dimensionless pressure drop. For the constant
rate case of a single circular fracture of finite conductivity, we will test the solution behavior for
Sine = 0 (no "additional/ imposed" dimensionless pressure drop) and S, = 0.1, which for this

solution is a fairly large "additional/imposed" dimension-less pressure drop.

We present the (constant rate) dimensionless pressure and dimensions less pressure derivative

profiles for the Si,: = 0 and Six: = 0.1 cases in Fig. 3.35. As with all of our other sensitivity cases,
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we observe radial flow (in the fracture) at early times (dimensionless times < 107). At
intermediate-transient times (dimensionless times within the range 10 to 10%), the dimension-less
pressure and dimensionless pressure derivative profiles exhibit a sharp response that reflects the
transition to the fractal solution component. For the case of S, = 0, it appears that the solution
simply "shifts" to an approximate power-law flow regime. For the case of Si,; = 0.1, we note a
very strong response, particularly in the dimensionless pressure derivative profile where a "hump"
feature appears (where such features are typically associated with wellbore storage distortion). We
believe this behavior is a characteristic of the (relatively) large Si.: -parameter. At late-transient
times (dimensionless times > 10°) we observe an approximate slope of 1:4 in the dimensionless
pressure derivative profiles, which suggests that the response is now dominated by the fractal

reservoir solution component.

Sensitivity Analysis of the Interporosity Skin on the Pressure Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.35 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative func-tions for a horizontal well intercepting a single circular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the interporosity skin (Siu).
(constant rate case)
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The constant pressure cases are presented in Figs. 3.36 and 3.37 (i.e., the dimensionless rate and
dimensionless rate derivative functions are shown in Fig. 3.36 and the dimensionless cumulative
production is shown in Fig. 3.37). As has become a common observation, the dimensionless rate
profiles in Fig. 3.36 roughly reflect the same features we observed for the dimensionless pressure
solutions in Fig. 3.35 — and as has also been observed, the dimensionless rate derivative profiles
shown in Fig. 3.36 are dramatically affected by the sharp features observed in the dimensionless
rate profiles, which yield artifacts in the dimensionless rate derivative profiles (particularly so for
the Si: = 0.1 case). We present the dimensionless cumulative production for these interporosity
skin (S, cases in Fig. 3.37, we note (somewhat surprisingly) that the S;,, -parameter only affects

the intermediate time behavior of the dimensionless cumulative production profiles.

Sensitivity Analysis of the Interporosity Skin on the Rate Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.36 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the interporosity skin (Siu).
(constant pressure case).
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Sensitivity Analysis of the Interporosity Skin on the Cumulative Production

of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir idering Typical Diffusion
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Figure 3.37 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single circular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the interporosity skin (Six). (constant pressure
case).

Sensitivity to the S;,~Parameter: Rectangular Fracture Case

We now consider the effect of the interporosity skin (Si.) on the naturally-fractured/dual porosity
reservoir component of the solution for the constant rate case of a single rectangular fracture of
finite conductivity. Similar to our efforts for the circular fracture cases, we will test the solution
behavior for Sj,; = 0 (no "additional/ imposed" dimensionless pressure drop), but because of the
nature of the rectangular fracture, we will use S;,» = 0.01 for these cases (where we noted that Sj,;
=0.01 is still a relatively large "additional/ imposed" dimensionless pressure drop, particularly for

the rectangular fracture cases).
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We present the (constant rate) dimensionless pressure and dimensions less pressure derivative
profiles for the S;,; = 0 and S;,» = 0.1 cases in Fig. 3.38 and we immediately note the existence of a
very strong linear flow (in the fracture) signature at very early times (dimensionless times < 107).
At intermediate-transient times (dimensionless times within the range 10° to 10°), the
dimensionless pressure and dimensionless pressure derivative profiles exhibit a sharp response
that reflects the transition to the fractal solution component. As with the circular fracture example,
for the case of Sint = 0, it appears that the solution simply "shifts" to an approximate power-law
flow regime and for the case of Si,» = 0.01, we note a very strong feature in the dimensionless
pressure derivative profile where a "hump" appears. We believe this behavior is a characteristic
of the (relatively) large Si -parameter. At late-transient times (dimensionless times > 10%) we
observe what appears to be slope of approximately 1:4 in the dimensionless pressure derivative
profiles, which suggests that the response is now dominated by the fractal reservoir solution

component.
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Sensitivity Analysis of the Interporosity Skin on the Pressure Transient Performance Behavior
of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.38 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting a single rectangular
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir
considering typical (constant) diffusion, for selected values of the interporosity
skin (Sinr). (constant rate case).

The dimensionless rate and dimensionless rate derivative functions for the constant pressure rate
cases are presented in Fig. 3.39 and it appears that the dimensionless rate profiles in Fig. 3.39
roughly reflect the same features we observed for the dimensionless pressure solutions in Fig. 3.38
(in fact, these profiles are almost "mirror" images). As has been the observation throughout this
work, the dimensionless rate derivative profiles shown in Fig. 3.39 are dramatically affected by
the sharp features observed in the dimensionless rate profiles, which yields significant artifacts in
the dimensionless rate derivative profiles for the Si,x = 0.01 case. In Fig. 3.40 we present the
dimensionless cumulative production for these interporosity skin (Si:;) cases and we note that, for
the rectangular fracture case, the Si, -parameter significantly affects the character of the

dimensionless cumulative production profiles.
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Sensitivity Analysis of the Interporosity Skin on the Rate Transient Performance Behavior
of a Circular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure 3.39 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting a single rectangular hydraulic
fracture of finite conductivity in a dual porosity fractal reservoir considering
typical (constant) diffusion, for selected values of the interporosity skin (Siu).
(constant pressure case).

Sensitivity Analysis of the Interporosity Skin on the Cumulative Production
of a Rectangular Finite Conductivity Fracture in a Double Porosity Fractal Reservoir considering Typical Diffusion
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Figure3.40 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting a single rectangular hydraulic fracture of finite
conductivity in a dual porosity fractal reservoir considering typical (constant)
diffusion, for selected values of the interporosity skin (Six). (constant pressure

case)
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Single Porosity Fractal Reservoirs with Anomalous Diffusion

In Figs. 3.41 and 3.42 we present the comparisons of the constant rate solutions (dimensionless

pressure and dimension

diffusion models, for bo

that the anomalous diffusion phenomena creates an additional pressure drop at early and

intermediate-transient times, but the anomalous diffusion cases also exhibit a lower pressure drop

at late times.

less pressure drop derivative) for the typical (constant) and anomalous

th the circular and rectangular fracture cases, respectively. We observed

Comparisson Between the Pressure Transient Performance Behavior of a Circular
Finite Conductivity Fracture in a Fractal Reservoir considering Typical and Anomalous Diffusion
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Log-log plot of the dimensionless pressure and dimensionless pressure
derivative profiles for a horizontal well intercepting a circular fracture of finite
conductivity in a fractal reservoir considering typical (constant) and anomalous
diffusions, for selected values of the (fractal) conductivity index (6). (constant
rate case)
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Comparisson Between the Pressure Transient Performance Behavior of a Rectangular
Finite Conductivity Fracture in a Fractal Reservoir considering Typical and Anomalous Diffusion
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Figure 342 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative profiles for a horizontal well intercepting a rectangular fracture of
finite conductivity in a fractal reservoir considering typical (constant) and
anomalous diffusions, for selected values of the (fractal) conductivity index (6).
(constant rate case)

The constant rate behaviors shown in Figs. 3.41 and 3.42 imply by induction that at early and
intermediate-transient times the typical (constant) diffusion cases yield higher flowrates and have
lower flowrates at late-intermediate times (see Figs. 3.43 and 3.44). This behavior is confirmed
as shown in Figs. 3.43 and 3.44, respectively — and it is important to note that the reservoir-
transition features (occurring from 102 < fp < 10') are less salient in all of the anomalous diffusion

casces.
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Dimensionless Pressure,p,p
Dimensionless Pressure Derivative, dp,/dIntp

Comparisson Between the Rate Transient Performance Behavior of a Circular
Finite Conductivity Fracture in a Fractal Reservoir considering Typical and Anomalous Diffusion
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Figure 3.43 — Log-log plot of the dimensionless rate and dimensionless rate derivative profiles
for a horizontal well intercepting a circular fracture of finite conductivity in a
fractal reservoir considering typical (constant) and anomalous diffusions, for
selected values of the (fractal) conductivity index (6). (constant pressure case)
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Figure 3.44 — Log-log plot of the dimensionless rate and dimensionless rate derivative profiles

for a horizontal well intercepting a rectangular fracture of finite conductivity in
a fractal reservoir considering typical (constant) and anomalous diffusions, for
selected values of the (fractal) conductivity index (6). (constant pressure case)

76



In our final comparison of dimensionless cumulative production profiles (see Figs. 3.45 and 3.46),
we note that in terms of the ultimate cumulative production, the anomalous diffusion phenomenon
does "improve" the hydrocarbon "recovery" in a fractal reservoir — however; this observation
may not be general and should only be considered as "guidance." Obviously, the selection of a
model (any model) must be validated based on diagnostic comparison with the actual performance
data and all geological, completion, and reservoir data should also be incorporated into the model

selection process.

Comparisson Between the Cumulative Production of a Circular Finite Conductivity Fracture
in a Fractal Reservoir considering Typical and Anomalous Diffusion

10* 10° 10” 10" 10° 10' 10° 10° 10° ,
103E—I'I'I'I'HI1 e B L B B i B 10
e Legend: E
. (—) N, (Typical Diffusion) 4 ]
e (= =) Npp (Anomalous Diffusion) W5 _
.
10° .4 10?
E d E
s [ E
2 - ]
10' E= 3 10'
’ 0
10 10
O c 4 3
= ” -
= s -
4
4
1 AW, .
10 E 7 ? 10
4
[= E 7 E
- o=1 47 ]
% 10°
/' Parameters:
’ 6
‘ 7 =10 hp=2
/ o=0s Fop=10 D;=25
’ r,p=0.003 Cp=0

PEETITT BRI IR BEPEETTTT EEEETTTT BT BT 0°

107 10" 10° 10’ 10° 10° 10

Dimensionless Time, tp

Figure 3.45 — Log-log plot of the dimensionless cumulative production profiles for a horizontal
well intercepting a circular fracture of finite conductivity in a fractal reservoir
considering typical (constant) and anomalous diffusions, for selected values of
the (fractal) conductivity index (6). (constant pressure case)
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Comparisson Between the Cumulative Production of a Rectangular
Finite Conductivity Fracture in a Fractal Reservoir considering Typical and Anomalous Diffusion
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Figure 3.46 — Log-log plot of the dimensionless cumulative production profiles for a horizontal
well intercepting a rectangular fracture of finite conductivity in a fractal reservoir
considering typical (constant) and anomalous diffusions, for selected values of
the (fractal) conductivity index (6). (constant pressure case).

3.4. Summary

Ultimately, our goal is to demonstrate the viability of the fractal reservoir concept for the transient
pressure and rate behavior of unconventional reservoirs. In this chapter we presented a simplified
case considers a horizontal well intersecting a single hydraulic fracture, and while this concept can
be generalized to consider an arbitrary number of fractures, the purpose of this simplified case is
to establish the basis and feasibility of the concept from the standpoint of comparative behavior
and diagnostic analysis functions. The extension to horizontal wells intercepting multiple

hydraulic fractures is presented in Chapter I'V.
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CHAPTER 1V
PRESSURE AND RATE-TRANSIENT ANALYSIS OF HORIZONTAL WELLS
INTERCEPTING MULTIPLE HYDRAULIC FRACTURES WITHIN A FRACTAL

RESERVOIR?

In this chapter, we present the procedure to apply the principle of superposition in space to extend
the models presented in Chapter III to the case of a "multi-fractured horizontal well" (or MFHW)
within a fractal reservoir. Additionally, we use the technique of image wells to create vertical

boundaries that represent a fractal reservoir with finite thickness.

4.1. Development of the Model

Analogous to Larsen et al. (1994), we have used the principle of superposition in space to model
the transient performance behavior of a MFHW in a fractal reservoir. We have considered two
scenarios: (1) an unbounded fractal reservoir (infinite thickness) and (2) a fractal reservoir

vertically bounded by two parallel boundaries (i.e., a finite thickness reser-voir).

The principle of superposition in space takes into account the pressure effects of the individual
elements (i.e., the hydraulic fractures and boundaries) which define a system — specifically a

MFHW within a fractal reservoir with infinite or finite thickness. In general, the pressure at the

2 Reprinted with permission from "Pressure and Rate Transient Behavior of a Horizontal Well Intercepting Multiple
Hydraulic Fractures within a Fractal Reservoir " by Valdes-Perez, A. R., Larsen, L., and Blasingame, T.A., 2018.
Unconventional Resources Technology Conference (URTeC) Proceedings, URTeC-2902854. Copyright [2018] by
Society of Petroleum Engineers, Inc.
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wellbore for a system defined by a horizontal well intercepting multiple vertical fractures, along a

length Lp, in a reservoir with boundaries can be defined by:

PwD.cr (ED) = DHE T PBOU s++vvvevenvevveneeresseeeeeeesessessessese et st sbe s s essesesse s e s esseseesessens 4.1)

where pnr is the sum of the dimensionless drop of pressure of the hydraulic fractures and pgou is
the sum of the dimensionless drop of pressure of the Np boundaries. The sum of the dimensionless

drop of pressure of the hydraulic fractures (psr) is mathematically defined as:

Ny
PHF = 'Zl PAD,er (it D) > eeeese e, 4.2)

=

where Nris the number of hydraulic fractures and d; is the distance from a defined observation
point to the i-hydraulic fracture. In this work, we have assumed evenly spaced hydraulic fractures
by a distance Fy between fractures (see Fig. 4.1a). The shape and orientation of the hydraulic

fractures can be either circular and transverse or rectangular and longitudinal along the wellbore.

The dimensionless drop of pressure of each hydraulic fracture is computed using the models
presented in Chapter III (Eq. 3.21 for circular fractures and Eq. 3.22 for rectangular fractures).
Therefore, all the assumptions and dimensionless variables established in Chapter III are
applicable in this chapter. To use such models in the case of a MFHW, we consider that the well

produces only through the hydraulic fractures at a rate equal to:

where ¢; is the total flowrate (production) of the well. Eq. 4.3 implies that the inner boundary

condition (i.e., the "rate per fracture") is defined as the total flowrate (¢;) divided by the number
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of fractures (Ny). For the case of a reservoir with infinite thickness, the dimensionless drop of
pressure of the boundaries (psov) is zero. For the finite thickness case, we have assumed that the
horizontal well is drilled along the center of the formation, which is vertically delimitated by two
parallel and impermeable boundaries (see Fig. 4.1b). Using the method of image wells, the
dimensionless pressure drop at the boundaries (pzouv) is:

PBOU :z.zlpD,cr(lDivtD)a ................................................................................................... (44)

1=

where Ip; is the distance from the wellbore to the vertical axis of the i-image well. Given that the

well is placed in a fractal reservoir, the dimensionless pressure of the image wells is:

th%—ﬁ]/z lg)mz] . .
o Ups>tp) = r| v, where v=[1- 2]) e 4.5
Pp.er(p>tp) 200+ 211 ] V[9+2]2fD ( [1-41/16+2]) (4.5)
a b.
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Figure 4.1 — a. Schematics of a horizontal well intercepting evenly spaced multiple fractures,
and b. Schematics of the use of image wells to model a horizontal well placed in
the center of a formation vertically bounded by two impermeable boundaries.

For these models, the wellbore storage effects can be included by applying the Laplace transform
to Eq. 4.1 and subsequently, using the scheme defined in Chapter I. The inverse Laplace transform

for the cases presented in this chapter is numerically made using the Stehfest algorithm.
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4.2. Results and Discussion

Larsen et al. (1994) and Raghavan (1997) showed that a MFHW behaves as an equivalent system
of a well intercepting a single hydraulic fracture. We have constructed cases similar to those
presented by Larsen et al. (1994) and generated type curves for the resulting pressure and rate-
transient performance behaviors. We developed these type curves by varying the number of
fractures (Ny) for fixed values of the conductivity of the fractures (F#:p) and the fractal parameters

(Drand 6). We present these type curves in Appendix G.

We analyzed the influence of the number of fractures (Ny) in the pressure and rate transient
performance behaviors of a MFHW in a fractal reservoir and we concluded that: (1) the pressure
and rate-transient signatures of a horizontal well intercepting multiple hydraulic fractures in a
fractal reservoir can behave as an equivalent system created by a horizontal well intercepting a
single hydraulic fracture, and (2) the spacing of the fractures can create a flow period that
corresponds to the interference of flow between hydraulic fractures. In short, the influence of the
number of fractures (Ny) and the spacing between the fractures (F§) in the pressure transient
performance behavior of a horizontal well intercepting multiple hydraulic fractures in a fractal

reservoir is analogous to the one studied by Larsen et al. (1994) for a 3D (spherical) reservoir.

Periods of Flow of Horizontal Wells Intercepting Multiple Hydraulic Fractures in a Fractal

Reservoir

For the analyses presented in this section, we selected cases with a short spacing between the
hydraulic fractures (Fy =5/8) and considered that all the fractures in the system have the same
characteristics, i.e., they have the same dimensionless fracture conductivity (F.p) and geometry.
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We studied three scenarios of the dimensionless conductivity and hydraulic diffusivity of the
fractures: (1) high (Fep =1000 and 7p=10°%), (2) intermediate (F.p =10 and 7p=10°), and (3) low

(Fep =1 and np=10%).

In Fig. 4.3 we present the pressure transient behavior of a horizontal well intercepting multiple
circular transverse vertical fractures in a fractal reservoir for selected values of the conductivity
of the fractures (F.p), considering infinite or finite thickness. We present the analogous case for
rectangular longitudinal fractures in Fig. 4.4. In these plots, we have identified the characteristic
three period of flows for a well intercepting hydraulic fractures: (1) fracture flow at early times,
(2) fracture-reservoir interaction flow at intermediate times, and (3) pseudo-fractal flow at late-
times. The fracture-reservoir interaction flow is divided into two sub-periods: Early Radial-Fractal
(ERF) and Late Radial-Fractal (LRF) occur for circular fractures and Early Linear-Fractal (ELF)
and Late Linear-Fractal (LLF) occur for rectangular fractures. The ERF and ELF sub-periods are
analogous "bilinear flow" which exists for the case of finite-conductivity fractures in a

homogenous, infinite-acting reservoir.

We observed that the effect of interference between fractures is more significant for wells
intercepting multiple /ow conductivity fractures. We conclude from the cases with hydraulic
fractures having low Fep-values (presented in Figs. 4.3 and 4.4) that these cases exhibit additional
sub-periods of flow during intermediate times compared to cases with high F.p-values. This
behavior is clear for the case with circular fractures in a reservoir with infinite thickness (i.e., Fig.
4.3), where the pressure derivative signature of the ERF sub-period flow is followed by a power-
law (straight-line with slope approximately of 1:3) in the range 102 <tp<10°. We also observed
this phenomenon for the case with rectangular fractures case (i.e., Fig. 4.4) — however; we noted
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that the interference between fractures for this case is more subtle, exhibiting a smooth transition

from the ELF sub-period into the pseudo-fractal flow period.
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Figure 4.2 — Schematics of a horizontal well intercepting multiple hydraulic fractures in a
fractal reservoir with infinite thickness: a. circular transverse, and b. rectangular
longitudinal hydraulic fractures.

Sensitivity Analysis of the Fracture Conductivity on the Pressure Transient Performance Behavior
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir
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Figure 4.3 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting multiple circular
transverse hydraulic fractures in a fractal reservoir with Dy =2.5 and =0 for
selected values of the Fracture Conductivity (Fep).
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Sensitivity Analysis of the Fracture Conductivity on the Pressure Transient Performance Behavior
of a Horizontal Well Intercepting Multiple Rectangular Longitudinal Fractures in a Fractal Reservoir
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Figure 4.4 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting multiple rectangular
longitudinal hydraulic fractures in a fractal reservoir with Dy =2.5 and =0 for
selected values of the Fracture Conductivity (Fep).

The pressure derivative function for the F.p=1 case given in Fig. 4.3 shows numerical instability
at tp>10°, which is caused by the computation of extremely small arguments of the Modified
Bessel Functions in the analytical solution for the circular fracture, and the subsequent numerical
solution of the system of equations. This computational instability is systematic, and we have also
observed it in the constant-pressure solutions — there may be a mechanism to eliminate/mitigate

this instability, but for the purpose of the present work we will note this as an anomaly.

At late-times (pseudo-fractal flow), we noted that the inclusion of parallel impermeable boundaries
in a fractal reservoir creates power-law signatures in the pressure and pressure derivative functions
(Figs. 4.3 and 4.4). As might be expected, the slopes of these power-law signatures are related to
the fractal parameters of the reservoir (v and Dy) used in Eq. 4.5. Although different combinations

of the Drand G-values can yield the same value of v, the power-law behavior (specifically, the
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slope of the straight-line in the log-log plot) for the pseudo-fractal flow period depends on the
combination of these parameters. We ran several combinations of these parameters and found
linear correlations between the fractal parameters and the slope of the pressure derivative function
for a fractal reservoir bounded by two parallel impermeable boundaries and present these
correlations in Fig. 4.5. Except for the upper end of the trend for the D=3 case shown in Fig. 4.5,
the slope of the pressure derivative function for a fractal reservoir vertically bounded by parallel

impermeable boundaries can be generated by the equation:

1t Y e, (4.6)
Dy

Correlations Between the Fractal Parameters and the Slope of Pressure Derivative Function

for a Well at the Center of a Fractal Reservoir by two Parallel
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Figure 4.5 — Correlation between the grouping parameter (v) and the slope of the pressure

derivative of a fractal reservoir delimitated by two impermeable boundaries.
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Influence of the Fractal Parameters in the Pressure and Rate Transient Performance Behaviors

In Chapter III, we showed that a horizontal well intercepting a single hydraulic fracture in a fractal
reservoir with low fractal dimension (Dy) and/or higher conductivity index (6) yields lower values
of the dimensionless pressure drop during early and intermediate times, compared to a well with
the same conditions but placed in a reservoir with higher Dy and/or low @-values. This trend is
reversed at late times, i.e., the drop of pressure is lower in a well intercepting a hydraulic fracture
in a fractal reservoir with high Dy and/or low 6-values. Consequently, the higher flow rates at
early and intermediate times are observed in wells intercepting a single hydraulic fracture in a
fractal reservoir with a low fractal dimension (Dy) and/or a high conductivity index () the trend is
also reversed at late times. As a summary statement, we expect to observe similar behavior for

the multi-fracture horizontal well (MHFW) cases considered in this Chapter.

Sensitivity to the Fractal Dimension (D) — Circular Hydraulic Fractures

Figure 4.6 shows the impact of the fractal dimension (Dy) on the pressure and pressure transient
derivative functions for a horizontal well intercepting multiple (9) hydraulic circular transverse
fractures with high-conductivity. In this plot, we observe that the higher Dsvalues yield a higher
dimensionless pressure drop during early and intermediate times, whereas at late times the pressure
drop is lower for high Drvalues. Consequently, lower Dsvalues yield higher flowrates (and
cumulative production) at early and intermediate times and lower flowrates (and cumulative
production) at late times (see Figs. 4.7 and 4.8). The change in these trends is defined by an
intersection/inflection point of all the dimensionless pressure curves located at 7p =~ 2 in Fig. 4.6.

We have also observed intersection points in the pressure derivative (zp = 0.5), in the dimensionless
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rate (¢p = 0.07 of Fig. 4.7), and in the dimensionless cumulative production curves (¢p = 1.5 of Fig.

48).

Sensitivity Analysis of the Fractal Dimension on the Pressure Transient Performance Behavior
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness
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Figure 4.6 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting multiple circular
transverse hydraulic fractures with high conductivity in a fractal reservoir for
selected values of the fractal dimension (Dy), assuming infinite thickness.
(constant-rate case)

Sensitivity Analysis of the Fractal Dimension on the Rate Transient Performance Behavior
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness
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Figure 4.7 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting multiple transverse hydraulic
fractures with high conductivity in a fractal reservoir for selected values of the
fractal dimension (Dy), assuming infinite thickness. (constant-pressure case)
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Sensitivity Analysis of the Fractal Di ion on the Rate Ct ive Pr
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness

10° 10° 10" 10° 107 10" 10° 10" 10° 10° 10*

T T TTIIT T |||||||' T T TTTI T T TTTI T T TTTIm T TTTIIT T T TTTI T T TTTI T T TTT T 1TATTTH 10
Parameters: 3
o=10° hp=2 4

ryp=0.001  F.5=1000

o,

10

Ne=9 6=0
10° Lo=5 = 10°
s 0 =5 10°
; E // 3
: L D,=1. ]
10'E " = 10"
k E | D=25 E
e L ]
10° £ = 10"
10" E / 5 10
" j// EL
10\7 IR IR L IR " IR ; 1 |||I|||0 1 I|||||I‘ 1 |||||||2 1 |||||||3 L1 410\3
10° 10° 10* 10° 10° 10 10 10 10 10 10
Dimensionless Time, t,
Figure 4.8 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting multiple transverse hydraulic fractures with high
conductivity in a fractal reservoir for selected values of the fractal dimension
(Dy), assuming infinite thickness. (constant-pressure case)

Based on the signatures of the pressure derivatives of the cases presented in Fig. 4.6, we
summarized the start and the end of their periods of flow in Table 1. In these cases, the pressure
derivative functions provide constant values during "Period 1," which is characteristic of the radial
(fracture) flow. The constant value of the pressure derivative is also lower as the Dgvalue
increases. The three cases presented in Fig. 4.6 for "Period 3" yield straight-lines in the pressure
derivative function with slope equal to the v-parameter, which is characteristic of the pseudo-
fractal flow regime. During "Period 2," the pressure derivative curves show power-law behaviors
that correspond to the LRF sub-period of flow and are followed by a prolonged transition period
(approximately two log-cycles), where this transition period is the result of the interference

between hydraulic fractures. For D= 2.5, the LRF sub-period yields a straight-line with a slope of
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3:4, whereas the slope for D=2 is slightly below 1 and above 1 (5:4) for D~=1.5. We consider that
the fractional values of the slopes that approach unity (exhibited by the LRF sub-periods for Dy=2
and Ds=1.5) are the result of the combined effect of the fractal nature of the reservoir and the finite

extent of the hydraulic fractures.

We conclude that horizontal wells intercepting multiple fractures in fractal reservoir with low
fractal dimension, Dy (consequently low v-values) (1) show shorter fracture flow periods and LRF

sub-periods and (2) yield steeper straight-lines in the pressure derivative during "Period 2."

The dimensionless flowrate function for D=1.5 presented in Fig. 4.7 shows a disruptive trend
within the period of dimensionless time defined by 10! and 10'. We associate this erratic behavior
with the computation of the uniform flux solution using the "Fractal Point Source" function for v-

values less than 2 (see Appendix H).

Table 4.1 — Definition of flow periods, based on the pressure derivative, for the sensitivity
analysis of the fractal dimension (Dy) on the pressure transient performance
behavior for a horizontal well intercepting multiple circular transverse hydraulic

fractures.
Dy v Period 1 Period 2 Period 3
2.5 -0.25 tp<2x10°° 2x10#<tp<4x10% (LRF) 2x10%<tp
2.0 0 tp< 6x10 2x103<tp<3x10% (LRF) 2x10%<tp
1.5 0.25 tp< 2x1073 5x103<tp<2x102 (LRF) 2x10%<tp

Sensitivity to the Conductivity Index (8) — Circular Fractures

Figure 4.9 presents the influence of the conductivity index () on the pressure and pressure
transient derivative functions for a horizontal well intercepting multiple circular transverse vertical
fractures. Analogous to the sensitivity analysis for the fractal dimension (Dy), we observe an

intersection/inflection point of the dimensionless pressure and pressure derivative curves located
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at tp = 3 and #p = 0.7, respectively. Similarly, the constant-pressure solutions also show such
intersection points. Considering the rate-transient performance behavior shown in Fig. 4.10 this
feature is located at tp = 0.5, whereas for the dimensionless cumulative production shown in Fig.
4.11 this feature is observed at /p = 2, where it is logical that such features would be "delayed" for

the cumulative production case considering the nature of a cumulative function.

For dimensionless times (¢p) greater than 3, the systems with higher € -values (consequently, high
v-values) yield larger dimensionless pressure drops. This implies that for dimensionless times
greater than 0.5, the systems with higher € -values yield lower flowrates. These tendencies are

opposite for 1p<3 and #p<0.5 in regard to the pressure and the flowrate, respectively.

ity Analysis of the C ivity Index on the Pressure Transient Performance Behavior

of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness
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Figure 4.9 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting multiple transverse
hydraulic fractures with high conductivity in a fractal reservoir for selected
values of the conductivity index (), assuming infinite thickness. (constant-rate
case)
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Sensitivity Analysis of the Conductivity Index on the Rate Transient Performance Behavior
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness
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Figure 4.10 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting multiple transverse hydraulic
fractures with high conductivity in a fractal reservoir for selected values of the
conductivity index (6), assuming infinite thickness. (constant-pressure case)

Sensitivity Analysis of the Conductivity Index on the Rate Cumulative Production
of a Horizontal Well Intercepting Multiple Circular Transverse Fractures in a Fractal Reservoir Assuming Infinite Thickness
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Figure4.11 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting multiple transverse hydraulic fractures with high
conductivity in a fractal reservoir for selected values of the conductivity index
(0), assuming infinite thickness. (constant-pressure case)
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As in the previous analyses, we have identified the flow periods in Fig. 4.9, using the pressure
derivative functions and summed them up in Table 4.2. In this case, the pressure derivative for
all cases collapse into a single trend at early times (depicting radial (fracture) flow). The duration
of the fracture flow is longer for higher 6-values (higher v-values). After the fracture flow period,
we observe the appearance of the LRF sub-period, which yields straight-lines with slopes of 3:4,
4:5, and 6:7 for G-values of 0, 0.5 and 1.3, respectively. At late times (Period 3), the signatures of
the pressure derivative functions yield straight-lines on a log-log scale with slopes equal to the v-
parameter. Similar to the sensitivity analyses presented for the fractal dimension (Dy), we
identified a transition period between the LRF and the pseudo-fractal flow for all of the cases which

illustrate pressure interference between the hydraulic fractures.

In general, we note that the conductivity index (#) has a similar influence on the pressure transient
performance behavior in horizontal wells intercepting multiple fractures in a fractal reservoir as
the fractal dimension (D) — that is, the systems with higher &values (consequently lower v-
values) (1) show longer fracture flow periods and shorter LRF sub-periods and (2) yield steeper
straight-lines in the pressure derivative during "Period 2." However, we also observe that the
behavioral features caused by the conductivity index (6) are less dramatic than those caused by the

fractal dimension (Dy).
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Table 4.2 — Definition of flow periods, based on the pressure derivative, for the sensitivity
analysis of the conductivity index (6) on the pressure transient performance
behavior for a horizontal well intercepting multiple circular transverse hydraulic

fractures.
[ v Period 1 Period 2 Period 3
0 -0.25 tp<2x1073 2x10<¢p<4x1072 (LRF) 2x10%<tp
0.5 0 tp<1x10* 3x10"<#p<1x10- (LRF) 2x10%<tp
1.3 0.25 tp<2x10* 5x10<#p<8x10- (LRF) 2x10%<tp

Sensitivity to the Fractal Dimension (Dy) — Rectangular Hydraulic Fractures

In Fig. 4.12, we present the sensitivity analysis of the fractal dimension (Dy) in the dimensionless
pressure and dimensionless pressure derivative functions for a horizontal well intercepting
multiple (9) rectangular longitudinal hydraulic fractures of high fracture conductivity. Similar to
the cases for a horizontal well intercepting multiple circular transverse fractures, we observe an
intersection/inflection point of the dimensionless pressure curves located at #p ~ 2 and at tp = 0.5
in the dimensionless pressure derivative curves. For tp <2, the high Dr-values (i.e., low v-values)
yield a higher dimensionless pressure drop, which results in lower flowrates (see Fig. 4.13). These
trends are reversed at ¢p-values above the intersection point, i.e., lower pressure drop and higher
flowrates for higher Dy -values —consequently, lower v-values — for #p > 2. In the case of the
cumulative production (Fig. 4.14), we observe three intersection points instead of one: (1) at /p =
1 between the Dy -curves of 2 and 2.5, (2) at #p = 7 between the Dy -curves of 2.5 and 1.5, and (3)

at tp = 15 between the Dy-curves of 1.5 and 2.
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Figure 4.12
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Figure 4.13
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— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting multiple longitudinal
hydraulic fractures with high conductivity in a fractal reservoir for selected
values of the fractal dimension (Dy), assuming infinite thickness. (constant-rate
case)
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Figure 4.14 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting multiple longitudinal hydraulic fractures with high
conductivity in a fractal reservoir for selected values of the fractal dimension

(Dy), assuming infinite thickness. (constant-pressure case)

In Table 4.3 we present a summary of the flow periods that we identified in the signatures of the
dimensionless pressure derivative functions for the cases presented in Fig. 4.12. At late times, the
pseudo-fractal flow period behaves in the same manner as in the circular fracture cases — i.e., the
dimensionless pressure derivative functions yield straight lines with slopes equal to their
corresponding v-value in the log-log plot. For the case of "Period 2," for Dy=2.5 we observe two
power-law trends with slopes of approximately of 2:5 and 3:5 which correspond to the ELF and
LLF sub-periods. Similarly, during "Period 2," for Dy=2, we observe a half-slope behavior during

the ELF sub-period and a power-law behavior with slope slightly below 1 during the LLF sub-

period.
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We also observed that, for the case defined by Dr = 1.5, a power-law trend with a slope
approximately of 2:3 that corresponds to the ELF sub-period is observed. We could not
(specifically) identify the LLF sub-period for the Dy =1.5 case — instead, we observed that the
dimensionless pressure derivative function is higher than the dimensionless pressure function in
the #p range defined by 0.03<#p<1 (which is a somewhat anomalous behavior). Similar to the
circular transverse fractures case, this case has an anomalous flowrate function (Fig. 4.13) in the
tp range defined by 102<tp<10? - specifically, zero flowrates are observed in this region. The
behavior of the flowrate functions in Fig. 4.13 leads to observation of the "wavy" and "flat"

portions observed in the dimensionless cumulative production (Fig. 4.14).

Table 4.3 — Definition of flow periods, based on the pressure derivative, for the sensitivity
analysis of the fractal dimension (Dy) on the pressure transient performance
behavior for a horizontal well intercepting multiple rectangular longitudinal
hydraulic fractures.

Dy v Period 1 Period 2 Period 3
1x10°°<¢p<2x107 (ELF)

2.5 -0.25 — 2x10%<tp
1x10-3<¢p<1x10° (LLF)
1x10°°<¢p<5x10* (ELF)

2.0 0 — 2x10%<tp

1x10°°<¢p<5x10"! (LLF)

1.5 0.25 — 1x10°<¢p<3x107 (ELF) 2x10%<tp

Sensitivity to the Conductivity Index (&) — Rectangular Fractures

The sensitivity analyses considering variations in the conductivity index (6) on the pressure and
rate-transient performance behaviors are shown in Figs. 4.15 and 4.16, respectively. Again, we
observed an intersection point for the dimensionless pressure curves at #p = 1 and at #p = 0.2 in the
dimensionless pressure derivative curves (Fig. 4.15). However, the dimensionless flowrate (Fig.

4.16) and the dimensionless cumulative production (Fig. 4.17) do have exhibit "crossovers," but
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not a unique intersection point. Although we do not observe a unique intersection point in the rate-
transient performance behavior (Fig. 4.16) and the dimensionless cumulative production (Fig.
4.17), the influence of the conductivity index () is consistent with the circular transverse vertical
fractures case. This means that the higher the G-value, the higher flow dimensionless pressure
drop and the lower the dimensionless flowrate at early and inter-mediate times and the trend

reverses at late times.
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Figure 4.15 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting multiple longitudinal
hydraulic fractures with high conductivity in a fractal reservoir for selected
values of the conductivity index (6), assuming infinite thickness. (constant-rate
case)
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Figure 4.16 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting multiple longitudinal hydraulic
fractures with high conductivity in a fractal reservoir for selected values of the
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Figure 4.17 — Log-log plot of the dimensionless cumulative production function for a

horizontal well intercepting multiple longitudinal hydraulic fractures with high
conductivity in a fractal reservoir for selected values of the conductivity index
(0), assuming infinite thickness. (constant-pressure case)
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As in the previous analyses, we identified the periods of flow using the pressure derivative function
and summarized these results in Table 4.4. The ELF and the LLF sub-periods are evident and
exhibit power-law behaviors (i.e., straight-lines) on the log-log plot of the dimensionless pressure
derivative functions for all cases (Fig. 4.15). The ELF sub-periods show straight-lines with slopes

of 3:7, 1:3, and 3:5 for #-values of 0.4, 1 and 4, respectively. For the LLF sub-periods, the straight-

lines have slopes of 4:7, 3:5 and 7:8, for the values of the conductivity index (&) of 0.4, 1 and 4.

Table 4.4 — Definition of flow periods, based on the pressure derivative, for the sensitivity
analysis of the conductivity index (6) on the pressure transient performance
behavior for a horizontal well intercepting multiple rectangular longitudinal
hydraulic fractures.

6 1% Period 1 Period 2 Period 3

1x10°°<tp<4x107® (ELF)
0.4 -0.25 — 2x10'<tp
5x104<tp<7x10! (LLF)

1x10°<tp<1x10" (ELF)

1 0 — 4x10'<tp
1x10<tp<1x10" (LLF)
3x10%<¢p<2x10** (ELF)

4 0.5 3x10%<1p 10%<tp

1x103<tp<1x10°(LLF)

4.3. Summary

In this chapter, we used the principle of superposition in space to extend the models developed in
Chapter I1II for a horizontal well intercepting a single finite conductivity fracture to the so-called
"multi-fractured well" case. We have observed that our solutions based on the "fractal point
source" approach yield unexpected behaviors in the pressure and rate-transient performance
behaviors at intermediate times when v>0. In Appendix H we present analyses of the application
of the traditional line/point source approaches for fractal reservoirs and introduce the concept of

fractional integrals as an alternative to model the pressure and rate-transient behavior in fractured
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wells in fractal reservoirs. We applied the image well method to model impermeable parallel

vertical boundaries in a fractal reservoir.
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CHAPTER V
PRESSURE AND RATE-TRANSIENT BEHAVIOR OF DOUBLE POROSITY
RESERVOIR WITH TRANSIENT INTERPOROSITY TRANSFER WITH FRACTAL

MATRIX BLOCKS?

In this chapter we present double porosity models considering matrix blocks with fractal geometry
and fracture networks with either radial or fractal fracture networks. The recent development of
anomalous diffusion models has opened the possibility of adapting double porosity models to
estimate reservoir (and related) parameters for unconventional reservoirs. The primary objective
of the development of these models is to provide physical explanations for the anomalous diffusion

phenomenon.

Traditionally, fractal diffusivity models have been used to model highly heterogenous reservoirs
(e.g., NFRs and shale reservoirs). In double porosity systems (fractures and matrix blocks), such
models are used to describe the flow of fluids within the network of natural fractures (e.g., Chang
et al., 1990, Olarewaju, 1996 and Valdes-Perez, 2013). To the best of our knowledge, no attempt
to apply the fractal theory to model the flow from the matrix blocks to the fractures has been made.
Given that the porosity of the matrix blocks in shale oil/gas reservoirs is a combination of multiple
organic and inorganic porosities, we believe that it is appropriate (in terms of geological evidence)

to model the matrix blocks as fractal objects.

3 Reprinted with permission from "Pressure-Transient Behavior of Double Porosity Reservoirs with Transient
Interporosity Transfer with Fractal Matrix Blocks " by Valdes-Perez, and Blasingame, T.A., 2018. SPE Europec
featured at 80" EAGE Conference and Exhbition Proceedings, SPE-190841-MS. Copyright [2018] by Society of
Petroleum Engineers, Inc.
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5.1. Theory of the Double Porosity Models with Transient Interporosity Transfer

The use of double porosity models to depict the pressure-transient behavior of NFRs has been
studied since the 1960s. These models idealize reservoirs with multiple porous media (e.g.,
micro/nano fractures, micro/nano vugs, matrix blocks, etc.) as double porosity reservoirs (fracture
network and matrix blocks). The double porosity models can be classified as transient or
pseudosteady-state inteporosity transfer models. In this chapter, we will focus only on the transient

interporosity transfer condition.

In 1976, de Swaan presented a double porosity analytical model with transient interporosity
transfer. For this model, de Swaan established a radial fracture network and considered either
slabs or spherical matrix blocks. The transient interporosity transfer was modeled with a
convolution integral of the flux from the matrix blocks weighted by the derivative of the pressure
in the radial network of fractures with respect to time. The flux of the matrix blocks was
determined by solving the diffusivity equation for either linear or spherical systems considering

constant-pressure at the matrix-fracture interface (see Appendix E for detailed derivation).

The periods of flow exhibited by the double porosity model with transient interporosity transfer

conditions are (see Fig. 5.1):

e Period 1 — (fractal fracture network flow): This period exhibits a flat slope (radial flow) in
the pressure derivative function that represents that the flow is dominated by

the properties of the radial fracture network.

e Period 2 — (interaction between the fractal fracture network and the matrix blocks): This

period can be subdivided into three sub-periods: (1) a transition sub-period
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dominated by the early interaction of the matrix blocks, (2) a pseudoradial flow,
and (3) a transition sub-period, dominated by the closed boundaries of the
matrix blocks.

e Period 3 — (single porosity fractal reservoir flow): In this period of flow, the double
porosity reservoir has achieved equilibrium and behaves as a single porosity

reservoir. However, this period is dominated by the geometry of the fracture

Pressure-Transient Behavior of a Double Porosity Reservoir with Transient Interporosity Transfer considering Radial Fracture Network
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Figure 5.1 — Schematics of the pressure transient performance behavior of a double porosity

reservoir considering slab matrix blocks, and spherical matrix blocks.

In 1982, three independent research groups modified de Swaan's model and obtained asymptotic
solutions in the real domain to be used for well-test analysis (Cinco-Ley et al., Serra et al., and
Streltsova). In this work, we will use the model presented by Cinco-Ley ef al. (1982) to include
the effects of a fractal matrix. A summary of the development of this model is presented in

Appendix E.

5.2. Models Assumptions

In this chapter, we present models that consider two porous media: (1) matrix blocks and (2) a
fracture network. All the models consider the matrix blocks to be fractal, whereas the fracture
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network is considered to be either radial or fractal. The assumptions of the models are summarized

in Table 5.1.
Table 5.1 — Assumptions used to develop the proposed double porosity reservoir models
Medium Assumptions
e Flow to the wellbore occurs only through the fracture network (radial or fractal).
e Pressure-squared gradients are negligible.
All e Uniform initial pressure, pi
e Single slightly-compressible fluid flow with constant compressibility, c,, and constant viscosity,
U

e Single size of the matrix blocks of Dsns-dimension

e Flow obeys modified Darcy's Law for fractal systems of &..-conductivity index. This implies
that both porosity and permeability varies according to power law functions. Reference matrix
porosity, doma, and matrix permeability, koma, are considered.

e The matrix blocks have constant compressibility, cma.

e Unbounded radial network

Radial fracture @ Flow obeys Darcy's Law.

network e The radial fracture network has constant properties: compressibility, ¢, permeability, km», and

porosity, ¢n.
e Unbounded fractal fracture network of D~dimension

Fractal matrix
blocks

t}: ractal e Flow obeys modified Darcy's Law for fractal systems of &-conductivity index with reference
racture . . .
network fractured bulk porosity, @g», and matrix of the fractured bulk, ko, are considered.

e The fractal fracture network has constant compressibility, cs.

5.3. Development of the Models

Fluid Transfer Function considering Fractal Matrix Blocks

The fluid transfer function from fractal matrix blocks to the fracture network, F(#map, Aman, D), 18
defined by the geometry and properties of the matrix blocks. To derive this function, we have
used an analogous procedure to the one presented by de Swaan (1976) for repetitive elements of
matrix blocks (see Appendix E for details). We have investigated two scenarios: (1) closed matrix

blocks and (2) infinite-acting matrix blocks. For the closed matrix blocks case, this function is

defined by:

Oy 12
_ 1 hap | - 1 TV T = vy ]I"ma —l[éz]_szma ~1l€]
F(map shmap D) = /—ﬂmaD { 5 } L \/; [ 2Kvma [T+ TV L= Vg ]]vma (] ,(5.1)
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where V= 1-Bna]/[ Onat2], and:

0 21/2
(;:L{hm_w}[ ma+2] |_u (5.2)
Oma +2| 2 NmaD

Pna 1s the spatial dimension of the matrix. It is defined as Sus =Dfina-Ona -1. The expression given

by Eq. 5.1 applies for viua # 0. If viue = 0, the following expression should be used:

1 {hmapr’"“/z L—l[ 1 Ivm_l[g’]]
2

F(’7 Dah DJD)Z - T
as Jmab Ju 1y, [¢]

Due to the extremely low permeability of the matrix blocks in shale oil/gas reservoirs, we modeled
the behavior of the matrix blocks as infinite-acting (fully transient) media. The fluid transfer

function for infinite-acting matrix blocks is:

G /2
1 |:hmaD } ma L—l
2

F(MmaD>hmaD D) = -
NmaD

L Kvma ~1[¢]
Vi K, [€]

The dimensionless variables for the models presented in this chapter are summarized in Table 5.2.

Asymptotic behaviors

As pointed out by Cinco-Ley et al. (1982), the flow from the matrix blocks to the fracture network
is linear at early and intermediate times (Periods 1 and 2) regardless of the geometry of the matrix
block. During these periods of flow, the behavior of the fluid transfer function for closed and
infinite-acting matrix blocks are the same. Therefore, the fluid transfer function for all cases at

early and intermediate times can be simplified to:
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1 hmaD Oma /2 -1/2
F(ﬂmaD’hmaDatD):ﬁ - (5.5)
'maD

2
At late times, the fluid transfer function for the infinite-acting matrix blocks case can be simplified

to:
1-2v -f
[0,,, +2] ma [ j ma _
F(ilmapshmap-p) = —4——— m;D ED % e (5.6)
Tma ap
Table 5.2 — Dimensionless variables for the proposed double porosity reservoir models
Dlmen.smnless Definition for the radial fracture network Definition for the double fractal model
Variable model
. aViko mlpi = p gn(R,1)]
kghlp; — prs (r0)] _ N Ofb 1 ﬂn s
frcture metwork | PriD-er oty = ==L P fi.r(RD1pf) = 7
oH qBury, ” do b
Pressure in the k phlp; — 0] aVskOjb [Pi = Pma(R,1)]
fractal matrix PmaD,cr("D>tDr) = S Bpma i PmaD,cr(RthDf) = oy
blocks weH qBury, ” ¢y b
k 1b ko fb
Time r=o o=
[ges 1p pary (e 1z pryy
r r
Radius ™D = ~—— D =—"—
"w %
. . P me $o
Storativity ratio = ﬁ “” %t]t{b
Fracture area AfD = Afmahma AfD = Aﬁna g rvf
Hydraulic k
diffusivity of the NmaD = omalcPrls _ komaledrls
. ) NmaD
fractal matrix CmaPomak A CmaPomak
blocks ma¥0ma” fb'w
. . _ Mg _ Nma
Matrix block size hypaD = hmaD =
"y "y

Double Porosity Model considering Radial Fracture Network and Fractal Matrix Blocks

To model the flow within the radial fracture network, we have considered the diffusivity equation

presented by Cinco-Ley et al. (1982). This expression in its dimensionless form is given by:
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a a A tDr 6’
L 0 [’, PrﬁlD,cr] -0 PrufDycr +[1-w] fDtmab | PrfaD.cr F(map shmap>tpr —7)d7 ... (5.7)

D al’D arD 6tD hmaD 0 5TD,,

The solution of Eq. 5.1 in the Laplace domain considering constant flow rate at the wellbore and

infinite fracture network is given by:

Kolp @)

ﬁrﬁ;D,cr(”Da”) = 5 eeeereeeeeeieteeteteeteteetettetetteteeetaetetteteeetatetaatetaateaetaaatnees (5.8)
wuf @K fr @)
where:
A DMmaD =
JW)=0+[1=0l—=—————=F(maD s BmaD W) ....o..ooooooooooeeeeeoeeeeeoeeeeeeeeee e (5.9)
maD

To obtain the performance of Eq. 5.8 in the real domain, a numerical inversion should be used.
Additionally, we have derived asymptotic solutions, evaluated at the wellbore, for the main periods

of flow depicted in this model. These solutions are summarized in Table 5.3.

Analogy to the Anomalous Diffusion Model

The 2D diffusivity model presented by Raghavan (2012) included the anomalous diffusion effects
by using a version of Darcy's Law expressed in terms of a fractional derivative. The definition of
the fractional derivative involves a convolution term where the derivative of the pressure with
respect to time is weighted by a power-law function of the time. A similar diffusivity model can
be obtained from the double porosity model considering a radial fracture network and fractal

matrix blocks. Such a model is obtained by neglecting the storativity ratio («=0) and considering
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the asymptotic behavior for late times of the fluid transfer function for infinite-acting fractal matrix

blocks with positive vie.-values (Eq.5.6). The resulting diffusivity equation is:

op !Dr
Lo l:’”D rﬁlD’cr]=F[ s L T (5.10)

rp Orp orp I=vpel ¢ Or

where:

a1

1_ - —
= AfDnmaEma [Oma "‘2]1 2Vma F[l—vma][hmaD} ! (5.11)

2 Vg ] 2
To provide a model that is comparable to the anomalous diffusion model presented by Raghavan
(2012a), we have considered a time-dependent inner boundary condition modeled by a power-law

function mathematically defined by:

op _
[rD aﬂ’} T I oot (5.12)
D

rp =1

where v 1s an arbitrary reference exponent. We have assumed a unit value of this parameter.

The line source approximation in the Laplace domain of Eq. 5.10 considering variable flow rate

(Eq. 5.12) and infinite radial fracture network is given by:

12~ vy Ko g @)

uz_Vma

_ I
DD, cr (Tl = o e (5.13)

where:

GO = QU T ettt e e (5.14)
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Table 5.3 — Asymptotic constant-rate solutions in the real domain for the double porosity
model considering radial fracture network

Asymptotic solution

1
Early times pWD,C}"(tDV) = Eln[%mtDr}
0 -1/2
Intermediate 1 11 exply/2] hyap | | hmap | ™
=— —1
times pwD,cr(tDr) 4 Inftp, ]+ ) n (-] AfD ) NmaD
1
PwD,cr(tpr) = Eln[eXpD/]tDr]
(for closed matrix blocks)
Late times

Vma

2 [ifexpl 1y ]]—%ln

Ap[Opg +2172ma iy, [ o Pmatll/2
wa,cr(ZDr) =

Vina =1
maD Tty Mvinal

(for infinite-acting matrix blocks)

hmaD

Double Porosity Model considering Fractal Fracture Network and Fractal Matrix Blocks (Double

Fractal Model)

The motivation of the double fractal model is to provide a reservoir model to depict the transient
performance behavior of highly heterogeneous multi-porosity systems, such as shale oil and shale
gas reservoirs. The objective of this model is to take into account the randomness and

heterogeneity of the natural fractures and the matrix blocks.

The presence of natural fractures in shale reservoirs is significantly lower than in carbonate
reservoirs. Therefore, the porosity of the natural fractures in shale reservoirs is very small, and
the storativity ratio would be negligible. However, it is important to consider the presence of the
natural fractures because it has a significant impact in the flow of fluids towards hydraulic fractures
and/or the wellbore. To model the flow within the fractal fracture network, we have considered
the diffusivity equation presented by Valdes-Perez (2013). Such an equation in its dimensionless

form is defined by:
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1 0 g P finD.cr =w P ffnD.cr +[1- o] fDTmab | PpnD.cr F(Mmap s hmab SIDf — r)dz,
— T
Rgf 1 6Rpy oRp Otp hmaD 0 0

The solution of Eq. 5.15 in the Laplace domain considering constant-rate at the wellbore and

infinite fracture network is given by:

0+2

p {213 DAJuf ()

} i (5.16)
2 uf(u)}

I_’fan,cr (Rp,u) =

u uf(u)KV_ll 9+

where v =[1-4]/[ @ +2]. The transfer function f{u) has the same shape as the one presented in Eq.
5.9. For this model, we have considered only the behavior of the fluid transfer function of the
matrix blocks as infinite-acting (Eq. 5.4) due to their extremely low permeability in shale oil/gas

reservoirs.

For systems with negligible storativity ratio and considering the fluid transfer function at

intermediate times (Eq. 5.5) the model given by Eq. 15 can be simplified to:

. IDf op o
1 0 B P uD,cr | @ D ffnD,cr -1/2
R =— | ————tpr - d

RDf_l GRD{ D R ] Ir (f) o7 [tpr —7] L2 (5.17)
D
where:

AfD ,nmaD b Ona ! 2-1
ap = ’ D | e (5.18)
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A similar model for radial fracture networks and Euclidean matrix blocks was developed by Cinco-

Ley et al. (1982).

For late times, substituting Eq. 5.6 in Eq. 5.14 and neglecting storativiy ratio, the following model

1s derived:

1 0 [Rﬂ apﬁ‘hD,cr] ap D ap]j‘izD,cr

= tne —7| Vma g
D1 Ry DR, F[l—vma]é ™ [tpf —7] (2 (5.19)
D

Eq. 5. 19 has the same shape as the models assuming the anomalous diffusion phenomena
(Camacho-Velazquez ef al., 2008 and Raghavan, 2012a). This model relates its parameters to the
physical properties related to the geology of the matrix blocks. The asymptotic constant-rate

solutions in the real domain of Eq. 5.17 and Eq. 5.19 are summarized in Table 5.4.

Table 5.4 — Asymptotic constant-rate solutions in the real domain for the double fractal
model.

Asymptotic solution

Early-Intermediate fre) = 1 (174
times PwD,cr( Df) I[5/4] ,—ao Df
2v-1
- i [6+2] I'v] /2
Late Iltl.termedlate Pub.cr (tp f) =— t;)f (v>0)
mes ay T =T/ 2 +1]

[6+212 7]
a TV +1] 7

Late times PwD,cr(tpf) =

Constant Pressure Solutions

The rate-transient performance behavior of the models presented in this chapter is obtained using
Dunhamel's principle, which relates the constant-rate and constant-pressure solutions in the

Laplace domain, as presented in Chapter 1.
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5.4. Results and Discussion

In this section, we present the sensitivity analyses of the characterizing parameters involved in the
models presented in Section 5.3. To perform such analyses, we numerically inverted the solutions

in the Laplace domain using the Gaver-Wynn-Rho algorithm implemented in Mathematica.

Double Porosity Model considering Radial Fracture Network and Fractal Matrix Blocks

Sensitivity to the Djn.-Parameter: Closed Matrix Blocks

Fig. 5.2 exhibits the effect of the fractal dimension of the matrix (Dfnq) in the pressure transient
performance behavior of a double porosity reservoir considering a radial fracture network (Eq.
5.8) and closed matrix blocks (Eq. 1 for Djne # 2 and Eq. 3 for Dfue =2). This plot shows no evident
differences among the pressure-transient signatures when the fractal dimension of the matrix (Dfina)
is varied. However, the influence of the Dy, -parameter is clear in the pressure derivative function.
For all cases, the pressure derivative function exhibits two radial flows. The first one (fracture
network flow) occurs at early times and represents the geometry and the expansion within the
radial fracture network. The second radial flow (single porosity reservoir flow) occurs at late times
and represents that the radial fracture network and the matrix blocks behave as a single porosity
system where the geometry of the fracture network prevails. At intermediate times (interaction
between the fracture network and the matrix blocks), we have observed that the interaction
between the fracture network and the matrix blocks and the boundary effects of the matrix blocks
occur faster when the matrix blocks have higher values of the fractal dimension (keeping

unchanged the other parameters). This model can reproduce the behavior of the transfer functions
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Diina =1 for slabs and Dy =3 for spheres.

Sensitivity Analysis of the Fractal Dimension of the Matrix on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Closed Fractal Matrix Blocks
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developed by de Swaan (1976) when the conductivity index of the matrix is zero (i.e., G,,=0) and
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Figure 5.2 — Log-log plot of the pressure-transient and pressure derivative performance

behaviors of a double porosity reservoir considering radial fracture network and
closed fractal matrix blocks for selected values of the fractal dimension of the
matrix (Djina).

Fig. 5.3 shows the rate-transient case for the example presented in Fig. 5.2. Based on the rate
derivative function in this plot, we observed that is not possible to distinguish the first period of
flow (i.e., the radial fracture network flow). However, the acceleration effect of the fractal
dimension of the matrix (Djnq) is also observed in this plot, i.e., the higher the D, -value, the

sooner the boundary effects of the matrix will appear.
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Sensitivity Analysis of the Fractal Dimension of the Matrix on the Rate Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Closed Fractal Matrix Blocks
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Figure 5.3 — Log-log plot of the rate-transient and rate derivative performance behaviors of a

double porosity reservoir considering radial fracture network and closed fractal
matrix blocks for selected values of the fractal dimension of the matrix (Djina).

Sensitivity to the f..-Parameter: Closed Matrix Blocks

Fig. 5.4 presents the sensitivity analysis of the conductivity index of the matrix (,.) in the
pressure transient performance behavior for the radial fracture network and closed matrix blocks
case (Eq. 5.1 for 6. # 1 and Eq. 3 for .. =1). For the 6., -parameter instance, we have observed
two phenomena: (1) there is a delay in the interaction between the fracture network when the
matrix blocks have higher 6,, -values and (2) the boundary effects of the matrix blocks occur at
earlier times for high values of the conductivity index of the matrix. High .. -values represent

that the permeable sites inside the matrix blocks are poorly connected.

Based on Fig. 5.5, we concluded that better connected matrix blocks (lower 6., -values) yield
higher flow rates. Similar to the fractal dimension of the matrix case, the boundary effects of the

matrix appear at earlier times for high 6, -values.
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Figure 5.4 — Log-log plot of the pressure-transient and pressure derivative performance

behaviors of a double porosity reservoir considering radial fracture network and
closed fractal matrix blocks for selected values of the conductivity index of the
matrix (Ghna).
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double porosity reservoir considering radial fracture network and closed fractal
matrix blocks for selected values of the conductivity index of the matrix (Gna).
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Sensitivity to the Dsq.-Parameter: Infinite-Acting Matrix Blocks

In Fig. 5.6, we present the sensitivity analysis of the fractal dimension of the matrix (Dfnq) in the
pressure transient performance behavior for the radial fracture network considering infinite-acting
matrix blocks (Eq. 5.4). This plot shows that fractal matrix blocks with lower Dy, -values yield a
higher drop of pressure of the double porosity system. The pressure derivative function in this
plot exhibits the same behavior as the closed fractal matrix case at early times (fracture network
flow) and intermediate times (interaction between the fracture network and the matrix blocks).
However at late times, the flow is dominated by the fluid transfer from the matrix to the factures.
For Djna -values higher than two, the pressure derivative function yields a negative slope equal to
the vmg-parameter. If Dy, is lower than two (and higher than one), the pressure derivative function

stabilizes to a constant value equal to v, /2.

The rate-transient performance behavior in Fig. 5.7 shows that fractal matrix blocks with higher
Diina -values yield higher flow rates. In addition, the rate derivative function has a response at
early and intermediate times similar to the one observed in the closed matrix blocks case. At late

times, the infinite-acting nature of the matrix blocks dominates.
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Figure 5.6 — Log-log plot of the pressure-transient and pressure derivative performance
behaviors of a double porosity reservoir considering radial fracture network and
infinite-acting matrix blocks for selected values of the fractal dimension of the
matrix (Dfina).
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fractal matrix blocks for selected values of the fractal dimension of the matrix
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Sensitivity to the fu.-Parameter: Infinite-Acting Matrix Blocks

The plot in Fig. 5.8 presents the sensitivity analysis of the conductivity index of the matrix (Gnq)
in the pressure transient performance behavior of a double porosity reservoir considering radial
fracture network and infinite-acting matrix blocks. The example shown in this plot considers a
small storativity ratio (w=10"1?). Therefore, the flat slope of the pressure derivative function for
dimensionless times from 10° to 107 corresponds to the interaction between the fracture network
and the matrix blocks. Fig. 5.8 shows that better connected permeable sites inside matrix blocks

(low 6, -values) yield a lower drop of pressure. In the rate-transient case, this implies that low

Ona -values yield higher flow-rates (see Fig. 5.9).

In Fig. 5.8, we observe that poorly connected permeable sites inside matrix blocks (high 6. -
values) accelerate the appearance of the single system behavior period. Similar to the fractal
dimension case, the pressure derivative function yields a negative slope equal to the vm.-parameter
for 6, -values lower than one. If 6, is greater than one, the pressure derivative function stabilizes
to a constant value equal to vi../2. Therefore, by increasing the vy, -value to very high values, the

pressure derivative function approaches to a constant value of 0.5.
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behaviors of a double porosity reservoir considering radial fracture network and
infinite-acting matrix blocks for selected values of the conductivity index of the
matrix (Ghna).
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Figure 5.9 — Log-log plot of the rate-transient and rate derivative performance behaviors of a

double porosity reservoir considering radial fracture network and infinite-acting
fractal matrix blocks for selected values of the conductivity index of the matrix
(Gna).
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Wellbore Storage Effects

The wellbore storage effects for all the models presented in this section are incorporated using the

standard scheme presented in Chapter I. Fig. 5.10 and Fig. 5.11 exhibit the impact of the wellbore

storage in the pressure transient behavior presented in Fig. 5.6 and Fig. 5.8, respectively. These

plots show that wellbore storage effects can hinder the radial fracture flow when the storativity

ratio is relatively high (Fig. 5.10) and shorten the transition period between early and intermediate

times when the storativity ratio is relatively low (Fig. 5.11).

Analogy to the Anomalous Diffusion Model: Sensitivity to the Dy,.-Parameter

Fig. 5.12 shows the influence of the fractal dimension of the matrix (Djnq) in the pressure and

pressure derivative functions of the double porosity model considering radial fracture network and

infinite-acting fractal matrix blocks, assuming the time-dependent inner boundary condition.

Sensitivity Analysis of the Fractal Dimension of the Matrix on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks Including Wellbore Storage
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Figure 5.10 — Log-log plot of the pressure-transient and pressure derivative performance

behaviors of a double porosity reservoir considering radial fracture network and
infinite-acting fractal matrix blocks for selected values of the fractal dimension
of the matrix (Dfma).
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Figure 5.11 — Log-log plot of the pressure-transient and pressure derivative performance
behaviors of a double porosity reservoir considering radial fracture network and
infinite-acting matrix blocks for selected values of the conductivity index of the
matrix (@) considering wellbore storage.

Sensitivity Analysis of the Fractal Dimension of the Matrix on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks (Time-Dependent Inner Boundary Case)
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Figure 5.12 — Log-log plot of the pressure-transient and pressure derivative performance

behaviors of a double porosity reservoir with time-dependent inner boundary,
considering radial fracture network and infinite-acting matrix blocks for selected
values of the fractal dimension of the matrix (Dfina).
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We have observed that none of the cases in Fig. 5.12 show the characteristic signature of radial
flow (0-slope of the pressure derivative function), even though the geometry of the fracture
network was assumed to be radial. Instead, the responses of the pressure and pressure derivative
functions of this model yield power-law behaviors equal to the exponent of the inner boundary
condition as shown by the fpressure derivative function in Fig. 5.13. We conclude that the higher

the Djnq -parameter (lower vma) the steeper the log-log straight-line.

Fig. 5.14 presents the constant-pressure version for the example presented in Fig. 5.12. The rate
and rate derivative functions yield power-law behaviors whose slope in the log-log plot is equal to
the negative value of slope in the constant-rate case (i.e., vma-1). This is confirmed by the frate
derivative (Fig. 5.15). We have observed that at dimensionless times greater than 10!, the fractal
matrix blocks with higher Dy, -values yield higher flow rates. However, an unrealistic scenario
is observed at earlier times (zp < 10™!), where the highest flow-rates are yielded by fractal matrix
blocks with lower Dy -values. The reason why this scenario is unrealistic is because high Dy, -

values represent, basically, more permeable sites within the matrix blocks.

Sensitivity Analysis of the Fractal Dimension of the Matrix on the g-Pressure Derivative of a Double Porosity Reservoir with Transient Interporosity Transfer
considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks (Time-Dependent Inner Boundary Case)
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Figure 5.13 — Log-log plot of the fpressure derivative function of a double porosity reservoir
with time-dependent inner boundary, considering radial fracture network and
infinite-acting matrix blocks for selected values of the fractal dimension of the
matrix (Dfina).
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Dimensionless g-Rate Derivative, |dq,,,/dInty/q,p|

Sensitivity Analysis of the Fractal Dimension of the Matrix on the Rate Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks (Time-Dependent Inner Boundary Case)
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Figure 5.14 — Log-log plot of the rate-transient and rate derivative performance behaviors of a
double porosity reservoir with time-dependent inner boundary, considering
radial fracture network and infinite-acting matrix blocks for selected values of
the fractal dimension of the matrix (Dfina).

Sensitivity Analysis of the Fractal Dimension of the Matrix on the g-Rate Derivative of a Double Porosity Reservoir with Transient Interporosity Transfer
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Analogy to the Anomalous Diffusion Model: Sensitivity to the 8,.,-Parameter

In Fig. 5.16, we present the sensitivity analysis of the conductivity index of the matrix (6n.). At
late times (¢p > 10?), this plot shows a behavior similar to the one observed for the Dy, -parameter,
i.e., the signatures of the pressure and pressure derivative functions yield power-law behaviors
equal to the exponent of the inner boundary condition (i.e., 1-vus). This is confirmed by the £
pressure derivative function presented in Fig. 5.17. At early and intermediate times (¢zp < 10°), the
Ppressure derivative function exhibits a variable behavior for all the cases presented. We
concluded that the better connected permeable sites inside the matrix (i.e., lower 6,.,- and

consequently vpg-values), the steeper the log-log straight-line of the pressure and pressure

derivative functions

Sensitivity Analysis of the Conductivity Index of the Matrix on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks (Time-Dependent Inner Boundary Case)
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Figure 5.16 — Log-log plot of the pressure-transient and pressure derivative performance

behaviors of a double porosity reservoir with time-dependent inner boundary,
considering radial fracture network and infinite-acting matrix blocks for selected

values of the conductivity index of the matrix (Gua).
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ity Analysis of the C ivity Index of the Matrix on the S-Pressure Derivative of a Double Porosity Reservoir with Transient Interporosity Transfer

considering Radial Fracture Network and Infinite-Acting Fractal Matrix Blocks (Time-Dependent Inner Boundary Case)
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Figure 5.17 — Log-log plot of the fFpressure derivative function of a double porosity reservoir
with time-dependent inner boundary, considering radial fracture network and
infinite-acting matrix blocks for selected values of the conductivity index of the
matrix (Gna).

Based on Fig. 5.18, we conclude that better connected permeable sites inside the matrix blocks
(low Gna-values) yield higher flow rate. Similar to the fractal dimension of the matrix (Djna), the
[rate derivatives presented in Fig. 5.19 show that rate and rate derivative functions exhibited in
Fig. 5.18 yield power-law behaviors with a slope equal to v, -1, for 6., -values equal to 5 (only
after zp > 107) and 10. The non-constant behavior of the Srate derivative for G, equal to 100

indicates that the rate-transient for this case does not correspond to a power-law behavior.
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Figure 5.18 — Log-log plot of the rate-transient and rate derivative performance behaviors of a
double porosity reservoir with time-dependent inner boundary, considering
radial fracture network and infinite-acting matrix blocks for selected values of
the conductivity index of the matrix (Gna).
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Figure 5.19 — Log-log plot of the f-rate derivative function of a double porosity reservoir with

time-dependent inner boundary, considering radial fracture network and infinite-
acting matrix blocks for selected values of the conductivity index of the matrix
(Ona).
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Given that the scheme to include the wellbore storage effects was developed assuming a constant
inner boundary condition, it is not appropriate to use it to models with a variable inner boundary

condition.

Double Porosity Model considering Fractal Fracture Network and Infinite-Acting Fractal Matrix

Blocks (Double Fractal Model)

In general, the most significant parameters in a diffusivity model for a fractal object are the fractal
dimension and the conductivity index. The fractal dimension can get values from one to three,
whereas the conductivity index can get values higher than zero. Both parameters have a similar
influence in the slope of the pressure derivative function. Therefore, we will restrict our sensitivity
analyses only to the conductivity indexes (both, fractures and matrix) and consider that the fractal

dimension is equal to three for both media.

Sensitivity to the &-Parameter

Fig. 5.20 presents the sensitivity analysis of the conductivity index of the fracture network (6) in
the pressure transient performance behavior of the double fractal model, considering both cases,
with and without wellbore storage effects. Fig. 5.21 shows the Spressure derivative of the cases
presented in Fig. 5.20. In the no-wellbore storage case, we observe that there are two periods of
flow separated by a smooth transition period. The first period corresponds to the interaction
between the fracture network and the matrix blocks, and the second period corresponds to single
system behavior. In both figures, the first period is not observed when the wellbore storage effects
are taken into account. This leads to the hypothesis that for practical applications in pressure

transient analysis, the only period of flow that could be observed is the single system behavior
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period, and the fluid transfer function of the matrix could be reduced to the expression given by

Eq. 5.5.

ity Analysis of the Ci ivity Index of the Fracture Network on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
withTransient Interporosity Transfer considering Fractal Fracture Network and Infinite-Acting Fractal Matrix Blocks
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values of the conductivity index of the fractal fracture network (6).
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Figure 5.21 — Log-log plot of the fpressure derivative function of a double porosity reservoir

with time-dependent inner boundary, considering radial fracture network and
infinite-acting matrix blocks for selected values of the conductivity index of the
fractal fracture network (6).
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In Fig. 5.22, we observe that a better connected fractal fracture network yield higher flow rates
(i.e., the lower the G-value, the higher flow rate). Given that the standard (constant) wellbore
storage effects do not affect the rate transient behavior, it is possible to observe the two periods of
flow of the transient behavior of the double fractal reservoir. As in the pressure-transient case, the

two periods of flow can be detected in the frate derivative presented in Fig. 5.23.
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Figure 5.22 — Log-log plot of the rate-transient and rate derivative performance behaviors of a

double porosity reservoir considering fractal fracture network and infinite-acting
matrix blocks for selected values of the conductivity index of the fractal fracture
network (6.
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iti lysis of the C ity Index of the Fracture Network on the g-Rate Derivative of a Double Porosity Reservoir
with Tran3|ent Interporosity Transfer considering Fractal Fracture Network and Infinite-Acting Fractal Matrix Blocks
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Figure 5.23 — Log-log plot of the f-rate derivative function of a double porosity reservoir

considering fractal fracture network and infinite-acting matrix blocks for
selected values of the conductivity index of the fractal fracture network (6).

Sensitivity to the §,.-Parameter

Fig. 5.24 shows the influence of the conductivity index of the matrix (6,4) in the pressure transient
performance behavior of the double fractal model, considering both cases, with and without
wellbore storage effects. Fig. 5.25 shows the f-pressure derivative of the cases presented in Fig.
24. Similar to the case of the conductivity index of the fracture network (&), we observe that in
the no-wellbore storage case two periods of flow are separated by a smooth transition period. In
this case, the first period of flow is also hindered by wellbore storage effects. The main difference
with the @-case (Fig. 5.21) is that the first period of flow in Fig. 5.24 is the same for all the 6., -
values. Such a period of flow is shorter, and the appearance of the transition period occurs faster
for higher vinq-values (higher 8,..-values). The second period of flow in Fig. 5.24 yields a straight-
line with slope equal to the product v,.v. This is confirmed by their fpressure derivative plot

(Fig. 5.25).
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Dimensionless Pressure,p,p
Dimensionless Pressure Derivative, dp,,/dInt,;

Sensitivity Analysis of the Conductivity Index of the Matrix on the Pressure Transient Performance Behavior of a Double Porosity Reservoir
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Figure 524 — Log-log plot of the pressure-transient and pressure derivative performance
behaviors of a double porosity reservoir considering fractal fracture network and
infinite-acting matrix blocks for selected values of the conductivity index of the
matrix (Ghna).
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Figure 5.25 — Log-log plot of the fpressure derivative function of a double porosity reservoir

considering fractal fracture network and infinite-acting matrix blocks for
selected values of the conductivity index of the matrix (Gua).
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Fig. 5.26 shows that better connected permeable sites inside the fractal matrix blocks yield higher
flow rates (i.e., the lower the @,.-value, the higher flow rate). Fig. 5.27 shows two periods of flow
for each one of the cases presented in Fig. 5.27. We observed that the first period of flow
corresponds to the interaction between the fracture network and the matrix blocks and it is the
same for all the cases. The behavior of the second period is dominated by the 6,,-value, and we

have observed that the higher the conductivity index of the matrix, the sooner the second period

appears.
Sensitivity Analysis of the Conductivity Index of the Matrix on the Rate Transient Performance Behavior of a Double Porosity Reservoir
withTransient Interporosity Transfer considering Fractal Fracture Network and Infinite-Acting Fractal Matrix Blocks
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Figure 526 — Log-log plot of the rate-transient and rate derivative performance behaviors of a

double porosity reservoir considering fractal fracture network and infinite-acting
matrix blocks for selected values of the conductivity index of the matrix (Gua).

133



itivity Analysis of the Ci ivity Index of the Matrix on the p-Rate Derivative of a Double Porosity Reservoir
with Transient Interporosity Transfer considering Fractal Fracture Network and Infinite-Acting Fractal Matrix Blocks
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Figure 5.27 — Log-log plot of the f-rate derivative function of a double porosity reservoir
considering fractal fracture network and infinite-acting matrix blocks for
selected values of the conductivity index of the matrix (Gna).

5.5. Summary

The purpose of the development of the models presented in this chapter is to provide analytical
models for the estimation of parameters of unconventional reservoirs, using pressure and rate

transient data.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions have been derived from this work:

1.

2.

We have utilized the fractal geometry theory to develop reservoir models for shale reservoirs.
We have extended the existing models for multi-fractured wells to consider the fractal reservoir

scenario.

Using our new solutions for a horizontal well intercepting a single finite-conductivity, we have
found that at early-transient (hydraulic fracture flow) and intermediate-transient times
(interaction between the hydraulic fracture and the fractal reservoir), are very sensitive to the
fractal parameters of the reservoir. In addition, the influence of the fractal parameters at early
and intermediate-transient times is more evident at low values of the dimensionless fracture

conductivity.

When considering a double porosity reservoir with a fractal fracture network and Euclidean
matrix blocks, the presence of a single finite conductivity hydraulic fracture can yield as many
as twelve (12) power-law sub-periods of flow as observed in the dimensionless pressure and

dimensionless pressure derivative functions as exhibited by our new solutions.

We applied the principle of superposition in space to the single finite-conductivity solution to
generate the multi-fractured well case, which is a more practical/realistic scenario. Analogous

to the case where the horizontal wells are drilled in conventional/homogenous reservoirs, we
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found that the transient performance of these types of wells in fractal reservoirs behaves as an

equivalent system of a horizontal well intercepting a single fracture.

We have studied the impact of the anomalous diffusion phenomenon in the pressure and rate
transient performance behaviors and compared these responses to the typical (constant)
diffusion cases. We have found that the anomalous diffusion phenomenon shows an additional
influence on the pressure and rate responses during early and intermediate-transient times.
However; at late times, the anomalous diffusion phenomenon exhibits an overall lower
pressure drop for the constant rate solution and consequently, the inclusion of the anomalous
diffusion phenomenon results in higher values of flowrate and cumulative production at late-

transient times.

Our partial results and the mathematical background of the models considering anomalous
diffusion made us believe that the fractal reservoir model with typical diffusion is more likely
in theory and in practice than the anomalous diffusion case. To provide an explanation to the
anomalous diffusion based on the concepts of petroleum reservoir engineering, we developed

the double fractal model.

We considered that the highly heterogeneous and the low/ultralow nature of the shale
reservoirs make appropriate (1) the use of transient interporosity transfer functions and (2) the
modeling of the fractal matrix blocks as infinite-acting media. This approach results in a
diffusivity equation with the same shape as the so-called anomalous diffusion equation.
Therefore, we concluded that the anomalous diffusivity phenomenon in unconventional
reservoirs can be related to the fractal geometry and the heterogeneities of the fractal matrix

blocks.
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8. To model the matrix blocks as fractal objects, we investigated the closed and the infinite-acting
matrix blocks scenarios. We found that the fractal dimension of the matrix blocks does not
have a significant impact in the signature of the pressure and pressure-transient derivative
functions, when the blocks are considered closed (small blocks and/or high hydraulic
diffusivity). However, when the matrix blocks behave as "infinite-acting," the pressure- and
rate-transient performance behaviors are sensitive to a combined effect of the properties of the

fracture network and the matrix blocks at late times.

Based on the results presented in this work, we have defined the following recommendations for

future work:

1. In this dissertation, we followed the traditional approaches to superimpose the flow of a
reservoir (fractal reservoir) on the plane of the hydraulic fracture. Nonetheless, we have
questioned ourselves on the validity of these methods when coupling a fractal and a Euclidean
object. The reason is the lack of a physical explanation to observe higher flowrates at early
and intermediate times in fractal reservoirs with poorly connected permeable sites (high &
values) and/or lower fractal dimension (Dy). Therefore, our first recommendation is to explore

other alternatives to define the continuity between a hydraulic fracture and a fractal reservoir.

2. Our second recommendation is related to the development of analytical solutions for RTA. In
shale reservoirs, the Power-Law/Stretched exponential empirical model is widely used because
of its accuracy and flexibility. The shape of this model corresponds to the asymptotic behavior
of Fox's functions for small arguments. The solution to the double fractal model can be

expressed in terms of this type of function. We believe that the parameters of the double fractal
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model can be related to the empirical parameters of the Power-Law/Stretched Exponential
model. Consequently, we recommend the development analytical relations between this

empirical model and the asymptotic solutions of the double fractal model.
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NOMENCLATURE

Field Variables

Afna = Fracture area per unit of matrix volume, L' [m™!] or [ft!]

B =0il formation volume factor, [bbl/STB] or [Rm?/Sm?]

¢r =Hydraulic fracture compressibility, (M/L#*)! [Pa’'] or [psi]

¢ =Radial fracture network compressibility, (M/L#?)! [Pa’'] or [psi™!]

co  =Fluid compressibility (oil), (M/L#?)! [Pa'] or [psi™']

cma = Matrix blocks compressibility, (M/L£?)™! [Pa™'] or [psi!]

¢ =Total compressibility, (M/Lt?)"! [Pa™'] or [psi!]

¢y = Total compressibility (natural fractures, radial or fractal), (M/Lf?)"! [Pa™!] or [psi']
cma = Matrix blocks total compressibility, (M/L#?)! [Pa™'] or [psi!]

¢y =Hydraulic fracture total compressibility, (M/L#*)! [Pa’'] or [psi™']

h  =Formation thickness, L [m] or [ft]

hma = Matrix block size, L [m] or [ft]

k  =Permeability, L?> [mD] or [m?]

ko  =Reference permeability for a fractal reservoir, L?> [mD] or [m?]

kop =Reference permeability for a fractal fracture network, L? [mD] or [m?]
koma =Reference permeability for the fractal matrix blocks, L? [mD] or [m?]
ks =Hydraulic fracture permeability, L?> [mD] or [m?]

ks =Radial fracture network permeability, L? [mD] or [m?]

kma =Matrix permeability, L?> [mD] or [m?]
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L, =Reference Length, L [m] or [ft]

p  =Pressure, M/L# [Pa] or [psi]

pi = Initial reservoir pressure, M/Lf* [Pa] or [psi]

pr  =Fracture pressure, M/L#* [Pa] or [psi]

pw = Wellbore flowing pressure, M/Lf* [Pa] or [psi]

py# = Wellbore phase redistribution pressure, M/L#> [Pa] or [psi]

py = Tubing flowing pressure at surface, M/L#* [Pa] or [psi]

r = Radial distance, L [m] or [ft]
R =Radial distance (fractal or spherical systems), L [m] or [ft]
rr =Radius of a circular hydraulic fracture, L [m] or [ft]

rvw  =Wellbore radius, L [m] or [ft]

s = Skin factor, dimensionless

gw = Well Flowrate, L3/t [m3/sec] or [ft%/s]
t =Time, t [sec]

u  =Laplace transform variable

w  =Fracture width, L [m] or [ft]

x¢ = Fracture half length, L [m] or [ft]

Dimensionless Variables

Amp = Dimensionless natural fracture area
Agp = Dimensionless fractal fracture area
Dy =Fractal dimension of a fractal reservoir

Ds  =Fractal dimension of a fractal fracture network
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Dfma =

Fractal dimension of the matrix blocks

Cp =Dimensionless wellbore storage constant

Fop =

Dimensionless fracture conductivity

hp =Dimensionless formation thickness

hmaep = Dimensionless matrix block size

NpD =

Dimensionless cumulative production

pp.e- =Dimensionless pressure in the reservoir defined for the constant-rate solution

pm.o- = Dimensionless pressure in the hydraulic fracture defined for the constant-rate solution
pmp,.e- =Dimensionless pressure in the fracture network defined for the constant-rate solution
pyn.e- =Dimensionless pressure in the fractal-fracture network for the constant-rate solution
prn,er =Dimensionless pressure in the radial-fracture network the constant-rate solution
Pmap,er =Dimensionless pressure in the fractal matrix blocks for the constant-rate solution
pwp = Dimensionless wellbore flowing pressure

rp = Dimensionless radius for a circular system

rwp = Dimensionless radius wellbore

Rp =Dimensionless radius for a spherical or fractal system

gwp =Dimensionless flowrate

Sine = Interporosity skin

tp  =Dimensionless time

tp- =Dimensionless time (dimensionless variables for a radial fracture network)
tpr =Dimensionless time (dimensionless variables for a fractal fracture network)
xp = Dimensionless linear position in the x-direction

zp  =Dimensionless linear position in the z-direction
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v =Grouping parameter of the fractal variables of a fractal fracture network/reservoir.
vma = Grouping parameter of the fractal variables of the fractal matrix blocks
Greek Symbols
oy = Grouping parameter of the properties the fractal matrix block, dimensionless
a; = Grouping parameter of the properties the fractal matrix block, dimensionless
apr = Area of a unit sphere in Dy dimensions
f  =Spatial dimension, dimensionless
Pna = Spatial dimension of the fractal fracture network, dimensionless
y  =Anomalous diffusivity exponent as function of fractal parameters, dimensionless
ogp =Point density fluid withdrawal, dimensionless
¢  =Conductivity index, dimensionless
Gna = Conductivity index of the fractal matrix blocks, dimensionless
no = Dimensionless hydraulic diffusivity of the hydraulic fracture, dimensionless

nmap = Dimensionless hydraulic diffusivity of the matrix, dimensionless

y
5
ErD
¢
Po
Popo

&

= Newtonian Viscosity, M/Lt [cp] or [Ibm/ftes]

= Grouping parameter, dimensionless

= Function of Rp, dimensionless

= Porosity, fraction

= Reference porosity for a fractal reservoir, fraction

= Reference porosity for fractal fracture network, fraction

= Hydraulic fracture porosity, fraction
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¢ = Natural fracture network porosity, fraction
doma = Reference porosity for the fractal matrix blocks, fraction
¢ma = Matrix porosity, fraction

@ = Storativity ratio, dimensionless

Mathematical Functions

Ei(x) = Exponential Integral Function

Iy(x) =Modified Bessel Functions of the first kind, v-order
Ky (x)=Modified Bessel Functions of the second kind, v-order
I(x) =Gamma function

I{a,x)=Incomplete Gamma function
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APPENDIX A
PRESSURE-TRANSIENT BEHAVIOR OF HORIZONTAL WELLS WITH FINITE-

CONDUCTIVITY VERTICAL FRACTURES

In this Appendix, we present the detailed derivation and the procedure to obtain the solution of the

model presented by Larsen ef al. (1991).

A.l. Development of the Radial Diffusivity Equation for a Circular Transverse Finite

Conductivity Fracture

To develop the radial diffusivity equation that describes the flow inside the circular hydraulic
fracture, consider the control volume shown in Fig. A.1. The control volume is constructed by
two concentric horizontal cylinders. The inner and outer cylinders have radii » and r+Ar,

respectively. For this model, the flow occurs in the 7- and z-directions (angular flow is neglected).

1
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_________________________________________________ A —
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Figure A.1 — Control volume of a circular vertical hydraulic fracture.
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The volume of the geometric shape exhibit in Fig. A.1 is given by:

Vi SFAFAGAZ . .. (A.1)
The incoming mass of a fluid, m;s -, throughout the outer cylinder is:

iy = V[ AFTAGAZAL sttt (A.2)
and the outgoing mass, mou,r throughout the outer cylinder is given by:

Moty =[PV 4 AV YIAGAZAL - e+ttt (A.3)
Analogously, the incoming mass of fluid in the z-direction is:

Mgz = =V 2 PAFAGAZIL - - eeeseetie it (A4)
and the outgoing mass in the same direction is defined by:

Motz =[Pz + AUV YIAFAGAZAL - wovrveeeeestisisi ittt (A.S5)
The cumulative mass of the fluid is determined by:

Me = Moyt +Mout.z —[ Mgy + Mgy 2 T+ +ereseeesse ettt (A.6)
The following expression results from combining Egs. A.2 through A.6 and arraying:

me = A(pv, WAONZAL + pv . ArAONZAL + AV YEAFAOAZAL « .ot (A.7)
The mass of fluid at an initial time can be expressed as:

My =B LS fPPAFAGBAZ - woevreesensese e (A.8)
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At a final time, the mass of fluid is given by:
my, = ¢foprArA¢9Az+A(¢fop)rArA¢9AZ e eeeeeteeaneeeeeeeaneeeeeeannneteeteanneaeeetaanneaeeteannntteeteannnnees (A9)

The cumulative mass of fluid for the time-dependent case is given by:

PG = Mgy =g« eeesees s (A.10)
Substituting Eq. A.8 and Eq. A.9 in Eq. A.10:

M = A(B S f PIFAFABAZ + ovrvesvsiasssinsiiasi s (A.11)
Equating Eq. A.7 and Eq. A.11:

A IAONZAL + v ArAONAL + A(pv 2 YrAFAONAL = NP S f PIFAFAOAS - evesvosevrsireninnieneeinns (A.12)

Dividing Eq. A.12 by V.4¢, such an equation reduces to:

Alpvy) | poy  Mpvz) _AGrSyp) (A.13)
)y 2 22 YT —— .

Taking the limits of Ar, Af and Az to zero, Eq. A.13 can be written in its differential form. Such

an equation becomes:

N B e (A.14)

or r 0z ot

To obtain the diffusivity equation for radial flow, the continuity equation defined by Eq. A.14 must
be combined with an equation of motion and an equation of state. For this model, Darcy's Law

flow will be considered in both 7~ and z-directions. For the r-direction:
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_k, Py
u or

Vy

and in the z-direction:

0
3 (A.16)
U oz
Substituting Eq. A.15 and Eq. A.16 in Eq. A.14 and assuming single fluid flow (i.e., S=1):
0| k. op kr Pr| 0| k,opp| Agrp)
O ) e T O e e (A.17)
or\" u or | rlu or | oz| u oz ot

Expanding Eq. A.15 and assuming constant permeability and viscosity, such an equation is

rewritten as:

g,uar

o[ ke
rlu or | oz| u oz

0 0 0
+£[k_rﬁ]+é[ k_ﬁ} 7p)

Expanding Eq. A.15 and assuming constant permeability and viscosity, such an equation is

rewritten as:

02 8 92 d 3 d
Pr LPf k2O Py 10pPf  10p kzﬁ:%"—“{la—hiﬂ] .................... (A.19)

___+___
ot ror k. g2 por or pozk, Oz kp |pot ¢p ot

To include the effects of a slightly compressible fluid, it is convenient to express some of the
derivatives in Eq. A.19 in terms of the change in density of porosity of the hydraulic fracture with

respect to pressure. Therefore, using the chain rule:

O 0D P e (A.20)
or dpy oOr
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R S (A.22)
o dpy o
L P e (A.23)
o ops o

Substituting Eq. A.20 through Eq. A.23 in Eq. A.19 and arraying:

0? d o? e ks og; 0
Pf L by +k—Z il L % |21 +k—Z i :¢fy 1% i Pr | %y .....(A.24)
at r o k. % popy|| or k, | oz kp |popy ¢y dpy | Ot
The compressibility of the fluid is defined by:
Co = 0P e (A.25)
pPpyf
and the compressibility of the hydraulic fracture is:
e e (A.26)

Cp =
4 Py Opf

Substituting Eqgs. A.25 and A.26 in Eq. A.24 and assuming negligible squared pressure gradients,

Eq. A.24 becomes:

py 1Oy k py driey oy
T —

where the total compressibility of the fracture is defined by:
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CU{« :CO +C_f' ................................................................................................................... (A.28)

Rewriting Eq. A.27 in the compact form and considering the fracture as an isotropic media (i.e., kr

=k=k):
3 52 3
1@ pf} D (A.29)
N [T Tk o

To couple the two porous media (the circular hydraulic fracture and the 3D reservoir), the pressure

and the flowrate in both media must be the same. Hence, for the pressure:
p/*(zziw/z’t):p(z:iw/z’t)zp(zzo,t), ....................................................................... (A.30)

and for the flowrate:

op 9
{k s 6_zf] {ka—j ettt (A31)
z=tw/2 z=0

The second derivative of the pressure in the circular fracture with respect to z can be reduced by

taking an averaged pressure in the fracture:

/2 /2 82 /2
1 rﬁ[i " pfdzﬂ+i% Py dszﬂw{i ¥ pfdz}. ................................... (A32)
rloor{w_y2 W_w/2 822 kf | w_yy2

Applying the integral and evaluating the integration limits Eq. A.32 becomes:

/2 0 0 /2
imi " pfdzﬂgyf} [ﬁ} _driey 2{1 " pfdz}. ............ (A33)
rloor|\w_,n wl| Oz /2 oz /2 kf ot w_,/0
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Assuming no significant difference between the averaged pressure in the circular fracture and the

pressure and any point of it, i.e.:

and according to Eq. A.31, Eq. A.33 reduces to:

r

ka

| T e (A.35)

1 or| 2% {6])} brmey vy
o z=0_ '

r—— |+
kf ot

Larsen ef al. (1991) presented solutions considering constant flowrate at the wellbore. Therefore,
to generalize the problem, the following dimensionless variables were defined. The dimensionless

pressure for the circular fracture is:
27kh
PfD,cr(”DJD)ZE[Pi_pf(”af)]a ................................................................................. (A.36)
and for the 3D reservoir case:

27kh
pD’cr(RD,tD)=—[pi—p(R,l‘)]. ................................................................................... (A37)
qBu

The dimensionless time for this model is defined by:

k
Ip = et h et bt bt e e bt e e bt e e bt e e bt e e bt e e e bt e e e bttt e bt e e e bt e e e eh bt e e eabe e e nabeeenbteenaeeas (A.38)
2
ucr f
The dimensionless (radial) position within the fracture is:
r
B ) o e e e et h e bt e e aa e et e e aa e e sab e e e b e e e sab e e e sne e e eteeeeas (A.39)
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The horizontal position is:

ip = i ......................................................................................................................... (A.40)

Using the chain rule, the derivative of the pressure in the circular fracture with respect to the time

can be expressed as:

P P P D D (A.41)
ot P ,cr Ofp ot

Then, based on Eq. A.37 and Eq. A.38:

5pf _ qBu k 6ij,cr

- 2 Wctr} DLy (A.42)
Similarly, for the first derivative of the pressure in the circular fracture with respect to r:
Pr_ Pf Perdp _ aBu 1 PDer e (A.43)
o wmpe op o  2dkhrs arp
The derivative of pressure in the 3D reservoir with respect to z has a similar shape:
W _ % PDerlp __ gBE L BPDer e, (A.44)

oz Opper Ozp oz 27kh ry Ozp

Considering the definition of the dimensionless radius (Eq. A.39) and substituting Eqgs. A.41

through A. 44 in Eq. A.35 results in:

L[I”D li_ qBu apr,cr :|:l+ Zkk |:_ qBu apD,cr :| _ ¢fﬂcg’ 3 qBu k apﬂ),cr ' (A45)
W
f -0

27khry  Orp 27khry  Ozp ky 27ikch ¢/¢Ct”jzf otp
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Eliminating terms, Eq. A.45 reduces to the radial diffusivity equation with a source term in its

dimensionless form:

5 0 5
L), B, 2 { Y D’”} L DT ettt (A.46)
D orp F.p 0zp -0 n/D Otp
where the dimensionless hydraulic diffusivity of the radial fracture is defined by:
k
S, (A.47)
Preqk
and the dimensionless fracture conductivity is:
oty =50 oo (A.43)

kr g

To obtain the general solution of Eq. A.46 it is convenient to eliminate one of the independent
variables. This reduction of variables is made by discretizing the circular fracture into segments

such that the gradient in the z-direction can be approximated by:

8_p:| N &Ir,jB/u
0z z=0

where dq,; is the flowrate from the reservoir flowing towards the j-segment of the discretized

circular fracture. Transforming Eq. A.49 to dimensionless variables:

aPD,cr
ozp

where the dimensionless reservoir rate in the j-segment is defined by:
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Substituting Eq. A.50 in Eq.A.46:

1 ap p, 2 1 9,
R P L Ry A (A.53)
D op | Fpep nmp  Op

where Fiep is an alternate parameter to describe the fracture conductivity. It is defined as:

FC
hp

FReD = e (A.54)

Applying the Laplace transform to Eq. A.53and treating the dimensionless reservoir rate in the j-

interval as a function of time:

1 dﬁchr 2r 1 _
- : - = rp,u)— rp,t =00, e, .
- [rD drp } FhCDOVD,J njD[upr,cr(D )=P,er(rpstp =0)], (A.55)

For this model, it is assumed that the pressure is initially distributed. In dimensionless variables it

is expressed as:

PD,cr(rDsID =01 =00 oo, (A.56)

Hence, Eq. A.55 can be rewritten as follows:
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2 _
d°p dp
2 fD,cr fDer 2 u 2 2z
r +rp —r PDcr —7p oD, j =0 (A.57)
b dr drp P R

Eq. A.57 is a non-homogenous partial differential equation. The particular solution to the non-
homogeneous part is obtained by removing the derivatives of the dimensionless pressure in the

circular fracture. Such a particular solution is given by:

270

DiDor=—- P PP PPPP R UPPPPPRRPPN A.58
P, cr WFrep ED,] ( )

To solve the homogenous part of Eq. A.57 consider the transformation function:

GUEV= D D, s wvvrveeseessemssemies s (A.59)

and the transformation variable:

Using the chain rule, the derivative of the dimensionless pressure in the fracture in the Laplace

domain with respect to the dimensionless radius is:

Dper _PerdGE) di | u dG(E)
D '

drp iG(E)  de drp QT (A.61)
Applying the second derivative to Eq. A.61 with respect to 7p:
Pmer  u d*GE)
= ettt ettt e h e e e sha e bt et et e e a e et e enaneebe e (A.62)

dry N dg?
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Taking the homogenous part of Eq. A.57 and substituting Egs. A. 59 through A. 61:

2476 4G _

2G(&)=0
e i EEG(E)=0 e (A.63)

3

By inspection, the general solution of Eq. A.63 is given by:
G(E)= AJKY(E)F BIIY(E) e (A.64)

The general solution to Eq. A.57 is given by adding Eq. A.58 and Eq. A.64 and using the

definitions given by Eqs. A.59 and A.60:

u u
p (rp,u)=A4;Ky|r /— +B 1ol rp [—
fD,cr\"'D j OI: D o } Jj 0[ D "D

A.2. Development of the Linear Diffusivity Equation for a Rectangular Longitudinal Finite

2zn D
uFpep

Conductivity Fracture

To develop the diffusivity equation for a linear system with a source to represent the flow within
a rectangular fracture, consider the control volume shown in Fig. A.2. The control volume is

constructed by a rectangular prism whose volume is defined by:

Vit = AXAPAZ ¢ et (A.66)
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Figure A.2 — Control volume of a rectangular hydraulic fracture.

The incoming mass of fluid, 7., throughout the rectangular prism through in the x-direction is:

and the outgoing mass, Mousx, in the same direction is:
Mgt x =[PV AGOVL Y JAVAZAL + +ovvteennttesnitteait et (A.68)

Analogously, the incoming mass of fluid in the z-direction is:

and the outgoing mass is:
Mout,z =[PV + AQOVLYIAXAPAL + ovtsvvieniniiiiiiniii s (A.70)

The cumulative mass of fluid is given by:
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Mo =Meoyy x +m0ut,z —[ml-n,x —|—mln’z]:A(p\)x)AyAzA[+A(pVZ)AxAyAt e seesecesscresersctssctrssesscrsseras (A.71)

The mass of fluid at an initial time can be expressed as (considering a single fluid, i.e., Sy=1):

and at a final time, the mass of the fluid is given by:

Myy =B £ PAXAYAZ + A PYATAYAZ worvvreesessessessesssississ i (A.73)
Combining Egs. A.71 through A. 73:

e = A(Bf PYAXAYAZ covvessissisissinisiisimsint it s s s (A.74)
Equating Eqgs. A.71 and A. 74:

APV AVAZAL + APV YAXAYAL = A(h f PYAXAYAZ +wevesvsensesssssnsisiinsis s (A.75)
Dividing Eq. A.75 by AxAyAzAt:

ABVE) AV ) A ) (A.76)
Ax Az At

Taking the limits of Ax, Az, and At to zero, Eq. A.76 results the 2D continuity equation:

Ox Oz ot

eV B (A.77)

Darcy's law for a linear system in i-direction is defined by

_ki %y

= e A8
o (A.78)

i
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Substituting Eq. A.78 in Eq. A.77 for x and z directions and assuming (1) isotropic media with

constant permeability, k; and (2) a fluid with constant viscosity, the following expression is

obtained:
"_fi{pap_fyﬂﬁ[ ap_f}:m. ......................................................................... (A.79)
H Ox Oox U Oz Oz ot

Applying the derivatives in Eq. A.79:

2 2
0 0 0 0 0

PLEL LB Lop T LR (A.80)
o2 oz pox &x poz 0z kp|lpdt ¢p O

Using the chain rule as in the previous section:

L (A.81)
ox Opf Ox

O 0P P e (A.82)
oz Opy Oz

Lo (A.83)
a opy o

Substituting Eqgs. A.81 through A.84 in Eq. A.80:

82pf+azpf+l dp ropy +l op vy s w1l dp apf+La¢f ap ¢
ox2 02 pdpy x & pdpy 0z & kp|pdpy o ¢y py |

........ (A.85)
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According to the definition of the compressibility of the fluid (Eq. A.25) and the compressibility

of the hydraulic fracture (Eq. A.26), Eq. A.85 can be rewritten as:

o2p, 02 oo P Topr P P
A A R O R I e (A.86)
8x2 622 Ox oz kf ot

where ¢y is the total compressibility and is defined by Eq. A.28. Neglecting the squared-pressure

gradient results in the 2D diffusivity equation:

52pf . 52pf _ Prcy Opy
ol ozl kp ot

......................................................................................... (A.87)

The second derivative of the pressure in the fracture with respect to z in Eq. A.86 should be treated
as in section A.1, i.e.: the average pressure of the fracture should be taken and the flowrate at the
interface between the rectangular fracture and the 3D reservoir should be considered equal (i.e.

Eq. A.31). After this mathematical treatment, Eq. A.86 becomes:

o (A.88)

aZPf 2k [5]7:] :¢fﬂctfap_f
z=0

axz ka kf ot

For this model, the dimensionless variables are analogously defined by Egs. A. 36 through A.40,
but the reference length for the rectangular fracture is the half-length xrinstead of the radius of the

fracture rz. Therefore, Eq. A.88 expressed in dimensionless variables is:

2

0 0 0

PfDer , 2 {”””} I (A.89)
oy, Fepl %p |, _o n/p 9D

where the dimensionless hydraulic diffusivity of the radial fracture is defined by Eq. A.47 and the
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dimensionless fracture conductivity for this case is:

ka A
o) = e e (A.90)
ke

To reduce the number of variables in Eq. A.89 and make the process of solving easier, the same
procedure depicted in Section A.lshould be applied. For this case, the approximation of the

gradient of the pressure with respect of z is given by:

9 &gy, jBu
[—p} e OSSO (A.91)
oz 220 2kxf

Transforming Eq. A.91 to dimensionless variables yields the same shape as Eq. A.50. Substituting

such an expression in Eq. A.89:

o2 9
T (A.92)
oxp,  Fhep np Oip
where Fep is defined exactly as for the circular fracture case (Eq. A.54).
Applying the Laplace transform to Eq. A.92:
d 21_9 D,er 27 I _
7 ﬁD,j =_[”pr,cr_ij,cr(xDstD Z0)]e oo (A.93)
dxy,  FheD D
Considering that the initial pressure is uniformly distributed, i.e.:
P ADrer(XDatD = 0) =0 5 coremetetetet et (A.94)

Eq. A.93 is rewritten as:
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d*p 2 _
Dor ST, =B D, e (A.95)
dxp, heD mm

Similar to Eq. A.57, Eq. A.95 is also a non-homogenous partial differential equation. Therefore,
Eq. A.95 can be solved following the same procedure used for Eq. A.57. The solution of the non-

homogenous part is:

_ 271 p
B D.crnh = icg . (A.96)

The homogenous part of Eq. A.95 is:

7_

d

X S, (A.97)
dxp, nm

Eq. A.97 is an ordinary differential equation of second order with constant coefficients. Hence,

its solution can be written as:

Bmerh =4, exp[—xD /ﬁ]w i exp{x[) /ﬁ] ................................................................ (A.98)

The solution of Eq. A.95 is given by adding the solution of the non-homogenous part (Eq. A.96)

and the homogenous part (Eq. A.97):

D [(xp,u)=A4;exp|—x L+B-expx L—zmuDéﬁ ; (A.99)
fD,CI”,] D> Jj D 77fD J D 77fD icDu D, jecereeneiiiiiiiiiiiiii, .

The value of the constants 4; and B; depends on the segment of the discretized fracture where the

solution is evaluated. These values are determined by solving a system of equations. The
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construction of such a system and the procedure to obtain its solution will be addressed in Section

A5

A.3. Development of the Diffusivity Equation for a 3D reservoir (Spherical Flow) and its

constant-rate solution

Based on Fig. A.3, the control volume for a spherical system is constructed by two concentric

spheres, and it is determined by:

V= RPABAGARSIN O (A.100)

[R+AR] sin 6 Aw Min,k

R sin0 Ao
[R+AR] sin [0 +A0] Aw
R AG— AR
e

; R sin [0 +A40] Aw
A6, } |
Mo, ‘ i
R | !
! |
! |
! |
R
! |
(0] I }

Aw
Figure A.3 — Control volume of a 3D reservoir.

The incoming mass of a fluid, m;, &, throughout the outer sphere is:
Mig. R =—PVRIR + AR SINOAOADAL 5 ... (A.101)

and the outgoing mass, mou,r, throughout the outer cylinder is given by:
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Mot R =[=PVR + AOVR)IR? SINOAOADAL ..o (A.102)
The cumulative mass of the fluid is determined by:

Mg = Moy g —Min. g =[=pvR +A(ovR)IR? sin OAOA@AL + pv R [R? +2RAR + AR Isin OAGAwAL, ..(A.103)
and it is reduced to:

m, =A(pvg)R sin OAOAWAL +[2R + AR]PYRARSIN OAOAGAL . ... (A.104)
The mass of a single fluid (Sy= 1) at an initial time can be expressed as:

Mgy = PORZAIAGARSIN O oo (A.105)
At a final time, the mass of fluid is given by:

My = PPRZAONOARSIN O+ APP)RZAOAGARSIN O oo (A.106)
The cumulative mass of fluid for the time-dependent case is given by:

Pig =My — Mg« oosesssssussisisis s (A.107)
Substituting Eq. A.105 and Eq. A.106 in Eq. A.107:

Mo = APP)RZAOADARSIN O ... st s s e s er e eeesens (A.108)
Equating Eq. A.104 and Eq. A.108:

A(pvR)R? sin OAGA@A? +[2R + AR]pv g AR sin GAOA AL = A(dp)RZAOAGARSIN .. ... (A.109)

Dividing Eq. A.109 by V.At, such an equation reduces to:
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A(pVR)+[2R+AR]pVR :A(¢p) (A 110)
AR R2 Ap T s .

Taking the limits of AR and At to zero, Eq. A.110 can be written in its differential form:

o(pvR) + 2pvR _ o(¢p) (A.111)
7 2 T .

Recall Darcy's law:

L D e e e oo arar e oo o nara e e s e s s e n oo nens e e s s e s s nonerenenenen A.112
T ( )

Substituting Eq. A.112 in Eq. A.111 and applying the derivatives assuming constant permeability

and viscosity results in:

2
5_P+15_05_P+25_P:ﬁ[p%+¢5_/’] ....................................................................... (A.113)
o0R2 POROR ROR kp|l ot ot

Use the chain rule as in the previous sections to apply the definitions of the compressibility of a

fluid (Eq. A.25) and the compressibility of the reservoir which is defined:

e A.114
T ( )

As aresults of this, Eq. A.113 is rewritten as:

2
O D 2 D e D ] (A.115)
oR:Z ROR ko

Consider the dimensionless variables defined in section A.1, i.e., the pressure of the 3D reservoir

(Eq. A.37), the dimensionless time (Eq. A.38) and the dimensionless radius of the 3D reservoir:
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RD:LA, ....................................................................................................................... (A.116)

.
where L, is the reference length (71 for the circular fracture case and xr for the rectangular fracture).

Transforming Eq. A.115 to dimensionless variables results in the following equation results (in

the compact form):

1 0 {Rz apo}_app

%6&) D oR), = By s (A.117)
To solve Eq. A.115, consider the following initial and boundary conditions:
pp(Rp,tp=0)=0 (initial condition), ......c..eeeeveiiieeeiniiiee e (A.118)
D h
[WCV} = —&ID—ZD (inner boundary condition),..........c.ceeerrviieeerniieeaenns (A.119)
D drp=ryp  2Rp
lim pp(Rp,tp)=0 (outer boundary condition)...............cccoceeveveeieruennn. (A.120)
Rp—w
where the dimensionless reservoir rate is defined by:
1D = e (A.121)
q
The dimensionless thickness is:
h
D = o ettt ettt e bt et e e nab et et e e naaae s (A.122)
LV

and dimensionless radius of the source is:
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e ettt (A.123)

DD = e (A.124)

then use the chain rule:

L (A.125)
e

and:

D DD L DD e (A.126)

oRp R Rp ORp

Substituting Eq. A.125 and Eq. A.126 in Eq. A.117:

L B OO (A.127)
Rp ORp ORp otp

Applying the derivative on the left hand side of Eq. A.127 reduces to:

o%bp b
e = e e e e e (A.128)
oR?) otp

Applying the transformation defined in Eq. A.114 in the initial condition (Eq. A.118):

DR ED) =0 et (A.129)
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Applying the Laplace transform to Eq. A.128 and considering the initial condition (Eq. A.129),
the following equation results in:

d*bp

: D) =00 e, (A.130)
dR?,

Mathematically, Eq. A.130 has the same shape of Eq. A.97. Hence, the general solution of Eq.

A.130 is given by:
bp(Rp,tt)=C expl=R VU T+ C XPIRDNUT, coeeveeereeeee e eeeeeeese e (A.131)

or, in terms of the dimensionless pressure, it is given by:

pD(RD,u)=iexp[—RD\/Z]+ﬁexp[RD\/Z], ................................................................. (A.132)
Rp Rp

Applying the outer boundary condition (Eq. A.120) to Eq. A.132:

lim pp(Rp,u)=C; lim {Lexp[—RD\/;]}ﬂ-Cz lim {Lexp[RD\/;]}zo, ................. (A.133)
Rp—o Rp—o| Rp Rp—w| Rp

It is concluded that C> must be zero. Therefore, the bounded solution is:

ﬁD(RD,u)zlf—lexp[—RD\/;], ....................................................................................... (A.134)
D

To apply the inner boundary condition, the derivative of the dimensionless pressure with respect

to Rp of Eq. A.134 should be considered:

-
PD __¢,
R

R O (A.135)
R} Rp
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Evaluating Eq. A.134 in R,p and comparing it with the inner boundary condition (Eq. A.119)

expressed in the Laplace domain, it is concluded that:

__%php o rp A.136
1 2[1+RWD\/;]eXp[ wD u] ...................................................................................... ( . )

Substituting Eq. A.136 in Eq. A.134, the solution for this model is obtained:

_ &qphp
Rp )= L S v A137
Pp(Rp,u) 2RD[1+RWD\/Z]6XP[[ D —Rp] ”] ( )

Assuming a point source (i.e., R.p=0), Eq. A.138 reduces to:

5D(RD,u)=é§2§hD T (A.138)
D

A.4. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular

Transverse Finite Conductivity Fracture within a 3D Reservoir

Recall the general solution of the radial flow model of a circular fracture (Eq.A.65):

2zn

— u u

Pm,cr,jrp,u)=A4;Ko\rp |— |+ Bjlo|rp |— |- ]D&jD,f
1D nm | Wb

The last term on the right hand side of the equation represents the "contribution of pressure" due

to the flow from the 3D reservoir to the circular fracture. Such a term results from the

approximation of the gradient in the z-direction.

Fig A.4 shows a schematic example of a circular fracture logarithmically discretized in five

segments. Larsen (2016) suggested that a discretization in eleven segments provides accurate
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results. However, for the sake of giving an example, five segments will be used. The responses

of the dimensionless pressure for each one of the segments in Fig.A.4 are:

— u u 271 mp

P m,cr)(rp,u)=A4Ko| rp |—— |+ Bilo|rp |— | = &, (rpoS 1D <ID1), e (A.139)
uFs) nm | uFheD

_ 2710 D

P ,cr2(rp,u)=A42Ko| rp — +Bylo|rp S il & po (rpISIDSID2)secniiniinniene. (A.140)
1D nm | uFheD

— u u 27nm

P,cr3(rp,u)=A3Ko| rp |—— |+ B3lo|rp |— | = & p3 (rD2<rp<Irp3), coceveveveenne. (A.141)
1D nm | uFpeD

— | u ] I u ] 27nmp

P ,cralrp,u)=A4Ko| rp |—— |+ Balg|rp |— |- .4 (rD3SIDSID4)seceiiniennie (A.142)
o | V7 | WEheD

— | u ] | u ] 2710

P,cr5(rp,u)=AsKo| rp |— |+ Bslg|rp |— |- & p,5 (rp3<rp<rpa). .............. (A.143)
o | V7 | wEheD

This approach leads to fifteen unknowns (in general 3N unknowns for N-segments of the circular
fracture). To set a system of fifteen equations (3N in general) four conditions must be considered:
(1) boundary conditions of the circular fracture, (2) continuity of pressure at the interfaces of the
discretized fracture, (3) continuity of flowrate at the interfaces of the discretized fracture, and (4)

pressure continuity between the fracture and the 3D reservoir.
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Figure A.4 — Logarithmic discretization of the circular fracture.

1. Boundary conditions of the circular fracture.

It is assumed that the well at the center of the circular fracture is produced at a constant rate and

such a fracture is closed. Therefore, the inner boundary condition is defined by:

ap B
l:r —f} e ee——————— i (A.144)
or .

and the outer boundary condition is defined by

0
l:ﬁ] S0 ettt e e e ettt b —aaaaaaa (A.145)
or

r=rf

Transforming Eqs. A.144 and A.145 to dimensionless variables, they become:

o ettt (A.146)

[VD ap fD,cr

oD l’D:’”WD



and:

op fD,cr
aI”D

} 0 e (A.147)
rp=1

respectively. Given that the inner boundary condition corresponds to the segment defined by 7no
and rp1, it must be applied to Eq. A.139. Applying the Laplace transform to Eq. A.146 and then

the boundary condition to Eq. A.139, the following expression is derived:

-
{rD P 201} =D /L A K| 7p /L —BiIy| rup /L =-F1 e (A.148)
)] D=rD Uy D Uy heDY

Rewriting Eq. A.148:

V1D
K| ryp | | = Bili| rup | |= et (A.149)
/D /D Fpeprywpu

Similarly, applying the outer boundary condition to Eq. A.143:

ASK{ /L}Bszll L}o. ...................................................................................... (A.150)
D nm

2. Continuity of pressure at the interfaces of the discretized fracture.

To establish continuity of the pressure along the circular fracture, the pressure must be equal at

every interface, i.e.,

P Dycr, j-1UDj 1) = D (Dycr, j D 1sU)5 v (A.151)

for 2<j <N. For the segments defined in Fig. A.4:
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AIK()[VDI L] +BIIO
\ 77/D

42K

D2 /L] + Byl
1D

43K

A3K0[VD3 L]+B3lo
\ 7D

AK

A4K0[I’D4 L] + B4]0
\ 7D I

45K [rm

4K

271 ip
u
- Mp)=
U§n) uFpep .
Z (rp1-interface), ..
ZﬂﬂfD
u u
—— |+ Balo| D1 |— |~ Xpo
D | nm | D
] 272'77ﬂ)
u
— |- &py =
nm | D _
- (rp2-interface),
270
u u
—— [+ B3| rp2 |—— |~ &pj3
/D | nfm | uEpeD
| 270 p
u
— |- Mqp3=
n/m | uEpeD _
- (rp3-interface),.
2zn
u u D
+Balo| D3 Sl D4
D | i | uFheD
| 271
u
- &pa=
/D ulpep .
- (rps-interface)..
27”7fD
u u
—— |+ Bs5lo|rp4 |—— |~ D5
1D n | uFpeD

3. Continuity of flowrate at the interfaces of the discretized fracture.

...... (A.152)

...... (A.153)

...... (A.154)

...... (A.155)

In addition to the continuity of the pressure, continuity of the flowrate at every interface along the

circular fracture must also be considered, i.e.,

P fp,cr, j-1
al"D

D

B 6Jf’fD,cr,j
or
TD=IDj—1

for 2<j <N. For the segments defined in Fig. A.4:
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AlKll”Dl :l Bl[l[rDl ] AZKlerl ﬁ]—lelerl /ﬁ] (l"D]-il’lteI'faCG),....(A.157)

A Ky rp f 2 —3211[71)2, }=A3K1 rpa |—— |- B3| rpp | —— (rp2-interface), ..(A.158)
77 ] 77]D | ﬂfD | i ’7fD |
u u | u ] I u ] .
A3Ky|rp —3311[”03 ]=A4K1 rp3 |— |- B4ly| rp3 |— | (rps-interface), ..(A.159)
\}77 \ 70 T\ | ey

AlKll”Dl :l Bl[l[rDl ] AZKlerl 77;{[)] lelll"Dl /ﬂfD] (rD4-1nterface) (A 160)

4. Continuity of pressure between the fracture and the 3D reservoir.

So far, ten out of the fifteen equations needed to obtain the fifteen unknowns in Eqs.A.139 — A.143
have been set up. The remaining five are defined by superposing the pressure of the 3D reservoir
on the plane of the circular fracture (see Fig. A.5). To show this procedure, consider the "point

well" solution obtained in section A.3 (Eq. A.138):

exp[ Rpa).

Pp(Rp,u)=

The superposition of Eq. A.138 over the area of the fracture is given by the double integral over

the domain of the angle, 6, and the radius rp:

hp ™D max 0(D)
Boer = ¥ D, ;D "Dpax XD ;Aexp[ RN fldrpy - oovveeeeeeessssecesii (A.161)
D

2 Dmin 0
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3D Reservoir Flow/Pressure
Contribution

/0 ( rp)

Figure A.5 — Fluid transfer from the 3D reservoir to an infinitesimal section of the circular
fracture.

Integrating Eq. A.161 over the domain of &

hp 7D max
Bier, j = 22:1"D "D %g(m)exp[_ Rip iy oeeeeseeeeesseesssseees e (A.162)

2 "D min

The value of the angle &depends on the position along the rp-axis. To obtain a function that relates
these two variables, consider an observation point (+"p;,0,0) in cartesian coordinates. On the other

hand, the equation of a circumference with center (4,k) and radius rp; in the XY-plane is:

R, (A.163)

Taking r"p as the center of the circumference, then Eq. A.163 becomes:

R S (A.164)

Based on the definition of the radius of a circle in cartesian coordinates:
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P = ) (A.165)

and the projection of the radius on the x-axis:
B L5 .S 2 P (A.166)

Substituting Egs. A.165 and A.166 in Eq. A.164:

Py £ 22
2D COSO+ (D)™ + T STy (A.167)
Solving Eq. A.167 for &
(r*-)2—r2.—i-r2
| e R (A.168)
2r5er

Substituting Eq. A.168 in Eq. A.162:

* (2 2 2

(rpj)” —rp; +71

r _ )] D D
D o 1 J

%p, jhp 'D fax

BDer.j(Rp.20p.u) = expl Rpu lrp « vovevreee (A.169)

2 "D min Rp 2’”l*)er
The radius of the spherical reservoir (Rp) is related to the radius of the circular fracture (rp) as:

2,2 (A.170)

where zgp is the observation point along the wellbore.

To provide the remaining expressions to complete the system of equations, the solution of the

pressure at the circular fracture should be evaluated at certain »“p-value and equated to an
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expression that represents the pressure of the reservoir at the same point. Total pressure acting on

a r'pj point located at j-segment defined in Fig. A.5 is determined by:

_ hp 3 *
PDcr,j(”]Bja”) ZTD ~Zl & p, ;G (rpj,rpi>u) = Ge (rEj,rDi_l,u)] ........................................... (A.171)
i=

where:

* \2 2 2
"Dmax r N p))=r5, 1
Ge(rpj-rpi) = | 2D o5l " bk D exp[—RD\/;]er. ................................. (A.172)
D min D 2rpjrp

Larsen et al. (1991) used Simpson's rule to perform the integral in Eq. A.172 in their calculations.
To perform the integral in Eq. A.172, such an equation must be arranged to consider the relative
position of the observation point and the integration limits. This arrangement is shown at the end

of this subsection.

It is convenient to define the observation points, "p;, at the midpoint of every segment of the
discretized circular fracture (see Fig. A.6). At the observation points, the dimensionless pressure
of the circular fracture and the dimensionless pressure of the 3D reservoir are equal. Evaluating
Eq. A.65 at the generic observation point, 7"p;, and equating this expression to Eq. A.171 results

n:

. . 2zn
AJ'K(){FD]' L]-FB]‘[()[FDJ L}_ F L ﬁD,j =
V70 nfp | uFheD o (AL173)

hr 5
= 28p,[Ge by rpi» )= Ge i1, 1]
=1
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Figure A.6 — Definition of the observation points to define the continuity of pressure between
the circular fracture and the 3D reservoir.

Then, the following set of equations should be used for the case presented in Fig. A.6:

u u 27n
AlKo{rﬁl /_}FBIIOI’”EI —} FfD&iD,l:
/D D] WheD (A.174)
hp 3 * *
> '21 % p,ilGe(rp1,rpi>u) = Ge (rp1»rpi-1,4)]
=
* u * u ZﬂnfD
A Ko\ rpy |— [+ Balo|rp2 |— |- 7 &qpp =
/D | MheD (A.175)
hp 3 * *
> '21 %4 p,ilGe(rpa,rpisu) = Ge(rpp»rpi-1,4)]
1=
* u * u 27”7_]’D
A3Ko|rp3 |—— |+ B3lo| D3 = &qp3=
/D D MheD (A.176)
hD 5 * *
> _Zl % p,ilGe(rp3»rpisu) = Ge(rp3,rpi-1,4)]
=
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270 ip
u u
A4Ko| rp1 |[—— |+ Balo| rps |— |- / &pa4=
D nfD uFpep (A 177)
hp S ’
TD_zléao,,-[ccv&,m,-,u)—Gc<ri54,ro,-_1,u)]
=
* u * u 27[77fD
AsKo|rps |— |+ Bslo|rps |— |- 7 Mps=
/D /D | "heD S (A.178)
hn S
TD ‘Zl &7p,i[Ge (rps »rpi»t) = G (rps s pj—1,4)]
1=

Considerations for the integration of the G.-function

Recall Eq. A.172:

* (2 2 2
"Dmax r N p))=r5, 1
Gelrpyurpra= 1 2-cos™!| TELIDRTID el Rpy i
D min D 2I’Dj}”D

If the observation point, 7"p;, in Eq. A.172 is greater than the upper integration limit (rps< *p;), the
integration limits should be adjusted to consider the circumference created by radius 7px (see Fig.

A.7). The lower integration limit is redefined as:
D min :}"Bj R ) R R R X R TR RRT TR (A179)
and the upper integration limit is:

D =By FDf ++++eveese e (A.180)
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*
"Dmin="D;j "Dk "Dk "Dy TDmax="Dj "Dk
Figure A.7 — Definition of the integration limits for 7p when the observation point, r'p;, is

greater than the limit 7px.

If the observation point in Eq. A.172 is lower than the upper integration limit (7p«> 7"p;), then the
lower limit, 7pmin, Will be zero and the upper integration limit, 7pmax, is equal to 7px (see Fig. A.8).

For this case, there is a "natural lower bound" defined by:

Fog =D = T« eveeeesesmeesee e (A.181)
® —@ o »r
Ta =TDk=TDj rpj  "Dmax =Dk
"Dmin =0
Figure A.8 — Definition of the integration limits for 7p when the observation point, r'p;, is

lower than the limit rpx.

The numerical integration when rpx > *p; causes some difficulties given that the lower integration
limit is zero. Therefore, it is convenient to use the "natural lower bound" to split the integral to

avoid such difficulties. To do so, it is more convenient to write Eq. A.172 in terms of Rp:

* N2 2 2 2
FDmax o | D" ok T RD ZZ0p | L MRy s (A.182)

*
G (rpj>rpk-u) = cos . > >
RD min 2rpj\Rp —zop

where:

2 2
RDmm= rDm' +ZOD’ ................................................................................................ (A183)
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and:

|2 2
RDmaX: er +ZOD. .................................................................................................... (A184)

Splitting the integral in Eq. A.182 at the "natural lower bound" it becomes:

Rp (r*~)2 —r2 +R2 —z2
Ge (rpyj. 7 1) = 7 cos | 2Dk __D_"0D exp[— RD\/;]dRD +
RD min 2rgjﬂR12) - Z(%D
. ....(A.185)
Rp rhi)> —r2, +R% —z2
fnax cos ! 2 Dk D _~0D exp[—RD\/;]dRD
Rpa 2’”51'\”3[2) —ng
where:
_ * 22
Rpg —\/(er D)7 F I e (A.186)
Considering the trigonometric identity:
COS ™ (7)) = 7T =008 ™ (X) sovveee e e ee e (A.187)
Eq. A. 185 is rewritten as:
Rpa
Gc(r;)j,er,u):ﬂ | exp[—RD\/;]er -
RD min
Rp r2 +z2 0 —(rhi)? + R?
P cos| 1Dk Z0p Z UL FRD | T iRy e (A.188)

RD min ZrijlRé —Z(%D
2 2 2 2
Rp max (7’5) —-r5, + Ry —z
i -1| VDj Dk "D " 0D exp[_ Rp /_u]dRD

cos
Rpg ZrBj,[RlZ) —ng

Integrating the first term on the right hand side:
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Ge (”Bj s"Dk>u) = 7[exp[-Rpgy ‘/;] — eXp[—Rp min \/;]] -

R 2 2 2 o0
R o5 1Dk Z0p ZUD)" R\ g bRy e (A.189)

Rp min 2r5j,[R% —ZSD

2 2 2 2
RD max (I’L*)) —rn, + R —z
| cos ™! J Dk~ D _"0D exp[— Rp \/;]dRD

Rpg 2rp R~ 23

Given that the lower limit, 7pmin, is zero and the observation point zop is also zero, Eq. A.183

reduces to:

Rty = Oseeeeeeeeeeeeesseeeeeseeeeesesseeeeeeeeee s eee e e e e s ee e e eeee e ee e e e ee s ee e eeeee e (A.190)

and Eq. A.186 becomes:

Ry =Dk =+ weeessssseeessssees s (A.191)

Consequently, the integration interval of the integral of the second term in the right hand side of
Eq. A.189 is defined over the [1,0)-interval, which is out of the real domain of the cos™'-function.

Therefore, such an integral is equal to zero and Eq. A.189 reduces to:

G (1 s D) = T[exp[~R pgy Nu ] = exp[~R p i Vi 11+

CoS

Rpa Zr;)jﬂR% —ng

2 2 2 2
Rp max (}”B) -r FRE —Z5 A | T m1 eeeeeeeeciiiiiiiiniiiineeinn.
i -1| YDy Dk 7D Z70D | ool R /—u]dRD
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A.5. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Rectangular

Longitudinal Finite Conductivity Fracture within a 3D Reservoir

The procedure to develop the constant-rate solution for the rectangular longitudinal fracture case
within a 3D reservoir is essentially the same as in the previous section. Therefore, recall the

solution developed in section A.2 for a discretized rectangular fracture (Eq. A.99):

27n

— u u

PD,cr,j(xp,u)=4jexp —xp |— |+ Bjexp xp |— |- JD&YD,J'-
7)s) nm | Fnepu

Fig A.9 shows an example of a rectangular fracture logarithmically discretized into three segments.

A discretization in thirty segments is recommended. However, for the sake of providing an
example, three segments will be used. The dimensionless pressure response of the discretized

rectangular fracture shown in Fig. A.9 is given by the set of equations:

_ u u 271 p
Pcr)(xp,u)=Apexp| —xp |—— |+ Bjexp xp |— |- qp,) (XDo<XD <XD1), ... (A.193)
1D nm | Fnepu

27nmp

& p2 (Xp1=XD <XD2), ....... (A.194)

— u
Pm,er2(Xp,u)=Ayexp|—xp | — |+Byexp xp |[— |-
P Fpept

o | 7D

nm | Fnep

— i u ] I u 270
P D,cr3(Xp,u) = A3 exp| —xp % +B3exp| xp |[— |- & p3 (Xp2=Xp <XD3). ....... (A.195)

This approach results in a set of nine unknowns (3N-unknowns for N-segments of the rectangular
fracture). To determine the values of the unknowns the procedure shown in section A.4 is also

applied for this case.
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Figure A.9 — Logarithmic discretization of a rectangular fracture and definition of observation
points.

1. Boundary conditions of the rectangular fracture.

The inner boundary condition for the well intercepting the rectangular fracture and producing at

constant rate is:

op B
[af] a TS (A.196)
L fyfw
Eq. A.196 expressed in dimensionless variables is:
op
[%} T e S (A.197)
where dimensionless horizontal length of the fracture is:
ettt ettt ettt ettt (A.198)

™y
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For this model, it is considered a closed hydraulic fracture. Therefore the outer boundary condition

is defined by:

0
[ﬁ} s e i (A.199)
ox

x=Xf

or, expressed in dimensionless variables:

op
{ /D ’”} 0 e i (A.200)
GxD XD—I

Transforming the inner boundary condition (A.197) to the Laplace domain and then applying it to

Eq. A.193 (segment defined by xpp and xp;), this results in the expression:

=1

A - B =
3/2
2Fpepy fptt

et (A.201)

Similarly, applying the outer boundary condition (Eq. A.200) to Eq. A.195:

4 exp{— /L}& exp{ /L] 0 ettt (A.202)
o /D

2. Continuity of pressure at the interfaces of the discretized fracture.

The continuity of the pressure for this case is defined by:

P Der jo (XDj1 1) = P Dy, J(EDJ1 1), woverveevecessienesssseesessssmenesssseseessssneesesssnne (A.203)

for 2<j <N. For the segments defined in Fig. A.9:
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271 p
u u
Ay exp| —xpy |— |+ Bjexp| xpj - Mp)=
1D n | Fnept
u u 27T77fD
Ay exp| —xp| [— |+ By exp|xp| [— |- Mqp2
nfD nfp | Fnepu

2zn i
u u
Ay exp| —xpp |—— |+ By explxpy | — |- ! Mqpo =
nD nfp | Frepu
u u 27”7fD
Az exp|—xpp |[— |+ B3z expxpy [— |- Mqp3
1D n | Fhept

3. Continuity of flowrate at the interfaces of the discretized fracture.

(xpi-interface), ....(A.204)

(xpa-interface), ....(A.205)

The continuity of flowrate is defined by:

{%} {%} e (A.206)
*D Xp=Xpj-1 *D Xp=Xpj-1
for 2<j <N. For the example given in Fig. A.9:
_Al expl:— XDl L] +Bl eXpI:XDl L] =
\ n \ n
P /P (xpi-interface),............... (A.207)
—Az eXp| — X1 L +Bz €Xp| X pi L
/D /D
vy) exp[—xDz L]+Bz exp{xl)z L] =
\'7D \ 77D .
(xp2-interface),............. (A.208)

- A3 exp{—xDz L]+B3 exp[xDz L]
\ 77/D \ 77/D
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4. Continuity of pressure between the fracture and the 3D reservoir.

To provide the remaining expressions to complete the system of equations for this model, consider
the superposition of the dimensionless pressure of the 3D reservoir on the plane of the rectangular

fracture (analogous to the circular fracture case):

_ . hp N .
Pper.j (riy 1) = TD -21@)’ FGRD A 01) e (A.209)
1=
where:
Gk 0.1) = | ;RLexp[_RD L O (A.210)
rp 6D

The integral in Eq. A.210 is defined in polar coordinates. To integrate a rectangular surface using
polar coordinates consider Fig. A.10. Note that a rectangular area can be subdivided into three

semicircular areas, each one defined by minimum and maximum radii and an angle.

Given that 7p and @are defined depending on the observation point (x“px, ¥"pk) and any coordinate

(xip, ¥ip), it is convenient to use the following notation in terms of function Zz:

GR(I’EJ-,H,LI):ZR(x}k)k,y?)k,xlD,le,XZD,yZD,u). .......................................................... (A2ll)

Based on Fig A.10, observe that the minimum and maximum radii and angle depend on the

segment (semicircular area) of the rectangle. Hence, the integrals n Zz-function can be written as:
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* % rp2 Omax,l |
ZR(XDkYDk>X1D>V1D>X2D>Y2psi)= | | ——exp[-Rpulrpdfdrp +
rp] @min,/ Rp
D3 Omax,Il
| [ ——exp[—RpNulrpdOdrp + - coveveveeeeeeeenennan. (A.212)
rp2 @min, /I D
D4 Omax Il |
——exp[-Rpulrpdbdrp
rp3 Omin, ] Rp

yw y»

Observation Point i

Figure A.10 — Subdivision of a rectangular area into semicircular areas.

Integrating Eq. A.212 with respect to &

* % D2 . 19)) \/—
ZR(XDk>YDk>*X1D>Y1D>X2D> V2D )= | [Hmaxal—emm,l]R—eXp[—RD uldrp +
D

D1
D3
| [Hmax,ll—émin,ll]riexp[—RD \/Z]er g eeeenrennes (A.213)
D2 RD
D4
[ [6max, 11l — @ min, [II1-2- exp[~R p Ju ldrp
D3 RD
where:
Ormin.7 =sin~ ! {xl_D} ....................................................................................................... (A.214)
9 rD



Omax.1 = c0s™! %D ....................................................................................................... (A.215)
Opnin 17 =sin”! %D ....................................................................................................... (A.216)
Oz =sin”! ’%D et (A217)
Onmin. 117 = 05! yfTD s et (A.218)
Omax 111 =sin”! {)%D .................................................................................................... (A.219)

Because of the reference system, angles Ginir and Gnaxir are different from the ones reported by

Larsen ef al. (1991). However the expressions yield the same results.

If the observation point is located at the origin, then »p1 and 8,7 (Eq.A.214) become zero, and
Onax,1 1s 7/2. Consequently, the first integral on the right hand side of Eq. A.213 can be performed

analytically. The resulting equation is:

™ [2 2
ZR(XDk>YDk»X1D>¥1D>X2D>¥2D>4) = m{exp[—zop x/;]—exp{— ulrpy _ZOD]H+

D3
[ [0 max, Il — O min, [1]-2- exp[-Rp Nuldrp + . ooo...... (A.220)
D2 RD
D4
[ [0 max, Il — 0 min, I ~2- exp[~R p vu ldrp
D3 Rp

The observation point (x*p;, y"pi) should be selected exactly where the pressure of the 3D reservoir

will be evaluated. Such points should correspond to the center point of each segment of the
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discretized rectangular fracture (see Fig. A.8). To perform the integrals given in Eq. A.220, it is
convenient to always translate the observation point to the origin of the coordinate system by
resetting the observation point(x“p;, y"p;) as the origin (0,0). The translation of the rest of the points

are made by rescaling the x-axis as
X' I[) S X ) =X eeeereeeen et (A.221)

and y-axis as:

y'jD = yJD _y*Dl ............................................................................................................ (A.222)

This translation of axes allows some of the variables of the Zz-function to drop. It is redefined as:

! ' ! ' * *
ZR(xlD s V1D sX2D >V 2D ,u):ZR(ka,ka,xlD,le,xZD,yZD,u). .................................... (A223)

After the axes translation, some of the coordinates can become negative. If that is the case, the
area (or areas) of the rectangle that relies on the negative section of the translated reference system
can be translated again to be considered in the positive section. These cases are summarized and
graphically shown in Table A.1. For such cases, the Zz- function should be mathematically treated
as follows:

ZR(X'\p YD -X2D - ¥'2p 1) =ZR(0,'1p . |x'1p} ¥'2p ;1) + (x'1p <0< X'2p) (A.224)
e e e e e eeaaeaaa )
ZRO0,Y'1pX'2p s ¥'2p s 1)

ZR(X1p.¥'1D X2 Y2 s ) =ZR(x'1p 0.x'2p .[y'1pl.u) + (/10 <0< y'2p) (A.225)
peeerenee et .
ZR(x'1p ,0,x'2p ,¥'2p »1t)
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ZR(x'1p» YD >X'2p V2D ) =ZR(0,0,x'2p ,¥'2p su) +
ZR(0,0,)Csz , ,u)+
ZR(0,0,]x'1p|.|y'1p|w) +
ZR(0,0,|x'1pl, y'2p 1)

(x"1p <0<x"2p and y'1p <0< y"2p), ...(A.226)

As shown in Fig. A.9, the continuity of pressure between the rectangular fracture and the 3D
reservoir generates three equations by comparing the dimensionless pressure of the fracture (Eq.
A.99) and the superposed dimensionless pressure of the 3D reservoir over each segment of the
fracture (Eq. A.209). Both equations should be evaluated at the observation points defined in Fig.

A.9. These equations are:

2
Aj exp —xzk)l L + By exp x}k)l LA /D &jD,l =
\ 7D n | Fnepu (A.227)

..................

hp
—2 Z&iDzzR(xDl YD1:XD0>YD0sXD1> Y D1+ )
i=1

2
Ay exp| ~xDy | —— |+ By exp| xpy |—— |- i Mpp =
nfD n | Fnep (A.228)

hp
7 ZéEDzZR (XD2+YD1>XD1sYD0>XD2> Y D1+ 1)

l_

2
A3 exp[— xD3 /L]+Bs exp{ma } P s =
7/ icD” R (A.229)

3
.ZlﬁDzZR(xD3 ,VD1>XD25 Y D0s*D3» Y DI+ ¥)
1=

hp
2

In general, for a discretization into N-segments:
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* u *
Ajexp —xp; |—— |+ B exp| xp;

u 27[77ﬂ)

- |- D,j =
1D | FreDu (A.230)
h D N 7 * *
- 28 piZR(xpj>YD1>XDj-1,YD0>XDj—1>Y D> 1)
i=1
Table A.1 — Translation of the observation points and rectangular areas.
Case I Case II Case 111
+ Xxp + Xp +Xp
Xon
-
|5}
2]
jt_g Xip | Xop —A-—--- Xon
50 e | . .
5 } X Xip
| 1D h—
-yD y” i -yD -yD y”) yQD -yD - ; I -yD
P iz Vo
° . . ® . . ° . .
- X Observation point - X Observation point - X Observation point
+x’ + xp +x’
g @® Observation point
E X ] ) @ Observation point
7 @ Observation point
=
<
‘g X w1 X~
= ! |
k] -y’p ; -y’ -y -y -y -y’
> V' Vo X
< X -{-- 3
-x’p - X»p Yan e Y
8 +x ’p + xp +x’
O
_g @ Observation point
z‘ @ Observation point
5 2 X . .
k=] | @ Observation point
g o I o
s E 1 beul
50 , 4 Xo | ____ Xl ™
2B T wd [T -y -y
5 2| .y P » Wl o
= yo — -y -yp -yp
§ b/ il Vo -x %
=) Vi 20
E -x - Xp Y
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APPENDIX B

PRESSURE-TRANSIENT ANALYSIS OF FRACTAL RESERVOIRS

This Appendix is divided into two sections. In the first section, we show the detailed derivation
of the diffusivity equation presented by Chang et al. (1990) to depict the pressure-transient
behavior of a fractal reservoir. In the second section, we present the constant-rate solution of such

a diffusivity equation, assuming an infinite fractal reservoir.
B.1. Development of the Diffusivity Equation for a Fractal Reservoir

Consider that the number of permeable sites contained in a volume with characteristic length R is

determined by a power-law:

where Dy is the fractal dimension of the permeable sites. The sign of the exponent Dy depicts the

proportionality between the permeable sites and the volume.

Assuming that all permeable sites in the reservoir have the same volume, Vs, the pore volume of

the permeable sites is determined by:
PU(R) =V GN(R): ceeeuueieeiiiiiie ettt ettt st st e e e s aaa e e e e aa e e e s saaaeee s (B.2)

To obtain the porosity of the fractal reservoir, the pore volume must be divided by the volume of
the reservoir. Chang ef al., (1990) defined the size of the reservoir in terms of a geometry factor,

G. However, it is more appropriate to use the generalized definition (Barker, 1988):

Vo (R) = g RITBITEAR oo (B.3)



where d is the Euclidean dimension and a4 is the area of a unit sphere in d dimensions:

_Zﬂd/z
Id/2]’

aq

Then, if d=1, the reservoir would have the shape of a rectangular prism with two sides of size b
and one of size 2R. If d=2, the reservoir would have the shape of cylinder of radius R and height

b. If d=3, the reservoir would have the shape of sphere of radius R.
Combining Eq. B.2 and Eq. B.3:

#(R) =g=¢0RDf_d, ........................................................................................................ (B.5)

where ¢ is a reference porosity defined by:

oV
B = e (B.6)
0 b4

To develop the Darcy's law equation for a fractal system, consider the Hagen-Poiseuille equation

to determine the flowrate of a fluid of viscosity u through a capillary tube of radius 7. and length
R:

4
/G B.7
e (B.7)

9u

For a system of 7, capillary tubes with the same shape, the total flow rate of the system is given

by:

_ e Op B.8
qu nPSy@R' ................................................................................................................. (B.8)
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An equivalent number of capillary tubes of volume V. contained in a reservoir volume ¥V, with

pore volume PV is determined by:

Combining Egs. B.1, B.2, B.8 and B.9 gives us:

Dr-1
Y, mf

WETTY T Sk

..................................................................................................... (B.10)

Assuming that the volume of the permeable site and the volume of the capillary tube are equal and
that the radius of the capillary tube is a power-law function of the characteristic length of the

reservoir, R:
Fe = ERTOTA e (B.11)

Substituting Eq. B.11 in Eq. B.10 results in the following expression:

Dr—-6-1
AR B.12
qu _§ p R 5 st eeaaaaeeeeeaaanitteaaaanitetoaaanittoaaanaiitooaatatittosaantitottasnitttotnasiteotansniinos ( . )
where:
4
£ :%. ..................................................................................................................... (B.13)

On the other hand, consider Darcy's law with variable permeability:

L R O B.14
R=" R ( )
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where A is the area exposed to flow. Based on Eq. B.3, the area exposed to flow can be defined

as:
A= G gD T et (B.15)
Assuming that the variation of permeability can be represented by a power-law function:

JQRYZKQRP oo (B.16)

where ko is a reference permeability. Then, substituting Eq. B.15 and Eq. B.16 in Eq. B.14 results

n:

Alternatively, using Eq. B.6:

R O (B.18)

qR
do nu OR

Comparing Eq. B.12 and Eq. B. 17, it is concluded that

and that index £ is related to the distribution of the sites, Dyand the connectivity of them:
Bo=Df —@ =1+ ettt s (B.20)

To develop the diffusivity equation for a fractal reservoir, consider the incoming mass of fluid,

min,r through an infinitesimal section of the reservoir can be expressed as:
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Mijn R :—mRAt. ..................................................................................................

Similarly, the outgoing mass of fluid:

Moyt R :[—mR +A(mR)]At. ...............................................................................

The cumulative mass of fluid is determined by:

Me =Meys R — Min R :A(mR)At. ...........................................................................

The mass of a single saturating fluid at an initial time can be expressed as:

Analogously, at a final time the mass of fluid is:

mtz = ¢er —+ A(¢p)Vr © e e eeteeteneaeeetnaatetenatatetenaaatetetetatetetntatetterattsettrrststerrrstosernrans

The cumulative mass of fluid can be also given by:

me :mt2 _mtl :A(¢p)’/r. .....................................................................................

Equating Eq. B.23 and Eq. B.26:

ACDGRIAL = A(BPIV yevrvevereneeenesensesesesesssesesesesesesesesesese s esesese s e s esese s esesenesseseseneesns

Based on Eq. B.3, Eq. B.26 can be rewritten as:

1 A(WR) = A(¢p) D R R R R R R R R R R R R

ade_1b3_d AR At

Taking the limits of AR and At to zero, Eq. B.28 takes the differential form:
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............. (B.22)

............. (B.23)

............. (B.25)

............. (B.26)

............. (B.28)



! O R O ) e, (B.29)

a R4 R

Applying the derivative on the right hand side of Eq. B.29 and arraying, it results in:

1 L OPaR) L O L 0P | e (B.30)
ayR1p37d ¢ OR ot p ot

Substituting the definition of the porosity (Eq. B.5) and Darcy's equation in its fractal form (Eq.

B.18) in Eq. B.30, such an expression reduces to:

1 o RPkgap|  [104 10p
RDf_l GR{D p aR]—meﬁ o +p ol IR (B.31)

Applying the derivative on the left hand side of Eq. B.29 gives the expression:

1 o[ pop| RE pop| doul10g 10p
S YA O I A oy Vo Bt L o
Dyl LR{ aR} R aR] ” Lﬁ A aj ........................................................ (B.32)

Using the chain rule similar to the cases shown in Appendix A:

P_pPp (B.33)
o islis S :

% (B.34)
L — .

o _op (B3)
L — .

Substituting Eqgs. B.33-B.35 in Eq. B.32 results in:
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B 2
! i{Rﬂa_p}R_a_p{a_p} z%_ﬂ{i%ia_p}a_p. ............................................ (B.36)
RPr-1|oR oR| p op|oOR ko |¢op pop|ot

The compressibility of the fluid can be defined by:

€0 =08 e (B.37)
p op

and the compressibility of the fractal reservoir as:

L i, B.38
= 5% ( )

Substituting Eqs. B.37 and B.38 in Eq. B.36 and neglecting the squared gradient on the left hand

side of the equation, this yields the expression:

! i[Rﬂ@_p}:M@, ........................................................................................ (B.39)
RPrToRT R] ko &

where the total compressibility of the fractal reservoir is defined by:

For this model, consider the following dimensionless variables: Dimensionless pressure:

(TVSkO

5 [Dj = PR E)]s vevvernresreeieaniieiie sttt (B.41)
qBury, “ o

PD,er(Rp.tp)=

dimensionless time:

k

p= % 5 bttt h e bttt h ettt e a e bt e aa e et ea e et e e e ae e b e eat e e aa e e a e eareenaneeaees (B.42)
Po LTy

and dimensionless position in the fractal reservoir:

206



RD = e (B.43)

Iy

Using the chain rule, the derivative of the pressure with respect to time is expressed as:

6_]9_ apf apD,C’” dtp :_qB:w”vlv_'B¢0 ) apD,cr

= ettt aeas B.44
ot Opp,cr Otp Ot oVsko  gouc,r g +2 dtp ( )
Similarly, for the first derivative of the pressure with respect to R:
& & PperRp  gBuny Py 1 W
= =- — ettt ettt et e e e (B.45)

8_R_6pD,cr 8RD OR UVSkO Iy a}’D

Substituting Eqgs. B.43-B.45 in Eq. B.39 gives the diffusivity equation for a fractal reservoir in its

dimensionless form:

1 0 i Pp,cr | PD,cr
R e o et e e e e b e e e be e e tba e e aba e e e bteeebaeeeraaeans B.4
s aRD{ D orp } otp (B.46)
D
B.2. Constant-Rate Solution for the Fractal Reservoir Model
To solve Eq. B.46, consider the following initial and boundary conditions:
pp(Rp,tp=0)=0 (initial condition), ..........eeeeeeeereiiiiiiiieee e e, (B.47)
B PD,cr ) ..
Rpy——— =-1 (inner boundary condition),............cceeevveeereerirenreennnenns (B.48)
ORp Rnel
lim pp(Rp,tp)=0 (outer boundary condition)..............cccecerveeveeierenennnns (B.49)
Rp—o
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Applying the derivative on the left hand side of Eq. B.46 and arraying, it yields the following

equation:
2 azpD cr aPD,cr 0+2 PD,cr
Rp, — +PRp ——— Ry T =0 (B.50)
orR?, oRp otp

Applying the Laplace transform to Eq. B.50, it becomes:

2_
d PD,cr +£dl_7D,cr _u 0—
dR}  Rp dRp

Consider the transformation function:
GUZ) = B,cr (R ) seesesrssssssstsistsisiiiisisii bbb (B.52)
and the transformation variable:

2u (942172
Z:mR[D+] .............................................................................................................. (B.53)

Using the chain rule, the derivative of the dimensionless pressure in the Laplace domain with

respect to the dimensionless radius is:

dp dp
PDcr _ PDier d6(2) 2 _ 012 [ AGE) || oo (B.54)
dRp  dG(z) dz dRp dz

Applying the second derivative to Eq. B.52 with respect to Rp:

2_

d 2

PD,cr =Rgu d“G(z) +§RE)9_2]/2‘/; dG(z)
dR? a2 2 dz

Substituting Eqgs. B.52 and B.53 in Eq. B.49 and arraying, it reduces to the following expression:
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2
22 dLZ(Z) +[1- 2v]2% —22G(z)=0 (Where V=[1-Bl/[G+2])ecveiiieieieiieieeeeee (B.56)
dz z

Defining a new transformation function:

2&?2

B(z)={9+2

the derivative of the function G(z) with respect to z can be expressed as:

0 (2151”2

dz 0+2 dz 9+2

Taking the second derivative to Eq. B.56 yields:

2 -V 2 -V
Lo 12k ] {Zvd <)%H;_q 2B 250 o (359
dz + dz ol ol

Substituting Eqs. B.57-B.59 in Eq. B.56 and arraying, it reduces to the following differential

equation:
2
P247BG) | ABG) 12 1B ) L0 e (B.60)
dz2 dz
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By inspection, the general solution to Eq. B.60 is given by:

B(2) = C1K (2) F €L, (Z) - vveeeiinmiiieiiiiiiie ettt (B.61)

Expressing Eq. E.61 in terms of the pressure:

_ _olI-B1/2
PD,cr(Rp,u) =Ry, [C1Kv . )

2‘/;2 R[D‘9+2]/2:|+Czlv[;\/; R[9+2]/2ﬂ. ............................. (B.62)

Applying the outer boundary condition (Eq.B.49) to Eq. B.62, we can conclude that C> must be

zero. Then, the bounded solution for this problem is:

_ _ 2Ju
Bp.cr(Rp.u) = RIPY 2c11<{9_+“2 R%*Z]/z} .................................................................... (B.63)

The value of the constant C) results from applying the inner boundary condition (Eq.B.48 in the

Laplace domain) to Eq. B.63. Such a value is:

The particular solution is obtained by substituting Eq. B.64 in Eq. B.63:

2 _[9+21/2
el
Pp,er(Rp.u)= 23 > N (B.65)
Kv—l|:0 :l
+2

To provide the particular solution in the real domain, consider the "point source" approximation,

ie.:
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1-v]
Kv_l[&} =K1_v[ 2u } LI ‘V]{ Ju } (S ) T (B.66)

0+2 0+2 2 0+2

Substituting Eq. B.66 in Eq. B.65:

1-p]/2
2R1P)

ﬁD,Cr(RDau) =

—[2+v]/2 2u [6+2]/2
u Ky|=——R}
0+2

1 } .............................................. (B.67)
[0+2] " TT1-v]

Applying the inverse Laplace transform to Eq. B.67 (Eq. A32 from Barker, 1988):

R%_ﬁ] R[D9+2]
Rp, = =V, | e B.
pD,cr( DsID) [0+ 21— ] v [9+2]2tD (B.63)
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APPENDIX C
PRESSURE-TRANSIENT BEHAVIOR OF A VERTICALLY FRACTURED WELL IN A

FRACTAL RESERVOIR

In this Appendix, we show the detailed derivation of the uniform-flux solution of a vertical well

intercepted by a hydraulic fracture in a fractal reservoir (Beier, 1994).
C.1. Uniform-Flux Solution of a Vertically Fractured Well within a Fractal Reservoir

Recall the constant-rate solution for an infinite fractal reservoir (Eq. B.68):

R[Dl—ﬁ] Rg+2
+(Rp,ip)=—2L— 1| —v,—L | (where v=[1-8]/[0+2]).
PD.er(Rp,tp) = oo T = Be 2l ( [1-41/16+2])

Consider the redefinition of the dimensionless time:

v 2]2 0+2
+ "y
ID,Be = 4 {—:| e (Cl)
*f
and:
[0+2]

pDBe(RD»tD,Be): pD,Cr(RDﬂtD) .............................................................................. (C2)

Then, Eq.B.66 can be written as:

RI-A1 Rg+2
PDBe(Rpstp Be) = -

D
41— v]

}. ........................................................................... (C.3)

V,
41p Be

Based on the definition of the Incomplete Gamma Function, Eq. C.3 can be written as:
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R4

PoBe(RD 1D, o) = o lez‘v‘l 2N (C.4)
where:
0+2
y=D (C.5)
B g :

According to the grouping variable z:

0+2
R
2o e (C.6)
4z

Eq. C.3 can be rewritten as:

6+2
| D.Be | RY
R = - AT e C.7
PpBe(Rp 1D Be) =] (I) e GXP{ . }T (C.7)

To be consistent with the solution presented by Beier (1994), consider the change of variables:

ZDf
ST o+2°

consequently:

Using Eq. C.8 and C.9, Eq. C.7 can be written as:

1 ID,Be 1 RZDf/ds
pDBe(RD’tD,Be): | p /2exp ", 7 2 (CIO)
s

IMds /2] [47] 4r
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Assuming that the "fractal radius" is given by:

WD 1d
RS

20/ /d
D =[xp-xupl

then, Eq. C.10 is rewritten as:

2Dr/d 2Dy /d
(Riotn 5o)= 1 IDJBEX _[xp —xypl S exp| YD = Yup] R
PDBeED- DB g Ty O 4t P 4e 4152
....................................................................................................................................... (C.12)
Assuming that yyp is zero and integrating over the domain of the xp-axis results in:
(DY Do 1D. ) = —
PDBe(XD>YD>!D,Be I, /2]
: e C.13
D, Be 22 s ep x5 . (C.13)
| exp|———=——|[ exp| — dx,,p 773
0 4t 1 4z [47]%s
To integrate Eq. C.13 over the x,p interval, consider the change of variables:
2 ED TOWD bbbttt b ettt ettt ettt (C.14)
w ]
[42‘]ds /2Df
and consequently:
e D ettt ettt (C.15)
[4T]ds /2Df

Evaluating at yp=0 and substituting Eq. C.14 and Eq. C.15 into Eq. C.13, it becomes:
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1
Id, /2]

!D,Bew 2D _ 2D 1 ’
| juexp[—w 7 ds }[47] ds/ 2[—[41] 1 ds dw}drﬁ
0 w

PDBe(XD>Ip Be) =

where:

1+xD

[4T]dS /2Dyg

wyp =

and:

—1+xD

LT R e L P R TP PP TP T PP PTPLTRTPTL

[4‘[]dS /2Dy

Splitting and arraying the inner integral in Eq. C.16 results in:

1
PDBe(xDJD,Be)Zm
S
a7 1
D,B _[}{1_} 0 . wy :
I 6[41] 2 by | exp[— w2lr ds }dw+ | exp[— wlr /ds } dr
0 wy 0

Using the change of variables:

2Dr/d
Z=w S 5.

The first integral inside the brackets in Eq. C.19 becomes:

dS
0 d. = .
‘[ exp|:_ W2Df /ds :ldw e Jl/l z 2Df eXp[— Z]dZ, ............................
wy 2Dy ¢
where:
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................................... (C.18)

e (C.19)

................................... (C.20)



2Dr/d
B L7 (C.22)

“ viva

According to the definition of the lower incomplete gamma function, Eq. C.21 can be expressed

as:

2Dr/d
(f)expl:—WZDf /dS}dW: dy | dy [-xp] T (C.23)
] T T . .
u .

Similarly, for the second integral inside the brackets into Eq. C.19:

2Df¢/d
Mj}lexp{—wzl)f/ds}dw= d ) s [+ xp] fs (C.24)
J 0,730, e S ——— .

Substituting Eqgs. C.23 and C.24 in Eq. C.19:

(xp.t )= 4v dy
PDBeXD-'D.Be) =1 2D,
e (C.25)
2Df/d 2Df/d
tD’IBeTvy dy [-xp]” 1'% ry dy [+xp]” 1'% ir
0 2Dy’ 4t 2Dy’ 4t

Applying the distribution property to the integral on the right hand side of Eq. C.26 results in two
definite integrals of the product of a power-law function and a lower incomplete gamma function.

The integral for these types of functions is:
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a+l ra+1 Gy[b,cr_l]

t a -1 4
[t%ylb,ct " ldt =
0

a+1 a+1 or

t
Hbyer = o AT J g
0

................. (C.27)

The derivative of the lower incomplete gamma function is obtained by using the Leibniz rule:

-1

cT
:i | zb_lexp[—z]dz:—cbr
or 0

ay[b,cr_l]
or

—b-1 exp[—cr_l]dr )

Substituting Eq. C.28 into Eq. C.27 and arraying results in:

¢ ] ta+1 | cb t b |
[r%y[b,ct™ Jdr = y[b,ct ™ ]+ —— 97" exp[—c7 T ldr -
0 a+1 a+10

Using the change of variable:

Eq. C.29 becomes:

t a 1 ta+l a+l o«
[z%y[b,ct™ " 1dr =
0 a+

1 a+lc/t

Eq. C.32 can be written in terms of the upper incomplete gamma function as:

a+1 a+1

t
j‘ra}/[b,cr_l]dr _! }/[b,cr_l]+ ¢
0 a+1 a+1

Using Eq. C.30 in the first integral on the right hand side of Eq. C.26 results in:

2Dr/d v+l 2D ¢ /d
‘DBe v | ds [-xpl T 1| tppe | d [-xpl T
0 2D’ 4 T v+l 2D 4t ppe

20 1dg M 2D
N Al N O | BN wec s
v+l 4 2Dy ’ 4 pBe
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j/[b,cr_l] +£ Jub—a—2 EXP[—UJdU - +ovverrnriiiiii

r[b—a—l,cz'_l] e

................. (C.28)

................. (C.29)

................. (C.31)

................. (C.33)

e (C.34)



Similarly, the second integral:

J ’ v+l 2Dg” 4t ppe

2Dr/d v+l 2Dy¢/d
‘DBe y | ds Dexpl T U tppe | ds [kxpl T
0 2D, 4 z

2 /dg ! 2D/ /d
1 | [+xp] 9 ods . [+xp] frds
v+1 4 Dy ' 4ppe

Substituting Eqgs. C.32 and C. 33 into Eq. C.25:

1 2D ¢ /d
4 d | thpe | dy T1- flés
PDBe(XD>tDBe) = o { DBe s U-apl +

[dy /212Dy | v+1"| 2Dy’ 4 ppe

2D s /d. TV 2Dr/d 2Dg/d
1 {[l—xD] I } r{ ds 4 U=*p] S }+t5}1€ ;{ dy [+xpl” /"% ]+ - (C.36)
2 2

v+1 4 Dy 4t pRe v+l 2Dy’ 4tpRe

20 rdg T 2D/ /d
1{[1”0] f S] r{zds o ap] f S]

v+1 4 Df 4tpBe

Substituting Eq. C.26 in Eq. C.36 and arraying results in the expression provided by Beier (1994):

>

2D ¢ /d 2D+ /d
d 1—- Sflds d 1 f/ds
PDBe(xDJD,Be)C{;{ s [1-xpl }7{2 s [+xp] ”+

2Dy 4tpge Dy ’ 4 ppe
peeeeeeeeeeerr—— (C.37)
2Df/a]s B 2Df/ds
C{[me@{d—ﬂ,%}uxD]C3r["’_s1,—“ *p] ”
2 4tDBe 2 4tDBe

where:

,~ds[I=1/Df] tl—ds[l—l/Df]/z

s __DBe ettt ettt (C.38)
[dg/2] 2Dy [1-dg[1-1/D]/2]

=
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s D e (C.39)
=% —d[1-1/Dy1/2]Mdy /2]

and:

................... C.40
C3 =2D f[1=d[1=1/D 1/ 2]/ dgeerrererensmsisemnsiniinnsisisi e, ( )
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APPENDIX D
DERIVATION OF THE MODEL OF A HORIZONTAL WELL INTERCEPTING A

SINGLE FINITE CONDUCTIVITY FRACTURE WITHIN A FRACTAL RESERVOIR

In this Appendix, we show the mathematical development of the models of a horizontal well
intercepting a single finite conductivity fracture within a fractal reservoir considering either typical

or anomalous diffusion.

D.1. Point Source Constant-Rate Solution of the Diffusivity Equation for a Fractal Reservoir

with Typical Diffusion

Flow Model and Initial and Boundary Conditions

In this section, we show the procedure to obtain the particular solution of the diffusivity equation
for an infinite fractal reservoir producing at a constant rate through a "point well." Consider the

diffusivity equation for a fractal object presented by Chang et al. (1990):

! i{Rﬂa_P}:Ma_p, .......................................................................................... (D.1)
RPrVeR[T R] kg @

where fis the spatial dimension and it is defined as f=Dy- - 1. Assuming that the initial pressure

is uniformly distributed along the reservoir, the initial condition is:
PRI EZ0) = Pje ettt (D.2)

Considering constant-rate conditions, the inner boundary condition is:
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For an infinite fractal reservoir, the outer boundary condition is defined as:

TN PR, £) = Pjeverreereeseessessensesssasteteite st et et ettt ae ettt ettt ettt ettt (D.4)

R—0
Transformation to Dimensionless Variables

For the constant-rate case, the dimensionless pressure in the fractal reservoir is defined as:

27k h

3 [pl = P(R,E)]5 oveeneneniniiiiiiiiiiiii (DS)
qwBuLy

PD.cr(Rp,tp)=

where L, is the reference length. It must be changed for the radius of the fracture, 4, in the case of
the circular fracture or the half-length of the fracture, xy, for a rectangular fracture. Dimensionless

time is defined as:

ko
OO (D.6)
¢0#CtL%+9

The dimensionless position in the fractal reservoir is defined by:

Using the chain rule, Eq. D.1 is transformed to dimensionless variables as:

1 0 R’B apD,cr _ apD,cr
Dr-1 Ry | P oRp orp
RD

Similarly, initial and boundary conditions become:
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pper(Rp,tp =0)=0 (initial CONAItION), c....v.eeeveeeeeeeeeeeeeeeeeeeeee e eeeeereeeeeeees (D.9)

»p h
{TW:I =- &]DﬁD (inner boundary condition), ..........ccceeeeerivieeeeniiieeennnnn. (D.10)
b Irp=r,p 2Ryp

lim pp(Rp,tp)=0 (outer boundary condition), .............c.ccoeeeevereeeeirenennnen, (D.11)
Rp—w

The dimensionless parameters involved in Eq. D.10 are defined as follows. Dimensionless fractal

reservoir rate:

4r { b rﬁ &,

Mqp = — e ettt ettt e ettt ettt —aeea e et ettt ettt et e aaeaarans (D.12)
a’Df L, qvw

Dimensionless height:

h
D) = ettt e ettt e ettt e e ettt e e e n b eeeennaeeeas D.13
b=, (D.13)

Dimensionless fractal source radius:

Constant-Rate Solution to the Diffusivity Equation for an Infinite Fractal Reservoir

As shown in Appendix B, the general solution in the Laplace domain of the diffusivity equation

for a fractal reservoir is given by:

R[l—ﬂ]/Z [6+2]/2
D D

ﬁD,C}’ (Rp,u)=

2Wu
0+2

2
]+C21V[R[D9+2]/ 2 eﬁﬂ ............................... (D.15)
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where v is a grouping parameter and it is defined as:

_1=5 D.1
Y (D.16)

Applying the outer boundary condition to Eq. D.15, a bounded solution is obtained:

_ _ 2vu
Ber Ryt = CyRLL ﬂl/zK{Rggm/z g_d .................................................................... (D.17)

Applying the inner boundary condition to Eq. D.17, the value of the constant C; is obtained:

= % php st (D.18)
221 Juky, {RE\?DJFZ]/Z 2u }

wD o+2

The particular solution for this model is obtained by substituting Eq. D.18 in Eq. D.17. It is given

by:
RU-B12 R[9+2]/2&
_ &g php D viTD o+2
pD’cr(RD’u): e eeeeiieeeiieeaeieeaieeateaatteaateeatteantteatieanannns (D19)
Dy/2 [0+21/2 2Ju
2RWD \/;Kl—v RwD m

The point source solution is obtained by taking the limit to Eq. D.19 when R,.p tends to zero. This
implies that the modified Bessel function in the denominator in Eq. D.19 can be approximated to

a power-law function:

1-v
K|l N | TV 0+2 | (D.20)
= %W 9 2| glosaz g,

The following expression results after Substituting Eq. D.20 in Eq. D.19:
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[1-p5]/2 v
PDer(Rp,u) = D { + } Kv[R%%z]/z u}

[o+2)mi-v1 | Vu 0+2

Extension to Double Porosity Reservoirs (Valdes-Perez, 2013)

It is well known that a solution with the shape of Eq. D.21 can be extended to models for double
porosity reservoirs if the Laplace parameter u is replaced by uf(u) where f(u) is the interporosity

transfer function. Hence, the following expression is obtained:

1-51/2 v
_ _ %phpRp 0+2 [6+2]/2 2uf (u)
pD’C,,(RD,u)— [9+2]r[1_v] I:\/m:| KV|:RD W e tesesesscresersctsscrsserscrssoraserans (D.22)

In this model, the interporosity transfer function to be used is:

l-wlApF s Hmab s
= 2“’] D lmaD el ) e (D.23)

hmaD Sint

MmaD

1+ ﬁ(ﬁmaD shmap s 1)

where the function F(#map, hmap,ut) depends on the shape and properties of the matrix blocks (see

Appendix E). The dimensionless hydraulic diffusivity of the matrix is defined as:

0
k ma [¢Ct ]t Lr
DD = T e ettt ettt et et et .t —a————t———ta———t———ta———t———————. D.24
e k fb¢ma Ctma ( )
The dimensionless size of the matrix blocks is:
hma
hyaD = ) e eeteeeeeetteaeeeettteeeeettneeeeettneeeeetaaettttaeettta—etettaeeetteetettaerrteeraans (D.25)

the storativity ratio is:
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o D e (D.26)
¢0fbc;ﬂ) + PmaCtma

and the interporosity skin is:

Sint = e (D.27)
kd hma

For matrix blocks with the shape of slabs, the transfer function is:

= 1 } MmaD hnaD u 2 } MTmaD
F ) h ,Uu)= COth D VA Y D.2
UimaD - Fmald ) hmaD u { [ 2 MmaD hnaD u ( )

D.2. Point Source Constant-Rate Solution of the Diffusivity Equation for a Fractal Reservoir

with Anomalous Diffusion

The diffusivity equation for fractal reservoir with anomalous diffusion expressed in dimensionless

variables was presented by Camacho-Velazquez et al. (2008). The model is given by:

0 o7
Dl 1 0 I:Rg pD’C’}: D T e (D.30)
RDf— aRD aRD 5t£

Where y is the fractional derivative order and it is a function of the conductivity index. Such a

function is defined as:

225



2
e TP D.31
4 2+6 ( )

The time fraction derivative of order yin Eq. D.30 is defined as:

" pp 1 o D _
L TTD =717 PDer (R TIAT oo (D.32)
ay  Tl=rlop g

Analogous to the case presented in the previous section, the initial and boundary condition for Eq.
D.22 are defined by Eq. D.9 though D.11. The procedure to solve Eq. D.30 is similar to the one

shown in Appendix B and in section D.1. Then, applying the Laplace transform to Eq. D.30:

-
1 0 {R[; PD.cr

S U P e ettt D.33
Dr-1 6Rp D ORp :| “ PDer ( )
RD

To find the general solution for this case, the transformation variable to be used is:

Using the transformation variable defined in Eq. D.34 and the procedure shown in Appendix B,

the general solution for this model is given by:

y/2

/2
_ _[1-5]/2 [6+2]/2 2u [9+21/2 2u”
Pp.er(Rp,u)=RY [ClKv[RD m]wzl{% e | — (D.35)

Applying the outer boundary condition, the resulting bounded solution is:

/2
_ 1-81/2 9+21/2 2u”
PD,cr(RDv”):CIR[D d KVI:R[D ] m],



The value of the constant C; is obtained by applying the inner boundary condition to Eq. D.36:

h
C - % php . (D.37)
Dfl2 412 [0+2)/2 2u”
2RWD u7 KI_V[RWD W
Then, the particular solution for this model is:
K | glo+21/2 272
_ ool " oer
PD,cr(RD:“)z ........................................................ (D38)
AR 0+21/2 2u”'?
wh 4T K| RIGHVZ AT
0+2
For this case, the point source solution is given by:
1-81/2 v /2
5q_DhDRE) 0+2 [6+2]/2 2u”
PD.cr(Rp,u)= K,|R o | e D.39
PD,cr( D>u) [0+ 2][1—v] u7/2 vi&p 9+2 ( )

To consider double porosity conditions, Eq. D.22 should be used considering the following transfer

function, f{u):

[1- a)]Aﬂ)F(UmaD shmap > )
2

h Sll’lt —

~maD "I FMmaD >hmap »1)

NmaD

fy=ou’ ™"

1+

D.3. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular

Transverse Finite Conductivity Fracture within a Fractal Reservoir

This model considers radial flow within a hydraulic fracture as previously presented by Larsen et
al. (1991). The flow within the circular fracture obeys the diffusivity equation developed in
Appendix C and given by:
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1o| %1 +2_k{8_17} L PTG DL e (D.41)
r or or wk £ | 0z |, k ¢ ot

Considering that the initial pressure is uniformly distributed along the hydraulic fracture, the initial

condition is:
pf(r,t=0)=p,-. ............................................................................................................... (D.42)

For a well intercepting a hydraulic fracture producing at a constant rate, the inner boundary

condition is:

P s _ qwBu
|:l" F:| = m ...................................................................................................... (D43)
r=ry .

For an closed hydraulic fracture, the outer boundary condition is defined as:

0
[ﬁl R (D.44)
or

r=rf

Similar to the reservoir model shown in section D.1, the dimensionless pressure in the circular

hydraulic fracture is defined as:

2nkyh
PD.crDD) =[P = P f (P, e (D.45)
QWB/U’”f

Dimensionless time is defined by Eq. D.6 and the dimensionless radius of the circular hydraulic

fracture is:



and the dimensionless position in the z-direction is:

Transforming Eq. D.41 to dimensionless variables, it becomes:

5 9 5
L 0, Bher ), 2 {p[””} L D eesesesse et (D.48)
D 8FD arD FCD (3ZD D=0 T]fD (3ID
where dimensionless fracture conductivity is:
krw
S
F.p = ) ettt eah et hee e heeeehe e e e ht et e bttt e eh bt e e ea bt e e ea bt e e ea bt e e e bt e e e bt e e e bt e e e bt e e e bt e e e naaeeeeabeeenanneas (D.49)
ey
and the dimensionless fractal hydraulic diffusivity of the circular fracture is:
docik pr 4
DD = (D.50)
drerko
Similarly, initial and boundary conditions become:
PDer (rp,tp=0)=0 (initial condition), ........cceeevveeeriieeeriieenieeeeieeeeiee e (D.51)
op fD,cr 1 . .-
U — = 7 (inner boundary condition), ..........ccceeeeerivieeeeniiieeennnne. (D.52)
D dip=rip JheD
p
L/Der =0 (outer boundary condition), ..........cceeeeerivieeeeniiieeennnnen. (D.53)
8rD VD—I

where dimensionless fracture fractal conductivity is:
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Analogous to the approach made by Larsen et al. (1991), the circular fracture should be discretized

into sufficiently small segments so the pressure gradient in Eq. D.48 can be approximated as:

Then, Eq. D.48 becomes:

I 2 [ anD’Cr}WD & O (D.56)

rp orp orp Fep Dj:’?jD otp

Following the procedure presented in Appendix A, the general solution to Eq. D.56 in the Laplace

domain of a j-segment of the discretized circular hydraulic fracture is:

rp L:I+Bj]()l:rD u
\7m D

This discretization generates a system of equations with 3N unknowns. Therefore, it is necessary

_27hpnp
uF.p

ﬁfD,cr =AJ~K0 éEDj. .............................................. (D.57)

to define 3N equations to solve such a system.

Two out of the 3N equations of the system are obtained by applying the boundary conditions to
the corresponding segment. The first equation is defined by applying the inner boundary condition

to segment one. The resulting expression is:

7
MKy | rup [—— |~ Bily| rup |—— | = P J73 ¢ e s (D.58)
7/ Uy thCD rwDU
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The second equation is obtained by applying the outer boundary condition to segment N. The

resulting equation is:

" /L]-BNI{rD /Lizo. .............................................................................. (D.59)
1D D

N-1 equations are defined by establishing pressure continuity between each one of the segments.

ANKy

This is obtained by equating the pressure of a segment j with the pressure of the adjacent segment

Jj-1, both evaluated at the interface j-1:

27th
u u D1 fD
Aj1Ko| rpj-1 | — [+ Bj-110| rpj-1 - & pj-1 =
1D nD uFep
T
u u D'l D
AjKO rDj e +Bj[0 rDj — f ﬁDj
1D 1D uFep

Similarly, N-1 more equations are defined by establishing rate continuity between each one of the

segments. Then, for this case:

u u u u
A Ky rpig | = =B 1| rpi /— =4 1Ky| rpi_ /— —B 11| rp;_ /— .......... D.61
111[1)]1’”1)] ]III:DJIUJD] ]III:DJIUJD] ]II:DJIUJD] (D.61)

To complete the system of equations, it is necessary to establish pressure continuity between the
segments of the circular fracture and the fractal reservoir. First, the flow from the fractal reservoir
to the circular fracture must be integrated over the area of the circular segment:

& php

mGF(VDj,rDi,U). ....................................................................... (D62)

PD,cr(Rp,u)=
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Then, defining the observations points at the midpoint of each one of the N-segments of the
discretized fracture, the dimensionless pressure of the circular fracture and dimensionless pressure

of the fractal reservoir should be equated. The following expression is obtained:

[ 27hp1 fp
AjKO rp;j L +Bj10 rpj u. - = / ﬁDj =
/D /D “eD ...(D.63)
hD N * *
28 pilGF (rpj,rpi-1,u) =G (rpj, rpi-1,u)]

[0+2]T1-V]

The function Gr for a fractal reservoir with typical diffusion is:

v (rB)z—rz.—i-rD
Gphyrppu)=| 22| TP ot 2D K, | RIOY2V2 2u Ay oo, (D.64)
)j Jn [p-11/2 * D 0+2
u 1 rp R} 2rpjrp
For a fractal reservoir with anomalous diffusion is:
v (rl*)~)2—r2.+rD y/2
Gp(rpj»rpi-u) = 0+2 ) 'D__ o571 D K, RlO+212 2u” drp . eeeeeee (D.65)
4 7/2 [B-11/2 * D 6+2
u D R 2rpirp

For double porosity reservoirs:

v * (2 2
(VD') —rn: +7p 2
G (riy i) =| 2| [ Dot T D TR e | plos2a N Ly 66
R 0+2

Vuf () Lf-11/2

%
D 2rDj rp

For all cases:

Similar to the model developed by Larsen et al. (1991), the integrals involved in Eq. D.64 through

D.66 must be performed numerically. For this case, we have used the adaptative quadrature
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method (MATLAB's integral-function). Besides, the cases when the observation point is greater
or less than the upper integration limit should also be taken into account. Therefore, if the
observation point is greater than the upper integration limit, the following expression for a fractal

reservoir with typical diffusion should be used:

* £ 2 2
VIDj+1Dk (rpj)= —rp; +r
0+2 4 r VD Dj 7'D 0+21/2 2\u
GF(”EjarDiau)z{T} ] [/3]—)1]/2 cos — K| R+ o |drp - (D.68)
3k .
“ 1 -k Rp 2rpj"D

For a fractal reservoir with anomalous diffusion:

p+2] DDk 1 || 0B =y [0+21/2 2u7"2
* - +
GF(rDjﬂrDiﬁu):|: 7/2j| . [ﬂ—l]/z COS " KV RD Wer...(D.69)
u rbj—rpk RD 2rpi"D
For double porosity reservoirs:
6+2 |
+
GF (rpj»rpi»t) =
Vuf (u) ©.70)
5 f 2o e :
er?er Do) (D)™ =rpy +7D [ RlO+21/2 2vuf(u }
—1]/2
"D ~"Dk R[D'B ] 2rpjrp

If the observation point is smaller than the upper integration limit, the following expression for a

fractal reservoir with typical diffusion should be used:

Y Rpmid
GF(”Ejs”Dis“):|:9+2} - f’” Rgfﬂ]/z {R[mz]/z ;\/_:|dR +
. s . .....(D.
0+2 " Romax ;3 g0 4| D) —rpp v Rp—zpp [0+21/2 2u.
— I Rp cos Ky | Rp ) dR
Vi | Rpmia 2rpiRD =25 "2

For a fractal reservoir with anomalous diffusion:
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v
. 0+2 1" RDmid 5_ 2u?’?
Grpj.rpisu)=|——=| 7 | RS A2k R[9+2]/2u— dRp +
u” RpDmin 0+2
.(D.72)
042 RDmax 13 pa | UDDC =75 +Rp=25p 0+21/2 2u”’?
{ /2} ) RE)_ﬁ] cos™ K, R[ +21 i dRp
u” Rpmid 2’”1*)]' Ré—ng
For double porosity reservoirs:
v
GF(rf)j,rDi,u){ 0+2 ] ﬂRDimd RI3-A12 [ [6+2]/2 2\/uf(u }
Vuf(u) RDmin
- ot 2 22 ...(D.73)
{mz} D}naXRp_ﬂ] - DJ "Dj "D " Z0D X [R[9+2]/2 ZVuf(u)}dRD
D v %D
Vi @) | Rppia 2y RS -2, 0+2
Where:
R = ]2 2
Dmin — rDmm +ZOD et e eaeeaeeaeeaeaeaeaeaieaieaieaieaieaieaieaitaieaienitaietettaenttattatentententtnttntennenn (D74)
R _ ¥ 22 2
Dmid —\/[er DT 20D s e, (D.75)
and:
_ .2 2
RDmaX - er +ZOD ettt eeeeeeeeeeeeeaeeaeeae et eaeaeaeaeeaeaieaieaieaieaitaieaienieaietitaitattttetttatestenatntennns (D76)

D.4. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular

Transverse Finite Conductivity Fracture within a Fractal Reservoir

The flow within the rectangular fracture is governed by the diffusivity equation for linear flow

with a source term. It is given by:
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2, e o
Pf ., 2k {a_p} o (D.77)
z=0

8)62 kfw oz kf ot

Analogous to the circular fracture case, the initial and boundary conditions for the present case

are:
pf (x,t=0)=p; (initial condition), ........cceeevveeeriieeeriieenieeeeiee e (D.78)
] B
af = 4ZW s (inner boundary condition), .........cccceeevueeeniieeniieeennnen. (D.79)
L X dx=0 fyfw
o]
% =0 (outer boundary condition). .........ccccueeevveeeniieeniieeennnen. (D.80)
X
L Ax=xf

For the rectangular hydraulic fracture case, the dimensionless pressure in the fracture is:

27koh
PD.er(XDD) == [Pi =P (B0 (D.81)
qu/'DCf

The dimensionless time is defined by Eq. D.6 and the dimensionless position in the x-direction is:

Transforming Eq. D.77 to dimensionless variables, it becomes:
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ozp

2

0 0 0

PDer 2 {” D} L (D.84)
oy Fep .p=0 /D 9D

where dimensionless fracture conductivity is:

:ka

s s D.85
ey (D.85)

FCD

and the dimensionless fractal hydraulic diffusivity of the rectangular fracture is:

¢Octkfx)€
0 OO OOS PO PPSPOOSOSPSORPROPPOPPPPRPPPRPPIRN D.
D= (D.86)

Similarly, initial and boundary conditions become:

PDer (xp,tp=0)=0 (initial condition), ..........ccoeevereeeeiiieeeceiiee e (D.87)
o
afD’cr ] = —21:; (inner boundary condition),.........cc..eeeereuvieeeennieeeennnnen. (D.88)
L D L p fheDY fD
K fDycr "
— =0 (outer boundary condition)..........ccceeeeeruiieeeeniiieeennnnen. (D.89)
i oxp el

Where the dimensionless fracture fractal conductivity is:

kfwx?
kh

thcD:

and the dimensionless fracture length along the wellbore is:
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ettt ettt ettt (D.91)

For this case, the discretization of the rectangular fracture into sufficiently small segments permits
the approximation of the pressure gradient in Eq. D.84 by using Eq. D.55. Consequently, Eq. D.84
becomes:

0* PfDer 2mhp
axé Fep

1 fDycr

DT e (D.92)
nmp Oip

Dy

Following the procedure presented in Appendix A, the general solution to Eq. D.92 in the Laplace

domain of a j-segment of the discretized rectangular hydraulic fracture is:

— u u
Pcr=A4jexpl—xp |[— |+Bjexp xp
D n/D

Analogous to the circular fracture case, the first equation to establish the system of 3N equations

27h
i 2 S (D.93)

chD

results from applying the inner boundary condition to segment one. The resulting expression is:

1

2thchfDu3/

A1 -By = 7

The second equation is obtained by applying the outer boundary condition to segment N. The

resulting equation is:

Ay exp{— L]—BN exp{ L}=O. ............................................................................... (D.95)
\ 70 \ 70
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The pressure continuity between each one of the segments is obtained by equating the pressure of

a segment j with the pressure of the adjacent segment j-1, both evaluated at the interface j-1:

27th

u u D fD

Aj—l CXp| —Xpj-1.| +Bj_1 CXp| X pj-1 - ﬁDj—l =
1D nD ukiep

e (D.96)
27h
Aj exp —xDj_l L +Bj exp xDj_l u - anD ﬁDj
1D 1D ulep
Similarly, the rate continuity between each one of the segments is defined by:
u u
—Aj_1 eXp| —xpj| /— +Bj_ 1| xpj-1 |— |=
J [ N\ o } J N

- z PSR TPPP (D.97)

u u
—Aj €xp xDj_l — _Bj €Xp rDj—l e
1D 1D

The pressure continuity between each one of the segments of the hydraulic fracture and the fractal
reservoir is obtained by equating the pressure of a segment j with the pressure of the fractal

reservoir, superimposed over the area of the segment ;:

27h )
Aj exp| —x;) o +Bj exp x*D S D/D ﬁDj:h—D
o N/ | uFep [+20=v (D.98)

N * * * %k
289 pilZF (XDpj»YDj>XDj-1,Y Dj-1>XDj> Y Dj W)+ ZF (XDj, ¥ Dj =X Dj» ¥ Dj—1,"XDj-1> Y Dj »#)]

i=1

The function Zr for a fractal reservoir with typical diffusion is:
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* *
Zp (XD s YDk »X1D>Y1D>X2D>Y2D>U) =

_¢9+2_VrD2 VD[lgmax,l _'9min,l] K R[g+2]/2 2\/; drp +

L Vu | py R e 6+2

—9+2—er3 rD[lgmaX’II _'gmm,ll] R[9+2]/2 2\/; " +. .............. (D-99)
L Vu ] RS2 P 0+2

[0+21" D4 rp[Fmax,m “Omin g1 | a10+21/2 24u |,

B2 I = e el L

For a fractal reservoir with anomalous diffusion, the function is:

* * _
Zp(XDk>YDk>X1D>Y1DX2D>Y2D>U4) =

B v 9 . /2
0+2 | "™D2rp[Imax,; —Fmin,/] K, Rg)g.q.z]/z 2u” drp +
Rz RE)ﬂ—l]/z 0+2
[ 0+2]"D3 D [Smax it ~Smini ] | o+21/2 2u7"2 gt (D.100)
Lu?'2 ] ipy R%f—l]/z P 0+2
(042 | D4 rp[Omax 11 = Fmin,iir 1 o | plo+21/2 2u?’? 0
Lu?’? D3 RE)'B_I]/Z P O+2
For double porosity reservoirs:
* %
ZF (XDk»YDk>X1D>Y1D>X2D»Y2D>t) =
r v
0+2 r?z D[Fmax 1 _'9min,1]K {R[mz]/z 2\uf (u) }er .
-11/2 vi—D
_\/uf(u)_ D1 R%? V 0+2
r v
0+2 VDJ3 ”D[Lgmax,ll —v.gmim[[]K R[9+2]/2 2 juf (u) drn 4 . (DlOl)
Jof@ ] oy &PV e [P
r v
6+2 ’1?4 7D [Smax 111 = Imin, 11 ] | plor212 W@ |
Vuf ) | rps R P o+2 |7

For all cases:
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S A (D.102)
T S8 T e

D

B R (D.103)
‘gmax,l =C0s [E], ..........................................................

I (D.104)
Smin I = €08 B

e R (D.105)

19max,[[ = COs ppy [ s

B E L (D.106)
Shnin, 117 = €08 {;} ........................................................

T (D.107)
Smax 17 = sin {E} ....................................................

and:

0 TR oo (D.108)
rpl = X1D+y1D, .......................................................
JE2 0 e et ee s (D.109)
rpy = X2D+y1D, ........................................................
T ettt (D.110)
rpz = X1D+y2D, ............................
2 et (D.111)
D4 = X2D+y2D, .............................
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The same considerations of symmetry and change of variables shown in Appendix A for the

calculation of Zz must be made for Zg
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APPENDIX E

TRANSIENT INTERPOROSITY TRANSFER FUNCTIONS

In this Appendix, we present the derivation of the classic transient interporosity transfer functions
developed by de Swaan (1976) and their application in the double porosity flow model presented
by Cinco-Ley ef al. (1982). In addition, we show the development of the transient interporosity
transfer function considering fractal matrix blocks and the derivation of the asymptotic solution of

the double fractal model.

E.1. Transient Interporosity Transfer Functions (de Swaan, 1976)

Development of the transfer interporosity function considering slab matrix blocks

The diffusivity equation for the linear flow occurring in slab matrix blocks as shown in Fig. E.1 is

given by:

2
0" Pma _ 1 OPma (El)
oz NMma Ot

Where the hydraulic diffusivity of the matrix is defined by:

k
NMma = e e e e e ——————aaaaaaaa (E.2)
Pma HCtma

242



z

L.

Matrix Block
hma | e e - 2= hma/2
- z=0
hf Natural Fracture
Matrix Block
Figure E.1 — Schematics of a Naturally Fractured Reservoir with slab matrix blocks and

horizontal fractures.

The matrix blocks are assumed to have uniformly distributed initial pressure, p;. Hence the initial

condition for Eq E.1 is given by:

7 G- e () T P (E.3)

The interface between the matrix blocks and the natural fractures is assumed to be unrestricted

(i.e., without interporosity skin). Therefore, the inner boundary condition is:
Pma (z=0,t)=pf(r,t) ........................................................................................................ (E.4)

Since the matrix blocks are assumed to be closed systems, the outer boundary condition for Eq. 1

1S:

To solve Eq. E.1 in the Laplace domain, it is more convenient to express it in terms of a normalized

drop of pressure. For this case, the normalized drop of pressure is defined as:
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P L (E.6)
pi—py(ri)

Using the chain rule, Eq. E.1 is rewritten as:

2
0" Apyg 1 OApyy, (E.7)

= R R R R R

(674 2 Nma ot

and the initial and boundary conditions become:

APy (2, =0)=0 (initial condition), .......c.eeeeeriviireeniiiiee e (E.8)

AP e (2=0,0)=1 (inner boundary condition),..........ccc.eeeerriiieeeniiieeeennnee. (E.9)

{%} -0 (outer boundary condition)..........ccceeeeeviiieeeeniiieeennnnen. (E.10)
%z .2

Applying the Laplace transform to Eq. E.7 and according to the initial condition, the following

differential equation is obtained:

2 =
P U G ) oo (E.11)
dz2 Mma

By inspection, the general solution of Eq. E.11 can be given by a linear combination of hyperbolic

sines and hyperbolic cosines. Therefore, for this problem the general solution is:

Apma(z.u) = C sinh{z [ :|+C2 cosh{z [ :l .................................................................... (E.12)
Tma Tma

Applying the outer boundary condition to the general solution, the following expression results in:

|:dApma(Z’”):| = COShl:hma / u :|+C2 sinhl:hma u } 0 YN (E13)
dz z=Mya /2 2 TTma 2 MTma
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From Eq. E.13, it is concluded that the constant C is:

61 =y tanh{hﬂ /L} ................................................................................................ (E.14)
2 Tma

Substituting Eq. E.14 in Eq. E.12, a bounded solution for this problem is:

Aﬁma(z,u)z—cztanh[hm—a ’L:lsinh|:z ’ u :|+Czcosh|:zl u :l ......................................... (EIS)
2 Tma Mma Tma

Applying the inner boundary condition to Eq. 15, it is concluded that the constant C; is:

AP g (2= 0, = Cg = oo (E.16)

u

The particular solution for this problem is obtained by substituting C> in Eq. E.15:

Aﬁma (Z’u) = _ltanh|:h’/n_a L:|51nh|:z u :| + lCOSh|:Z u :| ............................................. (E. 17)
u 2 V MTma \ 7ma u \ 7ima

The derivative of the pressure with respect to z evaluated in zero is required to estimate the flow

rate transferred from the matrix to the fractures. Based on Eq. E.17, such a derivative is:

[w} D S N N (E.18)
dz z=0 \/”Uma 2 Mma

Applying the inverse Laplace transform to Eq. E.18 (Eq.8.51 from Oberhettinger et al. (1973),

p-294) the following expression is obtained:

{w} - 0{0|477’”“ z}_ 4 OZoexp[—4”2[2n+1]2nma t:l ........................... (E.19)
h h
z=0

dz ma ‘ hr%m ma n=0 h,%m
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Under the transient regime, the flow rate per unit of fracture volume from the matrix blocks to the
fractures surrounding the matrix blocks can be expressed using the convolution integral. The

convolution is defined as:

- 2 toApy E.20
q __Amah/, g‘) 57 quma(t—f)dz' ....................................................................................... ( . )

where quma 1s the fluid transfer rate from the matrix blocks to the fracture. Based on Darcy's Law,

the fluid transfer rate from the matrix blocks to the fracture is:

Quma

__Fmatma [dApma} e (E21)
H dz z=0

Substituting Eq. E.19 and Eq. E. 21 in Eq. E.20:

t OA 0 2 2 —
LN e RO e e 7 G P (E.22)
hfhmatto 07 =0 h;%m

Development of the transfer interporosity function considering spherical matrix blocks

For this case, consider an array as the one shown in Fig. E.2. The diffusivity equation for a system

with the shape of a sphere is given by:

2
0 Pma +£apma _ 1 Pwma (E.23)

= PR R R R R R R R PR

oR? R OR Mma Ot

where hydraulic diffusivity of the matrix, 7.. is defined exactly as for the case of slab matrix
blocks (Eq. E.2). The initial and the boundary conditions for this case are the same as in the

previous section, i.e.:
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Pima (Rt =0)= p; (initial condition), .........eeeeeeeeeieiiiiiiiieee e e, (E.24)
Pma =0 (inner boundary condition),..........c.ceeeeruvieeeennireeennnne. (E.25)
R g=o
Pma(R=Ryq,t) = pr(r,t) (outer boundary condition)...............ccoeeevieievieereenennn. (E.26)
T Matrix block
d"lﬂ _______ f— R = 0
- - - - - R = Rma
L7
Figure E.2 — Schematics of a Naturally Fractured Reservoir with spherical matrix blocks and
horizontal fractures.
Analogous to the previous subsection, the normalized drop of pressure for this case is:
APy (Rot) = B e ) oo eeeee e seeee e esee s (E.27)
pi—pyr0)
Consequently, Eq. E.23 is rewritten as:
O Mpma 2 00ma - 1 OPma e (E.28)
OR2 R ©OR Tma  OF
and, the initial and boundary conditions become:
AP ya (Rt =0)=0 (initial condition), .........eeeeeeeeereiiiiiiiieee e e, (E.29)
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APy (R = Ry st) =1 (inner boundary condition),..........cceeeeeruvieeeennireeennnnen. (E.30)

{% (outer boundary condition)..........ccceeeeeruiieeeeriiieeennnnne. (E.31)

| -0
OR  |p=g
As shown in Appendix A, the transformation defined by:

APy (Rot) = @ ............................................................................................................ (E.32)

facilitates the procedure to find a solution to an equation with the shape as of Eq. E.28. Applying

such a transformation, Eq. E.28 becomes:

?b_ 1 (E.33)
o .

Since Eq. E.33 has exactly the same shape as Eq. E.7, its general solution in the Laplace domain

1S:

b(R,u)=Cy sinh{R “ }ch cosh{R / u } ....................................................................... (E.34)
’7ma 77ma

In terms of the drop of pressure in the matrix (Eq. E.32):

Aﬁma(R’u) :ﬂSIHh[R L}_Fgcosh[]e u } ................................................................ (E.35)
R \ 7ma R \ 7ma

Applying the outer boundary condition, it is concluded that the constant C> is zero. Therefore, the

bounded solution for this problem is:

By (Ro) :%sinh{R u } ........................................................................................... (E.36)

Nma
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Applying the inner boundary condition, the value of the constant Ci is obtained. It is given by:

¢ = Rma ! ettt ettt ettt ettt e e (E.37)

smh{R “ }
APy (Rott) = Rina % K OO ONS (E.38)

sinh| R, v
MTma

The derivative of Eq. E.38 with respect of the radius R and evaluated in Ry is:

u

—] .................................................. (E.39)

Mma

{dAﬁma (R,u)} _ 1
dR R=R Ryqu

u
ma Mma

coth[Rma

The Inverse Laplace Transform of Eq. E.39 is (Eq. 8.52, Oberhettinger ef al., 1973, p. 294):

{dApma(R,r)} U el
AR Jaip Rpg 3

Rma

ma

2.2
’%t”_ 2 §expl—%t]. ........................... (E.40)

E.2. Double Porosity Model with Transient Interporosity Transfer
Constant-rate solution (Cinco-Ley et al., 1982)

The flow in a radial fracture network considered by Cinco-Ley et al. (1982) is modeled by:

10| .r |_IpmHep Pr | p (E.41)
or kfb ot kﬂj

r or
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where ¢" is the fluid transfer from the matrix to the fracture network per unit of bulk volume. As

shown by de Swaan (1976), it can be modeled by the convolution integral:

apf

£

or

where:

Substituting Eq. E.42 and Eq. E.43 in Eq. E.41:

sur

r or or

kfb ot kfb o Ot

The initial and boundary conditions for this model are:

pf (r,t=0)=p; (initial condition), .......cc.eeevveeerieeerieeeniieesieeeeees
op 27tk g
[r —f} Spuiif e (inner boundary condition),...........cccceeereevireeennnnee.
or Bu
r=ry
lim pr(r.0) = p; (outer boundary condition)............ccceeeevriviieeennnnne.

7 —>0

The dimensionless variables defined for this model are summarized in Table E.1.
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q = J'—q;ma(t—z')dz' g ettt a ettt e et a ettt et ettt et et e et ettt aa e e eeraaeeeeeeaas
0

0 19 k., At O
li{r Pf}%ﬂ%ﬂa R X T S S

....... (E.44)



Table E.1 — Dimensionless variables for the Cinco-Ley ef al. (1982) model.

Dimensionless Variable Definition

, k pph
Pressure in the fracture network Pm,er(rpstp) = E[pi —py(r0)]
. . k Va3 h
Pressure in the matrix blocks PmaD,cr(rD>tp) = g Pi T Pma (r,0)]
qbu
k
Time Ip = —szf
ey sty
. r

Radius D =——
"w

Storativity ratio o= aLaT)
[des ]

Fracture area Asp = A finahma

Eq. E.44 expressed in dimensionless form is:

3 3 4 i op
L8, e Iy ) LD Y O i et M,
D 8}’D @I”D 5tD hmaD 0 ot

where:

F(nmaD, hmaD,tD - T) = [meaD,cr]ZDzsu}:’face ...........................................................

The initial and boundary conditions in dimensionless variables become:

P (rp,tp =0)=0 (initial condition), ...........ccevvvveeeeeiieeeeeeiireee e,
P fp . .
D =-1 (inner boundary condition),............cceeeeevveernnennns
6}"D D -1
lim pmp(rp,tp)=0 (outer boundary condition)................ccccocvevevnnn.
rp —>®
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Applying the Laplace transform to Eq. E.48 and arraying it can be written as:

1 d - dpr,cr
rp drp b drp

:I_f(”)uﬁfD,cr PP SUURPPRNt (E.53)

Considering the boundary conditions for this model, the particular solution of Eq. E.53 is:

) (E.54)
uuf K [ )]

P D.cr(rp,u) =

where f(u) is the interporosity transfer function. Such a function depends on the properties of the
matrix blocks (geometry and petrophysical properties) and the interporosity transfer regime. For
unrestricted flow (without interporosity skin), it is defined as:

A /D TmaD
maD

fw)=o+[1- ] F(1aD » R s 1) 5+ veevvereverseemmeeuensenieenueeseesesesenieenseessesneesaeenne (E.55)

For the classic cases (slab and spheres matrix blocks) presented by Cinco-Ley et al., (1982) the

functions are:

A
fw)=w+[1-w] SD_ |MimaD tanh|:hmaD / u :|, ............................................................ (E.56)
NmaD u 2 maD

for slabs, and:

y
fw =0+~ o)L [Tnad oo fma. | ¥\ 2 D | (E.57)
hmaD u 2 NMmaD hmaD u

for spheres.
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Solution considering time-depend inner boundary condition

For this model, we have considered the diffusivity equation given defined by Eq. E.48 and the
same initial and outer boundary conditions as in the previous section (i.e., Eq. 50 and Eq. E.52).
For the inner boundary condition, we have assumed a power-law time dependent pressure gradient

around the wellbore, i.e.,:

op _
{VD arf } = —fg) ' (inner boundary condition),.........ccceeeeereuvieeeennireeennnnee. (E.58)
D
D=1

Where vy is an arbitrary reference exponent. We have considered a unit value of this parameter.
Applying the outer boundary condition, the bounded solution of Eq. E.48 in the Laplace domain

1S:

P,er(rpsu)=CKy rpyuf (u)] e e —e e e e et e e e e et e et et e et e et aeaeeteeereeeaes (E.59)

Applying the inner boundary condition, the value of the constant C; is obtained:

¢ - 2 -] R (E.60)
W27 Juf oK [ o) |

Hence, the particular solution for this problem is:

M2 viKo | i )] i, (E.61)
2 Juf ok [ @) |

[_JfD,cr(VD,u):

Taking the line source approximation, Eq. E.61 reduces to:
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M2~ vKo|rp @)
2—v :

l_JfD,cr(rDau)z ............................................................................... (E.62)

E.3. Transient Interporosity Transfer Function Considering Fractal Matrix Blocks
Development of the transfer interporosity function considering closed fractal matrix blocks

If matrix blocks with fractal geometry are considered (see Fig. E.3), the model developed by
Chang et al., (1990) for fractal fracture networks can be extended to fractal matrix blocks. For

this case, consider the diffusivity equation for a fractal matrix block:

! E[Rﬂma al’ma}: L DI (E.63)
RDfma_1 OR OR Mma Ot

where 7, 1s the geometry hydraulic diffusivity of the matrix, exactly defined as for the cases of
slab and sphere matrix blocks. Dy is the fractal dimension of the matrix block and S, is the

spatial dimension of the matrix, defined as fBna=Dfina- Ona-1.

Analogous to the cases shown in Section E.1 of this Appendix, the initial and the boundary

conditions for this problem are:

Pma (Rt =0)=p; (initial condition), .........eeeeeeeeereiiiiiiiieee e (E.64)

Pma(R=Ro,t)=ps(r,1) (inner boundary condition),............cceeevveeereerirenreennnenns (E.65)

[apﬂ} -0 (outer boundary condition)..........ccceeeeeriiieeeeniiieeennnnne. (E.66)
OR Rty 12

254



T T T T AN~ T T R = hma

G % Matrix block
Mg AL
gﬂ

LR N — R = hina2

hma

Repetitive element

Figure E.3 — Schematics of a Naturally Fractured Reservoir with fractal matrix blocks.

For this model, the dimensionless pressure in the matrix is:

Di —
pmaD,cp(RDatD) :;.— ...................................................................................

The dimensionless time is defined as:

k b nf

Ip=—-"—--= £5 seveseeeeeeeeeeeeeetteteeetettetteetttttttttttttttttttttttttttttttttttttttttttttttttttrtettttrrres

- [@t]tﬂ’v% B ’”mzz

and the dimensionless position in the fractal matrix block is:

Applying the definitions of the dimensionless variables, Eq. E.63 becomes:

1 0 Rﬂma aPmaD,cp 1 aPmaD,cp
Rgfma‘1 Rp| P Rp TmaD ~ Otp

255



where the dimensionless hydraulic anomalous diffusivity is defined as:

The initial and boundary conditions in dimensionless variables become:

PmaD,cp(Rp,tp =0)=0 (initial condition), .......c..cceveeviierrieiiieeie e (E.72)
0
{%} =0 (inner boundary condition),..........c..eeeeruiieeeennireeennnnnn. (E.73)
b Irp=rop
PmaD,cp (Rp =hmap!2,tp) =1 (outer boundary condition)............cceevevveeriireerireeennnnnn. (E.74)

As shown in Appendix B, the general solution to Eq. E.70 in the Laplace domain is:

manep R =RY Pl 2ok ep Tecor, Jepy [ (E.75)
where:

Vg = lg;ff"z e (E.76)
and:

_plOma+21/2 2 | u E.77
=R _ et eeieeieaieaiea et eaeateaeateateateatoaioaioaieaitaiotteaieatotiorionionnonnes .
fRD b Oma + 2\ 1maD ( )

Applying inner boundary condition, the resulting bounded solution is:

_ - —1
PmaD,cp(RD’”):C2R][; ﬂma]/2[K"ma—[§]Kvma [gRD]-I—IVma [fRD] y eeennaeeeeeeeettta—————————_ (E.78)
Vina —1150
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where:

S I G R ettt E.79
50 Rp—>Rop Rp ( )

Given that Rop is located at zero, the following approximation can be used:

Ty -1lg0] _ 2 i, (E.80)
Ky, o—1lé0]  TIVma 1= vpg]

Then, Eq. E.78 becomes:

2
I T = vy

,;maD’Cp(RD,u):R%ﬂma]/zc{ Ko lerp [ 1, v ]} ........................... (E.81)

Applying outer boundary condition, the particular solution for this problem is obtained:

- 1 28y (1=Bmal/ 2
pmaD,cp(RD:u):;

ZKVma [gRD ]+ F[Vma - Vima ]]Vma [fRD ]
2K"ma [E1+TVpg T = Vg 1y, [€] ’

maD Yma

where:

Oma+21/2
g{hin_aa}[ R S N (E.83)
2 Oma + 2\ TmabD

Taking the derivative to Eq. E.83 with respect of Rp:

e (E.84)

_ O /2 -
apmaD,cp _ RDma {ZRD }[1 Pmall2 v T = vy ]Ivma—l[fRD]_ZKvma —l[éZRD]
hmaD

Rp  funmp 2K, &+ Mg T = vpa 113, €]

Evaluating at the interface, Eq. E.84 can be expressed in terms of the function F(#muap, Aman, tp):
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F(Mmap >"map-1D) :\/

2

1 |:hmaD j|¢9ma -1 1 Iy T =via ]I"ma _1L&1- 2K"ma _1L&] .(E.85)
NMmaD \/; 2KVma [E]+ 1—‘["'ma - Vima ]I"ma [£]

Development of the transfer interporosity function considering infinite-acting fractal matrix blocks

To model infinite-acting matrix blocks, we considered matrix blocks of infinite length. Therefore,

we solved Eq. E.70 using the following initial and boundary conditions:

PmaD,cp (Rp,tp=0)=0 (initial condition), ...........coeveeeevreeeeiieeeiiee e (E.86)
PmaD,cp (Rp=hyup!2,tp)=1 (inner boundary condition),.............ccccoeveeveeeeeeerennnne. (E.87)

lim  pyap,ep(Rp,tp)=0 (outer boundary condition)..............c.ceceeevevereierenennns (E.88)
Rp—w

Applying the boundary conditions to the general solution (Eq. E.75) the particular solution is:

2R, }[l—ﬂma]u Ky, . [{;RD]

l_7maD,cp (Rp,u) :{ WK, [€]

hmaD Vina

where &is given by Eq. E.83. Taking the derivative to Eq. E. 89 the following equation is derived:

— 1- /2
Prabocp a2 __L {Ml}[ R (E.90)
oRp b NUNmaD hmap Kvma [¢]
Evaluating at the interface:
I:a]_?maD,Cp } _ _|: hmaD }gma 2 1 K"ma -1le] (E.91)
aRD Rp=hyap /2 2 VUM maD Kvma [é]
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At early and intermediate times (large values of the Laplace parameter u), the Modified Bessel

function of second order (Ky(x)) can be approximated as:
Ky () R | T e (E.92)
2x

Hence, at early and intermediate times Eq. E.91 can be written in terms of Eq. E.49 as:

:|9ma/2 |

o e (E.93)

F(MmaD >hmap su) = { m2a

Applying the inverse Laplace transform to Eq. E.93:

1 hwap 1'% 112
F(UmaDvhmaD»tD):\/T T tD ................................................................ (E94)
maD

Eq. E.94 applies for both closed and infinite-acting matrix blocks.

At late times (small values of the Laplace parameter ), the Modified Bessel function of second

order (K,(x)) can be approximated as:

Ky =11 H ............................................................................................................ (E.95)

Taking the approximation given by Eq. E.95, Eq. E.91 is reduced to (in terms of Eq. E.49):

e (E.96)

hopad }gma /2 1 L= v,y ] |:§:|2Vma -1
2

2 VU maD Tina]

F(UmaD shmap »4) = |:

Applying the inverse Laplace transform to Eq. E. 96:
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1-2
[Hma +2] Yma {hmaD

Pma _,
. } E38 e (E.97)

F(map »hmap-tp) = »
Vg ]ﬂmlg%

E.4. Asymptotic Solutions of the Double Porosity Model with Transient Interporosity

Transfer considering Fractal Matrix Blocks

To develop the asymptotic solutions of the constant-rate case of this model, consider the line-
source approximation of Eq. E.54 and evaluate such an expression at wellbore (i.e., rp=1). The

resulting equation is:

Kou ()] Vi) e (E.98)

ﬁwD,cr (w) =

Additionally, the Modified Bessel function in Eq. 98 for small arguments can be approximated

using Eq. 9.6.8 from Abramowitz ef al. (1970). Therefore, the resulting expression is:

Pup,cr(t) = —i[ln[u] FIN[L U] vt (E.99)

To obtain the asymptotic constant-pressure solutions for this model, consider the approximation

(Earlougher, 1977):

DD, er (1)) A e s (E.100)

awp (D) '

Closed Matrix Blocks

For this case, the interporosity transfer function defined by Eq. E. 85 should be considered. At
early times, such a function approximates to the value of the storativity ratio (i.e., fu)=w).

Therefore, the asymptotic constant-rate solution in the Laplace domain at early times is:

260



PwD.cr () = -2i [Iu] 4 10[@]]. cvveveeeeeeieeeeeeeeeee e
u

Applying the inverse Laplace transform to Eq. E.101 results in:

1 1 ex
Pup.er(tp)=—=nltp]+ _h{M] ............................................
2 2 0]

Hence, using the relation given by Eq. E.100 we obtain:

2

In[tp]+ 1n[e’(p[7]}
w

gwp(p) =

................................... (E.101)

................................... (E.102)

................................... (E.103)

where yis Euler's constant (0.57721...). As pointed out by Cinco-Ley et al. (1982), the flow from

the matrix blocks to the fracture network is linear at early and intermediate times regardless the

geometry of the matrix block. For these periods of flow, the function F(7map,hmap,tp) takes

asymptotic behavior given by Eq. E.94 and the interporosity transfer function is approximated as:

A ema
1) =1 - w2 \/{hmﬂ D

2 u

hmaD

Substituting Eq. 104 in Eq. E.99 and arraying it results in:

_ 1 A h Oma
PwD,cr (u) = 4_|:1n[”]+ 2ln|:[1 - w]_ﬂ)\/|:m;aD:| NmaD :“ Ceeeeens
u hmaD 2

Applying inverse Laplace transform to Eq. E.105, it results:

—-1/2
o
1 1 exply /2] hwaD || Pmap |
tp)=—In[tp]+—1
wa,cr( D) 2 nftp] 5 n [- o] AfD 5 NMmaD
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................................... (E.104)

................................... (E.105)

e (E.106)



Consequently, the constant-pressure asymptotic solution for this case is:

Gy (D) = 2 e, (E.107)

-1/2

[Z)

In[zp] 1 exply /2] hyap || hmap |

+1n MmaD
2 [1-w] AfD 2

At late times, the behavior of the interporosity transfer function approaches one (i.e., {u)=1).
Substituting such a value in Eq. E.94 and applying inverse Laplace transform, the asymptotic

constant-rate solution is:
1
wa,cr(tD):E[ln[tD]J’_}/] ................................................................................................ (E108)

where y is Euler's constant (0.57721...). Similar to the previous cases, the constant-pressure

solution is:

qWD([D)Z .................................................................................................... (E109)

Inftpl+y
Infinite-Acting Matrix Blocks

The flow behavior of the matrix blocks assuming either closed or infinite-acting conditions is the
same at early and intermediate times (i.e., before the outer boundary condition of the matrix blocks
are reached). Therefore, the asymptotic solutions developed for closed matrix blocks, for early
and intermediate times (constant-rate and constant-pressure cases), also apply for the infinite-
acting matrix blocks. The asymptotic constant-rate solution in the Laplace domain for v, > 0 is
obtained by plugging Eq. E.97 in the interporosity transfer function (Eq. E.55). Substituting the

resulting equation in Eq. E.99, gives us:
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1-2v [Bing +11/2
Ay, +2 ma _ ma
Buen 1) = — | v Infu] 1| 222LOma * 2] dt Vma]{ 2 } e (E.110)
’ 2u hapn. e~ TlVial | map

(yis Euler's constant). The expression in Eq. E. 110 in the real domain is given by:

h Vg —1 IMvial

maD ™ aD

v v 1
pWD,cr(tD)z ma ln[ZD]+—ma y——In
2 2 2 maD

1-2v /
Ap[Opg +2]~'ma F[l—vma]{h 2 }[ﬂmaﬂ] T ... (E.111)

Applying the relation defined by Eq. E.100, the constant-pressure solution is:

4wp (D)= 1 o (E112)
1-2
Vina Vina 1 AfD [Oma +2] Vma Tl = vy ] 5 [Bima +11/2
5 ln[tD]+77/—Eln i Vima —1 il | Amap
maD ™ 0D ma ma

E.5. Asymptotic Solutions of the Double Fractal Model
Pressure —Transient Solutions

Consider the constant-rate solution of the diffusivity equation to model the flow within the infinite

fractal fracture network of a double porosity reservoir:

K{z uf(u)}
0+2

u\/”f(”)Kl—{z A (”)}

0+2

Pub.cr() = O SPOO (E.113)

Using the approximation given in Eq. E.92, at early-intermediate times, Eq. E.113 reduces to:

1

P () = e
e i )

(E.114)



The asymptotic behavior of the function F(#map,hman,tp) at early-intermediate times is given by
Eq. E. 93. Substituting such an expression in the interporosity transfer function (Eq. E.55) and

neglecting the storativity ratio (@ = 0) derives the following expression:

FUYZ QU 2 oottt er e (E.115)
where
Oma | 2-1
g = /DN TmaD [’%D} ..................................................................................... (E.116)
2 2

Substituting Eq. E.115 in Eq. E.114:

u_5/4

oy e (E.117)
wa,cr(”) \/%

Applying the inverse Laplace transform to Eq. E.116 the asymptotic solution in the real domain at

early-intermediate times is:

4
oDt (D ) = e (E.118)

I5/4L/ag

At late-intermediate and late times, the Modified Bessel function of second kind can be

approximated using Eq. E. 95. Applying such an approximation in Eq. E. 113 results in:

] ) SO S (E.119)
[0+21""211—v] ¥

I_7WD,cr W)=

The following expression results from substituting Eq. E.115 in Eq. E.119:
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2v-1
Z’wD,cr(u) = wu_[
ay Il -v]

] e (E.120)

Applying the inverse Laplace transform to Eq. E.120 the asymptotic solution in the real domain at

late-intermediate times is:

9 22V—11—~
puper(tpy) =— 22 T D ettt (E.121)
agr[l—v]r[v/zﬂ] :

The asymptotic behavior of the function F(7map,hman,tp) at late times is given by Eq. E. 97.
Substituting such an expression in the interporosity transfer function (Eq. E.55) and neglecting the

storativity ratio (@ = 0) derives in the following expression:

FUYZ AU T2 oottt r e (E.122)

1=y 1-2
ay = AfDnmaDma [04 +2] ‘ma [Tl _Vma]{hmaD

“FPma 1
; o : } e (E.123)

Substituting Eq. E.122 in Eq. E.119:

[0+207 111 o)

............................................................................. (E.124)
a) Tl -v]

1_7WD,cr (u)=

Applying the inverse Laplace transform to Eq. E.124 the asymptotic solution in the real domain at

late times is:
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(tpr) = O+ 0] v (E.125)
Puber CDf T =g +1]
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APPENDIX F
ANOMALOUS DIFFUSIVITY MODEL CONSIDERING TIME-DEPENDENT DARCY'S

LAW

In this Appendix, we present the derivation of the model presented by Raghavan (2012a) for a

cylindrical reservoir. Consider the conservation equation in cartesian coordinates:

0
O o (F.1)
Oox oy 0z ot

This model considers a time-dependent version of Darcy's Law, which applies that the flux is not
local in time and space for a Continuous Time Random Walk. For this case, Darcy's Law is

defined as (Eq. 2.10 from Raghavan, 2012a):

kjA 9% kA 1t B\
q:—l— [Vp]:—l——I(t—f)a l—pdz'. .............................................................. (F2)
Mool u Tlalg dt

Applying the Laplace transform to Eq. F.2 results in:

_ kA 1—qo—
q; :—171,41 an, ............................................................................................................... (F3)

where i defines the directions x, y or z. Applying the Laplace transform to Eq. F.1 results in

07, %y o7
o oy oz

= [UP = (£ =0)] cvereeeeeerereeeeeeteeee et e ettt ettt ettt aeas (F.4)

Substituting and arraying Eq. F.3 in Eq. F.4 gives us:

o[ k4 o[ k4 ol kd__ .
—{—Z—Vﬁ}r—{—l—vp}r—{—’—vp}=¢c,u“ VU= D(E = 0)]- e (F.5)
Ox 7, oy 7, 0z Y7
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Applying the inverse Laplace transform to Eq. F.5 yields:

o k4 } a[ kA } a[ kA } o%p
B T B e B e B OO (F.6)
GX[ w U ozl wu o

The expression inside the brackets is the classic version of Darcy's Law:

ki A
q] :—I—Vp. ................................................................................................................... (F7)
Y7

Transforming Eq. F.6 to cylindrical coordinates results in:

lﬁ[,a_l’}:‘r”ﬂc_ra“_lﬂ. ....................................................................................................... (F.8)
ror| or ky 5%

For a cylindrical system (considering only the radial coordinate), Eq. F.2 is expressed as:

a-l1
g = 2l 5_[&] .................................................................................................... (F.9)
Y2 ata_l or

Applying the Laplace transform to Eq. F.9 and solving for the product of the radius and the gradient

of the pressure results in:

{r@}:—a—ﬂul_a. ...................................................................................................... (F.10)
dr | 27k h

The initial condition to solve Eq. F.8 is:

2 ) e 2 PP (F.11)

Assuming constant flow rate at the wellbore, ¢, the inner boundary condition is (based on Eq. F.9):
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[,ﬁﬁ} Ly eSO (F.12)
o |, 27k, A2 — ]

The outer boundary condition assumes an infinite cylindrical reservoir, given by:

I P(F Y= D e, (F.13)
F—0

Defining the drop of pressure as:
N T 7 (0 T N (F.14)

Eq. F.8 becomes:

12{, 5AP}: e (F.15)
r or or ky 5%

Similarly, the initial and boundary conditions in terms of the drop of pressure are:

Ap(r,t=0)=0 (initial condition), .........eeeeeeeeeieiiiiiiieeee e e, (F.16)
9hp _____4H  ,1-a (inner bound ItON), e F.17
[r = l_r S W —a] ¢ (inner boundary condition), ( )
lim Ap(r,1)=0 (outer boundary condition)...............ccoeeevieievieereenennnn (F.18)
F—00

Applying the Laplace transform to Eq. F.15 and substituting the initial condition gives us:

2 — —
Q7P (L AAD FHCL |0 NG (0, oo (F.19)
a2 v odr k,

multiplying Eq. F.19 by r%:
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2 _ _
r2 dﬁ+rﬂ—r2ua W—tAl_jzo, ................................................................................. (F20)
dr? dr ky

and defining the transformation variable z as:

T /T_’t .............................................................................................................. (F.21)

Then, using the chain rule the first derivative of the drop of pressure with respect to 7 is:

AAp _dAD dz | a2 [BHCL AAD e (F.22)
dr dz dr k, dz

Similarly, the second derivative of Eq. F.22 is:

dP0p _ ain [puee d [dApdz _ o duee d2ND (F.23)
dr? k, dr| dz |dr ky 422

Substituting Eq. F.22 and Eq. F.23 in Eq. F.20 results in:

2 = —
P2y P d7AD | ard |BHe AAD 2 o PHEL (S () e (F.24)
ky g2 ky dz ky

Then, using the definition given by Eq. F.21, Eq. F.24 is rewritten as:

2
B SO (F.25)
d22 dz

By inspection, the general solution to Eq. F.25 is:

AﬁzAKolma/z ¢Z‘Ct ]+310[m“/2 /qﬁfc—’] ...................................................................... (F.26)
r r

Applying outer boundary condition (infinite reservoir) to Eq. F.26, the bounded solution is:
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Ap = 4K

The derivative of the drop of pressure with respect to r is:

@:_Aua/Z Pucy K
dr k,

Then, applying the inner boundary condition to Eq. F.26 gives us:

{r@} =—Arwua/2 ,W—t](l
ar |, k,

w

Solving for A4:

qH

A=

27d{rhu2_arwua/2 Pucy K rwua/z Puc,
k, k,

Hence, the particular solution for this problem is:

Wfr}

qﬂKo{ma/z
k;

Ap =

27zkrhu2_arwua/2 ¢ZtctK{rwua/z ¢/¢Ct:|
r

For small arguments, the Modified Bessel Function Ki(x) is approximated as:

r ua/Z Muct N 1 ky
w ~ t eeeeeeeeeecessssssssssasaseenesecttettecssssssssssssssasnnsnscsttnnnns
ky rWuO‘/2 Pucy

K
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P
@2 ¢ﬂc_t

F |

al2 |PHer | qu
Pyt = g s
ky 27k, hu

.......... (F.27)

.......... (F.28)

.......... (F.32)



Then, Eq. F.31 reduces to:

Ko ma/2 Pucy
- qH ky

Ap =
P 2 2

Eq. F.33 is equivalent to the line-source solution (Eq. 4.10 in Raghavan, 2012a).
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APPENDIX G
SENSITIVITY ANALYSES OF PRESSURE AND RATE TRANSIENT BEHAVIORS OF

HORIZONTAL WELLS INTERCEPTING MULTIPLE FRACTURES

G.1. Horizontal well intercepting Nrfractures in a Fractal Reservoir with Infinite Thickness

Circular Transverse Fractures — High Conductivity

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness

10° 10* 10° 107 10" 10° 10 10° 10° 10° 10°
10" E T T T T T TTTm T TTTTE 107
10 I /__ 1
0 E / 5 10
E ruo=0. / | —7
£ o = / |_— E
£k = 10"
SUE / 3
#F / 1
§§ ' E 7 5 10"
%% 10° % = 10°
2 [ M= — 1
g 10° /6/—;”:7 —10°
E—N=9 E|
& -J E
10 E Ne=s _5104
10° 10" 10° 10? 10” 10° 10' 10° 10° 10* 10°
Dimensionless Time, t,
Figure G.1 @ — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=1.5) and conductivity index (6=0)
(constant-rate case).
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Figure G.3
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Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-
pressure case).
Pressure Transient Behavior of a Well pting
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Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~2) and conductivity index (£=0)
(constant-rate case).
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Figure G.4

Figure G.5

Dimensionless

wh.cr

Dimensionless Pressut

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Muiltiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness

10 10" 10° 10? 10" 10° 10' 10° 10° 10* 10
L L L L B L B B IR L B AL L
E Legend: 3
F (=) 19uol 4
- (=) |dq,p/dinty| -
* :::§
= N=sl | E

3 1 o= —] E

;Nja\z/“\ .

- R "\ |

g - \\ ]

g0 E E

é I \ T

10" E

E T E

; / I

1072 E Parime:ers: _ E

S | :

F D=2 6=0 ]

F Lp=5 4

) R R B AR TTIT AW RTTTT B AR TTTT R WA TTTT| B SR R 11T L AR TTTT MR RTTT A AR TTTT MR AT
10 -5 -4 -3 -2 -1 0 1 2 3 4

10 10 10 10 10 10 10 10 10 10 10

Dimensionless Time, t,

— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.6 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=2.5) and conductivity index (6=0) (constant-
pressure case).
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Figure G.7 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=2.5) and conductivity index (£=0.5)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness

10° 10" 10° 10° 10” 10° 10' 10° 10° 10* 10°
10" F T T T 10
E Legend: E
F (=) lquol Bl
- (=) |dq,p/dinty| -
10° E— Ny=9 — 3 10’
) ;_N’BJ—Q\ §
7O ] ]
—;3 10° 5 10°
3 F—nN=0_| E|
fg :\N’se_//\\ ]
£f ]
a3 ‘é o I \\‘\ 4 10°
5 E \\ \'\:
' 3 = 10"
E =10 hp=2 3
F rp=0001  Fp=1000 T
F D=25 0=05 3
F Lp=5 i
102 - 1 ||||||||4 1 |||||||-3 ) |||||||-2 1 |||||||.‘ L |||||||n L .umu1 L .unm2 L |||||||3 L |.um4 L ||||l||510'2
10 10 10 10 10 10 10 10 10 10 10
Dimensionless Time, t,

Figure G.8 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=2.5) and conductivity index (6=0.5) (constant-
pressure case).
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Figure G.9 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=2.5) and conductivity index (6=1.3)
(constant-rate case).
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Figure G.10

Rate Transient Performance Behavior of a Horizontal Well Intercepting

Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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pressure case).

Circular Transverse Fractures — Intermediate Conductivity

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D~1.5) and conductivity index

(6=0) (constant-rate case).
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-
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Figure G.11 — Log-log plot of the dimensionless pressure and dimensionless pressure



Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.12 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.13 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2) and conductivity index
(6=0) (constant-rate case).
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Figure G.14 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/=2) and conductivity index (£=0) (constant-
pressure case).
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Figure G.15 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index

(6=0) (constant-rate case).
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Figure G.16 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.17 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index

(6=0.5) (constant-rate case).
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Figure G.18 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
pressure case).
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Figure G.19 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index
(6=1.3) (constant-rate case).
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Figure G.20 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D=2.5) and conductivity index (6=1.3) (constant-
pressure case).

Circular Transverse Fractures — Low Conductivity

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.21 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=1.5) and conductivity index (6=0)
(constant-rate case).
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Figure G.22 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-
pressure case).
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Figure G.23 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~=2) and conductivity index (£=0)
(constant-rate case).
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Figure G.24 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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Figure G.25 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (£=0)
(constant-rate case).
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Figure G.26 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (Dy=2.5) and conductivity index (£=0) (constant-pressure
case).
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Figure G.27 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=2.5) and conductivity index (£=0.5)
(constant-rate case).
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Figure G.28 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
pressure case).
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Figure G.29 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=2.5) and conductivity index (6=1.3)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
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Figure G.30 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-
pressure case).

Rectangular Transverse Fractures — High Conductivity
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Figure G.31 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=1.5) and conductivity index (£=0)

(constant-rate case).
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Figure G.32

Figure G.33
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fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-

— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~2) and conductivity index (£=0)
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Figure G.34

Dimensionless Pressure, P,
Dimensionless Pressure Derivative, dp,p ./dInt,

Figure G.35

— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (£=0)

(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.36 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=2.5) and conductivity index (6=0) (constant-
pressure case).

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
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Figure G.37 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=3) and conductivity index (6=0.4)
(constant-rate case).
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Dimensionless Rate, |q,s|
Dimensionless Rate Derivative, |dq,,/dInt|

Figure G.38

Dimensionless Pressure, pup,e,
Dimensionless Pressure Derivative, dp,.s,./dinty

Figure G.39

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=3) and conductivity index (6=0.4) (constant-
pressure case).
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Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~=3) and conductivity index (6=1)
(constant-rate case).
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Dimensionless Rate, |q,s|
Dimensionless Rate Derivative, |dq,,/dInt|

Figure G.40

Figure G.41

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=3) and conductivity index (#=1) (constant- pressure
case).
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— Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~=3) and conductivity index (6=4)

(constant-rate case).
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Rate Transient Behavior of a Well
Multiple Rectangular Hydraullc Fractures in Fractal Reservoir wnh Infinite Thickness
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Figure G.42 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=3) and conductivity index (#=4) (constant- pressure
case).

Rectangular Transverse Fractures — Intermediate Conductivity
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Figure G.43 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D~1.5) and conductivity index
(6=0) (constant-rate case).
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Figure G.44 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.45 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2) and conductivity index
(6=0) (constant-rate case).
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Figure G.46 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/=2) and conductivity index (£=0) (constant-
pressure case).
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Figure G.47 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index

(6=0) (constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting

Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.48 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.49 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index
(6=0.4) (constant-rate case).
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Figure G.50 Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.4) (constant-
pressure case).
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Figure G.51 — Log-log plot of the dimensionless pressure and dimensionless pressure

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of
infinite thickness with fixed fractal dimension (D/=2.5) and conductivity index

(6=1) (constant-rate case).
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Figure G.52 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of infinite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (6=1) (constant-
pressure case).

Rectangular Transverse Fractures — Low Conductivity
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Figure G.53 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=1.5) and conductivity index (6=0)
(constant-rate case).
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Figure G.54 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-
pressure case).

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
10° 10° 10" 10° 107 10" 10° 10' 10° 10° 10
10 F T T T T T T T T T T T T T T T T T T T Ty 40
F Legend: E
[ (=) Puper | N=3—3
[ (—) dpupc/dint, | _— P
AT
T — 5 10’
3 E / / 5
P / =3
& &
;’:- o / ! o
g 10E 3 10
E a £ // E
E E 107 E /// 140"
| £ // 3
i i // ]
5107 = — 10?
/ s m=10" hp=2 3
L V=02 Fp=1 ]
D=2 6=0 4
Lp,=5 E
S vl vl v vl vl v vl vl vl 8
10 -6 -5 -4 -3 -2 -1 0 1 2 3 410
10 10 10 10 10 10 10 10 10 10 10
Dimensionless Time, t,
Figure G.55 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/~=2) and conductivity index (£=0)

(constant-rate case).
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Figure G.56 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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Figure G.57 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (£=0)
(constant-rate case).
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Figure G.58§ — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (Dy=2.5) and conductivity index (£=0) (constant-pressure
case).
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Figure G.59 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D=2.5) and conductivity index (6=0.4)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.60 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=0.4) (constant-
pressure case).
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Figure G.61 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of infinite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (6=4)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.62 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of infinite thickness with
fixed fractal dimension (Dy=2.5) and conductivity index (£=4) (constant-pressure
case).

G.2. Horizontal well intercepting Vs fractures in a Fractal Reservoir with Finite Thickness

Circular Transverse Fractures — High Conductivity

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness.
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Figure G.63 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
rate case).
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Figure G.64

Figure G.65

Dimensionless Pressure, p,p,.,

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-
pressure case).
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— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (6=0) (constant-rate
case).
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Rate Transient Behavior of a i Well d
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.66 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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Figure G.67 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
rate case).
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Dimensionless Rate Derivative, |dgq,,,/dint,|

Figure G.68

Figure G.69
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Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=2.5) and conductivity index (6=0) (constant-

pressure case).

Dimensionless Time, t,

Pressure Transient Behavior of a tal Well pting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
10 10" 10° 10? 10" 10° 10' 10° 10° 10* 10°
L L e B B B L B L R R B ey R
F Legend: 3
F (=) Puper ]
L (—) dﬁw,‘,vc/dlnr,, / 4
| |
10 § Parameters: g 10
F omo=10"  mp=2 E
F rpo=0001 F.,=1000 ]
F Di=25 6=05 -
o Lp=5
102 10
S E 3
4 F 3
¢ [ ]
s
FE0'E
28 E =
w2 F 9
i; L / ]
cd
2a 10° 5 10°
g3 3
8% 3]
3
g 4
5 10° E 10°
10 3 10*
ro* el vl il el sl vl
10 10 10 10° 10° 10 10 10 10 10 10

— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
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Rate Transient Per Behavior of a izontal Well
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.70 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
pressure case).
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Figure G.71 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-
rate case).
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Figure G.72
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-

pressure case).
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Figure G.73
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— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D=1.5) and conductivity index (6=0)

(constant-rate case).
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Rate Transient Behavior of a izontal Well i
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.74 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.75— Log-log plot of the dimensionless pressure and dimensionless pressure derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (6=0) (constant-rate
case).
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Figure G.76 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (£=0) (constant-
pressure case).
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Figure G.77 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (£=0)
(constant-rate case).

311



Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Circular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

10° 10* 10° 10° 10" 10° 10' 10° 10° 10* 10°
L I o B B B ) B L) B L B L L) R 10
E Legend: E
F (=) lquol 4
L (—) ldagudingl
10 =0 10"
3 F—6— 3
S E —_— ] . E
3 :—~,=3_\\\§ ]
1€ | I N 1
gi 10 =9 ] ->< ~ = 10°
g e—p——— | — E
§3 o N,=3\\\_// 3
=R = 4
& \ I ey 1
810 E ~— 310
ES E 3
85 F \ \ ]
] F \ \
£ I >—
. 10 |- Parameters: N 4 107
E mo=10"  hy=2 E
[ Z,,,:o.om F.p=10 \_
[ Df=25 6=0 4
F Lp=5 i
10° 5. .......I4 L .......3 1 .......2 1 .......1 . .......0 . .......1 1 .......2 . .......3 L .......4 . .......510-3
10° 10 10° 10° 10 10 10 10 10 10 10
Dimensionless Time, t,

Figure G.78 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.79 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D=2.5) and conductivity index (£=0.5)
(constant-rate case).
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fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
pressure case).
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derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D=2.5) and conductivity index (6=1.3)
(constant-rate case).
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Figure G.82— Log-log plot of the dimensionless rate and dimensionless rate derivative functions for
a horizontal well intercepting Ny circular transverse hydraulic fractures with
intermediate conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant- pressure
case).
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Figure G.83— Log-log plot of the dimensionless pressure and dimensionless pressure derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (Dr=1.5) and conductivity index (£=0) (constant-rate case).
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Figure G.84 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (Dr=1.5) and conductivity index (6=0) (constant- pressure
case).
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Figure G.85 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (6=0) (constant-rate

case).
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Figure G.86 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2) and conductivity index (=0) (constant- pressure case).
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Figure G.87 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
rate case).
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Figure G.88 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/~=2.5) and conductivity index (6=0) (constant-pressure
case).
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Figure G.89 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-
rate case).
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Figure G.90 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2.5) and conductivity index (6=0.5) (constant-pressure
case).
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Figure G.91 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Ny circular transverse
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-

rate case)
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Figure G.92
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Ny circular transverse hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2.5) and conductivity index (6=1.3) (constant-pressure
case).

Rectangular Longitudinal Fractures — High Conductivity

Figure G.93

Pressure Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Infinite Thickness
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Figure G.94 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=1.5) and conductivity index (6=0) (constant-
pressure case).
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Figure G.95 — Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (6=0) (constant-rate

case).
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Figure G.96

Figure G.97
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D/=2) and conductivity index (#=0) (constant- pressure
case).
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— Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
rate case).
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Figure G.98
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— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=2.5) and conductivity index (6=0) (constant-
pressure case).
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— Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=3) and conductivity index (£=0.4) (constant-

rate case)
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Figure G.100 — Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D/=3) and conductivity index (6=0.4) (constant-
pressure case).
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Figure G.101 — Log-log plot of the dimensionless pressure and dimensionless pressure

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=3) and conductivity index (6=1) (constant-rate

case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.102 — Log-log plot of the dimensionless rate and dimensionless rate derivative

case).
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Figure G.103 — Log-log plot of the dimensionless pressure and dimensionless pressure

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=3) and conductivity index (#=1) (constant- pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=3) and conductivity index (6=4) (constant-rate

case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

10 10° 10°* 10° 10° 10" 10’ 10" 10° 10° 10*
L L B AL AL AL L L e ety RN
E Legend: E
EQ:S (=) o]
10° N os 5 10°
E E
e S :
. ]
S 10 E ARSI = 10°
R — -
¥ T 1
E 3 10’
BE 4 o
f1 g \ =10
85 F E
E [ \ ]
10" 210"
10 | Parameters: \ 5 10”
E m=10"  ny=2 E
E yp=02 Fop=1000 \\ =
F D=3 6=4 ]
10° 10° 10* 10° 10° 10" 10° 10' 10° 10° 10°
Dimensionless Time, t,
Figure G.104 — Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with high conductivity in a fractal reservoir of finite thickness with
fixed fractal dimension (D=3) and conductivity index (#=4) (constant- pressure
case).

Rectangular Longitudinal Fractures — Intermediate Conductivity
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Figure G.105 — Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D=1.5) and conductivity index (6=0)
(constant-rate case).
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Figure G.106— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.107—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D/~2) and conductivity index (6=0)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.108— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (£=0) (constant-
pressure case).
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Figure G.109—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (£=0)
(constant-rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.110— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (£=0) (constant-
pressure case).
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Figure G.111—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D=2.5) and conductivity index (6=0.4)
(constant-rate case).
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Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.4) (constant-
pressure case).
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Figure G.113—

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

(constant-rate case).
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Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite
thickness with fixed fractal dimension (D/=2.5) and conductivity index (6=1)



Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.114—  Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with intermediate conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (6=1) (constant-
pressure case).

Rectangular Longitudinal Fractures — Low Conductivity
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Figure G.115—  Log-log plot of the dimensionless pressure and dimensionless pressure
derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=1.5) and conductivity index (£=0) (constant-
rate case).
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Figure G.116— Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (Dr=1.5) and conductivity index (6=0) (constant- pressure
case).
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Figure G.117—  Log-log plot of the dimensionless pressure and dimensionless pressure

Rate Transient

Behavior of a
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

Well

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2) and conductivity index (6=0) (constant-rate

case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.118—  Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2) and conductivity index (=0) (constant- pressure case).
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Figure G.119—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D~=2.5) and conductivity index (£=0) (constant-
rate case).

332



Dimensionless Rate, |q,,|
Dimensionless Rate Derivative, |dq,,/dIntp|

Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness

10° 10° 10 10° 107 10" 10° 10’ 10° 10° 10*

2 2
SN B B L B R B L B L ) e ) e s e R T
k Legend: E
\ (—) (w0l ]

(—) ldguodinty]

1 B . 101
;\N’:\s\eugg\ E

i \ N ] 100
E N=3 “6JN,=9 E
: Y§§§ ]

3 \ \ "

| Parameters: \ = 10‘2

E mo=10"  np=2 T

F yo=02  Fp=1 E

I Di=25 =0 4

I Lp=5 ]
FEPIFETITH BRI BRI BRI BRI BRI BRI EETETETTT BRI BRI 10°

10° 10° 10" 10° 102 10" 10° 10’ 10° 10° 10*

Dimensionless Time, t,

Figure G.120—  Log-log plot of the dimensionless rate and dimensionless rate derivative

functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/~=2.5) and conductivity index (6=0) (constant-pressure
case).
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Figure G.121—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/=2.5) and conductivity index (6=0.4) (constant-
rate case).
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Rate Transient Performance Behavior of a Horizontal Well Intercepting
Multiple Rectangular Hydraulic Fractures in Fractal Reservoir with Finite Thickness
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Figure G.122—  Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/=2.5) and conductivity index (6=0.4) (constant-pressure
case).
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Figure G.123—  Log-log plot of the dimensionless pressure and dimensionless pressure

derivative functions for a horizontal well intercepting Nyrectangular longitudinal
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness
with fixed fractal dimension (D/~=2.5) and conductivity index (6=4) (constant-
rate case).
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Figure G.124—  Log-log plot of the dimensionless rate and dimensionless rate derivative
functions for a horizontal well intercepting Nyrectangular longitudinal hydraulic
fractures with low conductivity in a fractal reservoir of finite thickness with fixed
fractal dimension (D/~=2.5) and conductivity index (6=4) (constant-pressure
case).
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APPENDIX H
THE USE OF FRACTIONAL INTEGRALS TO MODEL THE TRANSIENT
PERFORMANCE BEHAVIOR OF WELLS INTERCEPTING HYDRAULIC

FRACTURES*

H.1. Wells Intercepting Hydraulic Fractures in Euclidean Reservoirs: Classic Models

The finite conductivity fracture models are based on the discretization of the hydraulic fracture,
which defines a system of equations. The "coupling" between the hydraulic fracture and the
reservoir is made by the use of the uniform flux solution of a hydraulic fracture, which implies the
superposition of the reservoir (line/point source) solution. Gringarten et al. (1974) presented the
uniform flux solution for a vertical well intercepting a rectangular fracture within a 2D (cylindrical)
reservoir (schematics in Fig. H.1). The authors developed the solution by assuming that yp=y,p=0

and superimposing the line source solution over the lateral extent of the hydraulic fracture (-xmp,

xm), i.e.:

b =xupl
pD,cr(xszwD,YD,wa,fD>= .[El |:M deD N (Hl)

|
4

which results in the following expression:

4 Parts of this Appendix are reprinted with permission from "Pressure and Rate Transient Behavior of a Horizontal
Well Intercepting Multiple Hydraulic Fractures within a Fractal Reservoir " by Valdes-Perez, A. R., Larsen, L., and
Blasingame, T.A., 2018. Unconventional Resources Technology Conference (URTeC) Proceedings, URTeC-
2902854. Copyright [2018] by Society of Petroleum Engineers, Inc.
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n(H2)

2 2
NTID I+xp Ixp || I+xp . |[I+xpl” | 1-xp . |[I=xp]
xXp,tp)= erf +erf + E + E
PDer(Xpsip) 5 [ [2 ,—ID} L ” ” ; 0 7. ; A 1

Evaluating Eq. H.2 at the wellbore (i.e., xp=0) and taking the logarithmic derivative gives us:

dwa,cr(ZD) _\7lp 1
D oy e (H.3)
dlntD 2 2 p

Fig. H.2 shows the pressure data for a uniform flux fracture published by Gringarten et al. (1974)
and the pressure derivative function calculated with Eq. H.3. At early times, it exhibits the
characteristic formation-linear flow (half-slope in the pressure derivative) followed by the pseudo-

radial flow (flat slope in the pressure derivative).

ty
Wellbore Line Source
(2D Reservoir) L
~
Y

_Y
| I
| I
I I

) ! t > +Xx
. | ,
! 0 xp=1
Figure H.1 = — Schematic of the uniform flux fracture solution using the line source function.
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Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture
using the Line Source Solution (Gringarten et al., 1974)
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Figure H.2 — Log-log plot of the pressure and pressure derivative functions of the uniform flux

fracture solution using the line source.

In 1991, Larsen et al. used the point source solution in the Laplace domain to develop the model
of a horizontal well intercepting a finite conductivity rectangular fracture within a 3D (spherical)
reservoir. Fig. H.3 shows a schematic of this system defined for a vertical (instead of a horizontal)
well. The authors applied a double integral in polar coordinates to superimpose the point source
solution in the Laplace domain over the surface of the segments of the rectangular fracture. In

cartesian coordinates, this expression is given by:

_ 1
PD,cr(XD>XwD> VD> YwD-t) = e

1Y/D 1
[ > eXI)[_\/;\/[XD ~—XwD ]2 +[J’D —YwD ]2 :|dwadwa

-1 0 \/[XD _wa]2 +[yD _yWD]
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Figure H3  — Schematics of the uniform flux fracture solution using the point source function.

In their Appendix B, Larsen ef al. (1991) showed that the uniform flux solution of a hydraulic
fracture within a 3D (spherical) reservoir (Eq. H.4) converges to the 2D (cylindrical) reservoir case
if the longitudinal extension of the fracture (y/p) goes to infinity. Utilizing MATLAB's integral2-
function to numerically integrate Eq. H.4 and subsequently applying the Stehfest algorithm, we
generated the pressure and pressure derivative functions of this model for increasing ymp-values.
Then, we compared these results to the data presented by Gringarten et al. (1974). We present
such a comparison in Fig. H.4. We observed that the use of the double integral approach in the
point source reproduces the formation linear flow at early times and the characteristic negative
half slope for spherical systems at late times. The pressure transient behavior of this type of system
is similar to the one observed in partially penetrated wells. This solution can also reproduce the

pseudoradial flow if the yp-value is sufficiently high.
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Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture
(Comparison Between the Line Source and the Point Source Solutions)
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Figure H4 — Convergence of the uniform flux fracture model using the point source solution
(Larsen et al., 1991) to the uniform flux fracture model using the line source
solution (Gringarten et al., 1974)

Based on the line source solution, Cinco-Ley et al. (1978) developed the finite conductivity
fracture model considering a rectangular fracture. Depending on the characteristics (parameters)
of the fracture, this model can exhibit the linear fracture flow at early times, the bilinear and
formation linear flows at intermediate times, and the pseudoradial flow at late times. Fig. H.5
shows the pressure data published by the authors. We estimated the pressure derivate data using
MATLAB's spline- function. Given that the point source function can reproduce the results of the
uniform flux fracture using the line source function if one of the axes goes to infinity, the finite
conductivity model developed by Larsen et al. (1991) should converge to the model presented by

Cinco-Ley et al. (1978) at long longitudinal extensions of the hydraulic fracture (yp).
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Pressure Transient Performance Behavior of a Finite Conductivity Rectangular Fracture
using the Line Source Solution (Cinco-Ley et al., 1978)
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Figure H.5 — Log-log plot of the pressure and pressure derivative functions of the finite

conductivity fracture solution using the line source.

To test our hypothesis, we have used the input data (dimensionless fracture conductivity and
dimensionless hydraulic diffusivity) provided by Cinco-Ley et al. (1978) in the model developed
by Larsen et al (1991) to compare the results of both models. We noted that to compare the results
of these models, the pressure (pwp,z) and pressure derivative signatures generated with the Larsen

et al. model should be rescaled as follows:

where /p is the dimensionless formation thickness. We tested both scenarios for a short
longitudinal fracture (yp=2) and for a long longitudinal fracture (y»=80). Subsequently, we

compared these results to the data provided by Cinco-Ley et al. (1978). The results are shown in
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Fig. H.6. Based on these results, we came to the following conclusions: (1) for high yp-values,
the model proposed by Larsen et al. (1991) converges to the model presented by Cinco-Ley et al.
(1978), and (2) the pressure and pressure derivative functions at early and intermediate times
(tp<107!) are sensitive only to the Fep- and 7p-parameters, regardless of the longitudinal length of
the hydraulic fracture (y/p) and the source solution related to the geometry of the reservoir (line

source for a cylindrical reservoir or point source for a spherical reservoir).

Pressure Transient Performance Behavior of a Finite Conductivity Rectangular Fracture
(Comparison Between the Line Source and the Point Source Approaches)
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Figure H6 — Convergence of the finite conductivity fracture model using the point source

solution (Larsen et al., 1991) to the finite conductivity fracture model using the
line source solution (Cinco-Ley ef al., 1978)

H.2. Extension of the Line/Point Source approaches to Fractal Reservoirs

We have observed that our solutions based on the "fractal point" source approach yield erratic
behaviors in the pressure and rate transient performance behaviors at intermediate times when v>0.

Beier (1994) redefined the parameters of the fractal reservoir model presented by Chang et al.

342



(1990) and presented the infinite conductivity and uniform flux rectangular fracture solutions using
a "fractal line" approach. We have observed that the use of this approach can produce unstable
pressure and rate behaviors when v<0. These erratic behaviors are related to the treatment of the
fractal source function. Beier (1994) used a "line-source" approach (single integral), which
involves the superposition of the fractal source along the extent of the rectangular fracture;
whereas, we have applied a "point source" approximation (double integral), which implies the
superposition of the fractal source over the entire surface of the fracture. We recognize that none

of these approaches are appropriate for a fractal reservoir.

The main convergence requirement of the fractal reservoir model establishes that this model should
converge to the Euclidean reservoir models (Chang ef al., 1990) when (1) Ds=3 and 8=0 (v=-0.5)
for the spherical reservoir model (Chatas, 1966), (2) D=2 and € =0 (v =0) for the cylindrical
reservoir model (van Everdingen et al., 1949), and (3) Dy =1 and =0 (v =0.5) for the linear
reservoir model (Miller, 1962). Therefore, the models of wells intercepting hydraulic fractures in
fractal reservoirs should be able to reproduce all the Euclidean scenarios. For a well intercepting
a finite conductivity rectangular fracture within a fractal reservoir, the model should be able to
reproduce the results presented by Cinco-Ley et al. (1978) when D=2 and 6 =0 and the ones
presented by Larsen ef al. (1991) when D=3 and € =0. Although the model for a rectangular
fracture presented in Chapter III fulfills the requirement for the Larsen et al. model, it fails to
reproduce the results presented by Cinco-Ley et al. (1978). Similarly, the infinite conductivity
fracture model presented by Beier (1994) fails to converge to the model presented by Larsen et al.

(1991) (considering a high conductivity fracture).
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In Section H.1, we showed that the double integral used for the point source solution (spherical
homogeneous reservoir, i.e., D=3 and §=0) and the single integral used for the line source solution
(cylindrical homogeneous reservoir, i.e., D=2 and 8 =0) provide exactly the same pressure and
pressure derivative performance behavior at early and intermediate times of a well intercepting a
hydraulic fracture. In short, the transient behavior for a fractured well is unaffected by the
geometry of the reservoir (fractal dimension, Dy) at early and intermediate times. These results are
contradictory to the analyses presented in Chapters III and IV and the ones presented by Beier
(1994). Hence, we have concluded that the use of the traditional line/point source approaches for
fractal reservoirs is inappropriate. The use of the traditional schemes to model hydraulic fractures
in fractal reservoirs can cause the "over-interpretation" of transient data by the introduction of
phenomena unlikely to be distinguished in the macro-scale of a reservoir (e.g. anomalous diffusion

parameters).

H.3. Fractional Integration to Model the Transient Performance Behavior of a Well

Intercepting a Rectangular Hydraulic Fracture within a Fractal Reservoir

The traditional schemes to model the transient behavior of a well intercepting a hydraulic fracture
in a homogeneous reservoir consist in the "coupling" of two Euclidean objects: the reservoir
(cylinder or sphere) and the fracture (rectangular or circular). This process involves the integration
of a function over a domain in a "linear" axis or axes. Because a fractal reservoir is an irregular
object, it is inappropriate to use the same schemes because the axes are not necessarily linear for
all cases. To overcome this problem, we propose the use of fractional integrals. Ortigueira ef al.
(2017) defined the superposition of a function over a rectangular region defined by (a1,b1)x(a2,b2),
utilizing the fractional integrals, as follows:
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b by a . a
[zf(al’blaa2’b2): i S (xp.x2)dx; ldx22 N (H6)
a az

The use of Eq. H.6 implies a rescaling of the axes of a given system using power-law functions.
For a fractal reservoir, we consider that this is the most appropriate procedure to couple the
irregular (fractal) geometry of the reservoir to the Euclidean shape of the hydraulic fracture. For

this work, we have considered the case where a1=aa.

To show the application of the concept defined in Eq. H.6 in the transient performance behavior

of a fractured well in a fractal reservoir, consider the fractal source solution in the Laplace domain

developed in Appendix D:
Df—2
hyy! 4 1-B)/2 [0+2)/2 2\u
B e (Rps) = ——L— H2V2RI=FV2 e 1 p e (H.7)
fD,C}" [€+2]1—V1—~[1_v] D v D 9+2

Similar to Beier (1994), we defined the fractal radius as:

Rg+2 Z[X'D—X'WD]9+2 +[y'D—y'WD]€+2. ............................................................................. (Hg)

In this development, it is important to point out that the variables x'p, x'wp, ¥'p, and »'wp do not
correspond to the classic cartesian (linear) axes. This is the main difference to Beier's
conceptualization. To provide an equivalent expression in cartesian (linear) axes (xwp, Ywp), wWe

considered the following transformations:
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[y’D—y’WD]z[yD—yWD]z/ﬂ. ............................................................................................ (H.10)

After combining Eqgs. H.7 to H.10, the fractal source solution becomes:

Df—2

h v/2
e [[XD ~xup 1 +1vp ~ywp1* }
[6+217 1= v]

1/2&}

0+2

ﬁfD,C}’(xDﬂxWDayD’waau) =

Kv |:[[XD —XwD ]25 +[yD —YwD ]2§:|

where &=[6+2]/f. In this work, we use a "fractal point" approach (i.e., a double integral) to
superimpose the solution of the fractal reservoir (Eq. H.12) over the surface of the hydraulic
fracture. The fracture is defined in the domain (-1,1) in the x,p-axis and (0,y/p) in the y.p-axis.

Therefore, the uniform-flux fracture solution, is defined by:

hD -2 [y 2\/_
ﬁfD,CF (XD’xWDayDawa:u) = ?_—u*[\ﬂrz]/z .[ I '//VKV |:l// _u:| dwa dwa 9 seeeeees (H 12)
[6+2]"V 1 —v] Al o 0+2
where:
(//:\/[xD—xWD]zg +[yD—yWD]2§ et eeeeeeaeeeeaeetaeetacetanietanittacetanietacitanietanietacettnietantttacttsnnns (H13)

We could not obtain an analytical solution to the general case of the integral defined in Eq. H.12.
The results presented in this Appendix were developed using numerical integration (MATLAB's

integral2-function).

Convergence to the Classic Uniform-Flux Fracture Models

According to the convergence requirements defined in Section H.2 (taken from Chang et al.,

1990), the solution given by Eq. H.12 must converge to the uniform-flux fracture solution proposed
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by Gringarten et al. (1974) for D=2 and 6=0, and to the point source solution used by Larsen et
al. (1991) for D=3 and 6=0. In Fig. H.7, we present the convergence of the model for the first
case (Gringarten et al., 1974), and the convergence to the second case (Larsen et al., 1991) is
presented in Fig. H.8. We considered a unit thickness (4p=1) for both scenarios, whereas the
longitudinal length of the fracture (yp) is 1 for the first scenario and 2 for the second. We observed
that the results generated with Eq. H.12 provide excellent matches to the pressure, pressure
derivative, and f-pressure derivative data from Gringarten et al. (1974) and a perfect match to the
results generated using the point source solution proposed by Larsen et al. (1991). The
convergence to the Larsen et al. model can be analytically derived by substituting the fractal

parameters D=3 and 6=0 in Eq. H.12 and it will collapse to the point source approach (Eq. H.4).

Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture
(Comparison Between the Line Source and the Fractal Point Source Solutions)

4 -3 2 El 0 1 2 3 4
10 10 10 10 10 10 10 10 10
2 2
10 = T T IIIIIII T T IIIIlII T ] IIIIIII T T lIIIIII T rrrmm T i T rrrmm 1 T Illllt 10
5 E Legend: 3
o8 C (O ) Puper (Gringarten et al., 1974) ]
S 3B - ( © ) dpyp./dint, (Gringarten et al., 1974) .
Y % " ( © ) dpyp,/dinty/pypc, (Gringarten et al., 1974) 1
5 9 \g 101 | (=) Pwpcr (Fractal Point/Fractional Integral) 101
S & s E (—) dpyp,/dint, (Fractal Point/Fractional Integral) E
e g T E (=) dpyp,/dInty/pyp,cr (Fractal Point/Fractional Integral) m_ee@e@.ee-em
g2 0 - -
5% 2 - E
e 8 £
a8 o 0
w2910 E g 10
w S 9 - -
225 E -o0-0esad]
2 - -
ga s | .
€ va
S LN S -
S € Kl -1
Sed0 / reo-ssesa] 10
§5 F ]
E 2 - ]
[ - E
E L 4
a /
10-2 -4 L L LL1ll 3 1 L L LLLLl 2 1 Ll LLLLl 1 L L L LLlLl 0 L Ll LLlll 1 L Ll L1lll 2 L L L LLLll 3 1 L L LLLLl 410‘2
10 10 10 10 10 10 10 10 10
Dimensionless Time, tp
Figure H7 — Convergence of the uniform flux fracture model within a fractal reservoir using

the fractional integral solution to the uniform flux fracture model in a cylindrical
reservoir (Gringarten et al., 1974)
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Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture
(Comparison Between the Point Source and the Fractal Point Source Solutions)
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Figure H.8 — Convergence of the uniform flux fracture model within a fractal reservoir using

the fractional integral solution to the uniform flux fracture model in a spherical
reservoir (Larsen et al., 1991)

Influence of the Fractal Parameters — Fractal Dimension (Dy)

As presented in Fig. H.9, the fractal dimension of the reservoir (Dy) does not have influence in the
slope of the pressure and pressure derivative functions at early times (p<4x10-2). All the cases
presented in Fig. H.9 show the characteristic formation linear flow at early times, followed by the
pseudo-fractal flow at late times (the slope of the pressure derivative is equal to v). This is
confirmed by the fpressure derivatives presented in Fig. H.10. We observed that our proposed
solution (Eq. H.12) produces a slight offset towards the right of the plot as the fractal dimension
(Dy) decreases. Such an offset is more evident for D<2 (v>0). This offset is also presented in the
rate and rate derivative functions (Fig. H.11) and causes slightly higher flowrates at early times,

for lower Dsvalues.
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Sensitivity Analysis of the Fractal Dimension on the Pressure Transient Performance Behavior
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration

10° 10° 102 10™ 10° 10" 10° 10° 10*
10" F T T T 10
[ Legend: P
[ (=) Puper Dy=1.25 ]

(=) dpyp,c/dinty 1.5 —2

1 Parameters:

[

. /

b3 —

£ 10 E55 =—=175 10

S F host D,=1.25 15 %_2 =
58 [ o=t e
R L
g :
g2 o0 - 0
5% 10 Y — 1310
a2 E 25275 D=3 3
g3 - 2
&9 - 225 | ]
g3 - 25 I
<8 2.75\
.g s 10-1 | 10-1
ce 3 175 Dr=3
E S -
8§ C \\

]

c

o

£

a

/

L)1)

10.3 -4 I III”“$ I III”“-Z I IIIIIII-1 e 0 e 1 e 2 e 3 e 410.3
10 10 10 10 10 10 10 10 10
Dimensionless Time, t,
Figure H9 — Influence of the fractal dimension (Dy) in the pressure and pressure derivative
functions of a uniform flux fracture within a fractal reservoir (fractional integral
approach).

Sensitivity Analysis of the Fractal Dimension on the g-Pressure Derivative Function
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration
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Figure H.10 — Influence of the fractal dimension (Dy) in the /- pressure derivative functions of

a uniform flux fracture within a fractal reservoir (fractional integral approach).
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Sensitivity Analysis of the Fractal Dimension on the Rate Transient Performance Behavior
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration
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Figure H.11 — Influence of the fractal dimension (D) in the rate and rate derivative functions
of a uniform flux fracture within a fractal reservoir (fractional integral approach).

Influence of the Fractal Parameters — Conductivity Index (6)

We present the impact of the conductivity index (6) in the pressure and pressure derivative
signatures in Fig. H.12. This parameter describes the connectivity between the permeable sites.
Low @ -values represent better connected permeable sites within a fractal system (reservoir). We
observed that this parameter does have an impact on the performance behavior of the pressure and
pressure derivative (slope) at early and late times. Based on analytical approximations and
confirmation with the Spressure derivative (Fig. H.13), we concluded that at early times (early
fractal formation flow), the slope of the pressure and pressure derivative functions is equal to
[6+2]!, whereas at late times (pseudo-fractal flow) the slope of the pressure derivative is equal to

v. The relevance of this model is its potential use to directly determine the fractal reservoir
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parameters without the use of trial and error methods (e.g. Flamenco-Lopez et al., 2003). The
conductivity index @can be estimated from the slope at early times. Once the £-value is obtained,
it would also allow the straight calculation of the fractal dimension (D) from the slope of the

pressure derivative function (v) if the test is long enough to observe the pseudo-fractal flow.

Sensitivity Analysis of the Conductivity Index on the Pressure Transient Performance Behavior
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration
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Figure H.12 — Influence of the conductivity index (6) in the pressure and pressure derivative
functions of a uniform flux fracture within a fractal reservoir (fractional integral

approach).
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Sensitivity Analysis of the Conductivity Index on the g-Pressure Derivative Function
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration
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Figure H.13 — Influence of the conductivity index (6) in the /- pressure derivative functions of

a uniform flux fracture within a fractal reservoir (fractional integral approach).

In Fig. H.14, we present the constant-pressure solution ("mirror" images) of the cases presented
in Fig. H.12. This plot shows that the variation of the #-parameter is consistent to the physics,
i.e., better connected permeable sites in the fractal reservoir (low 6&-values), yielding higher

flowrates during the entire test. These results are contradictory to the ones generated by using the

traditional point source/double integral approach and presented in Chapters III and IV, where the
flowrate signatures showed that the better connected systems yielded higher flowrates only at late

times.
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Sensitivity Analysis of the Conductivity Index on the Rate Transient Performance Behavior
of a Uniform Flux Rectangular Fracture within a Fractal Reservoir using Fractional Integration
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Figure H.14 — Influence of the conductivity index (6) in the rate and rate derivative functions

of a uniform flux fracture within a fractal reservoir (fractional integral approach).

Relation to the Anomalous Diffusion Model

We noted that the shape of the signatures presented in Fig. H.12 are very similar to ones generated
using the anomalous diffusion model presented by Camacho-Velazquez et al. (2008) (Fig. 2.8).
Although their model is for unfractured wells (the model of a uniform flux fracture within a fractal
reservoir with anomalous diffusion was presented by Razminia et al. 2015b, who used a traditional
single/integer integral), we consider that these models are comparable given the use of fractional
calculus, i.e., the fractional derivative to model the anomalous diffusion in fractal reservoirs and
the fractional integral used to model the fractured well in fractal reservoirs with typical diffusion.
We present a comparison of these models in Fig. H.15 (the input parameters for the uniform-flux

fracture model are the same from Fig. H.12). We confirmed that the shape of the signatures of
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these models are very similar, particularly at early times where the signatures of the f-pressure

derivative function from both models overlap (see Fig. H.16).

Given that the anomalous diffusion models are entirely based on mechanical statistics and lacks
any geological basis, we consider that the fractional integral approach is a more appropriate

treatment to reproduce signatures as the one shown in Fig. H.15.

Comparison Between the Unfractured Well Model within a Fractal Reservoir with Anomalous Diffusion and the
Uniform-Flux Fracture Model within a Fractal Reservoir with Typical Diffusion using the Fractional Integral approach
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Figure H.15 — Comparison of the pressure and pressure derivative functions between the

uniform-flux fracture model using the fractional integral and the anomalous
diffusion model for an unfractured well within a fractal reservoir (Camacho-
Velazquez et al., 2008).
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Comparison Between the Unfractured Well Model within a Fractal Reservoir with Anomalous Diffusion and the
Uniform-Flux Fracture Model within a Fractal Reservoir with Typical Diffusion using the Fractional Integral Approach
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Figure H.16 — Comparison of the Spressure derivative functions between the uniform-flux

fracture model using the fractional integral and the anomalous diffusion model
for an unfractured well within a fractal reservoir (Camacho-Velazquez et al.,

2008).

Application of the Fractional Integral Uniform Flux Fractures in 2D (Cylindrical) Reservoirs

In Section H.1, we presented the influence of the longitudinal length of the fracture in the point
source solution (Fig. H.4). We observed that long longitudinal fractures can create two subperiods
of flow at late-times: (1) pseudoradial and (2) spherical flow. As an exercise, we performed the
same analysis using the double integral approach in the line source solution (see Fig. H.17).
Although the solution at late times shows the expected pseudoradial flow for all cases, the results
show also that at high ymp-values, the characteristic half-slopes at early times (formation linear

flow) of the pressure and pressure derivative functions collapse in an unitary slope with no physical

significance.
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Dimensionless Pressure, p,, ../Yip

Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture within a
Cylindrical Reservoir using a Double Integral Approach for Selected Values of the Longitudinal Length
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Figure H.17 — Transient performance behavior of the pressure and pressure derivative functions

of the uniform flux fracture model using the line source solution and applying
the traditional double integer integral approach.

We investigated the possibility of applying the fractional integration in the line source solution

(D=2 and 6=0 in Eq. H.12) to perform a similar analysis to the ones presented in Figs. H.4 and.

H.17. We present such an analysis in Fig. H.18. For yp-values different than one, we observed

that the fractional integration approach can reproduce the following sequence of three periods of

flow: (1) linear, (2) bilinear, and (3) pseudoradial flows. This sequence is the same as the one

observed in low conductivity fractures.

Given that the fractional integral approach does not

consider the flow inside the fracture, the linear and bilinear flows reproduced with the fractional

integral approach correspond to the formation linear flow and a "formation bilinear" flow. In a

sense, the "formation bilinear flow" can be conceptualized as the reservoir portion of the classic

trilinear flow model proposed by Lee et al. (1986).
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Pressure Transient Performance Behavior of a Uniform Flux Rectangular Fracture within a
Cylindrical Reservoir using Fractional Integration for Selected Values of the Longitudinal Length
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Figure H.18 — Transient performance behavior of the pressure and pressure derivative functions
of the uniform flux fracture model using the line source solution and applying

the fractional integral approach.

Convergence to the Classic Finite Conductivity Models for Rectangular Fractures

The finite conductivity model for a rectangular fracture in a fractal reservoir presented in Chapter
IIT was developed using a "point source" approach (i.e., double integral). This model can
reproduce the results presented by Larsen ef al. (1991), when the fractal parameters converge to
the Euclidean limit of a sphere (i.e., D=3 and £=0). Consequently, it can also reproduce the results
presented by Cinco-Ley et al. (1978) for high yp-values, similar to the results presented in Section
H.1 (Fig. H.6). However, this convergence criterion is weak for a fractal model, which should
achieve the convergence based on the fractal properties (D=2 and &=0, for the Cinco-Ley et al.
model). Therefore, we implemented the fractional derivative approach in scheme of the finite

conductivity model presented in Chapter III.

357



In Fig. H.19, we present the convergence of the finite conductivity fracture in a fractal model using
the fractional integral approach to the model proposed by Larsen et al. (1991). We present three
cases: (1) low (Fep =0.27 and 1p=10%), (2) intermediate (Fe.p =7 and 7p=10%), and high (F.p
=100z and 7p=10%) conductivity fractures. We observed that the match of these models is perfect

for all these cases.

Pressure Transient Performance Behavior of a Finite Conductivity Rectangular Fracture
(Convergence of the Fractal Model to the Larsen et al. model)
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Figure H.19 — Convergence of the finite conductivity fracture model fractal reservoir using the

fractional integral solution to the finite conductivity fracture model in a spherical
reservoir (Larsen et al., 1991)

Similarly in Fig. H.20, we show the convergence of the fractal model using the fractional integral
approach to the Cinco-Ley ef al. model, using the data provided in the original publication. We
observed that the pressure (pwp,r) and pressure derivative signatures of the generated by the fractal
model using the fractional integral approach model are similar (in terms of the shapes of the curves)
to the ones presented by Cinco-Ley et al. (1978). We found that these models match by rescaling

the fractal model as follows:
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PwD,cr =€ 7 DUWDLE 5evvteeeiiiiiiiee i (H.14)
D
and
ID ZCQID F 5 vttt (H.15)

where #p r is the dimensionless time of the fractal model and c¢1 and ¢> are adjusting factors. We
determined these factors by trial and error. For the low conductivity fracture the factors are
c=1.325 and ¢»=0.08, for the intermediate conductivity fracture the factors are ¢;=1.085 and
¢>=0.16, and for the high conductivity fracture the factors are ¢;=1 and c>=5. We present the
normalized models in Fig. H.21, where we observed excellent matches for the three cases at early
and intermediate times. At late times (pseudofractal/pseudoradial flow), the proposed solution

shows numerical instability for the high conductivity case.

Pressure Transient Performance Behavior of a Finite Conductivity Rectangular Fracture
(Convergence of the Fractal Model to the Cinco-Ley et al. model)
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Figure H.20 — Convergence of the finite conductivity fracture model fractal reservoir using the

fractional integral solution to the finite conductivity fracture model in a
cylindrical reservoir (Cinco-Ley et al., 1978)
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Pressure Transient Performance Behavior of a Finite Conductivity Rectangular Fracture
(Convergence of the Fractal Model to the Cinco-Ley et al. model)
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Figure H.21 — Convergence of the finite conductivity fracture model fractal reservoir using

adjusting parameters and the fractional integral solution to the finite conductivity
fracture model in a cylindrical reservoir (Cinco-Ley et al., 1978)

The discussion should be focused now on the development of analytical functions to determine the
adjusting parameters c¢1 and c;. In their literature review, Ortigueira et al. (2017) pointed out that
there is not a generalized definition for the concept of the fractional integral, e.g., some fractional
integrals which involve a convolution scheme have the gamma function of the order of the integral
as an integration coefficient. Although we obtained good results using the definition given by Eq.
H.6, we believe that the adjusting parameters ¢ and ¢, could be related to an integration coefficient

of the fractional integral.
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H.4. Mathematical Development of the Fractional Integral Approach

Consider the solution for a fractal reservoir in terms of Green's functions (Chang et al., 1993):

PD,cr(Rp,Rypstp)=-a |

D Drlo+2 R
rf[+]exp—D
0

60+2
[9+2]2Jd7’ ....................................................... (H.16)

where « is a constant. The solution given by Eq. H.16 is general and applicable for Dy<3, which
includes the three Euclidean dimensions. Intuitively, Eq. H.16 can be restricted to consider only

one direction as follows:

]0x+2

ID Dgi/[0,+2 x'n—x'
r fx [Ox ]exp _[ D wD
0

PDer(X'D.x"ywp,tp)=—a | 3
[0y +2]°7

]dr. ..................................... (H.17)

where 0<Dx <1 and 6>0. It is important to point out that the x'p-axis corresponds to the traditional

(1D-linear) axis only if Ds=1 and 6=0. Similarly for the y'p, and the z'p axes, the solutions are:

6,+2

D Dg/[0,+2 'D=>'wnl”

PDer(V'DsY'wpstp)=—a [ T 10y ]exp b J/tz] AT yeeeeeeeeeeeeeeeeeeeeeeee e (H.18)
0 [0y +2]"7

and:

D Dg/[0,+2 2'p—z" 1P t2

pD’Cr(Z'D,Z'wD,lD)Z—OCI T fz 162 ]CXp —[ D WD; dT, ........................................ (H19)
0 6, +2]°¢

Analogous to Gringarten et al. (1973), we used the Newman's method to combine Eqs. H.17-H.19

to provide a "3D" solution:
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Dpr Dfyr D
' ' ' ' ' ' tD 9x+2 9y+2 QZ+2
pD,cr(x D>X wDsY DsY wDs>Z D>Z wD tD):_a [z
° e (H.20)

C 042 v Oy+2 v 042
exp _[x'p xwz)z] exp D'p waz] exp z'p ZWDZ] dr
[0, +2]°T [0, +2]°r [6, +2]°7

Assuming that the connectivity between permeable sites is the same in all directions (i.e.,

=6=6=6.), Eq. H.20 reduces to

PD.er(X'DsX'wpsY'D>Y'wps2'D>Z' WD tp) =

_at? Drlos) p-xypl?? +[y~D_va§]6’+2 Hz'p—z'ypl?t? P (H.21)
0 [6+2]° 7
where the fractal dimension Dyis given by:
D =D AD g T D o (H.22)
Comparing Eq. H.16 and H.21, we can concluded that:
Rp?2 =1 p=x' 12 410 D= 10 2 12 D=2 D 17 % oo (H.23)

Given that the modeling of a hydraulic fracture is a planar (2D) structure defined in cartesian
coordinates, it is fair to neglect the last term in Eq. H.23 (i.e., zZ'p=z'wp). Additionally, the axes x'p
and y'p can be rescaled using a power law function. Assuming that the superposition of the fractal
reservoir on the 2D hydraulic fracture occurs equally in both directions, we related the 2D cartesian

coordinates to the coordinates of the fractal reservoir as (here, only for the x-axis):

D r-1]/2
160 =50 ] =16 3D T T e (H.24)
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The exponent [Ds1]/2 depicts the exposure of the fractal reservoir to the 2D hydraulic fracture.
The expression given by Eq. H.24 is applicable for perfectly connected systems (£=0). We found

that the general case of Eq. H.24 is given by:

[xp —xWD]=[)C‘D—)C’WD]'B/2 ................................................................................................ (H.24)

For 0. Eq. H.25 introduces the use of the spatial dimension £, which (in a sense) provides an

"effective geometry" of the reservoir.
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