
 

 

 

 

PRESSURE AND RATE-TRANSIENT PERFORMANCE BEHAVIORS OF A 

HORIZONTAL WELL INTERCEPTING MULTIPLE HYDRAULIC FRACTURES 

WITHIN A SHALE RESERVOIR 

 

 

A Dissertation 

by 

ALEX RODRIGO VALDES-PEREZ 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  Thomas A. Blasingame 
Committee Members, Maria A. Barrufet 
 Jean-Luc Guermond 
 Peter Valkó 
Head of Department, Jeff Spath 
 

August 2018 

 

Major Subject: Petroleum Engineering 

 

Copyright 2018 Alex Rodrigo Valdes-Perez



 

ii 

 

ABSTRACT 

 

The primary goal of this work is to develop semi-analytical models to predict the pressure and rate 

performance behaviors of unconventional reservoirs — specifically, shale reservoirs.  In these 

types of reservoirs, there are multi-scale heterogeneities that can hinder the modeling and the 

diagnostic analyses.  Additionally, the use of large stimulation treatments can further complicate 

the modeling of these heterogeneous reservoir systems.  Our approach is to extend the existing 

models for a multi-fractured horizontal well (MFHW) in a homogenous reservoir to consider the 

fractal reservoir scenario. 

 

This work presents the detailed derivation of the model of a horizontal well intercepting a single 

finite-conductivity fracture within a fractal reservoir.  The solution of this model is semi-analytical.  

This is developed by discretizing the hydraulic fracture, which defines a system of equations, the 

solution of which provides the pressure at any position inside the fracture.  The shape of the 

imposed hydraulic fracture can be either circular or rectangular.  By modifying the solution in the 

Laplace domain of the diffusivity equation for the reservoir, we have investigated different 

reservoir conditions, such as single porosity fractal reservoirs with typical or anomalous diffusions 

and double porosity reservoirs with typical diffusion. 

 

We have extended the semi-analytical solution for a horizontal well intercepting a single finite-

conductivity fracture to the MFHW case.  For this purpose, we have used the principle of 

superposition in space.  We show that the pressure transient response of a MFHW within a fractal 

reservoir can exhibit a maximum of four (4) distinct periods of flow — (1) fracture (dominated) 
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flow, (2) early fracture-reservoir interaction, (3) late fracture-reservoir interaction, and (4) 

reservoir-dominated flow. 

 

To provide an alternative explanation to the anomalous diffusion phenomenon in petroleum 

reservoirs, we have also developed a double porosity model considering matrix blocks with fractal 

geometry and a fractal fracture network.  We assumed transient interporosity transfer conditions 

and we modeled it using the classical convolution scheme given in the literature.  Under particular 

conditions, the resulting model acquires a similar mathematical shape to the so-called anomalous 

diffusion equation. 
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CHAPTER I 

INTRODUCTION 

 

In this chapter, we present the general overview of this dissertation.  We divided this chapter into 

three sections.  In the first section, we state the motivation of this research problem and define the 

strategy that we followed to find a solution.  Finally, we define the basic, and recurrent, concepts 

used in this work in the third section. 

 

1.1. Research Problem  

 

To produce the hydrocarbons contained in highly heterogeneous formations with low/ultralow 

permeability, such as shale oil and shale gas reservoirs, two main strategies have been 

implemented: (1) drill horizontal wells to maximize the flowing area and to minimize the number 

of wells, and (2) stimulate the horizontal well by large hydraulic fracturing treatments that creates 

multiple hydraulic fractures along the wellbore. 

 

The system created by a horizontal well intercepting multiple hydraulic fractures within a shale 

gas/oil reservoir becomes a challenging system to model for flow diagnosis purposes given three 

factors: (1) the heterogeneous and low/ultralow permeability nature of the reservoir, (2) the 

geometry of the well and fractures, and (3) the properties of the petroleum fluids.  In this work, we 

will address the first two factors to develop diffusivity models and semi-analytical solutions to be 

used for flow diagnosis. 

 

Some authors have suggested the use of fractal models as the best practice to depict the transient 

performance behavior of highly heterogeneous reservoirs (e.g., Naturally Fractured Reservoir and 
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shale reservoirs).  Therefore, we modeled the flow of petroleum fluids within a shale reservoir as 

a fractal object (Chang et al., 1990).  In Chapter II, we introduce the classic models related to this 

topic. 

 

To model the flow towards the horizontal well intercepting multiple hydraulic fractures, we will 

use the approach proposed by Larsen et al. (1994), which applies the principle of superposition in 

space to extend the models developed for a horizontal well intercepting a single finite-conductivity 

hydraulic fracture to the multifractured horizontal well case (MFHW). 

 

In Chapter III, we present the pressure and rate transient analyses for a horizontal well intercepting 

a single finite-conductivity fracture.  We investigated two conditions for the geometry of the 

hydraulic fractures and three conditions of the reservoir.  For the geometry of the hydraulic 

fractures, we assumed them to be either (1) circular transverse or (2) rectangular longitudinal.  For 

the reservoir, we consider the three cases: (1) single porosity fractal reservoir with typical 

diffusion, (2) double porosity reservoir with typical diffusion, and (3) single porosity fractal 

reservoir with anomalous diffusion. 

 

In Chapter IV, we apply the principle of superposition in space to extend the finite-conductivity 

fracture models presented in Chapter III to horizontal wells intercepting multiple hydraulic 

fractures.  We restricted our pressure and rate transient analyses to single porosity fractal reservoirs 

with typical diffusion. 

 

As an attempt to provide a physical explanation to the anomalous diffusion phenomenon in shale 

reservoirs, we introduce the double fractal model in Chapter V.  This model considers a double 
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porosity reservoir with transient interporosity transfer, where both the fracture network and the 

matrix blocks are fractal objects. 

 

We summarize our conclusion and recommendations in Chapter VI.  Additionally, we provide an 

outline for the future work related to the modeling of wells intercepting hydraulic fractures in 

fractal reservoirs. 

 

1.2. Research Objectives 

 

The main objectives of this dissertation are: 

 

● To develop semi-analytical reservoir models to predict the pressure and rate-transient 

performance behaviors of a horizontal well intercepting multiple hydraulic fractures within 

an unconventional reservoir— specifically, shale reservoirs. 

● To investigate the combined effect of the parameters of an unconventional reservoir (i.e., 

fractal dimension, conductivity index and/or anomalous diffusivity exponent) and the 

characteristics of the hydraulic fracture (fracture geometry and conductivity) on the flow 

periods of a horizontal well intercepting multiple hydraulic fractures within a fractal 

reservoir. 

● To derive diagnostic interpretation relations to estimate the parameters of the hydraulic 

fractures for the evaluation of hydraulic fracturing treatments. 

 

1.3. Basic Concepts 

 

In this section, we define the fundamental concepts used in this work.  It is not our objective to 

discuss these concepts in depth (which can be very abstract), but to provide a review and references 
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that are helpful to understand the fundamental theory behind this dissertation and some of the 

methods used in it. 

 

Unconventional reservoirs 

 

These are hydrocarbon reservoirs that must be stimulated to be able to produce at commercially 

viable flowrates.  This classification is comprehensive and includes resources such as shale oil/gas 

reservoirs, heavy oil reservoirs, tight sands reservoirs, etc.  In this work, we delimitated our 

research to shale reservoirs.  

 

Shale reservoirs are highly heterogeneous media that need massive hydraulic fracturing treatments, 

due to their low porosity and permeability, to produce at economic flowrates.  To model the 

transient performance behavior in these types of reservoirs, some authors have suggested that the 

use of fractal models is the most appropriate practice given their highly heterogeneous nature. 

 

Fractals 

 

Mandelbrot (1977) defined a fractal as a family of shapes with irregular and fragmented patterns.  

These irregularities are statistical and identical at all scales.  The number of shapes (n) approaches 

to infinity as their size (l) approaches to zero.  This relation is defined as: 

 

, .............................................................................................................................. (1.1) 

 

where D is the fractal dimension. 

 

Fractals in Petroleum Reservoir Engineering 

 

The application of the fractal theory in petroleum reservoir engineering became popular in the 

1990s, but the mathematical models with similar definition to Eq. 1.1 have been used for over fifty 

Dn l-!
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years.  Sahimi et al. (1990) presented a review of the applications of the fractal geometry theory 

in reservoir engineering. 

 

Based on the definition of fractals proposed by Mandelbrot, we can extend such a concept to 

petroleum reservoirs as follows: a fractal reservoir can be defined as the family of permeable sites 

(e.g. lithofacies with hydrocarbon content) with irregular shapes and fragmented patterns which 

are identical at all scales (sizes). Therefore, the number of the permeable sites is related to a 

characteristic length (e.g. pore radius), R, using a power-law function: 

 

, ................................................................................................................. (1.2) 

 

where s is the density of the permeable sites and Df is the fractal dimension of the reservoir.  A 

log-log plot of Eq. 1.2 will yield a straight line with a Df-1 slope.  Based on the expression given 

by Eq. 1.2, the porosity and the permeability for a fractal reservoir can also be modeled as power-

law functions (see Appendix B for details).  The porosity of a fractal reservoir has been defined 

as space-dependent by: 

 

, ................................................................................................................. (1.3) 

 

where f0 is a reference porosity and d is the Euclidean dimension of the reservoir.  Given that there 

is relation between the permeability and the porosity of a reservoir, the fundamental Darcy's law 

should also be modified to a power-law expression.  This is given by: 

 

,............................................................................................................. (1.4) 
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where Vs is the volume of the permeable sites and k0 is a reference permeability.  The parameter b 

in Eq., 1.4 deserves special attention.  It is defined as: 

 

, ..................................................................................................................... (1.5) 

 

where q is the conductivity index, which depicts the connectivity between the permeable sites.  It 

can acquire values equal or greater than zero.  A value of zero represents that the permeable sites 

are perfectly connected, whereas a high value represents poorly connected permeable sites. 

 

Doe (1991) defined the spatial dimension of the reservoir as a manner to describe irregular patterns 

of flow (e.g., sublinear or hyperspherical flow).  Although the author pointed out that this 

parameter is not necessarily related to the possible fractal nature of the reservoir, we believe that 

the spatial dimension can be related to b, given that these parameters have similar influence in the 

pressure and pressure derivative functions of their corresponding models (fractal and fractional 

models). 

 

Anomalous Diffusion 

 

This concept is related to the random walk theory.  It is defined as a process where the mean-

square displacement of a random walker is given by a power law function.  This is mathematically 

defined as (Metzler et al., 1994): 

 

, ................................................................................................................... (1.6) 

 

where dw is the anomalous diffusion exponent. 
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Fracture Conductivity 

 

This parameter is used for the evaluation of hydraulic fracturing treatments.  It is defined by the 

product of the permeability, kf, and the width, w, of the hydraulic fracture.  In this sense, the fracture 

conductivity is a concept analogous to the flow capacity of a homogenous reservoir.  The 

dimensionless form of the fracture conductivity can be defined by: 

 

, ....................................................................................................................... (1.7) 

 

where lr is a reference length and k is the permeability of the reservoir.  In general, a hydraulic 

fracture with a large FcD-value (e.g., 300 for a fracture in a cylindrical reservoir) is classified as an 

infinite-conductivity fracture, which is the desired outcome. 

 

Laplace Transform 

 

The Laplace transform is the standard method in petroleum engineering to obtain the analytical 

solutions of reservoir models.  For a function f(t) defined in the real domain, the Laplace transform 

is defined as: 

 

.............................................................................................................. (1.8) 

 

Duhamel's Principle 

 

Using this principle, the dimensionless wellbore pressure, pwD,cr(tD), can be related with the 

dimensionless flowrate, qwD(tD), in the Laplace domain as follows: 

 

f
cD

r

k w
F

kl
=

0
( ) ( ) utf u f t e dt

¥ -
ò=



 

8 

 

. ........................................................................................................ (1.9) 

 

This principle permits to obtain the constant-pressure solution of a reservoir model by using the 

constant-rate solution and vice-versa. 

 

Wellbore Storage 

 

This effect depicts the capability of a wellbore to store or unload a volume of fluids, when it is 

subjected to a change in the pressure.  It can be included using the relation in the Laplace domain: 

 

, ................................................................................. (1.10) 

 

where CD is the dimensionless wellbore storage coefficient, s is the skin (additional drop of 

pressure) around the wellbore and pwD(u) is the constant-rate solution of a reservoir model. 

 

Numerical Inversion of the Laplace Transform 

 

Most of the reservoir models are solved analytically in the Laplace domain due to the fact that it 

allows the use of Duhamel's principle (Eq. 1.6) and/or the inclusion of the wellbore storage effects 

(Eq. 1.7).  However, the resulting equations become problematic when inverting from the Laplace 

domain to the real domain.  Therefore, a numerical method to express the solution in the real 

domain should be applied.  The standard methods in petroleum industry are the ones based on 

Gaver's algorithm (Gaver, 1965). 

 

Based on the probability theory, Gaver (1965) developed an algorithm that estimate the inverse 

Laplace transform.  Later, Stehfest (1970) modified Gaver's work by utilizing the Salzer 
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summation as an accelerator of convergence.  This resulted in the algorithm for numerical 

inversion of the Laplace transform defined by: 

 

,................................................................................................. (1.11) 

where N is an even number of terms to be used and the coefficients Vi are calculated using the 

expression: 

 

........................................................ (1.12) 

 

The use of a large number of terms, N, can cause numerical instability in the algorithm due to the 

limitations of the programming software.  In Fig. 1.1, we present an example of this numerical 

instability by comparing the exponential integral function in the real domain: 

 

 (where a is a positive constant), .......................................................... (1.13) 

 

and the numerical inversion of its Laplace transform is given by: 

 

, ............................................................................................................. (1.14) 

 

for different values of N. 

 

In the example presented in Fig. 1.1, we can see that the Stehfest algorithm can show divergence 

when using a high number of approximation terms, N. 
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In general, the numerical instability, or divergence, of the Stehfest algorithm is the result of 

truncation errors.  This can be exacerbated by the type of the function to be inverted, e.g., equations 

that involve very high or very low arguments of the exponential function, power-law functions, 

special functions, etc. 

 

As an alternative to the Stehfest algorithm, Valko et al. (2004) investigated non-linear methods to 

accelerate the convergence of the Gaver algorithm.  They implemented the Wynn-Rho algorithm 

as a convergence accelerator in Mathematica and concluded that the use of this approach provides 

accurate results in the numerical inversion of a function in the Laplace domain by reducing the 

propagation of truncation errors. 

 

 
 

Figure 1.1 — Example of the Numerical Stability of the Stehfest algorithm. 
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CHAPTER II  

LITERATURE REVIEW 

 

The analysis of pressure-transient data as a method to evaluate fracturing jobs has been topic of 

research for over forty years.  During the 1970s decade, the attention was focused on the problem 

of vertical wells intercepting vertical fractures and the techniques to analyze the pressure-transient 

data from these type of wells were presented.  In the 1990s decade, these techniques were extended 

to horizontal wells intercepting multiple vertical fractures within homogeneous reservoirs.  Given 

the development and increase in production of shale oil and shale gas reservoirs in the last decade, 

some authors have extended the methods and techniques used in conventional reservoirs to 

unconventional reservoirs. 

 

In this chapter, we have summarized the classic works related to the analysis of pressure-transient 

data of wells intercepting hydraulic fractures and the models used to depict the performance 

behavior of unconventional reservoirs — specifically, fractal reservoirs and reservoirs with 

anomalous diffusion. 

 

2.1. Vertical Wells Intercepting Hydraulic Fractures  

 

Gringarten et al. (1974) applied Green and Source Functions to develop solutions for the problem 

of a well intercepting a vertical fracture within a homogeneous reservoir.  The authors considered 

two cases: (1) infinite conductivity and (2) uniform flux fractures.  The solution for the first case 

was obtained semi-analytically by discretizing the fracture into segments and establishing a system 

of equations whose solution provides the pressure-transient behavior anywhere in the fracture.  For 
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the second case, the solution was derived by superimposing the line-source solution along the 

fracture length. 

 

The uniform flux solution provides an exact solution at early times and it implicitly assumes that 

pressure will vary along the fracture.  Gringarten et al. (1974) found that the infinite conductivity 

pressure-transient behavior at the wellbore can be reproduced by evaluating the uniform flux 

solution at a dimensionless position in the fracture, xD, equal to 0.732.  Houze et al (1988) extended 

these ideas to double porosity reservoirs considering both, transient and pseudosteady-state 

interporosity transfers. 

 

Cinco-Ley et al. (1978) presented a general semi-analytical solution for the pressure-transient 

response of a vertical well intersecting a vertical finite conductivity hydraulic fracture within a 

homogenous reservoir.  This model can reproduce several flow periods observed in wells 

intercepting a hydraulic fracture by varying the dimensionless fracture conductivity.  The authors 

concluded that the assumption of infinite conductivity applies only when the dimensionless 

fracture conductivity is equal to or greater than 300.  This contribution improved the diagnosis of 

fracturing jobs, allowing the identification long and/or low permeability fractures. 

 

Cinco-Ley et al. (1981a) identified the flow periods generated by the finite conductivity fracture 

model and introduced the concepts of fracture linear flow and bilinear flow, which were used as a 

diagnostic technique of pressure-transient data.  The flow periods that can be observed in a vertical 

hydraulic fracture are: 
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1. Fracture Linear flow: At "very early transient" times the pressure derivative signature shows 

a half-slope straight line that corresponds to a linear flow occurring in the hydraulic fracture.  

This period is theoretical and is not observed in practice. 

 

2. Bilinear flow: For low values of the dimensionless conductivity of the fracture, at "early 

transient" times the pressure derivative signature shows a quarter-slope straight line that 

corresponds to two linear flows acting simultaneously: a linear flow in the hydraulic fracture 

and a linear flow from the formation to the fracture. 

 

3. Pseudo-Linear flow: For intermediate and high values of the dimensionless conductivity of 

the fracture, at "intermediate transient" times the linear flow from the formation to the 

fracture dominates and the pressure derivative signature shows a half-slope straight line. 

 

4. Pseudo-Radial flow: At "late transient" times the pressure derivative signature exhibits a 

zero-slope that corresponds to a flow dominated by the reservoir. 

 

Cinco-Ley et al. (1981b) included the effects of damage for a vertical well intercepting a hydraulic 

fracture.  The authors considered two types of damage conditions: (1) damaged zone around 

fracture caused by loss of fluid in the formation (fracture skin), and (2) damaged zone around 

wellbore caused by crushing, embedding or loss of proppant within the fracture (chocked fracture 

skin). 

 

Cinco-Ley et al. (1981b) pointed out the differences between the pressure-transient response at 

early times of a finite conductivity fracture and a hydraulic fracture affected by any of the two 

types of damage mentioned before.  They found that for small values of the fracture skin, the 

pressure-transient response approximates to the infinite conductivity fracture case, whereas for 
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large values the response converges to the uniform flux case.  Additionally, Wong et al. (1986) 

and Valdes-Perez et al. (2011) studied the impact of the fracture skin in the pressure-transient and 

pressure derivative behaviors of the bilinear model and presented techniques to analyze pressure-

transient data. 

 

Lee et al. (1986) developed a trilinear flow model to provide an analytical approach to the finite 

conductivity fracture model.  In their paper, Lee et al. (1986) found the solutions for both constant-

pressure and constant-rate cases, including the effects of fracture skin, wellbore storage and 

fracture storage.  This approximate model can match the "early time" period of the finite 

conductivity fracture model for two logarithmic cycles. 

 

Cinco-Ley et al. (1988) extended the finite conductivity fracture model to double porosity 

reservoirs.  In their development, the authors considered both transient and pseudosteady-state 

interporosity transfers.  Based on a fully analytical model for "early times," Cinco-Ley et al. (1988) 

found that under certain circumstances this type of system can yield a one-eight-slope (trilinear 

flow) in the log-log pressure-transient and pressure derivative plot and not one-quarter (bilinear 

flow) as in the homogeneous case.  Similarly for "intermediate times," a quarter-slope (bilinear 

flow) could be shown instead a one-half-slope (pseudo-linear flow). 

 

To provide an expression simpler to compute than the semi-analytical solution to the finite 

conductivity fracture model, Blasingame et al. (1993) combined the trilinear solution developed 

by Lee et al. (1986) and the alternative uniform flux solution obtained by Ozkan et al. (1991) to 

develop an equivalent solution in the Laplace domain valid for values of the dimensionless fracture 

conductivity greater than 0.5. 
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Cossio et al. (2013) presented an application of the fractal theory to provide an improved semi-

analytical solution for the flow of a single fluid within a single vertical fracture that fully penetrates 

a homogeneous infinite-acting reservoir.  The authors modified the trilinear flow model (Lee et 

al., 1986) to introduce fractal parameters in each one of the three regions.  The essence of this 

work is the modification of the diffusivity equation for linear flow to include both permeability 

and porosity as distance-dependent properties using power-law models.  This diffusivity equation 

was analytically solved for a closed system and validated with a 1D finite-volume black-oil 

reservoir simulator.  The authors verified their fractal-based trilinear solution with the solution 

developed by Cinco-Ley et al. (1988). 

 

2.2. Horizontal Wells Intercepting Hydraulic Fractures 

 

Larsen et al. (1991) developed a semi-analytical model of a horizontal well intersecting a finite 

conductivity vertical fracture within a 3D homogenous reservoir (see the detailed derivation of 

these models in Appendix A).  The authors considered two geometries for the fracture: (1) circular 

fracture perpendicular to the axis of the wellbore (Fig. 2.1) and (2) rectangular fracture parallel to 

the axis of the wellbore (Fig. 2.2). 

 

Fig. 2.3 and Fig 2.4 show the pressure-transient behavior of the radial and rectangular fractures, 

respectively.  Based on these models, the authors investigated the flow periods that can exist in the 

pressure-transient response of horizontal wells with multiple vertical fractures (Larsen et al. 1994).  

They found that at early flow periods (before pressure interference between fractures occur), the 

pressure-transient behavior of a multi-fractured horizontal well can be appropriately analyzed 

using the single fracture models. 
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Figure 2.1 — Vertical circular hydraulic fracture transverse to the axis of a horizontal well 
within an infinite 3D reservoir. 

 

 
 

Figure 2.2 — Vertical rectangular hydraulic fracture longitudinal to the axis of a horizontal 
well within an infinite 3D reservoir. 
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Figure 2.3 — Schematic example of the pressure and pressure derivative of a horizontal well 
intercepting a single circular transverse finite conductivity fracture within a 3D 
reservoir. 

 

 
 

Figure 2.4 — Schematic example of the pressure and pressure derivative of a horizontal well 
intercepting a single rectangular longitudinal finite conductivity fracture within 
a 3D reservoir. 
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Raghavan et al. (1997) applied the commingled-reservoir concepts to single fracture solutions and 

developed a model to analyze the pressure-transient response of a multi-fractured horizontal well 

in a homogeneous reservoir.  Using this approach, the authors concluded (similar to Larsen et al. 

1994) that a multi-fractured well behaves as an equivalent well intercepting a single fracture with 

an equivalent conductivity and fracture length equal to the distance between the hydraulic fractures 

at the edges, where the lowest rate towards the wellbore comes from the hydraulic fractures at the 

center of the well, whereas the highest production is observed in the outermost fractures. 

 

Based on the point source solution developed by Ozkan et al. (1991), Chen et al. (1997) derived 

expressions for pressure distribution caused by a multi-fractured horizontal wells in reservoirs with 

rectangular shape.  A discussion of the flow geometries and regimes that may appear (depending 

on the properties/characteristics of the hydraulic fractures) in these sort of well completion-

reservoir configurations was presented.  According to the authors, the main objective of this work 

was the development of an algorithm capable of incorporating boundary effects without relying 

on approximations or the use of image wells. 

 

Similar to the developments made by Lee et al. (1986), Brown et al. (2011) derived a trilinear flow 

solution for the pressure-transient analysis of multi-fractured horizontal wells in unconventional 

shale reservoirs.  The authors divided the reservoir into three subsystems (hydraulic fracture, inner 

and outer reservoir zones) with the following characteristics: 

 

● Each hydraulic fracture is considered to be a finite conductivity porous medium  

● Double porosity behavior in the inner reservoir zone (zone between hydraulic fractures) with 

transient interporosity transfer 
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● Linear flow in a homogenous reservoir in the outer reservoir zone. 

 

This approach was verified with more rigorous analytical (Chen et al. 1997 and Raghavan et al. 

1997) and numerical (Medeiros et al. 2008) solutions.  One application of this model was presented 

by Ozkan et al. (2011), who studied the impact of reservoir properties such as permeability in the 

transient performance of a fractured horizontal-well drilled in an unconventional reservoir. 

 

Ozcan et al. (2014) modified the inner reservoir zone of the trilinear model proposed by Brown et 

al. (2011) to include the effects of a nano-porous media by using an anomalous diffusivity model, 

based on the fractional derivative in time. 

 

2.3. Vertical Wells within Fractal Reservoirs 

 

Barker (1988) presented a generalized diffusivity model for hydraulic tests.  The author presented 

the constant flow rate and constant head (constant pressure) solutions for this model.  The solutions 

are given in terms of Modified Bessel Functions.  This model and its solutions are able to represent 

the transient performance (pressure and flow rate) of the flow of a Newtonian fluid in linear, radial 

or spherical systems.  This work is helpful as background to understand the solutions of the 

diffusivity models for fractal reservoirs. 

 

Based on the work of O'Shaughnessy et al. (1985), Chang et al. (1990) developed a diffusivity 

equation to represent the flow of a single phase fluid within a fractal reservoir (Fig. 2.5).  The 

system was idealized as a Naturally Fractured Reservoir (NFR) and two cases were studied: (1) 

without matrix participation, and (2) with pseudosteady-state interporosity transfer.  The authors 

presented the analytical solution for the first case, whereas for the second case the solution was 

numerical.  Appendix D shows the development of this model (case 1) and its procedure of solution 
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using the Laplace transform.  Fig. 2.6 shows the pressure-transient and pressure derivative for a 

vertical well within a fractal reservoir for selected values of the fractal dimension, Df, and the 

conductivity index, q. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.5 — Schematic of a vertical well within a reservoir with fractal fracture network. 
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Figure 2.6 — Schematic example of the pressure and pressure derivative of a vertical well 
within a fractal reservoir for selected values of the fractal dimension (Df) and 
fixed conductivity index (q=0). 

 

Doe (1991) analyzed the impact of the spatial dimension on constant-pressure tests.  The spatial 

dimension describes the variation in the exposed to flow area with distance from the well and the 

reservoir properties (heterogeneities).  Defining r as the distance from the well, the area exposed 

to flow for linear flow varies proportionally to r0 (i.e., the area remains unchanged).  For radial 

flow, the area exposed to flow changes linearly (i.e., proportionally to r1).  For spherical flow, the 

area exposed to flow changes proportionally to r2.  The author pointed out that fractional dimension 

may or may not indicate fractal reservoir geometries and can be classified as sublinear flow when 

the exponent of the distance from the well is less than zero and as hyperspherical if it is greater 

than two. 

 

Acuna et al. (1991) proposed a numerical method to represent natural fracturing processes with 

fractal geometry.  The authors used the "Iteration Function System" technique (Barnsley, 1988) 
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and concepts from the theory of fragmentation to create "numerical fractal fracture networks."  The 

authors created several cases of 2D synthetic fractal fracture networks.  For each case, they 

simulated the pressure-transient response of a well intercepting one of these networks assuming 

single phase flow of a slightly compressible fluid. 

 

Abbaszadeh (1995) developed a three region composite model divided into three regions.  The 

inner and the outer regions were considered to be radial and the middle region was considered to 

be fractal.  This model attempted to represent phenomena such as precipitation of solids, chemical 

dissolution processes, matrix acidizing, etc., in the pressure-transient response of a vertical well.  

The author presented an example of the application of the solution to this model using real data 

from the Prudhoe Bay reservoir, where laboratory studies of the reservoir indicate precipitation of 

scales and organic material in the vicinity of producer wells. 

 

Acuna et al. (1995) presented analyses of real well tests from NFRs located in western Venezuela, 

Monterey formation and Geyser geothermal field, applying the model developed by Chang et al. 

(1990).  Based on the power-law response of the real pressure-transient data, the authors 

determined the range of fractal parameters (mass fractal dimension and conductivity index).  

Subsequently, they used the fractal parameters determined from the analyses to generate fracture 

networks of the reservoirs, using techniques previously presented by Acuna et al. (1991). 

 

Olarewaju (1996) proposed a method to build a heterogeneous reservoir permeability field with 

stochastic fractal functions.  The author used the Weiestrass Mandelbrot fractal unconditional 

simulation method to generate the permeability field.  Such a method is based on the fractional 

Brownian motion (fBm), given that the processes that follow fBm are selfisimilar.  The input 

parameters to generate such field are obtained from pressure-transient data (effective permeability, 
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fractal dimension and conductivity index).  To estimate the input parameters, Olarewaju (1996) 

developed a double porosity model, considering transient interporosity transfer.  He obtained an 

analytical solution in Laplace domain that is able to reproduce the three flow periods of an infinite 

double porosity reservoir (flow in fracture network, interaction between porous media, and single 

system behavior). 

 

Based on the works of Chang et al. (1990) and Olarewaju (1996), Flamenco-Lopez et al. (2001) 

deduced approximate analytical solutions for late transient times for a double porosity system (i.e., 

when the double porosity reservoir behaves as a single system) and for pseudosteady-state flow 

period (boundary dominated).  One of the conclusions of this work was the necessity of analyzing 

transient and pseudosteady state flow periods to properly characterize a fractal reservoir.  In a 

revised version of this paper (Flamenco-Lopez et al. 2003), the authors included a trial and error 

methodology to estimate the fractal parameters during transient regime. 

 

To investigate the production decline behavior in fractal reservoirs, Camacho-Velazquez et al. 

(2008) obtained the constant pressure analytical solutions for the models proposed by Chang et al. 

(1990).  The authors developed approximate analytical solutions for the single and double porosity 

models for both, transient and pseudosteady-state flow periods. 

 

2.4. Wells Intercepting Hydraulic Fractures within Fractal Reservoirs 

 

The first work related to wells intercepting a hydraulic fracture in fractal reservoirs was developed 

by Beier (1994).  Motivated by the fractal behavior observed in the pressure-transient response in 

wells from the San Andres formation, Beier (1994) derived the infinite conductivity and the 
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uniform flux solutions for a vertical well using a similar approach as the one used by Gringarten 

et al. (1974) and the fractal model presented by Chang et al. (1990). 

 

Beier (1994) found that this well-reservoir configuration exhibits two power-law flowing periods.  

The first one corresponds to a distortion in the formation linear flow due to the superimposed flow 

of the reservoir towards the plane of the fracture, whereas the second one corresponds to the flow 

dominated by the fractal reservoir.  Fig. 2.7 shows an example of the two power-law flowing 

periods generated by a vertical well intercepted by a hydraulic fracture within a fractal reservoir.  

At early times (formation linear flow), the pressure and pressure derivative exhibit a three-

quarters-slope, whereas at late times (infinite-fractal reservoir) a half-slope is observed. 

 

 
 

Figure 2.7 — Schematic example of the pressure and pressure derivative of a vertical well 
intercepting a uniform flux hydraulic fracture within a fractal reservoir for 
selected values of the fractal dimension (Df) and fixed conductivity index (q=0). 

 

  



 

25 

 

 

2.5. Reservoir Models considering Anomalous Diffusion 

 

In 1994, Metzler et al. presented a generalization of the diffusion model of a fractal structure 

developed by O'Shaugnessy et al. (1985).  Such a generalization consists in the inclusion of the 

"anomalous diffusion" concept in the diffusion equation for fractal media.  The anomalous 

diffusivity phenomenon is modeled by a fractional derivative of a probability density function.  

The authors showed that the solution to their anomalous diffusion model considering an infinite 

fractal object is given by Fox's H-functions, of which asymptotic case when the time tends to 

infinite is given by an stretched exponential. 

 

Camacho-Velazquez et al. (2008) introduced the concept of anomalous diffusion in the petroleum 

reservoir engineering, and derived constant-pressure and constant-rate solutions for the analysis of 

pressure-rate performance behavior in fractal reservoirs.  The authors presented complete solutions 

in Laplace domain in terms of Modified Bessel Functions and developed asymptotic solutions in 

the real domain, defined by power-law functions.  Fig. 2.8 and Fig 2.9 show the pressure and rate-

transient behaviors, respectively, of a vertical well within a fractal reservoir with anomalous 

diffusion. 
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Figure 2.8 — Schematic example of the pressure and pressure derivative of a vertical well 
within a fractal reservoir with anomalous diffusion for selected values of the 
conductivity index (q) and fixed fractal dimension (Df=2.5). 

 

 
 

Figure 2.9 — Schematic example of the rate and rate derivative of a vertical well within a 
fractal reservoir with anomalous diffusion for selected values of the conductivity 
index (q) and fixed fractal dimension (Df=2.5). 
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Razminia et al. (2014) extended the model presented by Camacho-Velazquez et al. (2008) to 

double porosity reservoirs with pseudosteady interporosity transfer, to composite radial systems 

(Razminia et al. 2015a), and to vertical wells intercepting a uniform flux fracture (Razminia et al. 

2015b). 

 

Raghavan (2012a) modeled a 2D diffusivity equation considering anomalous diffusion 

phenomenon assuming a time-dependent version of Darcy's Law.  Such a variation of the Darcy's 

Law is modeled by a convolution integral of the gradient of the pressure weighted by a power-law 

function of the time.  Raghavan (2012a) presented the "constant-rate" solution for the proposed 

diffusivity model, considering an infinite reservoir.  The "constant-rate" solution for this type of 

models implies a time-dependent inner boundary condition that creates a power-law behavior of 

the pressure and pressure derivative functions (see Fig. 2.10).  The development of this model and 

its solution is shown in Appendix F.  Raghavan (2012b) and Raghavan et al. (2013) applied this 

approach to the fractured well and multi-fractured –horizontal well cases, respectively. 

 

  



 

28 

 

 

 
 

Figure 2.10 — Schematic example of the pressure and pressure derivative of a vertical well 
within a 2D reservoir with anomalous diffusion for selected values of the 
anomalous diffusion index (a). 

 

  



 

29 

 

CHAPTER III  

PRESSURE AND RATE-TRANSIENT BEHAVIOR OF A HORIZONTAL WELL 

INTERCEPTING A SINGLE HYDRAULIC FRACTURE WITHIN A FRACTAL 

RESERVOIR1 

 

In this chapter, we present a summary of the semi-analytical solution for the pressure and rate 

transient behaviors of a horizontal well intercepting a single finite-conductivity hydraulic fracture 

(either circular or rectangular fracture) within a fractal reservoir considering either single or 

naturally-fractured/dual porosity reservoir conditions.  Naturally-fractured/dual porosity and 

anomalous diffusion effects are included by modifying the solution of the diffusivity equation for 

the reservoir in the Laplace domain.  The detailed derivations of these models are presented in 

Appendix D. 

 

3.1. Model Assumptions 

 

Similar to Larsen et al. (1991), we have considered two geometries for the hydraulic fractures.  

Fig. 3.1a shows the schematics of a horizontal well intercepting a circular transverse hydraulic 

fracture within a fractal reservoir and Fig. 3.1b shows the rectangular longitudinal hydraulic 

fracture case.  The assumptions of the systems are summarized in Table 3.1. 
 
  

                                                

1 Reprinted with permission from "Pressure-Transient Behavior of a Horizontal Well with a Finite-Conductivity 
Fracture within a Fractal Reservoir" by Valdes-Perez, A. R., Larsen, L., and Blasingame, T.A., 2018.  SPE Canada 
Unconventional Resources Conference Proceedings,  SPE-189814-MS.  Copyright [2018] by Society of Petroleum 
Engineers, Inc. 
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a.  
 

 

b.  

 

 

Figure 3.1 — a. Vertical circular hydraulic fracture transverse to the axis of a horizontal well 
within an infinite fractal reservoir, and b. Vertical rectangular hydraulic fracture 
longitudinal to the axis of a horizontal well within an infinite fractal reservoir. 

 

 

 

Table 3.1 — Assumptions used to develop the proposed reservoir models 
 

Medium  Assumptions 

All 

 ● Flow to the wellbore occurs only through the hydraulic fracture. 
● Pressure-squared gradients are negligible. 
● The well produces at constant flowrate, qw. 
● Uniform initial pressure, pi. 
● Single slightly-compressible fluid flow with constant compressibility, co, and constant 

viscosity, µ. 

Hydraulic 
Fracture 

 ● Closed facture of constant half-length (rf for the circular fracture or xf for the rectangular 
fracture). 

● Flow obeys Darcy's Law. 
● The fracture has constant properties: compressibility, cf, permeability, kf, porosity, ff, width, 

w. 

Reservoir 

 ● Unbounded fractal reservoir of Df-dimension. 
● Flow obeys modified Darcy's Law for fractal systems of q-conductivity index. 
● Both porosity and permeability vary according to power law functions. 
● The reservoir has constant formation compressibility, c. 

Matrix blocks 
(naturally-

fractured/dual 
porosity reservoir 

case) 

 ● Finite and single size Euclidean matrix block (either slabs or spheres). 
● Flow obeys Darcy's Law. 
● The matrix blocks have constant properties: compressibility, cma, permeability, kma, porosity, 
fma. 
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The flow of fluids in the hydraulic fracture and in the fractal reservoir is governed by its 

corresponding diffusivity equation.  For a circular fracture, the flow is modeled by the diffusivity 

equation in radial coordinates with a source term.  This equation in its dimensionless form is: 

 

. .......................................................... (3.1) 

 

For the rectangular fracture case, the flow is modeled by the diffusivity equation for a linear system 

with a source term, written in dimensionless form, our starting point is given as: 

 

. ....................................................................... (3.2) 

 

The flow within the fractal reservoir considering typical diffusion (Chang et al., 1990) is modeled 

by: 

 

. ........................................................................................ (3.3) 

 

 

For the case of a fractal reservoir considering anomalous diffusion (Camacho-Velazquez et al., 

2008), the flow model is: 

 

, ..................................................................................... (3.4) 

 

where g=2/[q+2].  The definitions of the dimensionless variables are summarized in Table 3.2. 
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3.2. Development of the Models and Solution Procedure 

 

Given that the source term in the left hand side of Eq. 3.1 and Eq. 3.2 is variable, the solution for 

this "coupled" model has to be semi-analytical.  The procedure we have used is the same applied 

by Larsen et al. (1991).  The workflow of this procedure is: 

 

1.Discretize the fracture into N-segments.  The discretization permits us to approximate the source 

term to a constant value for each segment.  For a j-segment of a circular fracture, the diffusivity 

equation is approximated as 

 

, ................................................................... (3.5) 

 

whereas for a j-segment of a rectangular fracture, the diffusivity equation is approximated as 

 

, .................................................................................. (3.6) 

 

2.Obtain the analytical general solutions in the Laplace domain for each one of the segments of 

the hydraulic fracture.  Given that the source term is approximated to a constant value, Eqs. 3.5 

and 3.6 can be solved using the Laplace transform.  The general solution for a j-segment of the 

circular fracture is: 

 

. ................................... (3.7) 
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Table 3.2 — Dimensionless variables for the model of a horizontal well intercepting a single 
finite conductivity fracture within a fractal reservoir. 

 

Dimensionless Variable  Definition 

Pressure in the fractal reservoir   

Pressure in the hydraulic fracture   

Fractal reservoir rate   

Time   

Position in the circular fracture   

Position in the z-direction   

Position in the x-direction   

Position in the fractal reservoir   

Fracture length along the wellbore   

Height   

Fracture conductivity   

Fracture fractal conductivity   

Fractal hydraulic diffusivity of the 
hydraulic fracture   

Hydraulic diffusivity of the matrix blocks   

Storativity ratio   

Fracture area   

Matrix block size   

Interporosity skin   

 

Where Lr is the reference length.  For the circular fracture it is equal to rf, whereas 

for a rectangular fracture it is xf.  
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For a j-segment of a rectangular fracture, the general solution is: 

 

. ........................... (3.8) 

 

3.Define a system of equations for 3N-unknowns.  Since constants Aj, Bj and dqDj are unknowns 

for each j-segment, a system of 3N equations must be defined and solved to determine such 

constants.  The system of equations is defined by: 

 

● Applying the inner boundary condition (constant-rate) to the general solution governing 

segment 1.  For a circular fracture: 

 

. .......................................................................................... (3.9) 

 

For a rectangular fracture: 

 

. ........................................................................................ (3.10) 

 

● Applying the outer boundary condition (closed fracture) to the general solution governing 

segment N: 

 

. ...................................................................................................... (3.11) 

 

Where xD=rD for a circular fracture and xD=xD for a rectangular fracture: 

 

● Establishing pressure continuity at each of the interfaces: 

 

. ................................................................... (3.12) 
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● Establishing the flowrate continuity at each of the interfaces: 

 

. ................................................................... (3.13) 

 

● Establishing pressure continuity between each segment of the fracture and the fractal reservoir. 

 

, ........................................................................................ (3.14) 

 

where xD* is the middle point in the segment.  The pressure in the fractal reservoir is the result 

of superimposing the constant rate solution of the diffusivity equation for fractal reservoirs over 

the area, A, of the segment (see Appendix D for more details). 

 

For a fractal reservoir considering typical diffusivity, the pressure behavior is given by: 

 

 (where v=[1-b ]/[q+2]). ... (3.15) 

 

Similarly, for a fractal reservoir considering anomalous diffusion: 

 

. ................................. (3.16) 

 

These models can be extended to the naturally-fractured/dual porosity reservoir case as: 

 

, ..................................... (3.17) 

 

where the interporosity transfer function is defined by: 
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. ................................................................... (3.18) 

 

For slab matrix blocks: 

 

, ........................................................ (3.19) 

 

and for spherical matrix blocks: 

 

. ......................... (3.20) 

 

Eq. 3.18 considers the anomalous diffusion phenomenon.  To restrict it to the typical diffusion 

case, g should be equal to unity and considered to be independent of the conductivity index, q. 

 

4.Solve the system of equations and evaluate the solution at the wellbore.  For the results presented 

in this dissertation, we have used the "mldivide" function of MATLAB.  Once the constants Aj, 

Bj and dqDj (j=1,…,N) are determined, the solution is evaluated at the wellbore.  For a circular 

fracture, the pressure at the wellbore is determined by: 

 

. ...................................... (3.21) 

 

Similarly, for a rectangular fracture: 

 

. ...................................................................................... (3.22) 
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The wellbore storage effects can be included using the classic (constant) wellbore storage 

relation in the Laplace domain presented in Chapter I.  To include the skin effect (i.e., using a 

choked fracture) for the circular fracture case, the effective wellbore radius should be used.  For 

the rectangular fracture case, the skin factor should be added to the dimensionless drop of 

pressure without wellbore storage: 

 

. ................................................................. (3.23) 

 

5.Apply the Stehfest algorithm to numerically invert the Laplace domain solution. 

 

The Stehfest algorithm is implemented in MATLAB and has been tested for consistency and 

accuracy.  In addition to the dimensionless pressure and rate solutions, we can also use the 

Stehfest algorithm to provide both the cumulative and the derivative of any given formulation in 

the Laplace domain. 

 

Constant-Pressure Solution 

 

As defined in Chapter I, Duhamel's principle is used to obtain the models for rate-transient analysis 

(constant pressure solution) from the models for pressure-transient analysis (constant rate 

solution).  The dimensionless cumulative production at a given time is computed by integrating 

the dimensionless rate profile as presented in Chapter I. 
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3.3. Results and Discussion 

 

Single Porosity Fractal Reservoirs 

 

In this section we present the results of our sensitivity analyses which consider the influence of 

key parameters for the fractal reservoir and the hydraulic fracture in terms of the pressure and rate 

transient performance behaviors.  Based on the configuration of the system, the expected 

diagnostic signatures for our proposed semi-analytical solution are: 

 

● Period 1 (Fracture flow): Radial or linear flow (depending on the geometry of the fracture) 

at very early times.  As in classic studies for the case of a single finite-conductivity 

fracture, this period will never be observed in practice. 

● Period 2 (Fracture-reservoir interaction): "Radial-Fractal" or "Linear-Fractal" at 

intermediate-transient times.  This period can be subdivided into two sub-periods: (1) 

early-intermediate and (2) late-intermediate.  The early-intermediate period is analogous 

to the bilinear flow regime for a finite-conductivity vertical fracture in an infinite-acting 

homogeneous reservoir, whereas the late-intermediate is analogous to the formation-

linear flow regime observed at most times for a case with a very high conductivity vertical 

fracture and at later times for cases with a medium to high conductivity vertical fracture. 

● Period 3 (Reservoir dominated flow): "Pseudo-Fractal" flow.  This flow period is 

dominated by the reservoir and yields power-law behavior (i.e., a straight line in the 

pressure drop and pressure derivative functions versus time on a log-log plot). 
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The schematics for the expected diagnostic signatures (i.e., the dimensionless pressure and 

dimensionless pressure derivative functions for the constant rate case) for the circular and 

rectangular fracture cases are shown in Fig 3.2 and Fig 3.3, respectively. 

 

 

 

 

 

 

 

 
 

Figure 3.2 — Schematic example of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity within a single porosity fractal reservoir (constant 
rate case). 
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Figure 3.3 — Schematic example of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity within a single porosity fractal reservoir 
(constant rate case). 

 

In Fig. 3.4, we show the impact of the fractal dimension of the reservoir (Df) on the behavior of 

the dimensionless pressure and dimensionless pressure derivative functions (constant rate case) 

for the circular fracture case, considering a "low" dimensionless conductivity.  Based on the 

pressure derivative response, we observe that at late-transient times (dimensionless times greater 

than 1), pseudo-fractal flow is exhibited for all cases.  However; at early-transient times 

(dimensionless times < 10-2), for a fractal dimension of 1.5, a power-law response is observed, 

instead of the expected radial fracture flow regime.  For each of the cases shown in Fig. 3.4 only 

one sub-period of flow is observed at intermediate-transient times.  These "sub-periods" exhibit a 

power-law behavior that is the result of the interaction between the fractal reservoir and the circular 

fracture. 
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Figure 3.4 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the fractal dimension (Df) (constant rate case). 

 

 

Fig. 3.5 shows the (constant pressure) rate-transient case for the example presented in Fig. 3.4.  At 

late-transient times (i.e., dimensionless times > 7), this case exhibits higher flowrates at higher 

values of the fractal dimension.  However; at early and intermediate-transient times (dimensionless 

times < 7), the well exhibits higher flowrates at lower values of the fractal dimension.  This 

behavior implies that the cumulative production of the well is higher for low values of the fractal 

dimension until a certain point in time, after which the cumulative production is higher for high 

values of the fractal dimension (see Fig. 3.6 for the cumulative production behavior). 
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Figure 3.5 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single circular hydraulic fracture of 
finite conductivity in a fractal reservoir considering typical (constant) diffusion, 
for selected values of the fractal dimension (Df) (constant pressure case). 

 

 
 

Figure 3.6 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single circular hydraulic fracture of finite 
conductivity in a fractal reservoir considering typical (constant) diffusion, for 
selected values of the fractal dimension (Df).  (constant pressure case) 
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Similar to our previous comparisons for the circular fracture case, we now consider the rectangular 

fracture case — and we begin with the constant rate solution for the rectangular fracture case (as 

shown in Fig. 3.7) where we plot the dimensionless pressure and dimensionless pressure derivative 

functions.  We do note a "spectra" of solutions based on the given fractal dimension (Df) — in 

particular, the fractal dimension case of 2.5 shows the most "aggressive" behavior, where the Df = 

1.5 case is the most "conservative."  We present the constant pressure cases (i.e., the dimensionless 

rate and dimensionless rate derivative profiles) in Fig. 3.8 and the dimensionless cumulative 

production profile is shown in Fig. 3.9 — and we also note the "aggressive" and "conservative" 

behaviors as caused by the fractal dimension parameter (Df) for these cases. 

 

 

 
 

Figure 3.7 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a fractal reservoir considering typical 
(constant) diffusion, for selected values of the fractal dimension (Df). (constant 
rate case). 
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Figure 3.8 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the fractal dimension (Df).  (constant pressure 
case). 

 

 
 

Figure 3.9 — Log-log plot of the dimensionless cumulative production for a horizontal well 
intercepting a single rectangular hydraulic fracture of finite conductivity in a 
fractal reservoir consider-ing typical (constant) diffusion, for selected values of 
the fractal dimension (Df).  (constant pressure case). 
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We next consider the impact of the (fractal) conductivity index (q) on the proposed constant rate 

and constant pressure solutions — and we begin with the constant rate, circular fracture case where 

the dimensionless pressure and dimensionless pressure derivative functions are shown in Fig. 3.10.  

The influence of the conductivity index (q) is similar to that for the fractal dimension case (Df) — 

however; in the case of the conductivity index the features are much more "subtle" compared to 

the fractal dimension cases.  The constant pressure cases are shown in Fig. 3.11 (i.e., the 

dimensionless rate and dimensionless rate derivative functions) and Fig. 3.12 (the dimensionless 

cumulative production functions) — and much like the constant rate cases, the influence of the 

conductivity index (q) tends to be very precise, as in the case of the dimensionless rate derivative 

functions (Fig. 3.11), which are essentially parallel over the entire time scale.  Lastly, the 

dimensionless cumulative production profiles shown in Fig. 3.12 have very little independent 

character (i.e., the trends are almost indistinguishable over time). 

 

 
 

Figure 3.10 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the conductivity index (q). (constant rate case) 
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Figure 3.11 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single circular hydraulic fracture of 
finite conductivity in a fractal reservoir considering typical (constant) diffusion, 
for selected values of the conductivity index (q).  (constant pressure case). 

 

 
 

Figure 3.12 — Log-log plot of the dimensionless cumulative production for a horizontal well 
intercepting a single circular hydraulic fracture of finite conductivity in a fractal 
reservoir considering typical (constant) diffusion, for selected values of the 
conductivity index (q).  (constant pressure case). 
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Finally, we consider the influence of the conductivity index (q) for the constant rate and constant 

pressure cases for the case of a rectangular fracture of finite conductivity (see Figs. 3.13 and 3.14, 

respectively).  In Fig. 3.13 we note that both the dimensionless pressure and the dimensionless 

pressure derivative functions are dominated by the "linear flow" feature (1:2 slope) at early times 

(i.e., for tD < 10-2), then by the fracture-reservoir transient regime, followed by the fractal-

influenced reservoir behavior. 

 

We next present the constant pressure solution in Fig. 3.14 (i.e., the dimensionless rate and 

dimensionless rate derivative functions) and we immediately note that these cases are essentially 

"mirror images" of their corresponding constant rate cases.  This behavior is probably due to the 

uniqueness of this selection of parameters for this particular model.  To finish this suite of 

comparisons, we present the dimensionless cumulative production profile for our selected cases 

(Fig. 3.15) and we find that all of the proposed flow regimes are observed — in particular, the 

early-time "linear flow" feature (1:2 slope) for tD < 10-2, then the fracture-reservoir transient 

regime, then the fractal-influenced reservoir behavior. 
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Figure 3.13 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a fractal reservoir considering typical 
(constant) diffusion, for selected values of the conductivity index (q). (constant 
rate case) 

 

 
 

Figure 3.14 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the conductivity index (q).  (constant pressure 
case). 
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Figure 3.15 — Log-log plot of the dimensionless cumulative production for a horizontal well 
intercepting a single rectangular hydraulic fracture of finite conductivity in a 
fractal reservoir considering typical (constant) diffusion, for selected values of 
the conductivity index (q).  (con-stant pressure case). 

 

In Fig. 3.16, we illustrate the effect of the dimensionless fracture conductivity on our proposed 

solutions, in particular for the dimensionless pressure and dimensionless pressure derivative 

functions for the circular fracture case (constant rate case).  Analogous to the non-fractal models, 

we have observed that the flow within the fractal reservoir dominates during all periods of flow at 

very low values of the dimensionless fracture conductivity (FcD=1 in Fig. 3.16).  At high values of 

conductivity (e.g., FcD=150), the three expected periods of flow are well defined: (1) fracture flow 

for dimensionless time < 10-2, (2) fracture-reservoir interaction period for dimensionless times 

between 10-2 and 10, and (3) pseudo-fractal flow for dimensionless times > 10.  For intermediate 

values of dimensionless fracture conductivity (e.g., FcD=10), the fracture flow and the interaction 

periods yield the expected power-law signatures, where this is a result of a narrower (or perhaps, 

shorter) fracture. 
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Figure 3.16 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the dimensionless fracture conductivity (FcD). 
(constant rate case) 

 

Fig. 3.17 shows the influence of the dimensionless fracture conductivity on the rate-transient 

performance behavior for the circular fracture case — specifically the dimensionless rate and 

dimensionless rate derivative functions (constant pressure case).  As expected, the highest 

dimensionless flowrate and dimensionless cumulative production profiles (see Fig. 3.18 for the 

dimensionless cumulative production profiles) are given by the higher values of the dimensionless 

fracture conductivity.  We believe that the dispersions observed in the dimensionless rate 

derivative functions for dimensionless times > 30 as shown in Fig. 3.17 for the lowest 

dimensionless fracture conductivity case (i.e., FcD=1) are the result of numerical instabilities for 

small arguments of the modified Bessel functions in the solution for this particular case.  The 

Stehfest algorithm (for numerical inversion) will amplify small scale instabilities, particularly for 

any derivative functions. 
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Figure 3.17 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single circular hydraulic fracture of 
finite conductivity in a fractal reservoir considering typical (constant) diffusion, 
for selected values of the dimensionless fracture conductivity (FcD).  (constant 
pressure case). 

 
 

 
 

Figure 3.18 — Log-log plot of the dimensionless cumulative production for a horizontal well 
intercepting a single circular hydraulic fracture of finite conductivity in a fractal 
reservoir considering typical (constant) diffusion, for selected values of the 
dimensionless fracture conductivity (FcD).  (constant pressure case)  
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The sensitivity analyses considering variations in the dimensionless fracture conductivity on our 

proposed solutions for the rectangular fracture case are shown in Fig. 3.19 and Fig. 3.20, 

respectively.  Again we use the dimensionless pressure (constant rate case) and dimensionless rate 

(constant pressure) solutions as appropriate.  Using these plots we observe that the rectangular 

fracture cases have a very unusual "late-time" effect in that, for the constant rate case, the 

dimensionless pressure function appears to flatten, but the dimensionless pressure derivative 

function exhibits an approximate 1/4 slope that is decreasing (see Fig. 3.19).  A similar feature is 

observed for the constant pressure case in Fig. 3.20. 

 

 
 

Figure 3.19 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a fractal reservoir considering typical 
(constant) diffusion, for selected values of the dimensionless fracture 
conductivity (FcD). (constant rate case) 

 

  



 

53 

 

 

 
 

Figure 3.20 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a fractal reservoir considering typical (constant) 
diffusion, for selected values of the dimensionless fracture conductivity (FcD).  
(constant pressure case). 

 

The characteristic signature (i.e., unit-slope in the dimensionless pressure derivative function) of 

the "transition to reservoir" effect is observed over the dimensionless time period from  10-2  to  

10-1 in Fig. 3.19.  We also note abrupt changes in the dimensionless rate derivative function over 

the dimensionless time period from 10-2 to 101 (see Fig. 3.20) we believe that this is also a 

consequence of the "transition to reservoir" effect.  The dimensionless cumulative production 

profile is shown in Fig. 3.21, where we note that the early transient flow is dominated by the FcD-

value (i.e., the higher the FcD value the higher the production during this period), we also not that 

the unit slope in the dimensionless cumulative production profile for dimensionless times > 10 

reflect an essentially constant flowrate at late times. 
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Figure 3.21 — Log-log plot of the dimensionless cumulative production for a horizontal well 
intercepting a single rectangular hydraulic fracture of finite conductivity in a 
fractal reservoir considering typical (constant) diffusion, for selected values of 
the dimensionless fracture conductivity (FcD).  (constant pressure case) 

 

Naturally Fractured Porosity/Dual Porosity Fractal Reservoir with Typical Diffusion 

 

To extend these models to naturally-fractured/dual porosity reservoirs, we have used the reservoir 

model presented by Valdes-Perez (2013), considering the "slab" model for the fracture-matrix 

systems of all of the cases considered in this work.  This model considers transient interporosity 

transfer and can reproduce pseudosteady-state interporosity transfer conditions at high values of 

interporosity skin.  Regardless of the interporosity transfer conditions, the model solution (as 

represented by the dimensionless pressure and dimensionless pressure derivative signatures) yields 

three distinct flow periods, as governed by the model parameters.  A schematic log-log plot of the 

dimensionless pressure and dimensionless pressure derivative functions is shown in Fig. 3.22. 
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The following flow periods are evident for these case: 

 

● Period 1 — (fractal fracture network flow): Early-fractal flow — this period of flow is 

dominated by the properties of the fractal network and exhibits a power-law 

signature in both the dimensionless pressure and dimensionless pressure 

derivative functions (see Fig. 3.22). 

● Period 2 — (interaction between the fractal fracture network and the matrix blocks):  The 

matrix blocks contribute fluid to the fractal fracture network.  The 

dimensionless pressure and dimensionless pressure derivative functions exhibit 

a "combined" power-law behavior, different from the behavior observed in 

Period 1. 

● Period 3 — (single porosity fractal reservoir flow):  Both porous media (i.e., the fractal 

fracture network and the matrix blocks) behave as a (total) single porosity 

fractal system.  The dimensionless pressure and dimensionless pressure 

derivative functions should exhibit the same power-law behavior as that 

observed in Period 1. 

 

As presented by Cinco-Ley et al. (1988), a finite conductivity hydraulic fracture within a naturally-

fractured/dual porosity reservoir can exhibit a maximum of twelve (12) sub-periods of flow.  The 

number of sub-periods of flow that may be observed depends on the properties of the hydraulic 

fracture and the reservoir. 
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Figure 3.22 — Schematic example — Naturally fractured/dual porosity reservoir with a fractal 
fracture network, dimensionless pressure and dimensionless pressure derivative 
functions (various characteristic flow regimes are highlighted).  (constant rate 
case) 

 

In this section, we present selected cases that show the influence of the naturally-fractured/dual 

porosity effects on the transient performance of a horizontal well intercepting a single finite 

conductivity fracture. 

 

Sensitivity to the hmaD-Parameter: Circular Fracture Case 

 

The plot shown in Fig. 3.23 presents three (constant rate) cases of the dimensionless hydraulic 

diffusivity of the matrix (hmaD): (1) high (hmaD =10-4), (2) intermediate (10-10), and (3) low (10-16).  

These three cases exhibit radial flow (in the fracture) at early times (dimensionless times < 10-5).  

At intermediate-transient times (dimensionless times within the range 10-5 to 10-3), the 

dimensionless pressure derivative signatures exhibit a power-law behavior, and we note that the 

slope is less steep for low hmaD -values.  At late-transient times (dimensionless times > 10-3), the 

naturally-fractured/dual porosity reservoir component dominates the flow behavior. 
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Figure 3.23 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the dimensionless hydraulic 
diffusivity of the matrix (hmaD). (constant rate case) 

 

 

The constant pressure cases are shown in Figs. 3.24 and 3.25.  In Fig. 3.24 we present the 

dimensionless rate and dimensionless rate derivative functions for the constant rate example cases 

presented in Fig. 3.23.  As expected, the trends in Fig. 3.24 confirm that the influence of the 

dimensionless hydraulic diffusivity of the matrix (hmaD) in the sense that the lower the value of the 

hmaD-parameter, the lower the rate performance of these cases.  The dimensionless cumulative 

production cases are presented in Fig. 3.25 and although there is little character in these curves, it 

is clear that the highest production corresponds to the highest value of the hmaD -parameter. 
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Figure 3.24 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single circular hydraulic fracture of 
finite conductivity in a dual porosity fractal reservoir considering typical 
(constant) diffusion, for selected values of the dimensionless hydraulic 
diffusivity of the matrix (hmaD). (constant pressure case) 

 

 
 

Figure 3.25 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single circular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the dimensionless hydraulic diffusivity of the 
matrix (hmaD). (constant pressure case). 
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Sensitivity to the hmaD-Parameter: Rectangular Fracture Case 

 

In Fig. 3.26  we  present  three (constant rate) cases for the rectangular fracture case where we  

have varied  the dimensionless  hydraulic  diffusivity  of  the  matrix  (hmaD) as follows: (1) high 

(hmaD =10-4), (2) intermediate (10-12), and (3) low (10-20).  These three cases exhibit linear flow (in 

the fracture) at very early times (dimensionless times < 10-5).  At intermediate-transient times 

(dimensionless times within the range 10-3 to 102), the dimensionless pressure derivative signatures 

exhibit an apparent "transient radial flow" behavior, but we understand that this could also be 

interpreted as a very shallow power-law behavior.  Lastly, we observe the influence of the 

naturally-fractured/dual porosity reservoir component, which manifests a late-time radial flow 

regime for dimensionless times > 104.  We acknowledge that these behaviors are uniquely 

dependent on the selection of the input parameters, and we can clearly see the evidence of the 

dimensionless hydraulic diffusivity of the matrix parameter (hmaD) during the intermediate and late 

times. 
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Figure 3.26 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir 
considering typical (constant) diffusion, for selected values of the dimensionless 
hydraulic diffusivity of the matrix (hmaD). (constant rate case) 

 

 

The constant pressure cases are shown in Figs. 3.27 and 3.28.  The dimensionless rate and 

dimensionless rate derivative functions reflect very closely the behaviors exhibited for the constant 

rate example cases presented in Fig. 3.26 (with the anomalies in the dimensionless rate derivative 

functions for the hmaD-parameter values of 10-12 and 10-20 duly noted — these are artifacts of the 

character of the dimensionless rate for these cases).  In Fig. 3.28 we present the dimensionless 

cumulative production and we clearly note that the hmaD = 10-12 and 10-20 cases are quite similar 

across the entire time-scale, but that these cases differ significantly from the hmaD = 10-4 case. 
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Figure 3.27 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the dimensionless hydraulic 
diffusivity of the matrix (hmaD). (constant pressure case) 

 

 
 

Figure 3.28 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single circular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the dimensionless hydraulic diffusivity of the 
matrix (hmaD). (constant pressure case)  
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Sensitivity to the w-Parameter: Circular Fracture Case 

 

In this section we consider the influence of the storativity ratio (w) for the naturally-fractured/dual 

porosity reservoir component of the solution.  We first consider the constant rate cases for a single 

circular  fracture of finite conductivity where we have varied the storativity ratio (w) as follows: 

w = 1 (high/homogeneous), w = 10-2 (intermediate), and  w = 10-16 (very low) as shown in  Fig.3. 

29.  As expected, each case exhibits radial flow (in the fracture) at early times (dimensionless times 

< 10-4).  At intermediate-transient times (dimensionless times within the range 10-4 to 100), the 

dimensionless pressure derivative signatures exhibit a near-unity power-law behavior which 

reflects the transition to the fractal solution component.  At late-transient times (dimensionless 

times > 101) we observe an approximate slope of 1:4 in the dimensionless pressure derivative 

profiles, which suggests that the response is now dominated by the fractal reservoir solution 

component. 

 

We next present the constant pressure cases in Figs. 3.30 and 3.31 (i.e., the dimensionless rate and 

dimensionless rate derivative functions are shown in Fig. 3.30 and the dimensionless cumulative 

production is shown in Fig. 3.31).  In relative terms, the dimensionless rate profiles in Fig. 3.30 

roughly reflect the same features we observed for the dimensionless pressure solutions in Fig. 

3.29.  However; the dimensionless rate derivative profiles shown in Fig. 3.30 are significantly 

affected by the "transition" features observed in the dimensionless rate profiles — in short, the 

dimensionless rate derivative profiles exhibit numerous artifacts that could make interpretation of 

these trends non-unique. 
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Figure 3.29 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the storativity ratio (w). 
(constant rate case) 

 

 

 
 

Figure 3.30 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single circular hydraulic fracture of 
finite conductivity in a dual porosity fractal reservoir considering typical 
(constant) diffusion, for selected values of the storativity ratio (w). (constant 
pressure case) 
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Figure 3.31 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single circular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the storativity ratio (w). (constant pressure case) 

 

In Fig. 3.31, we present the dimensionless cumulative production for these cases and we note that 

each case is strongly distinctive and that the behavior of these functions is uniquely related to the 

storativity ratio (w) for the naturally-fractured/dual porosity reservoir component of the solution. 

 

Sensitivity to the w-Parameter: Rectangular Fracture Case 

 

We continue to consider the influence of the storativity ratio (w) on the naturally-fractured/dual 

porosity reservoir component of the solution, but now we move to the constant rate cases for a 

single rectangular fracture of finite conductivity.  We use the following cases for the storativity 

ratio (w):w = 1 (high/homogeneous), w = 10-4 (intermediate), and w = 10-10 (very low), where the 

dimensionless pressure and dimensionless pressure derivative profiles for these cases are shown 
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in Fig. 3.32.  At very early times (dimensionless times < 10-5 to 10-2, depending on the w-

parameter), we observe linear flow (in the fracture).  Similar to the circular fracture case, for 

intermediate-transient times (dimensionless times within the range 10-6 to 10-3 for the w = 10-4 and 

10-10 cases, and dimensionless times within the range 10-1 to 102 for the w = 100 case) we observe 

a near-unity power-law behavior in the dimensionless pressure derivative signatures, which 

reflects the transition to the fractal solution component.  At late-transient times (dimensionless 

times depending on the w-parameter) we observe a very low power-law slope of 1:10 in the 

dimensionless pressure derivative profiles for the w = 100 and 10-4 cases. 

 

The constant pressure cases are presented in Figs. 3.33 and 3.34 (i.e., the dimensionless rate and 

dimensionless rate derivative functions are shown in Fig. 3.33 and the dimensionless cumulative 

production is shown in Fig. 3.34).  As with the circular fracture case, the dimensionless rate 

profiles in Fig. 3.33 roughly reflect the same features we observed for the dimensionless pressure 

solutions in Fig. 3.32 — and again (as in the circular fracture case), the dimensionless rate 

derivative profiles shown in Fig. 3.33 are significantly affected by the "transition" features 

observed in the dimensionless rate profiles. The dimensionless cumulative production profiles for 

these cases are shown in Fig. 3.34, and as with the circular fracture cases, we note that each trend 

is quite unique and we believe that the behavior of these functions is exceptionally related to the 

storativity ratio (w) for the naturally-fractured/dual porosity reservoir component of the solution. 
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Figure 3.32 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir 
considering typical (constant) diffusion, for selected values of the for selected 
values of the storativity ratio (w). (constant rate case) 

 

 
 

Figure 3.33 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the storativity ratio (w). 
(constant pressure case).  
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Figure 3.34 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single rectangular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the storativity ratio (w). (constant pressure case). 

 

Sensitivity to the Sint-Parameter: Circular Fracture Case 

 

In this section we consider the influence of the interporosity skin (Sint) on the naturally-

fractured/dual porosity reservoir component of the solution.  This is a fairly straightforward 

exercise, but it is important to recognize that the interporosity skin (Sint) is not an actual reservoir 

parameter, but is instead, an "additional/imposed" dimensionless pressure drop.  For the constant 

rate case of a single circular fracture of finite conductivity, we will test the solution behavior for 

Sint = 0 (no "additional/ imposed" dimensionless pressure drop) and Sint = 0.1, which for this 

solution is a fairly large "additional/imposed" dimension-less pressure drop. 

 

We present the (constant rate) dimensionless pressure and dimensions less pressure derivative 

profiles for the Sint = 0 and Sint = 0.1 cases in Fig. 3.35.  As with all of our other sensitivity cases, 
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we observe radial flow (in the fracture) at early times (dimensionless times < 10-4).  At 

intermediate-transient times (dimensionless times within the range 10-4 to 103), the dimension-less 

pressure and dimensionless pressure derivative profiles exhibit a sharp response that reflects the 

transition to the fractal solution component.  For the case of Sint = 0, it appears that the solution 

simply "shifts" to an approximate power-law flow regime.  For the case of Sint = 0.1, we note a 

very strong response, particularly in the dimensionless pressure derivative profile where a "hump" 

feature appears (where such features are typically associated with wellbore storage distortion).  We 

believe this behavior is a characteristic of the (relatively) large Sint -parameter.  At late-transient 

times (dimensionless times > 103) we observe an approximate slope of 1:4 in the dimensionless 

pressure derivative profiles, which suggests that the response is now dominated by the fractal 

reservoir solution component. 

 

 
 

Figure 3.35 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative func-tions for a horizontal well intercepting a single circular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the interporosity skin (Sint). 
(constant rate case) 
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The constant pressure cases are presented in Figs. 3.36 and 3.37 (i.e., the dimensionless rate and 

dimensionless rate derivative functions are shown in Fig. 3.36 and the dimensionless cumulative 

production is shown in Fig. 3.37).  As has become a common observation, the dimensionless rate 

profiles in Fig. 3.36 roughly reflect the same features we observed for the dimensionless pressure 

solutions in Fig. 3.35 — and as has also been observed, the dimensionless rate derivative profiles 

shown in Fig. 3.36 are dramatically affected by the sharp features observed in the dimensionless 

rate profiles, which yield artifacts in the dimensionless rate derivative profiles (particularly so for 

the Sint = 0.1 case).  We present the dimensionless cumulative production for these interporosity 

skin (Sint) cases in Fig. 3.37, we note (somewhat surprisingly) that the Sint -parameter only affects 

the intermediate time behavior of the dimensionless cumulative production profiles. 

 

 
 

Figure 3.36 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the interporosity skin (Sint). 
(constant pressure case). 
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Figure 3.37 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single circular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the interporosity skin (Sint). (constant pressure 
case). 

 

Sensitivity to the Sint-Parameter: Rectangular Fracture Case 

 

We now consider the effect of the interporosity skin (Sint) on the naturally-fractured/dual porosity 

reservoir component of the solution for the constant rate case of a single rectangular fracture of 

finite conductivity.  Similar to our efforts for the circular fracture cases, we will test the solution 

behavior for Sint = 0 (no "additional/ imposed" dimensionless pressure drop), but because of the 

nature of the rectangular fracture, we will use Sint = 0.01 for these cases (where we noted that Sint 

= 0.01 is still a relatively large "additional/ imposed" dimensionless pressure drop, particularly for 

the rectangular fracture cases). 
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We present the (constant rate) dimensionless pressure and dimensions less pressure derivative 

profiles for the Sint = 0 and Sint = 0.1 cases in Fig. 3.38 and we immediately note the existence of a 

very strong linear flow (in the fracture) signature at very early times (dimensionless times < 10-5).  

At intermediate-transient times (dimensionless times within the range 10-5 to 103), the 

dimensionless pressure and dimensionless pressure derivative profiles exhibit a sharp response 

that reflects the transition to the fractal solution component.  As with the circular fracture example, 

for the case of Sint = 0, it appears that the solution simply "shifts" to an approximate power-law 

flow regime and for the case of Sint = 0.01, we note a very strong feature in the dimensionless 

pressure derivative profile where a "hump" appears.  We believe this behavior is a characteristic 

of the (relatively) large Sint -parameter.  At late-transient times (dimensionless times > 103) we 

observe what appears to be slope of approximately 1:4 in the dimensionless pressure derivative 

profiles, which suggests that the response is now dominated by the fractal reservoir solution 

component. 
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Figure 3.38 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting a single rectangular 
hydraulic fracture of finite conductivity in a dual porosity fractal reservoir 
considering typical (constant) diffusion, for selected values of the interporosity 
skin (Sint). (constant rate case). 

 

The dimensionless rate and dimensionless rate derivative functions for the constant pressure rate 

cases are presented in Fig. 3.39 and it appears that the dimensionless rate profiles in Fig. 3.39 

roughly reflect the same features we observed for the dimensionless pressure solutions in Fig. 3.38 

(in fact, these profiles are almost "mirror" images).  As has been the observation throughout this 

work, the dimensionless rate derivative profiles shown in Fig. 3.39 are dramatically affected by 

the sharp features observed in the dimensionless rate profiles, which yields significant artifacts in 

the dimensionless rate derivative profiles for the Sint = 0.01 case.  In Fig. 3.40 we present the 

dimensionless cumulative production for these interporosity skin (Sint) cases and we note that, for 

the rectangular fracture case, the Sint -parameter significantly affects the character of the 

dimensionless cumulative production profiles. 
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Figure 3.39 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting a single rectangular hydraulic 
fracture of finite conductivity in a dual porosity fractal reservoir considering 
typical (constant) diffusion, for selected values of the interporosity skin (Sint). 
(constant pressure case). 

 

 
 

Figure 3.40 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting a single rectangular hydraulic fracture of finite 
conductivity in a dual porosity fractal reservoir considering typical (constant) 
diffusion, for selected values of the interporosity skin (Sint). (constant pressure 
case)  
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Single Porosity Fractal Reservoirs with Anomalous Diffusion 

 

In Figs. 3.41 and 3.42 we present the comparisons of the constant rate solutions (dimensionless 

pressure and dimensionless pressure drop derivative) for the typical (constant) and anomalous 

diffusion models, for both the circular and rectangular fracture cases, respectively.  We observed 

that the anomalous diffusion phenomena creates an additional pressure drop at early and 

intermediate-transient times, but the anomalous diffusion cases also exhibit a lower pressure drop 

at late times. 

 

 
 

Figure 3.41 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative  profiles for a horizontal well intercepting a circular fracture of finite 
conductivity in a fractal reservoir considering typical (constant) and anomalous 
diffusions, for selected values of the (fractal) conductivity index (q).  (constant 
rate case) 
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Figure 3.42 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative  profiles for a horizontal well intercepting a rectangular fracture of 
finite conductivity in a fractal reservoir considering typical (constant) and 
anomalous diffusions, for selected values of the (fractal) conductivity index (q).  
(constant rate case) 

 

The constant rate behaviors shown in Figs. 3.41 and 3.42 imply by induction that at early and 

intermediate-transient times the typical (constant) diffusion cases yield higher flowrates and have 

lower flowrates at late-intermediate times (see Figs. 3.43 and 3.44).  This behavior is confirmed 

as shown in Figs. 3.43 and 3.44, respectively — and it is important to note that the reservoir-

transition features (occurring from 10-2 < tD < 101) are less salient in all of the anomalous diffusion 

cases. 
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Figure 3.43 — Log-log plot of the dimensionless rate and dimensionless rate derivative profiles 
for a horizontal well intercepting a circular fracture of finite conductivity in a 
fractal reservoir considering typical (constant) and anomalous diffusions, for 
selected values of the (fractal) conductivity index (q).  (constant pressure case) 

 

 
 

Figure 3.44 — Log-log plot of the dimensionless rate and dimensionless rate derivative profiles 
for a horizontal well intercepting a rectangular fracture of finite conductivity in 
a fractal reservoir considering typical (constant) and anomalous diffusions, for 
selected values of the (fractal) conductivity index (q).  (constant pressure case) 
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In our final comparison of dimensionless cumulative production profiles (see Figs. 3.45 and 3.46), 

we note that in terms of the ultimate cumulative production, the anomalous diffusion phenomenon 

does "improve" the hydrocarbon "recovery" in a fractal reservoir — however; this observation 

may not be general and should only be considered as "guidance."  Obviously, the selection of a 

model (any model) must be validated based on diagnostic comparison with the actual performance 

data and all geological, completion, and reservoir data should also be incorporated into the model 

selection process. 

 

 
 

Figure 3.45 — Log-log plot of the dimensionless cumulative production profiles for a horizontal 
well intercepting a circular fracture of finite conductivity in a fractal reservoir 
considering typical (constant) and anomalous diffusions, for selected values of 
the (fractal) conductivity index (q).  (constant pressure case) 
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Figure 3.46 — Log-log plot of the dimensionless cumulative production profiles for a horizontal 
well intercepting a rectangular fracture of finite conductivity in a fractal reservoir 
considering typical (constant) and anomalous diffusions, for selected values of 
the (fractal) conductivity index (q).  (constant pressure case). 

 

3.4. Summary 

 

Ultimately, our goal is to demonstrate the viability of the fractal reservoir concept for the transient 

pressure and rate behavior of unconventional reservoirs.  In this chapter we presented a simplified 

case considers a horizontal well intersecting a single hydraulic fracture, and while this concept can 

be generalized to consider an arbitrary number of fractures, the purpose of this simplified case is 

to establish the basis and feasibility of the concept from the standpoint of comparative behavior 

and diagnostic analysis functions.  The extension to horizontal wells intercepting multiple 

hydraulic fractures is presented in Chapter IV. 
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CHAPTER IV  

PRESSURE AND RATE-TRANSIENT ANALYSIS OF HORIZONTAL WELLS 

INTERCEPTING MULTIPLE HYDRAULIC FRACTURES WITHIN A FRACTAL 

RESERVOIR2 

 

In this chapter, we present the procedure to apply the principle of superposition in space to extend 

the models presented in Chapter III to the case of a "multi-fractured horizontal well" (or MFHW) 

within a fractal reservoir.  Additionally, we use the technique of image wells to create vertical 

boundaries that represent a fractal reservoir with finite thickness. 

 

4.1. Development of the Model 

 

Analogous to Larsen et al. (1994), we have used the principle of superposition in space to model 

the transient performance behavior of a MFHW in a fractal reservoir.  We have considered two 

scenarios: (1) an unbounded fractal reservoir (infinite thickness) and (2) a fractal reservoir 

vertically bounded by two parallel boundaries (i.e., a finite thickness reser-voir). 

 

The principle of superposition in space takes into account the pressure effects of the individual 

elements (i.e., the hydraulic fractures and boundaries) which define a system — specifically a 

MFHW within a fractal reservoir with infinite or finite thickness.  In general, the pressure at the 

                                                

2 Reprinted with permission from "Pressure and Rate Transient Behavior of a Horizontal Well Intercepting Multiple 
Hydraulic Fractures within a Fractal Reservoir " by Valdes-Perez, A. R., Larsen, L., and Blasingame, T.A., 2018.  
Unconventional Resources Technology Conference (URTeC) Proceedings,  URTeC-2902854.  Copyright [2018] by 
Society of Petroleum Engineers, Inc. 
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wellbore for a system defined by a horizontal well intercepting multiple vertical fractures, along a 

length LD, in a reservoir with boundaries can be defined by: 

 

,................................................................................................... (4.1) 

 

where pHF is the sum of the dimensionless drop of pressure of the hydraulic fractures and pBOU is 

the sum of the dimensionless drop of pressure of the NB boundaries.  The sum of the dimensionless 

drop of pressure of the hydraulic fractures (pHF) is mathematically defined as: 

 

, .................................................................................................... (4.2) 

 

where Nf is the number of hydraulic fractures and di is the distance from a defined observation 

point to the i-hydraulic fracture.  In this work, we have assumed evenly spaced hydraulic fractures 

by a distance Fs between fractures (see Fig. 4.1a).  The shape and orientation of the hydraulic 

fractures can be either circular and transverse or rectangular and longitudinal along the wellbore. 

 

The dimensionless drop of pressure of each hydraulic fracture is computed using the models 

presented in Chapter III (Eq. 3.21 for circular fractures and Eq. 3.22 for rectangular fractures).  

Therefore, all the assumptions and dimensionless variables established in Chapter III are 

applicable in this chapter.  To use such models in the case of a MFHW, we consider that the well 

produces only through the hydraulic fractures at a rate equal to: 

 

, ........................................................................................................................... (4.3) 

 

where qt is the total flowrate (production) of the well.  Eq. 4.3 implies that the inner boundary 

condition (i.e., the "rate per fracture") is defined as the total flowrate (qt) divided by the number 
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of fractures (Nf).  For the case of a reservoir with infinite thickness, the dimensionless drop of 

pressure of the boundaries (pBOU) is zero.  For the finite thickness case, we have assumed that the 

horizontal well is drilled along the center of the formation, which is vertically delimitated by two 

parallel and impermeable boundaries (see Fig. 4.1b).  Using the method of image wells, the 

dimensionless pressure drop at the boundaries (pBOU) is: 

 

,................................................................................................... (4.4) 

 

where lDi is the distance from the wellbore to the vertical axis of the i-image well.  Given that the 

well is placed in a fractal reservoir, the dimensionless pressure of the image wells is: 

 

 (where v=[1-b]/[q+2]). .................................... (4.5) 

 

a. 

 

b. 

 

 

Figure 4.1 — a. Schematics of a horizontal well intercepting evenly spaced multiple fractures, 
and b. Schematics of the use of image wells to model a horizontal well placed in 
the center of a formation vertically bounded by two impermeable boundaries. 

 

For these models, the wellbore storage effects can be included by applying the Laplace transform 

to Eq. 4.1 and subsequently, using the scheme defined in Chapter I.  The inverse Laplace transform 

for the cases presented in this chapter is numerically made using the Stehfest algorithm.  
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4.2. Results and Discussion 

 

Larsen et al. (1994) and Raghavan (1997) showed that a MFHW behaves as an equivalent system 

of a well intercepting a single hydraulic fracture.  We have constructed cases similar to those 

presented by Larsen et al. (1994) and generated type curves for the resulting  pressure and rate-

transient performance behaviors.  We developed these type curves by varying the number of 

fractures (Nf) for fixed values of the conductivity of the fractures (FcD) and the fractal parameters 

(Df and q).  We present these type curves in Appendix G. 

 

We analyzed the influence of the number of fractures (Nf) in the pressure and rate transient 

performance behaviors of a MFHW in a fractal reservoir and we concluded that: (1) the pressure 

and rate-transient signatures of a horizontal well intercepting multiple hydraulic fractures in a 

fractal reservoir can behave as an equivalent system created by a horizontal well intercepting a 

single hydraulic fracture, and (2) the spacing of the fractures can create a flow period that 

corresponds to the interference of flow between hydraulic fractures.  In short, the influence of the 

number of fractures (Nf) and the spacing between the fractures (Fs) in the pressure transient 

performance behavior of a horizontal well intercepting multiple hydraulic fractures in a fractal 

reservoir is analogous to the one studied by Larsen et al. (1994) for a 3D (spherical) reservoir. 

 

Periods of Flow of Horizontal Wells Intercepting Multiple Hydraulic Fractures in a Fractal 

Reservoir 

 

For the analyses presented in this section, we selected cases with a short spacing between the 

hydraulic fractures (Fs =5/8) and considered that all the fractures in the system have the same 

characteristics, i.e., they have the same dimensionless fracture conductivity (FcD) and geometry.  
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We studied three scenarios of the dimensionless conductivity and hydraulic diffusivity of the 

fractures: (1) high (FcD =1000 and hfD=106), (2) intermediate (FcD =10 and hfD=105), and (3) low 

(FcD =1 and hfD=104). 

 

In Fig. 4.3 we present the pressure transient behavior of a horizontal well intercepting multiple 

circular transverse vertical fractures in a fractal reservoir for selected values of the conductivity 

of the fractures (FcD), considering infinite or finite thickness.  We present the analogous case for 

rectangular longitudinal fractures in Fig. 4.4.  In these plots, we have identified the characteristic 

three period of flows for a well intercepting hydraulic fractures: (1) fracture flow at early times, 

(2) fracture-reservoir interaction flow at intermediate times, and (3) pseudo-fractal flow at late-

times.  The fracture-reservoir interaction flow is divided into two sub-periods: Early Radial-Fractal 

(ERF) and Late Radial-Fractal (LRF) occur for circular fractures and Early Linear-Fractal (ELF) 

and Late Linear-Fractal (LLF) occur for rectangular fractures.  The ERF and ELF sub-periods are 

analogous "bilinear flow" which exists for the case of finite-conductivity fractures in a 

homogenous, infinite-acting reservoir. 

 

We observed that the effect of interference between fractures is more significant for wells 

intercepting multiple low conductivity fractures.  We conclude from the cases with hydraulic 

fractures having low FcD-values (presented in Figs. 4.3 and 4.4) that these cases exhibit additional 

sub-periods of flow during intermediate times compared to cases with high FcD-values.  This 

behavior is clear for the case with circular fractures in a reservoir with infinite thickness (i.e., Fig. 

4.3), where the pressure derivative signature of the ERF sub-period flow is followed by a power-

law (straight-line with slope approximately of 1:3) in the range 10-2 <tD<100.  We also observed 

this phenomenon for the case with rectangular fractures case (i.e., Fig. 4.4) — however; we noted 
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that the interference between fractures for this case is more subtle, exhibiting a smooth transition 

from the ELF sub-period into the pseudo-fractal flow period. 

 

a. 

 

b. 

 
 

Figure 4.2 — Schematics of a horizontal well intercepting multiple hydraulic fractures in a 
fractal reservoir with infinite thickness: a. circular transverse, and b. rectangular 
longitudinal hydraulic fractures. 

 

 
 

Figure 4.3 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple circular 
transverse hydraulic fractures in a fractal reservoir with Df =2.5 and q=0 for 
selected values of the Fracture Conductivity (FcD).  
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Figure 4.4 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple rectangular 
longitudinal hydraulic fractures in a fractal reservoir with Df =2.5 and q=0 for 
selected values of the Fracture Conductivity (FcD). 

 
 

The pressure derivative function for the FcD=1 case given in Fig. 4.3 shows numerical instability 

at tD>103, which is caused by the computation of extremely small arguments of the Modified 

Bessel Functions in the analytical solution for the circular fracture, and the subsequent numerical 

solution of the system of equations.  This computational instability is systematic, and we have also 

observed it in the constant-pressure solutions — there may be a mechanism to eliminate/mitigate 

this instability, but for the purpose of the present work we will note this as an anomaly. 

 

At late-times (pseudo-fractal flow), we noted that the inclusion of parallel impermeable boundaries 

in a fractal reservoir creates power-law signatures in the pressure and pressure derivative functions 

(Figs. 4.3 and 4.4).  As might be expected, the slopes of these power-law signatures are related to 

the fractal parameters of the reservoir (v and Df) used in Eq. 4.5.  Although different combinations 

of the Df and q-values can yield the same value of v, the power-law behavior (specifically, the 
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slope of the straight-line in the log-log plot) for the pseudo-fractal flow period depends on the 

combination of these parameters.  We ran several combinations of these parameters and found 

linear correlations between the fractal parameters and the slope of the pressure derivative function 

for a fractal reservoir bounded by two parallel impermeable boundaries and present these 

correlations in Fig. 4.5.  Except for the upper end of the trend for the Df=3 case shown in Fig. 4.5, 

the slope of the pressure derivative function for a fractal reservoir vertically bounded by parallel 

impermeable boundaries can be generated by the equation: 

 

, ..................................................................................................................... (4.6) 

 

 
 

Figure 4.5 — Correlation between the grouping parameter (v) and the slope of the pressure 
derivative of a fractal reservoir delimitated by two impermeable boundaries. 
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Influence of the Fractal Parameters in the Pressure and Rate Transient Performance Behaviors  

 

In Chapter III, we showed that a horizontal well intercepting a single hydraulic fracture in a fractal 

reservoir with low fractal dimension (Df) and/or higher conductivity index (q) yields lower values 

of the dimensionless pressure drop during early and intermediate times, compared to a well with 

the same conditions but placed in a reservoir with higher Df and/or low q-values.  This trend is 

reversed at late times, i.e., the drop of pressure is lower in a well intercepting a hydraulic fracture 

in a fractal reservoir with high Df  and/or low q-values.  Consequently, the higher flow rates at 

early and intermediate times are observed in wells intercepting a single hydraulic fracture in a 

fractal reservoir with a low fractal dimension (Df) and/or a high conductivity index (q) the trend is 

also reversed at late times.  As a summary statement, we expect to observe similar behavior for 

the multi-fracture horizontal well (MHFW) cases considered in this Chapter. 

 

Sensitivity to the Fractal Dimension (Df) — Circular Hydraulic Fractures 

 

Figure 4.6 shows the impact of the fractal dimension (Df) on the pressure and pressure transient 

derivative functions for a horizontal well intercepting multiple (9) hydraulic circular transverse 

fractures with high-conductivity.  In this plot, we observe that the higher Df-values yield a higher 

dimensionless pressure drop during early and intermediate times, whereas at late times the pressure 

drop is lower for high Df-values.  Consequently, lower Df-values yield higher flowrates (and 

cumulative production) at early and intermediate times and lower flowrates (and cumulative 

production) at late times (see Figs. 4.7 and 4.8).  The change in these trends is defined by an 

intersection/inflection point of all the dimensionless pressure curves located at tD ≈ 2 in Fig. 4.6.  

We have also observed intersection points in the pressure derivative (tD ≈ 0.5), in the dimensionless 
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rate (tD ≈ 0.07 of Fig. 4.7), and in the dimensionless cumulative production curves (tD ≈ 1.5 of Fig. 

4 8). 

 

 
 

Figure 4.6 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple circular 
transverse hydraulic fractures with high conductivity in a fractal reservoir for 
selected values of the fractal dimension (Df), assuming infinite thickness. 
(constant-rate case) 

 

 
 

Figure 4.7 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting multiple transverse hydraulic 
fractures with high conductivity in a fractal reservoir for selected values of the 
fractal dimension (Df), assuming infinite thickness. (constant-pressure case) 
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Figure 4.8 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting multiple transverse hydraulic fractures with high 
conductivity in a fractal reservoir for selected values of the fractal dimension 
(Df), assuming infinite thickness. (constant-pressure case) 

 

Based on the signatures of the pressure derivatives of the cases presented in Fig. 4.6, we 

summarized the start and the end of their periods of flow in Table 1.  In these cases, the pressure 

derivative functions provide constant values during "Period 1," which is characteristic of the radial 

(fracture) flow.  The constant value of the pressure derivative is also lower as the Df-value 

increases. The three cases presented in Fig. 4.6 for "Period 3" yield straight-lines in the pressure 

derivative function with slope equal to the v-parameter, which is characteristic of the pseudo-

fractal flow regime.  During "Period 2," the pressure derivative curves show power-law behaviors 

that correspond to the LRF sub-period of flow and are followed by a prolonged transition period 

(approximately two log-cycles), where this transition period is the result of the interference 

between hydraulic fractures.  For Df= 2.5, the LRF sub-period yields a straight-line with a slope of 
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3:4, whereas the slope for Df=2 is slightly below 1 and above 1 (5:4) for Df=1.5.  We consider that 

the fractional values of the slopes that approach unity (exhibited by the LRF sub-periods for Df =2 

and Df=1.5) are the result of the combined effect of the fractal nature of the reservoir and the finite 

extent of the hydraulic fractures. 

 

We conclude that horizontal wells intercepting multiple fractures in fractal reservoir with low 

fractal dimension, Df (consequently low v-values) (1) show shorter fracture flow periods and LRF 

sub-periods and (2) yield steeper straight-lines in the pressure derivative during "Period 2." 

 

The dimensionless flowrate function for Df=1.5 presented in Fig. 4.7 shows a disruptive trend 

within the period of dimensionless time defined by 10-1 and 101.  We associate this erratic behavior 

with the computation of the uniform flux solution using the "Fractal Point Source" function for v-

values less than 2  (see Appendix H). 

 

 

Table 4.1 — Definition of flow periods, based on the pressure derivative, for the sensitivity 
analysis of the fractal dimension (Df) on the pressure transient performance 
behavior for a horizontal well intercepting multiple circular transverse hydraulic 
fractures.  

 

 

Df  v  Period 1  Period 2  Period 3 

2.5  -0.25  tD< 2x10-5  2x10-4<tD<4x10-2 (LRF)  2x102<tD 

2.0  0  tD< 6x10-4  2x10-3<tD<3x10-2 (LRF)  2x102<tD 

1.5  0.25  tD< 2x10-3  5x10-3<tD<2x10-2 (LRF)  2x102<tD 
 

Sensitivity to the Conductivity Index (q) — Circular Fractures 

 

Figure 4.9 presents the influence of the conductivity index (q) on the pressure and pressure 

transient derivative functions for a horizontal well intercepting multiple circular transverse vertical 

fractures.  Analogous to the sensitivity analysis for the fractal dimension (Df), we observe an 

intersection/inflection point of the dimensionless pressure and pressure derivative curves located 
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at tD ≈ 3 and tD ≈ 0.7, respectively.  Similarly, the constant-pressure solutions also show such 

intersection points.  Considering the rate-transient performance behavior shown in Fig. 4.10 this 

feature is located at tD ≈ 0.5, whereas for the dimensionless cumulative production shown in Fig. 

4.11 this feature is observed at tD ≈ 2, where it is logical that such features would be "delayed" for 

the cumulative production case considering the nature of a cumulative function. 

 

For dimensionless times (tD) greater than 3, the systems with higher q -values (consequently, high 

v-values) yield larger dimensionless pressure drops.  This implies that for dimensionless times 

greater than 0.5, the systems with higher q -values yield lower flowrates.  These tendencies are 

opposite for tD<3 and tD<0.5 in regard to the pressure and the flowrate, respectively. 

 

 
 

Figure 4.9 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple transverse 
hydraulic fractures with high conductivity in a fractal reservoir for selected 
values of the conductivity index (q), assuming infinite thickness. (constant-rate 
case) 
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Figure 4.10 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting multiple transverse hydraulic 
fractures with high conductivity in a fractal reservoir for selected values of the 
conductivity index (q), assuming infinite thickness. (constant-pressure case) 

 

 
 

Figure 4.11 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting multiple transverse hydraulic fractures with high 
conductivity in a fractal reservoir for selected values of the conductivity index 
(q), assuming infinite thickness. (constant-pressure case) 
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As in the previous analyses, we have identified the flow periods in Fig. 4.9, using the pressure 

derivative functions and summed them up in Table 4.2.  In this case, the pressure derivative for 

all cases collapse into a single trend at early times (depicting radial (fracture) flow).  The duration 

of the fracture flow is longer for higher q-values (higher v-values).  After the fracture flow period, 

we observe the appearance of the LRF sub-period, which yields straight-lines with slopes of 3:4, 

4:5, and 6:7 for q-values of 0, 0.5 and 1.3, respectively.  At late times (Period 3), the signatures of 

the pressure derivative functions yield straight-lines on a log-log scale with slopes equal to the v-

parameter.  Similar to the sensitivity analyses presented for the fractal dimension (Df), we 

identified a transition period between the LRF and the pseudo-fractal flow for all of the cases which 

illustrate pressure interference between the hydraulic fractures. 

 

In general, we note that the conductivity index (q) has a similar influence on the pressure transient 

performance behavior in horizontal wells intercepting multiple fractures in a fractal reservoir as 

the fractal dimension (Df) — that is, the systems with higher q-values (consequently lower v-

values) (1) show longer fracture flow periods and shorter LRF sub-periods and (2) yield steeper 

straight-lines in the pressure derivative during "Period 2."  However, we also observe that the 

behavioral features caused by the conductivity index (q) are less dramatic than those caused by the 

fractal dimension (Df). 
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Table 4.2 — Definition of flow periods, based on the pressure derivative, for the sensitivity 
analysis of the conductivity index (q) on the pressure transient performance 
behavior for a horizontal well intercepting multiple circular transverse hydraulic 
fractures.  

 

 

q  v  Period 1  Period 2  Period 3 

0  -0.25  tD< 2x10-5  2x10-4<tD<4x10-2 (LRF)  2x102<tD 

0.5  0  tD<1x10-4  3x10-4<tD<1x10-2 (LRF)  2x102<tD 

1.3  0.25  tD< 2x10-4  5x10-4<tD<8x10-3 (LRF)  2x102<tD 

 
 

Sensitivity to the Fractal Dimension (Df) — Rectangular Hydraulic Fractures 

 

In Fig. 4.12, we present the sensitivity analysis of the fractal dimension (Df) in the dimensionless 

pressure and dimensionless pressure derivative functions for a horizontal well intercepting 

multiple (9) rectangular longitudinal hydraulic fractures of high fracture conductivity.  Similar to 

the cases for a horizontal well intercepting multiple circular transverse fractures, we observe an 

intersection/inflection point of the dimensionless pressure curves located at tD ≈ 2 and at tD ≈ 0.5 

in the dimensionless pressure derivative curves.  For tD < 2, the high Df -values (i.e., low v-values) 

yield a higher dimensionless pressure drop, which results in lower flowrates (see Fig. 4.13).  These 

trends are reversed at tD-values above the intersection point, i.e., lower pressure drop and higher 

flowrates for higher Df -values —consequently, lower v-values — for tD > 2.  In the case of the 

cumulative production (Fig. 4.14), we observe three intersection points instead of one: (1) at tD ≈ 

1 between the Df -curves of 2 and 2.5, (2) at tD ≈ 7 between the Df -curves of 2.5 and 1.5, and (3) 

at tD ≈ 15 between the Df -curves of 1.5 and 2. 
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Figure 4.12 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir for selected 
values of the fractal dimension (Df), assuming infinite thickness. (constant-rate 
case) 

 

 
 

Figure 4.13 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting multiple longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir for selected values of the 
fractal dimension (Df), assuming infinite thickness. (constant-pressure case) 
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Figure 4.14 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting multiple longitudinal hydraulic fractures with high 
conductivity in a fractal reservoir for selected values of the fractal dimension 
(Df), assuming infinite thickness. (constant-pressure case) 

 

In Table 4.3 we present a summary of the flow periods that we identified in the signatures of the 

dimensionless pressure derivative functions for the cases presented in Fig. 4.12.  At late times, the 

pseudo-fractal flow period behaves in the same manner as in the circular fracture cases — i.e., the 

dimensionless pressure derivative functions yield straight lines with slopes equal to their 

corresponding v-value in the log-log plot.  For the case of "Period 2," for Df =2.5 we observe two 

power-law trends with slopes of approximately of 2:5 and 3:5 which correspond to the ELF and 

LLF sub-periods.  Similarly, during "Period 2," for Df =2, we observe a half-slope behavior during 

the ELF sub-period and a power-law behavior with slope slightly below 1 during the LLF sub-

period. 
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We also observed that, for the case defined by Df = 1.5, a power-law trend with a slope 

approximately of 2:3 that corresponds to the ELF sub-period is observed.  We could not 

(specifically) identify the LLF sub-period for the Df =1.5 case — instead, we observed that the 

dimensionless pressure derivative function is higher than the dimensionless pressure function in 

the tD range defined by 0.03<tD<1 (which is a somewhat anomalous behavior).  Similar to the 

circular transverse fractures case, this case has an anomalous flowrate function (Fig. 4.13) in the 

tD range defined by 10-2<tD<102 - specifically, zero flowrates are observed in this region.  The 

behavior of the flowrate functions in Fig. 4.13 leads to observation of the "wavy" and "flat" 

portions observed in the dimensionless cumulative production (Fig. 4.14). 

 

 

Table 4.3 — Definition of flow periods, based on the pressure derivative, for the sensitivity 
analysis of the fractal dimension (Df) on the pressure transient performance 
behavior for a horizontal well intercepting multiple rectangular longitudinal 
hydraulic fractures.  

 

 

Df  v  Period 1  Period 2  Period 3 

2.5  -0.25  —  
1x10-6<tD<2x10-5 (ELF) 

1x10-3<tD<1x100 (LLF) 
 2x102<tD 

2.0  0  —  
1x10-6<tD<5x10-4 (ELF) 

1x10-6<tD<5x10-1 (LLF) 
 2x102<tD 

1.5  0.25  —  1x10-6<tD<3x10-3 (ELF)  2x102<tD 
 
 

Sensitivity to the Conductivity Index (q) — Rectangular Fractures 

 

The sensitivity analyses considering variations in the conductivity index (q) on the pressure and 

rate-transient performance behaviors are shown in Figs. 4.15 and 4.16, respectively.  Again, we 

observed an intersection point for the dimensionless pressure curves at tD ≈ 1 and at tD ≈ 0.2 in the 

dimensionless pressure derivative curves (Fig. 4.15).  However, the dimensionless flowrate (Fig. 

4.16) and the dimensionless cumulative production (Fig. 4.17) do have exhibit "crossovers," but 
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not a unique intersection point.  Although we do not observe a unique intersection point in the rate-

transient performance behavior (Fig. 4.16) and the dimensionless cumulative production (Fig. 

4.17), the influence of the conductivity index (q) is consistent with the circular transverse vertical 

fractures case.  This means that the higher the q-value, the higher flow dimensionless pressure 

drop and the lower the dimensionless flowrate at early and inter-mediate times and the trend 

reverses at late times. 

 

 
 

Figure 4.15 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting multiple longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir for selected 
values of the conductivity index (q), assuming infinite thickness. (constant-rate 
case) 
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Figure 4.16 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting multiple longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir for selected values of the 
conductivity index (q), assuming infinite thickness. (constant-pressure case) 

 

 
 

Figure 4.17 — Log-log plot of the dimensionless cumulative production function for a 
horizontal well intercepting multiple longitudinal hydraulic fractures with high 
conductivity in a fractal reservoir for selected values of the conductivity index 
(q), assuming infinite thickness. (constant-pressure case) 
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As in the previous analyses, we identified the periods of flow using the pressure derivative function 

and summarized these results in Table 4.4.  The ELF and the LLF sub-periods are evident and 

exhibit power-law behaviors (i.e., straight-lines) on the log-log plot of the dimensionless pressure 

derivative functions for all cases (Fig. 4.15).  The ELF sub-periods show straight-lines with slopes 

of 3:7, 1:3, and 3:5 for q-values of 0.4, 1 and 4, respectively.  For the LLF sub-periods, the straight-

lines have slopes of 4:7, 3:5 and 7:8, for the values of the conductivity index (q) of 0.4, 1 and 4. 

 

Table 4.4 — Definition of flow periods, based on the pressure derivative, for the sensitivity 
analysis of the conductivity index (q) on the pressure transient performance 
behavior for a horizontal well intercepting multiple rectangular longitudinal 
hydraulic fractures.  

 

 

q  v  Period 1  Period 2  Period 3 

0.4  -0.25  —  
1x10-6<tD<4x10-6 (ELF) 

5x10-4<tD<7x10-1 (LLF) 
 2x101<tD 

1  0  —  
1x10-6<tD<1x10-5 (ELF) 

1x10-4<tD<1x10-1 (LLF) 
 4x101<tD 

4  0.5  3x10-6<tD  
3x10-6<tD<2x10-4 (ELF) 

1x10-3<tD<1x100(LLF) 
 102<tD 

 

4.3. Summary 

 

In this chapter, we used the principle of superposition in space to extend the models developed in 

Chapter III for a horizontal well intercepting a single finite conductivity fracture to the so-called 

"multi-fractured well" case.  We have observed that our solutions based on the "fractal point 

source" approach yield unexpected behaviors in the pressure and rate-transient performance 

behaviors at intermediate times when v≥0.  In Appendix H we present analyses of the application 

of the traditional line/point source approaches for fractal reservoirs and introduce the concept of 

fractional integrals as an alternative to model the pressure and rate-transient behavior in fractured 
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wells in fractal reservoirs.  We applied the image well method to model impermeable parallel 

vertical boundaries in a fractal reservoir. 
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CHAPTER V  

PRESSURE AND RATE-TRANSIENT BEHAVIOR OF DOUBLE POROSITY 

RESERVOIR WITH TRANSIENT INTERPOROSITY TRANSFER WITH FRACTAL 

MATRIX BLOCKS3 

 

In this chapter we present double porosity models considering matrix blocks with fractal geometry 

and fracture networks with either radial or fractal fracture networks.  The recent development of 

anomalous diffusion models has opened the possibility of adapting double porosity models to 

estimate reservoir (and related) parameters for unconventional reservoirs.  The primary objective 

of the development of these models is to provide physical explanations for the anomalous diffusion 

phenomenon. 

 

Traditionally, fractal diffusivity models have been used to model highly heterogenous reservoirs 

(e.g., NFRs and shale reservoirs).  In double porosity systems (fractures and matrix blocks), such 

models are used to describe the flow of fluids within the network of natural fractures (e.g., Chang 

et al., 1990, Olarewaju, 1996 and Valdes-Perez, 2013).  To the best of our knowledge, no attempt 

to apply the fractal theory to model the flow from the matrix blocks to the fractures has been made.  

Given that the porosity of the matrix blocks in shale oil/gas reservoirs is a combination of multiple 

organic and inorganic porosities, we believe that it is appropriate (in terms of geological evidence) 

to model the matrix blocks as fractal objects. 

 

                                                

3 Reprinted with permission from "Pressure-Transient Behavior of Double Porosity Reservoirs with Transient 
Interporosity Transfer with Fractal Matrix Blocks " by Valdes-Perez, and Blasingame, T.A., 2018.  SPE Europec 
featured at 80th EAGE Conference and Exhbition Proceedings,  SPE-190841-MS.  Copyright [2018] by Society of 
Petroleum Engineers, Inc. 
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5.1. Theory of the Double Porosity Models with Transient Interporosity Transfer 

 

The use of double porosity models to depict the pressure-transient behavior of NFRs has been 

studied since the 1960s.  These models idealize reservoirs with multiple porous media (e.g., 

micro/nano fractures, micro/nano vugs, matrix blocks, etc.) as double porosity reservoirs (fracture 

network and matrix blocks).  The double porosity models can be classified as transient or 

pseudosteady-state inteporosity transfer models.  In this chapter, we will focus only on the transient 

interporosity transfer condition. 

 

In 1976, de Swaan presented a double porosity analytical model with transient interporosity 

transfer.  For this model, de Swaan established a radial fracture network and considered either 

slabs or spherical matrix blocks.  The transient interporosity transfer was modeled with a 

convolution integral of the flux from the matrix blocks weighted by the derivative of the pressure 

in the radial network of fractures with respect to time.  The flux of the matrix blocks was 

determined by solving the diffusivity equation for either linear or spherical systems considering 

constant-pressure at the matrix-fracture interface (see Appendix E for detailed derivation). 

 

The periods of flow exhibited by the double porosity model with transient interporosity transfer 

conditions are (see Fig. 5.1): 

 

● Period 1 — (fractal fracture network flow): This period exhibits a flat slope (radial flow) in 

the pressure derivative function that represents that the flow is dominated by 

the properties of the radial fracture network. 

 

● Period 2 — (interaction between the fractal fracture network and the matrix blocks):  This 

period can be subdivided into three sub-periods: (1) a transition sub-period 
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dominated by the early interaction of the matrix blocks, (2) a pseudoradial flow, 

and (3) a transition sub-period, dominated by the closed boundaries of the 

matrix blocks. 

● Period 3 — (single porosity fractal reservoir flow):  In this period of flow, the double 

porosity reservoir has achieved equilibrium and behaves as a single porosity 

reservoir.  However, this period is dominated by the geometry of the fracture  

 

 
 

Figure 5.1 — Schematics of the pressure transient performance behavior of a double porosity 
reservoir considering slab matrix blocks, and spherical matrix blocks. 

 

In 1982, three independent research groups modified de Swaan's model and obtained asymptotic 

solutions in the real domain to be used for well-test analysis (Cinco-Ley et al., Serra et al., and 

Streltsova).  In this work, we will use the model presented by Cinco-Ley et al. (1982) to include 

the effects of a fractal matrix.  A summary of the development of this model is presented in 

Appendix E. 

 

5.2. Models Assumptions 

 

In this chapter, we present models that consider two porous media: (1) matrix blocks and (2) a 

fracture network.  All the models consider the matrix blocks to be fractal, whereas the fracture 
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network is considered to be either radial or fractal.  The assumptions of the models are summarized 

in Table 5.1. 

 

Table 5.1 — Assumptions used to develop the proposed double porosity reservoir models 
 

Medium  Assumptions 

All 

 ● Flow to the wellbore occurs only through the fracture network (radial or fractal). 
● Pressure-squared gradients are negligible. 
● Uniform initial pressure, pi 
● Single slightly-compressible fluid flow with constant compressibility, co, and constant viscosity, 

µ 

Fractal matrix 
blocks 

 ● Single size of the matrix blocks of Dfma-dimension 
● Flow obeys modified Darcy's Law for fractal systems of qma-conductivity index.  This implies 

that both porosity and permeability varies according to power law functions.  Reference matrix 
porosity, f0ma, and matrix permeability, k0ma, are considered. 

● The matrix blocks have constant compressibility, cma. 

Radial fracture 
network 

 ● Unbounded radial network 
● Flow obeys Darcy's Law. 
● The radial fracture network has constant properties: compressibility, cfb, permeability, kfb, and 

porosity, ffb. 

Fractal 
fracture 
network 

 ● Unbounded fractal fracture network of Df-dimension 
● Flow obeys modified Darcy's Law for fractal systems of q-conductivity index with reference 

fractured bulk porosity, f0fb, and matrix of the fractured bulk, k0fb, are considered. 
● The fractal fracture network has constant compressibility, cfb. 

 
5.3. Development of the Models 

 

Fluid Transfer Function considering Fractal Matrix Blocks 

 

The fluid transfer function from fractal matrix blocks to the fracture network, F(hmaD,hmaD,tD), is 

defined by the geometry and properties of the matrix blocks.  To derive this function, we have 

used an analogous procedure to the one presented by de Swaan (1976) for repetitive elements of 

matrix blocks (see Appendix E for details).  We have investigated two scenarios: (1) closed matrix 

blocks and (2) infinite-acting matrix blocks.  For the closed matrix blocks case, this function is 

defined by: 

 

, (5.1) 
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where vma=[1-bma]/[qma+2], and: 

 

. ................................................................................. (5.2) 

 

bma is the spatial dimension of the matrix.  It is defined as bma =Dfma-qma -1.  The expression given 

by Eq. 5.1 applies for vma ≠ 0.  If vma = 0, the following expression should be used: 

 

. .............................................. (5.3) 

 

Due to the extremely low permeability of the matrix blocks in shale oil/gas reservoirs, we modeled 

the behavior of the matrix blocks as infinite-acting (fully transient) media.  The fluid transfer 

function for infinite-acting matrix blocks is: 

 

. .............................................. (5.4) 

 

The dimensionless variables for the models presented in this chapter are summarized in Table 5.2. 

 

Asymptotic behaviors 

 

As pointed out by Cinco-Ley et al. (1982), the flow from the matrix blocks to the fracture network 

is linear at early and intermediate times (Periods 1 and 2) regardless of the geometry of the matrix 

block.  During these periods of flow, the behavior of the fluid transfer function for closed and 

infinite-acting matrix blocks are the same.  Therefore, the fluid transfer function for all cases at 

early and intermediate times can be simplified to: 
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. ................................................................... (5.5) 

 

At late times, the fluid transfer function for the infinite-acting matrix blocks case can be simplified 

to: 

 

. ...................................................... (5.6) 

 
 

Table 5.2 — Dimensionless variables for the proposed double porosity reservoir models 
 

Dimensionless 
Variable  Definition for the radial fracture network 

model   Definition for the double fractal model 

Pressure in the 
fracture network 

 
 

  
 

Pressure in the 
fractal matrix 

blocks 

 
 

  
 

Time 
 

 
  

 

Radius 
     

Storativity ratio 
     

Fracture area      

Hydraulic 
diffusivity of the 

fractal matrix 
blocks 

 
 

  
 

Matrix block size 
     

 

 

Double Porosity Model considering Radial Fracture Network and Fractal Matrix Blocks 

 

To model the flow within the radial fracture network, we have considered the diffusivity equation 

presented by Cinco-Ley et al. (1982).  This expression in its dimensionless form is given by: 
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. .. (5.7) 

 

The solution of Eq. 5.1 in the Laplace domain considering constant flow rate at the wellbore and 

infinite fracture network is given by: 

 

, ..................................................................................... (5.8) 

 

where: 

 

. ....................................................................... (5.9) 

 

To obtain the performance of Eq. 5.8 in the real domain, a numerical inversion should be used.  

Additionally, we have derived asymptotic solutions, evaluated at the wellbore, for the main periods 

of flow depicted in this model.  These solutions are summarized in Table 5.3. 

 

Analogy to the Anomalous Diffusion Model 

 

The 2D diffusivity model presented by Raghavan (2012) included the anomalous diffusion effects 

by using a version of Darcy's Law expressed in terms of a fractional derivative.  The definition of 

the fractional derivative involves a convolution term where the derivative of the pressure with 

respect to time is weighted by a power-law function of the time.  A similar diffusivity model can 

be obtained from the double porosity model considering a radial fracture network and fractal 

matrix blocks.  Such a model is obtained by neglecting the storativity ratio (w=0) and considering 
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the asymptotic behavior for late times of the fluid transfer function for infinite-acting fractal matrix 

blocks with positive vma-values (Eq.5.6).  The resulting diffusivity equation is: 

 

. .......................................... (5.10) 

 

where: 

 

. ................................................ (5.11) 

 

To provide a model that is comparable to the anomalous diffusion model presented by Raghavan 

(2012a), we have considered a time-dependent inner boundary condition modeled by a power-law 

function mathematically defined by: 

 

, .............................................................................................. (5.12) 

 

where v0 is an arbitrary reference exponent.  We have assumed a unit value of this parameter. 

 

The line source approximation in the Laplace domain of Eq. 5.10 considering variable flow rate 

(Eq. 5.12) and infinite radial fracture network is given by: 

 

. ......................................................................... (5.13) 

 

where: 

 

. ............................................................................................................... (5.14) 
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Table 5.3 — Asymptotic constant-rate solutions in the real domain for the double porosity 
model considering radial fracture network 

 

  Asymptotic solution 

Early times   

Intermediate 
times   

Late times  

 

(for closed matrix blocks) 

 

(for infinite-acting matrix blocks) 
 

 

Double Porosity Model considering Fractal Fracture Network and Fractal Matrix Blocks (Double 

Fractal Model) 

 

The motivation of the double fractal model is to provide a reservoir model to depict the transient 

performance behavior of highly heterogeneous multi-porosity systems, such as shale oil and shale 

gas reservoirs.  The objective of this model is to take into account the randomness and 

heterogeneity of the natural fractures and the matrix blocks. 

 

The presence of natural fractures in shale reservoirs is significantly lower than in carbonate 

reservoirs.  Therefore, the porosity of the natural fractures in shale reservoirs is very small, and 

the storativity ratio would be negligible.  However, it is important to consider the presence of the 

natural fractures because it has a significant impact in the flow of fluids towards hydraulic fractures 

and/or the wellbore.  To model the flow within the fractal fracture network, we have considered 

the diffusivity equation presented by Valdes-Perez (2013).  Such an equation in its dimensionless 

form is defined by: 
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.

 ....................................................................................................................................... (5.15) 

 

The solution of Eq. 5.15 in the Laplace domain considering constant-rate at the wellbore and 

infinite fracture network is given by: 

 

. ....................................................................... (5.16) 

 

where v = [1-b]/[q +2].  The transfer function f(u) has the same shape as the one presented in Eq. 

5.9.  For this model, we have considered only the behavior of the fluid transfer function of the 

matrix blocks as infinite-acting (Eq. 5.4) due to their extremely low permeability in shale oil/gas 

reservoirs.  

 

For systems with negligible storativity ratio and considering the fluid transfer function at 

intermediate times (Eq. 5.5) the model given by Eq. 15 can be simplified to: 

 

. .......................................... (5.17) 

 

where: 

 

. ...................................................................................... (5.18) 
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A similar model for radial fracture networks and Euclidean matrix blocks was developed by Cinco-

Ley et al. (1982).  

 

For late times, substituting Eq. 5.6 in Eq. 5.14 and neglecting storativiy ratio, the following model 

is derived: 

 

. ................................. (5.19) 

 

Eq. 5. 19 has the same shape as the models assuming the anomalous diffusion phenomena 

(Camacho-Velazquez et al., 2008 and Raghavan, 2012a).  This model relates its parameters to the 

physical properties related to the geology of the matrix blocks.  The asymptotic constant-rate 

solutions in the real domain of Eq. 5.17 and Eq. 5.19 are summarized in Table 5.4. 

 

Table 5.4 — Asymptotic constant-rate solutions in the real domain for the double fractal 
model. 

 

  Asymptotic solution 

Early-Intermediate 
times   

Late-Intermediate 
times   (v > 0) 

Late times   (v > 0) 

 

 

Constant Pressure Solutions 

 

The rate-transient performance behavior of the models presented in this chapter is obtained using 

Dunhamel's principle, which relates the constant-rate and constant-pressure solutions in the 

Laplace domain, as presented in Chapter I. 
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5.4. Results and Discussion 

 

In this section, we present the sensitivity analyses of the characterizing parameters involved in the 

models presented in Section 5.3.  To perform such analyses, we numerically inverted the solutions 

in the Laplace domain using the Gaver-Wynn-Rho algorithm implemented in Mathematica.   

 

Double Porosity Model considering Radial Fracture Network and Fractal Matrix Blocks 

 

Sensitivity to the Dfma-Parameter: Closed Matrix Blocks 

 

Fig. 5.2 exhibits the effect of the fractal dimension of the matrix (Dfma) in the pressure transient 

performance behavior of a double porosity reservoir considering a radial fracture network (Eq. 

5.8) and closed matrix blocks (Eq. 1 for Dfma ≠ 2 and Eq. 3 for Dfma =2).  This plot shows no evident 

differences among the pressure-transient signatures when the fractal dimension of the matrix (Dfma) 

is varied.  However, the influence of the Dfma -parameter is clear in the pressure derivative function.  

For all cases, the pressure derivative function exhibits two radial flows.  The first one (fracture 

network flow) occurs at early times and represents the geometry and the expansion within the 

radial fracture network.  The second radial flow (single porosity reservoir flow) occurs at late times 

and represents that the radial fracture network and the matrix blocks behave as a single porosity 

system where the geometry of the fracture network prevails.  At intermediate times (interaction 

between the fracture network and the matrix blocks), we have observed that the interaction 

between the fracture network and the matrix blocks and the boundary effects of the matrix blocks 

occur faster when the matrix blocks have higher values of the fractal dimension (keeping 

unchanged the other parameters).  This model can reproduce the behavior of the transfer functions 
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developed by de Swaan (1976) when the conductivity index of the matrix is zero (i.e., qma=0) and 

Dfma =1 for slabs and Dfma =3 for spheres. 

 

 
 

Figure 5.2 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
closed fractal matrix blocks for selected values of the fractal dimension of the 
matrix (Dfma). 

 

Fig. 5.3 shows the rate-transient case for the example presented in Fig. 5.2.  Based on the rate 

derivative function in this plot, we observed that is not possible to distinguish the first period of 

flow (i.e., the radial fracture network flow).  However, the acceleration effect of the fractal 

dimension of the matrix (Dfma) is also observed in this plot, i.e., the higher the Dfma -value, the 

sooner the boundary effects of the matrix will appear. 
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Figure 5.3 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering radial fracture network and closed fractal 
matrix blocks for selected values of the fractal dimension of the matrix (Dfma). 

 

 

Sensitivity to the qma-Parameter: Closed Matrix Blocks 

 

Fig. 5.4 presents the sensitivity analysis of the conductivity index of the matrix (qma) in the  

pressure transient performance behavior for the radial fracture network and closed matrix blocks 

case (Eq. 5.1 for qma ≠ 1 and Eq. 3 for qma =1).  For the qma -parameter instance, we have observed 

two phenomena: (1) there is a delay in the interaction between the fracture network when the 

matrix blocks have higher qma -values and (2) the boundary effects of the matrix blocks occur at 

earlier times for high values of the conductivity index of the matrix.  High qma -values represent 

that the permeable sites inside the matrix blocks are poorly connected. 

 

Based on Fig. 5.5, we concluded that better connected matrix blocks (lower qma -values) yield 

higher flow rates.  Similar to the fractal dimension of the matrix case, the boundary effects of the 

matrix appear at earlier times for high qma -values. 
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Figure 5.4 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
closed fractal matrix blocks for selected values of the conductivity index of the 
matrix (qma). 

 

 

 

 

 
 

Figure 5.5 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering radial fracture network and closed fractal 
matrix blocks for selected values of the conductivity index of the matrix (qma). 

 

  



 

117 

 

 

Sensitivity to the Dfma-Parameter: Infinite-Acting Matrix Blocks 

 

In Fig. 5.6, we present the sensitivity analysis of the fractal dimension of the matrix (Dfma) in the 

pressure transient performance behavior for the radial fracture network considering infinite-acting 

matrix blocks (Eq. 5.4).  This plot shows that fractal matrix blocks with lower Dfma -values yield a 

higher drop of pressure of the double porosity system.  The pressure derivative function in this 

plot exhibits the same behavior as the closed fractal matrix case at early times (fracture network 

flow) and intermediate times (interaction between the fracture network and the matrix blocks).  

However at late times, the flow is dominated by the fluid transfer from the matrix to the factures.  

For Dfma -values higher than two, the pressure derivative function yields a negative slope equal to 

the vma-parameter.  If Dfma is lower than two (and higher than one), the pressure derivative function 

stabilizes to a constant value equal to vma /2. 

 

The rate-transient performance behavior in Fig. 5.7 shows that fractal matrix blocks with higher 

Dfma -values yield higher flow rates.  In addition, the rate derivative function has a response at 

early and intermediate times similar to the one observed in the closed matrix blocks case.  At late 

times, the infinite-acting nature of the matrix blocks dominates. 
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Figure 5.6 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
infinite-acting matrix blocks for selected values of the fractal dimension of the 
matrix (Dfma). 

 

 

 

 

 
 

Figure 5.7 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering radial fracture network and infinite-acting 
fractal matrix blocks for selected values of the fractal dimension of the matrix 
(Dfma). 
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Sensitivity to the qma-Parameter: Infinite-Acting Matrix Blocks 

 

The plot in Fig. 5.8 presents the sensitivity analysis of the conductivity index of the matrix (qma) 

in the pressure transient performance behavior of a double porosity reservoir considering radial 

fracture network and infinite-acting matrix blocks.  The example shown in this plot considers a 

small storativity ratio (w=10-10).  Therefore, the flat slope of the pressure derivative function for 

dimensionless times from 100 to 107 corresponds to the interaction between the fracture network 

and the matrix blocks.  Fig. 5.8 shows that better connected permeable sites inside matrix blocks 

(low qma -values) yield a lower drop of pressure.  In the rate-transient case, this implies that low 

qma -values yield higher flow-rates (see Fig. 5.9). 

 

In Fig. 5.8, we observe that poorly connected permeable sites inside matrix blocks (high qma -

values) accelerate the appearance of the single system behavior period.  Similar to the fractal 

dimension case, the pressure derivative function yields a negative slope equal to the vma-parameter 

for qma -values lower than one. If qma is greater than one, the pressure derivative function stabilizes 

to a constant value equal to vma/2.  Therefore, by increasing the vma -value to very high values, the 

pressure derivative function approaches to a constant value of 0.5. 
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Figure 5.8 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
infinite-acting matrix blocks for selected values of the conductivity index of the 
matrix (qma). 

 

 

 

 

 
 

Figure 5.9 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering radial fracture network and infinite-acting 
fractal matrix blocks for selected values of the conductivity index of the matrix 
(qma). 
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Wellbore Storage Effects 

 

The wellbore storage effects for all the models presented in this section are incorporated using the 

standard scheme presented in Chapter I.  Fig. 5.10 and Fig. 5.11 exhibit the impact of the wellbore 

storage in the pressure transient behavior presented in Fig. 5.6 and Fig. 5.8, respectively.  These 

plots show that wellbore storage effects can hinder the radial fracture flow when the storativity 

ratio is relatively high (Fig. 5.10) and shorten the transition period between early and intermediate 

times when the storativity ratio is relatively low (Fig. 5.11). 

 

Analogy to the Anomalous Diffusion Model: Sensitivity to the Dfma-Parameter 

 

Fig. 5.12 shows the influence of the fractal dimension of the matrix (Dfma) in the pressure and 

pressure derivative functions of the double porosity model considering radial fracture network and 

infinite-acting fractal matrix blocks, assuming the time-dependent inner boundary condition. 

 

 
 

Figure 5.10 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
infinite-acting fractal matrix blocks for selected values of the fractal dimension 
of the matrix (Dfma). 
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Figure 5.11 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering radial fracture network and 
infinite-acting matrix blocks for selected values of the conductivity index of the 
matrix (qma) considering wellbore storage. 

 

 

 

 
 

Figure 5.12 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir with time-dependent inner boundary, 
considering radial fracture network and infinite-acting matrix blocks for selected 
values of the fractal dimension of the matrix (Dfma). 
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We have observed that none of the cases in Fig. 5.12 show the characteristic signature of radial 

flow (0-slope of the pressure derivative function), even though the geometry of the fracture 

network was assumed to be radial.  Instead, the responses of the pressure and pressure derivative 

functions of this model yield power-law behaviors equal to the exponent of the inner boundary 

condition as shown by the b-pressure derivative function in Fig. 5.13.  We conclude that the higher 

the Dfma -parameter (lower vma) the steeper the log-log straight-line. 

 

Fig. 5.14 presents the constant-pressure version for the example presented in Fig. 5.12.  The rate 

and rate derivative functions yield power-law behaviors whose slope in the log-log plot is equal to 

the negative value of slope in the constant-rate case (i.e., vma-1).  This is confirmed by the b-rate 

derivative (Fig. 5.15).  We have observed that at dimensionless times greater than 10-1, the fractal 

matrix blocks with higher Dfma -values yield higher flow rates.  However, an unrealistic scenario 

is observed at earlier times (tD < 10-1), where the highest flow-rates are yielded by fractal matrix 

blocks with lower Dfma -values.  The reason why this scenario is unrealistic is because high Dfma -

values represent, basically, more permeable sites within the matrix blocks. 

 

 
 

Figure 5.13 — Log-log plot of the b-pressure derivative function of a double porosity reservoir 
with time-dependent inner boundary, considering radial fracture network and 
infinite-acting matrix blocks for selected values of the fractal dimension of the 
matrix (Dfma).  
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Figure 5.14 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir with time-dependent inner boundary, considering 
radial fracture network and infinite-acting matrix blocks for selected values of 
the fractal dimension of the matrix (Dfma). 

 

 

 

 

 
 

Figure 5.15 — Log-log plot of the b-rate derivative function of a double porosity reservoir with 
time-dependent inner boundary, considering radial fracture network and infinite-
acting matrix blocks for selected values of the fractal dimension of the matrix 
(Dfma). 
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Analogy to the Anomalous Diffusion Model: Sensitivity to the qma-Parameter 

 

In Fig. 5.16, we present the sensitivity analysis of the conductivity index of the matrix (qma).  At 

late times (tD > 109), this plot shows a behavior similar to the one observed for the Dfma -parameter, 

i.e., the signatures of the pressure and pressure derivative functions yield power-law behaviors 

equal to the exponent of the inner boundary condition (i.e., 1-vma).  This is confirmed by the b-

pressure derivative function presented in Fig. 5.17.  At early and intermediate times (tD < 109), the 

b-pressure derivative function exhibits a variable behavior for all the cases presented.  We 

concluded that the better connected permeable sites inside the matrix (i.e., lower qma- and 

consequently vma-values), the steeper the log-log straight-line of the pressure and pressure 

derivative functions. 

 

 
 

Figure 5.16 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir with time-dependent inner boundary, 
considering radial fracture network and infinite-acting matrix blocks for selected 
values of the conductivity index of the matrix (qma). 
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Figure 5.17 — Log-log plot of the b-pressure derivative function of a double porosity reservoir 
with time-dependent inner boundary, considering radial fracture network and 
infinite-acting matrix blocks for selected values of the conductivity index of the 
matrix (qma). 

 

 

 

 

Based on Fig. 5.18, we conclude that better connected permeable sites inside the matrix blocks 

(low qma-values) yield higher flow rate.  Similar to the fractal dimension of the matrix (Dfma), the 

b-rate derivatives presented in Fig. 5.19 show that rate and rate derivative functions exhibited in 

Fig. 5.18 yield power-law behaviors with a slope equal to vma -1, for qma -values equal to 5 (only 

after tD > 107) and 10.  The non-constant behavior of the b-rate derivative for qma equal to 100 

indicates that the rate-transient for this case does not correspond to a power-law behavior. 
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Figure 5.18 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir with time-dependent inner boundary, considering 
radial fracture network and infinite-acting matrix blocks for selected values of 
the conductivity index of the matrix (qma). 

 

 

 

 

 
 

Figure 5.19 — Log-log plot of the b-rate derivative function of a double porosity reservoir with 
time-dependent inner boundary, considering radial fracture network and infinite-
acting matrix blocks for selected values of the conductivity index of the matrix 
(qma). 
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Given that the scheme to include the wellbore storage effects was developed assuming a constant 

inner boundary condition, it is not appropriate to use it to models with a variable inner boundary 

condition. 

 

Double Porosity Model considering Fractal Fracture Network and Infinite-Acting Fractal Matrix 

Blocks (Double Fractal Model) 

 

In general, the most significant parameters in a diffusivity model for a fractal object are the fractal 

dimension and the conductivity index.  The fractal dimension can get values from one to three, 

whereas the conductivity index can get values higher than zero.  Both parameters have a similar 

influence in the slope of the pressure derivative function.  Therefore, we will restrict our sensitivity 

analyses only to the conductivity indexes (both, fractures and matrix) and consider that the fractal 

dimension is equal to three for both media. 

 

Sensitivity to the q-Parameter 

 

Fig. 5.20 presents the sensitivity analysis of the conductivity index of the fracture network (q) in 

the pressure transient performance behavior of the double fractal model, considering both cases, 

with and without wellbore storage effects.  Fig. 5.21 shows the b-pressure derivative of the cases 

presented in Fig. 5.20.  In the no-wellbore storage case, we observe that there are two periods of 

flow separated by a smooth transition period.  The first period corresponds to the interaction 

between the fracture network and the matrix blocks, and the second period corresponds to single 

system behavior.  In both figures, the first period is not observed when the wellbore storage effects 

are taken into account.  This leads to the hypothesis that for practical applications in pressure 

transient analysis, the only period of flow that could be observed is the single system behavior 
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period, and the fluid transfer function of the matrix could be reduced to the expression given by 

Eq. 5.5. 

 

 
 

Figure 5.20 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir with time-dependent inner boundary, 
considering radial fracture network and infinite-acting matrix blocks for selected 
values of the conductivity index of the fractal fracture network (q). 

 

 

 
 

Figure 5.21 — Log-log plot of the b-pressure derivative function of a double porosity reservoir 
with time-dependent inner boundary, considering radial fracture network and 
infinite-acting matrix blocks for selected values of the conductivity index of the 
fractal fracture network (q). 
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In Fig. 5.22, we observe that a better connected fractal fracture network yield higher flow rates 

(i.e., the lower the q-value, the higher flow rate).  Given that the standard (constant) wellbore 

storage effects do not affect the rate transient behavior, it is possible to observe the two periods of 

flow of the transient behavior of the double fractal reservoir.  As in the pressure-transient case, the 

two periods of flow can be detected in the b-rate derivative presented in Fig. 5.23. 

 

 

 
 

Figure 5.22 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering fractal fracture network and infinite-acting 
matrix blocks for selected values of the conductivity index of the fractal fracture 
network (q). 
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Figure 5.23 — Log-log plot of the b-rate derivative function of a double porosity reservoir 
considering fractal fracture network and infinite-acting matrix blocks for 
selected values of the conductivity index of the fractal fracture network (q). 

 

Sensitivity to the qma-Parameter 

 

Fig. 5.24 shows the influence of the conductivity index of the matrix (qma) in the pressure transient 

performance behavior of the double fractal model, considering both cases, with and without 

wellbore storage effects.  Fig. 5.25 shows the b-pressure derivative of the cases presented in Fig. 

24.  Similar to the case of the conductivity index of the fracture network (q), we observe that in 

the no-wellbore storage case two periods of flow are separated by a smooth transition period.  In 

this case, the first period of flow is also hindered by wellbore storage effects.  The main difference 

with the q-case (Fig. 5.21) is that the first period of flow in Fig. 5.24 is the same for all the qma -

values.  Such a period of flow is shorter, and the appearance of the transition period occurs faster 

for higher vma-values (higher qma-values).  The second period of flow in Fig. 5.24 yields a straight-

line with slope equal to the product vmav.  This is confirmed by their b-pressure derivative plot 

(Fig. 5.25). 
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Figure 5.24 — Log-log plot of the pressure-transient and pressure derivative performance 
behaviors of a double porosity reservoir considering fractal fracture network and 
infinite-acting matrix blocks for selected values of the conductivity index of the 
matrix (qma). 

 

 

 

 

 

 

 
 

Figure 5.25 — Log-log plot of the b-pressure derivative function of a double porosity reservoir 
considering fractal fracture network and infinite-acting matrix blocks for 
selected values of the conductivity index of the matrix (qma). 
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Fig. 5.26 shows that better connected permeable sites inside the fractal matrix blocks yield higher 

flow rates (i.e., the lower the qma-value, the higher flow rate).  Fig. 5.27 shows two periods of flow 

for each one of the cases presented in Fig. 5.27.  We observed that the first period of flow 

corresponds to the interaction between the fracture network and the matrix blocks and it is the 

same for all the cases.  The behavior of the second period is dominated by the qma-value, and we 

have observed that the higher the conductivity index of the matrix, the sooner the second period 

appears. 

 

 

 

 

 
 

Figure 5.26 — Log-log plot of the rate-transient and rate derivative performance behaviors of a 
double porosity reservoir considering fractal fracture network and infinite-acting 
matrix blocks for selected values of the conductivity index of the matrix (qma). 
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Figure 5.27 — Log-log plot of the b-rate derivative function of a double porosity reservoir 
considering fractal fracture network and infinite-acting matrix blocks for 
selected values of the conductivity index of the matrix (qma). 

 

5.5. Summary 

 

The purpose of the development of the models presented in this chapter is to provide analytical 

models for the estimation of parameters of unconventional reservoirs, using pressure and rate 

transient data. 
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CHAPTER VI  

CONCLUSIONS AND RECOMMENDATIONS 

 

The following conclusions have been derived from this work: 

 

1. We have utilized the fractal geometry theory to develop reservoir models for shale reservoirs.  

We have extended the existing models for multi-fractured wells to consider the fractal reservoir 

scenario. 

 

2. Using our new solutions for a horizontal well intercepting a single finite-conductivity, we have 

found that at early-transient (hydraulic fracture flow) and intermediate-transient times 

(interaction between the hydraulic fracture and the fractal reservoir), are very sensitive to the 

fractal parameters of the reservoir.  In addition, the influence of the fractal parameters at early 

and intermediate-transient times is more evident at low values of the dimensionless fracture 

conductivity. 

 

3. When considering a double porosity reservoir with a fractal fracture network and Euclidean 

matrix blocks, the presence of a single finite conductivity hydraulic fracture can yield as many 

as twelve (12) power-law sub-periods of flow as observed in the dimensionless pressure and 

dimensionless pressure derivative functions as exhibited by our new solutions. 

 

4. We applied the principle of superposition in space to the single finite-conductivity solution to 

generate the multi-fractured well case, which is a more practical/realistic scenario.  Analogous 

to the case where the horizontal wells are drilled in conventional/homogenous reservoirs, we 
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found that the transient performance of these types of wells in fractal reservoirs behaves as an 

equivalent system of a horizontal well intercepting a single fracture.   

 

5. We have studied the impact of the anomalous diffusion phenomenon in the pressure and rate 

transient performance behaviors and compared these responses to the typical (constant) 

diffusion cases.  We have found that the anomalous diffusion phenomenon shows an additional 

influence on the pressure and rate responses during early and intermediate-transient times.  

However; at late times, the anomalous diffusion phenomenon exhibits an overall lower 

pressure drop for the constant rate solution and consequently, the inclusion of the anomalous 

diffusion phenomenon results in higher values of flowrate and cumulative production at late-

transient times.   

 

6. Our partial results and the mathematical background of the models considering anomalous 

diffusion made us believe that the fractal reservoir model with typical diffusion is more likely 

in theory and in practice than the anomalous diffusion case.  To provide an explanation to the 

anomalous diffusion based on the concepts of petroleum reservoir engineering, we developed 

the double fractal model. 

 

7. We considered that the highly heterogeneous and the low/ultralow nature of the shale 

reservoirs make appropriate (1) the use of transient interporosity transfer functions and (2) the 

modeling of the fractal matrix blocks as infinite-acting media.  This approach results in a 

diffusivity equation with the same shape as the so-called anomalous diffusion equation.  

Therefore, we concluded that the anomalous diffusivity phenomenon in unconventional 

reservoirs can be related to the fractal geometry and the heterogeneities of the fractal matrix 

blocks. 
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8. To model the matrix blocks as fractal objects, we investigated the closed and the infinite-acting 

matrix blocks scenarios.  We found that  the fractal dimension of the matrix blocks does not 

have a significant impact in the signature of the pressure and pressure-transient derivative 

functions, when the blocks are considered closed (small blocks and/or high hydraulic 

diffusivity).  However, when the matrix blocks behave as "infinite-acting," the pressure- and 

rate-transient performance behaviors are sensitive to a combined effect of the properties of the 

fracture network and the matrix blocks at late times. 

 

Based on the results presented in this work, we have defined the following recommendations for 

future work: 

 

1. In this dissertation, we followed the traditional approaches to superimpose the flow of a 

reservoir (fractal reservoir) on the plane of the hydraulic fracture.  Nonetheless, we have 

questioned ourselves on the validity of these methods when coupling a fractal and a Euclidean 

object.  The reason is the lack of a physical explanation to observe higher flowrates at early 

and intermediate times in fractal reservoirs with poorly connected permeable sites (high q-

values) and/or lower fractal dimension (Df).  Therefore, our first recommendation is to explore 

other alternatives to define the continuity between a hydraulic fracture and a fractal reservoir. 

 

2. Our second recommendation is related to the development of analytical solutions for RTA.  In 

shale reservoirs, the Power-Law/Stretched exponential empirical model is widely used because 

of its accuracy and flexibility.  The shape of this model corresponds to the asymptotic behavior 

of Fox's functions for small arguments.  The solution to the double fractal model can be 

expressed in terms of this type of function.  We believe that the parameters of the double fractal 
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model can be related to the empirical parameters of the Power-Law/Stretched Exponential 

model.  Consequently, we recommend the development analytical relations between this 

empirical model and the asymptotic solutions of the double fractal model. 
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NOMENCLATURE 

 

Field Variables 

 

Afma = Fracture area per unit of matrix volume, L-1 [m-1] or [ft-1] 

B = Oil formation volume factor, [bbl/STB] or [Rm3/Sm3]   

cf = Hydraulic fracture compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

cfb = Radial fracture network compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

co = Fluid compressibility (oil), (M/Lt2)-1 [Pa-1] or [psi-1] 

cma = Matrix blocks compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

ct = Total compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

ctfb = Total compressibility (natural fractures, radial or fractal), (M/Lt2)-1 [Pa-1] or [psi-1] 

ctma = Matrix blocks total compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

ctf = Hydraulic fracture total compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 

h  = Formation thickness, L [m] or [ft] 

hma  = Matrix block size, L [m] or [ft] 

k = Permeability, L2 [mD] or [m2] 

k0 = Reference permeability for a fractal reservoir, L2 [mD] or [m2] 

k0fb = Reference permeability for a fractal fracture network, L2 [mD] or [m2] 

k0ma = Reference permeability for the fractal matrix blocks, L2 [mD] or [m2] 

kf = Hydraulic fracture permeability, L2 [mD] or [m2] 

kfb = Radial fracture network permeability, L2 [mD] or [m2] 

kma = Matrix permeability, L2 [mD] or [m2] 
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Lr = Reference Length, L [m] or [ft] 

p = Pressure, M/Lt2 [Pa] or [psi] 

pi = Initial reservoir pressure, M/Lt2 [Pa] or [psi] 

pf = Fracture pressure, M/Lt2 [Pa] or [psi] 

pwf = Wellbore flowing pressure, M/Lt2 [Pa] or [psi] 

pff = Wellbore phase redistribution pressure, M/Lt2 [Pa] or [psi] 

ptf = Tubing flowing pressure at surface, M/Lt2 [Pa] or [psi] 

r = Radial distance, L [m] or [ft] 

R = Radial distance (fractal or spherical systems), L [m] or [ft] 

rf = Radius of a circular hydraulic fracture, L [m] or [ft] 

rw = Wellbore radius, L [m] or [ft] 

s = Skin factor, dimensionless 

qw = Well Flowrate, L3/t [m3/sec] or [ft3/s] 

t = Time, t [sec]  

u = Laplace transform variable 

w = Fracture width, L [m] or [ft] 

xf = Fracture half length, L [m] or [ft] 

 

Dimensionless Variables 

 

AfD = Dimensionless natural fracture area 

AffD = Dimensionless fractal fracture area 

Df = Fractal dimension of a fractal reservoir 

Dfb = Fractal dimension of a fractal fracture network 
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Dfma = Fractal dimension of the matrix blocks 

CfD = Dimensionless wellbore storage constant 

FcD = Dimensionless fracture conductivity 

hD = Dimensionless formation thickness 

hmaD = Dimensionless matrix block size 

NpD = Dimensionless cumulative production 

pD,cr = Dimensionless pressure in the reservoir defined for the constant-rate solution 

pfD,cr = Dimensionless pressure in the hydraulic fracture defined for the constant-rate solution 

pfbD,cr =Dimensionless pressure in the fracture network defined for the constant-rate solution 

pffnD,cr =Dimensionless pressure in the fractal-fracture network for the constant-rate solution 

prfnD,cr =Dimensionless pressure in the radial-fracture network the constant-rate solution 

pmaD,cr =Dimensionless pressure in the fractal matrix blocks for the constant-rate solution 

pwD = Dimensionless wellbore flowing pressure 

rD = Dimensionless radius for a circular system 

rwD = Dimensionless radius wellbore 

RD = Dimensionless radius for a spherical or fractal system 

qwD = Dimensionless flowrate 

Sint = Interporosity skin 

tD = Dimensionless time 

tDr = Dimensionless time (dimensionless variables for a radial fracture network) 

tDf = Dimensionless time (dimensionless variables for a fractal fracture network) 

xD = Dimensionless linear position in the x-direction 

zD = Dimensionless linear position in the z-direction 



 

142 

 

v = Grouping parameter of the fractal variables of a fractal fracture network/reservoir. 

vma = Grouping parameter of the fractal variables of the fractal matrix blocks 

 

Greek Symbols 

 

a0 = Grouping parameter of the properties the fractal matrix block, dimensionless 

a1 = Grouping parameter of the properties the fractal matrix block, dimensionless 

aDf = Area of a unit sphere in Df dimensions 

b = Spatial dimension, dimensionless 

bma = Spatial dimension of the fractal fracture network, dimensionless 

g = Anomalous diffusivity exponent as function of fractal parameters, dimensionless 

dqD = Point density fluid withdrawal, dimensionless 

q = Conductivity index, dimensionless 

qma = Conductivity index of the fractal matrix blocks, dimensionless 

hfD = Dimensionless hydraulic diffusivity of the hydraulic fracture, dimensionless 

hmaD = Dimensionless hydraulic diffusivity of the matrix, dimensionless 

µ = Newtonian Viscosity, M/Lt [cp] or [lbm/ft•s] 

x = Grouping parameter, dimensionless 

xRD = Function of RD, dimensionless  

f = Porosity, fraction 

f0 = Reference porosity for a fractal reservoir, fraction 

f0fb = Reference porosity for fractal fracture network, fraction 

ff = Hydraulic fracture porosity, fraction 
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ffb = Natural fracture network porosity, fraction 

f0ma = Reference porosity for the fractal matrix blocks, fraction 

fma = Matrix porosity, fraction 

w = Storativity ratio, dimensionless 

 

Mathematical Functions 

 

Ei(x) = Exponential Integral Function  

Iv(x) = Modified Bessel Functions of the first kind, v-order 

Kv(x) = Modified Bessel Functions of the second kind, v-order 

G(x) = Gamma function 

G(a,x)=Incomplete Gamma function 
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APPENDIX A 

PRESSURE-TRANSIENT BEHAVIOR OF HORIZONTAL WELLS WITH FINITE-

CONDUCTIVITY VERTICAL FRACTURES 

 

In this Appendix, we present the detailed derivation and the procedure to obtain the solution of the 

model presented by Larsen et al. (1991). 

 

A.1. Development of the Radial Diffusivity Equation for a Circular Transverse Finite 

Conductivity Fracture 

 

To develop the radial diffusivity equation that describes the flow inside the circular hydraulic 

fracture, consider the control volume shown in Fig. A.1.  The control volume is constructed by 

two concentric horizontal cylinders.  The inner and outer cylinders have radii r and r+Dr, 

respectively.  For this model, the flow occurs in the r- and z-directions (angular flow is neglected). 

 

.  

 

Figure A.1 — Control volume of a circular vertical hydraulic fracture. 
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The volume of the geometric shape exhibit in Fig. A.1 is given by: 

 

. .....................................................................................................................(A.1) 

 

The incoming mass of a fluid, min,r, throughout the outer cylinder is: 

 

,...................................................................................................(A.2) 

 

and the outgoing mass, mout,r, throughout the outer cylinder is given by: 

 

. ..........................................................................................(A.3) 

 

Analogously, the incoming mass of fluid in the z-direction is: 

 

. .......................................................................................................(A.4) 

 

and the outgoing mass in the same direction is defined by: 

 

. .....................................................................................(A.5) 

 

The cumulative mass of the fluid is determined by: 

 

. ...................................................................................(A.6) 

 

The following expression results from combining Eqs. A.2 through A.6 and arraying: 

 

. ..........................................................(A.7) 

 

The mass of fluid at an initial time can be expressed as: 

 

. ........................................................................................................(A.8) 

 

zrrVc DDD= q

tzrrvm rrin DDDD+-= qr ][,

tzrvvm rrrout DDDD+-= qrr )]([,

tzrrvm zzin DDDD-= qr,

tzrrvvm zzzout DDDDD+-= qrr )]([,

][ ,,,, zinrinzoutroutc mmmmm +-+=

tzrrvtzrvtzrvm zrrc DDDDD+DDDD+DDDD= qrqrqr )()(

zrrSm fft DDD= qrf1
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At a final time, the mass of fluid is given by: 

 

. ...........................................................................(A.9) 

 

The cumulative mass of fluid for the time-dependent case is given by: 

 

. ................................................................................................................. (A.10) 

 

Substituting Eq. A.8 and Eq. A.9 in Eq. A.10: 

 

. .................................................................................................. (A.11) 

 

Equating Eq. A.7 and Eq. A.11: 

 

. ................................. (A.12) 

 

Dividing Eq. A.12 by VcDt, such an equation reduces to: 

 

. ................................................................................. (A.13) 

 

Taking the limits of Dr, Dt and Dz to zero, Eq. A.13 can be written in its differential form.  Such 

an equation becomes: 

 

. ................................................................................... (A.14) 

 

To obtain the diffusivity equation for radial flow, the continuity equation defined by Eq. A.14 must 

be combined with an equation of motion and an equation of state.  For this model, Darcy's Law 

flow will be considered in both r- and z-directions.  For the r-direction: 

 

zrrSzrrSm fffft DDDD+DDD= qrfqrf )(2

12 ttc mmm -=
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, ................................................................................................................... (A.15) 

 

and in the z-direction: 

 

. ................................................................................................................... (A.16) 

 

Substituting Eq. A.15 and Eq. A.16 in Eq. A.14 and assuming single fluid flow (i.e., Sf=1): 

 

........................................................ (A.17) 

 

Expanding Eq. A.15 and assuming constant permeability and viscosity, such an equation is 

rewritten as: 

 

........................................................ (A.18) 

 

Expanding Eq. A.15 and assuming constant permeability and viscosity, such an equation is 

rewritten as: 

 

. ................... (A.19) 

 

To include the effects of a slightly compressible fluid, it is convenient to express some of the 

derivatives in Eq. A.19 in terms of the change in density of porosity of the hydraulic fracture with 

respect to pressure.  Therefore, using the chain rule: 

 

, ............................................................................................................... (A.20) 

r

pk
v fr
r ¶

¶
=
µ

z

pk
v fz
r ¶

¶
=
µ

tz

pk
zr

pk
rr

pk
r

ffzfrfr
¶

¶
=

ú
ú
û

ù

ê
ê
ë

é

¶

¶

¶
¶

+
ú
ú
û

ù

ê
ê
ë

é

¶

¶
+
ú
ú
û

ù

ê
ê
ë

é

¶

¶

¶
¶ )( rf

µ
r

µ
r

µ
r

tz

pk
zr

pk
rr

pk
r

ffzfrfr
¶

¶
=

ú
ú
û

ù

ê
ê
ë

é

¶

¶

¶
¶

+
ú
ú
û

ù

ê
ê
ë

é

¶

¶
+
ú
ú
û

ù

ê
ê
ë

é

¶

¶

¶
¶ )( rf

µ
r

µ
r

µ
r

ú
ú
û

ù

ê
ê
ë

é

¶

¶
+

¶
¶

=
¶

¶

¶
¶

+
¶

¶

¶
¶

+
¶

¶
+

¶

¶
+

¶

¶

ttkz

p

k
k

zr

p

rz

p

k
k

r

p

rr

p f

fr

ff

r
zff

r
zff f

f
r

r

µfr
r

r
r

11111
2

2

2

2

r

p

pr
f

f ¶

¶

¶
¶

=
¶
¶ rr



 

156 

 

 

, ............................................................................................................... (A.21) 

 

, ............................................................................................................... (A.22) 

 

. ............................................................................................................. (A.23) 

 

Substituting Eq. A.20 through Eq. A.23 in Eq. A.19 and arraying: 

 

. .... (A.24) 

 

The compressibility of the fluid is defined by: 

 

, ................................................................................................................... (A.25) 

 

and the compressibility of the hydraulic fracture is: 

 

. ................................................................................................................. (A.26) 

 

Substituting Eqs. A.25 and A.26 in Eq. A.24 and assuming negligible squared pressure gradients, 

Eq. A.24 becomes: 

 

, ......................................................................... (A.27) 

 

where the total compressibility of the fracture is defined by: 
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. ................................................................................................................... (A.28) 

 

Rewriting Eq. A.27 in the compact form and considering the fracture as an isotropic media (i.e., kf 

= kr = kz): 

 

. ...................................................................................... (A.29) 

 

To couple the two porous media (the circular hydraulic fracture and the 3D reservoir), the pressure 

and the flowrate in both media must be the same.  Hence, for the pressure: 

 

, ....................................................................... (A.30) 

 

and for the flowrate: 

 

. ............................................................................................ (A.31) 

 

The second derivative of the pressure in the circular fracture with respect to z can be reduced by 

taking an averaged pressure in the fracture: 

 

. ................................... (A.32) 

 

Applying the integral and evaluating the integration limits Eq. A.32 becomes: 

 

. ............ (A.33) 
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Assuming no significant difference between the averaged pressure in the circular fracture and the 

pressure and any point of it, i.e.: 

 

,........................................................................................................... (A.34) 

 

and according to Eq. A.31, Eq. A.33 reduces to: 

 

. ........................................................................... (A.35) 

 

Larsen et al. (1991) presented solutions considering constant flowrate at the wellbore.  Therefore, 

to generalize the problem, the following dimensionless variables were defined.  The dimensionless 

pressure for the circular fracture is: 

 

, ................................................................................. (A.36) 

 

and for the 3D reservoir case: 

 

. ................................................................................... (A.37) 

 

The dimensionless time for this model is defined by: 

 

. ................................................................................................................... (A.38) 

 

The dimensionless (radial) position within the fracture is: 
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The horizontal position is: 

 

. ......................................................................................................................... (A.40) 

 

Using the chain rule, the derivative of the pressure in the circular fracture with respect to the time 

can be expressed as: 

 

. ............................................................................................ (A.41) 

 

Then, based on Eq. A.37 and Eq. A.38: 

 

. ......................................................................................... (A.42) 

 

Similarly, for the first derivative of the pressure in the circular fracture with respect to r: 

 

. ................................................................. (A.43) 

 

The derivative of pressure in the 3D reservoir with respect to z has a similar shape: 

 

. ...................................................................... (A.44) 

 

Considering the definition of the dimensionless radius (Eq. A.39) and substituting Eqs. A.41 

through A. 44 in Eq. A.35 results in: 

 

. .. (A.45) 
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Eliminating terms, Eq. A.45 reduces to the radial diffusivity equation with a source term in its 

dimensionless form: 

 

, ........................................................ (A.46) 

 

where the dimensionless hydraulic diffusivity of the radial fracture is defined by: 

 

, ................................................................................................................. (A.47) 

 

and the dimensionless fracture conductivity is: 
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To obtain the general solution of Eq. A.46 it is convenient to eliminate one of the independent 

variables.  This reduction of variables is made by discretizing the circular fracture into segments 

such that the gradient in the z-direction can be approximated by: 
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where dqr,j is the flowrate from the reservoir flowing towards the j-segment of the discretized 

circular fracture.  Transforming Eq. A.49 to dimensionless variables: 
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where the dimensionless reservoir rate in the j-segment is defined by: 
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, ................................................................................................................. (A.51) 

 

and the dimensionless thickness is: 

 

, ......................................................................................................................... (A.52) 

 

Substituting Eq. A.50 in Eq.A.46: 

 

, ................................................................... (A.53) 

 

where FhcD is an alternate parameter to describe the fracture conductivity.  It is defined as: 
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Applying the Laplace transform to Eq. A.53and treating the dimensionless reservoir rate in the j-

interval as a function of time: 

 

, ............................. (A.55) 

 

For this model, it is assumed that the pressure is initially distributed.  In dimensionless variables it 

is expressed as: 
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Hence, Eq. A.55 can be rewritten as follows: 
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. .......................................... (A.57) 

 

Eq. A.57 is a non-homogenous partial differential equation.  The particular solution to the non-

homogeneous part is obtained by removing the derivatives of the dimensionless pressure in the 

circular fracture.  Such a particular solution is given by: 

 

. ...................................................................................................... (A.58) 

 

To solve the homogenous part of Eq. A.57 consider the transformation function: 

 

, ................................................................................................................. (A.59) 

 

and the transformation variable: 

 

, ................................................................................................................... (A.60) 

 

Using the chain rule, the derivative of the dimensionless pressure in the fracture in the Laplace 

domain with respect to the dimensionless radius is: 

 

. ..................................................................... (A.61) 

 

Applying the second derivative to Eq. A.61 with respect to rD: 

 

. .................................................................................................. (A.62) 
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Taking the homogenous part of Eq. A.57 and substituting Eqs. A. 59 through A. 61: 

 

. ................................................................................... (A.63) 

 

By inspection, the general solution of Eq. A.63 is given by: 

 

.................................................................................................. (A.64) 

 

The general solution to Eq. A.57 is given by adding Eq. A.58 and Eq. A.64 and using the 

definitions given by Eqs. A.59 and A.60: 

 

. ........................................ (A.65) 

 

A.2. Development of the Linear Diffusivity Equation for a Rectangular Longitudinal Finite 

Conductivity Fracture 

 

To develop the diffusivity equation for a linear system with a source to represent the flow within 

a rectangular fracture, consider the control volume shown in Fig. A.2.  The control volume is 

constructed by a rectangular prism whose volume is defined by: 
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Figure A.2 — Control volume of a rectangular hydraulic fracture. 

 

The incoming mass of fluid, min,x, throughout the rectangular prism through in the x-direction is: 

 

,........................................................................................................... (A.67) 

 

and the outgoing mass, mout,x, in the same direction is: 

 

. ........................................................................................ (A.68) 

 

Analogously, the incoming mass of fluid in the z-direction is: 

 

,........................................................................................................... (A.69) 

 

and the outgoing mass is: 

 

. .......................................................................................... (A.70) 

 

The cumulative mass of fluid is given by: 
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. ................................... (A.71) 

 

The mass of fluid at an initial time can be expressed as (considering a single fluid, i.e., Sf =1): 

 

, ............................................................................................................. (A.72) 

 

and at a final time, the mass of the fluid is given by: 

 

. ...................................................................................... (A.73) 

 

Combining Eqs. A.71 through A. 73: 
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Equating Eqs. A.71 and A. 74: 

 

. ................................................................... (A.75) 

 

Dividing Eq. A.75 by DxDyDzDt: 

 

. .............................................................................................. (A.76) 

 

Taking the limits of Dx, Dz, and Dt to zero, Eq. A.76 results the 2D continuity equation: 
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Darcy's law for a linear system in i-direction is defined by 
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Substituting Eq. A.78 in Eq. A.77 for x and z directions and assuming (1) isotropic media with 

constant permeability, kf, and (2) a fluid with constant viscosity, the following expression is 

obtained: 

 

. ......................................................................... (A.79) 

 

Applying the derivatives in Eq. A.79: 

 

. ............................................ (A.80) 

 

Using the chain rule as in the previous section: 

 

, ................................................................................................................. (A.81) 

 

, ............................................................................................................... (A.82) 

 

, ............................................................................................................... (A.83) 

 

. ............................................................................................................. (A.84) 

 

Substituting Eqs. A.81 through A.84 in Eq. A.80: 

 

. ........ (A.85) 
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According to the definition of the compressibility of the fluid (Eq. A.25) and the compressibility 

of the hydraulic fracture (Eq. A.26), Eq. A.85 can be rewritten as: 

 

. ........................................................ (A.86) 

 

where ctf is the total compressibility and is defined by Eq. A.28.  Neglecting the squared-pressure 

gradient results in the 2D diffusivity equation: 

 

. ......................................................................................... (A.87) 

 

The second derivative of the pressure in the fracture with respect to z in Eq. A.86 should be treated 

as in section A.1, i.e.: the average pressure of the fracture should be taken and the flowrate at the 

interface between the rectangular fracture and the 3D reservoir should be considered equal (i.e. 

Eq. A.31).  After this mathematical treatment, Eq. A.86 becomes: 

 

. ............................................................................... (A.88) 

 

For this model, the dimensionless variables are analogously defined by Eqs. A. 36 through A.40, 

but the reference length for the rectangular fracture is the half-length xf instead of the radius of the 

fracture rf.  Therefore, Eq. A.88 expressed in dimensionless variables is: 
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dimensionless fracture conductivity for this case is: 

 

....................................................................................................................... (A.90) 

 

To reduce the number of variables in Eq. A.89 and make the process of solving easier, the same 

procedure depicted in Section A.1should be applied.  For this case, the approximation of the 

gradient of the pressure with respect of z is given by: 

 

............................................................................................................ (A.91) 

 

Transforming Eq. A.91 to dimensionless variables yields the same shape as Eq. A.50.  Substituting 

such an expression in Eq. A.89: 

 

. ............................................................................... (A.92) 

 

where FhcD is defined exactly as for the circular fracture case (Eq. A.54). 

 

Applying the Laplace transform to Eq. A.92: 

 

. .................................................. (A.93) 

 

Considering that the initial pressure is uniformly distributed, i.e.: 
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Eq. A.93 is rewritten as: 
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. ................................................................................. (A.95) 

 

Similar to Eq. A.57, Eq. A.95 is also a non-homogenous partial differential equation.  Therefore, 

Eq. A.95 can be solved following the same procedure used for Eq. A.57.  The solution of the non-

homogenous part is: 

 

.................................................................................................. (A.96) 

 

The homogenous part of Eq. A.95 is: 

 

.................................................................................................. (A.97) 

 

Eq. A.97 is an ordinary differential equation of second order with constant coefficients.  Hence, 

its solution can be written as: 
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The solution of Eq. A.95 is given by adding the solution of the non-homogenous part (Eq. A.96) 

and the homogenous part (Eq. A.97): 

 

. ............................. (A.99) 

 

The value of the constants Aj and Bj depends on the segment of the discretized fracture where the 

solution is evaluated.  These values are determined by solving a system of equations.  The 
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construction of such a system and the procedure to obtain its solution will be addressed in Section 

A.5 

 

A.3. Development of the Diffusivity Equation for a 3D reservoir (Spherical Flow) and its 

constant-rate solution 

 

Based on Fig. A.3, the control volume for a spherical system is constructed by two concentric 

spheres, and it is determined by: 

 

........................................................................................................ (A.100) 

 

 
 

Figure A.3 — Control volume of a 3D reservoir. 
 

The incoming mass of a fluid, min,R, throughout the outer sphere is: 

 

, ................................................................................. (A.101) 

 

and the outgoing mass, mout,r, throughout the outer cylinder is given by: 
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. ......................................................................... (A.102) 

 

The cumulative mass of the fluid is determined by: 

 

, .. (A.103) 

 

and it is reduced to: 

 

. ................................................ (A.104) 

 

The mass of a single fluid (Sf = 1) at an initial time can be expressed as: 

 

. ................................................................................................... (A.105) 

 

At a final time, the mass of fluid is given by: 

 

. ............................................................... (A.106) 

 

The cumulative mass of fluid for the time-dependent case is given by: 
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Substituting Eq. A.105 and Eq. A.106 in Eq. A.107: 
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Equating Eq. A.104 and Eq. A.108: 

 

. ....................... (A.109) 

 

Dividing Eq. A.109 by VcDt, such an equation reduces to: 
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. ...................................................................................... (A.110) 

 

Taking the limits of DR and Dt to zero, Eq. A.110 can be written in its differential form: 

 

. ................................................................................................... (A.111) 

 

Recall Darcy's law: 
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Substituting Eq. A.112 in Eq. A.111 and applying the derivatives assuming constant permeability 

and viscosity results in: 

 

. ....................................................................... (A.113) 

 

Use the chain rule as in the previous sections to apply the definitions of the compressibility of a 

fluid (Eq. A.25) and the compressibility of the reservoir which is defined: 
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As a results of this, Eq. A.113 is rewritten as: 
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Consider the dimensionless variables defined in section A.1, i.e., the pressure of the 3D reservoir 
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, ....................................................................................................................... (A.116) 

 

where Lr is the reference length (rf  for the circular fracture case and xf for the rectangular fracture).  

 

Transforming Eq. A.115 to dimensionless variables results in the following equation results (in 

the compact form): 

 

. ............................................................................................ (A.117) 

 

To solve Eq. A.115, consider the following initial and boundary conditions: 

 

 (initial condition), ..................................................... (A.118) 

 

 (inner boundary condition), ....................................... (A.119) 

 

 (outer boundary condition) ........................................ (A.120) 

 

where the dimensionless reservoir rate is defined by: 
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The dimensionless thickness is: 
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and dimensionless radius of the source is: 
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, ................................................................................................................... (A.123) 

 

Consider the transformation: 

 

, ...................................................................................................................... (A.124) 

 

then use the chain rule: 
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and: 

 

. ................................................................................................ (A.126) 

 

Substituting Eq. A.125 and Eq. A.126 in Eq. A.117: 

 

. .................................................................................... (A.127) 

 

Applying the derivative on the left hand side of Eq. A.127 reduces to: 
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Applying the transformation defined in Eq. A.114 in the initial condition (Eq. A.118): 
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Applying the Laplace transform to Eq. A.128 and considering the initial condition (Eq. A.129), 

the following equation results in: 

 

. ............................................................................................................. (A.130) 

 

Mathematically, Eq. A.130 has the same shape of Eq. A.97.  Hence, the general solution of Eq. 

A.130 is given by: 

 

, ................................................................... (A.131) 

 

or, in terms of the dimensionless pressure, it is given by: 

 

, ................................................................. (A.132) 

 

Applying the outer boundary condition (Eq. A.120) to Eq. A.132: 

 

, ................. (A.133) 

 

It is concluded that C2 must be zero.  Therefore, the bounded solution is: 

 

, ....................................................................................... (A.134) 

 

To apply the inner boundary condition, the derivative of the dimensionless pressure with respect 

to RD of Eq. A.134 should be considered: 
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0
2

2
=- D

D

D bu
dR

bd

]exp[]exp[),( 21 uRCuRCuRb DDDD +-=

]exp[]exp[),( 21 uR
R
C

uR
R
C

uRp D
D

D
D

DD +-=

0]exp[1lim]exp[1lim),(lim 21 =ú
û

ù
ê
ë

é
+ú

û

ù
ê
ë

é
-=

¥®¥®¥®
uR

R
CuR

R
CuRp D

DDR
D

DDR
DD

DR

]exp[),( 1 uR
R
C

uRp D
D

DD -=

]exp[1
21 uR

R
u

R
C

R
p

D
DDD

D -
ú
ú

û

ù

ê
ê

ë

é
+-=

¶
¶



 

176 

 

 

Evaluating Eq. A.134 in RwD and comparing it with the inner boundary condition (Eq. A.119) 

expressed in the Laplace domain, it is concluded that: 

 

. ...................................................................................... (A.136) 

 

Substituting Eq. A.136 in Eq. A.134, the solution for this model is obtained: 

 

, ............................................................. (A.137) 

 

Assuming a point source (i.e., RwD=0), Eq. A.138 reduces to: 
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A.4. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular 

Transverse Finite Conductivity Fracture within a 3D Reservoir 

 

Recall the general solution of the radial flow model of a circular fracture (Eq.A.65): 
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The last term on the right hand side of the equation represents the "contribution of pressure" due 

to the flow from the 3D reservoir to the circular fracture.  Such a term results from the 

approximation of the gradient in the z-direction. 

 

Fig A.4 shows a schematic example of a circular fracture logarithmically discretized in five 
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results.  However, for the sake of giving an example, five segments will be used.  The responses 

of the dimensionless pressure for each one of the segments in Fig.A.4 are: 

 

 (rD0≤ rD ≤rD1), ............... (A.139) 

 

 (rD1≤rD≤rD2), ............... (A.140) 

 

 (rD2≤rD≤rD3), ................. (A.141) 

 

 (rD3≤rD≤rD4), ............... (A.142) 

 

 (rD3≤rD≤rD4). ............... (A.143) 

 

This approach leads to fifteen unknowns (in general 3N unknowns for N-segments of the circular 

fracture).  To set a system of fifteen equations (3N in general) four conditions must be considered: 

(1) boundary conditions of the circular fracture, (2) continuity of pressure at the interfaces of the 

discretized fracture, (3) continuity of flowrate at the interfaces of the discretized fracture, and (4) 

pressure continuity between the fracture and the 3D reservoir. 
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Figure A.4 — Logarithmic discretization of the circular fracture. 
 

1. Boundary conditions of the circular fracture. 

 

It is assumed that the well at the center of the circular fracture is produced at a constant rate and 

such a fracture is closed.  Therefore, the inner boundary condition is defined by: 

 

, .................................................................................................... (A.144) 

 

and the outer boundary condition is defined by 
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Transforming Eqs. A.144 and A.145 to dimensionless variables, they become: 
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and: 

 

,......................................................................................................... (A.147) 

 

respectively.  Given that the inner boundary condition corresponds to the segment defined by rD0 

and rD1, it must be applied to Eq. A.139.  Applying the Laplace transform to Eq. A.146 and then 

the boundary condition to Eq. A.139, the following expression is derived: 

 

. .......... (A.148) 

 

Rewriting Eq. A.148: 

 

. ........................................................ (A.149) 

 

Similarly, applying the outer boundary condition to Eq. A.143: 
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2. Continuity of pressure at the interfaces of the discretized fracture.  

 

To establish continuity of the pressure along the circular fracture, the pressure must be equal at 

every interface, i.e., 

 

, ........................................................................... (A.151) 
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 (rD1-interface), ........ (A.152) 

 

 (rD2-interface), ...... (A.153) 

 

 (rD3-interface),....... (A.154) 

 

 (rD4-interface). ....... (A.155) 

 

3. Continuity of flowrate at the interfaces of the discretized fracture.  

 

In addition to the continuity of the pressure, continuity of the flowrate at every interface along the 

circular fracture must also be considered, i.e., 

 

, ................................................................. (A.156) 
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 (rD1-interface), .... (A.157) 

 

 (rD2-interface), .. (A.158) 

 

 (rD3-interface), .. (A.159) 

 

 (rD4-interface). .... (A.160) 

 

4. Continuity of pressure between the fracture and the 3D reservoir. 

 

So far, ten out of the fifteen equations needed to obtain the fifteen unknowns in Eqs.A.139 – A.143 

have been set up.  The remaining five are defined by superposing the pressure of the 3D reservoir 

on the plane of the circular fracture (see Fig. A.5).  To show this procedure, consider the "point 

well" solution obtained in section A.3 (Eq. A.138): 

 

. 

 

The superposition of Eq. A.138 over the area of the fracture is given by the double integral over 

the domain of the angle, q, and the radius rD: 
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Figure A.5 — Fluid transfer from the 3D reservoir to an infinitesimal section of the circular 
fracture. 

 

Integrating Eq. A.161 over the domain of q: 

  

. ........................................................... (A.162) 

 

The value of the angle q depends on the position along the rD-axis.  To obtain a function that relates 

these two variables, consider an observation point (r*Dj,0,0) in cartesian coordinates.  On the other 

hand, the equation of a circumference with center (h,k) and radius rDj in the XY-plane is: 
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Taking r*D as the center of the circumference, then Eq. A.163 becomes: 
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Based on the definition of the radius of a circle in cartesian coordinates: 
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, ................................................................................................................. (A.165) 

 

and the projection of the radius on the x-axis: 
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Substituting Eqs. A.165 and A.166 in Eq. A.164: 

  

. ...................................................................................... (A.167) 

 

Solving Eq. A.167 for q: 
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Substituting Eq. A.168 in Eq. A.162: 

  

. ............... (A.169) 

 

The radius of the spherical reservoir (RD) is related to the radius of the circular fracture (rD) as: 
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where z0D is the observation point along the wellbore. 

 

To provide the remaining expressions to complete the system of equations, the solution of the 
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expression that represents the pressure of the reservoir at the same point.  Total pressure acting on 

a r*Dj point located at j-segment defined in Fig. A.5 is determined by: 

 

. .......................................... (A.171) 

 

where: 

  

. ................................. (A.172) 

 

Larsen et al. (1991) used Simpson's rule to perform the integral in Eq. A.172 in their calculations.  

To perform the integral in Eq. A.172, such an equation must be arranged to consider the relative 

position of the observation point and the integration limits.  This arrangement is shown at the end 

of this subsection. 

  

It is convenient to define the observation points, r*Dj, at the midpoint of every segment of the 

discretized circular fracture (see Fig. A.6).  At the observation points, the dimensionless pressure 

of the circular fracture and the dimensionless pressure of the 3D reservoir are equal.  Evaluating 

Eq. A.65 at the generic observation point, r*Dj, and equating this expression to Eq. A.171 results 

in: 
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Figure A.6 — Definition of the observation points to define the continuity of pressure between 
the circular fracture and the 3D reservoir. 

 

Then, the following set of equations should be used for the case presented in Fig. A.6: 
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, .......... (A.177) 

 

. ........ (A.178) 

 

Considerations for the integration of the Gc-function 

 

Recall Eq. A.172: 

 

. 

 

If the observation point, r*Dj, in Eq. A.172 is greater than the upper integration limit (rDk< r*Dj), the 

integration limits should be adjusted to consider the circumference created by radius rDk (see Fig. 

A.7).  The lower integration limit is redefined as: 
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and the upper integration limit is: 
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Figure A.7 — Definition of the integration limits for rD when the observation point, r*Dj, is 
greater than the limit rDk. 

 

If the observation point in Eq. A.172 is lower than the upper integration limit (rDk > r*Dj), then the 

lower limit, rDmin, will be zero and the upper integration limit, rDmax, is equal to rDk (see Fig. A.8).  

For this case, there is a "natural lower bound" defined by: 
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Figure A.8 — Definition of the integration limits for rD when the observation point, r*Dj, is 
lower than the limit rDk. 

 

The numerical integration when rDk > r*Dj causes some difficulties given that the lower integration 

limit is zero.  Therefore, it is convenient to use the "natural lower bound" to split the integral to 

avoid such difficulties.  To do so, it is more convenient to write Eq. A.172 in terms of RD: 
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and: 
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Splitting the integral in Eq. A.182 at the "natural lower bound" it becomes: 

  

. .... (A.185) 

 

where: 
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Considering the trigonometric identity: 
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Eq. A. 185 is rewritten as: 
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Integrating the first term on the right hand side: 
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. ......................... (A.189) 

 

Given that the lower limit, rDmin, is zero and the observation point z0D is also zero, Eq. A.183 

reduces to: 

 

, ...................................................................................................................... (A.190) 

 

and Eq. A.186 becomes: 
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Consequently, the integration interval of the integral of the second term in the right hand side of 

Eq. A.189 is defined over the [1,∞)-interval, which is out of the real domain of the cos-1-function.  

Therefore, such an integral is equal to zero and Eq. A.189 reduces to: 
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[ ]

[ ]ò
*

*
-

ò
*

*
-

*

-
ú
ú
ú

û

ù

ê
ê
ê

ë

é

-

-+-

+-
ú
ú
ú

û

ù

ê
ê
ê

ë

é

-

+-+

----=

max

2
0

2

2
0

222
1

min 2
0

2

222
0

2
1

min

exp
2

)(
cos

exp
2

)(
cos

]]exp[][exp[),,(

DR

DR
DD

DDDj

DDDkDj

DR

DR
DD

DDDj

DDjDDk

DDDkDjc

dRuR
zRr

zRrr

dRuR
zRr

Rrzr

uRuRurrG

a

a

ap

0min =DR

*-= DjDkD rrR a

[ ]ò
*

*
-

*

-
ú
ú
ú

û

ù

ê
ê
ê

ë

é

-

-+-

+---=

max

2
0

2

2
0

222
1

min

exp
2

)(
cos

]]exp[][exp[),,(

DR

DR
DD

DDDj

DDDkDj

DDDkDjc

dRuR
zRr

zRrr

uRuRurrG

a

ap



 

190 

 

 

A.5. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Rectangular 

Longitudinal Finite Conductivity Fracture within a 3D Reservoir 

 

The procedure to develop the constant-rate solution for the rectangular longitudinal fracture case 

within a 3D reservoir is essentially the same as in the previous section.  Therefore, recall the 

solution developed in section A.2 for a discretized rectangular fracture (Eq. A.99): 

 

. 

 

Fig A.9 shows an example of a rectangular fracture logarithmically discretized into three segments.  

A discretization in thirty segments is recommended.  However, for the sake of providing an 

example, three segments will be used.  The dimensionless pressure response of the discretized 

rectangular fracture shown in Fig. A.9 is given by the set of equations: 

 

 (xD0≤xD ≤xD1), ......... (A.193) 

 

 (xD1≤xD ≤xD2), ........ (A.194) 

 

 (xD2≤xD ≤xD3). ....... (A.195) 

 

This approach results in a set of nine unknowns (3N-unknowns for N-segments of the rectangular 

fracture).  To determine the values of the unknowns the procedure shown in section A.4 is also 

applied for this case. 
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Figure A.9 — Logarithmic discretization of a rectangular fracture and definition of observation 
points. 

 

1. Boundary conditions of the rectangular fracture. 

 

The inner boundary condition for the well intercepting the rectangular fracture and producing at 

constant rate is: 

 

. .................................................................................................... (A.196) 

 

Eq. A.196 expressed in dimensionless variables is: 

 

, ........................................................................................ (A.197) 

 

where dimensionless horizontal length of the fracture is: 

 

. ...................................................................................................................... (A.198) 
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For this model, it is considered a closed hydraulic fracture.  Therefore the outer boundary condition 

is defined by: 

 

, ............................................................................................................. (A.199) 

 

or, expressed in dimensionless variables: 

 

.......................................................................................................... (A.200) 

 

Transforming the inner boundary condition (A.197) to the Laplace domain and then applying it to 

Eq. A.193 (segment defined by xD0 and xD1), this results in the expression: 

 

. ................................................................................................ (A.201) 

 

Similarly, applying the outer boundary condition (Eq. A.200) to Eq. A.195: 

 

. ............................................................................... (A.202) 

 

2. Continuity of pressure at the interfaces of the discretized fracture.  

 

The continuity of the pressure for this case is defined by: 

 

, ........................................................................... (A.203) 

 

for 2≤ j ≤N.  For the segments defined in Fig. A.9: 

 

0=
ú
ú
û

ù

ê
ê
ë

é

¶

¶

= fxx

f
x

p

0
1

,
=

ú
ú
û

ù

ê
ê
ë

é

¶

¶

=DxD

crfD
x

p

2/311
2 uyF

BA
fDhcD

fDhp
=-

0expexp 33 =
ú
ú
û

ù

ê
ê
ë

é
-
ú
ú
û

ù

ê
ê
ë

é
-

fDfD

uBuA
hh

),(),( 1,,11,, uxpuxp DjjcrfDDjjcrfD --- =



 

193 

 

 (xD1-interface), .... (A.204) 

 

 (xD2-interface), .... (A.205) 

 

3. Continuity of flowrate at the interfaces of the discretized fracture.  

 

The continuity of flowrate is defined by: 

 

, ................................................................. (A.206) 

 

for 2≤ j ≤N.  For the example given in Fig. A.9: 

 

 (xD1-interface), ............... (A.207) 

 

 (xD2-interface), ............. (A.208) 
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4. Continuity of pressure between the fracture and the 3D reservoir. 

 

To provide the remaining expressions to complete the system of equations for this model, consider 

the superposition of the dimensionless pressure of the 3D reservoir on the plane of the rectangular 

fracture (analogous to the circular fracture case): 

 

. ......................................................................... (A.209) 

 

where: 

  

. ................................................................... (A.210) 

 

The integral in Eq. A.210 is defined in polar coordinates.  To integrate a rectangular surface using 

polar coordinates consider Fig. A.10.  Note that a rectangular area can be subdivided into three 

semicircular areas, each one defined by minimum and maximum radii and an angle. 

 

Given that rD and q are defined depending on the observation point (x*Dk, y*Dk) and any coordinate 

(xiD, yjD), it is convenient to use the following notation in terms of function ZR: 

 

. .......................................................... (A.211) 

 

Based on Fig A.10, observe that the minimum and maximum radii and angle depend on the 

segment (semicircular area) of the rectangle.  Hence, the integrals n ZR-function can be written as: 
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. ....................... (A.212) 

 

 
 

Figure A.10 — Subdivision of a rectangular area into semicircular areas. 
 

Integrating Eq. A.212 with respect to q: 

 

, ............ (A.213) 

 

where: 
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,....................................................................................................... (A.215) 

 

,....................................................................................................... (A.216) 

 

, .................................................................................................... (A.217) 

 

, .................................................................................................... (A.218) 

 

. .................................................................................................... (A.219) 

 

Because of the reference system, angles qmin,II and qmax,II are different from the ones reported by 

Larsen et al. (1991).  However the expressions yield the same results. 

 

If the observation point is located at the origin, then rD1 and qmin,I (Eq.A.214) become zero, and 

qmax,I  is p/2.  Consequently, the first integral on the right hand side of Eq. A.213 can be performed 

analytically.  The resulting equation is: 

 

. ............ (A.220) 
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discretized rectangular fracture (see Fig. A.8).  To perform the integrals given in Eq. A.220, it is 

convenient to always translate the observation point to the origin of the coordinate system by 

resetting the observation point(x*Di, y*Di) as the origin (0,0).  The translation of the rest of the points 

are made by rescaling the x-axis as 

 

, ............................................................................................................. (A.221) 

 

and y-axis as: 

 

. ........................................................................................................... (A.222) 

 

This translation of axes allows some of the variables of the ZR-function to drop.  It is redefined as: 

 

. .................................... (A.223) 

 

After the axes translation, some of the coordinates can become negative.  If that is the case, the 

area (or areas) of the rectangle that relies on the negative section of the translated reference system 

can be translated again to be considered in the positive section.  These cases are summarized and 

graphically shown in Table A.1.  For such cases, the ZR- function should be mathematically treated 

as follows: 

 

 (x'1D <0< x'2D),.......................... (A.224) 

 

 (y'1D <0< y'2D),.......................... (A.225) 
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 (x'1D <0< x'2D and y'1D <0< y'2D), ... (A.226) 

 

As shown in Fig. A.9, the continuity of pressure between the rectangular fracture and the 3D 

reservoir generates three equations by comparing the dimensionless pressure of the fracture (Eq. 

A.99) and the superposed dimensionless pressure of the 3D reservoir over each segment of the 

fracture (Eq. A.209).  Both equations should be evaluated at the observation points defined in Fig. 

A.9.  These equations are: 

 

, ................. (A.227) 

 

, ............. (A.228) 

 

. ............ (A.229) 

 

In general, for a discretization into N-segments: 
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. .......... (A.230) 

Table A.1 — Translation of the observation points and rectangular areas. 
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APPENDIX B 

PRESSURE-TRANSIENT ANALYSIS OF FRACTAL RESERVOIRS 

 

This Appendix is divided into two sections.  In the first section, we show the detailed derivation 

of the diffusivity equation presented by Chang et al. (1990) to depict the pressure-transient 

behavior of a fractal reservoir.  In the second section, we present the constant-rate solution of such 

a diffusivity equation, assuming an infinite fractal reservoir. 

 

B.1. Development of the Diffusivity Equation for a Fractal Reservoir 

 

Consider that the number of permeable sites contained in a volume with characteristic length R is 

determined by a power-law: 

 

, ................................................................................................................. (B.1) 

 

where Df is the fractal dimension of the permeable sites.  The sign of the exponent Df depicts the 

proportionality between the permeable sites and the volume. 

 

Assuming that all permeable sites in the reservoir have the same volume, Vs, the pore volume of 

the permeable sites is determined by: 

 

. ................................................................................................................. (B.2) 

 

To obtain the porosity of the fractal reservoir, the pore volume must be divided by the volume of 

the reservoir.  Chang et al., (1990) defined the size of the reservoir in terms of a geometry factor, 

G.  However, it is more appropriate to use the generalized definition (Barker, 1988): 

 

, .................................................................................................... (B.3) 
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where d is the Euclidean dimension and ad is the area of a unit sphere in d dimensions: 

 

, ..................................................................................................................... (B.4) 

 

Then, if d=1, the reservoir would have the shape of a rectangular prism with two sides of size b 

and one of size 2R.  If d=2, the reservoir would have the shape of cylinder of radius R and height 

b.  If d=3, the reservoir would have the shape of sphere of radius R. 

 

Combining Eq. B.2 and Eq. B.3: 

 

, ........................................................................................................ (B.5) 

 

where f0 is a reference porosity defined by: 

 

. ................................................................................................................... (B.6) 

 

To develop the Darcy's law equation for a fractal system, consider the Hagen-Poiseuille equation 

to determine the flowrate of a fluid of viscosity µ through a capillary tube of radius rc and length 

R: 

 

. ..................................................................................................................... (B.7) 

 

For a system of np capillary tubes with the same shape, the total flow rate of the system is given 

by: 

 

. ................................................................................................................. (B.8) 
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An equivalent number of capillary tubes of volume Vc contained in a reservoir volume Vr with 

pore volume PV is determined by: 

 

,. ......................................................................................................................... (B.9) 

 

Combining Eqs. B.1, B.2, B.8 and B.9 gives us: 

 

. ..................................................................................................... (B.10) 

 

Assuming that the volume of the permeable site and the volume of the capillary tube are equal and 

that the radius of the capillary tube is a power-law function of the characteristic length of the 

reservoir, R: 

 

. ................................................................................................................... (B.11) 

 

Substituting Eq. B.11 in Eq. B.10 results in the following expression: 

 

, ...................................................................................................... (B.12) 

 

where: 

 

. ..................................................................................................................... (B.13) 

 

On the other hand, consider Darcy's law with variable permeability: 

 

. ................................................................................................................. (B.14) 
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where A is the area exposed to flow.  Based on Eq. B.3, the area exposed to flow can be defined 

as: 

 

. ................................................................................................................... (B.15) 

 

Assuming that the variation of permeability can be represented by a power-law function: 

 

, ................................................................................................................... (B.16) 

 

where k0 is a reference permeability.  Then, substituting Eq. B.15 and Eq. B.16 in Eq. B.14 results 

in: 

 

. ..................................................................................................... (B.17) 

 

Alternatively, using Eq. B.6: 

 

............................................................................................................ (B.18) 

 

Comparing Eq. B.12 and Eq. B. 17, it is concluded that 

 

, ........................................................................................................................ (B.19) 

 

and that index b is related to the distribution of the sites, Df and the connectivity of them: 

 

. ................................................................................................................. (B.20) 

 

To develop the diffusivity equation for a fractal reservoir, consider the incoming mass of fluid, 

min,R through an infinitesimal section of the reservoir can be expressed as: 
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. ............................................................................................................... (B.21) 

 

Similarly, the outgoing mass of fluid: 

 

. ............................................................................................ (B.22) 

 

The cumulative mass of fluid is determined by: 

 

. ........................................................................................ (B.23) 

 

The mass of a single saturating fluid at an initial time can be expressed as: 

 

. ........................................................................................................................ (B.24) 

 

Analogously, at a final time the mass of fluid is: 

 

. ...................................................................................................... (B.25) 

 

The cumulative mass of fluid can be also given by: 

 

. .................................................................................................. (B.26) 

 

Equating Eq. B.23 and Eq. B.26: 
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Based on Eq. B.3, Eq. B.26 can be rewritten as: 
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Taking the limits of DR and Dt to zero, Eq. B.28 takes the differential form: 
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. ............................................................................................ (B.29) 

 

Applying the derivative on the right hand side of Eq. B.29 and arraying, it results in: 

 

. ......................................................................... (B.30) 

 

Substituting the definition of the porosity (Eq. B.5) and Darcy's equation in its fractal form (Eq. 

B.18) in Eq. B.30, such an expression reduces to: 

 

. ..................................................................... (B.31) 

 

Applying the derivative on the left hand side of Eq. B.29 gives the expression: 

 

........................................................ (B.32) 

 

Using the chain rule similar to the cases shown in Appendix A: 
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, ..................................................................................................................... (B.34) 
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Substituting Eqs. B.33-B.35 in Eq. B.32 results in: 
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. ............................................ (B.36) 

 

The compressibility of the fluid can be defined by: 

 

, ........................................................................................................................ (B.37) 

 

and the compressibility of the fractal reservoir as: 

 

. ......................................................................................................................... (B.38) 

 

Substituting Eqs. B.37 and B.38 in Eq. B.36 and neglecting the squared gradient on the left hand 

side of the equation, this yields the expression: 

 

, ........................................................................................ (B.39) 

 

where the total compressibility of the fractal reservoir is defined by: 

 

. ........................................................................................................................ (B.40) 

 

For this model, consider the following dimensionless variables:  Dimensionless pressure: 

 

, ........................................................................... (B.41) 

dimensionless time: 

 

, ............................................................................................................... (B.42) 

 

and dimensionless position in the fractal reservoir: 
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. ......................................................................................................................... (B.43) 

 

Using the chain rule, the derivative of the pressure with respect to time is expressed as: 

 

. .................................................. (B.44) 

 

Similarly, for the first derivative of the pressure with respect to R: 

 

. .......................................................... (B.45) 

 

Substituting Eqs. B.43-B.45 in Eq. B.39 gives the diffusivity equation for a fractal reservoir in its 

dimensionless form: 
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B.2. Constant-Rate Solution for the Fractal Reservoir Model 

 

To solve Eq. B.46, consider the following initial and boundary conditions: 

 

 (initial condition), ....................................................... (B.47) 

 

 (inner boundary condition), ......................................... (B.48) 

 

 (outer boundary condition) .......................................... (B.49) 
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Applying the derivative on the left hand side of Eq. B.46 and arraying, it yields the following 

equation: 

 

. ................................................................... (B.50) 

 

Applying the Laplace transform to Eq. B.50, it becomes: 

 

. .............................................................................. (B.51) 

 

Consider the transformation function: 

 

,......................................................................................................... (B.52) 

 

and the transformation variable: 
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Using the chain rule, the derivative of the dimensionless pressure in the Laplace domain with 

respect to the dimensionless radius is: 

 

. ..................................................................... (B.54) 

 

Applying the second derivative to Eq. B.52 with respect to RD: 

 

. ................................................................... (B.55) 

 

Substituting Eqs. B.52 and B.53 in Eq. B.49 and arraying, it reduces to the following expression: 
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 (where v=[1-b]/[q+2])............................................ (B.56) 

 

Defining a new transformation function: 

 

, ..................................................................................................... (B.57) 

 

the derivative of the function G(z) with respect to z can be expressed as: 

 

. ................................................................. (B.58) 

 

Taking the second derivative to Eq. B.56 yields: 

 

. ........ (B.59) 

 

Substituting Eqs. B.57-B.59 in Eq. B.56 and arraying, it reduces to the following differential 

equation: 
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By inspection, the general solution to Eq. B.60 is given by: 
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Expressing Eq. E.61 in terms of the pressure: 

 

. ............................. (B.62) 

 

Applying the outer boundary condition (Eq.B.49) to Eq. B.62, we can conclude that C2 must be 

zero.  Then, the bounded solution for this problem is: 

 

. ................................................................... (B.63) 

 

The value of the constant C1 results from applying the inner boundary condition (Eq.B.48 in the 

Laplace domain) to Eq. B.63.  Such a value is: 
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The particular solution is obtained by substituting Eq. B.64 in Eq. B.63: 

 

. ..................................................................... (B.65) 

 

To provide the particular solution in the real domain, consider the "point source" approximation, 
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 (for v>0) ................................................. (B.66) 

 

Substituting Eq. B.66 in Eq. B.65: 

 

. .............................................. (B.67) 

 

Applying the inverse Laplace transform to Eq. B.67 (Eq. A32 from Barker, 1988): 

 

. ................................................................. (B.68) 
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APPENDIX C 

PRESSURE-TRANSIENT BEHAVIOR OF A VERTICALLY FRACTURED WELL IN A 

FRACTAL RESERVOIR 

 

In this Appendix, we show the detailed derivation of the uniform-flux solution of a vertical well 

intercepted by a hydraulic fracture in a fractal reservoir (Beier, 1994). 

 

C.1. Uniform-Flux Solution of a Vertically Fractured Well within a Fractal Reservoir 

 

Recall the constant-rate solution for an infinite fractal reservoir (Eq. B.68): 

 

 (where v=[1-b]/[q+2]). 

 

Consider the redefinition of the dimensionless time: 

 

, .............................................................................................. (C.1) 

 

and: 

 

. ............................................................................. (C.2) 

 

Then, Eq.B.66 can be written as: 

 

. ........................................................................... (C.3) 

 

Based on the definition of the Incomplete Gamma Function, Eq. C.3 can be written as: 
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, ....................................................................... (C.4) 

 

where: 

 

. ....................................................................................................................... (C.5) 

 

According to the grouping variable z: 

 

, .......................................................................................................................... (C.6) 

 

Eq. C.3 can be rewritten as: 

 

.......................................................... (C.7) 

 

To be consistent with the solution presented by Beier (1994), consider the change of variables: 
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consequently: 
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Using Eq. C.8 and C.9, Eq. C.7 can be written as: 
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Assuming that the "fractal radius" is given by: 

 

, .......................................................... (C.11) 

 

then, Eq. C.10 is rewritten as: 

 

.

 ....................................................................................................................................... (C.12) 

 

Assuming that ywD is zero and integrating over the domain of the xD-axis results in: 

 

. ................................. (C.13) 

 

To integrate Eq. C.13 over the xwD interval, consider the change of variables: 
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and consequently: 
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Evaluating at yD=0 and substituting Eq. C.14 and Eq. C.15 into Eq. C.13, it becomes: 
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, ...................................... (C.16) 

 

where: 

 

, ............................................................................................................. (C.17) 

 

and: 

 

. ............................................................................................................. (C.18) 

 

Splitting and arraying the inner integral in Eq. C.16 results in: 
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Using the change of variables: 
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The first integral inside the brackets in Eq. C.19 becomes: 
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where: 
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. ...................................................................................................... (C.22) 

 

According to the definition of the lower incomplete gamma function, Eq. C.21 can be expressed 

as: 

 

........................................................ (C.23) 

 

Similarly, for the second integral inside the brackets into Eq. C.19: 
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Substituting Eqs. C.23 and C.24 in Eq. C.19: 
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where: 
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Applying the distribution property to the integral on the right hand side of Eq. C.26 results in two 

definite integrals of the product of a power-law function and a lower incomplete gamma function.  

The integral for these types of functions is: 
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. ........................................................ (C.27) 

 

The derivative of the lower incomplete gamma function is obtained by using the Leibniz rule: 

 

. ................................................ (C.28) 

 

Substituting Eq. C.28 into Eq. C.27 and arraying results in: 
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Using the change of variable: 
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Eq. C.29 becomes: 
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Eq. C.32 can be written in terms of the upper incomplete gamma function as: 
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Using Eq. C.30 in the first integral on the right hand side of Eq. C.26 results in: 
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Similarly, the second integral: 
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Substituting Eqs. C.32 and C. 33 into Eq. C.25: 

 

, .... (C.36) 

 

Substituting Eq. C.26 in Eq. C.36 and arraying results in the expression provided by Beier (1994): 
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where: 
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, ........................................................................................ (C.39) 

 

and: 

 

. ........................................................................................ (C.40) 
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APPENDIX D 

DERIVATION OF THE MODEL OF A HORIZONTAL WELL INTERCEPTING A 

SINGLE FINITE CONDUCTIVITY FRACTURE WITHIN A FRACTAL RESERVOIR 

 

In this Appendix, we show the mathematical development of the models of a horizontal well 

intercepting a single finite conductivity fracture within a fractal reservoir considering either typical 

or anomalous diffusion. 

 

D.1. Point Source Constant-Rate Solution of the Diffusivity Equation for a Fractal Reservoir 

with Typical Diffusion 

 

Flow Model and Initial and Boundary Conditions 

 

In this section, we show the procedure to obtain the particular solution of the diffusivity equation 

for an infinite fractal reservoir producing at a constant rate through a "point well."  Consider the 

diffusivity equation for a fractal object presented by Chang et al. (1990): 

 

, ..........................................................................................(D.1) 

 

where b is the spatial dimension and it is defined as b =Df - q - 1.  Assuming that the initial pressure 

is uniformly distributed along the reservoir, the initial condition is: 

 

. ...................................................................................................................(D.2) 

 

Considering constant-rate conditions, the inner boundary condition is: 
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. ............................................................................................(D.3) 

 

For an infinite fractal reservoir, the outer boundary condition is defined as: 

 

. ...............................................................................................................(D.4) 

 

Transformation to Dimensionless Variables 

 

For the constant-rate case, the dimensionless pressure in the fractal reservoir is defined as: 

 

, .................................................................................(D.5) 

 

where Lr is the reference length.  It must be changed for the radius of the fracture, rf, in the case of 

the circular fracture or the half-length of the fracture, xf, for a rectangular fracture.  Dimensionless 

time is defined as: 

 

. ...............................................................................................................(D.6) 

 

The dimensionless position in the fractal reservoir is defined by: 

 

. ..........................................................................................................................(D.7) 

 

Using the chain rule, Eq. D.1 is transformed to dimensionless variables as: 

 

. ......................................................................................(D.8) 

 

Similarly, initial and boundary conditions become: 
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 (initial condition), ..........................................................(D.9) 

 

 (inner boundary condition), .......................................... (D.10) 

 

 (outer boundary condition), .......................................... (D.11) 

 

The dimensionless parameters involved in Eq. D.10 are defined as follows.  Dimensionless fractal 

reservoir rate: 

 

. .............................................................................................. (D.12) 

 

Dimensionless height: 

 

. ......................................................................................................................... (D.13) 

 

Dimensionless fractal source radius: 

 

....................................................................................................................... (D.14) 

 

Constant-Rate Solution to the Diffusivity Equation for an Infinite Fractal Reservoir 

 

As shown in Appendix B, the general solution in the Laplace domain of the diffusivity equation 

for a fractal reservoir is given by: 

 

, ............................... (D.15) 
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where v is a grouping parameter and it is defined as: 

 

. ......................................................................................................................... (D.16) 

 

Applying the outer boundary condition to Eq. D.15, a bounded solution is obtained: 

 

. ................................................................... (D.17) 

 

Applying the inner boundary condition to Eq. D.17, the value of the constant C1 is obtained: 

 

. ............................................................................... (D.18) 

 

The particular solution for this model is obtained by substituting Eq. D.18 in Eq. D.17.  It is given 

by: 

 

. .......................................................... (D.19) 

 

The point source solution is obtained by taking the limit to Eq. D.19 when RwD tends to zero.  This 

implies that the modified Bessel function in the denominator in Eq. D.19 can be approximated to 

a power-law function: 

 

. ................................................................. (D.20) 

 

The following expression results after Substituting Eq. D.20 in Eq. D.19: 
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.................................................. (D.21) 

 

Extension to Double Porosity Reservoirs (Valdes-Perez, 2013) 

 

It is well known that a solution with the shape of Eq. D.21 can be extended to models for double 

porosity reservoirs if the Laplace parameter u is replaced by uf(u) where f(u) is the interporosity 

transfer function.  Hence, the following expression is obtained: 

 

. ....................................... (D.22) 

 

In this model, the interporosity transfer function to be used is: 

 

, ......................................................................... (D.23) 

 

where the function F(hmaD,hmaD,u) depends on the shape and properties of the matrix blocks (see 

Appendix E).  The dimensionless hydraulic diffusivity of the matrix is defined as: 

 

. ...................................................................................................... (D.24) 

 

The dimensionless size of the matrix blocks is: 

 

, ................................................................................................................... (D.25) 

 

the storativity ratio is: 
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, ..................................................................................................... (D.26) 

 

and the interporosity skin is: 

 

. ................................................................................................................. (D.27) 

 

For matrix blocks with the shape of slabs, the transfer function is:  

 

, ........................................................ (D.28) 

 

whereas for matrix blocks with the shape of spheres, the transfer function is: 

 

. ................................ (D.29) 

 

D.2. Point Source Constant-Rate Solution of the Diffusivity Equation for a Fractal Reservoir 

with Anomalous Diffusion 

 

The diffusivity equation for fractal reservoir with anomalous diffusion expressed in dimensionless 

variables was presented by Camacho-Velazquez et al. (2008).  The model is given by: 

 

. ............................................................................... (D.30) 

 

Where g  is the fractional derivative order and it is a function of the conductivity index.  Such a 

function is defined as: 
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. ......................................................................................................................... (D.31) 

 

The time fraction derivative of order g in Eq. D.30 is defined as: 

 

. ............................................................ (D.32) 

 

Analogous to the case presented in the previous section, the initial and boundary condition for Eq. 

D.22 are defined by Eq. D.9 though D.11.  The procedure to solve Eq. D.30 is similar to the one 

shown in Appendix B and in section D.1.  Then, applying the Laplace transform to Eq. D.30: 

 

. ................................................................................. (D.33) 

 

To find the general solution for this case, the transformation variable to be used is: 
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Using the transformation variable defined in Eq. D.34 and the procedure shown in Appendix B, 

the general solution for this model is given by: 

 

, ........................... (D.35) 

 

Applying the outer boundary condition, the resulting bounded solution is: 

 

, ................................................................... (D.36) 
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The value of the constant C1 is obtained by applying the inner boundary condition to Eq. D.36: 

 

. ........................................................................... (D.37) 

 

Then, the particular solution for this model is: 

 

. ....................................................... (D.38) 

 

For this case, the point source solution is given by: 

 

. .............................................. (D.39) 

 

To consider double porosity conditions, Eq. D.22 should be used considering the following transfer 

function, f(u): 

 

. ................................................................... (D.40) 

 

D.3. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular 

Transverse Finite Conductivity Fracture within a Fractal Reservoir 

 

This model considers radial flow within a hydraulic fracture as previously presented by Larsen et 

al. (1991).  The flow within the circular fracture obeys the diffusivity equation developed in 

Appendix C and given by: 
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. ....................................................................... (D.41) 

 

Considering that the initial pressure is uniformly distributed along the hydraulic fracture, the initial 

condition is: 

 

. ............................................................................................................... (D.42) 

 

For a well intercepting a hydraulic fracture producing at a constant rate, the inner boundary 

condition is: 

 

. ..................................................................................................... (D.43) 

 

For an closed hydraulic fracture, the outer boundary condition is defined as: 
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Similar to the reservoir model shown in section D.1, the dimensionless pressure in the circular 

hydraulic fracture is defined as: 

 

, .............................................................................. (D.45) 

 

Dimensionless time is defined by Eq. D.6 and the dimensionless radius of the circular hydraulic 

fracture is: 

 

, ......................................................................................................................... (D.46) 
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and the dimensionless position in the z-direction is: 

 

, ......................................................................................................................... (D.47) 

Transforming Eq. D.41 to dimensionless variables, it becomes: 

 

, .................................................. (D.48) 

 

where dimensionless fracture conductivity is: 

 

, ..................................................................................................................... (D.49) 

 

and the dimensionless fractal hydraulic diffusivity of the circular fracture is: 
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Similarly, initial and boundary conditions become: 

 

 (initial condition), ........................................................ (D.51) 

 

 (inner boundary condition), .......................................... (D.52) 

 

 (outer boundary condition), .......................................... (D.53) 

 

where dimensionless fracture fractal conductivity is: 
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, ............................................................................................................... (D.54) 

 

Analogous to the approach made by Larsen et al. (1991), the circular fracture should be discretized 

into sufficiently small segments so the pressure gradient in Eq. D.48 can be approximated as: 

 

. .............................................................................................. (D.55) 

 

Then, Eq. D.48 becomes: 

 

. ............................................................... (D.56) 

 

Following the procedure presented in Appendix A, the general solution to Eq. D.56 in the Laplace 

domain of a j-segment of the discretized circular hydraulic fracture is: 

 

. .............................................. (D.57) 

 

This discretization generates a system of equations with 3N unknowns.  Therefore, it is necessary 

to define 3N equations to solve such a system. 

 

Two out of the 3N equations of the system are obtained by applying the boundary conditions to 

the corresponding segment.  The first equation is defined by applying the inner boundary condition 

to segment one.  The resulting expression is: 

 

. ........................................................ (D.58) 
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The second equation is obtained by applying the outer boundary condition to segment N.  The 

resulting equation is: 

 

. .............................................................................. (D.59) 

 

N-1 equations are defined by establishing pressure continuity between each one of the segments.  

This is obtained by equating the pressure of a segment j with the pressure of the adjacent segment 

j-1, both evaluated at the interface j-1: 

 

. ..................... (D.60) 

 

Similarly, N-1 more equations are defined by establishing rate continuity between each one of the 

segments.  Then, for this case: 

 

. .......... (D.61) 

 

To complete the system of equations, it is necessary to establish pressure continuity between the 

segments of the circular fracture and the fractal reservoir.  First, the flow from the fractal reservoir 

to the circular fracture must be integrated over the area of the circular segment: 

 

. ....................................................................... (D.62) 
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Then, defining the observations points at the midpoint of each one of the N-segments of the 

discretized fracture, the dimensionless pressure of the circular fracture and dimensionless pressure 

of the fractal reservoir should be equated.  The following expression is obtained: 

 

. .. (D.63) 

 

The function GF for a fractal reservoir with typical diffusion is: 

 

.............. (D.64) 

 

For a fractal reservoir with anomalous diffusion is: 

 

. ........ (D.65) 

 

For double porosity reservoirs: 

 

. .... (D.66) 

 

For all cases: 

 

. ............................................................................................................. (D.67) 

 

Similar to the model developed by Larsen et al. (1991), the integrals involved in Eq. D.64 through 

D.66 must be performed numerically.  For this case, we have used the adaptative quadrature 
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method (MATLAB's integral-function).  Besides, the cases when the observation point is greater 

or less than the upper integration limit should also be taken into account.  Therefore, if the 

observation point is greater than the upper integration limit, the following expression for a fractal 

reservoir with typical diffusion should be used: 

 

. .... (D.68) 

 

For a fractal reservoir with anomalous diffusion: 

 

. .. (D.69) 

 

For double porosity reservoirs: 

 

. ................. (D.70) 

 

If the observation point is smaller than the upper integration limit, the following expression for a 

fractal reservoir with typical diffusion should be used: 

 

. .... (D.71) 

 

For a fractal reservoir with anomalous diffusion: 
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. (D.72) 

 

For double porosity reservoirs: 

 

. .. (D.73) 

 

Where: 

 

, ..................................................................................................... (D.74) 

 

, ............................................................................................ (D.75) 

 

and: 
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D.4. Constant-Rate Solution for the Model of a Horizontal Well Intercepting a Circular 

Transverse Finite Conductivity Fracture within a Fractal Reservoir 

 

The flow within the rectangular fracture is governed by the diffusivity equation for linear flow 

with a source term.  It is given by: 
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. ............................................................................... (D.77) 

 

Analogous to the circular fracture case, the initial and boundary conditions for the present case 

are: 

 

  (initial condition), ........................................................ (D.78) 

 

  (inner boundary condition), .......................................... (D.79) 

 

 (outer boundary condition). .......................................... (D.80) 

 

For the rectangular hydraulic fracture case, the dimensionless pressure in the fracture is: 

 

. ........................................................................... (D.81) 

 

The dimensionless time is defined by Eq. D.6 and the dimensionless position in the x-direction is: 
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The dimensionless position in the z-direction is: 
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Transforming Eq. D.77 to dimensionless variables, it becomes: 
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, ................................................................... (D.84) 

 

where dimensionless fracture conductivity is: 

 

, ..................................................................................................................... (D.85) 

 

and the dimensionless fractal hydraulic diffusivity of the rectangular fracture is: 

 

. ............................................................................................................. (D.86) 

 

Similarly, initial and boundary conditions become: 

 

  (initial condition), ....................................................... (D.87) 

 

  (inner boundary condition), ......................................... (D.88) 

 

 (outer boundary condition) .......................................... (D.89) 

 

Where the dimensionless fracture fractal conductivity is: 
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and the dimensionless fracture length along the wellbore is: 
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, ........................................................................................................................ (D.91) 

 

For this case, the discretization of the rectangular fracture into sufficiently small segments permits 

the approximation of the pressure gradient in Eq. D.84 by using Eq. D.55.  Consequently, Eq. D.84 

becomes: 

 

. ............................................................................... (D.92) 

 

Following the procedure presented in Appendix A, the general solution to Eq. D.92 in the Laplace 

domain of a j-segment of the discretized rectangular hydraulic fracture is: 

 

. ....................................... (D.93) 

 

Analogous to the circular fracture case, the first equation to establish the system of 3N equations 

results from applying the inner boundary condition to segment one.  The resulting expression is: 
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The second equation is obtained by applying the outer boundary condition to segment N.  The 

resulting equation is: 

 

. ............................................................................... (D.95) 
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The pressure continuity between each one of the segments is obtained by equating the pressure of 

a segment j with the pressure of the adjacent segment j-1, both evaluated at the interface j-1: 

 

. ........................... (D.96) 

 

Similarly, the rate continuity between each one of the segments is defined by: 

 

. ................................. (D.97) 

 

The pressure continuity between each one of the segments of the hydraulic fracture and the fractal 

reservoir is obtained by equating the pressure of a segment j with the pressure of the fractal 

reservoir, superimposed over the area of the segment j: 

 

. ...... (D.98) 

 

The function ZF for a fractal reservoir with typical diffusion is: 
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. .............. (D.99) 

 

For a fractal reservoir with anomalous diffusion, the function is: 

 

. ........ (D.100) 

 

For double porosity reservoirs: 

 

. .... (D.101) 

 

For all cases: 
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,....................................................................................................... (D.102) 

 

,......................................................................................................... (D.103) 

 

, .................................................................................................... (D.104) 

 

, .................................................................................................... (D.105) 

 

,....................................................................................................... (D.106) 

 

, .................................................................................................... (D.107) 

 

and: 

 

, ........................................................................................................... (D.108) 

 

,......................................................................................................... (D.109) 

 

,......................................................................................................... (D.110) 
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The same considerations of symmetry and change of variables shown in Appendix A for the 

calculation of ZR must be made for ZF. 
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APPENDIX E 

TRANSIENT INTERPOROSITY TRANSFER FUNCTIONS 

 

In this Appendix, we present the derivation of the classic transient interporosity transfer functions 

developed by de Swaan (1976) and their application in the double porosity flow model presented 

by Cinco-Ley et al. (1982).  In addition, we show the development of the transient interporosity 

transfer function considering fractal matrix blocks and the derivation of the asymptotic solution of 

the double fractal model. 

 

E.1. Transient Interporosity Transfer Functions (de Swaan, 1976) 

 

Development of the transfer interporosity function considering slab matrix blocks 

 

The diffusivity equation for the linear flow occurring in slab matrix blocks as shown in Fig. E.1 is 

given by: 

 

, ........................................................................................................ (E.1) 

 

Where the hydraulic diffusivity of the matrix is defined by: 
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Figure E.1 — Schematics of a Naturally Fractured Reservoir with slab matrix blocks and 

horizontal fractures. 

 

The matrix blocks are assumed to have uniformly distributed initial pressure, pi.  Hence the initial 

condition for Eq E.1 is given by: 

 

. ............................................................................................................... (E.3) 

 

The interface between the matrix blocks and the natural fractures is assumed to be unrestricted 

(i.e., without interporosity skin).  Therefore, the inner boundary condition is: 
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Since the matrix blocks are assumed to be closed systems, the outer boundary condition for Eq. 1 

is: 

 

............................................................................................................ (E.5) 

 

To solve Eq. E.1 in the Laplace domain, it is more convenient to express it in terms of a normalized 

drop of pressure.  For this case, the normalized drop of pressure is defined as: 
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.................................................................................................... (E.6) 

 

Using the chain rule, Eq. E.1 is rewritten as: 

 

, ....................................................................................................... (E.7) 

 

and the initial and boundary conditions become: 

 

  (initial condition), ......................................................... (E.8) 

 

  (inner boundary condition), ........................................... (E.9) 

 

 (outer boundary condition) .......................................... (E.10) 

 

Applying the Laplace transform to Eq. E.7 and according to the initial condition, the following 

differential equation is obtained: 
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By inspection, the general solution of Eq. E.11 can be given by a linear combination of hyperbolic 

sines and hyperbolic cosines.  Therefore, for this problem the general solution is: 

 

. ................................................................... (E.12) 

 

Applying the outer boundary condition to the general solution, the following expression results in: 

 

. ................................... (E.13) 
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From Eq. E.13, it is concluded that the constant C1 is: 

 

................................................................................................ (E.14) 

 

Substituting Eq. E.14 in Eq. E.12, a bounded solution for this problem is: 

 

. ........................................ (E.15) 

 

Applying the inner boundary condition to Eq. 15, it is concluded that the constant C2 is: 
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The particular solution for this problem is obtained by substituting C2 in Eq. E.15: 

 

. ............................................ (E.17) 

 

The derivative of the pressure with respect to z evaluated in zero is required to estimate the flow 

rate transferred from the matrix to the fractures.  Based on Eq. E.17, such a derivative is: 

 

. ..................................................................... (E.18) 

 

Applying the inverse Laplace transform to Eq. E.18 (Eq.8.51 from Oberhettinger et al. (1973), 

p.294) the following expression is obtained: 
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Under the transient regime, the flow rate per unit of fracture volume from the matrix blocks to the 

fractures surrounding the matrix blocks can be expressed using the convolution integral.  The 

convolution is defined as: 

 

. ...................................................................................... (E.20) 

 

where quma is the fluid transfer rate from the matrix blocks to the fracture.  Based on Darcy's Law, 

the fluid transfer rate from the matrix blocks to the fracture is: 
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Substituting Eq. E.19 and Eq. E. 21 in Eq. E.20: 

 

. ....................................................... (E.22) 

 

Development of the transfer interporosity function considering spherical matrix blocks 

 

For this case, consider an array as the one shown in Fig. E.2.  The diffusivity equation for a system 

with the shape of a sphere is given by: 

 

, .......................................................................................... (E.23) 

 

where hydraulic diffusivity of the matrix, hma is defined exactly as for the case of slab matrix 

blocks (Eq. E.2).  The initial and the boundary conditions for this case are the same as in the 

previous section, i.e.: 
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  (initial condition), ....................................................... (E.24) 

 

  (inner boundary condition), ......................................... (E.25) 

 

 (outer boundary condition) .......................................... (E.26) 

 

 
 

Figure E.2 — Schematics of a Naturally Fractured Reservoir with spherical matrix blocks and 

horizontal fractures. 

 

Analogous to the previous subsection, the normalized drop of pressure for this case is: 
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Consequently, Eq. E.23 is rewritten as: 
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and, the initial and boundary conditions become: 
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 (inner boundary condition), ......................................... (E.30) 

 

 (outer boundary condition) .......................................... (E.31) 

 

As shown in Appendix A, the transformation defined by: 
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facilitates the procedure to find a solution to an equation with the shape as of Eq. E.28.  Applying 

such a transformation, Eq. E.28 becomes: 
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Since Eq. E.33 has exactly the same shape as Eq. E.7, its general solution in the Laplace domain 

is: 
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In terms of the drop of pressure in the matrix (Eq. E.32): 

 

. ............................................................... (E.35) 

 

Applying the outer boundary condition, it is concluded that the constant C2 is zero.  Therefore, the 

bounded solution for this problem is: 
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Applying the inner boundary condition, the value of the constant C1 is obtained.  It is given by: 

 

. .............................................................................................. (E.37) 

 

Substituting Eq. E.37 in Eq. E.36, the particular solution for this problem is: 

 

. ................................................................... (E.38) 

 

The derivative of Eq. E.38 with respect of the radius R and evaluated in Rma is: 

 

. .................................................. (E.39) 

 

The Inverse Laplace Transform of Eq. E.39 is (Eq. 8.52, Oberhettinger et al., 1973, p. 294): 

 

. ........................... (E.40) 

 

E.2. Double Porosity Model with Transient Interporosity Transfer 

 

Constant-rate solution (Cinco-Ley et al., 1982) 

 

The flow in a radial fracture network considered by Cinco-Ley et al. (1982) is modeled by: 
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where q* is the fluid transfer from the matrix to the fracture network per unit of bulk volume.  As 

shown by de Swaan (1976), it can be modeled by the convolution integral: 

 

, .................................................................................................. (E.42) 

 

where: 
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Substituting Eq. E.42 and Eq. E.43 in Eq. E.41: 

 

. .............................................. (E.44) 

 

The initial and boundary conditions for this model are: 

 

 (initial condition), ....................................................... (E.45) 

 

 (inner boundary condition), ......................................... (E.46) 

 

 (outer boundary condition) .......................................... (E.47) 

 

The dimensionless variables defined for this model are summarized in Table E.1. 

  

ò
** -

¶

¶
=
t

uma
f dtq
p

q
0

)( tt
t

[ ]surma
mafb

uma p
kA

q Ñ=*
µ

[ ]ò -Ñ
¶

¶
+

¶

¶
=

ú
ú
û

ù

ê
ê
ë

é

¶

¶

¶
¶ t

surma
f

fb

fbmaf

fb

tfbfbf dtp
p

k
Ak

t
p

k
c

r
p

r
rr 0

)(1 tt
t

µf

if ptrp == )0,(

µ

p

B
hk

r
p

r fb

wrr

f 2
=

ú
ú
û

ù

ê
ê
ë

é

¶

¶

=

if
r

ptrp =
¥®

),(lim



 

251 

 

 

Table E.1 — Dimensionless variables for the Cinco-Ley et al. (1982) model. 

 

Dimensionless Variable Definition 

Pressure in the fracture network  

Pressure in the matrix blocks  

Time  

Radius  

Storativity ratio  

Fracture area  
 

Eq. E.44 expressed in dimensionless form is: 

 

, ......... (E.48) 

 

where: 

 

. ................................................................... (E.49) 

 

The initial and boundary conditions in dimensionless variables become: 

 

 (initial condition), ....................................................... (E.50) 

 

 (inner boundary condition), ......................................... (E.51) 
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Applying the Laplace transform to Eq. E.48 and arraying it can be written as: 

 

. .............................................................................. (E.53) 

 

Considering the boundary conditions for this model, the particular solution of Eq. E.53 is: 
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where f(u) is the interporosity transfer function.  Such a function depends on the properties of the 

matrix blocks (geometry and petrophysical properties) and the interporosity transfer regime.  For 

unrestricted flow (without interporosity skin), it is defined as: 
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For the classic cases (slab and spheres matrix blocks) presented by Cinco-Ley et al., (1982) the 

functions are: 

 

, ............................................................ (E.56) 

 

for slabs, and: 

 

, ................................... (E.57) 

 

for spheres. 
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Solution considering time-depend inner boundary condition 

 

For this model, we have considered the diffusivity equation given defined by Eq. E.48 and the 

same initial and outer boundary conditions as in the previous section (i.e., Eq. 50 and Eq. E.52).  

For the inner boundary condition, we have assumed a power-law time dependent pressure gradient 

around the wellbore, i.e.,: 

 

 (inner boundary condition), ......................................... (E.58) 

 

Where v0 is an arbitrary reference exponent.  We have considered a unit value of this parameter. 

 

Applying the outer boundary condition, the bounded solution of Eq. E.48 in the Laplace domain 

is: 

 

. .......................................................................................... (E.59) 

 

Applying the inner boundary condition, the value of the constant C1 is obtained: 
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Hence, the particular solution for this problem is: 

 

. ............................................................................. (E.61) 

 

Taking the line source approximation, Eq. E.61 reduces to: 
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. ............................................................................... (E.62) 

 

E.3. Transient Interporosity Transfer Function Considering Fractal Matrix Blocks 

 

Development of the transfer interporosity function considering closed fractal matrix blocks 

 

If matrix blocks with fractal geometry are considered (see Fig. E.3), the model developed by 

Chang et al., (1990) for fractal fracture networks can be extended to fractal matrix blocks.  For 

this case, consider the diffusivity equation for a fractal matrix block: 

 

. ............................................................................... (E.63) 

 

where hma is the geometry hydraulic diffusivity of the matrix, exactly defined as for the cases of 

slab and sphere matrix blocks.  Dfma is the fractal dimension of the matrix block and bma is the 

spatial dimension of the matrix, defined as bma=Dfma-qma-1. 

 

Analogous to the cases shown in Section E.1 of this Appendix, the initial and the boundary 

conditions for this problem are: 

 

 (initial condition), ....................................................... (E.64) 

 

 (inner boundary condition), ......................................... (E.65) 

 

 (outer boundary condition) .......................................... (E.66) 
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Figure E.3 — Schematics of a Naturally Fractured Reservoir with fractal matrix blocks. 

 

For this model, the dimensionless pressure in the matrix is: 

 

. ...................................................................................... (E.67) 

 

The dimensionless time is defined as: 
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and the dimensionless position in the fractal matrix block is: 

 

. ........................................................................................................................ (E.69) 

 

Applying the definitions of the dimensionless variables, Eq. E.63 becomes: 
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where the dimensionless hydraulic anomalous diffusivity is defined as: 

 

. ............................................................................................................. (E.71) 

 

The initial and boundary conditions in dimensionless variables become: 

 

 (initial condition), ....................................................... (E.72) 

 

 (inner boundary condition), ......................................... (E.73) 

 

 (outer boundary condition) .......................................... (E.74) 

 

As shown in Appendix B, the general solution to Eq. E.70 in the Laplace domain is: 

 

,................................................. (E.75) 

 

where: 
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and: 
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Applying inner boundary condition, the resulting bounded solution is: 
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where: 

 

. ........................................................................................................... (E.79) 

 

Given that R0D is located at zero, the following approximation can be used: 
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Then, Eq. E.78 becomes: 
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Applying outer boundary condition, the particular solution for this problem is obtained: 
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where: 
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Taking the derivative to Eq. E.83 with respect of RD: 
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Evaluating at the interface, Eq. E.84 can be expressed in terms of the function F(hmaD,hmaD,tD): 
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. .. (E.85) 

 

Development of the transfer interporosity function considering infinite-acting fractal matrix blocks 

 

To model infinite-acting matrix blocks, we considered matrix blocks of infinite length.  Therefore, 

we solved Eq. E.70 using the following initial and boundary conditions: 

 

 (initial condition), ....................................................... (E.86) 

 

 (inner boundary condition), ......................................... (E.87) 

 

 (outer boundary condition) .......................................... (E.88) 

 

Applying the boundary conditions to the general solution (Eq. E.75) the particular solution is: 

 

. ................................................................. (E.89) 

 

where x is given by Eq. E.83.  Taking the derivative to Eq. E. 89 the following equation is derived: 

 

. ............................................ (E.90) 

 

Evaluating at the interface: 
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At early and intermediate times (large values of the Laplace parameter u), the Modified Bessel 

function of second order (Kv(x)) can be approximated as: 

 

. ............................................................................................................... (E.92) 

 

Hence, at early and intermediate times Eq. E.91 can be written in terms of Eq. E.49 as: 

 

. ....................................................................... (E.93) 

 

Applying the inverse Laplace transform to Eq. E.93: 

 

. ............................................................... (E.94) 

 

Eq. E.94 applies for both closed and infinite-acting matrix blocks. 

 

At late times (small values of the Laplace parameter u), the Modified Bessel function of second 

order (Kv(x)) can be approximated as: 
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Taking the approximation given by Eq. E.95, Eq. E.91 is reduced to (in terms of Eq. E.49): 

 

. ....................................... (E.96) 

 

Applying the inverse Laplace transform to Eq. E. 96: 
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. .................................................... (E.97) 

 

E.4. Asymptotic Solutions of the Double Porosity Model with Transient Interporosity 

Transfer considering Fractal Matrix Blocks 

 

To develop the asymptotic solutions of the constant-rate case of this model, consider the line-

source approximation of Eq. E.54 and evaluate such an expression at wellbore (i.e., rD=1).  The 

resulting equation is: 

 

. .................................................................................................. (E.98) 

 

Additionally, the Modified Bessel function in Eq. 98 for small arguments can be approximated 

using Eq. 9.6.8 from Abramowitz et al. (1970).  Therefore, the resulting expression is: 

 

. ........................................................................................ (E.99) 

 

To obtain the asymptotic constant-pressure solutions for this model, consider the approximation 

(Earlougher, 1977): 

 

. ................................................................................................... (E.100) 

 

Closed Matrix Blocks 

 

For this case, the interporosity transfer function defined by Eq. E. 85 should be considered.  At 

early times, such a function approximates to the value of the storativity ratio (i.e., f(u)=w).  

Therefore, the asymptotic constant-rate solution in the Laplace domain at early times is: 
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. .......................................................................................... (E.101) 

 

Applying the inverse Laplace transform to Eq. E.101 results in: 

 

. ............................................................................... (E.102) 

 

Hence, using the relation given by Eq. E.100 we obtain: 

 

, ........................................................................................ (E.103) 

 

where g is Euler's constant (0.57721…).  As pointed out by Cinco-Ley et al. (1982), the flow from 

the matrix blocks to the fracture network is linear at early and intermediate times regardless the 

geometry of the matrix block.  For these periods of flow, the function F(hmaD,hmaD,tD) takes 

asymptotic behavior given by Eq. E.94 and the interporosity transfer function is approximated as: 

 

. ............................................................................ (E.104) 

 

Substituting Eq. 104 in Eq. E.99 and arraying it results in: 

 

. .......................................... (E.105) 

 

Applying inverse Laplace transform to Eq. E.105, it results: 
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Consequently, the constant-pressure asymptotic solution for this case is: 

 

. .......................................... (E.107) 

 

At late times, the behavior of the interporosity transfer function approaches one (i.e., f(u)=1).  

Substituting such a value in Eq. E.94 and applying inverse Laplace transform, the asymptotic 

constant-rate solution is: 

 

................................................................................................ (E.108) 

 

where g is Euler's constant (0.57721…).  Similar to the previous cases, the constant-pressure 

solution is: 
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Infinite-Acting Matrix Blocks 

 

The flow behavior of the matrix blocks assuming either closed or infinite-acting conditions is the 

same at early and intermediate times (i.e., before the outer boundary condition of the matrix blocks 

are reached).  Therefore, the asymptotic solutions developed for closed matrix blocks, for early 

and intermediate times (constant-rate and constant-pressure cases), also apply for the infinite-

acting matrix blocks.  The asymptotic constant-rate solution in the Laplace domain for vma > 0 is 

obtained by plugging Eq. E.97 in the interporosity transfer function (Eq. E.55).  Substituting the 

resulting equation in Eq. E.99, gives us: 
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. ............... (E.110) 

 

(g is Euler's constant).  The expression in Eq. E. 110 in the real domain is given by: 

 

. .. (E.111) 

 

Applying the relation defined by Eq. E.100, the constant-pressure solution is: 

 

. .... (E.112) 

 

E.5. Asymptotic Solutions of the Double Fractal Model 

 

Pressure –Transient Solutions 

 

Consider the constant-rate solution of the diffusivity equation to model the flow within the infinite 

fractal fracture network of a double porosity reservoir: 

 

. ............................................................................. (E.113) 

 

Using the approximation given in Eq. E.92, at early-intermediate times, Eq. E.113 reduces to: 
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The asymptotic behavior of the function F(hmaD,hmaD,tD) at early-intermediate times is given by 

Eq. E. 93.  Substituting such an expression in the interporosity transfer function (Eq. E.55) and 

neglecting the storativity ratio (w = 0) derives the following expression: 

 

, ............................................................................................................... (E.115) 

 

where: 

 

. .................................................................................... (E.116) 

 

Substituting Eq. E.115 in Eq. E.114: 
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Applying the inverse Laplace transform to Eq. E.116 the asymptotic solution in the real domain at 

early-intermediate times is: 

 

................................................................................................ (E.118) 

 

At late-intermediate and late times, the Modified Bessel function of second kind can be 

approximated using Eq. E. 95.  Applying such an approximation in Eq. E. 113 results in: 
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The following expression results from substituting Eq. E.115 in Eq. E.119: 
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. ............................................................................... (E.120) 

 

Applying the inverse Laplace transform to Eq. E.120 the asymptotic solution in the real domain at 

late-intermediate times is: 

 

. .............................................................................. (E.121) 

 

The asymptotic behavior of the function F(hmaD,hmaD,tD) at late times is given by Eq. E. 97.  

Substituting such an expression in the interporosity transfer function (Eq. E.55) and neglecting the 

storativity ratio (w = 0) derives in the following expression: 
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where: 

 

. ................................................ (E.123) 

 

Substituting Eq. E.122 in Eq. E.119: 

 

. ............................................................................. (E.124) 

 

Applying the inverse Laplace transform to Eq. E.124 the asymptotic solution in the real domain at 

late times is: 
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. ......................................................................... (E.125) 
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APPENDIX F 

ANOMALOUS DIFFUSIVITY MODEL CONSIDERING TIME-DEPENDENT DARCY'S 

LAW 

 

In this Appendix, we present the derivation of the model presented by Raghavan (2012a) for a 

cylindrical reservoir.  Consider the conservation equation in cartesian coordinates: 

 

.................................................................................................... (F.1) 

 

This model considers a time-dependent version of Darcy's Law, which applies that the flux is not 

local in time and space for a Continuous Time Random Walk.   For this case, Darcy's Law is 

defined as (Eq. 2.10 from Raghavan, 2012a): 

 

. .............................................................. (F.2) 

 

Applying the Laplace transform to Eq. F.2 results in: 
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where i defines the directions x, y or z.  Applying the Laplace transform to Eq. F.1 results in 
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Substituting and arraying Eq. F.3 in Eq. F.4 gives us: 

 

. ..................................... (F.5) 
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Applying the inverse Laplace transform to Eq. F.5 yields: 

 

.......................................................... (F.6) 

 

The expression inside the brackets is the classic version of Darcy's Law: 

 

. ................................................................................................................... (F.7) 

 

Transforming Eq. F.6 to cylindrical coordinates results in: 
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For a cylindrical system (considering only the radial coordinate), Eq. F.2 is expressed as: 
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Applying the Laplace transform to Eq. F.9 and solving for the product of the radius and the gradient 

of the pressure results in: 
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The initial condition to solve Eq. F.8 is: 
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Assuming constant flow rate at the wellbore, q, the inner boundary condition is (based on Eq. F.9): 
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. ................................................................................... (F.12) 

 

The outer boundary condition assumes an infinite cylindrical reservoir, given by: 

 

. ............................................................................................................... (F.13) 

 

Defining the drop of pressure as: 

 

,........................................................................................................... (F.14) 

 

Eq. F.8 becomes: 
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Similarly, the initial and boundary conditions in terms of the drop of pressure are: 

 

 (initial condition), ....................................................... (F.16) 

 

 (inner boundary condition), ......................................... (F.17) 

 

 (outer boundary condition) .......................................... (F.18) 

 

Applying the Laplace transform to Eq. F.15 and substituting the initial condition gives us: 
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multiplying Eq. F.19 by r2: 
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, ................................................................................. (F.20) 

 

and defining the transformation variable z as: 

 

. ............................................................................................................. (F.21) 

 

Then, using the chain rule the first derivative of the drop of pressure with respect to r is: 

 

. ...................................................................................... (F.22) 

 

Similarly, the second derivative of Eq. F.22 is: 
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Substituting Eq. F.22 and Eq. F.23 in Eq. F.20 results in: 
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Then, using the definition given by Eq. F.21, Eq. F.24 is rewritten as: 
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By inspection, the general solution to Eq. F.25 is: 
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Applying outer boundary condition (infinite reservoir) to Eq. F.26, the bounded solution is: 
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. .................................................................................................. (F.27) 

 

The derivative of the drop of pressure with respect to r is: 
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Then, applying the inner boundary condition to Eq. F.26 gives us: 
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Solving for A: 
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Hence, the particular solution for this problem is: 
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For small arguments, the Modified Bessel Function K1(x) is approximated as: 
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Then, Eq. F.31 reduces to: 

 

. .......................................................................................... (F.33) 

 

Eq. F.33 is equivalent to the line-source solution (Eq. 4.10 in Raghavan, 2012a). 
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APPENDIX G 

SENSITIVITY ANALYSES OF PRESSURE AND RATE TRANSIENT BEHAVIORS OF 

HORIZONTAL WELLS INTERCEPTING MULTIPLE FRACTURES 

 

G.1. Horizontal well intercepting Nf fractures in a Fractal Reservoir with Infinite Thickness  

 

Circular Transverse Fractures — High Conductivity 

 

 
 

Figure G.1 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.2 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 
 

 
 

Figure G.3 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.4 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 
 

 
 

Figure G.5 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 

 
  



 

276 

 

 

 
 

Figure G.6 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 
 

 
 

Figure G.7 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) 
(constant-rate case). 
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Figure G.8 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant- 
pressure case). 

 

 
 

 
 

Figure G.9 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) 
(constant-rate case). 
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Figure G.10 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant- 
pressure case). 

 
 

Circular Transverse Fractures — Intermediate Conductivity 
 

 
 

Figure G.11 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=1.5) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.12 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 
 

Figure G.13 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.14 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- 
pressure case). 

 
 

 
 

Figure G.15 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.16 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 
 

Figure G.17 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=0.5) (constant-rate case). 

 
  



 

282 

 

 

 
 

Figure G.18 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant- 
pressure case). 

 

 

 
 

Figure G.19 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=1.3) (constant-rate case). 
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Figure G.20 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant- 
pressure case). 

 
 
 

Circular Transverse Fractures — Low Conductivity 
 

 
 

Figure G.21 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.22 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 
 

 

 
 

Figure G.23 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.24 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 
 

 
 

Figure G.25 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.26 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-pressure 
case). 

 
 
 

 
 

Figure G.27 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) 
(constant-rate case). 
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Figure G.28 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant-
pressure case). 

 

 

 
 

Figure G.29 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) 
(constant-rate case). 
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Figure G.30 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant-
pressure case). 

 

Rectangular Transverse Fractures — High Conductivity 
 

 
 

Figure G.31 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.32 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 
 

Figure G.33 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.34 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 
 

Figure G.35 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.36 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 
 

 
 

Figure G.37 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=3) and conductivity index (q=0.4) 
(constant-rate case). 
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Figure G.38 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=0.4) (constant- 
pressure case). 

 
 

 
 

Figure G.39 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=3) and conductivity index (q=1) 
(constant-rate case). 
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Figure G.40 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=1) (constant- pressure 
case). 

 

 
 

Figure G.41 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=3) and conductivity index (q=4) 
(constant-rate case). 
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Figure G.42 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=4) (constant- pressure 
case). 

 
Rectangular Transverse Fractures — Intermediate Conductivity 
 

 
 

Figure G.43 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=1.5) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.44 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 
 

 

 
 

Figure G.45 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.46 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- 
pressure case). 

 
 

 

 
 

Figure G.47 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=0) (constant-rate case). 
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Figure G.48 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 
 
 

 
 

Figure G.49 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=0.4) (constant-rate case). 
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Figure G.50 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) (constant- 
pressure case). 

 
 
 

 
 

Figure G.51 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of 
infinite thickness with fixed fractal dimension (Df=2.5) and conductivity index 
(q=1) (constant-rate case). 
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Figure G.52 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of infinite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=1) (constant- 
pressure case). 

 

Rectangular Transverse Fractures — Low Conductivity 
 

 
 

Figure G.53 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.54 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 
 
 
 

 
 

Figure G.55 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.56 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 
 

Figure G.57 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.58 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-pressure 
case). 

 
 

 

 
 

Figure G.59 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) 
(constant-rate case). 
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Figure G.60 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) (constant-
pressure case). 

 

 

 
 

Figure G.61 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of infinite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=4) 
(constant-rate case). 
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Figure G.62 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of infinite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=4) (constant-pressure 
case). 

 

G.2. Horizontal well intercepting Nf fractures in a Fractal Reservoir with Finite Thickness  

 

Circular Transverse Fractures — High Conductivity 
 

 
 

Figure G.63 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant-
rate case).  
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Figure G.64 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 
 

Figure G.65 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant-rate 
case). 

 

  



 

306 

 

 

 
 

Figure G.66 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 

 

 

 
 

Figure G.67 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.68 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.69 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant-
rate case). 
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Figure G.70 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant- 
pressure case). 

 

 

 

 

 
 

Figure G.71 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant-
rate case). 
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Figure G.72 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant- 
pressure case). 

 
 

Circular Transverse Fractures — Intermediate Conductivity 
 

 
 

Figure G.73 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 

  



 

310 

 

 

 
 

Figure G.74 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.75— Log-log plot of the dimensionless pressure and dimensionless pressure derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant-rate 
case). 
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Figure G.76 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 
 

Figure G.77 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.78 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 
 

Figure G.79 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) 
(constant-rate case). 
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Figure G.80 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.81 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) 
(constant-rate case). 
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Figure G.82— Log-log plot of the dimensionless rate and dimensionless rate derivative functions for 
a horizontal well intercepting Nf circular transverse hydraulic fractures with 
intermediate conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant- pressure 
case). 

 
 

Circular Transverse Fractures — Low Conductivity 
 

 
 

Figure G.83— Log-log plot of the dimensionless pressure and dimensionless pressure derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=1.5) and conductivity index (q=0) (constant-rate case). 
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Figure G.84 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=1.5) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 

 

 

 
 

Figure G.85 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant-rate 
case). 
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Figure G.86 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure case). 

 

 

 

 

 

 
 

Figure G.87 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.88 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=0) (constant-pressure 
case). 

 
 
 
 

 
 

Figure G.89 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant-
rate case). 
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Figure G.90 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=0.5) (constant-pressure 
case). 

 

 

 

 
 

Figure G.91 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf circular transverse 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant-
rate case). 
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Figure G.92 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf circular transverse hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=1.3) (constant-pressure 
case). 

 

Rectangular Longitudinal Fractures — High Conductivity 
 

 
 

Figure G.93 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.94 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 
 

Figure G.95 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant-rate 
case). 
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Figure G.96 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 

 

 
 

Figure G.97 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.98 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.99 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=3) and conductivity index (q=0.4) (constant-
rate case). 
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Figure G.100 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=0.4) (constant- 
pressure case). 

 

 

 
 

Figure G.101 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=3) and conductivity index (q=1) (constant-rate 
case). 
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Figure G.102 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=1) (constant- pressure 
case). 

 

 

 
 

Figure G.103 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with high conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=3) and conductivity index (q=4) (constant-rate 
case). 
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Figure G.104 — Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with high conductivity in a fractal reservoir of finite thickness with 
fixed fractal dimension (Df=3) and conductivity index (q=4) (constant- pressure 
case). 

 
 

Rectangular Longitudinal Fractures — Intermediate Conductivity 
 

 
 

Figure G.105 — Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=1.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.106— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.107— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.108— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 

 

 
 

Figure G.109— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0) 
(constant-rate case). 
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Figure G.110— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant- 
pressure case). 

 

 

 

 
 

Figure G.111— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) 
(constant-rate case). 
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Figure G.112— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) (constant- 
pressure case). 

 

 

 

 

 
 

Figure G.113— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with intermediate conductivity in a fractal reservoir of finite 
thickness with fixed fractal dimension (Df=2.5) and conductivity index (q=1) 
(constant-rate case). 
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Figure G.114— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with intermediate conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=1) (constant- 
pressure case). 

 
 

Rectangular Longitudinal Fractures — Low Conductivity 
 

 
 

Figure G.115— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=1.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.116— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=1.5) and conductivity index (q=0) (constant- pressure 
case). 

 

 

 
 

Figure G.117— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2) and conductivity index (q=0) (constant-rate 
case). 
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Figure G.118— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2) and conductivity index (q=0) (constant- pressure case). 

 

 

 

 
 

Figure G.119— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0) (constant-
rate case). 
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Figure G.120— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=0) (constant-pressure 
case). 

 

 

 
 

Figure G.121— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=0.4) (constant-
rate case). 
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Figure G.122— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=0.4) (constant-pressure 
case). 

 

 

 

 

 
 

Figure G.123— Log-log plot of the dimensionless pressure and dimensionless pressure 
derivative functions for a horizontal well intercepting Nf rectangular longitudinal 
hydraulic fractures with low conductivity in a fractal reservoir of finite thickness 
with fixed fractal dimension (Df=2.5) and conductivity index (q=4) (constant-
rate case). 
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Figure G.124— Log-log plot of the dimensionless rate and dimensionless rate derivative 
functions for a horizontal well intercepting Nf rectangular longitudinal hydraulic 
fractures with low conductivity in a fractal reservoir of finite thickness with fixed 
fractal dimension (Df=2.5) and conductivity index (q=4) (constant-pressure 
case). 
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APPENDIX H 

THE USE OF FRACTIONAL INTEGRALS TO MODEL THE TRANSIENT 

PERFORMANCE BEHAVIOR OF WELLS INTERCEPTING HYDRAULIC 

FRACTURES4 

 

H.1. Wells Intercepting Hydraulic Fractures in Euclidean Reservoirs:  Classic Models 

 

The finite conductivity fracture models are based on the discretization of the hydraulic fracture, 

which defines a system of equations.  The "coupling" between the hydraulic fracture and the 

reservoir is made by the use of the uniform flux solution of a hydraulic fracture, which implies the 

superposition of the reservoir (line/point source) solution.  Gringarten et al. (1974) presented the 

uniform flux solution for a vertical well intercepting a rectangular fracture within a 2D (cylindrical) 

reservoir (schematics in Fig. H.1).  The authors developed the solution by assuming that yD=ywD=0 

and superimposing the line source solution over the lateral extent of the hydraulic fracture (-xfD, 

xfD), i.e.: 

 

, .........................................................(H.1) 

 

which results in the following expression: 

 

                                                

4 Parts of this Appendix are reprinted with permission from "Pressure and Rate Transient Behavior of a Horizontal 
Well Intercepting Multiple Hydraulic Fractures within a Fractal Reservoir " by Valdes-Perez, A. R., Larsen, L., and 
Blasingame, T.A., 2018.  Unconventional Resources Technology Conference (URTeC) Proceedings,  URTeC-
2902854.  Copyright [2018] by Society of Petroleum Engineers, Inc. 
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. ....(H.2) 

 

Evaluating Eq. H.2 at the wellbore (i.e., xD=0) and taking the logarithmic derivative gives us: 

 

. ..........................................................................................(H.3) 

 

Fig. H.2 shows the pressure data for a uniform flux fracture published by Gringarten et al. (1974) 

and the pressure derivative function calculated with Eq. H.3.  At early times, it exhibits the 

characteristic formation-linear flow (half-slope in the pressure derivative) followed by the pseudo-

radial flow (flat slope in the pressure derivative). 

 

 
 

Figure H.1 — Schematic of the uniform flux fracture solution using the line source function. 
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Figure H.2 — Log-log plot of the pressure and pressure derivative functions of the uniform flux 
fracture solution using the line source. 

 

 

In 1991, Larsen et al. used the point source solution in the Laplace domain to develop the model 

of a horizontal well intercepting a finite conductivity rectangular fracture within a 3D (spherical) 

reservoir.  Fig. H.3 shows a schematic of this system defined for a vertical (instead of a horizontal) 

well.  The authors applied a double integral in polar coordinates to superimpose the point source 

solution in the Laplace domain over the surface of the segments of the rectangular fracture.  In 

cartesian coordinates, this expression is given by: 

 

. .................(H.4) 
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Figure H.3 — Schematics of the uniform flux fracture solution using the point source function. 
 

In their Appendix B, Larsen et al. (1991) showed that the uniform flux solution of a hydraulic 

fracture within a 3D (spherical) reservoir (Eq. H.4) converges to the 2D (cylindrical) reservoir case 

if the longitudinal extension of the fracture (yfD) goes to infinity.  Utilizing MATLAB's integral2- 

function to numerically integrate Eq. H.4 and subsequently applying the Stehfest algorithm, we 

generated the pressure and pressure derivative functions of this model for increasing yfD-values.  

Then, we compared these results to the data presented by Gringarten et al. (1974).  We present 

such a comparison in Fig. H.4.  We observed that the use of the double integral approach in the 

point source reproduces the formation linear flow at early times and the characteristic negative 

half slope for spherical systems at late times.  The pressure transient behavior of this type of system 

is similar to the one observed in partially penetrated wells.  This solution can also reproduce the 

pseudoradial flow if the yfD-value is sufficiently high.    
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Figure H.4 — Convergence of the uniform flux fracture model using the point source solution 
(Larsen et al., 1991) to the uniform flux fracture model using the line source 
solution (Gringarten et al., 1974) 

 

Based on the line source solution, Cinco-Ley et al. (1978) developed the finite conductivity 

fracture model considering a rectangular fracture.  Depending on the characteristics (parameters) 

of the fracture, this model can exhibit the linear fracture flow at early times, the bilinear and 

formation linear flows at intermediate times, and the pseudoradial flow at late times.  Fig. H.5 

shows the pressure data published by the authors.  We estimated the pressure derivate data using 

MATLAB's spline- function.  Given that the point source function can reproduce the results of the 

uniform flux fracture using the line source function if one of the axes goes to infinity, the finite 

conductivity model developed by Larsen et al. (1991) should converge to the model presented by 

Cinco-Ley et al. (1978) at long longitudinal extensions of the hydraulic fracture (yfD). 
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Figure H.5 — Log-log plot of the pressure and pressure derivative functions of the finite 
conductivity fracture solution using the line source. 

 

To test our hypothesis, we have used the input data (dimensionless fracture conductivity and 

dimensionless hydraulic diffusivity) provided by Cinco-Ley et al. (1978) in the model developed 

by Larsen et al (1991) to compare the results of both models.  We noted that to compare the results 

of these models, the pressure (pwD,L) and pressure derivative signatures generated with the Larsen 

et al. model should be rescaled as follows: 

 

, ....................................................................................................(H.5) 

 

where hD is the dimensionless formation thickness.  We tested both scenarios for a short 

longitudinal fracture (yfD=2) and for a long longitudinal fracture (yfD=80).  Subsequently, we 

compared these results to the data provided by Cinco-Ley et al. (1978).  The results are shown in 
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Fig. H.6.  Based on these results, we came to the following conclusions: (1) for high yfD-values, 

the model proposed by Larsen et al. (1991) converges to the model presented by Cinco-Ley et al. 

(1978), and (2) the pressure and pressure derivative functions at early and intermediate times 

(tD<10-1) are sensitive only to the FcD- and hfD-parameters, regardless of the longitudinal length of 

the hydraulic fracture (yfD) and the source solution related to the geometry of the reservoir (line 

source for a cylindrical reservoir or point source for a spherical reservoir). 

 

 
 

Figure H.6 — Convergence of the finite conductivity fracture model using the point source 
solution (Larsen et al., 1991) to the finite conductivity fracture model using the 
line source solution (Cinco-Ley et al., 1978) 

 

H.2. Extension of the Line/Point Source approaches to Fractal Reservoirs 

 

We have observed that our solutions based on the "fractal point" source approach yield erratic 

behaviors in the pressure and rate transient performance behaviors at intermediate times when v≥0.  

Beier (1994) redefined the parameters of the fractal reservoir model presented by Chang et al. 
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(1990) and presented the infinite conductivity and uniform flux rectangular fracture solutions using 

a "fractal line" approach.  We have observed that the use of this approach can produce unstable 

pressure and rate behaviors when v<0.  These erratic behaviors are related to the treatment of the 

fractal source function.  Beier (1994) used a "line-source" approach (single integral), which 

involves the superposition of the fractal source along the extent of the rectangular fracture; 

whereas, we have applied a "point source" approximation (double integral), which implies the 

superposition of the fractal source over the entire surface of the fracture.  We recognize that none 

of these approaches are appropriate for a fractal reservoir. 

 

The main convergence requirement of the fractal reservoir model establishes that this model should 

converge to the Euclidean reservoir models (Chang et al., 1990) when (1) Df =3 and q =0 (v=-0.5) 

for the spherical reservoir model (Chatas, 1966), (2) Df=2 and q =0 (v =0) for the cylindrical 

reservoir model (van Everdingen et al., 1949), and (3) Df =1 and q=0 (v =0.5) for the linear 

reservoir model (Miller, 1962).  Therefore, the models of wells intercepting hydraulic fractures in 

fractal reservoirs should be able to reproduce all the Euclidean scenarios.  For a well intercepting 

a finite conductivity rectangular fracture within a fractal reservoir, the model should be able to 

reproduce the results presented by Cinco-Ley et al. (1978) when Df=2 and q =0 and the ones 

presented by Larsen et al. (1991) when Df=3 and q =0.  Although the model for a rectangular 

fracture presented in Chapter III fulfills the requirement for the Larsen et al. model, it fails to 

reproduce the results presented by Cinco-Ley et al. (1978).  Similarly, the infinite conductivity 

fracture model presented by Beier (1994) fails to converge to the model presented by Larsen et al. 

(1991) (considering a high conductivity fracture).   

 



 

344 

 

In Section H.1, we showed that the double integral used for the point source solution (spherical 

homogeneous reservoir, i.e., Df=3 and q =0) and the single integral used for the line source solution 

(cylindrical homogeneous reservoir, i.e., Df=2 and q =0) provide exactly the same pressure and 

pressure derivative performance behavior at early and intermediate times of a well intercepting a 

hydraulic fracture.  In short, the transient behavior for a fractured well is unaffected by the 

geometry of the reservoir (fractal dimension, Df) at early and intermediate times.  These results are 

contradictory to the analyses presented in Chapters III and IV and the ones presented by Beier 

(1994).  Hence, we have concluded that the use of the traditional line/point source approaches for 

fractal reservoirs is inappropriate.  The use of the traditional schemes to model hydraulic fractures 

in fractal reservoirs can cause the "over-interpretation" of transient data by the introduction of 

phenomena unlikely to be distinguished in the macro-scale of a reservoir (e.g. anomalous diffusion 

parameters). 

 

H.3. Fractional Integration to Model the Transient Performance Behavior of a Well 

Intercepting a Rectangular Hydraulic Fracture within a Fractal Reservoir 

 

The traditional schemes to model the transient behavior of a well intercepting a hydraulic fracture 

in a homogeneous reservoir consist in the "coupling" of two Euclidean objects: the reservoir 

(cylinder or sphere) and the fracture (rectangular or circular).  This process involves the integration 

of a function over a domain in a "linear" axis or axes.  Because a fractal reservoir is an irregular 

object, it is inappropriate to use the same schemes because the axes are not necessarily linear for 

all cases.  To overcome this problem, we propose the use of fractional integrals.  Ortigueira et al. 

(2017) defined the superposition of a function over a rectangular region defined by (a1,b1)x(a2,b2), 

utilizing the fractional integrals, as follows: 
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. .............................................................................(H.6) 

 

The use of Eq. H.6 implies a rescaling of the axes of a given system using power-law functions.  

For a fractal reservoir, we consider that this is the most appropriate procedure to couple the 

irregular (fractal) geometry of the reservoir to the Euclidean shape of the hydraulic fracture.  For 

this work, we have considered the case where a1=a2. 

 

To show the application of the concept defined in Eq. H.6 in the transient performance behavior 

of a fractured well in a fractal reservoir, consider the fractal source solution in the Laplace domain 

developed in Appendix D: 

 

. .......................................(H.7) 

 

Similar to Beier (1994), we defined the fractal radius as: 

 

. .............................................................................(H.8) 

 

In this development, it is important to point out that the variables x'D, x'wD, y'D, and y'wD do not 

correspond to the classic cartesian (linear) axes.  This is the main difference to Beier's 

conceptualization.  To provide an equivalent expression in cartesian (linear) axes (xwD, ywD), we 

considered the following transformations: 

 

, .................................................................................................(H.9) 
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. ............................................................................................ (H.10) 

 

After combining Eqs. H.7 to H.10, the fractal source solution becomes: 

 

, ........ (H.11) 

 

where x=[q+2]/b.  In this work, we use a "fractal point" approach (i.e., a double integral) to 

superimpose the solution of the fractal reservoir (Eq. H.12) over the surface of the hydraulic 

fracture.  The fracture is defined in the domain (-1,1) in the xwD-axis and (0,yfD) in the ywD-axis.  

Therefore, the uniform-flux fracture solution, is defined by: 

 

, ........ (H.12) 

 

where: 

 

. ................................................................................... (H.13) 

 

We could not obtain an analytical solution to the general case of the integral defined in Eq. H.12.  

The results presented in this Appendix were developed using numerical integration (MATLAB's 

integral2-function). 

 

Convergence to the Classic Uniform-Flux Fracture Models 

 

According to the convergence requirements defined in Section H.2 (taken from Chang et al., 

1990), the solution given by Eq. H.12 must converge to the uniform-flux fracture solution proposed 
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by Gringarten et al. (1974) for Df=2 and q=0, and to the point source solution used by Larsen et 

al. (1991) for Df=3 and q=0.  In Fig. H.7, we present the convergence of the model for the first 

case (Gringarten et al., 1974), and the convergence to the second case (Larsen et al., 1991) is 

presented in Fig. H.8.  We considered a unit thickness (hD=1) for both scenarios, whereas the 

longitudinal length of the fracture (yfD) is 1 for the first scenario and 2 for the second.  We observed 

that the results generated with Eq. H.12 provide excellent matches to the pressure, pressure 

derivative, and b-pressure derivative data from Gringarten et al. (1974) and a perfect match to the 

results generated using the point source solution proposed by Larsen et al. (1991).  The 

convergence to the Larsen et al. model can be analytically derived by substituting the fractal 

parameters Df=3 and q=0 in Eq. H.12 and it will collapse to the point source approach (Eq. H.4). 

 

 
 

Figure H.7 — Convergence of the uniform flux fracture model within a fractal reservoir using 
the fractional integral solution to the uniform flux fracture model in a cylindrical 
reservoir (Gringarten et al., 1974) 
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Figure H.8 — Convergence of the uniform flux fracture model within a fractal reservoir using 
the fractional integral solution to the uniform flux fracture model in a spherical 
reservoir (Larsen et al., 1991) 

 

Influence of the Fractal Parameters — Fractal Dimension (Df) 

 

As presented in Fig. H.9, the fractal dimension of the reservoir (Df) does not have influence in the 

slope of the pressure and pressure derivative functions at early times (tD<4x10-2).  All the cases 

presented in Fig. H.9 show the characteristic formation linear flow at early times, followed by the 

pseudo-fractal flow at late times (the slope of the pressure derivative is equal to v).  This is 

confirmed by the b-pressure derivatives presented in Fig. H.10.  We observed that our proposed 

solution (Eq. H.12) produces a slight offset towards the right of the plot as the fractal dimension 

(Df) decreases.  Such an offset is more evident for Df< 2 (v>0).  This offset is also presented in the 

rate and rate derivative functions (Fig. H.11) and causes slightly higher flowrates at early times, 

for lower Df-values. 
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Figure H.9 — Influence of the fractal dimension (Df) in the pressure and pressure derivative 
functions of a uniform flux fracture within a fractal reservoir (fractional integral 
approach). 

 

 
 

Figure H.10 — Influence of the fractal dimension (Df) in the b- pressure derivative functions of 
a uniform flux fracture within a fractal reservoir (fractional integral approach). 
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Figure H.11 — Influence of the fractal dimension (Df) in the rate and rate derivative functions 
of a uniform flux fracture within a fractal reservoir (fractional integral approach). 

 

Influence of the Fractal Parameters — Conductivity Index (q) 

 

We present the impact of the conductivity index (q) in the pressure and pressure derivative 

signatures in Fig. H.12.  This parameter describes the connectivity between the permeable sites.  

Low q -values represent better connected permeable sites within a fractal system (reservoir).  We 

observed that this parameter does have an impact on the performance behavior of the pressure and 

pressure derivative (slope) at early and late times.  Based on analytical approximations and 

confirmation with the b-pressure derivative (Fig. H.13), we concluded that at early times (early 

fractal formation flow), the slope of the pressure and pressure derivative functions is equal to 

[q+2]-1, whereas at late times (pseudo-fractal flow) the slope of the pressure derivative is equal to 

v.  The relevance of this model is its potential use to directly determine the fractal reservoir 
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parameters without the use of trial and error methods (e.g. Flamenco-Lopez et al., 2003).  The 

conductivity index q can be estimated from the slope at early times.  Once the q -value is obtained, 

it would also allow the straight calculation of the fractal dimension (Df) from the slope of the 

pressure derivative function (v) if the test is long enough to observe the pseudo-fractal flow. 

 

 

 

 
 

Figure H.12 — Influence of the conductivity index (q) in the pressure and pressure derivative 
functions of a uniform flux fracture within a fractal reservoir (fractional integral 
approach). 
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Figure H.13 — Influence of the conductivity index (q) in the b- pressure derivative functions of 
a uniform flux fracture within a fractal reservoir (fractional integral approach). 

 

In Fig. H.14, we present the constant-pressure solution ("mirror" images) of the cases presented 

in Fig. H.12.  This plot shows that the variation of the q-parameter is consistent to the physics, 

i.e., better connected permeable sites in the fractal reservoir (low q-values), yielding higher 

flowrates during the entire test.  These results are contradictory to the ones generated by using the 

traditional point source/double integral approach and presented in Chapters III and IV, where the 

flowrate signatures showed that the better connected systems yielded higher flowrates only at late 

times. 

 

  



 

353 

 

 

 
 

Figure H.14 — Influence of the conductivity index (q) in the rate and rate derivative functions 
of a uniform flux fracture within a fractal reservoir (fractional integral approach). 

 

Relation to the Anomalous Diffusion Model 

 

We noted that the shape of the signatures presented in Fig. H.12 are very similar to ones generated 

using the anomalous diffusion model presented by Camacho-Velazquez et al. (2008) (Fig. 2.8).  

Although their model is for unfractured wells (the model of a uniform flux fracture within a fractal 

reservoir with anomalous diffusion was presented by Razminia et al. 2015b, who used a traditional 

single/integer integral), we consider that these models are comparable given the use of fractional 

calculus, i.e., the fractional derivative to model the anomalous diffusion in fractal reservoirs and 

the fractional integral used to model the fractured well in fractal reservoirs with typical diffusion.  

We present a comparison of these models in Fig. H.15 (the input parameters for the uniform-flux 

fracture model are the same from Fig. H.12).  We confirmed that the shape of the signatures of 
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these models are very similar, particularly at early times where the signatures of the b-pressure 

derivative function from both models overlap (see Fig. H.16).   

 

Given that the anomalous diffusion models are entirely based on mechanical statistics and lacks 

any geological basis, we consider that the fractional integral approach is a more appropriate 

treatment to reproduce signatures as the one shown in Fig. H.15. 

 

 

 
 

Figure H.15 — Comparison of the pressure and pressure derivative functions between the 
uniform-flux fracture model using the fractional integral and the anomalous 
diffusion model for an unfractured well within a fractal reservoir (Camacho-
Velazquez et al., 2008).  

+ 

  



 

355 

 

 

 

 
 

Figure H.16 — Comparison of the b-pressure derivative functions between the uniform-flux 
fracture model using the fractional integral and the anomalous diffusion model 
for an unfractured well within a fractal reservoir (Camacho-Velazquez et al., 
2008). 

 

 

Application of the Fractional Integral Uniform Flux Fractures in 2D (Cylindrical) Reservoirs 

 

In Section H.1, we presented the influence of the longitudinal length of the fracture in the point 

source solution (Fig. H.4).  We observed that long longitudinal fractures can create two subperiods 

of flow at late-times: (1) pseudoradial and (2) spherical flow.  As an exercise, we performed the 

same analysis using the double integral approach in the line source solution (see Fig. H.17).  

Although the solution at late times shows the expected pseudoradial flow for all cases, the results 

show also that at high yfD-values, the characteristic half-slopes at early times (formation linear 

flow) of the pressure and pressure derivative functions collapse in an unitary slope with no physical 

significance. 
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Figure H.17 — Transient performance behavior of the pressure and pressure derivative functions 
of the uniform flux fracture model using the line source solution and applying 
the traditional double integer integral approach. 

 

 

We investigated the possibility of applying the fractional integration in the line source solution 

(Df=2 and q=0 in Eq. H.12) to perform a similar analysis to the ones presented in Figs. H.4 and. 

H.17.  We present such an analysis in Fig. H.18.  For yfD-values different than one, we observed 

that the fractional integration approach can reproduce the following sequence of three periods of 

flow: (1) linear, (2) bilinear, and (3) pseudoradial flows.  This sequence is the same as the one 

observed in low conductivity fractures.  Given that the fractional integral approach does not 

consider the flow inside the fracture, the linear and bilinear flows reproduced with the fractional 

integral approach correspond to the formation linear flow and a "formation bilinear" flow.  In a 

sense, the "formation bilinear flow" can be conceptualized as the reservoir portion of the classic 

trilinear flow model proposed by Lee et al. (1986). 
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Figure H.18 — Transient performance behavior of the pressure and pressure derivative functions 
of the uniform flux fracture model using the line source solution and applying 
the fractional integral approach. 

 

Convergence to the Classic Finite Conductivity Models for Rectangular Fractures 

 

The finite conductivity model for a rectangular fracture in a fractal reservoir presented in Chapter 

III was developed using a "point source" approach (i.e., double integral).  This model can 

reproduce the results presented by Larsen et al. (1991), when the fractal parameters converge to 

the Euclidean limit of a sphere (i.e., Df=3 and q=0).  Consequently, it can also reproduce the results 

presented by Cinco-Ley et al. (1978) for high yfD-values, similar to the results presented in Section 

H.1 (Fig. H.6).  However, this convergence criterion is weak for a fractal model, which should 

achieve the convergence based on the fractal properties (Df=2 and q=0, for the Cinco-Ley et al. 

model).  Therefore, we implemented the fractional derivative approach in scheme of the finite 

conductivity model presented in Chapter III. 
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In Fig. H.19, we present the convergence of the finite conductivity fracture in a fractal model using 

the fractional integral approach to the model proposed by Larsen et al. (1991).  We present three 

cases: (1) low (FcD =0.2p and hfD=103), (2) intermediate (FcD =p and hfD=104), and high (FcD 

=100p and hfD=108) conductivity fractures.  We observed that the match of these models is perfect 

for all these cases. 

 

 

Figure H.19 — Convergence of the finite conductivity fracture model fractal reservoir using the 
fractional integral solution to the finite conductivity fracture model in a spherical 
reservoir (Larsen et al., 1991) 

 

Similarly in Fig. H.20, we show the convergence of the fractal model using the fractional integral 

approach to the Cinco-Ley et al. model, using the data provided in the original publication.  We 

observed that the pressure (pwD,F) and pressure derivative signatures of the generated by the fractal 

model using the fractional integral approach model are similar (in terms of the shapes of the curves) 

to the ones presented by Cinco-Ley et al. (1978).  We found that these models match by rescaling 

the fractal model as follows: 
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,................................................................................................. (H.14) 

 

and 

 

, ..................................................................................................................... (H.15) 

 

where tD,F is the dimensionless time of the fractal model and c1 and c2 are adjusting factors.  We 

determined these factors by trial and error.  For the low conductivity fracture the factors are 

c1=1.325 and c2=0.08, for the intermediate conductivity fracture the factors are c1=1.085 and 

c2=0.16, and for the high conductivity fracture the factors are c1=1 and c2=5.  We present the 

normalized models in Fig. H.21, where we observed excellent matches for the three cases at early 

and intermediate times.  At late times (pseudofractal/pseudoradial flow), the proposed solution 

shows numerical instability for the high conductivity case. 

 

 

 

Figure H.20 — Convergence of the finite conductivity fracture model fractal reservoir using the 
fractional integral solution to the finite conductivity fracture model in a 
cylindrical reservoir (Cinco-Ley et al., 1978)  
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Figure H.21 — Convergence of the finite conductivity fracture model fractal reservoir using 
adjusting parameters and the fractional integral solution to the finite conductivity 
fracture model in a cylindrical reservoir (Cinco-Ley et al., 1978) 

 

 

The discussion should be focused now on the development of analytical functions to determine the 

adjusting parameters c1 and c2.  In their literature review, Ortigueira et al. (2017) pointed out that 

there is not a generalized definition for the concept of the fractional integral, e.g., some fractional 

integrals which involve a convolution scheme have the gamma function of the order of the integral 

as an integration coefficient.  Although we obtained good results using the definition given by Eq. 

H.6, we believe that the adjusting parameters c1 and c2 could be related to an integration coefficient 

of the fractional integral. 
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H.4. Mathematical Development of the Fractional Integral Approach 

 

Consider the solution for a fractal reservoir in terms of Green's functions (Chang et al., 1993): 

 

,....................................................... (H.16) 

 

where a is a constant.  The solution given by Eq. H.16 is general and applicable for Df ≤3, which 

includes the three Euclidean dimensions.  Intuitively, Eq. H.16 can be restricted to consider only 

one direction as follows: 

 

. ..................................... (H.17) 

 

where 0<Dfx'≤1 and qx≥0.  It is important to point out that the x'D-axis corresponds to the traditional 

(1D-linear) axis only if Dfx=1 and qx=0.  Similarly for the y'D, and the z'D axes, the solutions are: 

 

, ...................................... (H.18) 

 

and: 

 

, ........................................ (H.19) 

 

Analogous to Gringarten et al. (1973), we used the Newman's method to combine Eqs. H.17-H.19 

to provide a "3D" solution: 
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. ........................... (H.20) 

 

Assuming that the connectivity between permeable sites is the same in all directions (i.e., 

q=qx=qy=qz), Eq. H.20 reduces to 

 

, ......................... (H.21) 

 

where the fractal dimension Df is given by: 

 

. ...................................................................................................... (H.22) 

 

Comparing Eq. H.16 and H.21, we can concluded that: 

 

.................................................. (H.23) 

 

Given that the modeling of a hydraulic fracture is a planar (2D) structure defined in cartesian 

coordinates, it is fair to neglect the last term in Eq. H.23 (i.e., z'D=z'wD).  Additionally, the axes x'D 

and y'D can be rescaled using a power law function.  Assuming that the superposition of the fractal 

reservoir on the 2D hydraulic fracture occurs equally in both directions, we related the 2D cartesian 

coordinates to the coordinates of the fractal reservoir as (here, only for the x-axis): 

 

. ........................................................................................ (H.24) 
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The exponent [Df-1]/2 depicts the exposure of the fractal reservoir to the 2D hydraulic fracture.  

The expression given by Eq. H.24 is applicable for perfectly connected systems (q=0).  We found 

that the general case of Eq. H.24 is given by: 

 

. ............................................................................................... (H.24) 

 

For b>0.  Eq. H.25 introduces the use of the spatial dimension b, which (in a sense) provides an 

"effective geometry" of the reservoir. 
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