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ABSTRACT 

High throughput drug screening has greatly progressed drug discovery for diseases 

such as cancer. Specifically, the introduction of the automated microscope in high 

throughput drug screening has facilitated the acquisition of very large amounts of 

phenotypic data of how biological systems respond to drugs. Indeed, phenotypic 

analysis has become preferential over traditional biochemical methods due to the ability 

to measure multiple factors simultaneously, making it a highly efficient method to 

establish drug sensitivity data. However, these methods heavily rely on the ability to 

reliably extract quantitative metrics describing alterations in phenotypes in order to 

begin to approach this data format and make decisions about how populations of cells 

are responding to perturbagens. A major contribution of this research has been the

establishment of a paradigm aimed at translating raw HTS data from phenotypic 

screens into functional knowledge about biological systems. Importantly, this paradigm 

starts at the evaluation of the biological question, which dictates the model system, 

influences the method of data acquisition and processing, and level of statistical 

analysis. Furthermore, the newly generated information must then be integrated with 

pre-existing knowledge to facilitate extraction of the new knowledge about the biological 

process being studied. I have applied this paradigm to multiple biological studies 

including: the identification a novel class of drug that targets SKP2 mediated 

degradation of p27 via interference of a protein-protein interaction, the discovery of 

bexarotene as a novel regulator of cellular primary cilia, and profiling the pharmacologic 

susceptibilities of panels of cells lines. Each of these projects have contributed new 



iii 

knowledge to their respective fields, however, they also serve as examples of 

generalizable screening pipelines and methods that can be applied to additional studies. 

While these applications have had specific emphasis on understanding the interactions 

of drugs on cancer cells, the image processing tools and methodological approaches 

developed here are generalizable to application in other fields including histology, 

toxicology, and microbiology. 
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CHAPTER I 

INTRODUCTION 

The overarching goal of this dissertation has been to increase the biological and 

translational relevance of high content (HC) and high throughput (HT) cell based assays 

used in the field of drug discovery. This has largely been facilitated through the 

development of HC phenotypic screening pipelines and application of advanced cellular 

models. Therefore, the focus of Chapter II will be to review the state of knowledge in 

cancer biology, the implications that the modern understanding of cancer biology has 

had in drug screening, as well as the roles of phenotypic screening in these 

applications. Furthermore, a detailed description of the best statistical practices that are 

important in the design, implementation, and evaluation of modern HT assays will be 

discussed. 

In Chapter III, I will describe a direct application of a phenotypic screening which 

was used to perform validation experiments from an in silico screen aimed at identifying 

a chemical scaffold that inhibits SCFSKP2-CKS1 mediated degradation of p27, which 

regulates the cell cycle. This study resulted in the identification of a chemical scaffold 

that could increase nuclear concentrations of p27, which result in either cell cycle arrest 

or death. Importantly, this chemical scaffold can now serve as a starting point for 

additional medicinal chemistry to be further advanced into a biological probe or 

therapeutically useful drug. Methodologically, this application represents a relatively 

simple fluorescent analysis of cells grown in monolayers, which is a heavily used 
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paradigm in HTS. Therefore, the methods and procedures outlined in the research can 

generally be applied to other studies where fluorescent analysis of cells grown as 

monolayers is the primary endpoint. 

In Chapter IV we present a different type of phenotypic screening method that 

quantifies the morphometric properties of a specific organelle known as the primary 

cilium. The primary cilium, is a specialized cellular structure that serves as a signaling 

antenna and when lost is associated with disease, such as cancer. One genetic event 

that is heavily associated with loss of the primary cilium is the deletion of VHL, which is 

part of an ubiquitination complex and is lost in the early development of certain cancers. 

Importantly, there are limited therapeutic options that specifically target VHL-null 

cancers. Ultimately, this research resulted in the identification of a retinoid, bexarotene, 

which pharmacologically rescued the primary cilia in VHL-null cells. This led to ongoing 

studies of the anti-tumor activity of bexarotene in VHL-null xenograft models. This 

application demonstrates how the development of a phenotypic assay facilitated in the 

discovery of a novel mode of action for an established drug that cannot otherwise be 

detected through traditional biochemical methods. Finally, the methods generated in this 

chapter can also serve as a generalizable research tool for those studying ciliopathies in 

vitro. 

To this point, all the described applications have been based on cells grown as 

monolayers; however, there is an overwhelming shift in the field of HTS towards the 

utilization of advanced cell culture models, such as tumor spheroids, which more 

faithfully recapitulate in vivo tumor physiology. Therefore, the focus of Chapter V is the 

development and validation of HT phenotypic screening methods which are used to 
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gain an understanding of how the mode of growth can alter pharmacological 

susceptibility of biological systems. Importantly, this research provides empiric evidence 

that the trends predicted from spheroid cultures do indeed more faithfully recapitulate 

clinical observations when compared to monolayer cultures. As a method, this research 

describes a practical, yet highly robust, approach to implementing multiplate spheroid 

assays to HTS drug discovery. Therefore, we anticipate that these methods will greatly 

contribute to the future of HTS which are more heavily relying on these types of models 

to establish drug sensitivity data. 

It is clear that HT drug screening is a useful tool used to generate information 

about how a biological system responds to a perturbagen. However, the data that it 

produces is also high dimensional and often times requires extensive data mining in 

order to obtain a basic understanding of what the collective data means. Historically, 

one of the most powerful tools to convey large amounts of information is through the 

generation of informative charts and graphics. The most prevalent methods of 

displaying HTS data are in the form of waterfall plots, Z-score plots, and clustered 

heatmaps. However, we find these graphics to be generally uninformative outside of 

identifying the top performer in a library. Therefore, the focus of Chapter VI is the 

generation of informative graphics used to provide context to HTS results by embedding 

them in a network which integrates target profiles and molecular signaling information 

that the drugs work through. Importantly, this method is designed to be self-compiling 

and is therefore generalizable to any library that contains combinations of drugs held in 

the in house annotation database. 
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CHAPTER II 

LITERATURE REVIEW OF THE STATE OF HTS IN CANCER BIOLOGY 

Introduction 

High throughput screening is now an established scientific discipline that leverages 

technology to rapidly test many thousands of experimental conditions in a well-defined 

and statistically validated model system. Therefore, when interoperating HTS data it is 

important to understand the domain of applicability, which deals with the statistical, 

biological, and translational relevance of the results. The term “biological significance” is 

a loosely defined term and is often presented in contrast to statistical significance. To 

further distinguish these two concepts, statistical relevance deals with the confidence 

and reproducibility of a measurement, while biological relevance relates to the functional 

relevance of the test results to the biological system being tested.1,2 However, the 

distinction between these two concepts does not limit the importance of both in testing 

and interoperating HTS results. The related concept of translational relevance expands 

upon the biological relevance by specifically contextualizing the results in their potential 

to affect clinical diagnostics or management of a particular disease. In the following 

chapter, I will discuss the evolution of HTS under the selective pressure of providing 

biologically and translationally relevant small molecules. Likewise, the discussion will 

explain how a modern understanding in cancer biology has altered the way we model 

the disease with the specific aim at increasing the translational relevance of pre-clinical 

pharmacology. Finally, statistical integration and retrieval of significant results, with a 
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specific interest in bolstering the rigor and reproducibility of HTS systems, will be 

discussed. 

Historical prospective of HTS in targeted drug discovery 

HTS is an unbiased discovery based platform that became popularized in the early to 

mid 90’s, when multiple pharmaceutical companies adapted this technology for drug 

discovery applications.3 At this point, enzyme kinetics assays where miniaturized, 

automated, and used to identify potent enzyme inhibitors. Likewise, many of the early 

discoveries were focused around targets with enzymatic or binding activity, such as 

kinases and GPCRs; which to the credit of this system, represent the largest classes of 

molecular targets to date.4,5 However, one apparent limitation of this paradigm of HTS is 

a failure to translate activity established in cell-free in vitro assays into appreciable cell-

based assays and clinical activity. Thus, the introduction of cell-based screening for 

drug discovery represents a critical stride towards providing more biologically relevant 

results. In this context, cell-based models can be engineered to provide direct readouts 

of molecular activity in the presence of physiologic relevant features, such as 

membrane barriers, metabolic processes, complex signaling interactions, 

compartmentalization, and the presence of serums in the culture media, which are 

unaccounted for in many homogenous cell-free assays.6 A specialized form of a cell-

based screen, known as a phenotypic screen, further capitalizes on cell-based 

screening, but allows one to identify bioactive molecules on the basis of being able to 

perturb a given phenotype. This method of analysis has resulted in the identification of 

targets that alter cell morphology, chromosomal segregation, migration, invasion, and 

survival.7-10
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The underlying principle behind performing phenotypic screening as a method of 

discovery is that the phenotype of biological systems is the sum aggregate of many 

different biological processes. Likewise, if one modulates the activity of an integral 

component feeding into the phenotype, measurable changes may be observed. This 

makes research tools, such as the microscope, incredibly powerful in that a researcher 

can directly visualize alterations in phenotypes. When the microscope is further 

combined with digitized cameras and integrated with automated systems, a HTS-ready 

platform is produced with the ability to produce vast amounts of data at the single-cell 

level and below. Indeed, many HTS facilities have integrated image-based phenotypic 

screening capabilities due to the efficiency of these methods to provide multiple 

simultaneous readouts of a biological response in a single assay, making high content 

analysis (HCA) possible. Despite these positive aspects of phenotypic screening, it is 

potentially limited in that it does not necessarily confirm the direct mode of action of a 

bioactive molecule, it comes with significant overhead and instrumentation expenses, 

and often requires tailored automated methods of analysis. Thus, there is a continual 

demand to develop new tools to address the needs of new biological questions. 

Review of the state of the art in phenotypic image analysis 

Given the importance and prevalence of phenotypic screening in drug discovery 

applications, there has been a fair amount of research devoted to developing image 

analysis tools. Interestingly, many of the strides in this field have come from 

generalizing methods developed for non-biological image analysis applications, such as 

food and industrial quality control assement.9 Due to the broad scope of applications for 

image analysis, a few different nomenclatures describing similar underlying concepts 
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have emerged in the field. To simplify this, we subdivide image analysis into two major 

paradigms, referred to here as high-level and low-level.11 Importantly, these terms are 

not to be confused with superiority of either paradigm over the other; but rather how 

meticulous the paradigm is at describing the content of the image. In a high-level image 

analysis approach, the goal is to provide a detailed description of individual components 

of an image, often termed as regions of interest (ROI). Indeed, many of the image 

analysis pipelines used in HTS fall into this category due the ability to perform single-

cell analysis.12 Limitations in high-level image analysis are that the quality of the data is 

related to the ability to accurately segment an image, which may not always be possible 

and is difficult to quantitatively address. In contrast, a low-level image analysis approach 

attempts to describe the content of an image by generalizing patterns of pixels within a 

field. Thus, low-level image analysis circumvents the need to define ROI making it 

highly generalizable. However, one apparent limitation of the low-level image analysis 

approach is that the features produced are not directly human-interpretable, and it often 

requires advanced data mining to be used as a quantitative tool. However, simple 

evaluation of whether a phenotype is significantly different between different 

experimental conditions can readily be achieved with low-level analysis, making this a 

valid tool for primary screening. Likewise, open source and commercial tools, which 

capitalize on both of these paradigms, have been developed specifically for bio-image 

analysis.13-15

The next most critical aspect of image processing is the selection of the feature 

space. This is analogous to a pathologist or cellular biologist selecting the right 

collection of words to describe a phenotype. Likewise, there are various types of 
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descriptors that capture morphometric, intensity, and textural differences that may be 

used independently or collectively to describe a particular phenotype. Morphometric 

analysis is generally the most robust and human-interpretable method used to quantify 

a change in phenotype. Morphometric features rely on a high-level image analysis, 

which provides discrete objects to be measured. Ideally, the major visual change can be 

described by a key morphometric factor, such as an object becoming smaller or 

rounder, however, some phenotypes require a more detailed description in order to 

successfully differentiate them. Intensity-based features are also commonly used for 

biomedical image analysis applications. Similar to morphometric features, intensity 

features are most often derived from ROI but may also be calculated from a field. 

Applications that capitalize on intensity-based features include the quantification of 

protein levels, localization, and cell cycle stage; which use changes in the mass, 

concentration, or variance of signals from dyes or stains.16,17 The most apparent 

limitation of intensity-based features is reproducibility of the signal across assay 

batches. Therefore, intensity features require further normalization and systematic 

evaluation of batch effects in order to be integrated across a screening campaign, which 

are discussed in detail in a subsequent section. An emerging feature space that is now 

being explored in biological image analysis quantifies textural information. Multiple 

texture feature extraction methods have been proposed, most of which quantify the 

relational attributes between neighboring pixels. Likewise, texture is most commonly 

used in low-level image analysis methods.18,19 In addition to primary features, there are 

a number of calculable features. Applications of these include the quantification of the 

penetrance of a phenotype and long range organization of cells.20 Finally, the 
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integration of machine learning techniques has provided powerful new tools to quantify 

a phenotype using mixed feature spaces. 

Implications of cancer biology in in vitro model systems 

There is a continuously evolving view of the features that define a successful cancer; 

likewise, the lack of representation of these features in in vitro models has been 

proposed as a major cause for the low rate of translation of drugs identified using these 

systems into clinical activity. To summarize these features, a set of 6 hallmarks of 

cancer were initially proposed by Hanahan and Weinberg. The hallmarks of a 

successful cancer proposed here are: resistance to cell death, sustaining proliferative 

growth, evading growth suppressors, activating invasion and metastasis, enabling 

replicative immortality, and inducing angiogenesis.21 Later, the initial 6 hallmarks were 

supplemented with dysregulation of cellular metabolism, ability to avoid immune 

destruction, enabling tumor promoting inflammation, and genomic instability.22 

Interestingly, many of these hallmarks rely on the ability of a tumor to promote a 

heterogeneous environment, to the extent that tumor heterogeneity can be considered a 

distinct hallmark.22,23 Indeed, tumor heterogeneity can be observed at multiple levels, 

which include heterogeneity in the cellular composition of a tumor, heterogeneity 

between tumors within a patient, and genetic heterogeneity within a given tumor. 

Through the recognition of tumor heterogeneity, multiple novel therapeutic targets have 

been identified and are now being explored. Though, it also resulted in the recognition 

of the extent of limitations of the current paradigm of in vitro modeling and has led to the 

development of model systems that better recapitulate this important aspect of tumor 

biology, which are discussed in detail in subsequent sections. 
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The tumor microenvironment consists of a heterogeneous mixture of multiple cell 

lineages which range from normal supportive cells, infiltrating immune cells, vascular 

endothelium, and transformed tumor cells.22,23 Through understanding the cellular 

composition of a tumor, multiple prognostic factors and drug targets have been 

identified.22 For example, in breast cancer tumor-stroma interactions can be used to 

predict the course of the disease by analyzing the gene expression profile of stromal 

cells, opposed to traditional prognostication based on genetic markers of transformed 

cancer cells, demonstrating the importance of paracrine signals being provided by the 

stroma.24 In other diseases, such as cervical cancer, targeting of platelet-derived growth 

factors supplied by cancer-associated fibroblasts and pericytes presents a new and 

promising molecular target based on targeting the cellular heterogeneity of the tumor 

stroma.25 In yet another example, the fraction of infiltrative CD4+ T helper cells or CD8+ 

T killer cells serves as a prognostic marker for disease survival in gliomas and has the 

potential to predict the efficacy of utilizing immune-based therapies.26 Thus, it is clear 

that understanding the heterogeneous milieu of cells that compose a tumor has 

provided novel prognostic factors and targets used in the treatment of cancer. 

Tumor heterogeneity may also refer to heterogeneity in the genetic and 

epigenetic composition of the tumor. The classical model of cancer development 

assumed a tumor consisted of relatively homogeneous clonally derived cells that had 

undergone linear evolution.22,27 However, in light of the observance of high levels of 

genomic instability and elevated levels of heterogeneity at the genomic level, this notion 

has shifted towards a branched model where different clonal lineages co-evolve 

together and those lineages that have accrued mutations that confer an increase in 
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fitness will grow out to form the bulk of the tumor.28 In terms of utilizing targeted 

therapies, this presents additional challenges because the targetable profile of the 

various clonal lineages that compose the tumor may be different and can alter over 

time, especially in the presence of selective pressures. Indeed, treating cancer using a 

single target agent has been generally unsuccessful because the provision of a single 

selective pressure can result in the outgrowth of a resistant sub-population.27,29 Thus, it 

has become increasingly more common to use combinations of agents to avoid the 

development of secondary resistance and minimize toxicity. In addition to genetic 

heterogeneity, tumor cells also demonstrate epigenetic heterogeneity. This level of 

heterogeneity can result from paracrine signaling between the tumor cells and the 

stroma, or as a result of hypoxic conditions, to name a few potential contributors. 

Epigenetic heterogeneity can similarly provide alterations in the evolutionary fitness of 

cancers, result in secondary resistance through regulation of the gene expression 

profile, and produce novel stem-like phenotypes.30 The observance of epigenetic 

heterogeneity has led to the exploration of combination therapies, which inhibit 

epigenetic processes to homogenize the population and increase the susceptibility to a 

secondary agent.31,32 

Review of cell-based model systems used for HTS 

It is clear that tumor heterogeneity is a repeating motif in tumor physiology and that it is 

important in the development, growth, and spread of multiple cancers. Unfortunately, 

many of the models that are used in biological research, such as immortalized cell lines 

propagated for many years as monolayers, fail to fully recapitulate this aspect of tumor 

physiology. Despite this limitation, immortalized cell lines grown as monolayers do have 
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value in that they have been instrumental in the establishment of many of the driver 

mutations in cancer in addition to uncovering the mechanism of action that drugs work 

through. Indeed, drug sensitivity profiles generated across panels of immortalized 

cancer cell lines, representing different tumor lineages, are able to cluster drugs by 

mode of action and cell lines by linage specific sensetivities.33 From a logistical 

perspective, immortalized cell lines are available to the broader research community, 

are isogenic, and well-characterized. These features facilitate bench marking and peer 

validation of results, which are important for scientific advancement and credibility. To 

address the limitation of immortalized cell lines, researchers have suggested testing the 

effects of potential therapeutics in panels of representative cell lines, which provides 

genomic heterogeneity and allows researchers to estimate the generalizability of the 

observed response. Others have moved away from immortalized cell lines towards 

patient-derived models, which recapitulate the genetic and epigenetic heterogeneity 

found in the clinical setting. The gold standard for establishing drug sensitivity data for 

patient-derived cell lines has been xenographt mouse models.34 However, these are 

limited in the number of drugs that can be tested due to the amount of time and cost 

associated with performing these types of studies. For these reasons, adapting patent-

derived cell cultures towards HTS is a major trend in the field. In this context, others 

have established biobanks composed of patient-derived cell lines that form organoids in 

vitro; a system which further benefits from its ability to recapitulate physiological 

features which are discussed later in this section.35 

Another family of methods being explored to increase the translational relevance 

of HTS rely on the integration of physiologic relevant features into cell culture models. 
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Importantly, these systems model non-genomic characteristics of a tumor which include: 

the formation of 3D cell-cell interactions, secretion of extracellular matrix (ECM) and 

formation of cell-ECM interactions, chronic hypoxic cores, proliferative margins, 

metabolic heterogeneity, drug permeability gradients, and spontaneous development of 

secondary chemoresistance and radioresistance.36-38 To integrate these features, 

traditional in vitro cell culturing methods which form monolayers that adhere to a solid 

interface are giving way to non-adherent multicellular aggregates grown in 3D 

suspensions.39 At present, multiple methodologies have been proposed to facilitate the 

formation of cells into multicellular aggregates, the benefits and limitations for which are 

discussed in the sections below. 

The first 3D culturing methods discussed here are those that rely on using a 

supportive matrix to facilitate the growth of clonally derived multicellular aggregates. 

Typically, these systems either use animal-derived basement membrane hydrogels or 

defined synthetic extracellular matrix scaffolds, which were initially characterized in the 

mid-1980’s, to support the growth of cells by providing physiological cell-ECM 

interactions.40-42 Importantly, matrix-based systems have been demonstrated to support 

the growth of multicellular aggregates in multiple established cell lines and in primary 

patient-derived cell lines (PDC). Indeed, prolonged culturing of primary PDC has been 

developed using scaffold-based technologies, which are now being used for 

personalized pharmacologic profiling applications.35,40,43 Therefore, scaffold-based 

technologies achieve increased biological and translational relevance through 

supporting the growth of cell lines that are otherwise difficult to culture, such as PDCs, 

and by providing a supportive growth matrix which facilitates non-adherent 3D 
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multicellular aggregate formation. In the context of HTS, scaffold-based model systems 

are able to be adapted to multiwell plates using automation, and can be optimized to 

generate a few hundred to thousands of clonally derived organoids per multiwell plate. 

While this feature helps improve population-based statistical analysis, it also presents 

certain limitations; including heterogeneity in the size and morphology of spheroids, 

which can result in novel cellular behaviors and may confound the results of certain 

analyses.44 For HTS campaigns using cells grown in a matrix, biochemical endpoint 

analysis is often performed over image-based methods. In part, this is due to the 

resulting organoids growing in different focal planes and issues with automated focusing 

through the supportive matrix.43 Interestingly, it has been my observation that imaging is 

often done as a method of quality control for these screens and has potential to be 

highly informative, pending the development of further methods. Other established 

limitations in scaffold-based methods deal with the reproducibility in the composition of 

animal-derived hydrogels, which often display a high degree of inter-batch variation.45 

For this reason, the use of synthetic matrix sources, such as the commercially available 

product Matrigel (Corning), are commonly used. While this synthetic matrix decreases 

variability associated with the composition of the matrix; it is limited in that the full 

repertoire of ligands that are present in animal-derived extracellular matrices are not 

well represented, resulting in the inability of synthetic matrices to facilitate as diverse of 

a range of cell lines. Finally, these systems also often require prolonged culture in order 

to generate detectable organoids from a single cell. 

The next method discussed produce a single uniform spheroid using specialized 

multiwell plates or plating accessories. These include hanging drop, ultra-low 
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attachment (ULA) round (U) bottom plates, and magnetic bioprinting, with each method 

presenting certain benefits and limitations.36,46-49 Each of these systems facilitate in the 

rapid formation of large multicellular aggregates that grow in a non-adherent manner. 

Furthermore,  the characteristics of spheroids with a diameter greater than 300-500 

microns recapitulate the physiological features of small avascular tumor nodules and 

micrometastisis as demonstrated by the presence of chronically hypoxic cores, 

formation of 3D cell-cell contacts, resistance to chemotherapies and radiotherapies that 

mimic clinical observations, and establishment of drug permeability gradients.37,50 To 

further increase the physiological relevance of these systems, cells may also be co-

cultured using combinations of established cell lines, PDC, as well as stromal and 

immune cells in order to mimic the cellular and genomic heterogeneity encountered in a 

tumor.51,52 Thus, these methods are able to provide highly biological and translational 

relevant models amenable to HTS, but are also associated with certain limitations which 

are briefly described here. Hanging drop culturing methods were adapted from 

embryonic stem cell biology and represent the oldest non-scaffold-based method used 

for spheroid production.53,54 These systems can robustly generate uniform spheroids, 

but are limited in HTS applications by their difficulty to be manipulated using automation 

and the requirement of the spheroids to be transferred into a separate apparatus in 

order to be analyzed. ULA U-bottom plates have a similar performance in the ability to 

robustly generate uniform spheroids, but are more readily manipulated with automation 

tools and can be directly used for both image-based and biochemical assays. However, 

ULA U-bottom plates are limited by the inability of the microscope to focus on a non-

uniform surface and the inability of the manufacturer to generate a high-standard optical 
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bottom. Finally, magnetic bioprinting systems supplement the growth media with 

magnetic nano-particles, resulting in cells that can be manipulated by a magnetic field.48 

When combined with a specialized magnetic plate rack, cells are drawn together in the 

center or corner of a well, stabilizing cell-cell interactions and allowing a single 

aggregate to form. This method is limited in that it requires supplementation of 

exogenous materials into the cells, which can introduce artifacts and requires highly 

specialized equipment. 

The final model systems aimed at increasing the physiological relevance of in 

vitro systems are organ-on-chip and microfluidic cell culturing methods. These models 

use combinations of supportive matrices, advanced co-culturing techniques, and 

specialized apparatuses that facilitate in the maintenance and formation of mimetic 

tissue. To date, multiple organ-on-chips have been developed as models for liver, skin, 

intestine, and kidneys.55 Additionally, different organ systems can be linked together to 

mimic the physiology of entire organisms.55 While many of these systems have yet to be 

fully developed for the use in HTS, they do have the potential to model novel 

physiological features and test conditions that are not readily achieved by other 3D 

systems. Thus, these models can achieve high levels of biological significance through 

generating mimetic multicellular tissue, but require highly specialized equipment, 

optimization, and expertise to generate the chip and perform subsequent experiments, 

yet, may represent a novel technology with the potential to impact HTS. 

With the development of these novel cell culture systems, there is an increased 

pressure to develop new methods to quantify the effects of drugs using these systems. 

Likewise, the development of novel approaches or adaption of pre-existing biochemical 
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and phenotypic endpoints must be explored. At present, both biochemical and image-

based phenotypic assays are in development and applied in HTS. The most common 

biochemical approach uses ATP as a surrogate of viability using reagents such as CTG. 

However, it has been observed that CTG is partially confounded by the presence of 

different morphologies rather than alterations in cellular viability.56 In light of this, Zanoni 

et al. have proposed to prescreen spheroids and only select morphologically similar 

spheroids to be included in analysis. This highlights the importance of performing an 

image-based analysis used to phenotype spheroids, and argues that an image-based 

analysis may be more informative. Indeed, multiple phenotypic assays have been 

previously reported in the literature and consist of both label-free and fluorescent 

methods. Label-free methods do not interfere with cellular behavior and can be 

performed readily across many different cell lines. These methods typically measure 

alterations in the equatorial area, diameter, perimeter, and circularity as surrogate 

measurements of viability. Other high content image assays have been performed, 

which combine morphometric analysis with fluorescent dyes that measure viability using 

caspase activity (CellEvent), membrane permeability (Propidium Iodide), and metabolic 

potential (Calcein AM).46 However, caution should be applied when quantifying 

fluorescent intensity in larger spheroids, which may be confounded by the inability of 

light to penetrate into the core of the spheroid and a high amount of optical scattering 

occurs. In turn, this results in the artificial depletion of signal in the central region of the 

spheroid which may represent cell death or optical proclusion.57 Other low throughput 

image-based method analyses have been applied to the characterization and validation 

of spheroids. These methods provide a very high content snapshot of the composition, 
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structures, and status of cells within a spheroid by applying antibody labels to sections 

from formalin-fixed paraffin-embedded spheroids.58 

Statistical methods used for assay quality control and data normalization 

HTS relies on the miniaturization and automation of a biological assay, which facilitates 

the ability to collect hundreds to thousands of experimental conditions simultaneously. 

Often times, the results of a screening campaign are obtained from aggregating the 

results of many experimental batches together. Likewise, there is a potential that hits 

may be falsely identified through random and/or systematic variation associated with a 

particular batch of experiments, which is termed as “batch effects”. Indeed, in the early 

days of HTS this was considered a major limitation of the technology that needed to be 

reconciled in order to transform HTS into a bona fide drug discovery method.59,60 

Therefore, the integration of specialized statistical analysis aimed at bolstering 

confidence in the reliability of HTS data has been a major development in the field.61-64 

Likewise, it is important to understand the potential sources of error that are 

encountered in HTS and the appropriate use of statistics to detect and correct for these 

errors. 

Multiple factors contribute to inter-batch variation including the exact 

environmental conditions, alterations in cellular behavior, and the quality of different 

experimental procedures that have been performed. Each of these factors can result in 

an over or under representation of data obtained from a given experimental batch and 

are known as “batch effects”, as previously mentioned. This type of error is 

distinguishable from random error, which is the observance of alterations in the data 

that occur from random chance, and can be identified and handled using replication. In 
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contrast, the correction of batch effects often requires additional post-processing and 

statistical normalization used to generate comparable metrics across all the batches in a 

screening campaign. In order to understand how to correct for batch effects, it is 

important to first identify the potential sources of error so that relevant statistical 

analysis may be performed. To discuss the potential sources of batch-related error we 

subdivide it into two classes: systematic and spatial. In the context of high throughput 

image-based assays, systematic batch effects uniformly alter the magnitude or range of 

the data. In contrast, spatial batch effects introduce biases in the data as a function of 

spatial organization in a plate. Spatial batch effects are harder to account for and 

include radial vignettes, gradients, or striping patterns across a multiwell plate. In the 

following sections, we discuss the various types of batch effects in addition to the 

underlying issues that cause them and present appropriate statistical manipulations that 

can be used to correct for these issues. 

When addressing high throughput data it is important to systematically evaluate 

the quality of the data across plates and use this information as inclusion criteria for the 

larger dataset. In a well-designed study, each plate will contain clearly defined positive 

and negative controls which are used both in assay robustness assessment and in 

normalization, which is discussed in the subsequent section. The most common method 

used to quantify the results of a high throughput run is through the calculation of a 

metric known as the Z prime factor (Z’), shown below. 

𝑍′ = 1 −
3(𝜎𝑝 + 𝜎𝑛)

|𝜇𝑝 − 𝜇𝑛|

Where σp and σn represent the standard deviations and µp and µn are the means 

of the positive and negative controls, respectively. However, this method relies on how 
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well the mean and standard deviation represent the data and may be subject to outliers. 

To increase the robustness of this metric, a robust variant of Z’ may be used, which 

substitutes the mean and standard deviation with the median and mean average 

distance (MAD) of both reference populations.62,65 Other methods used to qualify the 

validity of an experimental batch include strictly standardized mean difference (SSDM) 

and taking the area under the curve (AUC) of a receiver operator characteristic curve 

(ROC).66 The advantage of using SSDM is that it is linked to a strictly probabilistic 

model of the data and does not depend on sample size. However, SSDM is limited in 

that the thresholds used to determine the quality of the assay are based on subjective 

classification of the strength of the controls. Utilization of the AUC of a ROC curve 

method is useful for data that is not normally distributed and can be used to optimize a 

threshold used to determine a positive result. This method is limited due to its 

requirement of larger sample sizes. Another commonly utilized method to determine the 

consistency of the results of batch is the minimum significance ratio (MSR) which 

quantify the error between calculated EC50 values. This is useful in that it provides a 

method to evaluate the consistence of dose response data. Functionally this is 

calculated using the formula shown below where S is the standard deviation of EC50 

values and a MSR value less then 3 is generally considered to be good: 

𝑀𝑆𝑅 = 102√2𝑆 

Other important quality control metrics that should continuously be monitored 

through out a screening campagn are baseline signal and signal to noise ratio. 

Alterations in base line single can arise from differences in factors such as alterations in 

cell seeding density which intern has the potential to alter the rate of growth, shape and 
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location of fitted dose response curves based on these metrics.64 Therefore, the ability 

to reliably seed the same number of cells between batches is important in the 

generation of comparable data across batches. 

After assay validation and assurance that the data are of an acceptable quality, 

correction for systematic variation in the data can be evaluated and managed. The 

source of systematic errors can include variation in the way an assay was performed, 

alterations in the settings of the instrument, and degradation of the reagents used to 

perform the assay. The most common method to account for systematic batch effects 

rely on data normalization, which are applied to scale the data to a standardized range 

using on-plate controls. The most fundamental method of scaling data is calculation of a 

fold change, which is formulaically shown below: 

𝐹𝐶 =  
𝑋𝑖𝑗

µ

Where Xij is the individual observation being normalized and µ is a 

representative value for a control, typically the negative. Likewise, a representative 

value can be calculated by taking the mean, 50%-trimmed mean, or median of the 

control. The latter two methods are typically used to provide a more robust 

representation of the data and limit the potential effects of outliers from random 

variation. Fold-change normalization is applicable in situations where the controls 

exhibit minimal variance and are approximately Gaussian. In datasets where the 

confidence interval of the controls is known or calculable, a z-transformation may be 

more appropriate and is formulaically shown below: 

𝑍 =  
𝑋𝑖𝑗 − 𝜇𝑛

𝜎𝑛
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 Z-normalization scales and centers the data to the mean and standard deviation 

of a control, such as the on plate negative control. For similar reasons mentioned 

previously, the median and MAD may also be used as representative values of the 

control and when used are referred to as a robust z-score. Similar to fold-change, z-

scoring based methods assume the data is approximately Gaussian. Fraction affected 

normalization scales raw data to the positive and negative control, and is shown bellow. 

𝐹𝐴 =  
𝑋𝑖𝑗 − 𝜇𝑁𝑒𝑔

𝜇𝑃𝑜𝑠 − 𝜇𝑁𝑒𝑔

This scales the data from 0 to 1, making AC50 values easy to determine and does not 

assume the underlying data is Gaussian. Examples of where the above-mentioned 

statistics are appropriately applied in the normalization of phenotypic screening data 

include the standardization of fluorescent and morphometric features to on-plate 

controls. Interestingly the above mentioned statistical normalizations can also be used 

to standardize pixel values in the image matrix. 

More recently, additional statistical methods have been suggested for assays 

where cell counts are used as the endpoint, with the rational that this metric is 

potentially confounded by multiple factors, including the cell growth rate and time point 

from which the data were collect. To correct for these issues, it has been proposed to 

correct the cell number to the initial cell count at the time of treatment and growth rate of 

the negative control.64,67,68 Functionally this can be achieved using the following 

formula: 

𝐺𝑅 =  (2
log2(𝐹𝐶𝑖𝑗)

log2(𝐹𝐶𝑛) ) − 1 
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The use of normalized growth rates as a surrogate of viability simultaneously 

removes the effects of the rate of growth on cell count data, allows one to infer the 

biological mode of action (i.e. whether a drug is non-effective, cytostatic, or cytotoxic), 

and minimize inter-batch variability. 

 Compared to systematic batch effects, spatial batch effects represent a more 

challenging artifact encountered in high throughput screening campaigns. Spatial 

artifacts can occur on an isolated plate or systematically across an entire batch. In 

general, multiple methods of statistical normalization have been proposed to adjust for 

spatially related batch effects; however, many researchers question the validity of the 

data because these types of artifacts are usually due to a systematic failure of various 

automated processes used to perform the experiment. Therefore, in the assessment 

and correction of spatial batch effects, we will discuss procedural modification in assay 

design, the best lab practices to avoid these artifacts, methods to detect and 

differentiate the various types of spatial artifacts, and the use of appropriate statistical 

methods for correction. The first spatial batch effect that we will discuss is radial 

gradient, also known as “vignettes”. The source of this type of pattern is usually due to 

evaporation of the media on the outer edges of plates, which can increase salt and drug 

concentrations in wells located in the outer region of a plate. Likewise, this artifact is 

generally more apparent in assays that require prolonged incubation. Detection of this 

artifact is most readily apparent when viewing data in the form of a plate heatmap, but 

can also be detected by a poor Z’ value and by evaluating the averaged values of the 

rows and columns. Procedural modifications to account for this include randomizing the 

well positions, performing subsequent replicate analysis on different plates, and 
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averaging values together. While this method is a statistically simple way to remove the 

effects of arbitrarily positioned drugs on a plate it is procedurally more difficult to 

randomize treatment positions in the context of a large HTS. Therefore, if a static plate 

layout is used one can simply apply gas permeant stickers or lids to the plate which 

have been shown to improve the uniformity of a plate.43 Other considerations relevant to 

handling this artifact is to increase the humidity in the incubator where plates are stored, 

proper maintenance of incubators, and increasing the volume of media. Despite utilizing 

the best procedural practices, radial gradient patterns can still occur. In this event, 

statistical correction may be applied, which include utilizing global parametric 

smoothing, local fitting, B-scores, and model based approaches.61,66 Each of these 

methods attempts to estimate the contribution of the observed artifact to the measured 

signal using different advanced statistical models which are used to correct spatial bias. 

However, these methods should be used sparingly because the inappropriate 

application to plates not exhibiting a vignette can result in secondary artifacts.61,69 Other 

spatial batch effects, such as row and column biases, can be detected via visual 

inspection of plate heatmaps, or by calculating the mean and standard deviation of rows 

and columns and performing statistical tests, such as t-tests, Wilcoxon test, or ANOVA. 

Using these statistics allows the evaluation of the null hypothesis, which is that no row 

or column effects are present and the mean and variance of the rows or columns are 

the same. However, this method assumes that the majority of the data are inactive and 

may result in significant differences without the presence of a true artifact. A practical 

example of when this occurs is when dose curves are present on the plate that results 

in a gradual change in signal across the plate. Other more relevant sources of row and 
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column batch effects are failures in cell seeding robots, drug transfer failures, loss of 

focus, and procedural failures during plate production or processing. Thus, if this type of 

artifact is detected it is best to exclude the data from those plates and redo the 

experiment rather than attempt to correct the data with statistical normalization. In 

conclusion, the recognition of batch effects is critical in the integration and ultimately the 

interperatation of HTS results. There are multiple types of batch effects that can be 

detected and classified into different categories using visual and statistical methods. 

Likewise, the appropriate classification of the nature of the batch effect can inform on 

the proper use of statistical methods used for correction. When reviewing pre-existing 

data, it is important to have all the information regarding treatment conditions and 

batches to determine if systematic errors occurred and how to best correct for them. 

Likewise, archiving HTS data in a format that allows for retrospective analysis needs to 

become standardized. 
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CHAPTER III 

BIOLOGICAL VALIDATION OF IN SILICO SCREENING 

Synopsis 

In this chapter, I perform a validation experiment for an ultra-high throughput in silico 

screen using a relatively simple cell-based assay. Importantly, through the development 

of a cell-based phenotypic screening system, we increase the biological relevance of 

the primary in silico screen by providing empiric data directly quantifying the 

endogenous levels of nuclear localized p27 when treated with small molecules aimed at 

rescuing this target. Additionally, these data also indirectly confirm that the lead 

molecules can cross the cell membrane, provide functional data, and help determine 

on- vs off-target cytotoxicity. Finally, when combined with structural information of the 

molecules, a quantitative structure activity relationship (QSAR) is observed, which can 

guide future modifications that may be made to the core structure with the aim of 

improving the core scaffold towards a translationally relevant drug. 

Introduction 

Targeted therapies consist of biological and chemical probes designed to modulate the 

activity of specific targets. Likewise, the utilization of targeted therapies presents an 

opportunity to specifically interfere with proteins or other targets that are associated with 

the development or progression of human disease.70,71 As the scientific body of 

knowledge continues to expand, new molecular targets and mechanisms of action 

(MoA) have been identified. However, in order to successfully capitalize on newly 
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identified targets and MoA, one must identify molecular probes that can modulate them. 

Traditionally, discovery of molecular probes was achieved by performing large HTS 

campaigns on in vitro models treated with diversity libraries consisting of tens of 

thousands to millions of small molecule scaffolds. Indeed, this strategy has successfully 

identified a large number of GPCR, kinase, and ion transport modulators which have 

been translated into clinically utilized drugs.5 However, the massive number of chemical 

scaffolds that are required to identify lead molecules using “shotgun” HTS approaches 

make these methods highly inefficient and have failed to meet the demand of 

generating new drugs against recently characterized targets.60 This has altered the 

traditional HTS paradigm towards strategies which employ focused and fragment-based 

libraries in addition to utilizing in silico approaches to predict drug activity to minimize 

the time and cost associated with drug development.59,72 Of these strategies, in silico 

modeling has a high potential to rapidly identify lead molecules; however, it is limited in 

that they do not fully capture the complexity of a biological system and therefore require 

further biological validation. Thus, utilization of a comprehensive screening strategy that 

combines in silico lead identification with empiric testing in biological systems balances 

the need for high throughput and biological relevance. 

To exemplify the role of phenotypic screening in the biological validation of in 

silico screening, I present a team-based project where the goal was to identify a small 

molecule inhibitor that selectively restores nuclear p27 through interfering with the 

protein-protein interaction between the specificity domain of an E3-ligase complex and 

p27. The p27 protein is a cyclin-dependent kinase inhibitor (CKI), for which the primary 

role is to negatively regulate the cell cycle by inactivating cyclin A- and E-CDK2 
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complexes in the nucleus. While aberrant cell growth is a hallmark of tumorigenesis and 

defects in cell cycle checkpoint proteins are common in cancer cells73, mutations of the 

p27 gene in cancers are rare, at approximately 3% across all cancers.74 The ability of 

p27 to inhibit cell cycle progression is predominantly regulated by post-translational 

modifications, which determine the stability and subcellular localization of p27. Key 

regulatory marks include phosphorylation of p27 at serine 10 (S10), which stabilizes and 

sequesters this CKI in the cytoplasm; and at threonine 187 (T187), which targets it for 

degradation in the nucleus by the SCFSKP2 complex.75,76 When localized to the 

cytoplasm, p27 represses RhoA, leading to reorganization of the actin cytoskeleton, 

diminished focal adhesion formation, and promotion of cell motility, in addition to 

inhibition of apoptosis and promotion of autophagy.77 Furthermore, increased CDK2 

activity caused by loss of nuclear p27 results in phosphorylation of the estrogen 

receptor (ER), thereby increasing ER activity and promoting growth of hormone-

dependent tumors. Thus, p27 is a tumor suppressor in the nucleus, but in the cytoplasm 

acts as an oncogene. Notably, p27 is targeted for degradation differently in the cytosol 

vs. nucleus. In the nucleus, p27 is specifically targeted by the S-phase kinase-

associated protein 1 and 2 (Skp1/2)-Cullin-1 (Cul-1)-F-Box (SCF) ubiquitin E3-ligase; 

while in the cytoplasm, p27 is targeted for degradation by the Cul1-KPC1/2 E3-

ligase.78,79 Specificity for p27 binding to SCF is conferred via the formation of a pocket 

between Skp2 and the cyclin-dependent kinase subunit 1 (Cks1). Indeed, 

pharmacologic rescue of p27 through targeting different interactions in the SCFSKP2

complex has been previously explored and published.80,81 However, the small 

molecules identified in these papers are limited in that they require super-physiological 
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doses (high micromolar range) to achieve appreciable activity, lack selectivity, and do 

not necessarily inhibit E3-Ligase activity of the complex which has been discussed 

elsewhere.82 Thus, there remains an unfulfilled need to identify potent and selective 

inhibitors that target this mechanism in order to advance this class of molecules into a 

useful translational agent. To address this need, we hypothesized that targeting the 

CKS1:SKP2 specificity pocket, over targeting SCF formation or SKP1:SKP2 

interactions, represents a novel targetable region with the potential to effectively rescue 

nuclear p27. 

We developed a comprehensive team-based screening strategy, schematized in 

Fig 3.1A. The first step leverages in silico screening and was done in collaboration with 

the Zhang lab at MDACC. In brief, this method used the publicly available crystal 

structure of the CKS1:SKP2 binding interface acquired from PDB83 and screened 

against a diverse library of small molecules using HiPCDock and GOLD virtual 

screening methods.84,85 This resulted in the identification of 164 high-priority unique 

chemical agents, a visualization of the molecular docking, and stick structure for the top 

two scaffolds, which are shown in Fig 3.1 B,C. Of the high-priority molecules, 78 were 

commercially available and 16 were synthesized according to the suggestion of a 

medicinal chemist. Therefore a total of 94 compounds were tested in the cell-based 

HTS assay which was developed and validated in the subsequent sections. 

The goal of developing a HTS cell-based validation assay is to confirm the 

findings of the in silico screen, thereby providing increased biological relevance of the 

results. The first consideration made during assay development is the selection of a 

relevant model system. In cancers such as endometrial carcinoma (EndoCa), which is 
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the fourth most common cancer in women and has no targeted therapy currently 

approved, loss or mis-localization of p27 to the cytoplasm occurs frequently (~56%) yet 

remains unmutated; providing a compelling translational rationale for targeting p27 as a 

therapeutic strategy for this cancer. Therefore, we validated this screening method in 

multiple prototypic cell line models for endometrial carcinoma; however, due to cost 

associated with performing an antibody-based primary screen, only the most well-

behaved cell line model, HEC1b, was tested in the primary screen. The top confirmed 

hits are now being subjected to a panel of secondary biochemical assays in multiple cell 

lines to further confirm the mechanism of action. The next major consideration in the 

construction of the phenotypic assay is the selection and validation of quantitative 

endpoints. The method we developed evaluates the ability to rescue nuclear p27 using 

an antibody conjugation system that measures endogenous p27 levels in response to 

small molecules. As p27 is a potent negative regulator of the cell cycle, the anti-

proliferative effects of the drug are also quantified as an orthogonal functional read out. 

Thus, this method directly quantifies the functional rescue of p27; however, it is also 

limited as it does not directly confirm that the small molecules are functioning through 

the proposed mechanism of action. Finally, quantitative chemical features and empiric 

activity are used to perform QSAR to further understand the chemical attributes 

associated with biological activity. 
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Materials and Methods 

Cell culture conditions 

HEC1b (ATCC: HTB-113) were acquired from ATCC and cultured in DMEM 

(ThermoFisher, 11965) supplemented with 10% Fetal Bovine Serum (FBS) and 

incubated in a humidified 37 C̊ incubator at 5% CO2. Cell stocks are made by 

suspending cells in 10% DMSO-FBS and flash frozen in liquid nitrogen. Cultured cells 

Fig 3.1) Comprehensive screening strategy and preliminary in silico results. A) 
Schematic summary of the screening strategy used to identify and optimize lead 
molecules with the potential to inhibit the SKP2:p27 interaction. B) Surface plot of 
SKP2 (green) and CKS1 (magenta) binding interface showing co-crystallized p27 
(yellow sticks) overlayed with two lead molecules CMPD405 (gray) and CMPD442 
(cyan). Pocket 1 is on the interface of Skp2/Cks1 where the Glu185 of p27 lies. Pocket 
2 interacts with phosphorylated Thr187 of p27 and is primarily on Cks1. C) Structures 
of two lead scaffolds which we refer to as CMPD 442 and STM 209405. 
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are passaged for up to 5 times before a fresh stock is brought up. Cells plated for a 

HTS/HCA are seeded onto replicate 384-well plates (Griener Cat: 781091) at a density 

of 6000 cells per well and allowed to recover in growth media overnight. 

Drug addition 

After cells have sufficiently recovered and formed a monolayer, cells are treated in 4-

point dose response ranging from 1.25 µM to 20 µM with replicate wells on different 

plates. Compounds are arrayed on a low dead volume plate (Labcyte) and are 

subsequently transferred into assay plates using an Echo Acoustic dispenser (Labcyte). 

At the time of treatment, an additional plate is fixed and DAPI labeled which is used to 

establish a cell count at the time of treatment, which is used during statistical 

normalization. Each plate contains on plate positive (20 µM ST029405) and negative 

controls (DMSO) to assess the quality of measurements across plates. 

Immunocytochemistry 

Following a 24-hour incubation in the presence of compound, the plates are fixed and 

processed using an automated Biomek FX (Beckman) liquid handling platform. In brief, 

plates are fixed using a 4% paraformaldehyde-PBS solution for 30 minutes at room 

temperature (RT). Cells are then permeablized with a 0.5% Triton/PBS solution for 20 

minutes at RT. Following 2 rounds of washing, a 5% milk/PBS blocking buffer is added 

for 1 hour at room temperature. Next, cells are labeled with a commercially available 

p27 antibody (Cell Signaling: D69C12) which is diluted 1:1000 in 5% milk/TBST 

blocking buffer and incubated overnight at 4oC.  The plate is then vigorously washed 

followed by adding a secondary antibody, Alexa Goat anti-Rabbit 546 (Invitrogen), 

diluted in blocking buffer and allowed to incubate for 1 hour at 37oC. The cells are then 
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washed and fixed again in order to stabilize the signal. Lastly, the cells are counter 

stained with DAPI in order to visualize the nucleus. 

Image acquisition and analysis 

Plates are imaged using an imageXpress micro confocal (Molecular Devices) using 

widefield settings. A total of four fields per well are sampled with a 10x NA=0.45 Plan 

Apo lens (Nikon), which covers the entire surface area of the well. Image analysis is 

performed using a custom script developed using the Imaging package in Pipeline Pilot 

(Dassault Systemes BIOVIA, Version 2018, San Diego) . In brief, images are first 

background subtracted in order to minimize variance due to background effects. Next, 

the nuclei are segmented using thresholding to initially identify putative regions, which 

are subsequently smoothed with morphological operators, and finally neighboring 

objects are separated using a marker directed watershed. Debris are filtered using 

nuclear size and intensity filters. The mean intensity value for the p27 label is then 

measured for each cell and summarized at the well level by taking the mean value. 

Additionally, cell counts from a plate fixed on the day of treatment and from wells 

treated with drug are collected. 

Statistical normalization 

Intensity (I) data are normalized using a robust z-score (RZ) transformation from the 

median (MED) and MAD of the DMSO treated wells according to the formula shown 

below: 

𝑅𝑍 =  
𝐼 − 𝑀𝐸𝐷𝐷𝑀𝑆𝑂

𝑀𝐴𝐷𝐷𝑀𝑆𝑂



34 

Normalized rate of growth are calculated using the method described in the NCI60 

screens which is formulaically represented below where Ci is the cell count at time of 

harvest, C0 is the cell count at time treatment and CDMSO is the cell count of the negative 

control:67,68 

𝐺𝑟𝑜𝑤𝑡ℎ = 𝑖𝑓(𝐶𝑖 ≥  𝐶0̅) {(
𝐶𝑖 − 𝐶0̅

𝐶𝐷𝑀𝑆𝑂 − 𝐶0̅

) ∗ 100} 𝐸𝑙𝑠𝑒 {(
𝐶𝑖 − 𝐶0̅

𝐶0̅

) ∗ 100} 

In brief, this method scales the response from one to negative one where values 

between one and zero represent varying degrees of cytosuppression and values 

between zero and negative one represent the extent of cytotoxicity. One deviation from 

this method from what is used is we offset the values by 100 to ensure all values are 

positive, making the values 200, 100, and 0 landmarks for inactive, cytosuppressive, 

and cytotoxic, respectively. RZ-intensity values and normalized growth rate values are 

then plotted by concentration and fitted to a 4-parameter logistic curve using the 

“robust” package in R/Pipeline Pilot. Here, the Normalized MAD and Tukey bi-weight 

function are used to minimize the influence of potential outliers. AUC values are 

calculated via numerically integrating fitted curves. Statistics, data integration, and 

visualization are automated using the Analysis and Statistics package in Pipeline Pilot. 

Quantitative structure activity relationship 

To establish a structure activity relationship, chemical attributes are classified against 

the empiric drug activity from the cell-based screen. Chemical attributes are calculated 

from the structure of the molecule using components in the chemistry library of Pipeline 

Pilot. The chemical features used in the model describe attributes related to formal 

charge, number of chiral centers, average bond length, total number of atoms, bonds, 
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hydrogens, positive and negative charged atoms, rotatable bonds, aromatic rings, chain 

assembles, hydrogen bond acceptors/donors, and 3D volume and surface descriptors. 

Compounds are determined to be active when the AUC of the p27 vs concentration 

curve is larger than 100 (activity cut off). The robustness of the model is evaluated by 

calculating the AUC of the receiver operator curve using the categories mentioned 

above. Further statistical characterization of the model is performed on the optimal 

confusion matrix using the following formulas; where TP = true positive, TN = true 

negative, FP = false positive, and TN = true negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

𝑀𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
\ 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

Results 

HTS assay validation 

In order to confirm the biological activity of lead molecules identified by the in silico 

screening method we first had to develop a HT cell-based assay. Here, HEC1b cells 

were used as a model of endometrial cancer and were plated in 384-well plates. Next, 
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the cells were immunofluorescently labeled with p27 in order to directly measure 

endogenous concentrations of nuclear p27. In rapidly growing cells p27 levels are 

generally low; therefore, in order to validate the responsivity of the p27 antibody, we 

knocked down SKP2. These data show a significant depletion in SKP2 protein levels 

and concurrent elevation in nuclear p27 levels in the cells where SKP2 had been 

knocked down (siSKP2) when compared to the control (siC), Fig 3.2A,B. This 

demonstrates both that the antibody is responsive to changes in p27 levels and that 

targeting SKP2 is a valid method to selectively upregulate nuclear p27. Next, we tested 

this method on a focused library of small molecules initially identified from the in silico 

screen which had preliminary data demonstrating activity. These data were used to 

provide validation of the previous findings and the image-based screening method (data 

not shown). From this analysis, we confirmed that ST029405 significantly elevates 

levels of p27 in the nucleus and arrests cell growth (Fig 3.2 C,D). To further validate the 

image-based assay, we performed statistical analysis using ST029405 as a positive 

control and DMSO as a negative control. Using these controls, we calculated Z’ values 

as a function of cell density, the number of field acquired per well, and number of 

replicate wells tested. From these data we found that a seeding density of 6000 cells 

per well, sampling 4 fields per well with four replicates resulted in Z’ values of 

approximately 0.7 (Fig 3.2 E), indicating a highly robust sufficient to perform screens on. 
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Fig 3.2) Evaluation of reagents and statistical validation of an image-based p27 
localization assay. In order to validate the materials used in the development of this 
assay, HEC1b cells are either treated with non-targeting siRNA or siSKP2. The cells 
are subsequently labeled using commercially available antibodies against SKP2 and 
p27. A) A panel of representative images shows successful knockdown of SKP2 with 
concurrent elevation in p27. B) The nuclear intensity of both antibody labels are 
quantified which show a significant reduction in SKP2 (p<0.0009) and significant 
elevation of p27 (p<0.0001). Bar plot shows the mean and standard deviation of 3 
technical replicates. C-D) The pharmacological control is tested and quantified using 
the same method. These data show a significant elevation in p27 when treated with 
STM209405 when compared to vehicle control (p<0.0001).  
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HTS validates the biological activity of a new class of drugs 

A total of 98 small molecules were advanced into the imaged-based screening system, 

schematized in Fig 3.3A. We observed similar Z’ scores for on plate controls from what 

had been established previously (ranging between 0.5-0.7) for most assay plates, 

however, we did note that on some assay plates ST029405 lost potency, resulting in 

decreased activity and lower Z’ values, despite showing clear dose response curves for 

screening molecules. We later found this to be related to the stability of ST029405, 

which is intolerant to repetitive freeze thaw cycles. Thus, both manual and statistical 

criteria are used in the assessment and integration of individual batches into the 

collective screening results. Of the compounds tested in the cell-based screen, twenty-

nine upregulated p27 in the nucleus and displayed dose sensitivity, Fig 3.3B and Table 

3.1. Of these, 10 resulted in cells becoming cytostatic and 19 resulted in various 

degrees of toxicity. Representative hits that elevate p27 and result in either cytostatic or 

cytotoxicity are shown in Fig 3.3C, where the dose response curve that plateaus near 

the green line represents a cytostatic interaction and the one that dips below the green 

line is cytotoxic. 
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Fig 3.3) Cell based screening results. A) A schematic summary of the cell based 
screening method. B) Waterfall plot of AUC values from fitted dose response curves 
using Robust Z-normalized nuclear p27 intensity values of 4 technical replicates 
treated in 6-point dose response (2 log). Active compounds are represented as dark 
gray bars. C) RZ-normalized p27 intensity vs concentration (Left), NCI growth index 
vs concentration (middle) of Hec1b cells treated with the accompanying small 
molecule (right) 
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Establishment of a quantitative structure activity (QSAR) relationship using regressive 

modeling 

Multiple methodologies have been proposed to perform QSAR. One such method is 

through the usage of machine learning models such as random forest (RF), which are 

uniquely well suited to QSAR due to the ability to automatically identify and weight 

relevant features and produce interpretable trees that guided decision making.86,87 

Importantly, the chemical space used as an input for this model is fairly narrow, thus the 

domain of the model is limited to the description of molecular motifs around the core 

scaffold we identified and not as a generalizable model used in the discovery of new 

scaffolds. Likewise, a relatively small set of human-interpretable molecular descriptors 

focusing on quantifying the prevalence of molecular motifs and geometric attributes of 

the volumetric surface are used versus higher dimensional atomic features; which may 

result in overfitting, are computationally complex to produce, and difficult to interoperate 

on the back end. Another important consideration made during model construction is to 

balance decision weights, which we did by activity class. This is important because the 

representation of truly active molecules is approximately half of inactive and may bias 

decisions if not accounted for. In constructing forest-based models it is also important to 

consider the method used to split nodes. Here, we used Gini index to calculate node 

purity, however, Shannon entropy was also explored but did not have a significant effect 

on the model performance.88 The final consideration made in the construction of the 

model was to perform a 10-fold cross validation in order to estimate the robustness of 

the model system. Evaluation of the QSAR model using the mention chemical feature 

versus activity categories (active vs. inactive) showed robust performance, 
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demonstrated by a high area under the curve of the receiver operator curve (AUC=0.98, 

10-fold cross validation AUC = 0.90), Fig 3.4A. Further analysis of the confusion matrix 

constructed from the optimal model showed that this is a highly accurate model 

(accuracy=0.97) with a high recall of 1.0, and a low false-positive rate of 0.04, Fig 3.4B. 

Finally, from interoperating the results of the optimal decision tree, a clear association 

between molecular activity and the number of aromatic bonds, polar surface area, and 

number of rotatable bonds was discovered, Fig 3.4C. Rationally, these features make 

sense when considering the 3D structure of the CKS1:SPK2 pocket. Here, the 

CKS1:SKP2 interface forms two hydrophobic pockets that are rigidly spaced. Therefore, 

the chemical selectivity towards systems with more aromatic bonds, which are primarily 

contained in 3-4 aromatic rings, makes sense as they fit into the clefts, Fig 3.4 D,E. 

Likewise, the exclusion of highly polar surfaces from these hydrophobic pockets also 

makes rational sense. Due to the rigidity of the pocket, it also is well rationed that a 

more structurally rigid molecule facilitates the orientation and strengthens binding of the 

molecule. 
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Fig 3.4) Structure activity relationship decision tree and model evaluation. A) 

Receiver operator characteristic (ROC) curve for a categorical random forest model 

evaluating molecular features associated with activity. B) A confusion matrix of the 

actual vs predicted drug activity from the optimal forest model with accompanying 

statistical parameters used in the evaluation of categorical models. C) Tree 

representation of molecular features associated with drug activity. D) Molecular 

docking of top 4 lead molecules in the CKS1:SKP2 pocket. E) Chemical structures 

molecules from bin #3, which is the most highly enriched group representing active 

drugs. Calculation of chemical features, model construction and evaluation are 

performed using components in the Chemistry and Statistics libraries in Pipeline 

Pilot. 
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Discussion 

The in silico screening method used here provided a set of molecular scaffolds that 

putatively interferes with CKS1:SKP2 binding to p27. Importantly, we validated that a 

subset (~30%) of the scaffolds could functionally restore nuclear p27 in a cell-based 

system, providing biological relevance to these results. These data also highlight the 

logistical benefit of performing in silico screens to provide a focused library used in lead 

identification, which is both more time and cost efficient when compared to “shotgun” HTS 

approaches which identify lead molecules at significantly lower rates. However, the data 

also argues that a strictly in silico approach is not sufficient for lead identification when 

done in isolation. In this context, we observed that a significant proportion (~70%) of the 

drugs tested failed to be active in a cell-based screen. While not explicitly proven here, 

this could be attributed to a failure in the molecular docking model to account for various 

biological and chemical aspects that are hard to quantify and test in silico. It does, 

however, open the possibility of performing QSAR studies, which require both molecular 

diversity and varying degrees of activity. Therefore, QSAR increases the biological and 

translational relevance of this research by providing a chemical basis of activity. In turn, 

this has the potential to guide additional modifications to the core scaffold to further 

improve activity or drug-like properties and advance this class of molecules into a 

translationally relevant drug for diseases where loss or mis-localization of p27 occurs 

through SKP2-mediated degradation. 
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CHAPTER IV 

ROLES OF PHENOTYPIC SCREENING IN DRUG REPURPOSING 

Synopsis 

The full spectrum of molecular targets and cellular processes that drugs work through 

are not necessarily well known. Thus, the identification of novel targets and 

mechanisms of action for established drugs is an attractive method to supplement the 

drug development pipeline. An attractive benefit of taking a drug repurposing approach 

is that pharmacokinetic, pharmacodynamics, and tolerability data are often known for 

the drugs being tested; which further facilitates rapid translation into the clinic. 

Phenotypic screening has emerged as an important tool for drug repurposing because it 

can be tailored to identify drugs which can modulate specific phenotypes, thereby 

implicating drugs in potential new molecular pathways or cellular processes. Here, we 

develop a phenotypic screening method aimed at identifying novel modulators of the 

primary cilia in a disease relevant VHL-null model system. Using this system, we 

identified bexarotene as a small molecule that protects cells from ciliary resorption in 

response to acute depletion of von Hippel Lindau (VHL) protein. In turn, this research 

has the potential to increase the translational impact of bexarotene towards the 

management of ciliary diseases associated with loss of VHL. 

Introduction 

The phenotype of a biological system is the product of many different cellular 

processes. Likewise, phenotypic screens have the potential to identify drug activity 
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independently from the established mechanism of action by using an unbiased 

approach that measures the change in a phenotype. Indeed, this has facilitated an 

entire field of research where existing or historic drugs find a renewed purpose towards 

novel disease or activity against a previously unknown target. Likewise, there has been 

a devoted effort in the field of drug repurposing to identify the profile of molecular 

targets, signaling pathways, and cellular processes that drugs function through, which is 

achieved through a number of different methods. At present these include methods that 

leverage in silico screening methods, similar to the one described in the previous 

chapter, but applied to a library of FDA-approved drugs which are virtually screened 

against non-canonical binding partners.89 Other more empiric efforts aimed at 

describing the profile of molecular targets that drugs work through have also been 

performed, especially for drugs targeting kinases and GPCR, which show that most of 

these drugs can modulate the activity of multiple targets.90,91 Interestingly, clinicians 

have been non-systematically performing drug repositioning through off-label usage of 

drugs which have been observed to have a clinically significant impact without explicit 

scientific testing or knowledge regarding the mechanism.92 Importantly, multiple 

databases cataloging the profile of molecular targets that a drug functions through are 

now available, which further facilitates drug repositioning efforts.93,94 

We developed an unbiased phenotypic screening method aimed at identifying 

novel positive regulators of the primary cilium in a deficient model. The primary cilium is 

a microtubule-based structure that grows and resorbs in response to cues arising from 

phases of the cell cycle and environmental factors.95 It is also an important structure 

that integrates multiple signaling cascades such as Hedgehog, Wnt, PDGF, Calcium 
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signaling, and TGF-β which are reviewed elsewhere.96 Several critical regulators of 

cilium disassembly have been identified and include cancer-associated genes such as 

VHL and AURKA.97-101 Importantly, the primary cilium is composed of a generic set of 

proteins making biochemical analysis impossible; likewise, much of the discovery of 

ciliary proteins has relied on genetic studies where observable changes in the primary 

cilium are visualized in response to genetic perturbagen. Indeed, many of the early 

studies which identified critical regulators of the primary cilium relied on high-resolution 

electron microscopy to characterize these phenotypic defects.96 However, these 

methods are cumbersome and difficult to perform on larger chemical screens. Thus, 

methods which fluorescently label the primary cilium greatly increased throughput by 

minimizing the resolution required to detect the structure. The most common 

fluorescently-labeled target for the primary cilium is acetylated tubulin.102,103 However, 

acetylated tubulin is also present in a number of other cellular structures, including long-

lived microtubules and the midbody, amongst others;104 thus is not specific and can 

potentially contribute to the false-positive rate for image analysis methods solely based 

on labeling acetylated tubulin. Therefore, the addition of a second label against the 

basal body greatly improves the accuracy of the analysis; however, image analysis 

pipelines that incorporate this feature have yet to be developed. 

Loss or mutations in the VHL gene are most commonly associated with VHL 

disease and clear cell renal cell carcinoma (ccRCC). 105 VHL disease is part of a diverse 

group of human disorders referred to as ‘ciliopathies’, characterized by the structural 

loss or functional abnormality of the primary cilium that is directly linked to the cystic 

kidney phenotype commonly associated with these diseases.106 Recent advances in the 
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understanding of the role of VHL in multiple molecular pathways, have resulted in the 

development of targeted therapies, including tyrosine kinase inhibitors (TKIs), 

monoclonal antibodies, mammalian target of rapamycin (mTOR) inhibitors, and immune 

checkpoint therapy for the treatment of ccRCC.107 Although successful, these strategies 

have plateaued since their inception in large part due to the development of resistance. 

The molecular mechanisms underlying RCC pathogenesis are only beginning to 

emerge with the identification of non-canonical targets of VHL,108-117 linking it to a range 

of cellular functions including maintenance of mitotic spindle orientation 118,119 and the 

primary cilium. 120-122 Thus, we developed a ciliopathy model using the well-established 

retinal pigmented epithelial (RPE1) cell line that was deficient in the ability to properly 

form the primary cilium by acutely knocking down VHL protein levels using small 

interfering RNAs. We then used this model to screen a set of FDA approved drugs for 

the ability to pharmacologically restore the primary cilium. 

Methods 

Cell culture and drug treatments 

Immortalized retinal pigmented epithelial (hTERT RPE1) cells (gift from Dr. Gregory 

Pazour, University of Massachusetts Medical School, Worcester, MA, USA) were 

maintained in Dulbecco’s modified Eagle’s medium/F-12 media (Life Technologies, 

Carlsbad, CA, USA). Human 786-0 VHL-deficient RCC cell line was maintained in 

RPMI-1640 media (Life Technologies, Carlsbad, CA, USA). Cells were maintained in 

media supplemented with 10% fetal bovine serum (Sigma-Aldrich, St Louis, MO, USA). 

All human cell lines were short tandem repeats fingerprinted and validated using the 
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Characterized Cell Line Core Facility (U.T. M.D. Anderson Cancer Center). In addition, 

all cells used in these studies were routinely tested and confirmed negative for 

mycoplasma. 

Compounds used for the primary screen are solubilized in DMSO and used at a final 

concentration of 10 µM. Bexarotene,used in secondary validation assays was obtained 

from Sigma Aldrich (St. Louis, MO, USA) and Selleck Chem (Houston, TX, USA). 

Primary screening conditions 

hTERT RPE1 cells (7000 cells) were plated in each well of 384 well plates and 

transfected with siC or siVHL. Next, cells were simultaneously treated with the 

compound library (Custom Clinical library with 256 compounds) and serum starved for 

48 hours to induce primary cilia. Cells were subsequently fixed and stained for the 

primary cilia using antibodies against pericentrin and acetylated tubulin which mark the 

basal body and axoneme respectively. Images were obtained at 20X magnification, 4 

fields per well, 13 z-sections (0.5 µm steps) using an InCell6000 confocal microscope 

(GE Healthcare Life Sciences, Pittsburg, PA, USA). 

Immunocytochemistry 

Immunofluorescence staining to observe primary cilia was performed as published 

previously 109,120. Briefly, hTERT RPE-1 cells plated on 384 well plates (primary screen) 

or glass coverslips (secondary validation) were transfected, starved, and treated for 48 

hours to induce cilia formation.  Cells were fixed using 4% paraformaldehyde (15 min), 

permeabilized with 0.5% Triton-X (10 min), followed by blocking in 3.75% bovine serum 

albumin solution (1 hour). Primary antibodies for acetylated α-tubulin (clone 6-11B-1, 

1:5000; Sigma-Aldrich, St. Louis, MO, USA) and pericentrin (1:5000; Abcam, 
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Cambridge, MA, USA) were applied in blocking buffer for 1 hour. AlexaFluor 488 and 

546 goat anti-mouse or anti-rabbit secondary antibodies (Life Technologies, Carlsbad, 

CA, USA) were subsequently applied for another hour. Cells were counterstained using 

DAPI (1:4000 of 1 mg/ml stock, Thermo Fisher Scientific, Waltham, MA, USA) and 

visualized using a InCell6000 (GE) at 20X (primary screen) or a Deltavision 

deconvolution microscope (Applied Precision, Pittsburgh, PA, USA) at 60X 

magnification (secondary validation assays). 

RT-PCR analysis 

Reverse transcriptase–PCR analysis was performed as described previously 109,120. 

Briefly, mRNA was isolated from cells transfected with siControl/siVHL, and 

complementary DNA prepared by reverse transcription (Superscript III, Life 

Technologies, Carlsbad, CA, USA). Gene expression was assessed by real-time 

quantitative PCR using specific TaqMan probes (Thermo Fisher Scientific, Waltham, 

MA, USA), and a TaqMan Fast Universal master mix on a Viia7 system (Thermo Fisher 

Scientific, Waltham, MA, USA). mRNA expression was evaluated for VHL, AURKA, 

GLI1, PTCH, and PPIA (endogenous control). The following set of conditions were used 

for each real-time reaction: 95°C for 20 min followed by 40 cycles of 1 sec at 95°C and 

20 sec at 60°C. The real-time PCR reactions were all performed in triplicate and were 

quantified using the −ΔΔ cycle threshold (CT) method. 

Statistics 

To further validate the robustness of the HTS method, we calculated a Z’ value for the 

percentage of ciliated cells using siC (scrambled control), DMSO treated wells as a 

positive control, and siVHL treated with sulforaphane (sulphoraphane causes loss of 
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primary cilia, unpublished data) as a negative control. These results showed an average 

Z’ factor of approximately 0.6, indicating that the assay was robust and suitable for high 

content screening. Hits were identified using a Z-scoring method which used the mean 

and standard deviation of the negative control (siC DMSO). Drugs with an average 

response outside of 3 standard deviations of the negative control were considered as 

significant. An additional toxicity filter, which was defined by a 20% decrease in cell 

number from the negative control, was also used. 

Results 

Development of an image analysis pipeline to detect the primary cilia 

As previously mentioned, the primary cilium is composed of the basal body the 

axomeme. In the development of this image analysis algorithm we take advantage of 

the structural composition of the primary cilium by labeling both the basal body 

(pericentrin) and the axoneme (Acetylated-tubulin). Importantly, we found that by using 

both markers, the false discovery rate of other acetylated-tubulin based structures was 

minimized. In the preliminary development of this assay, we also explored the utilization 

of other primary cilia markers, which rely on recruitment and or activation, and are often 

cell line specific (data not shown). Thus, the method developed here benefits from being 

able to identify the primary cilium in a cell line and signaling agnostic manner. 

Methodologically, we developed a custom image analysis pipeline that reliably 

identifies the primary cilium at low magnification (20x) in order to facilitate phenotypic 

screening. The method was developed using the Pipeline Pilot (Biovia, San Diego) 

developer’s environment. Procedurally, images were first read into the environment and 

the background was removed by subtracting the mode pixel value shown in blue in the 
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background subtraction panel of Fig 4.1A. Next, nuclei were identified using a 

watershed segmentation-based method, which identifies and separates neighboring 

nuclei. The cellular area was then defined using a tessellation of the nuclear mask 

shown by the green lines in the cellular tessellation box of Fig 4.1 and incorrectly 

identified objects were filtered out using an expected size range. A cropped example of 

what ciliated cells look like at 20x magnification is shown in Fig 4.1B. These show the 

pericentrin, in red, and acetylated tubulin in green, and DAPI in blue. The basal body 

was identified by performing a regional white top hat on the basal body, labeled by 

pericentrin, and filtered by co-localization to the cell mask. Further, filtering was 

performed using a combination of size and circularity filters in order to remove other 

image artifacts.  Next, the axoneme was segmented using a similar regional white top 

hat for the acetylated α-tubulin (Ac-Tubulin) channel. In order to reduce the false-

positive rate for the primary cilia over other microtubule structures, a combination of 

regional proximity filters, axoneme contrast, and other morphometric features were used 

and are schematized in Fig 4.1C. 
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Fig 4.1) Development of an image analysis method for the automated detection 

of the primary cilium. A) Schematic of the core image analysis pipeline showing, 

mode background subtraction, nuclear segmentation, cell body estimation, and 

object filter steps. B) Cropped image of cells acquired at 20x of; pericentrin, red; 

acetylated(Ac)-tubulin, green; DAPI, blue; and merged. C) schemeatic decision tree 

of filters used for qualifying the primary cilia using two markers. D) Qualitative image 

for retrieval of correctly identified primary cilia. 
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Example raw images of ciliated verse non-ciliated cells and masks showing the correct 

identification of the primary cilia were used to assess the quality of segmentation, 

shown in Fig 4.1D. Finally, the percentage of cells containing a primary cilium and the 

length of the cilium were then used as the primary read-outs of the assay. 

Primary HTS identifies small molecules that rescue primary cilia in VHL-deficient cells. 

We developed a HTS assay to identify small molecules that could restore primary cilia 

in VHL-deficient cells, with the dual goal of identifying novel therapeutic targets, and 

signaling pathways involved in aberrant ciliogenesis associated with loss of VHL. We 

used an in vitro ciliogenesis model, wherein immortalized human RPE1 cells transfected 

with VHL siRNA (to induce an acute loss of VHL) were stimulated to ciliate by serum 

withdrawal for 48 hours. We previously showed that this acute loss of VHL (siVHL) 

resulted in a significant decrease in the ability of RPE1 cells to ciliate compared to 

control siRNA transfected cells.109,120 The primary screen was established using 384 

well plates with automated processing, thus, this method is amenable to HTS and is 

schematized in Fig 4.2A. In brief, RPE1 cells were transfected with siC or siVHL, 24 

hours after seeding and allowed to recover for an additional 24 hours. At this point, 

ciliagenesis was induced by the simultaneous withdrawal of serum and treatment with 

either vehicle (DMSO) or compound (10 µM) for 48 hours. At the end of the incubation 

period (48 hours), cells were immuno-stained using acetylated α-tubulin (cilia marker) 

and pericentrin (basal body marker), and imaged at 20x magnification (4 fields/well) 

using an InCell6000. The efficiency of VHL knockdown was assessed using RT-PCR, 

which showed a 70-80% decrease in VHL transcript levels, shown in Fig 4.2B, which 

corresponded to ~41% and ~27% ciliated cells for siC DMSO and siVHL DMSO, 
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respectively, shown in Fig 4.2D, with a coefficient of variance of approximately 10-11% 

for both controls.109,120 One limitation of the method developed was that it did not take 

into account heterogeneity introduced by knockdown efficiency, which potentially under-

represents the true response. Using siC as a positive control and sulphoraphane (which 

we had preliminary evidence demonstrating complete destruction of the primary cilia, 

unpublished) we obtained a Z’ averaging ~0.5, when comparing siC to siVHL we 

obtained a Z’ of ~0.3. Collectively, these indicate the data produced during screening 

are acceptable quality to categorize drugs into binary classes. We next defined “hit” 

criteria as: a drug that can significantly restore the percentage of ciliated cells, defined 

as having a response greater than or equal to two standard deviations from siVHL 

DMSO, and is non-toxic, which is defined by containing at least 80% of the cell number 

of the siC DMSO treated wells. A more formal growth analysis was not performed as 

cells are confluent and serum starved in order to promote ciliation. Of the 256 drugs 

tested, 100 met the toxicity criteria while only 4 drugs met both. The top hits identified 

using this method include bexarotene (rentinoid X receptor agonist), BEZ235 (a dual 

PI3K and mTOR inhibitor), PI-103 (PI3K inhibitor), and PIK90 (PI3K inhibitor),Fig 4.2 

C,D and Table 4.1. Importantly, others have shown that the PI3K/mTOR pathway can 

positively regulate the primary cilium in other disease models, which further confirms the 

findings of this system; however, bexarotene had not been previously indicated to 

restore the primary cilium.102 We therefore followed up on bexarotene in a separate 

experiment with new compounds and siRNA, and performed on coverslips to validate 

the findings and obtain representative images, Fig 4.2E. 
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Fig 4.2) Screening schematic and results for ciliary rescue screen A) schematic 

representation of the screening protocol. B) mRNA knock down efficiency of VHL. C) 

Bar chart of the percent of ciliated cells by drug treatment. The genetic positive (siC) 

and negative (siVHL) controls are shown in green and red, respectively. D) Z-

transform using the mean and standard deviation of siVHL control, results that are 

greater than 2 standard deviations are considered significant. E) representative 

images (cropped from a larger field to visualize cilia better) of siC+DMSO, 

siVHL+DMSO, and siVHL+Bex (3µM) 
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Table 4.1) Results from HTS for small molecules that promote ciliation 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

BEXAROTENE 644 52.67 4.84 HIT 

BEZ 235 574.5 43.11 3.21 HIT 

PI-103 582.5 41.04 2.72 HIT 

PIK 90 602.5 37.90 2.13 HIT 

PAZOPANIB 720 35.53 1.95 Inactive 

747971 610.5 35.74 1.78 Inactive 

DNA-PK INHIBITOR V 531 35.74 1.68 Inactive 

DR 2313 580 34.21 1.51 Inactive 

ABT-888 526 34.62 1.49 Inactive 

761431 587.5 33.17 1.45 Inactive 

712807 579 34.59 1.45 Inactive 

PLX4032 649.5 32.84 1.44 Inactive 

719344 529 34.92 1.44 Inactive 

NSC23766 536.5 34.79 1.44 Inactive 

Fingolimod 634 34.14 1.41 Inactive 

ZSTK474 577.5 34.59 1.39 Inactive 

719345 545.5 33.13 1.29 Inactive 

PD 166793 567 32.93 1.24 Inactive 

740 523 32.30 1.24 Inactive 

750690 593 33.66 1.23 Inactive 

TGX 221 598.5 32.74 1.23 Inactive 

138783 543.5 33.08 1.07 Inactive 

698037 632 31.73 1.05 Inactive 

5HQ 579 31.77 1.01 Inactive 

SB 203580 524.5 31.69 1.01 Inactive 

GEFITINIB 635 31.09 0.92 Inactive 

BOSUTINIB 869 32.02 0.89 Inactive 

GDC-0449 564 30.38 0.86 Inactive 

25154 551 32.16 0.80 Inactive 

LENALIDOMIDE 542 31.48 0.71 Inactive 

TANDUTINIB 762 29.61 0.68 Inactive 

713563 531 30.62 0.64 Inactive 

COMPOUND 401 633.5 30.62 0.62 Inactive 

312887 688 30.18 0.55 Inactive 

VATALANIB 655.5 27.98 0.51 Inactive 

719276 629 28.76 0.44 Inactive 

R59022 734.5 28.57 0.44 Inactive 

754230 602.5 28.82 0.38 Inactive 
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Table 4.1 continued 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

266046 694.5 27.99 0.29 Inactive 

6396 690 26.73 0.25 Inactive 

SB 216763 654 28.97 0.24 Inactive 

AS-041164 543.5 28.82 0.24 Inactive 

755 644.5 27.19 0.23 Inactive 

747972 587.5 27.21 0.23 Inactive 

71423 626.5 27.81 0.23 Inactive 

LAPATINIB 618 27.44 0.08 Inactive 

ROFECOXIB 618.5 25.87 0.05 Inactive 

SD 169 762 25.88 0.05 Inactive 

733504 757 25.61 -0.07 Inactive 

PF-04217903 716.5 27.43 -0.07 Inactive 

77213 757 27.74 -0.08 Inactive 

749226 652 27.24 -0.08 Inactive 

3088 713.5 26.97 -0.09 Inactive 

HA14-1 609.5 26.50 -0.10 Inactive 

296961 617.5 25.23 -0.11 Inactive 

2DG 804 25.85 -0.15 Inactive 

241240 618.5 26.39 -0.18 Inactive 

METFORMIN 705.5 25.12 -0.24 Inactive 

MASITINIB 759 25.06 -0.24 Inactive 

66847 714 23.78 -0.31 Inactive 

ELESCLOMOL 735 24.99 -0.34 Inactive 

A-769662 602.5 25.05 -0.38 Inactive 

747599 835 25.12 -0.38 Inactive 

AG 490 608.5 25.33 -0.39 Inactive 

IMATINIB 699.5 25.78 -0.40 Inactive 

U 73122 692.5 25.08 -0.43 Inactive 

119875 646 24.81 -0.47 Inactive 

743414 661 24.16 -0.61 Inactive 

TEMSIROLIMUS 749.5 22.88 -0.65 Inactive 

85998 740.5 24.93 -0.67 Inactive 

27640 728.5 22.01 -0.70 Inactive 

CYCLOPAMINE 718.5 22.88 -0.74 Inactive 

226080 524 23.14 -0.74 Inactive 

34462 795 22.51 -0.80 Inactive 

NILOTINIB 697 22.82 -0.80 Inactive 

63878 523 21.13 -0.89 Inactive 
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Table 4.1 continued 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

369100 617 22.94 -0.90 Inactive 

409962 559 21.01 -0.91 Inactive 

VANDETANIB 580 18.95 -0.99 Inactive 

13875 829 21.02 -1.10 Inactive 

IVACHTIN 616 20.36 -1.10 Inactive 

79037 692 19.87 -1.15 Inactive 

ENZASTAURIN 552.5 20.66 -1.16 Inactive 

702294 865 20.08 -1.29 Inactive 

218321 760.5 18.22 -1.44 Inactive 

PERIFOSINE 553.5 18.70 -1.53 Inactive 

PD 98059 871 17.89 -1.67 Inactive 

9706 578 17.94 -1.69 Inactive 

752 741.5 16.88 -1.77 Inactive 

MOTESANIB 554.5 20.75 -1.81 Inactive 

45923 836 16.89 -1.81 Inactive 

750 653 18.33 -1.88 Inactive 

BSI-201 817 16.77 -1.90 Inactive 

SP600125 607 16.72 -2.06 Inactive 

38721 644 13.88 -2.13 Inactive 

DEGUELIN 598 14.28 -2.62 Inactive 

LE 135 608 14.08 -2.70 Inactive 

18509 848 12.74 -2.85 Inactive 

757441 673.5 11.02 -3.07 Inactive 

PD 169316 846 11.88 -3.31 Inactive 

ABT-263 81 8.87 -3.25 Toxic 

AXITINIB 510.5 38.61 2.14 Toxic 

ABT-869 52 27.57 0.14 Toxic 

17-AAG 33.81 2.33 Toxic 

AZD 0530 77.5 19.15 -1.26 Toxic 

BORTEZOMIB 0.76 -5.08 Toxic 

BIBF-1120 410.5 45.11 3.24 Toxic 

BMS-536924 25.29 -1.20 Toxic 

CEDIRANIB 439 20.43 -1.62 Toxic 

CANERTINIB 0.47 -5.14 Toxic 

CI 1040 349 11.15 -3.02 Toxic 

DASATINIB 115.5 49.39 4.46 Toxic 

PD 0325901 9 29.17 0.77 Toxic 

17-DMAG 1.46 -4.95 Toxic 
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Table 4.1 continued 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

CHIR 258 310 34.72 1.48 Toxic 

SFN 210 8.12 -3.55 Toxic 

246131 195.5 37.12 1.67 Toxic 

82151 5.88 -4.24 Toxic 

715055 472 30.65 0.78 Toxic 

26980 23.5 5.54 -3.99 Toxic 

613327 195.5 38.57 2.24 Toxic 

3053 223 2.50 -4.77 Toxic 

SFN 419 3.75 -4.46 Toxic 

STF-62247 69.5 27.49 -0.13 Toxic 

GELDENAMYCIN 8.10 -3.47 Toxic 

TRICHOSTATIN A 1.35 -4.96 Toxic 

H-89 79.5 36.74 1.82 Toxic 

Y-27632 432 46.02 3.29 Toxic 

LESTAURTINIB 0.40 -5.16 Toxic 

OBATOCLAX 4 0.00 Toxic 

AZD 2281 479.5 33.30 1.40 Toxic 

SB 431542 503 53.47 5.20 Toxic 

PF-2341066 0.42 -5.14 Toxic 

NVP AUY922 1.00 -5.04 Toxic 

PKC412 8 0.94 -5.05 Toxic 

SFN 422 2.71 -4.69 Toxic 

122819 13.08 -3.12 Toxic 

754143 51.17 2.96 Toxic 

737754 385 49.70 4.38 Toxic 

718781 435 38.86 2.26 Toxic 

SFN 381 2.09 -4.83 Toxic 

ROSCOVITINE 272.5 13.32 -2.61 Toxic 

SB 202190 357 31.61 1.17 Toxic 

MK-2206 62.5 27.54 -0.06 Toxic 

PD 153035 298.5 26.21 0.24 Toxic 

SORAFENIB 0.60 -5.12 Toxic 

SU 11274 518.5 31.61 0.96 Toxic 

SUNITINIB 217 8.80 -3.27 Toxic 

Brivanib 511 23.51 -0.54 Toxic 

STAUROSPORINE 1.10 -5.01 Toxic 

PXD101 0.00 Toxic 

PCI-24781 156 0.00 Toxic 
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Table 4.1 continued 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

KU-55933 344 26.06 0.03 Toxic 

SFN 269 2.58 -4.68 Toxic 

747973 0.00 Toxic 

732517 33 2.99 -4.73 Toxic 

279836 13.64 -1.16 Toxic 

169780 516 21.44 -1.17 Toxic 

762 413.5 24.53 -0.48 Toxic 

SFN 322.5 2.45 -4.72 Toxic 

GSK1904529A 392.5 27.38 0.09 Toxic 

NVP LAQ824 12.06 -3.26 Toxic 

JNJ-26481585 27.63 0.91 Toxic 

AG014699 423 34.83 1.39 Toxic 

AZD1152-HQPA 427 33.75 1.37 Toxic 

PLX4720 266.5 26.92 -0.16 Toxic 

DMSO 503.5 30.73 0.87 Toxic 

SFN 374.5 2.72 -4.63 Toxic 

616348 436 33.04 1.08 Toxic 

609699 53.5 32.47 0.78 Toxic 

122758 413.5 53.36 4.93 Toxic 

67574 0.56 -3.23 Toxic 

SFN 388.5 3.19 -4.57 Toxic 

BMS 204352 67.5 31.19 0.60 Toxic 

FK-506 358.5 35.26 1.58 Toxic 

CHIR 98014 435.5 26.41 -0.01 Toxic 

RAPAMYCIN 396 35.61 1.77 Toxic 

BX 912 2 100.00 13.93 Toxic 

SARACATINIB 103 34.59 1.70 Toxic 

GW 843682X 398 29.77 0.41 Toxic 

AZD 6244 290 16.42 -1.93 Toxic 

SU 6656 508 32.89 0.94 Toxic 

ABT-737 0.00 Toxic 

PD 180970 183 44.23 3.23 Toxic 

GSK 269962A 69 9.24 -3.17 Toxic 

BI 2536 1.04 -5.04 Toxic 

BMS-599626 347.5 34.29 1.27 Toxic 

BIBW2992 46 5.94 -4.16 Toxic 

ERLOTINIB 437.5 35.58 1.53 Toxic 

SFN 259 5.90 -4.02 Toxic 
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Table 4.1 continued 

COMPOUND Name 
Cell 

Count 
%Ciliated 

%Ciliated 
(Z-Score) 

Result 

745750 484 30.19 0.63 Toxic 

760766 475 40.54 2.70 Toxic 

14229 442 29.01 0.55 Toxic 

26271 423.5 16.91 -2.19 Toxic 

758252 1.00 -5.03 Toxic 

49842 3.56 -4.65 Toxic 

SFN 148.5 4.37 -4.39 Toxic 

DMSO 429 53.05 5.05 Toxic 

NSC 625987 449.5 37.53 1.70 Toxic 

GW 441756 512 24.61 -0.55 Toxic 

HYPOTHEMYCIN 38.5 21.37 -1.21 Toxic 

AEG 3482 514 12.76 -2.71 Toxic 

PIK 75 13 2.90 -4.61 Toxic 

LBH-589 2 9.36 -3.16 Toxic 

MGCD0103 7.52 -4.01 Toxic 

MS-275 0.42 -5.15 Toxic 

LY 294002 495 36.32 1.53 Toxic 

MOTESANIB 464.5 35.86 1.56 Toxic 

SFN 175 9.40 -3.49 Toxic 

Discussion 

We took an unbiased phenotypic screening approach to identify FDA approved drugs 

that can restore the primary cilia in a cell line with engineered deficiencies in 

ciliogenesis. The strategy employed in our study differs from previous screens in its use 

of an unbiased approach, agnostic to the genes involved in ciliogenesis, to identify small 

molecule compounds that can restore cilia in VHL-deficient cells. Use of a dual-labelling 

scheme increased the accuracy of image analysis and minimized false positives arising 

from the inclusion of cytoplasmic acetylated tubulin. Likewise, this method does not rely 

on using other protein markers which require recruitment, do not label the entirety of the 
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primary cilia, and are often cell line specific. Thus, this method is not confounded by 

inhibition of recruitment factors and is more generalizable to other cell line models. 

Using this approach, we identified that multiple drugs targeting the PI3K/mTOR pathway 

could significantly restore the primary cilia in VHL-null cells, which has been previously 

observed by others.102 In addition, we demonstrated the pharmacologic ability of 

bexarotene to restore the primary cilium in VHL-deficient cells. In the context of drug 

repositioning, we implicated bexarotene as a potential chemoprotective drug for VHL-

related ciliopathies. This has led to molecular biology studies which are currently 

ongoing in the Walker and Dere labs aimed at clarifying the mechanism of action 

bexarotene is functioning through. From the literature, bexarotene is a FDA approved 

synthetic rexinoid with known function in activating RXRs.123 Ligand binding and 

activation of the cognate RXR receptors modulates gene expression arising from the 

homo- or hetero-dimerization of these receptors (with RAR, PPAR, VDR, and others).124 

More recently, Src was identified as a novel off-target protein modulated by bexarotene; 

where Src kinase activity was inhibited by bexarotene, which was speculated to bind to 

the ATP binding pocket using in silico modeling studies.125 In addition, bexarotene was 

also reported to activate p53 by post-translational modifications (i.e. phosphorylation on 

serine 15 (S15)), which regulates p53 downstream targets, such as p21. Thus, there are 

multiple mechanisms of action that bexarotene can be working through in order to 

restore the primary cilium. More broadly, retinoids promote differentiation and apoptosis 

in cells, and this attribute has led to their successful therapeutic application in several 

cancers, including acute promyelocytic leukemia (APL), Kaposi’s sarcoma, squamous 

cell skin cancer, cutaneous T-cell lymphoma, neuroblastoma, lung cancer, and breast 
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cancer.124 In contrast to retinoids, /* 8th Generation Intel® Core™ i7-8550U 

Processortreatment with rexinoids show reduced teratogenicity and toxicity with 

manageable side-effects, such as hyperlipidemia 126. The effects of retinoids in RCC 

treatment were deemed more efficacious when used as part of a combination approach 

compared to the anti-tumor activity of single agents.127-130 These data showing limited 

efficacy of retinoids in RCC, led to recent efforts refocusing on identifying receptor 

subtypes associated with RCC and their prognostic significance 131-133. Bexarotene as a 

prevention strategy (either singly or in combination) has found efficacy in cancers, such 

lung cancer 134 and oral cavity carcinogenesis 135. In the case of VHL disease and RCC, 

it would be valuable to assess the synergistic effects of bexarotene with anti-angiogenic 

drugs, and with AURKA inhibitors that can rescue ciliation defects associated with VHL-

deficiency.109,120 The identification of bexarotene as a modulator of the cilium now opens 

new avenues to investigate the merit of rexinoids in ciliopathies. 
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CHAPTER V 

IMPLICATIONS OF TUMOR SPHEROIDS ON HTS PROFILING 

Synopsis 

Three dimensional multicellular aggregates represent a more physiologically relevant 

model system that is increasingly being used to acquire drug sensitivity data. Likewise, 

the applications where 3D models are being utilized range from drug discovery, 

toxicology, and personalized medicine. Here, we present a high throughput screening 

method to screen a specialized multicellular aggregate known as spheroids. To validate 

this method, we empirically compared other fixed endpoint analysis including image-

based and biochemical methods. From these data we found that the rate of growth is a 

highly sensitive method to establish pharmacologic response. This method is further 

improved by the ability to calculate from label-free images, and is therefore fairly 

economical and can be run on most standard instruments. Using this method, we 

generated pharmacological responses in two prototypic models of BRAF and KRAS 

driven cancers. In parallel, we performed an analogous screen using the same cells 

grown as monolayers to demonstrate how the 3D spheroid system better recapitulates 

clinical observation. 

Introduction 

Historically, 2D monolayers have been the primary model system used for biological 

validation in drug development and repositioning pipelines. However, many drugs and 

investigation agents that show positive results in vitro using these models fail to 
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translate into in vivo efficacy. One explanation for this observation is that 2D 

monolayers do not recapitulate the physiological microenvironment that is present in a 

tumor, in turn limiting the predictive value of these models. In contrast, 3D-MCTA 

represent an in vitro model that better mimics the in vivo physiological environment of 

small avascular tumor nodules and micrometastasis. It has been demonstrated that 

larger spheroids, defined as those with a diameter greater than or equal to 500 µm, 

contain physiologically similar features of tumor lesions which include; metabolic and 

proliferative gradients, development of a hypoxic core, and formation of more 

biologically relevant cell-cell and cell-matrix contacts.50,136,137 Furthermore, others have 

demonstrated that these features have the capability to confer secondary 

chemoresistance and radioresistance, which is also seen in the clinic.38,136,138 With 

these observations, it is clear that 3D-MCTA models present a unique in vitro system 

that bridges the gap between in vitro 2D monolayers and in vivo efficacy. However, it is 

still technically challenging to screen large amounts of bioactive molecules using these 

model systems. Therefore, the development of robust HTS assays to implement 3D-

MCTA models is paramount. 

In order to perform HTS, it is important to first reproducibly generate spheroids in 

an automation friendly manor. To achieve this, different spheroid generation techniques 

have been described and are now commercially available which include: hanging drop, 

magnetic levitation/printing, and ULA U-bottom plates.47-49,139 Each of these methods 

has certain benefits and limitations when used with automated platforms and are 

reviewed elsewhere.49 For the purpose of this manuscript, we utilize the ULA U-bottom 

plate method to generate spheroids. This method facilitates the formation of a uniform 
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single spheroid per well, has a transparent bottom with opaque walls, and does not 

require plate transfers or pre-treatment of cells with exogenous materials, making this 

the most automation-friendly method to generate large spheroids. Multiple biochemical 

and phenotypic analysis methods have been used to provide low throughput analysis of 

spheroids using U-bottom plates. Here, detection of surrogate endpoints of cellular 

viability such as measuring ATP levels, metabolic potential, and membrane integrity are 

the most commonly used biochemical endpoints to establish drug sensitivity.50,56,140,141 

Likewise, a number of phenotypic assays have also been proposed and include label-

free and fluorescent methods. Label-free methods segment the spheroid being imaged 

using transmitted light, and often quantify the diameter, which is used to calculate the 

area or volume.56,139,142-144 These methods benefit from being cheap to perform and 

easy to run; however, fixed endpoint analysis of the diameter is potentially confounded 

by the rate of expansion and the calculation of area or volume relies on the assumption 

that the spheroid is perfectly round.64,67,68 Multiplexed image-based fluorescent methods 

have also been utilized to correct for artifacts in fixed endpoint analysis. These methods 

rely on adding fluorescent dyes such as Calcein AM (metabolic activity), CellEvent 

(caspase 3/7 activation), Mitotracker (mitochondrial potential), and Draq7 or Ethidium 

(membrane permeability), which are often used in combination with a nuclear dye such 

as Hoechst. However, light scattering and optical penetration through the core of larger 

spheroids can confound these methods.46,57 Thus, we proposed to explore methods to 

increase the robustness of label-free approaches. 
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Results 

Comparison of HTS methods used to establish viability in spheroids 

To establish the utility of using rate of growth as the primary endpoint we first 

benchmarked it against other routine HTS endpoints. In order to obtain a fair 

comparison between endpoints a multiplexed analysis of HT29 and HCT116 spheroids 

was performed. Here, cells were plated into U-bottom plates and treated with a focused 

library of 8 mechanistically diverse drugs in quadruplicate at 10 doses, Fig 5.1A. The 

plates were imaged over a seven day period in order to track growth. At the end of the 

live cell assay, half the media was transferred into a blank 384-well plate and an LDH 

release assay was performed. CellTiter-Glo (Promega) was then dispensed at a 1:1 

ratio into the remaining media of the original plate. Next, we evaluated the coefficient of 

variance of the negative controls and found that the normalized rate of growth had the 

lowest variance, Fig 5.1B. Finally, we highlighted three different response patterns to 

demonstrate the strengths and weaknesses of using only growth as the primary 

endpoint, Fig 5.1C-E. These data show that etoposide, a topoisomerase II inhibitor, was 

inactive by all the tested methods, indicating that this is a true negative and that a 

growth based metric is not over ambitious. Anisomycin, a protein synthesis inhibitor, 

showed no activity using CTG and LDH release endpoints, while cell growth was 

significantly inhibited at micromolar ranges and Draq7 accumulation was significantly 

increased at 10 micromolar. Thus, CTG and LDH release resulted in a false negative for 

this drug. Staurosporine, a non-specific protein kinase inhibitor, showed a significant 

decrease in the CTG signal with a concurrent increase in the LDH released into the 

media and significant accumulation of Draq7, indicating that staurosporine is a highly 
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cytotoxic drug. However, the growth analysis shows a different trend where spheroids 

are seemingly growing with increasing concentrations of drugs, therefore, resulting in a 

false negative and suggesting a limitation to this approach. In this case, the potency of 

staurosporine killed the spheroid very rapidly, leaving behind a carcass which “grows” 

as the spheroid disaggregates. However, this anomaly can be corrected for by using 

earlier timepoints and by multiplexing using dyes such as Draq7. 

High level comparison of HT29 and HCT116 grown as spheroids and monolayers 

A total of 242 unique small molecules were tested in three point dose response (0.1, 

1.0, 10 µM) under two and three dimensional growth conditions. As a primary endpoint, 

the normalized rate of growth as proposed by Hafner et al. was used to normalize cell 

counts for 2D screens and area was used for the 3D screens.64 The adjusted rate of 

growth was then fitted to a 4-parameter logistic regression curve and the GR50, LD50, 

and normalized AUC (AUC of 1 equals DMSO control) were calculated, Table 5.1. 

These data show a range of activity across the various cell line and growth formats, Fig 

5.2. Next, we defined a low stringency criterion of activity for drugs that can inhibit 

growth by at least 50 percent within or below the tested ranges. When this criterion was 

applied to the data, we observed a relatively high hit rate of 48% and 39% for HT29 and 

HCT116 grown as two-dimensional monolayers, respectively. Interestingly, despite a 

high hit ratio using the GR50, a low percentage of the drugs tested resulted in significant 

cell loss as defined by 50 percent loss in cell number, i.e. the LD50 was determined to 

be within or below the tested ranges. When applying this more stringent criterion only 

1% of the tested drugs remained for HT29 and none for HCT116. Likewise, using the 

same low stringency criteria for the 3D screen resulted in 37% and 45% activity in HT29 
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and HCT116, respectively. However, a significantly larger proportion of the drugs were 

able to reduce spheroid size by at least 50 percent, which we observed to be 13% for 

both HT29 and HCT116. In order to compare the results from both cell lines and growth 

conditions a Venn diagram was constructed using the list of drugs from the less 

stringent cutoff, Fig 5.3. These data show that the vast majority of compounds that were 

active remain active across the cell lines and growth conditions, however, certain 

classes of drugs displayed selectivity towards a cell type and/or growth condition. 

Fig5.1) Experimental comparison between HTS methods in 3D-spheroids. A) 

Plate layout of a focused library of 8 mechanistically diverse set of compounds 

treated in quadruplicate in 10 point dose response. B) Table representing the 

variance of the negative control for each assay. C-D) Dose response curves for three 

representative classes of response observed for multiplexed analysis of HT29 grown 

as spheroids. 
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Fig5.2) Screening results and comparison between HT29 and HCT116 grown 
as monolayers and spheroids. A-D) High throughput screening results from 
treatment of HCT116 and HT29 cells grown as either a monolayer or spheroid. 
Data is summarized as a waterfall plot and as an in house data visualization of 
pharmacologic relatedness 
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Effects of growth format on the identification of drug-genome interactions 

Two of the most common driver mutations in colorectal cancer are BRAF and KRAS, 

which are considered to be mutually exclusive and occur between 5-10% and 40-50% in 

the patient population, respectively. Thus, we selected two prototypic cell lines, HT29 

and HCT116, which harbor BRAF and KRAS mutations, respectively, to model 

colorectal cancer. In order to explore the effects of how cells are grown on the 

identification of drug-genome interactions, we further mined HTS data from HCT116 

and HT29 grown either as a spheroid or monolayer. These data show that all three 

targeted agents against BRAF resulted in inhibition of growth in HT29 but had minimal 

activity in HCT116, with the exception of PLX4032, which had activity only at the highest 

dose tested, Fig 5.3A and B. These data are consistent with the results of the 2D screen 

and provide increased confidence that the model system is behaving properly and the 

assay is sufficiently sensitive to identify relevant drug-genome interactions. Further 

comparison of selectively active drugs between HCT116 and HT29 spheroids showed 

HT29 selectivity to EGFR, p38 MAPK, and HDAC inhibitors while HCT116 were more 

susceptible to mTOR inhibition and genotoxic stress, demonstrated by an enrichment of 

drugs that interfere with DNA synthesis, damage DNA, inhibit topoisomerase, and inhibit 

DNA repair proteins such as ATM and PARP, Fig 5.3D. Importantly, it has been 

observed that the presence of an activating KRAS mutation is a strong predictor of a 

poor response to anti-EGFR drugs and is often treated with a cocktail of genotoxic 

agents.145 Thus, comparative analysis between HCT116 and HT29 spheroids revealed 

clinically relevant trends. However, when comparing HCT116 and HT29 grown as 

monolayers these patterns were not apparent, suggesting a limitation of utilizing a 2D 
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screening format in clinically oriented research. A less consolidated group of non-

specific drugs that provide proteotoxic or replicative stress were found to be active in all 

the tested cell lines and growth formats. However, certain targeted agents such as 

those that target MEK and general RTK activity with MET inhibitors were being over 

represented as well. 

Fig 5.3) Effects of growth format on the identification of drug-genome 

interactions. A-B) Hafner growth index by concentration curves for three targeted 

agents against BRAF. C) Venn diagram of active drugs, using the low stringency 

criteria, for HCT116 and HT29 grown as a spheroid (3D) or monolayer (2D). D) Pie 

charts of the frequency of drug targets that selectively effect either HCT116 (top row) 

or HT29 (bottom row) grown as spheroids (left) or monolayers (right). 
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Materials and methods 

Cell line models 

HT29 and HCT116 cell lines were acquired from Dr. Bhattacharya, expanded, and 

subsequently suspended in 10% DMSO/FBS (v/v) and cryopreserved in liquid nitrogen. 

Cell stocks were then brought up, washed via centrifugation, and allowed to recover 

before passaging for experiments. Maintained cells were grown in Minimal Essential 

Medium Eagle (MEME, Thermo) supplemented with 10% Fetal Bovine Serum (FBS, 

Thermo) and passaged no more than 10 times before being discarded. When plated for 

spheroid assays the cells were suspended in MEME plus 5% FBS. 

Spheroid generation 

Single cell suspensions were made by adding trypsin-EDTA (Thermo) to the stock cell 

culture flask, incubating at 37°C for a sufficient amount of time for most cells to detach, 

followed by thorough resuspension by pipette. The cell number and viability was then 

determined by aliquoting 10 uL of media containing cells to 10 uL trypan blue in a 

disposable counting slide which was analyzed using a TC10 automated cell counter 

(Bio-Rab). 2500 cells/well were then transferred into barcoded ULA U-bottom plates 

(Corning, Cat No. 3830). The cells were then incubated for 3 days in a temperature 

(37°C ), CO2 (5%), and humidity (>95%) controlled cell culture incubator. This allowed 

for the spontaneous formation of spheroids. 

Drug treatment 

Experiments used for comparative analysis of different endpoints were treated with a 

mechanistically diverse array of 8 small molecule probes. Libraries used for primary 

screening included: 242 FDA approved and phase III investigational drugs acquired 

from the National Cancer Institute. All drugs used in this manuscript were diluted in 
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DMSO and arrayed on Echo certified low dead volume plates (LDV, Labcyte). Drugs 

were transferred from the LDV source plate into assay plates using an Echo liquid 

handling machine (Labcyte). Wells were treated such that the final concentration of 

DMSO in media did not exceed 1% (v/v). Wells containing DMSO and media only 

served as negative controls. For screening, each drug was tested in four replicates and 

at three concentrations with each replicate and concentration on separate plates. 

Image acquisition 

Plates were serial imaged using a robotically enabled ImageXpress Micro Confocal 

(Molecular Devices) equipped with Nikon Pillar Diascopic Illuminator with TE-ELWD 

Condensor and a 10x/0.45NA Plan Apo lens (Nikon). Additional automation included a 

Spinnaker Microplate Robot (Thermo) and Cytomat6000 (Thermo). An automated 

workflow to reimage multiple plates stored in the Cytomate6000 every day for 7 days 

was developed in Momentum (Thermo). At each time point, one centrally located field 

was collected per well. To obtain higher quality images, a z-stack covering a 100 µm 

section taken at 20 µm steps was collected. The resulting stack are projected using the 

“best focus” method in MetaXpress (Molecular Devices) and used for subsequent image 

analysis. In order to keep track of successively imaged plates, a systematic file structure 

was generated which incorporates the date, time, and assay plate barcode. 

Image analyses 

Batch image analysis was done using a custom script developed using the Imaging 

package in Pipeline Pilot 9.2 or 2018 (PLP, Biovia). Best focus projected images were 

first read into PLP and the background was corrected using a z-transformation. Images 

are then blurred using a Gaussian filter and multiple rounds of morphological elements 
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applied in order to smooth the image. A global threshold was then applied to the 

smoothed image and used to define the background for a marker directed watershed 

segmentation. Markers were defined using a peak transformation on the smoothed 

image. Debris and other artifacts were removed using a combination of morphological 

and regional filters. Morphological features for remaining objects are then saved in CSV 

format. 

Viability using CellTiter Glo 

CellTiter Glo Luminescent Cell Viability Kit was purchased from Promega (Cat No. 

G7572). The assay was performed as described in the product manual. Luminescence 

was read with a Tecan M1000 Pro plate reader. 

LDH release assay 

A commercial fluorescent-based LDH release assay was purchased from Abcam 

(AB197004). Half of the media on the drug treated plate was transferred to a second 

LDH assay plate. The LDH regent was then added according to the instruction manual. 

Fluorescent intensity was measured using a Tecan M1000 Pro plate reader. 

Statistical normalization 

We developed an automated statistical pipeline which coordinates the plate and time 

point metadata, raw data from image analysis, performs appropriate statistical 

normalization, generates fitted curves, and summarizes the results using the Analysis 

and Statistics package in PLP. Metadata was populated using the file structure 

produced during image acquisition and merged with the results produced form our 

custom image analysis. The fold change in spheroid is calculated for each well position 

over time. The fixed endpoint growth index proposed by Hafner et al. is then applied 
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using the fold change of drug treated cells and the 50 percent trimmed mean of the fold 

change in DMSO treated wells for each time point.  Curves are fitted to a sigmodal 

curve using a robust least squares fitting method which uses the Normalized MAD and 

iterative reweighting using the Tukey Biweight method to provide outlier detection. Fitted 

growth rate curves were then numerically integrated for each drug across a 3 log 

concentration curve. 

Discussion 

We have developed a robust screening platform for spheroid models in order to 

facilitate translational relevant research. The primary endpoint used for this assay is the 

rate of growth, which we found to be highly sensitive, minimally noisy, and robust across 

multiple time points. Furthermore, this method is amenable to additional multiplexing 

which can further increase the power of this method. For multiplexed endpoints, we 

recommend dyes such as Draq7 or PI to label necrotic cores. Importantly, we also 

found that addition of these dyes prior to spheroid formation makes for a more 

consistent labeling. We have also explored the utilization of other fluorescent labels 

such as retroviral addition of Nuclight (IncuCyte) and soluble-GFP which label the nuclei 

or cytoplasmic space respectively and facilitate segmentation spheroids and provide 

evidence of cellular viability. 

Using the 3D screening system we developed in addition to routine 2D cell 

growth assays, we screened two colorectal cancer models from both a KRAS and 

BRAF driven cancer. From these data, we saw a number of pharmacologic classes of 

drugs that can effectively inhibit growth or kill in a model and cell line independent 

manner. Demonstrating that many of the core susceptibilities identified using 2D 
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screening formats are still relevant. These included selective activity of targeted agents 

against established drivers such as BRAF, which is identified in both screening formats. 

However, we also found that cells grown as spheroids are more sensitive to MEK 

inhibitors, which is a clinically relevant target for the management of both KRAS and 

BRAF driven cancers. We also observed a lack of activity of EGFR inhibitors in 

HCT116, a KRAS model, and activity in HT29, a BRAF driven model. Importantly, 

KRAS activation is a strong negative prognostic factor of EGFR therapy and selectivity 

was not observed in 2D screening format. Thus, the results obtained from screening 

cancer spheroids closely mimics clinically observed trends which indicates the strength 

of this method over traditional monolayer systems. Other potentially interesting classes 

of drugs that were active are HDAC and HSP90 inhibitors, which have been shown to 

effectively synergize and chemosensitize cells to other classes of drugs. Logically, this 

presents an opportunity to test these agents in combination with other pharmacologic 

agents. Indeed, HDAC therapies used in combination with genotoxic agents such as 5-

flourouracil are being explored in colorectal cancers by others.146 Additionally, HDAC 

inhibitors have also been shown to overcome acute resistance to MEK inhibitors.147 

Thus, a detailed high throughput combinatory screen of HDAC inhibitors with targeted 

and non-targeted agents may reveal novel combination therapies for the treatment of 

colorectal cancers. 
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Table 5.1) Results of 2D and 3D screens for HT29 and HCT116 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

PCI-24781 0.95 0.45 0.80 -0.31 

CABOZANTINIB 0.91 0.78 0.72 0.89 

MOTESANIB 0.89 1.32 0.89 1.24 

LY 333531 0.86 1.19 0.75 1.16 

SUNITINIB 0.84 0.99 0.77 0.61 

ZM447439 0.84 0.80 0.84 1.16 

MELPHALAN HYDROCHLORIDE 0.84 0.86 0.78 1.28 

SORAFENIB 0.81 0.72 0.72 0.62 

BIBW2992 0.80 0.85 0.59 0.49 

THIOGUANINE 0.79 0.47 0.63 0.70 

AXITINIB 0.77 0.68 0.78 0.93 

ABT-869 0.77 0.72 0.64 0.82 

AFATINIB 0.76 0.82 0.61 0.61 

LY 294002 0.76 0.81 0.67 0.85 

GW 843682X 0.76 0.51 0.69 0.70 

TRAMETINIB 0.76 -0.69 0.14 -0.58 

IRINOTECAN HYDROCHLORIDE 0.75 0.21 0.83 1.12 

TRIETHYLENEMELAMINE 0.75 0.43 0.64 1.06 

PD 180970 0.75 1.23 0.96 1.40 

MS-275 0.74 0.18 0.60 0.33 

BOSUTINIB 0.73 1.09 0.59 0.58 

STF-62247 0.73 0.82 0.63 1.37 

VORINOSTAT 0.72 0.61 0.61 0.49 

BMS-536924 0.71 0.31 0.36 0.07 

PONATINIB 0.71 0.82 0.76 0.45 

PF-2341066 0.71 0.80 0.71 0.98 

VALRUBICIN 0.69 0.79 0.53 1.30 

AZD 6244 0.69 -0.70 0.17 -0.48 

MECHLORETHAMINE HYDROCHLORIDE 0.69 0.55 0.60 0.88 

JNK INHIBITOR X 0.68 0.68 0.97 1.23 

GSK 269962A 0.68 0.55 1.07 1.27 

BX 795 0.66 0.29 0.78 0.90 

CRIZOTINIB 0.66 0.78 0.66 0.93 

CANERTINIB 0.65 0.88 0.68 0.64 

IDARUBICIN HYDROCHLORIDE 0.64 0.64 0.67 0.97 

ETOPOSIDE 0.63 0.57 0.65 1.18 

AZD 0530 0.63 0.95 0.43 0.65 

HYPOTHEMYCIN 0.61 -0.23 0.22 -0.17 
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Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

BX 912 0.58 0.09 0.69 0.80 

AZACITIDINE 0.58 0.95 0.58 0.88 

PP121 0.57 0.67 0.35 0.43 

MITOMYCIN 0.56 0.82 0.37 0.86 

CHLORAMBUCIL 0.49 0.35 0.36 0.64 

RDEA119 0.49 -0.82 0.10 -0.61 

NVP TAE684 0.46 0.33 0.17 0.13 

AZD 7762 0.46 0.47 0.21 0.06 

PRALATREXATE 0.45 -0.04 0.29 0.73 

SARACATINIB 0.45 0.68 0.10 -0.07 

FLOXURIDINE 0.43 0.00 0.16 0.58 

BLEOMYCIN SULFATE 0.43 1.21 0.93 1.22 

CLADRIBINE 0.40 -0.04 0.39 1.12 

AZD1152-HQPA 0.38 -0.22 0.19 0.75 

PKC412 0.38 -0.19 0.59 0.27 

PI-103 0.38 0.88 0.36 0.97 

CYTARABINE HYDROCHLORIDE 0.38 0.02 0.28 0.92 

DECITABINE 0.37 0.08 0.38 0.77 

MGCD0103 0.37 -0.28 0.41 0.03 

CABAZITAXEL 0.36 -0.12 0.35 -0.51 

TRICHOSTATIN A 0.36 0.81 0.26 0.37 

PD 0325901 0.34 -0.87 0.04 -0.62 

TOZASERTIB 0.33 -0.19 0.29 0.41 

DR 2313 0.32 0.84 0.66 1.18 

LESTAURTINIB 0.31 -0.34 0.34 -0.35 

PACLITAXEL 0.30 -0.13 0.06 -0.34 

TENIPOSIDE 0.30 0.07 0.28 0.74 

PXD101 0.27 0.25 0.46 0.51 

EPIRUBICIN HYDROCHLORIDE 0.27 0.15 -0.07 0.33 

CLOFARABINE 0.25 -0.26 0.21 1.36 

DOXORUBICIN HYDROCHLORIDE 0.23 0.07 -0.09 0.22 

MITOXANTRONE 0.21 0.19 -0.02 0.45 

OBATOCLAX 0.20 0.39 0.29 0.66 

17-AAG 0.20 -0.27 0.00 -0.39 

PIK 75 0.20 -0.02 0.19 -0.05 

DACTINOMYCIN 0.19 -0.25 0.17 -0.15 

NVP LAQ824 0.18 1.28 0.08 -0.13 

STAUROSPORINE 0.17 -0.20 -0.02 -0.24 



80 

Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

PLICAMYCIN 0.14 -0.15 0.19 -0.20 

VINORELBINE TARTRATE 0.13 -0.11 0.24 -0.22 

ELESCLOMOL 0.12 0.98 0.03 1.02 

DASATINIB 0.11 0.94 -0.08 0.49 

TOPOTECAN HYDROCHLORIDE 0.11 -0.34 0.06 0.32 

17-DMAG 0.08 -0.29 -0.02 -0.33 

VINBLASTINE SULFATE 0.08 0.30 0.07 -0.28 

GEMCITABINE HYDROCHLORIDE 0.08 -0.34 0.11 0.56 

BI 2536 0.07 0.05 0.03 -0.65 

JNJ-26481585 0.07 1.44 0.08 -0.21 

NVP AUY922 0.07 -0.28 0.16 0.34 

DOCETAXEL 0.05 1.07 0.03 -0.53 

LBH-589 0.05 1.58 0.05 -0.09 

VINCRISTINE SULFATE 0.04 -0.33 0.04 -0.70 

BORTEZOMIB 0.04 0.54 0.00 0.48 

CARFILZOMIB 0.03 1.07 0.03 0.78 

DAUNORUBICIN HYDROCHLORIDE 0.02 0.08 -0.12 0.30 

OMACETAXINE MEPESUCCINATE 0.02 -0.04 0.02 0.10 

LE 135 1.18 0.91 1.15 1.34 

AS 252424 1.14 0.86 1.02 1.08 

RALOXIFENE 1.12 0.93 0.98 1.21 

AMINOLEVULINIC ACID HYDROCHLORIDE 1.12 1.00 1.00 1.19 

URACIL MUSTARD 1.11 1.03 1.04 1.10 

METHOTREXATE 1.10 1.23 1.04 1.42 

PLERIXAFOR 1.10 1.12 1.07 1.15 

ESTRAMUSTINE PHOSPHATE SODIUM 1.10 1.15 1.02 1.35 

ENZALUTAMIDE 1.09 0.82 1.05 1.13 

NELARABINE 1.08 1.12 0.99 1.22 

PEMETREXED 1.08 0.99 0.93 1.02 

CISPLATIN 1.07 1.13 0.99 1.17 

CELECOXIB 1.06 1.16 0.88 1.24 

ALTRETAMINE 1.06 1.12 1.03 1.22 

LETROZOLE 1.05 1.06 1.03 1.20 

AMIFOSTINE 1.05 1.12 0.97 1.17 

IFOSFAMIDE 1.05 1.10 1.02 1.23 

CYCLOPHOSPHAMIDE 1.04 1.12 1.01 1.26 

ZOLEDRONIC ACID 1.04 1.18 1.03 1.29 

REGORAFENIB 1.04 0.78 0.94 0.86 
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Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

MK-2206 1.04 0.61 0.70 0.79 

ERLOTINIB 1.03 1.08 0.93 0.47 

U 73122 1.03 1.14 0.96 1.26 

SIROLIMUS 1.02 0.54 0.79 0.67 

BENDAMUSTINE HYDROCHLORIDE 1.02 1.07 0.97 1.24 

MERCAPTOPURINE 1.02 0.77 0.81 0.97 

LOMUSTINE 1.02 1.13 0.99 1.25 

METFORMIN 1.02 1.01 1.03 1.19 

LENALIDOMIDE 1.01 0.93 1.05 0.96 

CARBOPLATIN 1.01 1.09 0.98 1.23 

PD 153035 1.01 1.00 0.97 0.57 

BMS-599626 1.01 0.99 0.89 0.56 

PROCARBAZINE HYDROCHLORIDE 1.01 1.12 0.99 1.31 

AICAR 1.01 1.20 0.95 1.22 

PD 169316 1.01 1.08 1.02 1.08 

CAPECITABINE 1.00 1.13 1.02 1.33 

PENTOSTATIN 1.00 1.22 1.01 1.45 

PIK 90 1.00 0.97 0.99 1.02 

PLX4032 1.00 0.85 0.53 -0.05 

VX-702 1.00 1.12 1.02 1.00 

ABIRATERONE 1.00 1.15 1.05 1.24 

SB 431542 1.00 1.13 0.96 1.24 

FINGOLIMOD 1.00 1.09 1.00 1.37 

PF-04217903 0.99 0.92 0.98 0.99 

THALIDOMIDE 0.99 1.16 1.06 1.25 

PAZOPANIB 0.99 1.18 1.11 1.43 

VISMODEGIB 0.99 1.12 1.03 1.25 

PERIFOSINE 0.99 0.35 0.82 0.76 

BSI-201 0.99 1.04 1.02 1.08 

FLUDARABINE PHOSPHATE 0.98 0.94 0.86 1.24 

PIPOBROMAN 0.98 1.02 1.01 1.23 

METHOXSALEN 0.98 1.22 1.00 1.20 

PD 98059 0.98 0.88 0.98 1.18 

Y-27632 0.98 1.13 1.18 1.30 

GSK1904529A 0.98 1.10 0.94 1.31 

NU 1025 0.98 1.07 0.95 1.19 

KU-55933 0.97 0.78 0.98 1.04 

VATALANIB 0.97 1.21 0.94 1.22 
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Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

AG 490 0.97 1.07 1.03 1.08 

EVEROLIMUS 0.97 0.58 0.80 0.68 

BEZ 235 0.97 1.00 0.85 1.03 

IMIQUIMOD 0.97 1.03 0.83 1.34 

SD 208 0.97 1.19 0.99 1.18 

A-769662 0.97 1.10 0.93 1.08 

GEFITINIB 0.97 1.10 0.88 0.78 

AZD 2281 0.96 0.88 1.00 1.20 

MEGESTROL ACETATE 0.96 1.14 1.06 1.26 

EXEMESTANE 0.96 1.02 0.90 1.22 

FULVESTRANT 0.96 1.01 0.98 1.24 

2DG 0.96 1.05 1.02 1.10 

VEMURAFENIB 0.95 1.30 0.71 0.34 

PAZOPANIB HYDROCHLORIDE 0.95 1.20 0.98 1.20 

TEMOZOLOMIDE 0.95 1.19 1.00 1.15 

ARSENIC TRIOXIDE 0.95 1.22 0.68 1.23 

MITOTANE 0.95 0.96 0.97 0.79 

BUSULFAN 0.95 1.11 0.97 1.28 

NSC 625987 0.95 1.17 0.93 1.28 

TEMSIROLIMUS 0.95 0.53 0.79 0.67 

TANDUTINIB 0.95 1.15 0.99 1.21 

SD 169 0.95 1.06 1.04 1.16 

ANASTROZOLE 0.94 1.10 0.96 1.23 

SP600125 0.94 1.14 0.97 1.25 

ERLOTINIB HYDROCHLORIDE 0.94 1.01 0.85 0.52 

STREPTOZOCIN 0.94 1.13 1.02 1.24 

BMS 204352 0.94 1.04 1.00 1.13 

COMPOUND C 0.94 1.17 0.98 1.42 

IMATINIB 0.94 1.12 0.76 1.24 

PD 166793 0.93 1.14 1.03 1.28 

CEDIRANIB 0.92 0.84 0.89 0.96 

FLUOROURACIL 0.92 0.80 0.86 0.99 

FK-506 0.92 1.07 1.04 1.19 

SB 203580 0.92 1.35 0.79 0.83 

NILOTINIB 0.92 1.33 1.03 1.30 

DACARBAZINE 0.92 0.43 0.90 0.68 

ABT-263 0.91 1.00 0.95 0.85 

CYCLOPAMINE 0.91 0.88 1.00 0.96 
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Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

PLX4720 0.91 1.54 0.36 -0.03 

ROSCOVITINE 0.90 1.11 0.95 1.20 

LAPATINIB 0.90 0.97 0.79 0.48 

TGX 221 0.90 0.81 0.90 1.03 

ZSTK474 0.90 1.04 0.86 1.06 

RAPAMYCIN 0.90 0.52 0.71 0.64 

CARMUSTINE 0.90 1.02 0.82 0.99 

ALLOPURINOL 0.90 1.14 1.00 1.22 

GDC-0449 0.89 1.19 1.01 1.22 

8-DODECYLSULFANYL-1,3-DIMETHYL-7H-
PURINE-2,6-DIONE 

0.89 1.29 0.95 1.36 

H-89 0.89 1.11 1.01 1.19 

TRETINOIN 0.89 1.02 0.99 1.18 

DEXRAZOXANE 0.89 1.08 0.93 1.01 

AS-604850 0.89 1.06 1.03 1.30 

ROFECOXIB 0.89 1.09 0.95 1.20 

AS-041164 0.89 1.07 0.94 1.13 

ENZASTAURIN 0.89 0.93 0.94 0.99 

COMPOUND 401 0.89 1.06 0.96 1.19 

R59022 0.89 1.05 0.93 1.28 

SB 218078 0.89 0.94 0.93 0.94 

SB 202190 0.88 1.29 0.77 0.77 

CI 1040 0.88 -0.32 0.49 0.00 

CHIR 258 0.87 0.77 0.77 0.70 

TRICIRIBINE 0.87 0.50 0.59 1.44 

HA14-1 0.87 1.08 0.99 1.20 

ABT-737 0.86 1.03 0.91 0.93 

NSC23766 0.86 1.13 0.96 1.12 

MASITINIB 0.86 0.80 0.75 1.23 

BIBF-1120 0.86 1.03 0.92 0.95 

CHK2 INHIBITOR II 0.86 0.83 0.79 1.07 

BEXAROTENE 0.85 0.55 1.11 0.97 

IVACHTIN 0.85 1.03 1.01 1.22 

TAMOXIFEN CITRATE 0.85 1.02 0.78 0.73 

DABRAFENIB MESYLATE 0.85 1.25 0.28 0.33 

VANDETANIB 0.85 1.09 0.75 0.69 

HYDROXYUREA 0.85 1.02 0.90 1.12 

THIOTEPA 0.84 0.85 0.82 1.18 

DNA-PK INHIBITOR V 0.84 1.01 1.02 1.14 
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Table 5.1 continued 

Compound Name 
HCT116 

2D 
HCT116 

3D 
HT29 

2D 
HT29 

3D 

CHIR 99021 0.84 1.17 0.82 1.29 

SB 216763 0.83 1.00 1.04 1.16 

GDC 0941 0.83 0.24 0.63 0.24 

OXALIPLATIN 0.83 0.87 0.82 1.09 

SU 6656 0.82 0.26 1.00 0.49 

GELDENAMYCIN 0.82 0.94 0.81 0.68 

GW 441756 0.81 1.12 1.01 1.48 

BRIVANIB 0.81 1.09 1.01 1.13 

AG014699 0.81 0.86 0.93 1.19 

SU 11274 0.81 0.87 1.05 1.21 

ABT-888 0.81 1.07 0.94 1.17 

CHIR 98014 0.79 1.01 0.87 1.12 

DEGUELIN 0.75 0.10 0.85 0.66 

AEG 3482 0.69 1.03 0.67 1.33 
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CHAPTER VI 

CURRENT AND FUTURE WORK 

Development of visualization tools for HTS/HCA data 

Data visualization is an important final step in the HTS/HCA analytical workflow that 

summarizes the collective results of a screen into a discrete graphic. At present, the 

most prevalent ways to visualize HTS data are in the form of tabular reports or waterfall 

plots. However, these methods are limited in that they often times fail to contextualize 

the data outside of identifying the most active drug in a dataset. Others have aimed to 

provide such context by clustering drug sensitivity data across multiple cell lines.33,148 

These type of analysis can provide a two-way inference of the molecular mechanism of 

action (MoA) of the drug, and provide a low resolution genetic profile based on drug-

driver susceptibilities through the identification of regional hotspots.33 Therefore, two-

way clustering is a good method for identifying novel MoA, crude characterization of the 

genomic characteristics of a cell line, and clustering pharmacologic patterns across an 

unannotated array of cells. However, this method is limited in that it relies on testing 

panels of drugs across an array of cell lines with different underlying molecular 

susceptibility to properly bin the mode of action, which is not always feasible. 

Fortunately, public databases which archive pharmacologic profiles are available and 

can be used to provide such context if the same endpoints and methods of analysis are 

used.64 Yet another approach relies on compiling the target and MoA of established 

drugs into organized networks.149,150 While this method does generate an aesthetically 

pleasing and informative visualization, there are limitations in the underlying method 
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including that it is proprietary, remains unpublished, and does not appear to have the 

ability to dynamically self-compile when new libraries are tested. Thus, we aimed to 

generate a robust visualization method using open source tools that provides context to 

screening data. To achieve this, we first had to generate in-house databases of 

molecular targets, drug classifications, and modes of action. This was done under two 

frameworks, one database that is manually curated and the other which is automatically 

populated. The benefits of utilizing the manually curated database are that it provides 

better congression of related drugs; however, this database is tedious to maintain and 

potentially subject to bias. Conversely, the database that automatically compiles vectors 

from multiple online sources is less subject to bias, easier to maintain, and includes 

information about drugs that active against multiple targets; however, there is more 

noise in the descriptive vector. With the database structure developed, we then 

generated a method to convert descriptive features archived in the database into a self-

compiling network, which can subsequently be used to extract biological information 

from screening campaigns regardless of library size or content. 
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Fig 6.1) Comprehensive workflow for generating pharmacologic trees. Data 
base sources are used to build drug annotation vectors which are summarized in a 
binary vector format. T-SNE is then used to reduce the dimensionality of the data 
while preserving the global and local structures within the data. A pairwise distance 
map is then constructed to identify nearest neighbors and compiled into a minimum 
spanning tree. 
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Materials and methods 

Constructing the drug annotation database 

The initial drug annotation database was manually curated and cataloged the class of 

the drug, canonical target, molecular signaling pathway, and the functional implication. 

Raw data was obtained either from vendor sources or databases including the Drug 

Repurposing Hub, Selleck, ChemSpider, PubChem, and PubMed. Summarized terms 

for the molecular signaling cascade and functional implications were derived from 

inferring information about these drugs through primary literature. Thus, this initial 

implementation, which we will refer to as method 1, is limited in that it relies on manual 

inference of drug MoA and functional implication which is potentially subjective and 

highly labor intensive. However, we believe that the ability of this method to self-compile 

HTS data into a meaningful visualization makes this a valid tool despite this limitation. 

Automated methods for compiling drug annotations 

In order to remove the biases associated with manually inferring data stored in 

discordant data silos, an automated method to build a binary description vector of drugs 

was generated and referred to as method 2. This method pulls the target information 

from the Drug Bank database, providing target information, which is then merged with 

the PANTHER database, providing signaling pathways, molecular processes, and 

localization of the target proteins.5,151-153 These data are then stored in a tabular format 

where each row represents a single drug and each column represents a term describing 

targets, molecular modes of action, signaling pathways, molecular processes, and 

localization. 
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Generating a minimum spanning tree of pharmacologic MoA 

In order to convert the descriptive vectors into an adjacency matrix an intermediate 

distance matrix must first be obtained. For method 1, this is done simply by calculating 

the gower distance using the daisy function in R. However, for method 2 direct 

calculation of gower distances fails to recapitulate local and global structures of the data 

due to the high dimensionality of the drug description vector. Therefore, method 2 

requires that the dimensionality of first is reduced before identifying nearest neighbors. 

While many different methods of data reduction are available we found that non-linear 

data reduction methods, such as t-distributed stochastic neighborhood (t-sne) 

embedding, were better than linear data reduction techniques, such as principle 

component analysis (PCA) or multidimensional scaling (MDS), due to the ability of t-sne 

to maintain both global and regional interactions on large datasets. A simple Euclidean 

distance matrix can then be used to identify nearest neighbors and construct an 

adjacency matrix using the graph_from_adjacency_matrix function in the R igrpah 

library. Finally, a network of pharmacologic relations was constructed by linking nearest 

neighbors into a minimum spanning tree using the mst function in the R igraph library, 

Fig 6.1. In order to make this visualization tool interactive, the igraph network object was 

then converted into an interactive visNetwork object using the visNetwork package. The 

code and tabular drug annotation databases used to generate trees are provided in 

supplemental material 6.1. 
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Preliminary results 

Generalizability of VisPharma-Network visualization tool 

In order to increase the generalizability of this application we aimed to make a flexible 

algorithm used to visualize pharmacologic relations of experimental drugs tested in a 

HTS campaign, regardless of the library size and profile. In order to achieve this, 

targeting and MoA information must be stored in a format that allows the algorithm to 

self assemble a network of related drugs. To demonstrate this capability, we simulated 

libraries of various size ranging from 250 to 2000 drugs. When annotated, these data 

clearly show that despite being different sizes the algorithm was able to spatially isolate 

and connect related drugs, Fig 6.2. Importantly, a reproducible pharmacologic network 

can be obtained given the same input of drugs. However, we found certain limitations in 

this method including the ability to connect drugs that are distantly related which may 

lead one to over interpret the importance of a given region. We also found that larger 

networks, loosely defined as those with more than 1500 nodes, become visually very 

compact and difficult to interpret, which is a general limitation of network-based 

analysis. 
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Fig 6.2) Pharmacologic trees from libraries of different size and content. In 

order to demonstrate the dynamic scalability and generalizability of this method to 

visually congregate similar drugs, VisPharmaNetwork graphics are constructed using 

a simulated library containing 250, 500, 1000, and 2000 drugs. Regions displayed in 

the above graphic are manually annotated for their content after using the interactive 

reviewing tools. These data show the trade-off in molecular resolution and visual 

interpretability. All graphics are made using R Studios, igraph, and visNetwork 

libraries. 
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Comparing pharmacologic profiles of sarcoma cell lines using various resolutions of 

data visualization 

Multiple levels of information can be extracted from a HTS campaign. To demonstrate 

how various methods of data visualization can influence the interpretation of data, we 

present a case study of a HTS campaign performed on a panel of 25 sarcoma cell lines 

screened against 1163 drugs. The cell lines used in this study represent a diverse panel 

of sarcomas that were isolated from soft tissue and bone tumors. Likewise, one would 

expect the molecular susceptibilities of these tumors to be unique and result in a 

signature drug susceptibility profile. The rate of growth for each condition was 

calculated using the fixed-endpoint method proposed by Hafner et al. and fitted against 

the log of three concentrations (0.1, 1.0, 10.0 uM). Finally, the AUC of the fitted curve 

was used to make comparisons across the different cell lines. Principle component 

analysis was then used to provide an abstract preview of the overall pattern of 

susceptibility between cell line models. Here, two clusters can be seen which are 

enriched for either bone or soft-tissue linages, Fig 6.3A. These data therefore provide 
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Fig 6.3) Exploratory analysis of sarcoma cell lines. A) Principle component 

analysis (PCA) of pharmacologic vectors for 25 sarcoma cell lines. Cell lines are 

color coded according to the tissue of origin. PCA analysis is performed using 

Pipeline Pilot and R. B) Two-way clustering heatmap of pharmacologic vectors and 

cell lines. Color code represents the AOC of the Hafner Growth index by 

concentration curve. A value of 0 (blue) represents no activity and 1 (red) represents 

complete killing of cells. Clustering is performed using R and cim function in the 

mixedOmics library. C) Pharmacologic networks of representative cell lines identified 

by the clustering analysis presented in B. Networks are constructed using R, igraph, 

and visNetwork libraries. 
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evidence that there was an underlying difference in the models, which resulted in a 

signature profile associated with the origin of the tumor. However, this embedding only 

accounted for 40% of the variance of the total dataset and has limited resolution of the 

pharmacologic profile. In order to ascertain that level of information a more granular 

data representation is more suitable. Here, we embedded the screening data in an 

analogous method to the ACME analysis performed by Seashore et al. This data 

representation similarly confirmed the presence of two larger clusters of response 

patterns that were associated with disease lineage but also shows that there was a 

gradient of activity with blocks of pan-active, selective, and inactive drugs. In general, 

less activity was observed in bone derived sarcomas when compared to soft tissue 

derived; however, this method does not easily result in a mechanistic understanding of 

what those drugs are targeting. To further enrich these data, visPharma-networks were 

constructed using method one and merged with the drug susceptibility data so that the 

size represents the strength of response. When comparing these cell lines, it is clear 

that much of the differences were in drugs that target kinases, shown in Fig 6.3C. 

Importantly, each circle is mechanistically annotated and allows for interactive 

exploration of the data. When applied here, it is apparent that drugs that target mTOR, 

CDK inhibitors displayed soft tissue selectivity while PLK, AURK, in addition to 

microtubule poisons were pan-active. Additional pan-active classes included proteotoxic 

stress induction via HSP or proteasome inhibitors, and HDAC inhibitors. Interestingly, 

these data also show that subset (3/7) of chondrosarcoma cell lines (HT1080, HMCSS, 

and SW1353) showed selectivity towards downstream MAPK inhibitors, farnesyl 
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transferase inhibitors, a broad spectrum of RTK inhibitors, and JAK inhibitors. Indicating 

that this subset has a strong RAS signature. 

Discussion 

Data visualization is a useful tool used to contextualize the results of large data sets. At 

present, there is no single method of data visualization that allows one to easily 

understand the full complexity of HTS data sets. Here, we presented a generalizable 

method which embeds HTS data into a network formed from the target and MoA of the 

drug. This method is tunable towards libraries of different size and content, and results 

in visually congressing similar drugs into regions. Importantly, this method can provide 

context for screens performed on a single cell line or across multiple lineages. However, 

comparison of large numbers of cell lines using this method can become 

unmanageable. To overcome this, we performed a multi-tiered analysis aimed at 

understanding different levels of information in a given dataset. Here, we proposed 

using methods such as PCA and two-way clustering to identify prototype cell lines, 

representing which are further explored using the visPharma-Network method. 

To exemplify this workflow, we applied it to a dataset containing drug sensitivity data 

from a panel of sarcoma cell lines. These data show how data visualization can be used 

to extract a basic understanding of the pharmacologic susceptibility profile between cell 

lines starting with a highly abstract method and honing into highly mechanistic views. 

From these data we identified clear differences between sarcomas of different lineages 

and identified a subset of chondrosarcomas with a strong RAS-like profile. Indeed, one 

of the chondrosarcomas, HT1080, is well established to have a driver mutation in N-
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RAS. However, empirically testing the presence and activity levels of these signaling 

cascades across all the tested cell lines remains to be tested. 



97 

CHAPTER VII 

CONCLUSIONS AND FINAL REMARKS 

The research conducted throughout this dissertation are multifaceted and far ranging in 

their scientific and technological merit. At the most fundamental level, we developed 

and validated tools used for phenotypic screening. The application of these tools has 

supported a number of drug discovery and repurposing projects, each of which have 

contributed to the scientific body of knowledge in their respective fields 

The first application discussed in Chapter III demonstrated the role of phenotypic 

screening in early drug development and optimization. The primary endpoint of this 

assay was the pharmacologic restoration of p27, which was directly measured using the 

florescent intensity of immunolabeled p27 and functionally confirmed using growth 

inhibition. The ability to simultaneously measure a direct and indirect readout of activity 

without the need to perform additional assays highlights the efficiency of image-based 

screening. Additionally, the image analysis method presented here has already served 

as a platform for additional ongoing screening projects with drastically different 

endpoints than the ones presented. Indeed, the same image analysis pipeline is 

currently being used to quantify the morphometric attributes of cells grown as 

monolayers and labeled with an actin marker. The combined morphometric feature 

vector was then interpreted using a random forest model which classifies cells into 

phenotypic bins with very high precision. Thus, showing the generalizability of this 

image analysis method towards applications outside of the one for which it was initially 

proposed. 
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The second application discussed in Chapter IV is the most specialized image 

analysis pipeline developed during this dissertation. Here, multiple fluorescent markers 

were used in combination to identify a specific organelle. Despite being highly 

specialized, this method has the potential to be further adapted towards assays where 

proximal labels need to be identified. Similar to the method presented in Chapter III, the 

screen performed in Chapter IV also benefited from having multiple image-based 

endpoints including the penetrance of the primary cilia and an orthangonal toxicity 

assay; further demonstrating the efficiency of image-based screening. 

The third application, presented in Chapter V, represents a practical approach to 

preforming HTS on spheroid models. The results in this section strongly argue the 

necessity of using models such as 3D spheroids in drug discovery because it alters the 

pharmacologic susceptibility profile in a manner that is more consistent with clinical 

observation. Likewise, the development and implementation of these models in HTS is 

important for the next generation of in vitro drug testing. Indeed, the screening pipeline 

developed in Chapter V is currently being used to profile multiple cancers including 

breast, colon, and pancreatic. For some of these projects, primary patient-derived cells 

are being used. Scientifically, these represent interesting models due to their ability to 

recapitulate the genomic and epigenetic attributes of the clinical population. Thus, when 

combined with a physiologically relevant growth format these serve as a powerful 

predictive model of how a patient will respond to potential treatments. Traditionally, 

these type of data are acquired by performing experiments in xenograft mouse models, 

which are subsequently treated with potential therapeutic drugs. However, the time 

required expanding the mice, establishing a tumor, and the cost associated with testing 
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multiple drug treatment arms makes this both cost and time prohibitive. However, 

application of ex vivo organoids grown in multi-well format provides a balance of speed, 

efficiency, and cost with biological and translational relevance. 

Multiple HTS screens aimed at profiling the pharmacologic susceptibility of cell 

lines have been performed directly or by using tools developed for this dissertation, 

resulting in a large amount data which requires interpretation. Thus, one of the most 

powerful tools in data science to perform such a task is data visualization. Here, we 

compiled a knowledge base of pharmacologic modes of action which was used to 

construct a network of pharmacologic relations. Importantly, this method of visualization 

provides molecular context to the results of a HTS. It also allows one to make a rapid 

visual comparison between model systems and gain a high-level understanding of the 

mechanistic drivers on which each model relies. Finally, it shifts the notion of HTS as 

being performed in order to pick the best candidate drug towards using HTS as a 

method to profile and understand the molecular biology of a cell, which in turn can be 

used to prioritize potential therapies or combinatorial studies. 
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APPENDIX 

Summary of SETD2 roles in genomic stability 

Gene expression is a finely regulated process governed in part by post-translational 

modification of histones. These modifications include acetylation, methylation, and 

ubiquitination, which are catalyzed by histone acetyltransferases (HAT)/deacetylases 

(HDAC), histone methyltransferases (HMT)/demethylases (KDM), and ubiquitin ligases, 

respectively. Interestingly, some of the proteins that regulate the addition and removal of 

these post-translational modifications do not exclusively localize to the nucleus and can 

be found in the cytoplasm or at specific cellular structures including components of the 

cytoskeleton. We showed that SetD2, the histone methyltransferase which exclusively tri-

methylates histone H3 at lysine residue 36 (H3K36me3), also directly interacts with 

microtubules and has the catalytic potential to tri-methylate lysine 40 of alpha tubulin.154 

We further hypothesized that the addition of methyl residues to microtubules is not a 

passive mark; but rather, directly participates in microtubule stability and function. In order 

to determine when and where methylation occurs on microtubules, we performed 

immunofluorescence labeling of H3k36me3 and alpha tubulin which showed co-

localization of tri-methyl antibodies to a specific microtubule structure known as the 

midbody, which is important in symmetric cellular division.155 In order to quantify these 

phenotypic behaviors, we developed a number of HC imaging pipelines to identify 

midbodies from a field of cells and methods to quantify multiple aspects of nuclear content 

and integrity. These included methods to determine the rate of polyploidy nuclei and 

presence of micronuclei. We also showed that acute homozygous depletion of Setd2, a 
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common event in a broad spectrum of cancers including clear cell renal cell carcinoma, 

resulted in increased rates of genomic instability, consistent with aberrant cytokinesis. 

Bio-medical image analysis beyond HTS/HCA applications 

The ability to extract meaningful information form biological images is not limited to 

HTS. Other biomedical fields such as histology and radiology can also greatly benefit 

from automated image analysis. Here, automated image analysis can serve as a tool to 

quantitatively evaluate the cellular structures in tissue and describe perturbation in 

diseased tissue. In doing so, it pushes these fields towards a more standardized 

description of tissue and overcomes issues with qualitative analysis, which can vary 

between day, institution, and medical examiner. Image analysis can further be 

combined with machine learning to generate predictive models of disease. In part, these 

types of studies are made possible through large clinical archives, such as the TCGA, 

which store histological data with matched clinical and molecular data. Indeed, this has 

resulted in the development of fields such as radio-genomics and histo-genomics where 

phenotypic features are used to predict genomic characteristics of the disease.156,157 

Other applications include the development of predictive models which integrate image 

derived features which are used to predict the course and severity of disease.158 

Interestingly, unlike HTS pipelines, analysis of tissues and radiological images rely more 

heavily on field-based methods as the images are often difficult to segment. In tissues 

where segmentation is possible, direct morphometric measurements can be used to 

sub-classify disease in addition to more advanced statistical features which quantify the 

relational spatial distributions of cells within the field. Conceptually, development of 
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image processing tools, identification of genotype-phenotype relations, and machine 

learning methods that are being developed in this field can also be applied to HTS and 

vice-versa. Therefore, it is important to carefully watch both fields to identify novel 

applications of these technology. 




