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ABSTRACT

The spiking neural network (SNN), an emerging brain-inspired computing paradigm, is posi-

tioned to enable spatio-temporal information processing and ultra-low power event-driven neuro-

morphic hardware. The existing SNN architectures and their corresponding training algorithms

suffer from the major limitations in terms of learning performance and efficiency. By leveraging

the architectural characteristics and tackling training difficulties of SNNs, this dissertation explores

various SNN architectures (feedforward and recurrent) and the corresponding training rules (nu-

merical and bio-inspired algorithms), proposing a comprehensive set of solutions to embrace high

performance and energy efficient (deep) spiking neuron networks.

The feedforward network topology is a straightforward structure for exploiting the computa-

tion power of spiking neuron networks. However, training feedforward SNNs to achieve a perfor-

mance level on par with deep models is very challenging. The existing SNN error backpropaga-

tion methods are limited in terms of scalability, lack of proper handling of spiking discontinuities,

and/or mismatch between the rate-coded loss function and computed gradient. We present a hybrid

macro/micro level backpropagation (HM2-BP) algorithm for training multi-layer SNNs, achieving

an accuracy level of 99.49% and 98.88% for MNIST and neuromorphic MNIST, respectively, out-

performing the existing SNN BP algorithms.

It is widely anticipated that the wiring structure of biological brain will be more closely

matched using the recurrent spiking reservoir computing model, or liquid state machine (LSM),

to constitute a powerful bio-inspired computing paradigm. The LSM exploits the computation

power of recurrent spiking neural networks by incorporating a randomly generated reservoir and a

trainable readout layer. To realize adaptive LSMs thus boost learning performance, we propose a

novel biologically plausible Activity-based Probabilistic Spiking-Timing Dependent Plastic (AP-

STDP) mechanism for recurrent reservoir tuning. Then, a hardware-optimized STDP mechanism

is proposed to enable efficient on-chip learning. We demonstrate that the proposed approaches

boost the learning performance by up to 2.7% while reducing energy dissipation by up to 25%.
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Furthermore, we present a unifying biologically inspired calcium-modulated supervised STDP ap-

proach for training and sparsification of readout synapses. We demonstrate that it outperforms a

competitive spike-dependent training algorithm by up to 2.7% and prunes out up to 30% of readout

synapses without significant performance degradation.
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1. INTRODUCTION AND LITERATURE REVIEW∗

The human brain is remarkable in perceiving, learning, and adapting to the changing envi-

ronment in some almost seemingly effortless manner. The way which brain processes informa-

tion set up an extraordinary reference for building new computing systems that may address the

performance and energy crisis faced by the computing industry today. Spiking neural networks

(SNNs) [2, 3], imitating how realistic biological neuron represents, processes and learns from

spatio-temporal information (see Fig. 1.1), providing a promising paradigm that closely resem-

bles the brain behavior. And recently, silicon-based spiking neural emulators and systems have

emerged to leverage the event-driven characteristics of SNNs for ultra-low power hardware, see

for example [4, 5, 6, 7, 8, 9].

Despite the recent prevalence, the limitations in the existing architectures and their correspond-

ing training algorithms greatly challenge the realization of high-performance and energy efficient

SNNs. From the network architectural perspective, it is natural to explore both feedforward and

recurrent network topology, as shown in Fig. 1.2. Given a specific network architecture, numerical-

based and bio-inspired algorithms can be used to facilitate the learning with the trade-offs between

training cost, training difficulty, and performance. However, the problem of training SNNs, which

is not well understood at this point, is a long-standing challenge. Moreover, for different various

architectures, the training difficulty and concerns might be different. For example, feedforward

SNNs might be easier to deal with comparing with the recurrent SNNs because the former one

does not have long-term dependency introduced by recurrent connections. But it is very interest-

∗ c⃝2016 Elsevier B.V. Reprinted, with permission, from Yingyezhe Jin and Peng Li, "Performance and robust-
ness of bio-Inspired digital Liquid State machines: A Case study of speech recognition", Neurocomputing, Volume:
226, Feb. 2017, Pages 145 - 160. c⃝2016 IEEE. Reprinted, with permission, from Yingyezhe Jin and Peng Li,
"AP-STDP: A novel self-organizing mechanism for efficient reservoir computing", Proceedings of the 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, July 2016. c⃝2016 IEEE. Reprinted, with permission,
from Yingyezhe Jin, Yu Liu and Peng Li, "SSO-LSM: A Sparse and Self-Organizing architecture for Liquid State
Machine based neural processors", Proceedings of the 2016 IEEE/ACM International Symposium on Nanoscale Ar-
chitectures (NANOARCH). IEEE, July 2016. c⃝2017 IEEE. Reprinted, with permission, from Yingyezhe Jin and Peng
Li, "Calcium-modulated supervised spike-timing-dependent plasticity for readout training and sparsification of the
liquid state machine", Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN). IEEE,
May 2017.
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Figure 1.1: (a) The anatomy of biological neurons (adopted from [1] and slightly modified). The
communication and processing are done through action potentials. The nucleus accumulates the
incoming stimulus in the form of action potentials via the synapses and emits an action potential
to its postsynaptic cell. (b) The spiking neurons. Similar to biological neurons, the post-synaptic
spike neuron accumulates the action potentials from its presynaptic neuron, generating a spike
when its membrane potential reaches the threshold.

ing to exploit the recurrent SNNs for more computing power since micro-circuitry of the brains

have both feedforward and recurrent connectivity.

In the first part of this dissertation, we investigate the (deep) feedforward SNNs, which have

a straight forward topology. Similar to trends in traditional deep models, we want to explore

deep spiking neuron networks which possess huge learning capacity to be leveraged and exploited.

However, the most existing spike-based learning algorithms fail to train the deep SNNs for ob-

taining the competitive performance [10, 11, 12]. Although the error backpropagation [13] is very

successful in training deep artificial neural networks (ANNs), attaining the same success of back-

propagation (BP) for deep SNNs is challenged by two fundamental issues: complex dynamics and

non-differentiable spike events. The two major training difficulties are required to take care for

enabling high-performing deep SNNs.

In the remaining parts of this dissertation, we explore the liquid state machine (LSM), a biolog-

ically plausible computational paradigm exploiting complex recurrent spiking neural networks [14]

2



Multi-layer 
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Figure 1.2: The feedforward network v.s. recurrent network.

to envision a good trade-off between the ability in tapping the computational power of recurrent

spiking neuron networks and readiness for training. As shown in Fig. 1.3, the LSM consists of

a fixed “reservoir”, a randomly connected recurrent spiking neural network resembling biological

cortical micro-circuitry in the brain, and a group of readout neurons that conduct classification

decisions by processing the firing events of the reservoir. Via its nonlinear dynamics, the reser-

voir projects the input spike trains into a high-dimensional space of the network transient state,

and memorizes the inputs received in the past. In the standard LSM model, only the feed-forward

synapses projecting from the reservoir to the readout layer are plastic, which shall be trained prop-

erly to relax the overall training difficulty of the entire SNN [10, 15, 16]. The liquid state machine

also provides an appealing paradigm for realizing energy-efficient VLSI learning processors. VLSI

LSM processors and accelerators have been demonstrated recently [17, 18, 19].

Although the typical LSM model is attractive as it exploits the computational power of the re-

current reservoir without tuning it, many studies have argued that randomly generated fixed reser-

voirs do not act as an effective filter for specific applications [20, 21]. Furthermore, supervision-

based adaptation of the recurrent connections in the reservoir is in general very challenging be-

cause of complex long-term dependencies in the dynamics [22]. The self-organizing behaviors

can be introduced through the unsupervised training scheme of spike-timing dependent plasticity

(STDP), which was both experimentally discovered in biology [23] and theoretically studied in
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Figure 1.3: The model of the liquid state machine.

neuroscience [24]. Operating directly on spikes and facilitating efficient online learning, STDP

can be utilized for tuning reservoir to further boost the performance. But how the STDP rule

is designed to efficiently tune the reservoir under limited resolutions for realistic LSM learning

architectures remains to be an interesting research problem.

Another key limitation of the existing LSM works is that the dense connections with high reso-

lution between the reservoir and readout are typically required to ensure the good recognition per-

formance. However, the dense connectivity imposes huge network complexity and consequently

results in excessive overhead from a hardware point of view. This issue needs to be carefully ad-

dressed in order to improve the efficiency of the entire LSM-based architecture while maintain the

good classification performance.

In this dissertation, we present a comprehensive set of techniques to enable the energy efficient

and high performance spiking neuron networks from both architectural and learning perspectives.

First of all, to train deep feedforward SNNs, we propose a hybrid macro/micro level backpropa-

gation scheme, outperforming the existing best reported training algorithms for spiking neurons.

Then, we investigate the liquid state machines with recurrent reservoirs. To tune the recurrent

connections so as to boost recognition performance of the stand LSM model, we propose a novel
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probabilistic spike-timing dependent plasticity (STDP) based rule with stopping learning mecha-

nism. Moreover, a hardware-optimized STDP is proposed for efficient on-chip reservoir computing

with self-organization. To consistently improve the learning efficiency of reservoir and readout of

the LSMs, we present a unifying bio-inspired supervised STDP approach that achieves both spar-

sity and good performance. Finally, a performance and robustness study of the spiking liquid state

machine is conducted to explore the computation capability of recurrent reservoirs and show its

performance and low overhead benefit.

1.1 Hybrid Macro/Micro Backpropagation for Deep Spiking Neural Networks

With the great success of deep learning, it is natural to think if we can benefit from cascading

multiple feedforward layers of spike neurons as shown in Fig. 1.4. However, the most exist training

algorithms for SNNs are insufficient to train the deep SNNs. Therefore, SNNs are yet to achieve

the same performance level as conventional deep neuron networks (DNNs). The error backpropa-

gation, which has been successful in training DNNs, cannot be directly applied to SNNs due to the

two fundamental challenges: the complex dynamics and non-differentiable discrete spikes.

Input 
Layer Hidden 

Layers

Output 
Layers

Figure 1.4: A deep spiking neuron network with multiple cascaded hidden layers. The complex
temporal dynamics and discrete spike events are two main challenges for training deep SNNs.
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The training problem is formulated as follow. As a common practice in SNNs, the rate coding

is often adopted to define a loss for each training example at the output layer [25, 26]

E =
1

2
||o− y||22, (1.1)

where o and y are vectors specifying the actual and desired (label) firing counts of the output neu-

rons. Firing counts are determined by the underlying firing events, which are adjusted discretely

by tunable weights, resulting in great challenges in computing the gradient of the loss with respect

to the weights.

There exist approaches that stay away from the SNN training challenges by first training an

ANN and then approximately converting it to an SNN [27, 28, 29, 30]. [31] takes a similar

approach which treats spiking neurons almost like non-spiking ReLU units. The accuracy of those

methods may be severely compromised because of imprecise representation of timing statistics

of spike trains. Although the latest ANN-to-SNN conversion approach [32] shows promise, the

problem of direct training of SNNs remains unsolved.

The SpikeProp algorithm [33] is the first attempt to train an SNN by operating on discontinu-

ous spike activities. It specifically targets temporal learning for which derivatives of the loss w.r.t.

weights are explicitly derived. However, SpikeProp is very much limited to single-spike learning

with very small learning rate, and its successful applications to realistic benchmarks have not been

demonstrated. More recently, the backpropagation approaches of [25] and [26] have shown com-

petitive performances. Nevertheless, [25] lacks explicit consideration of temporal correlations of

neural activities. Furthermore, it does not handle discontinuities occurring at spiking moments by

treating them as noise while only computing the error gradient for the remaining smoothed mem-

brane voltage waveforms instead of the rate-coded loss. [26] addresses the first limitation of [25]

by performing BPTT [34] to capture temporal effects. However, similar to [25], the error gradi-

ent is computed for the continuous membrane voltage waveforms resulted from smoothing out all

spikes, leading to inconsistency w.r.t the rate-coded loss function. In summary, the existing SNNs
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BP algorithms have three major limitations: i) suffering from limited learning scalability [33], ii)

either staying away from spiking discontinuities (e.g. by treating spiking moments as noise [25])

or deriving the error gradient based on the smoothed membrane waveforms [25, 26], and therefore

iii) creating a mismatch between the computed gradient and targeted rate-coded loss [25, 26].

In the second chapter, we present a hybrid macro/micro level backpropagation (HM2-BP) algo-

rithm which perform error backpropagation across 1) firing rates (macro-level) and 2) spike trains

(micro-level). The temporal correlation of exact timings is captured by spike-train level post-

synaptic potential (S-PSP) defined at the micro-level. At the macro-level, the errors are defined

and back-propagated by aggregating the effects of discrete spike trains on each neuron’s firing

count via S-PSPs. A decoupled model of the S-PSP is proposed to detach the effects of firing rates

and spike timings to allow differentiation of the S-PSP at the micro-level. We evaluate the HM2-

BP by training deep SNNs on the static MNIST [35] and dynamic neuromorphic N-MNIST [36],

and show that our approach achieves an accuracy level of 99.49% and 98.88% for MNIST and

N-MNIST, respectively, surpassing the state-of-the-art results of the existing SNN BP algorithm.

1.2 Adaptive Liquid State Machine Architectures with Efficient Reservoir Tuning

There has been increasing interest in exploring reservoir computing, a biologically plausible

computation paradigm, to make use of the computational power of recurrent neural networks with-

out tuning complex recurrent connections [14]. The liquid state machine (LSM) is one specific

form of reservoir computing. Structurally, the LSM (shown in Fig. 1.5) is composed of a fixed

“reservoir”, a randomly connected recurrent spiking neural network, used as a generic filter through

which the LSM maps the input into a high-dimensional space of network dynamics. Typically, for

the sake of relaxing overall training difficulty, only the readout is trained to make the final classi-

fication decisions by processing the information coming from the reservoir. As such, the standard

LSM serves as a good trade-off between the tractable trainability and exploitation of computation

power.

Adapting the recurrent connections in the reservoir is in general very challenging because of

complex long-term dependencies in the dynamics [22]. In this regard, the typical LSM model is
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Figure 1.5: The reservoir of the standard LSM is fixed, only the synapses from the reservoir to the
readout are plastic and trained for conducting classification.

attractive as it exploits the computational power of the spiking recurrent reservoir without tuning it.

Although integrating a generic reservoir presents a simple solution to build general-purpose LSM

processors as presented in [17], many studies have argued that randomly generated fixed reservoirs

do not act as an effective filter for specific applications [20, 21].

While reservoir tuning has not been well studied in the literature, several attempts have shown

that the separation capability of the reservoir and hence learning performance may be boosted by

tuning the recurrent connections [21, 37, 38, 39, 40, 41, 42]. But the question of how to efficiently

tune the recurrent reservoir for improving the performance of real-world applications remains un-

clear. In [21], an iterative refinement approach is proposed to modify the recurrent synaptic con-

nections to boost the separation ability but no performance improvement for real-world tasks is

reported. A gene regulatory network (GRN) regulated reservoir is proposed in [42] and shown to

have self-organizing behaviors leading to improved performance. However, for both approaches,

the global neuronal activities need to be known for altering synaptic weights, which is inefficient

and costly to implement.

One can also introduce self-organizing behaviors managed through spike-timing dependent

8



plasticity (STDP), which was both experimentally discovered in biology [23] and theoretically

studied in computational neuroscience [24]. STDP explores the correlation between the firing

activities of a pair of presynaptic and postsynaptic neurons and tunes the synaptic weight locally

in an unsupervised manner. Therefore, compared to [21, 42], STDP is more suitable for efficient

online learning because of its simplicity and locality, as explored in [37, 38, 39, 40, 41, 43, 44] for

tuning reservoirs.

Here we explore efficient reservoir tuning in the context of hardware implementation where

synaptic weights are realized digitally with a finite resolution. From a biological point of view,

targeting discretized synaptic weights is reasonable because there is evidence that modification of

individual biological synaptic strength is done in an all-or-none (i.e. digital) instead of graded (i.e.

analog) manner [45, 46]. Furthermore, since we deal with realistic synapses, it is not possible to

reduce synaptic modifications to an arbitrarily small value [47].

Unfortunately, standard STDP rules conduct continuous weight updates and may trigger a

large number of small-valued weight updates throughout the reservoir, degrading the efficiency

of hardware-based realizations on FPGA or in ASIC. Furthermore, there exist important tradeoffs

between the range of weight tunability, the resolution of weights, performance and hardware cost.

High resolution and wide tunability range can lead to good learning performance at the cost of

high hardware overhead. Therefore, STDP rules must be carefully designed for cost-effective real-

ization of the desired self-organizing properties. As such, low-resolution synapses represented by

a small number of bits are strongly preferred.

Equally importantly, there is no prior STDP work that addresses the issue of synaptic weight

saturation for reservoir tuning. Without a specific stop-learning mechanism in place, continuous

on-going weight modifications may quickly saturate a synaptic weight, making it unresponsive to

future inputs. This situation of synaptic memory saturation is very likely to happen in hardware

because synapses have a limited number of states due to low resolution and narrow tuning range.

Therefore, from a memory retention point of view, suitable stop-learning conditions are desired

in order to prevent saturation such that synapses can learn from the new experience without being
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over-interfered by the past experience [47].

Meanwhile, several works investigate VLSI implementation of the conventional LSM model

with a fixed reservoir, which include FPGA based speech recognition [48], a VLSI architecture

incorporating a perceptron readout layer and the p-Delta learning algorithm [18], and a general-

purpose LSM architecture for processing multiple applications [17, 49]. On the other hand, it has

been argued that randomly generated fixed reservoirs may not act as an optimized filter for specific

applications [20, 21]. To our best knowledge, there is no prior work that explores reservoir tuning

in hardware based LSM architectures.

The goal of the third chapter is to enable efficient reservoir tuning for recurrent SNNs. First

of all, we propose a novel Activity-based probabilistic STDP (AP-STDP) with a stop-learning

scheme, achieving good learning performance boost under the limited synaptic resolution. Then

targeting at the realistic reservoir tuning based LSM in hardware, we present a hardware-optimized

STDP for self-adaptive LSM architectures with the reservoir sparsification to attain an energy

efficient neural processor. A variance-based simple readout sparsification approach is proposed to

further reduce the energy dissipation of the targeted LSM architecture.

1.3 Readout Training and Sparsification of Liquid State Machines

Training general spiking neural networks is a long-standing challenge. [33] proposes the Spike-

Prop algorithm that trains feed-forward SNNs by propagating error back in time. While being of

a theoretical interest, numerically computing the derivatives of the error function with respect to

synaptic weights in terms of spike times is extremely involved. SpikeProp-like algorithms are

far from being mature and have yet to be demonstrated for meaningful real-world applications.

As such, the liquid state machine offers a good tradeoff between training cost and computational

power. The standard LSM model has a fixed recurrent reservoir and deals with a much simpler

training problem: only the feed-forward synapses projecting from the reservoir to the readout

layer (referred to as readout synapses) need to be trained, which is referred to as readout training.

Instead of using numerical techniques that involve matrix factorization or backpropagation, the

recent work of [10] introduces a biologically-inspired spike-dependent readout training approach
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with the advantages being local and amenable to VLSI implementation. However, as illustrated in

Fig. 1.6, the key limitation of this approach is that good performance is typically guaranteed only

with high-resolution and full connectivity between the reservoir and readout, which contributes

significantly to the overall network complexity and is also costly from a hardware point of view.

Reservoir
 

Readout LayerInput Spkes

Reservoir Synapses (Fixed)

Readout Synapses (Plastic)

Full Connectivity &
High Resolution

Figure 1.6: The dense connectivity and high resolution are required to achieve good performance
for readout training.

The above challenges motivate us to seek an alternative for readout training. To this end, spike-

timing-dependent plasticity (STDP) [23, 24], a well-known unsupervised learning mechanism, is

able to locally tune spiking neural networks according to temporal spike correlations and produce

interesting self-organizing behaviors. Towards supervised learning which we target in this work,

ideas of combining supervision and STDP have been explored for precisely timed spike repro-

duction and decision making [11, 50, 51], however, without demonstrating success for real-world

tasks.
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For the first time, we target the following objectives under the context of the liquid state ma-

chine:

• Objective-1: develop supervised STDP mechanisms for readout training with improved

learning performance for real-life applications;

• Objective-2: develop supervised STDP based techniques for sparsifying readout synapses

so as to reduce network complexity and enable efficient hardware realization.

It is important to note that one challenge associated with Objective-1 and Objective-2 is that

they are competing objectives in the sense that sparsity in readout synapses can easily degrade

learning performance. In this work, both objectives are achieved under a unifying biologically

motivated calcium-modulated supervised STDP approach.

Towards the first objective, we propose a new calcium-modulated learning algorithm based

on supervised STDP, dubbed CaL-S2TDP, and demonstrate its improved performance for read-

out training. One important limitation of the earlier work on supervised STDP is that the issue

of synaptic weight saturation has not been addressed. Without a carefully-chosen stop-learning

mechanism, continuous on-going weight modifications may quickly saturate a synaptic weight,

overwhelming the synapse by the past experience and preventing it from responding to new stimuli

[47]. This can result in bad utilization of memory that is presented in the network and poor learn-

ing performance. The problem of weight saturation exacerbates on digital hardware where each

synaptic weight is realized using a limited number of bits and tuning range. Furthermore, stan-

dard STDP rules conduct continuous weight updates and may trigger many small-valued weight

updates, resulting in bad hardware memory access efficiency.

In CaL-S2TDP, supervision is realized by the combined use of a classification teacher (CT)

signal and a new depressive STDP rule. For a given input class, the CT promotes the firing activity

of targeted the readout neurons by injecting a positive current which serves as the supervision. It

also addresses the robustness limitation of standard STDP mechanisms by making it possible to

initiate the STDP-based temporal learning process regardless of initial weight values. Motivated
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by a large variety of STDP mechanisms discovered in the brain [52], we engine the depressive

STDP to provide supervision to readout neurons that are desired to have low firing activity for the

given input class.

To improve learning performance and address the challenge of weight saturation, we employ

probabilistic weight updates and a stop-learning mechanism. Stop learning is trigged by monitor-

ing the calcium concentration of the post-synaptic neuron, which is modeled by low-pass filtering

the post-synaptic spike train. Our calcium-modulated supervised STDP approach, for the first time,

combines STDP-based temporal learning with modulation provided by the averaged firing level.

Towards the second objective, we propose a new calcium-modulated sparsification algorithm

based on supervised STDP, dubbed CaS-S2TDP, for readout synapse sparsification and demon-

strate that it can produce a high-degree of sparsity without significant degradation of learning

performance. In the liquid state machine, readout synapses play a significant role in classifica-

tion decision making. A high-degree of connectivity, often full connectivity, between the reservoir

and readout layer must be realized with high-resolution synapses for good learning performance.

Consequently, the readout synapses contribute greatly to the overall network complexity, and also

to the silicon overhead and energy dissipation of hardware-based LSM processors. To date, the

question of how to simultaneously achieve good learning and sparsity in readout synapses remains

to be answered.

We achieve the two competing objectives by employing a two-step methodology: sparsificaiton

by CaS-S2TDP followed by readout training by CaL-S2TDP. Essentially, CaS-S2TDP exploits the

automatic competition among afferent synapses of each readout neuron mediated by a typical un-

supervised STDP mechanism [53] to produce a bimodal weight distribution with desired sparsity.

Under the framework of calcium-modulated supervised STDP, CaS-S2TDP adds a teacher signal,

called sparsity teacher, and a relaxed stop-learning rule, to robustly sparsify the readout synapses

while responding to the spatio-temporal structures of the presented training inputs. The sparsity

discovered by CaS-S2TDP is carried over to the second full-blown training phase based on CaL-

S2TDP.
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The unified calcium-modulated supervised STDP approach for readout learning and sparsifi-

cation is described in the fourth chapter.

1.4 Performance and Robustness Study of Liquid State Machines

Compared to traditional perceptrons, SNNs possess increased computational power [3] and are

biologically more plausible because they model the communication of the temporal information

among biological neurons. Recent years have witnessed an increased interest in the theoretical

studies of SNNs including bio-inspired learning algorithms [54, 55, 56, 57, 58, 11] and network

structure [59, 60]. Works targeting practical implementation of SNNs in hardware systems have

also emerged [48, 61, 62, 63]. Furthermore, bio-inspired spiking neural networks are shown to

have inherent error resilience and fault tolerance [64], a very appealing characteristic for VLSI

implementation in highly scaled modern CMOS technologies, for which device reliability and

process variability are grand challenges.

Inspired by micro-circuits in the cortex, the liquid state machine (LSM), has been demon-

strated to provide powerful computational capability for many applications [15, 54, 65, 66]. The

LSM consists of a reservoir, a recurrent spiking neural network with fixed but randomly chosen

connections introduced to preprocess the external input signals, and a group of readout neurons

performing classification by further processing and extracting relevant features of the input pat-

terns from the reservoir. With recurrent connections in the reservoir, the LSM can map the input

into a high-dimensional space by producing complex nonlinear dynamics in the reservoir, which

makes the subsequent classification easier. The decaying dynamic responses of the input signals

in the reservoir serve as a transient memory by which critical information about the inputs is cap-

tured. As a result, the LSM is especially competitive for dealing with temporal input patterns such

as speech signals [15, 67].

However, the most existing works of LSMs either focus only on high-level computational prin-

ciples [21, 60] without a real-world application background or on an application level without much

theoretical analysis [15, 48]. [18] studied the design and VLSI implementation of the readout stage

for LSMs based on perceptrons and the p-Delta learning algorithm, which were less biologically
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inspired and only applied to simple two-class recognition and rate-sum retrieval problems. Most

importantly, little has been investigated for VLSI hardware implementation of LSMs while consid-

ering the optimization and tradeoffs involving learning performance, hardware overhead, and error

resilience when using real-world challenging applications to benchmark.

In the fifth chapter of this dissertation, we present a systematic study of performance and

robustness issues of LSMs, targeting specially at speech recognition and digital VLSI implemen-

tation. A structured design space exploration is performed to show that a favor trade-off can be

obtained between the design complexity and recognition performance. By modelling various hard-

ware manufacturing and noise from the behavioral level, we demonstrate that the LSM is relatively

robust to the studied failures and errors.

1.5 Organization of Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, we proposed the hybrid

macro/micro level backpropagation (HM2-BP) algorithm for training deep spiking neuron net-

works. In Chapter 3, we present the Activity-based Probabilistic STDP (AP-STDP) for efficient

recurrent reservoir tuning and a hardware-optimized STDP for self-organizing LSM architec-

ture. The unifying calcium-modulated supervised STDP for readout learning and sparsification

is demonstrated in Chapter 4. To supplement our architectural exploration, Chapter 5 provides the

performance and robustness study of LSMs where a large design space is systematically explored

and the robustness issue is studied by modeling process variations and noise from the behavior

level. Chapter 6 concludes this dissertation and provides the discussions of potential future work.
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2. HYBRID MACRO/MICRO BACKPROPAGATION FOR TRAINING DEEP SPIKING

NEURAL NETWORKS

In spite of recent success in deep neural networks (DNNs) [68, 69, 70], it is believed that

biological brains operate rather differently. Compared with DNNs that lack processing of spike

timing and event-driven operations, biologically realistic spiking neural networks (SNNs) [2, 3]

provide a promising paradigm for exploiting spatio-temporal patterns for added computing power,

and enable ultra-low power event-driven neuromorphic hardware [7, 9, 28]. There are theoretical

evidences supporting that SNNs possess greater computational power over traditional artificial

neural networks (ANNs) [3]. SNNs are yet to achieve a performance level on a par with deep

ANNs for practical applications. The error backpropagation [13] is very successful in training

ANNs. Attaining the same success of backpropagation (BP) for feedforward SNNs is challenged

by two fundamental issues: complex temporal dynamics and non-differentiability of discrete spike

events.

Here, we formulate the problem as follow. As a common practice in SNNs, the rate coding is

often adopted to define a loss for each training example at the output layer [25, 26]

E =
1

2
||o− y||22, (2.1)

where o and y are vectors specifying the actual and desired (label) firing counts of the output neu-

rons. Firing counts are determined by the underlying firing events, which are adjusted discretely

by tunable weights, resulting in great challenges in computing the gradient of the loss with respect

to the weights.

Several attempts have been made to train the SNN using error backpropagation (BP) that di-

rectly operates on discontinuous spike events [33, 25, 26]. But the existing BP algorithms have

three major limitations: i) limited learning scalability [33], ii) either circumvent the issue of han-

dling spiking discontinuities [25] or deriving the gradient based on the smoothed membrane voltage
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waveforms [25, 26] and hence iii) generating a mismatch between the computed gradient and the

targeted rate-coded loss function [25, 26].

We derive the gradient of the rate-coded error defined in (1.1) by decomposing each derivative

into two components
∂E

∂wij

=
∂E

∂ai︸︷︷︸
bp over firing rates

× ∂ai
∂wij︸ ︷︷ ︸

bp over spike trains

,
(2.2)

where ai is the (weighted) aggregated membrane potential for the post-synaptic neuron i per
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Figure 2.1: Hybrid macro-micro level backpropagation.

(2.11). As such, we propose a novel hybrid macro-micro level backpropagation (HM2-BP) al-

gorithm which performs error backpropagation across two levels: 1) backpropagation over firing

rates (macro-level), 2) backpropagation over spike trains (micro-level), and 3) backpropagation

based on interactions between the two levels, as illustrated in Fig. 2.1.
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At the microscopic level, for each pre/post-synaptic spike train pair, we precisely compute

the spike-train level post-synaptic potential, referred to as S-PSP throughout this dissertation, to

account for the temporal contribution of the given pre-synaptic spike train to the firings of the

post-synaptic neuron based on exact spike times. At the macroscopic level, we back-propagate

the errors of the defined rate-based loss by aggregating the effects of spike trains on each neuron’s

firing count via the use of S-PSPs, and leverage this as a practical way of linking spiking events

to firing rates. To assist backpropagation, we further propose a decoupled model of the S-PSP for

disentangling the effects of firing rates and spike-train timings to allow differentiation of the S-PSP

w.r.t. pre and post-synaptic firing rates at the micro-level. As a result, our HM2-BP approach is

able to evaluate the direct impact of weight changes on the rate-coded loss function. Moreover,

the resulting weight updates in each training iteration can lead to introduction or disappearance of

multiple spikes.

We evaluate the proposed BP algorithm by training deep fully connected and convolutional

SNNs based on both the static MNIST [35] and dynamic neuromorphic N-MNIST [36] datasets.

Our BP algorithm achieves an accuracy level of 99.49% and 98.88% for MNIST and N-MNIST,

respectively, outperforming the best reported performances obtained from the existing SNN BP

algorithms.

2.1 Hybrid Macro-Micro Backpropagation

The complex dynamics generated by spiking neurons and non-differentiable spike impulses are

two fundamental bottlenecks for training SNNs using backpropagation. We address these difficul-

ties at both macro and micro levels.

2.1.1 Micro-level Computation of Spiking Temporal Effects

The leaky integrate-and-fire (LIF) model is one of the most prevalent choices for describing

dynamics of spiking neurons, where the neuronal membrane voltage ui(t) at time t for the neuron

i is given by

τm
ui(t)

dt
= −ui(t) +R Ii(t), (2.3)
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where Ii(t) is the input current, R the effective leaky resistance, C the effective membrane capac-

itance, and τm = RC the membrane time constant. A spike is generated when ui(t) reaches the

threshold ν. After that ui(t) is reset to the resting potential ur, which equals to 0 in this work. Each

post-synaptic neuron i is driven by a post-synaptic current of the following general form

Ii(t) =
∑
j

wij

∑
f

α(t− t
(f)
j ), (2.4)

where wij is the weight of the synapse from the pre-synaptic neuron j to the neuron i, t(f)j denotes

a particular firing time of the neuron j. We adopt a first order synaptic model with time constant τs

α(t) =
q

τs
exp

(
− t

τs

)
H(t), (2.5)

where H(t) is the Heaviside step function, and q the total charge injected into the post-synaptic

neuron i through a synapse of a weight of 1. Let t̂i denote the last firing time of the neuron i w.r.t

time t: t̂i = t̂i(t) = max{ti|t(f)i < t}. Plugging (2.4) into (2.3) and integrating (2.3) with u(t̂i) = 0

as its initial condition, we map the LIF model to the Spike Response Model (SRM) [71]

ui(t) =
∑
j

wij

∑
f

ϵ
(
t− t̂i, t− t

(f)
j

)
, (2.6)

with

ϵ(s, t) =
1

C

∫ s

0

exp

(
− t′

τm

)
α (t− t′) dt′. (2.7)

Since q and C can be absorbed into the synaptic weights, we set q = C = 1. Integrating (2.7)

yields

ϵ(s, t) =
exp(−max(t− s, 0)/τs)

1− τs
τm

[
exp

(
−min(s, t)

τm

)
− exp

(
−min(s, t)

τs

)]
H(s)H(t).

(2.8)

ϵ is interpreted as the normalized (by synaptic weight) post-synaptic potential, which is evoked by

a single firing spike of the pre-synaptic neuron j.
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Figure 2.2: The computation of the S-PSP.

For any time t, the exact "contribution" of the neuron j’s spike train to the neuron i’s post-

synaptic potential is given by summing (2.8) over all pre-synaptic spike times t(f)j , t(f)j < t. We par-

ticularly concern the contribution right before each post-synaptic firing time t(f)i when ui(t
(f)
i ) = ν,

which we denote by ei|j(t
(f)
i ). Summing ei|j(t

(f)
i ) over all post-synaptic firing times as well as the

end of spike sequence time gives the total contribution of the neuron j’s spike-train to the firing

activities of the neuron i as shown in Fig. 2.2

ei|j =
∑
t
(f)
i

∑
t
(f)
j

ϵ(t
(f)
i − t̂

(f)
i , t

(f)
i − t

(f)
j ), (2.9)

where t̂
(f)
i = t̂

(f)
i (t

(f)
i ) denotes the last post-synaptic firing time before t

(f)
i .

Importantly, we refer to ei|j as the (normalized) spike-train level post-synaptic potential (S-

PSP). As its name suggests, S-PSP characterizes the aggregated influence of the pre-synaptic neu-

ron on the post-synaptic neuron’s firings at the level of spike trains, providing a basis for relating

firing counts to spike events and enabling scalable SNN training that adjusts spike trains rather

than single spikes. Clearly, each S-PSP ei|j depends on both rate and temporal information of the

pre/post spike trains. To assist the derivation of our BP algorithm, we make the dependency of ei|j

on the pre/post-synaptic firing counts oi and oj explicit although oi and oj are already embedded
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in the spike trains

ei|j = f(oj, oi, t
(f)
j , t

(f)
i ), (2.10)

where t(f)j and t
(f)
i represent the pre and post-synaptic timings, respectively. Summing the weighted

S-PSPs from all pre-synaptic neurons results in the total post-synaptic potential (T-PSP) ai, which

is directly correlated to the neuron i’s firing count

ai =
∑
j

wij ei|j. (2.11)

2.1.2 Error Backpropagation at Macro and Micro Levels

It is evident that the total post-synaptic potential ai must be no less than the threshold ν in order

to make the neuron i fire at least once, and the total firing count is
⌊
ai
ν

⌋
. We relate the firing count

oi of the neuron i to ai approximately by

oi = g(ai) =
⌊ai
ν

⌋
=

⌊∑
j wij ei|j

ν

⌋
≈
∑

j wij ei|j

ν
, (2.12)

where the rounding error would be insignificant when ν is small. Despite that (2.12) is linear in S-

PSPs, it is the interaction between the S-PSPs through nonlinearities hidden in the micro-level LIF

model that leads to a given firing count oi. Missing from the existing works [25, 26], (2.12) serves

as an important bridge connecting the aggregated micro-level temporal effects with the macro-

level count of discrete firing events. In a vague sense, ai and oi are analogies to pre-activation and

activation in the traditional ANNs, respectively, although they are not directly comparable. (2.12)

allows for rate-coded error backpropagation on top of discrete spikes across the macro and micro

levels.

Using (2.12), the macro-level rate-coded loss of (1.1) is rewritten as

E =
1

2
||o− y||22 =

1

2
||g(a)− y||22, (2.13)
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where y, o and a are vectors specifying the desired firing counts (label vector), the actual firing

counts, and the weighted sums of S-PSP of the output neurons, respectively. We now derive the

gradient of E w.r.t wij at each layer of an SNN.

For the ith neuron in the output layer m, we have

Macro-level (Rate) 

Micro-level (Temporal) 

𝑜𝑗
𝑚−1 𝑎𝑖

𝑚 

𝑗 
𝑖 

𝑜𝑖
𝑚 𝑤𝑖𝑗

𝑚 

𝑒𝑖|𝑗
𝑚  

𝒕𝑗
(𝑓)

 
𝒕𝑖
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𝐸𝑟𝑟𝑜𝑟 

Figure 2.3: Macro/micro backpropagation in the output layer.

∂E

∂wij

=
∂E

∂ami︸︷︷︸
macro-level bp

× ∂ami
∂wij︸ ︷︷ ︸

micro-level bp

,
(2.14)

where variables associated with neurons in the layer m have m as the superscript. As shown in

Fig. 2.3, the first term of (2.14) represents the macro-level backpropagation of the rate-coded error

with the second term being the micro-level error backpropagation. From (2.13), the macro-level

error backpropagation is given by

δmi =
∂E

∂ami
= (omi − ymi ) g

′(ami ) =
omi − ymi

ν
. (2.15)

Similar to the conventional backpropagation, we use δmi to denote the back propagated error. Ac-
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cording to (2.11) and (2.10), ami can be unwrapped as

ami =
rm−1∑
j=1

wij e
m
i|j =

rm−1∑
j=1

wij f(o
m−1
j , omi , t

(f)
j , t

(f)
i ), (2.16)

where rm−1 is the number of neurons in the (m − 1)th layer. Differentiating (2.16) and making

use of (2.12) leads to the micro-level error propagation based on the total post-synaptic potential

(T-PSP) ami

∂ami
∂wij

=
∂

∂wij

(
rm−1∑
j=1

wij e
m
i|j

)
= emi|j +

rm−1∑
l=1

wil

∂emi|l
∂omi

∂omi
∂wij

= emi|j +
emi|j
ν

rm−1∑
l=1

wil

∂emi|l
∂omi

. (2.17)

Although the network is feed-forward, there are non-linear interactions between S-PSPs. The

second term of (2.17) captures the hidden dependency of the S-PSPs on the post-synaptic firing

count omi .

For the ith neuron in the hidden layer k, we have

∂E

∂wij

=
∂E

∂aki︸︷︷︸
macro-level bp

× ∂aki
∂wij︸ ︷︷ ︸

micro-level bp

= δki
∂aki
∂wij

. (2.18)

The macro-level error backpropagation at a hidden layer is much more involved as in Fig. 2.4

δki =
∂E

∂aki
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

rk+1∑
l=1

δk+1
l

∂ak+1
l

∂aki
. (2.19)

According to (2.11) , (2.10) and (2.12), we unwrap ak+1
l and get

ak+1
l =

rk∑
p=1

wlp e
k+1
l|p =

rk∑
p=1

wlp f(o
k
p, o

k+1
l , t(f)p , t

(f)
l ) =

rk∑
p=1

wlp f(g(a
k
p), o

k+1
l , t(f)p , t

(f)
l ). (2.20)
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Figure 2.4: Macro-level backpropagation at a hidden layer.

Therefore, ∂ak+1
l

∂aki
becomes

∂ak+1
l

∂aki
= wli

∂ek+1
l|i

∂oki

∂oki
∂aki

= wli

∂ek+1
l|i

∂oki
g′(aki ) =

wli

ν

∂ek+1
l|i

∂oki
, (2.21)

where the dependency of ek+1
l|i on the pre-synaptic firing count oki is considered but the one on the

firing timings are ignored, which is supported by the decoupled S-PSP model in (2.25). Plugging

(2.21) into (2.19), we have

δki =
1

ν

rk+1∑
l=1

δk+1
l wli

∂ek+1
l|i

∂oki
. (2.22)

The micro-stage backpropagation at hidden layers is identical to that at the output layer, i.e.

(2.17). Finally, we obtain the derivative of E with respect to wij as follows

∂E

∂wij

= δki e
k
i|j

1 +
1

ν

rk−1∑
l=1

wil

∂eki|l

∂oki

 , (2.23)

where

δki =


omi −ymi

ν
for output layer,

1
ν

∑rk+1

l=1 δk+1
l wli

∂ek+1
l|i

∂oki
for hidden layers.

(2.24)
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Unlike [25, 26], here decomposing the rate-coded error backpropagation into the macro and

micro levels enables computation of the gradient of the actual loss function with respect to the

tunable weights, leading to highly competitive performances. Our HM2-BP algorithm can intro-

duce/remove multiple spikes by one update, greatly improving learning efficiency in comparison

with SpikeProp [33]. To complete the derivation of HM2-BP, derivatives in the forms of
∂ek

i|j
∂oki

and
ek
i|j

∂okj
as needed in (2.17) and (2.22) are yet to be estimated, which is non-trivial as shall be presented

in Section 2.1.3.

2.1.3 Decoupled Micro-Level Model for S-PSP

The derivatives of the S-PSP eki|j with respect to the pre and post-synaptic neuron firing counts

are key components in our HM2-BP rule. According to (2.9), the S-PSP eki|j is dependent on both

rate and temporal information of the pre and post-synaptic spikes. The firing counts of pre and post-

synaptic neurons (i.e., the rate information) are represented by the two nested summations in (2.9).

The exact firing timing information determines the (normalized) post-synaptic potential ϵ of each

pre/post-synaptic spike train pair as seen from (2.8). The rate and temporal information of spike

trains are strongly coupled together, making the exact computation of
∂ek

i|j
∂oki

and
ek
i|j

∂okj
challenging.

To address this difficulty, we propose a decoupled model for eki|j to untangle the rate and tem-

poral effects. The model is motivated by the observation that eki|j is linear in both okj and oki in

the limit of high firing counts. For finite firing rates, we decompose eki|j into an asymptotic rate-

dependent effect using the product of okj and oki and a correction factor α̂ accounting for temporal

correlations between the pre and post-synaptic spike trains

eki|j = α̂(t
(f)
j , t

(f)
i )okj o

k
i . (2.25)

α̂ is a function of exact spike timing. Since the SNN is trained incrementally with small weight

updates set by a well-controlled learning rate, α̂ does not change substantially by one training

iteration. Therefore, we approximate α̂ by using the values of eki|j , o
k
j , and oki available before the
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next training update by

α̂(t
(f)
j , t

(f)
i ) ≈

eki|j

okj o
k
i

.

With the micro-level temporal effect considered by α̂, we estimate the two derivatives by

∂eki|j

∂oki
≈ α̂ okj =

eki|j

oki
,

∂eki|j

∂okj
≈ α̂ oki =

eki|j

okj
.

Our hybrid training method follows the typical backpropagation methodology. First of all, a

forward pass is performed by analytically simulating the LIF model (2.3) layer by layer. Then the

firing counts of the output layer are compared with the desirable firing levels to compute the macro-

level error. After that, the error in the output layer is propagated backwards at both the macro and

micro levels to determine the gradient. Finally, an optimization method (e.g. Adam [72]) is used

to update the network parameters given the computed gradient.

2.2 Experiments and Results

2.2.1 Experimental Settings and Datasets

The weights of the experimented SNNs are randomly initialized by using the uniform distribu-

tion U [−a, a], where a is 1 for fully connected layers and 0.5 for convolutional layers. We use fixed

firing thresholds in the range of 5 to 20 depending on the layer. We adopt the exponential weight

regularization scheme in [25] and introduce the lateral inhibition in the output layer to speed up

training convergence [25], which slightly modifies the gradient computation for the output layer

(see Appendix A). We use Adam [72] as the optimizer and its parameters are set according to the

original Adam paper. We impose greater sample weights for incorrectly recognized data points

during the training as a supplement to the Adam optimizer.

The MNIST handwritten digit dataset [35] consists of 60k samples for training and 10k for

testing, each of which is a 28 × 28 grayscale image. We convert each pixel value of a MNIST

image into a spike train using Poisson sampling based on which the probability of spike generation

is proportional to the pixel intensity. The N-MNIST dataset [36] is a neuromorphic version of the
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MNIST dataset generated by tilting a Dynamic Version Sensor (DVS) [73] in front of static digit

images on a computer monitor. The movement induced pixel intensity changes at each location are

encoded as spike trains. Since the intensity can either increase or decrease, two kinds of ON- and

OFF-events spike events are recorded. Due to the relative shifts of each image, an image size of

34× 34 is produced. Each sample of the N-MNIST is a spatio-temporal pattern with 34× 34× 2

spike sequences lasting for 300ms. We reduce the time resolution of the N-MNIST samples by

600x to speed up simulation.

2.2.2 Fully Connected SNNs for the Static MNIST
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Figure 2.5: The spike raster plot of the output layer for the inference on digit 7 before and after the
training.

Using Poisson sampling, we encode each 28 × 28 image of the MNIST dataset into a 2D

784 × L binary matrix, where L = 400ms is the duration of each spike sequence, and a 1 in the

matrix represents a spike. The simulation time step is set to be 1ms. No pre-processing or data

augmentation is done in our experiments. Fig. 2.5 shows the output layer spike patterns of the
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inference on the digit 7 before and after training a 784 − 800 − 10 network. No specific firing

patterns can be found initially, but after training the corresponding 7th neuron fires most actively

while other neurons remain silent, suggesting the correct classification.

Table 2.1 compares the performance of SNNs trained by the proposed HM2-BP rule with other

algorithms. HM2-BP achieves 98.93% test accuracy, outperforming STBP [26], which is the best

previously reported algorithm for fully-connected SNNs. The proposed rule also achieves the best

accuracy earlier than STBP (100 epochs v.s. 200 epochs). We attribute the overall improvement

to the hybrid macro-micro processing that handles the temporal effects and discontinuities at two

levels in a way such that explicit back-propagation of the rate-coded error becomes possible and

practical. Notice that our SNN also performs better than the ANNs trained with Dropout or Drop-

connect [74, 75].

Table 2.1: Comparison of different SNN models on MNIST

Model Hidden layers structure Accuracy Epochs

Standard ANN [76] 800-800 98.4% >100
Dropout ANN [74] 1024-1024-1024 98.75% -
Drop-connect ANN [75] 800-800 98.88% 1020

Spiking MLP (converted*) [30] 500-500 94.09% 50
Spiking MLP (converted*) [29] 500-200 98.37% 160
Spiking MLP (converted*) [27] 1200-1200 98.64% 50
Spiking MLP [31] 300-300 97.80% 50
Spiking MLP [25] 800 98.71%a 200
Spiking MLP (STBP) [26] 800 98.89% 200
Spiking MLP (this work) 800 98.93%/98.81% 100/50

We only compare SNNs without any pre-processing (i.e., data augmentation) except for [30].
* means the model is converted from an ANN. a [25] achieves 98.88% with hidden layers of 300-300.

2.2.3 Fully Connected SNNs for N-MNIST

The simulation time step is 0.55ms for N-MNIST. Table 2.2 compares the results obtained by

different models on N-MNIST. The first two results are obtained by the conventional CNNs with
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the frame-based method, which accumulates spike events over short time intervals as snapshots and

recognizes digits based on sequences of snapshot images. The relative poor performances of the

first two models may be attributed to the fact that the frame-based representations tend to be blurry

and do not fully exploit spatio-temporal patterns of the input. The two non-spiking LSTM models,

which are trained directly on spike inputs, do not perform too well, suggesting that LSTMs may

be incapable of dealing with asynchronous and sparse spatio-temporal spikes. The SNN trained by

our proposed approach naturally processes spatio-temporal spike patterns, achieving the start-of-

the-art accuracy of 98.88%, outperforming the previous best ANN (97.38%) and SNN (98.78%)

with significantly less training epochs required.

Table 2.2: Comparison of different models on N-MNIST

Model Hidden layers structure Accuracy Epochs

Non-spiking CNN [77] - 95.30% -
Non-spiking CNN [78] - 98.30% 15-20
Non-spiking LSTM [77] - 97.05% -
Non-spiking Phased-LSTM [77] - 97.38% -

Spiking CNN (converted*) [78] - 95.72% 15-20
Spiking MLP [79] 10000 92.87% -
Spiking MLP [25] 800 98.74% 200
Spiking MLP (STBP) [26] 800 98.78% 200
Spiking MLP (this work) 800 98.88%/98.77% 60/15

Only structures of SNNs are shown for clarity.* means the SNN model is converted from an ANN.

2.2.4 Spiking Convolution Network for the Static MNIST

We construct a spiking CNN consisting of two 5 × 5 convolutional layers with a stride of 1,

each followed by a 2 × 2 pooling layer, and one fully connected hidden layer. The neurons in the

pooling layer are simply LIF neurons, each of which connects to 2 × 2 neurons in the preceding

convolutional layer with a fixed weight of 0.25. Similar to [25, 26], we use elastic distortion [76] for

data augmentation. As shown in Table 2.3, our proposed method achieves an accuracy of 99.49%,
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surpassing the best previously reported performance [26] with the same model complexity after

190 epochs.

Table 2.3: Comparison of different spiking CNNs on MNIST

Model Network structure Accuracy

Spiking CNN (converteda) [27] 28× 28-12C5-P2-64C5-P2-10 99.12%
Spiking CNN (convertedb) [28] - 92.70%c

Spiking CNN (converteda) [32] - 99.44%

Spiking CNN [25] 28× 28-20C5-P2-50C5-P2-200-10 99.31%
Spiking CNN (STBP) [26] 28× 28-15C5-P2-40C5-P2-300-10 99.42%
Spiking CNN (this work) 28× 28-15C5-P2-40C5-P2-300-10 99.49%

a converted from a trained ANN. b converted from a trained probabilistic model with binary weights.
c performance of a single spiking CNN. 99.42% obtained for ensemble learning of 64 spiking CNNs.

2.2.5 Training Complexity Comparison and Implementation

Unlike [26], our hybrid method does not unwrap the gradient computation in the time domain,

roughly making it O(NT ) times more efficient than [26], where NT is the number of time points in

each input example. The proposed method can be easily implemented.

2.3 Summary and Discussions

In this chapter, we present a novel hybrid macro/micro level error backpropagation scheme to

train deep SNNs directly based on spiking activities. The spiking timings are exactly captured

in the spike-train level post-synaptic potentials (S-PSP) at the microscopic level. The rate-coded

error is defined and efficiently computed and back-propagated across both the macroscopic and

microscopic levels. We further propose a decoupled S-PSP model to assist gradient computation

at the micro-level. In contrast to the previous methods, our hybrid approach directly computes the

gradient of the rate-coded loss function with respect to tunable parameters. We demonstrate the

best performances for both fully connected and convolutional SNNs over the static MNIST and

dynamic N-MNIST datasets, outperforming the best previously reported SNN training techniques.
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Furthermore, the proposed approach also achieves competitive performances better than those of

the conventional deep learning models when dealing with asynchronous spiking streams.

The performances achieved by the proposed BP method may be attributed to the fact that it

addresses key challenges of SNN training in terms of scalability, handling of temporal effects, and

gradient computation of loss functions with inherent discontinuities. Coping with these difficulties

through error backpropagation at both the macro and micro levels provides a unique perspective

to training of SNNs. More specifically, orchestrating the information flow based on a combination

of temporal effects and firing rate behaviors across the two levels in an interactive manner allows

for the definition of the rate-coded loss function at the macro level, and backpropagation of errors

from the macro level to the micro level, and back to the macro level. This paradigm provides a

practical solution to the difficulties brought by discontinuities inherent in an SNN while capturing

the micro-level timing information via S-PSP. As such, both rate and temporal information in the

SNN is exploited during the training process, leading to the state-of-the-art performances. We

expect this work would help move the community forward towards enabling high-performance

spiking neural networks and neuromorphic computing.
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3. ADAPTIVE LIQUID STATE MACHINE ARCHITECTURES WITH EFFICIENT

RESERVOIR TUNING∗

3.1 Activity-based Probabilistic STDP (AP-STDP) for Efficient Reservoir Computing

While the standard LSM serves as a good trade-off between the tractable training of recurrent

SNNs and exploiting the computation power. The randomly fixed recurrent reservoir that gener-

ated in a generic way may not be efficacious for specific applications. In spite that the spike-timing

dependent plasticity (STDP) is a promising unsupervised algorithm for tuning reservoirs, the on-

going small-valued updates and high-resolution realization of the STDP rule inevitably demands

high overhead when it comes to hardware implementation. Furthermore, the synaptic weight sat-

uration is a serious issue in learning. Without a specific stop-learning mechanism, the continuous

weight modifications can quickly saturate a synapse and prevent it from learning the new experi-

ence. Therefore, the STDP rule must be carefully designed for cost-effectiveness and addressing

synaptic saturation issue.

To address the above challenges, this work proposes a novel activity-based probabilistic STDP

(AP-STDP) rule to tune plastic reservoirs. The proposed rule achieves good learning performance

with low synaptic weight resolutions by incorporating a probabilistic weight update process. Fur-

thermore, AP-STDP prevents memory saturation by introducing activity-level based weight tuning

with a stop-learning condition. By performing principal component analysis of the reservoir dy-

namics, we demonstrate that AP-STDP gives rise to more effective internal representations of

input samples compared to other simpler STDP rules. We use the spoken English letters from the

widely adopted TI46 Speech Corpus [80] as a real-world speech recognition benchmark to test the

performance of liquid state machines tuned with AP-STDP. It is demonstrated that the proposed

∗ c⃝2016 IEEE. Reprinted, with permission, from Yingyezhe Jin and Peng Li, "AP-STDP: A novel self-organizing
mechanism for efficient reservoir computing", Proceedings of the 2016 International Joint Conference on Neural
Networks (IJCNN). IEEE, July 2016. c⃝2016 IEEE. Reprinted, with permission, from Yingyezhe Jin, Yu Liu and
Peng Li, "SSO-LSM: A Sparse and Self-Organizing architecture for Liquid State Machine based neural processors",
Proceedings of the 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, July
2016.
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AP-STDP outperforms other conventional STDP rules and can produce a performance that is better

than some of the best reported recognition performances obtained using fixed reservoirs [10].

The rest of the section is organized as follows. Section 3.1.1 provides a brief description of

the background and motivations of this work. Section 3.1.2 presents our proposed AP-STDP rule.

In Section 3.1.3, the PCA analysis of reservoir dynamics is introduced. The network settings and

benchmark are described in Section 3.1.4. The experimental results are reported in Section 3.1.5.

Finally, Section 3.1.6 concludes this work.

3.1.1 Standard STDP Rules

We briefly discuss the standard STDP rules and their limitations pertaining to self-organizing

reservoirs.

STDP is a local unsupervised Hebbian learning mechanism realizing synaptic plasticity based

on the respective firing timing orders of the presynaptic and postsynaptic neurons. The synapse

wij from neuron j to neuron i is potentiated if a causal order (i.e., pre fires before post) is ob-

served, or depressed if the postsynaptic neuron fires before the presynaptic neuron. The change in

weight depends on the temporal difference ∆t = tpost − tpre between the specific pair of pre- and

postsynaptic spikes:

∆w+ = F+(w) · e
− |∆t|

τ+ if ∆t > 0

∆w− = F−(w) · e
− |∆t|

τ− if ∆t < 0, (3.1)

where ∆w+ and ∆w− represent the weight modification induced by long-term potentiation (LTP)

and long-term depression (LTD), and F±(w) describes the dependency of the update on the current

weight value. If F±(w) = A± is fixed, it is called an additive STDP rule. If F± is proportional

to the current weight w, it is called a multiplicative STDP rule. Additive STDP rules are usually

applied to the reservoir because they have been shown to generate good self-organizing behav-

iors [81].

A typical additive STDP curve is plotted in Fig 3.1(a). And there are generally two pairing
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rules for the implementation of STDP: all-pairing and nearest-neighbor (shown in Fig. 3.1(b)). In

the first scheme, synaptic updates are triggered by all possible pre-post spike pairs before and at

the current time t. In nearest-neighbor pairing, instead, at each firing time, a pre-synaptic (post-

synaptic) spike is only paired with the closed preceding post-synaptic (pre-synaptic) spike. As a

common practice, excitatory synapses in the reservoir are usually assumed to be plastic and are

tuned with STDP while inhibitory synapses are fixed.
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Figure 3.1: (a) A typical additive STDP curve. (b) Two pairing schemes. Reprinted with permis-
sion from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

No matter which pairing rule is adopted, realizing (3.1) can produce weight updates that are
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arbitrarily small as the temporal difference ∆t increases. The fact that a high synaptic resolution is

needed to accommodate small updates and the number of such updates can be very large leading

to a high level of inefficiency. On the other hand, simply reducing hardware overhead by adopting

a low resolution can lead to learning performance degradations. Another disadvantage of this

standard STDP rule is that persistent firing activities can eventually saturate the storage capacity

of a given synapse and push the weight to the upper/lower limit, preventing the reservoir from

adapting to subsequent input samples and degrading learning performance.

3.1.2 The Activity-based Probabilistic STDP

We first propose a simple probabilistic STDP rule for reservoir computing targeting low synap-

tic weight resolutions. Using the probabilistic rule as a starting point, we further propose an

Activity-based Probabilistic STDP (AP-STDP) rule incorporating a stop-learning condition based

upon the postsynaptic neural firing activity level. AD-STDP addresses both the resolution and

memory saturation challenges discussed in Section 3.1.1.

The Probabilistic STDP

Inspired by two stochastic learning rules developed under contexts different from reservoir

computing [82, 83], we propose a simple probabilistic STDP rule for reservoir tuning. The pro-

posed probabilistic rule first computes the weight change ∆w+/∆w− according to (3.1). Instead

of directly applying the weight change, the rule probabilistically commits a fixed amount of weight

update with a probability that is proportional to the magnitude of ∆w+/∆w−:

w ← w +∆W with p ∝ |∆w+| if ∆t > 0

w ← w −∆W with p ∝ |∆w−| if ∆t < 0, (3.2)

where ∆W is the fixed weight update, representing the resolution of synaptic weights, i.e., a large

∆W leads to a low resolution and a lower hardware overhead. Furthermore, since the total number

of weight updates is limited by the probabilities, the update process of this rule is much more
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efficient than that of the standard STDP. It is worthwhile mentioning that the probabilistic update

of synaptic weights can be easily realized in hardware by using efficient random number generator

(RNG) primitives.

In terms of performance, it has been argued that continuously fast weight updates of synapses

with a limited number of states (e.g. due to a low synaptic resolution) can result in bad memory

performance. This manifests itself in such a way that the most recent experiences are represented

and learned by the synapses better than the older ones [84, 85]. The proposed probabilistic STDP

addresses the above problem by slowing down the learning procedure and helping maximally uti-

lize the synaptic storage capacity [47]. As a result, it more evenly distributes the memory across

the network so as to well represent both the new and old experiences and allow for retrieval them

at a later time. However, the issue of synaptic memory saturation remains unresolved.

The Activity-based Probabilistic STDP

Although the probabilistic STDP rule helps to slow down the learning for better memory per-

formance, it has no stop-learning condition imposed to tackle the issue of synaptic memory sat-

uration. In the unsupervised learning process of STDP rules, new input samples are fed into the

reservoir and synaptic weights are tuned to capture the internal patterns of the inputs. The reser-

voir will not be able to learn from new stimuli once most of its synapses are over-potentiated or

over-depressed (i.e., the synaptic memory is saturated). Incorporating a stop-learning condition

provides an effective way to prevent memory saturation [47], which is particularly desirable for

synapses with a finite number of states.

Conceptually, we may deactivate LTP when over-potentiation of synapses happens and deac-

tivate LTD when over-depression takes place. This can be done for each synapse by monitoring

the firing activity of the postsynaptic neuron. For example, if the postsynaptic neuron is overly

active and has fired a lot of spikes, we could “turn off” the LTP of the STDP rule because the

afferent synapses of this neuron may have been over-potentiated by this time. Similarly, if the

postsynaptic neuron is inactive, we might “switch off” the LTD of the STDP rule to stop/prevent

the synapses from being over-depressed. The above mechanism regulates the network dynamics
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and helps produce more orderly self-organizing behaviors in the reservoir which are crucial to good

performance.

While the instantaneous firing frequency acts as a direct measure for the activity level of a

neuron, a measure at a longer timescale may correlate better with the average firing level induced

by both the new and old inputs. Motivated by [47], we adopt the internal calcium concentration

of a biological neuron as an indicator for the firing activity within a specified time window in the

proposed AP-STDP rule. The calcium variable c(t) follows the first order dynamics with a large

time constant and is a function of the postsynaptic neuron activity:

dc(t)

dt
= −c(t)

τc
+
∑
i

δ(t− ti), (3.3)

where τc is the time constant and the summation is over all postsynaptic spikes arriving at time ti.

We now discuss the idea of the stop-learning condition based on the calcium concentration.

First of all, a threshold of calcium variable cθ is defined for determining whether the neuron is

active or inactive. Suppose a postsynaptic neuron is active and it has fired many spikes. Its corre-

sponding calcium concentration must be very high. Our stop-learning condition basically enables

the LTP of the corresponding synapses only when c is within a specific range. Otherwise, it deacti-

vates LTP to avoid over-potentiation. Similarly, if a postsynaptic neuron is inactive and its calcium

concentration is too low, implying that afferent synapses are possibly over-depressed, LTD would

be disabled. More specifically, the proposed stop-learning condition is combined with the proba-

bilistic STDP rule presented in the last subsection in the following form:

w ← w +∆Wwith p ∝|∆w+| if ∆t > 0 &&

cθ < c < cθ +∆c

w ← w −∆Wwith p ∝|∆w−| if ∆t < 0 &&

cθ > c > cθ −∆c, (3.4)

37



where cθ is the threshold for determining the postsynaptic neuron firing activity, and ∆c is a margin

that is introduced to realize the stop-learning condition.
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Figure 3.2: The AP-STDP rule with the stop-learning condition. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 IEEE.

As shown in Fig. 3.2, we allow a synapse to be potentiated if and only if the calcium concentra-

tion c of the postsynaptic neuron is in the range of [cθ, cθ+∆c]. Similarly, a synapse is depressed if

and only if the calcium concentration falls in the range of [cθ−∆c, cθ]. No long-term modification

is induced if the calcium level of the postsynaptic neuron is too low or too high. This regulatory

mechanism protects the synaptic memory against modifications triggered by the ongoing sponta-

neous activity, prevents the synapses from over-potientation or over-depression, and allows for full

exploration of all input samples in the learning process.

By introducing the stop learning rule based on the calcium level, we correlate the postsynap-

tic neuron firing activity with the synapse plasticity to avoid saturation. Note that since LTP and

LTD are only allowed when the calcium concentration falls within the respective limits, no global

positive feedback effect exists. In addition, the calcium concentration follows the first order dy-

namics of (3.3), and hence its value can increase or decrease depending on the balance between

post-synaptic firing activities and the leakage. As a result, the imposed stop learning rule allows

the synaptic weight to change freely without holding it at a specific high or low value.

Since the nearest-neighbor pairing scheme can be done more easily than the all-pairing scheme
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and the difference in performance between the two schemes is subtle, in this section, we only focus

on nearest-neighbor pairing for our AP-STDP rule to reduce the implementation overhead.

3.1.3 Internal Representation Ability of Self-Organizing Reservoirs

To shed light on how the network dynamics may be impacted by the applied STDP mecha-

nisms, hence leading to different learning performances, we perform principal component analysis

(PCA) on the reservoir responses induced by various input samples. We define the network state

at a given time t as a binary vector s(t) ∈ {0, 1}Nr , where N r is the total number of reservoir

neurons, and si(t) is 1 if and only if the ith reservoir neuron fires at time t. The network state s(t)

specifies the reservoir response at t. The reservoir response matrix at time t is defined as:

R(t) = {s0(t), s1(t), · · · , sj(t), · · · , sN(t)}, (3.5)

where j is the index of the input samples, and N is the number of the input samples considered.

The j-th column vector of R(t), or sj(t), represents the network state at time t given the jth input.

The defined reservoir response matrix R(t) is a snapshot of the complex reservoir dynamics at

time t considering all input samples (shown in Fig. 3.3). By analyzing the response matrix R(t),

we can better understand how well the input samples are represented by the network dynamics.

Applying PCA to the response matrix R(t) allows us to visualize the reservoir responses in

the projection space expanded by the first few, say three, principal components (PCs). For the

reservoir with weak internal representation capability, the projected responses of different class

labels are expected to overlap with each other. In contrast, the formation of tight intra-class clusters

with small or no inter-class overlaps is indicative of effective internal representation. We further

evaluate the network dynamics by calculating the amount of variance explained by the first several

PCs. The greater the variance that is explained by the first several PCs, the more orderly the

network dynamics is, suggesting that the internal structures of the input samples can be better

captured by the network response. The experimental results of PCA on the reservoir responses are

reported in Section 3.1.5.
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Figure 3.3: Extract the response matrix R(t) from the reservoir responses. Reprinted with permis-
sion from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

3.1.4 Experimental Settings and Benchmark

The reservoirs of two liquid state machines are set up using the approach described in [10],

giving rise to a recurrent network of 135 and 90 reservoir neurons on a 3D grid, respectively.

80% of the reservoir neurons are excitatory while the rest of them are inhibitory. The connectivity

between any two neurons is constructed randomly under a probabilistic distribution function such

that the wiring probability of two neurons drops exponentially with the distance between them:

P (i, j) = k · e−
D(i,j)

r2 (i ̸= j), (3.6)

where D(i, j) is the Euclidean distance between neuron i and neuron j, and r and k are two control

parameters chosen as suggested in [10]. We adopt the discrete LIF neuronal model and the second-

order synaptic model described in [10].

The parameters of all STDP rules described in this work are shown in Table 3.1. The maximum

synaptic weight Wmax is set to 8.0. The initial weights of excitatory synapses are set to ∆W while
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inhibitory synaptic weights are initialized to −∆W . We set the bit-width of reservoir synaptic

weights to 4 bits. For comparison purposes, we have tuned parameters of the probabilistic STDP

rule such that the total number and amount of weight updates are roughly the same for both the

AP-STDP and probabilistic STDP rules.

Table 3.1: Parameter settings of the standard STDP, probabilistic STDP and AP-STDP Rules.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

Parameter Value
A+ 8.0
A− 4.0
τ+ 2.0
τ− 4.0
∆W 1.0
cθ 5.0
∆c 3.0
τc 64.0

The adopted benchmark is a subset of the TI46 speech corpus [80]. This benchmark contains

10 utterances of each English letter from “A” to “Z”, which were recorded from a single speaker.

There are 260 samples in this benchmark. The time domain speech signals are preprocessed by

Lyon’s passive ear model [86], and encoded into 83 spike trains using the BSA algorithm [87].

Each input spike train generated in the preprocessing stage is sent to 32 randomly selected reservoir

neurons with a fixed weight randomly chosen to be 2 or −2. The readout layer is fully connected

to the reservoir with plastic synapses trained using the bio-inspired supervised learning algorithm

proposed in [10].

Before training the readout layer, all speech samples are presented to each plastic reservoir one

by one while a STDP rule is applied to tune the reservoir synapses. The process is repeated for

a sufficient number of iterations till the reservoir synaptic weights converge. Then, the readout

layer is trained with the learning algorithm described by [10]. We adopt a 5-fold cross validation
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scheme to test the recognition performance for each LSM network setting by randomly dividing

all speech samples into 5 groups. The recognition decision is made right after each testing speech

sample is presented. At this time, the readout neuron with the highest firing frequency is chosen as

the winner whose class label is deemed to be the classification decision.

3.1.5 Experimental Results

Using the experimental setups described in Section 3.1.4, we compare five reservoir tuning

settings, which are abbreviated in Table 3.2, for two reservoir sizes, namely 135 and 90 neurons,

respectively.

Table 3.2: Reservoirs Tuning Methods. Reprinted with permission from Yingyezhe Jin and Peng
Li c⃝2016 IEEE.

Abbreviation STDP Rule and Pairing Scheme Used
Static Randomly Generated Fixed Reservoir
AAP Standard Additive STDP w/ All-Pairing
ANN Standard Additive STDP w/ Nearest-Neighbor
PAAP Probabilistic STDP w/ All-Pairing
PANN Probabilistic STDP w/ Nearest-Neighbor
Proposed Activity-based Probabilistic STDP w/ Nearest-Neighbor

Principal Component Analysis for Reservoir Dynamics

We first analyze reservoir dynamics using PCA. For this, we collect the reservoir response

matrix R(t) at a randomly selected time t0 = 434ms and perform PCA to the reservoir responses

for both static and plastic reservoirs. We visualize the projected responses in the projection space

spanned by the first three PCs in Fig. 3.4. The static reservoir and the plastic reservoirs tuned using

the standard STDP create visible overlaps across different speech classes without forming good

intra-class clusters. This again indicates that a randomly generated reservoir may not be effective

for a specific application. Fig. 3.4 also suggests that simply adopting the standard STDP does not
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Figure 3.4: Visualization of the reservoir responses in the PCs space for different spoken letters.
For simplicity, we visualize the responses of input speech samples with four different class labels
(letters). The four class labels ‘A’, ‘J’, ‘P ’ and ‘Z’ are marked as ‘▽’, circle ‘◦’, cross ‘+’
and square ‘□’, respectively. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
IEEE.

produce the desired self-organizing behaviors when the reservoir synapses have a low resolution.

Although intra-class clusters are partially formed in some cases with the probabilistic STDP

rule, overlaps across different classes still exist. This suggests that the resulting poor input repre-

sentation power may be attributed to the occurrence of synaptic memory saturation due to the lack

of stop-learning rules. This conclusion is supported by the results of the proposed AP-STDP rule,

which produces compact intra-class clusters and also well separates different classes.

Further analysis of the variance explained by the first several PCs offers additional insights on

the internal representation effectiveness of different reservoirs as reported in Table 3.3. We use the

static reservoir case as a baseline reference and visualize the change in the explained variance due

to the adoption of different STDP rules in Fig. 3.5. As shown in Table 3.3 and Fig. 3.5, the standard

and probabilistic STDP rules either make no significant improvements over the static baseline or

even underperform it, reaffirming the potential weaknesses of these rules.

In the case of AP-STDP, there is a greater amount of variance explained by the first several

PCs compared to the static baseline and other STDP rules. This is consistently the case for the
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Table 3.3: Amount of variance explained by the first several PCs for different reservoir tuning
methods. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

Principal Components
135 Reservoir Neurons 90 Reservoir Neurons

# of PCs 5 20 65 5 20 50
Static 21.8% 55.4% 94.2% 23.5% 65.3% 96.6%
AAP 20.3% 55.1% 94.6% 23.3% 65.8% 96.6%
ANN 18.7% 52.4% 93.2% 24.1% 67.1% 96.5%
PAAP 17.8% 51.6% 92.8% 23.0% 64.8% 96.2%
PANN 19.6% 54.0% 93.6% 24.3% 68.4% 96.0%
Proposed 21.5% 57.2% 94.4% 28.4% 73.9% 97.8%

reservoirs with 135 neurons and 90 neurons. As seen in Fig. 3.5, up to 2% and 6% more variance

can be explained with AP-STDP compared to the static reservoir. These results suggest that the

network dynamics induced by AP-STDP have an improved internal representational structure.

Recognition Performances

Table 3.4: Recognition performances of the LSMs with different reservoirs. Reprinted with per-
mission from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

Reservoir Tuning 135 Reservoir Neurons 90 Reservoir Neurons
Static 92.3% 89.6%
AAP 92.3% 88.4%
ANN 90.4% 89.6%
PAAP 93.5% 88.1%
PANN 92.3% 89.2%
Proposed 94.2% 92.3%

We use the adopted benchmark described in Section 3.1.4 to test the LSM recognition rates as

reported in Table 3.4. We also plot the performance boosts over the static baseline achieved by the

plastic reservoirs in Fig. 3.6. To the best knowledge of the authors, the best reported performance
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(a) 90 Reservoir Neurons (b) 135 Reservoir Neurons

Figure 3.5: The differences between the plastic reservoirs and the static reservoir (baseline refer-
ence) in terms of the variances explained by the first several PCs. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 IEEE.

on the same benchmark achieved by a static LSM with 135 reservoir neurons is 92.3% [10]. The

recognition performance of our static reservoir with 135 neurons achieves the same recognition

rate of 92.3%. When the reservoir size is reduced to 90 neurons, the recognition rate of our static

reservoir becomes 89.6%.

In comparison with the static baseline, the standard STDP rule degrades the performance as

shown in Table 3.4 and Fig. 3.6. The improvements of the probabilistic STDP rule over the static

reservoir are not consistent. It in fact leads to performance degradation in some cases. As shown in

Table 3.4, the performance of AP-STDP is superior than other STDP rules. AP-STDP boosts the

performance by 1.9% compared to the best reported performance obtained under a static reservoir

for the reservoir size of 135 neurons. AP-STDP produces a good recognition rate of 92.3% when

the reservoir has only 90 neurons. The performance boost over the static baseline is 2.7% in this

case.
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Figure 3.6: The performance boosts over the static reservoir achieved by different plastic reser-
voirs. The proposed AP-STDP significantly boosts the performance for both the 90-neuron and
135-neuron reservoirs. AAP, ANN, and PANN lead to close-to-zero performance boosts in some
cases. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 IEEE.

3.1.6 Summary

In this section, we have proposed a novel activity-based probabilistic STDP (AP-STDP) rule

as a promising self-organizing approach to construct plastic recurrent reservoirs in the context of

the liquid state machine. Through a probabilistic update mechanism, AP-STDP achieves good

learning performance and facilities efficient reservoir tuning at low synaptic weight resolutions.

Furthermore, AP-STDP addresses the issue of synaptic memory saturation by imposing a stop-

learning condition based an activity measure. AP-STDP is shown to outperform all other studied

STDP rules based on the principle component analysis of the network dynamics and realistic per-

formance benchmarking using speech recognition.
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3.2 An Efficient, Sparse and Self-Organizing LSM (SSO-LSM) Learning Architecture

The aim of this work is to enable efficient adaptive LSM neural processors by proposing a novel

Sparse and Self-Organizing LSM (SSO-LSM) architecture. The first key element of the SSO-LSM

architecture is the exploration of a low-overhead hardware-friendly Spike-Timing Dependent Plas-

tic (STDP) mechanism for efficient on-chip reservoir tuning, which is motivated by the following

considerations. While training recurrent networks (e.g. reservoirs) is in general very challenging,

STDP can supplement the training of readout synapses, and further boost learning performance

through reservoir tuning [37, 39, 41, 88]. The simplicity and unsupervised nature of STDP is

specially amenable to hardware realization. Equally important, STDP can produce attractive self-

organizing behaviors in the reservoir that naturally lead to a sparser recurrent network, which we

explore as a great opportunity for runtime energy reduction in SSO-LSM.

Nevertheless, realizing STDP in a digital hardware architecture presents interesting challenges,

particularly when extremely low bit resolutions are targeted for low hardware and energy overhead.

As we will show in this work, straightforward logic implementation can lead to large overhead

and/or degraded learning performance boost. To this end, we propose a novel data-driven design

flow to optimize the digital implementation of STDP for efficient hardware realization.

The second key ingredient of the proposed SSO-LSM architecture is the integration of an

online readout synapse reconfiguration scheme. Under the context of the liquid state machine,

typically a large number of readout synapses with a sufficient resolution is needed to achieve good

learning performance. As such, the readout synapses contribute significantly to the overall energy

dissipation of an LSM processor. The proposed reconfiguration scheme sparsifies readout synapses

during runtime by monitoring the variances of firing activities of reservoir neurons. This leads to

noticeable energy reduction without any significant degradation of performance.

Using the spoken English letters adopted from the TI46 speech corpus as a benchmark, we

demonstrate that the SSO-LSM architecture boosts the average learning performance rather sig-

nificantly by 2.0% while reducing energy dissipation by 25% compared to a baseline LSM design

with little extra hardware overhead on a Xilinx Virtex-6 FPGA.
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The rest of this section is organized as follows. Section 3.2.1 provides a brief description of

the background and motivations of this work. Section 3.2.2 presents our proposed design flow for

simple hardware STDP and readout sparsification method. In Section 3.2.5, the proposed SSO-

LSM architecture is introduced. The experimental results are reported in Section 3.2.6. Finally,

Section 3.2.7 summarizes this work.

3.2.1 Motivation for STDP-based Reservoir Tuning in Hardware

STDP is a local unsupervised Hebbian learning mechanism realizing synaptic plasticity based

on the respective firing timing orders of the presynaptic and postsynaptic neuron [23, 24]. The

synapse wij from neuron j to neuron i is potentiated if a causal order (i.e., the presynaptic neuron

fires before the postsynaptic neuron) is observed, or depressed otherwise. The weight update

depends on the temporal difference ∆t = tpost − tpre between each pair of pre and post-synaptic

spikes:

∆w+ = A+(w) · e
− |∆t|

τ+ if ∆t > 0

∆w− = A−(w) · e
− |∆t|

τ− if ∆t < 0, (3.7)

where ∆w+ and ∆w− are the weight modification induced by long-term potentiation (LTP) and

long-term depression (LTD), and A±(w) determines the strength of LTP/LTD, respectively. A

typical STDP curve is plotted in Fig. 3.1(a).

In addition to the potential boost of performance, tuning a reservoir using STDP can lead to

a refined sparser structure of the reservoir, which we explore to lower the energy dissipation of

the hardware processor. To see this, we induce the self-organizing behavior in a reservoir by

applying the standard STDP and show the equilibrium synaptic weight distribution of the reservoir

in Fig. 3.7(b). Here, as a common practice, excitatory synapses in the reservoir are assumed to be

plastic and tuned with STDP while inhibitory synapses are fixed. Clearly, the resulting bimodal

weight distribution suggests that a significant number of zero-valued or low-valued synapses may

be powered off to save power without dramatically impacting learning performance.
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Figure 3.7: (a) A typical STDP characteristics, and (b) an equilibrium synaptic weight distribution
induced by the STDP rule in a reservoir. Reprinted with permission from Yingyezhe Jin, Yu Liu
and Peng Li c⃝2016 IEEE.

Now, here comes the important question of how to realize a given STDP in digital logic to

minimize hardware overhead and maximize learning performance boost. A straightforward real-

ization of STDP in high resolution can closely reflect the desired continuous STDP characteristics

in hardware, and hence produce good performance. However, doing so can lead to an inhibitory

cost as STDP shall be applied to all neurons in a reservoir. Furthermore, the realization of (3.7)

with a high bit resolution produces diminishingly small weight updates as the temporal difference

∆t increases, and the number of such updates can be very large. The combined effects of the two

result in many synaptic events with small weight update values, jeopardizing the runtime energy

efficiency of the neural processor. On the other hand, simply reducing hardware overhead by using

a low resolution can lead to an immediate performance hit.

3.2.2 STDP Reservoir Tuning in SSO-LSM

Achieving good learning performance using STDP realized in extremely low bit resolutions

presents interesting challenges. To eliminate small-valued weight updates so as to enhance process-

ing efficiency, we first determine a STDP activation time window by setting an upper limit ∆tlimit

for the spike timing difference ∆t. No synaptic update event is triggered when ∆t > ∆tlimit. To

balance between potentiation and depression, we force the areas under the LTD and LTP portions
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of the STDP curve to be identical. With this, we would still need to retain the good performance

of a well-designed continuous STDP rule by properly discretizing both synaptic weight and the

continuous STDP.

Naive Digital STDP Realization

Intuitively, one may implement a B-bit STDP by uniformly discretizing weight value in a

targeted range into 2B levels: {wd
1, w

d
2, · · · , wd

2B}, and similarly discretize the weight change ∆wd

of the continuous STDP rule within the activation window. A synaptic update with a spike timing

difference ∆t triggers the following process to determine the discretized new weight wd
new: add the

discretized weight change ∆wd from the discretized STDP curve to the current (old) discretized

weight value wd
old, and round the sum to produce wd

new:

wd
new = fround(w

d
old +∆wd(∆t))

= fround(fround(w
c
old) + ∆wd(∆t)),

(3.8)

where fround(·) rounds its argument to its nearest discretized weight level, and wc
old (wc

new) repre-

sents the current (new) continuous-valued weight if synaptic weights and STDP were implemented

in real numbers.

A careful examination of the above process reveals two key limitations. First, using an adder to

perform each add operation (in parallel) can introduce large hardware overhead. Second, the com-

putation of wd
new in (3.8) suffers from two types of rounding error: discretizaion of the continuous

weight wc and quantization of the continuous weight update ∆wc. Through a specific example,

Fig. 3.8(a) illustrates that the above process can produce a very large overall quantization error of

1.7 with respect to wc
new under low bit resolutions.

3.2.3 Data-Driven STDP Implementation

To address the above limitations, our key idea is to discretize synaptic weight and the STDP

scheme to match realistic synaptic data so as to minimize the aggregated discretization error over

a large set of STDP updates. The offline data-driven design flow of Fig. 3.9 finds the optimal
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Figure 3.8: Comparison between the naive (a) and the proposed data-driven STDP realization (b).
Reprinted with permission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

discretization schemes for synaptic weights, and finally the STDP rule.

Step 0 simulates the reservoir using typical inputs and profiles continuous STDP events by

collecting a set of N combinations of three values: {∆tk, w
c
old,k, w

c
new,k
}, k = [1...N ].

Step 1 finds 2B optimal non-uniform integer discretized weight levels
−→
W d

i for the data by

solving an optimization problem:

minimize
wd

i ,1≤i≤2B

∑
k

frnd_err(w
c
k,
−→
W d

i )

subject to
−→
W d = [wd

1, w
d
2, · · · , wd

2B ]
T ,

wd
i ∈ [wmin, wmax],∀i ∈ [1, · · · , 2B],

(3.9)

51



where frnd_err(w
c
k,
−→
W d

i ) is the squared rounding error for the k-th collected continuous weight wc
k:

frnd_err(w
c
k,
−→
W d) = min{(wc

k − wd
j )

2 : j ∈ [1, · · · , 2B]}. (3.10)

This optimization problem presents no challenge and can be even solved by exhaustive search since

the design space is bounded by a very low bit resolution of B. Weight data at the equilibrium can

be used in the above optimization problem to best approximate the converged weight distribution.
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Figure 3.9: The proposed data-driven offline STDP design flow. Reprinted with permission from
Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

Step 2 finds the optimal discretized STDP rule based on the optimal weight discretization of

Step 1. For each k-th synaptic update, our key idea is to map from the combination of discretized

{∆tk, w
d
old,k} directly to the discretized new weight value wd

new,k
using an optimized small lookup

table (LUT). This LUT is indexed by ∆tk and wc
old,k, where the spike timing difference ∆tk is al-

ready discretized by the chosen network emulation time step. In comparison to the naive approach,

the proposed technique reduces hardware overhead by eliminating the add operation, and merges
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the multiple processing steps of the naive approach into a single LUT operation, thereby avoiding

incurring multiple rounding errors. Fig. 3.8(b) illustrates the proposed STDP update process using

the same example of Fig. 3.8(a), and shows that our approach produces a much smaller overall

discretization error of 0.3. Each LUT entry is determined by minimizing an discretization error

metric defined with respect to the continuous STDP data collected in Step 0.

Specially, the entry Lij at the i-th row and j-th column of the LUT sets the mapped new

weight value for all continuous STDP updates that fall into the corresponding bin Binij defined

by: ∆t ∈ [∆tij,low,∆tij,high] and wc
old ∈ [wd,low

old , wd,high
old ], where ∆tij,high/low and w

d,high/low
old are the

boundaries of Binij . We find the optimal value for Lij by solving an optimization problem:

minimize
Lij

∑
k

(wc
new,k − Lij)

2

subject to (∆tk, w
c
old,k) ∈ Binij,

Lij ∈ {wd
1, w

d
2, · · · , wd

2B}.

(3.11)

Essentially, the above optimal solution minimizes the summed squared error for all continuous

STDP updates that fall into the corresponding LUT entry. Again, this optimization problem can be

trivially solved offline due to the small search space.

3.2.4 Online Sparsification of Readout Synapses

The connections between the reservoir and the readout are very dense and with high resolu-

tion to ensure good learning performance. Instead of randomly pruning the readout connectivity

which might result in significant performance penalty, we propose a novel online readout recon-

figuration approach based on variances of firing activities with little impact on performance. The

key observation is that the variance of the firing activity of each reservoir neuron across different

input samples correlates with its contribution to the distinguishability of different patterns. Hence,

readout synapses projected from low-variance reservoir neurons can be powered off to save energy.

Implementing this idea in hardware entails efficient monitoring of variance of firing activity, which

we describe very briefly. Instead of computing the true variance, which is costly in hardware, we
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sum up the absolute differences in firing counts of consecutive input samples:

δ =
n∑

i=2

|ci − ci−1|, (3.12)

where {ci}i=1···n is the firing count sequence for n input samples of a neuron.

3.2.5 The SSO-LSM Architecture

In the proposed SSO-LSM architecture, the reservoir and readout layer are realized by a Reser-

voir Unit (RU) and Training Unit (TU) respectively, as depicted in Fig 3.10 for FPGA implemen-

tation. The digital neurons in RU are called Liquid Elements (LEs) and the neurons inside TU are

Output Elements (OEs). The external input spikes connect to targeted liquid neurons through a

crossbar connection interface. All LEs receive and process the input spikes in parallel. The spikes

generated from LEs are buffered in a 135-bit register called RSpike. Then, the spike outputs are sent

back to LEs following certain connectivity pattern, which is realized by another crossbar interface.

At the same time, the spikes from RSpike also propagate to TU as the liquid response, where all

OEs collect and process the spikes from TU simultaneously. Both LE and OE adopt the leaky

integrated-and-fire(LIF) model while they leverage different learning schemes and architecture.

We adopt the architecture for OE and the synaptic response and integration unit in LE from [17].

The weights of the plastic synapses associated with each OE are stored in its private block RAM

(BRAM).

To implement the online readout reconfiguration scheme mentioned in Section 3.2.4, we use

three firing counters (i.e., FC 1, FC 2 and FC 3) in the LE as illustrated in Fig. 3.11(a). FC 1 and

FC 2 store the firing counts for the reservoir neuron regarding to the previous and current input

sample, respectively. When the input spike trains come to the end, the absolute difference of FC 1

and FC 2 is added up to FC 3, and FC 2 is set to be the value of FC1 and FC1 is then reset. After

all samples have been fed in, the value of FC 3 becomes the targeted approximated variance of the

firing activities across all inputs. If the variance is less than a certain threshold, the connections

from this neuron to the readout layer are powered off.
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Figure 3.10: An exemplary implementation of the SSO-LSM architecture with 135 digit liquid
neurons (LEs) and 26 output neurons (OEs). Each LE connects to up to 32 external inputs and up
to 16 internal LEs. Reprinted with permission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016
IEEE.
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Figure 3.11: (a) The architecture of the LE, and (b) the architecture of STDP learning unit in LE.
Reprinted with permission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.
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The learning unit in LE implementing the proposed hardware STDP mechanism is shown in

Fig. 3.11(b). We adopt the logic-level STDP implementation proposed in [89], and further simplify

it. Each reservoir synapse connected to the reservoir neuron has its associated weight register. The

computation of ∆t for each pre and post synaptic spike pair and the update of the associated synap-

tic weight are executed in serial. For each post-synaptic neuron, shift registers SR1 to SR16 are

used to keep track of the firing events from its 16 pre-synaptic neurons while SR0 is for recording

the firing event of this post-synaptic neuron itself. Once there is a firing event, the fired spike is

injected into registers from the MSB and shifted one bit to the right at every time step of the sys-

tem. The width of pre-synaptic shift registers (i.e., SR1 to SR16) and post-synaptic shift registers

(i.e., SR0) represents the time window ∆tlimit for the LTP and LTD curve, respectively, as men-

tioned in Section 3.2.2. By examining the relative position of the spikes in the shift registers, we

can compute the temporal difference ∆t between pre and post-synaptic spike pairs. For example,

when there is an ‘1’ appears at the MSB of SR0, meaning the postsynaptic neuron just fires, we

check its presynaptic shift registers to see if any presynaptic spike event can be paired with it. If

there is one presynaptic spike to be paired, then ∆t is the location of this presynaptic spike in the

shift register. Similarly, we can capture the post-before-pre firing order if there is a spike in the

MSB of the presynaptic shift register. With ∆t, the new synaptic weight is given by the lookup

table implementing the proposed hardware STDP rule.

3.2.6 Experimental Results

Several digital LSMs are simulated in software to fully assess the performance boost and spar-

sity resulting from the proposed STDP rule and readout synapse sparsification over a large design

space in which various reservoir sizes and readout synaptic resolutions are considered. We report

the hardware overhead and energy consumption of the SSO-LSM architecture with 135 reservoir

neurons implemented on a Xilinx Virtex-6 FPGA. The software simulation setup and the super-

vised readout synapse learning rule are adopted from [10]. The adopted application benchmark is

a subset of the TI46 speech corpus [80], containing 10 utterances of each English letter from “A”

to “Z” recorded from a single speaker. There are 260 samples in this benchmark. The time domain
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speech signals are preprocessed by Lyon’s passive ear model [86], and encoded into 78 spike trains

using the BSA algorithm [87].

Performance Boost

By manually optimizing several key STDP rule parameters over a large design space, we ob-

tain an optimized continuous STDP rule with an average performance boost of 1.9%. Following

the proposed offline STDP design flow of Section 3.2.3, we use the continuous STDP rule to col-

lect a set of profiled continuous STDP update data. To realize a low-cost hardware-based STDP,

we discretize the reservoir synaptic weights using 2-bit resolution and only consider weight up-

dates with |∆t| ≤ 3. The application of our offline optimization flow leads to the optimal weight

discretization levels and STDP lookup table shown in Table 3.5.

Table 3.5: Optimized weight discretization and STDP lookup table. Reprinted with permission
from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

wd
1 = 0 wd

2 = 2 wd
3 = 6 wd

4 = 8
∆t = −3 wd

1 wd
2 wd

3 wd
4

∆t = −2 wd
1 wd

1 wd
2 wd

3

∆t = −1 wd
1 wd

1 wd
1 wd

2

∆t = 0 wd
1 wd

2 wd
3 wd

4

∆t = 1 wd
3 wd

4 wd
4 wd

4

∆t = 2 wd
2 wd

3 wd
4 wd

4

∆t = 3 wd
1 wd

2 wd
3 wd

4

The recognition performances of several digital LSMs without STDP reservoir tuning over a

large design space are reported in Table 3.6. In comparison, we show the performance boosts

resulted from the proposed hardware STDP rule in Table 3.7. We also compare the averaged

performance achieved for the LSM designs in Table 3.4 by the proposed hardware rule, the naive

approach of Section 3.2.2, and six LUT based rules (C1 to C6) with randomly set LUT entry values

in Fig. 3.12. The proposed STDP produces an average performance boost of 2%, superior than all
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other STDP rules.

Table 3.6: Performance of the baseline LSMs without STDP. Reprinted with permission from
Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

Resolution of readout synapses
Size 10 9 8 7 6 5
135 90% 90% 90.4% 88.8% 89.2% 89.2%
90 87.7% 86.5% 85.8% 86.9% 84.2% 84.2%
72 84.2% 83.1% 83.5% 82.7% 82.7% 80.4%
63 86.9% 86.2% 88.1% 85.9% 85.8% 82.7%
45 80.8% 78.8% 79.2% 80.8% 78.5% 72.7%

Table 3.7: Performance boost of the LSMs with the hardware STDP. Reprinted with permission
from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

Resolution of readout synapses
Size 10 9 8 7 6 5
135 1.9% 1.9% 2.7% 3.9% 2.7% 1.9%
90 −0.8% 0.8% 2.3% 1.2% 2.3% 1.5%
72 1.9% 4.2% 4.2% 4.2% 3.1% 2.3%
63 1.5% 2.7% 0.4% 1.1% 0.4% −1.5%
45 1.5% 3.1% 2.3% 0.8% 3.1% 1.5%

Sparsity of the SSO-LSM Architecture

First, we examine the sparsity of the reservoir due to the proposed hardware STDP rule. We

report the percentages of reservoir synapses with a zero-weight value after applying the proposed

STDP rule for different reservoir sizes in Table 3.8. As shown in Table 3.8, the proposed hardware

rule can zero out up to 29.2% of the reservoir synapses, reaffirming its effectiveness in reducing

the complexity of the LSM for better efficiency.
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Figure 3.12: The average performance boosts over the considered design space achieved by dif-
ferent STDP rules. Reprinted with permission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016
IEEE.

Table 3.8: The reservoir synapse reductions of the proposed hardware STDP rule under different
reservoir sizes. Reprinted with permission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

Size 135 90 72 63 45
Reduction 27.2% 28.9% 28.7% 29.2% 27.5%

With the proposed hardware STDP applied, we measure the average recognition performance

over the same design space considered before under different readout synapse sparsification levels

in Fig. 3.13. As seen in Fig. 3.13, up to 20% of readout synapses projected from reservoir neurons

with low firing variance can be powered off without any significant degradation of performance.

These results suggest that a refined and efficient readout layer can be obtained with the proposed

online readout reconfiguration approach.

Hardware Cost and Energy Dissipation of the SSO-LSM Architecture

We implement our proposed SSO-LSM architecture on a Xilinx Virtex-6 FPGA and measure

the energy consumption of each building block using the Xilinx Power Analyzer. Table 3.9 shows

the hardware cost and energy consumption of the baseline LSM architecture without the proposed
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Figure 3.13: The average performance boosts achieved by the proposed hardware STDP rule under
different readout sparsification levels. Reprinted with permission from Yingyezhe Jin, Yu Liu and
Peng Li c⃝2016 IEEE.

hardware STDP tuning and readout synapse sparsification, and compares the baseline with the pro-

posed SSO-LSM architecture. The readout synapses sparsification level is set to 20% for the SSO-

LSM architecture, which boosts the recognition performance noticeably by 1.4% over the baseline.

Furthermore, the proposed SSO-LSM architecture reduces the energy consumption of the RU and

TU by 36% and 8%, respectively. It also significantly reduces the overall energy consumption

by 25% with 4% additional logic overhead (LUTs) and 22% additional registers compared to the

baseline LSM, as shown in the last column of Table 3.9.

3.2.7 Summary

In this section, we have proposed a novel design approach for efficient hardware-based STDP

reservoir tuning and an online readout reconfiguration scheme to enable the sparse and self-organizing

LSM (SSO-LSM) architecture for liquid state machine based neural processors. Facilitated by the

proposed offline data-driven STDP optimization flow, the SSO-LSM architecture achieves effi-

cient reservoir tuning at low synaptic weight resolutions and delivers good learning performance.

Furthermore, sparse readout layers can be obtained by the presented firing variance based recon-

figuration approach with little performance degradation. The SSO-LSM architecture is shown to

outperform the baseline LSM architecture in terms of learning performance and energy efficiency

60



Table 3.9: Comparison between the baseline LSM and the proposed SSO-LSM architecture in
terms of hardware cost and energy consumption. The percentages of hardware resource usages
with respect to the total available on-chip FPGA resources are also reported. Reprinted with per-
mission from Yingyezhe Jin, Yu Liu and Peng Li c⃝2016 IEEE.

Baseline
LSM SSO-LSM

Normalized
Cost &
Energy

Cost
(Usage %)

Slice FFs
13,336
(4%)

16,338
(5%) 1.22

Slice LUTs
52,686
(34%)

55,013
(36%) 1.04

BRAMs
26*18KB

(3.1%)
26*18KB

(3.1%) 1.00

Energy (J)
@50MHz

RU 23.9 15.35 0.64
TU 14.42 13.27 0.92

Overall 38.32 28.62 0.75

on an FPGA platform using speech recognition as a benchmark.
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4. READOUT LEARNING AND SPARSIFICATION OF LIQUID STATE MACHINES∗

The recent work of [10] introduces a biologically-inspired spike-dependent readout training

approach with the advantages being local and amenable to VLSI implementation. However, the

key limitation of this approach is that good performance is typically guaranteed only with full con-

nectivity between the reservoir and readout, which contributes significantly to the overall network

complexity and is also costly from a hardware point of view.

The unsupervised learning of STDP is able to locally tune SNNs and sparsify the connectivity

based on the temporal correlation. Towards supervised algorithms, several works have explored

the idea of combining supervision and STDP [11, 50, 51] for precisely timed spike reproduction

and decision making, but no successful results are demonstrated for real-world tasks.

In this chapter, we present the unifying calcium-modulated supervised STDP approach to

achieve the two competing objectives of improved learning performance and readout sparsity of

LSMs. The presented approach employs a two-step methodology: training for sparsification fol-

lowed by training for learning performance. Both of the steps belong to the same biologically

inspired supervised STDP framework. In the unifying framework, the calcium-modulated learning

algorithm based on supervised STDP (CaL-S2TDP) is proposed to achieve improved performance

for readout training. The calcium-modulated sparsification algorithm based on supervised STDP

(CaS-S2TDP), is for readout synapse sparsification where a high-degree of sparsity is produced

without significant degradation of learning performance.

Using the spoken English letters from the TI46 Speech Corpus [80] as a real-world speech

recognition benchmark, we demonstrate that CaL-S2TDP significantly improves the recognition

rate by up to 25% over a reference supervised STDP rule. Compared to the competitive non-STDP

spike-based learning rule in [10], CaL-S2TDP improves the recognition rate by up to 2.7%. The

seamless integration of the two proposed algorithms can prune out up to 30% of readout synapses

∗ c⃝2017 IEEE. Reprinted, with permission, from Yingyezhe Jin and Peng Li, "Calcium-modulated supervised
spike-timing-dependent plasticity for readout training and sparsification of the liquid state machine", Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, May 2017.
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without causing significant performance degradation.

4.1 Existing STDP Rules and their limitations

The standard STDP is a local unsupervised Hebbian learning mechanism realizing synaptic

plasticity based on the relative firing timing orders of the presynaptic and postsynaptic neurons

[23, 24]. The long-term potentiation (LTP) of the synapse wij occurs if the presynaptic neuron j

fires before the postsynaptic neuron i. A presynaptic spike that follows postsynaptic spike produces

long-term depression (LTD) of the synapse. The amount of synaptic modification depends on the

temporal difference ∆t = tpost − tpre between each pair of pre- and postsynaptic spikes:

∆w+ = A+(w) · e
− |∆t|

τ+ if ∆t > 0

∆w− = A−(w) · e
− |∆t|

τ− if ∆t < 0, (4.1)

where ∆w+ and ∆w− represent the weight change induced by LTP and LTD, τ± are the time con-

stants, and A±(w) determine the strength of LTP/LTD, respectively. A typical STDP characteristics

is plotted in Fig. 4.1.

While the standard unsupervised STDP can be relatively straightforwardly applied to spiking

neural networks, the lack of supervision disqualifies it as a choice for readout training. Although

supervised STDP mechanisms such as [11, 50, 51] have been explored, so far no success has

been demonstrated towards applying them to real-life applications. As discussed in Section 1.3,

these approaches may also suffer from synaptic weight saturation and inefficiency for hardware

realization.

4.2 Proposed Deterministic Supervised STDP without Calcium Modulation

Working towards deriving the proposed CaL-S2TDP algorithm, we first present a simpler STDP

algorithm, dubbed D-S2TDP. D-S2TDP performs deterministic weight updates, has all essential

components of CaL-S2TDP, but lacks probabilistic weight updates and calcium modulation of

CaL-S2TDP. D-S2TDP also serves as a reference of comparison for CaL-S2TDP in our experimen-
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Figure 4.1: A typical STDP characteristics. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2017 IEEE.

tal study.

4.2.1 Mathematical Interpretation for Supervised STDP

As a common practice, let us assume that the classification decision is decoded by choosing the

class label of the readout neuron with the highest firing activity (frequency) in the readout layer.

Therefore, a supervised training algorithm shall: 1) maximize the firing rate of the readout neuron

whose class label corresponds to the presented input sample, referred to as “desired neuron”; and

2) minimize the firing rates of all other readout neurons, referred to as “undesired neurons”. We

argue that both 1) and 2) can be achieved by solving the following optimization problem:

maximize
fi
j

N∑
i=1

(f i
c(i)(Xi,W )−

C∑
j ̸=c(i)

f i
j(Xi,W ))

subject to f i
j ≥ 0,

(4.2)
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where N is total number of training samples, C is the number of input classes, Xi is the ith input

temporal sample, c(i) is the class label for Xi, f i
j is the firing frequency of the jth readout neuron

under the ith input, and W is the vector of all readout synaptic weights. Here, we maximize

the difference in summed firing rate between the desired neuron and all undesired neurons so

as to minimize the classification error over the N training samples. However, solving (4.2) in a

mathematically exact manner is a formidable task.

4.2.2 Proposed D-S2TDP Algorithm

Instead, we take a more feasible biologically-inspired approach with respect to (4.2) as shown

in Fig. 4.2 (a). The proposed D-S2TDP algorithm forces the desired neuron to fire at an elevated

level via the positive current injected by a classification teacher (CT) signal. Each afferent synapse

of the desired neuron is further mediated by a standard STDP rule. To suppress undesired neurons,

we employ a novel depressive STDP rule for their afferent synapses.

j

i1

i1
w

)( tF )( tF 

i2
w

(b) (c)

j

i2

)( tF  )( tF 

(a)

j

i2

i1

wi2

i1w

Classification 
Teacher (CT)

+

Depressive
STDP

STDP

Figure 4.2: (a) Proposed D-S2TDP algorithm. The neuron i1 is the desired neuron modulated by
a classification teacher (CT) and the standard STDP. The neuron i2 is an undesired one modulated
by the depressive STDP for temporal “anti-learning”; (b) and (c) The pre-before-post timing order
leads to LTP (LTD) for afferent synapses of the desired (undesired) neuron. The post-before-pre
timing order results in depression for both neurons. Reprinted with permission from Yingyezhe
Jin and Peng Li c⃝2017 IEEE.

To see how D-S2TDP serves the basic needs of this work, we recall that the standard STDP

rule used for afferent synapses of the desired neuron conducts synaptic modification locally and
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renders the postsynaptic (desired) neuron sensitive to temporal presynaptic firing patterns. Since

the causal order (i.e., pre-before-post) of spike pairs leads to synaptic potentiation, the STDP

correlates the presynaptic firing events with the modulated postsynaptic firing patterns in a way

such that the desired neuron is more likely to fire in presence of presynaptic firing events. As

illustrated in Fig. 4.2(b), when modulated by the CT signal, the desired neuron i1 emits two spikes

after a presynaptic spike, resulting in potentiation of wi1 and making itself more likely to respond

to future firings of the presynaptic neuron j. Therefore, we can maximize the firing frequency of

the desired neuron by potentiating the synapses that contribute to its firing. The presence of CT

also makes the above process robust by initializing STDP-based LTP/LTD even with low initial

presynaptic weight values.

We depress plastic synapses that may evoke firing of undesired neurons. As depicted in

Fig. 4.2(c) when the undesired postsynaptic neuron i2 fires, the pre-before-post spike pattern in-

duces depression to wi2 as determined by the novel depressive STDP rule. As such, we prevent the

undesired neurons from learning from training samples of a different input class. Note also that for

both desired and undesired neurons, the depression invoked by the anti-causal (i.e., post-before-

pre) timing order enables competition among plastic synapses such that a sparse structure can be

learned [53].

4.3 Proposed CaL-S2TDP Training Algorithm

While D-S2TDP possesses several key ingredients towards effective readout training, we ad-

dress its limitations, i.e. poor memory retention, synaptic weight saturation and poor weight update

efficiency for hardware implementation by extending it to the proposed CaL-S2TDP algorithm.

Continuous rapid updates of synaptic weights of a limited number of states (e.g. due to a

finite synaptic resolution) can result in bad memory retention. This manifests itself in such a way

that the most recent experiences are represented and learned by the synapses better than the older

ones [84, 85]. We adopt the probabilistic weight update scheme in [88] to slow down the learning

process to better utilize network memory capacity. Furthermore, probabilistic updates reduce the

committed number of weight updates, leading to improved hardware execution efficiency.
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Furthermore, synaptic memory saturation needs to be addressed. Without any stop-learning

mechanism, readout synapses are tuned by supervised STDP while continuously extracting tem-

poral information out of the on-going reservoir firing activities. Excessive training can render each

readout neuron unresponsive to new stimuli once most of its afferent synapses are over-potentiated

or over-depressed, i.e., the synaptic weights are driven to the maximum/minimum value.

4.3.1 Postsynaptic Calcium Concentration

Ideally, we may deactivate potentiation of a synapse when its postsynaptic neuron is very ac-

tive, which suggests that this synapse has been already over-potentiated. Similarly, we shall de-

activate synaptic depression when the postsynaptic neuron becomes very inactive. Inspired by

[47], we make use of the internal calcium concentration of a postsynaptic neuron as an indicator

of its averaged firing level induced by new and old inputs over a long timescale. The calcium

concentration c(t) is a function of the postsynaptic neuron activity and modeled using a first-order

dynamics:
dc(t)

dt
= −c(t)

τc
+
∑
i

δ(t− ti), (4.3)

where τc is the time constant and the summation is over all postsynaptic spikes arriving at time ti.
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Figure 4.3: (a) Proposed CaL-S2TDP training algorithm with probabilistic weight updates. The
desired neuron i1 is expected to be active because of CT and the unwanted neuron i2 is inactive
due to the depressive STDP; (b) Stop-learning mechanisms; (c) and (d) The training of desired and
undesired synapses. Different from Fig. 4.2(b) and (c), the LTP or LTD takes place only when
the postsynaptic calcium level c falls into the specified range. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2017 IEEE.
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4.3.2 Stop-learning for Desired Neuron

We now discuss how to implement a stop-learning mechanism for the desired neuron. First,

a threshold cθ of calcium variable is defined to distinguish active neurons from inactive ones. We

then introduce a margin δ and allow potentiation when c < cθ + δ. Analogously, depression is

allowed when c > cθ − δ. Following the principle of Hebbian learning, we further impose a lower

bound of c for activating potentiation and an upper bound of c for activating depression. Combining

the stop-learning mechanism and probabilistic weight updates gives the CaL-S2TDP algorithm:

w ← w +∆W w/ prob. ∝|∆w+| if ∆t > 0 &&

cθ < c < cθ + δ

w ← w −∆W w/ prob. ∝|∆w−| if ∆t < 0 &&

cθ > c > cθ − δ, (4.4)

where ∆w+/∆w− are the weight changes computed based on the employed the STDP rule, and

determine the probabilities for committing a fixed weight update of ±∆W for LTP and LTD,

respectively. As in Fig. 4.3(b), a synapse can be potentiated when the calcium concentration c of

the desired neuron falls into [cθ,cθ + δ] and depressed when c is in [cθ − δ, cθ].

4.3.3 Stop-learning for Undesired Neurons

Since the depressive STDP is employed for the afferent synapses of undesired neurons, only the

second equation in (3.4) is activated. The CaL-S2TDP algorithm is further illustrated in Fig. 4.3(c)

and (d) where no long-term modification is induced if the calcium level is too low or too high,

different from D-S2TDP as shown in Fig. 4.2(b) and (c).

4.4 Proposed CaS-S2TDP Sparsification Algorithm

The plastic readout synapses in an LSM often need to be very dense, e.g. forming a full-

connectivity between the reservoir and readout, and have high resolution to guarantee good learn-

ing performance. This leads to two potential problems: over-fitting due to high model complexity,
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and large overhead for hardware implementation. On the other hand, randomly pruning readout

connections can easily degrade performance significantly.

4.4.1 Readout Synapse Sparsification

The starting point for the proposed CaS-S2TDP sparsification algorithm is the recognition of

the fact that different from supervised classification for which neurons are instructed to learn cer-

tain firing patterns, the objective of sparsification is to allow sufficient competition among plastic

readout synapses. We further recognize that synapses mediated by standard STDP characteristics

compete for control of the timing of postsynaptic action potentials. As a result, some synapses to

a postsynaptic neuron are strengthened while others are weakened [53]. When properly explored,

the above process can lead to a bimodal weight distribution out of which many zero-valued or

small-valued synapses can be pruned out. As a common practice, only excitatory plastic synapses

are sparsified.
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Figure 4.4: (a) The non-optimal sparsification based on the entire input set; (b) Optimized sparsifi-
cation with the corresponding subset of inputs for each readout neuron. Reprinted with permission
from Yingyezhe Jin and Peng Li c⃝2017 IEEE.

In order to make use of the above ideas for real-life multi-class classification tasks, we make

additional important observations. To guarantee good performance, sparsification shall be not
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be performed blindly, instead, it must take into the spatio-temporal structures embedded in the

training samples such that the discovered sparse patterns fit well with the data, and hence do not

lead to significant performance loss. This suggests to enable a standard STDP for introducing

competitions among the afferent synapses of each readout neuron over the entire training data set,

as shown in Fig. 4.4(a). However, a closer examination reveals that since each readout neuron is

associated with a specific class label, it is not necessary to instruct each readout neuron to learn

the sparse structure of the entire input data. A more optimal approach is to constrain the finding

of sparsity within of the subset of training data of the corresponding input class for each readout

neuron as shown in Fig. 4.4(b). This leads to the maximum sparsity.
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j i1
i1w
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(Neural Activity Level)
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No Learning

LTD

No Learning

 C

Figure 4.5: (a) The CaS-S2TDP sparsification algorithm. The activity level of the selected readout
neuron i1 is boosted by the sparsity teacher (ST). (b) stop learning for readout synapse sparsifica-
tion. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2017 IEEE.

Akin to the CaL-S2TDP training algorithm, we make readout sparsification robust by intro-

ducing an external sparsity teacher (ST) (Fig. 4.5(a)), whose job is to reliably bring up the firing

activity of each readout neuron to start synaptic competition modulated by the STDP. To maintain

good learning performance, we also introduce a stop-learning mechanism. As shown in Fig. 4.5(b),

this stop-learning mechanism is more relaxed with a wider calcium range for both LTP and LTD
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to avoid undesirable bias in calcium regulation and maximize sparsity. The resulting CaS-S2TDP

sparsification algorithm is summarized as:

w ← w +∆W w/ prob. ∝|∆w+| if ∆t > 0 &&

c < cθ + δ

w ← w −∆W w/ prob. ∝|∆w−| if ∆t < 0 &&

cθ − δ < c. (4.5)

4.5 Combined Sparsification and Training

The integration of the proposed sparsification and classification algorithms is summarized in

Fig. 4.6. First, CaS-S2TDP is applied to sparsify readout synapses. After removing the synapses

of a zero-valued weight, the remaining synaptic weights are used as a starting point for training of

the readout based on CaL-S2TDP.

Because of the self-organizing behavior introduced by the STDP, the proposed CaS-S2TDP

sparsification algorithm learns to capture the spatio-temporal structures of the input spikes. There-

fore, unlike blind synapse pruning, the proposed approach makes it possible to pass the discovered

sparsity from the sparsification stage to the training phase, and produce good learning performance

in the end.

4.6 Experimental Settings and Benchmark

Using the approach described in [10], two LSMs with 135 and 90 reservoir neurons are set up

on a 3D grid, respectively. 80% of the reservoir neurons are excitatory while the rest of them are

inhibitory. Since the adopted benchmark is spoken English letter recognition, there are 26 neurons

in the readout layer, which is fully connected to the reservoir through plastic synapses. Further-

more, we adopt the discrete LIF neuronal model and the second-order synaptic model described

in [10].

The parameters of the STDP algorithms described in this work are selected by exploring the
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Figure 4.6: Two-step sparsification and classification. Reprinted with permission from Yingyezhe
Jin and Peng Li c⃝2017 IEEE.

design space to a certain degree and we summarize the chosen ones in Table 4.1. The maxi-

mum readout synaptic weight Wmax is set to 8.0. The initial weights of excitatory readout plastic

synapses are set to 1.0 while inhibitory synaptic weights are initialized to be a random value be-

tween 0 and -Wmax. We set the bit-width of readout synaptic weights to 10 bits.

The adopted benchmark is a subset of the TI46 speech corpus [80], which contains 10 utter-

ances of each English letter from “A” to “Z”. The speech samples were recorded from a single

speaker. 260 samples are in this benchmark. The time domain speech signals are preprocessed

by Lyon’s passive ear model [86], and encoded into 78 spike trains using the BSA algorithm [87].

Each input spike train generated in the preprocessing stage is sent to 32 randomly selected reservoir

neurons with a fixed weight randomly chosen to be 2 or −2.
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Table 4.1: Parameter settings of the proposed STDP algorithms. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2017 IEEE.

Parameter Value
A+ 3.0
A− 1.5
τ+ 4.0
τ− 8.0
∆W 0.016
cθ 5.0
δ 2.0
τc 64.0

During the supervised readout sparsification phase, all speech samples are presented to the

reservoir one by one while the CaS-S2TDP algorithm is only applied to tune the plastic synapses

of the corresponding readout neuron while other readout neurons are isolated. The process is

repeated for a sufficient number of iterations until the distribution of the readout synaptic weights

reaches to the steady-state. Then, we permanently remove zero-valued plastic weights and train the

readout layer with the proposed CaL-S2TDP algorithm for final training. A 5-fold cross validation

scheme is adopted to test the recognition performance for each LSM by randomly dividing entire

speech samples into 5 groups. The recognition decision is made right after each testing speech

sample is presented. At this time, the class label of the readout neuron with the highest firing rate

is regarded as the classification decision. The readout layer is trained for 500 iterations in order to

get decent learning performance.

4.7 Experimental Results

Using the experimental setups described in Section 4.6, we compare the learning performance

of CaL-S2TDP to both the simpler D-S2TDP algorithm of Section 4.2 and the competitive non-

STDP spike-dependent algorithm of [10]. We also compare the proposed CaS-S2TDP based spar-

sification algorithm with random and variance-based pruning [90] for both of which the algorithm

of [10] is used to train the readout.
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4.7.1 Classification Performance of CaL-S2TDP

We use the adopted benchmark described in Section 4.6 to test the LSM recognition rates with

three different readout learning algorithms and the results are shown in Table 4.2. The standard

deviations are obtained from five experiments. Here, the proposed readout sparsification is not

performed before the application of CaL-S2TDP. It turns out that D-S2TDP produces very low

recognition rates under both reservoir sizes, indicating that D-S2TDP is ineffective for the readout

learning when the synapses have a finite resolution. In Fig. 4.7, we visualize the distribution of

the readout plastic weights obtained after running the first ten training iterations. For D-S2TDP,

a considerable number of plastic readout weights quickly reach to the highest or lowest weight

value, which is a direct sign of synaptic memory saturation. Fig. 4.7(a) and (c) also suggest that the

poor performance of D-S2TDP may be attributed to the occurrence of synaptic weight saturation,

resulting from the lack of stop-learning mechanisms.

Table 4.2: Recognition rates of the LSMs with different readout training algorithms. Reprinted
with permission from Yingyezhe Jin and Peng Li c⃝2017 IEEE.

Reservoir Size [10] D-S2TDP CaL-S2TDP
135 92.3± 0.4% 68.8± 0.1% 93.8 ±0.5%
90 89.6± 0.5% 67.3± 0.4% 92.3 ±0.4%

The proposed CaL-S2TDP algorithms achieves good learning performances of 93.8% with 135

reservoir neurons and 92.3% with 90 reservoir neurons, respectively. Equipped with the prob-

abilistic update and stop learning conditions, CaL-S2TDP significantly outperforms the simpler

D-S2TDP by 25% in terms of recognition rate for both reservoir sizes. The dominance of the pro-

posed CaL-S2TDP algorithm can be further explained by the weight distribution in Fig. 4.7 (b) and

(d), where less plastic weights are saturated compared to the simpler algorithm.

To the best knowledge of the authors, the best reported performance on the same benchmark
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Figure 4.7: The distribution of readout synaptic weights after running first few training iterations.
(a) and (c): the distribution obtained under D-S2TDP with 90 and 135 neurons in the reservoir,
respectively; (b) and (d): the distribution under CaL-S2TDP with the same two reservoir sizes.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2017 IEEE.
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achieved by the standard LSM with 135 reservoir neurons is 92.3% [10]. In comparison to this

algorithm, the proposed supervised STDP algorithm CaL-S2TDP outperforms it by 1.5% with the

reservoir size of 135 neurons. CaL-S2TDP also produces a good recognition rate of 92.3% when

the size of the reservoir is reduced to 90 neurons, achieving a performance boost of 2.7% in this

case.

4.7.2 Sparsity Obtained by CaS-S2TDP

We examine the sparsity of the readout due to the proposed CaS-S2TDP based sparsification

scheme. After training the readout based on the proposed two-step sparsification and classification,

we report the percentages of zero-valued readout synapses and the final learning performances in

Table 4.3. We implement the random pruning policy and variance-based pruning of [90] and train

the readout with the bio-inspired algorithm [10] for comparison. The obtained sparsity as well as

learning performances are also shown in Table 4.3. Using the random pruning policy as a baseline,

we plot the performance boosts achieved by the variance-based and the proposed approach in

Fig. 4.8.

Table 4.3: Recognition performances with three sparsification methods. Reprinted with permission
from Yingyezhe Jin and Peng Li c⃝2017 IEEE.

Recognition Performance
Sparsity 135 Reservoir Neurons
% Random Variance Proposed
10% 90.7± 0.6% 91.5± 0.4% 92.7± 0.5%
18% 90.4± 0.5% 90.4± 0.8% 91.9± 0.4%
30% 83.8± 1.0% 85.0± 1.3% 90.7± 0.4%
Sparsity 90 Reservoir Neurons
% Random Variance Proposed
10% 86.9± 1.0% 87.7± 0.7% 91.5± 0.4%
18% 85.7± 1.2% 86.9± 0.8% 90.7± 0.4%
30% 89.2± 0.8% 89.6± 0.8% 91.1± 0.4%
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Figure 4.8: The performance boosts over the random pruning policy achieved by two different
readout sparsification approaches. The proposed CaS-S2TDP algorithm significantly boosts perfor-
mance compared to the random baseline and outperforms the variance-based approach. Reprinted
with permission from Yingyezhe Jin and Peng Li c⃝2017 IEEE.

As shown in Table 4.3, randomly removing the readout synapses can lead to apparent perfor-

mance degradation. The variance-based policy performs lightly better than the random baseline but

the improvement is not significant. In comparison to the above two approaches, the proposed CaS-

S2TDP algorithm delivers a decent learning performance under all considered levels of sparsity for

different reservoir sizes as shown in Table 4.3. Importantly, the proposed approach substantially

improves the effectiveness of readout sparsification compared to the random baseline. As shown

in Fig. 4.8, the STDP-based approach is superior than the variance-based rule. The proposed ap-

proach can boost the random baseline performance up to 6.9% whereas the maximum boost for

variance-based approach is only 1.2%.

4.8 Summary

In this chapter, we have proposed a novel calcium-modulated supervised STDP approach for

both classification and sparsification, targeting efficient readout training in the context of the liquid
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state machine. Via a classification teacher signal, the proposed depressive STDP and probabilis-

tic weight updates, CaL-S2TDP robustly delivers good learning performance with finite weight

resolutions. CaL-S2TDP addresses the issue of synaptic memory saturation by imposing an stop

learning condition modulated by the postsynaptic calcium concentration. Sparse readout layers can

be obtained by the presented CaS-S2TDP readout sparsification approach with little performance

gradation. Using speech recognition as a realistic benchmark, we have shown that CaL-S2TDP

outperforms all other studied bio-plausible supervised training algorithms and CaS-S2TDP based

readout sparsification mechanism is superior over all other investigated approaches.
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5. PERFORMANCE AND ROBUSTNESS OF DIGITAL LIQUID STATE MACHINES1

This chapter presents a systematic examination of performance and robustness issues of liquid

state machines (LSMs), focusing specifically on speech recognition and the targeted digital VLSI

implementation. In this chapter, we perform a systematic design space exploration of the LSMs

proposed in [10] and show that it is possible to attain good recognition performance while notice-

ably reducing design complexity. More specifically, we show that recognition performance can be

traded off favorably for a potentially significant reduction in reservoir size, synaptic weight and

membrane voltage resolutions. It shall be noted that these three key network design parameters

have a significant impact on the silicon area and power overhead of the VLSI implementation. To

shed a deeper light on how these design parameters influence the internal dynamics of the net-

work and finally recognition performance, we use several theoretical measures to characterize the

computational power of the LSM as a function of the design parameters. We correlate these the-

oretical measures with the corresponding real-life speech recognition performance by using the

widely adopted TI46 speech corpus [91] as a benchmark. Finally, to evaluate the robustness of the

hardware-based LSM, a key design concern for VLSI implementation in modern CMOS technolo-

gies, we model various manufacturing and noise induced failure and error mechanisms and show

the presented LSMs are in general tolerant to failures and errors.

5.1 Background

5.1.1 Speech Recognition Using the Liquid State Machine

The LSM based speech recognition can be constructed as depicted in Fig. 5.1 [15, 10]. Speech

signals are first preprocessed by the Lyon passive ear model [92] then encoded into spike trains by

the BSA algorithm [15, 93], and fed into a group of randomly selected neurons in the reservoir.

Input signals are processed in two steps. The first step takes place in the reservoir, where an

1 c⃝2016 Elsevier B.V. Reprinted, with permission, from Yingyezhe Jin and Peng Li, "Performance and robustness
of bio-Inspired digital Liquid State machines: A Case study of speech recognition", Neurocomputing, Volume: 226,
Feb. 2017, Pages 145 - 160.
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Figure 5.1: The LSM-based speech recognition system. 77 channels of spike trains preprocessed
by the Lyon passive ear model and BSA algorithm are used as input to the reservoir. Then the
reservoir projects the input spikes by a nonlinear transformation to the readout for further process-
ing. Finally, the readout is trained to classify different input signals by their temporal responses in
the reservoir. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

incoming spike train u(t) gets mixed and mapped to the responses of the reservoir, represented by a

higher dimensional transient state, rendering complex patterns more likely to be separable [94]. In

the second step, the responses of the reservoir are projected to the readout through plastic synapses.

For each readout neuron at time t, the net current it receives from the reservoir is given by:

Io(t) =
∑
i

woi · fi(t) =
∑
i

woi · fi[(u(t)], (5.1)

where fi(t) is the response of the ith neuron in the reservoir, and woi is the synaptic weight between

the ith reservoir neuron and the readout neuron. The integrated net current over [0, T] is:

∫ T

0

Io(t) =
∑
i

woi ·
∫ T

0

fi(t) =
∑
i

woi ·
∫ T

0

fi[u(t)]. (5.2)

As the integrated net current to each readout neuron is a linear combination of integrated outputs

coming from all reservoir neurons, each readout neuron can be treated as a linear classifier of

the responses of the reservoir, which can be considered falling into a feature space. Ideally, only

reservoir responses produced by input signals from the same class are expected to activate the
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correspondent readout neuron. Therefore, conceptually in the feature space, the hyperplane defined

by all woi’s separates these inputs from others. Finally, the task of speech recognition is a problem

of solving all these linear classification problems by tuning these synaptic weights between the

reservoir and readout layer. This can be achieved by applying a learning algorithm.

5.1.2 Learning Algorithm

Hebb’s postulate, which claims that neurons fire together wire together, was proposed and

widely accepted [95]. In particular, if the firing activity of neuron i tends to excite/inhibit the firing

activity of neuron j, the synapse connected from i to j will be potientiated/depressed. Based on

this principle, a number of biologically plausible learning algorithms can be used for training the

readout layer of an LSM. In the literature, temporal encoding has been adopted in several learning

rules, e.g. ReSuMe [11], I-Learning [58], tempotron [55] and SPAN [96]. Firing rate encoding has

also been adopted for developing an abstract learning rule [56].

The focus of this chapter is not to study a specific learning algorithm under the context of

LSMs, but to examine the performance and robustness of LSMs when a typical biologically plau-

sible learning rule is adopted. In other words, the emphasis of this work is placed upon the key

dynamical and network characteristics of the liquid state machine rather than a behavior of a given

learning rule.For this purpose, we have opted to use a hardware-friendly learning rule [10], which

is motivated by the abstract rule of [56]. We succinctly describe the key features of this adopted

rule below.

The adopted rule is based on the principle of Hebbian learning, under which the goal of the

learning process is to modulate the activity of the readout neurons according to the desired level,

and then tune the weights of plastic synapses correspondingly. More precisely, when a certain

readout neuron is expected to fire actively, we drive its firing activity to a high level, with the help

of certain teacher signals that implement supervised learning; while at the same time, we inhibit

the firing activities of other readout neurons.

To implement the adopted learning rule, we define the calcium variables cr and cd to indicate

the actual and desired firing activity of a postsynaptic neuron, respectively. To distinguish highly
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active neurons from inactive ones, a threshold cθ of the calcium variables is imposed - if the calcium

level is higher (lower) than the threshold, the neuron is considered to be at a high (low) activity. The

update of plastic synapses only happens when a presynaptic neuron fires and the actual calcium

concentration cr of the postsynaptic neuron is higher (or lower) than cθ:

wij → wij +∆w with prob. p+

iff neuronj fires & cθ < cr < cθ +∆c

wij → wij −∆w with prob. p−

iff neuronj fires & cθ −∆c < cr < cθ,

(5.3)

where wij is the weight of the plastic synapse from neuron j to neuron i, ∆w is the potentia-

tion/depression granularity, and the parameter ∆c is used for good generalization performance.

Potentiation or depression of synapses happens with the probability of p+ or p−, respectively. The

potentiation/depression of synapses is only activated when cr is in the specific ranges specified by

cθ and ∆c. This mechanism is used to avoid saturation of the plastic weights. This learning process

is visualized in Fig. 5.2.

Teacher signals are introduced to the readout layer to implement supervised learning. A teacher

signal injects a large positive or negative current to the corresponding neuron for the purpose of

modulating its real calcium concentration cr to the desired level of calcium concentration cd. More

specifically, when the samples from a certain input speech class are presented, the readout neuron

corresponding to this class is expected to be highly active (i.e. cd is high). Therefore, its firing

activity and calcium concentration are both driven to a high level by the teacher signals, whereas

other readout neurons are supposed to be inactive with a low cd. Consequently, these neurons are

driven to the highly inactive region where cr is low by their teacher signals. The combined use of

the learning rule (shown in Equ. 5.3) and the teacher signals potentiates or suppresses the plastic

synapses in a way that leads towards separation of different input classes.
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Figure 5.2: Learning process of the LSM. Four regions in the diagram show how different com-
binations of cd and cr of the postsynaptic neuron determine the synaptic plasticity (cd and cr are
only defined for readout neurons). The two arrows represent depression and potentiation imple-
mented by the teacher signals, driving the activity of a neuron to the desired region (highly active
or inactive), where the corresponding synaptic weights are tuned. More precisely, potentiation of
the corresponding synapses happens in the desired region marked by “P” and depression happens
in the desired region marked by “D”. Reprinted with permission from Yingyezhe Jin and Peng Li
c⃝2016 Elsevier B.V.

5.1.3 Digitized Simulation Models

In terms of simulation of LSMs, we adopt the digitized leaky-integrate-and-fire (LIF) model

for neurons and second order response model for synapses adopted from [10]. The dynamics of

the membrane voltage of a neuron can be described by the following equation:

V n
m = V n−1

m − V n−1
m

τm
+ IsynRsyn + ItRt, (5.4)

where the superscript of V is the index of the time step, Vm and τm are the membrane voltage and

the time constant of its first-order dynamics, respectively, Isyn models synaptic input current, It

models the input current from the teacher signal, and Rsyn and Rt model the synaptic resistance
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and the input resistance associated with the teacher signal. If the membrane voltage (Vm) of a

neuron reaches or exceeds the threshold voltage Vth, the neuron fires and its membrane voltage is

reset to the resting potential Vrest. There is an absolute refractory period τrefrac associated with

each spike, during which a fired neuron cannot fire again.

The calcium level of a neuron is used to model its firing activity to trigger the learning rule.

The dynamics of the calcium level is modeled as:

Cn = Cn−1 − Cn−1

τc
+
∑
i

δTn,Ti
. (5.5)

Here τc is the time constant of this first-order model, i is the index of the spike emitted from this

neuron, and δx,y is the Kronecker delta whose value is 1 if x = y, and 0 otherwise. Ti is the time

when the neuron transmits its ith spike and T n is the simulation time.

The synaptic current Isyn to each neuron is modeled as:

Isyn =
∑
i

∑
j

Wi · Syn(T n, Tij +Dij), (5.6)

where i and j are indices of the presynaptic neurons and the spikes, respectively. Specifically,

Wi represents the weight of the synapse that connects to the ith presynaptic neuron. Tij is the

firing time of the jth spike emitted from the ith presynaptic neuron, and Dij is the corresponding

synaptic propagation delay. Syn(·) is the digitized second-ordered dynamic response of a synapse

to an incoming spike:

Syn(T n, Tij +Dij) =

1

τs1 − τs2
· e−

Tn−Tij−Dij
τs1 · S(T n − Tij −Dij)

− 1

τs1 − τs2
· e−

Tn−Tij−Dij
τs2 · S(T n − Tij −Dij).

(5.7)

τs1 and τs2 are two time constants of the model. S(·) is the unit step function. The term 1
τs1−τs2

normalizes the response function such that the integrated response of each spike is normalized to
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one.

The setup of the parameters in the neuron and synpatic model can be found in Section 5.3.

5.1.4 Adopted Speech Benchmarks

In order to benchmark the performance of our LSMs for speech recognition, three subsets of

TI46 speech corpus [91] are used. The speech samples in TI46 were collected in a low noise sound

isolation booth using an Electro-Voice RE-16 Dynamic Cardiod microphone at 12.5KHz sample

rate.2

The first benchmark is widely used in testing the performance of reservoir computing based

speech recognition [97, 15, 98, 67]. It contains isolated word utterances of 5 different speak-

ers. 10 different utterances of each word from “zero” to “nine” are recorded for each speaker.

Thus, this benchmark contains 500 speech samples. This is the main benchmark used to study the

performance and robustness of the LSMs in this chapter. The second benchmark includes 1,000

utterances of isolated digits in the training set of the TI46 speech corpus. This large subset contains

speech samples from 10 speakers. For each speaker in the subset, there are 10 recorded samples of

each spoken digit. The third subset contains 10 utterances of each English letter from “A” to “Z”,

which were recorded from a single speaker. There are 260 samples in the third benchmark.

These speech samples are preprocessed by Lyon’s ear model, which consists of three prepass-

ing stages: a band-pass filter bank, a half wave rectifier with automatic gain control [92], and BSA,

an algorithm converting time domain input signals into spike trains [93, 15]. The average input

spike rates of different spoken digits in the first benchmark are illustrated in Table 5.1. Each re-

ported rate is the average rate of different recordings of the same digit. To visualize these speech

samples, we show several representative input spike trains of the words “zero”, “three”, “six” and

“nine” with the corresponding reservoir responses in Fig. 5.3. The resolutions of synaptic weights

and membrane voltages in the reservoir are 10 bits and 16 bits, respectively. Other detailed param-

eter settings can be found in Section 5.3.

It is worth noting that although the spike rates of input spikes remain roughly the same for

2More information of TI 46 is available from https://catalog.ldc.upenn.edu/LDC93S9.
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different utterances, it can be observed from Fig. 5.3 that the reservoir is able to produce responses

with distinctive spatio-temporal characteristics in response to different input speech samples. It

can be expected that the mapping from the space of input spikes to the higher-dimensional space

of reservoir responses contributes to differentiability across different speech classes.

Table 5.1: Average input spike rates for different words in the first benchmark. Each spike rate
is the average rate of different recordings of the same digit. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Digit 0 1 2 3 4 5 6 7 8 9
Spike rate (kHz) 9.0 7.0 8.5 7.7 7.2 8.2 7.5 7.5 5.7 7.6

5.1.5 Network and Training Setup

The spiking network and training are set up according to [10]. As illustrated in Fig. 5.1, the

reservoir has a grid structure. 20% of neurons in the reservoir are randomly chosen to be inhibitory

while the rest are excitatory. The connectivity in the reservoir is constructed randomly under a

distribution such that the wiring probability of any two neurons (Ni and Nj) drops exponentially

in the distance between them [54]:

Pconnect(Ni, Nj) = k · e−
D2(Ni,Nj)

r2 ( i ̸= j), (5.8)

where D(Ni, Nj) is the Euclidean distance between these two neurons, r is chosen to control

the exponential decay of the probability, and k is a constant depending on the neuron type. The

parameters are chosen according to the values suggested by [10].

In the network, each input spike train generated in the preprocessing stage is sent to four

randomly chosen reservoir neurons through synapses with fixed weights randomly chosen to be

Wmax or Wmin, where Wmax and Wmin are maximum and minimum synaptic weights used in
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Figure 5.3: (a)-(d) are the input spike trains of the utterances “zero”, “three”, “six” and “nine”,
with the y-axis showing the indices of the input channels. (e) - (h) show the corresponding neuron
activities in the reservoir for the words “zero”, “three”, “six’ and “nine”, respectively. The y-axis
represents the indices of the reservoir neurons. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2016 Elsevier B.V.

the simulation, respectively. Reservoir neurons are fully connected to each readout neuron by

plastic synapses, whose weights are randomly initialized between Wmax and Wmin. The plastic

synapses are trained by the adopted learning algorithm. The synaptic weights in the reservoir are

fixed according to the neuron type. The detailed parameter settings of synaptic connections can be

found in Section 5.3.

To test the performance of the various LSM designs considered in this chapter, we adopt a

5-fold cross validation scheme to determine the speech recognition rate. In this setup, all speech

samples are randomly divided into five groups. Based on these samples, a fixed LSM is trained

and tested for five times with different training and testing datasets. For the ith (i = 1, 2, 3, 4, 5)

time, the ith group is used for testing and the remaining data for training. The recognition decision

is made after each testing speech sample is played. At this time, the readout neuron that has

fired most frequently is the winner and its associated class label is deemed to be the classification
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decision of the LSM. Finally, the five classification rates obtained in the testing stage are averaged

as final performance measure.

5.1.6 Performance of the Base-line LSM

We set up a baseline LSM as a reference for the presented design space exploration. There

are 135 neurons in this baseline LSM and the resolutions for membrane voltages and synaptic

weights are set to be 16 bits and 10 bits, respectively. The detail of other parameter settings will

be discussed in Section 4. The best recognition rate of this LSM is 99.2% based upon the first

benchmark described in Section 5.1.4.

5.2 Theoretical Measures of Computational Performance

To gain insights into the LSM network dynamics and its relation to learning performance, we

adopt three theoretical measures of computational power to analyze the presented LSMs. First,

we measure the “fading memory” of the reservoir of a given LSM [54, 97], characterizing how

well the reservoir “memorizes” temporal input patterns. From a dynamic system point of view, we

examine the operating regime of an LSM and quantify its distance to the so-called edge between

order and chaos [99]. Finally, from a task-oriented point of view, we analyze the LSMs in terms of

their separation property and generalization capability [100].

5.2.1 Fading Memory

First of all, we theoretically estimate how well the dynamics in the reservoir helps to “memo-

rize” different input patterns by measuring its fading memory3 (Fig. 5.4).

By observing the responses in the reservoir, we intuitively approximate the fading memory. As

proposed in [54], one way to empirically measure fading memory is to count the number of firing

neurons and calculate the duration of firing activity in the reservoir after injecting random temporal

signals into the LSM. Long lasting and strong firing activity is usually desirable because it implies

the strong memory capacity possessed by the reservoir.

3see [54] for a detailed definition.
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Figure 5.4: Fading memory of an LSM. The temporal input stream u(t) is transformed by the
reservoir into a high-dimensional signal y(t), which holds the information about the recent history
of the input u(t) ([t0−T, t0]). Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
Elsevier B.V.

5.2.2 Edge of Chaos

Second, we theoretically analyze an LSM from a dynamic system point of view. Related

studies [101, 102] suggest that dynamic systems operating near the phase transition between order

and chaos (i.e. “edge of chaos”) possess a good amount of computational power. To determine the

ordered and chaotic regimes for discrete dynamical systems driven by online inputs, [99] proposed

to track the evolution of state difference resulting from two close initial states while the system

is driven by the same input. The state difference of a chaotic system is highly amplified while

that of an ordered system vanishes quickly. One can quantitatively analyze the phase transition by

Lyapunov exponents [103]. We look for the exponent λ that is determined by

δ∆T ≈ δ0 · eλ∆T , δ0 → 1,∆T ≫ 1. (5.9)

Here δ0 represents the initial state difference at time 0 and δ∆T is state separation at time ∆T .

As depicted in Fig. 5.5, λ > 0 suggests that the system is chaotic while λ < 0 indicates an

ordered system. The dynamical system sits on the transition boundary if its λ is equal to 0. In our
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Figure 5.5: Edge of chaos of an LSM. With the same input u(t) and two initially close states (s1(t)
and s2(t)), the difference between two states is recorded and measured as the dynamics of the LSM
evolves. The Lyapunov exponent λ theoretically reveals whether or not the system is on the phase
transition boundary. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier
B.V.

measurement, we define the state of the LSM as a binary vector s(t) = [s1(t), s2(t), · · · , sn(t)],

with si setting to one when the ith reservoir neuron fires at time t. The Hamming distance between

two states is defined as the state difference.

5.2.3 Separation and Generalization

Third, as illustrated in Fig. 5.6, we investigate the theoretical computational power by quanti-

tatively analyzing two essential properties, i.e. separation and generalization, of an LSM to char-

acterize its performance from an application perspective [100]. Separation of the reservoir reflects

the kernel-quality of the neural circuit and generalization measures how well the reservoir can

generalize a learned function to new input streams.

As suggested in [100], the separation and generalization properties of the reservoir are esti-

mated by computing the rank of an n × m matrix M, where n is the number of state variables

of the reservoir, m is number of inputs, and each column of M is the state vector xui
(t0) under

the incoming input stream ui at a fixed time point t0. To measure separation property in our case,

90



The reservoir 

of LSM

u1(t) y1(t)

The reservoir 

of LSM

u�1(t) y�1(t)

y1(t)

t

y�1(t)

The reservoir 

of LSM

u2(t) y2(t)

Train with 

different 

inputs u1(t) 

and u2(t)

Test with u�1(t), 

which belongs to 

the same class as 

u1(t)

y2(t)

t

t

Separation

Generalization

Figure 5.6: Generalization and separation of an LSM. When an LSM is trained with two different
inputs (u1(t) and u2(t)), the outputs of the reservoir (y1(t) and y2(t)) are expected to be distinct be-
cause of the separation property. While tested with the input u′

1(t) which belongs to the same class
as u1(t), the output of the reservoir y′1(t) should be similar to y1(t) because of good generalization.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

randomly generated input streams are used; while for approximating the generalization capabil-

ity, application-specific speech signals are used. According to [100], a large difference between

rS (the rank estimating the separation capability) and rG (the rank representing the generalization

capability) is usually a good indicator of strong computational power with respect to the specific

task at hand.

5.3 Performance of LSMs and Its Dependencies on Key Model/Design Parameters

The performance of an LSM immediately depends on several network design parameters and

these parameters in turn greatly determine the resulting hardware implementation cost. When it

comes to the application of speech recognition, one major design choice that needs to be made is

what level of precision should be maintained to guarantee the good performance of LSMs when

emulating the behaviors of neurons and synapses. This question is meaningful both from a biologi-

cal modeling and an engineering point of view. First, nervous systems in nature exhibit trial-to-trial

variability [104] in the present of intrinsic noise, therefore it is not necessary to have extremely

high precision in modeling the dynamics of neurons and synapses. Second, from an engineering

perspective, it is critical to choose an appropriate level of precision for the targeted application

because excessive precision leads to unnecessary increase in implementation overhead.
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To achieve the above goal, we conduct behavior-level simulations to study the performance of

LSMs with a broad range of design parameters. The considered parameters, including ones for the

digitized LIF neuron model, synaptic model, and learning rule, are summarized in Tables 5.2 - 5.4.

Some of the parameters have been adopted from [10]. In Table 5.2, two extra parameters, Vmax

and Vmin, are imposed as the upper bound and lower bound upon the membrane voltage Vm, for

the purpose of discreteness. The same discreteness is also applied to synaptic weights and calcium

concentrations. In Table 5.3, E and I indicate excitatory and inhibitory neurons, respectively. E →

I denotes connections from excitatory presynaptic neurons to inhibitory postsynaptic neurons. In

Table 5.4, the strength of the teacher signal It is set to be Vth

Rt
for potentiation, and −3Vth

4Rt
for

depression.

Table 5.2: Parameters of the neuron model. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2016 Elsevier B.V.

Parameter Value
Threshold voltage Vth 20mV
Resting potential Vrest 0mV
Time constant τm 32ms
Time constant τc 64ms
Refractory period τrefrac 2ms
Upper bound of membrane voltage Vmax 32mV
Lower bound of membrane voltage Vmin −32mV

Granularity of membrane votlage δV Vmax−Vmin

2nmem−bit
a

a nmem−bit: the resolution of the membrane voltage.

To attain the simulated recognition performance of each sample point of the design parameter

space, five randomly generated LSMs are trained and tested for speech recognition. To optimize

the performance, we train the LSMs for multiple iterations. For each generated LSM, the best

recognition rate is computed after multiple training iterations and we average five obtained best

recognition rates of the LSMs as the reported recognition rate. The standard deviation (SD) of the
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Table 5.3: Parameters of the synaptic model. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2016 Elsevier B.V.

Parameter Value
type value

Fixed weights E → E 3
in the reservoir E → I 6

I → E −2
I → I −2

Upper bound of synaptic weights Wmax E/I → E/I 8
Lower bound of synaptic weights Wmin E/I → E/I −8
Time constant τs1 of the E → E/I 4
second-order synaptic dynamics I → E/I 8
Time constant τs2 of the E → E/I 4
second-order synaptic dynamics I → E/I 2
Synaptic propagation delay Dij 1
Synaptic resistance Rsyn, Rt 1 Ω

Granularity of synaptic weights δW Wmax−Wmin

2
nsyn−bit

b

b nsyn−bit: the resolution of the synaptic weight.

five best recognition rates is measured to report variation of recognition performance.

To comprehensively study the relation between a broad range of parameters and performance,

we investigate from three aspects: resolution of the neuron model, resolution of the synaptic model

and size of the reservoir. As mentioned in Section 5.1.6, we use the base-line LSM as the reference

design (see Table 5.5 for the key parameter settings) and apply the first adopted benchmark for

conducting the performance study. In addition to simulation, we also theoretically characterize the

computational power of the targeted LSMs under various parameter settings.

5.3.1 Resolution of Membrane Voltage and Calcium Level

First of all, we examine how the precision of membrane voltage and calcium level of the neu-

rons can influence recognition performance. While reservoir and readout neurons have different

roles in the LSM, we separately analyze these two types of neurons. The performance of the LSM

with different resolution settings is plotted in Fig. 5.7 and Fig. 5.8. As mentioned in Section 5.3,
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Table 5.4: Parameters used in the learning rule. Reprinted with permission from Yingyezhe Jin
and Peng Li c⃝2016 Elsevier B.V.

Parameter Value
Granularity of calcium level δc 2ncal−bit−4 c

Upper bound of calcium level cmax 16× δc
Lower bound of calcium level cmin 0
Threshold of calcium level cθ 5× δc
Generalization parameter ∆c 3× δc
Teacher signal strength It

Vth

Rt
or −3Vth

4Rt

Learning probability p+, p− 0.004

2
nsyn−bit−4

Potentiation/depression granularity ∆W δW
c ncal−bit: the resolution of the calcium level.

Table 5.5: Key design parameters of the reference design. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Design Parameter Neuron Type Resolution /Value
Calcium Level Readout4 14 bits
Membrane
Voltage

Reservoir 16 bits
Readout 16 bits

Synaptic
Weight

Reservoir 10 bits
Readout 10 bits

Size of Reservoir N.A. 135 neurons

each plotted point in Fig. 5.7 and Fig. 5.8 is the averaged recognition rate of the five recogni-

tion rates obtained by training and testing five randomly generated LSMs with different random

seeds for the generation of random connections inside the reservoir. Each error bar in the figure

represents the standard deviation (SD) of the five recognition rates with its length being 2× SD.

The curve with circles in Fig. 5.7 shows the simulated recognition rates of LSMs with a de-

creasing resolution of membrane voltage for reservoir neurons while the other design parameters

are fixed according to Table 5.5. The simulation results suggest that the recognition performance

only degrades slightly when the precision of membrane voltage for reservoir neurons is reduced
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Figure 5.7: Performance of the LSMs drops as a function of the decreasing bit-resolutions of the
membrane voltage and calcium level. Reprinted with permission from Yingyezhe Jin and Peng Li
c⃝2016 Elsevier B.V.

down to 6 bits. This phenomenon may be understood by noticing that under a low membrane volt-

age resolution, fixed and recurrent connections in the reservoir may still be able to propagate the

firing activities initialized by a few neurons to create rich dynamics in the network. But the resolu-

tion cannot be too low (e.g. below 3 bits or 4 bits) because the firing activity of the reservoir will

not reflect the critical information of speech samples well under a very low resolution. Similarly,

a low resolution for the membrane voltage of readout neurons will not cause much performance

degradation. As shown in the curve marked with “x” in Fig. 5.7, LSMs start to perform poorly

only when the resolution drops below 3 bits, where the average recognition performance is about

40%. The result suggests that the activation of the correct winning readout neuron for a given input

speech is not very sensitive to the bit resolution used for the membrane voltage of readout neurons.

To have a more comprehensive study of performance sensitivity to membrane voltage resolu-

tions, we test the performance under different combinations of resolution settings for the reservoir

and readout (shown in Fig. 5.8). The performance is not sensitive to wide range variations of
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Figure 5.8: Performance of the LSMs with different combinations of reservoir and readout mem-
brane voltage resolutions. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
Elsevier B.V.

membrane voltage resolutions, particularly for the case of the resolution of reservoir neurons.

The calcium level, used in the learning algorithm, is another important parameter associated

with readout neurons. The curve denoted by triangles in Fig. 5.7 manifests that the recognition

performance degrades noticeably as the resolution of the calcium level is lower than 10 bits. This

suggests that the calcium concentration plays an important role in learning and hence a fine reso-

lution may be needed to accurately tune the plastic synaptic weights of readout neurons to achieve

good performance. We also examine various combinations of the calcium level threshold (cθ) and

generalization parameter (c∆), which are two parameters of the learning rule (see Table 5.4), to

investigate their impacts on the performance. As shown in Fig. 5.9, the choices of the two learning

parameters within the considered range have no significant impact on the performance.

In addition to the simulated recognition performance presented above, we further use the three

theoretical measures of computational power mentioned before to characterize the performance
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Figure 5.9: Performance of the LSMs with different combinations of parameters in the learning
rule. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

impacts of the resolution of membrane voltage. As will be seen, these theoretical measures provide

largely consistent performance evaluations of the LSMs while offering additional understanding of

network dynamics and associated computing power. Note that the three theoretical measures aim

at examining the computational power resulting from the dynamics created in the reservoir, which

focus on the following analysis.

Fading Memory

To measure the fading memory, we inject 77 random temporal spike trains ending at 23ms into

the reservoir and record the responses of the reservoir (i.e. the number of firing neurons and the

duration of the firing activities). The impacts of lowering precision of reservoir neurons’ membrane

voltage on fading memory are shown in Fig. 5.10. The results clearly suggest that the reservoir

has large fading memory even when the resolution of its membrane voltage is reduced to 6 bits.

The observation is in agreement with Fig. 5.7 and once again implies that the implementation of
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Figure 5.10: Firing activities (fading memory) in the reservoir when the resolution of membrane
voltage for the reservoir is reduced. Three reservoirs with descending resolutions are tested by
injecting 77 random input spike trains that are all ended at 23ms. A lowered resolution does not
necessarily lead to reduced fading memory. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2016 Elsevier B.V.
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reservoir neurons can be simplified to lower hardware overhead without any significant degradation

of performance.

Edge-of-Chaos

Applying an approach similar to that is adopted in [105], we introduce an infinitesimal initial

state difference to characterize the operating regime of an LSM by using a pair of two slightly

different inputs. Two such input pairs are used in order to eliminate the randomness introduced

by the choice of specific inputs. For the first input pair, the only difference between the two input

spike trains results from one missing spike at 24ms from one spike train. For the second input

pair, the difference between two spike trains is due to one missing spike at 42ms from one of

the input spike trains. The two slight different inputs are only used to introduce an initial state

difference and after that a future state difference is used to compute the Lyapunov exponent. By

independently feeding the two different inputs to an LSM, the resulting state difference δ∆t is

observed at a future time point. To be specific, δ∆t is measured at ∆t = 300ms across the two

slightly different input streams, where ∆t is the elapsed time from when the initial state difference

occurs to the observation time point. Then the Lyapunov exponent λ is determined by [105]

λ =
1

∆t
ln(

δ∆t

δini
), (5.10)

where δini is the initial state difference introduced by the two slight different inputs.

Fig. 5.11 shows how the state separation temporally evolves due to a small input difference

for three LSMs with a descending membrane voltage resolution. It is obvious that although the

precision is reduced, the state difference remains roughly at the same level. In other words, the

reservoir’s membrane voltage resolution might not significantly influence its dynamics, which is

further confirmed by the calculated Lyapunov exponent λ shown in Table 5.6.

As can be seen from Table 5.6, the Lyapunov exponents of the three LSMs are relatively small

and close to zero, indicating that they operate in a region that is close to the transition boundary,

which is consistent to the corresponding good recognition performance. In addition, the calculated
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Figure 5.11: State separation under different resolution settings for membrane voltage in the reser-
voir. The temporal evolution of the Hamming distance between the two resulting states xu(t) and
xv(t) is shown. For the sub-figures on the left and right sides, the input u differs from input v due
to only one missing spike at time 24ms and 42ms, respectively. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Lyapunov exponents suggest that a low resolution of membrane voltage may be sufficient for

achieving good recognition performance.

Separation and Generalization

We use the method for estimating the separation and generalization capabilities mentioned in

Section 5.2.3. After applying 500 randomly generated input streams and 500 application specific

speech signals, we measure the ranks rG and rS respectively of the matrix M at five fixed time

points from 394ms to 399ms and report the maximum obtained ranks for estimation of separation

and generation. The rank difference ∆SG between rS and rG is calculated as shown in Table 5.7.

As shown in Table 5.7, interestingly, in the range which is considered for the membrane voltage

resolution of the reservoir, lowering the resolution does not affect the computational capability very

much. The approximated computational ability reconfirms that the good classification performance
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Table 5.6: Lyapunov exponents of LSMs with various resolutions of reservoir neurons’ membrane
voltage. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

LSM Resolution λ1 λ2 Recognition Rate (%)
1 16 bits 0.36 0.30 98.16%
2 10 bits 0.32 0.28 98.24%
3 6 bits 0.22 0.26 98.28%

Table 5.7: Estimated separation and generalization capabilities of the LSM as a function of reser-
voir neurons’ membrane voltage resolutions. Reprinted with permission from Yingyezhe Jin and
Peng Li c⃝2016 Elsevier B.V.

LSM Resolution rS rG ∆SG Recognition Rate (%)
1 16 bits 135 101 34 98.16%
2 10 bits 135 102 33 98.24%
3 6 bits 135 99 36 98.28%

might be achieved given the low resolution of the reservoir neurons’ membrane voltage.

5.3.2 Resolution of Synaptic Weights

Here we study how the resolution for synaptic weights affects the overall performance. Since

synapses within the reservoir have fixed efficacy while synapses connected to the readout are plas-

tic, we consider them separately when changing the resolution.

First, we take a close look at the synapses in the reservoir. The curve with circles in Fig. 5.12

shows the recognition rates of LSMs with different resolutions of synaptic weights for the reser-

voir synapses while the resolutions for other parameters are fixed according to Table 5.5. Clearly,

reducing the resolution of fixed synaptic weights has little impact on performance. This observa-

tion may be understood by recalling that no synaptic weight adaption takes place in the reservoir

and the main functionality of the reservoir is to create rich dynamics to map the input to a higher

dimensional space. As a result, low-resolution or even binary synapses may be sufficient for the
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Figure 5.12: Performance of the LSMs degrades as a function of the reduced bit-resolutions of
the synaptic weights. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier
B.V.

reservoir.

However, in terms of the plastic synapses between the reservoir and the readout, fine resolution

is desirable because synaptic weights with high precision guarantee the accuracy of adjusting the

location and orientation of the hyperplane implemented by the linear readout. We examine how the

precision of plastic synaptic weights influences performance experimentally. In the simulations,

10-bit synapses are used in the reservoir. The performance degradation of LSMs with different

resolution settings for plastic synapses can be seen in Fig. 5.12. We conclude that 8-bit resolu-

tion is needed for efficacy of plastic synapses because further reduction will cause a fairly large

performance loss.

We vary the resolutions of fixed and plastic synaptic weights together to obtain a complete

picture of how synaptic weight resolutions can affect performance. The simulation results shown

in Fig. 5.13 reconfirm that the resolution of fixed synapses has a limited effect on the performance

while the plastic synapses do immediately affect the overall recognition rates.
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Figure 5.13: Performance of the LSMs with different combinations of resolutions of fixed and
plastic synaptic weights. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
Elsevier B.V.

In the following, we use the three theoretical measures of computational power to correlate

with the above simulated recognition performance. The same experimental setup is used here as

what is mentioned in Section 5.3.1.

Fading Memory

After injecting 77 random spike trains into the reservoir and counting the number of fired

neurons and measuring the duration of the response, we obtain the fading memory of the reservoir

shown in Fig. 5.14. As depicted in Fig. 5.14, the synaptic resolution in the reservoir has limited

influence on fading memory, which explains why binary synapses can be used in the reservoir for

reducing the complexity of LSMs.
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Figure 5.14: Firing activity in the reservoir when the resolution of synaptic weights for fixed
synapses gets reduced. Similarly to the results shown in Fig. 5.10, reduction of synaptic weights
for the reservoir does not affect fading memory significantly. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Edge-of-Chaos

Two slightly different input streams are injected into the same reservoir and Fig. 5.15 shows

how state divergence temporally evolves due to a small input difference for three LSMs with a de-

scending resolution of the fixed reservoir synapses. By lowering the precision of synaptic weights,

we observe that the state difference decreases slightly. The characteristics of the reservoir dynam-

ics are reflected by the Lyapunov exponents λ shown in Table 5.8.

The computed Lyapunov exponents in Table 5.8 are relatively small and close to zero, suggest-

ing that the corresponding dynamics of the all three reservoirs are close to the “edge-of-chaos”,

and thus good performance can be achieved. And the Lyapunov exponent of the LSM with binary

reservoir synapses is even closer to zero, indicating that its dynamics is closer to the transition

boundary. In other words, by reducing the resolution of synaptic weights, it may be possible for

us to move the dynamics of the reservoir from the chaotic region towards the ordered region, and
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Figure 5.15: State separation under different resolutions for synaptic weights in the reservoir.
Similar to Fig. 5.11, the temporal evolution of the Hamming distance between the two resulting
states is shown. For the sub-figures on the left and right sides, the input u differs from input v due
to only one missing spike at time 24ms and 42ms, respectively. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

hence having the system operating at the transition boundary.

Separation and Generalization

Randomly generated input streams and application specific speech signals are applied to the

reservoir separately and we measure the ranks rS and rG respectively of the matrix M as mentioned

in Section 5.2.3. As seen in Table 5.9, the rank difference ∆SG almost remains the same when

lowering the resolution of the fixed synaptic weights, which suggests that low resolution does

not have a significant impact upon the computational capability. And therefore, good recognition

performance can be achieved under low resolution of reservoir’s synaptic weights.

In conclusion, low resolution of synaptic weights may be adequate to attain good computational

capability of the reservoir, and thus guarantees good separation and generalization. In terms of

the readout layer, however, high resolution synapses are required. It is worth mentioning that by

applying a coarser synaptic resolution, we can altogether lower the resolution of membrane voltage
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Table 5.8: Lyapunov exponents of LSMs with various resolutions of the reservoir synapses.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

LSM Resolution λ1 λ2 Recognition Rate (%)
1 10 bits 0.36 0.30 98.16%
2 5 bits 0.38 0.36 98.40%
3 1 bits 0.10 0.18 98.72%

Table 5.9: Estimated separation and generalization capabilities of the LSM as a function of fixed
synaptic resolutions. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier
B.V.

LSM Resolution rS rG ∆SG Recognition Rate (%)
1 10 bits 135 101 34 98.16%
2 5 bits 135 102 33 98.40%
3 1 bits 134 98 36 98.72%

for the reservoir and readout neurons. Finally in terms of neurons in both the reservoir and readout,

6-bit resolution for membrane voltage and 10-bit resolution for calcium concentration are sufficient

to guarantee good performance.

5.3.3 Size of the Reservoir

Another way to reduce the implementation cost is to cut down the size of the reservoir. To

examine this reduction’s impact on performance, we randomly remove a certain percentage of

neurons from the reservoir. The original reservoir contains 135 neurons. The percentage of the re-

moved neurons is varied from 1% to 90% and the resulting recognition rates are plotted in Fig. 5.16.

Here we use binary synapses for the reservoir, 8-bit synaptic resolution for the readout, 6-bit mem-

brane voltage resolution for both reservoir and readout neurons, and 10-bit calcium concentration

resolution for the readout. In the simulation, each time an LSM is trained and tested with ran-

domly chosen neurons being removed from the reservoir. The simulation results suggest that it is
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Figure 5.16: Performance degrades as the percentage of removed reservoir neurons increases.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

possible to get reasonably high performance without 30% of neurons but the performance begins

to degrade noticeably if more neurons get removed. In order to shed light in a theoretical perspec-

tive, we again extract the three measures of computational power for these LSMs with the same

experimental setup.

Fading Memory

77 random spike trains are injected into the reservoir for measuring fading memory. In terms

of the reservoir size, although fading memory is slightly weakened when squeezing the reservoir,

removing too many neurons yields a performance penalty since fading memory will quickly die out

or even vanish (shown in Fig. 5.17), making the reservoir incapable of generating rich dynamics.

In this case, good performance can still be obtained given that 40 neurons (30% of the original

size) get removed from the reservoir because fading memory is well preserved.
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Figure 5.17: Firing activity in the reservoir when its size gets reduced. Compared to the results
shown in Fig. 5.10 and Fig. 5.14, the fading memory stays nearly the same after removing 30%
neurons from the reservoir. Both the magnitude and duration of the responses are largely reduced
if more neurons are removed. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
Elsevier B.V.

Edge-of-Chaos

Two slightly different input signals are injected into the reservoir and Fig. 5.18 shows how

state separation temporally evolves due to a small input difference for three LSMs with descending

reservoir sizes. It is clear that by reducing the size of the reservoir, the state difference gradually

decreases; in other words, we might be able to change the dynamics of the reservoir from the

chaotic region to the ordered region and phase transition happens around the point where 30%

neurons get removed, which is further confirmed by the calculated Lyapunov exponent λ shown

in Table 5.10. The Lyapunov exponent of the second LSM in the Table 5.10 is reasonably close

to zero, indicating that the dynamics at this point lies very close to the edge of chaos, which

theoretically explains why decent performance can be obtained with this size. Furthermore, in this

particular case, LSMs will not function very well if the dynamics is in the ordered region.
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Figure 5.18: State separation for the reservoir with different sizes. Similar to Fig. 5.11, the tempo-
ral evolution of the Hamming distance between the resulting states is shown. For the sub-figures
on the left and right sides, the input u differs from input v due to only one missing spike at time
24ms and 42ms, respectively. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016
Elsevier B.V.

Separation and Generalization

The ranks rS and rG of the matrix M (see Section 5.2.3 for details) are obtained by feeding

randomly generated input streams and application specific speech signals into the reservoir, respec-

tively. As seen in Table 5.11, although the first LSM is shown to possess powerful separation and

generalization capabilities and has very good performance, the second LSM, whose ∆SG is not the

largest, also achieves good recognition performance. This interesting phenomenon can be under-

stood by noting that multiple dynamic regions can provide the LSM with good performance [100].

Nonetheless, further reduction beyond this point is reconfirmed to cause performance degradation.

5.3.4 Summary of Performance Study

Finally, we summarize the relation between a broad range of key network parameters and

the recognition rates with different levels of performance sensitivity in Table 5.12. Clearly, there
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Table 5.10: Lyapunov exponents of LSMs with various reservoir sizes. Reprinted with permission
from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

LSM Reservoir Size λ1 λ2 Recognition Rate (%)
1 135 neurons 0.10 0.18 98.92%
2 95 neurons −0.05 0.00 98.16%
3 54 neurons −0.40 −0.32 92.24%

Table 5.11: Estimated separation and generalization capabilities of the LSM as a function of the
reservoir size. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

LSM Reservoir Size rS rG ∆SG Recognition Rate (%)
1 135 neurons 135 98 37 98.92%
2 95 neurons 95 69 26 98.16%
3 54 neurons 54 36 18 92.24%

exists a large design space in which various network design parameters can be explored to trade off

between hardware overhead and performance. In particular, our experimental study presented here

demonstrates the possibility of reducing the network complexity, hence implementation overhead,

without incurring any significant degradation of performance. For instance, with the resolutions

and the reservoir size getting reduced to the suggested values in Table 5.12, the recognition rate

can still reach up to 98.16%.

The adopted theoretical measures of computational power are normally consistent with the real-

world performance. It is worth mentioning that the correlation between the theoretical measures

and performance might not be straightforward sometimes, because it is found that the LSM can

have numerous dynamical regimes with rich computational power for real-world applications.

5.4 Robustness of LSMs with Respect to Catastrophic Failures and Random Errors

The resilience of digital VLSI circuit has been one of the greatest design challenges in the

past decades due to the scaling of IC manufacturing technologies and aggressive sizing of transis-
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Table 5.12: Key network parameters and their corresponding performance sensitivity. Reprinted
with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Specifications Type Suggested setting Range Best/Worst Performance Sensitivity
Calcium Level Readout 10 bits 14− 8 bits 99.16%/ 93.76% Low/ Medium

Membrane Voltage
Reservoir 6 bits 16− 4 bits 98.52%/ 97.2% Low
Readout 6 bits 16− 4 bits 98.68%/ 98.12% Low

Synaptic Weight
Reservoir 1 bit 10− 1 bits 98.72%/ 98.08% Low
Readout 8 bits 10− 4 bits 98.36%/ 89.4% High

Size of Reservoir N.A. 95 neurons 135− 54 neurons 98.92%/ 92.24% Low/ Medium

tors. Modern integrated circuits (both analog and digital) are susceptible to a very wide range of

failure mechanisms. Therefore, it is worthwhile to examine the robustness of a given LSM when

implementing it using highly-scaled modern VLSI technologies for which process variations (e.g.

variations in transistors and interconnect parameters) and manufacturing defects (e.g. stuck-at-0

and stuck-at-1 faults) may introduce unavoidable parameter fluctuations, and cause various levels

of performance variation or even permanent failures [106, 107]. In addition, modern VLSI chips

are prone to errors in operation, which may result from environmental effects (e.g. temperature

variation and random power supply noises) and soft errors (e.g. single-event upsets due to cosmic

rays and crosstalk noise), potentially causing transient errors and rendering a VLSI-based LSM to

fail in numerous ways [108, 109].

Note that the above failure mechanisms may render rather different types of failure behavior.

Catastrophic manufacturing defects may cause permanent failures of certain circuit blocks. Statis-

tical manufacturing process variations may lead to increased circuit delay, hence producing timing

errors under certain inputs. While many different inputs are applied to a given logic circuit block,

the input dependency of timing errors may be viewed as adding random errors to the output of the

circuit block. Environmental effects, in particular, power supply noise can lead to timing failures

and hence errors in digital circuits. Since power supply noise has a significant random compo-

nent, the resulting errors may be modeled as random both temporally and in terms of occurrence

probability. Soft errors may lead to erroneous computations of certain output bits and also have

111



��������������
��������������
��������������

��������������
��������������
��������������

Dead 

neuron
��������������
��������������
��������������

Dead 

neuron

Dead 

neuron

Broken 

synapseBroken 

synapse

Broken 

synapse

(a) (b)

Figure 5.19: Modeling broken synapses and dead neurons in the LSM. (a): dead neurons; (b):
broken synapses. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier
B.V.

a strong random component. These failures are highly process and design dependent and an ac-

curate failure analysis is feasible only for a given the design of the targeted integrated circuit and

the adopted manufacturing process. Therefore, given the scope of this work, we only model these

failure mechanisms with certain abstraction and assess the general robustness of the proposed LSM

rather its particular hardware implementations.

As mentioned above, the failures cited above have two main effects in a digital circuit: 1)

catastrophic failures that cause certain circuit blocks to fail completely, and 2) random errors in

terms of both occurrence and magnitude. First of all, we model the first effect as broken synapses

and dead neurons. In the simulation, we assume catastrophic failures may result in permanent mal-

function of certain synapses or neurons, that is, some of them fail to respond to the coming spikes

and become completely nonfuctional (Fig. 5.19). This modeling approach effectively removes

such broken synapses or dead neurons from the network. To provide an insight about how LSMs

perform when subjected to random errors, we consider to introduce a random error probability for

key arithmetic blocks (i.e. adders, shifters and comparators) in the network. Furthermore, once an

error occurs, a normal distribution is used to model the amount of error produced relative to the

correct value.

Similar to the experimental settings in Section 5.3, in this experimental study, five LSMs are
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Figure 5.20: Performance degradation as a function of malfunction rates. The malfunction rates are
the percentages of broken synapses or dead neurons. Reprinted with permission from Yingyezhe
Jin and Peng Li c⃝2016 Elsevier B.V.

generated with random reservoir connections. For each LSM, we perform the 5-fold cross vali-

dation mentioned in Section 5.1.5 to attain the recognition rate at each targeted failure/error level.

The five obtained recognition rates are averaged as the reported rate and the corresponding standard

deviation (shown as the error bar with its length being 2× SD) is plotted.

5.4.1 Catastrophic Failures

To acquire a quantitative understanding of robustness, we model the effect of catastrophic

failures as causing the critical blocks (i.e. synapses and neurons) of the LSM to be non-functional.

In the simulation, this effect is equivalent to removing a certain amount of synapses or neurons

from the network.
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Broken Synapses

After a certain number of broken synapses being deleted from the LSMs, we measure the recog-

nition rates at different levels of severity of catastrophic failures and plot the results in Fig. 5.20.

Note that even at a fairly large failure level (such as 20%), the LSM can still achieve pretty good

performance (around 97%) under the cases where fixed or plastic synapses are broken, respectively.

It implies that LSMs are robust to potential “broken synapses” caused by process variations and

manufacturing defects. Furthermore, the classification performance is more sensitive to failures

of plastic synapses than those of fixed synapses. This can be understood again by noting that the

former play a key role in classification conducted by the linear readout neurons. Therefore, plastic

synapses shall be implemented with more robust circuit-level techniques.

Dead Neurons

We show the recognition rates of the LSM with different percentages of dead reservoir neu-

rons in Fig. 5.20. As can be observed, the recognition performance of the LSM is more sensitive

to dead reservoir neurons than broken reservoir synapses. A possible explanation for this dis-

crepancy is that reservoir neurons are fundamental processing/computing elements in the network.

Broken reservoir synapses may not necessarily knock out any neurons from the reservoir while

the existence of dead neurons certainly does. Hence, necessary steps of preventing a large num-

ber of neurons to fail are important for ensuring good performance. However, thanks to intrinsic

resilience and redundancy presented in the LSM, the recognition rate is still about 96% even with

20% of neurons stopping functioning.

Combination of Broken Synapses and Dead Neurons

Furthermore, we look at the compound effect of having simultaneous broken synapses and

dead neurons in Fig. 5.20. With 5% combined malfunction rate (5% of fixed and plastic synapses

are broken and 5% of reservoir neurons stop functioning), only about 1% performance drop is

observed. With 20% combined malfunction rate, the performance can still reach up to 94%.

In conclusion, it is clear that the catastrophic failures do have some impacts on performance.
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Although the examined failure rates are fairly large, the learning performance does not degrade a

lot, which reveals the good robustness of this neuromorphic system.

5.4.2 Random Errors

To perform this robustness study of the LSMs under random errors, we perturb outputs of

crucial arithmetic blocks (i.e. adders, shifters and comparators) with errors. We assume that the

error probability for each adder and shifter is 0.1 for simplicity. Once an error happens, a normal

distribution is used to model the amount of error introduced relative to the correct value for adders

and shifters. For each comparator, we consider the probability of generating erroneous output

because a comparator only outputs “0” or “1”.

Error in Adding Operations

To consider a somewhat stressed error scenario, we assume all adders used to implement the

neurons and synapses in the LSM are subjected to an error probability Perr of 10%. When an error

occurs, a normal distribution is used to model the magnitude of error as described before. As the

amount of injected error increases, we observe a significant performance degradation in Fig. 5.21.

For example, the LSM largely fails when the amount of error is larger than 20%.

We further study how the network performance may depend on adding errors occurring in

parts of the LSM. As shown in Fig. 5.21, when the reservoir is subjected to the error, the perfor-

mance only degrades by no more than 2% within the considered range. Hence, the recognition

performance appears to be insensitive to errors in the reservoir. In comparison, the performance is

much more sensitive to errors in the readout as performance drops down to 86% in the worse case.

This phenomenon may be understood by noting that additions are needed for both simulating the

neurodynamics of the readout neurons and implementing the learning rule. The former ultimately

determines the firing activity of a reservoir neuron which is a basis for interpreting recognition

decision; while the latter is responsible for tuning the plastic synaptic weights according to the

firing activities in the reservoir, playing a critical role in adjusting the corresponding hyperplanes

implemented by the linear readout neurons. However, given that the LSM still performs well un-
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Figure 5.21: Performance degradation as a function of the amount of error in adders. Reprinted
with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

der a large amount of error (e.g. 10%), a fairly noisy environment indeed, we do observe good

robustness of the network even with respect to errors in the readout.

Error in Shifting Operations

In this work, shifters are used to simplify multiplication and division operations [10]. Similar

to modeling output errors in adders, we introduce random errors to the outputs of the shifters in

the LSM with the error probability of 0.1 and the error amount modeled by a normal distribution.

The resulting performance as a function of the amount of shifting error is shown in Fig. 5.22. As

the shifters suffer from more error, the performance degrades very gracefully. Even 20% of error,

the performance degradation is less than 2%. Thus we can conclude that LSMs are insensitive

to error from shifters. This argument can be further supported by Fig. 5.22 where we separately

consider errors in the reservoir and readout. No significant performance penalty can be seen. It is

evident that the network performance is less sensitive to errors in shifters compared with adders.

This interesting phenomenon may be understood by noting that multiplication or division is only
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Figure 5.22: Performance degrades gracefully with an ascending amount of shifting error.
Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

used when calculating dynamics of neurons and synapses while addition is not only responsible

for the computation of dynamics, but also the update of plastic synaptic weights.

Error in Comparison Operations

The way to model random errors in comparators is slightly different from the previous cases.

Since comparators only output “0” or “1”, we consider the probability of generating the erroneous

outputs. As shown in Fig. 5.23, the performances at three error probability levels (5%, 10% and

20%) are measured. Since the worst performance penalty is nearly 90%, we conclude that error in

comparators does affect the performance. By further perturbing comparators in the reservoir and

the readout (Fig. 5.23), it appears that the performance is sensitive to errors in both the reservoir and

the readout. The reason might be that comparison is involved in determining the firing activities

of neurons and the adaptation of plastic synaptic weights. Any error in comparison might give

rise to unpredictable behaviors of neurons and synapses. For example, an error-prone comparator
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Figure 5.23: Performance drops dramatically with an increasing error probability. The impact
of comparing error from different parts of the LSM is shown. Reprinted with permission from
Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

can render a neuron fire a spike though its membrane voltage is less than the threshold. Similarly,

an error-prone comparator in a plastic synapse might mistakenly initiate weight adaption with the

learning rule being violated. Therefore, the LSM can be very sensitive to errors in comparison.

5.4.3 Summary of Robustness Study

Table 5.13 summarizes two types of catastrophic failure and three types of random error with

their impacts on performance. In general, the reservoir is much more insensitive to failure and error

compared to the readout, therefore the readout layer should be the main target of fault and noise

tolerance for hardware implementation. Furthermore, error effects associated with comparators

appear to have a high impact on performance. Hence, the comparators may be designed with a

high-level of robustness. Besides, the recognition performance is sensitive to addition error that

happens in the readout, and thus the adders in the readout should also be designed with a high-level

of robustness. The other arithmetic operations have been shown to be less critical for the overall
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Table 5.13: Typical types of failure and error with their impacts on performance. Reprinted with
permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Failure/ Error Type Range Worst degradation Sensitivity

Catastrophic failures in reservoir
Dead neurons 0%− 40% 5.48% Low/Medium
Broken synapses 0%− 40% 0.96% Low

Catastrophic failures in readout Broken synapses 0%− 40% 5.2% Low/Medium

Error in reservoir
Error in adders 0%− 20% 1.52% Low
Error in shifters 0%− 20% 1.44% Low
Error in comparators 0%− 20% 79.94% High

Error in readout
Error in adders 0%− 20% 5.88% Low/Medium
Error in shifters 0%− 20% 0.84% Low
Error in comparators 0%− 20% 87.68% High

performance and hence a less robust implementation may be explored to gain benefits in area and

energy consumption. Generally speaking, the studied LSMs appear to be robust to various types

of catastrophic failure and random error. This is very appealing and can be leveraged for efficient

hardware implementation while maintaining a good level of robustness.

5.5 Performance Study of LSM on Other Subsets of TI46

Table 5.14: Design parameters of different levels of design complexity. Reprinted with permission
from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

Design Specifications Type Complexity Level 3 Complexity Level 2 Complexity Level 1
Calcium Level Readout 14 bits 10 bits 10 bits

Membrane Voltage
Reservoir 16 bits 6 bits 6 bits
Readout 16 bits 6 bits 6 bits

Synaptic Weight
Reservoir 10 bits 1 bit 1 bit
Readout 10 bits 8 bits 8 bits

Size of Reservoir N.A. 135 neurons 95 neurons 54 neurons

To provide a more complete understanding on the trade-offs between design cost and per-

formance, we introduce two additional benchmarks, which are the second and third benchmark
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Figure 5.24: Classification performance of the LSM on the three adopted benchmarks decreases
as a function of design complexity. A reasonably good performance can be attained with reduced
complexity. Reprinted with permission from Yingyezhe Jin and Peng Li c⃝2016 Elsevier B.V.

described in Section 5.1.4, and three levels of implementation complexity with design parameters

shown in Table 5.14. The speech signals of the second and third benchmark are preprocessed by

the Lyon passive ear model [92] then encoded into 83 spike trains by the BSA algorithm [93, 15],

and fed into a group of randomly selected neurons in the reservoir. And other experimental set-

tings are the same as described in Section 4. We test the performance of the LSM on these two

additional subsets of the TI46 speech corpus, and the recognition rates of the LSMs on the three

different benchmarks adopted in this chapter are depicted in Fig. 5.24. In Table 5.14, the com-

plexity level 3 is the original setting in [10] and the complexity level 2 is the suggested setting of

this chapter (see Table 5.12). It is clear from Fig. 5.24 that the recognition rate degrades pretty

gracefully as the design complexity decreases for all three benchmarks. This suggests that within a

reasonably wide range, performance and design overhead can be rather nicely traded off with each

other, providing a rather good flexibility in achieving the overall design objectives.
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5.6 Summary and Discussions

This chapter presents a comprehensive performance and robustness study of bio-inspired dig-

ital liquid state machines for speech recognition. By examining a broad range of key network

design parameters and using real-world meaningful benchmarks, we shed light on the relationship

between design parameters and performance. We show that good performance can be maintained

while reducing the resolutions and reservoir size, both of which have immediate impacts on hard-

ware implementation overhead. To gain deep insights into the computational capability of LSMs,

we adopt three theoretical measures to illustrate the relation between performance and the de-

sign parameters and the results generally agree with the simulated performance. By applying the

theoretical measures, we also notice that multiple regimes can provide the LSM with sufficiently

rich dynamics for separation of different input samples. To provide practical suggestions for fu-

ture hardware implementation, we study the impacts of failure and error mechanisms introduced

by process variations and environmental effects upon the recognition performance, showing that

LSMs are fairly robust.

We have several main findings. First, in general, the implementation of the reservoir does not

appear to be critical and require a high level of precision and robustness as long as it is capable

of creating rich dynamics. One exception is the implementation of comparators which directly

impact the firing activities of the reservoir. On the contrary, robust and accurate arithmetic units

(comparators and adders especially) are desirable for the readout because they are critical parts

of the LSM. These insights are particularly useful in practice as they offer insightful guidance for

circuit implementation such that a good level of performance and robustness may be maintained

while avoiding unnecessary overdesign.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation presents the architectures and training algorithms for embracing high perfor-

mance and energy efficient deep spiking neuron networks. The issues of learning performance,

efficiency and hardware overhead are addressed when designing architectures and algorithms. We

summarize the major contributions of this dissertation as follows.

Training feedforward SNNs for reaching the comparable performance level of deep ANNs has

been a grand challenge in the neuromorphic computing community because of the complex tem-

poral dynamics and non-differentiable discrete spike activities of spiking neurons. In chapter 2, we

present a hybrid macro/micro level backpropagation (HM2-BP) algorithm for training deep SNNs

which operates directly on discrete spike events. In our HM2-BP, the spike-train level post-synaptic

potentials (S-PSP) at the micro level exactly capture the spike timing information. And the rate-

coded error is defined and efficiently computed and back-propagated across both the macro and

micro levels. Furthermore, we propose a decoupled S-PSP model to assist gradient computation at

the micro-level. Compared with the previous algorithms, our hybrid approach directly computes

the error gradient of the rate-coded objective function with respect to the network tuning param-

eters. The best performances of both fully connected and convolutional SNNs are demonstrated

over the static MNIST and dynamic N-MNIST datasets, outperforming the current state-of-the-

art results of SNN training techniques. We also show that the proposed approach achieves better

performance than those of traditional deep models when dealing with asynchronous spike streams.

While the reservoir of the standard LSM is usually fixed for relaxing the overall training dif-

ficulty, the fixed reservoir might not be an effective filter for specific applications, which provides

the opportunity of optimization for potential learning performance boost. In chapter 3, we pro-

pose a novel activity-based probabilistic STDP (AP-STDP) rule as a promising self-organizing

approach to construct plastic recurrent reservoirs. The issue of synaptic memory saturation is tack-
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led by the proposed stop-learning mechanism controlled by the activity measure. The principle

component analysis of the network dynamics is conducted to show that the proposed rule can gen-

erate an improved internal representation compared with all other studied STDP approaches. The

AP-STDP achieves a learning performance boost at up to 2.7% at low synaptic weight resolutions.

Furthermore, we propose a self-organizing LSM architecture with a hardware-optimized STDP for

reservoir tuning and an online readout reconfiguration scheme for sparsity. The proposed architec-

ture improves the average learning performance of a baseline LSM design by 2% while reducing

its energy consumption by 25% with little extra overhead.

The dense connectivity of the readout presents a bottleneck for the improvement of overall ef-

ficiency of the resulted LSM based neural processor. In chapter 4, we propose a unifying calcium-

modulated supervised STDP for both training and sparsification of readout synapses. For the first

time, the improved learning performance and sparsity, which are naturally competing objectives,

are achieved under an integrated algorithmic framework. The algorithm follows a two-step ap-

proach where the readout is trained for sparsity first by CaS-S2TDP and then trained for improved

learning performance by CaL-S2TDP with a stop-learning mechanism. We have demonstrated that

the proposed unifying algorithm outperforms a competitive non-STDP spike dependent algorithm

by up to 2.7%. And it can prune out the readout synapses by up to 30% without inducing significant

performance degradation.

The liquid state machine is a promising biologically inspired computational framework of

SNNs, which exploits the computation capability of spiking neurons with minimal training ef-

fort. In chapter 5, we present a comprehensive performance and robustness study of liquid state

machines for the purpose of guiding its hardware realization. The relation between a large space

of design parameters and learning performance is studied with insightful theoretical measures to

provide guidance for trade-offs in future hardware implementation of SNNs. We show that the

hardware implementation overhead can be minimized by decreasing the resolutions and reservoir

size while maintaining the good performance. From a circuit perspective, we investigate the im-

pacts of the modeled process variation and noise schemes upon the learning performance, showing
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that LSMs are fairly error-resilient. With this systematic study, we are able to offer practical sug-

gestions and guidances for future hardware realization of the energy efficient LSM based neural

processor.

In conclusion, with all the contributions in this research, we expect this dissertation would

help move the community forward towards high-performance spiking neural networks and energy

efficient neuromorphic computing.

6.2 Future Work

There are multiple potential directions that lead to further exploration and expansion of the

existing work. For example, we can combine the both feedforward and recurrent SNNs together

for explore more interesting architectures. Besides, the proposed backpropagation approach can

be extended to train recurrent spiking neuron networks. Instead of adopting the rate-coded error,

temporal-coded error might be used to exploit the temporal coding capability of SNNs and facilitate

the fast response and thus the classification decision can be made without seeing the entire spike

sequence. Moreover, it would be interesting to study the corresponding hardware implementation

of the HM2-BP with the comprehensive consideration of various design concerns. In this section,

we focus on two main potential directions from 1) architectural and algorithmic and 2) hardware

design perspectives.

6.2.1 Combination of feedforward and recurrent SNNs

It would be interesting to see the combination of the recurrent reservoir with multiple feed-

forward SNNs shown in Fig. 6.1 for targeting at more challenging benchmarks, such as the TI46

speech corpus with multiple speakers. The proposed backpropagation can be used to train the feed-

forward connections while the recurrent connections can be tuned by the proposed bio-inspired

STDP algorithm. This would enable us to gain further insight of architectural and training explo-

ration for SNNs.

124



Input 
Layer

Recurrent
Reservoir

Output 
Layers

: STDP for recurrent connections

HM2-BP

Feedforward 
Layers

Figure 6.1: A deep SNN with a recurrent layer and multiple feedforward layers.

6.2.2 Extension of the HM2-BP algorithm

It is well known that the recurrent connection is difficult to train [22]. To the best knowledge

of the author, tuning the recurrent reservoir using supervision has never been demonstrated before.

Therefore, it would be interesting to extend the proposed HM2-BP for training the recurrent spiking

neuron networks as shown in Fig. 6.2. The idea of backpropagation through time [34] might be a

starting point by which we can be inspired to further propose backpropagation algorithm to take

consideration of timing dependency generated by the recurrent connections. However, in order to

fully address the complex temporal dependency resulted from the recurrent connectivity, the timing

characteristics of the spiking neuron network shall be more carefully investigated. To better capture

and tackle the timing dependency, the objective function might need to be changed accordingly to

explicitly incorporate spike timings at the macro-level.
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Figure 6.2: Extension of the HM2-BP for training deep SNNs with recurrent hidden layers.

6.2.3 Architecture and algorithm co-design for deep SNNs

Another immediate extension of the current work is to design the corresponding neuromorphic

hardware with on-chip learning for backpropagation to enable the high performance SNN-based

VLSI system. Although the competitive performance can be achieved by the proposed HM2-

BP, it is might be fairly costly to be directly implemented in the hardware due to the complex

computation involved in S-PSPs and high-resolution weights that are required in backpropagation.

It can be a promising direction for co-designing the HM2-BP based training algorithms and the

hardware architecture with on-chip training capability to obtain a good trade-off between the high

performance, efficiency and hardware cost as illustrated in Fig. 6.3.
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Figure 6.3: The co-design of the neuromorphic hardware and the HM2-BP algorithm for the system
with online training capability.
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APPENDIX A

GRADIENT COMPUTATION FOR THE OUTPUT LAYER WITH LATERAL INHIBITION
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Figure A-1: The output layer with
lateral inhibition.

Without loss of generality, it is assumed that lateral inhibi-

tion exists between every pair of two output neurons. It is also

assumed that the weights for lateral inhibition are all fixed at

the constant value of w0. As shown in Fig. A-1, the total post-

synaptic potential (T-PSP) ami for the neuron i at the output

layer m can be unwrapped as

ami =
rm−1∑
j=1

wij e
m
i|j +

rm∑
l ̸=i

w0 e
m
i|l,

where the second term describing the lateral inhibition effects

between neurons in the same output layer.

The derivative of ami with respect to wij is
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=
∂
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(A-1)

Similarly for the neuron l of the output layer m, aml is given as

aml =
rm−1∑
p=1

wlp e
m
l|p +

rm∑
q ̸=l

w0 e
m
l|q.

Therefore, ∂aml
∂wij

is
∂aml
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= w0

∂eml|i
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. (A-2)
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Plugging (A-2) back into (A-1) and solving for ∂ami
∂wij

leads to

∂ami
∂wij

= γ emi|j

(
1 +

1

ν

rm−1∑
h=1

wih

∂emi|h
∂omi

)
, (A-3)

where

γ =
1

1− w2
0

ν2

∑rm

l ̸=i

∂em
i|l

∂oml

∂em
l|i

∂omi

.

(A-3) is identical to (2.17) except that the factor γ is introduced to capture the effect of lateral

inhibition.

For the output layer with lateral inhibition, the term ∂E
∂ami

of the macro-level backpropagation

defined in (2.14) is the same as the one without lateral inhibition.
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