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ABSTRACT

We give the wreath recursion presentations of iterated monodromy groups of post-critically

finite quadratic rational mappings fc whose ramification portrait are of the form

0 a2 ... am ∞ 1

To find a pattern of these wreath recursions, we compute the wreath recursions of iterated mon-

odromy groups of capture maps composed with the Basilica polynomial. This computation gives

rise to the notion of addresses, which is used to represent wreath recursions. Then we conjec-

ture that each capture map composed with the Basilica polynomial is topologically equivalent to a

post-critically finite quadratic rational mapping, and thus we conclude that the iterated monodromy

groups of fc can be represented by addresses.
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1. INTRODUCTION

1.1 Background and sketch of the method

Iterated monodromy groups of post-critically finite branched coverings can be presented by

wreath recursions. Let Ĉ ∪ {∞} be the Riemann sphere. Let f : Ĉ → Ĉ be a degree d (1 <

d < ∞) rational mapping of Ĉ to itself. Denote by Cf the set of all critical points of f and by

Pf := {f ◦n(c0) : c0 ∈ Cf , n ≥ 1} the set of all post-critical points of f . The mapping f is called

post-critically finite if Pf is finite. The iterated monodromy group of f (denoted IMG(f )) is defined

to be the quotient of the fundamental group π1(Ĉ\Pf , t) by the kernel of its monodromy action of

the tree of preimages of the base point t (see [1] for a detailed discussion of the definition of iterated

monodromy groups). The wreath recursion of IMG(f ) can be computed using Proposition 2.1 in

[2]. The computation requires a choice of generating sets for π1(Ĉ\Pf , t).

There is a rich amount of examples of iterated monodromy groups presented by wreath recur-

sions. One of the most important classes is the iterated monodromy groups of quadratic polynomi-

als (degree 2 branched coverings). These groups are studied in the paper [2]. The wreath recursions

for these groups are associated with the kneading sequences of the corresponding polynomials, and

thus the pattern of the wreath recursions is completely determined by kneading sequences. How-

ever, in other degree 2 cases, we do not know a pattern for the wreath recursions, which makes it

hard to study the corresponding iterated monodromy groups.

The goal of this paper is to give a method to compute the wreath recursions of iterated mon-

odromy groups of all post-critically finite quadratic rational mappings that are of the form fc =

z2 + c

z2 − 1
, c ∈ C, with ramification portrait

0 a2 ... am ∞ 1

Note that fc’s are also degree 2 mappings. Especially, we define a new type of “sequences” called

addresses to determine the wreath recursions. To do so, we pick a point a2 in a Fatou component

on the Basilica Julia set (which is the dynamics of the Basilica polynomial p−1 = z2 − 1) and
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iterate p−1 on this point. The orbit will be quite similar:

a2 ... am 0 −1

This motivates the usage of captures (see [3] for a discussion of captures). The critical points of

p−1 are 0 and ∞. Let σβ be a capture map (define in section 2.5 of [3]) such that σβ(∞) = a2.

Then the ramification portrait of σβ ◦ p−1 is

∞ a2 ... am 0 −1

Then we can make the following conjecture:

Conjecture. The function σβ ◦p−1 is topologically equivalent to some post-critically finite rational

functions fc.

By assuming the conjecture, we can conclude that the wreath recursion of IMG(fc) is the

same as that of IMG(σβ ◦ p−1) (Theorem 4.3). Hence IMG(fc) will be completely determined by

addresses. It remains compute IMG(σβ ◦ p−1) and give a complete description of addresses.

1.2 Outline of this thesis

Chapter 2 introduces a method of choosing a generating set for π1(Ĉ\Pσβ◦p−1 , t), gives the

first observation of wreath recursions, and defines the notion of addresses. Chapter 3 describes the

properties of addresses and use them to represent wreath recursion. Chapter 4 is the conclusion.

1.3 Notice about the conjecture

It is reasonable to make the above conjecture since σβ ◦ p−1 is also a topological branched

covering [3], and thus it makes sense to compute its iterated monodromy group; also, if we know

the above ramification portrait is the post-critical orbit of a degree 2 rational mapping, then the

only form of this mapping is
z2 + c

z2 − 1
(Lemma 4.1).

The proof of this conjecture is beyond the scope of this thesis and will be given in later research.

Another similar problem was studied in the paper [4].
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1.4 Notations

(1) We use letters without brackets to denote homotopy classses of curves. For example, we

use g∞ instead of [g∞] to denote a homotopy class of loops going around the point∞. The

homotopy product is denoted ·.

(2) Denote by B the Basilica Julia set, and RB the reversed Basilica Julia set. Let F be a Fatou

component on B orRB; the boundary of F is denoted ∂F .

(3) For a Fatou component F on the B orRB, those points on ∂F parameterized by the internal

angles j/2i, i, j ∈ N are called joint points. The point parameterized by 0 is call the root

point of this Fatou component. A joint point on ∂F is the root point for the next Fatou

component attached to F .
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2. COMPUTING WREATH RECURSIONS

2.1 The problem of choosing generating sets

Choose a point c on the parameter plane such that fc : Ĉ→ Ĉ is a post-critically finite branched

covering with ramification portrait of the form

0 a2 ... am ∞ 1

Critical points of fc are 0,∞. Let Cfc := {0,∞}; let Pfc be the set of post-critical points of fc.

Note, in particular, that fc(∞) = 1 and fc(1) = ∞. Hence 1,∞ ∈ Pfc , and∞ is in the cycle of

period 2, and thus the family of all quadratic rational mappings of the form fc =
z2 + c

z2 − 1
, c ∈ C

is denoted V2 [5]. Let Cc = Ĉ\Pfc . Fixing a base point t ∈ Cc, the fundamental group π1(Cc, t)

is a free group generated by |Pfc| − 1 elements. The generators of π1(Cc, t) can be taken to be

loops going around each point in Pfc in the positive direction. The choice of generating loops of

π1(Cc, t), however, depends not only on the coordinates of each post-critical point, but also on the

relative positions of loops and the coordinate of the base point t. For instance, let a, b ∈ Pfc such

that b = fc(a) and suppose a is to the left of b on Ĉ, and let a1, a2 be the first and second inverses

of a under fc, respectively. Let γa and γb be the loops going around a and b, respectively. Here γa

might be chosen to the left of γb or the other way around (See Figure 2.1 below), yet they might

result in different wreath recursions: for example, in the former case, the first inverse image of γa

might be a loop going around a1, while in the latter case, the first inverse image of γa might be a

loop going around a2.
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Figure 2.1: Different ways to choose a generating set.

The issue is that we do not know which of these choices is the best, a priori, in the sense of

dynamical consistency of all IMG(fc). Also, if the two inverse images of γa are simple paths (i.e.

not loops), then there is an issue of choosing the connecting paths of the inverse image of t with

t to form a new loop. Hence we need a consistent way of choosing generating sets. Ideally, we

would like the inverse images of loops to be consistent with the inverse images of points, i.e. the

first inverse image of γa being a loop going around a1 and the second inverse image of γa being a

loop going around a2.

2.2 First glance at IMG(fc)

Let fc be a post-critically finite quadratic rational mapping, and consider the forward orbit of

0 under fc. It eventually goes to∞ which forms a cycle with 1. Hence {f ◦n(0)|n ∈ N} = Pfc .

Let m be the smallest integer such that f ◦m(0) = ∞. Fix a base point t. It follows that the size

of the generating set of π1(Cc, t) is m. Let the generators g2, g3,...,gm, g1 be loops going around

f(0), f ◦2(0),...,f ◦(m−1)(0), 1, respectively, in counterclockwise (positive) orientation. Also denote

by g∞ the loop going around∞ in positive orientation, which is clockwise orientation around all

finite post-critical points. Note that g∞ is a product of all generators in a certain order and thus it
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is not in the generating set we choose. Nevertheless, we will view g∞ as a generator to maintain

consistency with the extended wreath recursions on Basilica groups to be described below. The

(first observation of) wreath recursion of IMG(fc) is as follows (using notations from [2]):

g2 = 〈〈∗, ∗〉〉σ

gk+1 = 〈〈gk, 1〉〉 or 〈〈1, gk〉〉, k = 2, ...,m− 1

g1 = 〈〈∗, ∗〉〉σ

g∞ = 〈〈g1, gm〉〉

(2.1)

Where ∗ stands for undetermined loops, and the presentation of gk+1 is undetermined.

Proposition 2.1. The iterated monodromy group of each post-critically finite fc has wreath recur-

sion (2.1).

Proof. Let P be a point in Ĉ. By a standard result of complex analysis, we have that there exist

open neighborhoods U and U ′ of P and fc(P ) respectively, and open neighborhoods V and V ′ of

0 in C, and biholomorphisms g : U → V and g′ : U ′ → V ′ sending 0 and fc(0) respectively to

0, such that the map g′ ◦ fc ◦ g−1 : V → V ′ is equal to z 7→ zi, i = 1 if P is not a critical point,

and i = 2 if P is a critical point. Since 0 and∞ are critical points of fc, and thus fc(0) and −1 are

critical values of fc, it follows that the lift of g2 by fc is mapped biholomorphically to the lift of a

loop γ going around 0 ∈ C by z 7→ z2. Since each point other that 0 in C has two preimages under

z 7→ z2, it follows that the lift of γ is a simple path. Hence the lift of g2 is also a simple path. Same

argument holds for g1. Moreover, all other post-critical points are not critical values, and thus the

lifts of each gk, k = 3, ...,m − 1,∞ are all loops. By Proposition 2.1 in [2], the wreath recursion

can be written as (2.1).

2.3 Extended wreath recursion on the Basilica group

The problem stated in section 2.1 can be solved by computing the extended wreath recursion

on the Basilica group and then applying captures on the Basilica Julia set B, which is the Julia set

of the quadratic polynomial p−1 = z2− 1. Later we will use the Basilica Julia set and the reversed
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Basilica Julia set RB (which is the Julia set of f0 =
z2

z2 − 1
) interchangeably, since they have the

same dynamics.

We start by picking an arbitrary finite Fatou component, denoted F2, on B and apply p−1 on

F2. Then the image will be another Fatou component. Iterating this process, we obtain an orbit of

Fatou components and the image will eventually be F0, which is the Fatou component containing 0,

and form a cycle with F−1, the Fatou component containing −1. In fact, p−1 is a homeomorphism

between the closure of each Fatou component, except for F0, on this orbit. In practice, we only

need to pick a point a2 inside F2 and iterate p−1 on a2. The orbit of this point is in one-to-one

correspondence of that of F2, i.e. p◦k−1(a2) ∈ p◦k−1(F2). Also let m be the smallest integer such that

p◦m−1 (a2) ∈ p◦m−1 (F2) = F0. Note that m <∞ since it takes only finitely many steps for F2 to go to

F0 under iteration of p−1.

The Basilica group is described in Section 3.3 of [6]. To compute the extended wreath recursion

on the Basilica group at F2, we first impose one puncture on each p◦k−1(F2) by simply removing the

point p◦k−1(a2), for k = 0, 1, ...,m+ 1. Define PF2 := {p◦k−1(a2)|k = 0, ...,m+ 1}. Then fix a base

point t = 1−
√
5

2
. In this way we obtained a partial self-covering p−1 : Ĉ \ p−1−1(PF2)→ Ĉ \ PF2 .

Definition 1. The extended wreath recursion on the Basilica group at F2 is the wreath recursion of

the partial self-covering p−1 : Ĉ \ p−1−1(PF2)→ Ĉ \ PF2 .

Remark. The extended wreath recursions on the Basilica group do not define new iterated mon-

odromy groups. Indeed, if we define IMG(F2, t):= π1(Ĉ\PF2 , t)/Ker(Φ), whereKer(Φ) = {γ ∈

π1(Ĉ \ PF2 , t)|∀x ∈
⊔
n p
◦(−n)
−1 (t), γx = x} [6], then all loops going around the imposed puncture

points will be in Ker(Φ), and thus IMG(F2, t) is isomorphic to the Basilica group. Nevertheless,

for brevity, we still say that the extended wreath recursion on the Basilica group at F2 is the wreath

recursion for IMG(F2, t), or IMG(F2) when t is specified.

We can also use Proposition 2.1 in [2] to compute the extended wreath recursions. The funda-

mental group π1(Ĉ \PF2 , t) is generated by m+ 1 elements. Let the generators g2, g3,...,g0, g−1 be

loops going around a2, a3 = p−1(a2),...,0 = p◦m−1 (a2), −1 = p
◦(m+1)
−1 (a2), respectively. It is worth
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noting that technically we require a2 to be a strictly preperiod point of p−1 that eventually gets

mapped to 0, so that we are in fact extending the Basilica group by imposing more post-critical

points. Yet, in practice, it does not matter which point is removed inside a Fatou component be-

cause of the one-one correspondence of p◦k−1(a2) and p◦k−1(F2). We only need to draw loops close

to the boundary of each Fatou components to make sure those loops will go around the (imposed)

post-critical points.

Remark. We need to show that there is a consistent way of choosing generating sets for all

IMG(F2). This requires the notion of addresses. Therefore, we will give the definition of ad-

dresses in this chapter and leave the detailed description to the next chapter.

It is known (see [7]) that the boundary of each Fatou component on B is homeomorphic to the

circle R/Z and that two adjacent Fatou components share only one joint point. We now give a con-

sistent parametrization of the boundary of each Fatou component. First, let the homeomorphism

θ0 : R/Z → ∂F0 be the unique conjugacy with z2 on the unit circle such that θ0(0) = θ0(1) = t.

Especially, all joint points are parameterized by angles j/2i, i, j ∈ N. Then pick an arbitrary joint

point b on ∂F0 and consider the attached Fatou component Fb. We define another homeomorphism

θb : R/Z → ∂Fb such that θb(0) = θb(1) = b and all other points are parameterized in the exact

same way as that of F0. Continuing this process, we get a consistent way of parameterizations, and

we will identify the boundary of each Fatou component with R/Z in this way. Hence every Fatou

component can be located by a sequence of angles that is of the form ( j1
2i1
, ..., jl

2il
).

Definition 2. The sequence of angles ( j1
2i1
, ..., jl

2il
), in which each jk, k > 1 is a positive odd integer

less that 2ik while j1 is either 0 or a positive odd integer less that 2i1 , is called the address associated

to a Fatou component.

Especially, the address of F0 is denoted (∅), and the address of F−1 is (0). With the notion of

addresses, we can easily locate a Fatou component and represent its orbit. We can also locate the

two inverses images of a Fatou component by computing the two branches of addresses. Then the

most natural way of choosing a generating loop is to draw a simple curve starting at t and go past

8



the smallest number of Fatou components by crossing the joint points, and then go around a post

critical point in counterclockwise orientation and follow the same path back to t. Hence each such

loop is also associated with the same address as that of F2. We will show in the next chapter that

the generating sets obtained in this way is indeed consistent.

Figure 2.2: An example of generating set: each generating loop is a union of a simple path and a
small loop around a puncture. The simple path crosses joint points.

Proposition 2.2. The wreath recursions of IMG(F2) are of the following form:

g2 = 〈〈1, 1〉〉

gk+1 = 〈〈gk, 1〉〉 or 〈〈1, gk〉〉, k = 2, ...,m− 1

g−1 = 〈〈1, g0〉〉σ

g0 = 〈〈g−1, gm〉〉

(2.2)

Where the presentation of gk+1 depends on the address of F2 (to describe in the next chapter).

Proof. The argument is exactly the same as that of Proposition 2.1. We merely need to note that

the only finite critical value of p−1 is −1 = p−1(0).

9



Comparing (2.1) and (2.2), the difference occurs at g2: in the above wreath recursion, the lifts

of g2 are trivial loops, while in (2.1), the lifts of g2 are simple paths. This difference leads to

another tool called captures.

2.4 Captures on the Basilica Julia set

We have seen that it is possible to choose a generating set for IMG(fc) such that its wreath

recursion is the same, at all generators but g2, as that of IMG(F2) for a corresponding F2. In order

to make their wreath recursions look completely the same, we apply capture on F2

We interpret the description of captures from Section 2.5 of [3] on the polynomial p−1. Recall

that an external ray parametrized by an angle β ∈ R/Z lands on the root point b of a Fatou

component of B whenever β = j
3·2i , where j is an integer less than 3 · 2i and does not divide 3 · 2i.

We also use β to denote this external ray, i.e. we view β : [0, 1] → Ĉ as a simple path such that

β(0) =∞ and β(1) = b.

FixingF2, there are two external rays landing on its root point b2. These two rays are parametrized

by k
3·2i and k+2

3·2i , respectively. Let β = k
3·2i and let a2 ∈ F2 be the pre-period point that is mapped

to 0 by p−1 as before. Connect the points b2 and a2 by a line segment and denote this line seg-

ment Lβ . The simple path Lβ ∪ β is called the capture path. Then define a path homeomorphism

σβ : Ĉ→ Ĉ such that σβ(∞) = a2 and σβ = Id outside a small neighborhood of Lβ ∪β. Suppose

the neighborhood of Lβ ∪ β is small enough that it does not intersect other Fatou components on

the orbit of F2. Then the inverse images of all generators except g2 under σβ ◦ p−1 are the same as

those under p−1. For g2 we have the following proposition:

Proposition 2.3. The lifts of g2 under σβ ◦ p−1 are simple paths.

Proof. We need to show that a2 is a critical point of σβ ◦ p−1. Since σβ is a homeomorphism, it

does have a critical point, and thus∞ is a critical point of σβ ◦ p−1. It follows that a2 is a critical

value by the definition of σβ .
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Corollary 2.4. The wreath recursion of the iterated monodromy group of σβ ◦ p−1 is of the form

g2 = 〈〈h, h−1〉〉σ

gk+1 = 〈〈gk, 1〉〉 or 〈〈1, gk〉〉, k = 2, ...,m− 1

g−1 = 〈〈1, g0〉〉σ

g0 = 〈〈g−1, gm〉〉

(2.3)

Where h is a word depending on the address of F2, and gk+1 also depends on the address of F2 (to

describe in the next chapter).

Section 3.2 will serve as the proof of this corollary.
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3. ADDRESSES

The remaining problem from the last chapter is to determine the presentations of gk for k 6=

−1, 0 (equivalently, k 6= 1,∞ on the reversed Basilica Julia set RB) in (3). This problem can be

solved by computing forward orbits of addresses and the two inverses of each address. Since the

generating loops gk can also be represented by addresses, the wreath recursions will be uniquely

determined by inverse addresses.

3.1 Forward orbit of a Fatou component represented by forward orbit of addresses

Denote by D−1 := Ĉ the dynamic sphere of p−1. For an arbitrary Fatou component F 6= F0,

the map p−1 : D−1 → D−1 induces a homeomorphism of ∂F and p−1(∂F ), and thus it induces an

angle map φ : R/Z→ R/Z, since the boundary of each Fatou component can be parametrized by

internal angles.

Definition 3. For an arbitrarily chosen Fatou component F on B (equivalently onRB), the forward

orbit of F is a directed graph (V,E) with vertex set V = {p◦m−1 (F )|m ∈ N} (equivalently V =

{f ◦m0 (F )|m ∈ N}), and edge set E defined to be the set of arrows starting at p◦k−1(F ) and ending at

p
◦(k+1)
−1 (F ), k ∈ N.

Proposition 3.1. The forward orbit of F can be represented by an orbit of addresses.

Proof. First, set F = F0. Then the forward orbit of F is the cycle:

F0 F−1

Hence we always have the cycle

(∅) (0)

Since 0 is a critical point of p−1, the map p−1 : F0 → F−1 induces an angle doubling map of their

boundaries φ : ∂F0 → ∂F−1 s.t. α 7→ 2α. On the other hand, if F 6= F0, then p−1 induces an

angle preserving map φ : ∂F → ∂p−1(F ) s.t. α 7→ α. It follows that all addresses that are of the

12



form ( j
2i

) for i > 1 are mapped to (0, j′

2i−1 ), where j′ ≡ j(mod 2i−1); and (1
2
) is mapped to (∅). By

continuity of p−1, all addresses that are of the form ( j1
2i1
, ..., jl

2il
) for i1 > 1 and will be mapped to

(0,
j′1

2i1−1 , ...,
jl
2il

) (j′1 ≡ j1(mod 2i1−1)), and then mapped back to (
j′1

2i1−1 , ...,
jl
2il

); while all addresses

that are of the form (1
2
, j2
2i2
, ..., jl

2il
) will be mapped to ( j2

2i2
, ..., jl

2il
). In this way we get an orbit of

addresses.

The proof of the last proposition allows us to make the following definition:

Definition 4. Let ( j1
2i2
, j2
2i2
, ..., jl

2il
) be an address. The forward orbit of this address is a directed

graph satisfying the following rules:

(i) If j1
2i1

= 0, then ( j1
2i1
, j2
2i2
, ..., jl

2il
)→ ( j2

2i2
, ..., jl

2il
)

(ii) If j1
2i1

= 1
2
, then ( j1

2i1
, j2
2i2
, ..., jl

2il
)→ ( j2

2i2
, ..., jl

2il
)

(iii) If j1
2i1

is such that i1 > 1 and j1 6= 0, then ( j1
2i1
, j2
2i2
, ..., jl

2il
) → (0,

j′1
2i1−1 ,

j2
2i2
, ..., jl

2il
), where

(j′1 ≡ j1(mod 2i1−1))

(iv) (1
2
) (∅) (0)

Remark. We use an address to represent a Fatou component F as well as each of the points in F ,

especially the root point. Also, by our way of choosing generating set, each generating loop can

also be represented by the same address as that of a corresponding Fatou component. We also use

a set of addresses to represent a simple curve that crosses only the root points. Hence a generating

loop can also be represented by a set of addresses. For instance, if the address of a gk is ( 1
22
, 1
22

),

then it is also represented by the set {( 1
22

), ( 1
22
, 1
22

)}.

Example 3.2. Pick the F2 whose address is ( 1
22
, 1
22

). Then the forward orbit of F2 is represented

by:

( 1
22
, 1
22

) (0, 1
2
, 1
22

) (1
2
, 1
22

) ( 1
22

) (0, 1
2
) (1

2
) (∅) (0)

13



3.2 Wreath recursions determined by addresses

First, we represent the lifts of each generating loop gk, for k 6= 2, 1,∞, by branches of the

address of the corresponding Fatou component. Divide the dynamic plane D−1 into two parts by

the union of external rays β1 = 1/3 and β2 = 2/3, which land on the base point t = 1−
√
5

2
. Denote

respectively by L and R the left part and the right part of D−1 divided by β1
⋃
β2 (see Figure 3.1).

For an arbitrary Fatou component F , we distinguish between two cases: F being onR and F being

on L.

Figure 3.1: Dividing the dynamic plane.

Definition 5. (The first and second branches of an address on R) Let F be a Fatou component on

R, then its address is either (∅) or of the form ( j1
2i1
, j2
2i2
, ..., jl

2il
), j1 6= 0. For (∅), the first branch is

defined to be (0), and the second branch is defined to be (1
2
). For ( j1

2i1
, j2
2i2
, ..., jl

2il
), the first branch

is defined to be (0, j1
2i1
, j2
2i2
, ..., jl

2il
), and the second branch is defined to be (1

2
, j1
2i1
, j2
2i2
, ..., jl

2il
).

Remark. Intuitively, given a Fatou component on R, the first inverse of its address is on L and the

second inverse is to the right.

14



It is a little bit tricky to define the two branches of an address on L. Let H+ denote the upper

half plane and H− denote the lower half plane. Pick a point a ∈ L
⋂

H+. Then a has two inverse

images under p−1: one is on H+
⋂
R and the other is on H−

⋂
R. If this a is a root point, then

it is associated with an address that is of the form (0, j1
2i1
, j2
2i2
, ..., jl

2il
), where j1 < 2i1−1. We

can set its first branch to be ( j1
2i1+1 ,

j2
2i2
, ..., jl

2il
), and second branch to be (

j′′1
2i1+1 ,

j2
2i2
, ..., jl

2il
), where

2i1 < j′′1 < 2i1+1 and j′′1 ≡ j1(mod 2i1). However, when a is a root point that is on the x-axis,

then its branches are ambiguous: the “first” branch could be on H+ or H−, and same applies to

the “second” branch. In order to rule out this ambiguity, we “require” a to be on H+. In other

words, if we have an imposed post-critical point p◦k−1(a2) inside a Fatou component whose address

is (0, 1
2
, 1
2
, ..., 1

2
), then we first draw a small loop around p◦k−1(a2), and connect the base point t with

this loop by a path crossing root points and avoiding H−. Denote this generating loop gk+1, and its

first inverse image will be inside a Fatou component on H−; its second inverse image will be on

H+. Therefore, we can make the following definition:

Definition 6. (The first and second inverse of an address on L) Let F be a Fatou component on

L, then its address is of the form (0, j1
2i1
, j2
2i2
, ..., jl

2il
). The first inverse of this address is defined to

be ( j1
2i1+1 ,

j2
2i2
, ..., jl

2il
); the second inverse of this address is defined to be (

j′′1
2i1+1 ,

j2
2i2
, ..., jl

2il
), where

j′′1 6= j1 and j′′1 ≡ j1(mod 2i1). The two inverses of (0) are equal: they are defined to be (∅)

Now we can give a criterion for computing the presentation of gk, for k 6= 2, 1, 0,∞.

Proposition 3.3. Let F2 be a Fatou component whose address is ( j1
2i1
, j2
2i2
, ..., jl

2il
). Let O be the

forward orbit of this address. Then each address in O associated to gk for k 6= 2, 1, 0 (equivalently

k 6= 2, 1,∞ on RB) has exactly one branch in O. If the first branch is in O, then gk = 〈〈gk−1, 1〉〉;

if the second branch is in O ,then gk = 〈〈1, gk−1〉〉.

Example 3.4. Let F2 be the same as that in Example 3.2. We exhibit the wreath recursion in the

following table:

15



Address 1st branch 2nd branch Presentation

( 1
22
, 1
22

) (0, 1
22
, 1
22

) (1
2
, 1
22
, 1
22

) To describe below

(0, 1
2
, 1
22

) ( 1
22
, 1
22

) ( 3
22
, 1
22

) g3 = 〈〈g2, 1〉〉

(1
2
, 1
22

) (0, 1
2
, 1
22

) (1
2
, 1
2
, 1
22

) g4 = 〈〈g3, 1〉〉

( 1
22

) (0, 1
22

) (1
2
, 1
22

) g5 = 〈〈1, g4〉〉

(0, 1
2
) ( 1

22
) ( 3

22
) g6 = 〈〈g5, 1〉〉

(1
2
) (0, 1

2
) (1

2
, 1
2
) g7 = 〈〈g6, 1〉〉

(∅) (0) (1
2
) g0 = 〈〈g−1, g7〉〉

(0) (∅) (∅) g−1 = 〈〈1, g0〉〉σ

Table 3.1: An example of wreath recursion determined by addresses.

It remains to give the recursion for g2. We use RB to exhibit the lifts of g2 under σβ ◦ p−1. It

is worth noting that we are in fact using σβ ◦ f0 to take the lifts, where σβ is the capture mapping

that maps 0 to a2 and fixes all other points outside a small neighborhood of the capture path.

Nevertheless, since RB and B are the same dynamics, the only difference is the coordinate of

each point on the dynamic planes, while the addresses are exactly the same under a modified

parametrization by R/Z. The base point on RB is chosen to be t = 1+
√
5

2
, which has itself to

be the first inverse image and −t = −1+
√
5

2
to the second inverse image. Denote by F∞ the

Fatou component containing ∞, and parameterize its boundary by θ : R/Z → ∂F∞ such that

θ(0) = θ(1) = t, and all other points are parameterized counterclockwise. Denote by (∅) the

address of F∞. Then the addresses of all other Fatou components are determined in exactly the

same way as those on B.

Denote, respectively, by g21 and g22 the first and second inverse image of g2. Then g21 is a

simple path starting at t ending at −t and crossing all the inverse images of the joint points that g2

crosses; g22 is also a simple path in the opposite direction that coincides with g21 outside F0 and

forms a loop with g21 on F0. Hence g21 and g22 are represented by the same set of addresses. The
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two connecting paths l0 and l1 are showed in the following figure:

Figure 3.2: Connecting paths.

The above description results in the following lemma:

Lemma 3.5. The presentation of g2 can be written as g2 = 〈〈l−11 · g21 · l0, l0 · g22 · l1〉〉σ, where the

product notation · is read from right to left.

Proposition 3.6. Let ( j1
2i1
, j2
2i2
, ..., jl

2il
) be the address of g2 and O be the forward orbit of this

address. Then g2 = 〈〈h, h−1〉〉σ, where h is a composition of generating loops whose addresses are

enclosed by the loop l−11 · g21 · l0.

Proof. The loops l−11 · g21 · l0 and l0 · g22 · l1 are represented by the same set of addresses as that

of g21 (as well as g22). Hence they go around exactly the same post critical points but in opposite
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orientations. It follows that h := l−11 · g21 · l0 and h−1 = l0 · g22 · l1.

Example 3.7. Let F2 be the same as that in Example 3.2. Then g2 is represented by {( 1
22

), ( 1
22
, 1
22

)};

thus g21 and g22 are represented by {( 1
22
, 1
22

), (0, 1
22
, 1
22

), (0, 1
22

), (1
2
, 1
22

)}. Hence h = g4g7 and

h−1 = g−17 g−14 . All products are read from right to left. Hence g2 = 〈〈g4g7, g−17 g−14 〉〉σ.

Figure 3.3: Two lifts of g2. Numbers stand for the subscript of each generator.
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4. CONJECTURE AND CONCLUSION

Conjecture. The function σβ ◦p−1 is topologically equivalent to some post-critically finite rational

functions, i.e. it has no Thurston obstructions (see [8]).

The proof of the above conjecture will be given in later research. We merely assume this

conjecture in this paper.

Lemma 4.1. Let f : Ĉ→ Ĉ be a degree 2 rational mapping with ramification portrait

0 a2 ... am ∞ 1

where 0 and∞ are critical points of f . Then f is of the form
z2 + c

z2 − 1
, c ∈ C.

Proof. Write f =
P (z)

Q(z)
, where P (z) and Q(z) are polynomials in C[x]. Since f has degree 2, it

follows that either degP (z) = 2 and degQ(z) ≤ 2, or degP (z) ≤ 2 and degQ(z) = 2. Moreover,

since f(1) =∞, it follows that Q(z) = z2 − 1 or z − 1.

(1) If Q(z) = z2 − 1, then

f ′(z) =
P ′(z)(z2 − 1)− 2zP (z)

(z2 − 1)2

f ′(0) = 0 =⇒ P ′(0) = 0 =⇒ degP (z) = 2 or 0. Since f(∞) = 1, degP (z) cannot be 0.

It follows that degP (z) = 2, an thus the coefficient of the highest term of P (z) is 1.

Write P (z) = z2 + bz + c, b, c ∈ C. Then

f ′(z) =
(2z + b)(z2 − 1)− (z2 + bz + c) · 2z

(z2 − 1)2

=
−bz2 − (2 + 2c)z − b

z4 − 2z2 + 1

Hence it is trivially true that f ′(∞) = 0. Since f ′(0) = 0 = −b, it follows that b = 0. Hence

f(z) =
z2 + c

z2 − 1
.
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(2) If Q(z) = z − 1, then

f ′(z) =
P ′(z)(z − 1)− P (z)

(z − 1)2

f ′(∞) = 0 =⇒ degP ′(z) = 0 =⇒ degP (z) = 1. This is a contradiction since we assume

f has degree 2, but neither P (z) nor Q(z) has degree 2. Hence Q(z) 6= z − 1.

Hence the only form of f is
z2 + c

z2 − 1
.

Proposition 4.2. The function σβ ◦ p−1 is topologically equivalent to a post-critically finite fc.

Proof. The ramification portrait of σβ ◦f0 (which is topologically equivalent to σβ ◦p−1) is exactly

that in the above lemma. Since we assume the conjecture, it follows that σβ ◦ f0 is of the form
z2 + c

z2 − 1
=: fc.

Therefore, we obtained our conclusion:

Theorem 4.3. The wreath recursion of IMG(fc), in which fc is post-critically finite, is the same as

the wreath recursion of an IMG(σβ ◦ p−1). Hence IMG(fc) can be represented by the addresses.

Proof. This is because two topological mapping are topologically equivalent if and only if their

iterated monodromy groups are the same.
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APPENDIX A

MATLAB CODE FOR FORWARD ORBIT OF ADDRESSES

clc

clear

K=input(prompt);%Input an address

l=length(K);

n=0;

while(length(K) =0)

if K(1)==0

K(1)=[];

disp(K);

elseif K(1)==1

K(1)=0;

disp(K);

else

K(1)=K(1)-1;

K=[0,K];

disp(K);%Displays each address on this orbit

end

n=n+1;

end

steps=n-1
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APPENDIX B

MATLAB CODE FOR BRANCHES OF ADDRESSES

clc

clear

A=input(prompt); %Input an address

B=A;

C=A;

if isempty(A)

B(1)=0;

C(1)=1/2;

elseif A(1) =0

B=[0,B];

C=[1/2,C];

else

B(1)=[];

B(1)=B(1)2;

C(1)=[];

[a,b]=numden(sym(C(1)));

C(1)=(a+b)/(2*b);

end

disp(’The first branch is:’);

B %Displays the first branch of the imputed address

disp(’The second branch is:’);

C %Displays the second branch of the imputed address
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