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ABSTRACT

In this dissertation, I address unorthodox statistical problems concerning goodness-of-fit tests

in the latent variable context and efficient statistical computations.

In epidemiological and biomedical studies observations with measurement errors are quite

common, especially when it is difficult to calibrate true signals accurately. In this first problem,

I develop a statistical test for testing equality of two distributions when the observed contami-

nated data follow the classical additive measurement error model. The fact is that the two-sample

homogeneity tests, such as Kolmogorov-Smirnov, Anderson-Darling, or von Mises test, are not

consistent when observations are subject to measurement error. To develop a consistent test, first

the characteristic functions of unobservable true random variables are estimated from the con-

taminated data, and then the test statistic is defined as the integrated difference between the two

estimated characteristic functions. It is shown that when the sample size is large and the null hy-

pothesis holds, the test statistic converges to an integral of a squared Gaussian process. However,

enumeration of this distribution to obtain the rejection region is not simple. Therefore, I propose a

bootstrap approach to compute the p-value of the test statistic. The operating characteristics of the

proposed test is assessed and compared with the other approaches via extensive simulation studies.

The proposed method is then applied to analyze the National Health and Nutrition Examination

Survey (NHANES) dataset. Although researchers considered estimation of the regression parame-

ters in the presence of exposure measurement error, this testing problem is completely new and no

one has considered it before.

In the next problem, I consider the stochastic frontier model (SFM) which is a widely used

model for measuring firms’ efficiency. In productivity or cost studies in the field of economet-

rics, there is a discrepancy between the theoretically optimal product and the actual output for a

certain amount of inputs and this gap is called technical inefficiency. To assess this inefficiency,

the stochastic frontier model is in use to include this gap as a latent variable in addition to the

usual statistical noise. Since it is unable to observe this gap, estimation and inference depend on
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the distributional assumption of the technical inefficiency term. Usually, an exponential or half-

normal distribution is widely assumed for the inefficiency term. In that sense, I develop a Bayesian

test for testing whether this parametric assumption is correct. I construct a broad semiparametric

family which approximate or contain the true distribution as an alternative and then define a Bayes

factor. I show the Bayes factor consistency under certain conditions and present the finite sample

performance via Monte-Carlo simulations.

The second part of my dissertation is about statistical computational problems. Frequentist

standard errors are of interest to evaluate uncertainty of an estimator and utilized for many sta-

tistical inference problems. In this dissertation, I consider standard error calculation for Bayes

estimators. Except some hypothetical scenarios, estimating frequentist variability of any estimator

possibly involves bootstrapping to approximate the sampling distribution of the estimator. In addi-

tion, for a Bayesian modeling combined with Markov chain Monte Carlo (MCMC) and bootstrap

the computation of the standard error of Bayes estimator is computationally expensive and im-

practical. Specifically, repeated application of the MCMC on each of the bootstrapped data make

everything computationally inefficient. To overcome this difficulty, I propose a clever use of the

importance sampling technique to reduce the computational burden. I apply this proposed tech-

nique to several examples including logistic regression, linear measurement error model, Weibull

regression model and vector autoregressive model.

In the second computational problem, I explore the binary regression with flexible skew-probit

link function which contains traditional probit link function as a special case. The skew-probit

model is useful for modelling success probability of binary response or count data where the suc-

cess probability is not a symmetric function of continuous regressors. In this topic, I investigate the

parameter identifiability of skew-probit model. I then demonstrate that the maximum likelihood

estimator (MLE) of the skewness parameter is highly biased. I develop a penalized likelihood

approach based on three penalty functions to reduce the finite sample bias of the MLE of the

skew-probit model. The performances of each penalized MLE are compared through extensive

simulations and I analyze the heart-disease data using the proposed approaches.
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1. INTRODUCTION

1.1 Goodness-of-fit test in the latent variable context

1.1.1 A Two Sample Problem

Suppose that we have observations Dx = {X1, . . . , Xnx} and Dy = {Y1, . . . , Yny} where

X1, . . . , Xnx are nx independently and identically distributed (iid) observations from a distribution

Fx and Y1, . . . , Yny are ny iid observations from another distribution Fy. Moreover assume that Dx

and Dy are independent each other. Testing H0 : Fx = Fy based on observations Dx and Dy has

been extensively studied in the literature.

The Kolmogorov-Smirnov test is one of the most widely used test based on the empiri-

cal distribution functions (EDF) (Kolmogorov, 1933; Smirnov, 1939a,b). The test statistic is

supt |F̂x(t)− F̂y(t)|, where F̂x(t) = (1/nx)
∑nx

i=1 I(Xi ≤ t) and F̂y(t) = (1/ny)
∑ny

i=1 I(Yi ≤ t).

Kuiper (1960) proposed a similar test statistic supt(F̂x(t)− F̂y(t))− inft(F̂x(t)− F̂y(t)) and Maag

and Stephens (1968) provided tables of the above test statistic.

An alternative to the Kolmogorov-Smirnov test is Cramér-von Mises type test (Cramér,

1928; von Mises, 1931; Smirnov, 1936, 1937). The test statistic has form of
∫∞
−∞{F̂x(t) −

F̂y(t)}2ω(t)dF̂ (t), where (nx + ny)F̂ = nxF̂x + nyF̂y is the EDF of pooled sample Dx and

Dy, ω(t) = 1 corresponds to von Mises statistic and ω(t) = {F̂ (1 − F̂ )}−1 corresponds to

Anderson-Darling statistic (Rosenblatt, 1952; Darling, 1957; Kiefer, 1959; Fisz, 1960; Anderson,

1962; Pettitt, 1976; Scholz and Stephens, 1987). See Stephens (1992) and references therein for

more information on tests based on the EDF.

Other than aforementioned tests, one can construct tests based on the empirical characteristic

function (Fan, 1997; Alba et al., 2001; Jiménez-Gamero et al., 2009). Zhang (2002, 2006) de-

veloped goodness-of-fit test using the likelihood ratio statistic following the Cressie-Read family

of divergence statistics (Cressie and Read, 1984). He demonstrated that the tests derived from

the likelihood ratio statistic are as powerful as traditional EDF based test for location difference
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problems, while they are more powerful in scale or shape change.

However, in observational studies, Dx and Dy may not be available, rather one can have repli-

cated contaminated observations for Dx and Dy. In that case, one can form averages out of repli-

cated observations, and apply the traditional two-sample tests on the averages. If the number of

replications is not large, this naive approach can produce misleading results. To circumvent this

issue, we propose a consistent two-sample test when direct observations on Dx and Dy are not

available. The detailed methodologies are discussed in Chapter 2.

1.1.2 Stochastic Frontier Model

Consider the following Cobb-Douglas production frontier model

log(Qi) = β0 + β1log(Ki) + β2log(Li)− ui + vi, i = 1, . . . , n, (1.1)

where Qi is total production (the real value of all goods produced in a year), Ki is capital input

(the real value of all machinery, equipment etc) and Li is labor input (the total number of person-

hours worked in a year) for the ith company. Here log(Q∗i ) = β0 + β1log(Ki) + β2log(Li) + vi

is considered as the optimal frontier goal such as maximum production or minimum costs, where

vi is a random error outside of capital and labor input. However, there are discrepancies between

the actual production and the theoretical maximum production. This gap is called technical ineffi-

ciency, ui, and making inference on this inefficiency term is the key purpose of the considering this

production model (Aigner et al., 1977; Meeusen and van den Broeck, 1977). For interpretation,

log(Qi) − log(Q∗i ) = −ui ≤ 0 and this implies Qi/Q
∗
i = e−u, where Qi is the actual production

and Q∗i is the theoretical optimal production. Therefore, ui is assumed to be a positive random

variable, while ui = 0 means that the company attains the full efficiency as a special case.

In general, (1.1) can be written in the usual linear regression form given by yi = β0+x′iβ1−ui+

vi. In terms of the statistical inference, the difficulty arises because ui is latent and unobservable

quantity. Thus inferences are based on the specific assumption of the distribution of ui while vi is

generally assumed to be Normal(0, σ2
v). Aigner et al. (1977) considered a half-normal distribution,
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Meeusen and van den Broeck (1977) assumed exponential distribution, Stevenson (1980) used

truncated normal distribution and Greene (1990) adopted gamma distribution for ui. For example,

suppose ui ∼ Normal+(0, σ2
u). The density function of u is fu(u) = 2 exp (−u2/2σ2

u)/
√

2πσ2
u,

and from this assumption one can derive the density function of ε = −u+ v:

fε(ε) =

∫ ∞
0

fε|u(ε|u)fu(u)du =

∫ ∞
0

2

2πσuσv
exp

{
−(ε+ u)2

2σ2
v

− u2

2σ2
u

}
du

=
2

σ
φ
( ε
σ

)
Φ
(
−λ ε

σ

)
,

where φ and Φ are the density function and the distribution function of the Normal(0, 1), σ2 =

σ2
v+σ2

u and λ = σu/σv. This reparameterization (σ2, λ) is conventional in the literature. The maxi-

mum likelihood estimator (MLE) of β0,β1, σ
2, λ can be obtained by maximizing the log-likelihood

function `(β0,β1, σ, λ) = −nlogσ− (1/2σ2)
∑n

i=1(yi− β0−x′iβ1) +
∑n

i=1 log[Φ{−λ(yi− β0−

x′iβ1)/σ}].

Once the MLE of (β0,β1, σ, λ) is computed, it is possible to calculate the conditional density

of ui given εi which makes the prediction of individual technical inefficiency possible (Jondrow

et al., 1982). Under the half normal distribution assumption, ui|εi is Normal(µ∗, σ
2
∗) truncated at

0, where µ∗ = −σ2
uεi/σ

2 and σ2
∗ = σ2

uσ
2
v/σ

2, and µ∗ = E(ui|εi) is used as the predictor of the

technical inefficiency of the ith producer (Jondrow et al., 1982). Estimation and prediction details

for other parametric models are well summarized in Kumbhakar and Lovell (2003).

In addition to the above estimation approaches, van den Broeck et al. (1994) developed a

Bayesian framework under Gamma distribution assumption with shape parameters 1, 2 and 3 of

the technical inefficiency. Griffin and Steel (2004) proposed a semiparametric Bayesian approach

by considering a non-parametric prior distribution on the distribution of ui. Instead of linearity

assumption between the input and output variables, Simar et al. (2017) adopted a nonparametric

method to estimate the relationship between these two variables.

As discussed so far, the estimation and prediction heavily depend on the distributional assump-

tion of the technical inefficiency. Specifically, different assumption of ui will change the condi-
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tional distribution of ui given εi and so does the predictor E(ui|εi). Therefore, diagnostics and

model checking is a crucial step after fitting the model. In this dissertation, I propose a Bayesian

goodness-of-fit test for checking the distributional assumption of the technical inefficiency without

specifying the alternative model. This is described in Chapter 3.

1.2 Efficient Statistical Computation

1.2.1 Standard error of Bayes Estimators

I begin with a simple example illustrating the basic concept. Suppose that X1, . . . , Xn are a

sample from the Normal(µ, σ2) distribution with both unknown mean µ and variance σ2. Assume

that given σ2, a prior µ|σ2 ∼ Normal(m, τσ2), and σ2 ∼ IG(a, b), where IG(a, b) refers to

the inverse gamma density, i.e., π(σ2) = exp(−1/bσ2)/Γ(a)ba(σ2)a+1. I also assume that the

hyperparameters a, b, τ are specified. Then the joint posterior density of (µ, σ2) is given by

π(µ, σ2|X1, . . . , Xn) ∝ (σ2)−n/2−1/2−a−1 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2 − 1

2τσ2
(µ−m)2 − 1

bσ2

}
.

Therefore,

µ|σ2, X1, . . . , Xn ∼ Normal

(
nX̄ +m/τ

n+ 1/τ
,

σ2

n+ 1/τ

)
,

and

σ2|X1, . . . , Xn ∼ IG

(
n

2
+ a,

{
(n− 1)s2

2
+
nX̄2

2
+
m2

2τ
+

1

b
− (nX̄ +m/τ)2

2(n+ 1/τ)

}−1
)
,

where s2 = (n− 1)−1
∑n

i=1(Xi − X̄)2. The posterior mean of µ is µ̂ = (nX̄ +m/τ)/(n+ 1/τ).

Note that its variance is

var(µ̂) = var
(
nX̄ +m/τ

n+ 1/τ

)
=

n

(n+ 1/τ)2
σ2.
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Similarly, the posterior mean of σ2 is

σ̂2 =
(n

2
+ a− 1

)−1
{

(n− 1)s2

2
+
nX̄2

2
+
m2

2τ
+

1

b
− (nX̄ +m/τ)2

2(n+ 1/τ)

}

and its variance is

var(σ̂2) =
(n

2
+ a− 1

)−2
{
nσ2(2µ2 + σ2)

2
− (2µ2 + σ2/n)σ2/n

2(n+ 1/τ)2

}
.

These variabilities var(µ̂) and var(σ̂2) measure the accuracy of the posterior expectation and

serve as a proxy for evaluating uncertainty of a procedure. Efron (2015) pointed out that frequentist

accuracy can be a criterion to choose a non-informative prior when trustful past information is

unavailable. In computational aspects, however, it is not always possible to have a closed form

expression of the variance or the standard error of a posterior mean as in this example. Moreover

in general, posterior expectation is not of only interest, rather other posterior summaries are needed

such as posterior mode, αth quantile. The standard error of those posterior summaries usually does

not have a closed form even in the simple examples. I investigate a general approach to estimate the

standard error of Bayes estimators, that is computationally more efficient than the naive approach.

This topic is investigated in Chapter 4.

1.2.2 A Binary Regression with Skew-Probit Link

Suppose that we observe {(Yi,X i), i = 1, . . . , n} where Yi is the binary response, i.e., Yi =

1 if ith subject experiences the primary outcome and Yi = 0 otherwise and X i is a vector of

covariates. Then for modelling conditional probability pr(Y = 1|X) usually logistic or probit

model is considered. One characteristic of them is that they are symmetric in the sense that they

approach to 0 and 1 at the same rate. This is because their densities are symmetric around 0.

In a practical setting, there is no reason to believe that success probability must be modeled via

symmetric link. Rather we should fit a flexible model to the data, and allow the data to choose an

appropriate model (symmetric and asymmetric link).

5



0
1

P̂r(Y=1|X=0)

Pr(Y=1|X=0)

0

Est (Symmetric)
True (Asymmetric)

Figure 1.1: A hypothetical example of the true conditional probability pr(Y |X) (red line) and the
estimated pr(Y |X) (black line).

Figure 1 shows the difference between a symmetric and asymmetric link function. The black

line shows how the success probability of a binary response variable Y is changing with a continu-

ous X when the probit (symmetric) link function is used. In contrast, the red line shows the change

when the success probability is regulated by an asymmetric link. Noticeably, under the asymmetric

link, pr(Y=1|X) is very close to zero when X<0.

Chen et al. (1999) proposed a class of asymmetric link functions for binary regression in a

Bayesian context. One special link function they considered is the skew-probit link where pr(Y |X)

is modeled using the CDF of the standard skew normal distribution (Azzalini, 1985). As the name

implies the skew-probit link function includes probit link function as a special case. In Chapter 5,

I explore two crucial problems, identifiability and the bias of the MLE of the model parameters.
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2. A TEST OF HOMOGENEITY OF DISTRIBUTIONS WHEN OBSERVATIONS ARE

SUBJECT TO MEASUREMENT ERRORS

2.1 Background and literature review

As discussed in Section 1.1.1, mismeasured variables are common in epidemiological and

biomedical studies. Failure to account these errors in the measured variables might lead to incor-

rect statistical inference. One such motivating data comes from the National Health and Nutrition

Examination Survey (NHANES) which is designed to assess the health and nutritional status of

adults and children in the United States. Besides dietary intakes, a number of biomarkers, such

as blood pressure, albumin level, creatinine level are difficult to measure accurately. To handle

uncertainty in the measurements, in the NHANES study multiple measurements are taken on these

variables.

A common public health question is how the behavioral factors are associated with a biomarker,

a health outcome, or a surrogate of a health outcome (Hogan et al., 2007; Puddey and Beilin, 2006;

Primatesta et al., 2001). In particular, like others, I am interested to verify if alcohol consumption

and the systolic blood pressure are associated. In an attempt to answer this question one may

use the NHANES data, and apply a two-sample nonparametric test to the average of multiple

measurements from the two behavioral groups, alcoholic and non-alcoholic. However, the standard

testing tools are inappropriate as the observed data are contaminated with measurement errors. As

shown in the simulation study, in this contaminated data scenario, the standard tests that ignore

measurement errors likely to result in a wrong conclusion. This motivates to develop a new two-

sample testing method when the available data are measured with errors.

In this chapter, I consider testing H0 : Fx = Fy when neither Dx nor Dy is observed, rather,

we observe replicated erroneous observations for Dx and Dy. In particular, our observed data

are Dw = {W 1, . . . ,W nx} and Dv = {V 1, . . . ,V ny}, where W T
j = (Wj1, . . . ,Wjmx) and

V T
k = (Vk1, . . . , Vkmy) for j = 1, . . . , nx and k = 1, . . . , ny. Assume thatmx ≥ 2 andmy ≥ 2, and
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the observed W ’s are related with the unobserved X’s through the classical additive measurement

error model, that means,

Wjl = Xj + Ux,jl, l = 1, . . . ,mx, j = 1, . . . , nx, (2.1)

and the measurement error Ux,jl’s are assumed to be iid, independent of Xj , and follows the distri-

bution Fux that is symmetric around 0. Similarly, further assume that

Vkl = Yk + Uy,kl, l = 1, . . . ,my, k = 1, . . . , ny, (2.2)

and the measurement error Uy,kl are assumed to be iid, independent of Yk, and follows the distri-

bution Fuy that is symmetric around 0. Specifically, here Dx and Dy are latent observations and

are never observed. The above mentioned CDF Fx, Fy, Fux and Fuy are assumed to be absolutely

continuous but otherwise left unknown.

Although errors in measured variables have received considerable attention from density esti-

mation perspective (Carroll and Hall, 1988; Delaigle and Hall, 2016) and in the regression context

(Gustafson, 2003; Carroll et al., 2006), no one has ever considered testing of homogeneity of two

distributions when the observed data are subject to measurement errors that are common in obser-

vational studies. The statistical test of homogeneity of distributions is widely used in social and

medical sciences and in the field of Engineering. Given its importance in various fields and error

contamination in the observed data are commonplace, a consistent test is urgently needed.

Like errors in covariates in regression models, this problem can be tackled in several ways.

First, one may model all the distributions, Fx, Fy, Fux , Fuy parametrically, and then test H0 by

checking equality of a set of parameters. However, any parametric approach may face misspecifi-

cation bias. Therefore, we do not wish to use any parametric model assumption. In the nonpara-

metric context, one may estimate the densities of X and Y from the contaminated data using any

density deconvolution approach available in the literature (Delaigle et al., 2008; Delaigle and Hall,

2016). Then carry out a test based on the deconvoluted densities. Numerical instability is a well
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known phenomenon of deconvoluted density estimation, and that is due to the inverse transforma-

tion of the characteristic function. To circumvent this problem, I design a test that is directly based

on the characteristic functions, and the test statistic itself does not depend on the deconvoluted

density.

Briefly, proposed approach can be described into two simple steps. First, the characteristic

functions of X and Y from the contaminated data is estimated. Next, a test statistic is formu-

lated by using the two estimated characteristic functions. Then the asymptotic distribution of the

proposed test statistic under H0 will be derived. The limit distribution has a complex form and

it involves different unknown population parameters, making it less appealing to use for calibrat-

ing the test statistic. Motivated by this problem, I propose a novel Bootstrap approach under the

measurement error framework that gives a theoretically valid data generation procedure under the

null hypothesis, and that also constitutes an important contribution of this work. In addition to

theoretical investigation of the large sample properties of the Bootstrap based testing procedure,

finite sample properties of the test are judged via simulation studies. The results of the simulation

study show that the proposed testing method has competitive performance in terms of maintain-

ing the size of the test, and superior power properties compared to its competitors, even when the

two population distributions are not drastically different. Finally, I analyze the real datasets that

motivated me to consider this research problem.

Chapter 2 is organized as follows. Section 2.2 gives the formulation of the test statistic based

on the estimated characteristic functions under the measurement error model (2.1) and (2.2) and

investigates its asymptotic properties. Section 2.3 describes the details of the Bootstrap method

and proves its theoretical validity. Results from a moderately large simulation study are given in

Section 2.4, showing the performance of the proposed testing method under the null and under

different alternatives. An application of the methodology to an NHANES 2009-2010 survey data

is given in Section 2.5, followed by some concluding remarks in Section 2.6. Proofs of the main

results are given in the Appendix A.
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2.2 Testing methodology

2.2.1 Notation

First, let us introduce notations that will be used throughout this chapter. Let φx, φy, φux and

φuy be the characteristic functions of X , Y , Ux and Uy, respectively. Let ax(t) and bx(t) be the

real and imaginary parts of φx(t), respectively. Similarly, define ay(t) and by(t) from φy(t). For

future reference, denote estimators of Fx, Fy, Fux , and Fuy , by F̂x, F̂y, F̂ux , and F̂uy respectively.

Suppose that F = Fx = Fy denotes the common distribution under H0, and write F̂ to denote

its estimator. Further, define W j =
∑mx

l=1Wjl/mx, V k =
∑my

l=1 Vkl/my, Mx = mx(mx − 1)/2,

My = my(my − 1)/2, Nx = nxMx, Ny = nyMy. Note that the characteristic function of W j is

given by φ1(t) = φx(t){φux(t/mx)}mx , and that of V k is φ2(t) = φy(t){φuy(t/my)}my .

In the naive approach that ignores measurement errors in the observed data, one may first

compute {W 1, . . . ,W nx} and {V 1, . . . , V ny} and then apply any nonparametric testing procedure

directly on these transformed data. Indeed, this naive method is usually inconsistent, that means,

it fails to maintain the nominal type-I error level. If mx = my = m, and Fux = Fuy = Fu,

then φ1(t) = φx(t){φu(t/m)}m and φ2(t) = φy(t){φu(t/m)}m. Consequently the null hypothesis

H0 : φx(t) = φy(t) implies φ1(t) = φ2(t). That means, testing H0 becomes equivalent to testing

H0 : F1 = F2, where F1 and F2 are the distribution functions ofW j and V k. Thus, whenmx = my

and Fux = Fuy , the naive testing procedure is consistent for testing H0 : Fx = Fy. However, if

either mx 6= my or Fux 6= Fuy , the naive test may not be consistent.

2.2.2 Development of the test statistic

I shall work under the standard condition (Delaigle et al., 2008) that φux(t) and φuy(t) are

real-valued function and do not vanish on R, but do not impose any such conditions on the char-

acteristic functions φx and φy of the (true) latent variables. The real valued characteristic function

condition results from the assumption that the error distribution is symmetric around zero. Fur-

ther, as is well known (Stefanski and Carroll, 1990), the non vanishing assumption is also due to

overcome the identifiability problem. Under these conditions, the characteristic function for the
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measurement error can be recovered using the difference between two observations W1 − W2,

where W1 = X + Ux,1 and W2 = X + Ux,2. Then, φW1−W2(t) = E[exp{it(W1 − W2)}] =

E[exp{it(Ux,1 − Ux,2)}] = E[exp{itUx,1}]E[exp{−itUx,2}] = {φux(t)}2, where i2 = −1. Hence

φux is estimable from the data by using all possible pairwise differences of the Wjk variables. On

the other hand, φ1(t) is directly estimable from the data, using the means of the replicated measure-

ments. Consequently, φx(t) is estimable exploiting the relationship φ1(t) = φx(t){φux(t/mx)}mx .

Specifically, estimators for φ1(t) and φux(t) are given by

φ̂1(t) =
1

nx

nx∑
j=1

exp(itW j),

φ̂ux(t) =

√
|φ̂W1−W2(t)| =

√√√√√
∣∣∣∣∣∣ 1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

cos{t(Wjl1 −Wjl2)}

∣∣∣∣∣∣, (2.3)

respectively, where Sx = {(l1, l2) : 1 ≤ l1 < l2 ≤ mx}. Note that the non-vanishing and continuity

assumption on φux(t), and φux(0) = 1 imply that φux(t) is a positive real valued function. Thus,

the above estimator of φux(t) is positive on compact subsets with high probability, for nx large.

Now, we propose to estimate φx(t) by

φ̂x(t) =
φ̂1(t)

{φ̂ux(t/mx)}mx
=

n−1
x

∑nx
j=1 cos(tW j) + in−1

x

∑nx
j=1 sin(tW j)

|n−1
x

∑nx
j=1M

−1
x

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

= âx(t) + îbx(t),

where âx(t) and b̂x(t) are the real and imaginary part of φ̂x(t), respectively, and we write

âx(t) =
n−1
x

∑nx
j=1 cjw(t)

â2x(t)
, b̂x(t) =

n−1
x

∑nx
j=1 djw(t)

â2x(t)
, (2.4)

with cjw(t) = cos(tW j), djw(t) = sin(tW j), and

â2x(t) = |n−1
x

nx∑
j=1

M−1
x

∑
(l1,l2)∈Sx

cos{(t/mx)(Wjl1 −Wjl2)}|mx/2. (2.5)

11



Similarly, φy(t) can be estimated by φ̂y(t) = ây(t)+ îby(t), where ây(t) = n−1
y

∑ny
j=1 cjv(t)/â2y(t)

and b̂y(t) = n−1
y

∑ny
j=1 djv(t)/â2y(t), with cjv(t) = cos(tV j), djv(t) = sin(tV j), and

â2y(t) = |n−1
y

ny∑
j=1

M−1
y

∑
(l1,l2)∈Sy

cos{(t/my)(Vjl1 − Vjl2)}|my/2.

Under the null hypothesis Fx = Fy, (âx(t), b̂x(t)) is expected to be close to (ây(t), b̂y(t)). When

the null hypothesis does not hold, the difference between them is expected to be large, and this fact

motivates to form the following test statistic to test the hypothesis H0 : Fx = Fy:

Tnx =

∫ ∞
−∞

nx[{âx(t)− ây(t)}2 + {b̂x(t)− b̂y(t)}2]ω(t)dt, (2.6)

for a properly chosen non-negative weight function ω(t). The test function is

Φ =

 1 if Tnx > tnx,α

0 otherwise,

where the critical value tnx,α satisfies pr(Tnx > tnx,α) = α under H0, for a given α ∈ (0, 1).

In (2.6), the weight function ω(t) is used for ensuring the finiteness of the integral on the right

side, and it is typically taken as a compactly supported function. As expected, the power of the

test depends on the weight function ω(t). In a related work, Epps and Pulley (1983) proposed

a test for normality based on the empirical characteristic function of the observed data without

measurement errors and described some desirable properties of ω(t). Here we follow Epps and

Pulley (1983)’s guidance and take ω(t) to be a piece-wise continuous positive valued function with

a compact support [t1, t2] that includes 0, and ω(t) = 0 for t > t2 or t < t1. For more details on

some practical choices for t1 and t2, see the simulation and data analysis section.

2.2.3 Large Sample properties of the test statistic

The first result gives the null distribution of the test statistic.
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Theorem 1. Under the null hypothesis, as nx, ny → ∞ and
√
nx/ny → ρ ∈ (0,∞), the test

statistic Tnx converges to a random variable, given by

∫
[ξ1(t)2 + ξ2(t)2]ω(t)dt

where ξ1(·) and ξ2(·) are independent zero mean Gaussian processes with continuous sample paths,

with probability one. The covariance functions of ξj(·), j = 1, 2 are rational functions of the (real

and imaginary parts of the ) characteristic functions of W 1, V 1, Ux,1 and Uy,1, and are given in

the Appendix A.

It follows from the statement of Theorem 1 that the limit distribution of the test statistic can

also be expressed as an infinite sum of weighted, independent Chi-squared random variables with

degrees of freedom 1. However, the weights in the infinite series representation or the covari-

ance function of the Gaussian processes ξj(·), j = 1, 2 in the integral representation above are

complicated functions of unknown population parameters that are difficult to estimate under the

measurement error model. As a result, a Bootstrap method is developed in order to devise alterna-

tive approximations to the null distribution of the test statistic that can be used for calibrating the

test.

The next result shows that under mild conditions, the power of the test statistic under alternative

hypothesis tends to one. To state it, define Da(t) = ax(t)− ay(t) and Db(t) = bx(t)− by(t).

Theorem 2. Suppose that
√
nx/ny → ρ ∈ (0,∞) and that the alternative hypothesis

∫
{D2

a(t) +

D2
b (t)}ω(t)dt 6= 0 holds. Then, for any α ∈ (0, 1), the power of the size α test, pr(Tnx > tnx,α)

tends to 1 as nx, ny →∞.

2.3 The proposed Bootstrap method

2.3.1 Outline of the Bootstrap procedure

In this section, I describe a novel Bootstrap method for approximating the null distribution of

the test statistic given in Theorem 1. Note that due to the presence of the measurement error, simple
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resampling from the original data will not capture the distributions of the latent variables and the

error variables precisely. In addition, resampling the observations directly will also fail to ensure

that the data are generated under the null hypothesis. Therefore, I propose to generate observations

from a suitable estimated common distribution F̂ of the two populations for the latent variables,

enforcing the null distribution. I also independently generate observations from estimated distri-

bution functions F̂ux and F̂uy of the two sets of error variables and combine them to define the

Bootstrap analogues of W and V . Exact constructions of F̂ and F̂ux (and F̂uy ) are described in

Sections 2.3.2 and 2.3.3 below.

A Bootstrap sample will consist of D∗w = {W ∗
1, . . . ,W

∗
nx} and D∗v = {V ∗1, . . . ,V ∗ny}, where

W ∗
j = (W ∗

j1, . . . ,W
∗
jmx)

T , j = 1, . . . , nx and V ∗k = (V ∗j1, . . . , V
∗
kmy

)T , k = 1, . . . , ny, with

W ∗
jl = X∗j + U∗x,jl and V ∗kl = Y ∗k + U∗y,kl. Here, X∗1 , . . . , X

∗
nx , Y

∗
1 , . . . , Y

∗
ny are iid draws from

the estimated common distribution F̂ , and U∗x,jl are iid draws from F̂ux and U∗y,kl are iid draws

from F̂uy . For each Bootstrap sample, we would compute the test statistic. Suppose that T ∗b,nx

denotes the test statistic corresponding to the bth Bootstrap sample. Then the estimated p-value

is
∑B

b=1 I(T ∗b,nx > Tnx)/B based on B Bootstrap samples. We reject H0 at the 100α% level of

significance if the p-value is less than a given α. Now I describe how to estimate F , Fux , and Fuy

nonparametrically. Validity of the Bootstrap approximation is proved in Section 2.3.4.

2.3.2 Estimation of the common distribution F

Let g be a density function of W , the mean of mx repeated observations. Then for a symmetric

kernel K and given bandwidth hw, ĝ(w) = (nxhw)−1
∑nx

j=1 K{(w −W j)/hw} is a kernel density

estimator for g, and consequently the estimated characteristic function of W is

φ̂W (t) =

∫
exp(itw)ĝ(w)dw =

1

nx

nx∑
j=1

exp(itW j)

∫
exp(ithwz)K(z)dz = φ̂1(t)φK(hwt),

where φ̂1(t) is the empirical characteristic function ofW and φK(t) is the characteristic function of

the kernel K. Therefore, the estimated characteristic function φ̂x(t) = φ̂W (t)/{φ̂ux(t/mx)}mx =

φ̂1(t)φK(hwt)/{φ̂ux(t/mx)}mx . I want to point out that due to integrability requirement for the
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estimated characteristic function, here I am using a different approach to estimating φx(t) than

that used in Section 2.2.2. Similarly, I estimate φy(t) by φ̂y(t) = φ̂2(t)φK(hvt)/{φ̂uy(t/my)}my .

Although an estimator of the characteristic function of the common distribution F can be defined

in many ways, for simplicity I have decided to consider the estimator to be φ̂(t) = {φ̂x(t) +

φ̂y(t)}/2. Next using the inversion formula along with the conditions supt |φK(t)/φux(t/hw)| <

∞,
∫
|φK(t)/φux(t/hw)|dt < ∞, supt |φK(t)/φuy(t/hv)| < ∞ and

∫
|φK(t)/φuy(t/hv)|dt <

∞ for fixed hw, hv > 0 (Stefanski and Carroll, 1990), a deconvoluted density estimator can be

obtained, given by:

f̂(r) =
1

2π

∫ ∞
−∞

exp(−itr)φ̂(t)dt

=
1

4π

∫ ∞
−∞

exp(−itr)
[∑nx

j=1 exp(itW j)φK(hwt)/nx

{φ̂ux(t/mx)}mx
+

∑ny
j=1 exp(itV j)φK(hvt)/ny

{φ̂uy(t/my)}my

]
dt

=
1

2nx

nx∑
j=1

1

2π

∫ ∞
−∞

exp{−it(r −W j)}
φK(hwt)

{φ̂ux(t/mx)}mx
dt

+
1

2ny

ny∑
j=1

1

2π

∫ ∞
−∞

exp{−it(r − V j)}
φK(hvt)

{φ̂uy(t/my)}my
dt

=
1

2nxhw

nx∑
j=1

1

2π

∫ ∞
−∞

exp{−it(r −W j)/hw}
φK(t)

{φ̂ux(t/hwmx)}mx
dt

+
1

2nyhv

ny∑
j=1

1

2π

∫ ∞
−∞

exp{−it(r − V j)/hv}
φK(t)

{φ̂ux(t/hvmy)}my
dt

=
1

2nxhw

nx∑
j=1

Lx

(
r −W j

hw

)
+

1

2nyhv

ny∑
j=1

Ly

(
r − V j

hv

)
,

where

Lx(u) = (1/2π)

∫ ∞
−∞

exp(−itu)φK(t)/{φ̂ux(t/hwmx)}mxdt

and

Ly(u) = (1/2π)

∫ ∞
−∞

exp(−itu)φK(t)/{φ̂uy(t/hvmy)}mydt.

Although the common population CDF F may not have a density, this density estimator is well

defined. I am using this formula only to motivate the definition of the CDF estimator given next.
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Indeed, replacing φux by its estimator given in (2.3) and φuy by the corresponding estimator, and

replacing φK(t) by (1 − t2)31[−1,1](t), and using the integration formula (A.1) of Hall and Lahiri

(2008), the estimator of the common distribution is

F̂ (r) =

1

nx

nx∑
j=1

[
1

2
+

1

2π

∫ ∞
−∞

sin{t(r −W j)}
t

(1− h2
wt

2)31[−1,1](hwt)

|N−1
x

∑nx
j=1

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

dt

]

+
1

ny

ny∑
j=1

[
1

2
+

1

2π

∫ ∞
−∞

sin{t(r − V j)}
t

(1− h2
vt

2)31[−1,1](hvt)

|N−1
y

∑ny
j=1

∑
(l1,l2)∈Sy cos{(t/my)(Vjl1 − Vjl2)}|my/2

dt

]

=
1

2
+

1

2nxπ

∫ 1/hw

0

(1− h2
wt

2)3
∑nx

j=1 sin{t(r −W j)}
t|N−1

x

∑nx
j=1

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

dt

+
1

2nyπ

∫ 1/hv

0

(1− h2
vt

2)3
∑ny

j=1 sin{t(r − V j)}
t|N−1

y

∑ny
j=1

∑
(l1,l2)∈Sy cos{(t/my)(Vjl1 − Vjl2)}|my/2

dt.

For generating random numbers we shall use a monotonized version of F̂ , and following the gen-

eral technique of Hall and Lahiri (2008), we define F̃ (r) = sup{F̂ (r∗) : r∗ ≤ r}, and then

estimate the quantile for a given p ∈ (0, 1) as q = sup{r : F̃ (r) ≤ p}.

Next I would like to point out the optimal hw. I shall use Hall and Lahiri (2008)’s method that

is relatively straight forward to apply. According to Theorem 4.1 of that paper, I choose the opti-

mal hw that minimizes n−1
x I(h) +Bxh

4, where 2πI(h) =
∫
t−2[1− φK(ht)/{φ̂ux(t/mx)}mx ]2dt,

Bx = κ2
2/(16

√
πσ̂3

x) with κ2 =
∫
x2K(x)dx. For our choice of kernel, κ2 = 6. Also,

var(W ) = var(X) + var(Ux)/mx, so we estimate σ2
x by σ̂2

x = σ̂2
W
− σ̂2

ux/mx, where σ̂2
W

=

(nx − 1)−1
∑nx

j=1(W j − W ..)
2, σ̂2

ux = (nx)
−1
∑nx

j=1(mx − 1)−1
∑mx

l=1(Wjl − W j)
2, and W .. =

(nxmx)
−1
∑nx

j=1

∑mx
l=1Wjl. A numerical integration technique is applied to evaluate I(hw). Simi-

larly, I shall determine the optimal hv.

2.3.3 Estimation of Fux and Fuy

In this section, I shall describe the estimation of Fux , and the estimation of Fuy follows similar

steps, so is omitted. Observe that Wjl1 −Wjl2 = Ux,jl1 − Ux,jl2 , where Ux,jl1 and Ux,jl2 are iid

copies of the random variable Ux and (l1, l2) ∈ Sx. Hence the density of the difference of the iid
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copies can be estimated by the kernel method

f̂Ux,1−Ux,2(u
∗) =

1

hnx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

K
{u∗ − (Wjl1 −Wjl2)

h

}
,

where we take h = 1.06σ̂d,uxn
−1/5
x (Sheather, 2004), where σ̂2

d,ux
= (nx − 1)−1

∑nx
j=1 2{mx(mx −

1)}−1
∑

(l1,l2)∈Sx [(Wjl1−Wjl2)−n−1
x

∑nx
j
′
=1

2{mx(mx−1)}−1
∑

(l1,l2)∈Sx(Wj′ l1
−Wj′ l2

)]2. Then,

the characteristic function estimator of Ux,1 − Ux,2 is given by

φ̂Ux,1−Ux,2(t) =

∫
exp(itu∗)f̂Ux,1−Ux,2(u

∗)du∗

=

∫
exp(itu∗)

1

nxh

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

K
{u∗ − (Wjl1 −Wjl2)

h

}
du∗

=
1

nxh

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

∫
exp(itu∗)K

{u∗ − (Wjl1 −Wjl2)

h

}
du∗

=
1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

∫
exp[it{(Wjl1 −Wjl2) + hz}]K(z)dz

=
1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

exp{it(Wjl1 −Wjl2)}φK(ht).

Since E[exp{it(Ux,1 − Ux,2)}] = {φux(t)}2 due to the symmetry of Ux, and using φK(t) = (1 −

t2)31[−1,1](t), we estimate φux(t) by

φ̂ux(t) =

√
Ê[exp{it(Ux,1 − Ux,2)}]

=

√
φ̂Ux,1−Ux,2(t)

=

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

(1− h2t2)31[−1,1](ht)

∣∣∣∣. (2.7)
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Due to the presence of the indicator function,
∫
|φ̂ux(t)|dt <∞, and this integrability is a sufficient

condition for the following inversion. Hence, we estimate Fux(u) by

F̂ux(u) =
1

2
+

1

2π

∫ ∞
0

exp(itu)φ̂ux(−t)− exp(−itu)φ̂ux(t)

it
dt

=
1

2
+

1

2π

∫ ∞
0

φ̂ux(t){exp(itu)− exp(−itu)}
it

dt

=
1

2
+

1

π

∫ ∞
0

φ̂ux(t)
sin(tu)

t
dt

=
1

2
+

1

π

∫ ∞
0

sin(tu)

t

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

(1− h2t2)31[−1,1](ht)

∣∣∣∣dt
=

1

2
+

1

π

∫ 1/h

0

sin(tu)

t

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

∣∣∣∣(1− h2t2)3/2dt.

I shall evaluate this integration by the Gauss-Legendre quadrature formula. As before, for sim-

ulating random numbers from this distribution we define the pth (0 < p < 1) percentile as

q = sup{r : F̃ux(r) ≤ p}, where F̃ux(r) ≡ sup{F̂ux(r∗) : r∗ ≤ r}.

2.3.4 Validity of the Bootstrap

I now show that under some regularity conditions, the proposed Bootstrap method produces

valid approximation to the distribution of the test statistic under the null. The Bootstrap probability

is denoted by P∗.

Theorem 3. Suppose that H0 : Fx = Fy holds and as nx, ny → ∞,
√
nx/ny → ρ ∈ (0,∞).

Also suppose that the bandwidths hw > 0 and hv > 0 are such that [{hw + (nxhw)−1} + {hv +

(nxhv)
−1}]→ 0. Then,

lim
nx→∞

sup
t≥0

∣∣∣P (Tnx ≤ t)− P∗(T ∗nx ≤ t)
∣∣∣ = 0, almost surely.

Next, for α ∈ (0, 1), let t̂nx,α denote the (1−α)- quantile the Bootstrapped statistic T ∗nx . Then,

an immediate consequence of this result is that for any α ∈ (0, 1), t̂nx,α− tnx,α → 0 almost surely.
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As a consequence, under the conditions of Theorem 3,

pr(Tnx > t̂α)→ α.

Thus, the Bootstrap method provides a valid method for calibrating the test statistic without having

to estimate the covariance structure of the limit distribution of Tnx . Finite sample properties of the

Bootstrap approximation are presented in the next section.

Remark 1. It may be noted that the formula for F̂ in Section 2.3.2 implicitly assumes that the

median of F (·) is zero, i.e., the median of Fx and Fy are zero. However, this does not pose any

problem for Bootstrapping the null distribution of the test statistic Tnx . To appreciate why, note

that H0 : Fx = Fy is equivalent to H ′0 : Fx,a = Fy,a for any a ∈ R, where Fx,a(t) = Fx(t+ a) and

Fy,a(t) = Fy(t + a), t ∈ R. Thus, if necessary, by subtracting a common constant a ∈ R, we can,

without loss of generality, assume that under the null hypothesis, the medians of Fx and Fy are

zero. Indeed, noting that the test statistic Tnx can be written as Tnx =
∫
|φ̂x(t) − φ̂y(t)|2ω(t)dt,

it follows that Tnx is invariant under a common location change. As a result, one gets a valid

approximation to the null distribution of Tnx by using the estimator F̂ in Section 2.3.2 even when

the median of the common distribution F is different from zero. This observation also highlights

the challenges and complexities associated with formulation of a valid Bootstrap method in the

two sample testing problem in presence of measurement error.

2.4 Simulation studies

Simulation designs: In this section, I present the numerical performance of the proposed test

via Monte-Carlo simulations. I simulated datasets that consisted of two samples, {W 1, . . . ,W nx}

and {V 1, . . . ,V ny}, where W j = (Wj1, . . . ,Wjmx)
T and V k = (Vk1, . . . , Vkmy)

T . I considered

nx = ny = 50, 200 and 500 while two different scenarios corresponding to the number of repeti-

tions are considered: 1) mx = my = 2 and 2) mx = 2,my = 3. Type I error rate was examined in

the following four designs (D1, D2, D3, D4), while power of the test was examined in designs D5,

D6, D7, and D8. In addition, D9 and D10 were designed to explore robustness of the proposed

19



method towards the symmetric measurement error assumption.

D1 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ DE(0, 0.35)

D2 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ N(0, 0.52)

D3 X, Y ∼ Normal(0, 1) and Ux ∼ DE(0, 0.35), Uy ∼ N(0, 0.52)

D4 X, Y ∼ (χ2
1 − 1)/

√
2 and Ux ∼ DE(0, 0.35), Uy ∼ DE(0, 0.2)

D5 X ∼ Normal(0, 1), Y ∼ Normal(0.2, 1) and Ux, Uy ∼ DE(0, 0.35)

D6 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux, Uy ∼ DE(0, 0.35)

D7 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux ∼ DE(0, 0.35), Uy ∼ N(0, 0.52)

D8 X ∼ 0.5Normal(−0.9, 0.452) + 0.5Normal(0.9, 0.452), Y ∼ Normal(0, 1) and

Ux, Uy ∼ DE(0, 0.35)

D9 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ EXP (0.5)− 0.5

D10 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux, Uy ∼ EXP (0.5)− 0.5

Here DE(a, b) stands for the double exponential distribution with mean a and variance 2b2 and

EXP (a) denotes the exponential distribution with mean a. In the first three designs, both mea-

surement error variances associated with X and Y are 25% of the variability of X (or Y ). In D4,

both X and Y follow the modified chi-square distribution with degrees of freedom 1, mean 0 and

variance 1. The choice of the true signals (the distribution of X or Y ) and the measurement error

variance were somewhat similar to that of Delaigle et al. (2008). In D4, measurement error vari-

ances corresponding to X and Y are different, and consequently the variances of the convoluted

observations are different, i.e., var(Wjl) 6= var(Vkl∗). The designs are also different in terms of

the smoothness of their measurement error distributions, I considered the ordinary smooth class

(D1, D4, D6, D8), the supersmooth class (D2), the mixed case (D3, D5, D7). For the alternative

hypotheses, I included cases where there are differences in the location (D5) and in the shape (D6,

D7, D8). In D9 and D10, we considered centered exponential distribution for the measurement

error with variability 25% of that of the true signal.
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Method of analysis: For each dataset, I carried out hypothesis test at the 5% level of sig-

nificance. For the proposed method I rejected the null hypothesis H0 : Fx(r) = Fy(r) against

Ha : Fx(r) 6= Fy(r) if the p-value calculated using B = 1, 000 Bootstrap samples was less

than α = 0.05. I also analyzed each data set using the naive testing methods that included the

Kolomogorov-Smirnov test (K-S) and the two sample Anderson-Darling test (A-D) based on the

averages {W j, j = 1, . . . , nx} and {V k, k = 1, . . . , ny}. In these naive tests, {W j, j = 1, . . . , nx}

and {V k, k = 1, . . . , ny} are considered as random samples from Fx and Fy, respectively.

Regarding the choice of ω(t), it is worth highlighting the desirable properties of ω(t) ad-

vocated by Epps and Pulley (1983). First, ω(t) should have more weight where the under-

lying difference between the two characteristic functions is large, and that difference is usu-

ally large in an interval near zero. Second, the weight ω(t) should be large where the estima-

tors âx(t) − ây(t) and b̂x(t) − b̂y(t) are highly precise. In fact, the precision decreases as t

moves away from zero. Furthermore, for the ordinary smooth and supersmooth class of mea-

surement error distributions (Fan, 1991), the characteristics functions are polynomially and ex-

ponentially decreasing, respectively. Consequently, for a small ε > 0, |φ̂ux(t)| ≤ ε whenever

|t| ≥ t∗ for some t∗ > 0, that in turn results in highly variable estimators âx(t), ây(t), b̂x(t),

b̂y(t) when |t| > t∗. Based on these considerations, for the proposed approach, I used dif-

ferent weights, the normal weight ω(t) = exp(−t2/2)I(t1 < t < t2) and the uniform weight

ω(t) = I(t1 < t < t2). For each weight, I considered two sets of (t1, t2). In the first set I took

t1 = min(F−1
x (0.005), F−1

y (0.005)) and t2 = max(F−1
x (0.995), F−1

y (0.995)), and the correspond-

ing weights are referred to as norm0.99 and unif0.99 for the normal and uniform weight, respectively.

In the second set I took t1 = min(F−1
x (0.1), F−1

y (0.1)) and t2 = max(F−1
x (0.9), F−1

y (0.9)), and

the corresponding weights are referred to as norm0.8 and unif0.8. Results for these four different

weights show how the performance of the test depends on the weight function.

Results: For each scenario I simulated 5,000 datasets, and for each scenario I computed the

power of each test. The power represents the proportion of times rejecting H0 at the 5% level out

of 5, 000 replications. Tables 3.1 and 2.2 contain the simulation results for 1) mx = my and 2)
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Table 2.1: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study with sample sizes nx = ny = n and mx = my = 2 based on 5, 000 replications.
Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed
characteristic function based test, respectively. The entries corresponding to designs D1-D4 show
the Type-I error rate, and the other entries are power.

n K-S A-D
C-F

unif0.99 unif0.8 norm0.99 norm0.8

D1
50 0.038 0.044 0.033 0.036 0.038 0.037
200 0.039 0.050 0.038 0.043 0.044 0.044
500 0.052 0.052 0.047 0.050 0.048 0.048

D2
50 0.039 0.050 0.029 0.036 0.036 0.037
200 0.038 0.052 0.039 0.043 0.041 0.044
500 0.049 0.051 0.037 0.043 0.041 0.044

D3
50 0.038 0.049 0.033 0.042 0.037 0.042
200 0.039 0.053 0.039 0.047 0.043 0.047
500 0.055 0.051 0.045 0.046 0.045 0.045

D4
50 0.041 0.056 0.010 0.038 0.035 0.037
200 0.052 0.083 0.033 0.036 0.037 0.036
500 0.120 0.198 0.040 0.036 0.039 0.035

D5
50 0.099 0.137 0.053 0.108 0.092 0.115
200 0.327 0.443 0.156 0.369 0.322 0.393
500 0.728 0.820 0.401 0.749 0.695 0.775

D6
50 0.063 0.069 0.095 0.053 0.085 0.051
200 0.147 0.154 0.439 0.110 0.315 0.095
500 0.423 0.470 0.863 0.275 0.745 0.222

D7
50 0.060 0.069 0.082 0.054 0.085 0.051
200 0.133 0.149 0.403 0.107 0.300 0.089
500 0.391 0.425 0.845 0.262 0.738 0.207

D8
50 0.097 0.084 0.218 0.054 0.101 0.053
200 0.326 0.251 0.812 0.066 0.392 0.061
500 0.828 0.832 0.997 0.132 0.896 0.104

D9
50 0.042 0.047 0.038 0.044 0.039 0.042
200 0.037 0.050 0.042 0.045 0.047 0.045
500 0.046 0.046 0.047 0.045 0.047 0.045

D10
50 0.062 0.069 0.109 0.052 0.092 0.046

200 0.150 0.159 0.450 0.121 0.319 0.099
500 0.443 0.472 0.875 0.280 0.752 0.217
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Table 2.2: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study with sample sizes nx = ny = n andmx = 2,my = 3 based on 5, 000 replications.
Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed
characteristic function based test, respectively. The entries corresponding to designs D1-D4 show
the Type-I error rate, and the other entries are power.

n K-S A-D
C-F

unif0.99 unif0.8 norm0.99 norm0.8

D1
50 0.038 0.043 0.037 0.038 0.038 0.038
200 0.039 0.048 0.041 0.047 0.047 0.045
500 0.055 0.056 0.046 0.051 0.051 0.052

D2
50 0.039 0.050 0.032 0.038 0.037 0.038
200 0.046 0.052 0.039 0.043 0.042 0.044
500 0.050 0.053 0.038 0.046 0.041 0.047

D3
50 0.036 0.049 0.036 0.038 0.039 0.039
200 0.038 0.054 0.042 0.046 0.046 0.048
500 0.049 0.053 0.044 0.048 0.047 0.048

D4
50 0.049 0.066 0.009 0.039 0.038 0.040
200 0.082 0.162 0.026 0.034 0.035 0.035
500 0.287 0.551 0.036 0.034 0.034 0.034

D5
50 0.105 0.141 0.059 0.112 0.100 0.120
200 0.342 0.457 0.179 0.384 0.339 0.409
500 0.746 0.828 0.434 0.764 0.718 0.786

D6
50 0.071 0.075 0.116 0.055 0.095 0.051
200 0.194 0.210 0.483 0.113 0.328 0.099
500 0.583 0.647 0.900 0.285 0.778 0.230

D7
50 0.070 0.075 0.112 0.059 0.089 0.056
200 0.190 0.210 0.475 0.113 0.318 0.094
500 0.558 0.621 0.890 0.282 0.769 0.219

D8
50 0.104 0.088 0.243 0.057 0.104 0.056
200 0.364 0.312 0.837 0.073 0.420 0.064
500 0.869 0.873 0.998 0.131 0.904 0.099

D9
50 0.042 0.046 0.041 0.041 0.039 0.042
200 0.038 0.050 0.046 0.047 0.047 0.046
500 0.046 0.050 0.051 0.046 0.045 0.045

D10
50 0.067 0.076 0.130 0.052 0.094 0.048

200 0.195 0.215 0.497 0.123 0.343 0.101
500 0.575 0.636 0.906 0.288 0.774 0.226
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mx 6= my cases, respectively. The results indicate that the proposed test maintains the nominal

level for all designs (D1 - D4) and for different weights. For D4, the naive tests fail to maintain the

nominal level, and their power seems to be increasing with the sample size for both cases, 1) mx =

my and 2) mx 6= my. The intuitive reason is that although the means are the same E(W ) = E(V ),

the variances are different, var(W ) = 1 + 0.25/mx and var(V ) = 1 + 0.02/my. Therefore, K-S

or A-D test based on the empirical distributions of (W 1, . . . ,W nx) and (V 1, . . . , V ny) are likely to

reject H0. For the scenarios D1-D3 when mx = 2 and my = 3, although the type-I error rate of

the K-S and A-D seems to be under the nominal level, a further simulation with nx = ny = 2000

revealed that the type-I error rate is exceeds the nominal level as powers for K-S (A-D) test are

0.0544 (0.0572), 0.0542 (0.061), and 0.054 (0.061) for designs D1, D2, and D3, respectively.

For the cases, where the alternative hypothesis holds, the power of the proposed test is increas-

ing with the sample size. For D5, where the distribution of X and Y differ only by a location

parameter, the power of the proposed test is somewhat lower than that of the naive approaches.

Here is an intuitive explanation. Since the difference in the location parameters for the X and Y

distributions is well reflected in the difference between the CDFs ofW and V when the distribution

of Fux and Fuy are the same, the naive methods are capable of differentiating the two underlying

distributions. Although the proposed method detects the difference between Fx and Fy in terms

of the location parameter, the actual difference is somewhat masked out by the variability of the

estimator of the characteristic functions of the true signal and the measurement error. For scenarios

D6, D7, and D8, the power of the proposed approach is significantly better than the other methods,

even for sample size n = 50. In D6, D7, and D8, the mean and variance of the convoluted observa-

tions from the two samples are almost the same, E(Wjl) = E(Vkl∗) = 0 and var(Wjl) ≈ var(Vkl∗),

and also the first two moments of W j are the same as that of V k, i.e., E(W j) = E(V k) = 0 and

var(W j) ≈ var(V k) for mx = my case. Additionally, the shapes of the distribution of W j and

V k are not dramatically different, especially for mx = my case. Therefore, the power of the K-S

or A-D is lower than that of the proposed method. Naturally the power of the naive approaches

improve from mx = my = 2 to mx = 2,my = 3 scenario as the variance of W and V become

24



different due to different replications. For the asymmetric measurement error model (D9 and D10),

the proposed test maintains the level and gives better power (unif0.99 and norm0.99) than the K-S

or A-D tests. These results indicate that the proposed test is quite robust towards the violation of

the symmetric error assumption.

In summary, the simulation results indicate that the proposed test is consistent, while the naive

tests could be inconsistent. In the absence of any specific knowledge about the characteristic

function of the underlying distributions, in our opinion, the unif0.99 weight is preferable as it covers

a wide range of t-values and gives equal importance to the difference between the two characteristic

functions at any t.

2.5 Numerical study using the NHANES data

I shall apply the proposed method to analyze the NHANES data that are publicly available

at https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. In real

data, there could be a number of covariates that may affect the variable of interest. Thus it is

important to eliminate the confounding effect, and one general approach is to regress out these

covariates. Then the residual can be considered to be independent of the confounding variables,

and we may apply the testing procedure on the residuals. To be specific let me discuss our first

data example.

Blood pressure example: For the illustration purpose I consider the NHANES 2009-2010

survey data, and focus only non-Hispanic white males whose ages are between 35 and 55 years

(middle-aged adults) so that we have a more or less homogeneous group with a lesser extent of the

confounding issue. The goal is to test equality of the distribution of systolic blood pressure between

two groups, non-alcoholic and alcoholic. Alcohol consumption data are collected through two 24-

hour recall interviews. Define a subject as non-alcoholic if both measurements are less than 14

grams, otherwise the subject is considered to be alcoholic. Since fourteen grams is considered

to be the amount of alcohol in a standard drink, I use this value to define the two behavioral

groups. This classification results in nx = 207 (non-alcoholic) and ny = 126 (alcoholic). Since

an accurate measurement of blood pressure is difficult to obtain, at least three measurements were
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taken in the mobile examination center. For the analysis I consider the first three measurements

for each subjects, i.e., mx = my = 3. Suppose that Ajk = log(systolic blood pressurejk) denote

the logarithm of the kth blood pressure measurement of the jth individual, k = 1, 2, 3, and j =

1, . . . , (nx + ny).

The dataset contains potential confounding variables such as body mass index (BMI), a con-

tinuous variable, and income, an ordinal categorical variable. Suppose that Zj and Aj denote the

set of confounding variables, and the logarithm of the true systolic blood pressure of subject j.

Next, assume that Aj = β0 + ZT
j β1 + εj for some β = (β0,β

T
1 )T , and observed data are

Ajk = Aj + measurement error, for k = 1, . . . ,m. Note that we assume one common β regardless

of the group (non-alcoholic or alcoholic), otherwise εj does not have the group information. To

estimate β we simply regress Aj =
∑

k Ajk/m on Zj . Then define

Wjl = Ajl − β̂0 −ZT
j β̂1 = Xj + Ux,jl, l = 1, . . . ,mx, j = 1, . . . , nx,

and

Vkl = Akl − β̂0 −ZT
k β̂1 = Yk + Uy,kl, l = 1, . . . ,my, k = nx + 1, . . . , ny.

Particularly, for this example, Wjl = Ajl − β̂0 − β̂1BMIj − β̂2incomej , j = 1, . . . , nx, and

Vkl = A(nx+k)l − β̂0 − β̂1BMInx+k − β̂2incomenx+k, for k = 1, . . . , ny. Next, I shall apply the

proposed test and the two naive tests on those residuals. As discussed in the simulation study,

the unif0.99 weight function is considered. However, to calculate t1 and t2 I use the deconvoluted

distribution functions F̂x and F̂y instead of Fx and Fy as the later two are unknown in the real data.

The resulting p-values are given in the first row of Table 2.3. At the 5% level, the proposed

method strongly rejects H0 while the naive approaches contradict each other so that it is difficult to

make a decision. For this and the next application, I use 10, 000 Bootstrap samples and the unif0.99

weight function to calculate the p-value for our proposed method. The conclusion based on the pro-

posed test affirms the medical science that usually alcohol consumption and high blood pressure are
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Table 2.3: The table shows the p-values for testing of hypothesis using the real data. Here K-S, A-
D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed characteristic
function based test, respectively. Also, ACR≡ Albumin-to-creatinine ratio, and BP≡ Systolic
blood pressure. For the proposed method, the number of Bootstrap samples was 10, 000.

Variable K-S A-D C-F
BP 0.058 0.001 0.001

ACR 0.043 0.143 0.008

associated. Moreover, repeated binge drinking for a long time may cause elevated blood pressure

(http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/

expert-answers/blood-pressure/faq-20058254).

Albumin-to-creatinine ratio (ACR) example: In this application we check if the distribution

of albumin-to-creatinine ratio (ACR) differs by smoking status. Albumin is a protein and creatinine

is a chemical waste, and their ratio ACR is used to assess renal functionality. Usually higher level

of ACR is associated with a higher risk of renal events. Our interest is in testing equality of

the distribution of ACR among non-smoking and smoking group after adjusting the effect of the

confounding variables.

In the NHANES study (2009-2010 survey data), urinary albumin and creatinine were mea-

sured twice for each participants, the first sample was collected in the mobile examination center

(MEC) and the second sample was collected during the interview at home. We consider these two

measurements (samples) as the two noisy measurements of the same underlying truth, and hence

mx = my = m = 2.

For this test I consider only non-Hispanic white males who are older than 60 years as the

renal issue is more prevalent in the older group. I define a person as a non-smoker if he smoked

less than 100 cigarettes in his lifetime, otherwise the person is called a smoker, and based on this

classification we obtain nx = 161 (non-smoking) and ny = 290 (smoking). For the jth individual

define Ajk = log(albuminjk/creatininejk) for k = 1, 2, and j = 1, . . . , (nx + ny). As in the

previous application, to remove the effect of BMI and income, I regress Aj =
∑

k Ajk/m on
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BMI and income and obtain β̂. Next define the residuals Wjl = Ajl − β̂0− β̂1BMIj − β̂2incomej ,

j = 1, . . . , nx, and Vkl = A(nx+k)l−β̂0−β̂1BMInx+k−β̂2incomenx+k, for k = 1, . . . , ny, where β̂0,

β̂1, β̂2 are the estimated regression coefficients. Now, I apply the proposed test and the two naive

tests on the residuals. As in the previous application, for the proposed test I consider the unif0.99

weight function, where t1 and t2 are calculated from the deconvoluted distribution functions F̂x

and F̂y.

The resulting p-values are given in the second row of Table 2.3. For the proposed test, we

get p-value 0.008 so that we conclude that smoking status and ACR are related. At the 5% level,

the A-D fails to reject H0 while the p-value for the K-S test is barely below the nominal level.

Therefore, as a whole the naive test could be misleading. The test result based on the proposed

method is consistent with the finding of Hogan et al. (2007) who considered a similar issue with

different smoking groups and have used the data from the NHANES III survey (1988-1994).

Table 2.4: The entries of the table show the proportion of the rejection of H0 at the 5% level for
the simulation study where simulated datasets mimicked the blood pressure dataset (mx = my =
3) given in Section 2.5. Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-
Darling, and the proposed characteristic function based test, respectively.

nx = 200, ny = 120 nx = 400, ny = 240
K-S A-D C-F K-S A-D C-F

Type-I error rate
D3 0.039 0.049 0.046 0.043 0.051 0.048
D4 0.050 0.060 0.039 0.064 0.083 0.043

D11 0.053 0.060 0.038 0.065 0.073 0.046

Power
D6 0.125 0.121 0.398 0.261 0.273 0.716
D8 0.282 0.220 0.716 0.609 0.587 0.969

D12 0.575 0.814 0.821 0.882 0.986 0.984

Simulation study that mimics the NHANES data: To show the effectiveness of the con-

founding variable adjustment method, mimicking the real dataset on the systolic blood pressure

example, another simulation study is conducted. I generated two covariates T1 and T2 by mim-
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icking the distributions of BMI and income. Specifically, T1 was generated from the Gamma

distribution with shape 26.7 and rate 0.9, T2 was generated from the multinomial distribution

with the cell probability same as the observed relative frequency from the data. Next, I defined

BX
j = β̂0 + β̂1T1j + β̂2T2j + Xj , BY

k = β̂0 + β̂1T1k + β̂2T2k + Yk, Bjl = BX
j + Ux,jl and

Bkl = BY
k + Uy,kl, for nx = 200, ny = 120 and nx = 400, ny = 240, where Xj, Yk, Ux,jl and

Uy,kl were specified by some designs given in Section 2.4. Here β̂ denotes the estimated β in the

first data example. For checking the type-I error rate, I considered designs D3 and D4, and a new

design

D11 Xj, Yk ∼ F̂ , Ux,jl ∼ F̂ux , Uy,kl ∼ F̂uy ,

where F̂ is the estimator of the common distribution of X and Y in the first data example, and

F̂ux and F̂uyare the corresponding estimator of the measurement error distributions. For checking

power, I considered designs D6, D8, and a new design

D12 Xj ∼ F̂x, Yk ∼ F̂y, Ux,jl ∼ F̂ux , Uy,kl ∼ F̂uy ,

where F̂x and F̂y are the deconvolution estimator of X and Y , respectively, for the first data exam-

ple. Each dataset was analyzed using the adjustment approach described in the first data example.

Table 2.4 contains this simulation results. I find the patterns are similar to those in Tables 3.1 and

2.2. One remarkable result in this simulation is that naive approaches cannot control the nominal

level even when X, Y ∼ F̂ as in the case D4. Overall the proposed method shows consistent

behavior, and much superior performance than the other approaches.

2.6 Conclusions

In this chapter, I have investigated the test of homogeneity of two distributions when observed

data are contaminated with the classical measurement error. To extract the true signals from the

error contaminated data I have applied a non-parametric method that does not make any assumption

regarding the true signal. Also, other than symmetry and non-vanishing characteristic function over

the entire real line, no other assumption was used for the measurement errors. A valid Bootstrap

approach to calculate the p-value of the test has been proposed.
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The benefit of the proposed approach is shown through simulation studies. The simulation

studies also show that the power of the proposed approach changes with the weight function. I

have applied the proposed method to analyze two real datasets obtained from the NHANES 2009-

2010 study. Since this data was collected from the nationally representative sample, the results of

the data analysis is applicable to a broader section of the population. All computations were done

using R.

Finally, the proposed method can be extended to the scenario where the number of replications

(mx or my) is varying by subjects. Also, any further research in this area can focus on relaxing the

real valued and non-zero characteristic function assumption on the measurement error distribution.
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3. A BAYESIAN GOODNESS-OF-FIT TEST OF TECHNICAL INEFFICIENCY IN

STOCHASTIC FRONTIER ANALYSIS

3.1 Background and literature review

Stochastic frontier (SF) models are used to assess deviations of the observed production from

the optimal production. That deviation, commonly known as technical inefficiency or simply in-

efficiency, may arise due to technological drawback, or lack of proper allocation of resources to

the production process. Typically, after fitting a SF model to a dataset, one intends to predict the

inefficiency of a production unit that may refer to a farm or a geographical region. The SF model

for the ith production unit is (Aigner et al., 1977; Meeusen and van den Broeck, 1977)

yi = β0 + βT1 xi + εi, εi = vi − ui, (3.1)

where yi is an output, xi is a vector of input covariates, vi is a stochastic noise, and ui ≥ 0 is called

technical inefficiency for the ith unit. Here ε is termed as the composite error. I assume that v and

u are independent and they are independent of x. The stochastic noise v is assumed to have zero

mean normal distribution with variance σ2
v in the literature (Chen and Wang, 2012). Commonly

a half-normal distribution, exponential distribution, or a Gamma distribution is assumed for the

distribution of the inefficiency term. A good review of the current state-of-the-art methods on

stochastic frontier models can be found in Kumbhakar and Lovell (2003).

For consistent estimation of the model parameters, and good prediction of the inefficiency of

production units, one needs to correctly specify the distribution of u. Schmidt and Lin (1984),

Kopp and Mullahy (1990), and Coelli (1995) developed tests for the presence of technical inef-

ficiency. However, these tests fail to provide any information on the underlying distributions of

v and u. For this purpose, Chen and Wang (2012) proposed consistent estimators of the param-

eters involving the distribution of v and u using the generalized moment method of the centered

residuals calculated from the least square estimators for β = (β0,β
T
1 )T . Then under several mo-
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ment conditions, they developed a test for the distributional assumption on u and v together. On

the other hand, Wang et al. (2011) proposed chi-squared tests and the Kolmogorov-Smirnov (KS)

test for testing the distributional assumption of u assuming that the distribution v is known. They

concluded that the KS test performs the best among the other approaches they considered.

Like Wang et al. (2011), in this paper we assume that the distribution of v is a mean zero nor-

mal distribution, and develop a test for testing the distributional assumption of u only. I develop a

Bayesian test using the Bayes factor. In order to formulate the Bayes factor, one needs to verify the

specific form of alternative hypothesis. Under the null hypothesis we assume that u follows a given

family of parametric distributions that result in a composite null hypothesis. Under the alternative

hypothesis, I model the distribution of u via a flexible semiparametric class of distributions that

is capable of approximating the true unknown density of u. Under the stated conditions, I shall

prove that the proposed test is consistent, and the details are given in Section 3.3. The Bayes factor

involves computation of the marginal likelihood, and computation of the marginal likelihood is not

straight forward in our case. Particularly, our likelihood function under the null or alternative hy-

potheses involves with multiple parameters, and the marginal likelihoods do not have closed form.

There are several methods on computing Bayes factors and each of them have some advantages

and disadvantages (Lewis and Raftery, 1997; Meng and Schilling, 2002; Mira and Nicholls, 2004;

Chib and Jeliazkov, 2005; Weinberg, 2012). However, I shall apply the power posterior approach

due to Friel and Pettitt (2008) to compute the marginal likelihoods, and the details are given in

Section 3.3. Through, simulation studies I compare the performance of the proposed test with the

existing test in the literature. The proposed test remarkably outperforms the existing test in terms

of the rejection probability of the null hypothesis in both scenarios, when it is false and when it

is true. The simulation study is given in Section 3.5 while the analysis of a real data is given in

Section 3.6, followed by conclusions given in Section 3.7.

3.2 Notation and existing method

Suppose that observed data are (yi,xi), i = 1, . . . , n, and the data follow model (3.1). Assume

that v ∼ Normal(0, σ2
v). We want to test if H0 : Fu(·) = F0u(·,λ), where F0u(·,λ) is a parametric
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family of distributions known up to the parameter λ.

To test H0, Wang et al. (2011) used the following test statistic:

KS1 = sup
r
|F0ε(r, θ̂0ε)− Fn(r)|,

where F0ε(·,θ0ε) is the CDF of ε under the null hypothesis, and θ0ε denotes the set of parameters

that include σv and λ. The MLE of θ0 ≡ (βT ,θT0ε)
T under H0 is denoted by θ̂0 = (β̂

T
, θ̂

T

0ε)
T ,

and Fn(·) denotes the empirical distribution based on the residual ε̂ = y − β̂0 − β̂
T

1 x, where

β̂ = (β̂0, β̂
T

1 )T is the MLE for β under the null hypothesis. They estimated the null distribution

of the test statistic by a bootstrap method. To be specific, for b = 1, . . . , B, they generated the

bootstrap data y(b)
i = β̂0 + β̂

T

1 xi + ε
(b)
i , i = 1, . . . , n, where ε(b)1 , . . . , ε

(b)
n is a random sample drawn

from F0ε(·, θ̂0ε), and computed the test statistic KS(b)
1 = supr |F0ε(r, θ̂

(b)

0ε ) − F ∗n(r)|, where θ̂
(b)

0ε

is the MLE from the bth bootstrap data, F ∗n(r) is the empirical distribution based on the residual

ε̂
(b)
i ≡ y

(b)
i − β̂

(b)
0 − β̂

(b)T

1 xi, and β̂
(b)

is the MLE of β(b) obtained from the bth bootstrap dataset

under H0. Then the p-value was estimated by
∑B

b=1 I(KS
(b)
1 > KS1)/B.

3.3 Testing methodology

3.3.1 Models and priors

We assume that model (3.1) along with the normality assumption on v hold. With the paramet-

ric model assumption on the distribution of u and the independence assumption between u and v,

the density function of the composite error ε is

f0ε(ε;σv,λ) =

∫ ∞
0

1

σv
φ

(
ε+ η

σv

)
f0u(η;λ)dη,

where φ is the density of the standard normal distribution and fu(·;λ) is a density function of u

with parameter λ. Typically, one tests H0 : u follows a half-normal distribution, H0 : u follows an

Exponential distribution, or H0 : u follows a Gamma distribution (Kumbhakar and Lovell, 2003;

van den Broeck et al., 1994). Then the conditional distribution of y given the covariates x with
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parameter θ0 = (βT , σv,λ)T can be written as fy|x(y;x,θ0) = fε(y−β0−βT1 x;σv,λ). Suppose

that Π0(θ0) is the prior density for θ0. Then the posterior distribution of θ0 is

Π0(θ0|y,x) ∝

{
n∏
i=1

f0ε(yi − β0 − βT1 xi;σv,λ)

}
Π0(θ0).

We call this the null model.

For the alternative hypothesis, I consider a broad semiparametric family of distributions which

contains the true distribution of u or there is a distribution in this class that approximates the true

distribution of u. Define w = e−u, and model the density of w using splines (Kooperberg and

Stone, 1991, 1992). Note that 0 ≤ w ≤ 1. We fix the degree of the splines as q and knots as

{k/K : k = 1, . . . , K} for large K and we allow K →∞ for consistency. Then, the density of w

is

fw(w;γ) =
exp{

∑L
k=1Bk(w)γk}∫ 1

0
exp{

∑L
k=1Bk(s)γk}ds

,

where Bk(·) is the kth B-spline basis function with fixed degree q, and (γ1, . . . , γL)T denotes L

spline coefficients with L = K + q. Since
∑L

k=1 Bk(w) = 1, γ1 + · · · + γL = 1, hence there are

L− 1 free gamma-parameters. Now, we write the density of u as

f1u(u;γ) =
exp{−u+

∑L
k=1Bk(e

−u)γk∫ 1

0
exp{

∑L
k=1 Bk(s)γk}ds

,

where γ = (γ1, . . . , γL−1)T . Therefore, the probability density function of ε under the alternative

hypothesis is

f1ε(ε;σv,γ) =

∫ ∞
0

1

σv
φ

(
ε+ η

σv

)
f1u(η;γ)dη

=

∫ ∞
0

1

σv
φ

(
ε+ η

σv

)
× exp{−η +

∑L
k=1Bk(e

−η)γk∫ 1

0
exp{

∑L
k=1Bk(s)γk}ds

dη

=

∫ 1

0

1

σv
φ

{
ε− log(t)

σv

}
exp{

∑L
k=1Bk(t)γk}∫ 1

0
exp{

∑L
k=1 Bk(s)γk}ds

dt.
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Finally, approximating the integrals by the Gauss-Legendre (GL) quadrature formula we obtain

f1ε(ε;σv,γ) ≈
∑J

j=1 cj{φ([ε− log{(sj + 1)/2}]/σv)/σv} exp[
∑L

k=1Bk{(sj + 1)/2}γk]/2∑J
j=1 cj exp[

∑L
k=1Bk{(sj + 1)/2}γk]/2

,

where cj’s are the weights and sj’s are nodes for GL quadrature. Suppose that Π1(θ1) is the prior

distribution for θ1 = (βT , σv,γ)T , then the posterior distribution of θ1 is

Π1(θ1|y,x) ∝

{
n∏
i=1

f1ε(yi − β0 − βT1 xi;σv,γ)

}
Π1(θ1).

For each component of θ0 and θ1 we set the prior distribution on a compact support and the

density function is positive and finite valued at every point of the compact support, and specific

prior choices are discussed in Section 3.5. With this choice of prior, the posterior contraction rate

attains the minimax rate of estimation (Theorem 9.1, Ghosal and van der Vaart, 2017).

3.3.2 Calculation of Bayes factor

Let f0 denote the true but unknown distribution for y given x. Given that the distribution of v

follows Normal(0, σ2
v), testing whether the distribution of u follows a specified parametric family

of distributions or not is equivalent to the following test:

H0 : f0 ∈ F0 vs. H1 : f0 /∈ F0, (3.2)

where F0 = {fy|x(·;θ0) : θ0 ∈ Θ0} is a class of fixed parametric models defined in previous

section. Specifically, for testing H0 : u follows f0u,

fy|x(·;x,θ0) =

∫ ∞
0

1

σv
φ

(
· − β0 − βT1 x+ η

σv

)
f0u(η;λ)dη.

Remark 2. In order to define Bayes factor, we need to specify models for the alternative hypothesis.

I define F1 = {fy|x(·;θ1) : θ1 ∈ Θ1n} as the alternative model space as described in Section

3.3.1. One advantage of considering this infinite dimensional model is that we can consider the
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case where the true density f0 is not necessarily in F1. However, as K →∞ in f0 is approximated

by some distribution in F1. Therefore, it is enough to consider whether f0 ∈ F0 or not.

Under the same prior probabilities for the models F0 and F1, testing (3.2) can be conducted

via the Bayes factor defined by

B01 =
pr0(y,x)

pr1(y,x)
=

∫
{
∏n

i=1 fy|x(yi;xi,θ0)}Π0(θ0)dθ0∫
{
∏n

i=1 fy|x(yi;xi,θ1)}Π1(θ1)dθ1

, (3.3)

where p0(y,x)(p1(y,x)) denotes the marginal likelihood under the null (alternative) model. Then

the Bayes factor defined in (3.3) can be estimated by log(B01) = log{pr0(y,x)}− log{pr1(y,x)}.

In order to evaluate/compute marginal likelihoods, I adapt the power posterior approach. For

the notational convenient, we omit the subscript in what follows. The computation of the marginal

likelihood is based on the identity (Friel and Pettitt, 2008)

log{pr(y,x)} =

∫ 1

0

Eθ|y,x,t[log{fy|x(y;x,θ)}]dt, (3.4)

where the expectation is with respect to the power posterior distribution defined as

pr(θ|y,x, t) =
{fy|x(y;x,θ)}tΠ(θ)∫ 1

0
{fy|x(y;x,θ)}tΠ(θ)dθ

, (3.5)

for t ∈ [0, 1]. We assume that Π(θ) is proper so that the denominator of (3.5) is finite. Note that

pr(θ|y,x, t = 1) is the posterior distribution and pr(θ|y,x, t = 0) is the prior distribution of θ.

We discretize t ∈ [0, 1], say, 0 = t0 < t1 < · · · < tr = 1. For each ti, posterior samples from

(3.5) are generated using MCMC sampling to compute Eθ|y,x,ti [log{fy|x(y;x,θ)}] via Monte

Carlo integration. Finally the marginal likelihood is estimated via a trapezoidal rule

log{pr(y,x)} ≈
r−1∑
i=0

(ti+1 − ti)
Eθ|y,x,ti+1

[log{fy|x(y;x,θ)}] + Eθ|y,x,ti [log{fy|x(y;x,θ)}]
2

.

In the next section I show that the Bayes factor is consistent for testing H0. Following that we

36



define the test function

Ψn =

 1 if B01 < tcutoff

0 otherwise.
(3.6)

I took tcutoff = 1/3. This choice of tcutoff was guided by the recommendation given in Kass

and Raftery (1995), where 1/3 ≤ BF01 < 1 implies that there is not worth more than a bare

mention against H0, 1/20 ≤ BF01 < 1/3 indicates that there is a positive evidence against H0,

1/150 ≤ BF01 < 1/20 implies a strong evidence and BF01 < 1/150 shows very strong evidence

against H0.

3.4 Large sample properties of the test

The test will be called consistent if Ef0(Ψn)→ 1 as n→∞ for any f0 /∈ F0. A consistent test

is called Chernoff-consistent if the probability of Type-I error goes to zero as n→∞ (Shao, 1999,

p.111). Our proposed test (3.6) based on Bayes fact B01 is Chernoff-consistent if we can show that

B01 is consistent according to the following definition.

Definition 1. The Bayes factor defined in (3.3) under the hypotheses (3.2) is said to be consistent

if

(a) B01 →∞ if f0 ∈ F0 in probability

(b) B01 → 0 if f0 /∈ F0 in probability,

with respect to an appropriate measure whose density is f0.

Proposition 1. Under the conditions stated in Appendix, B01 defined in (3.3) is consistent.

Proof of this result is given in the Appendix.

3.5 Simulation studies

Simulation design: In this section, I present the finite sample performance of the proposed test

via Monte-Carlo simulations. I simulated datasets with sample sizes n = 50, 100 and 200, which
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consist of a scalar covariate x and a response y following model (3.1), where x ∼ Normal(0, 1),

β0 = 1 and β1 = 1.5. I set the composed error ε = v − u, where v was simulated from

Normal(0, (1/
√

5)2) and u from the following distributions:

Scenario 1. (NHN) u ∼ Normal+(0, (2/
√

5)2),

Scenario 2. (NEX) u ∼ EXP(2/
√

5),

Scenario 3. (NGM) u ∼ Gamma(1.75, 0.41).

Here Normal+(0, σ2
u) denotes the half-normal distribution whose density function is (2/σu)φ(u/σu)

×I(u > 0), where φ is the density of the standard normal distribution, EXP(σu) represents the

exponential distribution with variance σ2
u, and Gamma(a, b) denotes the gamma distribution with

mean ab and variance ab2. Note that scenarios 1 and 2 are similar to the cases considered in the sim-

ulation study of Wang et al. (2011). Note that when v ∼ Normal(0, σ2
v) and u ∼ Normal+(0, σ2

u),

σ2 ≡ var(ε) = σ2
v + σ2

u. Wang et al. (2011) considered several combinations of (σ2
v , σ

2
u) while

constraining σ2 = 1. In scenario 3, u has the same mean and variance as in the first case (NHN).

Method of analysis: For each simulated dataset I test H0 : u follows Normal+(0, σ2
u) against

Ha : u does not follow Normal+(0, σ2
u). For analyzing data under the null hypothesis, I used

independent Normal(0, 1) prior distribution truncated between−4 and 4 for the regression param-

eters as well as for log(σ2
v) and log(σ2

u). Also, for the alternative hypothesis, I used independent

Normal(0, 1) prior distribution truncated between −4 and 4 for the regression parameters as well

as for log(σ2
v) and all L− 1 components of γ-parameter. The results are fairly insensitive towards

the variance of the prior distribution when it was varied between 0.5 and 5. For the spline esti-

mation, I considered 0.25, 0.5, 0.75 as internal knot points. To evaluate log-marginal likelihood, I

used tr = (r/20)5 for r = 0, . . . , 20 as the grid points for the trapezoid rule. I also applied the

method of Wang et al. (2011) described in Section 3.2.

Results: Table 3.1 contains the simulation results. Under each scenario and for different sam-

ple sizes I simulated 1, 000 datasets, and I computed proportion of times we rejectH0 (given in col-

umn 6), also columns 3, 4 and 5 contains the proportion of times the Bayes factor falls [1/20, 1/3),
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Table 3.1: The first column shows the true data generating process. The entries from column 3
to 5 are the proportion of cases where BF01 falls into [1/20, 1/3), [1/150, 1/20) and [0, 1/150),
respectively. The entries in the sixth column presents the proportion of cases where BF01 < 1/3.
The records in the last column show the proportion of simulated datasets where the p-value of the
bootstrap KS test (Wang et al., 2011) is less than 0.05.

Model n
Evidence against H0 Reject H0 Bootstrap KS

Positive Strong Very strong

NHN
50 0.031 0.001 0 0.032 0.023

100 0.027 0.002 0 0.029 0.019

200 0.017 0.000 0 0.017 0.039

NEX
50 0.307 0.131 0.082 0.520 0.127

100 0.299 0.215 0.225 0.739 0.240

200 0.213 0.228 0.451 0.892 0.448

NGM
50 0.118 0.018 0.008 0.144 0.046

100 0.122 0.033 0.010 0.165 0.054

200 0.126 0.052 0.019 0.197 0.065

[1/150, 1/20), and [0, 1/150], respectively. In scenario 1 (NHN) data follow the null hypothesis.

The proportion of rejection of H0 (column 6) is decreasing towards 0 as the sample size increases.

For scenarios 2 (NEX) and 3 (NGM) where data do not follow H0, the rejection proportions are

increasing with the sample size. Column 7 of Table 3.1 shows the proportion of rejection of H0

when Wang et al. (2011)’s test is used. The proposed test clearly outperforms the existing test in

terms of both Type-I and Type-II error rates.

3.6 Analysis of the U.S. electricity data

XI apply the proposed Bayesian approach to test the distributional assumption of the technical

inefficiency of the SF model for analyzing the U.S. electricity data. The dataset contains informa-

tion on Q, a function of labor, capital, and fuel, Pl, the price of labor, Pk, the price of capital, Pf ,

the price of fuel, and the cost of production from n = 123 companies (Greene, 1990). Because of

linear homogeneity for Pl, Pk and Pf , a priori restriction was adopted to the model by dividing
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each of these quantities by Pf and the resulting model was (van den Broeck et al., 1994):

−log(Cost/Pf ) = β0 + β1{−log(Q)}+ β2[−{log(Q)}2] + β3{−log(Pl/Pf )}

+β4{−log(Pk/Pf )}+ v − u.

Thus in this case, higher cost is likely to be caused by inefficiency u > 0.

Previously, Greene (1990) and van den Broeck et al. (1994) analyzed this dataset. Greene

(1990) considered MLE based on normal v and half normal u, normal v and gamma u, and normal

v and exponential u assumption. On the other hand, van den Broeck et al. (1994) used normal

v and gamma u to analyze this dataset using a Bayesian approach but they restricted the gamma

shape parameter to 1, 2 and 3. The estimated regression parameters were more or less similar

across different models. However, resulting E(u), var(u) and var(v) were varying by models.

This empirically explains that the distributional assumption of umatters, specifically for predicting

inefficiency.

Assuming the regression structure given in (3.7) is true and v follows mean zero normal distri-

bution Normal(0, σ2
v), I tested H0 : u ∼ Normal+(0, σ2

u). Similar to simulation study, here also

I used mean-zero normal truncated distribution as the prior for each parameter, and I took three

different prior variances, 0.064, 0.5, 1. Particularly, 0.064 was the maximum of all the square of

standard errors of the parameters when MLE was calculated by fitting the null model to the data.

The resulting Bayes factor was 4.227e − 06, 4.346e − 08, 1.359e − 05, for three different prior

variances. These values indicate strong evidence against the null hypothesis, and using our test

(3.6) we rejected H0. For the comparison purpose, I calculated the p-value of the bootstrap KS test

(Wang et al., 2011), and that was 0.0015, and at the 5% level, we also rejected the H0. Based on

both tests, we concluded that half-normal assumption was an unrealistic assumption on u.

3.7 Conclusions

In this chapter, a test of the distributional assumption of technical inefficiency is developed in a

Bayesian context. In order to construct the Bayes factor I have considered a flexible semiparametric
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family of distributions as an alternative model specification which is capable of approximating any

distribution with reasonable accuracy. The consistency property of the proposed test is established.

The advantage of the proposed test is shown via Monte-Carlo simulation studies. The results are

fairly robust when the prior variances are varied within a reasonable range. The proposed idea of

Bayesian test can be extended to test the presence of inefficiency term in the SF model.
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4. FREQUENTIST STANDARD ERRORS OF BAYES ESTIMATORS ∗

4.1 Background and literature review

Suppose that f(•|θ) is the data generating density and π(θ) is the prior distribution for the

parameter θ. LetD be the observed data. Then the posterior distribution of θ is

π(θ|D) = Kπf(D|θ)π(θ),

where Kπ denotes the normalizing constant. There are several posterior summaries, such as

the mean, m(D) = E(θ|D) =
∫
θπ(θ|D)dθ, the posterior median m̃(D), which satisfies∫ m̃(D)

−∞ π(θ|D)dθ = 0.5, the αth quantile qα(D), that satisfies
∫ qα(D)

−∞ π(θ|D)dθ = α for any

α ∈ (0, 1), and the posterior mode mo(D) = arg maxθ π(θ|D). By s(D) I refer to any summary

of the posterior distribution. Throughout this article I assume that D consists of (X1, . . . , Xn)

iid observations. The goal of this chapter is to discuss approaches of computing the frequentist

standard error of s(D).

Under a large sample, the observed data dominates the prior information in a Bayesian frame-

work, and under standard regularity conditions, the posterior distribution of finite dimensional

model parameters converges to the Gaussian distribution with the maximum likelihood estimator

and the inverse of the Fisher Information matrix as the asymptotic mean and asymptotic variance,

respectively. This asymptotic connection indicates that the Bayesian philosophy of integrating the

observed data and the prior knowledge can be seen as a general procedure that encompasses the

frequentist procedure as a special case. Therefore frequentist standard error of a Bayes estima-

tor is a way of assessing uncertainty of the general procedure. Particularly, for a large sample,

the frequentist variance of the posterior mean converges to the inverse of the Fisher’s information

matrix. From the Bayesian perspective, frequentist standard errors can be used for comparing un-

∗ Reprinted with permission from "Frequentist Standard Errors of Bayes Estimators" by DongHyuk Lee, Raymond
J. Carroll, Samiran Sinha, 2017. Computational Statistics, 32, 867–888, Copyright [2017] by Springer Nature.
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certainty of estimators under different priors (Efron, 2015). Although the posterior standard error

(the standard deviation of the posterior distribution) is a measure of uncertainty of the posterior

distribution, Efron (2015) argued that in a Bayesian paradigm, accuracy of a Bayes estimator,

such as posterior mean could be judged based on the posterior distribution given that the prior

distribution of the parameter reflects the truth in some degree. Therefore, finding accuracy of a

Bayes estimator in an objective way among different subjective and objective priors is important.

In fact, Berger (2006) discussed that the “pseudo-Bayes procedures" where subjective, objective,

or a mixture of subjective and objective priors are used, often fail to provide any guidance on the

performance of true subjective or objective Bayesian analysis. He then pointed out the necessity

of validating these Bayesian approaches, and frequentist standard error of a posterior summary can

be seen as a measure of such validation. Although Bayes factor is a way of comparing Bayesian

procedures, many practitioners still want to compare estimators based on a frequentist uncertainty

measure. Therefore, despite an apparent lack of coherence for incorporating a frequentist compar-

isons among Bayes procedures, it provides a measure of comparing uncertainties of the estimators.

Of course, we should not use this measure solely to elicit the optimal prior for a Bayes procedure

as for a proper comparison one should consider consistency, posterior convergence rate, along with

the uncertainty of the estimator.

Efron (2015) proposed methods for computing frequentist standard errors of the posterior

mean of a function of a parameter. In particular, he derived the approximate frequentist stan-

dard deviation of the posterior mean of a parameter based on the delta method. Suppose that

T is the sufficient statistic. Following our notations, his formula for the approximate stan-

dard deviation of t̂ = E{t(θ)|D} = E{t(θ)|T}, the posterior mean of t(θ), a function of θ,

is [cov{t(θ), αT (θ)|T}TVθcov{t(θ), αT (θ)|T}]1/2, where αT (θ) = ∂log{fθ(T )}/∂T denotes the

gradient of log{fθ(T )} with respect to T , the sufficient statistic for θ, fθ(T ) is the density for the

sufficient statistic T , and Vθ denotes the variance of the sufficient statistic. For application of this

method it is critical that Vθ is readily available. Secondly, one key component of the delta method

is the gradient of t̂ with respect to T , and here this gradient is expressed as the posterior covariance
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cov{t(θ), αT (θ)|T}. Expressing ∂t̂/∂T as cov{t(θ), αT (θ)|T} critically relies on the fact that t̂

is a posterior expectation. This posterior covariance is easy to estimate from a sample from the

posterior distribution of θ. Therefore, when Vθ is available and t̂ is a posterior expectation, then

Efron’s formula is easy to apply and it is computationally fast.

In a special case with the exponential family of distributions where θ is considered to be the

natural or canonical parameter vector, along with an uninformative prior for θ, he showed that the

standard error of the posterior mean of t(θ) = θ can be computed without running the MCMC step

to generate posterior samples for computing cov{θ, αT (θ)|T}. In lieu of the MCMC sampling, he

used a parametric bootstrap resampling technique (Efron, 2012) to compute the posterior covari-

ance term. Although the proposed method is applicable to only posterior means and when Vθ is

easily available, the main advantage is that this method, when it is applicable, is much faster than

the regular bootstrap procedure.

Inspired by this work I propose a general method of efficiently computing the frequentist stan-

dard error not only of the posterior mean but also of any posterior summary, s(D). Our method

is applicable for data generated from any parametric model, not necessarily from an exponential

family of distributions. The proposed method relies on the bootstrap idea. Usually, the standard

error of an estimator can be computed by the bootstrap method (Efron and Tibshirani, 1986), where

the standard error is estimated by the standard deviation of the Bayes estimators obtained from a

large number of bootstrap samples. On the other hand, the Bayes estimator for a bootstrap sample

is usually calculated by drawing a large number of Markov chain Monte Carlo (MCMC) sam-

ples, which is often time consuming, and consequently drawing posterior samples for each of the

bootstrap data can be a prohibitively time consuming task.

The main aim of Chapter 4 is to reduce this computation time. To do so, the MCMC method

will be used once to draw samples from the posterior distribution of the parameters given the orig-

inal data. Then use these posterior samples along with the importance sampling idea to compute

the posterior summary for each bootstrap data. The details are discussed in the following sections.

To make it clearer, we want to re-state that in the proposed method, we do need bootstrap sam-
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pling, but we bypass the MCMC sampling for each bootstrap data by a clever use of the importance

sampling method. Here is a brief description of the importance sampling method in a few words.

Suppose that we are interested in estimating θ =
∫
g(x)f(x)dx, where f(x) is a density. With

another density h(x), we can re-write θ =
∫
g(x)ω(x)h(x)dx, where ω(x) = f(x)/h(x) is called

the importance weight. Then the importance sampling estimator of θ is θ̂ = m−1
∑m

i=1 g(xi)ω(xi),

where x1, . . . , xm are iid from h(x). This technique is quite useful for efficient estimation of tail

probabilities, and is used for drawing bootstrap samples, specially for estimating standard error of

small probabilities (pp. 349, Efron and Tibshirani, 1994). However, I use importance sampling

technique to compute estimators based on a bootstrap re-sampled data. Basically in the proposed

approach bootstrap samples are drawn using standard bootstrap resampling technique and then

importance sampling is used to compute the Bayes estimators. Although importance sampling

idea has been used in many other contexts, including but not limited to the simulated maximum

likelihood estimation, computer graphics, modelling stock market data, modelling linear and non-

linear dynamic processes (Liang, 2002), the use of this technique in the present context seems to

be novel.

A brief outline of the chapter is as follows. In Section 4.2 I provide the widely used examples.

The main idea related to the posterior mean is discussed in Section 4.3, while Section 4.4 considers

posterior quantiles and the posterior mode. Section 4.5 describes the results of two simulation

studies and a real data examples. Section 4.6 contains conclusions.

4.2 Motivating examples

To motivate this research first I consider three commonly used models.

Logistic regression model: Suppose that Y1, . . . , Yn are independently drawn from the

Bernoulli(pi) distribution, where pi = pr(Yi = 1|Xi) = {1 + exp(−α − βXi)}−1 with a scalar

covariate Xi. Assume priors α ∼ Normal(a, σ2) and β ∼ Normal(b, τ 2), and let D denote the
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observed data {(Xi, Yi), i = 1, . . . , n}. Then the posterior distribution of α and β is

π(α, β|D) ∝
n∏
i=1

{
1

1 + exp(−α− βXi)

}Yi{ exp(−α− βXi)

1 + exp(−α− βXi)

}(1−Yi)

×

exp{−(α− a)2/2σ2}√
2πσ2

× exp{−(β − b)2/2τ 2}√
2πτ 2

.

For computing any posterior summary for π(α, β|D), usually we draw posterior samples from

π(α, β|D) using the MCMC method. So, a numerical method is must for computing frequen-

tist standard errors of any summary of the posterior distribution. In the simulation section, for

illustration, we apply the proposed method on this model.

Linear measurement error model: Now, we consider the following simple linear regres-

sion problem, where using the observed data D = {(Yi,Wi), i = 1, . . . , n}, we want to fit

Yi = α + Xiβ + εi, where Xi is unobserved but we observed its surrogate variable Wi, and

εi ∼ Normal(0, σ2
ε ). The observed surrogate Wi is associated with the true Xi through the clas-

sical additive measurement error model Wi = Xi + Ui, where Ui ∼ Normal(0, σ2
u) and σ2

u is

considered to be known for simplicity. We further assume that measurement error is nondifferen-

tial such that Yi is conditionally independent of Wi given the true Xi (pp. 36, Carroll et al., 2006),

and Xi ∼ Normal(µx, σ2
x).

It is well-known that the simple linear regression of Y on W will cause an attenuation towards

0 by the multiplicative factor σ2
x/(σ

2
x + σ2

u). One of the corrections for attenuation is the method

of moments. That is, the resulting estimator β̂ = β̂wσ̂
2
w/(σ̂

2
w − σ2

u), where β̂w is the OLS estimator

ignoring measurement error, σ̂2
w is the sample variance of the observed W , and σ2

u is the variance

of U (Section 2.5, Fuller, 1987; Section 3.4.1, Carroll et al., 2006). In addition, it is well-known

that β̂ has no finite moments, because the denominator term σ̂2
w − σ2

u can get arbitrarily close to

zero (Fuller, 1987). Therefore, Bayesian calculations are an attractive alternative.

We attempt to use a Bayesian inference for the parameters θ = (α, β, µx, σ
2
x, σ

2
ε ) in which α

and β are the main parameters of interest. Assigning normal priors, Normal(0, σ2
α), Normal(0, σ2

β),

Normal(0, σ2
µ) for α, β, µx, respectively and inverse gamma priors IG(δx, λx), IG(δε, λε) for σ2

x,
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σ2
ε , respectively (Section 9.4, Carroll et al., 2006), the joint posterior distribution of θ and the latent

variable X = (X1, . . . , Xn) is

π(θ,X|D) ∝ (σ2
ε )
−n/2−δε−1(σ2

x)
−n/2−δx−1 exp

{
−
∑n

i=1(Yi − α−Xiβ)2/2 + λε
σ2
ε

−
∑n

i=1(Wi −Xi)
2/2 + λu

σ2
u

−
∑n

i=1(Xi − µx)2/2 + λx
σ2
x

− α2

σ2
α

− β2

σ2
β

− µ2
x

σ2
µ

}
.

Due to the conjugacy of the prior distributions, it is easy to apply the Gibbs sampler to draw

posterior samples from π(θ,X|D). Specifically, the conditional posterior distributions of α and

β given other parameters and the latent variable X are normal distributions so that we can easily

obtain their posterior summaries. However, it is not an easy problem to find the variances of their

posterior summaries mainly because they are dependent on the unobserved X . Thus a numerical

method is required.

Weibull regression model: Suppose that T1, . . . , Tn are independently drawn from the

Weibull(α, λi) distribution whose density is g(t|α, λ) = αtα−1 exp{λ − exp(λ)tα} (eq. 2.2.1,

Ibrahim et al., 2001). Let C1, . . . , Cn be the corresponding censoring times whose distribution

does not include any information about parameters α and λi (non-informative censoring) and

∆1, . . . ,∆n be the censoring indicator where ∆i = 1 if Ti ≤ Ci (observed) and ∆i = 0 if Ti > Ci

(censored). In this example, let D = {Yi,∆i, Xi, i = 1, . . . , n}, where Yi = min(Ti, Ci), and Xi

is the covariate for the ith individual. We regress the parameter λi on covariates Xi, i.e., λi = X ′iβ.

Assigning a normal prior, Normal(µ0,Σ0), for β and a gamma prior, Gamma(α0, κ0), for α, the

posterior distribution of α and β is

π(α, β|D) ∝ αα0+d−1 exp

[ n∑
i=1

{∆iX
′
iβ + ∆i(α− 1)log(Yi)− Y α

i exp(X ′iβ)}

−κ0α−
1

2
(β − µ0)Σ−1(β − µ0)

]
,

where d =
∑n

i=1 ∆i (eq. 2.2.4, Ibrahim et al., 2001). Likewise in the logistic regression example,

we need not only to draw posterior samples from π(α, β|D) using the MCMC method to evalu-
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ate any posterior summary, we also necessitate a numerical procedures for computing frequentist

standard errors of those posterior summaries. We use this model to analyze the Melanoma data set

in Section 4.5.3, and compute uncertainty measures using the proposed approach.

These examples show that even for these well researched models, posterior summaries may not

have an explicit expression that is easy to compute. Additionally, the computation of the standard

error of the posterior summaries requires extra numerical work.

4.3 Standard errors of posterior means

In this section we concentrate only on the posterior mean and its standard error calculations. In

Section 4.4, we provide recipes for efficiently calculating frequentist standard errors of other types

of Bayes estimators. For any generic vector a, we shall use a⊗2 to denote aaT .

The frequentist standard error of the posterior mean of θ, θ̂ = m∗(D) = E(θ|D) =

E
π(·|D)

(θ), where π(·|D) is the posterior distribution, is

√
varF (θ̂) =

√∫
{m∗(D)}⊗2dF (D|θ)−

{∫
m∗(D)dF (D|θ)

}⊗2

.

Suppose that one draws B random samples each of size m from the posterior distribution π(θ|D).

Denote the bth sample as (θb1, . . . , θbm), b = 1, · · · , B. Define θ̂b =
∑m

j=1 θbj/m, and θ· =∑B
b=1 θ̂b/B. It is obvious that the variance among θ̂1, . . . , θ̂B does not estimate varF (θ̂) as (B −

1)−1
∑B

b=1(θ̂b − θ·)2 → (1/m)var
π(·|D)

(θ) almost surely as B → ∞, where var
π(·|D)

(θ) denotes

the posterior variance of θ. One obvious approach to estimate varF (θ̂) is to adopt the bootstrap

idea. In the bootstrap world, instead of varF (θ̂) we target estimating varF̂ (θ̂), where the observed

data are treated as the entire population. In the bootstrap method, we draw B bootstrap samples

with replacement from the original data, calculate the posterior mean for each bootstrap sample,

and then take the variance of the B posterior means. Let D(b) be the bth bootstrap data, and

π(θ|D(b)) be the corresponding posterior distribution. Define θ̂(b) = E(θ|D(b)) = E
π(·|D(b)

)
(θ) as

48



the posterior mean of θ for the bth bootstrap data. Further define θ
(·)

=
∑B

b=1 θ̂
(b)/B. Then

(B − 1)−1

B∑
b=1

(θ̂(b) − θ(·)
)2 → varF̂ (θ̂) as B →∞.

In practice, θ̂(b) is estimated by the Monte Carlo estimator θ̂(b)
mc =

∑M
j=1 θ

(b)
j /M , where θ(b)

1 , . . . , θ
(b)
M

are M random draws from π(θ|D(b)), and θ̂(b)
mc → θ̂(b) almost surely as M → ∞. Also, define

θ
(·)
mc = B−1

∑B
b=1 θ̂

(b)
mc. Then as M →∞,

(B − 1)−1

B∑
b=1

(θ̂(b)
mc − θ

(·)
mc)

2 → (B − 1)−1

B∑
b=1

(θ̂(b) − θ(·)
)2.

Hence
∑B

b=1(θ̂
(b)
mc − θ

(·)
mc)

2/(B − 1) will be used as the estimator of varF̂ (θ̂). In the following

paragraph we describe how we estimate θ̂(1), . . . , θ̂(B) without having numerically computing B

posterior distributions using B MCMC chains thereby saving lots of computation time.

Suppose that using MCMC method we have drawn θ1, . . . , θM from π(θ|D), the posterior

distribution of θ given the entire data D. Suppose that in the bth bootstrap sample, Xi occurs r(b)
i

times, where 0 ≤ r
(b)
i ≤ n, but

∑n
i=1 r

(b)
i = n. Then the posterior distribution of θ given the bth

bootstrap dataD(b) is

π(θ|D(b)) =

∏n
i=1 f

r
(b)
i (Xi|θ)π(θ)∫ ∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ

,

so

θ̂(b) =

∫
θπ(θ|D(b))dθ =

∫
θ
∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ∫ ∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ

=
G

(b)
1

G
(b)
0

,

where G(b)
s =

∫
θs
∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ for s = 0 and 1. Next, we can re-write

G(b)
s =

1

Kπ

∫
θs
∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)∏n

i=1 f(Xi|θ)π(θ)
Kπ

n∏
i=1

f(Xi|θ)π(θ)dθ
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=
1

Kπ

∫
θsω(b)(θ)Kπ

n∏
i=1

f(Xi|θ)π(θ)dθ,

where the importance weight ω(b)(θ) =
∏n

i=1 f
r
(b)
i (Xi|θ)/

∏n
i=1 f(Xi|θ) =

∏n
i=1 f

(r
(b)
i −1)(Xi|θ).

Hence θ̂(b) can be estimated by

θ̂
(b)
is =

∑M
j=1 θjω

(b)(θj)∑M
j=1 ω

(b)(θj)
,

where θ1, · · · , θM are M MCMC samples drawn from π(θ|D), the posterior distribution of θ

given the original data D. Importantly, under regularity conditions, θ̂(b)
is → θ̂(b) almost surely as

M →∞.

Proposition 2. Under regularity conditions, θ̂(b)
is → θ̂(b) with probability 1.

Proof. Suppose that ω(b)(θ) and θω(b)(θ) are integrable functions of θ with respect to the pos-

terior distribution of the original data π(θ|D) so that G(b)
s =

∫
θsω(b)(θ)π(θ|D)dθ/Kπ =

E
π(·|D)

{θsω(b)(θ)}/Kπ is finite for all b and s = 0, 1. Therefore, as M → ∞, from the ergodic

theorem (Jones, 2004; Robert and Casella, 2005), with probability 1,

1

M

M∑
j=1

ω(b)(θj) → E
π(·|D)

{ω(b)(θ)} = KπG
(b)
0 ,

1

M

M∑
j=1

θjω
(b)(θj) → E

π(·|D)
{θω(b)(θ)} = KπG

(b)
1 .

From Remark 3 in Section 4.3, ω(b)(θ) = exp{`(b)(θ) − `(θ)} implies ω(b)(θ) is positive for all θ.

Therefore,
∑M

j=1 ω
(b)(θj) > 0 and G(b)

0 > 0, and consequently

θ̂
(b)
is =

∑M
j=1 θjω

(b)(θj)∑M
j=1 ω

(b)(θj)
→ G

(b)
1

G
(b)
0

= θ̂(b)

with probability 1 as M →∞.
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Next define θ
(·)
is = B−1

∑B
b=1 θ̂

(b)
is . As M gets large,

(B − 1)−1

B∑
b=1

(θ̂
(b)
is − θ

(·)
is )2 → (B − 1)−1

B∑
b=1

(θ̂(b) − θ(·)
)2.

Hence we use
∑B

b=1(θ̂
(b)
is − θ

(·)
is )2/(B − 1) to estimate varF̂ (θ̂). The above procedure can be sum-

marized in the following steps.

Step 1. Draw M MCMC samples from π(θ|D), and call them (θ1, · · · , θM).

Step 2. DrawB bootstrap samples with replacement fromD, and each bootstrap sample consists of

n observations. For the bth sample we obtain (r
(b)
1 , · · · , r(b)

n ), with 0 ≤ r
(b)
i ≤ n and

∑n
i=1 r

(b)
i = n,

where r(b)
i is the number of times Xi appears in the bth bootstrap sample, b = 1, . . . , B.

Step 3. Compute θ̂(b)
is =

∑M
j=1 θjω

(b)(θj)/
∑M

j=1 ω
(b)(θj) with ω(b)(θj) =

∏n
i=1 f

(r
(b)
i −1)(Xi|θj) for

b = 1, . . . , B, and θ
(·)
is =

∑B
b=1 θ̂

(b)
is /B.

Step 4. Compute (B − 1)−1
∑B

b=1(θ̂
(b)
is − θ

(·)
is )2.

One of the main concerns of importance sampling is the behavior of the importance weights

that have influence on the efficiency of the estimator. The following remark gives an intuitive

justification that our choice π(θ|D) as the trial distribution provides a bounded importance weight

with high probability.

Remark 3. Note that ω(b)(θ) = exp[
∑n

i=1(r
(b)
i − 1)log{f(Xi|θ)}] = exp{`(b)(θ) − `(θ)}, where

`(b)(θ) =
∑n

i=1 r
(b)
i logf(Xi|θ) + log{π(θ)} and `(θ) =

∑n
i=1 log{f(Xi|θ)}+ log{π(θ)}, and θ is

drawn from the posterior distribution π(θ|D). Now,

`(b)(θ)− `(θ̃) ≤ `(b)(θ)− `(θ) ≤ `(b)(θ̃(b))− `(θ),

where θ̃(b) is the posterior mode based on the bth bootstrap data set and θ̃ is the posterior mode

based on the original data. Then under certain regularity conditions, posterior distribution π(θ|D)

has the asymptotic normal distribution having mean θ̃ and the variance is minus the inverse Hes-

sian of the log posterior evaluated at θ̃ for large n (Theorem 3.1 of Carlin and Louis, 2008).
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4.4 Other Bayes estimators

4.4.1 Posterior quantile

Here we broadly discuss the standard error calculation of posterior quantiles that include the

posterior median and credible intervals as special cases. The αth quantile is defined as qα(D) =

F−1

π(θ|D)
(α), where F

π(θ|D)
(r) =

∫ r
−∞ π(θ|D)dθ. To estimate the frequentist standard error of

qα(D), we may apply the regular bootstrap method by calculating the αth quantile for each of the

B posterior distributions, that means one needs to draw posterior samples from π(θ|D(b)) using

MCMC technique for each b = 1, . . . , B. Instead of doing this for multiple bootstrap data sets,

here we can also apply the importance sampling idea. For a trial density h(θ), we have

F
π(θ|D(b)

)
(r) =

∫ ∞
−∞

I(θ ≤ r)π(θ|D(b))dθ =

∫ ∞
−∞

I(θ ≤ r)
π(θ|D(b))

h(θ)
h(θ)dθ

=

∫ ∞
−∞

I(θ ≤ r)ω(b)(θ)h(θ)dθ,

where ω(b)(θ) = π(θ|D(b))/h(θ). The distribution function can be estimated by

F̂
π(θ|D(b)

)
(r) =

∑M
j=1 I(θj ≤ r)ω(b)(θj)∑M

j=1 ω
(b)(θj)

, (4.1)

where θ1, . . . , θM are drawn from h(θ). We shall evaluate F̂
π(θ|D(b)

)
(r) for a grid of values of r.

Next, the estimated αth quantile is defined as q(b)
α,is = inf{r : F̂

π(θ|D(b)
)
(r) ≥ α}. Note that we

shall use the same set of θ1, . . . , θM drawn from h(θ), for each bootstrap data set thereby saving

considerable computation time.

When α takes a moderate value in the range of 0.2 to 0.8, the importance sampling estimates

are reasonable if π(θ|D) is used as the trial distribution. For more extreme values of α, (smaller

than 0.2 or larger than 0.8), we recommend the following trial distribution for efficient estimation

of the αth quantile. To be more specific, without any loss of generality, write θ = (θ1, θ
T
2 )T , and

suppose that we are interested in estimating the αth quantile of θ1 based on the bth bootstrap data.

Take h(θ) = h1(θ1)h2(θ2), where h1 denotes the uniform density over [l, u] for given values of l
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and u, and h2 is taken as the posterior distribution of θ2 given the data D, that means, h2(θ2) =∫
π(θ|D)dθ1. Although there is no optimum choice of l or u, based on our computing experiences,

we recommend l = q0.5(D) − 6 × sdθ1(D) and u = q0.5(D) + 6 × sdθ1(D), where qα(D) and

sdθ1(D) denote the αth quantile and the posterior standard deviation of θ1 given the entire dataD.

Suppose that (θ11, . . . , θ1M) are M random draws from h1(θ1), and (θ21, . . . , θ2M) are M

random draws from π(θ2|D). The later sample is obtained by simply discarding the first com-

ponent from each of the M MCMC samples drawn from π(θ|D) ≡ π(θ1, θ2|D). Computa-

tion of the importance weight ω(b)(θ) at θ = θj = (θ1j, θ
T
2j)

T , for any j = 1, . . . ,M , requires

h2(θ2j) =
∫
π(θ∗1, θ

T
2j|D)dθ∗1 = κ−1

∫ ∏n
i=1 f(Xi|θ∗1, θT2j)π(θ∗1, θ

T
2j)dθ

∗
1, where κ is the normaliz-

ing constant that does not depend on θj . In order to save computation time, instead of targeting to

evaluate h2(θ2j) separately, we consider directly evaluating ω(b)(θj), and

ω(b)(θj) =
π(θ1j, θ

T
2j|D(b))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε π(θ∗1, θ
T
2j|D)dθ∗1

=
κ−1
b

∏n
i=1 f

r
(b)
i (Xi|θ1j, θ

T
2j)π(θ1j, θ

T
2j)

h1(θ1j)κ−1
∫ θ1,max+ε

θ1,min−ε
∏n

i=1 f(Xi|θ∗1, θT2j)π(θ∗1, θ
T
2j)dθ

∗
1

=

[
h1(θ1j)

κ−1

κ−1
b

∫ θ1,max+ε

θ1,min−ε

{
n∏
i=1

f(Xi|θ∗1, θT2j)

f r
(b)
i (Xi|θ1j, θT2j)

}{
π(θ∗1, θ

T
2j)

π(θ1j, θT2j)

}
dθ∗1

]−1

, (4.2)

where κb is the normalizing constant for the bth bootstrap dataD(b), and θ1,min and θ1,max denote the

observed minimum and maximum values of θ1 in the posterior samples drawn from π(θ1, θ2|D).

To cover the entire domain of θ1, we extend the range of the integration by adding and subtracting

a small number ε > 0. In all our computations, we used ε = 0.1 × IQR, where IQR stands for

the inter quartile range of the posterior distribution of θ1 given the original data D. Importantly,

we do not need to evaluate κ and κb for estimating F
π(θ|D(b)

)
(r) as they are independent of θj ,

so they get canceled from the normalized weight. Finally, we recommend to use Gauss-Legendre

quadrature to determine the above integral in (4.2). Also to reduce the computational burden,

once ω(b)(θj) is calculated for some b, then we compute ω(b′)(θj) using the following formula
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ω(b′)(θj) = ω(b)(θj)π(θ1j, θ
T
2j|D(b′))/π(θ1j, θ

T
2j|D(b)), for any b′ 6= b as

ω(b′)(θj) =
π(θ1j, θ

T
2j|D(b′))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε π(θ∗1, θ
T
2j|D)dθ∗1

=
π(θ1j, θ

T
2j|D(b))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε π(θ∗1, θ
T
2j|D)dθ∗1︸ ︷︷ ︸

ω(b)(θj)

×
π(θ1j, θ

T
2j|D(b′))

π(θ1j, θT2j|D(b))
.

4.4.2 Posterior mode

Here we do not apply the importance sampling idea but use another approach for time efficient

computation. The posterior mode is defined as θ̂mode = arg maxθ π(θ|D). The variance of θ̂mode,

varF (θ̂mode) can be estimated by
∑B

b=1(θ̂
(b)
mode−θ

(·)
mode)

2/(B−1), where θ̂(b)
mode denotes the posterior

mode for the bth bootstrap sample, and θ
(·)
mode =

∑B
b=1 θ̂

(b)
mode/B. Since this standard bootstrap

method could be time consuming as it requires to solve a set of gradient equations for each of the

B bootstrap data sets, we propose the following alternative approach of estimating that variance.

Under sufficient smoothness conditions, θ̂mode will satisfy S(θ̂mode|D) = 0, where S(θ|D) =

∂log{π(θ|D)}/∂θ = ∂log{f(D|θ)}/∂θ+∂log{π(θ)}/∂θ = 0. Suppose that as n→∞, θ̂mode →

θmode. Then

0 = S(θ̂mode|D) =
∂

∂θ
log{f(D|θ̂mode)}+

∂

∂θ
log{π(θ̂mode)}

≈ [
∂

∂θ
log{f(D|θmode)}+

∂

∂θ
log{π(θmode)}] +

[
∂2

∂θ2
log{f(D|θmode)}+

∂2

∂θ2
log{π(θmode)}](θ̂mode − θmode).

Thus, with A = E[∂2log{f(D|θmode)}/∂θ2 + ∂2log{π(θmode)}/∂θ2], we have (θ̂mode − θmode) ≈

A−1[∂log{f(D|θmode)}/∂θ+∂log{π(θmode)}/∂θ], and consequently the variance can be obtained

by the sandwich formula,

varF (θ̂mode) = A−1var[
∂

∂θ
log{f(D|θmode)}+

∂

∂θ
log{π(θmode)}]A−T .
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Here A can be estimated by Â = ∂2log{f(D|θ̂mode)}/∂θ2 + ∂2log{π(θ̂mode)}/∂θ2. The middle

term of the variance formula is var[∂log{f(D|θmode)}/∂θ] that can be estimated by

v̂ar[
∂

∂θ
log{f(D|θmode)}] = (B − 1)−1

B∑
b=1

[
∂

∂θ
log{f(D(b)|θ̂mode)}

1

B

B∑
b′=1

∂

∂θ
log{f(D(b′)|θ̂mode)}

]2

,

and in particular, for fast computation we use ∂log{f(D(b)|θ̂mode)}/∂θ =
∑n

i=1 r
(b)
i ∂log{f(Xi

|θ̂mode)}/∂θ. Finally, varF (θ̂mode) is estimated by Â−1v̂ar[∂log{f(D|θmode)}/∂θ]Â−T .

4.5 Simulation studies

In order to assess and compare the performances of the methods, we conducted simulation

studies and real data analysis for the motivating examples described in Section 4.2. Specifically,

we provide simulation results for the logistic regression model. Next, the linear measurement error

model is illustrated using a simulated data set. Third, we present an analysis of real data set using

the Weibull regression model. Finally, I consider an application of the proposed method to a vector

autoregressive (VAR) model.

4.5.1 Logistic regression model

I generated 500 data sets, and each simulated data set consists of n = 500 observations,

denoted by {(Xi, Yi), i = 1, . . . , n}. We drew X from Normal(0, 1) distribution and the re-

sponse variable Y was simulated from a Bernoulli distribution with the success probability

pr(Y = 1|X) = exp(α + βX)/{1 + exp(α + βX)}. The true values of α and β were −2.5

and 1, respectively. That makes the proportion of success around 10%. For the Bayesian inference

of the parameters α and β we used the same Normal(0, 2) priors for both of them. Then for the

MCMC computation, we used 15, 000 iterations with the first 5, 000 samples were used as burn-in

samples.

For each data set, we estimated the posterior mean of α and β. We also calculated standard

errors of the posterior means for each data set. Let α̂j and β̂j be the posterior mean based on
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the jth data set, for j = 1, . . . , 500. For each data set, we computed the frequentist standard

error of the estimator based on 1) the regular bootstrap method and 2) the proposed importance

sampling based approach. For the jth data set, we drew B = 500 bootstrap samples with re-

placement. Suppose that (α̂
(b)
mcmc,j, β̂

(b)
mcmc,j) denotes the posterior means for the bth bootstrap

data, for b = 1, . . . , 500, and these posterior means were calculated by applying the MCMC

method to each bootstrap data separately. The regular bootstrap standard error for α̂j and β̂j are

now expressed as sd1,j(α) =
√

(1/499)
∑500

b=1(α̂
(b)
mcmc,j −

∑500
b′=1 α̂

(b′)
mcmc,j/500)2 and sd1,j(β) =√

(1/499)
∑500

b=1(β̂
(b)
mcmc,j −

∑500
b′=1 β̂

(b′)
mcmc,j/500)2, respectively. Next, we computed the proposed

importance sampling based standard error, sd2,j(α) =
√

(1/499)
∑500

b=1(α̂
(b)
is,j −

∑500
b′=1 α̂

(b′)
is,j/500)2

and sd2,j(β) =
√

(1/499)
∑500

b=1(β̂
(b)
is,j −

∑500
b′=1 β̂

(b′)
is,j/500)2, where (α̂

(b)
is,j, β̂

(b)
is,j) denotes the pos-

terior means for the bth bootstrap data based on the importance sampling idea. Our goal is to

illustrate that instead of using the regular bootstrap idea that is way more time consuming, one

can simply use the importance sampling based method to estimate the frequentist standard error of

the Bayes estimators. We wanted to show that proposed method is computationally far more time

efficient, and on the other hand, the standard error calculated using the proposed method is close to

the standard error calculated based on the regular bootstrap method. We, once again, point out that

the regular bootstrap approach requires enumeration of B MCMC chains, one for each of the B

bootstrap data sets, while the proposed approach requires enumeration of only one MCMC chain.

In the appendix, we compare the computational complexity of the two approaches.

Figure 4.1 shows a scatter plot of two standard errors (sd1 and sd2) for 500 data sets for the

intercept and slope parameter. The figure reveals that the two estimates of the standard error are

in good agreement as the points are well dispersed around the 45 degree line. Table 1 shows the

computation time (in sec) for the two methods, and clearly the proposed importance sampling

based approach is computationally far more superior than the regular bootstrap method.

Since the logistic regression belongs to the class of the generalized linear models, we are

able to apply Efron (2015)’s method to evaluate the standard deviation of the posterior mean

for the intercept and slope parameters. Let θ = (α, β)T . From Equation (3.1) of Efron (2015),
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Figure 4.1: Frequentist standard errors of posterior means of the intercept (α) and the slope (β) of
the logistic regression model from the 500 simulated data sets in Section 4.5.1 based on the regular
bootstrap method (Y-axis) and the proposed importance sampling based method (X-axis).

Table 4.1: Average computing time (± standard deviation of 500 simulated data sets) measured in
seconds for calculating standard errors of posterior summaries in logistic regression model from
Section 4.5.1 based on the 1) regular bootstrap method, 2) the importance sampling based ap-
proach, and 3) the method proposed in Efron (2015). Here Q1 and Q3 denote the first and third
quartiles, and 2.5th and 97.5th denote the 2.5th percentile and 97.5th percentile of the posterior
distribution, respectively.

Method
Time to calculate Computational

Mean Q1 (Q3) 2.5th (97.5th) complexity
1 247.78 ± 6.70 247.78 ± 6.70 247.78 ± 6.70 O(BMn)
2 46.65 ± 0.41 51.66 ± 0.40 120.44 ± 0.93 O(BMn)
3 4.18 ± 0.6 O(Mn)

fθ(T ) = exp[θTT −
∑n

j=1 log{1 + exp(α + βXj)}], where T = (
∑n

j=1 Yj,
∑n

j=1XjYj)
T is

the sufficient statistic for θ. Then, E(T ) = (
∑n

j=1 pj,
∑n

j=1Xjpj)
T and var(T ) = Vθ =∑n

j=1 pj(1−pj)(1, Xj)
T (1, Xj), where pj = P(Y = 1|Xj) = exp(α+βXj)/{1+exp(α+βXj)},

57



0.14 0.16 0.18 0.20 0.22 0.24 0.26

0
.1
4

0
.1
6

0
.1
8

0
.2
0

0
.2
2

0
.2
4

0
.2
6

α

sd3

s
d
1

0.14 0.16 0.18 0.20 0.22

0
.1
4

0
.1
6

0
.1
8

0
.2
0

0
.2
2

β

sd3

s
d
1

Figure 4.2: Frequentist standard errors of posterior means of the intercept (α) and the slope (β) of
the logistic regression model from the 500 simulated data sets in Section 4.5.1 based on the regular
bootstrap method (Y-axis) and the approach proposed in (Efron, 2015) (X-axis).

the success probability given X = Xj . Due to the numerical instability of the “conversion factors”

we are not able to apply his method that completely avoids MCMC sampling, and this issue has

been acknowledged in Efron (2015). However, we apply his general approach for calculating the

standard deviation of the posterior mean that is summarized in the following steps.

Step 1. Draw M MCMC samples (θ1, . . . , θM) from π(θ|D).

Step 2. Estimate cov(θ, θ|T ) by ĉov =
∑M

j=1(θj − θ̄)(θj − θ̄)T/M , where θ̄ =
∑M

j=1 θj/M . Then

we obtain sd3 = [ĉovTVθ̂ĉov](1/2).

Now we compare sd3 with the gold standard approach, sd1, in Figure 4.2. In terms of compu-

tation time, Efron’s approach is much much faster than any other procedure (Table 1). However,

Efron’s approach is applicable when Vθ is easily available, and his method can compute standard

error for posterior mean only, not for any quantiles.

Next we calculated the standard error of the first quartile, third quartile, the 2.5th percentile,

and the 97.5th percentile of the posterior distribution of α and β based on 1) the regular bootstrap
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Figure 4.3: Frequentist standard errors of Q1, Q3, 2.5th percentile, and 97.5th percentile of the
posterior distribution of α in the logistic regression model from the 500 simulated data set in
Section 4.5.1. Regular bootstrap standard errors are presented along the Y-axis while importance
sampling based standard errors are presented along the X-axis.
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Figure 4.4: Frequentist standard errors of Q1, Q3, 2.5th percentile, and 97.5th percentile of the
posterior distribution of β in the logistic regression model from the 500 simulated data set in
Section 4.5.1. Regular bootstrap standard errors are presented along the Y-axis while importance
sampling based standard errors are presented along the X-axis.
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method and 2) the importance sampling based method. We particularly considered 2.5th and 97.5th

percentiles as they are often used for constructing credible intervals. Figures 4.3 and 4.4 show the

standard errors computed using the two approaches for each of these summary statistics for the

simulated data sets. We want to point out that for the 2.5th and 97.5th percentiles we used the

trial distribution that is described in Section 4.4.1 and it involves with a slightly more computation

than the scenario where π(α, β|D) is used as a trial distribution (see Table 4.1). However, despite

of being more computationally involved, overall this approach is more time efficient (see Table

4.1) than the regular bootstrap method where one needs to run MCMC method on each bootstrap

data set separately. We also need to keep in mind that this time comparison is heavily depended

on the number of MCMC iterations used in the computation, and the time gain will be more if

more MCMC iterations are used for the posterior inference. For a fair comparison, every core

computation was conducted using FORTRAN 90 within an R script. That is, generation of random

samples from the posterior distribution π(θ|D) and evaluation of the importance weight ω(b)(θ) in

Sections 4.3, 4.4.1 were programmed in FORTRAN. Although there are a number of presumably

optimized programs or R packages for Bayesian computing, we decide to write our own code for

fair comparison across the methods.

The computational complexity of the proposed method and the regular bootstrap method using

MCMC simulations are of the same order, and according to the Bachman-Landau notation it is

O(BMn), where B, M , n denote the number of bootstrap samples, the number of MCMC iter-

ations, and the sample size, respectively. In Appendix B, we have explained the computational

complexity for this example through algorithms, and similar algorithms can be written for other

examples. Although the computational complexity of the regular bootstrap method and the pro-

posed method are of the same order, by avoiding MCMC simulations the computation of posterior

summary is much faster in the latter method than the former approach.

4.5.2 Linear measurement error model

Next, we revisit the linear measurement error model. We first note that the joint distribution of

the observed Y and W , fY,W (y, w) is an exponential family. Since fY,W (y, w) =
∫
f(w, x, y)dx,
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where f(y, w, x) is the joint density of W,X, Y ,

fY,W (Y,W ) = h(Y,W )c(θ) exp

[
− 1

2

{ 1

σ2
ε

− β2/σ4
ε

β2/σ2
ε + 1/σ2

u + 1/σ2
x

}
Y 2

−
{αβ2/σ4

ε + βµx/(σ
2
εσ

2
x)

β2/σ2
ε + 1/σ2

u + 1/σ2
x

− α

σ2
ε

}
Y +

1/σ4
u

2(β2/σ2
ε + 1/σ2

u + 1/σ2
x)
W 2

−αβ/(σ
2
εσ

2
u)− µx/(σ2

uσ
2
x)
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β/(σ2
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2
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x

YW

]
,

where h(Y,W ) = exp(−W 2/2σ2
u) does not depend on θ since σ2

u is known and c(θ) =

(2π)−1{σ2
εσ

2
uσ

2
x(β

2/σ2
ε + 1/σ2

u + 1/σ2
x)}−1/2 exp{−α2/2σ2

ε − µ2
x/2σ

2
x + (α2β2/2σ4

ε + µ2
x/2σ

4
x −

αβµx/2σ
2
xσ

2
ε )/(β

2/σ2
ε+1/σ2

u+1/σ2
x)} is a function of θ. Therefore, T = (Y 2, Y,W 2,W, Y W ) is a

sufficient statistic for the natural parameter η = (η1, . . . , η5), where η1 = 1/σ2
ε−(β2/σ4

ε )/(β
2/σ2

ε+

1/σ2
u + 1/σ2

x), η2 = {αβ2/σ4
ε + βµx/(σ
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2
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x) η4 = {αβ/(σ2

εσ
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u + 1/σ2

x), and

η5 = {β/(σ2
εσ

2
u)}/(β2/σ2

ε+1/σ2
u+1/σ2

x). In order to apply Efron (2015)’s method, we need to find

the variance covariance matrix Vη of T , which is a very difficult if not impossible task. Therefore,

we applied our approach to compute the frequentist standard error for the posterior summaries of

α and β.

We generated a single data set comprising of D = {(Yi,Wi, Xi), i = 1, . . . , n = 1, 000}

under the true model Yi = α + βXi + εi, α = 0.23, β = 0.47, and Wi = Xi + Ui, where

εi ∼ Normal[0, (
√

0.5)2], Ui ∼ Normal[0, (
√

0.5)2] and Xi ∼ Normal(0.5, 1). We analyzed the

data according to the method described in Sections 4.3 and 4.4, without using X in the analysis.

We applied Gibbs sampling to draw samples from the posterior distribution of the parameters,

and used M = 10, 000 iterations after the first 5, 000 samples as burn-in samples. For the prior

distributions, we set σ2
α = σ2

β = σ2
µ = 10, 000 and δx = δε = λx = λε = 1. Then we drewB = 500

bootstrap samples with replacement and we evaluated sd1 and sd2 as described in Section 4.5.1.

Table 4.2 shows the frequentist standard errors corresponding to the posterior summaries of α and

β, along with the computation time. The results show the advantages of the proposed method over

the regular bootstrap method in terms of computational time.
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Table 4.2: The frequentist standard errors and computing times for α and β of the linear mea-
surement error model in Section 4.5.2. Here sd1 and sd2 denote the standard errors based on the
regular bootstrap method and the importance sampling based approach.

Posterior
Parameter Mean Q2 2.5th 97.5th

α
sd1 0.028 0.027 0.028 0.027
sd2 0.027 0.029 0.028 0.030

β
sd1 0.034 0.034 0.033 0.036
sd2 0.030 0.032 0.035 0.031

Computation sd1 233.06 233.06 233.06 233.06
time in second sd2 22.99 26.36 24.16 24.16
Computational sd1 O(BMn) O(BMn) O(BMn) O(BMn)

complexity sd2 O(BMn) O(BMn) O(BMn) O(BMn)

4.5.3 Weibull regression model

We now analyze a subset of the E1684 melanoma clinical trial data (Example 1.2 and 2.2 of

Ibrahim et al., 2001) to determine the frequentist standard errors of posterior summaries from the

Weibull model. This was a phase III clinical trial conducted by Eastern Cooperative Oncology

Group (ECOG) with chemotherapy of interferon alpha-2b in melanoma patient and can be found

at “http://merlot.stat.uconn.edu/~mhchen/survbook/". The data set contains

observed time measured in year, (right) censoring indicator and chemotherapy treatment indicator

for each of 255 patients. The purpose of this clinical study was to examine the treatment effect on

the survival times (Y ). Among the possible models for this objective, we fit a Weibull regression

model on the survival times (Y ) using chemotherapy as a covariate (X) according to Example 2.2

in Ibrahim et al. (2001). Following Ibrahim et al. (2001), we used a Gamma(1, 0.001) prior for α

and a Normal((0, 0)T , 104I2) prior for β, where I2 denotes the 2×2 identity matrix, for the Weibull

regression model described in Section 4.2. Here we also generated B = 500 bootstrap data sets to

calculate standard errors for the posterior summaries of parameters.

Table 4.3 shows the posterior estimates of β0, β1 and α, corresponding frequentist standard

errors, and computing times. Instead of presenting only posterior means as done in Table 2.2 of
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Table 4.3: Posterior summaries and the corresponding frequentist standard errors of β0, β1, and α
used in the Weibull model for analyzing the E1684 melanoma data given in Section 4.5.3. Here
sd1 and sd2 denote the standard errors based on the regular bootstrap method and the importance
sampling based approach.

Posterior
Parameter Mean Q2 2.5th 97.5th

β0

−1.103 −1.101 −1.710 −0.586
sd1 0.278 0.278 0.295 0.266
sd2 0.255 0.265 0.252 0.261

β1

−0.256 −0.256 −0.585 0.090
sd1 0.177 0.178 0.180 0.179
sd2 0.169 0.176 0.163 0.183

α
0.791 0.793 0.688 0.891

sd1 0.038 0.039 0.035 0.043
sd2 0.037 0.038 0.034 0.038

Computation sd1 151.77 151.77 151.77 151.77
time in sec sd2 37.31 43.59 85.75 85.75

Computational sd1 O(BMn) O(BMn) O(BMn) O(BMn)
complexity sd2 O(BMn) O(BMn) O(BMn) O(BMn)

Ibrahim et al. (2001), we extend that table to include other posterior summaries and the frequentist

uncertainty of the estimates. Moreover, following the method described in Section 4.5, we are able

to calculate the standard errors more time efficiently.

Furthermore, it is worth to note that it is difficult to apply Efron (2015)’s approach for cal-

culating frequentist standard deviation of posterior mean to the Weibull model because it is

not an exponential family of distributions. Secondly, the joint density of the above model is

f(D|α, β0, β1) = exp[
∑n

i=1{∆ilogα+∆i(β0 +Xiβ1)+∆i(α−1)log(Yi)−Y α
i exp(β0 +Xiβ1)}]

so that it is also hard to calculate Vθ the variance of the sufficient statistic, where θ = (α, β0, β1).

Hence, we are not able to apply his method in this context.

4.5.4 Vector autoregressive model (VAR)

In the previous examples, we discussed the frequentist standard errors of posterior summaries

for parameters themselves. We now discuss a more complicated case where the main interest is a
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function of parameters. Suppose that we have a p-dimensional time series data ys, s = 1, . . . , S,

and assume that the data follows a vector autoregression (VAR) model. The VAR model with lag

L is y′s = µ +
∑L

j=1 y
′
s−jBj + ε′s, where µ is an 1 × p vector, Bj is a p × p coefficient matrix,

ε1, . . . , εS are iid N(0,Σ), and the covariance Σ is an unknown p × p positive definite matrix.

Instead of focusing our attention on the elements of parameter matrices B = (B′1, . . . ,B
′
L)′ and

Σ, it is more of interest to estimate the impact of changing an element of ys on the future value

ys+k. These effects are called impulse responses (Stock and Watson, 2001), and they are defined

as nonlinear functions of the parameter matricesB and Σ.

The likelihood function of (µ,B,Σ) is

L(Φ,Σ) = (2π)−Sp/2|Σ|−S/2 exp[−tr{(Y −XΦ)Σ−1(Y −XΦ)′}/2]

where Y = (y1, . . . ,yS)′, Φ = (µ′,B′)′, X = (x1, . . . ,xS)′, and xs = (1,y′s−1, . . . ,y
′
s−L)′.

Note that Y is S × p matrix, X is S × (Lp + 1) matrix, and Φ is (Lp + 1) × p matrix. Here

we consider the impulse response to orthogonalized errors U = ε′Ψ−1, where Ψ is the Cholesky

matrix for Σ, i.e., Σ = Ψ′Ψ. That is, the impulse responses Zk of ys+k based on the structural

shock ε′sΨ
−1 is Zk = ΨHk, where Hj =

∑j
i=1BjHj−i, and Bi = 0 for i larger than lag L and

B0 = I (Sims, 1980; Ni et al., 2007).

For the computational purpose, we consider conjugate priors for (Φ,Σ). That is, π(Σ) ∝

|Σ|−(p+1)/2, the Jeffreys prior, and π(φ) ∝ |M0|−1/2 exp{−(φ − φ0)M−1
0 (φ − φ0)′/2}, where

φ = vec(Φ). Next, following Ni et al. (2007), the conditional density of φ given Σ,D is

N(m,V ) and the conditional density of Σ given Φ,D is inverse Wishart (S(Φ),M), where

m = φ̂mle + {M−1
0 + Σ−1 ⊗ (X ′X)}−1M−1

0 (φ0 − φ̂mle), V = {M−1
0 + Σ−1 ⊗ (X ′X)}−1,

φ̂mle = vec(Φ̂mle), Φ̂mle = (X ′X)−1X ′Y , S(Φ) = (Y − XΦ)′(Y − XΦ), and D =

{y1, . . . ,yS} is the observed data. Since the impulse response is a function of B and Σ, we

rewrite Zk = Z(B,Σ, k). We take the posterior mean as a Bayes estimator of the impulse re-

sponse, and it is (Ẑk)(i,j) =
∫
{Z(θ, k)}(i,j)π(θ|D)dθ, where θ = (B,Σ), and (Zs)(i,j) is the
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(i, j) element of Zs. Now, we apply the proposed method to calculate the frequentist standard er-

ror of Ẑk. In this complex example, it is nearly impossible to find the variance-covariance matrix

of the sufficient statistics of θ, therefore it is not possible to apply Efron’s approach.

For illustration purpose, we generated a data set from the following VAR(1) model with p = 2,

y′s =

[
−0.7 1.3

]
+

0.7 0.3

0.2 0.6

y′s−1 + εs, εs
iid∼ N(0,Σ), Σ =

 1 0.5

0.5 1

 , s = 1, . . . , S,

with S = 1, 000. Since the time series data is no more independent, we used the moving block

bootstrap (MBB), where we divided the series into N overlapping blocks of length ` to preserve

the dependence structure of the original dataset (Kreiss and Lahiri, 2012). Then we chose b blocks

out of N blocks to make the bootstrap observations y∗1, . . . ,y
∗
S .

We fit a VAR(2) model to the simulated dataset. As in previous examples, we usedM = 10000

iterations after the burn-in samples. I imposed noninformative priors for Φ, where φ0 = 0 and

M0 = 20I . Then we drew B = 500 MBB samples with 15% of the total dataset as a block length

(`).

Figure 4.5 show the point estimate (posterior mean) and the 95% confidence band based on the

frequentist standard error of the posterior mean for the impulse responses of y2 to y1 and y1 to

y2, respectively. The confidence bands based on sd1 and sd2 are similar, but computationally the

second approach (sd2) was about 5.6 times faster than the first approach (sd1). In Table 4.4, we

also report the numerical values of the standard errors at each time lag, and the results do not show

any appreciable difference between sd1 and sd2.

4.6 Conclusions

In this chapter we have discussed numerical approaches for efficient computation of standard

errors for posterior summaries. The main theme of the chapter is to use bootstrap samples but

avoid using full blown MCMC based inference for each of the bootstrap data. The methods rely

on the importance sampling idea, and are broadly applicable. The R code for our computation is
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Figure 4.5: The estimated impulse responses (solid line) and its 95% (pointwise) confidence band
of y2 to a shock in y1 (left panel) and vice versa (right panel) referenced in Section 5.4. The bold
dotted line is based on regular bootstrap approach (sd1) while the circled solid line is based on
importance sampling based approach (sd2).

available at https://stat.tamu.edu/~sinha/research.html.

It is well-known that the presence of outliers results in a poor performance in a bootstrap ap-

proach because they are more frequent in bootstrap samples than the original dataset if we consider

the classical nonparametric bootstrap (Salibian-Barrera and Zamar, 2002; Willems and Van Aelst,

2005; Huber and Ronchetti, 2009). Therefore, the performance of our proposed method can be

affected by the outliers in the data as we have used the classical nonparametric bootstrap with re-

placement. However, this may be overcome by considering robust bootstrap methods for drawing

samples (Singh, 1998; Hu and Hu, 2000; Salibian-Barrera and Zamar, 2002), or a combination of

a robust bootstrap method and a robust Bayesian method, possibly with a flat-tailed prior (Berger

et al., 1994; Marín, 2000).
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Table 4.4: The frequentist standard errors of the estimated the impulse responses at each time
lag. Here sd1 and sd2 denote the standard errors based on the regular bootstrap method and the
importance sampling based approach.

Time lag y2 to y1 y1 to y2

sd1 sd2 sd1 sd2

1 0.0241 0.0222 0.0404 0.0403
2 0.0388 0.0374 0.0338 0.0334
3 0.0442 0.0434 0.0304 0.0298
4 0.0431 0.0428 0.0279 0.0272
5 0.0401 0.0402 0.0262 0.0256
6 0.0369 0.0372 0.0253 0.0248
7 0.0339 0.0342 0.0247 0.0244
8 0.0311 0.0315 0.0243 0.0242
9 0.0286 0.0290 0.0239 0.0240
10 0.0263 0.0267 0.0234 0.0236
11 0.0242 0.0246 0.0227 0.0232
12 0.0222 0.0226 0.0220 0.0225
13 0.0204 0.0208 0.0212 0.0218
14 0.0188 0.0191 0.0203 0.0210
15 0.0173 0.0176 0.0194 0.0201
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5. IDENTIFIABILITY AND BIAS REDUCTION IN THE SKEW-PROBIT MODEL FOR A

BINARY RESPONSE

5.1 Background and literature review

Logistic or probit model is widely used for modelling the success probability of a binary

variable in terms of covariates. Under the logistic model pr(Y = 1|X) = H(γTZ) with

H(u) = exp(u)/{1 + exp(u)}, and under the probit model pr(Y = 1|X) = Φ(γTZ) with

Φ(u) being the cumulative distribution function (CDF) of the standard normal distribution, and

Z = (1,XT )T . Both link functions, H and Φ, are considered to be symmetric link functions

as they approach to zero and one at the same rate. For a flexible regression model, practitioners

may wish to use an asymmetric link that accommodates different convergence rates towards zero

and one. Failure to fit a flexible model to the data may result in biased estimates of regression

parameters, odds ratios, or risk differences. As discussed in Section 1.2.2, binary regression with

the skew-probit link is a good alternative to ones with symmetric link function. Particularly, for the

skew-probit link,

pr(Y = 1|X) = F (η, δ) =

∫ η

−∞
2φ(u)Φ(δu)du, (5.1)

where η = ZTβ = β0 + XTβ1 with β = (β0,β
T
1 )T , and φ(u) = dΦ(u)/du. Note that the

integrand in (5.1) represents the density of the standard skew-normal distribution with the skewness

parameter δ, that is denoted by Skew-Normal(µ = 0, ω = 1, δ). Here F denotes the CDF of

Skew-Normal(µ = 0, ω = 1, δ).

The skew-normal distribution and its properties are well studied in the literature (Azzalini,

1985; Genton et al., 2001; Ma and Genton, 2004). Regarding the exact use of the skew-probit link,

Bazán et al. (2006) used this skew-probit model to analyze a Rasch-model for the item response

theory. Stingo et al. (2011) considered an extension of the skew-probit link to model a binary

response variable in the presence of selectivity bias (Bhattacharya et al., 2006). A decent review
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of some recent applications of the skew-probit link can be found in Bazán et al. (2014).

In this chapter I address two important issues, identifiability of the model parameters and the

bias of the maximum likelihood estimator (MLE) of θ = (βT , δ)T . A clear knowledge on the

identifiability of parameters is necessary for proposing any method of estimation. Secondly, biased

estimates may lead to incorrect inference regarding the model parameters, the association between

the response and covariates, and the marginal effect of the covariate. Although these issues are

important for model formulations and deciding on the appropriate method of analysis, these issues

have not been investigated till date.

Now let me briefly mention some existing literature on these issues. Genton and Zhang (2012)

investigated identifiability for some non-Gaussian spatial random fields that include multivariate

skew-normal distributions. Castro et al. (2013) studied parameter identifiability for multivariate

skew-normal distributions. Otiniano et al. (2015) investigated parameter identifiability for a finite

mixture of skew-normal distributions and a finite mixture of skew-t distributions. Although these

approaches considered the important case of a continuous response variable, parameter identifia-

bility has not been investigated for a binary response variable that follows the skew-probit link.

The bias in the MLE of the skew-normal model where the response Y is continuous and fol-

lows Skew-Normal(µ, ω, δ), is a well-researched topic. Following Firth (1993)’s general recom-

mendation to reducing finite sample bias, Sartori (2006) proposed to estimate the skewness param-

eter δ of the Skew-Normal(µ = 0, ω = 1, δ) model by maximizing the penalized log-likelihood,

` + 0.5log{determinant(I)}, where ` stands for the log-likelihood while I stands for the Fisher

information matrix. Sartori (2006) also considered estimation of δ in the presence of unknown µ

and ω, where only δ was estimated by maximizing a penalized profiled log-likelihood function and

the other parameters were estimated by maximizing the likelihood function for a given δ. Later

on, Azzalini and Arellano-Valle (2013) applied the penalized likelihood idea in the general case

of three-parameter Skew Normal(µ, ω, δ) model, where all three parameters were estimated by

maximizing the penalized log-likelihood function. To reduce the finite sample bias, researchers

considered Bayesian inference of the skew-normal model under various priors including default
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and proper priors (Liseo and Loperfido, 2006; Bayes and Branco, 2007).

In this chapter, I shall consider model (5.1) for a binary response variable Y . Hence, our model

is distinct from the existing papers discussed in the previous two paragraphs where the response

Y was considered to be a continuous variable. Furthermore, we are considering the issue in the

presence of a regressor variable X that no one has considered before even when a continuous Y

followed a skew-normal distribution. As a general strategy to reduce the first order bias in the

MLE of β and δ, one may consider the bootstrap bias correction approach or the bias correction

approach of Cox and Snell (1968). These two approaches require the MLE to be finite that may

not happen in small samples. Therefore, as an alternative, I consider estimation of the parameters

by maximizing a penalized likelihood function. In this penalized likelihood method, first I apply

Firth (1993)’s method to prevent the bias where the likelihood function is penalized by the Jeffrey’s

prior. Additionally, we consider two more penalization approaches one by using the generalized

information matrix prior (Gupta and Ibrahim, 2009) and two by using the Cauchy prior (Gelman

et al., 2008). Finally, all these methods are compared through extensive simulation studies.

This research was partly motivated by a dataset on heart-disease (Detrano et al., 1989), where

the interest is in finding association between the occurrence of artery blockage and several clinical

variables. A standard probit analysis of this data indicates a lack-of-fit at the 5% level of sig-

nificance and that led us to consider the skew-probit model. As we will see in the data analysis

section that there is a significant improvement in the goodness-of-fit statistic after considering a

bias correction approach in the skew-probit model.

Before concluding this section I would like to highlight the novelties of this work. To the

best of knowledge, this is the first work that investigates parameter identifiability and the bias in

the MLE of the binary model with the skew-probit link function. To reduce finite sample bias,

we apply general bias reduction strategies to this particular problem, and compare and assess the

effectiveness of the approaches through simulation studies. Simulation results indicate that the

bias reduction strategies need to be used judiciously.
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5.2 Parameter identifiability

In general, model parameters are identifiable if the parameter values uniquely identify the un-

derlying probability model. Now, following Rothenberg (1971)’s general concept of identifiability,

I present a formal definition of identifiability in our context of the skew-probit model.

Identifiability. The parameter set θ = (βT , δ)T is said to be identifiable if F (ZTβ, δ) =

F (ZTβ
′
, δ
′
) for every Z implies (β

′
, δ
′
) = (β, δ). A parameter set θ is said to be locally

identifiable if within a neighborhood N there does not exist a (β
′
, δ
′
) ∈ N\{(β, δ)} such that

F (ZTβ, δ) = F (ZTβ
′
, δ
′
) for every Z. A necessary and sufficient condition for local identifia-

bility is the non-singularity of the Fisher information matrix. Now, we investigate identifiability of

three different cases.

No covariate: In the absence of any covariate, the intercept β0 and the skewness parameter

δ are not identifiable in the skew-probit model pr(Y = 1) = F (β0, δ) =
∫ β0
−∞ 2φ(u)Φ(δu)du. In

other words, for a given value of (β0, δ) we can find another (β
′
0, δ

′
) such that F (β0, δ) = F (β

′
0, δ

′
).

This fact is illustrated in Figure 5.1. This figure contains two CDFs for Skew-Normal(µ =

0, ω = 1, δ) and Skew-Normal(µ = 0, ω = 1, δ
′
) distributions. At the abscissa β0, the

height of the dotted vertical line up to the CDF for the Skew-Normal(µ = 0, ω = 1, δ) dis-

tribution is F (β0, δ). For the same value of the CDF, F (β0, δ), there is another β ′0 and δ
′ ,

such that F (β0, δ) = F (β
′
0, δ

′
). Particularly, the abscissa of the point where the horizon-

tal line at F (β0, δ) hits the CDF for the Skew-Normal(µ = 0, ω = 1, δ
′
) distribution is β ′0.

This signifies that the CDF of the Skew-Normal(µ = 0, ω = 1, δ
′
) distribution at β ′0 is the

same as F (β0, δ). If ` stands for the log-likelihood, then analytical calculations show that

E(∂2`/∂β0∂β0) = −4φ2(β0)Φ2(β0δ)/F (β0, δ){1 − F (β0, δ)}, E(∂2`/∂δ∂δ) = − exp{−β2
0(1 +

δ2)}/π2(1+δ2)2F (β0, δ){1−F (β0, δ)},E(∂2`/∂β0∂δ) = 2φ(β0)Φ(β0δ) exp{−β2
0(1+δ2)/2}/π(1+

δ2)F (β0, δ){1− F (β0, δ)}, and the determinant of the Fisher information matrix E(∂2`/∂β0∂β0)

E(∂2`/∂δ∂δ)− E2(∂2`/∂β0∂δ) = 0.

Binary covariate: Now suppose that there is a binary covariate X , and the model is pr(Y =

1|X) = F (β0 + β1X, δ). If the parameter (β0, β1, δ) is non-identifiable, then we can find a
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F(β0 + β1, δ) = F(β0
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' , δ ')

β1 β1
'

0
1

Figure 5.1: Illustration of parameter identifiability in the skew-probit model with a binary covari-
ate.

(β
′
0, β

′
1, δ

′
) 6= (β0, β1, δ), such that F (β0 + β1X, δ) = F (β

′
0 + β

′
1X, δ

′
) for every X . Now consider

the two probabilities, pr(Y = 1|X = 1) = F (β0 + β1, δ) and pr(Y = 1|X = 0) = F (β0, δ).

From the discussion in the previous paragraph, we know that for a given (β0, δ) we can find a

(β
′
0, δ

′
) 6= (β0, δ) such that F (β0, δ) = F (β

′
0, δ

′
). Now, it turns out that given these two sets,

(β0, δ) and (β
′
0, δ

′
), for every β1 we can find a β ′1, such that F (β0 + β1, δ) = F (β

′
0 + β

′
1, δ

′
). In

Figure 5.1, at the abscissa (β0 + β1) the height of the dotted vertical line up to the CDF for the

Skew-Normal(µ = 0, ω = 1, δ) distribution is F (β0 + β1, δ). Now, the abscissa of the intersection
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point of the horizontal line at F (β0 + β1, δ) with the CDF for the Skew-Normal(µ = 0, ω = 1, δ
′
)

distribution is β ′0 + β
′
1. That means, F (β0 + β1, δ) = F (β

′
0 + β

′
1, δ

′
). Hence, the model parameters

are not identifiable. Using similar arguments we conclude that for a categorical covariate X , the

model parameters of a skew-probit model are not identifiable.

Continuous covariate: Here I show that if the covariate X is a continuous variable, the model

parameters are identifiable. We assume that β1 is non-zero, otherwise it will be the same as the

case where there is no covariate. Suppose that θ = (β0, β1, δ)
T involved in the skew-probit model

is not identifiable. In the following discussion we shall be using the fact that for a fixed δ, F (·, δ)

is a strictly increasing function so that its inverse function F−1
δ (·) exists. If the parameters are not

identifiable, then there exists a θ
′
= (β

′
0, β

′
1, δ

′
) 6= θ such that

F (β0 + β1X, δ) = F (β
′

0 + β
′

1X, δ
′
) for all X, (5.2)

and particularly for X = 0, non-identifiability implies

F (β0, δ) = F (β
′

0, δ
′
). (5.3)

Now, using the inverse operation on (5.3) and (5.2) we obtain

F−1
δ {F (β0, δ)} = β0 = F−1

δ {F (β
′

0, δ
′
)}, (5.4)

β0 + β1X = F−1
δ {F (β

′

0 + β
′

1X, δ
′
)}. (5.5)

When δ = δ
′ , β0 = F−1

δ {F (β
′
0, δ

′
)} = F−1

δ {F (β′0, δ)} = β
′
0, and similarly we obtain β1 =

β
′
1. Thus, when δ = δ

′ , we cannot have two different sets (β0, β1, δ) 6= (β′0, β
′
1, δ) such that

F (β0 + β1X, δ) = F (β′0 + β′1X, δ) for all X .

When δ 6= δ
′ , subtracting (5.4) from (5.5) we obtain

β1X = F−1
δ {F (β

′

0 + β
′

1X, δ
′)} − F−1

δ {F (β
′

0, δ
′
)} (5.6)
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for X 6= 0. Differentiating both sides of Equation (5.6) with respect to X we get

β1 =
φ(β

′
0 + β

′
1X)Φ{δ′(β ′0 + β

′
1X)}β ′1

φ[F−1
δ {F (β

′
0 + β

′
1X, δ

′)}]Φ[δF−1
δ {F (β

′
0 + β

′
1X, δ

′)}]
. (5.7)

Since δ′ 6= δ, F−1
δ {F (β

′
0 + β

′
1X, δ

′
)} 6= β

′
0 + β

′
1X for all X , which means that the right-hand

side of (5.7) is a non-linear function of X while the left-hand side is a constant. Therefore, our

assumption that θ is not identifiable is wrong.

5.3 Bias reduction

5.3.1 Maximum likelihood and bootstrap

Suppose that the observed data D = (D1, . . . , Dn) with Di = (Yi,X i), i = 1, . . . , n are

collected from n subjects that are randomly drawn from the underlying population. At least one

component of the covariate vector is assumed to be continuous. We want to fit the regression model

(5.1) to the data. The logarithm of the likelihood is

` =
n∑
i=1

Yilog{F (ηi, δ)}+ (1− Yi)log{1− F (ηi, δ)},

where ηi = ZT
i β and Zi = (1,XT

i )T . The maximum likelihood estimators (MLE) of β and δ are

obtained by solving ∂`/∂θ = (∂`/∂βT , ∂`/∂δ)T = 0, where

∂`

∂β
= 2

n∑
i=1

{
Yi

F (ηi, δ)
− (1− Yi)

1− F (ηi, δ)

}
φ(ηi)Φ(δηi)Zi,

∂`

∂δ
=

n∑
i=1

{
− Yi
F (ηi, δ)

+
(1− Yi)

1− F (ηi, δ)

}
exp{−η2

i (1 + δ2)/2}
π(1 + δ2)

.

In principle, the parameter estimates can be obtained by solving the above equations using the

scoring method. Let θ(t) be the parameter value at the tth iteration of the scoring method. Then at

the (t+ 1)th iteration we obtain

θ(t+1) = θ(t) + I−1(θ(t))

(
∂`

∂θ

)
θ=θ(t)

,
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where the information matrix I(θ) = −E(∂2`/∂θ∂θT ) with

E

(
∂2`

∂ββT

)
= −4

n∑
i=1

φ2(ηi)Φ
2(δηi)

F (ηi, δ){1− F (ηi, δ)}
ZiZ

T
i ,

E

(
∂2`

∂δ2

)
= −

n∑
i=1

exp{−η2
i (1 + δ2)}

π2(1 + δ2)2F (ηi, δ){1− F (ηi, δ)}
,

E

(
∂2`

∂δ∂β

)
= 2

n∑
i=1

φ(ηi)Φ(δηi) exp{−η2
i (1 + δ2)/2}

π(1 + δ2)F (ηi, δ){1− F (ηi, δ)}
Zi.

We note that the information matrix can be written as I(θ) = W (θ)TA(θ)W (θ), whereA(θ) =

diag[F (ηi, δ){1 − F (ηi, δ)}]−1, W (θ)T = [W 1(θ), . . . ,W n(θ)], W T
i (θ) = [2φ(ηi)Φ(δηi)Z

T
i ,

− exp{−η2
i (1 + δ2)/2}/π(1 + δ2)] = 2φ(ηi)Φ(δηi)[Z

T
i ,−φ(δηi)/(1 + δ2)Φ(δηi)]. Since ηi =

ZT
i β, the last element in W T

i (θ) is non-linearly related to Zi, which means W (θ) has full

rank unless the original design matrix is singular. Therefore the above estimation technique

can be nicely expressed in terms of the iteratively re-weighted least square (IWLS) method,

where θ(t+1) = {W (θ(t))TA(θ(t))W (θ(t))}−1W (θ(t))TA(θ(t))Y ∗(θ(t)), where Y ∗(θ(t)) =

W (θ(t))θ(t) + {Y − µ(θ(t))},Y = (Y1, . . . , Yn)T ,µ(θ(t)) = (F (η
(t)
1 , δ(t)), . . . , F (η

(t)
n , δ(t)))T ,

and η(t)
i = ZT

i β
(t). This approach is referred to as method N.

For larger values of δ, the curvature E(−∂2`/∂`2) tends to be small, resulting in highly bi-

ased MLE of δ. Additionally, if there is no covariate, and the model for Y is pr(Y = 1) =

2
∫ 0

−∞ φ(u)Φ(δu)du that involves with only one parameter δ, the probability that the MLE of δ

diverges to +∞ or −∞ is pn(δ) = pr(Y1 = · · · = Yn = 0) + pr(Y1 = · · · = Yn = 1) =

{π + 2 tan−1(δ)/(2π)}n + {π − 2 tan−1(δ)/(2π)}n. Although this probability goes to zero as

n→∞, this may not be negligible for a moderate value of n. This pn(δ) is also the probability of

diverging MLE of δ when a continuous response follows skew-normal (µ = 0, ω = 1, δ) (Azzalini

and Arellano-Valle, 2013).

In order to reduce the finite sample bias of the MLE that is of the orderO(n−1), we consider the

following strategies. First, we apply the bootstrap method to reduce the bias of the MLE. Suppose

that b(θ̂MLE) denotes the bias of θ̂MLE , the MLE of θ. Based onB bootstrap samples, we estimate
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b(θ̂MLE), and denote this estimator of bias by b̂boot(θ̂MLE). The bias corrected estimator is then

defined as θ̂MLE − b̂boot(θ̂MLE). This approach is referred to as method B.

5.3.2 Penalized maximum likelihood

Next, I propose to estimate the parameters by maximizing a penalized likelihood,

`p = `+M(θ),

where M(θ) is the penalty function. The estimator obtained by maximizing `p can be seen as

the posterior mode where the prior distribution π(θ) ∝ exp{M(θ)}. Unlike the other bias cor-

rection approaches that require the estimator to be finite, this approach does not require the MLE

to be finite. Rather penalization helps to add a curvature in a otherwise flat likelihood surface,

and thereby the penalized likelihood method prevents the estimate to be infinite or unrealistically

large and also reduces finite sample bias. Following the general strategy of Firth (1993), we re-

place M(θ) by 0.5log[det{I(θ)}], where det stands for matrix determinant. Thus, the maximum

penalized likelihood estimator, denoted by θ̂pj, is obtained by solving

∂`p
∂β

= 2
n∑
i=1

{
Yi

F (ηi, δ)
− (1− Yi)

1− F (ηi, δ)

}
φ(ηi)Φ(δηi)Zi +

1

2
trace

{
I−1(θ)

∂I(θ)

∂β

}
= 0,

∂`p
∂δ

=
n∑
i=1

{
− Yi
F (ηi, δ)

+
(1− Yi)

1− F (ηi, δ)

}
exp{−η2

i (1 + δ2)/2}
π(1 + δ2)

+
1

2
trace

{
I−1(θ)

∂I(θ)

∂δ

}
= 0.

This approach is referred to as method J. This estimator can be seen as the posterior mode when

the Jeffrey’s prior is used on the parameters as eM(θ) = det{I(θ)}1/2. Although this approach of

bias reduction has been extensively used in various contexts including when a continuous response

follows skew-normal (µ = 0, ω = 1, δ) (Azzalini and Arellano-Valle, 2013), the approach has

never been applied to the case where the binary response variable Y is modeled via the skew-

probit link.
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Next, we consider a generalization of the Jeffrey’s prior (Gupta and Ibrahim, 2009), where

the prior πGI(θ) ∝ |det{I(θ)}|1/2 exp{−(θ − θ0)TI(θ)(θ − θ0)/2c0}. For large c0, πGI(θ)

converges |det{I(θ)}|1/2, that is Jeffery’s prior. Gupta and Ibrahim (2009) showed that under a

logistic model, πGI has lower mass around the center and heavier tail than the normal distribution

resulting in a relatively non-informative prior. Adopting their prior distribution with c0 = 1 and

θ0 = 1, and setting M(θ) = log{πGI(θ)} in our penalized likelihood `p, we obtain the following

estimating equations to estimate (βT , δ)T

∂`p
∂β

= 2
n∑
i=1

{
Yi

F (ηi, δ)
− (1− Yi)

1− F (ηi, δ)

}
φ(ηi)Φ(δηi)Zi +

1

2
trace

{
I−1(θ)

∂I(θ)

∂β

}
− 1

2

∂θTI(θ)θ

∂β
= 0,

∂`p
∂δ

=
n∑
i=1

{
− Yi
F (ηi, δ)

+
(1− Yi)

1− F (ηi, δ)

}
exp{−η2

i (1 + δ2)/2}
π(1 + δ2)

+
1

2
trace

{
I−1(θ)

∂I(θ)

∂δ

}
− 1

2

∂θTI(θ)θ

∂δ
= 0.

This method is referred to as method G.

Gelman et al. (2008) pointed out use of Jeffrey’s prior distribution might produce unreliable

computation and be difficult to interpret in the Bayesian context. To avoid these potential issues,

they proposed weakly informative Cauchy distribution prior for estimating logistic model parame-

ters which results in stable and regularized estimates. Adopting their recommendation in our setup

we consider eM(θ) = Πk{π(1 + θ2
k/2.5

2)}−1, i.e., M(θ) = −
∑

k log(1 + θ2
k/2.5

2). This implies

independent Cauchy(0, 2.5) prior for each component of θ. Corresponding estimators are obtained

by solving

∂`p
∂β

= 2
n∑
i=1

{
Yi

F (ηi, δ)
− (1− Yi)

1− F (ηi, δ)

}
φ(ηi)Φ(δηi)Zi

− 1TDiag

(
2β0

2.52 + β2
0

,
2β1

2.52 + β2
1

, . . . ,
2βq

2.52 + β2
q

)
= 0

∂`p
∂δ

=
n∑
i=1

{
− Yi
F (ηi, δ)

+
(1− Yi)

1− F (ηi, δ)

}
exp{−η2

i (1 + δ2)/2}
π(1 + δ2)

− 2δ

2.52 + δ2
= 0,

77



where q is the number of covariates. This approach is referred to as method C.

Similar to naive MLE, the parameter estimates can be obtained using the Fisher scoring method

with modified score function (∂`p/∂θ) instead of (∂`/∂θ) (Heinze and Schemper, 2002). Note that

the penalty function M(θ) is a Op(1) order term while the log-likelihood ` is Op(n) order term.

Therefore, the asymptotic standard error calculation using the Fisher information matrix is still

valid. That is, under certain regularity conditions, we may apply the standard likelihood theory to

test hypotheses regarding parameters.

We consider two other penalized estimators. First, where the Jeffrey’s prior for δ is constructed

assuming β0 = 0 and β1 = 0, and the logarithm of the prior density is used as the penalty function

M(θ). Second, we take M(θ) to be the logarithm of the density function of the t distribution

with degrees of freedom 2, location 0 and scale parameter 0.5 on the skewness parameter δ. This t

density for δ arises due to a non-informative prior on κ when a standard skew-normal variable U

with the skewness parameter δ is expressed as U =
√

1− κ2Z+κZ∗, with Z ∼ Normal(0, 1), and

Z∗ follows a half-normal density with the density function f(Z∗) = 2(2π)−1/2 exp{−(Z∗)2/2},

Z∗ > 0 (Henze, 1986). However, in our initial numerical studies the performance of these penal-

ized estimators is much worse than the other penalized estimators, so we have omitted them from

further consideration.

5.4 Simulation studies

Design: I simulated datasets of different sizes, n = 100, 500, 1000 and 2000. Each simulated

dataset consists of a scalar covariate X and a binary response Y . Given X , Y was generated using

the Bernoulli distribution with success probability pr(Y = 1|X) = F (β0 + β1X, δ), and define

pm = pr(Y = 1) =
∫

pr(Y = 1|x)g(x)dx as the marginal success probability. By varying δ, pm

and the distribution of X , we obtained the following 8 scenarios:

Scenario 1. X ∼ Uniform(−2, 2), β1 = 1, δ = 4, β0 = −0.87, pm = 12%;

Scenario 2. X ∼ Uniform(−2, 2), β1 = 1, δ = 4, β0 = 0.37, pm = 40%;

Scenario 3. X ∼ Uniform(−2, 2), β1 = 1, δ = 8, β0 = −0.85, pm = 12%;
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Scenario 4. X ∼ Uniform(−2, 2), β1 = 1, δ = 8, β0 = 0.38, pm = 40%;

Scenario 5. X ∼ Normal(0, (
√

4/3)2), β1 = 1, δ = 4, β0 = −0.77, pm = 12%;

Scenario 6. X ∼ Normal(0, (
√

4/3)2), β1 = 1, δ = 4, β0 = 0.42, pm = 40%;

Scenario 7. X ∼ Normal(0, (
√

4/3)2), β1 = 1, δ = 8, β0 = −0.73, pm = 12%;

Scenario 8. X ∼ Normal(0, (
√

4/3)2), β1 = 1, δ = 8, β0 = 0.44, pm = 40%.

In all scenarios, the variance of X remains the same, and we consider small and moderate values

for pm. For each simulated dataset, θ = (β0, β1, δ)
T were estimated by the five methods discussed

in the previous section.

Results: Simulation results for scenarios 1 − 4 are presented in Figures 5.2-5.5, respectively.

We do not present the results for scenarios 5 − 8 as their comparative performance was similar to

that of scenarios 1−4. I shall present the boxplots of estimates for each parameter (β0 ≡ intercept,

β1 ≡ slope, δ ≡ skewness) with the empirical coverage probability for the 95% nominal level of

significance. We note that the scales of the y-axis might be different so that direct comparisons

needs to be done with caution. All results are based on 1, 000 replications. The empirical coverage

probability was calculated using Wald-type confidence intervals, where the standard errors were

calculated by inverting the Fisher information matrix. For the bootstrap approach (method B), I

have used 200 bootstrap samples.

For the estimation of the intercept (β0) and the slope (β1) parameters, under large sample size

(when n = 1000 or 2000), method N performs the best across all the scenarios in terms of the bias

and variability. Under small sample size (when n = 200 or 500), however, method J is comparable

or better than method N, in the sense that method J shows less variability with similar of less bias.

The bias and variability of methods B and C are poor when the sample size is small, while they

get better as the sample size increases. The performance of method G is poor as its bias does not

decrease with the sample size.

For the skewness parameter (δ) estimation, method J outperforms all methods across almost

all the scenarios. Under small sample size, boxplots corresponding to method N do not fit in the
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Figure 5.2: Simulation results based on 1000 replications when X ∼ Uniform(−2, 2), δ = 4,
β0 = −0.87, β1 = 1, and pm = 12%. The numbers in the boxplots are the empirical coverage
probabilities for the nominal level 0.95 based on the standard error derived from the Fisher infor-
mation matrix. The horizontal line in each figure indicates the true value of the parameter. N:
Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation with Jeffrey’s prior,
G: Penalized likelihood estimation with generalized information matrix, C: Penalized likelihood
estimation with Cauchy distribution.

80



*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

**
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

***

*

**

*

*

*

*

*

*

*

*

*
**

*

*
*

*

*

*

*

**

*

*

**

**

*

*

*

*
*
*
****

*

*

*
*

**

*

*

*
*
*

*

*

*
*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

**

*
*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

**

*

*

*

*
**

*

*

*

*

*

*
*

**
*
**
*

*
*

*

*

*

**
*

*
*
*
*

*

*

*

**

*

0.
93

0.
76 1

0.
15 1

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

**
**

*

*

*
*
*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*
*
*

*
*

*
*

**

*

*
*
*
*

*
**

*

*

*

*
*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

**

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*
*

*

**
*

*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

0.
9

0.
9

0.
99

0.
05

0.
99

*

**
*
*
*

*

*

*
*

*

*

*
*
*
*

*

*

*

*

*

**

*

*
*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*
*
*
*
***

*

*

*
*
*
*

*

**

*

*

*

*

*
*

*

*

*
*
**
*

*
*

*

*
*

*

*

*

*
*

****
*
*

*

*

*

*
*
*
*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
**
*

*

*

*

*

*

*

*

*

*
*
*

**

*

*

**

*

*

*

*
*
*
*

*

*

*

*

*

*
*

**
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

0.
92

0.
94

0.
97

0.
01

0.
98

*

*

***
*
*
*

*

**
***

*

*

* **

*

**
**

*
*
*

*
***
*

*

*
***
*
*

*
*
*

**
***
*

*

**

*

**

*
*
*

*

*

*

***
*
*

*
*

*

*
***
*
**

*

*

0.
94

0.
96

0.
97 0

0.
97

n=200 n=500 n=1000 n=2000

−1.5

−1.0

−0.5

0.0

0.5

in
te

rc
ep

t

*

*

*
*

*

*

*
*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

****

*

*

*

*
*

*
*
*

*

**

*

*
*

*

*

*

*

*
*

*

**

*

*

*

**
*

*

*

*
**

*

*

*

*
*

*

*
*

**

*

*

*

***
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

0.
88

0.
78

0.
98

0.
03

0.
99

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

0.
92

0.
85

0.
98 0

0.
98

*

*
**

*

*
*
*
*

*

*

*

*

*

*
*

*
**

*

*

*

*
*

*

*

*

*
*
*
*
***

*

*

*

*
*

*

**

*

*

*
**
**

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*
**

*

*

*
*

*
*
*

*

*

*

0.
92

0.
87

0.
96 0

0.
97

*

*

**

*

**
**
***
**

*
**

*

*

*
**

*
*
*

*

**

**
*
**

*

*

*

*

*

*

**

*

*

*

*

*
**
*

*

**
**
**

*
*

0.
95

0.
92

0.
97 0

0.
960.5

1.0

1.5

2.0

2.5

sl
op

e

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

***

*

*

*

*

*

*

*
*

**
*
*

*

*

*

*
*

***

*

*

*

*

*

*

*

*

*

*

***

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

**

*

*

*

*

*
*
**

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

****

*

*
*

**

*
**
*

*

*

*
*

*

*

*

*
*
*

*

*

*

*

*

*

*

**

*

*

*

**

*
*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

**

*
*

*

*

*

*

**

*

**
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

**

*
*

*

*

*

**
**

*

*

*

*

*

**

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

**

***

1 1

0.
86

0.
21

0.
78

**

*

*

**

**
**
*

*

*

*
*

***

*
*

*

****

*

*
*

*

*
**

****

*
*

*

*

*

*

**

*

*

*
**

***

**

**

*

*

**

*

*

**

*

****

*

**

*

**

*

*

*

*

*

**

*
**

*

*
*

*

*

***

*

*

******

*

**

*

*

***

*

***

*

*

*

*

*

*

*

*

*

*

*

**

*

***

*

*

*

*

*

*

*

**

*

**

*

**

*

***

*

*******

*

****

*
*

*

**

*

*

*

*
*
**
*
****

0.
96

0.
99

0.
88

0.
06

0.
85

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
**
*

*

*

*

*

**

**
*

*

*

*

*

*

*

**
*
*

*

**

*

*

**

*

*

*
*

*
*
*
*
*

*

*

*
**

*

*

*

*
*
*
*
*
*

*

***************

*

****

*

*******************

*

*********************

*

**

*

*************************************

*

*

*

**

**

**

*

*************

*
*
**
*

**

**

**

**

*

*
*

**
*

*

*
**
*

*

*

*

*
****
**
*

**

*

*

*

*
*

**
*
*

0.
95

0.
95

0.
91

0.
01

0.
87

*

*

*

*

*

*

***

*

*

*

*

*

*

**

*

*

*
*

*
*
*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*
**
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

**

*

*

**

*
***

*

*

*
*

**********************************************************************************************************************

*

*
*

*

*****

*

**

*

*

*
*

*

*

*

*

*

*

*
*
*
*

*

*

*

*

*
***

*
*

0.
95

0.
83

0.
92 0

0.
89

N B J G C N B J G C N B J G C N B J G C

0

10

20

30

40

sk
ew

ne
ss

Figure 5.3: Simulation results based on 1000 replications whenX ∼ Uniform(−2, 2), δ = 4, β0 =
0.37, β1 = 1, and pm = 40%. The numbers in the boxplots are the empirical coverage probabilities
for the nominal level 0.95 based on the standard error derived from the Fisher information matrix.
The horizontal line in each figure indicates the true value of the parameter. N: Naive MLE, B:
Bootstrap bias correction, J: Penalized likelihood estimation with Jeffrey’s prior, G: Penalized
likelihood estimation with generalized information matrix, C: Penalized likelihood estimation with
Cauchy distribution.
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Figure 5.4: Simulation results based on 1000 replications when X ∼ Uniform(−2, 2), δ = 8,
β0 = −0.85, β1 = 1, and pm = 12%. The numbers in the boxplots are the empirical coverage
probabilities for the nominal level 0.95 based on the standard error derived from the Fisher infor-
mation matrix. The horizontal line in each figure indicates the true value of the parameter. N:
Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation with Jeffrey’s prior,
G: Penalized likelihood estimation with generalized information matrix, C: Penalized likelihood
estimation with Cauchy distribution.
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Figure 5.5: Simulation results based on 1000 replications whenX ∼ Uniform(−2, 2), δ = 8, β0 =
0.38, β1 = 1, and pm = 40%. The numbers in the boxplots are the empirical coverage probabilities
for the nominal level 0.95 based on the standard error derived from the Fisher information matrix.
The horizontal line in each figure indicates the true value of the parameter. N: Naive MLE, B:
Bootstrap bias correction, J: Penalized likelihood estimation with Jeffrey’s prior, G: Penalized
likelihood estimation with generalized information matrix, C: Penalized likelihood estimation with
Cauchy distribution.
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extended y-axis scale. The bias of method C is larger than that of method J for small sample sizes,

but they become closer for larger sample sizes. On the contrary, methods B and G seem unreliable

for δ estimation.

For parameters β0 and β1, the empirical coverage probabilities seem to be close to their nominal

levels for methods N, J, and C. When δ = 8, the empirical coverage probabilities for δ based

on methods J and C are somewhat smaller than their nominal level. However, as the sample size

increases, they become closer to the nominal level. However, with the smaller δ, method J produces

coverage probabilities close to the nominal level for different n.

In summary we can make the following conclusions. The maximum likelihood estimator has a

skewed distribution, especially for small to moderate sample sizes. In general, the bootstrap bias

corrected MLE (method B) does not show any better performance than method N. Rather, in some

cases method B was worse than method N. Method J seems to be the best performing method

for reducing the bias and variability of the MLE for all parameters regardless of the marginal

success probability. For a large sample size, the performance of method C becomes similar to that

of method J. The results indicate that generally the variability of the estimator decreases as pm

increases.

5.5 Application to heart-disease data

For the illustration purpose, we analyze the heart-disease data from the Cleveland database

(Detrano et al., 1989). The dataset can be found in UCI database (Dua and Karra Taniskidou,

2017). The goal of this analysis is to fit a model that explains the association between Y , the

occurrence of a > 50% diameter narrowing in an angiography, and other clinical and test vari-

ables. In our analysis we consider subjects who have complete observations without any missing

values. With this definition we have a total of 297 subjects out of 303 subjects in our analysis and

137 (46.13%) of them experienced the primary event. Among 13 available covariates, we choose

the following 6 covariates which are statistically significant at the 5% level from a probit model:

gender (Gender), chest pain type (CP), resting blood pressure (BP), the slope of the peak exercise

ST segment (Slope), number of major vessels colored by flourosopy (CF), and thallium heart scan
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Table 5.1: Results of the analysis of the heart-disease data. Est: Estimate, CI: the Wald confidence
interval where standard errors are calculated by inverting the Fisher information matrix, P: probit
model with MLE, N: skew-probit model with MLE, B: skew-probit model with bootstrap bias
correction, J, G, C: skew-probit model with Jeffrey’s prior, generalized information matrix, and
Cauchy prior penalization, respectively.

Method
Covariates P N B J G C

δ Est − 1.540 0.954 2.730 0.139 1.468
CI − (−0.353, 3.433) (−2.833, 4.741) (0.566, 4.893) (−0.002, 0.279) (−0.166, 3.103)

Intercept Est −0.356 0.382 0.569 0.481 −0.305 0.364
CI (−0.816, 0.104) (−0.062, 0.827) (−0.569, 1.708) (0.191, 0.771) (−0.801, 0.190) (−0.073, 0.801)

Gender Est 0.815 0.608 0.515 0.501 1.101 0.597
CI (0.315, 1.315) (0.197, 1.018) (−0.107, 1.137) (0.197, 0.806) (0.507, 1.695) (0.200, 0.993)

CPTA Est −1.355 −0.985 −0.791 −0.794 −1.561 −0.959
CI (−2.055, −0.654) (−1.604, −0.366) (−1.643, 0.060) (−1.237, −0.350) (−2.306, −0.816) (−1.541, −0.378)

CPAA Est −0.917 −0.680 −0.597 −0.582 −0.604 −0.673
CI (−1.481, −0.353) (−1.132, −0.228) (−1.276, 0.083) (−0.905, −0.259) (−1.206, −0.003) (−1.115, −0.230)

CPNA Est −1.272 −0.911 −0.804 −0.728 −1.542 −0.904
CI (−1.754, −0.790) (−1.413, −0.409) (−1.630, 0.021) (−1.068, −0.389) (−2.113, −0.972) (−1.373, −0.435)

BP Est 1.959 1.420 1.167 1.154 2.148 1.316
CI (0.458, 3.459) (0.210, 2.631) (−0.391, 2.725) (0.212, 2.095) (0.573, 3.723) (0.177, 2.455)

SlopeU Est −0.963 −0.697 −0.604 −0.551 −1.206 −0.695
CI (−1.398, −0.528) (−1.114, −0.281) (−1.246, 0.039) (−0.854, −0.248) (−1.680, −0.731) (−1.089, −0.301)

SlopeD Est −0.230 −0.204 −0.184 −0.190 −0.379 −0.192
CI (−0.976, 0.515) (−0.775, 0.367) (−0.795, 0.428) (−0.665, 0.285) (−1.311, 0.554) (−0.760, 0.376)

CF Est 0.666 0.514 0.445 0.433 0.839 0.516
CI (0.416, 0.917) (0.283, 0.746) (0.041, 0.848) (0.259, 0.607) (0.595, 1.084) (0.295, 0.738)

ThalF Est 0.051 0.009 0.026 −0.029 −0.105 0.024
CI (−0.752, 0.855) (−0.602, 0.620) (−0.635, 0.686) (−0.546, 0.488) (−0.878, 0.668) (−0.582, 0.630)

ThalR Est 0.820 0.602 0.526 0.492 0.791 0.613
CI (0.383, 1.257) (0.210, 0.993) (−0.034, 1.086) (0.196, 0.788) (0.344, 1.237) (0.230, 0.995)

results (Thal). We create relevant dummy variables for the categorical covariates, Gender = 1 for

male and 0 for female; CPTA, CPAA and CPNA are dummies for chest pain types, typical angina,

atypical angina, and non-anginal pain, respectively with asymptomatic being the reference; SlopeU

and SlopeD are dummies for upsloping and downsloping of ST segment with flatness as the ref-

erence; and ThalF and ThalR are dummies for fixed detect and reversible detect while normal is

considered as the reference category for Thal. Here BP and CF are continuous. We first fit the pro-

bit regression model to this dataset, however, the Hosmer and Lemeshow (Hosmer and Lemesbow,

1980) goodness-of-fit test Ĉ based upon separations of predicted probabilities indicates a lack of

fit of the assumed model at the 5% level (p-value = 0.005).
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Table 5.2: The p-values from Hosmer and Lemeshow (HL) goodness-of-fit test statistics (Ĉ) of the
heart-disease data. P: probit model with MLE, N: skew-probit model with MLE, B: skew-probit
model with bootstrap bias correction, J, G, C: skew-probit model with Jeffrey’s prior, generalized
information matrix, and Cauchy prior penalization, respectively.

P N B J G C

Ĉ 0.011 0.028 0.000 0.207 0.000 0.024

Next, I consider the skew-probit model and estimate the model parameters using methods N,

B, J, G, and C. In Table 5.1 I provide the estimates and 95% Wald-type confidence interval for

each parameter based on the standard error calculated from the Fisher information matrix (CI).

The p-values of Hosmer and Lemeshow test (Table 5.2) indicate that method J fits the data well at

the 5% level. The 95% CI for δ based on method J indicates that δ is significantly different from

0 (δ̂: 2.73 and 95% CI: 0.566, 4.893). On the other hand, we note that the 95% CIs for δ based

on the other approaches indicate δ is not statistically significant. In terms of estimates for other

covariates, male subjects have higher risk for heart-disease than female subjects while any kind

of chest pain has a lower probability of heart-disease compared to the asymptomatic pain. Also,

based on method J, BP, CF and ThatF turn out to be positively associated with the probability

of Y = 1. Although, the statistical significance of regression parameters β (except the intercept)

do not change across methods P, N, J, G, and C, method J yields narrower confidence intervals

compared to other methods.

5.6 Conclusions

In this chapter, I have investigated parameter identifiability and bias of the MLE for the skew-

probit model for a binary response variable. The identifiability results will guide researchers to

craft their model more carefully for the skew-probit link function. Several bias reduction strategies

have been considered, and through simulation studies I have compared the performance of differ-

ent approaches. The simulation results indicate that the bias reduction strategies should not be used

blindly without considering the marginal success probability of the response variable and the sam-
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ple size. Finally, I have applied the proposed strategies to analyze a real dataset on heart-disease,

and the results show that without a proper bias correction the asymmetry in the link function may

turn out to be statistically non-significant. Overall this research and the simulation results will help

to develop a unique and robust method of analaysis to analyze models involving the skew-probit

model.
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6. CONCLUSION AND FUTURE WORK

In this dissertation, I construct a nonparametric testing method for homogeneity of distribu-

tions when we have multiple surrogates for the true signal. Also, I propose a Bayesian test for

the goodness-of-fit of the distributional assumption of the technical inefficiency in the stochastic

frontier analysis. In computational aspects, I develop fast but reliable computation of the standard

error of Bayes estimator. Finally, I investigate the identifiability and bias reduction of a binary

regression model with skew-probit link function.

The proposed testing method in Chapter 2 can be applied to check the homogeneity of the un-

derlying distributions for contaminated data from various areas. When it is impossible to measure

the true signal correctly, we tend to gather data multiple times. Under the classical measurement

error assumption with symmetry of errors, deconvoluted characteristic function is a key building

block to establish a test statistic. Bootstrap approximation of the test statistic is proposed and vali-

dated. Although the test is robust the symmetric error assumption, we can relieve the assumption.

In addition, we can extend to the multivariate version of test.

Although the stochastic frontier model is widely used to analyze economic data, it should also

be applicable to examine biomedical or epidemiological data due to the flexibility of technical

inefficiency. In Chapter 3, I inspect the distributional assumption of the inefficiency in the model

and develop a Bayesian test as a diagnostic tool. In the literature, however, the other component of

the composed error is assumed to be the Normal distribution and it is also necessary to check this

assumption.

Frequentist standard error is an important measure of variability of estimators and a key part

in statistical inference. The derivation of standard errors in the Bayesian context is considered

in Chapter 4. Because of bootstrap procedure and MCMC steps, the computation time was a

big problem. By using the importance sampling approach, we can reduce the computation time

significantly. This topic can also be tackled by various ways of bootstrap and MCMC scheme.

Finally, two problems of a binary regression with skew-normal link function are addressed in
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Chapter 5. This link deviates from the probit link function with respect to a flexible skewness

parameter. However, naive estimate for the skewness parameter is likely to be biased. It is recom-

mended to use penalization approach with Jeffrey’s prior type penalty function. Additionally, skew

normal distribution is generalized to skew-t distribution or skew-elliptical distributions. They are

another potential candidates to take into account asymmetric link function in a binary regression.
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APPENDIX A

PROOFS OF THEOREMS IN CHAPTER 2

Let cjw(t) = cos(tW j), djw(t) = sin(tW j). Next define ejw(t) = M−1
x

∑
(l1,l2)∈Sx cos{(t/mx)(

Wjl1 − Wjl2)}. Denote the expectations by c0w(t) = E{cjw(t)}, d0w(t) = E{d1w(t)}, and

e0w(t) = E{e1w(t)}. Then, ΛW j
(t) ≡ (cjw(t)− c0w(t), djw(t)− d0w(t), ejw(t)− e0w(t))T are iid

mean zero random vectors. Similarly define ΛV j
(t) by replacing W j’s by V j’s in the definition

of ΛW j
(t). Let t0 = max{|t1|, |t2|}, where recall that ω(t) = 0 for all t 6∈ [t1, t2]. Define

Zn(t) = n−1/2
x

 ∑nx
j=1 ΛW j

(t)∑ny
j=1 ΛV j

(t)

 , |t| ≤ t0.

Let C,C(·) denote generic constants with values in (0,∞) that may depend on their arguments (if

any) but not on nx, ny. Also, let `∞[−t0, t0] denote the set of all bounded measurable functions

from [−t0, t0] to the real line and let ‖x‖∞ = sup{|x(t)| : t ∈ [−t0, t0]}, x ∈ `∞[−t0, t0]. Finally,

let AT denote the transpose of a matrix (vector) A.

Then we have the following result.

Lemma 1. Zn
d→ Z as random elements of the space (l∞[−t0, t0])6, where Z is a 6-dimensional

zero-mean Gaussian process on [−t0, t0] with the covariance function

Γ(s, t) =

 Γw(s, t) 0

0 ρ−2Γv(s, t)

 ,
with Γv(s, t) = E{ΛW 1

(s)ΛW 1
(t)}, Γv(s, t) = E{ΛV 1

(s)ΛV 1
(t)}, for −t0 ≤ s, t ≤ t0.

Further, the paths of Z(·) are continuous on [−t0, t0] with probability one.

Proof. Note that i) ΛW j
(t) and ΛV j

(t) are bounded random vectors, ii) the collection of func-

tions {(Λw(t),Λv(t)); t ∈ [−t0, t0]} is a VC-class, where Λw(t) = [cos(t
∑mx

j=1 wj/mx), sin
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(t
∑mx

j=1 wj/mx),M
−1
x

∑
(l1,l2)∈S cos{t(wl1 − wl2)/mx}], and Λv(t) is defined similarly. Hence,

by using the Multivariate CLT (cf. Ch 11.1, Athreya and Lahiri, 2006), the finite dimensional dis-

tribution of theZn(·)-process converges in distribution to those of theZ(·)-process. Further, using

the standard exponential inequalities (e.g., Hoeffding, 1963) and the chaining argument (van der

Vaart and Wellner, 1996), it follows that Zn → Z in distribution, where Z is a random element of

l∞([−t0, t0])]6 and it has continuous paths on [−t0, t0] with probability one.

Now I provide the proof of Theorems in Chapter 2.

Proof of Theorem 1. Recall the definitions of âx(t) and â2x(t) given in (2.4) and (2.5), respectively,

and define a2x(t) = φmxux (t/mx) and let Zkn(t) be the kth component of Zn(t) defined in Lemma

1. Then ax(t) = c0w(t)/a2x(t), and

√
nx{âx(t)− ax(t)} =

√
nx

{
n−1
x

∑nx
j=1 cjw(t)

â2x(t)
− c0w(t)

a2x(t)

}

=
√
nx

[
n−1
x

∑nx
j=1{cjw(t)− c0w(t) + c0w(t)}

â2x(t)
− c0w(t)

a2x(t)

]

=
√
nx

[
n−1
x

∑nx
j=1{cjw(t)− c0w(t)}

â2x(t)
+
c0w(t)

â2x

− c0w(t)

a2x(t)

]

=
Z1n(t)

â2x(t)
−
c0w(t)

√
nx{â2x(t)− a2x(t)}
a2x(t)â2x(t)

. (A.1)

Now using the fact that â2x(t) = {φ2
ux(t/mx) + Z3n(t)/

√
nx}mx/2, we get

√
nx{âx(t)− ax(t)} =

Z1n(t)

a2x(t)
−
mxc0w(t)Z3n(t)φmx−2

ux (t/mx)

2a2
2x(t)

+Rnx(t),

≡ Anx(t) +Rnx(t), (A.2)

where

Anx(t) =
Z1n(t)

a2x(t)
−
mxc0w(t)Z3n(t)φmx−2

ux (t/mx)

2a2
2x(t)
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and where, with a suitable constant C(mx) ∈ (0,∞),

|Rnx(t)| ≤
|Z1n(t)||Z3n(t)|

√
nx

×
mx{1 + |Z3n(t)/

√
nx|mx/2−1}

2|a2x(t)|â2x(t)

+
|c0w(t)|{1 + |Z3n(t)|mx}
|a2x(t)|

√
nx|â2x(t)|

× C(mx) +
mx|c0w||Z3n(t)|2{1 + |Z3n(t)/

√
nx|mx/2−1}

2|a2x(t)|3
√
nx|â2x(t)|

.

Hence,

∫
|Rnx(t)|2ω(t)dt ≤ C(mx)

nx

{∫
ω(t)

a2
2x(t)

dt

}[
||Z1n||2∞||Z3n||2∞ +

{1 + ||Z3n||2mx∞ }
α4mx
x

]
×
{1 + (||Z3n||∞/

√
nx)

mx/2−1}2

(α2
x − ||Z3n||∞/

√
nx)mx

,

where αx = min{|φux(t/mx)|; |t| ≤ t0}. Since || · ||∞ is continuous on `∞[−t0, t0], it follows that

||Zkn||∞
d→ ||Zk||∞ for k = 1, . . . , 6. Hence

∫
|Rnx(t)|2ω(t)dt→ 0 (A.3)

in probability. Next, we define a2y(t) = φ
my
uy (t/my) and write

â2y(t) = {φ2
uy(t/my) + (

√
nx/ny)Z6n(t)}my/2.

Then, using similar steps as above, we obtain

√
nx{ây(t)− ay(t)} =

nx
ny

{
Any(t) +Rny(t)

}
,

where

Any =
Z4n(t)

a2y(t)
− myc0v(t)Z6n(t)φ

my−2
uy (t/my)

2a2
2y(t)

,

101



and where, retracing arguments above, one can show that

∫
|Rny(t)|2ω(t)dt→ 0 (A.4)

in probability. Under H0 : φx(t) = φy(t), that means ax(t) = ay(t) for all t. So, under H0,

I1 = nx

∫
{âx(t)− ây(t)}2ω(t)dt

= nx

∫
[{âx(t)− ax(t)} − {ây(t)− ay(t)}]2ω(t)dt

= I11 +Qn, (A.5)

where

I11 =

∫ {
Anx(t)−

nx
ny
Any(t)

}2

ω(t)dt,

and using the Cauchy-Schwartz inequality

|Qn| ≤
∫
{Rnx(t) +

nx
ny
Rny(t)}2ω(t)dt+ 2

[
I11 ×

∫
{Rnx(t) +

nx
ny
Rny(t)}2ω(t)dt

]1/2

. (A.6)

By (A.3) and (A.4), |Qn| → 0 in probability. Next applying the continuous mapping theorem, we

obtain

I11
d→ I1∞ ≡

∫
ξ2

1(t)ω(t)dt, (A.7)

where ξ1(t) = Ax(t) − ρ2Ay(t). Repeating the arguments above with I2 = nx
∫
{b̂x(t) −

b̂y(t)}2ω(t)dt and using the joint weak convergence result of Lemma 1, one can show that

Tn = I1 + I2

= I11 +

∫ [{
Z2n(t)

a2x(t)
−
mxd0v(t)Z3n(t)φmx−2

ux (t/mx)

2a2
2x(t)

}
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−nx
ny

{
Z5n(t)

a2y(t)
− myd0v(t)Z6n(t)φ

my−2
uy (t/my)

2a2
2y(t)

}]2

ω(t)dt+ op(1)

d→ I1∞ +

∫ [{
Z2(t)

a2x(t)
−
mxd0v(t)Z3(t)φmx−2

ux (t/mx)

2a2
2x(t)

}

−ρ2

{
Z5(t)

a2y(t)
− myd0v(t)Z6(t)φ

my−2
uy (t/my)

2a2
2y(t)

}]2

ω(t)dt

≡
∫

[ξ2
1(t) + ξ2

2(t)]ω(t)dt.

This completes the proof of Theorem 1.

Proof of Theorem 2. First suppose that
∫
D2
a(t)ω(t)dt 6= 0. LetWa(t) = {âx(t)−ax(t)}+{ay(t)−

ây(t)}, |t| ≤ t0. Then, it follows that

T1nx ≡ nx

∫ [
{âx(t)− ax(t)}+ {ax(t)− ay(t)}+ {ay(t)− ây(t)}

]2

ω(t)dt ≥ L1nx ,

where L1nx = nx
∫
{ax(t) − ay(t)}2ω(t)dt + 2nx

∫
Wa(t){ax(t) − ay(t)}ω(t)dt. Now, using the

steps in the proof of Theorem 1 and the continuous mapping theorem, one can show that the second

term of L1nx is Op(
√
nx) while the first term diverges at the rate nx. Thus, L1nx = Op(nx). Hence,

for

pr(T1nx ≤ r) ≤ pr(L1nx ≤ r)→ 0 for any r ∈ (0,∞).

Next consider the case where
∫
D2
b (t)ω(t)dt 6= 0. Then, defining T2nx by replacing âx, ây, ax, ay

in T1nx by b̂x, b̂y, bx, by and using the arguments above, we have pr(T2nx ≤ r) → 0 for any

r ∈ (0,∞). Thus, if
∫

[D2
a(t) +D2

b (t)]ω(t)dt 6= 0, then for any α,

pr(Tnx > tnx,α) = 1− pr(T1nx + T2nx ≤ tnx,α)

≥ 1−min
{

pr(T1nx ≤ tα), pr(T2nx ≤ tα)
}
→ 1 as nx →∞,
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proving Theorem 2.

Proof of Theorem 3. First we show that

φ̂x(t) ≡ φ̂W (t)/{φ̂ux(t/mx)}mx = φ̂1(t)φK(hwt)/{φ̂ux(t/mx)}mx

converges to φx(t) uniformly over |t| ≤ t0, almost surely. Since hw → 0, it is enough to show that

sup{|φ̂1(t)− φ1(t)| : |t| ≤ t0} → 0 almost surely, and (A.8)

sup{|φ̂ux(t)− φux(t)| : |t| ≤ t0mx} → 0 almost surely. (A.9)

Since φ̂1(t) = n−1
x

∑nx
j=1 exp(itW j) is an average of i.i.d., bounded random variables, one can

prove (A.8) using a discretization argument and Hoeffding’s inequality (Hoeffding, 1963); see,

e.g., Lahiri (1994). Next, for h > 0, write ejw(t, h) = M−1
x

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −

Wjl2)}(1 − h2t2)3I(|ht| ≤ 1) and e0w(t, h) ≡ E{ejw(t, h)}. Then, it is easy to check that

e0w(t, h) = |φux(t/mx)|2(1 − h2t2)3I(|ht| ≤ 1), and hence, sup{|e0w(t, hw) − φux(t/mx)| :

|t| ≤ t0mx} → 0, as hw → 0. Further, using arguments similar to those in the proof of (A.8), one

can show that sup{|φ̂ux(t)− e0w(t, hw)| : |t| ≤ t0mx} → 0, almost surely. Thus, (A.9) holds. Let

A be the event where (A.8) and (A.9) hold. Then pr(A) = 1. Next, let B be the event where

sup{|φ̂2(t)− φ2(t)| : |t| ≤ t0} → 0, and

sup{|φ̂vx(t)− φvx(t)| : |t| ≤ t0my} → 0,

as nx →∞. Then, by similar arguments, pr(B) = 1, implying, pr(A ∩B) = 1.

We shall now show that T ∗nx converges in distribution to T∞ ≡
∫

[[ξ2
1(t) + ξ2

2(t)]ω(t)dt,

i.e., the Prohorov distance between the Bootstrap probability distribution of T ∗nx and the the

probability distribution of T∞ goes to zero, on the set A ∩ B. Let Z∗n(t) be defined by re-
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placing (W 1, . . . ,W nx) and (V 1, . . . ,V ny) in Z(t) by the corresponding Bootstrap variables

(W ∗
1, . . . ,W

∗
nx) and (V ∗1, . . . ,V

∗
ny), respectively. Also, let Γ̂(s, t) denote the covariance matrix

function of Z∗n(·), i.e., Γ̂(s, t) = E∗Z
∗
n(t)Z∗n(t)T , s, t ∈ [−t0, t0], where E∗ denotes expectation

under P∗. Then, using Lemma 1, it is easy to check that on the set A ∩B,

sup
{
‖Γ̂(s, t)− Γ(s, t)‖ : s, t ∈ [−t0, t0]

}
→ 0 as nx →∞.

As a result, for any ω ∈ A∩B, the finite dimensional distributions of the Z∗n-process converges to

those of the Z-process, and further by Hoeffding’s inequality, the tightness condition continues to

hold. This implies that on the set A∩B, Z∗n converges in distribution to the same limiting process

Z as in Lemma 1. Further, repeating the arguments in the proof of Theorem 1 and using uniform

convergence of φ̂1(t), φ̂2(t), φ̂ux(t) and φ̂vy(t) o their respective limits on the set A ∩ B, one can

show that, for any ω ∈ A ∩B,

T ∗nx →
d T∞.

Theorem 3 now follows from Theorem 1, Polya’s Theorem, and the continuity of the limiting

random variable T∞.
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APPENDIX B

PROOF OF PROPOSITION 1 IN CHAPTER 3

I assume that the true density f0 for y|x is in the Hölder space Cα[0, 1] where a function g ∈

Cα[0, 1] satisfies |g(m)(x) − g(m)(y)| ≤ L|x − y|α for α ∈ (m,m + 1] and a constant L. Let

F0 be the corresponding probability measure of f0. With the choice of uniform prior on θ1 in

Section 3.3.1, the corresponding convergence rate is an,1 = n−α/(2α+1)
√

logn (Example 4.2 in

Ghosal et al., 2008). For the parametric family of models F0, the convergence rate is an,0 = n−1/2

so that an,1 > an,2 for all α > 0. We use Corollary 3.1 from Ghosal et al. (2008) to prove

Proposition 1 and I state the conditions for Bayes factor to be consistent and check them. Recall

that F0 = {fy|x(·;θ0) : θ0 ∈ Θ0} and F1 = {fy|x(·;θ1) : θ1 ∈ Θ1}.

1. When f0 ∈ F0

N1 Π0(θ0 ∈ Θ0 :
∫

log(f0/fy|x(·;θ0))dF0 ≤ a2
n,0,
∫

log(f0/fy|x(·;θ0))2dF0 ≤ a2
n,0) ≥

e−na
2
n,0 .

N2 For a sufficiently large constant M ,

Π1(θ1 ∈ Θ1 : d(fy|x(·;θ1), f0) ≤Man,1) ≤ o(e−3na2n,0), (B.1)

for some distance functions d on set of densities.

2. When f0 /∈ F0

A1 Π1(θ1 ∈ Θ1 :
∫

log(f0/fy|x(·;θ1))dF0 ≤ a2
n,1,
∫

log(f0/fy|x(·;θ1))2dF0 ≤ a2
n,1) ≥

e−na
2
n,1 .

A2 For every n and some In →∞, d(f0,F0) ≥ Inan,1.

Proof of Proposition 1. 1. The condition N2 is satisfied due to Example 4.2 in Ghosal et al. (2008).

Therefore, B01 →∞ when f0 ∈ F0 by Corollary 3.1 (2) in Ghosal et al. (2008).
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2. The condition A1 is the assumption for the prior distribution under which the contraction rate

an,1 is attained. In addition, since f0 is not inF0 we expect d(f0,F0) > 0 so that d(f0,F0) ≥ Inεn,1

for any an,1 → 0 and sufficiently slowly increasing In. Therefore, B01 → 0 when f0 /∈ F0 by

Corollary 3.1 (1) in Ghosal et al. (2008).
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APPENDIX C

COMPUTATIONAL COMPLEXITY OF THE TWO APPROACHES FOR THE LOGISTIC

REGRESSION EXAMPLE IN CHAPTER 4

Algorithm 1 Full Bootstrap method for the logistic regression model in Section 4.5.1
for b = 1 to B do

Draw a bootstrap sample
Initialize α(b)

0 and β(b)
0

for m = 1 to M + burn do
Propose αcand, βcand ∼ q(α, β|α(b)

m−1, β
(b)
m−1)

Calculate

r = min{1, π(αcand,βcand|D(b)
)q(α

(b)
m−1,β

(b)
m−1|αcand,βcand)

π(α
(b)
m−1,β

(b)
m−1|D

(b)
)q(αcand,βcand|α(b)

m−1,β
(b)
m−1)
}

Generate u ∼ U(0, 1)
if u < r then

α
(b)
m = αcand

β
(b)
m = βcand

else
α

(b)
m = α

(b)
m−1

β
(b)
m = β

(b)
m−1

end if
end for
Find averages α̂(b), β̂(b) for the bth bootstrap sample:
α̂(b) =

∑M
j=1 α

(b)
j /M and β̂(b) =

∑M
j=1 β

(b)
j /M

end for
Evaluate standard deviations sd1(α) and sd1(β) as in Section 4.5.1
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Algorithm 2 Proposed method for the logistic regression model in Section 4.5.1
for b = 1 to B do

Draw a bootstrap sample, and obtain (r
(b)
1 , . . . , r

(b)
n )

for m = 1 to M do
evaluate ω(b)(αm, βm) =

∏n
i=1 f

(r
(b)
i −1)(Xi, Yi|αm, βm) †

end for
Find averages α̂(b), β̂(b) for the bth bootstrap sample ∗:
α̂(b) =

∑M
j=1 αjω

(b)(αm, βm)/
∑M

j=1 ω
(b)(αm, βm) and

β̂(b) =
∑M

j=1 βjω
(b)(αm, βm)/

∑M
j=1 ω

(b)(αm, βm)
end for
Evaluate standard deviations sd2(α) and sd2(β) as in Section 4.5.1

† (α1, β1), . . . , (αM , βM ) are from π(α, β|D).
∗ If we are interested in the qth quantile we will compute α̂(b)

q , β̂(b)
q based on equation (4.1) in Section 4.4.1

at this step.
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