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ABSTRACT 

 

Inadequate skid resistance on wet pavements, specifically on horizontal curves of 

rural highways, is responsible for vehicle crashes and fatalities. Several research projects 

have developed models that project the effect of various geometric and pavement 

parameters on skid resistance. This study is an attempt to revise an existing model 

proposed by Texas A&M Transportation Institute (TTI) researchers. The proposed 

model is based on pavement parameters including (mix type, gradation, aggregate 

parameters and traffic parameters).  

Laboratory and field tests (circular track meter (CTM), dynamic friction tester 

(DFT), 3-wheel polisher, micro-deval test, aggregate image measuring system (AIMS) 

and skid trailer test) were conducted on various treatment sites, aggregate types and mix 

types to analyze their performance and effects on skid resistance. Data used for this 

study include the data collected from laboratory and field tests, data from TxDOT 

pavement management information system (PMIS) along with data from past research. 

This study is a contribution to revise some equations in an existing skid prediction model 

and to develop a database consisting of skid related data which would help practitioners 

in taking pavement-safety related decisions on horizontal curves. 
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1. INTRODUCTION 

 

1.1 Problem Statement 

Horizontal curves are one of the most vulnerable roadway geometric sections for 

crashes on a highway system. The reasons for this include improper roadway designs, 

driver distraction, driving over the design speeds and insufficient skid resistance from 

the surface of a pavement especially in wet weather conditions. Some of the potential 

pavement countermeasures to reduce the crash frequency on curves including high 

friction surface treatments, thin overlays, seal coats, water blasting and permeable 

friction course. The judicious selection of a pavement surface treatment can reduce 

crashes and improve driver performance. This treatment has a relatively low cost 

compared to geometric and traffic treatments like curve straightening, increasing 

superelevation and implementing control-devices. 

Past research studies have shown that skid resistance of a pavement is greatly 

affected by macrotexture (asperities of a pavement) and microtexture (harshness on the 

surface of aggregate). There is also a need to establish guidelines and develop a 

framework for practitioners to choose the appropriate treatment for a given situation. 

This study involves developing a database including the aggregate data, mix data, 

pavement types and traffic level (polishing cycles). It also focuses on revising and 

modifying an existing skid prediction model. 
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1.2 Objectives 

The objectives of this study are as follows: 

1. Study the effects of aggregate type and mix type on skid resistance of a 

pavement 

2. Revise and modify an existing skid prediction model’s aggregate shape 

characteristic equation 

3. Develop a database that organizes skid-related data collected from past 

research, current research and the TxDOT pavement management information 

system (PMIS) 

1.3 Thesis Organization 

The thesis is organized in five main sections. The first section introduces the 

problem statement, objective and thesis outline. The second section contains a literature 

review that emphasizes pavement-safety based past research studies such as horizontal 

curve crashes and their influential factors, pavement treatments, performance of 

pavement-safety treatments and friction mechanism. The third section describes 

laboratory and field tests that were conducted in this study and the procedure to collect 

skid data and weather data. The fourth section presents data analysis and the results 

obtained from lab and field tests, data collected from past research and TxDOT 

Pavement Management Information System (PMIS). The last section discusses 

conclusions and recommendations of this study. 
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2. LITERATURE REVIEW 

 

2.1 Overview 

This section introduces the significance of horizontal curve crashes and the 

factors causing the crashes. In addition, it discusses crash modification factor (CMF) 

which is a quantity that reflects the effect of influential crash causing factors in the form 

of models. This section also describes pavement treatments and their performance 

followed by a discussion on friction mechanism. 

2.2 Horizontal Curve Crashes and Influential Factors 

Curves are susceptible to crashes due to many factors which affect the safety. 

Road safety is a major concern for any transportation agency that needs to be addressed. 

Twenty five percent of fatal crashes occur on horizontal curves which account for 

around 10,000 deaths per year (FHWA, 2011; NHTSA. 2009. "Traffic Safety Facts, 

2009). Minnesota DOT analyzed crash data for 20 years and found that horizontal curves 

are primary hotspots for crashes on a roadway network. Horizontal curves in Minnesota 

accounts for about 10 percent of the state’s roadway network but more than 40 percent 

of the severe roadway departure crashes occur on them (FHWA, 2011). It has been 

observed that a significantly larger portion of fatal crashes have occurred on curves with 

rural two-lane roadway across the nation (FHWA, 2011). More than 65 percent of the 

fatal crashes occurred particularly on rural two-lane highways (see Figure 1) and similar 

results were observed by other researchers (Schneider, 2009; Torbic et al., 2004). 
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2.2.1 Focus on run-off-road (ROR) crashes 

Amongst the different types of collisions, the most frequent were found to be 

single-vehicle run off road (SVROR) and head-on (HO) crashes which accounts for 76 

percent and 11 percent respectively on all roads (Torbic et al., 2004). It is essential to 

evaluate all the existing curves on rural two-lane highways in Texas by analyzing their 

crash data and come up with some effective geometric and pavement countermeasures or 

treatments. Texas has over 150,000 centerline miles of two-lane highways (FHWA, 

2014a; Fitzpatrick, 2002). 

 

 

Figure 1: Percentage of fatal-crashes by roadway type (Torbic et al., 2004) 

Reprinted from (Torbic et al., 2004) 
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2.2.2 Discussion of the Crash Modification Factor 

A crash modification factor (CMF) is a dimensionless quantity that determines 

the effectiveness of a safety treatment based on number of crashes. It is multiplied with 

the expected number of crashes without treatment to analyze the expected number of 

crashes with treatment (FHWA, 2014). For example, a CMF lower than 1 denotes that 

the treatment can reduce the crashes and a CMF greater than 1 denotes that the treatment 

can increase the crashes. Past research studies have proposed different models for CMF 

which reflects the crucial factors like curve radii, design speed, deflection angles, length 

of a curve, radius of curvature etc. American Association of State Highway and 

Transportation Officials (AASHTO, 2010) in its first edition of Highway Safety Manual 

(HSM) has included a CMF equation which is a function of radius, length of curve and 

the absence of spiral transition and is given as: 

 𝐶𝑀𝐹 =
1.55 × 𝐿𝑐 +

80.2
𝑅 − 0.012 × 𝑆

1.55 × 𝐿𝑐
 (1) 

where, 

CMF= crash modification factor for a horizontal curve on two-lane roadway 

R= radius of curvature, ft 

S= factor for spiral curve (1 if present;0 if absent) 

The correlation between the radius (specially less than 1000 ft) and CMF for a 0.1-mile 

stretch can be seen in the Figure 2. 
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Figure 2: Relation between CMF and Radius of curvature (ft) (AASHTO, 2010) 

Reprinted from (AASHTO, 2010) 

 

Various studies have suggested CMF functions in which curve radius is one of 

the most common risk factor. Bonneson proposed a calibrated CMF function (Bonneson, 

2008): 

 𝐶𝑀𝐹𝑅 = 1.0 + 0.106 (
5730

𝑅
)

2

 (2) 

R= Radius of curvature, ft 

Some studies focused on the implementation of chevrons on untreated curves and 

performed a before-after safety analysis. Researchers suggested the implementation of 

curve delineation with a CMF value 0.86 (Srinivasan et al., 2009) while (Choi, Kho, 

Lee, & Kim, 2015) also performed a before and after analysis on few freeways in Korea 
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and suggested CMF for Chevrons to be 0.72. A CMF of 0.74 was estimated in a study 

for the evaluation of the effects of edge line markings along horizontal curves on rural-

two lane highway (A. R. Tsyganov, Machemehl, & Warrenchuk, 2009). 

2.2.3 Influential Factors Causing Crashes 

A recent study analyzed eight year of crash data in Pennsylvania using 

propensity score and concluded that degree of curvature is the most significant variable 

to affect crash frequency (Gooch, 2016). Most of the studies use curve radii as one of the 

parameters and is a very crucial factor affecting safety on roadway curves. The 

probability of occurrence of a crash on a curve with radius less than or equal to 500 ft is 

double the probability of occurrence of crash on a tangent (Schneider, 2009). Zeeger also 

mentioned that increased crash frequency is significantly correlated with the radius or 

sharpness of a curve (Zegeer, 1991). 

Researchers  have provided two possible reasons for crashes on curves: firstly, 

the vehicle drivers may not be able to recognize the coming horizontal curve and 

secondly, they may not be able to predict the sharpness of the curve (M. P. Pratt, and J. 

A. Bonneson, 2008). Severity of injury can also be a significant parameter in evaluating 

SVROR crashes on two-lane highway horizontal curves. A study conducted in Texas 

(Schneider, 2009) found that the injury crashes had high probability of occurrence with 

the curves of radii more than 500 ft but less than 2800 ft (Schneider, 2009). SVROR 

crashes are fatal as the vehicles run-off from the road and hit roadside objects that result 

in impairment and fatalities. Some researchers performed an extensive sensitivity 

analysis and concluded that crash prediction is a function of annual average daily traffic 
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(AADT), radius and length of a curve (Findley, 2012). AASHTO in its book, A Policy 

on Geometric Design of Highways and Streets regulated the design of horizontal curves 

based on maximum superelevation, maximum side friction factor and the design speed 

(AASHTO, 2011): 

 𝑅𝑚𝑖𝑛 =
𝑉2

15 × (0.01𝑒𝑚𝑎𝑥 + 𝑓𝑚𝑎𝑥)
 (3) 

Rmin = minimum radius, ft 

V    = design speed, mph 

emax = maximum superelevation, % 

fmax  = maximum side friction factor 

Several states department of transportation (DOT) research institutions have been 

consistently looking for effective counter measures to reduce crashes on horizontal 

curves. Walden elaborated the work plan to account for the countermeasures in his 

report Developing Methodology for Identifying, Evaluating, and Prioritizing Systemic 

Improvements (Walden, 2014). The study analyzed more than 6000 crashes recorded 

from more than 38000 curves during the year 2010-2014. More than 80 percent of the 

crashes were ROR (run-off road) and HO (head-on) collision was 6.5 percent (Walden, 

2014). The causal factors considered in (Walden, 2014) study were curve radius, lane 

width, truck percentage, deflection angle and width of right shoulder. These mentioned 

risk factors were evaluated based on average daily traffic (ADT) and following 

observations were made by (Walden, 2014) as shown in Table 1. 
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Table 1: Effect of Risk Factors based on Traffic Levels (Walden, 2014) 

Reprinted from (Walden, 2014) 

Risk Factor Traffic level based on ADT Observations 

 

Lane width 

 

low traffic (ADT≤500) 

more than 50 percent ROR and 

HO crashes on narrow lane 

widths (10 ft) 

 

Right shoulder width 

 

all traffic levels 

significant increase in crashes 

for shoulder width < 6 ft 

 

Truck percentage 

 

all traffic levels 

truck percentage less than 15 

percent accounts for slightly 

increased traffic 

 

Curve radius 

 

all traffic levels 

increased ROR and HO 

crashes on curves with radius 

ranging between 500 to 1500 ft 

 

Deflection angle 

 

all traffic levels 

increased ROR and HO 

crashes for deflection angle 

less than 40 degrees 

 

 

Curve radius represents the radius of circular arc of a curve that approximates the 

sharpness of the curve. If the deflection angle is less, the sharpness of a curve will be 

more. The deflection angle is the angle measured from tangent of point of curve (PC) or 

point of tangent (PT) to any other point on a curve. Lord et al. investigated some risk 

factors like curve geometry and its presence, weather etc. and established that the 

crashes on horizontal curves are significantly related to the curves with smaller radii and 

existence of a curve (Lord, Brewer, Fitzpatrick, Geedipally, & Peng, 2011). Their study 

also concluded that fatality and injury related crashes (per million vehicle miles) on 
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horizontal curves in Texas are 2.3 per million vehicle miles more than the crashes on 

tangent roadway segments. 

A study conducted by Long et al., 2014 used a Crash rate ratio-Skid number 

(CRR-SN) relationship and showed that the crash risk increases significantly with the 

decrease in skid number (Long, Wu, Zhang, & Murphy, 2014). Their study also 

suggested skid number ranges (see Figure 3 and Table 2) for all weather crashes and wet 

weather crashes to select countermeasures and guide practitioners at the network-level. 

Table 2 showed the recommended threshold levels of skid number for all weather 

crashes and wet weather crashes. 

 

 

Figure 3: Schematic Diagram for  Levels of Skid Numbers (Long et al., 2014) 

Reprinted from (Long et al., 2014) 
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Table 2: Suggested threshold levels of skid number (Long et al., 2014) 

Reprinted from (Long et al., 2014) 

 

 

Researchers have also found that wet-weather related crashes are two to three 

times higher than on dry-pavement (Satterthwaite, 1976). Neuman et al. observed driver 

behavior while investigating free-flow speeds along horizontal curves on two-lane 

highway section in New York (Neuman et al., 2003). They concluded that drivers did 

not slow down enough on wet curves as they might have not recognized that the skid 

resistance is lower on wet pavements as compared to dry pavements. 

2.3 Crash Countermeasures: Pavement and Geometric Perspective 

Safety improvements suggested by various agencies like FHWA, NCHRP etc. 

are discussed in the Table 3. 

 

 

 

 

All weather crashes Wet weather crashes

SN-1 14 17

SN-2 28 29

SN-3 74 74

Skid Resistance 

Level

Suggested Threshold Values



12 

 

Table 3: Performance of countermeasures in terms of CMF, cost and service life 

Countermeasures Crash 

type 

CMF App. Cost Service 

life (yr.) 

Source 

Centerline markings All 

(injury) 

0.99 $650 per 

mi 

2 (Elvik, 2004) 

Edgeline markings All 

(injury) 

0.73 $650 per 

mi 

2 (A. R. Tsyganov, 

R. B. Machemehl, 

and N. 

Warrenchuk, 2009) 

Post-mounted 

delineators 

All 

(injury) 

0.70 $3000 per 

curve 

2 TxDOT’s HSIP 

work code 

Horizontal 

alignment signs 

All 

(injury) 

0.82 $300 per 

unit 

6 (McGee, 2006) 

Combination 

horizontal 

alignment/advisory 

speed signs 

All 

(injury) 

0.87 $300 per 

unit 

6 (Elvik, 2004) 

Chevrons SVROR 0.86 $3000 per 

curve 

10 (Srinivasan et al., 

2009) 

RPM (raised 

pavement marking) 

All 

(injury) 

1.43 $1360 per 

mile 

3 (Bahar, 2004) 

Safety-treat fixed 

objects 

SVROR 0.50 $300,000 

per mi 

20 TxDOT’s HSIP 

work code 

Dynamic curve 

warning system 

All 

(injury) 

0.59 $18,000 

per unit 

10 (McGee, 2006) 

Speed advisory 

marking in lane 

All 

(injury) 

0.94 $300 per 

unit 

2 (Campbell et al., 

2012) 

Rumble strips SVROR+

HO 

0.61 $2640 per 

mile 

10 (Torbic D. J., 2009) 

Flatten side slope SVROR 0.54 $300,000 

per mi 

20 TxDOT’s HSIP 

work code 

HFST (high friction 

surface treatment) 

All 

(injury) 

0.55 $20/sq.yd 5  

Superelevation All 

(injury) 

0.35 $200,000 

per mi 

10 TxDOT’s HSIP 

work code 
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Table 4: Crash Reduction Performance for Various Pavement Treatments 

Treatment Type Section Type 
Crash 

Type 

Approximate CMF1 

Average Range 

HFST 

 

Curves and ramps, 

generally high-accident 

locations 

Wet 0.34 0.14 – 0.48 

Total 0.72 0.65 – 0.75 

Seal coats 

 

Two-way and multi-lane 

roads (not high-accident 

specific) 

Wet 0.76 0.42 – 1.60 

Total 1.15 0.83 – 1.52 

Thin asphalt overlays 

 

Multi lane roads and 

freeways 

Wet 0.87 0.53 – 1.27 

Total 0.99 0.93 – 1.20 

Permeable friction 

course 

 

Freeways (California and 

North Carolina) 

Wet 0.68 0.51 – 1.04 

Total 0.94 0.74 – 1.10 

Abrading and 

texturing 

 

California freeways 

Wet 2.03 - 

Total 0.77 - 

Water blasting - - - - 

1 –   Crash modification factor (CMF) = 1 – Crash Reduction Factor (CRF)/100 

‘-’    Not available 
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Table 4 provides a summary of CMFs for various pavement treatments.  Most of 

these values are derived from statistically powerful studies, considering hundreds or 

thousands of miles of pavement, and comparing against appropriate reference sections.  

The CMFs for HFST, however, were obtained from far fewer study locations, and it was 

difficult to identify good reference sections.  The data for abrading and texturing also did 

not have a significantly large sample size. 

Pavement related countermeasures have the potential to improve the skid 

resistance of the road which will benefit driver performance and can result in the 

reduction of considerable number of crashes. Performance of pavement for curve safety 

can be evaluated based on its physical condition (e.g. surface distresses), functional 

performance (e.g. skid resistance), or ride quality assessment by the user itself. The 

performance indicators are rated by monitors and are given a certain rating scale. 

Pavement performance indicators often have threshold values to restrict further damage. 

Certain treatments based on the analysis are evaluated and are implemented as an 

immediate or long-term treatment depending on cost and service life required. Figure 4 

shows that an immediate improvement was applied in the first year, pavement degraded 

over time and reached to its threshold. Based on pavement condition assessment, another 

treatment was decided which lasted from 15 years to a certain period where it again 

would reach to its threshold. Service life is the time until the pavement performance 

would return to its threshold. 
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Figure 4: Schematic diagram of Life cycle cost analysis of a pavement 

 

2.4 Pavement Treatments to Reduce Crashes by Increasing Friction 

This section defines each treatment and summarizes performance data as shown 

in Table 4 : 

• High friction surface treatment (HFST) 

• Seal coat (chip seal) 

• Thin asphalt overlay 

• Permeable friction course 

• Water blasting (for flushed seal coats) 

One recent and thorough research report on these treatments was performed by 

(Merritt, Lyon, & Persaud, 2015), sponsored by the Federal Highway Administration. 
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2.4.1 High Friction Surface Treatment 

HFST is a safety-first pavement treatment intended to restore and maintain 

pavement friction to reduce crashes, especially around horizontal curves during wet 

weather (Julian & Moler, 2008).  It is a thin layer of high-quality polish-resistant 

aggregate bonded to the pavement surface with polymer resin binder (see Figure 5). The 

most common aggregate used is calcined bauxite and the binder is often an epoxy resin 

or polyester resin. 

 

 

Figure 5: High Friction Surface Treatment 
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Aggregate 

Polymer-resin binder 1/8-inch 
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2.4.2 Seal Coat 

Seal coats, also known as chip seals and surface treatments, are a common 

inexpensive maintenance surface treatment in which a layer of asphalt emulsion or other 

asphalt binder spray applied and overlaid by aggregate to seal the surface against 

oxidation and moisture (see Figure 6).  Seal coats also provide a new aggregate wearing 

surface which improves skid resistance (Douglas D Gransberg & James, 2005).  Loss of 

skid resistance will occur over time, not just with polishing, but as the aggregates are 

shifted into more flat positions and especially as bleeding occurs (asphalt migrating to 

the surface.) 

  

Figure 6: Seal Coat 
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2.4.3 Thin Asphalt Overlay 

A thin asphalt overlay is a thin lift of dense- or gap-graded asphalt concrete, less 

than 1.5 inches thick (see Figure 7).  They are used primarily for maintenance purposes 

and provide little in the way of structural capacity.  Thin overlays are more expensive 

than seal coats but have the added benefit of resisting severe traffic movements (start-

stop and turning), improving ride quality, and reducing noise.  For these reasons, they 

are more often used for urban areas. 

 

    

Figure 7: Thin Asphalt Overlay 
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2.4.4 Permeable Friction Course 

A permeable friction course (PFC), (or open graded friction course (OGFC)) is 

an open-graded hot mix asphalt concrete laid at 1 to 2 inches thick (see Figure 8).  It 

provides functional improvement to the existing pavement in terms water removal, 

reduced splash and spray, and skid.  It is used in the areas of heavy rainfall but often not 

in colder climates due to inefficiency in freeze-thaw cycles and problems with black ice.  

PFC often uses higher quality materials than typical dense-graded hot-mix asphalt 

(HMA) since the durability is compromised by the open-graded design. 

 

    

Figure 8: Permeable friction course 

 

2.4.5 Friction Abrading and Pavement Texturing 

Diamond grinding is the process of remove a thin layer of Portland cement 

concrete (typically less than 0.25 inch) with closely spaced saw blades.  The process 

removes surface irregularities and improves skid resistance.  Diamond grooving is a 
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treatment in which the pavement surface is saw-cut (usually longitudinally) forming 

narrow grooves about 0.75 inches apart (see Figure 9). 

 

 

Figure 9: Grooved Surface (left) and Diamond Grounding (right) 

 

Micro-milling, unlike diamond grinding, uses impact technique in which milling 

teeth would shave the surface to improve surface friction.  Shot blasting or abrading 

removes the very top-most surface of concrete by projecting thousands of steel pellets or 

“shots” against the pavement, wearing off the aged surface. The loose shot is 

continuously picked off the pavement in the process. 

2.4.6 Water Blasting 

Water blasting is an emerging technology that uses ultra-high pressure water to 

remove excess binder and impurities from a flushed seal coat pavement surface.  The 

macrotexture of the road is restored, thus improving skid resistance (see Figure 10).  The 

process does not improve the surface texture of the aggregate.  Fine jets of ultra-high 
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pressure water (36,000 psi) are directed onto the road surface at an ultrasonic velocity 

(Mach 1.5) (Lawson, 2006). 

 

 

Figure 10: Effects of Water Blasting Test 

 

2.5 Treatment Performance and Cost 

2.5.1 Service Life of Pavement Treatments 

Service life is partially dependent on the existing pavement condition, traffic 

severity, and climate severity. Table 5 gives the typical service lives of pavement 

treatments obtained from a survey with contractors.  A longer service life, particularly 

with high skid performance, increases the long-term benefit of a given safety treatment. 
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Table 5: Service Life for Various Pavement Treatments from a Survey 

Treatment Type 

Approximate 

Service Life, yr 

Source 

HFST 7-12 (Cheung, Julian, & Moravec, 2014) 

Seal Coats 3-15 (Morian, 2011) 

Thin Asphalt Overlays 8-15 (Wu, Groeger, Simpon, & Hicks, 2010) 

Permeable Friction 

Course 

10-15 

(Wade, R.l DeSombre, & Peshkin, 

2001) 

Water Blasting Data not available (Lawson, 2006) 

 

 

2.5.2 Approximate Costs of Pavement Treatments 

Table 6 shows approximate unit costs of different treatment types.  The most 

expensive treatment is HFST and the cheapest are seal coats and water blasting.  Some 

of these costs would change depending on the treatment thickness. 

 

 

 



23 

 

Table 6: Unit Cost for Various Pavement Treatments 

Treatment Type Approximate Unit Cost Source 

HFST $21/yd2 

(Cheung et al., 2014) 

Seal Coats $1-$2.50/yd2 
(Morian, 2011) 

Thin Asphalt Overlays $3-$6/yd2 

(Wu et al., 2010) 

Permeable Friction 

Course 
$7/yd2 

(Wade et al., 2001) 

Water Blasting $1/yd2  (Lawson, 2006) 

 

 

2.6 Pavement Friction Mechanisms 

2.6.1 Skid Resistance and Pavement Texture 

Skid resistance is a property of the surface friction characteristics and contributes 

to tire-pavement interaction (Noyce, Bahia, Yambó, & Kim, 2005). It is a force 

contributing to driver’s safety to provide sufficient friction on roads, especially on 

horizontal curves with wet-weather characteristics such that vehicle can accelerate, 

maneuver and stop safely (Dewey, 2001; Li, 2005). 
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During tire-pavement interaction, rubber of the tire undergoes two mechanisms: 

hysteresis and adhesion (see Figure 11). Hysteresis is a mechanism in which friction 

generates from the loss of energy due to deformation of the tire rubber along protrusions 

and depressions of the pavement surface (Linder, Kröger, Popp, & Blum, 2004). The 

energy loss occurs in the form of heat and noise due to the alternate compression and 

expansion of the rubber along the macrotexture or asperities of the pavement (Choubane, 

Holzschuher, & S.Gokhale, 2004). Looking at a bigger picture, hysteresis occurs very 

frequently when a vehicle is in high speed causing gradual net loss of energy or 

hysteresis (Linder et al., 2004). Adhesion, on the other hand is a molecular level 

mechanism that contributes to adherence or an attractive force between tire rubber and 

the surface of an aggregate (Dewey, 2001). Yandell investigated texture scales relation 

to hysteresis mechanism (Yandell, 1971). A report showed that tire sliding at high speed 

contributes to high hysteresis value while tire sliding at low speed contributes to high 

adhesion value (Kummer & Meyer, 1963).  

Researchers investigated that mix design parameters including gradation, bin 

percentage, aggregate sources etc. had a significant effect on rubber tire skid resistance 

and texture (Davis, 2002). 
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Figure 11: Key Mechanisms of Pavement-Tire Friction (J W Hall et al., 2009) 

Reprinted from (J W Hall et al., 2009) 

 

Pavement skid resistance is primarily a function of surface texture characteristics 

that are technically referred as macrotexture and microtexture (ASTM, 2007; Kummer & 

Meyer, 1963) as shown in Figure 12. Macrotexture depicts a larger view of asperities on 

the pavement’s aggregate particle matrix while microtexture depicts a smaller view of 

texture depending on shape, size, angularity, petrology of aggregates, surface of the 

binder and rubber particles from the tire (Noyce et al., 2005; Roberts, Kandhal, Brown, 

Lee, & Kennedy, 1996). Macrotexture is defined as a texture on the pavement’s 

aggregate particle matrix or the large asperities that cause hysteresis mechanism. From 

past research, macrotexture can be a function of aggregate gradation, angularity of 

coarse aggregates, aggregate type and the type of surface treatment used on the 
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pavement (Noyce et al., 2005). Micro-texture is defined on microscopic scale as it works 

on the phenomena called adhesion (Noyce et al., 2005; Roberts et al., 1996), in which 

tire rubber interacts with the texture on the face of aggregates and binder. It contributes 

to the smoothness or roughness of the aggregate surface and its performance depends on 

the retention of the roughness against polishing or abrasion by traffic movement and 

weather (Jayawickrama, Prasanna, & Senadheera, 1996; Noyce et al., 2005). 

Microtexture provides better traction in dry road surface condition by controlling contact 

between pavement and tire surface (Arambula et al., 2013). 

 

 

Figure 12: Microtexture & Macrotexture (Flintsch, León, McGhee, & Al-Qadi, 

2003) 

Reprinted from (Flintsch et al., 2003) 

 

Surface irregularities are categorized into four different ranges of texture: 

microtexture (wavelength is less than 0.5 mm), macrotexture (wavelength is in the range 
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between 0.5 mm to 50 mm), megatexture (wavelength ranges between 50 mm to 500 

mm) and roughness (wavelength greater than 500 mm) (see Figure 13) (Dewey, 2001). 

Texture wavelengths depict the length between physically repeating features, in this case 

it is the asperities on the aggregate surface. 

 

 

Figure 13: Texture Wavelength Influence on Pavement-Tire Interactions (J. W. 

Hall et al., 2006) 

Reprinted from (J. W. Hall et al., 2006) 

 

Macrotexture allows water to escape out under the tire which prevent 

hydroplaning. If water stays on the surface of aggregate, it allows slipping of the tire 

(hydroplaning) and cause run-off crashes or injuries due to sliding. Thus, it contributes 

to hysteresis mechanism when a tire deforms while moving on asperities and causing 

energy loss (Dewey, 2001; Ergun, Iyinam, & Iyinam, 2005; Forster, 1989). Bloem 
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investigated that the texture wavelength should be at minimum 0.5 mm to allow water to 

escape from the tire-pavement contact area (Bloem, 1971). Despite macrotexture 

contributes in the escape of water, microtexture also plays a significant role in 

maintaining the direct contact between tire and pavement by penetrating through thin 

film of water by its micro-asperities (Do, Zahouani, & Vargiolu, 2000). Researchers 

showed that drainage of water is significantly related with the microtexture (Do et al., 

2000; Taneerananon & Yandell, 1981). 

 

 

Figure 14: Schematic diagram to show the effect of microtexture/macrotexture on 

pavement friction (Noyce et al., 2005) 

Reprinted from (Noyce et al., 2005) 
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2.7 Masad-Kassem-Chowdhury Friction Model 

Research has developed skid prediction model for hot mix asphalt (HMA) and 

seal coat surface treatments. The model considered aggregate shape characteristics 

(angularity and texture indices) from laboratory measurements, gradations and friction 

measurements from lab and field tests. A mathematical model was developed for 

gradation of aggregates and a statistical model was developed for friction. Figure 15 

shows the flowchart explaining the inputs and outputs of the model. 

 

 

Figure 15: Flowchart explaining modelling approach 
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The researchers measured aggregate shape characteristics (angularity and texture 

indices) using the Aggregate Measuring System (AIMS) at three different polishing or 

abrasion levels: before micro deval (0 minutes), after micro-deval at 105 minutes 

(AMD105) and after micro-deval at 180 minutes (AMD180). The researchers developed 

an aggregate characteristic model to predict angularity and texture indices at AMD180 

(Masad, Chowdhury, Kassem, & Aldagari, 2017). 

𝑇𝑋 (𝑡) =  𝑎𝑇𝑋 + 𝑏𝑇𝑋 ∗ 𝑒(−𝐶𝑇𝑋∗𝑡) 
(4) 

𝐺𝐴 (𝑡) =  𝑎𝐺𝐴 + 𝑏𝐺𝐴 ∗ 𝑒(−𝐶𝐺𝐴∗𝑡) 
(5) 

where, 

TX (t) = change in texture (time function) in minutes 

𝑎𝑇𝑋, 𝑏𝑇𝑋 , 𝐶𝑇𝑋 = regression constants for aggregate texture 

t = time taken to polish aggregates in Micro-Deval 

GA (t) = change in angularity (time function) in minutes 

𝑎𝐺𝐴, 𝑏𝐺𝐴, 𝐶𝐺𝐴 = regression constants for aggregate angularity 

Gradation parameters were analyzed using Weibull distribution to fit the aggregate size 

distribution by shape and scale parameters. 

      𝐹(𝑥, λ, κ) = 1 − 𝑒
−(

𝑥

 λ
)

κ

     (6) 

where, 
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x = aggregate size (mm) 

κ, λ = shape and scale parameters respectively 

Researchers  modified an existing IFI equation in ASTM E274 (equation 7) to evaluate 

the calculated and measured skid numbers in the study (Masad et al., 2017). 

𝐼𝐹𝐼 = 0.045 + 0.925 × 0.01 × 𝑆𝑁(50)𝑒
20

𝑆𝑝    (7)

  

where, 

SN (50) = skid number measured at 50 mph using smooth tire 

IFI= international friction index 

Sp = speed constant parameter 

Modified IFI equation is as shown: 

𝑆𝑁 (50) = 4.81 + 140.32(𝐼𝐹𝐼 − 0.045)𝑒
−20

𝑆𝑝    (8) 

The predicted SN(50) from equation 8 were compared to find the correlation between 

measured SN(50) in the field by preforming skid trailer test at 50 mph. 

𝐼𝐹𝐼 (𝑁) = 𝑎𝑚𝑖𝑥 + 𝑏𝑚𝑖𝑥 × 𝑒(−𝐶𝑚𝑖𝑥∗𝑁)    (9) 

𝑆𝑝 = 14.2 + 89.7𝑀𝑃𝐷     (10) 

𝑀𝑃𝐷 = (
𝜆

34.180
) − (

0.398

𝜅
) + (𝑘0.416) − 0.003𝑁   (11) 
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𝑁 = 𝑇𝑀𝐹 × 10

1

𝐴+𝐵×𝐶𝑚𝑖𝑥+
𝐶

𝐶𝑚𝑖𝑥     (12) 

𝑇𝑀𝐹 =  
𝐷𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔×𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

1000
 (13) 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 =  
𝐴𝐴𝐷𝑇×(100−𝑃𝑇𝑇)×𝐷𝐿𝐴𝐴𝐷𝑇

100
+

𝐴𝐴𝐷𝑇×𝑃𝑇𝑇×𝐷𝐿𝑡𝑟𝑢𝑐𝑘×20

100
  (14) 

where, 

𝑎𝑚𝑖𝑥 + 𝑏𝑚𝑖𝑥 = initial IFI 

𝑎𝑚𝑖𝑥 = terminal IFI 

𝐶𝑚𝑖𝑥 = rate of change in IFI 

TMF = traffic multiplication factor 

AADT = average annual daily traffic for a section 

𝐷𝐿𝐴𝐴𝐷𝑇 = design lane factor of AADT (function of no. of lanes & urban/rural condition) 

𝐷𝐿𝑡𝑟𝑢𝑐𝑘 = design lane factor of trucks (function of no. of lanes & urban/rural condition) 

PTT = percent truck traffic 

Equation 4 and Equation 5 (Kassem, Awed, Masad, & Little, 2013; Mahmoud & 

Masad, 2007; Masad et al., 2017) were established to depict the texture and angularity 

loss with polishing (Micro-Deval test for 0, 105 and 180 minutes). TxDOT recommends 

polishing aggregate for 0 and 105 minutes but researchers investigated on 180 minutes 

as well to analyze the effects of polishing for a longer period. 
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Table 7 shows numerous studies and their observations based on the parameters 

which were considered to model skid prediction. 

 

Table 7: Suggestions from past research on skid resistance 

Findings Sources 

skid resistance decreases with speed (Henry, 1986) 

skid resistance decreases with the 

increase in the temperature of tire rubber 

(Shafii, 2009) 

skid resistance decreases with the 

bleeding of asphalt binders on the surface 

(Sullivan, 2005) 

skid resistance increases with surface 

grooving 

(Pashindu, Fwa, & Ong, 2010) 

skid resistance is a function of traffic, 

pavement texture and compressive 

strength of concrete 

(Ahammed & Tighe, 2007) 

test procedure to characterize friction 

based on polishing rate and terminal 

friction value 

(Kowalski, 2007) 

skid resistance is a function of aggregate 

characteristics, mixture gradation and 

traffic 

(Kassem et al., 2013; Kassem et al., 2012; 

Masad et al., 2017; Masad, Rezaei, 

Chowdhury, & Freeman, 2010) 
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3. PAVEMENT TREATMENT, SKID RESISTANCE, AND AGGREAGATE 

DATA COLLECTION 

 

3.1 Overview 

This section discusses past research, pavement management information system 

(PMIS), field tests and laboratory tests. Most of the data used on this project was 

collected from previous projects, additional data was added from field and laboratory 

tests performed in this project. Test sites were selected based on sharper curve radii and 

various treatment type. Data for skid resistance and other related parameters were 

collected. Table 8 shows two categories specifically for Project data and Mix/Treatment 

data. 

 

Table 8: Types of Data Collected 

Project Data Mix/Treatment Data 

- Location 

- Treatment type 

- Aggregate type 

- Construction 

date 

- AADT 

- Curve radius 

- Skid number etc. 

- Gradation 

- Bin percentages 

- Aggregate angularity, micro-

deval %, texture 

- Mean profile depth 

- Coefficient of friction etc. 
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3.2 Previous Research Data 

Table 9 demonstrates the specific source for data extraction; some new data were 

added to the existing data collected from lab and field tests which will be discussed later 

in the section. 

 

Table 9: Data Sources from the Literature 

Source Data Description 

TxDOT 0-5836 – Performance and cost 
effectiveness of permeable friction course 
(Arambula et al., 2013) 

PFC - site selection 

TxDOT 0-6746 – Validation of asphalt 
mixture pavement skid prediction model 
and development of skid prediction model 
for surface treatments (Masad et al., 2017) 

Seal coat- site selection, 
Aggregate data, Mix data, 
Friction data 

TxDOT 0-6714 – Evaluating the Need for 
Surface Treatments to Reduce Crash 
Frequency on Horizontal Curves (M. P. 
Pratt et al., 2014) 

HFST - site selection 

TxDOT 0-6615 - Design and construction 
recommendations for thin overlays in 
Texas (Wilson, Scullion , & Estakhri, 2013) 

Aggregate data, Mix data, 
Friction data 

TxDOT 0-6742 – Evaluation of design and 
construction issues of thin HMA overlays 
(Wilson, Scullion, & Faruk, 2015) 

Aggregate data, Mix data, 
Friction data, thin overlay-site 
selection 

FDOT - BDR74-977-05 – Alternative 

aggregates and materials for high friction 

surface treatment (Wilson & Mukhopadhyay, 

2016) 

Aggregate data, Mix data, 
Friction data, HFST-site 
selection 

TxDOT – 0-5230 – Maintenance solutions 
for bleeding and flushed pavements 
surfaced with a seal coat or surface 
treatment (Senadheera, Henderson, 
Surles, & Lawson, 2013) 

Water blasting-site selection 

 



36 

 

3.3 Pavement Management Information System (PMIS) Skid Data 

TxDOT PMIS (Pavement Management Information System) was accessible 

which provided historic skid data from 2003 to 2016 maintained by the state. The skid 

data along with other parameters from the previous research were queried to select new 

sites for field skid test mentioned in Table 10. A total of 81 projects were queried and 

selected based on Roadbed ID (type of routes and lanes), beginning and ending Texas 

Reference Markers (TRM), between first year after paving until the latest known year of 

its existence. 

3.4 Field Skid Data 

From central, west and east Texas, 40 sites (see Figure 16 and Table 10) were 

selected including 8 HMAs (orange), 9 PFCs (blue), 13 seal coats (green), 8 HFSTs (red) 

and 2 water blasting (yellow) treatments to assess their parameters such as aggregate 

types, traffic condition, service life etc. 
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Figure 16: Locations of skid trailer test 
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Table 10: Selected 40 sites for Field Skid Test 

 

 

 

Section Name Treatment Type Aggregate Type

HFST-SH 47-Brazos-Bryan Seal Coat, Bleeding Calcined Bauxite

HP Water-FM 2562-Grimes-Bryan Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

HMA-IH 45-Leon-Bryan Seal Coat, Bleeding Sandstone + Silliceous River Gravel + Limestone

HFST-Kimbro-Travis-Austin Seal Coat, Bleeding Calcined Bauxite

HMA-FM 973-Travis-Austin Seal Coat, Bleeding Limestone

HMA-SH 71-Travis-Austin Seal Coat, Bleeding Sandstone + Limestone

HMA-FM 3238-Travis-Austin Seal Coat, Bleeding Sandstone + Limestone

Seal Coat-SH 29-Travis-Austin Seal Coat, Bleeding NA

HFST-Lp 1604-Bexar-San Antonio Seal Coat, Bleeding Calcined Bauxite

Seal Coat-FM 1518-Bexar-San Antonio Seal Coat, Bleeding Sandstone

HMA-IH 10-Austin-Yoakum Seal Coat, Bleeding Dolomite-Limestone

Seal Coat-SH 36-Austin-Yoakum Seal Coat, Bleeding Limestone

HMA-US 59-Wharton-Yoakum (Hillje) Seal Coat, Bleeding Unknown

PFC-US 59-Wharton-Yoakum (Kendelton) Seal Coat, Bleeding Limestone

PFC-SH 288-Brazoria-Houston Seal Coat, Bleeding Granite + Limestone

PFC-SH 6-Waller-Houston Seal Coat, Bleeding Unknown

HP Water-SH 90-Grimes-Bryan Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

Seal Coat-US 287-Trinity-Lufkin Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

Seal Coat-SH 7-Houston-Lufkin Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

Seal Coat-US 59-Angelina-Lufkin Seal Coat, Bleeding Traprock

Seal Coat-FM 2213-San Augustine-Lufkin Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

Seal Coat-US 59-Shelby-Lufkin Seal Coat, Bleeding Sandstone

Seal Coat-US 59-Panola-Atlanta Seal Coat, Bleeding Sandstone

HMA-US 59-Panola-Atlanta Seal Coat, Bleeding Quartzite

Seal Coat-US 80-Harrison-Atlanta Seal Coat, Bleeding Lightweight (Expanded Shale/Clay)

PFC-IH 20-Smith-Tyler Seal Coat, Bleeding Sandstone

PFC-IH 20-Van Zandt-Tyler Seal Coat, Bleeding Unknown

HFST-US 287-Navarro-Dallas-A Seal Coat, Bleeding Calcined Bauxite

HFST-SH 22-Navarro-Dallas Seal Coat, Bleeding Calcined Bauxite

PFC-SH 6-McLennan-Waco Seal Coat, Bleeding Limestone

PFC-SH 6-Robertson-Bryan Seal Coat, Bleeding Sandstone + Limestone

Seal Coat-US 377-Brown-Brownwood Seal Coat, Bleeding Limestone

Seal Coat-US 67-Brown-Brownwood Seal Coat, Bleeding Limestone

Seal Coat-US 67-Coleman-Brownwood Seal Coat, Bleeding Limestone

HFST-FM 89-Taylor-Abilene Seal Coat, Bleeding Calcined Bauxite

HFST-FM 2035-Nolan-Abilene Seal Coat, Bleeding Calcined Bauxite

HFST-IH 20-Nolan-Abilene Seal Coat, Bleeding Calcined Bauxite

PFC-US 83-Taylor-Abilene Seal Coat, Bleeding Limestone

Seal Coat-US 183-Eastland-Brownwood Seal Coat, Bleeding Limestone

HMA-US 377-Hood-Dallas-FW Seal Coat, Bleeding NA
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3.4.1 Locked-Wheel Skid Trailer Test 

Locked wheel skid trailer test measures skid resistance in the form of skid 

number (SN-dimensionless quantity) which is towed at a specific speed along the 

pavement with either a standard smooth or ribbed tire (see Figure 17). These 

measurements are taken using a standard tire (SN50S) with a controlled slip condition (0 

to 100 percent slip) following guidelines of ASTM E274, E303, E503, E556, E670, 

E707 (ASTM, 2007; Johnsen, 1997). 

Slip condition is further categorized into four main types: locked wheel (force is 

determined on a 100 percent slip condition), sideway slip (force is determined on a 

rotating wheel at yaw angle 200, fixed slip (wheels at constant slip) and variable slip 

(user defined slip condition) (Kokot, 2005; PIARC, 1995; Roe, Parry, & Viner, 1998). 

Locked wheel condition was used in this project with water sprayed simultaneously 

during the test to simulate the wet pavement condition. Measured torque and vertical 

load/force applied on a test wheel measure coefficient of friction between tire-pavement 

interaction. Further, the measured coefficient of friction is multiplied with 100 to 

determine skid number (SN). 

Researchers (Saito, Horiguchi, Kasahara, Abe, & Henry, 1996) mentioned some 

of the demerits for locked-wheel testers: 

• Test is performed at a specific speed and measurements at varying speed can only be 

measured by repetitive tests at the same section. 

• High initial cost and high operation cost (Kummer & Meyer, 1963) 
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Figure 17: Locked-Wheel Skid Trailer Test 

 

ASTM E274 (Standard Test Method for Skid Resistance of Paved Surfaces 

Using a Full-Scale Tire) procedure was followed for skid testing, with a skid trailer of 

smooth tire at a speed of 50 mph. Measured data was further corrected using equation 

15: 

 𝑆𝑁2 = 𝑆𝑁1 + (0.85 ∗ 𝑀𝑃𝐷 − 1.64) ∗ (𝑉2 − 𝑉1) 
(15) 

where, 

SN2 = Corrected skid number 

SN1 = Measured skid number 

MPD = Mean profile depth (mm) 
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V2 = Velocity at desired speed (50 mph) 

V1 = Velocity at measured speed 

 

Table 11: Skid Resistance for Various Pavement Treatments 

Treatment Type 
Test 

Method 

Approx. Skid 

Number Comments 

Initial Long-Term 

HFST SN40R 

70s 

and 

80s 

60s Calcined bauxite 

50s Flint 

Seal Coats SN60 60s 50s 

varies based on 

aggregate types, 

mix gradation 

Thin Asphalt Overlays 
SN 

(Smooth) 
50s 30s 

varies based on 

aggregate types, 

mix gradation 

Permeable Friction Course SN40R 35-65 20-55 6-yr term 

 

 

Data collected from these tests were added to the previous data and PMIS 

queried data to examine it as a single dataset. The values in Table 11 are average results 

only.  The variation of each value within a treatment is large, considering different 

aggregate types and seasonal variability.  Most of these values also represent the skid 

resistance along simple tangent sections.  The skid number around horizontal curves are 

often much lower that before or after the curve. 
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Macrotexture is a key component of skid resistance, especially for vehicles 

traveling at higher speeds and under wet conditions.  Again, the values in the Table 11 

are typical values only. 

3.5 Laboratory Mixture and Aggregate Data 

Laboratory tests including aggregate image measuring system (AIMS), micro-

deval test, circular track meter (CTM), dynamic friction tester (DFT) and three-wheel 

polisher was performed on aggregates and mixtures. Slabs were casted with a dimension 

500 mm x 400 mm x 44.5 mm (length x width x height) and seal coat surface treatment 

was applied with different aggregate types. Slabs were tested by CTM (ASTM E2157) 

and DFT (ASTM E1911) tests to determine mean profile depth and coefficient of 

friction respectively before and after polishing with three-wheel polisher at 0k, 1k, 5k, 

25k and 80k wheel passes for polishing. Aggregates used on the slab were also tested 

separately to determine their shape characteristics. Aggregates were tested with AIMS to 

determine their angularity and texture values before and after polishing with micro-deval 

test at 0, 105 and 180 minutes. 

3.5.1 Dynamic Friction Tester (DFT) 

The dynamic friction tester (DFT) is used to measure coefficient of friction 

between the surface and three rubber pads attached to a circular rotating disc (see Figure 

18). The circular disc rotates at a linearly increasing speed from 20 to 100 km/hr. The 

disc lowers gradually after reaching the desired constant speed and touches the pavement 

surface measuring coefficient of friction (Henry, 1986; Saito et al., 1996). 
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Figure 18: DFT (left) and disc with three rubber pads (right) 

 

3.5.2 Circular Texture Meter (CTM) 

CTM is a laser-based device used to measure MPD (mean profile depth) of a 

pavement and is introduced in 1998 (see Figure 19). It is a portable, user-friendly device 

which can be used in the field as well as in the lab. A laser sensor is attached to an arm 

that rotates in a circular profile divided into eight segments/arcs of a circle. A total of 

1024 data points is collected in a round and an average Mean Profile depth is calculated 

according to ASTM E2157 (ASTM-E2157). 
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Figure 19: Circular Texture Meter 

 

3.5.3 Three Wheel Polisher 

It is a device used to polish the slabs and simulate field traffic condition. It 

consists of three wheels attached with a turn table and rotate in a circular path at varying 

cycles as shown in Figure 20. The load applied on wheels can vary by adding or 

removing circular iron plates on turn table. A laser sensor is attached in the side to detect 

the number of rotations and is controlled by a digital counter. A water spray assembly 

consists of three pipes installed to spray water for removing dust/eroded material from 

the surface. 
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Figure 20: Modified three-wheel polisher with water bath 

 

 

 

Figure 21: Tested sample (after polishing, CTM, DFT) 
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Table 12: Mean Texture Depth for Various Pavement Treatments 

Treatment Type Approximate Mean Texture Depth, mm 

HFST 1.5 to 3 

Seal Coats 1 to 3 

Thin Asphalt Overlays 
0.4 to 0.6 (Dense graded), 

> 1.0 (Stone Matrix Asphalt) 

Permeable Friction Course 1.5 to 3 

Abrading and Texturing 
0.7 to 1.2 (Grinding), 

0.9 to 1.4 (Grooving) 

Water Blasting Varies (depends on aggregate) 

 

 

3.5.4 AIMS (Aggregate Imaging Measurement System) 

The AIMS is used to determine aggregate shape characteristics such as 

angularity, texture and form by advanced image processing(see Figure 22) (Masad et al., 

2017). Aggregates are placed on a tray (transparent or opaque) at a certain distance such 

that the mounted digital camera captures one aggregate at a time. A top-light and back-

light system is installed to provide enough light for clear and sharp images. The 

aggregate polishing resistance is determined by AIMS test before and after abrading in 

the Micro-Deval test. Researchers suggested that coarser and angular aggregates provide 

more skid resistance than the flat and elongated particles (Prowell, Zhang, & Brown, 

2005) and aggregates that have rough surface provides higher skid resistance than the 

smooth surface (Kassem et al., 2013). 
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Figure 22: AIMS device (left), Angularity (top-right) & Texture (bottom-right) 

 

 

 

Figure 23: AIMS aggregate shape characteristics (Masad et al., 2017) 

Reprinted from (Masad et al., 2017) 

 



48 

 

3.5.5 Micro-Deval Test 

This test is used to estimate the aggregate’s ability to resist abrasion or 

mechanical degradation (J W Hall et al., 2009). It consists of a metallic cylindrical 

container with approximately 5000 grams of steel balls, the aggregates (test sample-1500 

grams) and water (2000 ml) (see Figure 24). The container is then placed on the rollers 

and is allowed to rotate as per the desired time or rotations following guidelines based on 

AASHTO T 327-05 test method “Standard Test Method for Resistance of Coarse 

Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus” and ASTM D 

6928 in accordance with Tex-461: Test Procedure for Micro-Deval Abrasion of 

Aggregate (Kassem et al., 2012). 

 

 

Figure 24: Micro Deval apparatus (left) and interaction between aggregates and 

steel balls (right) (Kassem et al., 2012) 

Reprinted from (Kassem et al., 2012) 
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Figure 25: Loss in Aggregate Texture and Angularity as a Result of Micro-Deval  

Abrasion and Polishing of Virgin Aggregates (Masad et al., 2017) 

Reprinted from (Masad et al., 2017) 

 

Researchers suggested that the wet environment established in the micro-deval 

test simulates better wet-weather related field conditions (Rogers, 1991). Figure 25 

shows behavior of an aggregate’s shape characteristics with polishing. 
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4. RESULTS AND DATA ANALYSIS 

 

4.1 Measured Skid Numbers on Field 

The results of the field skid testing are shown in Figure 26. The highest skid 

numbers were measured on HFST sites while the lowest skid numbers were measured on 

bleeding seal coats. HFST treatment implementation is new to Texas so most of the sites 

were constructed in the past two years. Generally, HFST treatment provide skid numbers 

in the 70s because of the aggregate type - calcined bauxite of uniform gradation. Two 

water blasting sites were still available for testing. One had a high skid number (54) 

while the other bled again and was considered as bleeding seal coat with a SN value as 

low as 17. Seal coats had skid numbers with an average of 37 with highs in the 50s to 

lows in the 20s. HMA and PFC treatments had skid numbers with an average of about 30 

with highs in the 40s and lows in the 20s. 
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Figure 26: SN values by treatment type measured by Project Team 

 

Figure 27 shows average skid number values based on aggregate type. Calcined 

Bauxite had the highest skid number value (i.e. 68.2) which supports the previous 

discussion as this aggregate was only used in HFST installation with highest SN value. 

Lightweight aggregates i.e. expanded shale and clay had the next highest SN value with 

an average of 46 ranging between 60s to 30s. SAC A (Surface aggregate classification 

A) aggregates comprised of quartzite, traprock, sandstone etc. (BRSQC, 2018) ranged 

between 30 and 50. Limestone and dolomite aggregates had the lowest SN value in 20s. 
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Figure 27: SN values based on Aggregate Type as Measured by the Project Team 

 

Figure 28 showed average skid number based on treatment type. 3318 datasets 

were collected from TxDOT PMIS, past researches and current study. HFST had the 

highest average skid number in the 70s while the lowest observed was water blasting 

treatment. Water blasting treatment is usually applied on flushed seal coat to retrieve its 

frictional properties. Seal coats had average skid number in the range of 40s while other 

treatments had a range in between 25 to 40. 
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Figure 28: SN based on treatment type as observed by the data collected from 

PMIS, past researches and current study 

 

 

4.2 Skid Data Collected from TxDOT PMIS 

PMIS data were also queried for SN value based on aggregate type. As 

mentioned earlier, HFST is new to Texas so calcined bauxite aggregate was not queried 

from PMIS. Figure 29 manifests that the expanded shale and clay (light weight 

aggregate) had higher SN value ranging between 50s and 60s. SAC A aggregates had 

skid numbers between 30s and 40s while limestone and dolomite had the lowest range in 

20s. 
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Figure 29: SN value based on aggregate type from PMIS data 

 

From PMIS queried data, skid number for HMA, PFC and seal coat were 

analyzed and their average values with variation can be seen in Figure 30. Three of the 

treatments represent the average skid number (in 30s) measured throughout the treatment 

life; however, seal coat has the maximum variation, ranging from high 50s to low 20s. 
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Figure 30: SN value based on treatment type from PMIS data 

 

4.3 Skid data from High Friction Surface Treatment Project 

Florida DOT with a combined effort of TTI researchers conducted a research on 

high friction surface treatment (HFST). HFST had highest skid number around 70s as 

compared to skid numbers from concrete, open graded and dense graded asphalt 

treatments ranging between 30s and 50s (Wilson & Mukhopadhyay, 2016)(see Figure 

31). 
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Figure 31: SN values based on treatment type (Wilson & Mukhopadhyay, 2016) 

Reprinted from (Wilson & Mukhopadhyay, 2016) 

 

4.4 Aggregate Texture, Angularity, and Micro Deval Loss 

Aggregate texture, angularity, and micro-deval loss data are shown in Figure 32, 

Figure 33 and Figure 34. Crushed siliceous and limestone gravel has the lowest 

angularity reduction (6 percent) as compared to the limestone which has 34 percent 

reduction. Granite had highest initial angularity while sandstone and limestone had the 

least. Granite, bauxite and quartzite have texture greater than 300 while limestone and 

dolomite have the least texture values. Limestone and dolomite has approximately 40-50 

percent reduction in texture while bauxite and granite show 5-15 percent reduction. After 

micro-deval, limestone abrades 24 percent while bauxite abrades only by 5 percent. 

 



57 

 

 

Figure 32: Angularity based on aggregate type from past research (Table 9)  

 

 

Figure 33: Texture based on aggregate type from past research (Table 9) 

 

0

500

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
ge

 A
n

gu
la

ri
ty

Angularity after  MD

Angularity Before MD

0

100

200

300

400

500

600

700

A
ve

ra
ge

 T
ex

tu
re

Texture before MD

Texture after MD



58 

 

 

Figure 34: Micro-deval loss % based on aggregate type by past researches (Table 9) 

 

Aggregate testing with the AIMS and micro-deval at 105 minutes is complete for 

the Streetman and Riverlite lightweight aggregates.  It was observed that Streetman Gr 4 

showed better performance with minimum percentage loss after polishing in micro-deval 

(Figure 35). 
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Figure 35: Weight Loss due to Micro-Deval Test as Measured by Project Team 

 

 

 

Figure 36: Angularity for Lightweight Aggregates Measured by Project Team 
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Figure 37: Texture Values for Lightweight Aggregates Measured by Project Team 

 

In Figure 36, Streetman manufactured aggregate had lower initial angularity than 

the Riverlite aggregate, though both were similar after polishing. Riverlite had slightly 

lower texture before polishing than Streetman. In Figure 37, initial texture values were 

approximately in the similar range but Streetman Gr.5 aggregate experienced higher 

texture loss relatively than the other aggregates. 

Figure 38 showed loss in weight of an aggregate before and after polishing (105 

and 180 minutes). Crushed gravel from Phar had minimum percent loss than the other 

aggregates. Light weight aggregates from Streetman and Riverlite sources had a 

noticeable percent loss like Texas Limestone. 
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Figure 38: Weight loss due to micro-deval abrasion 

 

In Figure 39, light weight aggregates from Riverlite quarry showed higher initial 

angularity than other aggregates but angularity indices after polishing was in the same 

range with other aggregates. In Figure 40, limestone had lowest texture value than any 

other aggregate which was expected as limestone abraded very quickly due to 100% 

calcite mineral composition 
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Figure 39: Measured Angularity Values by Project Team 

 

 

 

Figure 40: Measured Texture Values by Project Team 
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4.5 Friction and Texture Data on Laboratory Treated Samples 

Figure 41 and Figure 42 depicted a sudden drop in texture and friction due to 

initial cycles of polishing but it went up and then dropped again gradually with the 

polishing cycles. Aggregates used for seal coat treatment on slabs were bonded with 

epoxy to hold them well (see Figure 47 to Figure 50). 

 

 

Figure 41: Measured Mean Profile Depth (MPD) by Project Team 
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Figure 42: Measured Coefficient of Friction (µ) by Project team 

 

 

4.6 Proposed Model to Predict Aggregate Shape Characteristics 

 Data from past research and new data were used to update the Masad-Kassem-

Chowdhury model. Aggregate characteristic model was revised including equations and 

modelling approaches to guard them against overfitting data from small sample sizes 

which slightly improved the mechanistic representation of the model. Statistical 

validation to the modelling approach is mentioned in the Figure 43 to Figure 46. Revised 

aggregate characteristic model focused on predicting shape characteristics (angularity 

and texture) at 180 minutes polishing. 37 aggregates were tested for angularity and 

texture indices at 0, 105 and 180 minutes intervals and were utilized to predict angularity 
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and texture values at 180 minutes for the aggregates which did not have angularity and 

texture values at 180 minutes. These indices of the aggregates vary exponentially with 

the time (polishing). 

AMD180GA = -321.20314 + 1.09486* (AMD105GA) 

here, 

AMD180GA = angularity index after micro-deval at 180 minutes 

AMD105GA = angularity index after micro-deval at 105 minutes 

It was found that the angularity index at 180 minutes is highly positively 

correlated with angularity index at 150 minutes with R2 = 0.9798658 whereas angularity 

index at 180 minutes is poorly positively correlated with angularity index at 0 minutes 

with R2 = 0.4550294. The intercept and slope of the angularity index at 105 minutes 

have p-value of 0.000495 and 2 x e-16 respectively at a significance level of 0.05. 

Diagnostic plots (see Figure 44 and Figure 46) were developed to verify basic 

assumptions of linear regression viz: 

1. Linearity: Relationship between X and the mean of Y is linear. 

2. Homoscedasticity: The variance of residual is the same for any value of X. 

3. Independence: Observations are independent of each other 

4. Normality: For any fixed value of X, Y is normally distributed. 

AMD180TX = -7.42471 + 0.99791* (AMD105TX) - 0.02117* (BMDTX) 

here, 
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AMD180TX = texture index after micro-deval at 180 minutes 

AMD105TX = texture index after micro-deval at 105 minutes 

BMDTX        = texture index before micro-deval at 0 minutes 

It was found that the texture index at 180 minutes is highly positively correlated 

with texture index at 150 minutes with R2 = 0.9967193 whereas texture index at 180 

minutes is fairly positively correlated with texture index at 0 minutes with R2 = 

0.8296472. The intercept and slope of texture index@105 minutes had a p-value of 

0.0243 and 2e-16 respectively at as significance level of 0.05. Texture Index@0 minutes 

had a p-value of 0.3388 which showed that the texture Index@180 was not significantly 

related to texture index@0 minutes. The relationship had an R2 value of 0.9936. Another 

model for texture was developed to analyze the effect of texture index at 0 minutes using 

linear regression, 

AMD180TX = - 8.80147+ 0.97645* (AMD105TX) 

The intercept and slope of texture index@105 had a p-value of 0.00356 and 2e-

16 respectively at as significance level of 0.05. The relationship had an R2 value of 

0.9934. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This study was focused on providing information to develop pavement-safety 

based guidelines and model which eventually would help practitioners to decide a 

treatment on horizontal curves to reduce crashes. The contributions to the study would 

help researchers to work with the data collected from past researches, TxDOT PMIS and 

tests performed by the project team. The following points summarize the primary 

contributions and conclusions of this study: 

• A database was developed including site data (144 sites with various 

pavement treatments such as HMA, seal coats, HFST, PFC, Water 

blasting), mix data (contains bin percentage, aggregate source, aggregate 

type, percent retained on No.4 sieve, gradation), aggregate data (type, 

source, angularity index, texture index) and skid data (mean profile depth, 

coefficient of friction). 

• An existing model’s equations were revised to predict shape 

characteristics of an aggregate (after micro-deval at 180 minutes) with the 

help of before micro-deval and after micro-deval at 105 minutes. 

• Skid number data was obtained from locked wheel skid trailer test on 40 

sites with various treatments such as HMA, PFC, thin overlay, seal coat, 

seal coat with bleeding and ultra-high-pressure water cutting. 
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• While most of the treatment including HMA, seal coat, thin overlay had 

skid number measured on the field in the range between 20 and 50, high 

friction surface treatment had skid number measured on the field in the 

range between 55 to 85. 

• Based on the statistical analysis, angularity index at 180 minutes was 

highly positively correlated with angularity index at 150 minutes with R2 

= 0.9798658 whereas angularity index at 180 minutes was poorly 

positively correlated with angularity index at 0 minutes with R2 = 

0.4550294. 

• Texture Index at 180 minutes was highly positively correlated with 

texture index at 150 minutes with R2 = 0.9967193 whereas texture index 

at 180 minutes was fairly positively correlated with texture index at 0 

minutes with R2 = 0.8296472. 

• CTM and DFT tests were performed on the slabs to add more dataset to 

the existing data and to compare the mean profile depth and coefficient of 

friction values for different aggregate types. 

• Micro-deval test was performed to determine the percentage loss in 

weight of different aggregates. Weights were measured before polishing, 

after polishing at 105 minutes and after polishing at 180 minutes. 
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5.2 Recommendations 

• More aggregates should be tested to increase the dataset and the 

confidence level of the model 

• Mineralogy/Petrology of aggregates should also be tested to consider the 

differential polishing due to various mineral compositions. 

• Extensive field testing (CTM and DFT) should be performed on various 

treatments to simulate better friction and texture values. 

• Crash data and weather data should be added to the skid prediction 

model. 
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Table 13:  Literature on Crash Modification Factors of Pavement Treatments 

Year Study Scope Section Type Crash 

Type  

CMF Reference 

High Friction Surface Treatments 

2015 8 states, 57 sections, 

sufficient before-after 

data, and reference sites.  

Ramps Wet 0.139 (Merritt et al., 

2015) 
Total 0.653 

Curves Wet 0.481 

Total 0.759 

2013 Kentucky, 43 sections 

(Overlaps with 

Merritt’15) 

Curves Wet 0.14 (Merritt et al., 

2015) 
Total 0.27 

Ramps Wet 0.15 

Total 0.34 

2016 Florida, 40 sections Tight curves 

and ramps 

Wet 0.25 (Mukhopadhyay, 

May 2016) 
Total 0.68 

Wide curves 

and tangents 

Wet and 

Total 

Not 

significant 

NCHRP  High wet-

weather 

accident 

locations 

Wet 0.76 (Harkey et al., 

2008) 
Total 0.43 

2012 Lit. review  Wet 0.50 (Brimley & 

Carlson, 2012) 
Total 0.80-0.70 

2008 Wisconsin - - 0.07 (Bischoff, 2008) 

 Michigan,  

4 sites, 1-yr. 

(Overlaps with 

Merritt’15) 

- - 0.40 (Moravec, 2013) 
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Table 13 (continued) 

Year Study Scope Section Type Crash 

Type  

CMF Reference 

Seal Coats 

1995 NYDOT (Thin Overlays)- 36 

Sites, 

Long 

Island 

Wet 0.50 (Merritt et al., 

2015) 
1997 Total 0.80 

2015  

4 States, 2557 

miles 

Multilane  Wet 0.775 (Merritt et al., 

2015) 
Total 1.147 

   

1990 Utah DOT, 34-one-

mile long sections 

Non-

Interstate, 

low volume 

roadways 

Wet 0.61 (Seneviratne & 

Bergener, 1994) 
Dry 0.55 

Thin Asphalt Overlays 

2015 California and 

North Carolina 

Freeway Wet 0.91 (Merritt et al., 

2015) 
Total 1.0 

Multilane Wet 0.91 

Total 1.05 

Two-Lane Wet 1.15 

Total 1.19 

Permeable Friction Course 

2009 Louisiana Police 

Report, U.S 71 

I-20  

(study of one 

application) 

Wet 0.24 (William "Bill" 

King, 2013) 
Total 0.43 

    Decreasing 

over 4 years 

(Merritt et al., 

2015) 

Abrading and Texturing 

1990 3 year before and 

1-yr after, 

California 

Grooving Wet 0.28 (Correa & Wong, 

2001) 

1975 Freeways, Los 

Angeles 

Grooving Wet 0.31 (Smith & Elliott, 

1975) 
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Table 14:  Literature Review on Skid Resistance of Pavement Treatments 

Study 

Year 

Study Scope Measurement 

Type 

Initial Value Years 

Later 

Later 

Value 

Reference 

High Friction Surface Treatment 

2008 Wisconsin SN 73 5 59 (Bischoff, 2008) 

2016 Florida SN40R >70 6 63-78  

2001 Iowa bridge 

deck 

SN 67.5 4 64.5 (Adam & Gansen, 

2001) 

2015 Kansas, flint 

aggregate 

SN 88 4 54 (Meggers, 2015) 

Seal Coat 

 Utah SN_R Avg. (range) 6 Avg. 

(range) 

 

Thin Overlay 

2004 VDOT SN 36.1(before 

treatment) 

1 46.7(after 

treatment) 

(Tate & Clark, 

2004) 

 Penn DOT μ from DFT 0.60-0.62 - - (Mansour 

Solaimanian, 

2016) 

2016 Penn DOT SN40 30(before 

treatment) 

- 50(after 

treatment) 

(Mansour 

Solaimanian, 

2016) 
MPD (CTM 

test) 

0.69 - - 

Permeable Friction Course 

2012 WSDOT FN40R OGFC-

HMA 

54 3 51 (Keith W. 

Anderson & 

Weston, 2012) 
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Table 15:  Literature Review on Service Life of Pavement Treatments 

Study Year Study Scope Years Comment Reference 

High Friction Surface Treatment 

2014 International 7-12 - (Cheung et al., 2014) 

Bridge decks 

(some) 

>15 - 

- Vendor report 5-8 15,000 veh/day - 

- Vendor report Up to 5 50,000 veh/day - 

- Michigan bridge 

decks 

12-15 Includes site 

with 48,000-

62,000 ADT 

- 

2016, 2011 New Zealand, 

Florida 

<1 Poor 

construction 

practices 

(Waters, 2011; Wilson 

& Mukhopadhyay, 

2016) 

Seal Coat 

2012 Survey of 22 State 

DOTs 

6.5 (3-15) - (Krugler et al., 2012) 

 New York 3-4 - - 

 Washington 5-7 - - 

 Texas 4-7 5,000 veh/day - 

2013 - 3-15 In general (NHI, 2013) 

4-6 Single 

5-7 Double 

- Survey of 31 U.S 

State Highway 

agencies and 6 

Canadian agencies 

from Ministry of 

Transportation 

5.6-7.8 New 

construction 

(Pierce & Kebede, 

2015) 

 

 

(Herrington, Ball, & 

Patrick, 2004) 

6-7.5 Over chip seal 

6.5-7.4 Over existing 

asphalt 

8.2-10.2 Grade 4 

5.4-8.1 Grade 3 

5.9-7.7 Grade 2 

2004 Utah 27 Skid function 

only 

(Romero & Anderson, 

2004) 
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Table 15 (continued) 

Study Year Study Scope Years Comment Reference 

Thin Overlay 

2000 - 4-6 - (Dr.R Gary Hicks, 

2000) 

2006 - 5-16 - (Watters, 2006) 

2008 Texas 8-15 - (Walubita & Scullion, 

2008) 

2004 NCDOT and 

VDOT 

3 minimum - (Tate & Clark, 2004) 

- 8+ Replacement 

2009 - 10+ Over flexible (Newcomb, 2009) 

6-10 Over rigid 

Permeable Friction Course 

 Ultra-thin PFC 7+  (Gilbert, Olivier, & 

Galé, 2004; Maher, 

2005; Peshkin, 2004) 

2014  10-15 - (J.Taylor, 2014) 

Texturing 

 SHRP 2 8 Diamond 

grinding 

(Merritt et al., 2015) 

2005 California 16-17 Diamond 

grinding 

(Stubstad, Darter, Rao, 

Pyle, & Tabet, 2005) 

 Oklahoma DOT 2 Abrading and 

shotblasting 

ODOT 

2015  1 Milling on seal 

coats 

- 

1.5 Milling on HMA 
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Table 16:  Literature Review on Unit Cost of Pavement Treatments 

Study Year Study Scope $/sq-yd Comments Reference 

High Friction Surface Treatment 

2014 NA $25-$35 Historic (Cheung et al., 2014) 

NA $19-$21 Rolling several 

projects together 

2016 Florida, 

40 sections 

$34 ($26-$40) Unit cost (Wilson & 

Mukhopadhyay, 2016) 
$59 ($36-$113) Comprehensive 

unit cost 

Seal Coat 

2008 Cost Index 

Number 

Analysis 

$0.82 Emulsion-SC (D. D Gransberg, 

2008) 

 $0.92 Asphalt-SC 

2011  $1-$2  (Morian, 2011) 

2005  $0.70-$1.25 Single (Maher, 2005) 

 $1.25-$2.50 Double 

Thin Overlay 

2014  $2.07 $14,600 per lane 

mile 

(NCHRP Synthesis 

464, 2014) 

2000  $1.75  (Dr.R Gary Hicks, 

2000) 

2000?  $1.75 $25/ton, 1.25-inch 

thick 

(Dr.R Gary Hicks, 

2000) 

Permeable Friction Course 

2001    (Peshkin, 2004) 

2004    (Maher, 2005) 

  $7.34 NovaChip (Cooper & 

Mohammad, 2004) 

  $12.43 Includes 2” SMA (William "Bill" King, 

2013) 
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Table 17: Site List: (a) PFCs, (b) Seal Coats, (c) HMA, (d) HFST and High-Pressure Water Cutting 

(a)

ID SECTION LABEL
Surface 

Type

Surface 

Type 2
Const Date CSJ Proj BTRM Proj ETRM From To New skid test?

Use in 

query?

Confirmed 

Surface 
AADT Agg Type

1 PFC-US 59-Wharton-Yoakum (Kendelton) PFC Jun-07 0089-06-076 ? ? Y Y Aug-17 13000 Limestone

2 PFC-US 59-Wharton-Yoakum (Hillje) PFC Jun-07 588+1.720 594+1.773
LP 524 NORTH OF 

HILLJE

0.14 MI. N. OF FM 647 (NB 

LN), ETC
Y Y Aug-17 Unknown

3 PFC-SH 288-Brazoria-Houston PFC Oct-06 0598-02-043 484+0.730 498+1.955 FM 2234 HAYES CREEK N Y Feb-17 14160 Granite + Limestone

4 PFC-SH 288-Brazoria-Houston-A PFC Jul-17 484+0.730 498+1.955 FM 2234 HAYES CREEK Y Y Aug-17 Unknown

5 PFC-SH 288-Brazoria-Houston-B PFC Jun-10 Y Y Aug-17 Unknown

6 PFC-US 290-Bastrop-Austin PFC Apr-07 0114-06-031 626+0.083 632+0.000 1.5 MI W OF FM 2104 LEE C/L N Y Jun-11 16300 Sandstone

7 PFC-IH 30-Hopkins-Paris PFC TBPFC May-06 0010-02-079 127+0.133 134+0.605 LOOP 301 HOPKINS/FRANKLIN COUNTY LINEN Y Dec-15 12300 Sandstone

8 PFC-SH 6-Robertson-Bryan
PFC

May-09 0049-06-061 544+0.922 554+0.445 GRASSY CREEK NOVASOTA RIVER Y Y? Aug-17 4800 Sandstone + Limestone

9 PFC-IH 20-Taylor-Abilene PFC Jun-05 0006-05-XXX 279-0.44 283+0.463 NEAR SPINKS ROAD IN TYETHE INTERCHANGE @ US 83 / US 277 N N Unknown 10335 Limestone

10 PFC-US 83-Taylor-Abilene PFC Sep-05 0033-06-097 322+0.75 328+0.065 NEAR FM 2404 US 277 Y Y Apr-16 18690 Limestone

11 PFC-SH 240-Wichita-Wichita Falls PFC UTBHMWC May-08 0156-03-044 468+0.489 470+1.436 WICHITA RIVER BU 287J N Y Jul-15 3750 Siliceous + Limestone

12 PFC-SH 6-McLennan-Waco

PFC

Aug-05 0049-01-085 570+0.454 508-0.716 BU 77-L SH 164 Y N Nov-11 8550 Limestone

13 PFC-US 281-Bexar-San Antonio PFC May-05 0521-04-223 534+0.361 530+1.996 BASS RD 0.40 MILES N OF HILDEBRAND N Y Jan-15 Traprock

14 PFC-SH 6-Waller-Houston
PFC

Jul-05 0050-04-025 626+1.074 632+3.108 GRIMES COUNTY LINE US 290 Y Y Feb-17 10000 Unknown

15 PFC-IH 37-San Patricio-Corpus Christi PFC May-04 0074-05-089 - -  0.5 MI S OF MEDINA RIVERMEDINA RIVER N Y Jun-13 Limestone/Gravel

16 PFC-IH 37-Nueces-Corpus Christi PFC Apr-04 0074-06-197 0+0.000 16+0.644  0.5 MI S OF MEDINA RIVERMEDINA RIVER N Y Jan-17 Limestone

17 PFC-US 77-San Patricio-Corpus Christi PFC Jul-09 0372-01-092 656+1.96 654+0.572 1.532 MILES S. OF CR 191868 FT S. OF COOPER ST. N Y Jan-17 14500 Limestone/Gravel

18 PFC-IH 35-McLennan-Waco PFC May-03 0015-01-164 340+0.052 343+0.622 CRAVEN AVE 2.57 MILES SOUTH OF CRAVEN AVEN Y Nov-11 41385 Rhyolite

19 PFC-IH 20-Van Zandt-Tyler PFC Jun-08 0495-02-057 524+0.577 527+0.476 1.3 MI E OF SH 64, E SH 19, N OF CANTON Y Y Aug-17 17525 Unknown

20 PFC-IH 20-Smith-Tyler PFC Aug-09 0910-00-085 534+0.787/571 597+0.000/580
2.5 MI W OF FM 773, 

E
0.4 MI W OF US 259 Y Y Aug-17 14980 Sandstone

21 PFC-US 281-Bexar-San Antonio PFC Sep-06 0073-08-150 534+0.361 536+0.515 0.4  MI N OF HILDEBRANDPEARL PARKWAY N Y Jul-16 73415 Sandstone/Limestone

22 PFC-SH 6-Fort Bend-Houston PFC TBPFC Apr-05 1685-06-027 678+2.323 684+1.127 HARRIS C/L US 90A N Y Apr-14 34000 Quartzite

23 PFC-US 287-Clay-Wichita Falls PFC UTBHMWC Aug-05 0224-01-054 362+0.916 366+0.622 NEAR US 82 OVERPASS AT HENRIETTAAPPROX. 0.8 MILES EAST OF SPUR 510N Y Dec-11 8335 Granite/Dolomite

24 PFC-US 82-Clay-Wichita Fals PFC UTBHMWC Aug-05 0044-02-072 530+0.678 542+0.895 - - N Y Nov-09 9290 Granite/Dolomite

25 PFC-SL 473-Wichita-Wichita Falls PFC UTBHMWC May-08 0249-11-009 192+0.854 194+1.673 US 287 NORTH FRONTAGE ROADFM 369 N Y Feb-17 Granite/Dolomite

26 PFC-US 281-Hidalgo-Pharr PFC May-04 0255-08-091 778+0.3 782+0.4 SH 495 TRENTON ROAD N Y Jun-11 39945 Gravel

27 PFC-US 90-Waller-Houston PFC Mar-04 0271-09-017 794-0.723 794+1.327 IH 10, EAST OF PEACH RIDGE ROADFM 359 N Y Feb-10 Sandstone

28 PFC-SL 289-Lubbock-Lubbock PFC Oct-10 0783-01-093 312+0.364 308+0.128 FM 1730 (SLIDE RD) IH 27 N Y Feb-17 Gravel/Limestone

29 PFC-US 69-Cherokee-Tyler PFC Apr-07 0199-01 N N

30 PFC-US 69-Cherokee-Tyler PFC Apr-07 0199-01 N N

31 PFC and dense hot mix -SH 110-Smith-Tyler PFC and dense hot mix Apr-10 N N

32 PFC and dense hot mix -SH 110-Smith-Tyler PFC and dense hot mix Apr-10 N N
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Table 17 (continued) 

 

(b)

ID SECTION LABEL
Surface 

Type

Surface 

Type 2
Const Date CSJ Proj BTRM Proj ETRM From To New skid test?

Use in 

query?

Confirmed 

Surface 
AADT Agg Type

33 Seal Coat-US 77-Cameron-Pharr Seal Coat Grade 3 May-13 786+0.0 778+0.0 N Y Jan-16 Limestone

34 Seal Coat-US 281-Hidalgo-Pharr Seal Coat Grade 3 May-13 0255-07 766+0.5 766+0.0 N Y Jan-17 Limestone

35 Seal Coat-US 281-Brooks-Pharr Seal Coat Grade 3, PrecoatedMay-11 752+0.0 735+0.0 N Y Jan-17 Limestone

36 Seal Coat-US 281-Brooks-Pharr Seal Coat Grade 3 Sep-11 722+0.0 (at least) 716+0.0 (at least) N Y Jun-16 Limestone

37 Seal Coat-US 377-Hood-Dallas-FW Seal Coat Grade 3 Jul-10 0080-04 328+1.5 322+0.00 SH 171 Y Y Jan-17 24000 Limestone

38 Seal Coat-SH 199-Parker-Dallas-FW Seal Coat Grade 3 Jul-11 171-03 534+0.00 544+0.00 Wise Co Line N Y Mar-15 3700-9100 Limestone

39 Seal Coat-US 377-Tarrant-Dallas-FW Seal Coat Grade 3 Jul-10 0080-07 312+0.00 306+0.00 Parker Co Line N 2016/Late 2015 19700-29000Limestone

40 Seal Coat-US 67-Coleman-Brownwood Seal Coat Grade 4 Jul-10 586+0.000 592+1.917 Y Y Oct-16 Limestone

41 Seal Coat-US 67-Brown-Brownwood Seal Coat Grade 4 Jul-11 580+1.223 586+0.000 Y Y Oct-16 Limestone

42 Seal Coat-US 183-Eastland-Brownwood Seal Coat Grade 4 Jul-12 0127-01 330+0.461 338+0.570 Y Y Jan-15 Limestone

43 Seal Coat-US 377-Brown-Brownwood
Seal Coat

Grade 4 Jul-12 0128-01 427-0.088 432+0.108 Y Y Jul-15 Limestone

44 Seal Coat-US 90/IH 10-Bexar-San Antonio Seal Coat Grade 4 Jun-13 0024-07-057 IH 410 TRM 563+0.5SL 1604 TRM 560+0.5 N Y Jan-17 Limestone

45 Seal Coat-FM 1518-Bexar-San Antonio Seal Coat Grade 3 Jun-13 0465-02-023 FM 78, 490+2.0  FM 1346, 502+0.0 Y Y Aug-17 Sandstone

46 Seal Coat-SH 16-Atascosa-San Antonio Seal Coat Grade 4 Jun-12 0613-02-056  Bexar Co lineTRM 618+0.0FM 476 TRM 626+1.0 N Y Jan-17 Traprock

47 Seal Coat-SH 16-Atascosa-San Antonio Seal Coat Grade 3 Jun-12 0517-01-042 TRM 638 644 N Y Feb-14 Limestone? Trap Rock?

48 Seal Coat-SH 36-Austin-Yoakum Seal Coat Grade 3 Aug-08 N/A 613 Y N Aug-17 Limestone

49 Seal Coat-US 59-Angelina-Lufkin Seal Coat Grade 3 Jun-10 0176-03 400+0.0 402+1.2 N Y May-16 Traprock

50 Seal Coat-US 69-Angelina-Lufkin Seal Coat Grade 4 Jun-12 0200-01-080 424+1.442 426+1.442 Y Y Jul-16 Lightweight (Expanded Shale/Clay)

51 Seal Coat-US 287-Trinity-Lufkin Seal Coat Grade 4 Jun-13 0340-02-024 650+1.76 660+1.2 Y Y Aug-17 Lightweight (Expanded Shale/Clay)

52 Seal Coat-FM 2213-San Augustine-Lufkin Seal Coat Grade 5 Jun-12 1680-02-016 344+0.53 348+0.1 Y Y Aug-17 Lightweight (Expanded Shale/Clay)

53 Seal Coat-US 59-Shelby-Lufkin

Seal Coat

Grade 4 Jun-12 0175-05-042 338+1.1 344+0.18 Y Y Oct-16 Sandstone

54 Seal Coat-LP 338-Ector-Odessa Seal Coat Grade 4 Jun-12 2224-01-079 252+.02            US 385256+0.0         IH 20 N Y Feb-17 Rhyollite

55 Seal Coat-US 385-Crane-Odessa Seal Coat Grade 4 Jun-09 370+0.0        Ector Co Line 380+0.0 N Y Feb-17 Limestone

56 Seal Coat-US 385-Ector-Odessa Seal Coat Grade 3 Jun-10 TRM 346 TRM 348 N Y Feb-17 Limestone

57 Seal Coat-SH 82-Jefferson-Beaumont Seal Coat Grade 4 Sep-10 2367-01-036 460+0.0 468+0.0 N N Oct-14 Lightweight (Expanded Shale/Clay)

58 Seal Coat-FM 365-Jefferson-Beaumont Seal Coat Grade 4 Jul-13 0932-01-112 752+ 1.244     SH 124 766+1.592      SP 93 N Y Jan-17 Lightweight (Expanded Shale/Clay)

59 Seal Coat-FM 105-Orange-Beaumont Seal Coat Grade 4 Jul-13 0710-02-063436+1.128 2.24 mi north of FM 1132438+1.598 FM 1132 N Y Jan-17 Lightweight (Expanded Shale/Clay)

60 Seal Coat-US 80-Harrison-Atlanta

Seal Coat

Grade 4 Jun-12 0096-10 TRM 824 +0.0 826+0.5 Y Y Aug-17 Lightweight (Expanded Shale/Clay)

61 Seal Coat-SH 7-Houston-Lufkin
Seal Coat

??? Aug-17 ? ? It's really long Y N Aug-17 Lightweight (Expanded Shale/Clay)

62 Seal Coat-US 59-Cass-Atlanta Seal Coat Grade 3, PrecoatedJun-13 0218-04-111 TRM 238 TRM 236 N Y Sep-16 Gravel

63 Seal Coat-SH 77-Cass-Atlanta Seal Coat Grade 4, PrecoatedJun-12 0278-01 TRM 746 TRM 744 N Y Jan-15 Sandstone

64 Seal Coat-SH 77-Cass-Atlanta Seal Coat Grade 4, PrecoatedJun-13 0277-02 TRM 720+0.986 TRM 728+0.974 N Y Feb-15 Gravel

65 Seal Coat-US 59-Panola-Atlanta Seal Coat Grade 3 Jul-12 Y N Aug-17 Sandstone
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Table 17 (continued) 

 

(c)

ID SECTION LABEL
Surface 

Type

Surface 

Type 2
Const Date CSJ Proj BTRM Proj ETRM From To New skid test?

Use in 

query?

Confirmed 

Surface 
AADT Agg Type

66 HMA-US 77-Kennedy-Pharr HMA Type D Feb-13 758+0.0 750+0.0 (at least) 754-0.1 N Y Nov-16 Gravel

67 HMA-US 281-Hidalgo-Pharr HMA Type D Aug-11 772+0.5 768+0.5 772-0.1 N N Jan-17 Gravel

68 HMA-US 259-Rusk-Tyler HMA Type C Feb-07 338+0.0 334+0.0 N Y Feb-15 Sandstone + Limestone

69 HMA-FM 973-Travis-Austin HMA Type C Jan-12 448+1.0 452+0.0 452 Y Y Aug-17 Limestone

70 HMA-SH 71-Travis-Austin HMA TOM Jul-13 584+0.0 588+0.0 584+1.0 Y Y Aug-17 Sandstone + Limestone

71 HMA-FM 3238-Travis-Austin
HMA

TOM Jul-13 514+0.5 522+0.0 514+0.5 Y Y Aug-17 Sandstone + Limestone

72 HMA-IH 45-Leon-Bryan

HMA

Type C Aug-08 164+0.0 167+0.7 167+0.6 Y Y Aug-17 Sandstone + Silliceous River Gravel + Limestone

73 HMA-IH 10-Austin-Yoakum HMA Type D Jul-11 0271-02-057 710+1.5 726+1.5 714 Y Y Feb-17 Dolomite-Limestone

74 HMA-SH 36-Austin-Yoakum HMA Type D Jul-06 0187-04-028 612+1.0 618+1.0 612+1.1 N 2016 Limestone

75 HMA-SH 7-Houston-Lufkin HMA Type D May-13 0336-02-024 694 702 698+0.8 N Y Sep-16 Granite + Limestone

76 HMA-IH 35-Webb-Laredo HMA SMA Jul-03 0018-06-147 7+0.868 12+0.9 12.7 N Y Feb-17 Traprock + Gravel

77 HMA-IH 35-La Salle-Laredo HMA SMA Jul-03 TRM 65 TRM 69+0.5 N N 2014 Basalt + Traprock

78 HMA-IH 35-La Salle-Laredo HMA SMA Jul-04 0018-02-049 49+0.431 53+0.42 TRM 50 N Y May-14 Traprock + Limestone

79 HMA-US 385-Ector-Odessa HMA CMHB-F Oct-05 0229-01-028 356+0.76           IH 20370+0.0        Crane Co Line370-0.1 N Y Dec-09 Rhyollite and LS Scrn (?)

80 HMA-IH 20-Midland-Odessa HMA SP-D Jul-12 0005-15-081 149+0.7   Martin Co Line144-0.281   Bus IH 20 N Y Feb-17 Rhyollite and LS (dolomite)

81 HMA-IH 20-Martin-Odessa HMA SP-C Aug-12 0005-04-068 163+0.228   Howard Co Line158+0.981   Bus IH 20162 N Y Feb-16 Rhyollite and LS (dolomite)

82 HMA-IH 20-Midland-Odessa HMA SP-D Jul-13 0005-14-077 136+0.141          SH 349121+0.467   Ector Co Line128+0.7 N Y Apr-16 Rhyollite and LS (dolomite)

83 HMA-IH 10-Jefferson-Beaumont HMA SMA-D Jul-09 0739-02-139 839+0.405 848+0.772 844+0.2 N Y Jan-17 Granite + ?

84 HMA-US 90-Jefferson-Beaumont HMA SMA Jun-13 0028-06-074 900+1.061 FM 1009902+0.260 FM 365 902-0.25 N Y Jan-17 Sandstone + Limestone

85 HMA-SH 82-Jefferson-Beaumont HMA SMA Apr-13 0508-05-029 454-0.513         SH 73456+0.496               SH 87454+0.5 N Y Jan-17 Granite + ?

86 HMA-Loop 207-Chambers-Beaumont HMA Type D May-13 0389-10-011 462-0.068 462+0.602 462+0.35 N Y Feb-17 Sandstone + Limestone

87 HMA-US 59-Panola-AtlantaS Carthage HMA Type D Apr-11 0063-05-033 TRM 324+3.02 (CL) 316+1.0 TRM 320+1.0 Y Y Oct-16 Quartzite

88 HMA-US 59-Panola-AtlantaN Carthage HMA Type D Jun-11 0063-03-057 TRM 310+0.2 304+.4 TRM 311 Y Y Aug-16 Quartzite

89 HMA-US 59-Panola-Atlanta HMA CMHB-F Aug-05 0063-10-011 304+.4 300 +.0 TRM 302-0.2 N Y Nov-13 Quartzite

90 HMA-IH 30-Bowie-Atlanta HMA SMA-F Jul-10 0610-06-076 208+1.0 TRM 206 TRM 207+0.5 N Y May-13 Sandstone + Gravel

91 HMA-IH 20-Harrison-Atlanta HMA SMA-C Jul-04 632+0.19 636+0.11 N Y Jan-13 Quartzite

92 HMA-US 271-Camp-Atlanta HMA CMHB-F Jul-08 0248-02-053 TRM 262 TRM 266+0.3 TRM 262+0.3 N N Aug-16 Siliceous Gravel

93 HMA-US 59-Wharton-Yoakum (Hillje) HMA ??TypeD?? Jun-07 588+1.720 594+1.773 LP 524 NORTH OF HILLJE0.14 MI. N. OF FM 647 (NB LN), ETCY Y Aug-17 Unknown

94 HMA-SH 21-- HMA Jul-09 N N

95 HMA-SH 21-- HMA Jul-09 N N

96 HMA (better than usual material for an FM road)-FM 530--HMA (better than usual material for an FM road)Jul-09 N

97 HMA-SH 71-Travis-Austin HMA REF Apr-08 0265-01-103 - - 0.6 MI W OF RIVERSIDE DRPRESIDENTIAL DRIVE N Y Jul-15 39500 Limestone/Field Sand

98 HMA-US 59-Wharton-Yoakum HMA REF Sep-04 0089-08-086 560-0.090 566+0.261 FORT BEND C/L (NORTH BOUND)0.34 MI. NORTH OF SH 60 N Y Jun-16 NA

99 HMA-SH 154-Hopkins-Paris HMA May-03 0401-01-019 672+1.703 672-0.246 ROSEHILL RD VAN ZANDT C/L N Y Feb-13 7700 Sandstone
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Table 17 (continued) 

 

(d)

ID SECTION LABEL
Surface 

Type

Surface 

Type 2
Const Date CSJ Proj BTRM Proj ETRM From To New skid test?

Use in 

query?

Confirmed 

Surface 
AADT Agg Type

112 HFST-SH 22-Navarro-Dallas HFST 0121-04-026 610 NA
Curve in Blooming 

Grove
Y

N
Aug-17 Calcined Bauxite

113 HFST-US 287-Navarro-Dallas-A HFST 549.8 NA Y N Aug-17 Calcined Bauxite

127 HFST-FM 89-Taylor-Abilene HFST 0699-01-049
0.127 mi S of CR 

277
1.855 MI S of CR 277 Y

N
Calcined Bauxite

128 HFST-FM 2035-Nolan-Abilene HFST 2997-01-009
0.170 MI N of CR 

253
0.420 MI S of CR 253 Y

N
Calcined Bauxite

130 HFST-SH 47-Brazos-Bryan HFST 3138-02-011 418.5 NA Curve W of FM 60 Y N Aug-17 Calcined Bauxite

140 HFST-Kimbro-Travis-Austin HFST 0914-04-293 NA NA OLD HWY 20 KIMBRO RD Y N Aug-17 Calcined Bauxite

168 HFST-Lp 1604-Bexar-San Antonio
HFST

Bauxite and two-part resin (Unitex resin) Automated applicationLate 2010 539 NA
NE I-35 at 1604 E-N 

connector
Y

N
Aug-17 Calcined Bauxite

174 HP Water-FM 2347-Brazos-Bryan HP Water Jan-11 NA Welborn Rd Olson Blvd N Nov-16 NA

175 HP Water-SH 50-Burleson-Bryan HP Water Feb-11 0648-03-054 420 FM 60 SH 21 N N Feb-13 1400 Limestone w/ asphalt

176 HP Water-FM 455-Robertson-Bryan HP Water Feb-11 0262-03-029 608 SH 6 (Hearne) Milam CL N N Oct-14 2200 Lightweight (Expanded Shale/Clay)

177 HP Water-US 190-Milam-Bryan HP Water Feb-11 0185-02, 0185-03 610 Rogers Cameron N N Nov-11 7200 Lightweight (Expanded Shale/Clay)

178 HP Water-SH 90-Grimes-Bryan HP Water Feb-11 0315-03-051 430 FM 149 SH 6 Y N Aug-17 510 Lightweight (Expanded Shale/Clay)

179 HP Water-FM 2562-Grimes-Bryan HP Water Feb-11 3302-01-013 NA FM 149 SH 30 Y N Aug-17 390 Lightweight (Expanded Shale/Clay)

180 HP Water-SH 321-Liberty-Beaumont HP Water Feb-11 0593-01-109 436 FM 1008 FM 163 N N NA 5800 Limestone w/ asphalt

181 HP Water-SH 63-Jasper-Beaumont HP Water Feb-11 0244-02-091 750 RR 255 2 mi N of RR 255 N N Nov-14 2800 Lightweight (Expanded Shale/Clay)

182 HP Water-FM 82-Jasper-Beaumont HP Water Feb-11 762 US 96 (Kirbyville) 2 mi W of US 96 N N Nov-14 100 SAC-B

183 HP Water-FM 1472-Webb-Laredo HP Water Feb-11 0018-03-039 424 Toll Rd 255 RR 3338 N N Jan-13 19500 Limestone w/ asphalt

184 HP Water-IH 35-Webb-Laredo HP Water Feb-11 0018-03-043 32 MP 32 MP 33 N N May-14 28000 Limestone w/ asphalt

185 HP Water-FM 2950-Randall-Amarillo HP Water Mar-11 2614-01-017 114 FM 2219 FM 3331 N N Jun-13 3900 Siliceous River Gravel

186 HP Water-RM 1061-Oldham-Amarillo HP Water Mar-11 1245-01-012 82 FM 2381 US 385 N N Jan-12 1800 Siliceous River Gravel

187 HP Water-RM 294-Armstrong-Amarillo HP Water Feb-11 0788-03-020 108 IH 40 FM 1151 N N Aug-16 120 Siliceous River Gravel
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APPENDIX B 
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Figure 43: Plot to check relationship between angularity at different intervals 
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Figure 44: Diagnostic plots for angularity relationship 
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Figure 45: Plot to check relationship between texture indices at different intervals 
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Figure 46: Plot to check relationship between texture indices at different intervals 
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Figure 47: Seal Coat with LWA (Streetman) Bonded with Epoxy 

 

 

 

Figure 48: Seal Coat with LWA (Riverlite) Bonded with Epoxy 
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Figure 49: Seal Coat with Crushed Gravel (Phar) Bonded with Epoxy 

 

 

Figure 50: Seal Coat with Limestone (TCS) Bonded with Epoxy 

 


