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ABSTRACT 

 

This dissertation consists of three manuscripts. The manuscripts contribute to a budding 

“methodological reform” currently taking place in quantitative second-language (L2) research. 

In the first manuscript, the researcher describes an empirical investigation on the 

application of two well-known effect size estimators, eta-squared (η2) and partial eta-squared 

(ηp
2), from the previously published literature (2005 - 2015) in four premier L2 journals. These 

two effect size estimators express the amount of variance accounted for by one or more 

independent variables. However, despite their widespread reporting, often in conjunction with 

ANOVAs, these estimators are rarely accompanied by much in the way of interpretation. The 

study shows that ηp
2 values are frequently being misreported as representing η2. The researcher 

interprets and discusses potential consequences related to the long-standing confusion 

surrounding these related but distinct estimators. 

In the second manuscript, the researcher discusses a Bayesian alternative to p-values in t-

test designs known a “Bayes Factor”. This approach responds to pointed calls questioning why 

null hypothesis testing is still the go-to analytic approach in L2 research. Adopting an open-

science framework, the researcher (a) re-analyzes the empirical findings of 418 L2 t-tests using 

the Bayesian hypothesis testing, and (b) compares the Bayesian results with their conventional, 

null hypothesis testing counterparts. The results show considerable differences arising in the 

rejections of the null hypothesis in certain cases of previously published literature. The study 

provides field-wide recommendations for improved use of null hypothesis testing, and introduces 

a free, online software package developed to promote Bayesian hypothesis testing in the field. 
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In the third manuscript, the researcher provides an applied, non-technical rationale for 

using Bayesian estimation in L2 research. Specifically, the researcher takes three steps to achieve 

my goal. First, the researcher compares the conceptual underpinning of the Bayesian and the 

Frequentist methods. Second, using real as well as carefully simulated data, the researcher 

introduces and applies a Bayesian method to the estimation of standardized mean difference 

effect size (i.e., Cohen’s d) from t-test designs. Third, to promote the use of Bayesian estimation 

of Cohen’s d effect size in L2 research, the researcher introduces a free, web-accessed, point-

and-click software package as well as a suite of highly flexible R functions. 
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CHAPTER I  

INTRODUCTION 

 

Overview 

Since its inception in the latter half of 1960s, second language acquisition (SLA) has 

taken several turns establishing itself as a subfield of applied linguistics (see Ortega, 2013; 

Selinker & Lakshmanan, 2001). As with any growing field, most of these movements have been 

substantive in nature. For example, in early 1990s, admonitions regarding the fact that second 

language (L2) acquisition is deeply rooted in learner-embedded activities (see Norouzian & 

Eslami, 2016) laid the groundwork for the social turn of SLA (Block, 2003; Firth & Wagner, 

1997; Gass, Lee, & Roots, 2007) opening up opportunities to probe into learners’ role 

relationships and social identities (Lantolf, 1996). Indubitably, such reform movements have 

elevated the status of SLA to the point that SLA is now expected to “be of use outside the 

confines of the field and contribute to overall knowledge about the human capacity for language” 

(Ortega, 2013, p. 1).  

But attribution of such characteristics as transdisciplinarity (i.e., the ability of SLA to go 

beyond its own perimeter to inform other language sciences) to SLA is revelatory of a yet 

broader fact. Precisely, the fact that we are a science, and as such, we follow scientific methods 

to find the answer to an inquiry. Our scientific practices manifest themselves in the scholarly 

research that we conduct and the subsequent conclusions that we draw from it. Thus, it requires 

no lengthy argument that research methods are integral to our identity as a science. Moreover, 

when there is a consensus among practicing scientists that a field reached a level of theoretical 
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maturity (see Ortega, 2005, 2013), it seems befitting for them to naturally engage in a serious 

discourse surrounding its methodological development (see Byrnes, 2013; Gass, in press). This is 

partly due to the fact that theories are not directly testable, no matter how elegant they might be. 

Through research methods, theories are always turned into testable models. In reality, then, 

models act as proxies for theories. A researcher tests a model, and then attributes the results to 

the theory on which the model is premised. In this sense, every researcher is a modeler even 

without being consciously aware of it. Consequently, research methods play a crucial role in the 

decisions made by researchers as regards designing, executing, and reporting empirical pieces of 

research and hence have no “ancillary status in our work” (Byrnes, 2013, p. 825).  

As noted earlier, the field of SLA has traditionally focused almost exclusively on 

theoretical and practical issues (Selinker & Lakshmanan, 2001). In the last decade or so, 

however, researchers have begun to reflect on—and even examine empirically—the field’s 

methods. In the next section, I will provide the directions of this budding methodological reform 

currently taking place in SLA research setting the stage for the three studies presented in the 

following chapters. 

Methodological Reform in SLA Research 

Recent methodological reform efforts in SLA research span a wide spectrum of topics 

guided by the assumption that “[p]rogress in any of the social sciences depends on sound 

research methods, principled data analysis, and transparent reporting practices; the field of 

second language acquisition (SLA) is no exception” (Plonsky & Gass, 2011, pp. 325-326). 

Recently, Byrnes (2013), the editor of the Modern Language Journal, made reference to this 

body of work as a “methodological turn” (p. 825) taking place in L2 research (also see the most 

recent commentray by the editor of Studies in Second Language Acquistion; Gass, in press). 



 

3 

 

Indeed, efforts to improve data analysis practices constitute the backbone of what has been 

dubbed the “methodological turn” in L2 research. Among other issues, L2 researchers have 

taken up (a) the relative value of statistical vs. practical significance (Plonsky & Oswald, 2014), 

(b) reporting practices and data transparency (Plonsky, 2013), (c) novel analytical approaches 

such as bootstrapping (LaFlair, Egbert, & Plonsky, 2015), (d) statistical literacy among 

researchers (Loewen et al., 2014), robust statistics (Larson-Hall, 2012b), and data visualization 

(Hudson, 2015).  

A closer perusal of this body of methodological L2 research, however, reveals that two 

themes are more prominently emphasized than others. First, the importance of reporting 

estimates of effect size. Second, discouraging the common use of null hypothesis significance 

tests. These two key issues have emerged in frequent published studies reviewing the quantity of 

use of effect sizes (Plonsky, 2013), providing field-specific guidelines for interpreting effect 

sizes using published literature (Plonsky & Oswald, 2014), and critical reviews targeting 

common misuses of null hypothesis significance tests (Nassaji, 2012; Norris, 2015). Each of 

these two issues merits further consideration as is discussed next. 

Effect Sizes 

Effect sizes are certainly not new to L2 researchers. Clarion calls for the use of effect 

sizes in L2 research have been sounded for over a quarter of a century now (Crookes, 1991; 

Hatch & Lazaraton, 1991; Lazaraton, 1991). However, this bottom-up approach to require effect 

size reporting by individual L2 researchers has not been the only venue to incite change. Soon, 

reporting of effect sizes was required using a top-down approach by a group of premier L2 

journals. At the time of this writing, at least eight L2 journals require effect sizes to be included 

in reports of quantitative L2 research: Foreign Language Annals, Language Learning, Language 
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Learning & Technology, Language Testing, Modern Language Journal, Second Language 

Research, Studies in Second Language Acquisition, and TESOL Quarterly.  

Definitions of an Effect Size 

It is very probable that if an L2 researcher intends to understand what an effect size is 

s/he will encounter one or more of the following definitions: (a) “an effect size is a statistic 

quantifying the extent to which sample statistics diverge from the null hypothesis” (Thompson, 

2006, p. 187), (b) “an effect size measures the degree to which such a null hypothesis is wrong” 

(Grissom & Kim, 2012, p. 5), (c) “effect size [is] a quantitative reflection of the magnitude of 

some phenomenon . . . of interest” (Kelley & Preacher, 2012, p. 140), or that it is best (d) “to use 

the phrase ‘effect size’ to mean the degree to which the phenomenon is present in the 

population” (Cohen, 1988, pp. 9-10).  

The occasional difficulty that may be faced when trying to better understand the 

definitions of effect size presented above is mainly methodological, and largely a function of 

how familiar L2 researchers are with the fact that theories are never directly tested. Indeed, these 

well-known definitions of effect size are immensely informed by the modeling frameworks that 

they are founded upon. Specifically, the definitions represent a statistical view of the world in 

which a single study is always assumed to work with a sample of participants randomly drawn 

from one or more target populations (depending on the study design). This being one of our 

modeling assumption, the make-up of the participants in one’s study is assumed to have been 

determined by randomness as are the results from such a study. However, as a study garners a 

larger pool of participants, the make-up of the participants in the study as well as the results of it 
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do a better job of being reflective of the population(s) of interest. Note that because of the 

omnipresent element of randomness, no measure or index could ensure that we make correct 

inferences about the population unless we have at our disposal the data from a very large number 

of participants. Rather, the idea is that, randomness aside, what measure or index could show us 

the magnitude of the effect that might arise from the introduction of a treatment from the study at 

hand? Most profitably, then, effect size is a quantitative index that could be used to measure the 

outcome of one study or provide the basis for comparing the outcomes of a series of studies 

(Olejnik & Algina, 2003).  

Why Effect Sizes in L2 Research 

The emphasis on effect sizes in SLA research, in line with American Psychological 

Association’s (2009) guidelines, has been mainly motivated by (a) the pointed calls to 

supplement information from null hypothesis significance test (NHST) results, and (b) the fact 

that effect sizes provide the basis for cumulative knowledge. Below, I delve deeper into both 

these frequently discussed issues. 

Supplementing Null Hypothesis Significance Tests (NHST) 

In SLA research, a number of methodological reviews criticize the fact that null 

hypothesis testing is “the go-to analytic approach” in the field (Norris, 2015, p. 97). Vocal 

advocates for effect size reporting in SLA (Larson-Hall, 2016; Norris, Ross, & Schoonen, 2015; 

Plonsky & Oswald, 2014) often argue that to measure the result of a study, practical significance 

of the results (i.e., effect sizes) should take precedence over the statistical significance of the 

results (i.e., p-values). The main argument against reliance on the result of a null hypothesis test 
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is that a “p[-value] is jointly affected by sample size and the magnitude of the relationship in 

question” (Plonsky & Oswald, 2014, p. 879). Using modern technology, it is easy to find out 

how exactly p-values are affected by sample size. Thanks to the recent L2 methodological 

research, information about both the group sample sizes (Plonsky, 2013) and the size of effects 

(Plonsky & Oswald, 2014) that are commonly found in L2 research is currently available. This 

information can help us more realistically examine the problems associated with the use of p-

values specifically in L2 research. For this purpose, suppose that a researcher is interested in 

assessing the effect of Synchronous Computer-Mediated Communication (SCMC) on improving 

English as a Foreign Language (EFL) learners’ oral proficiency (e.g., Norouzian & Eslami, 

2013). Let us consider two groups of learners (i.e., control and experimental groups) for this 

study. First, we consider each group sample size is 20, then we increase that to 50, and finally 

100. Groups of size 20 or so are believed to be the average in major domains of L2 research 

(Plonsky, 2013) as well as in the interactionist tradition of SLA (Plonsky & Gass, 2011), but 50 

and 100 are selected above the average so that the effect of sample size on the p-value from such 

a study could be better understood. Figure 1 (to explore Figure 1 see 

https://github.com/izeh/j/blob/master/1.r) shows the effect of increasing the group sample size on 

the p-value and Cohen’s d effect size when the underlying Cohen’s d effect size for direct 

feedback is assumed to be .1, a relatively small underlying effect.  

 

https://github.com/izeh/j/blob/master/1.r
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Figure 1. Results of 10,000 replications of an experimental study with two groups. 

 

 

It is helpful to think of each column in Figure 1 as displaying the results (i.e., p-values 

and effect sizes) of our SCMC study conducted by 10,000 independent L2 researchers (unaware 

of the fact that the underlying effect of SCMC is quantified by a Cohen’s d of .1). This way, 

based on the leftmost column, about 6% of these researchers who chose group sample sizes of 20 

participants for their study called their study finding statistically significant (p < .05). However, 

as groups sample sizes increased to 60 (middle column), and 100 (rightmost column), the 

proportion of the researchers who declared their results to be statistically significant increased to 

about 8% and 11%, respectively. Thus, as group sample sizes increase by a factor of 5 (from 20 

to 100), the likelihood of finding a significant effect almost doubles (from ~6% to ~11%). 

Therefore, in terms of sample size, increase of group sample sizes does lead to higher chances of 
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rejection when the underlying effect size is relatively small (here Cohen’s d is .1). Noteworthy is 

also the fact that our 10,000 researchers have also obtained different effect sizes (the bottom 

row). Our researchers, however, are more likely to obtain an estimate of effect size that is closer 

to .1, the assumed underlying effect of SCMC, as they employ larger groups of participants in 

their study. To sum up, with increasing the group sample sizes, we are more likely to call any 

finding significant (p < 0). Conversely, increasing the group sample sizes leads to higher 

precision in our estimation of the size of the underlying effect of a phenomenon in question (here 

SCMC). Therefore, reliance on effect sizes is more consistent with the view that large-sized 

studies provide a more accurate picture regarding the validity of an L2 theory or hypothesis that 

is of interest to a researcher. 

Basis for Cumulative Knowledge 

Closely related to the discussion in the previous section is the fact that effect sizes 

provide a meaningful index measuring the outcome of an empirical study. Unlike p-values, effect 

sizes represent a reflection of their unknown population parameter when obtained from 

replication attempts. As shown in the bottom row of Figure 1, replication attempts converge to 

the true underlying effect of a treatment when averaged (the filled circles in Figure 1). Thus, if 

we intend to systematically synthesize the results of a line of research in a specific domain of 

inquiry, it is best to use effect sizes for this purpose. Precisely for this reason, effect sizes form 

the backbone of meta-analyses. To date, over 90+ meta-analyses (see Plonsky & Oswald, 2014) 

in L2 research aiming at synthesizing the results of a vast body of literature have been conducted 

(see Norris & Ortega, 2006). Without the use of effect sizes, meta-analysis would have been 

possible albeit with potential difficulty in interpreting the obtained results. But as is discussed 
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next in the statement of the problem section, the importance of effect sizes goes beyond the 

conventional approaches to data analysis to what are known as Bayesian methods.  

Statement of The Problem 

Despite the commendable efforts made to promote effect size reporting both to alleviate 

the problems associated with the null hypothesis testing approach, and facilitate cumulative 

science in SLA, a host of critical issues remain unexplored. First, I concur with Lazaraton (2009) 

in the belief that most methodological works in SLA have taken an “uncritical stance towards the 

use of statistics in SLA”  and that they only “provide evidence of the increased quantity . . . of 

statistical SLA research” (p. 415). Specifically, the correct understanding and application of 

effect sizes affect the quality of SLA research and are not ensured solely by requiring its 

reporting (see Norouzian & Plonsky, in press). This being understood, what seems to be needed 

for such methodological work on effect sizes is to provide “evidence that SLA researchers are, in 

fact, using statistical procedures more APPROPRIATELY” (Lazaraton, 2009, p. 415, emphasis 

in original). Indeed, in an era of point-and-click analyses (see Mizumoto & Plonsky, 2015), 

choices regarding effect sizes and other statistical results may be made based on program 

defaults rather than on an accurate understanding of the data. This is particularly likely to occur 

in the case of effect sizes, which, despite their presence in published L2 research, are not 

generally accompanied by much in the way of interpretation. Thus, an empirical investigation 

focusing on widely reported effect size estimates especially in extended designs (i.e., designs 

with more than two groups) should respond to the concerns raised over the lack of studies 

examining the accuracy of application of statistical concepts (here effect size estimators) in 

published reports of SLA research (Lazaraton, 2005, 2009). 
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Second, the role of hypothesis testing, as a prevailing inference- and decision-making 

approach (Kruschke & Liddell, 2017), has solely been considered (e.g., Larson-Hall, 2016; 

Norris, 2015) through the lens of null hypothesis significance testing (NHST). Recent advances 

in applied statistics (Johnson, 2016; Morey, Romeijn, & Rouder, 2016) as well as new 

recommendations offered by learned societies (e.g., American Statistical Association, 2016), 

however, emphasize the use of Bayesian model selection (i.e., Bayesian hypothesis testing) 

culminating in a new evidence-quantifying index called “Bayes Factor” replacing the widely- 

criticized p-values. To the best of my knowledge, no previous methodological L2 research has 

either examined the use of or applied this Bayesian alternative to study the possible differences 

in the inferential conclusions between the conventional null hypothesis significance test results 

and those of the Bayesian hypothesis testing approach. Such a more recent approach to inference 

and decision-making is additionally supported by the most recent inferential framework known 

as “new statistics” (Kruschke & Liddell, 2017). 

Third, Loewen et al. (2014) recently conducted a survey measuring the statistical literacy 

of a sizable number of practicing applied linguists (n = 331) in the field. In their questionnaire 

(see Appendix B in Loewen et al., 2014), the statistical terms “Bayes” or “Bayesian” was not 

even included. This is indicative of the fact that statistical knowledge regarding Bayesian 

thinking in the field is considerably low and its novelty is not yet fully appreciated. Furthermore, 

as it stands, the burgeoning yet multidisciplinary literature on Bayesian methods contributed to 

by mathematical psychology (Kruschke, 2015), cognitive science (Etz & Vandekerckhove, in 

press), and mathematical statistics (Gönen, Johnson, Lu, & Westfall, 2005) is highly 

impenetrable making it unfit for use by practicing L2 researchers. This is while the Bayesian 

estimation methods especially those using effect sizes could be highly beneficial to a field like 
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L2 research which is known to suffer from “impoverished samples sizes” (Norris et al., 2015, p. 

1). Additionally, to promote the use of novel statistical methods such as Bayesian methods, L2 

researchers often allude to the lack of easy to use and access statistical tools (see Mizumoto & 

Plonsky, 2015). Thus, to raise the statistical literacy of L2 researchers (Gonulal, Loewen, & 

Plonsky, 2017), a non-technical and applied resource providing a rationale for the use of 

Bayesian estimation and to promote the use of the method user-friendly software packages that 

enable the use of Bayesian estimation are critically warranted. 

In response to these three gaps, this dissertation consisting of three manuscripts, whose 

overview and extended summaries appear in the following chapters, is summarized in Figure 2. 

 

 

Figure 2. Schematic framework for the dissertation studies. 
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CHAPTER II 

AN EMPIRICAL INVESTIGATION OF TWO EFFECT SIZE MEASURES IN L2 

RESEARCH: RESOLVING A LONG-STANDING CONFUSION 1* 

 

Overview 

Eta-squared (η2) and partial eta-squared (ηp
2) are effect sizes that express the amount of 

variance accounted for by one or more independent variables. These indices are generally used in 

conjunction with ANOVA, the most commonly used statistical test in second language (L2) 

research (Plonsky, 2013). Consequently, it is critical that these effect sizes are applied and 

interpreted appropriately. The present study will examine the use of these two effect sizes in L2 

research. We begin by outlining the statistical and conceptual foundation of and distinction 

between η2 and ηp
2. We then review the use of these indices in a sample of published L2 research 

(N = 156). The study will empirically show the possible instances of ηp
2 values being 

misreported as representing η2 in four well known L2 Journals. Additionally, the study will 

interpret and discuss potential causes and consequences related to the long-standing confusion 

surrounding these related but distinct estimators. Within the context of reform efforts in 

quantitative L2 research, the current study seeks to respond to the recent, pointed calls for 

improving study quality (Plonsky, 2014) and statistical literacy (Loewen et al., 2014) in the field. 

Introduction 

It has been almost three decades since Cohen (1988) wisely noted that “a moment’s 

thought suggests that it [effect size] is, after all, what science is all about” (p. 532). With this 

                                                 
* Part of this chapter has appeared as “Eta-and partial eta-squared in L2 Research: A cautionary review and guide to more appropriate usage” by 

Norouzian, R. & Plonsky, L. 2018. Second Language Research, 34(2), 257 – 271, Copyright 2018 by Authors. 
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position in mind, some have gone as far as to argue that failing to appropriately report estimates 

of effect sizes amounts to “a kind of withholding of evidence” (Grissom & Kim, 2012, p. 9). In 

the case of L2 research, however, effect sizes are still a relatively novel concept. Historically, the 

field has relied very heavily on statistical significance and null hypothesis significance testing (p 

values) (see Norris, 2015; Plonsky 2015). It is only in the last decade or so that we have seen a 

shift in favor of effect sizes and practical significance, which can be attributed both to influential 

advocates (e.g., Norris & Ortega, 2000; Plonsky & Oswald, 2014) and journal editors. We know 

of at least eight L2 journals that now require effect sizes to be included in reports of quantitative 

research: Foreign Language Annals, Language Learning, Language Learning & Technology, 

Language Testing, Modern Language Journal, Second Language Research, Studies in Second 

Language Acquisition, and TESOL Quarterly.  

Two of the most commonly employed effect sizes are eta-squared (η2), and partial eta-

squared (ηp
2), which are used in conjunction with ANOVA and its variants. We have chosen, 

therefore, to examine these two effect sizes in terms of how they are reported and interpreted in 

L2 research. We are concerned that, in an era of point-and-click analyses (see discussion in 

Mizumoto & Plonsky, 2016), choices regarding effect sizes and other statistical results may be 

made based on program defaults rather than on an accurate understanding of the data. This is 

particularly likely to occur in the case of effect sizes, which, despite their presence in published 

L2 research, are not generally well understood. The result of an overreliance on statistical 

packages together with the relative lack of detailed knowledge about effect sizes carries the risk 

of erroneous reporting, mislabeling, and faulty interpretations. 

The present study builds on the momentum surrounding methodological reform in 

applied linguistics, including concerns expressed in recent years over, for example, study quality 
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(Plonsky, 2013, 2014) and statistical literacy (Loewen et al., 2014). Such discourse responds to 

repeated calls for examining how “APPROPRIATELY” (e.g., Lazaraton, 2009, p. 415, emphasis 

in original) different statistical concepts are being employed. 

Eta Squared and Partial Eta Squared In ANOVA Models 

Although L2 researchers often report effect sizes such as eta-squared (η2), such values are 

rarely accompanied by much in the way of interpretation (Plonsky & Oswald, 2014). One reason 

for this is that there appears to be a good deal of confusion surrounding the terminology of 

“proportion of variance” (Grissom & Kim, 2012, p. 181) effect sizes. Therefore, for the purposes 

of clarity, some conceptual explanation of what these indices express is warranted. 

Consider, for example, a study wherein the researcher was interested in analyzing the 

effect of an experimental treatment across conditions (e.g., condition 1, condition 2, control). 

Conceptually, the focus of analysis is on group differences as regards the dependent variable 

(e.g., usually a measure of L2 knowledge or learning). Statistically speaking, scores on the 

dependent variable scores contain the amount and source of variance caused by treatment effects 

(Thompson, 2006). 

Proportion of variance effect sizes in the η2 family partition the amount of total variation 

in the dependent variable (e.g., knowledge as measured) to determine how much of the variation 

is separately accounted for or explained by each independent variable (i.e., explained sum of 

squares or SOS). Also taken into account by the η2 family is how much of the DV variation is 

left unexplained (i.e., unexplained or error SOS). Thus, total variation in the DV can be 

described in terms of explained and unexplained variance. 

We suspect that, despite the now-widespread reporting of eta-squared (η2), many L2 

researchers may not be aware of the differences among its variants, most notably partial eta-
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squared (ηp
2). Further complicating this matter is the mislabeling of η2 and ηp

2 by certain early 

versions of SPSS, the most frequently used statistical software package in L2 research (Loewen 

et al., 2014). The likelihood of this error in the context of L2 research is supported by evidence 

presented in other fields. Levine and Hullett (2002) and Pierce, Block, and Aguinis (2004) found 

widespread misreporting and misinterpretation of η2 and ηp
2 in published studies in 

communication and psychology, respectively. Both studies also cite the mislabeling of ηp
2 values 

as η2 in early versions of SPSS.  

In the two sections that follow, we provide a brief overview of these two important effect 

size indices. We also illustrate the points being made with heuristic examples. 

Classical Eta-Squared 

Imagine an intervention study in which four treatment conditions are compared on a 

single dependent variable. To examine the relationship of interest here, we would likely use a 

one-way ANOVA. The effect size in this case, η2 (also called the squared correlation ratio), is 

computed using Kerlinger’s (1964) classical formula (p. 203) as: 

TOTAL

A2

SOS

SOS
η = .                                                                (1) 

Note that in one-way designs, there is only one independent source (SOSA; treatment) of 

variance to explain some portion of the total variation in the dependent variable (SOSTOTAL; L2 

knowledge). The numerator of the effect size estimator then represents variability that is 

attributable to the only independent variable we have (e.g., treatment condition). Therefore, an η2 

of, say, 0.35 (or 35%), indicates that we can account for 35% of the total variation in L2 

knowledge as measured. The rest of the total SOS remains unexplained (i.e., SOSError = 65%), 

and may be due to individual differences, measurement error, or any number of other factors.  
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Partial Eta-Squared 

One-way designs can certainly be found in L2 research. However, designs with multiple 

independent variables are likely much more common due to the multivariate nature of L2 

learning, knowledge, use, and so forth (Brown, 2015). In such cases, the conceptual approach 

embodied by η2 can be extended to apply to multi-way or factorial ANOVA. However, we now 

may have multiple sources of independent effects leading to a distinction that must be drawn 

between the classical η2 and partial η2 (Bakeman, 2005; Richardson, 2011). 

Building on the example from above, imagine a 34 design in which proficiency level 

(with 3 levels) and treatment condition (with 4 levels) are jointly examined to explain the 

variation in learners’ (N = 120) scores on a subsequent grammar test (i.e., dependent variable). 

Table 1 presents the hypothetical results for this two-way design. 

Table 1 

Hypothetical results of a fixed-effects 34 ANOVA (N = 201 ) 

Source SOS df MS Fobtained pobtained η2 ηp
2 Inflation% 

Treatment 80 3 26.67 57.60 2.57E-22 0.39 0.62 57.69% 

Proficiency 70 2 35.00 75.60 2.94E-21 0.34 0.58 70.83% 

Treat.×Prof. 5 6 0.83 1.80 0.106 0.02 0.09 272.73% 

Error 50 108 0.46      

Total 205 119 1.72      

Note. Eta-squared values and their corresponding partial eta-squared values appear in bold. 

Treat. = Treatment; Prof. = Proficiency. 

Inflation% = (ηp
2 

– η2) / η2 100, this shows how different ηp
2 and η2 can be in this two-way design. 

 

 

If we want to quantify any of the independent variables’ contributions to the variation observed 

in post-test scores, we can do so by invoking the classical η2 in each case. But a different form of 

η2 may be computed as well. Cohen (1965) implicitly introduced a new variant of η2 (now often 

denoted by ηp
2) in multi-way designs which was similar to the classical η2 formula with “other 
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nonerror sources of variance being partialled out [from the denominator]” (p. 105). Later, Cohen 

(1973) emphasized that this new variant is distinct from the classical η2 and may be called 

“partial η2” (p. 108 italics in original). Thus, in multi-way designs, the term partial refers to 

removing all other possible sources of effect in the design except the one of interest in the 

denominator of equation (1) and the error/unexplained variance. 

In our two-way design, which includes two main effects and one interaction effect, partial 

eta-squared (ηp
2) for treatment condition (A) can be computed as:   

ErrorA

A2

p
SOS SOS

SOS
η

+
= .                                                         (2) 

Thus, ηp
2

 = 80 / (80 + 50) = .62 [90% CI: .494, .659]. Likewise, ηp
2 for the effect of proficiency 

level (SOSB) can be computed in a similar fashion with other independent sources (i.e., 

treatment, and the treatment proficiency interaction) removed from the denominator: 

ErrorB

B2

p
SOS SOS

SOS
η

+
= .                                                         (3) 

Therefore, for proficiency, ηp
2

 = 70 / (70 + 50) = .58 [90% CI: .458, .632]. And for the 

interaction effect (SOSA*B), we will have: 

ErrorB*A

B*A2

p
SOS SOS

SOS
η

+
= .                                                         (4) 

Thus, regarding the interaction effect, ηp
2

 = 5 / (5 + 50) = .09 [90% CI: .000, .133]. Note that 

because in one-way designs there is only one source of effect, no difference in the denominator 

of the classical and partial eta-squared formulas exists. In other words, because there are no 

other effects to be partialled out, eta-squared and partial eta squared are identical in one-way 

designs. However, as shown in Table 1, for our two-way design, ηp
2 values are invariably 
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larger—often much larger—than their η2 counterparts. This occurs because the partial η2 

formula is partialling out the other nonerror terms (i.e., proficiency: SOSB and 

proficiencytreatment: SOSA*B) from the denominator for each effect, thus augmenting the 

outcome (see Grissom & Kim, 2012; Pedhazur, 1997). It is therefore critical that care be taken to 

report and interpret these indices appropriately. 

Assumptions and Rationale of the Study 

Having laid out the conceptual and statistical reasoning behind η2 and ηp
2, in the present 

study, we seek to examine the use and interpretation of these two indices. The study is motivated 

by several factors that, in coordination, may create conditions that are counterproductive for the 

field’s progress. First, although effect sizes are regularly reported, they are not often interpreted 

and even less often are they interpreted meaningfully (Plonsky & Oswald, 2014). Second, 

ANOVA designs are exceedingly common and therefore highly influential in L2 research. The 

family of effect sizes for this set of techniques is particularly prone to error, however, due to very 

similar and often ambiguous or even misleading labels, as described in the previous section. This 

problem, observed in other social sciences, is only compounded by a lack of general statistical 

literacy in the field (Loewen et al., 2014). With these issues in mind, we anticipate that erroneous 

reporting of these frequently used effect sizes is likely to occur in L2 research. Therefore, in this 

study we examine the use of η2 and ηp
2 as a means to improve future research practices in the 

field. With these concerns in mind, the present study sought to answer the following question: To 

what extent does published L2 research demonstrate erroneous reporting of ηp
2 as representing 

η2? 

 



 

19 

 

Method 

In this section, methods used to select L2 journals, criteria for choosing individual L2 

studies are discussed. Also explained are the procedures and analyses followed. 

Journal Selection and Search Criteria 

In order to collect a representative sample of L2 research, we first consulted previous 

surveys of L2 research practices (e.g., Egbert, 2007; Gass, 2009; Lazaraton, 2005; Plonsky, 

2013) as well as L2 research methods textbooks providing various L2 journals’ descriptions 

(Perry, 2011) and other documents discussing L2 journals (VanPatten & Williams, 2002). There 

is, of course, no consensus as to which journals are most prominent or influential in the field. In 

the end, we decided to survey the following five journals: Applied Linguistics, Language 

Learning, Language Teaching Research, Modern Language Journal, and System. This sample is 

by no means exhaustive, but we would argue that it does provide generally representative view 

of quantitative L2 research. 

In order to gain a current view of this domain, we limited our search to studies published 

from 2005 to 2015. In line with previous reviews (e.g., Gass, 2009), we excluded from 

consideration forums, short reports, commentaries, review articles, and book reviews. We then 

examined all studies that included variants of multi-way ANOVA (repeated measures, factorial, 

ANCOVA- henceforth, multi-way ANOVA studies). The total sample consisted of 156 studies. 

Our goal to include multi-way designs was because, as discussed in the previous section, in these 

studies η2 and ηp
2 lead to different results. Thus in these designs, mistakenly reporting ηp

2 as η2 

presents a distorted view of the results. Figure 3 shows the distribution of the sampled studies 

across the period 2005 through 2015. 
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Figure 3. Distribution of multi-way ANOVA studies over time. 

  

Procedures and Analyses 

In order to address our research question, following best practices in synthetic research 

(Plonsky & Oswald, 2015), each study in the sample was systematically coded for the design 

type (repeated measures, factorial, ANCOVA), model (fixed-, random-, mixed-effects), and 

sampling unit distribution (balanced, unbalanced) applied. We also extracted from each study F 

values, degrees of freedom, and descriptive statistics (Mean, SD). We then conducted secondary 

analyses by using any or a combination of the following three methods, as appropriate.  

First, in line with previous studies that have examined the reporting and interpreting of η2 

effect sizes (Levine & Hullett, 2002; Pierce et al., 2004), we computed the sum of the η2 values 

for every multi-way design in papers that reported them (i.e., ∑η2
max limit check). When the sum 

for a multi-way design exceeded 1 (or equivalently 100%), the values were assumed to be 

representing instances of ηp
2 labeled erroneously as η2. This method was applied to all 156 multi-

0

5

10

15

20

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

16

12

14

16
15

12
11

13
14

15

18

F
re

q
u

en
cy

Year



 

21 

 

way studies we collected. Using this technique, we found 17 studies with this type of erroneous 

reporting.  

Second, we applied Cohen’s (1973) partial eta-squared meta-analytic equation which is 

computed as: 

 
ErrorAA

AA2

p
 )(

)(
η

dfFdf

Fdf

+
= .                                                  (5) 

Equation 5 was used to evaluate if the values reported and labeled as η2 in reality were ηp
2. Being 

“purely algebraic [i.e., insensitive to the design type and model]” (Cohen, 1973: 107), this 

equation was applied to all designs types (e.g., repeated measures, ANCOVA) and models of 

multi-way analysis (i.e., fixed-, mixed-, and random-effects). If the answer from the manual 

calculations matched within rounding error those in the primary published report, we concluded 

that ηp
2 values were mistakenly presented as η2. Also, when possible (i.e., when the design was 

fixed-effects with all relevant error and effect terms reported), we used Haase’s (1983) meta-

analytic equation which for a two-way design is computed as: 

ErrorB*AB*ABBAA

AA2

 )()( )(

)(
η

dfFdfFdfFdf

Fdf

+++
= .                                 (6) 

Equation 6 was used to correctly compute η2 values in fixed-effects multi-way designs. For the 

second method, when no match was found between our calculation of η2 or ηp
2 and those 

reported in the original paper, the analysis in question was excluded from our study. The second 

method was also uniformly applied to all 156 multi-way studies and resulted in the identification 

of an additional 12 studies with erroneous reporting of η2, which also confirmed and extended 

the results of method 1.  
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A third method for identifying erroneous reporting was applied when full summary tables 

(i.e., with all sum of squares, dfs, F values made available) were reported. Using these data, we 

separately computed the η2 and ηp
2 values to compare them with the values appearing in the 

original published studies. The third method led to the identification of additional 5 studies 

which had inaccurately presented ηp
2 effect size as representing η2.  

Results 

The present study was intended to determine the extent of erroneous reporting of ηp
2 as 

representing η2 in quantitative L2 research published between 2005 and 2015.  

Previous studies in other fields (Levine & Hullett, 2002; Pierce et al., 2004) were only able to 

show that ηp
2 values were mistakenly reported as η2 if the sum of η2

 values in a multi-way design 

exceeded 1 or 100% (method 1). As noted in the Method, we have sought to gain a more 

comprehensive view of this practice by employing additional equations (method 2) and in some 

cases directly computing ηp
2 and η2 effect sizes from summary tables (method 3).  

Table 2 presents the sum of η2 values (i.e., ∑η2; method 1) for the studies in our sample along 

with relevant data retrieved from these studies, and other features specific to the methods used 

for our secondary calculations. All 34 studies in Table 2, which we have anonymized, have 

incorrectly reported ηp
2 as representing η2 values. 
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Table 2 

Summary of 34 studies erroneously reporting ηp
2 as representing η2 

No. 
Study ID 

(Year) 
Design 

Statistics 

Reported 

Software 

used 

Main effect 

η2 values 

reported 

Interaction 

effect η2 values 

reported 

∑η2 values 

Computed % 

1- Study 87 (2011) 

Main Analysis 

2*2 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. n.r. .12  n.a. 1 

2- Study 101 (2012) 

Main Analysis 

2*3 

ANCOVA 

Full 

Summary 

Table 

SPSS 

version 

18 

.452 

.17 

n.r. n.a. 

3- Study 147 (2015) 

Main Analysis 

4*4 RM 2 

ANOVA  

F, Dfs, SD, 

Mean 

n.r. .93 .90 183% 

4- Study 39 (2007) 

Analysis 1 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .754 .193 n.a. 

5- Study 43 (2007) 

Analysis 2 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .820 

.123 

n.r. n.a. 

6- Study 41 (2007) 

Analysis 3 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .831 

.654 

n.r. 148.5% 

7- Study 127 (2014) 

Analysis 1 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

SPSS 

version 

16.0 

.73 

.40 

.50 163% 

8- Study 128 (2014) 

Analysis 2 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .72 

.29 

.54 155% 

9- Study 14 (2005)  

Analysis 1 

2*3 RM 

ANOVA 

Full 

Summary 

Table 

n.r. .29 

.66 

 

.59 154% 

10- Study 16 (2005)  

Analysis 2 

2*3 RM 

ANOVA 

Full 

Summary 

Table 

n.r. .30 

.46 

.56 132% 

11- Study 11 (2009) 

Main Analysis 

2*2 

ANOVA 

Full 

Summary 

Table 

SPSS  

 

.06 

.24 

.00 n.a. 

12- Study 9 (2005) 

Main Analysis 

2*6 

ANOVA 

Full 

Summary  

Table 

n.r. .013 

.105 

 

.009 

 

n.a. 

13- Study 31 (2007) 

Main Analysis 

One-Way 3 

ANCOVA 

F, Dfs, SD, 

Mean 

n.r. .69 

.52 

.12 133% 
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Table 2 (continued) 

14- Study 114 (2013) 

Analysis 1 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .63 

.54 

.62 179% 

15- Study 117 (2013) 

Analysis 2 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .67 

.55 

.52 174% 

16- Study 126 (2014) 

Experiment 3 

2*2 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .19 

.37 

n.r. n.a. 

17- Study 41 (2007) 

Main Analysis 

2*3 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .28 

.10 

.06 n.a. 

18- Study 30 (2007) 

Main Analysis 

2*3 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .048 

.024 

n.r. n.a. 

19- Study 21 (2006) 

Analysis 1 

3*2 RM 

ANOVA 

F, Dfs n.r. .99 .76 175% 

20- Study 18 (2006) 

Analysis 2 

2*2 RM 

ANOVA 

F, Dfs n.r. .68 

.43 

.40 151% 

21- Study 23 (2006) 

Analysis 3 

2*3 RM 

ANOVA 

F, Dfs n.r. .97 .38 135% 

22- Study 12 (2005) 

Experiment 1 

3*4 RM  

ANOVA 

F, Dfs, SD, 

Mean 

n.r. n.r. .373 n.a. 

23- Study 15 (2005) 

Main Analysis 

4*5 RM  

ANOVA 

F, Dfs, SD, 

Mean 

n.r. n.r. .396 n.a. 

24- Study 47 (2008) 

Main Analysis 

 

2*2 

ANOVA 

 

F, Dfs, SD, 

Mean 

n.r. .620 

.473 

 

n.r. 109.3% 

25- Study 51 (2008) 

Main Analysis 

2*2*3 RM 

ANOVA 

 

F, Dfs, SD, 

Mean 

n.r. .332 

.803 

n.r. 113.5% 

26- Study 56 (2008) 

Main Analysis 

2*2 RM 

ANOVA 

 

F, Dfs, SD, 

Mean 

n.r. .448 

.798 

n.r. 124.6% 

27- Study 44 (2008) 

Main Analysis 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .31 

.21 

n.r. n.a. 

28- Study 41 (2008) 

Main Analysis 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .25 

.05 

.13 n.a. 

29- Study 39 (2008) 

Main Analysis 

2*3 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .13 .08 n.a. 

30- Study 76 (2010) 

Main Analysis 

2*2 

ANCOVA 

F, Dfs, SD, 

Mean 

SPSS 

GLM 

.30 .44  
.34  

.01 109% 
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Table 2 (continued) 

31- Study 84 (2010) 

Main Analysis 

2*4 RM 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .62 n.r n.a. 

32- Study 137 (2014) 

Main Analysis 

3*3 RM 

ANOVA 

 

F, Dfs, SD, 

Mean 

 

n.r. 

 

.346 

 

.244 

 

n.a. 

 

33- Study 152 (2015) 

Main Analysis 

2*2*2 RM 

ANOVA 

 

F, Dfs, SD, 

Mean 

 

n.r. 

 

.15 .13 

.01 

 

.01 .13  

.03  

 

n.a. 

 

34- Study 143 (2015) 

Main Analysis 

4*2 

ANOVA 

F, Dfs, SD, 

Mean 

n.r. .97 .83 180% 

Note. First seven studies had a balanced design. “n.r.” = not reported. “n.a.” = not applicable. 
1 Not applicable: either summary table was presented (method 3) or equation’s 5 outcome matched that in the 

original report (method 2).  
2 RM = Repeated measures. 

3 One-way ANCOVA’s summary table terms are algebraically similar to those of two-way ANOVA. 

 

As can be seen in Table 2, mistakenly reporting partial eta squared as representing eta 

squared is not uncommon in published quantitative L2 research. More precisely, this error 

occurred in 34 of the 156 studies in our sample, or 22%. Figure 4 shows the breakdown of the 

misreported studies in the 156 multi-way ANOVA studies published between 2005 and 2015. In 

Figure 4 the proportion of studies which misreported eta squared to the total multi-way 

ANOVAs in each year is represented by the cross-hatched columns. One important observation 

is that inaccurately presenting partial eta squared as representing eta squared is still present in 

recent L2 research. This might be due to that fact that multi-way ANOVA and its variants are 

frequently and increasingly employed to answer different substantive questions in L2 research 

(Plonsky, 2014). 
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Figure 4. Multi-way ANOVA studies that presented partial eta squared as representing eta 

squared (crosshatched bars). 

At this point, assuming that L2 researchers did not largely learn how to use these two 

variants of effect size from each other (i.e., independence of observation), the question of interest 

is: what is the actual proportion of this erroneous reporting and how prevalent it is across all L2 

studies that use these two measures of effect size to report their findings? Since this was the first 

survey of this type in L2 research, no specific prior knowledge in L2 research is available to refer 

to as a knowledge base. Thus, with a very broad prior (i.e., Beta[1.2, 1.2]), the Bayesian 

estimation of the actual proportion of this erroneous reporting of the two effect size estimators 

can be shown to be around 15.90% - 28.74%. The result of this Bayesian estimation is also 

shown graphically in Figure 5. 
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Figure 5. Bayesian estimation of the proportion of misreported L2 studies.  

 

Discussion 

The confusion between η2 and ηp
2, found in the present study to be widespread in 

quantitative L2 research, can lead to a series of, at least, four problems which affect 

interpretations of findings to varying degrees. Some actual examples here may convey the 

general tenor of these problems.  

 First, while reporting ηp
2 values in place of η2 values does not change the rank ordering of 

effects within a single study (see Table 1 for example), ηp
2 and η2 values use different 

denominators in their formulas. Put succinctly, the base of each ηp
2 value differs in nature from 

another one in the same design because ηp
2 values do not share a common base (i.e., 

denominator). Therefore, cross-effect comparison of ηp
2 values is not meaningful (Olejnik & 

Algina, 2000; Pedhazur, 1997). Interpretations are especially problematic, however, when ηp
2 

values (often expressed in percentages), either correctly labeled as ηp
2 or erroneously presented 

Misreporting Proportion (%) 

0% 20% 40% 60% 80% 100% 

Base knowledge 

Bayesian interval estimates 

3.90% 50% 96.08% 

15.90%    21.87%    28.74% 
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as η2, are used to indicate that they have explained a certain amount of total variation in the 

dependent variable as exemplified in Table 3. 

 Table 3 

 Misinterpreting ηp
2 as proportion of total variance 

Study ID ηp
2 mislabeled as η2 Author(s) Interpretation 

Study 21 (2006) 
7% 

69% 

19% 

In all cases, ηp
2 values taken 

to account for total variation 

Study 47 (2008) .177 The effect of interaction 

explained 17.7% of variance 

in the dependent variable 

Study 15 (2005) .105  about 11% of variability 

explained in the dependent 

variable 

 

Second, η2 values are often upwardly biased (an issue not discussed here, but see 

Grissom & Kim 2012) and particularly so when the effects are based on small samples, which is 

often the case in L2 research (Plonsky, 2013). Therefore, erroneously reporting ηp
2 as η2 in a 

multi-way study can inflate an already-biased η2 effect size even further. Pedhazur (1997) 

warned that “[b]ecause partial η2 tends to be larger than η2, I am afraid that novices will be 

[more] inclined to use it” (p. 509). Thus, it is critical not to look at the effect sizes in a single 

study “from a bigger-is-better standpoint” (Bakeman, 2005, p. 380). We were able to estimate 

the inflation due to mistaken reporting in some of the studies by using summary table 

information or by applying equation 5 for ηp
2 and equation 6, when applicable, for η2. The 

inflation percentage may vary from one study to the next. Table 4 presents some examples along 

with the amount of inflation observed. 
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Table 4 

Inflation resulting from mistakenly presenting ηp
2 for η2 

Study ID Effect ηp
2 mislabeled as η2 η2 Inflation% a 

Study 101 

(2012) 

main .452 b .127 72% 

Study 13 

(2005) 

interaction .59 .32 46% 

Study 7 

(2005) 

main .46 .27 41% 

Study 64 

(2009) 

main .06 .04 33% 

a Inflation% = (ηp
2 

– η2) / ηp
2 
100. 

b As reported by the original authors to 3 decimal places. 

 

 

Third, Cohen’s (1988) benchmarks for interpreting effect sizes are arbitrary and should 

not be applied in L2 research or elsewhere (Cohen, 1988). Even so, the frequently used Cohen’s 

(1988, p. 283) proportion of variance effect size cutoff points (i.e., small = .0099; medium = 

.0588; large = .1379) may only relate to “partial eta squared” values and not to those of “eta 

squared” in multi-way designs (Richardson, 2011). Thus, employing Cohen’s benchmarks (error 

1) and erroneously applying them to eta squared (error 2) creates a “double-error” situation. For 

example, if η2 is erroneously chosen to be benchmarked against Cohen’s (1988) cut-offs, one 

may interpret the magnitude of a given effect as “small”. However, for the same effect, if “ηp
2” is 

compared against Cohen’s benchmarks it may be interpreted as “large”. 

It is useful at this point to recall that effect sizes are descriptive statistics that leave the 

decision about the importance of an observed effect to the community of researchers in any 

specific domain given (a) their understanding of the phenomenon they study, (b) prior studies in 

the same domain, (c) the predictions of theory, (d) practical implications, (e) the design and 
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instrumentation from which the effect was derived, and so forth. Looking ahead, we recommend 

that Cohen’s conventions be dropped in favor of researchers’ direct and explicit comparison of 

the effects in related literature as well as these and other considerations (see Thompson, 2006; 

Plonsky & Oswald, 2014).  

The Practical Roots 

The findings of this study, which reveal somewhat widespread misuse of a common 

statistic, prompt us to consider why this problem exists (and persists). One explanation might be 

the lack of appropriate reference material. In examining 14 texts on L2 research methods at our 

immediate disposal, the materials available to L2 researchers do not appear to address adequately 

the distinction between η2 and ηp
2. For example, Larson-Hall (2012a), a brief and generally quite 

useful chapter-length overview of statistics used in L2 research, briefly commented that “Effect 

sizes for ANOVA results are also of the same type as the correlation but use the Greek letter eta 

(η) and are called eta-squared or partial eta-squared” (p. 249, italics added). However, no clear 

distinction is made between η2 and ηp
2. In Phakiti (2014), another generally strong reference, no 

clear distinction between the use of eta- and partial eta-squared is made (see p. 205 and pp. 283-

300). 

Other L2 research methods textbooks we reviewed likewise lacked sufficient discussion 

of the difference between the η2 and ηp
2 effect size measures. Dörnyei (2007), for example, first 

provided a brief account of eta squared followed by presenting the formula for computing η2. 

However, the only passing reference to ηp
2 was made later in the context of ANCOVA: “The 

good news about SPSS output is that next to the significance value we find the ‘partial eta 

squared’ index, which is an effect size” (p. 223, italics added). A discussion on η2 and ηp
2, 
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however, did appear in Larson-Hall (2016) where a number of the same considerations addressed 

here as regards these two variants were usefully and clearly explained (see p. 149).  

We suggest that future texts that discuss ANOVA explain all the terms that appear in a 

full table of summary results (Thompson, 2006). It would be particularly useful if such a rubric 

would detail how all terms in the ANOVA results, including but not limited to η2 and ηp
2, are (a) 

computed and (b) related to each other. When a reader is able to ascertain the relationship 

between all the terms in an ANOVA summary table, the distinction between η2 and ηp
2 becomes 

more meaningful. As a final note, we would add that in many studies using ANOVA and its 

variants, researchers will want to go beyond the initial analysis to often perform pair-wise 

comparisons of groups’ mean scores. In such cases, it is not sufficient to report only the effect 

size for the ANOVA main and interaction effects; rather, an eta-squared (equivalent to a point-

biserial correlation; rpb) or a standardized mean difference effect size such as Cohen’s d for the 

comparison of interest should be reported and interpreted as well. 

Conclusion 

“[A]ny effect size that is chosen from possible alternatives should be technically [and 

nominally] appropriate” (Grissom & Kim 2012, p. 9). Evidence we provide in this paper contains 

numerous and recent examples of erroneous reporting of often large ηp
2 effect sizes in multi-way 

designs misinterpreted and mislabeled as η2. 

The distinction we draw in this paper between η2 and ηp
2 is in no way semantic or 

statistical nit-picking. These effect sizes are increasingly reported throughout quantitative L2 

research. They also have immense potential to inform our understanding of L2 learning and use. 

Clarity about these indices, their reporting, and interpretation is, in fact, critical to arrive at 
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appropriate conclusions regarding L2 theory and practice and, at the same time, to preventing 

misinterpretations that compromise work in this field. 

We remind readers that, like many measures of effect size and in contrast to the 

dichotomous result embodied by p values, an η2 value provides a continuously-expressed result 

within a single multi-way ANOVA. Thus, reporting ηp
2 values alone which (a) lack 

comparability advantages within a study and (b) are often larger than η2 values (see Discussion 

section) may lead to erroneous interpretation. Added to the above problems is that ηp
2 values 

depend on the model of analysis (i.e., fixed, random, and mixed). That is, for a given study, if we 

run the data analysis under fixed-, random-, or mixed-effects models, values of ηp
2 for some 

treatment effects can change. Presenting the reasoning behind this dynamic requires knowledge 

of “Mean Squares Expectation Rubric” which falls outside the scope of the present paper (but 

see Thompson, 2006). Based on these considerations, we encourage L2 researchers to compute, 

report and interpret, by default, (classical) η2 for all ANOVA-based analyses. This approach will 

provide an estimate of variance accounted for that is more stable as well as comparable within a 

single multi-way study. However, it is also useful for researchers to report ηp
2 along with η2 to 

avoid the possibility of erroneous reporting and interpretation. In addition, in multi-way designs, 

reporting ηp
2 facilitates the calculation of power for an effect and thus using the size of that effect 

as the basis for planning the sample size for a relevant, future research. Thus, eta- and partial eta-

squared serve different purposes which legitimizes the presence of both estimates in published 

multi-way ANOVA studies (see Notes). Finally, it is critical to note that reporting confidence 

intervals for ηp
2 values is both highly recommended and possible via several statistical packages. 

For example, one can use the function “peta.ci” in the first author’s R package (Norouzian, de 

Miranda, & Plonsky, under review) available at (https://github.com/rnorouzian/i/blob/master/i.r). 

https://github.com/rnorouzian/i/blob/master/i.r
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Unfortunately, confidence intervals for eta-squared are more complex (often roughly 

approximated) than those for partial eta-squared, and not currently widely available.   

In closing, the results of this study do not present an ideal state of statistical proficiency 

in L2 research. Nevertheless, we are hopeful that the field’s momentum toward methodological 

reform—a movement to which the present study seeks to contribute—will continue to improve 

L2 research and reporting practices thereby leading to a clearer understanding of language 

learning and use.  

 

Notes 

A more detailed discussion on the application of eta-squared (η2) and partial eta-squared 

(ηp
2) in L2 research depending on the substantive nature of the independent variables is currently 

available at Open Science Framework (https://osf.io/aymqd/) as supplementary to the present 

study.  
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CHAPTER III 

A BAYESIAN APPROACH TO MEASURING EVIDENCE IN L2 RESEARCH: AN 

EMPIRICAL INVESTIGATION 

 

Overview 

Null hypothesis testing has long-since been “the go-to analytic approach” in quantitative 

second-language (L2) research (Norris, 2015, p. 97). To many, however, years of reliance on this 

approach has resulted in a crisis of inference across the social and behavioral sciences (e.g., 

Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016). As an alternative to the null 

hypothesis testing approach, many such experts recommend the Bayesian hypothesis testing 

approach. Adopting an open-science framework, the present study (a) re-evaluates the empirical 

findings of 418 t-tests from published L2 research using the Bayesian hypothesis testing, and (b) 

compares the Bayesian results with their conventional, null hypothesis testing counterparts as 

observed in the original reports. The results show that the Bayesian and the null hypothesis 

testing approaches generally arrive at similar inferential conclusions. However, considerable 

differences arise in the rejections of the null hypothesis. Notably, 64.06% of cases when p-values 

fell between .01 and .05 (i.e., evidence to reject the null), the Bayesian analysis found the 

evidence in the primary studies to be only at an “anecdotal” level (i.e., insufficient evidence to 

reject the null). Practical implications, field-wide recommendations, and an introduction to free 

online software (rnorouzian.shinyapps.io/bayesian-t-tests/) for Bayesian hypothesis testing are 

discussed.  

 

 

rnorouzian.shinyapps.io/bayesian-t-tests/


 

35 

 

Introduction 

Recent advances in the social science research methods have been embraced by a wide 

array of social and behavioral sciences. Similarly, in second language (L2) research, several 

influential works (e.g., Larson-Hall, 2016; Norouzian & Plonsky, in press; Norris, 2015; Plonsky 

& Oswald, 2014) and special issues (e.g., Language Learning 65, Suppl. 1) have been devoted to 

a budding “methodological reform” currently taking place. These reform efforts are made under 

the assumption that “[p]rogress in any of the social sciences depends on sound research methods, 

principled data analysis, and transparent reporting practices; the field of second language 

acquisition (SLA) is no exception” (Plonsky & Gass, 2011, pp. 325-326). 

Methodologically speaking, one of the most challenging tasks facing L2 researchers is 

making reasonable inferences when extending their study findings to the larger populations of 

interest. Indeed, a good share of recent methodological works within L2 research consists of 

criticisms against the common practice of null hypothesis testing to make such inferences (e.g., 

Norris, 2015; Norris et al., 2015; Plonsky & Oswald, 2014). These criticisms are mainly 

motivated by the fact that, despite their widespread use, p-values resulting from the formal 

testing of a null hypothesis (H0) provide misleading measures as to whether an empirically 

obtained effect from a sample of participants generalizes to the larger population of interest or 

not (Francis, 2016; Ioannidis, 2005; Thompson, 2006). Pointed calls discouraging the common 

use of p-values in applied research have now been made at the societal level as well. Most 

notably, the American Statistical Association (ASA) recently released an unequivocal statement 

on the matter, arguing that “a p-value does not provide a good measure of evidence regarding a 

model or hypothesis” (American Statistical Association, 2016). 
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Consequently, to some experts, years of reliance on p-values has contributed to what 

might be termed as the ‘Crisis of Inference’ across social and behavioral sciences (Dienes & 

Mclatchie, 2017; Kruschke & Liddell, 2017; Pashler & Wagenmakers, 2012; Rouder et al., 

2016). At its core, such a crisis stems from the lack of confidence in the inferential conclusions 

about the real-world effects of various research phenomena based on p-values from the 

individual studies targeting those phenomena. 

While these criticisms are important in raising our collective awareness about the 

problems associated with p-values and the null hypothesis testing approach, we argue that what 

is critically needed is knowing about the alternatives to p-values, and how such alternatives 

compare with—and, in many cases, improve on—p-values.  

Null Hypothesis Testing 

The conventional paradigm to make a formal inference from which p-values result is 

known as null hypothesis testing. The idea is that when a researcher finds an effect from a single 

study with a specified sample of participants, s/he must first assume that there is no effect (i.e., 

effect size is zero) from his/her study in the actual population of participants (i.e., H0; Null 

Hypothesis position). In order for this approach to be applied appropriately, the researcher must 

then theoretically think of infinitely repeating the exact same study with different samples of 

participants the same size of his/her own study from the population. Because the make-up of 

participants in each of these repetitions of the study could be different, the found study effects in 

these repetitions might differ from each other forming a theoretical mass of obtained effects. 

Some of resultant effects in this mass may have occurred more frequently, and some less making 
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some areas of the mass to be higher and other areas lower in terms of frequency (sometimes 

forming a bell-curve of some kind). 

With this theoretical mass of effects at hand, a (two-tailed) p-value is simply obtained by 

examining the mass to find out the probability of the effect actually found by a researcher or 

more extreme (i.e., larger in absolute value) than that. For example, for a simple L2 pre-post 

study with 30 participants which has found a Cohen’s d effect size of .3, the resulting p-value is 

graphically shown as the two red-shaded areas of the grey-colored mass of the study’s theoretical 

effect values in Figure 6 (to explore Figure 6 see https://github.com/izeh/l/blob/master/1.r). In 

this case, these two red-shaded areas in the tails constitute 11.11% of the entire theoretical mass 

of effect size values for this example. Thus, the probability known as the p-value for this 

example is .1111. 

 
Figure 6. The process of obtaining a p-value from a pre-post design. 

 

 

As an evidence-measuring index, a p-value has a fine-grained classification that indicates 

the strength of the evidence a p-value provides against the null hypothesis position (H0). Table 5 

shows this fine-grained classification for p-values (see Wasserman, 2004, p. 157). However, the 

-1.0 -0.5 0 0.5 1.0 

Effect Size (d) 

0.3 

Found Effect Size (d) 

p-value = 0.1111 

https://github.com/izeh/l/blob/master/1.r
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common practice is that when a p-value is smaller than .05 (or 5% of the theoretical mass of 

effects), a researcher can conclude s/he has evidence against the null hypothesis position, as the 

effect s/he has found from her/his study compares with 5% or less of the theoretical mass of 

effects. Because such areas are distant from 0 (our null hypothesis and the center of the mass in 

Figure 6), the conventional conclusion is that the null hypothesis is unlikely to be true. Thus, we 

should reject the null hypothesis.  

Table 5  

P-values Classificatory Scale (Wasserman, 2004) 

p-value Strength of Evidence 

< .001 Decisive evidence against H0 

.001 - .01 Substantive evidence against H0 

.01 - .05 Positive evidence against H0 

> .05 No evidence against H0 

 

Bayesian Hypothesis Testing 

Bayesian hypothesis testing takes a completely different approach to the hypothesis 

testing process. Specifically, in the first step the obtained effect from a study (i.e., an obtained 

effect size) is tested against a range of innumerable hypotheses. The result of this first step is 

referred to as a Likelihood Function. In a likelihood function, the obtained data gets a chance to 

be benchmarked against all possible hypotheses. Thus, in addition to the theoretical mass of 

effects based around a null (i.e., 0), Bayesian hypothesis testing allows for any other alternative 

value to be the basis for the theoretical mass of effect values. Such alternative hypotheses are 

innumerable and thus require a reasonable specification (see principle 1 in the next section). For 
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example, if for illustration purposes, we take only four possible alternative effect values (i.e., H1: 

“.5”, H2: “1”, H3: “1.5”, H4: “2”) in addition to H0 (i.e., 0) for our example of a simple pre-post 

study with 30 participants, then we can show the null as well as four alternative theoretical 

masses of effects side by side in Figure 7 (to explore Figure 7 see 

https://github.com/izeh/l/blob/master/2.r). 

 
Figure 7. Four theoretical masses of effects based on four alternatively hypothesized effect size 

values.  

 

The Bayesian hypothesis testing then benchmarks the obtained effect size (in our 

example Cohen’s d of .3) against the theoretical mass based around the null hypothesis (see 

Figure 7), as well as benchmarking the same obtained effect size against the theoretical masses 

based around all alternative hypotheses. The value obtained from each set of benchmarking 

provides the probability of the observed effect based on its respective hypothesis. The idea is 

then to simply compare (by division) these two sets of probabilities (i.e., from alternatives and 

null) to arrive at what is called a “Bayes Factor”. Thus, a Bayes factor is a statistic that expresses 

-1 0  3 4 

Effect Size (d) 

H 0 
H 1 

.5 

H 2 

1 

H 3 

1.5 

H 4 

2 

https://github.com/izeh/l/blob/master/2.r
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the comparative evidence for one hypothesis (e.g., alternative hypothesis) over another 

hypothesis (e.g., null hypothesis). A Bayes factor provides a naturally comparative metric 

replacing a p-value as a widely-criticized evidence-measuring index (see Etz & Vandekerckhove, 

in press; Kruschke & Liddell, 2017; Morey, Wagenmakers, & Rouder, 2016; Rouder et al., 2016; 

Rouder, Speckman, Sun, Morey, & Iverson, 2009). To better understand a Bayes factor, let us 

apply the concept to a meaningful L2 quantitative research example. We will then formalize the 

steps involved in its computation. 

Suppose a researcher is studying the effect of an L2 treatment on the development of 

explicit knowledge (DeKeyser, 2015; Ellis, 2009; Lyster & Sato, 2013) of 60 high-intermediate 

English as a Foreign Language (EFL) learners with respect to the English indefinite article 

“a/an”. Following the treatment at the post-testing stage, the goal is to evaluate the difference in 

the level of the explicit knowledge of the members of the treatment group (n = 30) and the 

control group (n = 30) with respect to the target linguistic form. In both groups, the development 

of explicit knowledge is measured using a grammaticality judgement test (GJT) that includes 20 

target errors (see Ellis, 2009). A common scoring method (see Mackey & Gass, 2016; Shintani & 

Ellis, 2013) for GJTs is a dichotomous scheme (i.e., 0 for not identifying an erroneous form, and 

1 for successfully identifying an error). Therefore, the minimum score that a participant can 

obtain on such a GJT is 0 and the maximum score is 20 with all other possible scores (i.e., 1, 2, 

3, …, 19) lying in between. Let us simulate such a study and then conduct both the null as well 

as the Bayesian hypothesis testing to evaluate the results. The simulated study’s design and raw 

scores for all 60 EFL participants in the two groups are graphically shown in Figure 8 (to explore 

Figure 8 see https://github.com/izeh/l/blob/master/3.r).  

 

https://github.com/izeh/l/blob/master/3.r
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Figure 8. Participants’ scores on GJT. Each grey, horizontal, dotted line represents a participant 

(1, 2, …, 60). The vertical dashed lines denote the mean of each group. Mean diff. = difference 

between the means of the two groups. 

 

As indicated in Table 6, based on the result of this simulated study we can conclude that the L2 

treatment has been effective in expanding the explicit knowledge of the treatment group with 

respect to the target linguistic form (t (58) = 2.31, p = .02, d = .60, 95% CI(d) [.08, 1.12]). 

Furthermore, since we followed a null-hypothesis testing approach, we reject the null hypothesis 

position (H0) that the effect of this treatment is zero in the actual population of high-intermediate 

EFL learners. Given this positive evidence against the H0 (see Table 5), we can claim that the 

significantly positive effect of the treatment extends beyond the 60 high-intermediate EFL 

participants in the present study and to the far larger population of high-intermediate EFL 

learners. 
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Table 6  

Post-Test Results for EFL Learners in a Simulated Study (N = 60) 

 Descriptive  Inferential 

Groups n M (SD) ES (d) 95% CI(d)  t (df) p 

Treatment 30 
10.13 

(2.08) 
.60 [0.08, 1.11] 

 

2.31(58) 0.024 

Control 30 
8.87 

(2.16) 
 

Note. ES = Effect size; d = Cohen’s d. 

Is the claim we have just made reliable? Can this significantly positive result really generalize to 

the actual population of high-intermediate EFL learners? No.  

Indeed, the data and simulation we have just presented is based on a population in which there 

was absolutely zero effect for the L2 treatment in the population. Nevertheless, the observed 

effect including the statistically significant p-value and the corresponding d value well above 

zero are both entirely possible. The null-hypothesis testing approach, in this case, led us to an 

erroneous conclusion. Consequently, any practical implications from such a study are completely 

invalid as well. 

As noted earlier, Bayesian philosophy’s approach to our running research problem is different 

from that of the null hypothesis testing. Systematically speaking, the Bayesian approach lays out 

the following three principles: 

1- Specify the alternative hypotheses. In addition to the null hypothesis which describes only 

one possibility for the effect (i.e., effect is “0”) of the study in the actual population, 

specify a set of reasonable alternative effects informed by previous findings or the 

general sizes of effects in your field. The researcher describes all different possibilities 

for the effect size of the study in the actual population. 
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2- Obtain a comparative measure. Divide the likelihood of your observed effect under the 

alternative hypothesis by that under your null hypothesis to obtain a “comparative 

measure” indicating the extent to which a hypothesis (e.g., alternative hypothesis or null 

hypothesis) your study data supports. For example, if you obtain 2, this means your 

alternative hypothesis is two times more strongly supported by your data. Call this 

comparative measure a “Bayes Factor”.  

3- Interpret the comparative measure. Instead of rejecting/not rejecting a hypothesis, 

interpret your obtained “Bayes Factor” on a classificatory scale. The scale provides a 

useful guide, but is not meant to provide a rigid set of benchmarks. Researchers may 

evaluate their obtained Bayes factor (Bayesian counterpart of p-values) against Table 7 to 

evaluate the extent to which a hypothesis (i.e., Alternative or Null) their study data 

supports (Jeffreys, 1961, p. 432). 

Let us apply these three Bayesian principles to our running example of the efficacy of an L2 

treatment in developing the explicit knowledge of 60 high-intermediate EFL learners. 

Specifying the alternative. As shown previously (see Figure 7), Bayesian hypothesis testing 

requires specifying a set of alternative hypotheses in addition to the null hypothesis. One of the 

most commonly employed, scale-free metrics used to specify alternatives is an effect size. An 

effect size such as Cohen’s d directly measures the effect of a treatment and is commonly used in 

L2 research (Larson-Hall, 2016; Plonsky & Oswald, 2014). 
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Table 7 

Bayes Factor Classificatory Scale 

Bayes Factor (
Alternative 

Null
) Strength of Evidence 

> 100 Decisive evidence for Alternative 

10 - 30 Very strong evidence for Alternative 

3 - 10 Substantial evidence for Alternative 

1 - 3 Anecdotal evidence for Alternative 

1 
Hypothesis Insensitive Evidence 

 (No evidence for either hypotheses) 

1/3 - 1 Anecdotal evidence for Null 

1/10 - 1/3 Substantial evidence for Null 

1/30 - 1/10 Strong evidence for Null 

1/100 - 1/30 Very strong evidence for Null 

< 1/100 Decisive evidence for Null 

 

Unlike the null hypothesis, which is represented by a single statement that the size of effect in 

the actual population of interest (here high-intermediate EFL learners) is “0”, alternative 

hypotheses on the size of effect in a population of interest almost always consist of innumerable 

values. That is, when we think about sizes of effect for our study in the actual population of EFL 

learners, a range of possible values could be considered. One useful way to specify a reasonable 

range for alternative sizes of effect in the actual population is to consider the sizes of effects in 

the general domain L2 research. Fortunately, a resource for doing so in the context of L2 

research is available. Specifically, Plonsky and Oswald (2014) studied the magnitude of Cohen’s 

d effect size in 346 primary L2 studies and 91 meta-analyses of L2 research. As for the 

magnitude of Cohen’s d in L2 research, Plonsky and Oswald (2014) found that the effect size 
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could often be as large as +1. Even so, direction in Cohen’s d effect size is arbitrary. Thus, a 

researcher specifying the alternative sizes of effect, and not certain about the direction of an 

effect in the population might want to take a neutral position and consider that effects can go 

both directions creating a two-sided (i.e., two-tailed) alternative. Therefore, when specifying the 

alternative, it is possible to consider that the alternative sizes of effects could be as large as 

reported by Plonsky and Oswald (2014) in either direction. That is, the most frequently expected 

sizes of an effect in the general domain of L2 research could often range between -1 and +1. 

Conversely, effect sizes outside -1 and +1, though possible, are much less frequently expected in 

L2 research. At this point, we should use a weighting scheme such that our highly-expected 

effect sizes (ranging from -1 to +1) are upwardly weighted and effect sizes outside this range 

receive successively less and less weight. Here we use the extensive research conducted in 

psychology which has led to the specification of a default form of alternatively hypothesized 

effect sizes (e.g., Ly, Verhagen, & Wagenmakers, 2016; Morey, Romeijn, et al., 2016). The 

technical specifics of this particular distribution of effect sizes are discussed in various sources 

(Rouder et al., 2009). But it is important to note that this weighting scheme for effect sizes is 

widely known as a Cauchy (after Augustin-Louis Cauchy) distribution with a scale (similar to 

standard deviation) of “.707”, and is centered at “0”. Figure 9 (to explore Figure 9 see 

https://github.com/izeh/l/blob/master/4.r) shows this default alternative distribution of effect 

sizes in which the part between -1 and +1 shows a much higher weight, indicating a higher 

likelihood of being observed. Values for effect size outside this range (i.e., –1 and +1), by 

contrast, are less likely to be found in L2 research, and thus the distribution assigns much smaller 

weight to such alternative effect size values. For example, we can all agree that it is very unlikely 

that a treatment in L2 research finds an effect of + 6. Thus, such an effect size value (and its 

https://github.com/izeh/l/blob/master/4.r
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negative counterpart – 6) is located in the tail area to denote that such a value may not be a good 

alternative value from the perspective of a researcher.  

 

 
Figure 9. A default distribution of alternatively hypothesized effect sizes in L2 research. 

 

Obtain a comparative measure. As with other, more familiar statistics, a Bayes factor, as a 

comparative measure, can be obtained using a software package. Here we use a free, web-

accessed, and interactive software package developed by the first author of the present study 

available at (rnorouzian.shinyapps.io/bayesian-t-tests/) to obtain the Bayes factor for our 

example of the effect of an L2 treatment on developing the explicit knowledge of 60 high-

intermediate EFL learners. As noted previously, the process of obtaining a Bayes factor begins 

by: (a) placing a researcher’s obtained effect value under all alternatively hypothesized sizes of 

effect in the mass of theoretical values specified under principle 1 (see Figure 9), (b) placing the 

same researcher’s obtained effect value under the null hypothesized size of effect in the 

population of high-intermediate EFL learners (i.e., “zero”), and finally (c) dividing (a) by (b) to 

-6 -4 -2 0 2 4 6 

Effect Sizes (d) 

-1 1 

Concentration of 
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effect sizes in L2 
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rnorouzian.shinyapps.io/bayesian-t-tests/
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obtain a comparative measure (the Bayes factor) indicating the extent to which either hypothesis 

is better supported by the researcher’s obtained results. Figure 10 provides the main panel of the 

software. The required settings for our example are indicated by the red arrows. 

 

 

Figure 10. A screenshot of the Bayesian for t-tests software. The red arrows indicate the settings 

used for the example in the text. 

 

The software has additional Bayesian capabilities that allows conducting Bayesian estimation, 

and replacing confidence intervals with a Bayesian alternative known as a “Credible Interval” 

for Cohen’s d effect size (Norouzian, De Miranda, & Plonsky, under review). As the output 

indicates, the Bayes factor comparing the probability of obtaining the effect size of .6 (our 

simulated study Cohen’s d effect size) given the alternative hypothesis to that given the null 

hypothesis is 2.34 (i.e., 
Alternative 

Null
). This Bayes factor value results from the three steps described 

earlier in this section. The numerator results from the application of Bayesian framework which 

integrates all the alternative hypotheses resulting in .0695. The denominator is simply the height 
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(i.e., density) of the observed effect (i.e., Cohen’s d of .6) under the mass of effects based around 

the null hypothesis which in this case is .0296. The Bayes factor (i.e., 2.34) is simply the result of 

the division of the two values (i.e., 
.0695 

.0296
 = 2.34). Given that the result of this division is larger 

than 1, we have found some evidence for the alternative hypothesis. Specifically, our simulated 

study’s results are 2.34 times more strongly supported by the alternative hypothesis than by the 

null hypothesis (H0). 

Interpret the comparative measure. Recall that our simulated L2 study’s result (i.e., t (58) = 2.31, 

p = .02, d = .60, 95% CI(d) [.08, 1.12]) led us to erroneously reject the null hypothesis, and claim 

that the L2 treatment can produce a significantly positive effect in the actual population of high-

intermediate EFL learners. However, the Bayes factor comparing such an alternative hypothesis 

to the null hypothesis is only 2.34 in favor of the alternative hypothesis. Based on Table 7, we 

only have anecdotal evidence (i.e., very weak) for accepting the statement that our treatment can 

have any positive effect in the actual population of high-intermediate EFL learners. In other 

words, the obtained Bayes factor for the exact same study leads us to conclude that the obtained 

effect size, Cohen’s d of .6, could have been a random finding applicable only to the particular 

60 high-intermediate EFL participants that we studied and not to the actual population of high-

intermediate EFL learners. 

The Study 

The t-test design in our example, one of the most common designs in L2 research 

(Larson-Hall, 2016), reveals the potential difficulty faced by L2 researchers when making an 

inference about the efficacy of their studies in larger populations of L2 learners. Specifically, the 

p-value of .02, provided positive evidence (see Table 5) against the null hypothesis yet the 
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obtained Bayes factor, for the same study provided anecdotal evidence (see Table 7) against the 

null hypothesis. To practically understand the extent of the disagreements in the conclusions 

reached using two evidence-measuring indices and make field-wide recommendations, this study 

seeks to re-analyze the empirical findings from 418 previously published t-tests from four well-

known L2 journals using p-values, and Bayes factors. The detailed comparison between these 

two approaches were motivated by the following research question: Do Bayes factors (Bayesian 

hypothesis testing) and p-values (null hypothesis testing) differ in agreement over the strength of 

empirical findings from a representative sample of t-tests from published L2 research? 

Method 

In the following section, methods used to select L2 journals, criteria for choosing 

individual L2 studies are explained. Also, procedures and analyses followed are detailed. 

Additionally, all the codes, software and data are made available online and linked within the 

discussions when appropriate. 

Journal Selection and Inclusion Criteria 

To select the L2 journals for the present study, we consulted (a) previous surveys of L2 

research practices (e.g., Egbert, 2007; Gass, 2009; Lazaraton, 2005; Plonsky, 2013), (b) Journal 

Citation Reports (JCR, with no impact factor size considerations), (c) L2 method textbooks 

providing various L2 journals’ descriptions (e.g., Perry, 2011), and (d) miscellaneous documents 

surveying L2 journals’ perceived quality (VanPatten & Williams, 2002). 

There is, of course, no consensus as to which journals are most prominent or influential 

in the field. In the end, we selected the following four journals: Language Learning, Modern 

Language Journal, Studies in Second Language Acquisition, and System. It is important to note 

that as long as the sampled primary L2 studies from these journals employ a significance level 
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that is common in L2 research (e.g., .05), and include sample sizes that are commonly found in 

the general domain of L2 research, the results of the present study can provide a reasonable basis 

for offering field-wide recommendations as to how the conclusion of L2 t-test studies are 

changed if the conventional null hypothesis testing approach is replaced with the Bayesian 

hypothesis testing approach. 

Given the frequency with which t-tests are employed in L2 research, in each of the four 

selected L2 journals, we limited our search to studies published in the 2014 and 2015 volumes. 

In line with previous reviews (e.g., Gass, 2009), we excluded from consideration forums, short 

reports, commentaries, review articles, and book reviews. Initially, data from 712 t-tests from 

119 studies that employed t-tests were extracted. However, our technical inclusion criteria of 

collecting t-tests that (a) were not used in pair-wise comparisons following (post-hoc) a larger 

analysis (often ANOVAs), (b) were not used for planned comparisons, (c) were not from 

relational analyses that use t-tests (e.g., regression) and (d) if from independent-samples, were 

calculated under the assumption of equality of group variances, decreased the final number of the 

sampled t-tests to 418. This sample included 172 independent-samples t-tests, and 243 paired-

samples t-tests, and 3 one-sample t-tests. The complete raw dataset for the present study is 

publicly available at (https://raw.githubusercontent.com/izeh/l/master/l.csv). 

Procedures and Analyses 

In order to address our research question, we followed a standard data collection 

procedure as recommended in synthetic research (see Plonsky & Oswald, 2015). First, each 

study in the sample was systematically coded for its type of t-test (i.e., independent-samples, 

paired-samples, one-sample). Then, we extracted from each study its corresponding t-value(s), 

https://raw.githubusercontent.com/izeh/l/master/l.csv
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samples sizes (i.e., n1, and if independent-samples t-test n1 and n2), degrees of freedom, and the 

p-value(s). The analyses were conducted using a computer program developed by the first author 

in the R language for statistical computing (R Core Team, 2017). The complete R program 

developed to analyze the data for the present study is publicly available at 

(https://github.com/izeh/l/blob/master/d.r). Essentially, the program first distinguished between 

the type of the t-tests in the sampled primary studies, and accordingly performed a secondary 

null hypothesis test for each t-test in the primary studies to obtain the exact p-values (up to 9 

digits). Then, the program separately performed a Bayesian hypothesis test to obtain an exact 

Bayes factor (up to 9 digits) for each t-test. The computation of Bayes factors in each case 

followed the Bayesian principles described in the previous section. Next, the null hypothesis 

testing results, and the Bayesian hypothesis testing results were categorized according to their 

respective classificatory scales presented earlier in Table 5 and Table 7. Finally, the R program 

reorganized the categorized results of the comparisons between the two methods of inference 

(i.e., the null hypothesis approach vs. the Bayesian hypothesis testing approach) to create a 

contingency table. Importantly, the contingency table enables comparing the conclusions of the t-

tests in the sampled primary L2 studies according to the null hypothesis approach with those 

according to the Bayesian hypothesis testing approach. 

Results 

The present study was intended to examine the extent to which the inferential conclusions 

of a representative sample of L2 t-test studies published between 2014 – 2015 might differ 

according to the method of inference employed. As noted in the Method, the result of the 

comparisons between the conclusions of these primary studies using the Bayesian and null 

hypothesis testing approaches could be best made using a contingency table. The contingency 

https://github.com/izeh/l/blob/master/d.r
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table allows for the results from the two methods of inference to be benchmarked against their 

respective classificatory scales presented in Tables 5 and 3. Table 8 provides a 7 (rows) × 4 

(columns) contingency table that contains the frequency outcomes of the comparisons made 

between the two methods. The last column and the last row titled marginal provide the sum of 

each column and each row, respectively. Additionally, the sum of the entire columns marginals 

and row marginals equal the entire set of the t-tests collected from the primary studies. 

Table 8 

Comparison of Bayesian and Null Hypothesis Testing Results for 418 T-Tests 

  p-value 

Bayes Factor  
Decisive 

(0 – .001) 

Substantial 

(.001 – .01) 

Positive 

(.01 – .05) 

None 

 (.05 – 1) 
Marginal 

Decisive (> 100) 88 0 0 0 88 

Very Strong (30 – 100) 19 2 0 0 21 

Strong (10 – 30) 1 36 0 0 37 

Substantial (3 – 10) 0 28 20 0 48 

Anecdotal H1 (1 – 3) 0 0 41 15 56 

Anecdotal H0 (1/3 – 1) 0 0 3 87 90 

Substantial H0 (1/10 – 1/3) 0 0 0 78 78 

Marginal 108 66 64 180 418 

 

To better establish the relationship between the inferential conclusions of the two 

methods of inference and evaluate their comparative distribution, the results of the comparisons 

are also graphically shown in Figure 11 with the marginals in percentages (to explore Figure 11 

and Table 8 see https://github.com/izeh/l/blob/master/5.r). 

https://github.com/izeh/l/blob/master/5.r
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Figure 11. Relationship between the conclusions of the Bayesian and null hypothesis testing 

approaches. Side percentages indicate the proportion of conclusions in each category out of the 

total sample size (N = 418). Bayes factors above the red, dashed line support alternative (H1) and 

those below the line support H0. The red, double-headed arrow indicates the range of Bayes 

factors for p-values falling between .01 and .05. 

 

As shown numerically in Table 8 and graphically in Figure 11, a clear relationship between the 

results of the Bayesian hypothesis testing and those of the null hypothesis testing is observed. 

Specifically, small p-values which provide “Decisive” (0 – .001) evidence against the null 

hypothesis correspond to very large Bayes factors that also provide “Decisive” (> 100) or “Very 

Strong” (30 – 100) evidence against the null hypothesis. The pattern of agreements between the 

two methods of inference is also seen for p-values that provide “Substantial” (.001 - .01) evidence 

against the null hypothesis. These p-values correspond to Bayes factors that likewise provide either 

“Strong” (10 – 30) or “Substantial” (3 – 10) evidence against the null hypothesis. However, a 
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critical disagreement seems to arise between the two methods of inference over what the 

conventional p-value approach labels as “Positive” (.01 – .05) evidence against the null hypothesis. 

For 64.06% of such p-values, the corresponding Bayes factors provide only “anecdotal” evidence 

for the alternative hypothesis. In other words, the amount of evidence that under the null hypothesis 

testing approach leads to the rejection of a null hypothesis (p-values between .01 and .05), from 

the Bayesian hypothesis perspective is “not worth more than a bare mention” (Jeffreys, 1961, p. 

432). In the final category where p-values find “no” (> .05) evidence against the null hypothesis, 

the corresponding Bayes factors also mainly provide no evidence against the null hypothesis. Thus, 

no decision-changing disagreements between the conclusions of the two methods of inference for 

this category exist. 

 It is wise to change the prior on effect size and re-analyze the data to inspect stability of the 

results obtained above. For this purpose, we use one other prior specification. This specification is 

a Cauchy(0, 1) which is wider than the prior used in the previous section. Under this specification, 

still 64.06% (41 out of 64) of the p-values falling between .01 and .05 have corresponding Bayes 

factors that only provide “anecdotal” evidence for the alternative hypothesis. The results are 

graphically shown in Figure 12 numerically in Table 9. 
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Table 9 

Comparison of Bayesian and Null Hypothesis Testing Results for 418 T-Tests (wider prior) 

  p-value 

Bayes Factor  
Decisive 

(0 – .001) 

Substantial 

(.001 – .01) 

Positive 

(.01 – .05) 

None 

 (.05 – 1) 
Marginal 

Decisive (> 100) 87 0 0 0 87 

Very Strong (30 – 100) 18 1 0 0 19 

Strong (10 – 30) 1 35 0 0 38 

Substantial (3 – 10) 0 30 14 0 44 

Anecdotal H1 (1 – 3) 0 0 41 15 48 

Anecdotal H0 (1/3 – 1) 0 0 3 62 70 

Substantial H0 (1/10 – 1/3) 0 0 0 111 112 

Marginal 108 66 64 180 418 
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Figure 12. Relationship between the conclusions of the Bayesian and null hypothesis testing 

approaches with wider prior specification (i.e., Cauchy[0, 1]). 

 

Discussion 

Several seminal, theoretical works (e.g., Benjamin et al., in press; Dienes & Mclatchie, 

2017; Johnson, 2016; Kruschke & Liddell, 2017; Rouder et al., 2016) along with the American 

Statistical Association (2016) have called for “alternative measures of evidence such as 

likelihood ratios or Bayes factors” (American Statistical Association, 2016, p. 2) in place of the 

current null hypothesis testing-based measures (i.e., p-values). We empirically implemented 

these recommendations in a representative sample of quantitative L2 studies that had used t-tests 

designs. For these studies, we compared the inferential conclusions of the Bayesian hypothesis 

testing approach with their conventional, null hypothesis testing counterparts. Here we provide 

two distinct implications arising from our study. 
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A New Threshold for Statistical Significance: Replication and Estimation 

Our empirical findings raise a critical concern that the commonly adopted thresholds 

(ranging from .01 to .05) for declaring a statistically significant finding in quantitative L2 

research could allow for a potentially high false discovery rates (Benjamin et al., in press; 

Ioannidis, 2005). In brief, false discovery rate refers to “the proportion of true null effects among 

the total number of statistically significant findings” (Benjamin et al., in press, p. 8). Specifically, 

the disagreement between the Bayesian and null hypothesis testing approaches over the 

sufficiency of the evidence against the null hypothesis when p-values fall between .01 – .05 

suggests that adoption of more stringent (i.e., lower) thresholds for researchers to declare a 

statistically significant finding could reconcile the two methods of inference. How low? Johnson 

(2013) and Benjamin et al. (in press) both reason that such a threshold must be .005.  Notice that 

even in our empirical results in Figure 12, t-tests from studies whose p-values are between .001 – 

.01 correspond to Bayes factors that either provide “Substantial” (3 – 10) or “Strong” (10 – 30) 

evidence against the null (and thus for the alternative hypothesis). Therefore, it can be 

understood that lowering the threshold for statistical significance to .005 finds support from the 

Bayesian stand point. For the primary studies in our sample, the entire distribution of p-values is 

shown in Figure 13 (to explore Figure 13 see https://github.com/izeh/l/blob/master/6.r). 

https://github.com/izeh/l/blob/master/6.r
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Figure 13. Distribution of p-values in the primary studies 

 

 

As expected, a majority of the published results (238 t-tests) in the primary studies had found 

statistical significance under the traditional statistical threshold of .05. It would be interesting to 

see what proportion of these significant findings will remain significant if we employ the 

recommended threshold of “.005”. As depicted in Figure 14 (to explore Figure 14 see 

https://github.com/izeh/l/blob/master/7.r), 154 tests in the primary studies remain statistically 

significant; a 35.29% (i.e.,
238 - 154 

238
× 100)  reduction in declarations of significant findings in an 

overall sample of 418 tests.  
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Figure 14. Distribution of significant p-values in the primary studies. 

 

 

A critical question is then what we gain in return for reducing the number of findings considered 

to be statistically significant?  

We believe, two importantly related gains accrue from adopting this new threshold for 

the field. First, gains in replicability and reproducibility rates. Although it garnered little 

attention until recently (but see Porte, 2012), replication has long been known to be the “sine qua 

non of research” (Thompson, 2004, p. 150, italics in original). Recent large-scale, international 

replication efforts in other fields such as psychology (Open Science Collaboration, 2015) have 

provided empirical evidence that original studies with p-values smaller than “.005” are nearly 

twice as much likely to be replicated and verified by an independent replication attempt under 

the original study’s stated conditions compared to that for the original studies with larger p-

values up to “.05” (see Benjamin et al., in press; Johnson, 2013). In other words, if we believe 

that “[t]he essence of the scientific method involves observations that can be repeated and 

verified by others” (American Psychological Association, 2009, p. 12), then the higher 
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reproducibility rates in the field seems to provide one reasonable rationale for embracing a 

stricter threshold for statistical significance. 

Second, adopting the new convention for statistical significance will also assist us in paying 

attention to findings that provide more accurate information about the size (i.e., magnitude) and 

the direction (i.e., sign) of underlying (population) effects. Gelman and Carlin (2014) 

convincingly argue that “when researchers use small samples and noisy measurements to study 

small [underlying] effects . . . a significant result is often surprisingly likely to be in the wrong 

direction and to greatly overestimate an [underlying] effect” (p. 1). In fact, the issues of 

“impoverished sample sizes” (Norris et al., 2015, p. 1) and the modest size of the underlying 

effects in L2 research (Plonsky & Oswald, 2014) are both well documented. In essence, the crux 

of the argument made by Gelman and Carlin (2014) is that if we use the “.05” as the threshold 

for detecting statistically significant results, while using small sample sizes to estimate small 

underlying (population) effects, then the likelihood that our obtained, statistically significant 

results are overestimates of their underlying population effects (i.e., exaggeration rate) or have 

additionally the wrong sign (i.e., misdirection rate) could be considerably high. A full 

demonstration of the points raised by Gelman and Carlin (2014) and software to implement them 

is provided in the Supplementary Documents for the present study found at 

(https://github.com/izeh/l/blob/master/i.pdf). Together with increasing the sample size for a 

research study, lowering the threshold for statistical significance might be a reasonable way to 

prevent the statistically significant findings that could potentially obscure our views regarding 

the size and the sign of the underlying population effects in the field. 

 

https://github.com/izeh/l/blob/master/i.pdf
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Bayesian Thinking: Researcher Involvement 

Another distinct implication from the present study relates to the advantages gained from 

applying “Bayesian thinking” to the inference process as we described it throughout this study. 

Specifically, we believe two advantages accrue from employing Bayesian thinking. First, 

researchers are not passive to the processes that determine the generalizability of their findings. 

In pursuit of objectivity, substantive researchers have traditionally been advised to determine 

their study generalizability through inferences that only consider a null hypothesis position. As a 

new possibility, Bayesian hypothesis testing asks that researchers use their substantive 

knowledge, practical experience, and prior research to specify the alternative hypotheses that 

could compete with the null hypothesis position. When no such knowledge is believed to be 

sufficiently available, or there are doubts in how best the alternative hypothesis distribution 

could be specified, we recommend the default alternative specification that we described in the 

present study (see principle 1). It is also possible that a researcher uses a number of reasonable 

alternative hypothesis distributions, and then check the stability of her/his Bayesian results. 

Thus, Bayesian hypothesis testing requires researchers’ involvement and transparency at every 

step of the inference-making process. 

Second, Bayesian thinking offers a philosophically sounder approach than null hypothesis testing 

regarding the inference process. Specifically, the null hypothesis testing process to reject a null 

hypothesis can be summarized by the following sentential logic: 

Premise 1: If H0 is true, then observation D is unlikely to happen 

Premise 2: Observation D happened 

Conclusion: Null Hypothesis is probably not true (i.e., p < .05, decision: reject H0) 
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Vulnerability of null hypothesis testing logic can be shown using simple examples that following 

this logic can lead to erroneous rejection of a valid null hypothesis (see Cohen, 1994; Pollard & 

Richardson, 1987). Consider the following example: 

 

 

The null hypothesis is a reasonable hypothesis; not many Americans are U.S. Senators. 

However, following the null hypothesis testing logic, we must reject the “Bob is an American” 

hypothesis! This is because the observation “Bob is a U.S. Senator” was not expected under the 

null hypothesis, and there is no other competing hypothesis under which to evaluate the same 

observation. Specifically, if instead of following the null hypothesis testing logic, one could 

specify an alternative under which the observation could be evaluated, the erroneous conclusion 

would not be made. For example, under the alternative hypothesis that “Bob is not an 

American”, the observation that “Bob is a U.S. Senator” has a “zero” probability: 

P(Bob is a U.S. Senator given that Bob is not an American) = .00000000          (1) 

However, out of roughly 300,000,000 Americans, only 100 are U.S. Senators. Thus, under the 

null hypothesis that “Bob is an American” the observation that “Bob is a U.S. Senator” results in 

the following probability: 

P(Bob is a U.S. Senator given that Bob is an American) = .00000033              (2) 

Premise 1: If Bob is an American, then it is unlikely that Bob is a U.S. Senator 

H
0
 Expectation under H

0
 

Observation 

Premise 2: Bob is a U.S. Senator 

Conclusion: Bob is probably not an American! (i.e., p < .05, reject H
0
) 
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Now, forming a simple ratio (just like Bayes factors) comparing the observation under the null 

hypothesis to that under the alternative makes clear that “Bob is an American” (the null 

hypothesis) is infinitely more likely than “Bob is not American” (i.e., .00000033 / 0 = + Infinity). 

Note that the p-value associated with same problem erroneously led to the rejection of the null 

hypothesis that “Bob is an American”.  

Thus, specification of alternatives and comparing the observed result under the alternative with 

that under the null is the philosophical advantage of the Bayesian thinking that, when applied to 

the inference process, helps avoiding incorrect rejection of null hypotheses. 

Conclusion 

Testing of hypotheses is often performed to distinguish the random findings (noise) from 

replicable ones (signal). The common use of p-values does not allow for the reliable detection of 

the true signals in the field. We proposed an empirically-informed modification for better use of 

p-values. We also introduced a new way for the reliable detection of the true signals in the field. 

This new way is based on Bayesian hypothesis testing and, instead of a p-value, results in a 

Bayes factor. We hope that the present study has offered solutions as to how improve our ability 

to detect true signals. Because only after the existence of a true signal is ensured, can one 

proceed to measuring the size of the obtained effect and thereby meaningfully contribute to L2 

theory and practice. 

 

Notes 

A supplementary document for the present study is found at: 

https://github.com/izeh/l/blob/master/i.pdf where further tools and L2 research examples are 

discussed. 

 

https://github.com/izeh/l/blob/master/i.pdf
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CHAPTER IV 

THE BAYESIAN REVOLUTION IN L2 RESEARCH: AN APPLIED APPROACH 

 
Overview 

Frequentist methods have long-since dominated in quantitative L2 research (Norris, 

2015). Recently, however, a number of fields have begun to embrace an alternative known as the 

Bayesian method (see e.g., Kruschke, Aguinis, & Joo, 2012). Using an open-source approach, 

this article provides an applied, non-technical rationale for Bayesian methods in L2 research. 

Specifically, we take three steps to achieve our goal. First, we compare the conceptual 

underpinning of Bayesian and Frequentist methods. Second, using real as well as carefully 

simulated examples, we introduce and apply Bayesian methods to estimate effect sizes from t-

test designs. Third, to promote the use of Bayesian methods in L2 research, we introduce a free, 

web-accessed, point-and-click software package (rnorouzian.shinyapps.io/bayesian-t-tests/) as 

well as a suite of flexible R functions (https://github.com/rnorouzian/i/blob/master/i.r). 

Additionally, we demonstrate Bayesian methods for secondary analysis. Practical and theoretical 

dimensions of a “Bayesian revolution” for L2 research are discussed. 

Introduction 

Recent years have seen repeated calls to reform the conventional data analysis practices 

in the social and behavioral sciences (e.g., Dienes & Mclatchie, 2017; Etz & Vandekerckhove, in 

press; Kruschke & Liddell, 2017; Morey, Romeijn, et al., 2016). Most prominent among these 

calls, however, has been one to shift emphasis away from Frequentist methods to Bayesian 

methods. Three critical ingredients are required for such a shift to take place in L2 research. 

First, in order to embrace the Bayesian method, we would need to address the difference between 

rnorouzian.shinyapps.io/bayesian-t-tests/
https://github.com/rnorouzian/i/blob/master/i.r
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the conventional, Frequentist method and the Bayesian method. Second, Bayesian methods are to 

be adapted to be used with a commonly employed set of designs in L2 research (e.g., t-test 

designs). Third, and as a very practical matter, software packages that handle Bayesian analyses 

must be available to a wide audience of users. It is the goal of this article to address these three 

key issues and, in doing so, to encourage and enable the use of Bayesian methods in L2 research. 

All the discussions are accompanied by informationally-rich visuals, and various demonstrations 

to establish the critical links needed to understand the basics of Bayesian methods with minimal 

use of technical terms or mathematical expressions. Additionally, following an open-science 

approach, all the tools, data, and scripts to reproduce the visuals and replicate the analyses are 

made publicly available to the reader. 

Frequentist and Bayesian Methods: An Introduction 

To appreciate the difference between the Frequentist and the Bayesian methods, it is best 

to apply these methods to a simple research problem. Suppose a researcher administers a single-

item survey to determine the real proportion of language minority families in a state with a large 

population of English Language Learners (ELLs) that prefer bilingual education (B) over 

monolingual education (M) for their children (e.g., Bedore, Peña, Joyner, & Macken, 2011; 

Farruggio, 2010; Ramos, 2007). In this case, parents’ preference for the “bilingual” or the 

“monolingual” (i.e., English-only) education indicates the binary nature of the data that is 

sought. Given the available resources, the responses from 100 randomly selected parents are 

collected, 55 of whom prefer “B”. Thus, the obtained proportion of the parents that prefer the 

bilingual education in this sample is 55%. By contrast, 45% of the parents prefer “M” for their 

children. Also, the 95% confidence interval values for the obtained proportion (i.e., 55%) of 

parents preferring the “B” are: [44.72%, 64.96%]. Figure 15 shows the proportion of preferences 
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for the bilingual education (B) as each parent in the sample (n = 100) responds (i.e., “B” or “M”) 

to the survey question (to explore Figure 15 see https://github.com/izeh/i/blob/master/1.r).  

 

 
Figure 15. Proportion of preferences for bilingual education. “B” denotes preference for 

bilingual education and “M” denotes preference for monolingual education. 

 

 

At this point, the critical question is: Given that we have data from only 100 parents in the state, 

can we discover the real proportion of preferences for bilingual education in the entire state? 

This question has a Frequentist as well as a Bayesian answer. 

From the Frequentist perspective, the answer to this question relies on the Frequentist 

theory. According to this theory, there is surely one objective answer to the question above. 

However, there will always be uncertainty in any one answer (i.e., point estimate; here 55%) 

obtained from any one study with a limited sample size (e.g., 100 parents). To incorporate this 

uncertainty in any obtained answer, Frequentists use a confidence interval (CI) whose 

interpretation requires close attention. For example, the 95% Frequentist confidence interval of 
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[44.72%, 64.96%] obtained from our above survey (see Figure 15) “would indicate that over 

long-run frequencies [i.e., infinitely many repetitions of the survey], 95% of the confidence 

intervals constructed in this manner (e.g., with the same sample size, etc.) would contain the true 

population value” (Depaoli & van de Schoot, 2017, p. 257). To better understand the nature of 

this interpretation, Figure 16 shows a possible set of results from only 20 such repetitions (to 

explore Figure 16 see https://github.com/izeh/i/blob/master/2.r). The filled circles represent the 

observed proportion of the parents that prefer bilingual education in each of these 20 repetitions 

of the survey. The solid horizontal lines passing through the filled circles are the 95% confidence 

intervals for the obtained proportion of preferences for “B” in each of these 20 repetitions of the 

bilingual education survey.  

 
Figure 16. Twenty repetitions of the same bilingual education survey. The vertical red line 

represents the real (i.e., state-wide) proportion of preferences for bilingual education. 

 

 

Let us assume for the sake of this demonstration that the real proportion of preferences for 

bilingual education in the population of parents is 75% (as shown by the vertical red line in 
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Figure 16). In this case, some of the obtained proportions (filled circles) in these 20 repetitions 

have either egregiously underestimated or overestimated the real proportion of preferences for 

bilingual education. These observed proportions are indicated in red as are their associated 95% 

confidence intervals, which do not contain the real proportion of preferences for bilingual 

education (i.e., 75%). Of course, 20 repetitions are not infinitely many repetitions. In theory, if 

repeated infinitely many times, 95% of the obtained confidence intervals will contain the real 

proportion of preferences for “B” that our researcher is interested in. Based on this perspective, 

the Frequentist answer to the critical question relies on a procedure that in the long run can be 

correct with a specified correction rate (e.g., 95%) and a specified error rate (e.g., 5%). 

Consequently, the so-called 95% confidence level often attached to an obtained CI in reality 

applies to a Frequentist, long-run procedure in which infinitely many intervals are assumed; it 

does not denote that a single interval obtained from a single study has captured the population 

value with 95% certainty (see Thompson, 2006, p. 204). 

From the Bayesian perspective, however, this long-run procedure and the subsequent 

interpretation is considered unnecessarily complex. That is, such a Frequentist interpretation not 

only is not desired, but it also could be a source of confusion for a researcher wanting to interpret 

her/his single study’s obtained results. Surely, what one seeks to have is X% certainty that a 

single obtained interval from her/his study has captured the population value. 

The Bayesian method does not require thinking in Frequentist terms. Rather, it starts 

from the position that when a parameter is unknown (e.g., proportion of parents preferring “B”), 

then it is wiser to think of it as a variable (rather than having a single answer as in the Frequentist 

method) with a full range of possibilities governing its magnitude. As one of the ways to apply 

this view to our bilingual survey from above, the Bayesian method might begin by asking our 
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researcher to use the prior empirical findings relevant to the phenomenon under study, and/or the 

theoretically defensible expectations for the phenomenon under study to define an expected 

range for the real proportion of the preferences for “B” prior to conducting the survey. Given 

such knowledge, some of the values in this expected range may be more strongly expected and 

some less. The resultant expected range along with the weights given to the individual values in 

it lead to the formation of a “prior” distribution. For example, a review of past literature might 

reveal that (a) the proportion of language minority parents that prefer bilingual education has 

been varying between 60% and 80% in the state of interest, (b) higher literacy rates, and socio-

economic status of the parents in language minority families have been reported, and (c) the 

long-term efforts and investments in promoting bilingual education in that state have been 

constantly increasing. Based on this knowledge, the values of proportion found to be smaller 

than 60% or larger than 80%, although possible, are logically less likely to represent the real 

proportion of preferences for “B” in the population of parents. Figure 17 shows a possible prior 

distribution (see next section for prior appropriateness) that would match the researcher’s 

expectations described above (to explore Figure 17 see https://github.com/izeh/i/blob/master/3.r). 

Displayed for better visualization, the upward-pointing arrows in the middle denote the higher 

weights given to individual values between 60% and 80%. By contrast, the downward-pointing 

arrows denote the successively lower weights assigned to individual values outside 60% and 

80%. Such a weighting scheme often results in prior distributions that resemble a bell-curve of 

some kind peaked over the expected range (here 60% - 80%). 

https://github.com/izeh/i/blob/master/3.r
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Figure 17. Prior distribution for the proportion of preference for bilingual education. 

 

Now that the prior distribution is at hand, the next step is to obtain the likelihood function for the 

obtained proportion of preferences for “B”. The likelihood function is easy to obtain because, 

depending on the nature of the study data, the likelihood functions are either well known or easy 

to construct. In our case, because the nature of the survey data is binary (i.e., “B” or “M”), the 

likelihood function is a “Binomial” one. All we need to do is to input the number of parents who 

preferred “B” (i.e., 55), and the total number of parents surveyed (i.e., 100) to a Binomial 

formula, and indicate the place for the unknown proportion of preferences for “B” in the formula 

by an “x” perhaps using a software package (see https://github.com/izeh/i/blob/master/4.r for an 

R implementation). Figure 18 shows the likelihood function for our example (to explore Figure 

18 see https://github.com/izeh/i/blob/master/5.r). 
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Figure 18. Likelihood function for the proportion of preference for bilingual education. 

 

 

In terms of weighting, the likelihood function automatically assigns the highest weight to 

the obtained proportion of “B” (i.e., 55%). This is almost always the case because, as implied 

earlier, likelihood functions are simply fixed, well-known formulas that operate solely on the 

basis of the obtained data. Thus, they recognize the obtained proportion of preferences for “B” as 

the most likely estimate of the real proportion of preferences for “B” in the population of parents 

and all other possible estimates further away from this estimate as successively less and less 

likely. 

Now that we have the two essential ingredients of a Bayesian method (i.e., prior and likelihood), 

it is time for the Bayesian mantra: 

Prior × Likelihood ∝ Bayesian Result                                      (1) 

where “∝” (is proportional to) denotes the fact that a Bayesian result from this equation remains 

proportional to its proper form until scaled by a normalizing constant (see Gelman, Carlin, Stern, 

& Rubin, 2014). For simplicity’s sake, the reader may take “∝” as “=”. Equation 1 is the only 

equation in Bayesian methods applied to ANY research problem. And the Bayesian result 
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obtained is the only result that an expert researcher will need to describe and interpret. At no 

point will one need to refer to the infinitely many repetitions [i.e., long-run frequencies] of the 

exact same survey necessary under the Frequentist paradigm. Essential to know is that the 

Bayesian result is better known as the “Posterior”. Per our Bayesian mantra, the posterior is 

obtained by multiplying the prior distribution by the likelihood function. Figure 19 illustrates this 

multiplication to obtain the posterior for our example (to explore Figure 19 see 

https://github.com/izeh/i/blob/master/6.r).  

 
Figure 19. Steps to obtaining the Bayesian result (i.e., posterior) for estimating the proportion of 

preferences for bilingual education. 

 

At this point, we can more precisely concentrate on our obtained posterior. Figure 20 

shows the posterior for our example with more details added to it to help the accurate 

interpretation of our Bayesian results (to explore Figure 20 see 

https://github.com/izeh/i/blob/master/7.r). As is discussed next, these details provide direct 

insights into finding out what the real proportion of parents’ preferences for “B” in the entire 

state (population) could be.  

Proportion of “B” 

× 

Prior 
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Proportion of “B” 

∝ 

Likelihood 

0% 20% 40% 70% 85% 100% 55% 

Proportion of “B” 

Posterior 
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https://github.com/izeh/i/blob/master/6.r
https://github.com/izeh/i/blob/master/7.r
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Figure 20. Posterior distribution for the proportion of preference for bilingual education. 

The confidence interval-like horizontal line segment at the bottom of Figure 20 covers 

95% of the highly weighted areas of the posterior. Values of proportion inside this 95% range are 

more credibly likely to represent the real proportion of preferences for “B” than others in the 

posterior. As such, this confidence interval-like range is often referred to as a “Credible 

Interval”. Such a credible interval is quite helpful in describing and interpreting a posterior. 

With the help of this credible interval, our researcher is now able to state that the real 

proportion of preferences for “B” in the population of parents could credibly range between 

47.87% and 65.87%. Notice the brevity and the directness with which a single obtained Bayesian 

credible interval describes the candidate values representing the real proportion of preferences 

for “B” in the population of parents. Also, note that the values of proportion closer to the center 

(filled circle) of this credible interval are still more likely to represent the real proportion of 

preferences for “B” in the population of parents than others. As we discussed above, none of 

Proportion of preference for “B” 
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these informative properties could be interpreted from a single obtained Frequentist confidence 

interval. 

Putting Priors to the Test 

In the previous section, we discussed that a Bayesian method starts by choosing a prior. 

Often, however, the prior distribution picked for estimating a parameter must pass a test for it to 

prove plausible. There are several ways of evaluating the plausibility of a prior depending on the 

nature of the parameter at hand, as well as the type of prior selected. In the case of estimating the 

proportion of parents supporting bilingual education described in the previous section, we used a 

type of prior that belonged to the “Beta” family. Beta priors are naturally bounded between 0 (or 

0%) and 1 (100%). Thus, they could be one possible prior type for estimating a parameter (e.g., 

proportion, eta squared effect size; see Norouzian & Plonsky, in press) that ranges between 0 (or 

0%) and 1 (or 100%). Albert (2009) suggests that a beta prior distribution may be specified 

“through statements about the percentiles of the distribution” (p. 23). In non-technical terms, 

even if past research shows that the proportion of language minority parents that prefer “B” for 

their children varies between 60% and 80%, we might not exactly know how well such findings 

do at representing the true proportions of preference for “B” across the state. That said, it would 

be perhaps unrealistic to think that the degree of representativeness for previous findings could 

be fairly high or fairly low. If one chooses to express this degree of representativeness in 

percentages (i.e., from not representative; 0% to completely representative; 100%), then 

conservatism dictates that a reasonable range for this representativeness could start from mid-low 

(e.g., 40%) to mid-high (e.g., 60%). This means we can specify different priors that separately 

take this range for representativeness (i.e., 40%, . . ., 50%, . . ., 60%) for the past research 

findings into consideration and then obtain the corresponding posteriors under all such priors. To 

https://en.wikipedia.org/wiki/Beta_distribution
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do this, we suggest using our suite of R functions accessible by running the following in R or 

RStudio®: 

source("https://raw.githubusercontent.com/rnorouzian/i/master/i.r") 

The first step would be to obtain a set of priors (e.g., 10) that incorporate the range of 40% to 

60% for the representativeness of past survey findings (i.e., 60% - 80%). The R function 

“beta.id” is designed for this purpose: 

I = beta.id(Low = "60%", High = "80%", Cover = seq(.4, .6, l = 10)) 

Now, we have 10 different prior specifications each of which incorporating in it a 

different level of representativeness (i.e., 40% (or .4) - 60% (or .6)) for the past research findings 

(i.e., 60% - 80%), all stored in “I”. Each of these 10 prior distributions can be individually 

inspected using the R function “prop.priors”. For example, to see the last (i.e., 10th) prior 

which was also used in the previous section (see Figure 17) we can use: 

prop.priors(a = I$a[10], b = I$b[10], dist.name = "dbeta", show.prior = TRUE) 

Or to see the first prior displayed below in Figure 21 we can use: 

prop.priors(a = I$a[1], b = I$b[1], dist.name = "dbeta", show.prior = TRUE) 
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Figure 21. The first prior distribution for the preference for “B”. 

The next step is to obtain the Bayesian result (i.e., posterior) using all these different 

priors one at a time and compare their resultant 95% credible intervals. Egregious differences 

among the 95% credible intervals would indicate that our results are sensitive to uncertainty 

about the representativeness of past research findings. When such notable differences occur, we 

have failed the test of robustness under our choices of prior. To perform these analyses and 

compare their 95% credible intervals, we can once again use the function “prop.priors”: 

prop.priors(n = 100, yes = 55, a = I$a, b = I$b, dist.name = "dbeta", scale = 

.1, top = 1.055) 

The Bayesian posteriors along with their 95% credible intervals are provided in Figure 22. 

 Preference for “B” ~ beta(4.11, 1.89) 

Proportion of Preference for “B” 
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Figure 22. Bayesian posterior credible intervals under various Beta priors. 

 

As can be seen, although the priors are different, the posteriors are fairly aligned with each other 

with no egregious differences among their 95% credible intervals. After taking a reasonable set 

of candidate priors, the visual inspection of the credible intervals is critical in demonstrating the 

robustness of results under the choice of priors. In the following sections, we will see that in 

various situations, the nature of the parameter at hand and the type of common priors employed 

to describe it allow us to conduct other forms of robustness analyses. 

Skepticism and Lack Of Prior Knowledge 

 

In some cases, prior knowledge is absent, diminished, or its credibility might be under 

question. In such situations, priors that concentrate their weight on (i.e., are peaked over) a 

certain range for a parameter may be easily prone to biasing a Bayesian result (i.e., posterior). 
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Defining a prior distribution that expresses the state of neutrality or a lack of knowledge is one 

way to avoid such potential biases. Several seminal works have looked at this issue from 

perspectives that require both space and technical background knowledge (e.g., information 

theory; Jaynes, 2003; invariance to transformation; Jeffreys, 1961; contribution of prior 

measured in datapoints; Liang, Paulo, Molina, Clyde, & Berger, 2008). In this introductory 

discussion, however, we tend to simply refer to priors that express a lack of or minimal prior 

knowledge as “broad” or “minimally informative”. As we shall see, reasonableness must always 

play a role in defining such priors depending on the nature of the parameter at hand and the type 

of prior meant to be used with it.  

Let us use an actual example in which lack of prior knowledge is best evident. In chapter 

II, we surveyed the application of two effect size variants, eta-squared (η2) and partial eta-

squared (ηp
2), in a sample of 156 uses of these two effect sizes from various L2 journals 

published between 2005 and 2015. Surprisingly, we found that in 34 cases, the primary authors 

of the published L2 research had erroneously reported and interpreted partial eta-squared effect 

size in place of eta-squared effect size (for consequences of this misreporting see Ch. 2). This 

indicated that 21.79% (i.e., 
34

156
×100) of the collected sample of L2 studies had misreported these 

two effect size variants. But assuming that L2 researchers did not largely learn how to use or 

distinguish these two variants of effect size from each other (i.e., independence of observation), 

the question of interest is: What is the actual proportion of this erroneous reporting and how 

prevalent it is across all L2 studies that report these two measures of effect size? Since this was 

the first survey of this type in L2 research, no specific prior knowledge in L2 research is 

available to refer to as a knowledge base. Also, similar studies in sister fields such as psychology 

(Pierce et al., 2004) and communication (Levine & Hullett, 2002) tend to only narratively 
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describe the existence of a confusion in using the two variants of effect size among researchers in 

their respective fields without offering much quantifiable evidence. With such highly restricted 

knowledge base, defining an informative prior distribution may not be possible. What is needed, 

however, is a “broad” or “minimally informative” prior distribution that assigns almost equal 

weights to most possible values (i.e., 0% - 100%) representing the misreporting rate of eta- and 

partial eta-squared as two measures of effect size in L2 research. Many Bayesian analysts have 

argued that it is always wise to exclude extremely unrealistic values that may not represent the 

possible magnitude of the parameter (here the misreporting rate of the two effect sizes) under 

estimation (e.g., Gelman et al., 2014; Kruschke, 2015; McElreath, 2016). In our case, to assume 

that the misreporting rate of the two measures of effect sizes, eta- and partial eta-squared, in L2 

research could be close to ~0% or ~100% is unequivocally unrealistic. A broad prior then could 

be one (a) whose effective weight concentration spans over most possible values for the 

misreporting rate excluding the unrealistic ones (e.g., ~0% and ~100%) and thus (b) which is not 

skewed toward a particular side in the parameter range (i.e., is symmetric slightly pivoting on 

50%). One such broad prior is shown in Figure 23. Figure 23 can be easily replicated using our R 

function “prop.update”: 

prop.update(a = 1.2, b = 1.2, show.prior = TRUE, prior.scale = .5, top = 1.6) 

 
Figure 23. A broad prior expressing lack of knowledge for misreporting rate. 

 

Misreporting Rate (%) 
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3.90% 50% 96.08% 

100% 

Misreporting rate ~ beta(1.2, 1.2) 
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With this broad prior at hand, we can proceed with estimating the proportion of misreporting eta-

squared (η2) and partial eta-squared (ηp
2), as two measures of effect size, in published L2 

research. The function “prop.update” can be called again to see how our broad prior knowledge 

is changed in light of the 34 cases of effect size misreporting out of 156 applications of these two 

effect size variants found in Chapter II : 

prop.update(yes = 34, n = 156, a = 1.2, b = 1.2, scale = .2, top = 5, prior.scale = 

1.3) 

The result of our analysis is displayed in Figure 24. 

 

Figure 24. Updating a broad knowledge base in light of misreporting cases found in Chapter II. 

 

Our analysis returns a misreporting rate of 15.90% - 28.74%. But is the Bayesian result obtained 

robust to the choice of prior? We can again put our choice of prior to the test and visually 

examine the robustness of our Bayesian results. Since this time (as opposed to the case of the 

bilingual survey in the previous section) no specific source of prior knowledge is available, and 

we have used a “broad” prior, we can select from a variety of different families of priors in 
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0% 20% 40% 60% 80% 100% 

Base knowledge 

Chapter II Study 

3.90% 50% 96.08% 

15.90%    21.87%    28.74% 



 

81 

 

addition to “Beta”. These other families are first positioned such that they, just like our Beta 

prior, cover the entire range of 0% to 100% for misreporting rate (i.e., our parameter) of the two 

effect sizes but then cut for any additional coverage for values that do not fall within 0% to 

100%. For example, the familiar Normal distribution which is naturally boundless (i.e., goes 

from –infinity to +infinity) is first positioned so that, like our Beta prior, it reflects neutrality and 

symmetry (e.g., pivoting around .5 or 50%) but then cut everywhere except for areas falling 

between 0 and 1. Here we use two other families of distributions in addition to “Beta”, namely 

“Normal” and “Cauchy” (see next section on effect size). Both of these distributions are 

naturally symmetric, but we can position them between 0 (or 0%) and 1 (or 100%) while 

pivoting them around .5 (or 50%). Note that in R and some other software packages (e.g., JAGS, 

WinBUGS), distribution names start with a “d” (standing for density). Examples include 

“dnorm” for Normal, “dcauchy” for Cauchy, and “dbeta” for Beta distribution. We can use the 

R function “prop.priors” to test these three prior families all at once: 

prop.priors(a = c(1.2, .5, .5), b = c(1.2, 1, 1), dist.name = c("dbeta", "dnorm", 

"dcauchy"), scale = .075, top = 1.4, yes = 34, n = 156) 

The resultant posteriors along with their 95% credible intervals are shown in Figure 25. 
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Figure 25. Posterior results under different families of priors. 

 

As shown in Figure 25, the results under these three families of priors barely change. 

Indeed, even if the width (spreadoutness) of Normal and the Cauchy priors are increased by a 

factor of 10 (i.e., from 1 to 10) no major change in the posteriors occurs: 

prop.priors(yes = 34, n = 156, a = c(1.2, .5, .5), b = c(1.2, 10, 10), 

dist.name = c("dbeta", "dnorm", "dcauchy"), scale = .075, top = 1.4) 

Figure 26 shows the result of the ten-fold increase in the width of the Normal and Cauchy 

priors. Because of these fairly stable results, it is safe to believe that the misreporting rate of the 

two measures of effect size, eta- and partial eta-squared, in L2 quantitative research ranges 

between ~15.9% and ~28.7% as indicated by our 95% high-density credible intervals. 
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Figure 26. The result of a ten-fold increase in the width of the Normal and Cauchy priors. 

 

Letting Priors Arise 

Many of us as applied linguists would agree that the knowledge generated from our 

studies must play a role in informing future replication efforts (see Marsden, Morgan-Short, 

Thompson, & Abugaber, in press; Porte, 2012 for a fuller discussion of replication in L2 

research). Bayesian methods are uniquely designed so that each future replication could build on 

the knowledge generated by any number of replication works conducted before it (see Note). 

This feature of Bayesian methods is so boundless that it is often said that yesterday’s posterior is 

today’s prior (see Lindley, 2000). To better see this in action, suppose that two other surveys at 

two different points in time had targeted the preference of language minority parents for 

bilingual education before our current survey discussed in the previous section. A Bayesian 
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framework allows us to cumulatively incorporate these two other surveys’ results into our 

current survey in a step-wise fashion. That is, one can (a) start with a broad knowledge base, (b) 

use that broad knowledge base as a prior for the first available survey to obtain the posterior, (c) 

use that posterior as prior for the second survey to obtain a second posterior, and finally (d) use 

the posterior of the second survey as prior for the current survey, obtain the final posterior, and 

describe it using 95% credible intervals as the most current result. This step-wise Bayesian 

updating process is implemented in our R function “prop.update”. To use the function, suppose 

the first and oldest survey came from 70 parents, 27 (39%) of whom preferred bilingual 

education, and the second survey was based on 84 parents, 31 (37%) of whom favored bilingual 

education for their ELLs (English Language Learners). Recall that our current survey (see Figure 

15) showed that 55 out of the 100 parents support bilingual education. Now, a call to function 

“prop.update” can be made to incorporate both of the previous surveys’ results in our current 

replication survey using a broad prior base: 

prop.update(n = c(70, 84, 100), yes = c(27, 31, 55), a = 1.2, b = 1.2, dist.name = 

"dbeta", scale = .086, top = 1.6) 

The result of this step-wise Bayesian updating is shown in Figure 27. As can be seen, we started 

from a very broad knowledge base that allowed us to believe almost any proportion (0% - 100%) 

could be a candidate value for representing the proportion of parents that prefer bilingual 

education. But then this broad knowledge base was updated by the first survey conducted on the 

matter. Still, the second survey built on both the initial knowledge base as well as the result of 

the first survey and this updating went on until the most recent survey was carried out. Other 

than letting the priors arise in the process rather than specifying them in advance, the end result 

of such updating processes is one final posterior that, founded upon previous replication 
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attempts, will concentrate narrowly on the proportion values (or any other parameter of interest) 

that represent the parents’ view regarding bilingual education. In the later sections, we will return 

to this updating process to generate a prior based on the findings of previous replication research 

and extend it to situations where our parameter of interest is a standardized mean difference 

effect size (i.e., Cohen’s d). 

 
 

 
 

Figure 27. Step-wise updating of three bilingual education surveys using a broad prior. 

 

In the next section, we present an application of Bayesian methods for one of the most 

commonly employed statistical analyses in L2 research, the t-test, (Larson-Hall, 2016). Through 

the Bayesian method, we add a new application to t-tests so that in addition to being used for 

testing the validity of a null hypothesis, t-tests become vehicles for estimation of the real effect 

(i.e., effect size) of a treatment. In addition to a repository of highly flexible R functions, we also 
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introduce a free, online, point-and-click software package (rnorouzian.shinyapps.io/bayesian-t-

tests/) that painlessly automates some of the steps involved. As will be shown, this Bayesian 

application of t-tests can also be used for the Bayesian estimation of the real effect of a treatment 

(i.e., effect size) from a previously published study using only the basic information available in 

that study. 

Bayesian Methods as Applied in t-test Designs in L2 Research 

The Bayesian method discussed in the previous section also applies to designs that use t-

tests, which are ubiquitous in L2 research (Larson-Hall, 2016; Linck & Cunnings, 2015). And 

the approach that we take to run Bayesian t-tests, an “effect size” approach, concurs in the belief 

that “the primary product of a research inquiry is one or more measures of effect size, not p-

values” (Cohen, 1990, p. 1310). To be clear, t-tests are analytic tests that are used to evaluate if 

there is an effect (i.e., null hypothesis testing; p-value) for a treatment in pre-post designs 

(paired-samples t-test), experimental designs with two groups (independent samples t-test), and 

one-sample designs (one-sample t-test), the last of which is less commonly found in L2 research 

(see Larson-Hall, 2016, p. 270). The marriage of the Bayesian methods and the effect sizes from 

such designs allows for estimating the real size of an effect for a treatment from the above-

mentioned designs. In our view, this significantly adds to the applicability and utility of t-tests in 

L2 research. 

Let us then apply the Bayesian t-test method to a meaningful L2 research example as we 

did when discussing survey data in the previous sections. Suppose a researcher is interested in 

finding out the real effect of an L2 treatment on improving the explicit knowledge (DeKeyser, 

2015; Lyster & Sato, 2013) of 60 high-intermediate English as a Foreign Language (EFL) 

rnorouzian.shinyapps.io/bayesian-t-tests/
rnorouzian.shinyapps.io/bayesian-t-tests/
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learners with respect to Type III conditionals (e.g., If I had arrived earlier, I could have caught 

the bus). The schematic design of this study is shown in Figure 28. 

 
Figure 28. Pre-post-control design layout. R = Random assignment; T = Treatment; C = 

Control; Pre = Pre-test; Post = Post-test. 

Based on this Pre-Post-Control design, the participants are randomly assigned to either the 

treatment group (n = 30) or the control group (n = 30) to protect the study outcome from some of 

the design’s internal validity threats, e.g., regression to the mean (see Campbell & Stanley, 

1963). Then, following the pre-test and treatment, the researcher administers a posttest to 

measure the difference in the level of the explicit knowledge of Type III conditionals gained by 

the two groups. To measure explicit knowledge (see Ellis, 2009), both groups are to complete an 

untimed error correction test (ECT) consisting of 15 sentences 10 of which contain different 

number grammatical errors in the use of Type III conditionals. The scoring scheme used for 

Type III conditionals often involves awarding a combination of half-points and whole-points 

depending on what feature (e.g., correcting the past modal: “would / could / . . .” 1 point, 

correcting the past participle form: “caught” .5 point) in the conditional or the main clause is 

appropriately corrected by a participant (see Izumi, Bigelow, Fujiwara, & Fearnow, 1999). In 

total, 25 points are allowed on the entire error correction test. Recent research (e.g., Shintani, 

Ellis, & Suzuki, 2014) suggests that it is reasonable to believe that this scoring scheme would 

result in scores complying with the assumption that such scores belong to normally shaped 

populations. Finally, as Campbell and Stanley (1963) indicate, for a Pre-Post-Control design, as 

𝑹 𝑷𝒓𝒆𝑻 𝑻
𝑹 𝑷𝒓𝒆𝑪 …

     
𝑷𝒐𝒔𝒕𝑻    → 𝑷𝒐𝒔𝒕𝑻 − 𝑷𝒓𝒆𝑻 = 𝑮𝒂𝒊𝒏𝑻

𝑷𝒐𝒔𝒕𝑪    → 𝑷𝒐𝒔𝒕𝑪 − 𝑷𝒓𝒆𝑪 = 𝑮𝒂𝒊𝒏𝑪
 Independent  

samples t-test 
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in our case, it is wise “to compute for each group pretest-posttest gain scores and to compute a t 

[i.e., independent samples t] between experimental and control groups on these gain scores” (p. 

23). With these details in mind, let us simulate such a study, and then employ a Bayesian 

independent-samples t-test to estimate its possible effect. Figure 29 graphically shows the design, 

raw gain scores, and the immediate results of this simulated study (to explore Figure 29 see 

https://github.com/izeh/i/blob/master/11.r).  

 

 

Figure 29. The design and raw gain scores (posttest – pre-test) of the participants in the 

simulated study. ECT = Error Correction Test. Each grey, horizontal, dotted line denotes a 

participant. The vertical dashed lines denote the mean of each group’s gain scores. Mean diff. = 

difference between the means of groups’ gain scores. 

 

Table 10 presents the full descriptive and the conventional Frequentist results (e.g., confidence 

interval) of this study.  

subject #30      
     .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 

subject #1 
subject #30   

     .      .      .      .      .      .         .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      .      . 
subject #1 

Treatment 

Control 

Participants' ECT Gain Scores 

-2 -1 0 1 2 3 

Mean diff. = 1.24 

Cohen's d = .87 

  

  
Mean = 1.26 

sd = 1.44 

Mean = .02 

sd = 1.39 

https://github.com/izeh/i/blob/master/11.r
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Table 10  

Frequentist Study Results for EFL Learners in the Simulated Study (N = 60) 

 Descriptive (Gain Scores)  Inferential 

Group n M (SD) ES (d) 95% CI(d)  t (df) p-value 

Treatment 30 
1.26 

(1.44) 
.87 [.33, 1.40] 

 

3.35 (58) .001 

Control 30 
0.02 

(1.39) 
 

Note. M = Mean; ES = Effect size; d = Cohen’s d. 

 

The effect size (i.e., d = .87) along with its 95% confidence interval (i.e., 95% CI(d) [.33, 1.40]) 

obtained from our simulated study (Table 10) are both subject to Frequentist interpretations. 

Recall from our discussion in the previous sections that from the Frequentist perspective these 

results can be theoretically seen as just one set of possible results from among many more in the 

long chain of repetitions of the exact same study on Type III conditionals. For example, let us 

assume that in reality our L2 treatment is able to produce an effect quantified by a Cohen’s d 

effect size of .5, then a possible set of results from only 20 repetitions of our exact same study on 

Type III conditionals is presented in Figure 30 (to explore Figure 30 see 

https://github.com/izeh/i/blob/master/9.r). 

https://github.com/izeh/i/blob/master/9.r
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Figure 30. Twenty repetitions of the same study on Type III conditionals. The vertical red line 

represents the real (i.e., population) size of effect for the L2 treatment. 

As with the survey example, here again some of the obtained effect sizes along with their 95% 

confidence intervals from these 20 repetitions fail to capture the real effect of treatment (i.e., .5), 

as indicated in red. And our obtained results (i.e., d = .87; 95% CI [.33, 1.40]) could be “red” 

results, as is the case in four of the 20 repetitions here. Again, while in the long-run, the 

Frequentist procedure is correct (i.e., contains the true effect) in 95% of infinitely many 

repetitions of such a study, this assurance does not mean that our single obtained CI from our 

single study on Type III conditionals contains the true effect of the treatment with 95% certainty. 

Now imagine what a formidable challenge as well as confusion this might create for a researcher 

wanting to interpret the single obtained effect size, and its 95% confidence interval; certainty in a 

long-run procedure rather than in the single obtained result. Certainly, here the only critical 

-0.5 0.0 1.0 1.5 

Effect Size (Cohen’s d) 
0.5 

Repeat 20 
Repeat 19 
Repeat 18 
Repeat 17 
Repeat 16 
Repeat 15 
Repeat 14 
Repeat 13 
Repeat 12 
Repeat 11 
Repeat 10 

Repeat 9 
Repeat 8 
Repeat 7 
Repeat 6 
Repeat 5 
Repeat 4 
Repeat 3 
Repeat 2 
Repeat 1 



 

91 

 

question of interest is: What is the real effect of the L2 treatment on improving high-

intermediate EFL learners’ explicit knowledge of Type III conditionals? 

Once again, the Bayesian method begins by asking our researcher about her/his 

expectation regarding the range of effect sizes reported in the previous research or the general 

domain of L2 research. We take a general approach here which appeals to a broader domain of 

L2 research. This makes such a Bayesian approach broadly accessible and provides a default 

prior distribution for Cohen’s d effect size applicable to a wide range of domains in L2 research. 

To do so, we first draw on the results of Plonsky and Oswald (2014) who studied the magnitude 

of Cohen’s d effect size in 346 primary L2 studies and 91 meta-analyses of L2. The researchers 

found that d values in L2 research could often be as large as +1. Even so, conservativism dictates 

that one takes a neutral position and consider that Cohen’s d effect size theoretically can be 

positive and negative. As such, it is safer to consider that the expected sizes of effect could be as 

large as reported by Plonsky and Oswald (2014) in either a positive or negative direction (i.e., –1 

and +1). Now that the range of likely effect sizes are at hand, it is time to assign higher weights 

to our expected range and successively lower weights to other effect size values outside this 

range. We use a “Cauchy” (named so in Augustin-Louis Cauchy’s honor) weighting scheme to 

achieve this. A Cauchy weighting scheme, to be shown shortly, puts higher weights on the values 

of effect size between –1 and +1 than does the more familiar standard normal weighting scheme 

(see Rouder et al., 2009). The technical specifics of the resultant prior distribution of effect sizes 

following the Cauchy weighting scheme are well documented (Ly et al., 2016; Rouder et al., 

2016). It is, however, worth noting that our prior distribution of effect sizes has a width (akin to 

standard deviation) of “.707”, and is centered at “0” (i.e., our neutral position between positive 

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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and negative effect size values). Figure 31 shows this recommended prior distribution of effect 

sizes in which the area between –1 and +1 has received the highest weights (to explore Figure 31 

see https://github.com/izeh/i/blob/master/d.r). Note that in theory, Cohen’s d effect size has no 

bound. That is, it can be infinitely large in either direction. However, we can all agree that effect 

sizes beyond ± 6 are very unlikely. Thus, the largest values of effect size displayed in Figure 31 

are ± 6 with two ± ∞ signs indicating the theoretical bounds of Cohen’s d effect size. 

 

 
Figure 31. Recommended prior distribution for Cohen’s d effect size in L2 research informed 

by Plonsky and Oswald (2014). 

In Figure 31, the dashed oval lines represent the main weighting domain of the prior. 

That is, the domain within which the possible effect size values in L2 research (e.g., −6 to +6) 

could receive various amounts of weight. The yellow color that spreads out from within the 

center of the dashed oval lines fades away as we move toward the large values of effect in the 

tails. This is to emphasize the fact that as we move from our neutral position (i.e., “0”) toward 

the tails, the weights assigned to the individual effect size values successively decrease. 

-∞ +∞ 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

Concentration of Reasonable 
 Effect Sizes in L2 research 

  

Prior 
Neutral Position 
Expected Effect Sizes 

https://github.com/izeh/i/blob/master/d.r
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With the prior specified, the next steps involve determining the likelihood, applying the 

Bayesian mantra (Equation 1) to arrive at the posterior (i.e., the Bayesian result), and then 

obtaining a credible interval for the effect size to help the final interpretation. However, given 

the wide application of t-tests in real L2 research and the challenges inherent in learning to use 

new statistical applications that permit Bayesian analyses, here we introduce a free, point-and-

click, web-accessed software package developed by the first author of the present study to 

automate these processes. This software package is found at rnorouzian.shinyapps.io/bayesian-t-

tests/. The software will painlessly provide the posterior and the credible interval for effect sizes 

for the three, common t-test designs described above. For wider flexibility in terms of using a 

variety of different priors and robustness checks, we also provide easy to use R functions. The 

software has additional Bayesian capabilities that enable performing Bayesian hypothesis testing, 

and replacing p-values with a Bayesian alternative known as a Bayes Factor. The issue of Bayes 

Factors/Bayesian Hypothesis Testing/Model Selection, however, falls outside the scope of the 

present study (for details see Ch. II). Figure 32 provides a snapshot of the main panel of the 

software. 

rnorouzian.shinyapps.io/bayesian-t-tests/
rnorouzian.shinyapps.io/bayesian-t-tests/
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Figure 32. A snapshot of the “Bayesian for t-tests” software. The red arrows indicate the 

settings used for the example in the text. 

 

To use the software in our example, we do not need to provide the raw data shown in Figure 29. 

Rather, only the following information is required: (1) the type of t-test, (2) the width of the 

prior, (3) the obtained t-value, (4) the groups’ sample sizes. These four pieces of information for 

our example study on Type III conditionals are indicated by red arrows in Figure 32. Figure 33 

(explore the software output) summarizes the software’s Bayesian result (i.e., posterior) for our 

running example. 

Leave as is 
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Figure 33. Posterior results for the effect of an L2 treatment on improving 60 high-intermediate 

EFL learners’ explicit knowledge of Type III conditionals. 

 

Now our 95% Bayesian credible interval can help us think about the real effect of our 

treatment, as measured in terms of Cohen’s d effect size, on improving high-intermediate EFL 

learners’ explicit knowledge of Type III conditionals. Here, we can directly state that the real 

effect size for our treatment could range between .299 to 1.360. One of the appealing features of 

the software is that it automatically provides the corresponding Frequentist results along with the 

Bayesian results. For our example, the Frequentist 95% confidence interval limits for effect size 

are: [.380, 1.445]. Again, this confidence interval is theoretically only one of the infinitely many 

possible confidence intervals that can result from repetitions of our study, and thus we cannot 

take its 95% confidence level as 95% certainty that this single obtained confidence interval 

contains the true effect of our treatment on improving explicit knowledge of Type III 

conditionals. Research shows that the temptation to erroneously interpret a Frequentist 

confidence interval as if it is a Bayesian credible interval is considerably high despite the fact 

Population effect size (δ) 

-1.0 -0.5 0.0 1.5 2.0 2.5 3.0 .817 

.299 1.360 
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that such an interpretation is not permissible under the Frequentist framework (Albert, 2009; 

Gelman et al., 2014; Kruschke, 2015; McElreath, 2016).  

Putting Priors on Cohen’s d Effect Size to the Test 

As noted earlier, it is always recommended and useful to test the robustness of the 

Bayesian result (i.e., posterior) for any research parameter against the choice of prior, and effect 

size is no exception. Here again the nature of effect size and type of priors commonly used with 

it should govern how one might want to go about choosing priors for such sensitivity analyses. 

Specially, the intrinsic meaning of effect size as a research result should guide us in determining 

(a) how wide priors on an effect size could be, and (b) where to center the priors as a pivot point. 

Given these two considerations, one possible way to start the robustness analysis is to use 

different families of priors that cover a realistic range for effect size (e.g., −6 to +6) while they 

might differ in distributing their weight over this realistic range. Note that too wide or too narrow 

specifications of prior in the case of effect size could easily lead to the assignment of undue 

weights to values for effect size that might not realistically need such amounts of weight. For 

example, prior specifications for effect size that are too narrow may unrealistically ignore effect 

sizes that are slightly larger than |1|, and too wide of a specification may give fairly large effect 

size (e.g., > |3|) more weight than required. Let us use two families of priors, namely Normal, 

and Cauchy. These two prior families for effect size (Cohen’s d) could be used when they are 

each pivoted at “0” (a neutral position) and their width set to “1” and “1.25” (two reasonably 

wider settings compared to .707 used in the previous section). This plan leads to four different 

prior specifications: Cauchy(0, 1), Normal(0, 1), Cauchy(0, 1.25), Normal(0, 1.25). 

As in the case of proportions in the previous section, the goal is to evaluate the robustness of the 

Bayesian result obtained in Figure 33 under four different prior specifications. To do this, we can 
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use function “d.priors” which uses the t-value (t), group samples sizes (n1 or/and n2), pivot 

point for priors (m), and the width of prior (s): 

d.priors(t = 3.55, n1 = 30, n2 = 30, m = 0, s = rep(c(1, 1.25), 2), 

dist.name = c(rep("dcauchy", 2), rep("dnorm", 2)), scale = .6, top = .9) 

The result of our analyses is illustrated in Figure 34. 

 

 

Figure 34. The credible intervals under different families and specifications of prior. 

 

As can be seen, the 95% credible intervals under these different priors still range from ~.3 to 

~1.4. Thus, it is safe to believe that under such reasonably different prior specifications (i.e., 

wider and of different families), our Bayesian result for our study on type III conditional is 

reasonably stable. The interested reader may use other families of priors such as a standard t 

distribution (dist.name = "dt", s = 0) with a few degrees of freedom (e.g., m = 5) to see that 

the credible intervals are still robust to this other reasonable expression of prior knowledge on 

the effect size in the example of Type III conditionals. 
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Doing Bayesian Estimation on the Published Literature: An Actual Study Example 

The discussion in the previous section should imply the ease with which full Bayesian 

estimation of effect sizes can be performed even on previously published studies. As an even 

more concrete example, consider Gurzynski-Weiss and Baralt (2014). Using a pre-post design, 

one of the questions that the authors investigated was the effect of the interaction mode (i.e., 

computer-mediated communication [CMC] vs. face-to-face [FTF]) when providing 24 

intermediate-level learners of Spanish as a foreign language (SFL) with opportunities to modify 

their output during interactional feedback episodes with their teacher. After eliciting their data 

via stimulated recall protocols (see Mackey & Gass, 2016), the authors conducted a paired-

samples t-test to answer their research question, finding t (23) = 5.03, with descriptive results 

favoring the FTF environment. This is enough information for us to perform a secondary 

Bayesian estimation of the effect size on this study using the default prior proposed in the 

previous section. Changing the software settings to a paired-samples t-test, and inputting the 

sample size of 24, and the obtained t-value of 5.03 will provide us with the result in Figure 35 

(explore the software output).  
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Figure 35. Posterior distribution for the effect size found in Gurzynski-Weiss and Baralt (2014) 

for the superiority of FTF environment over CMC environment in affording more opportunities 

for modified output. 

Succinctly put, if Gurzynski-Weiss and Baralt (2014) had conducted a Bayesian estimation for 

their study, they could have interpreted their results as directly and concisely as follows: the real 

superiority of the FTF over CMC in providing more opportunities for intermediate SFL learners 

to modify their output in interactional feedback episodes is quantified by Cohen’s d estimates 

ranging between .462 and 1.458. Although not reported in Gurzynski-Weiss and Baralt (2014), 

using the software, the corresponding 95% confidence interval for their effect size, which is 

subject to a Frequentist interpretation, is: [.522, 1.516]. We encourage the informed reader to 

perform various robustness analyses on these results following our demonstration in the previous 

section. 

Performing a secondary Bayesian analysis on one or more previously published studies is 

not only advantageous in providing a Bayesian interpretation of the previous research findings 

but also in effectively informing (as a cumulative prior) a future replication study. Recall from 

our previous discussions that yesterday’s posterior is today’s prior (see Lindley, 2000). For 

Population Effect Size (δ) 
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example, suppose previous research has shown that the advantage of FTF environments over 

CMC environments has been found to be fluctuating in three previous studies. More specifically, 

in the first study with n = 44, the result has indicated a smaller advantage for FTF over CMC (t 

(43) = 2.36), for the second replication study with n = 36 the result shows a moderate advantage 

(t (35) = 3.39), and the third replication study with n = 52 found a small advantage for FTF over 

CMC (t (51) = 1.59). We can use these studies’ results together as prior for Gurzynski-Weiss and 

Baralt (2014). To do so, we can use as knowledge base a Cauchy(0, 1) as a reasonably 

informative prior for effect size using R function “d.update” from our repository: 

d.update(t = c(2.36, 3.39, 1.59, 5.03), n1 = c(44, 36, 52, 24), scale = .21, top = 

1.7, m = 0, s = 1, dist.name = "dcauchy", prior.scale = 2, margin = 1.5) 

The result of this updating is shown in Figure 36. 

 
Figure 36. Step-wise Bayesian updating of three replication attempts to use them as prior for 

Gurzynski-Weiss and Baralt (2014). 
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0.209     0.438     0.668 
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When a researcher in a given subdomain of L2 research intends to adopt a Bayesian 

approach for her/his replication study, s/he can (a) perform secondary Bayesian analyses on 

previous studies, regardless of whether the initial studies conducted a Bayesian estimation; (b) 

obtain the full posterior from those previous research works; and then (c) use the final posterior 

obtained in that step-wise updating process as the prior for her/his intended replication study. 

Such a practice is very consistent with the spirit of Bayesian methods which heavily rely on past 

research to inform a current replication study (see Note). 

 

Conclusion 

 

There is a statistical view of the world that has long permeated the scientific literature. By 

the basic rules of this world, there are good reasons to believe what we report as “findings” from 

our studies might not represent the reality we are attempting to capture. To learn about that 

reality, however, two solutions exist.  

The first solution relies on a procedure that assumes repeating one’s exact same study ad 

infinitum, providing a specified certainty (e.g., 95%) in capturing the true effect in question from 

this long-run procedure (Frequentism). Under this approach, the interpretation of a single 

observed interval estimate (i.e., confidence interval) must be made in the context of the 

Frequentist procedure i.e., over long-run frequencies, 95% of the confidence intervals 

theoretically constructed in the process (see Figures 2 and 16) would contain the true population 

value and not in terms of the single interval estimate obtained (see Depaoli & van de Schoot, 

2017; Thompson, 2006). This Frequentist interpretation likely escapes the awareness of many 

applied researchers.  
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The second solution, which we advocated in the present paper, translates the theoretical 

repetitions assumed in the Frequentist paradigm into a prior distribution. That is, a prior is a 

practical way for expressing defensible expectations for reality rather than thinking about reality 

in Frequentist terms.  

By nature, reasonableness and conservatism must always govern the use of Bayesian 

statistics. Choices of priors must be transparent as they are an orderly form of knowledge 

presentation (Edwards, Lindman, & Savage, 1963). Decisions made at every step of the analyses 

must be defensible. And researchers must routinely evaluate the robustness of the obtained 

results and report them to their audience (for a complete checklist of points to consider when 

conducting a Bayesian analysis see Depaoli & van de Schoot, 2017). However, we argue that 

with Bayesian methods taking a central stage in L2 research, we will enter a new era marked by 

(a) constructive criticisms and academic debates over key issues in the assessment and 

development of L2 theory, (b) more precise attention to past research findings to come up with 

defensible priors, and (c) a focus on meaningful research parameters worthy of being estimated 

(e.g., effect sizes).  

These three advantages from Bayesian methods, we believe, best characterize the need for a 

“Bayesian revolution” in L2 research. Thus, we hope the applied, and non-technical approach 

that we adopted in this paper could be a first step for the field in that direction. 

 

Notes 

In practice, exact replication of previous research (i.e., repeating an original study while 

keeping all experimental conditions the same as the original study), as we discuss here, is rarely 

encountered in L2 research (e.g., Norouzian, 2015; Norouzian & Eslami, 2016; Norouzian & 

Farahani, 2012; Norouzian & Plonsky, in press). The broader framework for synthesizing 

outcomes of multiple studies when differences between studies (due to differences among 
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sampled participants in the studies and differences in treatments, settings etc.) also exist is the 

form of random-effects meta-analysis (Cooper, Hedges, & Valentine, 2009). Bayesian methods 

are capable of seamlessly handling random-effects meta-analysis even in the face of a limited 

number of primary studies available, a problem often restricting the use of random-effects meta-

analysis under the Frequentist framework. The topic of Bayesian meta-analysis falls outside the 

scope of the present treatment. The interested reader is referred to Berry, Carlin, Lee, and Müller 

(2011, Sec. 2.4), Smith, Spiegelhalter, and Thomas (1995), Spiegelhalter, Abrams, and Myles 

(2004, Ch. 8), Stangl and Berry (2000), and Sutton and Abrams (2001) for a foundational 

introduction. The R packages “bayesmeta” (Röver, 2017) and “bmeta” (Ding & Baio, 2016) 

both provide efficient implementation of Bayesian random-effects meta-analyses for a variety of 

study outcome metrics (e.g., standardized mean difference effect size). 
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CHAPTER V 

CONCLUSIONS 

In each of the three studies described in the preceding chapters, we presented study-

specific discussions, field-wide recommendations, and technical conclusions. As such, here we 

take a general approach to conclude this dissertation by first enumerating the goals that we aimed 

to achieve, and then summarizing the outcomes of the three studies.  

The present dissertation was intended to attain several goals within the context of L2 

methodological reform. Specifically, we sought to: 

1. respond to the repeated calls for examining how “APPROPRIATELY” (e.g., Lazaraton, 

2009, p. 415, emphasis in original) some statistical concepts are being employed in L2 

published research (also see Lazaraton, 2000, 2005) as opposed to how often certain 

methods are used.  

2. contribute to the current state of statistical literacy among L2 researchers (Lazaraton, 

Riggenbach, & Ediger, 1987; Loewen et al., 2014). 

3. offer a free software package as well a more flexible R package to promote the actual use of 

Bayesian methods in the field of L2 research and make such methods fully available to L2 

researchers (Mizumoto & Plonsky, 2015).  

4. provide field-wide recommendations to improve reporting practices, and thereby study 

quality (Norris, Plonsky, Ross, & Schoonen, 2015). 

5. introduce the field of L2 research to modern statistical methods that may provide a more 

valid basis for generalizing results to wider populations (Larson-Hall, 2012b). 
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6. help prevent misinterpretations that compromise L2 theory development and research in 

various ways (Norris, 2015). 

7. promote “quantitative reasoning” (Norris, Ross, & Schoonen, 2015, p. 2) in the field of L2 

research. 

In the first manuscript, we sought to respond to the pointed calls for investigating 

appropriateness of statistical concepts in quantitative L2 research (Lazaraton, 2005, 2009). 

Specifically, two variants of effect size, eta-squared (η2) and partial eta-squared (ηp
2), generally 

used in conjunction with AN(C)OVAs, showed to require more close attention when applied in 

L2 research. Evidence obtained from the first manuscript alluded to a long-standing confusion 

among L2 researchers with regards to the correct application and interpretation of these two 

effect size estimators. Findings from chapter II not only should alert L2 researchers to paying 

more careful attention to using eta-squared (η2) and partial eta-squared (ηp
2), but they also 

highlight the consequences of misapplying these effect size measures as regards L2 theory 

development future study planning. Although previous research has emphasized the importance 

statistical literacy among L2 researchers (e.g., Gonulal et al., 2017; Loewen et al., 2014), there 

seems to be a need for taking more concrete steps in promoting quantitative reasoning and 

discussing why such a line of reasoning should be viewed as an integral part of an L2 research 

work. 

In the second manuscript, we extended the concept of hypothesis testing to the Bayesian 

framework. Specifically, we empirically applied the Bayesian hypothesis testing methods to a 

representative sample of published L2 research and contrasted the result with the traditional null 

hypothesis significance testing (NHST) approach. The results revealed that the two methods of 

inference disagree over a critical area of decision making. For about 65% of results that a 
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researcher under the NHST declares a significant result and thus rejects the null hypothesis (i.e., 

that there is no effect for the treatment), Bayesian hypothesis testing found the strength of the 

evidence to be only at an “anecdotal” (insufficient to reject) level. Interestingly, when we used a 

different prior specification, the same results were obtained. The empirical results showed that 

the methods of inference could be reconciled if threshold for declaring a significant result is 

decreased to about .005. This result is in line with theoretical findings of Benjamin et al. (in 

press) and Johnson (2013) as well as recommendations of the American Statistical Association 

(2016) emphasizing that the current practice of NHST leads to high false discovery rates. We 

also provided free software to facilitate the use of Bayesian model selection methods. These 

empirical as well as practical steps need to be still extended to more complex designs and 

research problems both to better understand the divergence between the Bayesian and traditional 

methods and to enable the use of Bayesian hypothesis testing methods in complex designs. 

In the third manuscript, we sought to extend the Bayesian methods to the issue of effect 

sizes; the primary product of a research inquiry (see Cohen, 1990). we presented a 

comprehensive primer on Bayesian methods, provided a comprehensive R package to conduct 

Bayesian estimation, and perform diagnostic test to examine its sensitivity (i.e., stability) under a 

wide variety of priors. For each unique research situation presented, proper decision-making 

strategies and line of quantitative reasoning were expounded. It is critical for L2 researcher is be 

informed of the basis and applications of Bayesian methods in L2 research. This need is 

especially motivated mainly by the fact that quantitative L2 research is often based on small 

groups of participants (Larson-Hall & Herrington, 2010) and that a body of knowledge regarding 

the size of various treatment effects in L2 research is available (Plonsky & Oswald, 2014).  
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Future research must expand on the ideas and the tool developed in Chapter IV, as 

complex research designs require complex analytic solutions to answer complex research 

questions. It is imperative to note that the studies provided in this dissertation cumulatively help 

in building a case for the importance of research methods and methodological expertise in L2 

research and perhaps other branches of social and behavioral sciences.  

The importance of methodological knowledge comes into view when we review the 

process by which research findings are published and thereby made available to theoreticians, 

other fellow researchers. A lack of methodological expertise in the field not only restricts 

research-as-produced but it also restricts the potential of peer review to lead to higher quality 

journal articles. Finally, once a study is published, methodological acumen is again required in 

order for consumers to be able to adequately and critically interpret the findings and the process 

by which they were derived. 

In closing, I should stress the importance of two specific areas where Bayesian thinking 

can be specifically of significance. First, given Bayesian methods’ use of the knowledge 

generated by prior studies, these methods can greatly enhance our understanding of systematic 

reviews of literature. Specifically, Bayesian methods are capable of providing more realistic 

estimates of how effective an L2 treatment of interest in light of several pieces of research using 

that treatment. Finally, the area of measurement can benefit from Bayesian methods. 

Psychometric issues such as reliability of scores produced by a researcher-developed instrument 

can be improved by obtaining Bayesian reliability estimates. The obtained Bayesian estimates 

can serve to inform current substantive interpretation and form the basis for future adjustments to 

measurement instruments. 
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