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ABSTRACT 

 

 Tropical cyclones (TCs) are one of the most impactful natural hazards to people’s life and 

economy, and improving forecast and future projection of TCs is one of the most important areas 

for the weather and climate research community.  Previous studies show that sea surface 

temperature (SST) patterns both local to and remote from TC development regions are important 

drivers of the variability of TC activity on different timescales.  Thus, reliable simulations and 

predictions of TC activity depend on a realistic representation of tropical SSTs.  Nevertheless, 

severe SST biases are common to the current generation of global climate models, especially in 

the tropical Pacific and Atlantic, where TCs are active.  Alleviating these SST biases has proven 

challenging, leading to the prospect that the bias problem may persist for decades, even with 

improvements in our understanding of the causes of the biases and in reducing the biases in the 

newer version of climate models.  It is, therefore, crucial to understand and evaluate the effects 

of the biases on simulations of climate extremes.  Using an atmospheric-only tropical-channel 

model (TCM), we investigated the impact of SST biases and uncertainties in SST prediction on 

TC simulations.  The simulation results show significant influences from SST biases on TC 

simulations both in local basins and remote ocean basins.  Moreover, ensemble dynamical 

downscaling experiments using TCM forced by SST anomalies derived from CESM Decadal 

Prediction Large Ensemble (CESM-DP-LE) experiments also reveal impacts from uncertainties 

in lateral boundary conditions, suggesting that uncertainties in tropical SST prediction may not 

be the only dominant factor limiting TC predictability.  Last but not least, we explored the 

prospect of multiyear-to-decadal TC prediction by evaluating the skill of CESM-DP-LE in 

predicting TC-related environmental condition changes on multiyear-to-decadal time scales.  The 
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results show that CESM-DP-LE is highly skillful in predicting TC genesis potential index (GPI) 

on multiyear to decadal timescales.  In particular, it successfully predicted the decadal shift in the 

mid 1990s when the Atlantic TC activities increased abruptly.  This result paves the way for 

further study of decadal TC forecast. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Importance of Tropical Cyclones Simulations 

Tropical cyclones (TCs) are one of the most destructive natural hazards that strongly 

influence life and economy.  For example, hurricane Katrina (2005), Sandy (2012), Harvey, 

Irma, and Maria (2017) are among the most damaging and deadliest Atlantic TCs that made 

landfall in the U.S. (Blake et al. 2011; Blake et al. 2013; Emanuel 2017; Shuckburgh et al. 2017; 

Klotzbach et al. 2018).  Therefore, improving forecast and future projection of TC activity is one 

of the highest priority research areas.  While projections of TC activity under future climate 

change scenarios remain uncertain (e.g., Emanuel 2005; Holland and Webster 2007; Bender et 

al. 2010), an emerging consensus regarding several aspects of future TC changes has developed 

thanks to the increased computer capabilities (Knutson et al. 2010; Camargo and Hsiang 2016).  

Based on current TC projection under future climate-change scenarios using high-resolution 

models, we are expecting a slightly reduced number of TCs, but a likely increase in high-

intensity tropical cyclones (Knutson et al. 2010).  Nevertheless, no robust projection is shown for 

future TC location changes, such as TC tracks and landfall frequency, and sub-regional 

projections remain highly uncertain (Camargo and Hsiang 2016).  Further research on providing 

reliable climate model simulations of TC response to future climate change is needed for both 

the scientific community and society. 
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1.2 Evolution of Tropical Cyclone Simulation and Prediction 

Attempt to forecast TC variability on seasonal time scales started in the early 1980s (e.g. 

Gray 1984b), and the predictions were based on statistical models (Camargo et al. 2007).  

Predictors such as El Niño Southern Oscillation (ENSO), regional sea surface temperature (SST), 

and sea level pressure are used to predict basin-wide TC activity (e.g. Gray 1984b).  

Nevertheless, only specific regions (northern Atlantic and Pacific basins for instance) can be 

benefited from the statistical predictions, and only specific aspects of TCs (such as seasonal TC 

number) can be predicted.  With dramatically improvements in computational capabilities, 

dynamical (atmospheric only or coupled atmosphere-ocean) models are now utilized to make 

experimental seasonal TC forecasts (e.g., Wang et al. 2009; LaRow et al. 2010; Murakami et al. 

2016; Zhang et al. 2017).  One forecasting approach is based on atmospheric only models with 

predicted SSTs as a boundary condition.  For this approach, important aspects of TC-ocean 

interactions (e.g., Lin et al. 2013) are not represented.  Other dynamical seasonal TC frameworks 

use coupled atmosphere-ocean models in which TC-ocean interactions are captured.  However, 

the coupled modeling approach is faced with two challenges, one of which is severe model 

biases in the tropics and another of which is the much higher computational cost.  To overcome 

some of these challenges, statistical-dynamical hybrid based forecasting approach has been 

recently proposed.  Vecchi et al. (2014) demonstrated that this hybrid approach produces higher 

forecast skills than those of the solely dynamical model based forecast, at least in the North 

Atlantic.  While ensemble means of model forecasts were treated as the best estimate for their 

TC forecasts, Vecchi et al. (2014) noted the importance of developing error models, other than 

the internal variability (inter-ensemble spread), to quantify the uncertainty of TC forecasts.   
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Even though the seasonal (one to three seasons) prediction of basin-wide TC activity has 

been well developed (e.g.. Gray 1984a,b; Camargo et al. 2007; Zhao et al. 2010; Vecchi et al. 

2014), research on the possibility of predicting TC frequency on decadal or longer timescales 

(under warming climate) is still in its infancy  (e.g., Emanuel et al. 2008; Knutson et al. 2010).  

Some initial studies have started to investigate TC changes over the intermediate (multiyear to 

decadal) timescales, as external (radiative) forcing and internal variability of climate system can 

both contribute to the changes in TC activity (e.g., Vecchi et al. 2013).  From a socio-economic 

standpoint, developing a capability of decadal TC forecast can have enormous value. In practice, 

however, since large ensemble of climate model simulations for timescales longer than a season 

can only be achieved currently in low resolutions (larger than 1°), statistical models are used 

based on large-scale environmental condition changes predicted by dynamical simulations to 

demonstrate the possible modulation of large-scale fields (mostly SSTs) on TC activity (Zhang 

and Delworth 2006; Smith et al. 2010; Vecchi et al. 2013; Caron et al. 2014). 

 

1.3 Importance of Sea Surface Temperature on Tropical Cyclone Activity 

1.3.1 Relationship Between Sea Surface Temperature and Tropical Cyclones  

SST both local to and remote from the TC development region is one of the most 

important environmental variables for TC activity.  In the Atlantic region, for example, TC 

intensity is a function of local SST in the northern tropical Atlantic with maximum potential 

intensity directly related to SST (Emanuel 1986).  In addition, non-local SSTs (e.g., those in the 

southern tropical Atlantic) may remotely influence Atlantic TC activity by driving changes in 

northern tropical Atlantic mid-tropospheric humidity and tropospheric vertical wind shear (e.g., 

Vimont and Kossin 2007).  Pacific TC activity also strongly depends on SST.  For example, 
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Webster et al. (2005) showed that with an increasing global SST, strong TCs (category 4 and 5) 

in the North Pacific may be significantly increased.   

On seasonal-to-decadal time scales, it is well known that tropical Atlantic and Pacific 

SST variability exerts a significant influence on TCs.  The El Nino-Southern Oscillation (ENSO) 

in the Pacific and the Atlantic Multidecadal Oscillation (AMO) (on decadal timescale) as well as 

the Atlantic Meridional Mode (AMM) (on interannual to decadal timescales) in the Atlantic can 

impact TC activity through not only changing local SSTs, but also modulating vertical wind 

shear, low-level vorticity, and tropospheric moisture (Gray 1984a,b; Tang and Neelin 2004; 

Emanuel 2005; Webster et al. 2005; Emanuel 2007; Vimont and Kossin 2007).  ENSO is the 

most dominant mode of climate variability on interannual timescales. It is well known that warm 

phase of ENSO (El Niño) can suppress Atlantic TC activity, because of the warming in the 

eastern tropical Pacific that enhances vertical wind shear in the Atlantic through changes in the 

Walker Circulation (Gray 1984a,b; Tang and Neelin 2004).  Furthermore, the impact of ENSO 

has a ‘see-saw’ effect on Atlantic and Eastern North Pacific TCs (Elsner and Kara 1999).  

During El Nino, while TC activity is suppressed in Atlantic, it is enhanced in the Eastern North 

Pacific (ENP).  Even though the relationship between ENSO and TC frequency in the ENP is 

still uncertain, increase in intense ENP hurricane numbers has been related to El Niño events 

(Gray and Sheaffer, 1991; Whitney and Hobgood, 1997).  Collins and Mason (2000) and (2003) 

suggested an enhancement in TC strengths caused by increased humidity and SST during El 

Niño in the western (west of 116°) ENP, while they suggested general climatologically favorable 

conditions for TC genesis in the eastern portion of the ENP regardless of ENSO phase.  Fu et al. 

(2017) demonstrated a reduction in TC frequency in the nearshore ENP during El Niño due to 
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Changes in low-level vorticity induced by strengthened gap winds, and further clarifies the 

relationship between ENSO and ENP TC activity. 

Moreover, during the negative (positive) phase of AMM, which is characterized by warm 

(cool) SST anomalies in the southern tropical Atlantic and cool (warm) anomalies in the northern 

tropical Atlantic, the TC activity in the Atlantic MRD is suppressed (enhanced) (Patricola et al. 

2014).  Besides the local effect of AMM on TC activity, a teleconnection between AMM and TC 

activity in the ENP is shown in both observation and model simulations.  Patricola et al. (2016) 

suggested a reduction in the ENP TC activity during positive AMM through a Walker 

Circulation-type response.  While the AMM represents the SST variability in both northern and 

southern tropical Atlantic, the AMO represents the SST variability in the subtropical and mid-

latitude North Atlantic (Vimont and Kossin 2007), and the variability of Atlantic TC activity on 

longer timescales (multidecadal) is linked to the variability in AMO (e.g., Zhang and Delworth 

2006).  

 

1.3.2 Impact of SST Representation on TC Simulations 

TC variability can come from external source (e.g., SST variability) and internal 

atmospheric dynamics.  The SST-induced TC variability defines the predictable component of 

TC variability, because tropical SST anomalies tend to have long persistent memory and are 

potentially predictable on seasonal or longer time scales (Zhao et al. 2010).  Previous studies 

suggest that the skills in representing SSTs can be translated into model predictability on TC 

activity, especially in the Atlantic, at least on seasonal time scales.  For example, Chen and Lin 

(2013) forced their high-resolution (25km) atmospheric only model with persisted SST, and 

showed an extremely high predictability in interannual variability of Atlantic TCs.  The 
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correlation between the predicted and the observed interannual TC (or hurricane) counts over the 

period from 1990 to 2010 is as high as 0.89 in the Atlantic (Figure 4a in Chen and Lin (2013)).  

However, the model representation of TC activity in the Pacific is not as good, with very low 

correlation skills in the Western Pacific Ocean.  They suggest this reduction in TC interannual 

predictability can be contributed from either the low skill in representation of Pacific interannual 

variability of SST using persisted SST, or the lower predictability in Pacific TCs.   Zhao et al. 

(2010) also emphasized the importance of SSTs on seasonal TC forecasts by comparing forecasts 

using persisted-SST and observed-SST in their high-resolution (50km) atmospheric model 

simulations.  They suggested that coupled model based TC forecast depends strongly on the 

ability of the models to predict the relative change of SST in TC main development region 

(MDR) to tropical mean SST. 

Other than the direct impact of tropical SST on TC simulations, the representations of the 

associated climate modes are also crucial.  Figure 1.1 shows observed and simulated Atlantic 

Accumulated Cyclone Energy (ACE) (Bell et al. 2000) in a large ensemble of WRF runs forced 

with idealized El Nino and AMM SST forcing (Patricola, personal communication, 2016).  The 

bottom row shows the observed variability of Atlantic ACE from the Atlantic hurricane dataset 

(HURDAT), while other rows show the simulated ACE variability forced by El Nino- and 

AMM-like SSTs.  In Figure 1.1, the observation (HURDAT) covers a wide range of variability 

while the range of the simulated variability in the absence of anomalous SSTs is considerably 

smaller, suggesting that much of the observed ACE variability is attributed to SST variability 

induced by various climate modes of variability in the tropics.  For example, the SST forcing 

from El Nino and cold phase of the AMM seem to lower the ACE, while the SST forcing of 

warm phase of the AMM seems to increase the ACE.  Only when the effect of all climate modes 
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is considered can the full range of observed ACE variability be reproduced by the model 

simulations, confirming again that much of the observed ACE variability is tied to interannual 

SST variability related to the AMM and ENSO.  Furthermore, figure 1.1 shows that TC internal 

variability may also depend on SST forcing. For example, the inter-ensemble spread of ACE in 

AMM warm phase appears to be greater than that in either El Nino or AMM cold phase.  Since 

seasonal TC predictability is determined by the ratio between external TC variability and internal 

TC variability, it is possible that SST forcings can have impact on TC predictability.  Therefore, 

reliable simulations of TC activity depend on a realistic representation of SSTs and associated 

climate modes. 

SST changes on longer time scales (for example, multiyear to decadal time scales) are 

suggested to be predictable, partly because of the warming trend associated with the radiative 

forcings (e.g., van Oldenborgh et al. 2013) and partly because of the long ocean memory 

associated with the ocean’s meridional overturning circulation, particularly in the Atlantic 

(Yeager et al. 2018). There is also an observational evidence that the variability of TC activity on 

decadal timescale is related to the decadal SST variations, especially in the north Atlantic basin 

(Zhang and Delworth 2006; Knight et al. 2006).  Moreover, studies suggest TC forecast skill on 

multiyear to decadal timescales may arise from both SST predictability and initialization (e.g., 

Smith et al. 2010).  However, a possible break down in the statistical relationship between SST 

and basin-wide TC activity (such as TC number) is suggested for future climate (Caron et al. 

2014), due to a possible change in SST threshold for TC genesis (e.g., Knutson et al. 2008).  

Therefore, further studies are needed to establish a more robust relationship between SSTs and 

TCs on longer timescales. 
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1.4 Challenges and Objectives 

 One of the most well known problems in state-of-the-art climate model simulations and 

projections is the SST biases in almost all ocean basins, especially in the eastern tropical oceans 

and the Southern Ocean regions.  Figure 1a in Wang et al. (2014) shows the annual-mean (1900 

to 2005) SST biases, averaged from 22 models of the Coupled Model Intercomparison Project 

phase 5 (CMIP5).  If we compare the SST bias map to the TC track locations and frequency 

around the globe, many of the TC active regions are subject to severe SST biases.  Large warm 

biases can be seen in the southeastern basin of the tropical Atlantic and Pacific.  In particular, the 

Atlantic warm SST bias can be as large as 6°C in some of the CMIP5 models (Xu et al. 2014).  

Other than the severe warm biases, prominent cold SST biases of more than 1°C also occur in 

northwestern Atlantic and Pacific, where most of the TCs occur, even though with smaller 

amplitudes.  The SST biases have persisted from CMIP3 to CMIP5, but the spread of bias 

amplitudes among different models is smaller in CMIP5 than in CMIP3 (Richter et al. 2014), 

suggesting that all CMIP5 models are producing more similar SST biases than CMIP3 models.   

The causes for these SST biases are complex and have been subject to considerable 

investigations.  Studies suggest that the causes of the biases can be traced to simulation biases in 

coastal winds (and thus coastal upwelling), stratocumulus decks (and thus shortwave radiation), 

mesoscale eddies (and thus offshore transport), equatorial westerly wind, and thermocline 

(Richter and Xie 2008; Li and Xie 2012; Patricola et al. 2012; Xu et al. 2013; Xu et al. 2014; 

Ritcher et al. 2015; Small et al. 2015; Patricola et al. 2016).  In order to efficiently remove the 

SST biases, higher resolutions (both horizontally and vertically) in climate models and more 

oceanic observations (especially for tropical subsurface) are needed, both require tremendous 

amount of resources (e.g., Ritcher 2015; Small et al. 2015).  Even with the improvement in our 
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understanding of the causes of the biases and progress made to reduce the biases in the newer 

version of climate models, it is suggested that the SST biases may persist for decades (Ritcher 

2015).  Therefore, it is crucial to account for the impact of SST biases on model simulations of 

TCs, although few studies have been focused on this subject (e.g., Vecchi et al. 2014). 

The main objective of this dissertation is to investigate the impact of model SSTs, 

including both their biases and predictions, and the TC-associated environmental variables on 

TC simulations.  And the main focus of each chapters of this dissertation is as follows: Chapter 

two: Quantifying the impact of state-of-the-art climate model (CMIP5) SST biases on TC 

simulations; Chapter three: Examining the feasibility of dynamical seasonal prediction of TCs 

using predicted SST information from a large ensemble of climate model decadal predictions; 

Chapter four: Exploring the predictability of TC environmental condition changes on subdecadal 

time scales using a large ensemble of climate model decadal predictions.  Every chapter starts 

with an introduction section, following by methodology, data, and experimental designs.  The 

results and summary (discussion) for each project will then complete each Chapter.  Through 

these three projects, we hope to potentially improve our understanding on the influence of SST 

representations on seasonal to decadal TC predictability.  In the end of this dissertation, we will 

summarize the major findings of this study and discuss possible future work. 
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Figure 1.1. A summary of the large ensemble TCM experiment. Each row in this figure 
represents Atlantic ACE variability in response to SST forcing of a particular mode of climate 
variability with the bottom row representing observed ACE variability based on HURDAT. 
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CHAPTER II  

THE IMPACT OF CLIMATE MODEL SEA SURFACE TEMPERATURE BIASES ON 

TROPICAL CYCLONE SIMULATIONS  

 

2.1 Introduction and Background 

Reliable climate model simulations of TC activity depend on a realistic representation of 

modes of climate variability on seasonal to multi-decadal timescales, as well as climatological 

mean SSTs.  However, severe SST biases exist in the tropical Pacific and Atlantic in most of the 

Intergovernmental Panel on Climate Change (IPCC) coupled global climate models (CGCMs) 

(e.g., Richter 2015).  Figure 2.1 shows the multi-model ensemble-averaged seasonal mean (April 

to November) of the tropical SST biases in the Atlantic and Pacific from the Coupled Model 

Intercomparison Project Phase 5 (CMIP-5) models (details in Methodology). The SST bias in the 

Indian Ocean is not shown, since its magnitude is relatively small.  Very large warm biases cover 

the southeastern tropical Atlantic and Pacific (Wang et al. 2014), with the Atlantic bias reaching 

6°C in some models (Xu et al. 2014).  In addition, cold SST biases occur in the northwestern 

Atlantic and Pacific, albeit with weaker amplitudes.  Wang et al. (2014) and Zhang et al. (2014) 

suggest interhemispheric links of the biases in Atlantic and Pacific.   

Several mechanisms have been identified to cause the SST biases, which can vary from 

region to region (Richter and Xie 2008; Li and Xie 2012; Patricola et al. 2012; Xu et al. 2013).  

The tropical cold biases mainly originate from atmospheric errors in cloud cover (Li and Xie 

2012) and trade winds (Liu et al. 2012), and can be largely reduced by increasing model 

resolution (Zuidema et al. 2016).  The mechanisms for the warm biases in eastern Pacific and 

Atlantic are more complex.  While the processes driving the warm bias in the Atlantic are mostly 
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rooted in the narrow near-shore winds along the Benguela coast  (Xu et al. 2014; Small et al., 

2015; Patricola and Chang, 2016), errors in marine stratocumulus and associated short wave 

radiation can contribute significantly to the southeastern Pacific warm bias (Masunaga et al. 

2002; Painemal and Minnis 2012; Zuidema et al. 2016), even though the patterns of the biases 

are similar in the two ocean basins.  Moreover, nonlinear processes associated with ocean 

mesoscale eddies may contribute to the warm biases in the eastern ocean basins (Colas et al. 

2012; Toniazzo et al. 2010). Atlantic equatorial westerly wind biases can also remotely influence 

the eastern warm SST biases through oceanic Kelvin waves (Richter 2015). 

Even though the mechanisms that cause the SST biases have been widely studied, the 

impact of the biases on TC simulations and seasonal predictions has not been fully understood.  

Dynamical climate models are now utilized to make experimental seasonal TC predictions, 

owing to model developments and improvements in computational capabilities (e.g., Wang et al. 

2009; LaRow et al. 2010; Murakami et al. 2016; Zhang et al. 2017).  One forecast approach is 

based on atmosphere-only models with predicted SSTs as boundary condition.  For this 

approach, important aspects of TC-ocean interactions (e.g., Lin et al. 2013) are not represented. 

Another forecast approach uses coupled atmosphere-ocean models.  However, the severity of the 

tropical SST biases can potentially have considerable impacts on TC simulations and predictions.  

Vecchi et al. (2014) show improvements in simulated TC genesis and track by reducing SST 

biases in a high-resolution CGCM simulation through adjusting momentum, enthalpy, and 

freshwater fluxes.  They suggest that the improved TC representations are likely achieved by 

improvements in simulated large-scale climatological conditions and interannual variability.  

Zhao et al. (2010) suggested the importance of SSTs on seasonal TC forecasts using persisted 

and observed SST anomalies in a high-resolution (50km) atmospheric-only model.  Their results 
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potentially indicate that coupled model TC forecast skill strongly depends on the ability of the 

models to represent the relative change of SST in the TC main development region (MDR) to 

tropical mean SST.  

The SST biases can also introduce large uncertainties into future projections of TC 

activity based on climate models. There is no consensus on projected changes in future TC 

frequency, although the most recent simulations suggest a slight reduction in overall TC numbers 

but an increase in the percentage of intense TCs  (e.g., Emanuel 2005; Holland and Webster 

2007; Bender et al. 2010; Knutson et al. 2010; Camargo and Hsiang 2016).  Nevertheless, 

projections of future TC location changes, such as TC tracks and landfall frequency, are not 

robust, and sub-regional projections remain highly uncertain (Camargo and Hsiang 2016).  A 

clear understanding of future changes in TCs requires reliable simulations of the mean and 

variability of SST. 

Given that the SST biases problem is likely to persist in models for at least a decade or 

longer (Richter 2015), it is crucial for us to take into account the impact of these biases on 

simulations of TCs activity.  In this Chapter, we will address the question: How do Atlantic and 

Pacific SST biases impact the simulated TC climatology?  By conducting suites of TC-

permitting model simulations with and without SST biases, we hope to improve our 

understanding of how the warm and cold SST biases individually influence simulated TC 

activity, and through what mechanisms.  Moreover, we will also consider how the Atlantic and 

Pacific SST biases jointly influence TC simulations and assess their relative importance in 

affecting TC simulations in different regions, as modes of tropical Pacific and Atlantic variability 

are known to exert joint influences on Atlantic TC activity (Patricola et al. 2014). By splitting the 

biases up by region and by sign, we will attempt to identify which biases are most detrimental to 
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TC simulations and what their impacts are for basin-wide TC activity.  Moreover, while keeping 

in mind that relationships occur between biases in different ocean basins, we would like to 

address the question: how can SST biases from basins outside of the region of interest impact TC 

activity?  Although previous studies have shown that SST biases can impact TC simulations, the 

impact has not been systematically quantified and the pathways by which the biases influence 

TCs have not been understood.  The objective of this study is to gain insight into the impact of 

the SST biases on TC simulations at seasonal-to-interannual timescales.  More importantly, we 

will shed light on underlying dynamics of SST biases’ impact on TC simulations. 

This chapter is organized as follows. Section 2 describes the modeling tool and 

experiment design. Section 3 presents the results of the model experiments where SST biases are 

specified either individually or jointly in different tropical ocean basins. Section 4 discusses the 

implications of the results and summarizes the main conclusions. 

 

2.2 Research Methods – Model Description and Experimental Designs 

2.2.1 Model Description 

We utilized a Tropical Channel Model (TCM) configuration (Patricola et al. 2016; 

Patricola et al. 2017) of the Weather Research and Forecasting (WRF) Model (Skamarock et al. 

2008) developed by the National Center for Atmospheric Research (NCAR).  This model is more 

suitable for this study compared to many global climate models (GCMs) due to its non-

hydrostatic dynamical core and finer resolution.   The TCM extends around the global tropics 

from 30°S to 50°N, and has 27 km TC-permitting horizontal resolution and 32 levels in the 

vertical.  While the horizontal resolution of the TCM is too coarse to resolve the details of the 

individual TCs, it is sufficient to investigate the statistics of TC activity.  By setting the model 
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domain to the global tropics, we allow atmospheric responses to SST forcings to propagate 

around the globe in the tropics and subtropics.  Moreover, by setting the northern boundary at 

50°N, atmospheric teleconnections that affect the MDR from outside the tropics can be 

considered, as teleconnections between different tropical ocean basins can be linked through 

regions outside of the tropics (Nobre and Shukla 1996).   

The sensitivity of physical parameterizations of the WRF model was well tested over the 

Atlantic MDR (Patricola et al. 2014), and the TCM was tested over both the Atlantic and Pacific 

basins (Patricola et al. 2016; Patricola et al. 2017).  However, we note some problems with the 

model.  For example, the TCM tends to generate too much rainfall over Africa and the Amazon, 

underestimate the maximum near-surface wind speed of TCs, and overestimate the number of 

Atlantic and ENP TCs (Patricola et al. 2016).  Despite these issues, the TCM reproduces the 

atmospheric responses to ENSO and AMM reasonably well (Patricola et al. 2016; Patricola et al. 

2017).  Therefore, with these known problems, the TCM is a suitable tool for this study.   

 

2.2.2 Experimental Designs 

We conducted extensive WRF TCM experiments forced by surface boundary conditions 

with and without SST biases.  By prescribing the SST forcings to the TCM, we can isolate the 

atmospheric response to specific regions of SST bias, which is important as different 

mechanisms generate the SST biases in different regions.  The SST biases were calculated from 

the CMIP-5 (Taylor et al. 2012) multi-model (37 models) ensemble mean subtracted from the 

National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (-OI) 

observed SST (Reynolds et al. 2007), and were then interpolated to 6-hourly from monthly, and 

to the 27km grid of the TCM. A suite of simulations (Table 2.1) were conducted to quantify 
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individual and joint effects of SST biases on TC activity by separating the Atlantic and Pacific 

SST biases into warm, cold, and total (combining warm and cold) biases. The biases near the 

lateral boundaries were smoothed over 5 degrees in the latitudinal direction.  Even though the 

amplitudes of seasonal variation of the biases are smaller than the biases themselves (Wang et al. 

2014), we included the annual cycle of the SST biases in our simulations.   

The biases were added to the control SST to produce the warm, cold, and total bias 

simulations.  Figure 2.1 shows the seasonal mean (from April to November, to focus on the TC 

season) of the SST biases that we used in the experiments.  While the SST biases were calculated 

based on the 1984-2004 NOAA-OI SST, the control SST was based on the monthly 1950-2014 

climatology from the Hadley Center Global Sea Ice and Sea Surface Temperature dataset 

(HadISST) (Reyner et al. 2003). HadISST was utilized for the control SST because the product 

covers a longer time period, whereas the NOAA-OI SST was used to calculate SST biases 

because the resolution is finer.  We do not expect details between HadISST and NOAA-OI SST 

to significantly impact the results of this study, as the SST biases have much larger amplitude 

than the difference between the two SST products. 

To quantify the impact of SST biases, the ensemble of control simulations (CTRL) serves 

as a reference for experiments including the Atlantic warm bias (AtlWB), Atlantic cold bias 

(AtlCB), Atlantic total bias (AtlTB), Pacific warm bias (PacWB), Pacific cold bias (PacCB), 

Pacific total bias (PacTB), and the combined Atlantic and Pacific total bias (AtlPacTB) 

simulations (Table 2.1).   Initial conditions (ICs) and lateral boundary conditions (LBs) were 

provided by the 6-hourly NCEP-U.S. Department of Energy (DOE) Atmospheric Model 

Intercomparison Project II (AMIP-II) Reanalysis (NCEP-2) from the years 1989 and 1996 

(Kanamitsu et al. 2002).  The two years were chosen since climate modes such as AMO were in 
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a neutral phase (Patricola et al. 2014).  To focus on the TC season in the northern hemisphere, 

the simulations were started in April and ended in November.  The first two months were 

discarded as spin up, with analysis covering June to the end of November. An ensemble of 16 

runs was generated by altering the start date to generate different ICs for each ensemble member 

of each experiment in order to quantify the statistical significance of the results. 

 

2.2.3 Quantifying TC Activity 

The tracking algorithm from Walsh (1997) was used to identify simulated TCs, including 

tropical storms and hurricanes or typhoons (depending on the ocean region).  To be identified as 

a tropical cyclone, the system must generate south of 30°N, last at least two days, and have a 

warm core.  Moreover, an identified TC must have a closed surface pressure minimum, a 

minimum 10-meter wind speed of 17.5 ms-1, and satisfy a 850-hPa vorticity threshold over its 

center.  The resolution used to calculate the track density is 2° longitude by 2° latitude.  A 

comparison between the track density from the Revised Atlantic Hurricane Database 

(HURDAT2) (Landsea et al. 2015) and from TCM ensemble of the climatology simulation in the 

ENP and Atlantic is shown in Supplementary Figure 6 in Patricola et al. (2016). 

To investigate the impact of SST biases on TC activity, we calculated the simulated 

accumulated cyclone energy (ACE), which accounts for TC strength, number, and duration (Bell 

et al. 2000).  ACE is the summation of the square of the 6-hourly maximum sustained wind 

speed of TCs over a TC season.  Furthermore, to understand the underlying dynamics linking 

SST biases to TC simulations, we examine the Genesis Potential Index (GPI) (Emanuel and 

Nolan, 2004).  By calculating GPI, we can quantitatively estimate how various environmental 

variables influence changes in TC activity: 
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The GPI is calculated from the monthly mean of absolute vorticity at 850 hPa (η), relative 

humidity at 600 hPa (H), potential intensity (Vpot), and vertical wind shear between 850 and 200 

hPa (Vshear).  The potential intensity (PI) is computed based on atmospheric (temperature and 

specific humidity) vertical profiles, sea level pressure, and SST.  While GPI does not explain all 

variability associated with TCs, it is a suitable index for investigating the conditions that 

influence the TC activity (Camargo et al. 2007; Patricola et al. 2014). 

 

2.3 Results 

2.3.1 Atlantic SST Biases 

Figure 2.2 shows the differences in ensemble means of the TC track density between the 

Atlantic bias runs and the control simulation.  The Atlantic warm bias produced no significant 

impact on TC track density (Figure 2.2a) and genesis locations (not shown).  However, the 

Atlantic cold bias caused a marked decrease in Atlantic TC track density, and a remote increase 

in ENP TC track density (Figure 2.2b), with an insignificant change in Atlantic genesis density 

and a positive genesis density anomaly near the coast of the ENP (not shown).  Note that the 

positive anomaly in track density in the ENP is slightly offshore, and the magnitude of the 

anomaly is even larger than that in the Atlantic.  AtlTB impacts the track density in a similar way 

as AtlCB, but with smaller magnitudes (Figure 2.2c).  Moreover, the Atlantic SST biases 

produced no statistically coherent response in WNP track density.   

Figure 2.3 shows the values of ACE and the number of TCs in the Atlantic, ENP, and 

WNP basins computed from the control simulation and the Atlantic bias experiments. Both 
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AtlCB and AtlTB generate lower ensemble median values and lower ensemble mean values 

(Table 2.2) of ACE and TC number in the Atlantic and higher values in ENP compared to CTRL.  

The simulated basin-wide decrease in Atlantic TC activity and increase in ENP TC activity in 

response to the Atlantic cold and total biases are all significant at the 5% level (two-sample 

student t-test).  Both AtlCB and AtlTB generate a decrease in Atlantic TC intensity (not shown), 

corresponding to the smaller ACE values, and an increase in ENP TC intensity that co-occurs 

with larger ACE values.  Moreover, similar to the impact on track density, the impact of Atlantic 

cold and total biases on ACE and TC number is stronger in the ENP basin (remotely) than in the 

Atlantic basin (locally) (Table 2.2). 

On the other hand, the Atlantic warm bias does not significantly (5% level) impact ACE 

and TC number in any of the tropical ocean basins.  Furthermore, the Atlantic SST biases 

insignificantly influence WNP ACE and TC number.  Note that even if we consider the internal 

variability (or the range of the values of the ensemble members), the values of ACE and number 

of TCs generated by AtlCB and AtlTB in the Atlantic and ENP are considerably different from 

those of CTRL (Figure 2.3).  

To understand the underlying dynamics linking SST biases to TC simulations, we 

examined the GPI (Figure 2.4) and the associated atmospheric variables. The patterns of 

significant GPI changes are consistent with the changes in ACE and number of TCs.  The cold 

(Figure 2.4b) and total (Figure 2.4c) SST bias forcings induce a decrease in ensemble-mean GPI 

in the Atlantic MDR and Gulf of Mexico (GoM), and an increase in the ENP.  The Atlantic 

warm bias alone insignificantly impacts GPI (Figure 2.4a). Therefore, we focus on AtlCB and 

AtlTB to investigate the dominant GPI terms (atmospheric variables) that contribute to the GPI 

change driven by Atlantic SST biases.  The impact of AtlTB is not significantly different from 
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that of AtlCB, suggesting that the cold bias, rather than the gradient generated by both the cold 

and warm biases, mainly contributes to the anomalous GPI patterns. 

GPI changes forced by Atlantic SST biases can be further diagnosed by computing 

contributions from environmental variables including vertical wind shear, mid-tropospheric 

relative humidity, potential intensity, and vorticity.  To estimate the contribution from each 

factor, we calculated the GPI by setting one term in GPI to the value from one of the perturbed 

simulations, and other terms to values from the control simulation, and then compared to the 

CTRL GPI (Camargo et al. 2007; Patricola et al. 2014; Patricola et al. 2016). Only the result for 

AtlCB (Figure 2.5) is shown due to the similarity between the GPI responses in the AtlCB and 

AtlTB experiments.  In both the Atlantic cold and total bias runs, the mid-tropospheric humidity, 

vertical wind shear, and potential intensity all contribute to the decrease in Atlantic GPI, while 

only the shear term contributes to the increase in ENP GPI.  (The negative contribution from the 

humidity and vorticity terms compensates the large positive contribution from the shear term by 

a small magnitude along the coast of the ENP.)  Moreover, the weakly positive GPI anomalies in 

the central Pacific in AtlCB and AtlTB arise from the humidity term.  The response in 

atmospheric conditions (e.g., mid-tropospheric relative humidity and vertical wind shear) is 

consistent with the associated GPI term (not shown).  For example, the vertical shear is enhanced 

by the AtlCB, consistent with the relationship found in previous studies:  with cold anomaly in 

northern Atlantic SST, the strengthened subtropical high can induce easterly low-level wind 

anomalies in the MDR, and further enhance the local vertical wind shear (Vimont and Kossin 

2007).  Moreover, the change in tropospheric humidity can be locally linked to the change in 

surface latent heat flux generated by SST anomalies in the Atlantic (Vimont and Kossin 2007).  

Note that in order to test the robustness of the results, all of the above analyses (and those for 
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Pacific and combined Atlantic and Pacific SST bias experiments) were repeated by randomly 

choosing 8 out of the 16 ensemble members.  There is little difference in the results, suggesting 

that the ensemble size is sufficiently large to generate robust findings. 

It has been shown that SST anomalies in the tropical Atlantic can remotely influence 

atmospheric circulations and SSTs in the tropical Pacific on interannual to centennial timescales 

(Kucharski et al. 2016).  On interannual timescales, previous studies have shown that the 

teleconnection generated by Atlantic SST variability can impact the Pacific basin through a 

Walker-type circulation response (Patricola et al. 2017; Zhang et al. 2017), consisting of near-

surface wind anomalies triggered by equatorial Kelvin waves (Polo et al. 2014; Ding et al. 2012; 

Rodriguez-Fonseca et al. 2009), and/or Rossby wave responses (Ham et al. 2013; Ham et al. 

2013).  In our AtlCB simulations, while a Walker-type circulation response similar to the 

negative AMM experiment in Patricola et al. (2017) can be seen (Figure 2.6a), the remote impact 

of Atlantic cold bias on ENP TC activity, especially the shear contribution, is also strongly 

influenced by the change in regional circulation inducing by the topography.  

In CTRL simulations (Figure 2.6b), a low-level easterly, which is generated by trade wind 

and the associated Caribbean low level jet (CLLJ), appears in the Caribbean/Atlantic region with 

the corresponding westerly on top around 200hPa induced by the occurrence of the Central 

America mountain.  On the lee-side of the Central America topography, a low-level westerly 

occurs with an easterly in upper levels.  Circulations on the lee-side and in the Caribbean region 

(windward side) both contribute to an ascending wind on top of the Central America mountain 

region, generating a maximum rainfall region in the TCM.  (Note that in observation, the lee-side 

circulation/shear is much weaker, therefore the precipitation pattern is different from that in the 

TCM.)  Moreover, in the western part of the ENP, a circulation cell (or double cell, as it is 



 

 22 

generated by both the Hadley Cell and Walker circulation) exists, with a low-level easterly 

occurring with an upper-level westerly.  A descent motion band around 120°W is then generated 

by the double cell and the lee-side circulation. 

In the AtlCB simulations (Figure 2.6c), a stronger low-level easterly occurs in the 

Caribbean/Atlantic region with an enhanced upper-level westerly.  This strengthening of the 

circulation on the windward side of the mountain is contributed by strengthening of the CLLJ.  

The strength of the CLLJ is correlated to the SST difference between the tropical Atlantic and 

ENP, and is also strongly controlled by the land-sea temperature difference between the 

Caribbean and the northern part of the southern America land (e.g., Whyte et al. 2008).  With the 

Atlantic cold bias, the pressure gradient is enhanced between the ocean basins and between the 

land and sea, and therefore the CLLJ is strengthened.  However, since the air coming from the 

Atlantic/Caribbean region is colder and dryer (due to the cold SST bias) compared to CTRL, the 

latent heat release associated with the orographic lifting is weaker than that in CTRL. This leads 

to a weakened ascending motion in AtlCB than in CTRL, resulting in an anomalous descending 

wind over the mountain and the windward region.  Figure 2.7 shows rainfall and vertical-

integrated moisture convergence differences between AtlCB and CTRL. A decrease in the 

regional rainfall over the Central American is indicative of a weakening in the diabatic heating, 

while a decrease in the moisture convergence from windward side to coastal leeward side of the 

mountain suggests a reduced moisture supply in the region.  Note that due to the complexity of 

the terrain, the spatial pattern of moisture convergence over the mountain is messy.  As a result, 

the cold SST bias in AtlCB produces a clockwise anomalous vertical circulation above the 

mountainous region in the Central America (Figure 2.6a), which acts to strengthen the 

circulation over the Caribbean and Atlantic and weaken the circulation over the far eastern ENP 
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(Figure 2.6b).  As such, the vertical wind shear is strengthened over the Caribbean and Atlantic 

and reduced over the ENP. This offers an explanation for the sharp change in sign of vertical 

shear induced GPI anomaly over the Central America (Figure 2.5b), which dominates the GPI 

difference between AtlCB and CTRL (Figure 2.4b).  

 

2.3.2 Pacific SST Biases 

Unlike the Atlantic cold bias, which significantly impacts both the Atlantic and eastern 

Pacific basins (Figure 2.2), the Pacific cold bias has no significant impact on TC track density in 

these ocean basins (Figure 2.8).  (However, a positive anomaly in track density occurs in the 

Pacific region around 180°W.)  The Pacific warm bias and total bias significantly increase the 

track density and genesis density (not shown) locally in the ENP, but the positive anomaly 

pattern has a different shape and location from that of the AtlCB experiment.  While the 

maximum magnitudes of the track density anomaly from PacWB and PacTB are about half of 

that from the Atlantic cold bias, the positive TC track density anomaly in the central Pacific 

(around 180°W) is much larger in PacCB and PacTB compared to AtlCB.  A positive track 

density anomaly in the central North Pacific occurs with a negative anomaly in the central to 

eastern Atlantic basin in both PacCB and PacTB (Figure 2.8b and c).  Since the positive anomaly 

in the central Pacific is accompanied by a negative anomaly in the western (coastal) Pacific, an 

eastward shift of TCs in the WNP is generated by the Pacific total SST bias (Figure 2.8c).   

This eastward shift also appears in genesis density (not shown), and a similar shift in 

WNP TCs is observed during El Niño events (eg. Chan 1985, 2000; Wang and Chan 2002).  

Wang and Chan (2002) suggest that the equatorial westerlies associated low-level shear vorticity 

and upper-level divergence induced by the intensified WNP subtropical high during El Niño 
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events can both contribute to a southeastward shift of TCs, by enhancing TC generation in SE 

WNP and suppress generation over the NW quadrant of the WNP.  In our case, similar 

anomalous westerlies can be generated by the zonal SST gradient induced by the zonal gradient 

in cold and warm biases north of the equator, and the intensification of the subtropical high can 

be generated by the local decrease in SST induced by the northwestern part of the Pacific cold 

bias.  Therefore, with both the warm and cold biases combined, PacTB generates the most 

significant eastward shift in TCs.  However, the SST bias pattern in the Pacific is more complex 

than El Niño related SST anomalies, and further work is required to fully understand their impact 

on the shift of TC locations, and how the mechanism is different from that during El Niños. 

Consistent with the impact on the track density, the Pacific cold bias alone insignificantly 

influences ACE and number of TCs in both the Atlantic and Pacific basins (Figure 2.9 and Table 

2.3).  The warm bias, on the other hand, locally increases ENP TC activity (Figure 2.9b and e).  

Similarly, the ensemble means in ACE and number of TCs increase (Table 2.3).  Furthermore, 

the PacWB runs generate stronger TCs in the ENP (not shown), consistent with the larger ACE 

values.  The remote impact of the Pacific warm bias on the TC activity in Atlantic is evident, 

with a slight decrease in ACE and number of TCs (Figure 2.9a and d).  However, the ensemble-

averaged Atlantic ACE in PacWB is significantly different from that of CTRL in the Atlantic 

basin, whereas the change in number of TCs is insignificant (Table 2.3).  Moreover, there is no 

significant change in the ensemble mean of both ACE and number of TCs in the Atlantic basin in 

PacTB.  The ensemble means show that while the Atlantic SST biases have a larger impact on 

TCs remotely in the ENP compared to locally in Atlantic (Table 2.2), the Pacific biases have a 

larger impact locally in the ENP (Table 2.3). 
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Even though the Pacific SST bias has no significant impact on WNP ACE and number of 

TCs, the probability density function of TC intensity (not shown) indicates that PacCB shifts the 

TCs to lower intensity compared to CTRL.  A similar result is obtained by separating out strong 

TCs when calculating the ensemble ACE and the number of TCs.  While the ensemble-averaged 

values of ACE and number of TCs in PacCB are insignificantly different from those in CTRL 

(Table 2.3), the PacCB ensemble mean of ACE for TCs stronger than category 3 shows a 61% 

decrease from CTRL in WNP. Besides the change in ACE, the number of TCs stronger than 

category 3 also decreases in PacCB (by 75%), indicating that a significant decrease in TC 

intensity in the WNP can be caused by the Pacific cold bias.  

GPI and associated atmospheric variables are also analyzed for Pacific bias experiments.  

Locally, PacWB and PacTB strongly increase GPI in the ENP, corresponding to an increase in 

ACE and number of TCs in that region (Figure 2.10).  PacCB remotely increases GPI in the 

western Atlantic near the Caribbean Sea (Figure 2.10b), corresponding to an insignificant 

increase in ACE in Atlantic basin (Table 2.3).  PacTB has the combined effect of PacWB and 

PacCB in the ENP and Atlantic basins, where GPI increases strongly in the ENP, but changes 

insignificantly in the Atlantic.  Both PacWB and PacCB (and thus PacTB) generate a positive 

GPI anomaly in the central Pacific near 10° to 15°N and 160°E to 150°W, and a negative 

anomaly north of the positive anomaly in central Pacific as well as in the WNP.  Note that a 

similar pattern is shown in the track density anomaly for PacTB (Figure 2.8), except for a 

westward shift compared to the GPI anomaly pattern.  

The contributions from each factor in GPI indicate that the warm bias generates an 

increase in GPI in the ENP mainly through PI (Figure 2.11).  PacWB and PacCB have similar 

GPI anomalies in the central Pacific derived from similar physical causes: both humidity and 
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shear terms make a positive GPI anomaly.  This similarity between the GPI term contributions in 

PacWB and PacCB suggests that it is the gradient of the SST, rather than the SST anomaly, that 

influences the atmospheric circulation and condition (Graham and Barnett 1987; Wang and Li 

1993), which further induce changes in TC activity.  Nevertheless, the negative GPI anomaly in 

central and WNP is much weaker in PacWB than PacCB, with the anomaly attributed to all GPI 

terms.  Although the PacCB generates a stronger eastward shift in the WNP TC tracks and GPI 

anomaly, with the cold bias in western WNP, TCs do not seem to intensify further even with a 

longer distance to travel over the ocean (which can potentially intensify TCs (eg. Wang et al. 

2002; Camargo and Sobel 2005; Wang et al. 2013)). This could be related to the coarse 

resolution of the model used in this study that does not fully resolve TC dynamics.  As a result, 

the TC activity (ACE and TC number) of strong TCs decreases in PacCB.  As for the Atlantic 

bias experiments, all the analyses for the Pacific SST bias experiments have been repeated by 

randomly chosen 8 ensemble members, and the results remain similar to those with all (16) 

ensemble members. 

 

2.3.3 Atlantic and Pacific SST Biases 

Given the importance of joint SST variability (Patricola et al. 2014), we expect the 

Atlantic and Pacific biases to jointly influence the TC simulations.  Both Atlantic total bias 

(AtlTB) and Pacific total bias (PacTB) generate an increase in track density in ENP (Figure 2.12), 

with AtlTB from about 10°N to 20°N (Figure 2.2c), and PacTB from about 20°N to 30°N (Figure 

2.8c).  Note that while the strongest increase of the track density in PacTB is along the west coast 

of Central America (corresponding to the bias location), the anomaly in AtlTB is slightly offshore 

in the ENP (due to the local topographic impact).  The impact of the combined Atlantic and 



 

 27 

Pacific SST biases (AtlPacTB) is shown to have combined effects of AtlTB and PacTB. Figure 

2.12 shows the TC track density difference between AtlPacTB and CTRL. Compared to AtlTB 

and PacTB, it is clear that the positive track density anomaly in the ENP is more widespread in 

AtlPacTB.  In the Atlantic region, SST biases in both AtlTB and PacTB contribute to the negative 

anomalies in TC track density in AtlPacTB.  However, the positive track density anomalies in the 

central Pacific and negative anomalies in the WNP appear to mainly come from the Pacific SST 

biases (PacTB), with minor contribution from the Atlantic biases (AtlTB). 

The combined Atlantic and Pacific SST biases significantly reduce ACE and TC number 

in the Atlantic basin, and this suppression of TC activity is mainly dominated by the Atlantic 

bias (Figure 2.13 and Table 2.4).  In the ENP, both AtlTB and PacTB significantly increase the 

values of ACE and TC number, resulting in a significantly large increase in TC activity (199% 

and 88% compared to CTRL for ensemble mean ACE and TC number, respectively) in 

AtlPacTB runs.  However, the ensemble mean ACE and TC number show relatively minor 

changes in the WNP in AtlPacTB compared to AtlTB and PacTB (Table 2.4). Interestingly, there 

is an indication that the ensemble spread, which is a measure of atmospheric internal variability, 

is reduced in WNP when the Atlantic and Pacific SST biases are combined in AtlPacTB 

compared to that in AtlTB and PacTB respectively.  Whether this change in internal variability is 

robust requires further research. 

To investigate the environmental condition changes associated with the impact of 

combined bias on TC simulations, we also computed GPI for the AtlPacTB experiment (Figure 

2.14).  According to the GPI anomalies induced by individual Atlantic and Pacific SST biases 

(Figure 2.4 and Figure 2.10, respectively), the negative GPI anomalies in Atlantic basin in 

AtlPacTB are mainly driven by the Atlantic cold bias, whereas the positive GPI anomalies in the 
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ENP are caused by joint impacts from the Atlantic cold bias and Pacific warm bias.  In the 

central and WNP region, the GPI anomaly in AtlPacTB shows a similar pattern and magnitude to 

the Pacific bias experiments, indicating the dominant influence from the Pacific biases, rather 

than the Atlantic biases, on the GPI in these regions.  This GPI anomaly pattern is generally 

consistent with TC changes measured by other TC activity indexes, including track density, ACE, 

and number of TCs. It shows that TC activity is (1) strongly enhanced in the ENP,  (2) 

suppressed in the Atlantic, and (3) generally increased in central Pacific and decreased in the 

WNP because of an eastward shift in TC locations, under the combined influence of SST biases 

in both basins. 

 

2.4 Discussion and Summary 

Large ensembles of TC-permitting tropical-channel WRF simulations show that tropical 

SST biases common to current generation climate models can have a significant impact on TC 

simulations, predictions, and projections both locally in and remotely from tropical Atlantic and 

Pacific basins.  Even though previous studies have suggested impacts of SST biases on simulated 

TCs (Vecchi et al. 2014), the influence of individual biases (and biases in each basin) has not 

been systematically investigated.  In this study, we investigate the local and remote TC responses 

to individual biases by separating warm and cold biases in each ocean basins, and the results 

allow us to identify which biases have the most significant impact on TC simulations. Our study 

shows that tropical SST biases can cause an overestimation of ACE (by ~200%) in the ENP and 

underestimation of ACE (by ~60%) in Atlantic, while the impact on WNP ACE is insubstantial. 

Considering the basin-wide TC activity, TCs in the ENP appear to be most affected by SST 

biases because of the joint influence from the tropical Atlantic and Pacific. In contrast, Atlantic 
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TC activity is mostly affected by the cold bias in the Northern Tropical Atlantic, whereas TC 

activity in the WNP seems to be dominated by the local influence of Pacific SST biases.  

Therefore, the results of this study suggest that reducing the Atlantic cold SST bias and Pacific 

SST warm biases could have the strong impact on improving TC representation in climate 

simulations, especially in the ENP and Atlantic.  Moreover, even though the spatial patterns and 

magnitudes are similar between the Atlantic and Pacific SST biases, the mechanisms of how 

these biases exert their influence on simulated TC activity are different. 

The Atlantic cold SST bias causes decreases in mid-tropospheric humidity and potential 

intensity, and increases in vertical wind shear, all of which contribute to decreases in the North 

Tropical Atlantic GPI, leading to decreases in track density, ACE, and number of TCs in the 

region.  In addition, increase in ENP GPI (together with increase in track density, ACE, and TC 

numbers) primarily comes from decreases in vertical wind shear due to the remote influence of 

the Atlantic cold SST bias that produces a walker-type response (Patricola et al. 2017) forced by 

a diabatic heating anomaly associated with orographic lifting along Central America mountain 

ranges.  The terrain-induced circulation anomaly enhances vertical wind shear over Atlantic 

sector and reduces vertical wind shear in the near coast region of ENP. Figure 2.15 shows a 

schematic diagram illustrating the mechanism behind the anomalous circulation. In response to 

the cold bias in Atlantic (AtlCB), the CLLJ intensifies because of the increase in both inter-basin 

SST gradient and land-sea temperature contrast. At the same time, atmospheric moisture content 

also decreases due to the surface cooling, which is the strongest in the Southern Caribbean 

(Figure 2.1). The drier and colder winds carried by the CJJL reduces the orographic lifting 

induced diabatic heating, which in turn produces a clockwise anomalous vertical circulation over 

Central America (Figure 2.15b). The anomalous circulation acting on the mean circulation 
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(Figure 2.15a) produces intensified vertical wind shear on the Atlantic side and reduced shear on 

the Pacific side of Central America, which is primarily responsible for the enhanced TC activity 

over the ENP and reduced TC activity over the Caribbean and Atlantic in AtlBC.  This remote 

influence of Atlantic SST is supported by observational analysis that shows an increase in ENP 

TCs during cold AMM phase (Patricola et al. 2017).  Both observations and simulations from 

TCM show a decrease in vertical wind shear in ENP during negative AMM events. Furthermore, 

even though the impact of Atlantic SST biases on WNP TCs is insubstantial, Yu et al. (2015) 

noted a possibility of the influence of Atlantic SST variability on the circulation in Pacific 

Ocean. Therefore, accurate simulations of Pacific TCs will require a realistic representation of 

Atlantic SST.   

The spatial distribution of the SST biases and the known influence of tropical SST on 

TCs (e.g., Vimont and Kossin 2007; Patricola et al. 2014; Patricola et al. 2017) together suggest 

that the Atlantic SST biases, which have a similar spatial structure to the negative phase of 

AMM, is a leading cause for failure of climate models to accurately simulate Atlantic and ENP 

TC activities.  On the other hand, the impact of the equatorial Pacific biases is more complex 

than ENSO’s impact on TCs because the SST biases have a more complex spatial structure along 

the equator than ENSO SST anomalies.  The SST bias in the northwestern Pacific has a similar 

pattern to its counterpart in the north tropical Atlantic, but its impact on TCs is different from the 

Atlantic because, unlike the Atlantic, SST anomalies in the WNP have a limited influence on 

western Pacific TCs (Chan 2005), suggesting that dynamic processes controlling SSTs’ influence 

on TCs are different between these two regions. We further note that the net effect of the Atlantic 

and Pacific biases on TCs simulated by AtlPacTB cannot be simply deduced by linear 

superposition of the effects from AtlTB and from PacTB, although some compensation between 
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the effects of different SST biases on TC activity is observed. This suggests that the SST biases 

on TCs are inherent nonlinear. 

In contrast to Atlantic SST biases, the Pacific SST biases do not exhibit as strong remote 

influence on Atlantic TCs as Atlantic biases on Pacific TCs.  The warm SST bias off the west 

coast of Mexico has a significant impact on ENP TCs, which is mainly driven by local change in 

potential intensity (which is further a function of SST variability).  Moreover, anomalies in the 

WNP suggest an eastward shift of the TCs due to the Pacific SST biases, possibly through a 

mechanism similar to the southeastward shift of WNP TCs that attributes to El Niño events 

(Wang and Chan 2002).  While our results show no significant impact of Pacific SST on Atlantic 

TCs, previous studies have shown a remote influence of ENSO variability on the TC activity in 

the Atlantic basin.  Given that the regions with larger SST biases in the Pacific basin are not in 

the El Niño regions, it suggests that the location of the maximum SST anomalies (or biases) may 

play an important role controlling the impact on TCs, as suggesting by Wang and Chan (2002). 

However, further research is required to reach a conclusion. 

Our results suggest that SST biases can change TC tracks, and thus TC landfall locations. 

In other words, tropical SST biases can introduce biases to our forecast of regional TC landfall.  

For example, the Pacific biases introduce an eastward shift in the WNP TC tracks, suggesting a 

reduced possibility of TC landfall in the Asian region.  Therefore, projections of future TC 

changes over the Asian region, particularly TC landfall over East Asia, may be subject to 

considerable uncertainties because of SST biases in coupled models.  A similar shift in WNP TC 

tracks is shown in Figure 1 in Vecchi et al. (2014).  By removing the SST biases through flux 

adjustment, the WNP TCs are generated more toward the Asian region and less in the Central 

Pacific region.  Moreover, both our result and that from Vecchi et al. (2014) suggest an increase 
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in track and genesis of TCs in near-coastal region of ENP in the presence of SST biases, 

indicating a possible overestimation of Northern and Central American TC landfall from the 

Pacific Ocean.  Nevertheless, while our simulations with Atlantic biases show a basin-wide 

decrease in TC tracks, indicating no significant change in the TC locations, Vecchi et al. (2014) 

show a southeastward shifted in tracks and genesis locations, suggesting a less possibility of TCs 

making landfall over US and Mexico from GoM and western Atlantic Ocean.  We should note 

that Vecchi et al. (2014) consider the SST biases not only in the tropic, but also in extratropics, 

and the sample size in their simulations is about twice of our TCM simulations.   

Even though our ensemble size is shown to be sufficient for computing basin-wide TC 

activities, it is possible that our sample size is not large enough to thoroughly investigate 

systematic shifts in the Atlantic TC tracks and genesis locations caused by SST biases.  

Moreover, we utilized a TC-permitting atmospheric-only model, while Vecchi et al. (2014) 

utilized a high-resolution atmospheric model coupled to a low-resolution ocean model.  Due to 

the differences in experimental designs between this study and Vecchi et al. (2014), it is difficult 

to directly compare the results.  Furthermore, while our results suggest the importance of the 

response in the Caribbean and western north Atlantic, the model we utilized (TCM) is known to 

have convection biases in these regions.  Therefore, an oversensitivity of TC responses may be 

present in our TCM.  However, this problem of regional convection biases is also a general 

problem among many AGCMs (Biasutti et al. 2006; Ryu et al. 2014).  One should keep these 

convection biases in mind when interpreting our results.  

In conclusion, our results suggest the SST biases can influence simulations, seasonal 

forecasts and future projections of TCs not only in local basins, but also in remote ocean basins. 

Therefore, we should take the SST biases and their impact into account when analyzing TC 
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projections from coupled AOGCMs.  Many previous studies focus on the origins of these SST 

biases (Richter and Xie 2008; Li and Xie 2012; Paticola et al. 2012; Xu et al. 2013; Small et al., 

2015), and some progress has been made to improve the SST biases, even though the 

improvement has shown to be difficult and challenging in some specific regions such as the 

eastern ocean basins (Xu et al. 2014; Richter 2015, Small et al. 2015, Zuidema et al. 2016).  

Nevertheless, the bias problem is unlikely to be resolved in the near future and the climate 

modeling community will continue to confront with this problem (Richter 2015).  Moreover, 

since tropical SST biases can have remote effects on biases in other regions, it could potentially 

hinder the effort to improve regional processes to address local SST biases, making the reduction 

of SST biases more challenging (Wang et al. 2014).  This means that we need to develop 

strategies of coping with the impact of these model biases at least in the near future.  With only 

few studies focusing on the impact of SST biases on TC simulations and predictions, more future 

investigations are needed to have a comprehensive understanding of local and remote influence 

of the SST biases on TC simulations on seasonal to decadal timescales. 
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Figure 2.1. The April-November averaged multi-model mean tropical SST biases (°C).  

 110oE  160oE  150oW  100oW   50oW    0o  
  24oS 
  12oS 

   0o  
  12oN 
  24oN 

Tropical SST Biases

 

 

[Degree C]

ï�

0

2



 

 35 

 
 

Figure 2.2. The differences between track density ensemble means of Atlantic (a) warm (AtlWB), 
(b) cold (AtlCB), (c) total (AtlTB) bias runs, and that of control (CTRL) runs.  Hatched regions 
passed the two-sample student t-test at 5% significance level.  
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Figure 2.3. Boxplot of simulated Accumulated Cyclone Energy (ACE) ((a) to (c)) and number of 
TCs ((d) to (f)) from control (CTRL), Atlantic warm (AtlWB), cold (AtlCB), and total (AtlTB) 
bias runs (16 ensemble members each) in different ocean basins. The horizontal line between 
light and dark shading represents the median of the ensemble values, while the upper boundary 
of the light color box represents the 75 percentile and the lower boundary of the dark color box 
represents the 25 percentile. The whiskers show the maximum and minimum ensemble values.      
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Figure 2.4. The differences between GPI ensemble means of Atlantic (a) warm (AtlWB), (b) cold 
(AtlCB), (c) total (AtlTB) bias runs, and that of control (CTRL) runs.  Hatched regions passed the 
two-sample student t-test at 5% significance level.  
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Figure 2.5. The contribution on the differences of GPI ensemble means between Atlantic cold 
(AtlCB) bias runs and control (CTRL) runs from different GPI terms.  Hatched regions passed the 
two-sample student t-test at 5% significance level.  
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(a) GPI contribution: AtlCB Humidity
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(b) GPI contribution: AtlCB Shear
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(c) GPI contribution: AtlCB Vorticity
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(d) GPI contribution: AtlCB PI
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Figure 2.6. The wind cross-section along 15°N (averaged from 12.5°N to 17.5°N), where the 
AtlCB shear contribution (to GPI anomaly) and cold bias induced zonal wind anomalies at 
200hPa and 850hPa show the largest values. (a) shows the ensemble-averaged anomalous wind 
profile (in arrows [m/s]) calculated from zonal (u) and vertical (w) wind (times 6000 for scaling) 
differences between AtlCB and CTRL runs, and the zonal wind anomalies (in shaded color) from 
AtlCB comparing to CTRL, while (b) shows the CTRL ensemble-averaged wind profile, and (c) 
shows the AtlCB wind profile. 
  

(a) Esemble−mean wind anomaly profile at 15N: AtlCB−CTRL
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(b) CTRL ensemble−mean wind profile at 15N
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(c) AtlCB ensemble−mean wind profile at 15N
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Figure 2.7. JJAS accumulated precipitation (a) and seasonal-mean vertical-integrated (1000hPa 
to 500hPa) moisture convergence (b) differences between AtlCB and CTRL.  Red colors in (a) 
indicate more precipitation in AtlCB than CTRL. While red colors in (b) indicate anomalous 
moisture convergence, blue colors indicate anomalous moisture divergence.   
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Figure 2.8. Same as Figure 2.2, but results from Pacific bias runs instead of Atlantic bias runs are 
shown. The colorbar is identical to that in Figure 2.2. 
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Figure 2.9. Same as Figure 2.3, but results from Pacific bias runs instead of Atlantic bias runs are 
shown. 
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Figure 2.10. Same as Figure 2.4, but results from Pacific bias runs instead of Atlantic bias runs 
are shown. 
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Figure 2.11. Similar to Figure 2.5, but with results from Pacific warm bias runs showing on left 
panels, and those from Pacific cold bias runs showing on right panels. 
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Figure 2.12. Similar to Figure 2.2, showing the differences between track density ensemble 
means of Atlantic and Pacific total bias (AtlPacTB) runs, and that of control (CTRL) runs. 
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Figure 2.13. Same as Figure 2.3, but results from Atlantic total bias (AtlTB), Pacific total bias 
(PacTB), and combined Atlantic and Pacific total bias (AtlPacTB) runs instead of Atlantic bias 
runs are shown. 
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Figure 2.14. Similar to Figure 2.4, showing the differences between GPI ensemble means of 
combined Atlantic and Pacific bias (AtlPacTB) runs and that of control (CTRL) runs.   
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Figure 2.15.  The mechanism of remote influence of the Atlantic cold bias (AtlCB) on ENP TCs.  

(a) CTRL

(b) AtlCB-CTRL (Anomalous Circulation)
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Table 2.1. Experiment names for control and bias runs, and the associated SST biases that 
included in the SST forcings for each experiment. 
 

  

SST bias Experiment Name 
Control (without bias) CTRL 

Atlantic warm bias AtlWB 
Atlantic cold bias AtlCB 
Atlantic total bias AtlTB 
Pacific warm bias PacWB 
Pacific cold bias PacCB 
Pacific total bias PacTB 

Atlantic and Pacific total bias AtlPacTB 
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Table 2.2. Ensemble means (from 16 ensemble members each) of ACE and the number of TCs 
from control (CTRL) and Atlantic bias (AtlWB, AtlCB, and AtlTB) runs in both real number and 
percentage difference from CTRL (only shown if the difference from CTRL is significant at the 
5% level). 
 

  

  CTRL AtlWB AtlCB AtlTB 
Atlantic  
ACE 

116 128 42 
 [-64%] 

57 
 [-51%] 

ENP  
ACE 

87 81 220  
[153%] 

185  
[113%] 

WNP  
ACE 

302 295 285 278 

Atlantic 
number of 
TCs 

18 20 9 
 [-50%] 

12  
[-33%] 

ENP 
number of 
TCs 

16 16 26  
[63%] 

23  
[44%] 

WNP 
number of 
TCs 

28 27 28 25 
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Table 2.3. Identical to Table 2.2, but showing the results for control and Pacific bias (PacWB, 
PacCB, and PacTB) runs.  

  CTRL PacWB PacCB PacTB 
Atlantic  
ACE 

116 92  
[-21%] 

125 100 

ENP  
ACE 

87 181 
[108%] 

75 166 
[91%] 

WNP  
ACE 

302 292 314 317 

Atlantic  
number of  
TCs 

18 15 18 17 

ENP  
number of  
TCs 

16 25 
[56%] 

16 25 
[56%] 

WNP  
number of  
TCs 

28 27 31 31 
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Table 2.4. Identical to Table 2.2, but showing the results for control, Atlantic total bias (AtlTB), 
Pacific total bias (PacTB), and combined Atlantic and Pacific total bias (AtlPacTB) runs. 
 

  

  CTRL AtlTB PacTB AtlPacTB 
Atlantic  
ACE 

116 57  
[-51%] 

100 47  
[-59%] 

ENP  
ACE 

87 185 
[113%] 

166  
[91%] 

260 
[199%] 

WNP  
ACE 

302 278 317 297 

Atlantic  
number of  
TCs 

18 12  
[-33%] 

17 11  
[-39%] 

ENP  
number of  
TCs 

16 23  
[44%] 

25  
[56%] 

30  
[88%] 

WNP  
number of  
TCs 

28 25 31 28 
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CHAPTER III 

UNCERTAINTY AND FEASIBILITY OF DYNAMICAL DOWNSCALING FOR TROPICAL 

CYCLONE PREDICTION AT SEASONAL-TO-DECADAL TIME SCALES 

 

3.1. Introduction and Objectives 

With the advancement of computing technology and improvement of weather and climate 

models, dynamical models have recently demonstrated increased potential for predicting TC 

activity at seasonal or longer timescales, especially in the Atlantic basin (Zhao et al. 2010; Chen 

and Lin 2013).  Different from short-term synoptic prediction of TCs that can rely on persisted 

SSTs, seasonal or longer-timescale TC prediction requires accurate knowledge of future SST 

information.  Therefore, the most desirable approach to make seasonal or longer-timescale TC 

prediction is to use coupled climate models where SST variation and TC activity can be 

predicted simultaneously in one system.  However, such an approach, known as tier-one forecast 

(Palmer et al. 2004; Saha et al. 2006; Zhu and Shukla, 2013), has proven to be challenging 

because current generation climate models have severe biases and systematic errors in presenting 

tropical SSTs, which can have a major impact on TC simulations and forecast skills, as shown 

and discussed in the previous Chapter.  To overcome these biases, flux adjustment has been used 

in coupled climate model seasonal TC forecast (i.e., Vecchi et al. 2014).  Given that climate 

model biases are likely to persist for decades (Ritcher 2015) and high computational cost puts 

hard constraints on the use of TC-resolving coupled climate models for seasonal TC predictions, 

tier-one climate prediction is suggested not to be a practical approach at this stage (Zhu and 

Shukla, 2013).  Despite of the above problems, tier-one approach is being utilized by some 



 

 54 

operational centers (Palmer et al. 2004; Saha et al. 2006), and has demonstrated some successes 

for some specific studies (e.g., Zhu and Shukla, 2013). 

An alternative to the tier-one forecast is the tier-two forecast approach in which seasonal 

or longer-timescale SST forecasts are first performed by low-resolution coupled climate models, 

and then forecasted SST anomalies, after being bias corrected, are superimposed onto the 

observed SST climatology to force a TC-permitting or TC-resolving atmosphere-only model to 

make TC forecasts. Since SST biases have been removed by using the observed SST 

climatology, the tier-two forecast approach is free of SST bias influence.  However, its 

disadvantages include 1) coupled ocean-atmosphere feedback is not included in the TC forecast 

and 2) forecasted SST anomalies at long lead times can contain large uncertainties.  Therefore, 

the tier-two approach may be problematic in some regions such as the Indian Ocean, where the 

local air-sea feedback has a strong impact on SST (Zhu and Shukla, 2013).  In the tier-two 

approach, either a high-resolution global atmosphere model or a regional atmosphere model can 

be used in the second stage of the approach.  Advantages of using a regional model are to allow 

higher resolution to better resolve TCs and larger ensemble to better estimate forecast 

uncertainties.  Disadvantages include new uncertainties associated with lateral boundary 

conditions required for the regional modeling approach.  This regional model tier-two forecast 

approach is also known as dynamical downscaling approach (Barnston et al. 2010).  Through this 

approach, since atmospheric-only models are used, one is able to separate the impact of SST 

forcing uncertainty from the uncertainty due to atmospheric internal variability as well as the 

lateral boundary conditions on model forecast skills.   

In this Chapter, we examine the uncertainty and feasibility of the dynamical downscaling 

(tier-two) approach for seasonal or longer-timescale TC forecast in the global tropics.  We will 
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use a WRF-based TC-permitting TCM for TC prediction and use SST anomalies derived from 

Community Earth System Model (CESM) Decadal Prediction Large Ensemble (DP-LE). The 

objectives of the study are to address the following scientific questions: 1) What is the feasibility 

of using a WRF-based TC-permitting TCM forced by SST anomalies from CESM-DP-LE for 

seasonal or longer-timescale TC forecast in the global tropics? 2) How do errors in the predicted 

SST affect model forecast skills? 3) How much influence can lateral boundary condition 

uncertainties have on model forecast skills? 4) What is the relative importance of the impact 

from atmospheric internal variability (initial conditions) on TC forecast skills, comparing to the 

impact from SST forcings when generating ensemble members?  

The Chapter is organized as follows: Section 2 introduces the model and the data we 

utilized (including CEM-SP-LE), as well as the designs of all simulations.  Section 3 

demonstrates the results of seasonal TC simulations comparing the impact of uncertainty from 

SST forcings, lateral boundary conditions, and internal variability.  The last section discusses the 

implications and uncertainties of the results as well as possible future works. 

 

3.2. Model Description and Experimental Designs 

 As mentioned above, we examine the regional model two-tier forecast approach, in which 

a WRF-based TC-permitting TCM is used for TC prediction and SST anomalies derived from 

CESM-DP-LE are used to force the TCM. In the following, we give a brief description of 

CESM-DP-LE, TCM and other datasets used in our analysis. 
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3.2.1 CESM-DP-LE 

 CESM-DP-LE was carried out by NCAR (Yeager et al. 2018).  It is a 40-member 

ensemble of decadal prediction simulations generated by CESM version 1.1.  The atmospheric 

component of the model is the Community Atmospheric Model version 5 (CAM5) (Hurrell et al. 

2013), with 1° horizontal resolution and 30 vertical levels; the ocean component is the Parallel 

Ocean Program version 2 (POP2) (Danabasoglu et al. 2012), with 1° horizontal resolution and 60 

vertical levels; the sea ice component is the Los Alamos National Laboratory Community Ice 

Code version 4 (LANL-CICE4) (Hunke and Lipscomb 2008); the land component is the 

Community Land Model version 4 (CLM4) (Lawrence et al. 2011).  The CESM-DP-LE 

simulations were initialized on every November 1st from 1954 to 2015, each of which was 

integrated forward for about 10 years (122 months).  The radiative forcings (such as greenhouse 

gases and aerosols) are historical forcings from 1954 to 2005 and projected forcings after 2006, 

respectively, in the simulations.  Moreover, while the atmospheric and land models were 

initialized with one of the members from CESM-LE (Kay et al. 2015), the initial conditions used 

in ocean and sea ice models were generated by the coupled ocean-sea ice (FOSI) configuration 

of CESM, which was forced at the surface with a blended wind field (CORE*, defined in Yeager 

et al. 2018).  Due to the full field initialization (as opposed to anomaly initialization), all the 

predicted variables need to be “drift adjusted” by removing the lead-time–dependent model 

climatology.  In our study, we used the “drift adjusted” daily mean SST anomalies and added 

them onto the observed SST climatology to generate a full SST field, which were then used to 

force the TCM for TC prediction. 

 As discussed in Yeager et al. (2018), one of the scientific objectives of CESM-DP-LE is 

to investigate the impact of both external (radiative) forcing and ocean initialization on hindcast 
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skill.  Yeager et al. (2018) compared the CESM-DP-LE to CESM-LE – an uninitialized 

complementary set of large ensemble simulations generated by the same model and radiative 

forcings (Kay et al. 2015), and showed an enhancement in skill caused by initialization, 

suggesting a role of ocean memory in decadal climate prediction (Smith et al 2010).  The CESM-

DP-LE was also compared to the persistence forecasts to show the improvement in skill 

contributed by the external forcing.  The results show that CESM-DP-LE has high skill in 

predicting SST and upper ocean heat content from seasonal to decadal timescales, contributed 

from both initialization and external forcing, especially in the Atlantic basin (Yeager et al. 2018).  

They reasoned that the enhanced forecast skill was associated with the ocean memory related to 

Atlantic Meridional Overturning Circulation (AMOC) (Figure 1 and 2 in Yeager et al. 2018).   

 However, all the skill analyses shown in Yeager et al. (2018) were based on annual mean.  

To better demonstrate the SST forecast skills during the Northern Hemisphere TC season, we 

computed the forecast skill of season-mean SST within the months during which TCs are most 

active.  Figure 3.1 shows the correlation coefficients of the TC season-mean (MJJASON) SST 

anomalies (SSTA) between CESM-DP-LE and observation (CFSR) during 1979 to 2009, which 

correspond to verification at lead time 6 to 12 months.  The regions with correlation coefficients 

that pass the 95% student t-test are hatched.  High correlation appears in Atlantic, consisting with 

the high forecast skill of annual mean SSTA shown in the region (Yeager et al. 2018).  

Moreover, reasonably high skills are seen in the WNP and tropical Pacific regions, suggesting 

the potential of downscaling CESM-DP-LE for TC predictions at lead time longer than 6 

months.  The correlation in the ENP, however, shows a much lower value (comparing to that in 

the Atlantic and WNP during the TC season, or to the correlation of the annual mean SSTs in 

ENP shown in Yeager et al. (2018)), indicating relatively low skills in predicting SSTA in ENP 
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during the TC season 6-month in advance.  The same correlation map between the observed and 

CESM-DP-LE predicted SSTAs at lead time of 18- to 24- months shows much lower values (not 

shown), especially in the equatorial Pacific region, indicating a sharp decrease in forecast skill of 

TC season SSTAs 1.5-to-2 years in advance.  Similar results are shown for the annual-mean 

Nino3 SST forecast skill (Figure 9 in Yeager et al. 2018), in which a significant decrease in the 

skill is observed from lead time 1 to 2 years.  Given the relative skillful forecast of TC seasonal 

SSTA by CESM-DP-LE in lead time 6 to 12 months, it is of interest to examine whether the 

predicted SST anomalies are useful for tier-two TC forecast at these time scales. We note that 

this forecast time scale is longer than the typical seasonal climate forecast time scale that is on 

the order of 6 months. 

 

3.2.2 WRF-Based TCM 

 The same TCM configuration of WRF (as in Chapter 2), with 27km horizontal resolution 

and 32 vertical layers, covering a domain extending from 30°S to 50°N around the globe, was 

utilized to carry out TC forecasts.  As discussed in Chapter 2, the TCM developed by Patricola et 

al. (2016) and used in Chapter 2 has some major systematic errors and biases that can strongly 

influence TC simulations.  These include an overestimation of the rainfall and the associated 

mid-level vertical motions in Africa and Amazon region.  To reduce these errors and biases, a 

new set of physical parameterizations was used to improve simulation of the tropical circulation 

and TCs (see Fu, 2018).  The sensitivity of these parameterizations of the TCM (hereafter 

referred to as TCM version 2 or simply TCM2) was tested over both the Atlantic and Pacific 

regions, and improvements in the simulations of TC-related environmental conditions were 

shown in detail by Fu (2018).  
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Of particular note is the improvement of the simulated large-scale circulations and basin-

wide tropical cyclone activity made by using the new parameterizations in the ENP.  Here, we 

show some of the results demonstrating the fidelity of the improved TCM in reproducing TC 

variability in the global tropics.  Figure 3.2 (by Fu, personal communication) shows TCM2 

simulated 10-member ensemble of TC numbers, ACE, and hurricane numbers in the Atlantic, 

given the “perfect” (observed) SST from Environmental Prediction (NCEP) Climate Forecast 

System Reanalysis (CFSR, Saha et al., 2010) (1990 to 2010) and the Climate Forecast System 

version 2 (CFSv2, Saha et al., 2014) (2011 onwards).  High skills of the model in simulating 

seasonal Atlantic TC activity is demonstrated, with the correlation between simulation 

(ensemble-averaged) and observation (IBTrACS, Knapp et al., 2010) of 0.68, 0.60, and 0.65 for 

TC number, ACE, and hurricane number, respectively.  Correlation coefficients of comparable 

values to the Atlantic are also shown in both ENP (Fu, 2018) and WNP (Fu, personal 

communication), with the value for WNP ACE as high as 0.81 (not shown).  When comparing to 

other TC-permitting models (e.g., Chen and Lin 2013), TCM2 shows particularly high skills in 

simulating basin-wide TC activity in Pacific (especially WNP), as previously published models 

(e.g., Chen and Lin 2013) typically show much higher skills in Atlantic than in Pacific.  

Therefore, TCM2 is a suitable modeling tool for the purpose of downscaling TCs in the global 

tropics.  

 

3.2.3 Experimental Design  

 As shown in Vecchi et al. (2014), dynamical model-based seasonal TC forecasts have 

demonstrated remarkable skills in predicting certain aggregate measures of TC activity up to 6 

months in advance.  However, model forecast skill for lead time longer than 6 months remains 
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quite low, presumably because of the low skill in forecasting SST anomalies at the long lead 

time.  In this study, we explore uncertainty and feasibility of TC forecast at lead time longer than 

6 months by taking the advantage of the large ensemble of decadal SST forecasts from CESM-

DP-LE that initializes forecasts every November 1st from 1954 to 2015 as described above. We 

conducted ensembles of hindcast runs (Table 3.1) for two ENSO events (1997/98 and 2015/16), 

in which the daily CESM-DP-LE SST anomalies (DP SSTA) with a 6- to 12- month lead time 

(corresponding to May to November) were used to force TCM2. We choose this prediction 

period because 1) it corresponds to the Northern Hemisphere TC season and 2) CESM-DP-LE 

shows much higher skill score during TC season in this period than in longer lead times, as 

discussed in section 2.1. 

 

3.2.3.1 Two Cases: 1997/1998 and 2015/2016 

ENSO is one of the strongest climate modes that influence tropical TC activity (Tang and 

Neelin 2004; Gray 1984a,b).  The TC-season (May to November) mean of both observation and 

CESM-DP-LE (6- to 12- month lead) calculated Niño3.4 regional-averaged SSTA are shown in 

figure 3.3, with a correlation coefficient of about 0.55, which is comparable to the annual value 

of lead year 1 (Figure 9 in Yeager et al. 2018), but much higher than other decadal prediction 

dataset such as CESM-LE (~0.25) (Kay et al. 2015) and CCSM4-DP (~0.3) (Yeager et al. 2012).  

Several strong El Niño events can be identified in the time series: 1982/83, 1987/88, 1997/98, 

and 2015/16.  Note that the TC season does not correspond to the months for calculating Niño 

index (November to the following January) when ENSO peaks, so the magnitudes and 

interannual variability of the time series shown in Figure 3.3 are different from Niño3.4 index.  

For example, 1982/83 is known as one of the strongest El Niño events based on the Niño index, 
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but the value of the observed TC season Niño3.4 SSTA is shown to be weaker than the 1987/88 

event, which is a weaker event than the one in 1982/83.  The CESM-DP-LE successfully 

reproduced the peaks of 1987/88, 1997/98, and 2015/16 events, but the strength was 

overestimated in 1987 and underestimated in 1997 and 2015.  For the corresponding La Niña 

events, CESM-DP-LE underestimates (absolute) the strength in 1988 but overestimates the 

strength of the 1997 and 2016 events.  Moreover, since TCM2 was validated for the period 1990 

to 2016, the two ENSO events in 1997/98 and 2015/16 were utilized as two extreme ENSO cases 

to investigate the feasibility of dynamical downscaling using TCM2, as these events are known 

as the two strongest El Niños in the observed record.  As will be discussed below, although 

CESM-DP-LE correctly predicted the occurrence of these two events, it has considerable errors 

in predicting the pattern and magnitudes of SSTA.  One of our objectives is to examine the 

extent to which the uncertainty in predicted SST can influence the TC forecast skills of TCM2.  

 

3.2.3.2 SSTA Representations During the Two Cases 

Figure 3.4 and 3.5 compare the observed seasonal-mean (May to November) SSTA in 

1997, 1998 and 2015, 2016 to those of persisted (PSST) and CESM-DP-LE predicted (DPm).  

The observed SST, which is referred to as CTRL because it is used to force TCM2 in CTRL, is 

derived from NCEP Climate Forecast System Reanalysis (CFSR) (Saha et al. 2010) for 1997 and 

1998, and Climate Forecast System Version 2 (CRSv2) (Saha et al. 2014) for 2015 and 2016, 

respectively.  The persisted SSTA, PSST, which is used as a baseline to measure model 

predictive skill of TC season SSTA, is the October monthly mean observed SSTA, which is the 

month before CESM-DP-LE were initialized in November 1.  The predicted SSTA, DPm, is the 

10-member ensemble-mean SSTA derived from CESM-DP-LE averaged over lead time 6 – 12 
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months (i.e., from May to November).  As can be seen, PSST in the tropical Pacific regions is 

completely out of sign with CTRL, but is in better agreement with the CTRL in mid-latitudes, 

especially in 1997.  Note that in 2015 the PSST patterns are similar to the observed (CTRL) in the 

northern hemisphere, but with weaker magnitudes.  The better agreement between persisted and 

observed SSTAs in 2015 is due to the long lasting anomalous warming in the northeast Pacific 

from 2013 to 2015 (Bond et al. 2015; Zaba and Rudnick, 2016), combined with the El Niño 

condition in the previous (2014) year.  The CESM-DP-LE captures the El Niño and La Niña 

related SSTAs in the equatorial Pacific and pattern correlation between the observed and 

predicted season mean SSTAs are 0.57 for 1997 and 0.49 for 1998.  However, it is clear that 

CESM-DP-LE underestimates the equatorial warming in 1997, but overestimates the westward 

extension of the warming.  In contrast, the equatorial cooling in 1998 is overestimated by 

CESM-DP-LE.  Moreover, both the observation and CESM-DP-LE show weak warm anomalies 

in the Atlantic MDR region for both 1997 and 1998.  Similar relation between the observed 

(CTRL) and the predicted (DPm) SSTA are shown in 2015 and 2016, with CEMS-DP-LE 

underestimating the equatorial warming during the 2015 warm event, but overestimating the 

cooling during the 2016 cold event, respectively (Figure 3.5).  The pattern correlations between 

observed and predicted SSTAs are 0.56 for 2015 and 0.25 for 2016.  These results suggest a 

systematic bias in the predicted SSTA related ENSO that can reach to an amplitude of up to 

~1°C.  In the following subsection, we describe a set of numerical experiments designed to 

assess the impact of these SST errors on tier-two forecast skill of TCs using TCM2, relative to 

the impact due to uncertainties in atmospheric internal variability and lateral boundary 

conditions. 
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3.2.3.3 Experiment Description  

 To answer the questions stated in the introduction section, we conducted several sets of 

numerical experiments for the two ENSO cases (1997 warm and 1998 cold event, and 2015 

warm and 2016 cold events) (Table 3.1).  For each event, we carried out an ensemble of 10 TC-

season runs for a given SST forcing, including observed SST (CTRL), persisted SST (PSST), 

predicted SST (DPm) and climatological SST (CSST) (Table 3.1). Within each of these 

ensembles, ensemble members differ only in atmospheric initiations by altering the start dates of 

the simulations, while SST forcing remains the same.  These experiments are designed to 

examine the extent to which predicted SST errors impact on TC prediction.  Specifically, the 

CTRL simulations were forced with the SST, lateral boundary conditions, and the atmospheric 

initial conditions from the reanalysis (i.e., CFSR for 1997/1998, and CFSv2 for 2015/2016, as 

noted before).  The PSST, DPm, and CSST experiments are the same as CTRL, except persisted, 

predicted and climatological SSTs were used for PSST, DPm and CSST, respectively.  By 

comparing these three sets of downscaling experiments (forced with persisted, predicted and 

climatological SST) to the CTRL experiment, we intend to determine how errors in predicted 

SSTs can affect TCM forecast skills on seasonal TCs.   

In addition to the above, we performed another ensemble of TCM2 forecast runs, which 

is similar to the DPm ensemble except that each member has identical atmospheric initial 

condition and lateral boundary condition, but its SST forcing is derived from an individual 

ensemble member of CESM-DP-LE.  We refer this ensemble as DPs experiment.  By comparing 

DPm (CESM-DP-LE ensemble mean SSTA) to DPs (CESM-DP-LE individual member SSTA) 

experiments, we intend to assess the relative importance of the impact from atmospheric internal 

variability and uncertainties in SST forcing on prediction of seasonal TC activity. 
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 Last but not least, to quantify the influence of lateral boundary condition uncertainty on 

TCM2 forecast skill, we carried out an additional ensemble of runs.  This ensemble, which is 

referred to as BC experiments, is similar to DPs except that the lateral boundary conditions of the 

El Niño year (1997 and 2015) are switched with the following La Niña year (1998 and 2016). 

Together with the CSST ensemble, these ensembles of runs allow us to examine the impact of 

uncertainties in the lateral boundary conditions on TC prediction using the tier-two TCM2 

approach.  

 

3.3. Results 

3.3.1 TCM2’s Potential TC Forecast Skill  

The CTRL ensemble, where observed SST and lateral boundary conditions are used, can 

be used to evaluate the potential TC forecast skill of TCM2.  Figure 3.6 and 3.7 compare the 

observed and TCM-simulated ACE anomalies for 1997/8 and 2015/6 ENSO events, respectively, 

while Figure 3.8 and 3.9 compare the anomalies of observed and TCM-simulated TC numbers. 

Among the three TC active regions in the Northern Hemisphere, TCM2 performs the best in 

ENP, where signs for both ACE and TC number anomalies are correctly simulated by TCM2 for 

both 1997/8 and 2015/6 cases.  However, the amplitude of the simulated anomalies is generally 

weaker than those of the observed, particularly in 1997 both ACE and TC number are 

significantly underestimated by the model.  In the Atlantic, given the perfect SSTs, TCM2 also 

simulates the correct ACE and TC number anomalies during 1997 and 2015 El Niño, but gives 

the wrong sign anomalies of ACE and TC number during 1998 La Niña.  In the WNP basin, 

TCM2 simulates ACE values well, but not TC numbers.  Overall, with perfect SST forcing and 

lateral boundary conditions, TCM2 demonstrates some useful skills in hindcasting ACE and TC 



 

 65 

number anomalies in Atlantic, ENP, and WNP, with correct signs in most of the regions for the 

two major ENSO TC seasons in 1997/1998 and 2015/2016.  However, the amplitudes of the 

anomalies are generally underestimated compared to the observed values.   

Besides the basin-averaged TC indexes, TCM2 also shows skill in capturing spatial 

pattern difference of TC track density between El Niño and La Niña (see Fu, 2018).  For the two 

ESNO cases in this study, ensemble mean TC track density difference between El Niño and La 

Niño shows an eastward shift in the WNP and a westward shift in track density in the ENP to the 

central Pacific, particularly for the 1997/1998 event (Figure 3.10a), consistent with observation 

(see Figure 3.13 in Fu, 2018).  These shifts in TC track density are less clear in the 2015/6 case 

(Figure 3.11a), possibly because the 2015 El Niño is an “uncanonical” event with large-scale 

anomalous warming in the northeastern Pacific persisted from 2013 to mid-2016 (Bond et al. 

2015; Zaba and Rudnick, 2016).  Given the possible impact from extratropics to TCs (Zhang and 

Wang, 2016) and the TCM2’s northern boundary at 50°N where the maximum anomalies of SST 

(and minimum anomalies of SLP) in extratopical Pacific occurred in 2015, some of the 

extratropical influence on TCs may not be accurately represented by TCM2.  The observation 

does suggest a record-high TC season (2015) in the Central Pacific (NOAA Tropical Weather 

Summary, 2016).  

Thus, even with some biases, both multi-decadal hindcast runs (discussed in section 2.2) 

and the specific ENSO event runs (discussed above in this section) reasonably simulate the 

seasonal TC variability (quantified by ACE, TC number, and track density pattern) when forced 

with control SST.  In other words, the new-parameterized TCM2 show high potential forecast 

skills in predicting seasonal TC variability when accurate SST is given.   
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3.3.2 Impact of Predicted SST Errors on TC Hindcast 

SST forcing has been considered as one of the most important factors for predicting 

seasonal TC activity (e.g., Chen and Lin 2013; Zhao et al. 2010).  By comparing results of 

observed (CTRL), persisted (PSST), predicted (DPm), and climatological SST (CSST) forced 

runs, we attempt to quantify the impact of errors in predicted SST on TCM2’s skills on seasonal 

TC forecast. 

 

3.3.2.1 Model Skills with Predicted SST  

 Using ACE and TC count as a metric of TC forecast skill, TCM2 generally shows higher 

skill in seasonal forecast when forced with the observed SSTA in CTRL or predicted ensemble-

mean SSTA in DPm, comparing to the persisted SSTA in PSST (Figure 3.6, 3.7, 3.8, and 3.9).  In 

particular, PSST experiment fails to simulate the observed ACE or TC count in the ENP, 

presumably because the persisted SSTAs have very different structures to the observed SSTAs 

during the selected ENSO events (please refer to section 2.3.2).  Both anomalous ACE and TC 

count are in opposite sign to the observed values for most of the simulations, with the exception 

of 2015, when the persisted SSTA gives a reasonable representation of the observed SSTA 

(Figure 3.5a and b).  In contrast, DPm experiments show good skills in predicting seasonal TC 

variation in the ENP during these ENSO events, with both the correct signs of ACE and TC 

count anomalies and similar magnitudes to those in CTRL and observation for most of the 

simulation years.   

Similar results are found in the WNP:  The ACE and the number of TC anomalies in 

DPm are generally closer to those in CTRL than in PSST, except that for 2016 DPm failed to beat 

PSST.  However, this relative high score in ACE does not necessarily indicate high skills in 
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forecasting 2016 TC activity using the persisted SSTA.  For example, the TC track density 

difference between 2015 and 2016 in PSST (Figure 3.11b) shows a pattern that is completely out 

of sign to the pattern in CTRL (Figure 3.11a) in the Pacific.  One reason for the inconsistency in 

skills represented by the ACE and track density is related to the fact that ACE is an aggregated 

TC measure over a large spatial domain, which tends to remove any spatial TC variation within a 

TC active region.  On the other hand, TC track density maps reveal spatial occurrence of TCs.  It 

is conceivable that even for similar ACE values, TC track density distributions can be quite 

different.  

El Niño-La Nina TC track density differences for various ensemble experiments are 

shown in Figure 3.10 and 3.11 for 1997/8 and 2015/6 ENSO event, respectively.  It is evident 

that the patterns in DPm are more similar to those in CTRL, while the patterns in PSST tend to 

out of sign with those in CTRL, particularly in the Pacific  (Figure 3.10b and Figure 3.11b).  This 

again suggests that DPm is more skillful in capturing seasonal TC variability than PSST, 

indicating the potential value of using predicted SSTA in seasonal TC forecast.  However, one 

interesting failure in DPm is in capturing the eastward shift of TCs in WNP (Figure 3.10c) as 

shown in CTRL (Figure 3.10a).  One possible reason for this failure may be attributed to the fact 

that the predicted SSTA used in DPm underestimates the warm anomalies and the W-E SST 

gradient change along the equatorial Pacific, which may be critical in driving the shift of TC 

tracks during El Niño and La Niña events (as discussed in Chapter 2 Section 3.2).  Wang and 

Chan (2002) also suggested that the occurrences of the W-E shift depend on the strength of 

ENSO events.  A way to better understand this model failure in predicting TC track shift in DPm 

is through future work in analyzing GPI and large-scale atmospheric circulation changes. 
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3.3.2.2 Insensitivity of ACE to Errors in Predicted SSTA 

Even though the predicted SSTA errors are large in PSST and DPm, no significant 

differences in Atlantic ACE are shown in 1997 from different experiments (Figure 3.6a).  

Previous studies suggest ENSO-related warm (cold) SSTA in the tropical Eastern Pacific can 

remotely suppress (strengthen) TC activity in Atlantic.  With the weaker predicted SSTA in both 

the equatorial eastern Pacific and Atlantic MDR compared to observed SSTA, the simulated 

Atlantic ACE in DPm is surprisingly not that different from the value in CTRL.  In fact, even the 

ACE value in the PSST is not significantly different from the value in CTRL for both 1997 and 

2015 El Niño.  All the simulated ACE anomalies, including those in CTRL, are significantly 

weaker than the observed ACE anomalies.  A part of reason for the muted ACE response to 

SSTA may be related to the insufficient model resolutions that do not resolve TCs, giving rise to 

weaker ACE variation.  The insensitivity of ACE to SSTA differences raises a question of 

whether ACE is a useful measure of model predictive skill.  Another possible reason is that in 

1997 and 2015, ENSO and AMM are both in their positive phase (Figure 3.4 and 3.5).  Patricola 

et al. (2014) shows that this combination of SSTAs can cause a cancellation effect of the remote 

influence of El Niño and local influence of AMM on Atlantic TCs, and thus reducing 

dependence of TCs on SSTA.  Similar arguments seem to be applicable to explain the ACE 

response during La Nina events in 1998 and 2016, which are interestingly much stronger in DPm.  

In contrast to the El Niño cases, the predicted cold SSTAs in equatorial Pacific are exaggerated 

considerably, which can contribute to a large increase in Atlantic ACE value.  Additionally, in 

1998 and 2016 La Niña in the Pacific concurred with positive phase AMM, the hincasted 

Atlantic ACE values show more significant differences among different experiments.  DPm runs 

in both two years (1998 and 2016) generated larger ACE values in the Atlantic region than CTRL 
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(Figure 3.6d and 3.7d), which even agree better to the observed ACE values than CTRL.  

However, these large ACE values are likely attributed to the exaggerated cold SSTA in the 

equatorial Pacific and warm SSTA in the Atlantic MDR by CESM-DP-LE, both of which can 

contribute to overestimations of Atlantic MDR warm anomalies and ENP cold anomalies.  Both 

of these overestimations can increase the Atlantic TC activity (Figure 3.4d and f for 1998; Figure 

3.5d and f for 2016).  Therefore, using ACE as sole metric to gauge seasonal TC activity may not 

give a complete measure of model forecast skills and quantification of the uncertainty of SST 

forcings. 

 

3.3.3 Uncertainty from Lateral Boundary Conditions 

Uncertainties in lateral boundary conditions can also influence regional model TC 

forecast skills.  To investigate the impact from the lateral boundary conditions, we conducted 

two pairs of simulations: (1) DPs and BC, and (2) CTRL and CSST, as discussed in Section 2.  

DPs and BC simulations were generated by using the same SST forcings and initial conditions, 

but different lateral boundary conditions.  On the other hand, the only difference between CTRL 

and CSST is the SST forcing; in the latter the SST is set to the observed climatological annual 

cycle value without any SSTA added.  With the channel configuration of the model, it is 

important to test whether the energy transport through the lateral boundaries of the model 

domain will have significant impact in the region of our interest.  In other words, we would like 

to better understand if the uncertainties from the lateral boundaries can be neglected when TCM2 

is used as a tool to forecast seasonal TC activity. 
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3.3.3.1 ACE, TC Counts, and Track Density Anomalies 

 The results (ACE, TC counts, and track density) from BC simulations are significantly 

different from DPs, suggesting a significant impact on simulated TC variations from the lateral 

boundary conditions, at least during these four years with El Niño and La Niña conditions.  

These differences in the simulated TC activity are most pronounce in the ENP region, especially 

in the 2015/2016 ENSO event, with the anomalies in track density, ACE, and TC numbers all 

showing opposite signs between BC and DPs simulations (Figure 3.11d and e; Figure 3.7b and e; 

Figure 3.9b and e).  Similar differences are shown between CSST and CTRL, where again 

ensemble means of ENP ACE and TC numbers between the two ensembles show opposite signs 

in 2015/2016 (Figure 3.7b and e; Figure 3.9b and e).  While the track density anomalies between 

2015 and 2016 in CSST show no significant positive or negative sign in ENP (Figure 3.11f), it is 

significantly different from the CTRL track density anomalies, which shows overall negative 

anomalies in ENP (Figure 3.11a).  Differences between DPs and BC, as well as CTRL and CSST, 

can also be seen in 1997/1998 cases (Figure 3.6b and e; Figure 3.8b and e), but the differences in 

the track density anomalies (Figure 3.10) are not as significant as 2015/2016. 

 

3.3.3.2 GPI Analysis of DPs and BC 

 To better understand how the TC-related environments can change with different lateral 

boundary conditions, we performed GPI analysis (as described in Chapter 2) for DPs and BC 

runs, in which the TC activity shows large responses to changes in lateral boundary conditions.  

The significant differences between GPIs in the two ensembles (Figure 3.12) and the 

corresponding contributions from different terms (Figure 3.13 to 3.16) suggest that there are 

changes in large-scale atmospheric circulation due to differences in the boundary conditions, 
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especially in 1997 and 1998.  Nevertheless, although the GPI differences between DPs and BC 

are overall more pronounce in 1997 and 1998 (Figure 3.12a and b), very large differences are 

shown in 2015 and 2016 in the (coastal) ENP (Figure 3.12c and d), which are consistent with the 

large changes in track density  (Figure 3.11d and e), ACE (Figure 3.7b and e), and TC count 

(Figure 3.9b and e) anomalies between DPs and BC runs.  We further investigate which 

environmental variables are driving these significant changes in TC activity. 

 In both 1997 and 1998, the humidity, shear, and PI term all contribute to changes from 

DPs to BC in mid-latitudes (Figure 3.13 and 3.14).  On the contrary, the contribution from 

vorticity is largest in the tropics, including MDR in both Pacific and Atlantic basins.  However, 

humidity and shear terms also contribute to changes in GPI in the tropics.  Therefore, for the 

1997 and 1998 case, swapping the boundary conditions between the two years generates changes 

in TC-related environment from mid-latitudes all the way to the tropics.   

 In 2015 and 2016, even with record-high warming in the northeast Pacific (Bond et al. 

2015; Zaba and Rudnick, 2016) and SSTA in Niño regions comparable to that of 1997, the 

contributions from all the variables are relatively small (Figure 3.15 and 3.16) compared to 1997 

and 1998.  (Note that the colorbar range for all the term contribution plots is identical.)  However, 

the contribution from vorticity term shows significant changes in the ENP MDR region, 

consistent with the large and significant changes in ACE, number of TCs, and track density 

differences.  It is possible that the large anomalies (both in atmosphere and in SST) in northern 

mid-latitudes in 2015 can generate large inconsistency at the lateral boundary when switching 

lateral boundary conditions with 2016.   
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3.3.3.3 Heat Transport Analysis 

 Previous studies (e.g. Kang et al. 2008) show that the position of the ITCZ and the 

associated Hadley Cells in the tropical atmosphere can be influenced by cross-equatorial heat 

transport, which is a part of meridional heat transport of the atmosphere.  It is possible that the 

meridional heat transports at the northern and southern boundary of the model are different 

between the El Niño and La Niña years, which can then influence the position of the ITCZ and 

thus cause TCs to change even though the SST forcing remains the same.  To explore this 

possibility, we calculated the moist static energy transport using the 6-hourly data of NCEP-DOE 

Reanalysis 2 (NCEP2) (Kanamitsu et al. 2002).  The NCEP2 dataset was utilized due to its long 

enough data period (1979 to 2018), which covers all four year (1997, 1998, 2015, and 2016) of 

our simulations.  The moist static energy transport can be calculated as follows: 

𝐴𝐻𝑇 = 𝑑𝜆
𝑎𝑣𝐻𝑐𝑜𝑠𝜓

𝑔 𝑑𝑝
!"

!"

!!

!
, 

where 𝐻 ≡ 𝐶!" ≡ 𝐶!"𝑇 + 𝑙!𝑞 + 𝑔𝑧 represents the moist static energy.  Cpa and lv are specific 

heat capacity of dry air and latent heat of evaporation, respectively.  q and z are the specific 

humidity and geopotential height, whereas the v in the main equation represents the meridional 

velocity. 

The impact of lateral boundary conditions on TCs is suggested by the differences in 

meridional moist static energy transport between El Niño and La Niña years, especially between 

2015 and 2016 (Figure 3.17).  The values of the moist static energy transport in the reanalysis 

show a large change from 2015 to 2016 at both the southern (30°S) and northern boundaries 

(50°N) of TCM.  However, even though 2015 was known to be the year of anomalous warming 

in the northern mid-latitude Pacific, the transport in 2016 shows a much larger overall value, 

especially in the southern hemisphere.  On the other hand, the meridional moist static energy 
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transport values in 1997 and 1998, even though also showing some differences, are much closer 

comparing to 2015 and 2016.  This seems to be consistent with the much larger impact of 

switching boundary conditions on simulated TCs in 2015 and 2016.  Moreover, the standard 

deviation (or the value spread) of the moist static energy transport for the four simulation years 

(1997, 1998, 2015, and 2016) and climatology (1979 to 2017) also indicates large variability at 

the latitudes of the TCM boundaries, especially at the southern boundary, suggesting the 

southern lateral boundary of the TCM might have a stronger impact on TC simulations than the 

northern boundary.  It suggests that cautions should be exercised when using lateral boundary 

conditions for simulating and predicting TCs. 

A similar set of simulations testing the impact of lateral boundary conditions in TCM has 

been performed using climatological boundary conditions instead of those of the particular 

(1997, 1998, 2015, and 2016) simulation years (Fu, personal communication, 2017).  The result 

suggests that the model climatology of ACE and TC number is changed, but the interannual 

variability of basin-wide TC activity is not significantly changed.  Therefore, it is possible that 

the impact of lateral boundary conditions on the TC activity in our simulations is due to the large 

inconsistency between the SST forcings and the lateral boundary conditions, since the SSTA and 

boundary condition variability are pronounced during these El Niño and La Niña years.  The fact 

that the impact of the lateral boundary conditions on simulated TCs is much larger in BC 

compared to CSST, and in 2015/16 case compared to 1997/98 case, suggests possible strong 

influences of lateral boundary conditions on TC simulations.   
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3.3.4 Uncertainty from Atmospheric Internal Variability (Initial Conditions) 

 Comparison between DPm (CESM-DP-LE ensemble-mean SST forcing) and DPs 

(individual ensemble member SST) simulations allows us to investigate the relative importance 

of the uncertainty from atmospheric internal variability and from forecasted SSTs in generating 

ensemble forecast of seasonal TC activity.  The results suggest that in terms of ACE and TC 

number the effects of both uncertainties are about equal in all ocean basins (Figure 3.6, 3.7, 3.8, 

and 3.9).  Moreover, the spatial patterns of track density difference between El Niño and La Niña 

years also show very high similarity between the DPs and DPm runs (Figure 3.10c and d; Figure 

3.11c and d).  This suggests that the overall model forecast skill of seasonal TC activity is 

insensitive to whether one perturbs atmospheric initial conditions or uses individual ensemble 

member of predicted SST from CESM-DP-LE.  However, DPs shows generally larger ensemble 

spreads than DPm, especially during the El Niño years (1998 and 2016) when the predicted 

SSTA are weaker.  This suggests that uncertainties in SST forecast may contribute more to 

uncertainties in TC forecast than atmospheric internal variability. In summary, in tier-two 

seasonal TC forecast, it may be more desirable to use individual ensemble member of predicted 

SST from a low-resolution global forecast system, as it gives a large sample of TC forecast 

uncertainties.  

 

3.4. Summary and Future Work 

While the results show some potential skill of TC prediction at lead time from 6 to 12 

months using CESM-DP-LE predicted SSTA to force TCM2, this study raises more questions 

than answers, and further analyses are required to address these questions.  For example, despite 

large differences between observed, persisted, and CESM-DP-LE predicted SSTAs, simulated 
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ACE shows remarkable insensitivity in some simulation years and regions. If these results can be 

confirmed by future studies that carry over a longer verification period, then it raises a question 

about whether aggregated TC metrics, such as ACE and TC count, are adequate measure of 

model predictive skill of seasonal or longer time scale TC variability.   

One reason for the insensitivity may be related to the use of area average in deriving 

these metrics, which tend to remove any spatial TC variation within a TC active region.  For 

example, it is well known that TCs in WNP tend to shift zonally during ENSO, while retaining 

their total number (Wang and Chan, 2002).  A similar shift has recently been reported in the ENP 

by Fu et al. (2017).  Therefore, a more useful measure for TC predictability should take into 

consideration the changes in TC spatial variation, such as TC track density that shows more 

sensitivity to difference in SSTA patterns.  For instance, the track density response to El Niño 

show opposite patterns between CTRL and PSST.  In addition, the eastward TC track shift during 

El Niño is captured by CTRL, but not by DP.  However, horizontal resolutions of current 

generation climate models are insufficient to resolve or permit TCs, which makes it impractical 

to accurately track TCs in these models.  Therefore, other metrics should be developed and used 

(rather than using ACE alone) when quantifying predictability of seasonal TCs.  One approach is 

cluster analysis that divides TCs tracks into different groups, allowing spatial variations of TC 

tracks (e.g., Camargo et al. 2007; Camargo et al. 2008; Corporal-Lodangco et al. 2014).   

Furthermore, both GPI and meridional moist static energy transport analyses indicate that 

mid-latitude atmospheric conditions at 50°N and 30°S may strongly influence simulated TC 

activity, suggesting that tropical SSTs may not be the only dominant predictor of TC activity.  

However, whether this conjecture is correct or not requires further numerical experiments over a 
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longer verification period, as the present study is based on only two ENSO events, i.e., 1997/8 

and 2015/6 event, whose sample size is too small to draw any definitive conclusion.  

Another notable result from this study that is worth further investigating is that 

uncertainties in TC forecasts is more affected by uncertainties in forecasted SST than by 

atmospheric internal variability.  This finding suggests that in tier-two TC forecast approach, it is 

more desirable to using individual member of ensemble SST forecasts than using ensemble-mean 

SST, as the former allows a better sampling of uncertainties in SST forecast.  
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Figure 3.1. Anomaly correlation coefficient of seasonal mean (MJJASON) SST anomalies 
derived from CESM-DP-LE (averaged over lead time 6 to 12 months) and the observation 
(CFSR). 
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Figure 3.2. Anomalies of number of TCs, ACE, and number of hurricanes in Atlantic.  Blue lines 
show the observational values from IBTrACS, and red lines show the ensemble-mean values 
from 10-member ensemble runs generated by improved TCM. 
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Figure 3.3. Seasonal-mean Niño3.4 region-averaged SST anomalies.   
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Figure 3.4. Observed (CTRL), Persisted (PSST), and CESM-DP-LE predicted (DPm) seasonal 
SSTA in 1997 and 1998. 
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Figure 3.5. Observed (CTRL), Persisted (PSST), and CESM-DP-LE predicted (DPm) seasonal 
SSTA in 2015 and 2016. 
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Figure 3.6. ACE anomalies in different (Atlantic, Eastern North Pacific, and Western North 
Pacific) ocean basins for all experiments (1997 and 1998).  Horizontal lines show the observed 
values calculated from IBTrACS. 
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Figure 3.7. ACE anomalies in different (Atlantic, Eastern North Pacific, and Western North 
Pacific) ocean basins for all experiments (2015 and 2016).  Horizontal lines show the observed 
values calculated from IBTrACS.  
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Figure 3.8. Anomalies of TC number in different (Atlantic, Eastern North Pacific, and Western 
North Pacific) ocean basins for all experiments (1997 and 1998).  Horizontal lines show the 
observed values calculated from IBTrACS. 
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Figure 3.9. Anomalies of TC number in different (Atlantic, Eastern North Pacific, and Western 
North Pacific) ocean basins for all experiments (2015 and 2016).  Horizontal lines show the 
observed values calculated from IBTrACS. 
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Figure 3.10. Track density differences between El Niño (1997) and La Niña (1998) years for all 
six (CTRL, PSST, DPm, DPs, BC, and CSST) experiments. 
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Figure 3.11. Track density differences between El Niño (2015) and La Niña (2016) years for all 
six (CTRL, PSST, DPm, DPs, BC, and CSST) experiments. 
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Figure 3.12. GPI differences between BC and DPs runs for the four simulation years. 
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Figure 3.13. Term contributions on GPI differences (BC comparing to DPs) for 1997. 
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Figure 3.14. Term contributions on GPI differences (BC comparing to DPs) for 1998. 
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Figure 3.15. Term contributions on GPI differences (BC comparing to DPs) for 2015. 
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Figure 3.16. Term contributions on GPI differences (BC comparing to DPs) for 2016. 
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Figure 3.17. Seasonal (JJASON)-mean (a) meridional heat transport (MHT) and (b) its standard 
deviation calculated from NCEP2. (a) shows the MHT for four different years, and (b) shows the 
standard deviation of the 4 years in red, and of climatology (1979 to 2017) in blue. 
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Table 3.1. List of experiments and associated SST forcing, lateral boundary conditions, and 
initial conditions. 
 

  

Experiment 
(10 members 

each) 

SSTA forcing 
(all added onto observed 

climatology) 

Lateral boundary 
conditions  

(BCs) 

Atmospheric 
initial 

conditions 
(ICs) 

CTRL CFSR (1997/1998) &  

CFSv2 (2015/2016) 
CFSR & CFSv2 Different ICs 

PSST 

The Oct monthly mean SSTA 

from the previous year (eg., 

for 1997 simulations, PSST is 

based on Oct 1996 SSTA)  

Same as CTRL Same as CTRL 

CSST  
Climatological annual cycle 

from CFSR/CFSv2 (no SST 

anomalies) 

Same as CTRL Same as CTRL 

DPm CESM-DP 10-member-

averaged SSTA  
Same as CTRL Same as CTRL 

DPs CESM-DP 10 ensemble 

members’ SSTAs 
Same as CTRL Same ICs 

BC Same as DPs 
Switching 1997 lateral BCs 

with those of 1998 (and 

switching 2015 with 2016) 

Same as DPs 
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CHAPTER IV 

EXPLORING LONG-TERM PREDICTABILITY OF TROPICAL CYCLONES USING CESM 

DECADAL PREDICTION LARGE ENSEMBLE (CESM-DP-LE) 

 

4.1. Introduction and Objectives 

 Studies have shown that variability of North Atlantic TCs is substantial on decadal 

timescales (Smith et al. 2010).  Since 1970s, a relationship between SST and Atlantic TC activity 

has been established through observations (Emanuel 2005; Emanuel et al. 2008; Webster et al. 

2005).  In particular, a “shift” to more active tropical cyclone period occurred in the mid-1990s 

(Goldenberg et al. 2001; Klotzbach 2006; Vecchi et al. 2013), coincided with a change in phase 

of the Atlantic multidecadal oscillation (AMO) (Goldenberg et al. 2001; Zhang and Delworth 

2006).  However, the dominant causes of this increased TC activity in the Atlantic still remain as 

an open scientific problem (Wang and Wu 2013).  While some studies relate the upswing of the 

TC activity to a local change in the Atlantic basin (Holland 2007, Wu and Wang 2008; Wu et al. 

2010), some studies attribute the change in TC to the ongoing global warming (e.g., Emanuel 

2005; Webster et al. 2005), and other suggest a dominant contribution from the warm phase of 

AMO (e.g., Zhang and Delworth 2006; Kossin and Vimont 2007).  Because of the uncertainty in 

our understanding of the underlying mechanism, it is still unclear whether the increase in 

predictability skills in environmental variability in the Atlantic on intermediate timescales 

(multiyear to decadal), such as AMO, can directly contribute to better predictions in Atlantic TC 

activity.  

 As mentioned above, a few studies linked the twentieth century AMO to decadal 

variability of Atlantic hurricane activity (Klotzbach and Gray 2008; Wang et al. 2012; Zhang and 
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Delworth 2006).  During the warm phase of the AMO, studies suggest a northward shift in the 

ITCZ location, which can induce anomalous rising near the Atlantic MDR (e.g., Zhang and 

Delworth 2006).  This change in vertical motion can further suppress the vertical shear in the 

region, and thus increase the TC formations in Atlantic.  Moreover, the prospects of predicting 

decadal change in the north Atlantic surface temperature and the associated AMO variability 

have been demonstrated using coupled climate models.  The predictability appears to be derived 

from the long-term ocean memory associated with the Atlantic Meridional Overturning 

Circulation (AMOC) (Latif 2006; Yeager and Robson 2017).  Nevertheless, the model forecast 

of tropical Atlantic temperature variability that is arguably most important for Atlantic TC 

variability is shown to be less skillful on decadal time scales than that in the extratropical 

Atlantic.  It is, therefore, of interests to further examine the prospective of predicting Atlantic TC 

activity on multiyear to decadal timescales, given the current climate models’ skill in simulating 

and predicting AMO-related surface temperature fluctuations (e.g., Vecchi et al. 2013).     

 The NCAR CESM decadal prediction large ensemble (CEMS-DP-LE) has recently been 

shown to be skillful in predicting AMO-related SST on multiyear-to-decadal timescales (Yeager 

et al. 2018).  Decadal SST forecast skills are particularly high and impressible in the North 

Atlantic, but relatively low in tropical Pacific SSTs.  In other words, the model is capable of 

predicting AMO-related decadal SST variation in the North Atlantic, but is incapable of 

predicting the SST variability in Pacific caused by the remote influence of the AMO.  Given that 

Atlantic TCs can be influenced by both local Atlantic SST condition and remote condition in the 

Pacific, it is uncertain if the skillful prediction of decadal SST variation in Northern Atlantic 

alone by CESM-DP-LE can be translated to useful skills in predicting decadal TC variability in 

the North Atlantic.  Besides, the representations of TC-related environmental variables in 
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CESM-DP-LE have not been fully investigated, leaving a gap in our understanding of the 

potential value of CESM-DP-LE in decadal TC forecast in the Atlantic.  Furthermore, few 

previous studies examine the predictability of TC activity through TC-related environment 

variables other than SST (e.g., Zhang and Delworth 2006; Bruyère et al. 2012).  To explore 

potential value of using CESM-DP-LE in Atlantic TC forecast on decadal timescales, in this 

Chapter we analyze TC-related environmental changes on multiyear to decadal timescales using 

observed and CESM-DP-LE datasets.  The results of this study can give a first assessment of the 

potential skill of the CESM-DP-LE in predicting TC environment condition variations on 

multiyear to decadal timescales, which can be used for decadal TC forecast in the Atlantic. 

 The Chapter is organized as follows: Section 2 introduces the data we utilized, as well as 

justifies the use of GPI (please refer to Chapter 2) to quantify the TC predictability using CESM-

DP-LE.  Section 3 demonstrates the representations of TC-related environment conditions 

through examining CESM-DP-LE-based GPI on multiyear to decadal timescales.  The last 

section summarizes the implications and uncertainties of the results.  

 

4.2. Data and Research Method  

4.2.1 CESM-DP-LE 

 The same 10 ensemble members from the CESM-DP-LE dataset (as we used in Chapter 

3) is utilized, but at longer lead times from lead year (or LY) 2 to 10 and with a longer 

simulation period from 1964 to 2017, in order to focus on multiyear to decadal timescales. 

CESM-DP-LE shows high fidelities in representing SST, surface air temperature, and 

precipitation on multiyear to decadal timescales, as recently shown by Yeager et al. (2018).  In 

particular, the SST prediction skill of the model is higher on seasonal-to-interannual timescales 
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(3-12 months) in all ocean basins.  On longer (pendatal to decadal) timescales, the skill of 

CESM-DP-LE in predicting SST is shown to be significantly reduced in the Tropical Pacific, but 

is remarkably high in both the North Atlantic and WNP basins.   

By comparing to uninitialized CESM-LE (Kay et al. 2015), Yeager et al (2018) is able to 

attribute the high SST skill of CESM-DP-LE in the north Atlantic, especially the subpolar region 

(Figure 2i to l in Yeager et al. 2018), to the ocean initialization.  With the remarkably high skill 

in predicting the subpolar north Atlantic SST and relatively low but positive SST skill in both 

eastern subtropical and tropical Atlantic regions, Yeager et al. (2018) suggest that the CESM-

DP-LE is capable of predicting AMO-like SST multi-years in advance.  However, as SST 

condition in ENP is known to be an important factor controlling TCs in both Pacific and Atlantic 

basins (e.g., Tang and Neelin 2004; Gray 1984a,b) and the SST skill of CESM-DP-LE is 

particularly low in ENP, it is not clear how the high skill of CESM-DP-LE in the North Atlantic 

and other parts of Pacific can translate into useful skills in predicting TC activity on multiyear-

to-decadal timescales.  Therefore, in this Chapter, we will address this question by examine the 

skill of the model in predicting TC environment condition changes on multiyear to decadal TC 

predictability by comparing predicted TC Genesis Potential Index (GPI) to observed GPI.   

 

4.2.2 Genesis Potential Index 

GPI has been widely used as a proxy to quantitatively infer TC activity from low-

resolution climate models, in which the resolutions are not high enough to explicitly simulate 

TCs.  GPI has been examined and utilized to quantify TC activity on different timescales from 

intraseasonal (Camargo et al. 2009) and seasonal (Camargo et al. 2007a; Yokoi et al. 2009) to 

future climate change (Vecchi and Soden 2007b) and even to paleoclimate timescales (Korty et 
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al. 2012ab).  GPI has been shown to be a suitable proxy to explore the impact of large-scale 

environmental changes on TCs in climate models, especially in the Atlantic region (e.g., Bruyère 

et al. 2012; Camargo 2013; Patricola et al. 2014).  The advantages of using GPI to quantify TC 

activity on longer (than interannual) timescales are: (1) No specific threshold is used when 

calculating GPI (comparing to the studies that were based on certain thresholds for TC formation 

such as Gray 1979, and statistical models that were tuned under a given climate), therefore can 

be used under various climate conditions; (2) GPI has been examined by many previous studies 

under various climate conditions, and shown to represent TC activity well (e.g. Vecchi and 

Soden 2007b).  In this Chapter, we adopt this approach and examine the TC environmental 

favorability by computing and comparing GPIs and the related terms using reanalysis and 

CESM-DP-LE datasets.  A total of 4860 TC seasons (54 simulation years by 10 ensemble 

member by 9 lead years) GPI (Emanuel and Nolan, 2004) was calculated based on CESM-DP-

LE.  The CESM-DP-LE variables used in GPI calculation are monthly mean of absolute vorticity 

at 850 hPa (from u and v), relative humidity at 600 hPa, potential intensity (from SST, sea-level 

pressure, and atmospheric temperature and specific humidity profiles), and vertical wind shear 

between 850 and 200 hPa (from u and v). 

The monthly NCEP reanalysis dataset (Kalnay et al. 1996) was used to compute the 

“observed” GPI due to its long record length (from 1948 to now).  The observed GPI is then used 

to validate the predicted GPI.  Additionally, since only anomaly fields were obtained from 

CESM-DP-LE (after removing model drift), the climatology fields derived from NCEP were 

used to generate full field variables by adding the two together, which were used to compute the 

predicted GPI from CESM-DP-LE.  The representation of NCEP-based GPI terms has been 

quantified by previous studies (Camargo 2013; Bruyère et al. 2012).  In particular, Bruyère et al. 
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(2012) show a high correlation between 5-year running mean of Atlantic TC counts and NCEP-

based potential intensity and shear in an extended MDR region during the TC season (ASO) for 

the period of 1960 to 2009.  However, almost no correlation is shown between the NCEP-based 

GPI variability in Gulf of Mexico and the Atlantic TC counts, even though the Gulf of Mexico 

produces about 20% of the Atlantic TCs, and has the highest GPI values in the Northern Atlantic.  

To better capture the relationship between GPI (and the associated terms) and the basin-wide TC 

activity in the Atlantic, we consider only the conventional MDR (e.g., Gray 1984a,b; Elsner et al. 

2006; Klotzbach 2011) and exclude the Gulf of Mexico region when compute area-averaged 

values.  

 

4.3. Results 

4.3.1 Evaluating Skills of CESM-DP-LE in Predicting Decadal Changes of TC Environment 

Condition 

 To evaluate the skill of CESM-DP-LE in predicting TC environment condition changes 

on multiyear-to-decadal timescales, we focus on the peak TC months from August to October 

and consider this period as the season of interest (Bruyère et al. 2012; Camargo 2013).  The area 

of interest is the North Tropical Atlantic from 0 to 30°N, as CESM-DP-LE shows considerable 

skill in the North Atlantic.  We also evaluated the CESM-DP-LE skills in the Pacific basin and 

found low scores, especially in the WNP.  Therefore, in this Chapter, we focus on evaluating 

GPI-based forecast skills in Atlantic using predicted anomalies from CESM-DP-LE on multiyear 

to decadal time scales.  Because the focus is on decadal prediction, a 5-year running mean was 

applied to most of our analyses.   
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4.3.1.1 GPI from CESM-DP-LE 

 Figure 4.1 show the spatial patters of anomaly correlation coefficients between NCEP- 

and CESM-DP-LE-based GPI, after applying a 5-year-running-means to both time series at each 

grid point in the Atlantic region.  Positive correlation is clearly observed in the Atlantic MDR 

(yellow-squared region) for all lead years.  Figure 4.2 shows similar anomaly correlation maps to 

those of Figure 4.1, except that 5-year running mean was not applied to the GPI time series, and 

thus the anomaly correlation also includes the interannual variability.  A comparison between 

Figure 4.1 and 4.2 shows clearly that CESM-DP-LE is more skillful in predicting multiyear-to-

decadal observed GPI variability than interannual variability, although even without the 5-year 

running mean, there are significant anomaly correlations between observed and predicted GPI 

within the Atlantic MDR region at all lead years. It suggests that CESM-DP-LE is quite skillful 

in predicting GPI variability on internal-to-decadal timescales.  

Consistent with the SST forecast skill shown in Yeager et al. (2018), the CESM-DP-LE 

predictive skill on GPI does not significantly decrease with lead years longer than interannual 

timescale (i.e., longer than lead year 1).  In other words, GPI correlation skills calculated at 

shorter lead years do not outperform those calculated from longer lead years in CESM-DP-LE, at 

least for lead year 2 to 10.  Moreover, no robust correlation skills are found in the Gulf of 

Mexico, even after applying the 5-year running mean filter to the GPI time series  (Figure 4.1).  

This indicates that CESM-DP-LE forecast skill of GPI is limited to the Atlantic MDR.  As such, 

we exclude the Gulf region when computing Atlantic area-mean GPI time series in the following 

analyses. 
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4.3.1.2 Diagnosing GPI Terms 

 As descripted in previous chapters and the methodology section, GPI consists of four 

terms: vorticity, humidity, potential intensity, and shear terms.  To further investigate the 

representation of each term (associated with different TC-related variables) in CESM-DP-LE, 

correlation coefficients were also calculated for the four terms from NCEP and CESM-DP-LE 

(Figure 4.3 to 4.10).  

Figure 4.3 and 4.4 shows the correlations of the vorticity terms variability in CESM-DP-

LE and NCEP, with and without 5-year running mean, respectively.  In most part of the Atlantic 

MDR, the anomaly correlation of vorticity term variability between CESM-DP-LE and NCEP 

has positive values.  The Atlantic MDR is just north of the Atlantic ITCZ where anticyclonic 

vorticity dominates because of the trade winds converging into the ITCZ from the North tend to 

rotate clockwise.  When the ITCZ shifts north-south in response to AMO-like SST variation, it 

will generate vorticity anomalies in the Atlantic MDR, which in turn contribute to GPI 

variability.  The results shown in Figure 4.3 and 4.4 suggest that CESM-DP-LE is capable of 

predicting low-level vorticity (850 hPa) changes in the Atlantic MDR at lead time of 2 – 10 

years.  Similar arguments apply to the positive anomaly correlation of vertical wind shear in the 

region (Figure 4.9 and 10).  The low-level convergent flow and upper-level divergent flow in the 

vicinity of the ITCZ create a strong vertical wind shear regime.  As the ITCZ shifts north-south 

in response to AMO-like SST variation, the vertical wind shear regime also shifts.  The fact that 

the anomaly correlation of wind shear term is mostly positive over the Atlantic MDR suggests 

that CESM-DP-LE is skillful in predicting vertical wind shear variability in the Atlantic MDR at 

lead time of 2 – 10 years.  Therefore, we argue that a significant portion of the skillful forecast of 

GPI by CESM-DP-LE in the Atlantic MDR may come from the ability of CESM-DP-LE to 
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forecast north-south shift of the ITCZ on multiyear-to-decadal time scales, which affects both the 

vorticity and vertical wind shear in the Atlantic MDR.  

The other significant contribution to the skillful forecast of GPI by CESM-DP-LE comes 

from potential intensity (maxPI) variability, which is primarily linked to the local SST 

variability.  Figure 4.7 and 4.8 show very high positive anomaly correlation values of maxPI 

variability with and without the 5-year running mean.  This finding is consistent with the results 

of highly skillful decadal SST forecast in the North Atlantic shown by Yeager et al (2018).  

Therefore, CESM-DP-LE shows skills in predicting environmental vorticity, vertical wind shear 

and maxPI changes in the Atlantic MDR at lead time of 2 – 10 years, all of which contribute 

positively to the skillful forecast of GPI. 

In contrast, CESM-DP-LE failed to predict humidity-induced GPI variability in the 

Atlantic MDR.  Figure 4.5 and 4.6 show predominantly negative anomaly correlation 

coefficients in much of the MDR with and without the 5-year running mean.  It indicates that 

CESM-DP-LE is not capable of predicting mid-level (600 hPa) humidity in the Atlantic MDR on 

multiyear-to-decadal time scales.  This negative skill of predicting humidity-induced GPI 

contributes negatively to the GPI skill score.  However, it should be noted that previous studies 

indicated a relatively weak relationship between TC activity and humidity derived from NCEP in 

the Atlantic (e.g., Bruyère et al. 2012).  Therefore, the poor skill of CESM-DP-LE in predicting 

mid-level humidity may not have a strong influence on the overall GPI forecast skill of CESM-

DP-LE.  As previous studies shown, the maxPI and wind shear are the two most important 

factors in determining TC activity in the Atlantic region (e.g., Bruyère et al. 2012; Camargo 

2013; Vecchi et al. 2013).  The skillful forecast of these two terms in GPI by CESM-DP-LE 
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indicates potential high skills of CESM-DP-LE in predicting basin-wide TC activity in the 

Atlantic, at least during the simulation period of 1964 to 2017.       

 

4.3.2 MDR GPI and TC Time Series Analysis  

4.3.2.1 MDR GPI Time Series 

 In this study we define the main development region (MDR) of TCs in the Atlantic to be 

from 10° to 20°N and from 60°W to 15°W, and use the ASO as TC season average to derive an 

MDR GPI time series, as Bruyère et al. (2012) show that such a GPI time series explain a large 

portion of the variance of annual TC frequency in the Atlantic.  In the following, we will use this 

GPI time series to further examine CESM-DP-LE’s skill on predicting Atlantic TC activity 

during the period of 1964 to 2017.  To focus on multiyear-to-decadal time scales, 5-year running 

mean smoothing was applied to all the time series (as in Vecchi et al. 2013), and all the time 

series (including GPI and associated terms, as well as observed annual TC frequencies) were 

normalized by maximum values. 

 Figure 4.11a compares the observed annual TC frequency to the NCEP-based and 

CESM-DP-LE-predicted MDR GPI time series.  Note that for each given year, there are 10 

ensemble members of CESM-DP-LE and 9 forecasts at different lead year 2 to 10, which give 

rise to a total of 90 forecasted GPI values.  The predicted MDR GPI shown in Figure 4.11a is the 

average of the 90 values, which includes 10-member mean and 9 lead year average.  Figure 

4.11b shows the ensemble mean of predicted MDR GPI values averaged over different lead year 

groups.  There is clearly a close relationship between the annual TC frequency and the MDR 

GPI: correlation coefficients between TC frequency and NCEP-based MDR GPI and between 

TC frequency and CESM-DP-LE-predicted MDR GPI are 0.38 and 0.87 (all above 99% 
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significant level), respectively.  Note that the correlation between the observed TC frequency and 

CESM-DP-LE-predicted MDR GPI has even higher value than that between observed TC 

frequency and NCEP-based MDR GPI.  Moreover, the correlation between NCEP-based and 

CESM-DP-LE-predicted MDR GPI is at 0.51.  Of particular interest is the decadal shift in the 

mid-1990s when the Atlantic TC frequency experienced a sharp increase.  The NCEP-based 

MDR GPI well captures this sharp increase, albeit with about 1 year of delay.  CESM-DP-LE 

predicted GPI also shows a sharp increase in the mid-1990s, agreeing with the observed decadal 

shift in the Atlantic TC frequency, but the phase delay is further increased compared to NCEP. 

However, both the NCEP-based and CESM-DP-LE-predicted GPIs fail to capture the peak in 

early 2000s, and CESM-DP-LE also fails to predict the decrease in TC activity after 2010.  In 

addition, both GPIs fail to track the Atlantic TC activity before 1970s. 

 When separating CESM-DP-LE predicted GPI by different lead year groups, no 

significant change is observed in terms of the overall correlation values between the GPI and TC 

frequency (Figure 4.11b) and the correlation coefficients change from 0.85, 0.84, to 0.85 from 

lead year group 2-6, 4-8, to 6-10.  However, there is a clear improvement in predicting the phase 

of the decadal shift when using the GPI at shorter lead year group (2-6).  Interestingly, this 

improvement does not behave linearly as there is no improvement in phase prediction when 

comparing the predicted GPIs at lead year group 4-8 and 6-10.   

 

4.3.2.2 Decomposition of GPI  

 As in section 3.1.2, we investigated the GPI-related predictability from four different 

large-scale environmental variables: vorticity, vertical wind shear, maxPI, and humidity, and the 

results are shown in Figure 4.12.  Consistent with previous studies (e.g., Zhang and Delworth 



 

 106 

2006; Bruyère et al. 2012), the shear- and maxPI-term variability derived from NCEP represent 

very well the variability of Atlantic TC frequency, with correlation coefficients (with TC 

number) of 0.86 and 0.91 for shear and potential intensity, respectively (Figure 4.12a and d).  

The CESM-DP-LE-predicted wind shear and potential intensity terms also well predict the 

variability of TCs, with correlation coefficients (with observed TC number) of 0.90 and 0.84 

(Figure 4.12a and d).  The large-scale vorticity variability also shows a good relationship with 

the observed TC frequency, with a correlation coefficient of 0.83 for CESM-DP-LE.  

 However, the relationship between mid-level humidity and the observed TC frequency is 

quite different between CESM-DP-LE and NCEP.  While the humidity variability from NCEP 

has almost no correlation with the observed TC frequency, consistent with previous studies, such 

as Bruyère et al. 2012, the CESM-DP-LE-predicted humidity variability shows a remarkably 

good relationship with the TC frequency and the correlation between the two is 0.85.  Therefore, 

there is a large discrepancy between NCEP reanalyzed and CESM-DP-LE predicted mid-level 

humidity variability on multiyear-to-decadal time scales.  This discrepancy is likely a key 

contributor to the higher correlation between the observed TC frequency and CESM-DP-LE-

predicted MDR GPI (0.87) than between observed TC frequency and NCEP-based MDR GPI 

(0.38). 

 It is worth noting that although all four contributing environment variables to GPI 

derived from CESM-DP-LE show high correlations with the observed TC frequency, none of 

them can reproduce the peak in TC frequency during middle 2000s.  One possible reason for this 

discrepancy is that the TC frequency peak in middle 2000s is a part of atmospheric internal 

variability, which cannot be predicted by CESM-DP-LE.  Nevertheless, the fact that all four 

contributing environment variables to GPI in CESM-DP-LE show high correlations with 
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multiyear-to-decadal changes in Atlantic TC frequency offers a potential capability for 

developing a decadal Atlantic TC prediction through either statistical or dynamical downscaling 

of CESM-DP-LE. 

 

4.4. Summary and Discussion 

 The results of this study suggest potential skill of CESM-DP-LE in predicting TC-related 

environmental changes on multiyear-to-decadal timescales for lead year 2 to 10 in the Atlantic 

MDR.  In particular, CESM-DP-LE shows high fidelity in predicting the decadal shift in the mid 

1990s that marked a sharp increase in Atlantic TC activity.  While previous studies have 

demonstrated useful skill in predicting Atlantic TC activity on different timescales using SST 

and vertical wind shear variability, our results suggest that all four contributing environmental 

variables  (potential intensity, shear, humidity, and vorticity) to GPI are highly correlated with 

the observed TC frequency from 1964 to 2017, and thus can all contribute positively to CESM-

DP-LE TC prediction at multiyear-to-decadal time scales.  Of particular interest is the finding 

that CESM-DP-LE predicted mid-level humidity changes shows a high correlation with the TC 

frequency on multiyear-to-decadal time scales, which is in sharp contrast to NCEP-based mid-

level humidity that shows no correlation with the TC frequency.  The latter is consistent with 

Bruyère et al. (2012) who show that NCEP-based mid-level humidity has no skill in representing 

Atlantic TC frequency variability during the period from 1960s to 2000s.  This discrepancy 

between NCEP and CESM-DP-LE may be blamed for the higher correlation between CESM-

DP-LE predicted humidity and the observed TC frequency than between NCEP-based humidity 

and TC frequency. 
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 The high skill of CESM-DP-LE in predicting TC environmental condition changes on 

multiyear-to-decadal time scales appears mainly related to its high fidelity in predicting low-

frequency SST variability in the North Atlantic.  Figure 4.13 shows a linear regression of 

pentadal global SST anomalies onto the pentadal Atlantic MDR GPI time series during the 

period of 1964 to 2017 using NCEP reanalysis (Figure 4.13a) and CESM-DP-LE data (Figure 

4.13b), respectively. While the NCEP regression map shows an AMO-like SST pattern in the 

Atlantic and a PDO-like pattern in the Pacific, the CESM-DP-LE regression map show a 

warming pattern everywhere in the global ocean with highest amplitude in the North Atlantic.  

The only area that the two patterns shares in common is the North Atlantic and Northwestern 

Pacific.  In the tropical Pacific, the two patterns have opposite sign.  Therefore, it appears that 

the agreement between NCEP and CESM-DP-LE is largely attributed to the skillful forecast of 

AMO-like SST variability in the North Atlantic by CESM-DP-LE.  The tropical Pacific SST 

plays a secondary role in influencing TC variability on multiyear-to-decadal time scales.   

There are current debates on whether the AMO-like SST in the North Atlantic is an 

internal variability of the coupled ocean-atmosphere system or an externally forced response.  

CESM-DP-LE includes both of these components.  To separate these two factors, one can 

compare CESM-DP-LE to a large ensemble of uninitialized CESM runs, as shown Yeager et al. 

(2018).  As a future work, we plan to carry out similar analysis on the uninitialized CESM large-

ensemble (CESM-LE, Kay et al. 2015) and compare the results to those shown in this study.  

Such a comparison can shed light on whether ocean memory plays a critical role for the skillful 

forecast of the Atlantic TC environmental condition changes on multiyear-to-decadal time scales 

by CESM-DP-LE.  
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Figure 4.1. Correlation coefficients of 5-year running mean GPI calculated from CESM-DP-LE 
and NCEP.  Each figure showing results for different lead years from CESM-DP-LE, while (j) 
demonstrating the results of lead year 2 to 10 mean.  The yellow box in (j) shows the region of 
conventional Atlantic MDR.  All the regions with values passed the 95% student t-test are 
hatched. 
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Figure 4.2. Identical to figure 4.1, but for results of interannual values instead of 5-year running 
means. 
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Figure 4.3. Correlation coefficients of 5-year running mean vorticity terms calculated from 
CESM-DP-LE and NCEP. The yellow box shows the region of conventional Atlantic MDR, and 
all the regions with values passed the 95% student t-test are hatched. 
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Figure 4.4. Same as figure 4.3, but showing results for interannual values instead of 5-year 
running means. 
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Figure 4.5. Correlation coefficients of 5-year running mean humidity terms calculated from 
CESM-DP-LE and NCEP. The yellow box shows the region of conventional Atlantic MDR, and 
all the regions with values passed the 95% student t-test are hatched. 
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Figure 4.6. Same as figure 4.5, but showing results for interannual values instead of 5-year 
running means. 
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Figure 4.7. Correlation coefficients of 5-year running-mean maximum potential intensity 
(maxPI) terms calculated from CESM-DP-LE and NCEP. The yellow box shows the region of 
conventional Atlantic MDR, and all the regions with values passed the 95% student t-test are 
hatched. 
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Figure 4.8. Same as figure 4.7, but showing results for interannual values instead of 5-year 
running means. 
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Figure 4.9. Correlation coefficients of 5-year running mean shear terms calculated from CESM-
DP-LE and NCEP. The yellow box shows the region of conventional Atlantic MDR, and all the 
regions with values passed the 95% student t-test are hatched. 
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Figure 4.10. Same as figure 4.9, but showing results for interannual values instead of 5-year 
running means. 
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Figure 4.11: Normalized time series of 5-year running mean HURDAT2 TC counts and Atlantic 
MDR GPI .alculated from CESM-DP-LE and NCEP.  (a) shows the 5-year running mean of 
observed (HURDAT2) TC counts in black, NCEP-based MDR GPI in blue, and CESM-DP-LE-
based GPI in red.  (b) shows the 5-year running mean TC number in black, and different color 
lines showing 5-year running GPI from different lead years in CESM-DP-LE.   
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Figure 4.12. Normalized 5-year running mean time series of TC counts (in black) and each term 
((a)shear, (b) humidity, (c) vorticity, and (d) potential intensity terms) in GPI calculated from 
NCEP (in blue) as well as CESM-DP-LE (in red).   
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Figure 4.13. Regression coefficients of 5-year running mean global SST onto 5-year running 
mean Atlantic MDR GPI time series.  Results from both NCEP (a) and CESM-DP-LE (b) are 
shown. 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK  

  

The impacts of SST forcings, including biases and prediction errors, and TC-related 

environmental variables on TC simulations and prediction on seasonal-to-decadal timescales 

were examined in this dissertation through three interrelated research streams.  First, by 

separating the tropical SST biases common to current generation climate models by region and 

by sign, we performed a large number of ensembles of simulations using a TC-permitting 

tropical-channel WRF model.  The relative importance of the impact of SST biases in different 

ocean basins on seasonal-to-interannual TC simulations and the underlying dynamics were 

investigated by comparing these ensembles of simulations.  Second, the same model (with 

improved parameterizations) was forced with the predicted SST anomalies from CESM Decadal 

Prediction Large Ensemble (DP-LE) to examine the feasibility of seasonal-to-longer time scales 

TC forecast in the global tropics.  Utilizing different SST forcings and boundary and initial 

conditions, the relative importance of the impact from uncertainties of atmospheric internal 

variability, SST forcings, and the lateral boundary conditions on TC forecast skill was explored.  

Third, we analyzed the predictability of TC-related environmental variables from CESM-DP-LE 

to investigate the potential predictability of TCs on multiyear to decadal timescales.  GPI and its 

associated terms were used to quantify multiyear-to-decadal TC potential predictability in the 

Atlantic.  The main conclusions of the three studies are summarized as follows. 
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5.1 Conclusions 

 The results from ensembles of TC-permitting tropical-channel WRF simulations suggest 

that tropical SST biases in climate models can induce significant influences on TC simulations 

both locally in and remote from tropical Atlantic and Pacific basins.  The simulations suggest an 

underrepresentation in Atlantic TC activity caused by the Atlantic cold bias alone, and an 

overrepresentation in ENP TC activity due to the Atlantic cold bias and Pacific warm bias jointly.  

While the local impact of SST biases on TC activity is generally induced by changes in local 

atmospheric conditions conducive to TC genesis and development, the remote impact of the 

Atlantic bias on the ENP TCs appears to be related to changes in the regional circulation over the 

Central America, where topographic effect plays an important role.  Moreover, an eastward shift 

in WNP TCs was generated by the Pacific SST biases, even though basin-wide TC activity 

indicators change insignificantly.  The results of Chapter II point to the importance of 

considering SST bias effects on simulated TC activity in climate model studies and highlight key 

regions where reducing SST biases could potentially improve TC representation in climate 

models. 

 With improved parameterizations, in Chapter III we used a modified tropical-channel 

WRF, which shows potential skill in predicting TC at lead-time from 6-to-12 months using 

predicted SST anomalies from CESM-DP-LE.  However, even with significantly differences 

among observed, persisted, and predicted SST anomalies, the simulated ACE values and TC 

counts show no significant differences in certain simulation years and ocean basins, raising a 

question whether the aggregated metrics, such as ACE and TC counts, are useful measures of 

model predictive skills, since the area averaging used in these metrics tends to remove any 

spatial variation of TCs.  Nevertheless, due to low horizontal resolutions of current generation 
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climate models, TCs cannot be accurately tracked.  Therefore, metrics other than ACE or TC 

count alone should be developed to examine seasonal TC predictability.  In addition, significant 

impact from the lateral boundaries of the tropical-channel WRF on the simulated TCs were 

suggested by both GPI and moist static energy transport analyses, indicating that tropical SSTs 

may not necessarily be the only dominant factor for TC predictability.   

 Furthermore, by investigating TC-related environmental condition changes from a long 

(1964 to 2017) decadal prediction experiments, our results suggest high potential skills of 

CESM-DP-LE in predicting Atlantic TCs on lead year 2 to 10.  The GPI decomposition analysis 

suggests that all four large-scale environmental variables, including potential intensity, shear, 

humidity, and vorticity, contribute the high skill of CESM-DP-LE in the Atlantic, with 

correlation higher than 0.8 between the 5-year running mean seasonal TC count and predicted 

Atlantic MDR GPI.  In particular, the mid-level humidity predicted by CESM-DP-LE shows 

much better skill in predicting Atlantic TC frequency than that of NCEP.  The results of Chapter 

IV give an assessment of the potential skill of the CESM-DP-LE in predicting TC variations on 

multiyear to decadal timescales, and suggest a potential value in downscaling CESM-DP-LE for 

decadal TC prediction in the Atlantic. 

 

5.2 Future Work 

 Even though the impact of the Atlantic SST biases on both Atlantic and Pacific TC 

activity and the underlying mechanisms were investigated in Chapter II, the impact of Pacific 

biases was not fully examined in our study.  For example, unlike the warm bias in the 

southeastern Atlantic, the Pacific warm bias contains two parts, one in the northern and the other 

in the southern tropics, raising the question whether one of the warm biases has the dominant 
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influence over the other one.  In addition, the impact of tropical SST biases on the TC activity in 

the Indian Ocean, which is also known as a region strongly influenced by TCs, was not discussed 

in Chapter II, since the ensemble size (16 members) was not large enough, and the number of 

TCs generated in that region is small, both of which leads to insufficient sample size to test 

statistically significance of the results in the Indian Ocean.  Therefore, more simulations with 

larger ensemble size should be performed in future studies to quantify the impact in the Indian 

Ocean. 

While the results in Chapter III show potential skills of dynamical downscaling CESM-

DP-LE for seasonal TC prediction, the study raises more questions than answers, pointing to the 

need of future studies for further understanding the mechanisms and the relative importance of 

the impact of lateral boundary conditions, SST forcings, and atmospheric internal variability on 

TCM simulation of seasonal TC activity.  For example, a set of sensitivity experiments is needed 

to investigate the impact of locations of the lateral boundaries on TCs.  Moreover, increasing the 

verification period of the TCM prediction simulations is also needed.  It is clear from the 

analysis presented in Chapter III that examining only two ENSO events is not sufficient to 

generate robust results for evaluating model skills.  Furthermore, the impact of SSTs, boundary 

conditions, and internal variability (initial conditions) should be better investigated by 

quantifying the changes in large-scale circulations and the TC-related atmospheric conditions. 

Finally, to better examine the multi-year to decadal Atlantic TC predicting skill in 

CESM-DP-LE, further analysis needs to be performed to demonstrate the relationship between 

the TC-related environmental variables in MDR and the large-scale variability in CESM-DP-LE.  

In particular, the dominant factor for the high predictability should be investigated.  It is of 

interests to examine whether the high predictability in CESM-DP-LE can be attribute to the high 
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predictability in AMO-related features, presumably contributed by the ocean initialization.  On 

possible approach is to quantify the representation of TC-related terms and GPI in CESM-LE – 

an uninitialized complementary set of large ensemble simulations.  Since large improvement in 

predicting AMO-related SST patterns were demonstrated for CESM-DP-LE comparing to 

CESM-LE, the increased skill is argued to be caused by the initialization (Yeager et al. 2018).  

By comparing the results of Chapter IV to a similar analysis on CESM-LE, we can potentially 

examine the influence of ocean memory on TC predictability on longer timescales. 
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