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ABSTRACT 

 

Modern computational chemistry has emerged as a powerful tool for 

understanding functional molecules including catalysts, materials, and pharmaceuticals. 

Such theoretical studies can inform the rational design of new structures such as 

effective catalysts and high performed organic semiconductors. In this dissertation, 

applications of computational chemistry to the fields of asymmetric catalysis and organic 

electronic materials based on polycyclic aromatic hydrocarbons are presented. 

The first part of this dissertation focuses on the development and application of 

computational tools for the automated prediction of stereoselectivities for asymmetric 

catalytic reactions. Despite the enormous success of quantum chemistry in explaining 

the activity and selectivity of a wide range of catalytic reactions, the computational 

design of new catalysts is far from routine due to the vast number of computations that 

must be performed for a given system.  A computational toolkit has been developed 

(AARON: An Automated Reaction Optimizer for New-catalysts) to automatically screen 

virtual libraries of potential catalyst designs quantum mechanically. First, an explanation 

of the AARON workflow is provided along with several representative applications 

demonstrating the utility of AARON in the context of catalysts design. Then, a more 

detailed example of the application of AARON to a Rh-catalyzed asymmetric 

hydrogenation reaction is presented in which AARON is used to screen a series of 

ligands and design a novel chiral.  
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In the second part, the primary goal is to understand the underlying noncovalent 

interactions responsible for the supramolecular assembly of curved molecules and thus 

to precisely control supramolecular architectures. First, a study of four bowl-shaped 

polycyclic aromatic hydrocarbon molecules (summanene and derivatives) is presented 

that combines quantum mechanical methods and molecular dynamics simulations to 

understand the local orientations within columnar stacks, which significantly impacts the 

electronic properties of the resulting semiconducting materials. The importance of 

intercolumnar interactions on intracolumnar packing is also highlighted. Next, we 

consider contorted polycyclic aromatic molecules. These doubly-concave systems offer 

a means of tuning the strength of stacking interactions through variations in molecular 

curvature. A systematically study of a set of 18 saddle-shaped compounds and their 

dimers indicates that the introduction of thiophene rings around the periphery of these 

systems and the incorporation of B and N atoms into the coronene core greatly enhances 

their tendency to form strongly stacked dimers. Ultimately, a complex relationship 

between curvature of molecules and stacking interaction is revealed. 

Together, the chapters in this thesis showcase the power of modern 

computational quantum chemistry to provide useful predictions of the structure and 

properties of molecules. 
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CHAPTER I  

INTRODUCTION 

Computational chemistry is a branch of chemistry that uses theoretical methods 

to compute the properties of molecules or solids. These methods are usually incorporated 

into efficient computational packages and can be based on either classical- or quantum-

mechanical treatments of molecular systems. Examples of molecular properties that can 

be computed include structures, relative energies, vibrational frequencies, dipoles and 

higher multipole moments, and other spectroscopic properties. The prediction of these 

properties using computational chemistry has found increasing applications in areas 

ranging from materials chemistry and catalyst design to drug discovery, etc.  

Modern computational chemistry methods fall into two large categories, 

classical-mechanical and quantum-mechanical methods, each containing many different 

approaches designed for different purposes. These computational methods range from 

very approximate but highly computationally-efficient coarse-grained models to highly 

accurate but computationally expensive correlated ab initio methods. In all cases, the 

computer time and other resources required (such as CPU/GPU time and memory) 

increase rapidly with the size of system being studied. In general, higher accuracy can be 

achieved by using higher levels of theory at the cost of more computational time. As a 

result, methods delivering high accuracy predictions are often feasible only for small 

systems.  
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With our concentration on small molecule catalysts and non-covalent interactions 

in organic materials, we focus on density functional theory (DFT) and molecular 

mechanical (MM) methods. These families of methods are described briefly below. 

 

1.1 DFT Methods for Non-Covalent Interactions and Homogeneous Catalysis 

DFT is an important family of quantum-mechanical methods for investigating the 

electronic structure of many-body systems. Since its introduction into computational 

chemistry in the 1970s, DFT has emerged as one of the most popular and versatile 

methods available for practical applications of computational chemistry to problems in 

homogeneous catalysis and intermolecular interactions due to its excellent balance of 

accuracy and computational cost.  

Quantum chemical methods are primarily aimed at solving the time-independent 

Schrödinger equation, 

[𝑇 + 𝑉(𝒓)]Ψ(𝐫) = 𝐸Ψ(𝐫) 

where T and V(r) are the kinetic and potential energy operators, respectively, Ψ(𝑟) is the 

(time-independent) stationary state wavefunction, and E is the total energy of the system. 

Applied to molecules under the Born-Oppenheimer (BO) approximation, the nuclear 

kinetic energy is neglected and electrons move under the Coulombic potential of the 

nuclei at fixed positions in space. This results in the electronic Schrödinger equation, 

[𝑇𝑒 + 𝑉𝑒(𝒓, 𝑹)]χ(𝐫, 𝐑) = 𝐸𝑒χ(𝐫, 𝐑) 

where Te and Ve(r, R) are the kinetic and potential energy operators for electrons, 

respectively, and 𝜒(𝑟, 𝑅) is the electronic wavefunction when the nuclei are at positions R. 
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Varying the positions of the nuclei and repeatedly solving the electronic Schrödinger 

equation yields Ee as a function of the nuclear coordinates (R), which is the potential 

energy surface (PES) on which the nuclei move. 

Since the electronic Schrödinger equation cannot be solved analytically for 

systems with multiple electrons due to electron-electron interactions, approximations 

must be made to obtain estimated wavefunctions and energies for a given molecular 

system.  Many efforts have been made to provide approximate solutions to the electronic 

Schrödinger equation. The most fundamental approach dates back to the pioneering 

work of Hartree and Fock in the 1920s (the HF method). In HF theory, the electronic 

wavefunction is approximated by a single Slater determinant of N spin-orbitals. By the 

variational theorem, the HF energy is an upper-bound to the true ground state electronic 

energy. By iteratively solving the HF equations and thus optimizing the HF orbitals until 

a self-consistent field (SCF) is achieved, one can derive an approximate wavefunction 

and energy for a molecular system. One major shortcoming of HF is that it is a mean 

field approximation, in which each electron is subjected to the mean Coulombic field of 

the N-1 other electrons. That is, in HF theory electrons move independently of each 

other, neglecting ‘electron correlation’. This neglect of electron correlation can lead to 

large deviations between predictions from HF theory and experimental results.  

Starting from the HF method, a number of more elaborate post-Hartree-Fock 

quantum chemical approaches have been devised to recover electron correlation, such as 

Møller–Plesset (MP) perturbation theory, configuration interaction (CI), and coupled-

cluster theory. Coupled-cluster  theory with single, double, and perturbative triple 

https://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory
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excitations, CCSD(T), has been established as the “gold standard” for first principles 

computations in quantum chemistry and applied widely to study small molecules. 

Unfortunately, these post-HF approaches usually present difficulties in applications to 

systems containing more than ~20 atoms due to the sharp increase in computational cost. 

For example, the CCSD(T) method scales as O(N7), where N is representative of the 

system size.  

By replacing the many-body electronic wavefunction with the electronic density, 

DFT attempts to address both the inaccuracy of HF methods and high computational cost 

of post-HF methods. Modern DFT rests on two theorems by Pierre Hohenberg and 

Walter Kohn (H-K). The first H-K theorem states that the ground state properties of a 

many-electron system are uniquely determined by an electron density. Whereas the 

many-electron wavefunctions appearing in post-HF methods depend on 3N variables for 

an N electron system, the electron density depends only on three variables. This means 

that DFT is simpler both conceptually and practically, with formal scaling of O(N3) to 

O(N4). The second H-K theorem states that the energy of an electronic system can be 

described by a functional of the electron density function, and the correct electron 

density minimizes the value of this energy functional.  

Although those two H-K theorems assure us the existence of this energy 

functional, unfortunately the exact form of such a universal functional is unknown. From 

the two H-K theorems, we can write the total electronic energy as 

𝐸[𝜌] = 𝐸𝑁𝑒[𝜌] + 𝑇[𝜌] + 𝐸𝑒𝑒[𝜌] 

where only the form of nuclear attraction term, 𝐸𝑁𝑒[𝜌], is known. If we define 

https://en.wikipedia.org/wiki/Pierre_Hohenberg
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𝐹𝐻𝐾[𝜌] = 𝑇[𝜌] + 𝐸𝑒𝑒[𝜌] 

We have 

𝐸[𝜌] =  ∫ 𝜌(𝑟)𝑉𝑁𝑒(𝑟)𝑑𝑟 + 𝐹𝐻𝐾[𝜌] 

This functional 𝐹𝐻𝐾[𝜌] is the holy grail of DFT and if it were known we would have a 

computationally inexpensive route to exact solutions of the electronic Schrödinger 

equation for all molecular systems. 𝐹𝐻𝐾[𝜌] contains contributions from the kinetic 

energy and electron-electron interaction potential energy, which can be further written as 

sum of classical Coulomb interactions and a non-classical classical component: 

𝐹𝐻𝐾[𝜌] = 𝑇[𝜌] + 𝐽[𝜌] + 𝐸𝑛𝑐𝑙[𝜌] 

 In practice, current common DFT methods are based on the formulation by 

Walter Kohn and Lu Jeu Sham in what is known as Kohn-Sham (K-S) DFT.  Borrowing 

the concept of orbitals from HF methods, in K-S DFT a fictitious noninteracting system 

is constructed to yield the same electron density as the true system of interacting 

electrons. Since this non-interacting system only consists of noninteracting electrons, the 

wavefunction can be exactly represented as a Slater determinant of orbitals, and the 

kinetic energy of the noninteracting system can be computed exactly as 

𝑇𝑆 = −
1

2
∑〈𝜑|∇2|𝜑〉 

However, 𝑇𝑆 is not equal to the true kinetic energy of the interacting system. As a result, 

a non-classical component is introduced to account for that, 

𝐸𝑥𝑐[𝜌] = (𝑇[𝜌] − 𝑇𝑆[𝜌]) + 𝐸𝑛𝑐𝑙[𝜌] 
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where the exchange-correlation energy, 𝐸𝑥𝑐[𝜌], contains everything unknown in K-S 

DFT. Given this, we have the total energy for the K-S DFT expression 

𝐸[𝜌] = 𝐸𝑁𝑒[𝜌] + 𝑇[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] 

The exchange-correlation energy is where DFT differs from the HF method. The 

correlation energy arises from the correlated motion of interacting electrons and is 

defined as the difference between exact energy and the HF energy. The exchange 

component reflects the exchange interaction that arises from the requirement that 

wavefunctions of indistinguishable particles must exhibit exchange symmetry. Together, 

the exchange functional and correlation functional define a given DFT functional.  As 

with HF theory, the Kohn-Sham equations must be solved self-consistently to obtain 

optimized K-S orbitals and a minimized K-S energy. 

The simplest form for an exchange-correlation functional is the local-density 

approximation (LDA), in which the energy is only determined by the density at each 

point in space. As the simplest DFT functional, LDA can only deliver moderate 

accuracy, which is insufficient for most chemical applications. The breakthrough of DFT 

came with the introduction of generalized gradient approximation (GGA) functionals, 

which include information about the gradient of electron density to better mirror the 

inhomogeneous nature of the electron density. Using GGAs, such as the BP86 and PBE 

functionals, accurate molecular geometries and ground-state energies can be obtained. 

As an improvement to GGAs, hybrid GGA functionals were introduced that incorporate 

a portion of ‘exact exchange’ energy from the HF method. For example, in the B3LYP 

functional 20% of exchange energy comes from a HF-like expression. Nowadays, hybrid 
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GGA functionals such as B3LYP are among the most popular functionals for studying 

organic complex systems with 50-100s atoms. Potentially more accurate functionals are 

the meta-GGA and hybrid meta-GGA functionals, which include second or higher 

derivatives of electron density. This includes functionals such as TPSS and the M06 

family of functionals, which can yield very accurate energetic and spectroscopic 

properties. 

Although many popular DFT methods proved successful in treating covalently-

bound molecules as well as hydrogen bonding and other electrostatically dominated non-

covalent interactions, many of these functionals have proved incapable of describing the 

R-6 distance-dependence of dispersion interactions. Dispersion interactions drive many 

long-range non-covalent interactions that are central to the molecular systems in the 

present work. The simplest approach to capturing dispersion interaction is the semi-

empirical dispersion correction method of Grimme and co-workers (DFT-D), which 

appends a damped empirical atom-atom pairwise dispersion term to the total DFT 

energy. In the second-generation DFT-D method (DFT-D2, often written simply as 

DFT-D), the dispersion correction is C6 based and proportional to 𝑅−6, in which 𝑅 is the 

distance between pairs of atoms.  In 2006, Antony and Grimme1 evaluated the 

performance of the D2 dispersion correction appended to various GGA and hybrid DFT 

functionals across a database of 22 van der Waals (vdW) complexes (the S22 test set).  

BLYP-D, PBE-D, B97-D, and B3LYP-D all provided interaction energies with average 

errors less than 1 kcal mol-1 or 10% compared to accurate reference values; only six of 

the 161 DFT functionals tested showed errors exceeding 2 kcal mol-1. The following 
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year, Jurecka et al.2 tested the damped dispersion term with six DFT functionals against 

a larger set of 58 vdW complexes, S58. Results were in remarkable agreement with 

high-level data based on CCSD(T) and even surpass the MP2/cc-PVTZ level of theory.  

Recently, Grimme and co-workers3 introduced a new dispersion correction 

(DFT-D3) that incorporates an additional 𝑅−8 term and adjust the functional form of the 

𝑅−6 term and the damping function. Moreover, in DFT-D3 there are additional atom 

types corresponding to different hybridization states of different elements. Subsequent 

benchmarks have shown that DFT-D3 yields superior results for many functionals 

compared to DFT-D2.4-8 Nowadays, the DFT-D3 method is broadly applied to 

computational studies of non-covalent interactions, given its extremely good 

performance/cost ratio.  

 

1.2 Molecular Mechanics Methods for Simulations of Bulk Materials 

Although QM methods can be widely applied to medium sized molecular 

systems containing ~100 atoms, such rigorous approaches are not applicable to systems 

such as biomolecules and materials. To study these systems, classical-mechanical 

methods based on empirical molecular mechanics (MM) force fields are necessary.  

MM methods, in contrast to QM-based methods that aim to solve the electronic 

Schrödinger equation, rely on classical type models to predict potential energy of 

molecular systems as a function of nuclear coordinates. In all-atom MM simulations 

each atom is treated as a particle, while the impact of the electrons is reflected in atomic 

properties such as partial charges and polarizabilities.  Covalently bonded interactions 
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are treated as springs with force constants derived from either experimental data or ab 

initio computed force constants and equilibrium geometries. In general, deviation of 

covalent bonds from their equilibrium geometries and noncovalent interactions give rise 

to the total interaction potential energy. In MM methods, the covalent terms are 

comprised of bond, angle, and dihedral contributions while noncovalent interactions 

involve either electrostatic interactions between atom-based partial charges and Lennard-

Jones (LJ) interactions. A typical functional form of the very popular OPLS force field is 

given by 

𝐸 = ∑ 𝑘𝑟(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠(𝜑) + ∑ 𝑓𝑖𝑗

𝑞𝑖𝑞𝑖𝑒
2

4𝜋𝜀0𝑟𝑖𝑗
𝑖>𝑗

+ ∑ 𝑓𝑖𝑗 (
𝐴𝑖𝑗

𝑟12
−

𝐶𝑖𝑗

𝑟6
)

𝑖>𝑗

 

where the last two terms are the electrostatic and LJ energies, respectively. Generally, 

the bond and angle terms are treated as harmonic oscillators; the dihedral terms typically 

cannot be modeled as harmonic potentials, given that they can have multiple energy 

minima.   

In addition to the OPLS force field, there are other popular MM force fields that 

differ in either the functional form or the associated force constants. These functional 

forms and associated force constants as well as equilibrium bond, angle, dihedral values, 

are collectively termed a force field.  Parameterization is typically done through training 

by a set of experimental or ab initio data.  
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The main use of molecular mechanics lies in the field of molecular dynamics 

(MD) simulations, which is also how we use the MM method in the present dissertation. 

Since the MM force field gives the energy for the system as a function of atomic 

positions, which allows us to compute the force exerted on each atom given the 

coordinates of all atoms, we can predict motions of each atom by Newton’s second law. 

In MD simulations, atoms and molecules are allowed to interact for a fixed period of 

time under a specific force field, which is divided into discrete time steps (typically 2 fs). 

At each time step, the force acting on each atom will be computed to update the position 

and velocity for the next time step. Doing this iteratively, we obtain a trajectory of the 

molecular motion. MD simulations can be performed under several statistical 

mechanical conditions, such as microcanonical ensemble (NVE), canonical ensemble 

(NVT), isothermal-isobaric (NPT) ensemble, etc. In this dissertation, most simulations 

were conducted under an NPT ensemble, in which the amount of substances (N), 

pressure (P), and temperature (T) are conserved. It corresponds most closely to the 

laboratory conditions and thus plays an important role in many chemistry and materials 

simulations.  

If the MD simulation time is long enough, the system will reach an equilibrium 

state, which typically mirrors the preferred configuration and conformation of the system 

under the provided pressure and temperature. In the present dissertation, we use MD 

simulations to determine the external environment of curved polycyclic molecules in 

bulk materials to better understand the intermolecular interaction in the organic semi-

conductive materials.  
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1.3 Computational design of asymmetric catalysts 

  Asymmetric catalysis describes the use of a chiral catalyst to accelerate a 

chemical reaction such that there is preferential formation of one stereoisomer of a chiral 

product. Driven in large part by the need for chiral compounds of pharmaceutical 

interest, as well as other applications including fragrances, materials, etc., there has been 

a tremendous surge of interest in asymmetric catalysis.9 Before the advent of asymmetric 

catalysis, enantiomerically enriched compounds were generated either by resolving them 

from a racemic mixture or by the transformation of nature chiral molecules.  However, 

those two approaches are limited by low yields and the limited availability of chiral 

nature products. A major breakthrough in asymmetric catalysis came in early 1970s, 

when scientists at Monsanto developed Rh complexes containing chiral phosphine 

ligands as asymmetric catalyst for the enantioselective addition of H2 to olefinic 

substrates.10 Since then, asymmetric catalysis has dramatically changed the process of 

generating chiral compounds.11 When first developed around 1970s, homogenous 

asymmetric catalysts were based on transition metal complexes consisting of transition 

metal centers surrounded by chiral ligands.12 This includes the well-known complex of 

Rh with DIPAMP ligands, which provides selectivies exceeding 95% ee for the 

asymmetric hydrogenation reaction and was the first industrial-scale asymmetric 

catalyst,13 esp. the synthesis of the drug L-DOPA.13 Since the 1970s, various chiral 

ligands have been developed in order to obtain both higher stereoselectivities and wider 

substrates scopes. Nowadays, excellent selectivities have been achieved with a wide 

array of transition metal complexes, including Rh, Ru, Cu, Ni, Pd, Ir, etc.14-19 
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Despite these achievements, transition metal catalysts are still limited by high 

price, low availability, toxicity, environmental unfriendliness, and difficulty of use. 

Since the late 1990s, there has been a trend toward using small metal free organic 

molecules to carry out enantioselective transformations.20 Typically, there are four 

classes of organocatalysts, Lewis bases, Lewis acids, Brønsted bases and Brønsted acids, 

among which Lewis base catalysts, such as amines and carbenes,21-24 dominates this 

area.25 Interest in chiral Brønsted acid catalysts such as chiral phosphoric acids,26, 27 for 

example chiral BINOL phosphate complex,28 has grown steadily in recent years. These 

catalysts activate substrates through hydrogen bonding and/or proton transfer and can 

exhibit extremely high degrees of selectivity that are competitive with transition metal 

catalysts.29  

Although the field of homogenous asymmetric catalysis continues to flourish, the 

process of catalyst design can hardly meet the expanding demand for more effective and 

selective catalysts since most organic and organometallic catalysts are developed largely 

through experimental trial and error.  Modern computational quantum chemistry has 

emerged as a potentially powerful tool for rational catalyst design, because it can 

elucidate the mechanisms of catalytic reactions by locating transition states (TS) and 

intermediates that are typically hard to detect experimentally.27, 30-33 Upon computing the 

free energies of key TSs for all stereoisomeric products using, for example, DFT 

methods, one can predict selectivities based on the Curtin-Hammett principle,34 which 

states that the product distribution reflects the difference in free energy between the two 

rate-limiting TSs (∆∆𝐺‡ in Figure 1).  Consequently, central to the computational study 
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of asymmetric catalysis is the optimization of structures of TS geometries leading to 

formation of both the major and minor stereoisomeric products. The selectivity of a 

given catalytic reaction can be characterized by either enantiomeric ratio (er) or 

enantiomeric excess (ee), 

𝑒𝑟 =
[𝑅]

[𝑆]
= 𝑒

∆∆𝐺‡

𝑅𝑇  

𝑒𝑒 =
[𝑅] − [𝑆]

[𝑅] + [𝑆]
=

1 − 𝑒
∆∆𝐺‡

𝑅𝑇

1 + 𝑒
∆∆𝐺‡

𝑅𝑇

 

 

 

Figure I-1. Curtin-Hammett scenario. Since pre-reaction complex A and B are in rapid 

equilibrium, the distribution of products C and D only depends on the difference in free 

energy of the transition states, TS1 and TS2, leading to each product, ΔΔG‡
. 

 

The success of locating a transition state structure (a first-order saddle-point on 

the 3N-6 dimensional PES, where N is the number of atoms) depends on the quality of 

the initial guess structure provided by computational chemists, and thus depend strongly 
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on chemical intuition and experience.35 Because of the complexity of reaction potential 

energy surfaces, the number of accessible transition states can be enormous.36, 37  

Unfortunately, using typical computational methods one can only obtain one TS 

structure at a time. In order to locate all low-lying TS structures, computational chemists 

must repeat the tedious work of building initial structures, preparing input files, 

submitting computations, checking output files, and comparing final optimized TS 

structures until all low-lying TS structures have been identified (Figure 2). 

Another challenge for computational catalysis stems from the large 

conformational space spanned by complex ligands and substrates. Typically, the larger 

and more flexible the ligands and substrates are, the more expansive the conformational 

space. Often, only a single conformation identified by limited manual conformational 

searching or guessing is considered when predicting selectivity.38  This can lead to 

predicted selectivities that are qualitatively incorrect, hindering both our understanding 

of existing catalytic reactions and precluding the effective use of computational 

chemistry in prospective catalyst design. 

The tedious process of locating TS structures combined with the need for 

exhaustive conformational searching makes it difficult to screen virtual libraries of 

potential chiral ligands computationally while still maintaining sufficient accuracy.  

Instead, experimental high-throughput screening is the current state-of-the-art route to 

new catalysts.39-41   
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Figure I-2. Conceptual representation of reactivity evaluation using computational 

methods. Modified with permission from Accounts of Chemical Research 2017, 50, 605-

608. Copyright 2017 American Chemical Society. 

 

 

There have long been attempts to develop methods to automatically locate TS 

structures to enable computer-aided catalysts design. One such approach is the use the 

MM-based methods instead of quantum mechanical methods. However, as discussed 

above, in traditional force fields bonding interactions are treated as harmonic oscillators 

and hence are not capable of describing saddle points on potential energy surfaces. To 

describe transition states, transition state force fields (TSFFs) were introduced, which 

represents TS structures as energy minima.  Such TSFFs allow fast conformational 

sampling of the region of the PES surrounding the TS.42 However, the application of 

TSFFs requires a specific set of force-field parameters for each new reaction. To rapidly 

generate accurate FF parameters, Wiest et al.38, 43 developed quantum-guided molecular 
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mechanics (Q2MM), which has been applied successfully to the virtual ligand screening 

of a range of transition metal catalysis.   

Other groups have developed automated QM-based methods for locating TS 

structures. 44-46 In Chapters II and III, we report our efforts to automate the QM-based 

geometry optimizations of TS structures needed to predict catalytic activities and 

selectivities. To that end, we have developed an open source computational toolkit 

(AARON: An Automated Reaction Optimizer for New catalysts) and an object-oriented 

toolkit to manipulate complex molecular structures.47 In Chapter II, we introduce 

AARON, including explanation of the overall workflow and several applications of 

AARON.  In Chapter III, we provide a more detailed example application of AARON to 

a Rh catalyzed asymmetric hydrogenation reaction.  

 

1.4 Non-covalent Interactions in Curved Polycyclic Aromatic Hydrocarbons and 

Derivatives 

Polycyclic aromatic hydrocarbons (PAHs) are abundant across the universe, 

being found in abundance in coal and tar deposits, in residues of incomplete combustion 

of organic materials, and in interstellar clouds. Typically, PAHs can be regarded as two-

dimensional open-end segments of pure carbon molecules. For example, the hexa-peri-

hexabenzocoronene (HBC), the so-called “super-benzene”, can be viewed as segment of 

graphene, while sumanene and corannulene are treated as pieces of fullerenes.  As 

segments of graphene or fullerenes, PAHs also show remarkable properties with 

potential applications in the field of organic electronics.48, 49 In particular, PAHs can be 
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fabricated into electrostatic and optoelectronic devices50 such as solar cells,51, 52 field-

effect transistors (FETs),53-55 and light-emitting diodes.56 Many factors can affect the 

performance of these devices, including the formation, transportation, and recombination 

of charges, etc. One of the most important factors in device performance is the mobility 

of charge carriers.  

Charge carrier mobility defines the moving speed of charge carrier in the 

material in a given direction. To be competitive with silicon materials, charge carrier 

mobilities for PAH-based materials must approach 1 cm2/Vs. Besides the intrinsic 

electronic properties of the materials, these charge carrier mobilities also depends 

strongly on the macroscopic order of the PAH molecule in the solid state.  

Many PAHs, especially small PAHs such as HBC and sumanene, organize in 

columnar structures through self-assembly in bulk materials, where molecules stack on 

top of another molecule into columns. Those columns can then arrange in a regular 

lattice,57 which have the ability to conduct charges along the stacks of aromatic cores 

thorough thermally activated hopping of charges. The higher the hopping rate is, the 

higher the charge carrier mobility. According to Marcus theory the rate of charge 

transfer between two identical molecules ω can be calculated as:58 

𝜔 =
𝐽2

ℏ
√

𝜋

𝜆𝑘𝐵𝑇
𝑒

−
𝜆

4𝑘𝐵𝑇 

where  𝜆 is the reorganization energy and 𝐽 is the transfer integral; ℏ, 𝑘𝐵, and T are 

Planck’s constant, Boltzmann’s constant, and the temperature. The reorganization 

energy 𝜆 is strongly dependent on the structure of the molecules and decreases as the 
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size of conjugated core of the molecule increases. The transfer integral J describes the 

probability of an electron hopping between two molecules, which is sensitive to the 

relative positions and orientations of neighboring molecules. Usually, J decays 

exponentially with increasing intermolecular distance. Hence, materials packing more 

compactly should exhibit higher charge mobility. J is also strongly related to the lateral 

orientation and configuration of neighboring molecules. Müllen and co-workers57 

computed the transfer integral J as a function of the azimuthal rotation angle for several 

symmetric PAH molecules (Figure I-3).  Figure I-3 shows that transfer integral J varies 

dramatically with the orientation angles, which will impact the charge carrier mobilities 

for the resulting materials. For most PAHs, except for the triphenylene, charge carrier 

mobility is maximized in the eclipsed configuration of the central core (0° or 60°). 

Furthermore, the value of J decreases sufficiently rapidly that an angle of only 10° from 

the maximum can half the value of J (leading to a 4-fold decrease in charge carrier 

mobility). To maximize J-values and thus improve the performance of PAH materials, it 

is indispensable to have the capability of tuning the intermolecular orientation of these 

stacked molecules; this requires a better understanding of the intermolecular interaction 

between PAH molecules. 
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Figure I-3. Absolute value of the transfer integral J as a function of the azimuthal 

rotation angle for several symmetric polyaromatic hydrocarbon cores. Modified with 

permission from Nature Materials 2009, 8, 421. Copyright 2009 Nature Publishing 

Group. 

 

Both experimental and computational studies have been reported regarding the 

intermolecular interactions and configurations of discotic PAH molecules.59-64 Many of 

these studies revealed that molecules inherently stack in a staggered arrangement, which 

is unfavorable for charge transport.  For example, Feng et al.59 synthesized triangle-
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shaped PAHs with alkyl chains, which 2D-WAXS showed to pack into helical columns 

with adjacent molecules exhibiting relative orientations differing by 30°. Wheeler60 

reported computed interaction potential energies as a function of orientation angle for a 

series of homodimers of substituted coronenes and HBC, finding that the homodimer of 

unsubstituted HBC favors the eclipsed configuration by up to 5-7 kcal/mol. However, 

this gap can be overcome through the judicious introduction of complementary pairs of 

substituents. Andrienko et al.63 performed MD simulation using the OPLS-AA force 

field for several alkyl-substituted HBC stacking structures. These simulations showed a 

transition of lateral twist angle toward eclipsed configuration and broader distributions 

upon converting from solid state to liquid-crystal state for all substituents.      

In contrast to planar PAH molecules, our understanding of the molecular packing 

of curved PAHs is limited. Curved PAHs are forced out of planarity either by embedded 

nonhexagonal rings65, 66 or by steric strain from atom crowding.67 The first studies of the 

assembly behavior of curved PAHs and attempts to fabricate devices based on curved 

PAHs started about ten years ago.49, 67-70 Similar to discotic molecules, curved PAH 

molecules often pack into columns that then align in a regular lattice.49, 67 However, the 

nonplanar structures of curved PAHs yield unique intermolecular contacts within such 

stacks that are unavailable to planar PAHs. Wu et al.71 reported columnar stacking of a 

bowl-shaped fragments of C70 in which the bowls slip from side-to-side due to the edge-

bowl interaction. Intriguingly, all of these bowls were found to align in one direction and 

thus create a polar crystal.  
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Various intermolecular contact models of PAHs in materials also give rise to the 

possibility of improved performance in optoelectronic devices. For example, because the 

π surfaces of contorted hexabenzocoronenes (c-HBC) in columnar stacks can approach 

each other closely, such curved systems may be able to achieve higher charge carrier 

mobilities than those of planar HBC.67 To design high performed electronic devices 

using curved PAHs, we must have a sound understanding of the intermolecular 

interactions exhibited by these molecules.  

Curved PAHs can be grouped into three categories: bowl-shaped molecules,72-75 

contorted molecules,67, 76 and twisted molecules.77, 78 In the present dissertation, we focus 

on the former two categories. In Chapter IV, we present our work on understanding local 

orientations within columnar stacks of a series of bowl-shaped molecules (sumanene, 

sumaneneone, and sumanenetrione). In Chapter V, we study the intermolecular 

interactions in homodimers of contorted molecules (i.e. saddle-shaped or doubly-

concave molecules). 
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CHAPTER II  

AARON: AN AUTOMATED REACTION OPTIMIZER FOR NEW CATALYSTS 

2.1 Background and Introduction 

Despite the widespread success of modern quantum chemistry in explaining the 

origin of activity and selectivity of homogeneous asymmetric catalytic reactions, the 

computational design of new catalyst is still far from routine.28, 35, 79-88  Instead, the vast 

majority of organic and organometallic catalysts are designed through experimental 

screening, with applications of quantum chemistry to such reactions done 

retrospectively. The lack of prospective applications of quantum chemistry to the 

catalyst design process stems in part from the considerable time and effort required to 

perform the 100s of transition state (TS) optimizations required to accurately predict the 

stereochemical outcome of these reactions. 

The selectivity of an asymmetric catalytic reaction stems from the difference in 

relative rates of formation of stereoisomeric products.  In simple systems under Curtin-

Hammett control, the difference in rates can be attributed to the difference in free energy 

between stereocontrolling TS barriers leading to the major and minor stereoisomeric 

products. However, in most realistic catalytic reactions there is a breadth of possible 

mechanistic pathways for a given transformation combined with the large 

conformational space stemming from the flexibility of the substrates and catalyst. 

Consequently, the number of accessible TS structures even for a single elementary step 

in a reaction is often huge.37, 89 For practical reasons, quantum mechanical predictions of 

stereoselectivities are often based on a single low-lying TS structure for the formation of 
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each stereoisomer.  However, there are a growing number of seemingly simple reactions 

for which multiple conformations or configurations of a given TS structure or even 

different elementary steps have been shown to impact the selectivity.37, 88 Consequently, 

making reliable stereochemical predictions requires an exhaustive search for low-lying 

TS structures to identify all thermodynamically accessible pathways. Manually 

performing all of these geometry optimizations for different substrates and catalysts 

combinations is tedious and time-consuming. As a result, the experimental synthesis and 

testing of new asymmetric catalysts remains the preferred approach to their 

development. 

Many methods have been developed to automatically locate TS structures 

connecting two energy minima. Most of these approaches can be summarized as first 

generating an approximate TS structure and then optimizing this structure to a saddle 

point on the potential energy surface. From an initial TS structure, optimization 

algorithms such as the Berny algorithm90, 91 and synchronous transit-guided quasi-

Newton (STQN) methods92 can often locate the exact TS structure. However, the 

success of these TS optimization methods relies heavily on the quality of the initial TS 

structure provided. Various approaches to generating approximate TS structures have 

been developed. Single-ended methods systematically adjust the structure starting from a 

single stable chemical structure, usually the reactant complex, until reaching the TS 

structure.93-100 Double-ended methods require structures of both reactant and product to 

construct a discretized reaction path connecting them, along which TS guesses are 

generated.101-105 In terms of rapidly localizing many TS structures, several automated TS 

file:///C:/Users/Yanfei-PC/Dropbox/AARON/Drafts/AARON_2018.5.23.docx%23_ENREF_15
file:///C:/Users/Yanfei-PC/Dropbox/AARON/Drafts/AARON_2018.5.23.docx%23_ENREF_15
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searching and reaction-path exploration approaches have been reported.44, 106-108 For 

instance, West et al.107, 108 have developed a high-throughput automated transition state 

searching method (AutoTST) for high-throughput kinetics. Jacobsen et al.44 recently 

published details on the AutoTS code implemented in Jaguar,109 which generates TS 

guesses either from a linearly interpolated path connecting reactant and product or by 

using geometric information from a library of previously computed TS structures. 

Despite the power of these methods, two largely unmet challenges encountered 

in studies of asymmetric catalysis are the need to sample configurations and 

conformations.  For example, for transition-metal catalyzed reactions there are often 

multiple configurations of the ligands and substrates around the metal center that lead to 

thermodynamically accessible TS structures.  The multiplicity of relative substrate-

catalyst orientations can be even more daunting in organocatalytic systems, particularly 

those involving ion-pairing.85, 110 At the same time, for flexible substrates or catalysts, as 

well as those with rotatable substituents (OMe, i-Pr, etc.), there can be an enormous 

number of thermodynamically accessible conformations that can cause problems for 

many of the above-mentioned automated approaches. 

There have been many efforts to tackle the problem of molecular conformations, 

but few of these have focused on sampling transition state conformations; even fewer are 

applicable to transition-metal catalyzed reactions. Moreover, many conventional 

conformational searching approaches rely on classical molecular mechanics (MM) 

methods, which can be thwarted by the sometimes drastic differences between the QM 

and MM potential energy surfaces.  Consequently, searching for TS conformers is often 
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performed by a filtration strategy ascending a hierarchy of levels of theories.85, 87, 111, 112 

For example, DiRocco et al.87 developed a workflow that first samples conformations 

using MM methods, filters and clusters low-lying conformers, then optimizes these using 

DFT to get a final set of low-lying conformers. Seguin et al.85 employed a similar 

hierarchical approach combined with extensive manual searching of low-lying 

conformations. Because of the absence of appropriate MM parameters for transition 

metals, semi-empirical methods are typically employed in such cases. Paton et al.112 

demonstrated the utility of sampling conformations using a Monte Carlo Multiple 

Minimum (MCMM) algorithm using the semi-empirical method PM6-DH2 following by 

optimizations of low-energy conformers using DFT.  With all of these approaches, one 

needs to be able to consistently optimize generated conformations to the nearest TS 

structure, which can pose technical challenges. 

Herein, we describe an open source computational toolkit (AARON: An 

Automated Reaction Optimizer for New catalysts)113 that automatically locates multiple 

conformations and configurations of TS structures for homogeneous catalytic reactions 

based on user-defined TS templates. AARON does not implement new electronic 

structure methods or geometry optimization approaches; instead, it automates quantum 

chemistry application workflows using existing electronic structure packages, thereby 

alleviating the need for users to construct input files, analyze output files, etc. for the 

100s of TS optimizations needed to reliably predict the stereochemical outcome of 

catalytic reactions. The result is accelerated QM-based predictions of selectivities.  

AARON is written using a collection of object-oriented Perl modules called AaronTools, 
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which provide functionality for building, manipulating, and comparing molecular 

structures, constructing input files, parsing output files, analyzing data, and submitting 

and monitoring jobs using queuing softwares commonly found on high-performance 

computer (HPC) clusters. Below, we first summarize the key features of AaronTools and 

AARON and then present representative applications of AARON to organocatalytic and 

transition-metal catalyzed reactions, with a focus on stereoselective transformations. 

 

2.2 AaronTools  

AaronTools is an open-source collection of object-oriented Perl modules 

designed to facilitate the construction and analysis of complex molecular structures and 

the automation of quantum chemistry workflows, with a particular focus on small 

molecule (homogeneous) catalysts. Similar open-source computational toolkits have 

been developed by several groups.114, 115,116 For instance, Kulik and coworkers115 

recently introduced  MolSimplify, which can rapidly generate reliable structures for 

transition metal complexes and compute first-principles-based properties. Central to 

AaronTools is the Geometry class, which provides methods for probing and 

manipulating molecular structures (distances, dihedral angles, etc.) and also serves as a 

superclass to derive other powerful subclasses. Using the Geometry class along with 

these subclasses, users can create complex molecular and supramolecular structures and 

prepare input files for electronic structure packages at various level of theory.117 

Representative molecular structures created using these classes are depicted in Figure 1.  
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Figure II-1. a) Subclasses derived from the Geometry class; b) Initial solid-state structure 

of columnar stacks of sumanenetrione;118 c) solid-state structure of aligned [8,8]-carbon 

nanotubes with included stacked benzenes; d) Transition state structure for a Rh-

catalyzed asymmetric hydrogenation reaction.43 

 

 

We will focus on the Catalysis and Ligand classes below, providing a glimpse 

of how these tools can be used to construct and manipulate TS structures for asymmetric 

reactions. The Catalysis class contains attributes and methods for either transition state 

or intermediate structures in catalytic reactions. A Catalysis object can be initiated 

from a standard XYZ file or Gaussian09 log file.  For instance, 

$cata = new AaronTools::Catalysis( name => 'ts1' ); 

creates a catalysis object based on the geometry read from ts1.xyz, which is one of the 

TS structures reported by Wiest et al.43 for a Rh-catalyzed hydrogenation of enamides 

using the achiral ligand Z-dimethylphosphinoethane (ZDMP, see Figure 2a). 

Components of the catalysis system (substrates, ligand, and active center—the transition 

metal in this case) are automatically detected and stored as readily-accessible attributes 

of this catalysis object.  
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One can similarly create new ligand objects using the Ligand class.  AaronTools 

includes an easily extensible library of common ligands or one can load custom ligands 

from a user-supplied file. For example 

 $ligand = new AaronTools::Ligand(name => 'RR-Me-BPE') 

creates a ligand object containing the chiral ligand (R,R)-

bis(dimethylphospholano)ethane [(R,R)-Me-BPE]. The backbone and substituents on the 

ligand are automatically detected and saved as attributes of the object, which facilitates 

further manipulation of the ligand. Having created this ligand object, one can use 

map_ligand to replace the existing ligand, ZDMP, in ts1 with (R,R)-Me-BPE: 

$cata->map_ligand($ligand); 

The resulting structure can be further modified by replacing substituents on the ligand 

and substrate: 

$cata->substitute('ligand', 'Me'=>'Ph'); 

$cata->substitute('substrate', 5=>'COOCH3', 7=>'Me', 8=>'Me'); 

 

The first substitute call converts (R,R)-Me-BPE into (R,R)-Ph-BPE by replacing all 

four methyl groups with phenyl rings, automatically rotating the added substituents to 

minimize the Lennard-Jones (LJ) energy and then removing any remaining steric clashes 

by bending and rotating the substituents. The second call of substitute modifies the 

substrate, replacing atoms 7 and 8 with methyl groups and the CN group starting with 

atom 5 with COOCH3.  These processes are depicted in Figure 2b, and yield a good 

guess for the corresponding transitions state. 

Using these and related tools, one can build initial TS structures for virtual 

libraries of potential catalysts and substrates. For example, initial TS structures for this 
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same Rh-catalyzed hydrogenation reaction can be constructed with the following four 

lines of Perl for the virtual library of 441 combinations of ligands and substrates 

depicted in Figure 2c: 

$lig_subs = [qw(Me Ph tBu iPr CF3 F)]; 

$sub_subs = [qw(Me Et Ph)]; 

@cata = $cata->screen_subs('ligand', '24,27'=>$lig_subs, 

'25,26'=>$lig_subs);   

@cata = map {$_->screen_subs(‘substrate’, 7=>$sub_subs, 

8=>$sub_subs)}  @cata; 

 

In particular, atoms (24, 27) and (25, 26) of the (R,R)-Me-BPE ligand are systematically 

replaced with all combinations of (H, Me, Ph, t-Bu, i-Pr, CF3, and F), while R1 and R2 of 

the substrate are replaced with (Me, Et, and Ph).  Similar substitutions can be applied to 

any molecular structure, rapidly generating diverse libraries of molecular geometries.  

For instance, in addition to building libraries of TS structures, these tools can be used to 

generate structures for the computation of QM-derived molecular descriptors for use in 

informatics-driven applications. 
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Figure II-2. Construction of initial TS structures for the Rh-catalyzed hydrogenation of 

enamides using C2-symmetric phosphoric ligands, starting from a reported TS structure 

from Wiest et al.43  a) Overall reaction and key ligands; b) replacement of ZDMP with 

(R,R)-Me-BPE via map_ligand and addition of substituents on both the ligand and substrate 

via substitute. c) Generation of a library of 441 initial TS structures for combinations of 49 

ligands and nine substrates. 

 

Finally, we note that these and many of the other components of AaronTools are 

available as stand-alone command-line scripts. This allows users with no knowledge of 

Perl to utilize these tools and to incorporate AaronTools functionality into non-Perl-

based scripts.  For instance, the following system call will replace the ZDMP ligand in 

ts1.xyz with (R,R)-Me-BPE and print the resulting coordinates to STDOUT: 

map_ligand ts1.xyz –l RR-Me-BPE 



 

31 

 

  

2.3 AARON     

Using AaronTools, we have developed a computational toolkit (AARON) 

capable of automatically and simultaneously screening potential catalysts and substrates 

for both organocatalytic and transition metal catalyzed reactions based on a user-

supplied library of TS and intermediates structures. Using AARON, users can rapidly 

compute the 100s of TS and intermediate structures required to reliably predict the 

stereochemical outcome of complex asymmetric catalytic reactions with minimal human 

intervention, opening the door for the computational screening of potential new 

catalysts. Briefly, given a previously computed set of TS and intermediate structures for 

a given reaction, AARON computes analogous structures for related catalysts and 

substrates while also systematically searching for conformations of rotatable 

substituents. 

 

2.3.1 Overall Program Flow 

The overall organization of AARON is shown in Figure 3. It starts by gathering 

information from a simple and flexible text-based input file. This input includes 

information about the location of the TS template library and reaction conditions 

(temperature, solvent, etc.) as well as keywords specifying the level of theory. Preset 

levels of theory can be defined either system-wide or by each user, allowing for very 

simple input files for AARON for routinely-used levels of theory. In the input file, users 

specify catalysts to be screened by indicating either substitutions on the ligand found in 
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the TS template library or new ligands. Additional substrates are specified via 

substitutions of the substrates found in the template library.  

AARON constructs each possible catalyst/substrate combination and locates all TS 

structures for these combinations, following the same workflow for each combination. 

Briefly, the procedure consists of: 

1. building the initial TS structure for new ligands and substrates based on the 

structures in the template library;  

2. performing a series of constrained and unconstrained geometry optimizations, 

followed by harmonic vibrational frequencies and potential higher-level single 

point energies; and  

3. analyzing the resulting structures.  

4. There are typically many TS structures for each substrate/catalyst combination, 

and each step (1-5) for each catalyst/substrate combination is run as separate job 

in a typical HPC environment. This results in high throughput, particularly for 

clusters with a large number of individual nodes.  

To maximize efficiency when varying both catalyst and substrates, AARON 

performs a hierarchical TS search in which TS structures are first located for any new 

ligands acting on the original substrates found in the template library (the left part in 

Figure3). Once these TS structures have been located and vetted, they are used as 

templates for any new substrates (the right part in Figure 3).  If neither new ligands nor 

substrates are requested, AARON performs a conformational search of rotatable 

substituents based on the structures in the TS template library.  
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Figure II-3. Overall workflow of AARON. 

 

 

After AARON builds initial TS structures, it performs a series of constrained and 

unconstrained optimizations (Steps 1-3) starting from the initial structure built by 

AaronTools. In Step 1, any new component of the structure (e.g. a new ligand or 

substituent) is optimized at a user-defined low level of theory (the default is PM6). This 
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refines the initial TS structure and removes steric clashes, reducing the number of 

optimization steps in downstream optimizations at higher levels of theory. In Step 2, an 

energy minimization is performed at a user-defined DFT level of theory with constraints 

added to all forming/breaking bonds to yield a structure that should closely resemble the 

real transition state. In Step 3, AARON performs a full TS optimization using the Berny 

algorithm.90, 91 At each point in this process there are many possible issues that can arise, 

which are caught by the TS vetting process (see Section 5.3.3 below).  After a possible 

TS structure has been located, harmonic vibrational frequencies are computed to confirm 

the nature of the stationary point and to obtain thermochemical data. If requested, single 

point energies are also computed at a higher level of theory.   

AARON employs a flexible and modular workflow and can be readily ported to 

different HPC clusters with popular queueing systems.  Moreover, AARON can be 

stopped and restarted at any point. All input and output files for the electronic structure 

computations are stored and organized under an easily-navigated directory tree that 

allows users to monitor the workflow and fix any problematic structures encountered 

and facilitates data organization.  A utility is included that automatically constructs 

tables of absolute energies, enthalpies, and free energies as well as all optimized 

structures for inclusion in Supporting Information, and capabilities are currently in 

development that will populate databases with computed TS properties for informatics 

applications. 
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2.3.2 Construction of Initial Transition State Structures 

Central to locating TS structures is the generation of an initial TS guess for the 

corresponding catalyst and substrate. AARON uses geometries from previously located 

TS structures (the TS template library) as templates for new catalysts and substrates. 

This approach is also one of the core strategies used to generate initial TS structures in 

AutoTS.44 In contrast to AutoTS, however, which automatically detects the templating 

TS using SMILES strings, AARON requires the user to specify the reaction template. 

While less general, such an approach allows AARON to handle complex catalytic 

reactions that are still out of reach of more fully automated approaches. The TS template 

library is stored as standard XYZ files in a plain-file database. In addition to a system-

wide TS template library, users can construct their own TS template libraries.  

AARON will compute analogous structures for new catalysts/substrates for all 

structures found in the specified library, automatically searching over conformations of 

rotatable substituents.  Thus, AARON partially addresses the configuration problem by 

having the user enumerate the TS configurational space for a simplified ligand/substrate 

manually and include these configurations in the TS template library. Consequently, the 

library should contain all reasonable configurations and relative substrate-catalyst 

orientations that can lead to thermodynamically accessible TS structures for any of the 

catalysts and substrates to be screened.  This can consist of TS structures for multiple 

elementary steps as well as the corresponding intermediates—whatever is needed to 

predict the desired selectivity.119 Starting from these TS structures corresponding to 

different conformations and/or configurations, AARON detects substituents and 
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executes a hierarchical search of low-lying conformers (see Section 5.3.4 below for 

details). 

An example of a TS template library can be taken from work from Liu et al.,120 

who conducted a thorough study of the regio- and stereoselectivity of Rh-catalyzed 

carboacylations of benzocyclobuteneones.  Liu et al.120 considered six configurations of 

the stereocontrolling olefin migratory insertion step for this reaction (TS1-6 in Figure II-

4), optimizing these structures for the achiral ligand dppb to identify the most favorable 

configuration (TS1). Then, the diastereomeric forms of TS1 leading to the two possible 

stereoisomeric products were computed to understand the stereoselectivity of the chiral 

ligand SEGPHOS.  However, there is the possibility that some of the other TS structures 

in Scheme 1 could impact the selectivity for the SEGPHOS-catalyzed process even 

though they were relatively high-lying for dppb.  Using the dppb-based structures 

already computed by Liu et al.120 as a TS template library, AARON can readily compute 

all structures leading to both the major and minor stereoisomer for the chiral ligand 

SEGPHOS.  

Once the TS template library has been constructed, AARON can be used to make 

predictions for different ligands or catalysts (for simplicity, we will primarily refer to 

ligands below). AARON maps the donor atoms of any new ligand to the corresponding 

atoms of the ligand found in the TS template library. The only information required are 

the identities of the donor atoms for the new ligand (i.e. those that either bind the 

transition metal or, for organocatalysts, engage directly with the substrates). These donor 

atoms are mapped onto those of the templating TS to mimic the template structure as 
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closely as possible.  The precise mapping strategy depends on the nature of the 

ligand/catalyst, which is detected automatically.  AARON can map a broad range of 

ligands/catalysts for both organocatalyzed reactions and transition metal catalysts, 

including multidentate, bidentate, and monodentate ligands (see Figure 4) as well as 

‘multi-block’ systems with donor atoms located on different catalyst components 

connected via flexible covalent linkers (see Figure 5). 

 

Figure II-4. Example of the multiple configurations and substrate-catalyst orientations 

that must be included in a TS template library for a Rh-catalyzed carboacylation reaction 

studied by Liu et al.120 
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Figure II-5. Examples of replacing bidendate and monodentate ligands: (top) replacing 

dppb with SEGPHOS in the TS structure computed by Liu et al.120 for a Rh-catalyzed 

carboacylation reaction; (bottom) replacing a BINOL-based phosphoramidite ligand 

with both a SPINOL-based analog (B) and an NHC (C) for the Cu-catalyzed conjugate 

addition studied by Paton et al. 35 

 

For multidentate ligands, AARON maps new ligands by minimizing the root 

mean-squared deviation (RMSD) between all donor atoms of the new and old ligands. 

For bidentate ligands, the two donor atoms alone do not uniquely determine the position 

of ligand. Therefore, after positioning the ligand to minimize the RMSD for the two 

donor atoms, the ligand is rotated around the axis defined by these donor atoms to 

minimize the LJ energy of the system (see Figure 4a). For example, Figure 4a shows the 
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replacement of the bidentate ligand dppb with SEGPHOS in TS1 from Scheme 1.120 For 

monobidentate ligands, the ligand can fall into several classes depending on the presence 

of cyclic substructures (see Figure 4b). AARON can automatically map among these 

different classes of cyclic and acyclic monodentate ligands. For example, Figure 4b 

shows the replacement of the BINOL-based phosphoramidite ligand A in a TS structure 

for a Cu-catalyzed conjugate addition computed by Paton, et al.35 with both a SPINOL-

based analog (B) and an NHC (C). 

 

Figure II-6. a) Example of a ‘multi-block’ catalysts in which multiple atoms of the 

catalyst connected by flexible linkers bind the substrate. For such systems, AARON 

automatically detects both central and remote donor atom groups as well as flexible 

covalent bonds linking these groups.  Substituents are also detected automatically. b) 

Mapping of a squaramide-based catalyst onto a TS structure for a thiourea-catalyzed 

addition of nitroethene to a β-napthol. 

 

More general binding motifs (‘multi-block binding’) occur for many 

organocatalyzed reactions, in which internal torsions can change the relative position of 

catalyst atoms that bind the substrate (still called ‘donor atoms’ here for simplicity). 
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AARON automatically divides these donor atoms into those on the core of the catalyst 

(central donors) and those connected to peripheral groups (remote donors). The central 

donors are mapped using the above strategy for monodentate, bidentate, etc. ligands 

depending on the number of donor atoms. Rotatable bonds connecting the central donors 

and remote donors are detected and the dihedral angles around these bonds sampled to 

best overlap the donor vector between remote donors of new catalyst and those found in 

the TS template library while also adjusting the position of the central component of the 

catalyst (see Figure 5a). For example, for the asymmetric dearomatization reaction 

catalyzed by a bifunctional hydrogen bonding catalyst presented in Figure 5b,121 a 

thiourea-based organocatalyst is replaced by a squaramide-derived catalyst with a 

distinct backbone and sterically-congested tertiary amine. 

 

2.3.3 Conformational Searches 

While the configurational space must be manually enumerated in the 

construction of the TS template library, AARON can automatically search portions of 

the conformational space spanned by rotatable substituents. Some conformational 

changes must still be manually added to the TS template library, including macrocycle 

conformations and ring-flips. This represents a considerable time-savings for the user, as 

searching these conformations manually is tedious. AARON utilizes a rule-based 

hierarchical conformational search based on knowledge of preferred torsional angles for 

each substituent type to prevent the combinatorial explosion of the conformational space 

that would result from a more brute force approach.122 The rules are: 1) conformers are 
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sampled only for substituents detected by AARON or specified by the user as new 

substituents; 2) torsional angles for each substituent are determined based on its 

symmetry; 3) conformations are searched hierarchically such that conformational 

searching for later substituents begin only after completion of the conformer search for 

earlier substituents. In contrast to many of the tiered conformational search algorithms85, 

87, 111, 112 that rely on initial sampling with MM-potentials or semi-empirical methods, 

AARON searches conformations directly at the chosen DFT level. This circumvents 

issues arising from differences between MM and QM potentials. The first rule accounts 

for the fact that many conformational changes are inconsistent with a given TS structure. 

For instance, potentially flexible linkers connecting donor atoms are recognized as the 

backbone of the ligand and are automatically rotated to position the donor atoms to best 

bind the metal center (in transition-metal catalysis) or substrates (in organocatalysis). 

The second rule relies on the fact that generated rotamers provide initial TS structures 

that will then be optimized. As such, there is little need for dense conformational 

sampling since most of these TS guesses will converge to identical structures. By 

sampling conformations according to the symmetry of substituents, we limit the 

conformational space to be explored. Despite this, for catalysts or substrates with even a 

modest number of rotatable groups (> 5) there can be an enormous number of 

combinations of conformers to be sampled. This necessitates the hierarchical searching 

method employed. In this hierarchical searching method (see Figure 6), AARON first 

searches conformers for one substituent. Starting from all unique conformers identified 

by rotating this substituent, AARON generates a new generation of conformers by 
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rotating the next substituent, and so on. The result is the hierarchy of conformers 

depicted in Figure 6.        

 

 

 Figure II-7. Example of the hierarchical searching of a fictitious system with three 

substituents (Et, Ph, and iPr). 

 

 

Even though these rules lead to sampled structures that are sparsely distributed in 

the conformational space, many initial TS structures converge to the same conformers. 

To account for this, AARON monitors all conformers during the geometry 

optimizations.  If a duplicate conformation is identified, the corresponding job is killed 

and the repeated conformer removed. As a result, children conformers of the repeated 

conformer are never sampled. While this hierarchical check-and-remove mechanism is 

intended to accelerate the conformational search, it may miss key conformations, 

especially in cases in which substituents engage in any sort of ‘geared’ conformational 

change (e.g. multiple t-Bu groups on nearby carbons). For these cases, a full, brute-force 

conformer search can be performed.     
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2.3.4 Thermochemistry  

AARON provides predicted stereoselectivities based on computed energies, 

enthalpies, and free energies. The latter are computed using both the standard rigid-

rotor/harmonic-oscillator approximation (RRHO) and the quasi-RRHO approximation of 

Grimme.123 These values can be computed based on the level of theory used for the 

geometry optimizations and vibrational frequencies or based on higher-level single point 

energies.  In the latter case, the entropic contributions are computed using the vibrational 

frequencies from the lower level of theory.  

After the conformational search, there are typically many unique conformers 

corresponding to each TS structure from the TS template library. For each 

thermodynamic quantity (energy, enthalpy, free energy), we consider a Boltzmann 

weighting over all unique conformers to compute the effective energy for each TS.  For 

instance, 

𝐺𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = −𝑅𝑇𝑙𝑛 ( ∑ 𝑒−
𝐺𝑖
𝑅𝑇

𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑒𝑟𝑠

𝑖

) 

The final predicted stereoselectivities are then based on a sum over the effective 

energies, enthalpies, and free energies for all TS structures leading to formation of 

different stereoisomers. For example, for an enantioselective reaction the ee is computed 

in terms of effective free energies as  

𝑒𝑒(%) =
∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑅𝑖)

𝑅𝑇𝑇𝑆
𝑖 − ∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑆𝑖)

𝑅𝑇𝑇𝑆
𝑖

∑ 𝑒
−𝛥𝐺𝑒𝑓𝑓(𝑅𝑖)

𝑅𝑇𝑇𝑆
𝑖 + ∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑆𝑖)

𝑅𝑇𝑇𝑆
𝑖
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2.3.5 Step Vetting and Error Checking 

Since transition state optimizations are prone to failure, AARON checks all 

running jobs periodically to ensure they are converging to the correct TS structure (“Step 

vetting" in Figure 3). If a job aborts for any reason or takes an incorrect geometry 

optimization step (e.g. breaks or forms a bond not involved in the targeted elementary 

step), AARON will attempt to either fix the structure or add additional keywords to the 

input file to fix the problem (Figure 7). AARON compares the distances for any 

forming/breaking bonds in the transition state structure with those of the templating TS. 

If the distance between reacting atoms is too large, AARON will shorten the this 

coordinate and restart from Step 2, and vice versa. AARON also monitors the 

connectivity of the system during all optimizations. If any unexpected bond breaking or 

forming is identified, AARON stops the current optimization, fixes the geometry, and 

restarts from Step 2 with additional constraints added for this problematic bond 

coordinate.  Upon passing TS vetting, AARON checks the output file for any errors and 

responds accordingly based on a set of general rules derived from our experience 

locating transition states. This includes errors arising from SCF convergence failure, etc. 

AARON tracks the number of attempts for each step, and adds additional keywords (for 

example, to shorten the maximum step size or compute force constants more frequently) 

to try to deal with particularly problematic optimizations.    

 



 

45 

 

 

Figure II-8. Procedure for ‘Step Vetting’, in which AARON constantly monitors all 

jobs to ensure that correct TS structures are located.  For jobs that die with no 

recognizable error, the last geometry is used and the job restarted. 

 

2.3.6 Locating Single TS Structures 

AARON also includes a series of command-line utilities that complement the 

main AARON workflow. Here, we highlight TS_search.pl, which facilitates the 

location of a single TS structure. This is useful, for example, when initially computing 

structures to construct a TS template library, but can also be used in any context in 

which one needs to locate a TS structure. TS_search.pl follows a simplified version of 

the AARON workflow presented above, but only searches a single TS structure rather 

than searching in parallel for all transition states over multiple ligands and substrates.  

The most notable difference is that TS_search.pl executes the entire workflow within a 

single HPC job. Starting from even a relatively poor initial TS guess, such as those 
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quickly built using a graphical molecular builder, TS_search.pl reliably obtains an 

optimized TS structure at a chosen level of theory.  For instance, Houk et al.124 recently 

studied the Rh-catalyzed asymmetric alkynation of trihalomethylketones at the B3LYP-

D3/6-31G(d)/LANL2DZ level of theory.  Given the rather crude starting guess for the 

key step in this reaction given in Figure 8, TS_search.pl yields the correct TS structure 

without any user intervention.  

 

Figure II-9. Structure of an initial TS guess (left) and optimized TS structure provided 

by the AARON utility TS_search.pl (right) for the Rh-catalyzed alkynylation of 

trihalomethylketones from Houk et al.124 

 

2.4 Representative Applications 

Below, we demonstrate the power of AARON through applications to various 

reaction types. In designing of AARON, we strove to generalize the workflow to be as 

general and flexible as possible, and the following examples show that AARON can be 

applied to a broad range of reaction types. 
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2.4.1 Pd-Catalyzed Heck Allenylation 

Sigman and co-workers125-129 have developed a series of Pd-catalyzed redox-

relay Heck reactions. Wiest, Sigman, and co-workers130, 131 have shown computationally 

that the migratory insertion step in these reactions is stereocontrolling. Most recently, 

Sigman et al.132 studied the Heck relay reactions of substrates 2a and 2aa using the 

chiral ligand 2-t-Bu-PyrOx (L1 in Figure 9a) computationally at the M06/6-

31+G(d)/LANDL2DZ level of theory.  They performed a systematic search of the four 

possible orientations of the substrates relative to the catalyst (TS1 – TS4 in Figure 9b) 

for formation of the two enantiomers of the product. For some of these, they also 

considered multiple conformations of the hydroxymethyl group. In total, thirteen low-

lying TS structures were reported for the reaction of 2a and nine for 2aa.  The 

experimental selectivity, which is significantly greater for substrate 2a than for 2aa, was 

explained in terms of the difference in free energy between the lowest-lying TS 

structures leading to the two different enantiomeric products. 

This reaction provides an ideal system to demonstrate the ability of AARON to 

locate TS structures covering the full conformational space of the catalyst and substrates.  

Starting from the eight unique TS structures (ignoring the conformations of the CH2OH 

group) reported by Sigman et al.132 we constructed a TS template library by removing 

the CF3 and t-Bu substituents from the chiral ligand as well as the CH2OH and CH3 

substituents form the substrate.  The cyclohexanone of substrate 1 can potentially have 

two chair-like conformations, which doubles the number of structures that must be 
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included in the TS template library to 16.  We used AARON at the same level of theory 

employed by Sigman et al.132 to locate all low-lying TS structures for substrates 2a and 

2aa by making substitutions on the templates from this TS template library and 

systematically searching for conformations of these substituents.  Systematically 

considering all orientations of the substituents combined with the two chair-like 

conformations of the cyclohexanone leads to 192 possible TS structures for each 

substrate (2a and 2aa). Without any user intervention, AARON located 90 TS structures 

for 2a and 94 for 2aa. The ‘missing’ TS structures are primarily due to initial 

conformations that converged to lower-lying conformations during the optimizations.  

Relative free energies for the computed TS structures for substrates 2a and 2aa 

are plotted in Figure 9c. Overall, we find that there is a dense manifold of 

thermodynamically accessible TS structures lying within 2.6 kcal/mol of the global 

minimum energy TS structure (white and light-gray shaded regions in Figure 9c). For 

example, for substrate 2a, 21 of the 90 computed TS structures are in this range, while 

for 2aa this number increases to 49 of 94. In addition to showcasing the ubiquity of low-

lying TS structures for this seemingly simple transformation, the data in Figure 9c 

indicates that there is not a single key low-lying (R) and (S) transition state structure for 

either substrate.  Instead, multiple TS structures arising from different TS configurations 

impact the stereoselectivity. Moreover, the configuration giving rise to the lowest-lying 

TS structure for each stereoisomer differs for the two substrates.  These results highlight 

the dangers of manually searching for stereodetermining transition states using 

conventional tools, since one can easily omit key low-lying structures.  The lowest-lying 
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TS for the formation of each stereoisomer can arise from qualitatively different 

configurations for different substrates, and assumptions regarding the ‘preferred’ 

configuration based on results for one substrate are often not transferrable to other, 

seemingly similar substrates.  

 

 

Figure II-10. a) Pd-catalyzed redox-relay Heck reaction from Sigman and co-workers132 

using the chiral ligand 2-t-BuPyrOx. b) Eight TS structure that formed the TS template 

library for the application of AARON. c) and d) Relative free energies for TS structures 

located by AARON based on the eight TS structures in the TS template library.  The 

gray shaded regions denote energy ranges of TS structures expected to have Boltzmann 

populations of <1% (dark gray) and <10% (light gray). 
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A key benefit provided by AARON is that studying two substrates requires no 

more user effort than studying one, in contrast to the manual application of conventional 

computational tools. Indeed, with little effort one can screen a given catalyst across 100s 

of substrates by simply specifying the substitutions that must be performed to construct 

this substrate library. In the following examples, we will discuss the use of AARON to 

screen multiple catalysts for a given reaction. 

 

2.4.2 Rh-Catalyzed Hydrogenation of Enamides 

Transition-metal-catalyzed asymmetric hydrogenations represent a cornerstone 

of reactions for building a wide range of optically active compounds,10 and chiral 

phosphorus ligands have proved highly effective catalyzing this class of reactions. 

However, detailed mechanism for this reaction is still unsettled.  AARON was 

previously used to probe the mechanism as well as explain the stereoselectivities of the 

Rh-catalyzed asymmetric hydrogenation of enamides shown in Figure 10.88  Previous 

computational studies133-136 and our preliminary transition state searches revealed two 

key steps for this reaction in which hydrides are transfered from the Rh to the alkene 

group of the substrate (Steps 1 and 2). Two distinct mechanisms are possible for this 

reaction depending on whether the α- or β- carbon is hydrogenated first. In each step for 

each mechanism, the substrate can adopt different configurations with respect to the Rh 

atom, giving rise to at least eight potential TS structures leading to each of two 
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enantiomeric products. This, combined with the existence of rotatable OMe groups on 

both the substrate and some of the ligands, leads to hundreds of possible TS structures 

for each ligand.  

 

 

Figure II-11. Relative free energies for TS structures for the asymmetric hydrogenation 

of enamides for the first and second hydride transfer steps (Steps 1 and 2) following two 

possible mechanisms (hydride transfer to Cα first or Cβ first) for formation of the major 

(R, left) and minor (S, right) stereoisomeric products. Colored lines indicate pathways 

between the TS structures for two steps, while the horizontal gray line denotes the 

energy of the rate-limiting TS structure leading to formation of the minor stereoisomer.  

Data from Ref. 88. 

 

Using AARON, we screened six ligands and located a total of ~250 TS structures 

spanning the full configurational and conformational spaces. Unlike the previous 

example discussed, in which there was a single stereodetermining step but multiple 
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configurations and conformations, this reaction is more complex in that there are 

multiple mechanisms and stereodetermining steps combined with different 

configurations and conformations. This leads to numerous reaction paths. Figure 10 

shows the relative free energies of TS structures for L2 for the two hydrogenation steps 

and the two possible mechanisms. There are paths connecting many of these TS 

structures for the two steps, leading to a complex web of possible reaction paths. For 

each reaction paths, the step with higher free energy is the rate-limiting step. As seen in 

Figure 10, for some pathways the first hydride transfer is rate-limiting whereas the 

second step is rate-limiting for others. Furthermore, there are a large number of 

thermodynamically accessible pathways and both stereoisomers can form via multiple 

mechanisms. Thus, As seen for the previous example, there is not a single step or even 

mechanism that completely characterizes this reaction, and reliable predictions of 

stereoselectivity require a Boltzmann weighting over all accessible pathways.  Aaron 

performs this weighting automatically, and the predicted selectivities agree very well 

with experimental data.137 Moreover, the data provided by AARON showed that the 

mechanism corresponding to the lowest-energy path for this reaction varies with the 

structure of the ligand, highlighting the importance of considering all viable reaction 

paths.  

 

2.4.3 Lewis-Base Promoted Propargylation of Aromatic Aldehydes 

Finally, we note that AARON has been successfully applied to organocatalyzed 

reactions, including bidentate Lewis-base catalyzed allylations and propargylations of 
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aromatic aldehydes.138, 139 The stereocontrolling step in these reactions involves a 

hexacoordinate silicon, and previous computational studies established that there are five 

distinct ways to arrange the six ligands bound to Si.140 Each of these five configurations 

results in a pair of TS structure leading to each of the possible enantiomeric alcohols, 

leading to ten potential TS structures for C2 symmetric catalysts and 20 for non-C2-

symmetric ones.37 Lu and co-workers37, 141 showed accurate stereochemical predictions 

for these reactions requires the computation of all ten or 20 possible structures, 

precluding the study of more than a few examples of these reactions if done manually.  

Starting from a TS template library taken from Lu et al.,37, 141 Rooks et al.138 used 

AARON to screen a set of 18 bipyridine N,N′-dioxide derived catalysts for the allylation 

of benzaldehyde for which experimental stereoselectivities were available. The 

computed stereoselectivities were in good agreement with experiment, with predictions 

for 16 out of 18 catalysts within 20% of the experimental data.  AARON was also used 

to screen these same catalysts for the asymmetric propargylation of benzaldehyde, 

revealing several catalysts predicted to be moderately stereoselective.  More recently, 

Doney et al.139 used AARON to screen a library of 60 potential catalysts built on six 

bipyridine N,N′-dioxide-derived scaffolds for this same propargylation reaction. 

Predicted ee’s ranged from 45% (S) to 99% (R), including 12 catalysts predicted to 

exhibit stereoselectivities exceeding 95%. The large number of TSs for those catalysts 

also revealed broad trends in the origin of stereoselectivity in this reaction that would 

have been difficult to unravel by studying a limited number of instances. Finally based 
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on these data, Doney et al.139 proposed a novel catalyst predicted to provide very high 

stereoselectivities by preferentially stabilizing a particular TS structure.  

2.5 Summary and Concluding Remarks 

The ability to reliably and rapidly predict the stereoselectivities of complex 

catalytic reactions across different chiral ligands and substrates is a prerequisite for 

effective computational catalyst design. We have described an open-source 

computational toolkit (AARON) that can 1) automatically generate initial TS structures 

for new ligands and substrates based on a library of TS templates, 2) identify TS 

structures with precise error control and geometry vetting, 3) search conformers in a 

parallel and hierarchical way, and 4) predict selectivities through a Boltzmann weighting 

of multiple TSs or reaction paths. This is accomplished with the aid of a collection of 

object-oriented Perl modules (AaronTools) designed to facilitate applications of 

quantum chemistry to complex molecules.  Additional features of AARON include the 

ability to readily screen combinations of ligands and substrates from a simple input file 

and a number of utilities to facilitate the organizing, storage, and publication of data 

generated by AARON and to locate individual TS structures. 

We have demonstrated that AARON can be applied to both organocatalysis and 

transition metal catalysis, locating far more low-lying TS structures than can reasonably 

be found manually. The importance of considering multiple configurations and 

conformations across multiple elementary steps to reliably predict stereoselectivities was 

highlighted for several asymmetric reactions. The sheer number of TS structures that 
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must be computed in such cases is best handled with automated tools such as AARON, 

and the manual application of quantum chemical tools often neglect such subtleties.  

There is ample room for improvement of AARON, which is still in early stages 

of development. The most glaring need is an automated approach for constructing the TS 

template libraries on which AARON relies.142 There have been a number of heuristic-

guided configuration searching methods developed that are applicable to catalytic 

reactions,95, 143-148  and methods based on bond-connectivity have been used to explore 

multiple reaction pathways for transition metal catalysis system.144,65,67 We can forecast 

combing AARON with such approaches to automatic reaction network exploration in 

order construct a more complete tool for computational catalyst design.  

Finally, we note that the vast quantities of structural and energetic data generated 

for TS structures with AARON can facilitate the application of modern informatics tools 

to catalyst design. For instance, there has been success in applications of multi-variate 

regressions to experimentally-generated stereoselectivity data as a means of both 

understanding stereoselectivity and designing better catalysts. AARON opens up the 

door to such informatics applications based solely on computed data. 
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CHAPTER III  

AUTOMATED QUANTUM MECHANICAL PREDICTIONS OF 

ENANTIOSELECTIVITY IN A RH-CATALYZED ASYMMETRIC 

HYDROGENATION* 

3.1 Introduction 

Modern quantum chemistry holds tremendous potential power for the design of 

chiral ligands for transition metal catalyzed reactions;81, 86, 149-151 however, the routine 

computational design of new chiral catalysts remains a significant unmet challenge.152, 

153  This is due to a number of factors, including the breadth of possible mechanistic 

pathways for a given transformation combined with the need to accurately compute 

relative reaction rates accounting for myriad subtle effects (solvent, additives, etc.).  

Even for mechanistically simple reactions, reliable quantum mechanical predictions of 

stereoselectivities often require the optimisation of 100s of molecular structures, 

including many transition states (TSs), due to the possibility of multiple 

stereocontrolling TSs and the presence of many thermodynamicaly accessible 

conformations.154  Such computations are tedious and time consuming, and the 

experimental synthesis and testing of new chiral ligands remains the preferred route to 

their development.  

                                                 

*Adapted with permission from “Automated Quantum Mechanical Predictions of Enantioselectivity in a 

Rh-Catalyzed Asymmetric Hydrogenation” by Y. Guan and S. E. Wheeler, 2017. Angew. Chem. Int. Ed. 

56, 9101. Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 
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Here, we describe a new version of our computational toolkit AARON (An 

Automated Reaction Optimizer for New catalysts)33, 155-157 that provides automated 

quantum mechanical predictions of stereoselectivities of transition metal catalyzed 

reactions with well-established mechanisms158 but multiple stereocontrolling transition 

states.  This new version of AARON is used to screen C2-symmetric phosphorus ligands 

for the asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides (Scheme 1), 

providing selectivity data in good agreement with experiment.137  Data is also presented 

for a new ligand that is predicted to provide enhanced stereoselectivity for this reaction. 

Transition-metal catalyzed asymmetric hydrogenations provide efficient routes to 

a wide range of optically active compounds,10 and chiral phosphorus ligands have 

proved highly effective in such transformations.159-165 Tang et al.137 introduced a strategy 

for the development of C2-symmetric phosphorus ligands based on the creation of a deep 

chiral pocket, as exemplified by WingPhos (L5, Scheme 1).137  In contrast to popular 

ligands such as BINAP160 and Josiphos,166 WingPhos provided excellent 

stereoselectivites in Rh-catalyzed asymmetric hydrogenations of (E)-β-aryl-N-acetyl 

enamides, providing access to enantiopure chiral β-arylamines (see Table 1).167-169  

WingPhos has also proved effective in other asymmetric transformations, supporting the 

merits of designing ligands with deep chiral pockets.170, 171 
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Figure III-1. Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides 

from Tang et al.137 

 

Table III-1. Experimental and theoretical relative activation free energies (ΔΔG‡) and 

ee’s.  The primary stereodetermining TS structures for formation of the (R) and (S) 

products are also listed (see Scheme 2).a 

 Exp137 Theorb   

Ligand ee ΔΔG‡ ee ΔΔG‡ TS(R) TS(S) 

L1 27 0.3 -41 -0.5 TS1α1 TS2α1 

L2 11 0.1 11 0.1 TS1β1 TS2β2 

L3 35 0.4 58 0.8 TS2α1 TS2β2 

L4 74 1.2 78 1.3 TS2α1 TS1β1 

L5 97 2.5 >99 6.2 TS1α1,TS2α1 TS1β1 

L6   >99 9.5 TS1α1 TS1β1 

 

[a] Positive ee values correspond to excess (R) product, whereas negative values signify 

excess (S). 

[b] Boltzmann-weighted free energy barrier of all (S) pathways relative to all (R) 

pathways and corresponding ee. 

 

 

3.2 Computational Section 

Computations were performed using Gaussian0963 paired with AARON.155 

Geometries were optimized using M06-L with the LANL2DZ basis set with ECP on Rh 
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and 6-31+G(d,p) on all other atoms.172, 173 This combination of basis sets has been shown 

to provide reliable predictions at a relatively low computational cost.174-176  The final 

free energies were based on M06 single point energies using the SDD basis set with ECP 

for Rh and 6-311++G(d,p) for all other atoms.177-179  Free energy corrections were 

computed within the rigid-rotor harmonic-oscillator (RRHO) approximation.  Predicted 

ΔΔG‡ values and enantioselectivities were based on a Boltzmann weighting of all 

pathways leading to the major and minor stereoisomers of 2 (see APPENDIX B).  The 

M06-L computations utilized density fitting techniques and all computations used the 

IEF-PCM solvent model (dichloromethane).180, 181 

 

3.3 Results and Discussion 

Despite advances in the development of catalysts for asymmetric hydrogenations 

of enamides,137, 182, 183 the mechanism of these reactions is still unsettled.43, 133, 134, 184-192  

Common among the proposed mechanisms is the importance of the two hydride 

transfers from the metal to the alkenyl component of the substrate; whether the α- or β-

carbon is hydrogenated first varies with both the substrate and catalyst.133-136 Below, we 

focus on these two hydride transfer steps.  

Rh-catalyzed asymmetric hydrogenations of enamides have been widely studied 

computationally.38, 43, 133-136, 186-188, 193, 194  For example, Wiest, et al.43 demonstrated the 

utility of Q2MM in the prediction of stereoselectivities for these reactions. While such 

force-field based methods195-198 provide a powerful tool for the computational screening 

of potential new ligands, they depend on the presence of a single stereocontrolling TS 
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that is conserved across all ligands screened.  For the reaction in Scheme 1, there are 

four possible TS structures for the first (TS1) and second (TS2) hydride transfer for both 

of the enantiomeric products. These differ in the arrangement of the various ligands 

around the Rh and whether the hydride is transferred to the α- or β-carbon first (see 

Scheme 2, in which TSXαY and TSXβY refer to TS structures in which the hydride is 

transferred to the α- and β-carbon first, respectively).43  Transfer of the first hydride to 

the substrate yields a hydride complex that can undergo one of two rearrangements, 

leading to two distinct transition states for the second H-transfer. For example, 

rearrangement of the hydride complex following TS1β1 can lead to either TS2β1 or 

TS2β2. It is important to note that rearrangement of the hydride complex following 

TS1β2 leads to the same possible structures for TS2 (i.e. TS2β1 and TS2β2).199200 

 

Figure III-2. Classification of the possible TS structures for the first (TS1) and second 

(TS2) hydride transfers in the reaction in Scheme 1.161  For TS2, the previously added 

hydrogen is shown in bold. 

 

 

As shown below, for the reaction in Scheme 1 either TS1 or TS2 (or both) can 

impact the stereoselectivity. Consequently, to predict the stereochechemical outcome of 
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this reaction, at least eight transition states (four for TS1 and four for TS2) should be 

considered for each enantiomeric product (i.e. 16 transition states total).  Once the 

conformational flexibility of the substrate and catalyst are considered (e.g. the two 

rotatable OMe groups on the aryl ring), there can be 100s of distinct TS structures for 

each ligand.  

Free energies for the eight TS structures in Scheme 2 were computed for the 

reaction in Scheme 1 catalyzed by L1 for both the major and minor enantiomeric 

products (with the two OMe groups removed from the substrate). All but two of the TS 

structures (TS1α2 and TS1β2) lie within 4 kcal mol-1 of the lowest-lying TS structure, 

TS2α1(S). The large relative free energies for TS1α2 and TS1β2, which exceed 10 kcal 

mol-1, derive from steric interactions between the catalyst and the β- aryl group of the 

substrate. This steric clash is even more severe for the ligands with larger R groups (i.e. 

L2-L5) and we were able to discard TS1α2 and TS1β2 from further consideration.  Even 

so, the presence of two OMe groups on the substrate leads to four possible 

conformations for each of these six remaining TS structures for formation of both the 

major and minor stereoisomers (48 structures total); these were located automatically 

using AARON (vide infra). Low-lying TS structures are plotted in Figure 1a.  In total, 

there are 32 distinct pathways and 46 TS structures [24 leading to (S) and 22 leading to 

(R)].  All lie within 5 kcal mol-1. Moreover, both TS1 and TS2 impact the 

stereoselectivity, with the first step primarily rate limiting for (R) and the second 

primarily limiting for (S).  In both cases, the most favourable pathway involves a hydride 

transfer to the α-carbon first, as proposed by Tang et al.137 based on work from Gridnev 



 

62 

 

and Imamoto.187, 189  Given the importance of multiple low-lying TS structures, 

modelling the stereoselectivity of this reaction requires a Boltzmann weighting over all 

accessible pathways (see APPENDIX B).  Performing such a weighting correctly 

predicts the low selectivity of L1 (see Table 1). 

For L2-L5, there are up to 192 potentially distinct TS structures for each 

ligand.201  Systematically optimising all of these structures by hand would be tedious; 

however, the automation provided by AARON makes such computations not only 

possible, but practical.  AARON automates the optimization of all relevant structures by 

starting with a library of TS structures for a representative model ligand.202 AARON 

then maps key atoms of the new ligand onto the corresponding atoms from structures in 

the TS library (in this case, the two phosphorus atoms) and then performs a prescribed 

series of constrained and unconstrained geometry optimizations, as described 

previously.156, 157 For each structure, the conformations of simple rotatable groups (e.g. 

OMe) are systematically scanned automatically. Checks performed at each stage of the 

optimizations ensure that the correct structures are located and duplicate conformations 

are eliminated.203  To reduce the chance that key structures are omitted, any new 

structures identified for a given ligand can be easily added to the TS library and the 

analogous structures automatically located for the other ligands.   
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Figure III-3. a) Free energies (relative to separated reactant and catalyst)204 for 

thermodynamically accessible hydride transfer TS structures and associated 

intermediates for the reaction in Scheme 1 catalyzed by L1. b) Key TS structures for L5 

and L6. For TS1β1(S), the insets highlight the steric clash in the TS leading to the minor 

product.  Hydrogens have been removed for clarity. 

file:///C:/Users/Yanfei-PC/Dropbox/Yanfei/Dissertation/Copyright/Catalyst%23_ENREF_204
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Using AARON, we have systematically optimised all viable TS structures for 

L2-L5. A Boltzmann weighting over the possible reaction pathways leads to computed 

ee’s in good agreement with experiment (see Table 1).137  The overall reaction free 

energy profiles vary from L1 to L5, highlighting the importance of considering multiple 

possible TS structures for these reactions. For instance, for L2 the most favourable 

reaction path involves the hydride transfer to the β-carbon first for both the (R) and (S) 

isomers, in contrast to L1. For L3-L5, on the other hand, the dominant pathways leading 

to the two stereoisomers diverge. That is, for these ligands the formation of the (R) 

enantiomer is dominated by the hydride transfer to the α-carbon first, while formation of 

(S) predominately involves a hydride transfer to the β-carbon first. This is inconsistent 

with the mechanism presented by Tang et al.137  

For L5, AARON predicts an ee exceeding 99%, which is consistent with 

experiment (see Table 1).137 The primary stereocontrolling TS structures for L5 are 

shown in Figure 1b. In contrast to the other ligands, in the case of L5 the lowest-lying 

structures for the first and second hydride transfers leading to the (R) enantiomer 

[TS1α1(R) and TS2α1(R), respectively] are essentially isoergonic.  For the most 

favourable reaction path leading to the (S) enantiomer, on the other hand, the barrier for 

the first hydride transfer is 4.1 kcal mol-1 higher in free energy than the second hydride 

transfer and barrier height for this first hydride transfer is the dominant 

stereodetermining factor. The most favourable configuration for this step is TS1β1(S), 

which lies 6.3 kcal mol–1 higher in free energy than TS1α1(R).  This significant energy 
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difference, which underlies the selectivity of L5, can be attributed to steric interactions 

between the aryl groups of the catalyst and substrate (see Figure 1b). 

The agreement between the computed and experimental ee’s for L1-L5 validates 

the choice of level of theory and also provides confidence regarding the prediction of 

stereoselectivities for new ligands.  Inspired by this, we extended L5 to provide greater 

differentiation between the primary stereocontrolling TS structures. This resulted in L6, 

in which the 9-anthracenyl substituents bear methyl groups at the 4- and 5-positions.  As 

seen in Figure 1b, L6 leads to a more sterically-demanding binding pocket, resulting in 

significant distortion of TS1β1(S).  The result is an increase in free energy of TS1β1(S) 

relative to TS2α1(R), as well as a modest increase in the free energy of TS1α1(R) 

relative to TS2α1(R), compared to L5.  The net effect is an increase in the Boltzmann-

weighted relative free energy barrier for formation of the minor stereoisomer.  In other 

words, even though L5 is highly stereoselective,137 we predict that L6 will perform even 

better.  Moreover, the predicted hydride transfer free energy barrier is 0.3 kcal mol–1 

lower for L6 than that for L5, suggesting slightly enhanced catalytic activity. 

 

3.4 Conclusions 

In conclusion, we have described a new version of our computational toolkit 

AARON155 that is applicable to transition-metal catalyzed reactions.  This new version 

of AARON automates the optimisation and Boltzmann weighting of the many transition 

states needed to predict stereoselectivities of reactions in which multiple transition states 

contribute to stereoselectivity, including automated consideration of low-lying 
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conformations. While such computations could potentially be carried out by hand using 

conventional tools, the automation provided by AARON greatly accelerates the process 

and thereby opens the door for the computational screening of chiral ligands for select 

transition-metal catalyzed reactions.  The utility of AARON was demonstrated by 

screening chiral ligands for the asymmetric hydrogenation of (E)-β-aryl-N-acetyl 

enamides, providing computed stereoselectivites in good agreement with experimental 

data.137 These computational data reveal that the major and minor enantiomeric products 

of this reaction form via two distinct reaction mechanisms. Based on these data, an 

extended version of WingPhos was designed (L6) that is predicted to provide enhanced 

stereoselectivity and catalytic activity.  Although the age of the purely computational 

catalyst design is not yet upon us,152, 153, 205 this work represents a key step toward this 

goal by providing tools for the automated quantum mechanical prediction of 

stereoselectivities of reactions with well-established mechanisms but variability 

regarding the stereodetermining step. 
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CHAPTER IV 

INTERCOLUMNAR INTERACTIONS CONTROL THE LOCAL ORIENTATIONS 

WITHIN COLUMNAR STACKS OF SUMANENE AND SUMANENE 

DERIVATIVES* 

4.1 Introduction 

The buckybowl sumanene and its derivatives (Scheme 1) are a prototypical class 

of bowl-shaped aromatic hydrocarbons that form well-ordered concave-convex 

columnar stacks in the solid state (Figure 1a).66, 206, 207 This columnar packing imparts 

characteristic electronic properties to the resulting materials, including high electron 

conductivity.208-209 As with discotic liquid crystalline materials,210 charge-carrier 

mobilities and other electronic properties of materials comprising bowl-shaped 

molecules depend strongly on the precise solid-state packing and distributions of local 

orientations within columnar stacks.211-213  In the case of sumanene derivatives, local 

orientations are strongly dependent on substituents.  For instance, sumanene (1),206 

sumaneneone (2),214 and many other substituted derivatives,215, 216  adopt staggered 

configurations within each column in the solid state.  That is, adjacent stacked bowls are 

twisted about their central axis by ~60° (e.g. see Figure 1b). This favorability of 

staggered configurations over eclipsed (Figure 1c) for molecules such as sumanene has 

been attributed to three complementary effects:216 relief of repulsive steric interactions 

                                                 

*Adapted with permission from “Intercolumnar Interactions Control the Local Orientations within 

Columnar Stacks of Sumanene and Sumanene Derivatives”, by Y. Guan and S. E. Wheeler, 2017. J. Phys. 

Chem. C 121, 8541 Copyright 2017 American Chemical Society. 
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between endo-H and exo-H atoms; favorable CH/π interactions217 between endo-H 

atoms of the five-membered rings and the six-membered rings on the other molecule 

(Figure 1d); and expected electrostatic favorability of the staggered configuration as 

predicted by analyses of electrostatic potential maps (Figure 1e).  

 

Figure IV-1. Strctures of sumanene (1) and sumanene derivatives (2 - 4). 

 

 

However, the eclipsed orientations observed in a recently published crystal 

structure of sumanenetrione (4) have proved more difficult to explain.218 In particular, 

analyses of the molecular electrostatic potential (ESP) of 4 suggest a strong electrostatic 

drive to adopt a staggered configuration. Sakurai et al.218 explained the eclipsed 

columnar stacking of 4 based on favorable intercolumnar CH…O interactions, which 

apparently overwhelm the unfavorable electrostatic interactions within each stack.  

Recently, Chen et al.219 studied stacked dimers of corannulene, sumanene, and various 

substituted derivatives (including 1, 2, and 4) to assess the impact of substituents on 

charge transport properties. They identified several local minima on the associated 

stacking potential energy surfaces.  Notably, they found that the global minimum for 

stacked dimers of 4 exhibited a staggered configuration, in contrast to the established 
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solid-state packing;218 the energy minimum corresponding to the eclipsed configuration 

was predicted to be 0.6 kcal mol-1 higher in energy. 

 

Figure IV-2. (a) Columnar stacked solid-state structure of sumanene; (b) preferred 

staggered configuration of 1; (c) preferred cclipsed stacking configuration of 4; (d) 

CH∙∙∙π interactions (highlighted in blue) in the staggered stacked sumanene dimer; (e) 

ESPs of the concave and convex faces of 1 and 4. 

 

 

Recent work from Risko et al.220 has demonstrated the power of computational 

chemistry to understand the crystal packing of planar  polycyclic aromatic hydrocarbons, 

building on the vast body of knowledge of stacking interactions involving planar 

systems.221-225  However, stacking interactions involving curved polycyclic aromatic 

hydrocarbons are less well understood,226 hindering the rational design of bowl-shaped 

molecules with precisely controlled packing in the solid state. We have examined the 

relative orientations of 1 - 4 in the gas-phase using dispersion-corrected density 

functional theory (DFT) and symmetry adapted perturbation theory (SAPT) as well as in 
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the solid state using classical molecular-mechanics based molecular dynamics 

simulations, shedding light on the factors that control the packing of these stacked bowl-

shaped molecules.   

 

4.2 Theoretical Methods 

The structures of monomers and stacked dimers of sumanene 1, sumaneneone 2, 

sumanenedione 3 and sumanenetrione 4 were optimized at the ωB97X-D/TZV(2d,2p) 

level of theory.227, 228  The resulting structures were confirmed to be energy minima 

based on the absence of imaginary vibrational frequencies. Rigid-monomer interaction 

energies of model stacked dimers were computed as a function of the orientation angle at 

the B97D/TZV(2d,2p) level of theory. For each angle the optimal bowl-to-bowl distance 

was determined by computing single point energies for distances ranging from 3.5 to 4.0 

Å at intervals of 0.1 Å and fitting a 5th order polynomial to the resulting data (see 

Appendix B Figure B-1). 

We also examined stacked dimers of 1 – 4 using symmetry-adapted perturbation 

theory (SAPT) at the SAPT0/jun-cc-pVDZ level of theory.  This level of SAPT, 

combined with the jun-cc-pVDZ basis set of Papajak and Truhlar,229 has been shown to 

provide excellent predictions of stacking interactions at a modest computational cost.230 

The interaction energy between dimers was decomposed into electrostatic (Elec), 

exchange repulsive (Exch), induction (Ind) and dispersion (Disp) interactions. SAPT0 

computations were performed for stacked dimers every 10° from 0° to 60° or 180°, 
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depending on the symmetry of the molecule, at the bowl-to-bowl distance determined 

using DFT.  

Finally, the solid state structures of 1 – 4 were simulated by a united atom 

approach.61 Carbon atoms were assigned to four main atom types, CA, CM, CO and CB, 

and further sub-divided depending on the type and positions of peripheral substituents 

(see Appendix B for more details). The bonded and Lennar-Jones parameters were taken 

from the AMBER and OPLS force fields,231-234 which has been demonstrated to be 

effective in describing stacked columns of discotic molecules.61, 210 Partial charges were 

computed using the Merz-Kollman (MK) method235, 236 at the B3LYP/6-311+G(d,p) 

level of theory.[237-239] The electrostatic potential fitting involved eight layers and six 

points per unit area (see Appendix B). For these simulations, we considered systems of 

128 molecules arranged in 16 stacks of 8 molecules each. The bowl-shaped molecules 

were stacked in unidirectional columns for sumanene 1 while in opposite ones for 2, 3, 

and 4 (see Figure B-2), in accordance with available experimental data. The distances 

between the columns and molecules within columns were increased slightly in the initial 

structures to avoid clashes. Initial orientation angles between adjacent molecules were 

30°, to avoid biasing the systems toward either eclipsed or staggered configurations. 

After energy minimization, a short equilibrating run was performed at 200 K and 1.0 bar 

for 4 ns. The Berendsen240 method was employed for the temperature and pressure 

coupling model. After the equilibrating process, the production run was performed at 

300 K and 1.0 bar for 100 ns to give the final structures. During the production run, 

Nose-Hoover241, 242 thermostat and Parrinello-Rahman243 method were employed for the 
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temperature and pressure coupling methods, respectively (see Appendix B). To evaluate 

the MD method, obtained structures were compared with the X-ray crystal structures, 

focusing on intermolecular distances, bowl depths, and averaged orientation angles 

between adjacent molecules with respect to the columnar axis. To collect these data, the 

production run was extended by 1 ns, and 500 snapshots from this 1 ns run analyzed. 

Finally, we considered a cluster model of eleven molecules with a central trimer 

and eight surrounding monomers from peripheral columns, which were extracted from 

the last snapshot of the MD simulations. Then each monomer was replaced with the 

DFT-optimized structure, keeping the center of mass and relative orientations of each 

monomer the same as the MD simulation. The central molecule was then rotated with an 

interval of 3° to evaluate the interaction energy at the B97D/TZV(2d,2p) level of theory 

(see AAPENDIX C Figure C-4). 

The DFT and MK partial charge computations were done using Gaussian09,40 

while Psi4244 was used for the SAPT0 computations.  The MD simulations were run using 

GROMACS 4.6.5.245 

 

4.3 Results and Discussion 

First, we considered the interaction energy, relative to the eclipsed configuration, 

as a function of orientation angle for model stacked dimers of 1 – 4 (Figure 2a) at the 

B97D/TZV(2d,2p)228, 246 level of theory using Gaussian 09.40 In these one-dimensional 

scans, the monomers were held rigid and the distance between stacked bowls was 

optimized for each angle (see Figure 2b).  For all four systems, the local minimum 

corresponding to the staggered configuration is favored over the eclipsed configuration; 
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however, there is a gradual equalization of the staggered and eclipsed conformations as 

more carbonyl groups are added.  For instance, whereas the staggered configuration of 1 

is favored by 2.2 kcal mol-1 over the eclipsed configuration, this energy difference 

shrinks to 0.6 kcal mol-1 for 4.  Intriguingly, the barrier for conversion of the staggered 

orientation to the eclipsed orientation is nearly constant (2.3 ± 0.03 kcal mol-1). On the 

other hand, the reverse barrier is quite sensitive to the number of carbonyl groups, 

growing from only 0.2 for 1 to 1.7 kcal mol-1 for 4.   

 

Figure IV-3. (a) B97D/TZV(2d,2p) energy of stacked dimers of 1 – 4 as a function of 

the local orientation angle (ϕ), relative to the staggered configuration (ϕ = 0); (b) bowl-

bowl distances (h, in Angstroms) for stacked dimers of 1 – 4. (c)-(e) SAPT energy 

components of stacked dimers of 1-4 as a function of the local orientation angle (ϕ), 

relative to the staggered configuration (ϕ = 0). (f) B97D/TZV(2d,2p) energy of 

molecular clusters of 1 – 4 as a function of the local orientation angle (ϕ) (for more 

details, see Appendix B Figure B-4). 
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To shed further light on these data, we turned to SAPT,247, 248 at the SAPT0/jun-

cc-pVDZ level230 using Psi4.244 SAPT provides not only robust interaction energies but 

also decomposes these interactions into underlying physical components (electrostatic, 

exchange repulsion, induction, and dispersion interactions).249 These interaction energy 

components are plotted as a function of the local orientation angle for stacked dimers of 

1–4 in Figure 2c-2f.250  Perhaps surprisingly, the incorporation of carbonyl groups into 

sumanene leads to a weakening of the electrostatic preference for staggered 

configurations.  Whereas the electrostatic component favors the staggered configuration 

of 1 by ~7 kcal mol-1 compared to the eclipsed configuration, this difference is only 1 

kcal mol-1 for 4. Also somewhat surprisingly, the exchange-repulsion component of 

these interactions strongly favors the eclipsed configuration for 1, seemingly at odds 

with proposed steric interactions between endo-H and exo-H atoms in the eclipsed 

configuration.  These two trends arise primarily from variations in bowl to bowl distance 

(h) with the local orientation (see Figure 2b).  For 1, the dimer is more compact in the 

staggered configuration than eclipsed (h = 3.81 Å for eclipsed vs. 3.72 Å for staggered), 

in order to avoid steric interactions between endo-H and exo-H atoms in the eclipsed 

conformation. This results in much stronger electrostatic, dispersion, and exchange-

repulsion interactions in the staggered configuration and a total interaction energy that 

strongly favors the staggered configuration. In contrast, as a result of the lack of CH2 

groups,251 stacked dimers of 4 exhibit similar stacking distances in both eclipsed and 

staggered configurations (3.76 and 3.75 Å, respectively).  This leads to the rather small 

difference in total interaction energies between the eclipsed and staggered 
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configurations.252 With regard to the systematic increase in barrier height for conversion 

of eclipsed to staggered configurations with increased number of carbonyl groups, the 

SAPT data reveal that a decrease in the attractive part overwhelms the decrease of the 

repulsive interaction, leading to a gradual rise in the energy required to transform from 

eclipsed to staggered configurations.  

Overall, analyses of pairwise stacking interactions are unable to fully explain the 

different orientations of 1-4 in the solid state, since, based on the above results and 

recent work from Chen et al.,219 one would expect 1 – 4 to all pack in a staggered 

configuration in the solid state.  Alternatively, three-body stacking terms could impact 

the preferred local orientation of 1-4.  However, computed interaction energies for a 

model stacked trimer of 4 (see Appendix B Figure B-9) reveal that the staggered 

configuration is still the global minimum, lying 1.2 kcal mol-1 lower in energy than the 

eclipsed configuration. This is roughly double the energy difference in the stacked dimer 

of 4, indicating that many-body stacking interactions have no substantial effects.  This 

suggests that the orientational preferences of extended stacks of these molecules will 

mimic those of the isolated stacked dimers. 



 

76 

 

 

Figure IV-4. (a) Snapshot of 4 from the MD simulation; (b) definition of key intra- and 

intermolecular parameters; (c) distribution of local orientation angles averaged over 10ns 

MD simulations (from top to bottom, 1-4); (d) Unfavorable intercolumnar O…O 

interactions in the staggered configuration (right) and potentially favorable O…H 

interactions in the eclipsed configuration (left).  

 

Instead, the observed eclipsed packing of 4 must arise from intercolumnar 

interactions. To evaluate these intercolumnar interactions, we turned to MD simulations, 

which have proven powerful in the study of columnar stacking of discotic molecules.61, 

210 However, to our knowledge there have been no previous MD simulations of 

sumanene derivatives in the solid state. MD simulations of systems comprising 128 

molecules in 16 stacks of 8 molecules (see Figure 3) were done using GROMACS 

4.6.5.245 To justify our choice of MM potential and simulation protocol (see Appendix B 

for details), we compared intermolecular distances, bowl depths, and maxima in the 

distribution of local orientations in the solid state with experimental data for 1, 2, and 4 
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(see Table 1).  Overall, structural parameters averaged over the 1 ns MD simulations are 

in good agreement with available data from X-ray analyses, suggesting that the MD 

simulation protocol used is a reliable tool to reveal details about the crystal packing of 

these systems. Figure 3c shows the distribution of local orientations over 1 ns of these 

simulations. Molecules 1 and 2 show strong tendencies to stack in staggered 

conformations, with maxima at ϕ = 50 and 58°, respectively.  This is in good agreement 

with the X-ray derived angles of 55 and 60°.214, 218 This can be compared to the data for 

4, which strongly favors an eclipsed conformation (ϕ = 0°).  This is again in agreement 

with experiment.218 For 3, the predicted packing is more complicated in that three 

prominent peaks are present in the distribution, representing both staggered (resembling 

1 and 2) and eclipsed (as in 4) orientations; the solid-state packing of 3 can be viewed as 

a transition from staggered conformation of 1 and 2 to the eclipsed one of 4.253 

 

 

Table IV-1. Crystal structure data for 1-4 in the solid state along with the mean 

computed values from MD simulations. 
 

Calc.a Expt214, 218 

 
h(Å) ϕ(°) dCA

b dCO
c h ϕ dCA

 dCO
 

1 3.86 50 1.21 0.91 3.86 55 1.11 0.90 

2 3.77 58 1.11 - 3.82-3.87 60 1.11-1.13 - 

3 3.82 ~155 1.12 - - - - - 

4 3.74 0 1.12 0.99 3.75 0 1.13 0.99 

aComputed values are mean values averaged over 500 snapshots by a 1 ns data collecting 

run (see Appendix B). 
bBowl depth from the bottom of bowl to CH carbon CA, in Å. 
cBowl depth from the bottom of bowl to CO carbon CO, in Å. 
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These MD simulations reproduce the experiment finding of a transition from 

staggered to eclipsed packing upon incorporation of three carbonyl groups, supporting 

the importance of intercolumnar interactions in determining the packing of these bowl-

shaped molecules. To further elucidate the origin of the different preferences for 

staggered and eclipsed stacking motifs, we again turned to DFT.  This time, however, we 

incorporated additional, neighboring monomers.  In particular, we combined the MD 

simulations with DFT computations by extracting information about the position and 

orientation of individual molecules in the solid from the MD simulation, while the 

geometry of molecules and interaction energies were computed using DFT. Eleven 

molecules with a central trimer and eight surrounding monomers from peripheral 

columns were extracted from the final snapshot of the MD simulations (see Appendix B 

Figure B-4). This cluster was selected to ensure that all monomers having non-negligible 

contacts with the central monomer were included. Then, each monomer was replaced 

with the DFT-optimized structure, keeping the center of mass and relative orientations of 

each monomer the same as the MD simulation. The interaction energy of the central 

molecule with the surrounding 10 molecules was computed at the B97D/TZV(2d,2p) 

level of theory for different relative orientations at 3° intervals.   

The resulting interaction energies, which now include intercolumnar interactions, 

are drastically different from those of the isolated dimers (see Figure 2f), especially for 

4. Overall, there is a tendency of increasing energy of the staggered configuration, 

relative to the eclipsed configurations, as seen for the isolated dimers (Figure 2a). 

Indeed, for 1, the staggered conformation is favored by 5.5 kcal mol-1 over the eclipsed 
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conformation, which is roughly twice the energy difference in the corresponding dimer. 

Since in this cluster model the central structure is a stacked trimer (see Appendix B 

Figure B-4), this suggests that intercolumnar interactions have little impact on the local 

orientations of sumanene 1 in the solid state. For 4, on the other hand, the eclipsed 

conformation is strongly favored, lying 25 kcal mol-1 lower in energy than the staggered 

configuration. This substantial energy gap highlights the importance of intercolumnar 

interactions in the molecular packing of 4. This can be explained by two complementary 

effects.  First, as noted by Sakurai and co-workers,218 there are potentially favorable 

CH…O interactions254  in the eclipsed configuration.  At the same time, there are 

unfavorable interactions between carbonyl groups in the staggered conformation (see 

Figure 3d). For 2 and 3, which lack C3-symmetry, consideration of angles up to 180° 

reveal global energy minima at 60° and 180° for 2 and 3, respectively (see Appendix B 

Figure B-13). Overall, these DFT data are consistent with experiment and the results of 

the MD simulations, suggesting that this 11-molecule cluster is sufficient to capture both 

the intra- and intercolumnar interactions responsible for the solid state packing of these 

bowl-shaped molecules.  

 

4.4 Conclusions 

Isolated stacked dimers and trimers of sumanene (1) and sumanene derivatives 2 

– 4 prefer staggered configurations. It is not until intercolumnar interactions are included 

that the preference of sumanenetrione (4) to pack in an eclipsed configuration218 is 

captured. SAPT computations revealed that the preference for isolated stacked dimers of 
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1 – 4 to adopt staggered orientations is driven by favorable electrostatic and dispersion 

interactions. In the case of sumanenetrione, this inherent tendency to adopt staggered 

configurations within a given column is overwhelmed by unfavorable O…O contacts 

between stacked columns in the solid state, leading to the observed transition from 

staggered to eclipsed packing motifs.  Bowl-shaped molecules exhibit diverse packing 

motifs in the solid state, often confounding efforts to rationally design materials from 

such molecules with well-defined packing motifs.208, 212, 213, 255 The present results 

constitute a key step toward understanding the packing of such molecules by 

demonstrating how inter- and intracolumnar interactions can be quantified through DFT 

and MM-based computational studies.  Moreover, these results suggest that carefully 

designed intercolumnar interactions can be used to override the inherent tendencies of 

many discotic and bowl-shaped molecules to adopt staggered relative orientations within 

columnar stacks. 
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CHAPTER V 

CONFORMATIONAL BEHAVIOR AND STACKING INTERACTIONS OF 

CONTORTED POLYCYCLIC AROMATICS* 

5.1 Introduction 

Organic electronic materials can be fabricated from various small molecules and 

often combine unique desirable properties including relative ease of processing, greater 

flexibility, and lower costs.256 The electronic properties of these materials and their 

performance in devices depend strongly on the packing of the constituent molecules in 

the solid state. For example, discotic and curved molecules can assemble into columnar 

stacks arranged in a regular lattice that gives rise to useful properties for electronic 

applications, including the ability to conduct charges along the stacks.257, 258 Even within 

such well-ordered packing motifs, subtle changes in relative orientations can have an 

enormous impact on material performance.210 Understanding the various non-covalent 

interactions that govern the solid-state packing of curved and planar polycyclic aromatic 

molecules (e.g. stacking interactions, CH/π interactions, etc.) will aid in the rational 

design of materials with precisely tailored electronic properties. Non-covalent 

interactions between planar aromatic species have been extensively explored.225, 259-264,265   

However, our understanding of the molecular packing of curved polycyclic systems is 

less well-developed.  The general concept of concave-convex stacking, in which 

                                                 

*Adapted with permission from “Conformational Behavior and Stacking Interactions of Contorted 

Polycyclic Aromatics”, by Y. Guan, M. L. Jones, A. E. Miller, and S. E. Wheeler, 2017. Phys. Chem. 

Chem. Phys. 19, 18186. Copyright 2017 Royal Society of Chemistry. 
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enhanced stacking interactions arise from the complementary polarization of the π-

systems of the concave and convex faces of two curved systems, has long been 

discussed;266, 267 however, there have been a limited number of computational studies of 

curved polycyclic species.268, 269  Sherrill and co-workers268 examined the impact of 

curvature on stacking interactions in model systems, reporting that nested stacking 

interactions are enhanced by increased curvature, except at short distances.  This was 

explained by the increased molecular dipole moment that arises when polycyclic 

aromatic systems are curved. 

 

Figure V-1. Doubly-concave polycyclic aromatic systems related to c-HBC. Alkylated 

versions of 1, 3, 8, and 11 have been synthesized.76, 270-274 
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Figure V-2. Coronene (12), its B-N substituted analogues (13-14), and the [n]circulenes 

(n = 7-10, 15-18). 

 

Several major classes of curved molecules have attracted attention in the context 

of organic electronic materials, including bowl-shaped molecules,208, 212, 255, 275 twisted 

molecules,77, 276-280 and contorted (i.e. saddle-shaped or doubly-concave) molecules.76, 

270, 271, 281, 282 The unique shapes of contorted and bowl-shaped molecules, coupled with 

their ability to interact strongly with electron-acceptors such as fullerenes, portends their 

use in a variety of organic electronic materials.283, 284 We recently studied the stacking 

interactions of bowl-shaped molecules (i.e. sumanene and its derivatives);285 here, we 

consider stacking interactions of doubly-concave molecules, which offer an opportunity 

to tune the strength of stacking interactions by regulating the curvature of the molecular 

plane without the introduction of a net molecular dipole moment.76, 270, 272 

Below, we consider a series of doubly-concave molecules related to the contorted 

hexabenzocoronene (c-HBC) structure of Nuckolls and co-workers,270, 286 as well as the 

[n]circulenes287-290 (See Figures 1 and 2). A number of substituted analogues of c-HBC 

have been synthesized, and many exhibit promising performance as organic electronic 

materials. For example, alkylated derivatives of 1, 3, 8, and 11,76, 270-274 have been 

synthesized, demonstrating that contorted molecules can assemble into regular solid-

state phases. For example, Nuckols et al.291 reported three crystalline polymorphs in thin 
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films of 1 based on post-deposition processesing, while two crystal packing motifs were 

observed for 3 depending on the crystallization conditions.76 Similarly, the crystal 

structure of alkylated versions of 8 was reported to exhibit a mixture of two 

conformations in an A-A-B-A-A-B order within columnar stacks.274  Structures of the 

[n]circulenes have been studied computationally by a number of groups.292-294 Deep 

saddle conformations were confirmed for monomers of [7]circulene (15) to 

[16]circulene.295 However, stacked homodimers of these various saddle-shaped 

molecules have not previously been studied computationally. 

A sound understanding of both the conformational behaviour and stacking 

interactions of these saddle-shaped molecules is vital for the rational design of contorted 

molecules for use in organic electronic materials. For many of these systems, there are 

multiple low-lying conformations, and the conformations and solid-state packing will 

impact the resulting optoelectronic properties. Here, we provide a systematic 

computational study of the conformational behaviour of these doubly-concave molecules 

as well as the π-stacking interactions of homodimers of these systems.  

 

5.2 Computational Methods 

Conformations of isolated molecules of 1-18, as well as stacked homodimers of 

these molecules, were optimized using dispersion-corrected density functional theory at 

the B97-D/TZV(2d,2p) level of theory.296-299  Conformations of 1-11 were identified by 

starting with a fully planar geometry of each molecule and then subsequently and 

repeatedly following all imaginary vibrational modes to lower-energy conformations.  
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All structures presented are energy minima, as confirmed by harmonic vibrational 

frequency analyses. Geometries of stacked dimers of 1-18 were explored by 

systematically considering all unique stacked homodimers of each low-lying 

conformation (see below for more details). Given the importance of dispersion 

interactions in these dimers, we explored several variants of Grimme’s D3 empirical 

dispersion correction.300 Based on its ability to reproduce the extrapolated CCSD(T) 

benchmark interaction energy for the coronene dimer from Janowski and Pulay,301 we 

present data computed at the B97-D3M(BJ)/TZV(2d,2p) level of theory.296-300, 302, 303 

Binding energies, defined as the difference in electronic energy between the optimized 

stacked dimer and the lowest-energy conformation of the isolated monomers, are 

reported for stacked dimers lying within 3 kcal mol–1 of the global minimum energy 

structure. All computations used Gaussian0977 and employed density fitting techniques. 

 

5.3 Results and Discussion 

5.3.1. Conformations of contorted polycyclic aromatics  

Although previous experimental and computational work has unveiled 

information regarding the possible conformations of some of the systems depicted in 

Fig. 1,76, 270, 272, 274 the conformational behaviour of many of these systems has not 

previously been explored. To provide a more comprehensive understanding of isolated 

molecules of 1-11, we studied conformations within 3 kcal mol–1 of the global minimum 

energy conformation. Molecules 1-11 exhibit four distinct types of low-lying 

conformations (see Figure 3). For molecules with more than three peripheral benzo rings 
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(i.e. 1, 4, 7, and 10) only the up-down-up-down (UD) conformation is 

thermodynamically accessible due to the highly crowded peripheral environment. On the 

other hand, when some of these rings are replaced by thiophenes, additional low-lying 

conformations become accessible, including saddle (S), twisted saddle (TS), and twist-

down-up-twist-down-up (TD) conformations. For most of these systems, the UD 

conformation is preferred. However, for 3, 8, and 9 the S conformation is lower-lying, 

with the UD conformation still thermodynamically accessible. For 11, the TS and UD 

conformations are similar in energy, with the TS conformation lying 0.3 kcal mol–1 

lower than S. The low-lying conformations of these molecules vary in their degree of 

deviation from planarity. Table 1 lists two angles that quantify the extent of contortion 

(φ and θ; see Figure 3), along with the corresponding energies relative to the lowest-

lying conformation of each species. Energies of the corresponding planar conformations, 

relative to the lowest-lying conformation, are also listed to quantify the overall strain 

relief achieved by adopting contorted conformations.  
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Figure V-3. Unique optimized conformations of 1-11, Up-Down-Up-Down (UD), 

Saddle (S), Twist-Down-Up-Twist-Down-Up (TD), and Twisted Saddle (TS). Two 

angles describing the degree of contortion are also presented: φ, the angle between two 

adjacent overlapping anthradihiophenes or pentacenes and θ, the tilt angle of the benzo 

ring with respect to central coronene core. Hydrogen atoms have been removed for 

clarity. 

 

 

A number of trends emerge from the data in Table 1. First, as noted by Nuckolls 

and co-workers,76 replacing benzo rings in c-HBC with thiophenes (i.e. 2 and 3) results 

in considerably more planar and more flexible structures. For example, for 1, the 

bending angle of pentacene (θ) is 23°. For 2 and 10, this angle is reduced to 16° and 20°, 

respectively. When all six benzo rings are replaced by thiophenes (i.e. 11), the low-lying 

conformation is very nearly planar, with the fully-planar conformation lying only 3.8 

kcal mol–1 higher in energy. For tetrathieno-substituted molecules 2 and 3, the 

orientation of the thiophenes impacts the structures considerably.  In particular, the 
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preferred conformation of 2 is UD, whereas the S conformation is lowest-lying for 3. 

This can be explained in terms of the steric hindrance between the hydrogens of 

neighboring thiophene groups. The result is that the S conformation of 2 is twisted and 

higher in energy than the UD conformation by 2.2 kcal mol–1. However, for 3 these 

steric interactions are absent and the saddle conformation becomes the lowest-lying 

conformation. 

Table V-1. Low-lying conformations of 1-11 as well as a constrained planar 

conformation.  Energies (Erel, in kcal mol–1) are reported relative to conformer 1.a 

 Conformer 1 Conformer 2 Planar 

Mol φ θ Conf φ θ Erel Conf Erel 

1 43 23 UD - - - - 154.4 

2 33 16 UD 22 18 2.2 TS 21.1 

3 0 22 S 25 20 1.5 UD 31.3 

4 48 22 UD - - - - 140.8 

5 37 14 UD 38 0b 1.3 TD 20.2 

6 30 18 UD 0 20 0.7 S 23.5 

7 41 23 UD - - - - 153.5 

8 0 21 S 32 19 1.7 UD 25.7 

9 0 22 S 28 21 1.4 UD 41.2 

10 34 20 UD - - - - 43.0 

11 5 15 TS 28 11 0.3 UD 3.8 
a See Figure 3 for definitions of the angles φ and θ (given in degrees).  
b Twisted angle of pentacene is 11° (see Appendix C for details). 

 

Computations also reveal subtle differences in the structures of these systems 

depending on whether the N or B is located closer to the centre of the coronene (e.g. 4 vs 

7).  In particular, in 4-6, there is greater deviation from planarity with regard to the 

thiophene part (larger φ) and more planar pantacene components (smaller θ), compared 

to the corresponding structures among 7-9.   
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5.3.2. Stacking of coronene and its BN-analogues  

Molecules 1-11 contain either a coronene (12) or B-N substituted coronene core 

(13-14). We first considered the stacking interactions of these planar systems to provide 

a baseline for understanding their benzanulated and thiophenylated derivatives (1-11). 

Low-lying stacked dimers of 12-14, along with computed binding energies, are 

displayed in Figure 4. Intermolecular coordinates including stacking distance (h), 

displacement distance (∆d), and orientation angle (α) are also provided. Stacked dimers 

of these planar systems can be in either a parallel-displaced configuration, in which the 

centroid of one molecule is displaced parallel to the molecular plane of the other 

molecule (∆d >> 0), or a sandwich configuration in which the rings share a common 

symmetry axis (∆d = 0). The lowest-lying configuration for coronene (12) is the parallel-

displaced configuration, which is lower than the sandwich configuration by 1.1 kcal 

mol–1. For 13 and 14, in which B and N atoms have been embedded in coronene, the 

lowest-lying stacked dimer is in a sandwich configuration. The most favourable parallel-

displaced configurations are 0.5 and 1.0 kcal mol–1 higher in energy for 13 and 14, 

respectively. In the low-lying sandwich dimers, one monomer is rotated by either 30 or 

90° with respect to the shared symmetry axis. In both 13 and 14, orientation of 30° is 

slightly lower in energy than that at 90°. Such sandwich stacking configurations are 

reminiscent of those seen for many discotic systems.210, 304 
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Figure V-4. (a) Low-lying stacked dimers of 12-14 and associated binding energies (red, 

in kcal mol–1) and intermolecular coordinates. Hydrogen atoms have been removed for 

clarity. (b) Definition of intermolecular stacking coordinates: stacking distance (h),   

displacement distance (∆d), and orientation angle (α). 

 

 

5.3.3. Stacking of contorted polycyclic aromatics  

To understand the stacking interactions of contorted molecules, we first extended 

coronene (12) to a hypothetical planar version of c-HBC (see Figure 5a). The interaction 

energy of a stacked dimer of this hypothetical planar c-HBC was then computed as a 

function of h and Δd (see Figure B-3). A parallel-displaced configuration was identified 

as the minimum energy structure (see Figure 5a) with h = 3.25 Å and Δd = 1.6 Å. The 

corresponding interaction energy, relative to the isolated planar monomers, is 42.9 kcal 

mol-1.  This highly favourable interaction energy, which is more than twice that of the 

coronene dimer, can be attributed to the introduction of favourable parallel displaced 

stacking geometries305 between the peripheral benzo rings.       
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This idealized stacking interaction between hypothetical planar versions of c-

HBC can be contrasted with the lowest-lying stacked conformation of the relaxed (i.e. 

contorted) c-HBC dimer (see Figure 5b). Overall, the interaction energy is 8 kcal mol–1 

less favourable for the stacked dimer of contorted c-HBC compared to the hypothetical 

planar version. This reduced interaction energy runs counter to the concept that 

increasing curvature in nested π–π interactions leads to more favourable stacking 

energies,268 and can be attributed to a number of competing effects.  First, for the 

contorted c-HBC dimer the coronene cores adopt an eclipsed sandwich configuration, 

which, at this stacking distance, results in a 3.6 kcal mol–1 loss in interaction energy 

compared to the more favourable parallel-displaced configuration (see Figure B-4).  Two 

other, inter-related factors also reduce the interaction energy: intermolecular steric 

hindrance between the peripheral benzo rings and a larger stacking distance between the 

coronene cores in the case of the contorted c-HBC.  These effects are partially offset by 

favourable intermolecular interactions of the peripheral benzo rings, which exhibit 

nearly ideal parallel displaced stacking interactions.305  Finally, comparing the binding 

energy for the c-HBC dimer (33.5 kcal mol–1) with the interaction energy, we see that 

there is 1.4 kcal mol–1 of strain energy in the two c-HBCs in the stacked dimer.  This 

results from distortions of the two monomers, as reflected in the difference in distances 

between the coronene cores (3.62 Å) and between the centroids of the benzo rings (4.04 

Å). 
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Figure V-5. (a) Stacked dimer of a hypothetical planar version of c-HBC, along with the 

interaction energy in kcal mol–1. (b) Fully optimized stacked dimer of c-HBC (UD1 

configuration; see Figure 6), along with the interaction energy in kcal mol–1. The red 

arrow indicates one of six intermolecular steric interactions between benzo rings. 

Hydrogen atoms have been removed for clarity. 

 

 

The two stacked dimers shown in Figure 5 can be considered limiting cases for 

stacking interactions of the contorted molecules 2-11, since the curvature of these other 

systems lie between those two extremes. That is, as the monomers become more planar, 

we anticipate a gradual shift from the eclipsed stacking seen in Figure 5b to a parallel 

displaced configuration as in Figure 5a. However, the stacking interactions of 2-11 are 

slightly more complex, given the presence of heteroatoms, the existence of different 

monomer conformations, and the possibility of multiple distinct stacking configurations 

depending on the symmetry of the monomers.    

The possible stacking modes that can be adopted by homodimers of 1-11 are 

represented in Figure 6 for molecules in up-down-up-down (UD1-UD6) and saddle (S1-

S2) conformations. Depending on the symmetry of a given conformation, one or more 
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distinct stacked dimers can be built. For example, the UD conformation of c-HBC is of 

D3d symmetry, for which only one stacking configuration (UD1) can be constructed (see 

Figure 5b). In contrast, for the chiral UD conformation of 10, which has C3-symmetry, 

four unique configurations (UD1, UD3, UD4, and UD5) are possible. Data for the most 

energetically favourable stacked dimers of 1-11 are listed in Table 2. In particular, we 

present binding energies for dimers of each of the low-lying conformers, relative to the 

lowest-lying conformation of the separated monomers, as well as relative energies for 

the different configurations of a given contorted molecule. Intermolecular coordinates 

characterizing these complexes are also listed, as defined in Figure 4b. 

 

Figure V-6. Classification of different configurations for stacked dimers of contorted 

molecules in Up-Down-Up-Down (UD1-UD6) and Saddle (S1-S2) conformations. 

Hydrogen atoms have been removed for clarity. 
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Representative structures of favourable stacked dimers are presented in Figure 7 

(coordinates for all computed structures can be found in SI). From the data in Tables 1 

and 2, we see that the lowest-lying monomer conformation always leads to the most 

energetically favourable dimer. That is, the most favourable stacked dimers of 3, 8, 9, 

and 11 feature saddle-like conformations, whereas the other lowest-lying stacked dimers 

are for UD conformations. Compared to dimers of 1, the introduction of either thiophene 

rings or embedded N-B atoms lead to enhanced stacking interactions in all but one case 

(7). These dimers exhibit a mixture of sandwich (∆d ≈ 0) and parallel-displaced 

configurations (∆d >> 0), as well as both eclipsed (α ≈ 0) and staggered (α ≈ 60) 

orientations. However, within these data there are a number of general trends. 

First, considering only the UD1 conformations of these stacked dimers, there is 

still a mixture of sandwich and parallel-displaced configurations (by construction, UD1 

will always be eclipsed). In general, the preference for sandwich configurations is 

associated with greater curvature of the monomers, larger stacking distances (h), and 

weaker overall binding (e.g. UD1 dimers of 1, 2, 7, and 10).  For other UD1 dimers, the 

stacking is more compact and parallel-displaced configurations are preferred. For 

instance, for 5 and 11, which are considerably more planar than 1, the stacking distances 

(3.23 and 3.34 Å, respectively) are similar to those seen for the hypothetical planar c-

HBC dimer (Figure 5a). These two dimers exhibit large parallel displacements (∆d = 

1.24 Å in both cases) and binding energies far exceeding 40 kcal mol-1.  
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Table V-2: Binding energies (relative to the most stable conformation of the 

corresponding monomers) as well intermolecular coordinates of low-lying 

conformations of stacked dimers of 1-11.a 

a Stacked dimers within 3.0 kcal mol–1 of the global minimum energy structure are 

shown. 

 

Mol Config. Ebind Erel ∆d h α 

1 UD1 33.5 0.0 0.00 3.62 0 

2 UD1 40.6 0.0 0.12 3.53 0 

 S2 40.5 0.1 0.25 3.40 70 

 S1 39.5 1.1 0.27 3.51 8 

3 S1 40.5 0.0 0.86 3.55 5 

 UD1 38.7 1.8 0.93 3.42 0 

 S2 38.5 2.0 0.26 3.52 47 

 UD2 38.1 2.4 0.06 3.53 59 

4 UD2 36.5 0.0 0.45 3.28 60 

 UD1 36.3 0.2 0.78 3.32 0 

5 UD1 44.3 0.0 1.24 3.23 2 

 UD2 43.5 0.8 0.67 3.27 58 

6 UD2 42.9 0.0 0.56 3.28 61 

 UD1 40.5 2.4 0.90 3.30 1 

7 UD2 32.5 0.0 0.10 3.60 60 

 UD1 32.2 0.3 0.06 3.58 1 

8 S2 44.2 0.0 0.36 3.39 74 

 S1 42.0 1.8 0.34 3.48 12 

9 S2 39.7 0.0 0.32 3.48 75 

 S1 38.6 1.1 0.34 3.52 1 

 UD2 38.0 1.7 0.03 3.49 59 

 UD1 37.4 2.3 0.88 3.40 0 

10 UD5 42.0 0.0 0.02 3.59 60 

 UD4 40.6 1.4 0.00 3.53 56 

 UD3 40.5 1.5 0.00 3.60 60 

 UD1 39.5 2.5 0.00 3.54 1 

11 S1 43.6 0.0 0.23 3.49 4 

 UD1 43.4 0.2 1.24 3.34 0 

 UD3 42.2 1.4 1.21 3.32 0 

 UD6 41.4 2.2 1.23 3.33 60 

 UD2 41.0 2.6 1.16 3.36 60 
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For the saddle-like dimers (S1 and S2), one important trend that emerges is that 

thiophene-containing c-HBC derivatives with sulfurs facing away from each other 

engage in stronger stacking interactions than those in which the sulfurs face toward each 

other (e.g. 2 vs 3 and 8 vs 9).306 Close examination of these saddle-like dimers reveals 

that the highly favourable stacking interactions exhibited by 2 and 8 may derive from the 

more favourable interactions between peripheral thiophenes (see Figure 7b). For 

example, comparing 8 and 9, the symmetry and structures of these molecules (which is 

impacted by the different steric interactions around the periphery of each monomer) lead 

to a much closer, head-to-head stacking interaction between thiophenes in the former 

case, compared to the more distant tail-to-tail interaction in the latter case.  The former 

interaction between thiophenes has been demonstrated to be the low-lying displaced 

stacking mode for thiophene dimers.307 

 

Figure V-7. a) Representative lowest-lying conformations of stacking dimers of 1-11; b) 

comparison of stacked dimers of 8 and 9.  Also shown are the relative orientations of the 

stacked thiophenes present in these two dimers. Most hydrogen atoms have been 

removed for clarity. 
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Overall, most of these contorted molecules exhibit two or more 

thermodynamically accessible stacking motifs, which, when combined with the myriad 

intermolecular interactions occurring in the solid state, will likely lead to complex 

packing arrangements. For instance, for 10 and 11, which contain three and six 

thiophene rings, respectively, there are four unique UD dimers that can be constructed 

and all four are thermodynamically accessible. This presumably underlies the 

observation of Mullen and co-workers272 of different disordered polymorphs of 11. The 

existence of multiple polymorphs of these contorted molecules in the solid phase is more 

universal than can be seen solely from considering isolated stacked dimers. For instance, 

even for 1 (c-HBC), for which we predict a single thermodynamically accessible dimer 

configuration, multiple crystalline polymorphs can be observed,291 including many with 

non-stacked configurations. Similarly, while isolated dimers of 8 are predicted to exhibit 

a strong preference for saddle stacking configurations, as noted above the crystal 

structure of alkylated versions of 8 exhibit a mixture of conformations within columnar 

stacks.274 While such packing motifs cannot be explained by the present results, we note 

that the A-A portions of this packing motif feature 8 in the S2 configuration identified 

here as being the most favourable. 

 

5.3.4. Stacking of [n]circulenes 

Finally, we turn to the [n]circulenes, which provide a somewhat simpler 

framework for probing the impact of inherent curvature on stacking interactions.  

 Although the circulenes all adopt a single saddle-shaped conformation, a number 
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of potential non-covalent dimer configurations are possible; the relative stability of these 

configurations varies with the size and curvature of the systems.  Optimized dimers of 

15-18 are shown in Figure 8, along with predicted binding energies.  For 15, two stacked 

energy minima were identified corresponding to parallel displacements along different 

directions, with the former being more favourable by 2.2 kcal mol–1.  

 

Figure V-8. Non-covalent dimers of [n]circulenes 15-18 along with computed binding 

energies in kcal mol–1. Hydrogen atoms have been removed for clarity. 

 

 

For the larger [n]circulenes (n > 7), the dimers fall in three main classes: the 

nested stacked configuration (e.g. the lowest-lying dimer of 16), the edge-to-edge (or 

elephant seal)308 configuration (e.g. the lowest-lying dimer of 17), and the up-down 

edge-to-edge configuration (e.g. the lowest-lying dimer of 18). Considering only the 

nested dimer configuration, the curvature exhibited by the [n]circulenes initially leads to 
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enhanced stacking interactions (i.e. the binding energy is more favourable for 15 and 16 

than for coronene).  However, with further increased curvature there is a rapid decline in 

the strength of stacking interactions. For 18, the curvature is so severe that close 

association is not possible in this nested stacking configuration and the corresponding 

binding energy is only 12.2 kcal mol–1.  Second, turning to the two edge-to-edge 

configurations, both elephant seal and up-down edge-to-edge configurations become 

possible with 16. As the size of the circulenes increases, the binding energy in the 

elephant seal configuration is maximized at 17, while that of the up-down edge-to-edge 

configuration continues to increase through 18. The net result is a gradual transition of 

the lowest-lying configuration from nested to elephant seal to up-down edge-to-edge 

going from 15 to 18. This trend is a simple consequence of the increasing curvature of 

the successively larger circulenes. The structures of [9]circulene (17) and [10]circulene 

(18) are too contorted to provide sufficient contact surface area in the nested 

configuration; however, the sides of 17 and 18 are flatter then the top surface, allowing 

for more significant surface area contact in the two edge-to-edge configurations. 

Moreover, the two edge-to-edge configurations exhibit favourable intermolecular T-

shaped interactions225, 309, 310 that further enhance their interaction.  

Considering the lowest-lying configuration for each system, the overall trend is a 

gradual decrease in binding energy going from 15 to 18. In other words, whereas 

curvature typically enhances stacking interactions, overly curved molecules do not 

always exhibit sufficiently complementary shapes to allow for strong binding. 
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5.4 Conclusions 

Stacking interactions between curved polycyclic aromatic hydrocarbons 

represent a key frontier in the march toward a general understanding of stacking 

interactions in aromatic systems.  Among curved systems, doubly-concave or saddle-

shaped molecules present a particularly attractive area of study, since they can introduce 

curvature into stacking interactions in the absence of a net molecular dipole moment. We 

presented dispersion-corrected DFT data on the low-lying conformations of 18 saddle-

shaped molecules as well as their stacked dimers. In general, the introduction of 

thiophene units and B/N substitutions into c-HBC results in stronger predicted stacking 

energies, and nearly all of the contorted polycyclic systems considered exhibit multiple 

thermodynamically accessible dimers. Among the [n]circulenes, the preferred interaction 

mode changes with the size of the system.  [7]circulene stacks most favourably, and is 

the only curved circulene to stack more strongly than the planar coronene (i.e. 

[6]circulene); the excessive curvature of the larger circulenes precludes close association 

in a nested configuration, and the larger circulenes favour other stacking geometries.  

Together, these data provide insights into the propensities of these saddle-shaped 

molecules to form stacked dimers, and serve as a reminder that the impact of curvature 

on stacking interactions is complex. Most importantly, the introduction of curvature does 

not always lead to stronger binding. Ultimately, even though the solid state packing of 

these contorted molecules cannot be explained based solely on isolated stacked 

homodimers, the present results constitute a key step toward a better understanding of 

the supramolecular assembly and packing of these molecules. 
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CHAPTER VI 

SUMMARY AND CONCLUDING REMARKS 

 

This dissertation highlights the significant role of computational chemistry in 

understanding and predicting properties and functions of molecular systems, especially 

asymmetric catalysis and polycyclic aromatic hydrocarbon self-assembly systems. 

Overall, our computed results are in very good agreement with the experimental data, 

upon which our computational model can further elucidate the mechanism of the system 

or propose novel structures. For the asymmetric catalysis projects, our computational 

toolkit opens the door to the automated computational catalysts design, while in the 

curved polycyclic aromatic hydrocarbon projects, our study identifies the key 

interactions governing packing organization as well as the complex relationship between 

stacking interactions and molecular structures.      

 In the first part of this dissertation, we presented our work on developing a 

computational toolkit that automatically screens potential catalysts for a given 

asymmetric reaction as well as applications of that toolkit on transition metal or pure 

organo- catalysis. First, we explained the detailed workflow of our computational 

toolkit, AARON, that can 1) automatically build TS guesses structures involving 

different configurations for catalytic reactions, 2) locate TS structures with precise error 

control and geometry vetting, 3) search conformers in a parallel and hierarchical way, 

and 4) predict selectivities through a Boltzmann weighting of all accessible TSs or 

reaction paths. Example applications demonstrated that AARON is effective for 
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predicting selectivities for complex reactions involving multiple key TS structures or 

stereodetermining steps.  

Next, we have shown a detailed example of using AARON to study mechanisms 

of Rh-catalyzed asymmetric hydrogenation reactions for five C2-symmetric phosphorus 

ligands. For each ligand there are two key steps, each containing mutliple configurations 

and conformations. To this end, AARON optimized 251 TSs across those two steps. The 

predicted selectivities agreed very well with the experimental data. Free energy profiles 

from these reactions showed that the mechanism varies with the different ligands, in 

contrast with decades of work on these reactions. Inspired by the critical non-covalent 

interaction operative in the key transition states, we designed a new ligand for this 

reaction predicted to provide both higher selectivity and reactivity. 

In the second part of this dissertation, we turned to packing of curved polycyclic 

aromatic hydrocarbons. First, Density functional theory, symmetry-adapted perturbation 

theory, and classical molecular dynamics simulations were used to understand the local 

orientations within columnar stacks of four bowl-shaped molecues, sumanene, 

sumaneneone, sumanenedione, and sumanenetrione. Reliable quantum chemical 

computations on stacked dimers and trimers of these molecules reveal that all four 

systems prefer staggered configurations. The tendency of sumanenetrione to pack in an 

eclipsed configuration in the bulk materials was explained based on repulsive 

intercolumnar O···O interactions that override the inherent tendency of stacked columns 

to be staggered. Sumanenedione, for which crystal structure data are not available, was 

predicted to exhibit columnar packing with mixed staggered and eclipsed orientations. 
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Next, we present a systematic computational analysis of the conformations and 

stacking interactions of a set of 18 saddle-shaped, contorted polycyclic aromatic 

compounds. Computations reveal wide variations in both the nature of the low-lying 

conformations and the stacking affinities of these systems. In particular, the introduction 

of both thiophene rings around the periphery of these systems and the incorporation of B 

and N atoms into the coronene core can greatly enhance their tendency to form strongly 

stacked dimers. Overall, these data provide a reminder that curvature does not always 

lead to stronger stacking interactions. 
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APPENDIX A  

 

 

Figure A-1. Boltzmann weighting for multiple reaction pathways. 

 

In this series of reactions, there are many thermodynamically accessible 

pathways leading to both the major and minor stereoisomers, and we assume rapid 

interconversion between intermediates that lie between TS1 and TS2 (as long as the 

intermediates correspond to the same mechanism and same stereoisomer).  The possible 

different pathways were identified as follows. Figure A-1(a) shows hypothetical relative 

free energies for TS1 and TS2. Solid lines represent TS structures corresponding to α-

carbon first pathways, while dash lines represent the β-carbon first TS structures. 

Following traversal of TS1, each pathway can pass through at least two potential 
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configurations of TS2. For TS2, blue lines indicate TS2α1 or TS2β1, while red lines 

indicate TS2α2 and TS2β2.  Connection between TS1 and TS2 exist only for lines with 

the same type (both solid or both dashed).  In this way, all possible pathways can be 

enumerated.  

For the Boltzmann weighting over these pathways, we consider the α-carbon first 

and β-carbon first mechanisms separately (Figure A-1b). For the pathways for a given 

mechanism, the reaction can pass through any combination of the different 

configurations for TS1 and TS2. In cases in which the second step is lower in free 

energy than the first step, that second step (lines marked with a red “X” in Figure A-1b) 

can never be stereodetermining, while all other transition states impact the overall rate of 

formation of  a given stereoisomer (transition states within the black border in Figure A-

1b). Performing a Boltzmann weighting over these TS structures and summing over the 

two possible mechanisms (α-first and β-first) we can get the Boltzmann weighted ee’s by 

the following equation, 

𝑒𝑒 =
∑ ∑ 𝑒∆∆𝐺(𝑅)/𝑅𝑇

𝑡𝑠𝑀 −∑ ∑ 𝑒∆∆𝐺(𝑆)/𝑅𝑇
𝑡𝑠𝑀

∑ ∑ 𝑒∆∆𝐺(𝑅)/𝑅𝑇
𝑡𝑠𝑀 +∑ ∑ 𝑒∆∆𝐺(𝑆)/𝑅𝑇

𝑡𝑠𝑀
  

in which ∆∆G(R) and ∆∆G(S) are free energy barriers for transition states relative to the 

lowest-lying transition state for R and S enantiomers, respectively. Σts represents a sum 

over all the transition states as described above, ΣM represents a sum over the α-carbon 

and β-carbon first the mechanisms. 
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APPENDIX B  

 

 

Figure B-1. Relative energy of sumanenetrione at ϕ = 0° as the function of bowl-to-bowl 

distance and the fitting of a 5th order polynomial.  
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Figure B-2. Initial geometries for MD simulations of sumanenetrione 4 (top) and 

sumanene 1 (bottom). 128 molecules (4*4*8) were input for each molecule. Left: side 

view for four columns (for molecule 2-4 neighboring columns are in opposite direction; 

for molecule 1 columns are in unidirection.); Middle: top view; Right: side view of 

single column (30° orientation between neighboring molecules). 
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To make sure that the system has reached an equilium, the orientation angle distribution 

between neighboring molecules was monitored for 10 ns after the production run.  

 

Figure B-3. Angle distribution as a function of time within 10 ns following production 

run for sumanenetrione 4.  
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Figure B-4. Construction of a cluster model involving both intracolumnar and 

intercolumnar interactions a) 11-molecule cluster extracted from the last snapshot of MD 

production run; b) Replacement of each monomer with the DFT optimized monomer, 

keeping the center of mass and relative orientations of each monomer the same as the 

MD simulation; c) Rotating the central monomer in the cluster to screen the interaction 

energy as a fuction of local orientation anle (ϕ), relative to the staggered configuration 

(ϕ=0); d) Definition of the relative orientation angle (ϕ) of middle monomer in the 

central trimer of selected cluster.   
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Figure B-5. Extended PES screen for sumaneneone 2 and sumanenedione 3 dimers with 

orientation angle from 0° to 180°. Top: sumaneneone 2; Bottom: sumanenedione 3.  
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Figure B-6. jun-cc-PVDZ SAPT0 interaction energy of stacked dimers of 1 – 4 as a 

function of the local orientation angle (ϕ), relative to the staggered configuration (ϕ = 0) 

for each dimer. This plot is closely essemble the B97D/TZV(2d,2p) interaction energy 

plot in Figure 2a 
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Figure B-7. jun-cc-PVDZ SAPT0 induction component of stacked dimers of 1 – 4 as a 

function of the local orientation angle (ϕ), relative to the staggered configuration (ϕ = 0) 

for each dimer. 
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Figure B-8. SAPT interaction energies and SAPT components for stacked dimers of 2 

(top) and 3  (bottom) over orientation angles from 0° to 180°. 
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Figure B-9. B97D/TZV(2d,2p) interaction energy of stcked trimers of 4 as a function of 

the local orientation angle (ϕ), relative to the staggered configuration (ϕ=0). This result 

indicate that three-body stacking term can’t give rise to the preference of eclipsed 

configuration in sumanenetrione 4 stacking structures.  
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Figure B-10. Snapshots of one selected column after 100 ns production run of the MD 

simulation for molecules 1-4. Orientation angle can be seen from the figure as 1: ~60°, 

2: 60°, 3: ~180°, 4: 0°.  
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Figure B-11. Snapshots after 100 ns production run of the MD simulation for molecules 

1-4.   
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Figure B-12. Full orientation angle distribution from 0° to 360° for unsymmetrical 

molecules sumaneneone 2 and sumanenedione 3.  
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Figure B-13. Extended screened relative potential energy surface for clusters composed 

of 11 molecules. Top: sumaneneone 2; Bottom: sumanenedione 3.  
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APPENDIX C  

 

 

Figure C-1. Optimized structures of molecules 1 – 14. 
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Figure C-2. Optimized structures of molecules 15 – 18. 

 


