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ABSTRACT

We propose novel methods to tackle two problems: the misspecified model with mea-

surement error and high-dimensional binary classification, both have a crucial impact on

applications in public health.

The first problem exists in the epidemiology practice. Epidemiologists often categorize a

continuous risk predictor since categorization is thought to be more robust and interpretable,

even when the true risk model is not a categorical one. Thus, their goal is to fit the categorical

model and interpret the categorical parameters. We address the question: with measurement

error and categorization, how can we do what epidemiologists want, namely to estimate the

parameters of the categorical model that would have been estimated if the true predictor was

observed? We develop a general methodology for such an analysis, and illustrate it in linear

and logistic regression. Simulation studies are presented, and the methodology is applied to

a nutrition data set. Discussion of alternative approaches is also included.

For the second project, we consider the problem of high-dimensional classification between

the two groups with unequal covariance matrices. Rather than estimating the full quadratic

discriminant rule, we propose to perform simultaneous variable selection and linear dimension

reduction on original data, with the subsequent application of quadratic discriminant analysis

on the reduced space. In contrast to quadratic discriminant analysis, the proposed framework

does not require estimation of precision matrices and scales linearly with the number of

measurements, making it especially attractive for the use on high-dimensional datasets. We

support the methodology with theoretical guarantees on variable selection consistency, and

empirical comparison with competing approaches. We apply the method to gene expression

data of breast cancer patients and confirm the crucial importance of the ESR1 gene in

differentiating estrogen receptor status.

Further, we provide software support for the proposed methodology. We develop two

ii



R packages, CCP and DAP, and present two vignettes as long-format illustrations for their

usage.
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1. INTRODUCTION

In this manuscript, we propose novel methods for solving problems in public health. To

be more specific, we focus on nutrient-based analysis of disease risk and genetic-based dis-

criminant analysis of complex human diseases. Although motivated by the realistic problems

from public health, our approaches are general and can be adapted into different contexts

and areas.

This manuscript contains my work for two major projects and their supportive software

vignettes. In the first project, we propose a method to analyze the relationship between

extrinsic factors, or called environmental factors, and diseases. In the second project, we

propose a method to deal with the relationship between intrinsic factors, i.e., genomic infor-

mation, and complex human diseases. The next two chapters provide a concrete illustration

for the two R packages we built for the proposed methods. Combining the environmental

factors and the genetic factors together to understand disease schemes is the future work.

The idea of proposing a novel semiparametric method to improve current estimators, when

the distributions of environmental and genetic factors are hard to model, is discussed in the

conclusion part.

The motivation for the first project is that misspecified models are widely used in epidemi-

ology, with measurement error existing in it. Epidemiologists tend to categorize a continuous

risk predictor because the categorical model is thought to have better interpretation and ro-

bustness. For example, Reedy et al. (2008, 2010) categorize food scores, defined to measure

diet habit, to analyze the dietary pattern with colorectal cancer risk; Arem et al. (2013)

categorize the Healthy Eating Index 2005 into quintiles to analyze the relationship between

dietary pattern and pancreatic cancer risk. Besides epidemiology, the categorical model is

also used widely in many other research areas. In environmental health studies, Chaix et al.

(2016) analyze the relationship between built environments and walking trips, in which they
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categorized age, income, distance covered in the trip into categories; Evenson et al. (2016)

analyze the association of physical activity and sedentary behavior with all-cause and car-

diovascular mortality, in which age, household income, body mass index, minutes of physical

activity per day and so on are categorized; Wang et al. (2016) investigate the association

of long-term exposure to traffic pollution with markers of atherosclerosis in an all-African

American cohort, where household income is categorized in the model.

However, such categorization makes the model misspecified: the specified parametric

family of probability distribution may be incorrect, especially when there are other covari-

ates than the categorized predictor, which are also related to the response in the continuous

model. White (1982) shows that when the model is misspecified, the quasi-maximum like-

lihood estimator converges to a limit, which is what epidemiologists interested in. When

measurement error exists within the observed predictor, however, things become compli-

cated.

Measurement error is common in epidemiology, while ignoring it may lead to poor in-

ference quality. For example, the data from Eating at America’s Table Study (Subar et al.,

2001) is collected by questionnaire, only observed in a short time period. Thus, measurement

errors may come from inaccurate recalls and daily variations, and the true risk predictor -

obtained by the daily average over a long term- is not feasible. Other nutrient-based data

may also share the same problems, since the underlying true nutrition intake cannot be ob-

served directly. Ignoring the errors and using observed data without adjustment may cause

problems in the misspecified model. Thus, the goal of the first project is to study the effect of

measurement error existing in a misspecified model, especially for categorizing a continuous

predictor.

In Chapter 2, we show how to obtain consistent estimates of what epidemiologists would

have obtained when the true risk predictor is observed, and develop consistent standard

errors, thus correct inferences. Technical background, methodology, simulation studies and
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application on EATS data are presented.

The second project is motivated by the high-dimensional data and the difficulties in its

analysis, such as genetic data analysis for complex human diseases, e.g., cancers, diabetes

and cardiovascular diseases. The major feature of this kind of data is small sample and

high-dimensional, which means the number of features per observation is much more than

the number of observations, or the total sample size. In this case, most of the classical

statistical methods are challenged, either facing mathematical or computational issues, or

cannot maintain the optimal results.

In this project, we focus on high-dimensional binary classification problem, a supervised

learning. For example, given two groups of people, diseased and non-diseased, we are able

to learn a classification rule through training the genomic information data with the group

label and classify a new observation into one of the two groups based on the rule. Moreover,

the proposed approach is general and can be used in any cases wherever binary classification

is needed for high-dimensional data.

Classical methods achieve satisfactory results in the large sample, low-dimensional sce-

nario, including quadratic discriminant analysis (QDA) and linear discriminant analysis

(LDA). QDA and LAD are both generated from the Bayes rule, which assigns a new ob-

servation to the group that maximize the production of prior probability and population

density. Under the normality assumption, assuming equal variability in two groups leads

to the linear decision boundary (LDA), otherwise leading to a quadratic decision boundary

(QDA). QDA is more flexible because it does not assume the equal covariance matrix in two

groups. However, both QDA and LDA work poorly in high-dimensional cases.

Moreover, the classification rule of QDA is very likely to suffer from the singularity of

sample covariance matrix when p > n, due to the inversion required in the classification

rule. Recently, QDA and LDA have been extended by sparse and regularized techniques.

However, those approaches either required specific assumptions on covariance matrices or
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computationally slow, due to the need of estimating a p× p matrix.

In Chapter 3, we propose new sparse quadratic classification rules, which assume unequal

covariance matrices for two groups, while maintaining the computation efficiency. Thus, we

start from Fisher’s LDA and extended the projection idea into two directions. Since the

number of parameters need to be estimated is linearly in p but not p2, we are able to derive

efficient algorithm which estimate the projection direction as well as perform variable selec-

tion simultaneously. The proposed method only requires inverting a 2× 2 matrix instead of

n×n, and thus it is very likely to be full rank. Technical background including optimization,

algorithm, theoretical proof for variable selection consistency and empirical study results are

presented in the chapter.

In Chapter 4 and 5, we present vignettes for two R packages built for the two projects:

CCP (Categorizing a Continuous Predictor), and DAP (Discriminant Analysis via Projec-

tion). Though manuals are provided within R packages, these two vignettes illustrate the

usages of the packages from different aspects. First, they provide very brief methodology

summary for readers who would like to use the packages without look into details of the first

two chapters, which is more convenient from a practical aspect. Second, through showing

the real data examples reported in the first two chapters, the two vignettes offer more details

to support the analysis and conclusions based on proposed methods. Further, the usage of

functions are presented with more concrete explanations.

Finally, the overall summary and conclusions are presented, and the ongoing project is

discussed. To analyze the effect of gene-environment interactions on complex human disease,

we propose a novel semiparametric method to improve current estimators for the case-control

study using retrospective likelihood framework, allowing the distributions of environmental

and genetic factors to be nonparametric.
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2. CATEGORIZING A CONTINUOUS PREDICTOR SUBJECT TO MEASUREMENT

ERROR

2.1 Introduction

Fitting models by categorizing a continuous risk predictor is a common practice in epi-

demiology. Among many recent examples, see Reedy et al. (2008, 2010); Arem et al. (2013);

Chaix et al. (2016); Evenson et al. (2016) and Wang et al. (2016). A look at current issues

of epidemiology journals will uncover many more examples. An important issue is that,

generally in these problems, there are many covariates other than the main risk predictor.

The appeal of categorization in interpreting results is clear. If we have a risk predictor

X, and we categorize it into J levels (C1, ..., CJ), one can compare the highest level of the

predictor, CJ , to the lowest level, C1, and if they are statistically significantly different, one

can then conclude that it is better to be in the class that has the lowest risk, and quantify

how much better.

One technical issue about this approach concerns the case that there are other covari-

ates than X, say Z. Consider a binary response, Y , let H(·) be the logistic distribution

function, and suppose that the true risk model in the continuous scale is pr(Y = 1|X,Z) =

H{m(X,Z,β)} for some function m(·). Then, if any of the covariates Z are related to Y

in this continuous model, categorizing X into J levels and plugging that into m(X,Z,β)

leads to a misspecified model. As White (1982) shows, this leads to the question of how the

categorized model actually relates to disease, which is not the simple characterization given

in the previous paragraph.

Our point is not to try to get epidemiologists to change their common practice. Instead,

we study the effect of measurement error when a continuous predictor variable subject to

measurement error is categorized. Our goal is to answer the question: with measurement
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error in this context, how can we (a) obtain consistent estimates of what epidemiologists

would have obtained if X were actually observed; and (b) develop consistent standard errors.

We answer the question above in a general way. Section 2.2 gives basic technical back-

ground. Section 2.3 provides a general methodology for answering questions (a) and (b)

above. Section 2.4 presents simulation studies for linear and logistic regression that show

the good behavior of our methodology, both in terms of bias and confidence interval cov-

erage. Section 2.5 shows applications of our approach by using data from the Eating at

America’s Table Study (Subar et al., 2001). Section 2.6 presents a discussion about other

potential approaches to categorization and how those approaches compare to ours. Sketches

of technical arguments are in the supplementary material.

Remark 1. As discussed above, categorization leads to a misspecified model. It is also

well-known that such categorization generally leads to differential measurement error (Fle-

gal et al., 1991; Gustafson, 2004; Buonaccorsi, 2010), and thus additional complications over

simply fitting a measurement error model. Chapters 6.1-6.2 of Gustafson (2004) has a de-

tailed discussion when the continuous variable is dichotomized, calling the result differential

by dichotomization. We are thus assuming that the true risk model in a continuous variable

X is not categorical in X. If it were, consult Gustafson (2004) and Buonaccorsi (2010),

who also discuss the issue of doing a measurement error analysis in this case, especially the

difficult complex issues of computation and identifiability both theoretical and practical.

2.2 Data generating mechanism and basic Ideas

2.2.1 Illustration: a special case of linear regression

It is instructive to consider a special case, namely linear regression. Doing so will set

the stage for our general method. The response is Y , the scalar predictor subject to error is

X, the observed scalar predictor is W , there are predictors Z measured without error, and

we define Z̃ = (1, ZT)T to allow for an intercept. The regression model in the continuous
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predictor X is Y = Xβ1 + Z̃Tβ2 + ε, where ε is mean zero independent of (W,X,Z). There

are j = 1, ..., J categories (C1, ..., CJ), and M(X,Z) = {I(X ∈ C1), ..., I(X ∈ CJ), ZT}T. If

X could be observed, then we would also immediately obtain an estimate of β = (β1, β
T
2 )T.

By White (1982), when X is observed, what epidemiologists estimate by using the cate-

gorized M(X,Z) is Θ, where, based on the normal equations for the categorized predictor,

Θ = (θ1, ..., θJ ,ΘT
J+1)T is the solution to

0 = E[M(X,Z){Y −MT(X,Z)Θ}] = E[M(X,Z){Xβ1 + Z̃Tβ2 −MT(X,Z)Θ}]. (2.1)

The estimate Θ̂ is the solution to 0 = n−1∑n
i=1M(Xi, Zi){Yi −MT(Xi, Zi)Θ}, and this is

a consistent estimate of Θ. Comparisons between categories j and k for j, k ≤ J , say, are

θ̂j − θ̂k.

However, when X is not observable, estimating the solution to (2.1) has to be based

solely on (Y,W,Z). In (2.1), it makes sense that if one believes the true regression model is

linear in (X,Z), then, at some point, an estimate of β can be obtained via a measurement

error analysis if there are sufficient data to do so.

Solving (2.1) based only on the observed W though is not so easy, and it is clear that

some part of the relationship between W and X given Z is going to need to be specified, as

it needs to be to do a general measurement error analysis. One way to do this is to define

G(X,Z,Θ,β) = M(X,Z){Xβ1 + Z̃Tβ2 −MT(X,Z)Θ}, (2.2)

and then define Q(W,Z,Θ,β) = E{G(X,Z,Θ,β)|W,Z}. Since 0 = E{Q(W,Z,Θ,β)}, Θ

can be estimated by solving

0 = n−1∑n
i=1

[
E{M(X,Z)(Xβ1 + Z̃Tβ2)|Wi, Zi} − E[{M(X,Z)MT(X,Z)}|Wi, Zi]Θ

]
.

Hence, in this simple case, for j = 1, ..., J we will need to be able to calculate expectations
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of XI(X ∈ Cj) given (W,Z) and the probability that X ∈ Cj given (W,Z). As we will see,

in general problems, we will need to estimate the expectations of other functions of X given

(W,Z).

So, to summarize, to get a general solution, it appears that we will need to estimate

(β1, β2) by a measurement error analysis and estimate expectations of specified functions of

X given (W,Z).

Remark 2. Following on Remark 1, it is obvious that in the unlikely event that the true risk

model is actually categorical in X, so that E(Y |X,Z) = MT(X,Z)β, then model misspec-

ification and differential measurement error both disappear, and one really needs just the

probabilities that X is in the categories given (W,Z). As Gustafson (2004) and Buonaccorsi

(2010) discuss in detail, estimating such models is difficult because of model identifiability

concerns. Often, papers dealing with this issue assume the existence of a validation data

set, where X is actually observed on a subset of the data. Gustafson (2004) is a particu-

larly good source for the difficulties we have mentioned and remedies using replication data.

Buonaccorsi (2010), page 314, who states that estimating the misclassification rates is "most

likely coming from internal validation data" and also has a nice discussion.

2.2.2 Assumptions

Our algorithm is basically the same as in Section 2.2.1

Our work is very general, and requires three basic assumptions. We let X be the con-

tinuous predictor subject to measurement error, Z covariates measured exactly, W the mis-

measured version of X, and Y the response.

Assumption 1. When X is observed, the true response model in the continuous scale has

parameters β, such that there is an estimating function, Φtrue(Y,X,Z,β) that identifies β

and satisfies

0 = E{Φtrue(Y,X,Z,β)|X,Z}. (2.3)
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Assumption 1 occurs in at least two circumstances.

Example 1.

(A) There are functions m1(X,Z,β) and m2(X,Z,β) such that E(Y |X,Z) = m1(X,Z,β)

and the unbiased estimating function that would be used if X were observable is

Φtrue(Y,X,Z,β) = m2(X,Z,β){Y −m1(X,Z,β)}. (2.4)

(B) There is a parametric model for Y given (X,Z).

Example 1(A) is very general, in that it includes traditional quasilikelihood models,

nonlinear regression, generalized linear models, probit regression, etc. Crucially, it does not

require a fully parametric model for the distribution of Y given (X,Z).

In our approach, as in linear regression in Section 2.2.1, we may need to obtain informa-

tion about moments of specified functions of X given (W,Z). To do this, we will consider

the setting in which there may be an external data set of N observations giving information

on one set of parameters of the joint distribution, Λext: if there is no external study, N = 0

and Λext does not exist. In addition, there is another set of the parameters, Λint, that is

estimated from the n observations in the internal data set.

Assumption 2. When X is not observed, either (a) the distribution of X given (W,Z)

is known up to parameters Λext and Λint as described above, or (b) there is a function,

G(X,Z,Θ,β) defined at (2.11) below, whose conditional expectation given (W,Z) depends

on parameters Λext and Λint and can be estimated. The parameter Λext cannot be estimated

by internal data, while the parameter Λint can be estimated by internal data. For both, there

are unbiased estimating functions Vext,m(Λext) for the external data and Vint,i(Λint,Λext) for

the internal data such that E{Vext,m(Λext)} = 0 and E{Vint,i(Λint,Λext)} = 0.

For linear regression, G(X,Z,Θ,β) is given in (2.2).
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If there are external data and N > 0, we estimate Λext by solving the estimating equation

0 = N−1
N∑
m=1

Vext,m(Λext). (2.5)

In the internal data set, we estimate Λint by solving an estimating equation

0 = n−1∑n
i=1Vint,i(Λint, Λ̂ext). (2.6)

There is also a very subtle issue that needs to be made explicit.

Assumption 3. If external data are necessary for model identification, the parameter Λext

is transportable in the sense that this parameter is the same in the external and internal data

sets.

The issue of when parameters are transportable from an external data set to the internal

data set is discussed in Chapter 2.2.4-2.2.5 of Carroll et al. (2006). As they state, it is much

better if there are sufficient internal data that external data need not be used, but this is

not always the case.

2.2.3 General observations when X is observed

As argued in Section 2.1, the goal is to fit a model when X is categorized into J lev-

els (C1, ..., CJ), and so we define the dummy variables and Z as M(X,Z) = {I(X ∈

C1), ..., I(X ∈ CJ), ZT}T: our formulation allows more complex forms, including interactions.

Suppose there are i = 1, ..., n subjects in the primary/main/internal study, and suppose fur-

ther that we observe (Yi, Xi, Zi). If X is observed, the analysis done on these categories will

be based on replacing (X,Z) in (2.3)-(2.4) byM(X,Z), and to make clear the categorization,

we define a parameter Θ, set Φcat{Yi,M(Xi, Zi),Θ} = Φtrue{Yi,M(Xi, Zi),Θ}, and obtain

10



Θ̂ by solving

0 = n−1∑n
i=1Φcat{Yi,M(Xi, Zi),Θ}. (2.7)

More complex forms of (2.7) are easily accommodated.

Unlike in Assumption 1 and (2.3)-(2.4), except in the rare case that the categorized

model is actually true, it is easy to see that 0 6= E[Φcat{Y,M(X,Z),Θ}|X,Z], a conditional

expectation. This is a key part of the work in White (1982).

Despite the fact that the categorized model does not fit the data conditional on (X,Z),

by standard estimating equation theory (White, 1982), the estimate formed by solving (2.7)

has a limit as n→∞, Θ, which is the solution to

0 = E[Φcat{Y,M(X,Z),Θ}]. (2.8)

It is important to observe that (2.8) is an unconditional expectation, not a conditional one.

If, instead of observing X, we observe its mismeasured version W , and if we replace X

by W , we will of course generally inconsistently estimate both β and Θ.

2.2.4 Estimating the true parameter β

In our approach, as in Section 2.2.1 for linear regression, we must estimate β in (2.3).

There is of course a large literature on how to do this (Gustafson, 2004; Carroll et al., 2006;

Buonaccorsi, 2010; Yi, 2017). Borrowing on that literature, from Assumptions 1-2, for an

estimating function Φ(Y,W,Z,β,Λint,Λext), the estimate, β̂, is the solution to

0 = n−1∑n
i=1Φ(Yi,Wi, Zi,β, Λ̂int, Λ̂ext), (2.9)

where (Λ̂int, Λ̂ext) are obtained from equations (2.5) and (2.6), respectively. Of course, the

details and the form of Φ(·) differ from case-to-case.
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2.3 Methodology and asymptotic theory

2.3.1 Methodology: general case

The methodology is simple to explain at the general level. The target Θ is defined as

the solution to (2.8). However, we can rewrite (2.8) as

0 = E (E[Φcat{Y,M(X,Z),Θ}|W,Z]) . (2.10)

Define

G(X,Z,Θ,β) = E [Φcat{Y,M(X,Z),Θ}|X,Z] ; (2.11)

Q(W,Z,Θ,β,Λint,Λext) = E{G(X,Z,Θ,β)|W,Z}. (2.12)

Making the usual nondifferential measurement error assumption, i.e., that Y and W are

independent given (X,Z),

0 = E {Q(W,Z,Θ,β,Λint,Λext)} . (2.13)

Critically, (2.13) depends only on the observed covariates. Thus, if we have consistent

estimates (β̂, Λ̂int, Λ̂ext) of (β,Λint,Λext), then a consistent estimate, Θ̂, of Θ solves

0 = n−1∑n
i=1Q(Zi,Wi,Θ, β̂, Λ̂int, Λ̂ext). (2.14)

In some cases, we do not have external data. Thus, we do not have Vext and Λext, and Vint

and Θ only depend on Λint.

Remark 3. The key question is how to compute G(X,Z,Θ,β) in (2.11). In the fully

general case (2.3), we require a parametric model for the distribution of Y given (X,Z), as

in Example 1(B). However, in standard regression models of the form in (2.4) in Example
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1(A), great simplification occurs, because in that case,

Φcat{Y,M(X,Z),Θ} = m2{M(X,Z),Θ} [Y −m1{M(X,Z),Θ}] ,

and thus

G(X,Z,Θ,β) = m2{(X,Z),Θ} [m1(X,Z,β)−m1{M(X,Z),Θ}] .

Section 2.7.4 of the Supplementary Material gives detailed formulae for linear and

logistic regression.

2.3.2 Asymptotic theory

Asymptotic theory for the parameter estimates is easily derived. Let Ω =

(Θ,β,Λint,Λext) and let the true values of the parameters be denoted by Ω.

It is neater notation in this section to let i = 1, ..., n denote the internal data, and

i = n+1, ..., n+N denote the external data. For i > n, define Ψi(Ω) = {0, 0, 0, V T
ext,i(Λext)}T,

while for i ≤ n define

Ψi(Ω) = {QT(Wi, Zi,Θ,β,Λint,Λext),ΦT(Yi,Wi, Zi,β,Λint,Λext), V T
int,i(Λint,Λext), 0}T.

If there are external data, the estimate Ω̂ solves 0 = ∑n+N
i=1 Ψi(Ω̂). If there are no external

data, then N = 0, Ω = (Θ,β,Λint) and the zero element and Λext in the definition of Ψi(Ω)

are removed.

By standard estimating equation results, we have the following results, which are shown

in Appendices 2.7.1.1 and 2.7.1.2.

Lemma 1. If there are external data, i.e., N > 0, make Assumptions 1-3. Suppose that
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N →∞ and n→∞ such that n/N → clim, where 0 < clim <∞. Then

(n+N)1/2(Ω̂−Ω)→ Normal{0, A−1B(A−1)T},

where A = {(1 + clim)/clim}−1E{∂Ψ1(Ω)/∂ΩT}+ (1 + clim)−1E{∂Ψn+N(Ω)/∂ΩT} and B =

{(1+clim)/clim}−1cov{Ψ1(Ω)}+(1+clim)−1cov{Ψn+N(Ω)}. In the definitions of A and B, the

expectation and covariance matrix for Ψ1(Ω) are computed in the internal data, while the

expectation and covariance matrix for ΨN+n(Ω) are computed in the external data. Let Ĉext

be the sample covariance matrix of Ψi(Ω̂) for i = n+ 1, ..., n+N and let Ĉint be the sample

covariance matrix of Ψi(Ω̂) for i = 1, ..., n. Consistent estimates of A and B are easily seen

to be Â = (n+N)−1∑N+n
i=1 ∂Ψi(Ω̂)/∂ΩT and B̂ = {n/(n+N)}Ĉint + {N/(n+N)}Ĉext.

Lemma 2. If there are no external data, i.e., N = 0, make Assumptions 1-2. As n→∞,

n1/2(Ω̂−Ω)→ Normal{0, A−1B(A−1)T},

where A = E{∂Ψ1(Ω)/∂ΩT} and B = cov{Ψ1(Ω)}. In the definitions of A and B, the

expectation and covariance matrix for Ψ1(Ω) are computed in the internal data. Let Ĉint be

the sample covariance matrix of Ψi(Ω̂) for i = 1, ..., n. Consistent estimates of A and B are

easily seen to be Â = n−1∑n
i=1∂Ψi(Ω̂)/∂ΩT and B̂ = Ĉint.

2.4 Simulations: logistic and linear regression

2.4.1 Logistic regression

2.4.1.1 Scenarios

For simplicity, we do our simulations in the case that there is no Z. For logistic regression,

we assume that the true model is

pr(Y = 1|X) = H(β0 +Xβ1) = H{(1, X)β}, (2.15)
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where H(·) is the logistic distribution function. Then we generate data as

W = X + U ; X = Normal(µx, σ2
x); U = Normal(0, σ2

u), (2.16)

where X and U are independent. We set β0 = −0.42 and set β1 = log(1.5) in Table 2.1.

We set (µx = 0, σ2
x = 1, σ2

u = 1), so that the measurement error variance is the same as the

variance of X, and the classical attenuation coefficient is λ = σ2
x/(σ2

x + σ2
u) = 0.50. Solving

(2.8) numerically, we find that Θ = (−0.98,−0.64,−0.42,−0.21, 0.14)T. In both cases, the

main study sample size is n = 500: similar and even more impressive (in favoring our

methodology) results were obtained for n = 1, 000, 2, 000, 3, 000, but the main conclusions

were very similar and so we do not display those results here.

We did simulations in two cases:

1. External-Internal Data: The internal data has no replicates and the external data set

has size N = 300 and K = 2 replicates for each observation. The nuisance parameters

are Λext = σ2
u and Λint = (µx, σ2

x). We estimated σ2
u from the external data with repli-

cates, and estimated µx, σ2
x using the internal data without any replicates. Standard

errors were computed as in Lemma 1.

2. Internal Data Only: The internal data has R = 2 replicates and there are no external

data (K = 0). The nuisance parameters Λ = Λint = (µx, σ2
x, σ

2
u). We estimated

(µx, σ2
x, σ

2
u) from the internal data with replicates. Standard errors were computed as

in Lemma 2.

Section 2.7.4 of the Supplementary Material provides details for implementation.

2.4.1.2 Results

The results given below are similar when the main study sample size n increases to

n = 1, 000, 2, 000 and 3, 000, and thus these are not displayed here. The results are also
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similar when β1 is either smaller or larger. The same qualitative results are also found for

Θ = (θ1, ..., θ5)T individually (results not shown).

We fit the new approach and compare it with the naive method for the both cases

described above. Our main interest is to estimate the log relative risk θ5−θ1, which compares

the effect of the category 5 with the effect of the category 1. In the two simulations, we

computed (a) the log relative risk pretending that X is observed; (b) our method; and (c) the

naive method that ignores measurement error. In the scenario of internal data with R = 2,

the predictor used was the sample mean of the replicates.

Based on 1000 simulated data sets, in Table 2.1, we report the empirical average mean

bias, asymptotic standard error, standard deviation, root mean squared error, and coverage

rate of the nominal 95% confidence interval across the simulations.

Log Relative Risk Analysis
Mean Actual

mean Estimated Standard
Data Method bias Std. Err. Deviation RMSE Coverage
X observed 0.016 0.304 0.301 0.301 95.2%
Ext-Int Data

Our Method -0.005 0.41 0.402 0.402 94.5%
Ignore ME -0.453 0.251 0.256 0.520 0%

Int Data
Our method 0.005 0.361 0.323 0.323 95.9%
Ignore ME -0.287 0.268 0.266 0.391 80.2%

Table 2.1: Simulation study for logistic regression in Section 2.4.1 with sample size n = 500
and, where applicable, the external study has sample size N = 300 and 2 replicates, while
β0 = −0.42, β1 = log(1.5). The target parameter, Θ = (θ1, ..., θ5)T, where θj is the parameter
for the jth category. Displayed are results for the estimation of the log relative risk, θ5 − θ1.
Ext-Int Data is the case that external data are used to estimate the measurement error
variance. Int Data is the case that the internal data have 2 replicates, and the Ignore
ME estimator ignores the measurement error and is based on the mean of these replicates.
Coverage is the coverage rate of nominal 95% confidence intervals. RMSE is the square root
of the mean squared error.
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From Table 2.1, we observe the following.

• The estimator using true X and our method both have little bias and provide near-

nominal coverage.

• The naive estimator that ignores the measurement error is badly biased and attenuated

towards zero. Consequently the coverage probabilities are near-zero and the root mean

squared errors are quite inflated.

• With no internal replicates, i.e., R = 1, the root mean squared error of our method

is naturally higher than if X had been observed, but not quite as high as would be

expected in a continuous analysis. Indeed, in a continuous analysis with attenuation

λ = 0.50, as in our simulation, one would expect a doubling of root mean squared

error.

2.4.2 Linear regression

2.4.2.1 Scenarios

In this section, we do simulations based on simple linear regression with no Z, including

homoscedastic and heteroscedastic cases.

We assume that the true model is

Y = β0 +Xβ1 + ε = (1, X)β + ε, (2.17)

Similarly, we generate data as

W = X + U ; X = Normal(µx, σ2
x); U = Normal(0, σ2

u).

We set β0 = 0 and set β1 = 0.75 and studied two cases: (a) homoscedastic with ε ∼ N(0, 1);

and (b) heteroscedastic with ε ∼ N(0, 0.2 + 0.5x2). The classical attenuation coefficient and
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sample size are the same as in Section 2.4.1. Solving (2.8) numerically, we find that Θ =

(−1.04,−0.40, 0.00, 0.40, 1.05)T. Section 2.7.3 of the Supplementary Material provides

implementation details.

2.4.2.2 Results

Similarly as before, our main interest is to estimate θ5− θ1, which compares the effect of

the category 5 with the effect of the category 1. In the two simulations, we computed θ5−θ1

(a) pretending that X is observed; (b) our methods; and (c) the naive method that ignores

measurement error. For the naive method, in internal data with R = 2, the predictor used

is the sample mean of the replicates.

Based on 1000 simulated data sets, in Table 2.2, we report the empirical average mean

bias, asymptotic standard error, standard deviation, root mean squared error, and coverage

rate of the nominal 95% confidence intervals across the simulations.

From Table 2.2, we see that similar conclusions can be drawn as in Section 2.4.1. However,

an interesting thing is in the heteroscedastic case, when noise ε has its variance related to X.

Assuming that X is observed, the coverage rate of nominal 95% confidence intervals is low,

because the heteroscedasticity is ignored. Using our method, we can get close to nominal

coverage without knowing any information about the noise ε. Thus, this example shows that

our method is very general as we stated in Example 1(A).

2.5 Empirical example

2.5.1 Data description

We illustrate our methods using data from the Eating at America’s Table (EATS) Study

(Subar et al., 2001), in which 964 participants completed multiple 24-hour recalls of diet. We

consider the variable Fat Density, which is the percentage of calories coming from Fat. The

response Y is either (a) the indicator of obesity, which means that a subject’s body mass

index (BMI, weight in kilograms divided by the square of height in meters) is 30 or greater.
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Results Analysis (θ5 − θ1)
Mean Actual

mean Estimated Standard
Data Method bias Std. Err. Deviation RMSE Coverage

Homoscedastic ε ∼ N(0, 1)
X observed 0.004 0.145 0.150 0.150 95.1%
Ext-Int Data

Our Method 0.013 0.249 0.233 0.233 95.8%
Ignore ME -0.814 0.139 0.142 0.826 0.1%

Int Data
Our method -0.007 0.176 0.170 0.170 95.3%
Ignore ME -0.536 0.142 0.145 0.555 3.7%

Heteroscedastic ε ∼ N(0, 0.2 + 0.5x2)
X observed 0.004 0.123 0.169 0.169 85.3%
Ext-Int Data

Our Method 0.011 0.261 0.245 0.245 95.9%
Ignore ME -0.814 0.122 0.135 0.825 0.1%

Int Data
Our Method -0.010 0.197 0.189 0.189 95.9%
Ignore ME -0.537 0.123 0.141 0.555 1.8%

Table 2.2: Simulation study for linear regression in Section 2.4.2 with n = 500 and, where
applicable, the external study has sample size N = 300 and 2 replicates, while β0 = 0, β1 =
0.75. The target parameter, Θ = (θ1, ..., θ5)T, where θj is the parameter for the jth category.
Displayed are results for the estimation of θ5 − θ1. Ext-Int Data is the case that external
data are used to estimate the measurement error variance. Int Data is the case that the
internal data have 2 replicates, and the Ignore ME estimator ignores the measurement error
and is based on the mean of these replicates. Coverage is the coverage rate of nominal 95%
confidence intervals. RMSE is the square root of the mean squared error.

or (b) the actual body mass index. We assume that W , is unbiased for usual intake X, and

thatW = X+U . It is reasonable in these data to take (a) X to be normally distributed, (b)

that U is normally distributed; and (c) that X and U are independent, as we now describe.

We used the methods described in Chapter 1.7 of Carroll et al. (2006). Specifically, for (a),

a qq-plot of the individual means for Fat Density looked acceptably normal, with skewness

and kurtosis = -0.06 and 3.02, respectively, see the top panel of Figure 2.1. For (b), we

took differences of the first and second Fat Density measurements, which had skewness and

kurtosis = -0.14 and 3.40, respectively: the somewhat higher kurtosis here is seen to be
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minor on the qq-plot, see the bottom panel of Figure 2.1. Finally, for (c), the correlation

between the individual-level mean and standard deviation = 0.06, and there was no obvious

strong pattern when we plotted the data the latter against the former, see Figure 2.2.

For numerical stability, our analysis in the continuous scale is uses centered and stan-

dardized W using (15W − 5)/
√

0.5. To illustrate an example of an internal and an external

study, we randomly selected N = 200 subjects as the external study to have the first two

24-hour recalls, while using the remaining data as the main internal study. As in the simu-

lation, we either set the number of recalls R = 1, K = 2, meaning the external study data

were used to estimate the measurement error variance, for R = 2, K = 0, in which case the

external data were not used.

2.5.2 Results

2.5.2.1 Logistic regression

As described in Section 2.4.1, we assume the true model defined by (2.15)-(2.16), and

the respective two cases. In this application we again estimate the log relative risk θ5 − θ1.

We fit both our new approach and the naive model that ignores measurement error when

external data is and is not used.

In Table 2.3, we observe that when using the external data and only 1 observation in the

internal data the estimate of the log relative risk θ5 − θ1 from our approach is 108% greater

than the naive estimate, while when using internal data with two replicates our estimate of

our approach is 32% greater than the naive estimate. This makes sense because the second

case uses the mean of two replicates, hence has smaller measurement error variance, and

thus the naive estimate will be closer to our method.

In both cases, the asymptotic standard error from our new method is greater than the

naive method, which led to wider confidence intervals. This makes sense, because with a

scalar covariate measured with error, correcting for measurement error bias usually increases
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Log Relative Risk Analysis
Asymptotic

Data Method Estimate Std. Err. 95% CI p-value
Ext-Int Data

Our Method 0.98 0.47 (0.06, 1.90) 0.036
Ignore ME 0.47 0.24 (0.00, 0.95) 0.049

Int Data
Our Method 1.10 0.34 (0.43, 1.77) 0.001
Ignore ME 0.83 0.22 (0.39, 1.26) 0.000

Table 2.3: Data analysis for logistic regression in Section 2.5. The target parameter, Θ =
(θ1, ..., θ5)T, where θj is the parameter for the jth category. Displayed are results for the
estimation of the log relative risk, θ5 − θ1. Ext-Int Data is the case that external data
are used only to estimate the measurement error variance, and the external data have 2
replicates. Int Data is the case that the internal data have 2 replicates, and the Ignore
ME estimator ignores the measurement error and is based on the mean of these replicates.
Asymptotic Std. Err. is the standard error estimate from the theory. CI is the nominal 95%
confidence interval for the log relative risk. p-value is the p-value for the test that the log
relative risk = 0.

estimated standard errors, while of course reducing bias.

2.5.2.2 Linear regression

Next we consider the linear model with body mass index as the response. All assumptions

forW , X and U are the same as in Section 2.5.1. Moreover, we maintain the standardization

and sampling scheme in Section 2.5.1: the results are presented in Table 2.4.

From Table 2.4, we observe similar conclusions as in logistic regression case. One point

of particular interest is that in both scenarios (external-internal or internal data only), our

estimator converges theoretically to the same value, and this is seen in the results. The

naive method that ignores measurement error estimates different parameters because the

measurement error variance is twice as large in the external-internal case as it is in the

internal-only case.
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Results Analysis (θ5 − θ1)
Asymptotic

Data Method Estimate Std. Err. 95% CI p-value
Ext-Int Data

Our Method 0.59 0.18 (0.24, 0.95) 0.001
Ignore ME 0.28 0.10 (0.09, 0.47) 0.004

Int Data
Our Method 0.56 0.13 (0.30, 0.81) 0.000
Ignore ME 0.35 0.09 (0.18, 0.52) 0.000

Table 2.4: Data analysis in for linear regression Section 2.5. The target parameter, Θ =
(θ1, ..., θ5)T, where θj is the parameter for the jth category. Displayed are results for the
estimation of θ5 − θ1. Ext-Int Data is the case that external data are used only to estimate
the measurement error variance, and the external data have 2 replicates. Int Data is the
case that the internal data have 2 replicates, and the Ignore ME estimator ignores the
measurement error and is based on the mean of these replicates. Asymptotic Std. Err. is
the standard error estimate from the theory. CI is the nominal 95% confidence interval for
θ5 − θ1. p-value is the p-value for the test that θ5 − θ1 = 0.

2.6 Other approaches and the assumptions

2.6.1 Other approaches

We emphasize once more that it is common practice in epidemiology to categorize a

continuous predictor, and we have given numerous citations of this practice. Generally, this

practice results in a misspecified model.

Our goal is to correct the analysis so as to reproduce, asymptotically, the estimators

that would have been obtained if there were no measurement error. The problem has not

been considered previously in the context that a continuous predictor has been categorized.

Such categorization generally leads to differential measurement error (Flegal et al., 1991;

Gustafson, 2004; Buonaccorsi, 2010), and thus additional complications over simply fitting

a measurement error model.

While our paper is the first to consider the issue of how to correct an analysis to account

for a continuous predictor that is categorized, there are of course other possible approaches,
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but none of them really avoids the basic issues we have discussed of what is needed to obtain

consistent estimators with asymptotically correct inference in the case of measurement error.

• For example, one could assume that the true risk model is based upon the categorized

truth, even if this is implausible in most contexts. One could further assume that the

misclassification is nondifferential, which is incorrect if the true risk model is in the

continuous scale (Flegal et al., 1991; Gustafson, 2004; Buonaccorsi, 2010). There is a

small literature on this problem. Gustafson (2004), especially Chapter 6.1, has remarks

on the bias induced when a binary predictor is misclassified. Buonaccorsi (2010),

Chapter 6.7.7 and Chapter 6.14, has a detailed discussion of the issue, and provides a

number of references to the problem. Both Gustafson (2004) and Buonaccorsi (2010)

show that a measurement error correction will require a distribution for the categorical

X given (W,Z), sometimes called the reclassification rate, and both indicate that there

are substantive issues, including identifiability, involved with estimating these models.

For replication studies whereinW is measured repeatedly on a subset of the data, there

is some evidence that 3 replicates will result in identifiability. However, both books

emphasize the use of internal validation substudies, wherein one actually observes X

in a substudy.

If Xcat is the categorized truth, then one might attempt an analysis based on assuming

a joint distribution of (Y,W,Xcat) given Z, but as in any measurement error model

Carroll et al. (2006), the joint distribution requires (a) a distribution for Y given

(Xcat,W, Z), and (b) the distribution of (W,Xcat) given Z. However, (a) actually

depends on W , and thus that the modeling presents additional complications. In

addition, (b) is no easier than ours, can be implausible and does not make fewer

assumptions than we have done.

• Simulation-extrapolation, or SIMEX, (Cook and Stefanski, 1994; Stefanski and Cook,

1995; Carroll et al., 2006) is a well-known approach to the creation of approximately,
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but not fully, consistent estimators for additive measurement error models of the form

W = X + ZTα + U , where U is independent of Z and can be homoscedastic or het-

eroscedastic but has replicates (Devanarayan and Stefanski, 2002), and is generally

taken to be normally distributed. This literature attempts to dispense with distribu-

tional assumptions for X for the continuous case, but is at best approximately correct.

The fact that a categorized risk model is implausible, leading to differential mea-

surement error, may also cause complications, but the use of SIMEX in this context

is a worthwhile topic for further study. We also mention the MCSIMEX procedure

(Lederer and Küchenhoff, 2006), which is appropriate for misclassified data where the

misclassification probabilities can be estimated.

• It is also possible to change the paradigm entirely and avoid categorization, and all the

issues related to categorization, by instead using Bsplines. Indeed, part of the reason

sometimes given for categorizing a continuous predictor and not modeling a response

linearly in the continuous X is that it could lead to unduly extreme comparisons for

risk between the lowest and the highest values of X. The general thought is that

this can be overcome by replacing the linear X by a Bspline in X. There are papers

involving Bsplines and measurement error (Berry et al., 2002; Ganguli et al., 2005;

Pham et al., 2013), and it appears that regression calibration can possible be used by

calibrating each spline basis function. After the fitting, one could compare the Bspline

fits at the 10th, 30th, 50th, 70th and 90th percentiles of X to form versions of the tables

found in epidemiology papers, but the interpretations are not fully comparable.

We showed how to solve this problem and given asymptotically consistent estimators

with asymptotically correct standard errors. Assumption 2 is reasonable in other contexts

than ours, for example, that X has a mixture-of-normals distribution and U is normally

distributed (Cordy and Thomas, 1997).
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2.6.2 Assumptions in the simulations and example

Readers of an initial version of this paper have noted that our simulations and data

example use the assumption that the distribution of X given (W,Z) is normally distributed,

but misinterpreted this fact into concluding that the approach is only applicable in that case.

For the data example in Section 2.5, we justified the assumptions using known methods for

model checking of measurement error models. Assumption 2 is widely used and reasonable

in many other contexts than ours numerical work, for example, that X has a mixture-of-

normals distribution and U is normally distributed (Cordy and Thomas, 1997). Modeling via

mixture distributions is a reasonable way to extend what we have done in the classical error

case. See also Sarkar et al. (2014) for the homoscedastic and heteroscedastic cases when the

variance function and the distributions of X and U are modeled as mixture distributions.

Many papers in the literature also rely on the existence of validation data, where X is

actually observed in a subset of the main data set. In that case, Assumption 2 is easily

checked by model fitting and validation on the observed validation data subset.

2.7 Supplementary material

The Supplementary Material includes detailed formulae for the linear and logistic

cases as mentioned in as mentioned in Sections 2.3.1, 2.4.1.1 and 2.4.2.1, and plots mentioned

in Section 2.5.1.

2.7.1 Sketch of technical arguments

2.7.1.1 Argument for Lemma 1

We consider the case that there are external data used to estimate Λext and that there

are parameters Λint. As in Section 2.3.2, the data for i = 1, ..., n are for the internal data,

while, for i = n + 1, ..., n + N , are for the external data if such external data exist and are

used. The functions Ψi(Ω) are also defined in Section 2.3.2.
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By a standard Taylor series argument,

0 = (n+N)−1/2∑N+n
i=1 Ψi(Ω̂)

= (n+N)−1/2∑N+n
i=1 Ψi(Ω)

+
{

(n+N)−1∑N+n
i=1 ∂Ψi(Ω)/∂Ω

}
(n+N)1/2(Ω̂−Ω) + op(1),

so that

(n+N)1/2(Ω̂−Ω) = −
{

(n+N)−1∑N+n
i=1 ∂Ψi(Ω)/∂Ω

}−1

×(n+N)−1/2∑N+n
i=1 Ψi(Ω) + op(1).

It is obvious that (n+N)−1∑N+n
i=1 ∂Ψi(Ω)/∂Ω = A+ op(1), and immediate that

(n+N)−1/2
N+n∑
i=1

Ψi(Ω)→ Normal(0, B),

where A and B are defined in Lemma 1.

2.7.1.2 Argument for Lemma 2

We consider the case that there are only parameters Λint. As in Section 2.3.2, the data

for i = 1, ..., n are for the internal data. The functions Ψi(Ω) are also defined in Section

2.3.2.

By a standard Taylor series argument,

0 = n−1/2∑n
i=1Ψi(Ω̂)

= n−1/2∑n
i=1Ψi(Ω)

+
{
n−1∑n

i=1∂Ψi(Ω)/∂Ω
}
n1/2(Ω̂−Ω) + op(1),
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so that

n1/2(Ω̂−Ω) = −
{
n−1∑n

i=1∂Ψi(Ω)/∂Ω
}−1

×n−1/2∑n
i=1Ψi(Ω) + op(1).

It is obvious that n−1∑n
i=1∂Ψi(Ω)/∂Ω = A+ op(1), and immediate that

n−1/2
n∑
i=1

Ψi(Ω)→ Normal(0, B),

where A and B are defined in Lemma 2.

2.7.2 Estimate nuisance parameter Λ

Here we only consider two cases among numerous possibilities. One is that the internal

data consists of (Yi,Wi, Zi) for i = 1, ...n and σ2
u is estimated from the external data using

replicates Wik for k = 1, ..., K and i = n+1, ..., n+N . The second case is that the replicates

are in the internal data.

2.7.2.1 External-internal data

For specificity, we consider the first case that the external data have no responses Y , are

independent of the internal data. Suppose that we use external data only to estimate σ2
u,

and we observeWik = Xi+Uik for k = 1, ..., K and i = n+1, ..., n+N . We use internal data

to estimate µx, σ2
x without replicates. In the external data, let W i· = K−1∑K

k=1 Wik. Define

σ̂2
u,i = (K−1)−1∑K

k=1(Wik−W i·)2 to be the sample variance of theWik for a given i. Because

E{(Wi − µx)2) = σ2
x + σ2

u, unbiased estimating equations for (Λext,Λint) = (µx, σ2
x, σ

2
u) are

For µx : n−1∑n
i=1(Wi − µx) = 0;

For σ2
u: N−1∑n+N

i=n+1(σ̂2
u,i − σ2

u) = 0;

For σ2
x : n−1∑n

i=1{(Wi − µx)2 − σ2
x − σ2

u} = 0.
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2.7.2.2 Internal data only

Suppose there is no external data, and we have replicates Wir for r = 1, ..., R in the

internal data. Now we use internal data to estimate Λ = (µx, σ2
x, σ

2
uR), and we observe

Wir = Xi + Uir for r = 1, ..., R and i = 1, ..., n.

Define W i· = R−1∑R
r=1 Wir. Define σ̂2

u,i to be the sample variance of the Wir within

subject i, and define σ2
u/R = σ2

uR. The estimating equations are

For µx: n−1∑n
i=1(W i· − µx) = 0;

For σ2
uR: n−1∑n

i=1(σ̂2
u,i/R− σ2

uR) = 0;

For σ2
x: n−1∑n

i=1{(W i· − µx)2 − σ2
x − σ2

uR} = 0.

Since the two cases we considered are the same as in linear regression and logistic regression,

the way we estimate Λint and Λext are exactly the same. Then we will only give details for

the estimating equations about β and Θ below.

2.7.3 Details for linear regression

2.7.3.1 Background

Here we give full details of our methodology for linear regression. As in Lemma 1,

Ω = (Θ,β,Λint,Λext).

Let Z̃ = (1, ZT)T. Here we consider the simple case of linear regression with the classical

measurement error model in both the external and internal data sets to be

Y = Xβ1 + Z̃Tβ2 = (X, Z̃T)β;

W = X + U ; X = Normal(Z̃Tα, σ2
x); U = Normal(0, σ2

u).
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2.7.3.2 The forms of Φ(·)

In this linear model, denote the estimating equations for β as Φ(·), we consider

Φ(Y,W,Z,β,Λint,Λext) = (1,W )T(Y −Wβ1 − Z̃Tβ2) + (0, β1σ
2
u)T.

2.7.3.3 The forms of Φcat(·) and Q(·)

Since we assume the true model is Y = (X, Z̃T)β, it is easy to see that categorical

estimating function

Φcat{Y,MT(X,Z)Θ} = M(X,Z)[Y −MT(X,Z)Θ].

Hence, by simple calculations and following Remark 3, with Ω = (Θ,β,Λint,Λext),

Q(W,Z,Ω) = E

[
M(X,Z)

{
(X, Z̃T)β −MT(X,Z)Θ

} ∣∣∣∣∣W,Z
]
.

We used the integrate function in the R package stats to compute the integrals.

The estimating function for β = (β0, β1) is

Φ(β, Λ̂) = n−1∑n
i=1E

(
[Yi −H{m(Xi,β)}]∂m(Xi,β)/∂βT

∣∣∣Wi).

The estimating function for Θ is

Q(Wi,Θ, β̂, Λ̂) = E


m(Xi, β̂)I(Xi ∈ C1)−Θ1I(Xi ∈ C1)

...

m(Xi, β̂)I(Xi ∈ CJ)−ΘJI(Xi ∈ CJ)

Wi

 .

Asymptotic standard errors were estimated as in Lemma 1 and Lemma 2.
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2.7.4 Details for logistic regression

2.7.4.1 Background

Here we give full details of our methodology for logistic regression. As in Lemma 1,

Ω = (Θ,β,Λint,Λext).

As before, let H(·) denote the logistic distribution function and let Z̃ = (1, ZT)T. Here

we consider the special case of linear logistic regression with the classical measurement error

model in both the external and internal data sets to be

pr(Y = 1|X,Z) = H(Xβ1 + Z̃Tβ2) = H{(X, Z̃T)β};

W = X + U ; X = Normal(Z̃Tα, σ2
x); U = Normal(0, σ2

u).

Different from the linear case in Section 2.7.3, we consider the case where X depends on

another covariate Z. There are numerous data structures possible, but we here present the

external-internal and internal data only cases.

2.7.4.2 Settings

There are two settings of interest.

• There is no information about σ2
u in the internal data, so that the external parameter

is the measurement error variance, Λext = σ2
u, while the internal parameters are Λint =

(αT, σ2
x)T.

• There are no external data, so that Λext is null, and the internal data with replicates

allow estimation of Λint = (αT, σ2
u, σ

2
x)T.
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In both case, σ2
u (or σ2

uR in the internal data only case) are estimated the same as in 2.7.2.1

and 2.7.2.2, while the estimating function for (α, σ2
x) is

Vint,i(Λint,Λext) =
{
Z̃T
i (Wi − Z̃T

i α), (Wi − Z̃T
i α)2 − σ2

x − σ2
u

}
,

where i = 1, ..., n.

2.7.4.3 Estimating β

In this section, we implement our method and give all estimating equations in the case

where we have both external and internal data. In another case, where we only use internal

data with replicates, all results below are still valid by removing Λext.

Define λ = σ2
x/(σ2

x + σ2
u). Then, given (W,Z), X follows a normal distribution with

mean µ(W,Z,Λext,Λint) = Z̃Tα +λ(W − Z̃Tα) and variance λσ2
u. We write this conditional

density as fx|w,z(x,w, z,β,Λint,Λext).

There are multiple ways to estimate β from the observed data. Here we describe two of

them.

• The first is regression calibration, in which X is replaced by its mean given (W,Z) and

the linear logistic model is fit. Thus the regression calibration method has

Φ(Y,W,Z,β,Λint,Λext) = {µ(W,Z,Λext,Λint), Z̃}T

×[Y −H{µ(W,Z,Λext,Λint)β1 + Z̃Tβ2}].

• A second possibility, one that we used, is the following. By simple calculations, pr(Y =

1|W,Z) = p(W,Z,β,Λint,Λext), where

p(W,Z,β,Λint,Λext) =
∫
H{(x, Z̃T)β}fx|w,z(x,W,Z,Λint,Λext)dx, (2.18)

31



a quantity that is easily computed in R using the integrate function in the R package

stats. Denote pi = pr(Yi = 1|Wi, Zi). Thus, the loglikelihood ∝ n−1∑n
i=1Yilog(pi) +

(1 − Yi)log(1 − pi). We then use optim function in the R package stats to minimize

negative loglikelihood to estimate β.

2.7.4.4 The forms of Φcat(·) and Q(·)

Since we assume the true model is pr(Y = 1|X,Z) = H{(X, Z̃T)β}, it is easy to see that

categorical estimating function

Φcat{Y,MT(X,Z)Θ} = M(X,Z)[Y −H{MT(X,Z)Θ}].

Hence, by simple calculations and following Remark 3, with Ω = (Θ,β,Λint,Λext),

Q(W,Z,Ω) = E

(
M(X,Z)

[
H{(X, Z̃T)β} −H{MT(X,Z)Θ}

] ∣∣∣∣∣W,Z
)
.

We used the integrate function in the R package stats to compute the integrals.
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Figure 2.1: EATS data of Section 2.5. Top panel: Normal qq-plot of the mean Fat Den-
sity over 4 recalls. This indicates that the mean Fat Density is approximately normally
distributed and qualifies for the assumptions in our numerical example. Bottom panel: Nor-
mal qq-plot of differences of observed Fat density, as a diagnosis that U is approximately
normally distributed.
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Figure 2.2: EATS data of Section 2.5. Mean and standard deviation plot to diagnose het-
eroscedasticity, showing that there is little heteroscedasticity in the measurement errors.
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3. SPARSE QUADRATIC CLASSIFICATION RULES VIA LINEAR DIMENSION

REDUCTION

3.1 Introduction

We consider a binary classification problem: given n independent pairs (Xi, Yi) from a

joint distribution (X, Y ) on Rp × {1, 2}, our goal is to both learn a rule that will assign one

of two labels to a new data point X ∈ Rp, and determine the subset of p variables that

influences the rule. One of the popular classification tools is linear discriminant analysis, or

LDA (Mardia et al., 1979, Chapter 11). While it gives unsatisfactory results when applied

to high-dimensional datasets (Dudoit et al., 2002), recent work suggests that additional

regularization, variable selection in particular, leads to dramatic performance improvements.

Earlier approaches perform variable selection and regularize the sample covariance matrix

by treating it as diagonal (Tibshirani et al., 2003; Witten and Tibshirani, 2011). More

recent methods directly estimate the discriminant directions by using convex optimization

framework with sparsity-inducing penalties (Cai and Liu, 2011; Mai et al., 2012; Gaynanova

et al., 2016).

Despite these significant advances, a key underlying assumption of linear discriminant

analysis is the equality of covariance matrices between the groups, Σ1 = Σ2. This assumption

is unlikely to be satisfied in practice, leading to suboptimal performance of linear rule.

When the measurements are normally distributed, Xi|Yi = g ∼ N (µg,Σg), g ∈ {1, 2}, with

Σ1 6= Σ2, the Bayes rule is quadratic, leading to quadratic discriminant analysis, or QDA.

As with linear case, the quadratic discriminant analysis performs poorly when p is large.

This unsatisfactory performance is largely due to the estimation of precision matrices Σ−1
1

and Σ−1
2 , a task that is extremely challenging when p� n. In fact, even when p = n/2 and

the assumption of equal covariance matrices is violated, the misclassification error rate of

sample QDA is worse than the rates of regularized linear discriminant methods (Gaynanova
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et al., 2016, supplement).

Several extensions of sample QDA have been proposed. A common strategy is to jointly

estimate Σ−1
1 and Σ−1

2 . Friedman (1989); Ramey et al. (2016) regularize sample covariance

matrices by shrinkage. Wu et al. (2018) impose equicorrelation structure on each covariance

matrix by pooling both the diagonal and off-diagonal elements. Danaher et al. (2014); Guo

et al. (2011); Price et al. (2014); Simon and Tibshirani (2011) use a penalized likelihood

technique, where the penalty enforces similarity either between the covariance matrices Σg

or the precision matrices Σ−1
g . While these methods perform better than quadratic rules

based on sample covariance matrices, they again rely on estimating two precision matrices.

As such, additional assumptions on Σ−1
g such as sparsity are usually enforced, and the esti-

mation procedure scales quadratically with the number of measurements p. Moreover, the

resulting classification rules still rely on all p variables, and therefore can not be used for

both classification and variable selection.

Li and Shao (2015) address the variable selection problem by enforcing sparsity in both

the covariance matrices and the vector of mean differences via thresholding. The method

comes with strong theoretical guarantees on classification consistency and promising em-

pirical performance. Nevertheless, it again requires additional assumptions on Σg, and is

computationally prohibitive for large p due to required matrices inversion together with a

3-dimensional search over tuning parameter values.

In summary, a significant progress in linear discriminant methods made it possible to

apply them to large datasets and perform variable selection. In practice, however, the

covariance matrices are often unequal, but the existing quadratic methods typically can

not perform variable selection, and are computationally prohibitive for large p. In this

work we bridge the gap between the linear and the quadratic methods by developing a new

classification rule that takes into account unequal covariance matrices without sacrificing

either variable selection or the computational speed.
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Our key methodological contribution is a different approach for constructing quadratic

rule in high-dimensional settings compared to the ones taken in the literature. The existing

methods rely on improved estimation of the full Bayes quadratic discriminant rule by ex-

ploring additional structural assumptions on Σg or Σ−1
g (Simon and Tibshirani, 2011; Price

et al., 2014; Le and Hastie, 2014; Li and Shao, 2015; Wu et al., 2018). In contrast, we modify

the Fisher’s formulation of linear discriminant analysis for the case of unequal covariance

matrices. The resulting method performs simultaneous variable selection and projection of

original data on a lower-dimensional space, with the subsequent application of quadratic

discriminant analysis. We call this approach discriminant analysis via projections, or DAP.

Unlike the existent quadratic methods, our rule is linear in p, which allows us to devise

a very efficient optimization procedure to simultaneously estimate the projection directions

and perform variable selection. For p = 500, it takes around 1.5 seconds to implement our

method, whereas the closest competing sparse quadratic method takes 30 minutes. This

makes it possible to apply our approach in situations where other quadratic methods are

computationally infeasible. Moreover, we connect the variables in our rule with the nonzero

variables in the linear part of Bayes quadratic rule, and prove the variable selection consis-

tency of our method in high-dimensional settings. Empirical studies confirm that for large

values of p the proposed rule leads to competitive, and often smaller, misclassification error

rates than the existing approaches. At the same time, our method consistently selects the

sparsest models thus achieving the best balance between model complexity and misclassifi-

cation error rate. Finally, the application to gene expression data of breast cancer patients

(Chin et al., 2006) confirms the crucial importance of ESR1 gene in differentiating estrogen

receptor status; an insight that is not possible with other approaches due to much higher

complexity of corresponding classification rules.

The rest of this paper is organized as follows. In Section 3.2, we describe a new quadratic

classification rule, discriminant analysis via projections. We connect the proposed approach

to both linear and quadratic discriminant analysis, and derive an efficient optimization al-
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gorithm for sparse estimation. In Section 3.3, we provide theoretical guarantees on the

variable selection consistency of our method in high-dimensional settings. In Section 3.4,

we conduct empirical studies on both simulated and real data. In Section 3.5, we discuss

possible extensions in future work.

Notation: For a vector v ∈ Rp, we let ‖v‖1 = ∑p
i=1 |vi|, ‖v‖2 = (∑p

i=1 v
2
i )1/2, ‖v‖∞ =

maxi |vi|. We use ej to denote a unit norm vector with jth element being equal to one,

and 1p to denote the vector of ones of length p. For a matrix M ∈ Rn×p, we let ‖M‖∞,2 =

max1≤i≤n(∑p
j=1 m

2
ij)1/2, ‖M‖2 = supx:‖x‖2=1 ‖Mx‖2 and |M | be the determinant ofM . Given

an index set A, we use MA to denote the submatrix of M with columns indexed by A. For

a square matrix M , we use MAA to denote the submatrix of M with both rows and columns

indexed by A. We use I to denote the identity matrix. We use an . bn to denote that

there exists a constant C > 0 such that an ≤ Cbn for n sufficiently large. We also let

a ∨ b = max(a, b).

3.2 Discriminant analysis via projections

3.2.1 Review of Fisher’s discriminant analysis

Consider n independent pairs (Xi, Yi) from a joint distribution (X, Y ) on Rp × {1, 2}.

Let Σg = cov(X|Y = g), g = 1, 2 and assume the covariance matrices are equal, Σ1 = Σ2.

Fisher’s discriminant analysis seeks a linear combination of p measurements that maximize

between group variability with respect to within group variability (Mardia et al., 1979,

Chapter 11):

maximize
v∈Rp

{
vT(x̄1 − x̄2)(x̄1 − x̄2)Tv

vTWv

}
, (3.1)

where W = (n − 2)−1∑2
g=1(ng − 1)Sg is the pooled sample covariance matrix, Sg is the

sample covariance matrix for group g, ng is the number of samples in group g, and x̄g is the

sample mean for group g. Letting v̂ be a vector at which the maximum above is achieved,
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the resulting classification rule for a new observation with observed value x ∈ Rp is

hv̂(x) = argmin
g∈{1,2}

{
(xTv̂ − x̄T

g v̂)T(v̂TWv̂)−1(xTv̂ − x̄T
g v̂)− 2log(ng/n)

}
. (3.2)

Hence, both the new observation x ∈ Rp and the data X ∈ Rn×p are projected onto the

line determined by v̂, and the classification is performed according to Mahalanobis distance

to the class means in the projected space. Since both the objective function in (3.1) and

the classification rule (3.2) are invariant to the scaling of discriminant vector v̂, it can be

expressed as v̂ = cW−1(x̄1 − x̄2) for any constant c 6= 0. Moreover, the Fisher’s rule (3.2)

coincides with sample plug-in Bayes rule under the normality assumption, that is Xi|Yi =

g ∼ N(µg,Σ).

3.2.2 Modification of Fisher’s rule

Our proposal is based on the modification of criterion (3.1) to the case of unequal covari-

ance matrices. Specifically, we consider two discriminant directions instead of one

v̂g = argmax
vg∈Rp

{
vT
g (x̄1 − x̄2)(x̄1 − x̄2)Tvg

vT
g Sgvg

}
(g = 1, 2). (3.3)

Similar to Fisher’s criterion, the solutions to (3.3) can be expressed as v̂g = cgS
−1
g (x̄1 − x̄2)

for any cg 6= 0, g = 1, 2. Subsequently, given matrix V̂ = [v̂1 v̂2], we modify rule (3.2) to

take into account unequal covariance matrices as

h
V̂

(x) = argmin
g∈{1,2}

{
(x− x̄g)TV̂ (V̂ TSgV̂ )−1V̂ T(x− x̄g) + log|V̂ >SgV̂ | − 2log(ng/n)

}
. (3.4)

Remark 1. If v̂1 and v̂2 are linearly dependent, then V̂ has rank one, and V̂ TS1V̂ and

V̂ TS2V̂ are both singular. In this case the subspace spanned by the columns of V̂ is the same

as the subspace spanned by only one column, and we use V̂ = v̂1 in (3.4).

Rule (3.4) is equivalent to applying quadratic discriminant rule to V̂ Tx instead of applying
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Figure 3.1: Two-group classification problem with p = 2 and unequal covariance matrices.
Left: Projection using Fisher’s discriminant vector. Middle: Projection using the covariance
structure from the 1st group (circles). Right: Projection using the covariance structure from
the 2nd group (triangles).

it directly to x. Unlike the equivalence between the Fisher’s rule and the linear discriminant

rule, in Section 3.2.6 we show that rule (3.4) is generally not equivalent to quadratic discrim-

inant analysis. Nevertheless, formulation (3.4) allows to overcome possible rank degeneracy

of Sg as well as perform variable selection. First, rule (3.4) requires inversion of 2 × 2 ma-

trices V̂ TSgV̂ , which are likely to be positive definite, in contrast to Sg. Secondly, since

(3.4) effectively applies quadratic rule to V̂ Tx instead of x, it only relies on those variables

for which the corresponding rows of V̂ are nonzero. Hence, performing variable selection is

equivalent to using row-sparse matrix V̂ . Figure 3.1 shows that each v̂g from (3.3) can be

viewed as a basis vector for the reduced space, and coincides with discriminant vector v̂ in

Fisher’s rule (3.1) if the pooled sample covariance matrix W = S1 = S2. Therefore, we call

rule (3.4) the discriminant analysis via projections.

3.2.3 Sparse estimation

While rule (3.4) allows to overcome the potential singularity of sample covariance ma-

trices, it still requires estimation of O(p) parameters and therefore may lead to poor per-

formance in the high-dimensional settings when p � n. At the same time, in the context

of linear discriminant analysis the classification performance can be significantly improved
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by directly estimating the discriminant vector with sparsity regularization (Cai and Liu,

2011; Mai et al., 2012). Guided by this intuition, our goal is to obtain sparse estimates of

ψ1 = c1Σ−1
1 δ and ψ2 = c2Σ−1

2 δ with δ = µ1−µ2, which are the population counterparts of v̂1

and v̂2 in (3.3). This approach leads to regularized row-sparse V̂ that can be used directly

in rule (3.4).

To produce sparse estimates of ψ1 and ψ2, we consider penalized empirical risk minimiza-

tion framework:

V̂ = [v̂1 v̂2] = argmin
v1,v2∈Rp

{
L̂ψ1(v1) + L̂ψ2(v2) + λPen(V )

}
,

where L̂ψ1(v1), L̂ψ2(v2) are empirical loss functions associated with ψ1, ψ2; λ > 0 is the

tuning parameter, and Pen(V ) is the sparsity-inducing penalty.

Remark 2. Another possibility is to add sparse penalization directly within criterion (3.3).

In linear discriminant analysis, this approach leads to significant improvement over sample

plug-in rule (Witten and Tibshirani, 2011). However, it also leads to nonconvex optimization

problem and potential difficulties in obtaining very sparse solutions (Gaynanova et al., 2017).

Therefore, we do not pursue the direct penalization here.

First, we discuss our choice of penalty. As we are interested in simultaneous variable

selection, that is row-sparsity of V̂ , we propose to use group penalty. Specifically, we choose

group-lasso, Pen(V ) = ∑p
j=1(v2

1j + v2
2j)1/2 (Yuan and Lin, 2006), due to its convexity. Other

possibilities include nonconvex group penalties, we refer the reader to Huang et al. (2012)

for the review.

Next, we discuss our choice of empirical loss functions L̂ψ1(v1) and L̂ψ2(v2). Both the

criterion (3.3) and the rule (3.4) are invariant to the scale of V̂ , that is to the choice of

constants c1 and c2. While the naive approach is to fix c1 = c2 = 1, we use c1 = π2/(1 +

π2
2δ

TΣ−1
1 δ), c2 = π1/(1 + π2

1δ
TΣ−1

2 δ), which lead to lower-bounded empirical loss function as
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well as significant computational savings. To be specific, we take advantage of the following

equivalence due to the Sherman–Morrison formula:

Proposition 1. For any ρ 6= 0, any non-singular matrix M ∈ Rp×p and any vector a ∈ Rp

(M + ρ2aaT)−1ρa = ρM−1a(1 + ρ2aTM−1a)−1 ∝M−1a.

Our choice of c1 and c2 leads to ψ1 = (Σ1 + π2
2δδ

T)−1π2δ and ψ2 = (Σ2 + π2
1δδ

T)−1π1δ.

Consider the following quadratic loss function associated with ψ1

Lψ1(v1) = (v1 − ψ1)T(Σ1 + π2
2δδ

T)(v1 − ψ1)/2 = vT
1 Σ1v1/2 + (π2δ

Tv1 − 1)2/2 + C,

where C is a constant independent of v1. Consider the empirical version of this loss function

L̂ψ1(v1) = vT
1 S1v1/2 +

(
n−1n2d

Tv1 − 1
)2
/2 + C, (3.5)

where d = x̄1 − x̄2. First, L̂ψ1(v1) is invariant under linear transformation of the data

(Rukhin, 1992). Secondly, L̂ψ1(v1) is always bounded from below by C, even when S1 is

singular. This ensures guaranteed convergence of the block-coordinate descent algorithm

without the need to regularize S1, and in particular, is not the case for c1 = 1.

Furthermore, let X1 ∈ Rn1×p be the submatrix of X corresponding to the 1st group, and

X2 ∈ Rn2×p be the one corresponding to the 2nd group. Let X be column-centered so that

x̄ = n−1(n1x̄1 + n2x̄2) = 0, and hence d = n−1
2 nx̄1. Then the loss (3.5) can be rewritten as

L̂ψ1(v1) = vT
1 S1v1/2 +

(
x̄T

1 v1 − 1
)2
/2 + C = n−1

1 vT
1 X

T
1 X1v1/2− vT

1 x̄1 + C

= n−1
1 ‖X1v1 − 1n1‖2

2/2 + C.
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That is, the loss function can be expressed as the linear regression loss function. Similarly,

L̂ψ2(v2) = n−1
2 ‖X2v2 + 1n2‖2

2/2 + C.

Therefore, our choice of c1 and c2 allows to re-express the problem of estimating ψ1 and ψ2 as a

regression problem. This leads to efficient optimization algorithm described in Section 3.2.4.

In summary, given the column-centered data matrix X ∈ Rn×p with submatrices X1 ∈

Rn1×p, X2 ∈ Rn2×p corresponding to two groups, we find V̂ = [v̂1 v̂2] ∈ Rp×2 as the solution

to

minimize
V=[v1,v2]∈Rp×2

{
n−1

1 ‖X1v1 − 1n1‖2
2/2 + n−1

2 ‖X2v2 + 1n2‖2
2/2 + λ

p∑
j=1

(v2
1j + v2

2j)1/2
}
. (3.6)

If λ = 0, V̂ coincides with the solution to (3.3) up to the choice of scaling. If λ > 0, then V̂

is row-sparse leading to variable selection. Given V̂ , we apply rule (3.4) for classification.

3.2.4 Optimization algorithm

In this section we derive a block-coordinate descent algorithm to solve (3.6). Consider the

optimality conditions with respect to each block vj = (v1j, v2j)T (Boyd and Vandenberghe,

2004, Chapter 5):

n−1
1 XT

1jX1jv1j = n−1
1 XT

1j(1n1 −
∑
k 6=j

v1kX1k)− λu1j,

n−1
2 XT

2jX2jv2j = n−1
2 XT

2j(−1n2 −
∑
k 6=j

v2kX2k)− λu2j;

where uj = (u1j, u2j)T is the subgradient of (v2
1j + v2

2j)1/2

uj =


vj/‖vj‖2, if ‖vj‖2 6= 0;

∈ {u : ‖u‖2 ≤ 1}, if ‖vj‖2 = 0.
(3.7)

43



In general, n−1
1 XT

1jX1j 6= n−1
2 XT

2jX2j, hence the block-update is not available in closed form

and requires a line search (Barber and Drton, 2010). However, guided by the computational

considerations as well as the ideas of standardized group lasso (Simon and Tibshirani, 2012),

we pre-standardize X1 and X2 so that n−1
1 diag(XT

1 X1) = n−1
2 diag(XT

2 X2) = 1p, and then

perform the back-scaling of v̂1, v̂2. This ensures that the penalization of different variables

is independent of their relative scales. Finally, we are ready to present the algorithm.

Define the residual vectors r1, r2 as

r1j = n−1
1 XT

1j(1n1 −
p∑
l=1

v1lX1l), r2j = n−1
2 XT

2j(−1n2 −
p∑
l=1

v2lX2l);

with rj = (r1j, r2j)T. From the optimality conditions, the equations for the jth block vj =

(v1j, v2j)T can be rewritten as

vj = (1− λ/‖vj + rj‖2)+ (vj + rj) ,

where a+ = max(0, a). Starting with some initial value V (0), the block-coordinate descent

algorithm proceeds by iterating the updates of v1, v2 with updates of residuals r1, r2 until

convergence. Due to convexity of (3.6), the boundedness of the objective function from below,

and the separability of the penalty with respect to block updates, the global optimum is finite

and the algorithm is guaranteed to converge to the global optimum from any starting point

(Tseng, 2001).

3.2.5 Connection with sparse linear discriminant analysis

We show that the sparse linear discriminant analysis can be viewed as a very special case

of the proposed approach.

Proposition 2. Consider the sparse discriminant analysis in Gaynanova et al. (2016) that

finds the discriminant vector ṽ(λ) for a given value of tuning parameter λ > 0. Define

c = (n1/n)1/2 + (n2/n)1/2. Under the constraint (n/n1)1/2v1 = (n/n2)1/2v2, the solution
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to (3.6) satisfies

(n/n1)1/2v̂1(λ) = (n/n2)1/2v̂2(λ) = c ṽ (λ/c) .

When v1 and v2 are restricted to be in the same direction, (3.6) gives the same solution

as the sparse linear discriminant analysis up to scaling.

3.2.6 Connection with quadratic discriminant analysis

Let Y be a group indicator such that P (Y = 1) = π1 and P (Y = 2) = 1− π1 = π2, and

consider X|Y = g ∼ N(µg,Σg) (g = 1, 2). The Bayes rule assigns a new observation with

observed value x ∈ Rp to group one if and only if

xT(Σ−1
2 − Σ−1

1 )x− 2xT(Σ−1
2 µ2 − Σ−1

1 µ1)

+ log
(
|Σ2|/|Σ1|

)
− µT

1 Σ−1
1 µ1 + µT

2 Σ−1
2 µ2 + 2log(π1/π2) > 0.

(3.8)

Consider centering x by the overall mean E(X) = µ = π1µ1 + π2µ2.

Proposition 3. Let δ = µ1 − µ2. The Bayes rule (3.8) can be written as

(x−µ)T(Σ−1
2 − Σ−1

1 )(x− µ) + log
(
|Σ2|/|Σ1|

)
+ 2(x− µ)T(π1Σ−1

2 δ + π2Σ−1
1 δ) + π2

1δ
TΣ−1

2 δ − π2
2δ

TΣ−1
1 δ + 2log(π1/π2) > 0.

(3.9)

Consider the population version of the proposed discriminant analysis via projections,

that is applying Bayes rule to ΨTX with ΨTX|Y = g ∼ N(ΨTµg,ΨTΣgΨ) and Ψ =

[ψ1, ψ2] = [c1Σ−1
1 δ, c2Σ−1

2 δ], c1, c2 6= 0.

Proposition 4. Consider the population version of rule (3.4), that is substituting Ψ for V̂ ,

Σg for Sg, µg for x̄g and πg for ng/n. A new observation with value x is assigned to group
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one if and only if

(x−µ)TΨ
{

(ΨTΣ2Ψ)−1 − (ΨTΣ1Ψ)−1
}

ΨT(x− µ) + log
(
|ΨTΣ2Ψ|/|ΨTΣ1Ψ|

)
+ 2(x− µ)T(π1Σ−1

2 δ + π2Σ−1
1 δ) + π2

1δ
TΣ−1

2 δ − π2
2δ

TΣ−1
1 δ + 2log(π1/π2) > 0.

(3.10)

The only difference between the rules in Proposition 3 and 4 is on the first line, which

involves the quadratic and the log terms. The linear terms and the remaining constant terms

are identical. Therefore, rule (3.10) can be viewed as an approximation to rule (3.9).

While rule (3.10) is not the same as the Bayes rule, and therefore will lead to inferior

performance on the population level, in Section 3.4 we see this relationship to be reversed

when the corresponding regularized sample versions are considered and p is large relative to

the sample size n. The main advantage of rule (3.10) comes from the significant reduction in

the number of parameters to be estimated. Specifically, matrix Ψ has p× 2 elements leading

to O(p) parameters in rule (3.10). In contrast, the Bayes rule requires estimation of the

Σ−1
2 − Σ−1

1 leading to O(p2) parameters in total.

3.3 Variable selection consistency in high-dimensional settings

We establish the variable selection consistency of estimator in (3.6) under the following

assumptions.

Assumption 1 (Normality). Xi|Yi = g ∼ N (µg,Σg), pr(Yi = g) = πg for g = 1, 2 with

0 < πmin ≤ π1/π2 ≤ πmax < 1.

Assumption 2 (Sparsity). Let δ = µ1 − µ2, A = {i : (eT
i Σ−1

1 δ)2 + (eT
i Σ−1

2 δ)2 6= 0}, Ac =

{1, . . . , p}/A and card(A) = s. That is, A is the index set of nonzero variables in Σ−1
1 δ or

Σ−1
2 δ.

Assumption 3 (Irrepresentability). There exist α ∈ (0, 1] such that

max
u1,u2∈Rs

u2
1i+u

2
2i≤1 ∀i

‖Σ1AcAΣ−1
1AAu1,Σ2AcAΣ−1

2AAu2‖∞,2 ≤ 1− α.
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Assumption 4. 0 < c ≤ λmin(ΣgAA) ≤ λmax(ΣgAA) ≤ C and eT
j Σgej ≤ M for j = 1, . . . , p

and g = 1, 2.

Assumption 1 is a standard assumption in the context of discriminant analysis (Mai et al.,

2012; Kolar and Liu, 2015; Gaynanova and Kolar, 2015), and Assumptions 2–3 are typical

in establishing variable selection consistency of penalized estimators in high-dimensional

settings (Bach, 2008; Wainwright, 2009; Obozinski et al., 2011). We use Assumption 4 for

convenience of treating the parameters depending on Σg as constants and presenting the rates

in Theorems 1 and 2 through only n, p and s. We refer the reader to the Supplementary

material for the more general statements of Theorems 1 and 2 without the use of Assump-

tion 4. To prove variable selection consistency of estimator in (3.6), we use the primal-dual

witness technique (Wainwright, 2009). First, we prove that under the appropriate scaling of

the sample sizes, and sufficiently large value of the tuning parameter λ, the variables in Ac

are set to zero with high probability. Let Â = {i : v̂2
1i + v̂2

2i 6= 0} denote the support of the

solution to (3.6).

Theorem 1. Let Assumptions 1–4 hold, the sample sizes satisfy ming ng & slog{(p− s)η−1}

for some η ∈ (0, 1), and the tuning parameter satisfy λ & [log{(p − s)η−1}/n]1/2. Then

pr(Â ⊆ A) ≥ 1− η.

Next, we show that under the additional assumption on the minimal signal strength

defined as

ψmin = min
j∈A

{
π2

2(eT
j Σ−1

1 δ)2 + π2
1(eT

j Σ−1
2 δ)2

}1/2
,

the true variables are nonzero with high probability leading to perfect recovery. In sparse

linear models this assumption is often called β-min condition (Wainwright, 2009). According

to Proposition 3, ψmin can be interpreted as the smallest magnitude of the nonzero variables

in the linear part of the Bayes quadratic discriminant rule.
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Theorem 2. Let the conditions of Theorem 1 hold and ψmin & λs1/2(maxg δT
AΣ−1

gAAδA ∨ 1).

Then pr(Â = A) ≥ 1− η.

Theorem 2 reveals the advantage of using the group penalty in joint sparse estimation

of ψ1 and ψ2. If variable j is nonzero in both ψ1 and ψ2, then it is sufficient to have large

signal in only one of ψg for minimal signal strength condition to hold. In contrast, separate

estimation via the lasso penalty will lead to the requirement of sufficiently large signal in

both ψ1 and ψ2 simultaneously.

3.4 Empirical studies

3.4.1 Simulated data

We compare the misclassification error rates and variable selection performance of the

following methods: (i) Sample QDA, rule (3.8) with plug-in estimates x̄1, x̄2, S1, S2; (ii)

Sparse QDA of Le and Hastie (2014); (iii) Sparse QDA of Li and Shao (2015); (iv) Sparse

QDA via ridge fusion (Price et al., 2014); (v) Logistic regression with pairwise interactions

and lasso penalty on the vector of coefficients; (vi) Regularized discriminant analysis (Fried-

man, 1989); (vii) Sparse LDA (Mai et al., 2012; Gaynanova et al., 2016); (viii) Discriminant

analysis via projections proposed in this paper, that is rule (3.4) with estimator from (3.6).

The details of all methods’ implementation together with tuning parameter selection criteria

are described in Supplementary materials.

We fix the sample sizes n1 = n2 = 100, the dimension p ∈ {100, 500}, and the group

means µ1 = 0p and µ2 = (15,−15, 0p−10). We consider the following types of covariance

structures:

1. Block-equicorrelation with block size b ∈ {10, 100} and ρ ∈ [0, 1]:

Σg =

ρIb + (1− ρ)1b1T
b 0

0 Ip−b

 .
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Table 3.1: List of considered models for Σ1 and Σ2

Model Σ1 Σ2
1 equicorrelation, b = 100, ρ = 0.5 equicorrelation, b = 100 ρ = 0.5
2 autocorrelation, b = 100 ρ = 0.8 equicorrelation, b = 100, ρ = 0.5
3 autocorrelation, b = 10, ρ = 0.5 equicorrelation, b = 10, ρ = 0.8
4 spiked, b = 10 spiked, b = 10 (q1 and q2 reversed)
5 spiked, b = 100 spiked, b = 10 (q1 and q2 reversed)
6 spiked, b = 10 equicorrelation, b = 10, ρ = 0.8
7 spiked, b = 10 equicorrelation, b = 100, ρ = 0.3
8 spiked, b = 100 equicorrelation, b = 100, ρ = 0.3

2. Block-autocorrelation with block size b ∈ {10, 100} and ρ ∈ [0, 1]:

Σg = {Σg}i,j, {Σg}i,j =


ρ|i−j|, (1 ≤ i, j ≤ b);

1{i = j}, (otherwise).

3. Spiked with parameters q1, q2 ∈ Rp: Σg = 30q1q
T
1 + 2q2q

T
2 + I.

(a) Block size b = 10: q1 = (15/
√

5, 0p−5), q2 = (0p−5, 15/
√

5, 0p−10).

(b) Block size b = 100: q1 = (1, . . . , 100, 0p−100)T normalized so that qT
1 q1 = 1;

q2 = (I − q1q
T
1 )(100, . . . , 1, 0p−100)T normalized so that qT

2 q2 = 1.

These structures are commonly used to assess the performance of discriminant analysis

methods (Mai et al., 2012; Le and Hastie, 2014; Ramey et al., 2016). We use 8 combinations

as described in Table 3.1, and fix the block sizes to make the Bayes error rate independent

of p.
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Figure 3.2: Misclassification error rates over 100 replications, the horizontal lines
show the median errors of the proposed DAP, discriminant analysis via projections.
SLDA: Sparse linear discriminant analysis; SLOG: Sparse logistic regression with interac-
tions; SQDA_LH: Sparse QDA of Le and Hastie (2014); SQDA_LS: Sparse QDA of Li
and Shao (2015); SQDA_RF: Sparse QDA via ridge fusion; RDA: Regularized discriminant
analysis.
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As expected, the sample QDA performs the worst, with misclassification error rates being

larger than 40% consistently across all replications and models. Therefore, in Figure 3.2 we

only present the rates for the other methods. First, we compare the proposed approach

with sparse LDA. While in models 1, 2 and 8 they perform similarly, accounting for unequal

covariance matrices results in drastic improvements on models 4–7. When comparing our

approach to sparse QDA methods, the relative ranking often depends on p. For example,

when p = 100, ridge fusion of Price et al. (2014) is better than our proposal on models 2 and

8, but is significantly worse on the same models when p = 500. Similarly, sparse QDA of Le

and Hastie (2014) is significantly better than our proposal on models 6 and 8 when p = 100,

but significantly worse on the same models when p = 500. This confirms that the proposed

rule is well-suited to high-dimensional settings. Among the sparse QDA approaches, we find

that the method of Li and Shao (2015) is most consistent across dimensions. In particular,

it leads to better error rates on models 4 and 5 (2% difference in median error rates).

Nevertheless, it still leads to significantly worse error rates on models 1, 2, 6 and 8. Finally,

the proposed approach performs better than regularized discriminant analysis in all cases

but model 2, p = 100, and performs as well or better than the sparse logistic regression in

all scenarios.

Overall, we found that no method is universally the best in terms of error rates since

the relative ranking depends on the particular model and the underlying dimension. This is

consistent with previous research. In the words of Wu et al. (2018), “it is difficult to imagine

that there could be a universally optimal discriminant analysis method for high-dimensional

data. Almost every method can enjoy some advantages under certain circumstances." Never-

theless, three methods stand out as the best across all models and dimensions: our proposal

and sparse QDA methods of Le and Hastie (2014) and Li and Shao (2015). Moreover, our

proposal achieves comparable, and in certain scenarios significantly better, error rates than

the best other methods in all the cases with p = 500 except model 2.

In summary, Figure 3.3 shows that the proposed discriminant analysis via projections
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Figure 3.3: Number of selected variables over 100 replications, the horizontal lines indi-
cate the median model sizes of proposed DAP, discriminant analysis via projections. RDA,
SQDA_RF and SQDA_LH use all p variables, not shown. SLDA: Sparse linear discriminant
analysis; SLOG: Sparse logistic regression with interactions; SQDA_LH: Sparse QDA of Le
and Hastie (2014); SQDA_LS: Sparse QDA of Li and Shao (2015); SQDA_RF: Sparse QDA
via ridge fusion; RDA: Regularized discriminant analysis.

significantly improved over sparse LDA method, and results in competitive, and often bet-

ter, misclassification error rates than existing QDA proposals. The real advantages of our

approach, however, become certain when comparing variable selection performance and com-

putational speed. Figure 3.3 reveals that the proposed method consistently uses the sparsest

model (less than 50 variables for most scenarios). In comparison, the methods of Le and

Hastie (2014) and Price et al. (2014) always use all p variables, and are such much less

interpretable.

We further compare the execution time of each method on a Linux machine with Intel

Xeon X5560 @2.80 GHz. We define execution time as the full time for method’s implemen-

tation: tuning parameter selection plus model fitting plus classification. We use one instance

of model 8 with p ∈ {100, 300, 500}, and R package microbenchmark (Mersmann, 2015) with

10 evaluations of each expression. Table 3.2 shows that the execution times increase dra-

52



Table 3.2: Median time (seconds) over 10 replications to fully implement each classification
method for one instance of model 8. DAP: Discriminant analysis via projections, proposed;
SLDA: Sparse linear discriminant analysis; RDA: Regularized discriminant analysis; SLOG:
Sparse logistic regression with interactions; SQDA_LH: Sparse QDA of Le and Hastie (2014);
SQDA_RF: Sparse QDA via ridge fusion; SQDA_LS: Sparse QDA of Li and Shao (2015).

p DAP SLDA RDA SLOG SQDA_LH SQDA_RF SQDA_LS
100 0.6 0.4 3.1 2.7 139.5 868.5 52.6
300 1.0 1.4 5.0 28.8 2071.9 11681.4 481.5
500 1.4 1.7 5.0 117.1 7282.2 45161.7 1791.4

matically with p for logistic regression with interactions and sparse QDA methods, whereas

the times are quite consistent across dimensions for sparse LDA, RDA and our approach.

Logistic regression is noticeably faster than sparse QDA methods mainly due to the differ-

ence in tuning parameter selection criterion: it uses BIC instead of cross-validation. Using

cross-validation for logistic regression makes it too computationally demanding for the range

of p we considered. Sparse LDA and the proposed method are the fastest, confirming that

they are well-suited for the use on high-dimensional datasets in practice.

3.4.2 Benchmark datasets

We compare the proposed discriminant analysis via projections with competitors on

three benchmark datasets: chin (Chin et al., 2006), chowdary (Chowdary et al., 2006),

and gravier (Gravier et al., 2010). These datasets are commonly used to assess classification

performance (Li and Ngom, 2013; Niu et al., 2015; Ramey et al., 2016), and are publicly

available from the R package datamicroarray (Ramey, 2016). Below is the short description

of each dataset.

chin: p = 22, 215 gene expression profiles for n = 118 breast cancer samples with n1 = 75

being ER-positive, and n2 = 43 being ER-negative.

gravier : p = 2, 905 gene expression profiles for n = 168 patients with small invasive

ductal carcinomas without axillary lymph node involvement. The n1 = 111 patients have
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no event after a 5-year diagnosis (labelled good), and n2 = 57 patients have early metastasis

(labelled poor).

chowdary: p = 22, 283 gene expression profiles from 32 matched breast tumour tissue

pairs and 20 matched colon tissue pairs leading to n = 104 samples with n1 = 64 and

n2 = 40.

We randomly split each dataset 100 times preserving the class proportions, and use

80% for training and 20% for testing. To reduce the computational cost associated with

sparse quadratic discriminant analysis, we reduce the number of variables at each split by

selecting the top p = 1000 variables with largest absolute value of the two-sample t-statistic

on the training data, similar approach has been taken in Cai and Liu (2011). For fair

comparison, we use the same set of 1000 variables for each of the methods. We do not

consider sample quadratic discriminant analysis given its uniformly poor performance in

Section 3.4.1. We also do not consider sparse logistic regression with interactions or ridge

fusion due to computational issues when p = 1000 and their inferiority to other approaches

in Section 3.4.1.

The results are shown in Figure 3.4. For chin dataset, the error rates are the worst

for linear discriminant analysis confirming the importance of taking into account unequal

covariance matrices, and are the same for other methods. At the same time, the proposed

DAP rule selects significantly smaller model than the competitors (median model size is

one). For chowdary dataset, the best performing method is RDA (Friedman, 1989), however

the relative difference is only 1 misclassification on the test data. The smallest model again

corresponds to proposed DAP. For gravier dataset, the best performing methods are ours

and sparse QDA of Li and Shao (2015). Surprisingly, however, the method of Li and Shao

(2015) results in no variable selection on these datasets, the model size is 1000 over almost

all replications (not shown). We suspect that the poor variable selection performance may

be due to the crudeness of bisection procedure for selecting the tuning parameters. In
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Figure 3.4: Left: Misclassification error rates over 100 splits. Right: Number of variables
used in corresponding classification rules. DAP consistently selects the smallest model.
SQDA_LS, SQDA_LH and RDA always use all p = 1000 variables, not shown. DAP: Dis-
criminant analysis via projections, proposed method; SQDA_LS: Sparse QDA of Li and Shao
(2015); SQDA_LH: Sparse QDA of Le and Hastie (2014); SLDA: Sparse linear discriminant
analysis; RDA: Regularized discriminant analysis.

summary, the proposed approach, discriminant analysis via projections, consistently selects

the smallest model, often using less than 20 variables to achieve the same or better error

rates than alternative methods. We conclude that it exhibits excellent prediction accuracy

with the smallest model complexity.

We further analyze the chin dataset using variable selection results of our approach.

Figure 3.4 reveals that the median model size is one. This means that in most of the

replications it is sufficient to look at the expression level of only one gene to achieve the
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same misclassification error rate as the other methods. We investigate whether the same

gene is selected at each replication, and find that estrogen receptor 1 gene ESR1 is selected

in 97 out of 100 cases. Our finding confirms previous studies on a strong link between ESR1

gene and estrogen receptor protein expression in breast cancer patients (Holst et al., 2007;

Laenkholm et al., 2012; Iwamoto et al., 2012). We refer the reader to Holst (2016) for the

review on the importance of ESR1 gene amplification in breast cancer. The gene with the

second highest frequency of selection, 26 out of 100 cases, is LPIN1, which is also found to

be differentially expressed in ER positive and negative patients in previous studies (Chen

et al., 2008). The relatively low selection frequency of LPIN1 is due to the median model

size one, which leads to only ESR1 being selected and no other gene. While the strong link

between ER protein expression status and ESR1 gene is not surprising, unlike the previous

studies we did not focus on the ESR1 gene in advance. We consider all 22 thousand genes,

and let our method determine that ESR1 is crucial for ER status of breast cancer. We want

to emphasize that this insight is not possible with other approaches we tried. Regularized

discriminant analysis of Friedman (1989) and sparse QDA by Le and Hastie (2014) use all

1000 variables, hence can not be directly used for identifying important genes. Sparse LDA

selects a smaller number of genes, but it has worse misclassification error rate and the median

model size is still 45 variables, significantly larger than the number of variables used by our

approach.

3.5 Discussion

In this work we propose a new rule for high-dimensional classification in the case of

unequal covariance matrices. While the proposed approach in general differs from the Bayes

rule on the population level, we show that the nonzero variables in our rule correspond to

nonzero variables in the linear part of the Bayes quadratic rule. This connection combined

with computational efficiency of our approach suggests that one can potentially use our

method as a variable screening tool. Indeed, the empirical studies in Section 3.4.1 indicate
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that the performance of full quadratic methods deteriorates significantly with increase in p,

however for small p they are computationally feasible and may lead to better error rates.

We have not explored the screening properties of our approach in this work, but leave it for

future investigation.

We focus on the two-group classification setting, however extending the methodology to

the multi-group setting will likely lead to even further computational gains. One of the main

challenges in the multi-group case is the likely rank degeneracy of the matrix of discriminant

vectors when the number of groups is large. Performing simultaneous low-rank and sparse

estimation of the matrix of discriminant vectors in the multi-group case is an interesting

direction for future research.

3.6 Supplementary material

The Supplementary Materialincludes implementation details of Section 3.4, proofs of

propositions and main theorems in Sections 3.2 and 3.3.

3.6.1 Implementation details

In this section we describe implementation details for the methods considered in Sec-

tion 3.4.1. We use R package JGL (Danaher, 2013) to implement sparse QDA of Le and

Hastie (2014); R package MGSDA (Gaynanova, 2016) to implement sparse LDA (Mai et al.,

2012; Gaynanova et al., 2016); R package grpreg (Breheny and Huang, 2015) to implement

logistic regression with pairwise interactions and lasso penalty on the vector of coefficients;

R package RidgeFusion (Price, 2014) to implement ridge fusion for joint estimation of pre-

cision matrices (Price et al., 2014); R package sparsediscrim to implement regularized

discriminant analysis (Friedman, 1989). We found no available R code for sparse QDA of Li

and Shao (2015), and implemented the method ourselves. We use R package DAP(Wang and

Gaynanova, 2018) to implement the proposed discriminant analysis via projections.

For logistic regression, we use BIC option in the grpreg to select the tuning parameter.
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For ridge fusion, we use the automatic selection in RidgeFusion with 5 folds. For Li and

Shao (2015), we use the bisection procedure proposed in their paper with the maximal

interval length set to 0.05. For all other methods, we use 5-fold cross-validation to minimize

misclassification error rate.

3.6.2 Proofs of propositions

Proof of Proposition 2. From Gaynanova et al. (2016), ṽ(λ) = argminv L1(v, λ), where

L1(v, λ) = vT (n1S1 + n2S2) v/(2n) + n1n2d
TvvTd/(2n2)− n1/2

1 n
1/2
2 dTv/n+ λ‖v‖1.

From (3.6), {v̂1(λ), v̂2(λ)} = argminv1,v2 L2(v1, v2, λ), where

L2(v1, v2, λ) = (vT
1 S1v1 + vT

2 S2v2)/2

+
(
n2n

−1dTv1 − 1
)2
/2 +

(
n1n

−1dTv2 − 1
)2
/2 + λ

p∑
j=1

(v2
1j + v2

2j)1/2.

Under the constraint (n/n1)1/2v1 = (n/n2)1/2v2 = v, this leads to v̂(λ) = argminv L2(v, λ),

where using c = (n1/n)1/2 + (n2/n)1/2,

L2(v, λ) = vT (n1S1 + n2S2) v/(2n) + n1n2d
TvvTd/(2n2)− n1/2

1 n
1/2
2 cdTv/n+ λ‖v‖1.

Furthermore,

L1(v/c, λ/c)

= c−2
{
vT (n1S1 + n2S2) v/(2n) + n1n2d

TvvTd/(2n2)− n1/2
1 n

1/2
2 cdTv/n+ λ‖v‖1

}
= c−2L2(v, λ).

Since for any c > 0, argminx f(x/c) = c{argminx f(x)}, it follows that cṽ(λ/c) = v̂(λ).

Proof of Proposition 3. Since log(|Σ2|/|Σ1|) and 2log(π1/π2) are present in both rules, it
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remains to show the equivalence of the quadratic term, the linear term and the remaining

constants. Substituting x = x− µ+ µ in the Bayes rule (3.8) leads to

xT(Σ−1
2 − Σ−1

1 )x = (x− µ)T(Σ−1
2 − Σ−1

1 )(x− µ) + 2(x− µ)T(Σ−1
2 − Σ−1

1 )µ

+ µT(Σ−1
2 − Σ−1

1 )µ,

−2xT(Σ−1
2 µ2 − Σ−1

1 µ1) = −2(x− µ)T(Σ−1
2 µ2 − Σ−1

1 µ1)− 2µT(Σ−1
2 µ2 − Σ−1

1 µ1).

From the above, the quadratic term in (x−µ) is the same as stated in the Proposition, hence

it remains to consider the linear terms and the constants.

Consider the linear terms in (x− µ) from the above. Recall that δ = µ1 − µ2, therefore

2(x− µ)T(Σ−1
2 − Σ−1

1 )µ− 2(x− µ)T(Σ−1
2 µ2 − Σ−1

1 µ1)

= 2(x− µ)T{Σ−1
2 (µ− µ2)− Σ−1

1 (µ− µ1)}

= 2(x− µ)T(π1Σ−1
2 δ + π2Σ−1

1 δ),

which is the same as the linear term in the statement of the proposition.

Finally, we complete the proof by showing the equivalence of remaining constants.

µT(Σ−1
2 − Σ−1

1 )µ− 2µT(Σ−1
2 µ2 − Σ−1

2 µ1)− µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2

= (µTΣ−1
2 µ− 2µTΣ−1

2 µ2 + µT
2 Σ−1

2 µ2)− (µTΣ−1
1 µ− 2µTΣ−1

1 µ1 + µT
1 Σ−1

1 µ1)

= π2
1δ

TΣ−1
2 δ − π2

2δ
TΣ−1

1 δ.

Proof of Proposition 4. Since ΨTX|Y = g ∼ N(ΨTµg,ΨTΣgΨ), from Proposition 3 the
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Bayes rule applied to ΨTx has the form

(x− µ)TΨ
{

(ΨTΣ2Ψ)−1 − (ΨTΣ1Ψ)−1
}

ΨT(x− µ) + log
(
|ΨTΣ2Ψ|/|ΨTΣ1Ψ|

)
+ 2(x− µ)T

{
π1Ψ(ΨTΣ2Ψ)−1ΨTδ + π2Ψ(ΨTΣ1Ψ)−1ΨTδ

}
+ π2

1δ
TΨ(ΨTΣ2Ψ)−1ΨTδ − π2

2δ
TΨ(ΨTΣ1Ψ)−1ΨTδ + 2log(π1/π2) > 0.

(3.11)

Since

(ΨTΣ1Ψ)−1 = 1
ψT

1 Σ1ψ1ψT
2 Σ1ψ2 − (ψT

1 Σ1ψ2)2

 ψT
2 Σ1ψ2 −ψT

1 Σ1ψ2

−ψT
2 Σ1ψ1 ψT

1 Σ1ψ1

 .

it follows that

Ψ(ΨTΣ1Ψ)−1ΨT = ψ1ψ
T
2 Σ1ψ2ψ

T
1 − ψ2ψ

T
2 Σ1ψ1ψ

T
1 + ψ2ψ

T
1 Σ1ψ1ψ

T
2 − ψ1ψ

T
1 Σ1ψ2ψ

T
2

ψT
1 Σ1ψ1ψT

2 Σ1ψ2 − (ψT
1 Σ1ψ2)2 .

Recall that ψ1 = c1Σ−1
1 δ, and substituting δ = c−1

1 Σ1ψ1 into the above equation leads to

Ψ(ΨTΣ1Ψ)−1Ψδ =
c−1

1 ψ1

{
ψT

2 Σ1ψ2ψ
T
1 Σ1ψ1 − (ψT

1 Σ1ψ2)2
}

ψT
1 Σ1ψ1ψT

2 Σ1ψ2 − (ψT
1 Σ1ψ2)2 = c−1

1 ψ1 = Σ−1
1 δ.

Similarly, Ψ(ΨTΣ2Ψ)−1ΨTδ = Σ−1
2 δ . Substituting these into (3.11) completes the proof.

3.6.3 Proofs of main theorems

We will use the following quantities throughout the proofs:

γ = 1 + max
(
π1π

−1
2 ‖Σ

−1/2
1AA Σ2AAΣ−1/2

1AA ‖2, π2π
−1
1 ‖Σ

−1/2
2AA Σ1AAΣ−1/2

2AA ‖2
)
, (3.12)
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ΣgAcAc:A = ΣgAcAc − ΣgAcAΣ−1
gAAΣgAcA (g = 1, 2),

Σd1 = Σ1AcAc:A + π1π
−1
2

(
Σ2AcAc + Σ1AcAΣ−1

1AAΣ2AAΣ−1
1AAΣ1AAc

− Σ1AcAΣ−1
1AAΣ2AAc − Σ2AcAΣ−1

1AAΣ1AAc

)
,

Σd2 = Σ2AcAc:A + π2π
−1
1

(
Σ1AcAc + Σ2AcAΣ−1

2AAΣ1AAΣ−1
2AAΣ2AAc

− Σ2AcAΣ−1
2AAΣ1AAc − Σ1AcAΣ−1

2AAΣ2AAc

)
.

(3.13)

The quantities in (3.13) can be viewed as conditional variance terms, their origin is made

precise in Lemma 2. Let σ2
gjj:A = eT

j ΣgAcAc:Aej and σ2
jdg = eT

j Σdgej be the diagonal ele-

ments of corresponding matrices. Under Assumption 4, σgjj:A, σjdg and γ can be treated as

constants.

We define the oracle (ṽ1A, ṽ2A) as the solution to

minimize
v1,v2∈Rs

{
n−1

1 ‖X1Av1 − 1n1‖2
2/2 + n−1

2 ‖X2Av2 + 1n2‖2
2/2 + λ

s∑
j=1

(v2
1j + v2

2j)1/2
}
, (3.14)

and let ũA = (ũ1A, ũ2A) be the subgradient of ∑s
j=1(v2

1j + v2
2j)1/2 evaluated at (ṽ1A, ṽ2A)

ũAj =


ṽAj/‖ṽAj‖2, if ‖ṽAj‖2 6= 0;

∈ {u : ‖u‖2 ≤ 1}, if ‖ṽAj‖2 = 0.
(3.15)

Theorem 3 (Equivalent to Theorem 1). Let Assumptions 1–3 hold. Let the sample sizes

satisfy

min(n1, n2) & max
g=1,2
‖Σ−1

gAA‖2 max
g=1,2; j∈Ac

(σ2
gjj:A ∨ σ2

jdg)slog{(p− s)η−1},

for some η ∈ (0, 1), and the tuning parameter satisfy

λ & max
g=1,2; j∈Ac

(σ2
gjj:A ∨ σ2

jdg)
[
n−1log{(p− s)η−1}

]1/2
.

Then pr(Â ⊆ A) ≥ 1− η.
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Proof. Using the results of Section 3.2.3,

[v̂1 v̂2] = argmin
v1∈Rp,v2∈Rp

{
L̂ψ1(v1) + L̂ψ2(v2) + λ

p∑
j=1

(v2
1j + v2

2j)1/2
}
,

2{L̂ψ1(v1) + L̂ψ2(v2)} = vT
1 S1v1 + vT

2 S2v2 +
(
n−1n2d

Tv1 − 1
)2

+
(
n−1n1d

Tv2 − 1
)2
.

Let ρ1 = n1/n and ρ2 = n2/n. The optimality conditions (Boyd and Vandenberghe, 2004,

Chapter 5) lead to

(S1AA + ρ2
2dAd

T
A)v̂1A + (S1AAc + ρ2

2dAd
T
Ac)v̂1Ac − ρ2dA = −λu1A,

(S2AA + ρ2
1dAd

T
A)v̂2A + (S2AAc + ρ2

1dAd
T
Ac)v̂2Ac − ρ1dA = −λu2A,

(S1AcA + ρ2
2dAcdT

A)v̂1A + (S1AcAc + ρ2
2dAcdT

Ac)v̂1Ac − ρ2dAc = −λu1Ac ,

(S2AcA + ρ2
1dAcdT

A)v̂2A + (S2AcAc + ρ2
1dAcdT

Ac)v̂2Ac − ρ2dAc = −λu2Ac ,

where u is defined in (3.7). Consider v̂1 = (ṽ1A, 0p−s), v̂2 = (ṽ2A, 0p−s), where ṽ1A, ṽ2A are the

solutions to the oracle problem (3.14). From the above optimality conditions, it is sufficient

to have

∥∥∥(S1AcA + ρ2
2dAcdT

A)ṽ1A − ρ2dAc , (S2AcA + ρ2
1dAcdT

A)ṽ2A − ρ1dAc

∥∥∥
∞,2

< λ

for V̂ = [v̂1 v̂2] to be the solution to (3.6), which leads to Â ⊆ A. We next show that the

above inequality holds with high probability under the stated conditions.
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Using the form of ṽ1A (Theorem 5) and Sherman–Morrison identity,

(S1AcA + ρ2
2dAcdT

A)ṽ1A − ρ2dAc

= S1AcAρ2S
−1
1AAdA(1 + ρ2

2d
T
AS
−1
1AAdA)−1 + ρ2

2dAcdAρ
T
2 S
−1
1AAdA(1 + ρ2

2d
T
AS
−1
1AAdA)−1

− λS1AcA

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A − λρ2

2dAcdT
A

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A − ρ2dAc

= ρ2
(
S1AcAS

−1
1AAdA − dAc

)
(1 + ρ2

2d
T
AS
−1
1AAdA)−1 − λS1AcAS

−1
1AAũ1A

+ λρ2
2S1AcAS

−1
1AAdAd

T
AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1

− λρ2
2dAcdT

AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1

= ρ2
(
S1AcAS

−1
1AAdA − dAc

)
(1 + ρ2

2d
T
AS
−1
1AAdA)−1 − λS1AcAS

−1
1AAũ1A

+ ρ2
2λ(S1ACAS

−1
1AAdA − dAc)dT

AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1.

Using normality, there exist U1 ∈ Rp×(n1−1) with columns u1,i ∼ N (0,Σ1) such that (n1 −

1)S1 = U1U
T
1 . Let Ed1 = dAc − Σ1AcAΣ−1

1AAdA, EU1 = U1Ac − Σ1AcAΣ−1
1AAU1A. Then

S1AcAS
−1
1AA = (n1 − 1)−1U1AcUT

1AS
−1
1AA

= (n1 − 1)−1EU1U
T
1AS

−1
1AA + (n1 − 1)−1Σ1AcAΣ−1

1AAU1AU
T
1AS

−1
1,AA

= Σ1AcAΣ−1
1AA + (n1 − 1)−1EU1U

T
1AS

−1
1AA,

and S1AcAS
−1
1AAdA−dAc = (n1−1)−1EU1U

T
1AS

−1
1AAdA−Ed1. Combining the above two displays

63



gives

(S1AcA + ρ2
2dAcdT

A)ṽ1A − ρ2dAc

= −λΣ1AcAΣ−1
1AAũ1A − λ(n1 − 1)−1EU1U

T
1AS

−1
1AAũ1A

+ (n1 − 1)−1EU1U
T
1AS

−1
1AAdAρ2(1 + ρ2

2d
T
AS
−1
1AAdA)−1 − Ed1ρ2(1 + ρ2

2d
T
AS
−1
1AAdA)−1

+ λ(n1 − 1)−1EU1U
T
1AS

−1
1AAdAρ

2
2d

T
AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1

− λEd1ρ
2
2d

T
AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1

= −λΣ1AcAΣ−1
1AAũ1A + (n1 − 1)−1EU1U

T
1AS

−1
1AAdAρ2(1 + ρ2

2d
T
AS
−1
1AAdA)−1

− Ed1ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1 − λEd1ρ

2
2d

T
AS
−1
1AAũ1A(1 + ρ2

2d
T
AS
−1
1AAdA)−1

− λ(n1 − 1)−1EU1U
T
1AS

−1
1AA(I + ρ2

2dAd
T
AS
−1
1AA)−1ũ1A.

Similarly,

(S2AcA+ρ2
1dAcdT

A)ṽ2A − ρ1dAc

= −λΣ2AcAΣ−1
2AAũ2A + (n2 − 1)−1EU2U

T
2AS

−1
2AAdAρ1(1 + ρ2

1d
T
AS
−1
2AAdA)−1

− Ed2ρ1(1 + ρ2
1d

T
AS
−1
2AAdA)−1 − λEd2ρ

2
1d

T
AS
−1
2AAũ2A(1 + ρ2

1d
T
AS
−1
2AAdA)−1

− λ(n2 − 1)−1EU2U
T
2AS

−1
2AA(I + ρ2

1dAd
T
AS
−1
2AA)−1ũ2A.

Therefore, using triangle inequality,

∥∥∥(S1AcA + ρ2
2dAcdT

A)ṽ1A − ρ2dAc , (S2AcA + ρ2
1dAcdT

A)ṽ2A − ρ1dAc

∥∥∥
∞,2

≤ λ‖Σ1AcAΣ−1
1AAũ1A,Σ2AcAΣ−1

2AAũ2A‖∞,2 + I1 + I2 + I3 + I4,
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where

I1 = ‖ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1Ed1, ρ1(1 + ρ2

1d
T
AS
−1
2AAdA)−1Ed2‖∞,2,

I2 =
∥∥∥∥(n1 − 1)−1ρ2EU1U

T
1AS

−1
1AAdA

1 + ρ2
2d

T
AS
−1
1AAdA

, (n2 − 1)−1ρ1EU2U
T
2AS

−1
2AAdA

1 + ρ2
1d

T
AS
−1
2AAdA

∥∥∥∥
∞,2

,

I3 =
∥∥∥∥EU1U

T
1AS

−1
1AA

n1 − 1 (I + ρ2
2dAd

T
AS
−1
1AA)−1ũ1A,

EU2U
T
2AS

−1
2AA

n2 − 1 (I + ρ2
1dAd

T
AS
−1
2AA)−1ũ2A

∥∥∥∥
∞,2

,

I4 =
∥∥∥∥ ρ2

2
1 + ρ2

2d
T
AS
−1
1AAdA

Ed1d
T
AS
−1
1AAũ1A,

ρ2
1

1 + ρ2
1d

T
AS
−1
2AAdA

Ed2d
T
AS
−1
2AAũ2A

∥∥∥∥
∞,2

.

By the irrepresentability condition (Assumption 3), there exist α ∈ (0, 1] such that

‖Σ1AcAΣ−1
1AAũ1A,Σ2AcAΣ−1

2AAũ2A‖∞,2 ≤ 1− α.

To conclude the proof, it is sufficient to show that with probability at least 1 − η each

Ik ≤ λα/4, k = 1, . . . , 4. Next, we consider each of these four terms separately.

1. Show I1 ≤ λα/4 with probability at least 1−η/4. By Lemma 2, eT
j Edg ∼ N (0, σ2

jdg/ng).

Applying standard normal concentration inequality, there exist constant C > 0 such that

pr
( ⋂
j∈Ac

{
|eT
j Edg| ≥ C max

j∈Ac
σjdg

[
n−1
g log{(p− s)η−1}

]1/2})
≤ η/4.

Since

‖ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1Ed1, ρ1(1 + ρ2

1d
T
AS
−1
1AAdA)−1Ed2‖∞,2

≤
√

2 max
{
ρ2(1 + ρ2

2d
T
AS
−1
1AAdA)−1‖Ed1‖∞, ρ1(1 + ρ2

1d
T
AS
−1
1AAdA)−1‖Ed2‖∞

}
≤
√

2 max(‖Ed1‖∞, ‖Ed2‖∞),

it follows that there exist constant C > 0 such that

pr
(
I1 ≥ C max

g=1,2; j∈Ac
σjdg

[
log{(p− s)η−1}/min(n1, n2)

]1/2)
≤ η/4.
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Therefore, I1 ≤ λα/4 with probability at least 1− η/4 under the conditions of the theorem.

2. Show I2 ≤ λα/4 with probability at least 1−η/4. By Lemma 2, EUg ∼ N (0,ΣgAcAc:A⊗

Ing−1) for g = 1, 2, and is independent of UgA and d. Hence,

ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1eT

j (n1 − 1)−1EU1U
T
1AS

−1
1AAdA|U1A, dA

∼ N
{

0, σ2
1jj:A(n1 − 1)−1ρ2

2d
T
AS
−1
1AAdA(1 + ρ2

2d
T
AS
−1
1AAdA)−2

}
.

Define L = (1+ρ2
2d

T
AS
−1
1AAdA)−2ρ2

2d
T
AS
−1
1AAdA. Using standard normal concentration inequality,

there exist constant C > 0 such that conditionally on L, the event

⋂
j∈Ac

{
ρ2(1 + ρ2

2d
T
AS
−1
1AAdA)−1|eT

j (n1 − 1)−1EU1U
T
1AS

−1
1AAdA|

≥ C max
j∈Ac

σ1jj:A

[
Ln−1

1 log{(p− s)η−1}
]1/2}

has probability at most η/4. Since L = (1 + ρ2
2d

T
AS
−1
1AAdA)−2ρ2

2d
T
AS
−1
1AAdA ≤ (1 +

ρ2
2d

T
AS
−1
1AAdA)−1 ≤ 1, it follows that with probability at least 1− η/4

ρ2

1 + ρ2
2d

T
AS
−1
1AAdA

∥∥∥∥EU1U
T
1AS

−1
1AAdA

n1 − 1

∥∥∥∥
∞
≤ C

[
max
j∈Ac

σ1jj:An
−1
1 log{(p− s)η−1}

]1/2
.

The case g = 2 is similar, leading to the desired bound under the conditions of the theorem.

3. Show I3 ≤ α/4 with probability at least 1− η/4. Similar to part 2,

eT
j (n1 − 1)−1EU1U

T
1AS

−1
1AA(I + ρ2

2dAd
T
AS
−1
1AA)−1ũ1A|U1A, ũ1A, dA

∼ N
(
0, (n1 − 1)−1σ2

1jj:Aũ
T
1A(S1AA + ρ2

2dAd
T
A)−1S1AA(S1AA + ρ2

2dAd
T
A)−1ũ1A

)
.

Define L = ũT
1A(S1AA + ρ2

2dAd
T
A)−1S1AA(S1AA + ρ2

2dAd
T
A)−1ũ1A. As in part 2, there exist
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constant C > 0 such that conditionally on L the event

⋂
j∈Ac

{
|eT
j (n1 − 1)−1EU1U

T
1AS

−1
1AA(I + ρ2

2dAd
T
AS
−1
1AA)−1ũ1A|

≥ C max
j∈Ac

σ1jj:A

[
Ln−1

1 log{(p− s)η−1}
]1/2}

has probability at most η/4. Furthermore,

L ≤ ‖ũ1A‖2
2‖(S1AA + ρ2

2dAd
T
A)−1S1AA(S1AA + ρ2

2dAd
T
A)−1‖2

≤ s‖S−1/2
1AA (I + ρ2

2S
−1/2
1AA dAd

T
AS
−1/2
1AA )−2S

−1/2
1AA ‖2

2

≤ s‖S−1
1AA‖2,

where in the last inequality we used ‖ũ1A‖2
2 + ‖ũ2A‖2

2 ≤ s by definition of subgradient. By

Lemma 3, there exist constant C > 0 such that with probability at least 1− η/4

‖S−1
1AA‖2 ≤ ‖Σ−1

1AA‖2

[
1 + C

{
n−1

1 log(η−1)
}1/2

]
.

Combining the above displays leads to

‖(n1 − 1)−1EU1U
T
1AS

−1
1AA(I + ρ2

2dAd
T
AS
−1
1AA)−1ũgA‖∞

≤ C max
j∈Ac

σ1jj:A

[
‖Σ−1

1AA‖2n
−1
1 slog{(p− s)η−1}

]1/2

with probability at least 1−η/4. The proof for g = 2 is similar leading to the desired bound.

4. Show I4 ≤ α/4 with probability at least 1− η/4.

By Lemma 2, eT
j Edg ∼ N (0, n−1

g σ2
jdg), where σjdg is from Lemma 2. Then

ρ2
2(1 + ρ2

2d
T
AS
−1
1AAdA)−1eT

j Ed1d
T
AS
−1
1AAũ1A|U1A, ũ1A, dA

∼ N
(

0,
σ2
jd1ρ

4
2

n1(1 + ρ2
2d

T
AS
−1
1AAdA)2 ũ

T
1AS

−1
1AAdAd

T
AS
−1
1AAũ1A

)
.
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Define L = (1 + ρ2
2d

T
AS
−1
1AAdA)−2ρ4

2ũ
T
1AS

−1
1AAdAd

T
AS
−1
1AAũ1A. Using standard normal concentra-

tion inequality there exist constant C > 0 such that conditionally on L the event

⋂
j∈Ac

{
ρ2

2
1 + ρ2

2d
T
AS
−1
1AAdA

eT
j Ed1d

T
AS
−1
1AAũ1A ≥ C max

j∈Ac
σjd1

[
Ln−1

1 log{(p− s)η−1}
]1/2}

has probability at most η/4. Furthermore,

L = (1 + ρ2
2d

T
AS
−1
1AAdA)−2ρ4

2(ũT
1AS

−1/2
1AA S

−1/2
1AA dA)2

≤ ρ2
2(1 + ρ2

2d
T
AS
−1
1AAdA)−2ρ2

2d
T
AS
−1
1AAdAũ

T
1AS

−1
1AAũ1A

≤ ρ2
2ũ

T
1AS

−1
1AAũ1A

≤ s‖S−1
1AA‖2,

where in the last inequality we used ‖ũ1A‖2
2+‖ũ2A‖2

2 ≤ s by definition of subgradient. Similar

to part 3, this means that there exists constant C > 0 such that

∥∥∥∥ ρ2
2

1 + ρ2
2d

T
AS
−1
1AAdA

Ed1d
T
AS
−1
1AAũ1A

∥∥∥∥
∞
≥ C max

j∈Ac
σjd1

[
‖Σ−1

1AA‖2n
−1
1 slog{(p− s)η−1}

]1/2

with probability at most η/4. The proof for g = 2 is analogous, leading to the desired

bound.

Theorem 4 (Equivalent to Theorem 2). Assume the conditions of Theorem 3 hold. If in

addition ψmin & λs1/2 maxg ‖Σ−1
g,AA‖2(maxg δT

AΣ−1
gAAδA ∨ γ), then pr(Â = A) ≥ 1− η.

Proof of Theorem 4. Consider the oracle solution

ṽ1A = ρ2S
−1
1AAdA(1 + ρ2

2d
T
AS
−1
1AAdA)−1 − λ

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A,

ṽ2A = ρ1S
−1
2AAdA(1 + ρ2

1d
T
AS
−1
2AAdA)−1 − λ

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A;
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where ũA is defined in (3.15). To show Â = A, it is sufficient to show

min
j∈A

∥∥∥ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1eT

j S
−1
1AAdA, ρ1(1 + ρ2

1d
T
AS
−1
2AAdA)−1eT

j S
−1
2AAdA

∥∥∥
2

≥ λmax
j∈A
‖eT

j

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A, e

T
j

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A‖2.

(3.16)

Consider the right-hand side in (3.16)

max
j∈A
‖eT

j

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A, e

T
j

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A‖2

= max
j∈A

[{
eT
j

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A

}2
+
{
eT
j

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A

}2]1/2

≤ max
j∈A

{
‖eT

j

(
S1AA + ρ2

2dAd
T
A

)−1
‖2

2‖ũ1A‖2
2 + ‖eT

j

(
S2AA + ρ2

1dAd
T
A

)−1
‖2

2‖ũ2A‖2
2

}1/2

≤ max
j∈A

{
‖eT

j

(
S1AA + ρ2

2dAd
T
A

)−1
‖2 ∨ ‖eT

j

(
S2AA + ρ2

1dAd
T
A

)−1
‖2

}(
‖ũ1A‖2

2 + ‖ũ2A‖2
2

)1/2

≤
{
‖(S1AA + ρ2

2dAd
T
A)−1‖2 ∨ ‖(S2AA + ρ2

1dAd
T
A)−1‖2

}
s1/2.

Furthermore,

‖
(
S1AA + ρ2

2dAd
T
A

)−1
‖2 = ‖S−1/2

1AA

(
I + ρ2

2S
−1/2
1AA dAd

T
AS
−1/2
1AA

)−1
S
−1/2
1AA ‖2 ≤ ‖S−1

1AA‖2,

and similarly ‖(S2AA + ρ2
1dAd

T
A)−1‖2 ≤ ‖S−1

2AA‖2. Using Lemma 3

max
j∈A
‖eT

j

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A, e

T
j

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A‖2

≤ max
g
‖Σ−1

gAA‖2s
1/2
[
1 + C{slog(η−1)/min(n1, n2)}1/2

]

with probability at least 1− η.

Consider the left-hand side in (3.16). Applying Lemma 1 and Corollary 1, there exist
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constants C1, C2 such that with probability at least 1− η

min
j∈A

∥∥∥ρ2(1 + ρ2
2d

T
AS
−1
1AAdA)−1eT

j Σ−1
1AAδA, ρ1(1 + ρ2

1d
T
AS
−1
2AAdA)−1eT

j Σ−1
2AAδA

∥∥∥
2

≥
[
1 + C1 max

g
δT
AΣ−1

gAAδA + C2(max
g
δT
AΣ−1

gAAδA ∨ γ)
{
slog(η−1)/min(n1, n2)

}1/2]−1

×min
j∈A

∥∥∥π2e
T
j S
−1
1AAdA, π1e

T
j S
−1
2AAdA

∥∥∥
2
.

Furthermore,

min
j∈A

∥∥∥π2e
T
j S
−1
1AAdA, π1e

T
j S
−1
2AAdA

∥∥∥
2

= min
j∈A

{
π2

2(eT
j S
−1
1AAdA)2 + π2

1(eT
j S
−1
2AAdA)2

}1/2

= min
j∈A

[
π2

2{eT
j (S−1

1AAdA − Σ−1
1AAδA + Σ−1

1AAδA)}2 + π2
1{eT

j (S−1
2AAdA − Σ−1

2AAδA + Σ−1
2AAδA)}2

]1/2

≥ min
j∈A

∥∥∥π2e
T
j Σ−1

1AAδA, π1e
T
j Σ−1

2AAδA
∥∥∥

2
−max

g

(
‖S−1

gAAdA − Σ−1
gAAδA‖∞

)
= ψmin −max

g

(
‖S−1

gAAdA − Σ−1
gAAδA‖∞

)
,

where in the last inequality we used π2
1 + π2

2 ≤ 1. Using Lemma 8

max
g

(
‖S−1

gAAdA − Σ−1
gAAδA‖∞

)
≤ C

[
max
j∈A,g

{
(Σ−1

gAA)jj(δT
AΣ−1

gAAδA ∨ γ)
}
slog(η−1)/min(n1, n2)

]1/2

with probability at least 1− η.

Therefore, to have A ⊆ Â, it is sufficient to have

ψmin > C
[

max
j∈A,g

{
(Σ−1

gAA)jj(δT
AΣ−1

gAAδA ∨ γ)
}
slog(η−1)/min(n1, n2)

]1/2

+
[
1 + C1 max

g
δT
AΣ−1

gAAδA + C2(max
g
δT
AΣ−1

gAAδA ∨ γ)
{
slog(η−1)/min(n1, n2)

}]
× λmax

g
‖Σ−1

gAA‖2s
1/2
[
1 + C

{
slog(η−1)/min(n1, n2)

}1/2
]
.
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Using the conditions on λ, and the fact that γ ≥ 1, it follows that the second term above is

the dominant term, and therefore it is sufficient to have for some constant C > 0

ψmin > Cλs1/2 max
g
‖Σ−1

gAA‖2(max
g
δT
AΣ−1

gAAδA ∨ γ).

3.6.4 Supporting theorems and lemmas

Theorem 5 (Oracle solution). Consider an oracle estimator [ṽ1A ṽ2A] from (3.14). Let

ρ1 = n1/n, ρ2 = n2/n. Then

ṽ1A = ρ2S
−1
1AAdA(1 + ρ2

2d
T
AS
−1
1AAdA)−1 − λ

(
S1AA + ρ2

2dAd
T
A

)−1
ũ1A,

ṽ2A = ρ1S
−1
2AAdA(1 + ρ2

1d
T
AS
−1
2AAdA)−1 − λ

(
S2AA + ρ2

1dAd
T
A

)−1
ũ2A;

where ũA is defined in (3.15).

Proof. We present the proof only for ṽ1A, the proof for ṽ2A is analogous. From Section 3.2.3

[ṽ1A ṽ2A] = argmin
v1A,v2A∈Rs

{
L̂ψ1(v1A) + L̂ψ2(v2A) + λ

s∑
j=1

(v2
1Aj + v2

2Aj)1/2
}
,

L̂ψ1(v1A) + L̂ψ2(v2A)

= vT
1AS1AAv1A/2 +

(
n2/nd

T
Av1A − 1

)2
/2 + vT

2AS2AAv2A/2 +
(
n2/nd

T
Av2A − 1

)2
/2.

Using the optimality conditions, the oracle solution must satisfy

ṽ1A =
(
S1AA + ρ2

2dAd
T
A

)−1
(ρ2dA − λũ1A) ,
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where ũA is the subgradient of∑s
j=1(v2

1Aj+v2
2Aj)1/2 in (3.15). By Sherman–Morrison identity,

(S1AA − ρ2
2dAd

T
A)−1 = S−1

1AA − (1 + ρ2
2d

T
AS
−1
1AAdA)−1ρ2

2S
−1
1AAdAd

T
AS
−1
1AA.

The statement follows by combining the above two displays.

Lemma 1. There exist constant C > 0 such that with probability at least 1− η

|ng/n− πg| ≤ C
{
log(η−1)/n

}1/2
(g = 1, 2), |n1/n2 − π1/π2| ≤ C

{
log(η−1)/n

}1/2
.

Proof. Given that ng ∼ Bin(n, πg), by Hoeffding inequality pr(|πg − ng/n| ≥ ε) ≤

2 exp(−2nε2). Let η = 2 exp(−2nε2), then 2nε2 = log(2η−1), ε = C{log(η−1)/n}1/2 and

ng/n = πg +Op{log(η−1)/n}1/2. Let f(x) = x/(1−x), which is non-decreasing for x ∈ (0, 1).

Since n1/n2 = f (n1/n) , the second inequality in the lemma follows from the first.

Lemma 2. Let EUg = UgAc−ΣgAcAΣ−1
gAAUgA, Edg = dAc−ΣgAcAΣ−1

gAAdA, g = 1, 2. Then EUg

is independent from UgA, EUg ∼ N (0,ΣgAcAc:A ⊗ Ing−1), eT
j Edg ∼ N

(
0, n−1

g σ2
jdg

)
; where

σ2
jdg = eT

j Σdgej, and ΣgAcAc:A, Σdg are defined in (3.13).

Proof. Since Edg, EUg are formed by applying linear transformation to normal d, U1, U2,

it follows that Edg, EUg are also normally distributed. It remains to verify the form of the

means and covariance matrices. We consider g = 1, the proof for g = 2 is similar.

Consider EU1. By definition, the columns of U1 satisfy u1i ∼ N(0,Σ1). Since

EU1 = (−Σ1AcAΣ−1
1AA Ip−s)

U1A

U1Ac

 ,
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it follows that E(EU1) = 0, and

var(EU1) = (−Σ1AcAΣ−1
1AA Ip−s)

Σ1AA Σ1AAc

Σ1AcA Σ1AcAc

 (−Σ1AcAΣ−1
1AA Ip−s)T ⊗ In1−1

= (Σ1AcAc − Σ1AcAΣ−1
1AAΣ1AAc)⊗ In1−1.

Consider Ed1. Since Σ−1
1 δ = ψ1 = (ψT

1A, 0)T, by rewriting Σ1Σ−1
1 δ = δ, and using block matri-

ces of Σ1 and Σ−1
1 , it follows that Σ1AcAΣ−1

1AAδA = δAc . Then E(Ed1) = δAc−Σ1AcAΣ−1
1AAδA =

0. Furthermore,

var(Ed1)

= var(dAc − Σ1AcAΣ−1
1,AAdA)

= var(dAc) + Σ1AcAΣ−1
1AAvar(dA)Σ−1

1AAΣ1AAc

− Σ1AcAΣ−1
1AAcov(dA, dAc)− cov(dAc , dA)Σ−1

1AAΣ1AAc

= n−1
1 Σ1AcAc + n−1

2 Σ2AcAc + Σ1AcAΣ−1
1AA

(
n−1

1 Σ1AA + n−1
2 Σ2AA

)
Σ−1

1AAΣ1AAc

− Σ1AcAΣ−1
1AA

(
n−1

1 Σ1AAc + n−1
2 Σ2AAc

)
−
(
n−1

1 Σ1AcA + n−1
2 Σ2AcA

)
Σ−1

1AAΣ1AAc

= n−1
1 Σ1AcAc:A + n−1

2

(
Σ2AcAc + Σ1AcAΣ−1

1AAΣ2AAΣ−1
1AAΣ1AAc

− Σ1AcAΣ−1
1AAΣ2AAc − Σ2AcAΣ−1

1AAΣ1AAc

)
.

Lemma 3. Let SgAA be a submatrix of the sample covariance matrix for group g ∈ {1, 2}

corresponding to variables in A, with s = card(A). Let ΣgAA be the corresponding submatrix

of population covariance matrix. Under Assumption 1, there exist constants C1, C2 > 0 such

that with probability at least 1− η

‖Σ1/2
gAAS

−1
gAAΣ1/2

gAA − I‖2 ≤ C1

{
slog(η−1)/ng

}1/2
, ‖S−1

gAA‖2 ≤ ‖Σ−1
gAA‖2

[
1 + C2

{
slog(η−1)/ng

}1/2]
.
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Proof. Using normality, the sample covariance matrices satisfy SgAA = (ng−1)−1WgW
T
g with

Wg ∈ Rs×(ng−1) having independent columns wgi ∼ N(0,ΣgAA). Then the desired bounds

follow from Wainwright (2009, Lemma 9).

Lemma 4. Let a random vector X ∈ Rs be such that X ∼ N (0, n−1A). Then there exist

constant C > 0 such that with probability at least 1− η

‖X‖2 ≤ C
{
‖A‖2n

−1slog(η−1)
}1/2

.

Proof. Since A−1/2X ∼ N (0, n−1Is), by Hsu et al. (2012, Proposition 1.1), with probability

at least 1− η

‖A−1/2X‖2
2 ≤ s/n+ 2

{
slog(η−1)

}1/2
/n+ 2log(η−1)/n.

For small η it follows that there exist C > 0 such that ‖A−1/2X‖2
2 ≤ Cn−1slog(η−1) with

probability at least 1− η. The statement of the lemma follows since

‖X‖2
2 = XTX = XTA−1/2AA−1/2X ≤ ‖A‖2‖A−1/2X‖2

2.

Lemma 5. There exist constant C > 0 such that with probability at least 1− η

max
g
‖Σ−1/2

gAA (dA − δA)‖2 ≤ C
{
γslog(η−1)/min(n1, n2)

}1/2
,

where γ is defined in (3.12).

Proof. Since dA − δA ∼ N (0, n−1
1 Σ1AA + n−1

2 Σ2AA), it follows that

Σ−1/2
1AA (dA − δA) ∼ N

(
0, n−1

1

(
I + n−1

2 n1Σ−1/2
1AA Σ2AAΣ−1/2

1AA

))
.

Applying Lemma 1 and Lemma 4 concludes the proof. The case g = 2 is analogous.
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Lemma 6. There exist constants C1, C2 such that with probability at least 1− η for g = 1, 2

dT
AS
−1
gAAdA ≤ C1d

T
AΣ−1

gAAdA

[
1 + C2

{
log(η−1)/(ng − s)

}1/2
]
.

Proof. We prove for g = 1, case g = 2 is analogous. Since (n1− 1)S1AA ∼ Ws(n1− 1,Σ1AA),

and dA is independent of S1AA, by Muirhead (1982, Theorem 3.2.12)

(n1 − 1)d
T
AΣ−1

1AAdA
dT
AS
−1
1AAdA

∼ χ2
n1−s.

Using (Laurent and Massart, 2000, Lemma 1),

pr
[
(n1 − 1)d

T
AΣ−1

1AAdA
dT
AS
−1
1AAdA

≥ (n1 − s)− 2
{

(n1 − s)log(η−1)
}1/2]

≥ 1− η.

Therefore, with probability at least 1− η

dT
AS
−1
1AAdA ≤ (n1 − 1)(n1 − s)−1dT

AΣ−1
1AAdA

[
1− 2

{
log(η−1)/(n1 − s)

}1/2
]−1

.

Hence, there exist constants C1, C2 > 0 such that with probability at least 1− η

dT
AS
−1
1AAdA ≤ C1d

T
AΣ−1

1AAdA

[
1 + C2

{
log(η−1)/(n1 − s)

}1/2
]
.

Lemma 7. There exist constant C > 0 such that with probability at least 1− η

dT
AΣ−1

gAAdA ≤ C
{
δT
AΣ−1

gAAδA + γn−1
g slog(η−1)

}
(g = 1, 2),

where γ is defined in (3.12).

75



Proof. We prove the result for g = 1, the case g = 2 is similar. Consider

dT
AΣ−1

1AAdA = δT
AΣ−1

1AAδA + 2(dA − δA)TΣ−1
1AAδA + (dA − δA)TΣ−1

1AA(dA − δA)

≤ 2δT
AΣ−1

1AAδA + 2(dA − δA)TΣ−1
1AA(dA − δA).

By Lemma 5, there exist constant C ≥ 0 such that with probability at least 1− η

(dA − δA)TΣ−1
1AA(dA − δA) ≤ Cγn−1

1 slog(η−1).

The result follows by combining the above displays.

Corollary 1. There exist constants C1, C2, C3 > 0 such that with probability at least 1 − η

for g = 1, 2 and γ in (3.12)

dT
AS
−1
gAAdA ≤ C1δ

T
AΣ−1

gAAδA

[
1 + C2

{
log(η−1)/(ng − s)

}1/2
]

+ C3γn
−1
g slog(η−1).

Proof. The result follows by combining results of Lemma 6 and Lemma 7.

Lemma 8. There exist constant C > 0 such that with probability at least 1− η for g = 1, 2

‖S−1
gAAdA − Σ−1

gAAδA‖∞ ≤ C
{

max
j∈A

(Σ−1
gAA)jj(δT

AΣ−1
gAAδA ∨ γ)n−1

g slog(η−1)
}1/2

,

where γ is defined in (3.12).
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Proof. We prove the result for g = 1, the case g = 2 is similar. Consider

|eT
j S
−1
1AAdA − eT

j Σ−1
1AAδA|

= |eT
j (S−1

1AA − Σ−1
1AA)(dA − δA) + eT

j (S−1
1AA − Σ−1

1AA)δA + eT
j Σ−1

1AA(dA − δA)|

≤ (eT
j Σ−1

1AAej)1/2‖(Σ1/2
1AAS

−1
1AAΣ1/2

1AA − I)Σ−1/2
1AA (dA − δA)‖2

+ (eT
j Σ−1

1AAej)1/2‖(Σ1/2
1AAS

−1
1AAΣ1/2

1AA − I)Σ−1/2
1AA δA‖2

+ (eT
j Σ−1

1AAej)1/2‖Σ−1/2
1AA (dA − δA)‖2.

Let m1 = ‖Σ1/2
1AAS

−1
1AAΣ1/2

1AA − I‖2 and m2 = ‖Σ−1/2
1AA (dA − δA)‖2. Using the above display

‖S−1
1AAdA − Σ−1

1AAδA‖∞ ≤ max
j∈A

(Σ−1
1AA)1/2

jj

{
m1m2 +m1(δT

AΣ−1
1AAδA)1/2 +m2

}
. (3.17)

Using Lemma 3, there exist constant C1 > 0 such that m1 ≤ C1{slog(η−1)/n1}1/2 with

probability at least 1 − η. Using Lemma 5, there exist constant C2 > 0 such that m2 ≤

C2{γslog(η−1)/n1}1/2 with probability at least 1− η. Combining these bounds with (3.17),

there exist constant C > 0 such that with probability at least 1− η

‖S−1
1AAdA − Σ−1

1AAδA‖∞ ≤ C
{

max
j∈A

(Σ−1
1AA)jj(δT

AΣ−1
1AAδA ∨ γ)n−1

1 slog(η−1)
}1/2

.
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4. VIGNETTE: FIT A MISSPECIFIED MODEL WITH MEASUREMENT ERROR

USING CCP

This chapter provides further details and a concrete illustration for the R programs used

in the paper Categorizing a Continuous Predictor Subject to Measurement Error (Blas et al.,

2018). This package is mainly focused on logistic regression and linear regression, though the

proposed method has much weaker assumptions and can be applied in many scenarios. This

document provides a brief overview of the methodology, especially for linear regression and

logistic regression. Further, we use simulation studies and a real data example, the EATS

data (Subar et al., 2001), to show 4 ways to use ccp, the main function in the CCP package.

4.1 Introduction

In epidemiology, it is common to fit a categorical risk model to a continuous risk predictor,

because the categorical one is thought to be more robust and interpretable. When the risk

predictor is observed with measurement error, epidemiologists typically ignore the underlying

measurement error and perform a naive approach, e.g., logistic regression, as what they

would have done if they observe the true predictor. Here we introduce some notation to help

describe the problem background.

• X: true risk predictor (continuous);

• XC: categorized predictor;

• U : measurement error;

• W : observed risk predictor (continuous, with measurement error); W = X+U , X and

U are independent;

• WC: categorized predictor.

Using the notation stated above, ideally, epidemiologists categorize X and then use XC
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to fit the model. However, if they observeW instead of X, they would useWC in the original

categorical model without correcting the measurement error.

White (1982) shows that when X is observed, though the categorical model is a misspeci-

fied model, the estimates are unbiased with respect to the true value of what epidemiologists

are interested in - the parameters with respect to XC in the categorical risk model. When X

is not observed, however, substituting W for X leads to a biased estimate, as well as a poor

inference quality. To address the problem based on W , the relationship between W and X

needs to be specified.

We address this problem and provide a general method to get unbiased estimates and

correct inference even with measurement error in the data. The key of our method is adding

another layer of conditional expectation given observed predictor W . Thus, the original

estimating equation is now relying on W but not on X. We then need to estimate the

expectations of functions of X given W . For example, suppose the original estimating

equation is formed based on E{f(X)} = 0. Adding a layer of conditional expectation leads

to E[E{f(X)|W}] = 0. Hence, the goal turns out to be estimating E{f(X)|W}, depending

on the conditional density fX|W . Although Blas et al. (2018+) focuses on the general case,

this document aims to provide more details for logistic regression and linear regression.

Due to the complexity of the problem itself, in this package, we do not consider other

covariates measured without error. Readers can find more general formulas in the original

paper.

The rest of this document is organized as follows: we first provide a brief methodology

review for readers to gain more background without looking at the original paper; then, we

present estimating equations in logistic regression and linear regression. Finally, we show

different ways to use the main function ccp through simulation studies, as well as the analysis

for EATS data (Subar et al. 2001).

79



4.2 Methodology review

4.2.1 General overview

Here we present two cases: linear regression and logistic regression, corresponding to

continuous or binary response. For the more general model and its assumptions, we refer

readers to Categorizing a Continuous Predictor for more details.

This package allows users to use two types of data:

• External-internal data: if the main dataset has no replicates, users need to provide

external data for nuisance parameter estimation, especially for estimating the variance

of measurement error. Without external data, the measurement error is unidentifiable.

• Internal-only data: when the main dataset has replicates, the program only uses the

main dataset to calculate the nuisance parameters. Any provided external data are

ignored in this case.

In the following part, we explain the external-internal and internal-only cases in linear

regression and logistic regression, respectively.

In the R package CCP, we assume that

W = X + U ; X ∼ N(µx, σ2
x); U ∼ N(0, σ2

u).

Also, X and U are independent. For convenience, we define nuisance parameter Λ =

(µx, σ2
x, σ

2
u).

For the continuous risk predictor X, we denote m(X,β) = α + Xβ, where β = (α, β).

To categorize X into j = 1, ..., J categories (C1, ..., CJ), we define M(X) = {I(X ∈

C1), ..., I(X ∈ CJ)}T. Thus, the corresponding parameters in the categorical model are

Θ = (θ1, ..., θJ).
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The parameter we are mainly interested in is θJ − θ1, which is the log relative risk in

logistic regression.

Now we introduce three assumptions required for our approach:

(a) When X is observed, the true risk model in the continuous scale has unbiased estimat-

ing functions known up to parameters β.

(b) When X is not observed, we can find a function g(X,β) that E[E{g(X,β)|W}] = 0,

with its conditional expectation E{g(X,β)|W} depends on Λ and can be estimated.

A special case is knowing the distribution of X given W up to parameters Λ.

(c) If the external data are necessary for model identification, the parameter estimated

from external data, i.e. σ2
u, should be transportable. See Chapter 2.2.4-2.2.5 of R. J.

Carroll et al. (2006).

For linear regression and logistic regression considered in this package, all three assump-

tions are satisfied. Further, we would like to point out that neither normally distributed X

and U , nor logistic or linear regression model is specifically required for the proposed method

itself.

To estimate nuisance parameters Λ, we now introduce the estimating equations based

on using external-internal or internal-only data. Then the estimating equations for β and

Θ are introduced, depending on using linear regression or logistic regression.

4.2.1.1 External-internal data

If there are no replicates in the internal data, we use the external data only to estimate

σ2
u. Suppose we observe Wik = Xi + Uik for k = 1, ..., K and i = n + 1, ..., n + N . We use

internal data to estimate µx, σ2
x without replicates.

In the external data, let W i· = K−1∑K
k=1 Wik. Define σ̂2

u,i = (K− 1)−1∑K
k=1(Wik−W i·)2

to be the sample variance of the Wik for a given i.
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Because E{(Wi − µx)2} = σ2
x + σ2

u, unbiased estimating equations for Λ = (µx, σ2
x, σ

2
u)

are

• For µx: n−1∑n
i=1(Wi − µx) = 0;

• For σ2
u: N−1∑n+N

i=n+1(σ̂2
u,i − σ2

u) = 0.

• For σ2
x: n−1∑n

i=1{(Wi − µx)2 − σ2
x − σ2

u} = 0;

4.2.1.2 Internal-only data

Suppose there are no external data, and we have replicates Wir for r = 1, ..., R in the

internal data. Now we use the internal data to estimate Λ = (µx, σ2
x, σ

2
uR), and we observe

Wir = Xi + Uir for r = 1, ..., R and i = 1, ..., n. Define W i· = R−1∑R
r=1 Wir. Define σ̂2

u,i to

be the sample variance of the Wir within subject i, and define σ2
u/R = σ2

uR.The estimating

equations are

• For µx: n−1∑n
i=1(W i· − µx) = 0;

• For σ2
uR: n−1∑n

i=1(σ̂2
u,i/R− σ2

uR) = 0.

• For σ2
x: n−1∑n

i=1{(W i· − µx)2 − σ2
x − σ2

uR} = 0;

Using the external-internal or internal-only data influences how to estimate nuisance

parameters Λ, while fitting linear or logistic regression affects the estimating equations of

β,Θ as described below.

4.2.2 Linear regression

We assume the true model in the continuous scale is

Y = α +Xβ + ε = m(X,β) + ε,
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where m(X,β) = α + Xβ. For external-internal and internal-only cases, the estimation

equations for β and Θ are the same.

The estimating function for β = (α, β) is

Φ(β, Λ̂) = n−1∑n
i=1E[{Yi −m(Xi,β)}∂m(Xi,β)/∂βT|Wi].

The estimating function for Θ is

Q(Wi,Θ, β̂, Λ̂) = E


m(Xi, β̂)I(Xi ∈ C1)−Θ1I(Xi ∈ C1)

...

m(Xi, β̂)I(Xi ∈ CJ)−ΘJI(Xi ∈ CJ)

Wi

 .

The integration above is calculated using the integrate function in the R package stats.

4.2.3 Logistic regression

Let H(·) denote the logistic distribution function. Here we consider the special case of

linear logistic regression with the classical measurement error model in both the external

and internal datasets:

pr(Y = 1|X,Z) = H(α +Xβ) = H{(1, X)β}

Let pi = pr(Y = 1|Wi) =
∫
H{(1, x)β}fx|Wi

(x,Wi,Λ)dx, we use the integrate func-

tion in the R package stats to compute this quantity and calculate the loglikelihood

∝ n−1∑n
i=1Yilog(pi) + (1− Yi)log(1− pi). We then use the optim function in the R package

stats to minimize negative loglikelihood to estimate β.

Given the logistic regression model, the categorical estimating function is

Φcat{Y,MT(X)Θ} = M(X)[Y −H{MT(X)Θ}],
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Where M(X) = {I(X ∈ C1), ..., I(X ∈ CJ)}T for categories (C1, ..., CJ). Hence, with

Ω = (Θ,β,Λ),

Q(W,Ω) = E

(
M(X)

[
H{m(X,β)} −H{MT(X)Θ}

] ∣∣∣∣∣W
)
.

In the R program,

Q(Wi,Θ, β̂, Λ̂) = E


H{m(Xi, β̂)}I(Xi ∈ C1)−H(Θ1)I(Xi ∈ C1)

...

H{m(Xi, β̂)}I(Xi ∈ CJ)−H(ΘJ)I(Xi ∈ CJ)

Wi

 .

Again, we use the integrate function in the R package stats to compute the integrals.

4.3 Function overview

As shown in Figure 4.1, the package CCP contains one main function named ccp. Based

on the types of response, we can specify logistic regression for binary Y , or linear regression

for continuous Y . Further, in each of the two cases we mentioned before, ccp provides the

choice of external-internal and internal-only cases as introduced in the methodology review.

4.3.1 Get started

First, let us install the R package CCP.

install.packages("~/Desktop/CCP_1.1.tar.gz", repos = NULL, type = "source")

#> Warning in install.packages("~/Desktop/CCP_1.1.tar.gz", repos = NULL,

#> type = "source"): installation of package ’/Users/tianying/Desktop/

#> CCP_1.1.tar.gz’ had non-zero exit status

library(CCP)

Once the package has been loaded, one can call the main function as follows.
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start Y

logistic

linear

use internal 
data only

use internal 
and external 

data

binary

continuous

replicates in 
internal data?

Yes

No

ccp(Y, W_int, 
Type = "logistic")

replicates in 
internal data?

use internal 
data only

use internal 
and external 

data

Yes

No

ccp(Y, W_int, 
W_ext, Type = 

"logistic")

ccp(Y, W_int, 
Type = "linear")

ccp(Y, W_int, 
W_ext, Type = 

"linear")

Figure 4.1: Functions overview
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ccp(y, W_int, W_ext = NULL, C = NULL, Type, print.summary = TRUE, standardize = TRUE)

To check the package CCP or the usage of a specific function, you can either use help or

??.

help( package = "CCP" )

??ccp

The former command gives a brief summary of all functions in the package, while the

later one offers more detailed information for function ccp.

4.4 Simulation study

Here we show the external-internal and internal-only cases for logistic regression. We

also compare the proposed method with the naive approach: substituting W for X in the

categorical model with no adjustment for measurement error.

(1) Define a function to calculate the naive estimates.

thetaw <- function(y, w, mux_hat, s2x_hat){

# Define cut points

J = 5 # categorize W into quintiles

C = rep(0, 4)

C[1] = qnorm(0.2, mean = mux_hat, sd = sqrt(s2x_hat))

C[2] = qnorm(0.4, mean = mux_hat, sd = sqrt(s2x_hat))

C[3] = qnorm(0.6, mean = mux_hat, sd = sqrt(s2x_hat))

C[4] = qnorm(0.8, mean = mux_hat, sd = sqrt(s2x_hat))
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# Define a function to categorize W

fMx <- function(x){

Mx = vector()

Mx[1] = ifelse(x < C[1], 1, 0)

Mx[2] = ifelse((C[1] <= x) & (x < C[2]), 1, 0)

Mx[3] = ifelse((C[2] <= x) & (x < C[3]), 1, 0)

Mx[4] = ifelse((C[3] <= x) & (x < C[4]), 1, 0)

Mx[5] = ifelse(x >= C[4], 1, 0)

return (Mx)

}

# Categorize W

cw = matrix(0, ncol = J,nrow = n)

for(i in 1:n){cw[i, ] = fMx(w[i])}

# Run standard logistic regression using glm (no intercept)

thetaw_out = glm(y ~ cw - 1 , family = binomial(link = "logit"))

# Get estimates theta1, .., that_5 and standard errors

thetaw_w = summary(thetaw_out)$coef[1:J]

s.e.thw = summary(thetaw_out)$coef[1:J, 2]

# Calculate the standard error for theta_5 - theta_1

s.e_thetaw_J1 = sqrt(s.e.thw[J]^2+s.e.thw[1]^2 -2*vcov(thetaw_out)[1,J])

# SE of theta1, .., theta_5 and (theta_5-theta_1)

s.e_thetaw_w = c(s.e.thw, s.e_thetaw_J1)
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# Report results

theta.par = c(thetaw_w, thetaw_w[5] - thetaw_w[1])

names(theta.par) = names(s.e_thetaw_w) = c("theta1", "theta2", "theta3",

"theta4", "theta5", "theta5-theta1")

out1 = list(theta.par, s.e_thetaw_w)

names(out1) = c( "theta", "stderr.theta")

return(out1) }

(2) Set parameters values for data generation.

# Parameter values

mux = 0 #true mean of X

su2 = 1 #true variance of U

sx2 = 1 #true variance of X

b = log(1.5) #beta_1

a = -0.42 #beta_0

# Sample size

n = 500 # internal data

m = 300 # external data

r = 2 # replicates

(3) Generate the external and internal datasets. Note that X in the external data has no

replicates. The replicates are generated due to the error term U .
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# Set seed

set.seed(107852)

# Generate external dataset

X_ext = rnorm(m, mux, sqrt(sx2)) # X is a vector, not a matrix

U_ext = matrix(rnorm(m * r, 0, sqrt(su2)), m, r)

W_ext = matrix(rep(X_ext, r), m, r, byrow = FALSE) + U_ext

# Generate internal dataset

X_int = rnorm(n, mux, sqrt(sx2))

U_int = rnorm(n, 0, sqrt(su2))

W_int = X_int + U_int # internal data has no replicates

## Generate response y for internal dataset

fHm <- function(x, a, b){1 / (1 + exp( - (a + b * x)))}

pr = fHm(X_int, a, b)

y = vector()

for(i in 1:n){y[i] = rbinom(1, 1, pr[i])}

(4) Perform the proposed method using function ccp. Type = "logistic" needs to be

specified for logistic regression.

outcome1 = ccp( y = y, W_int = W_int, W_ext = W_ext, Type = "logistic")

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)
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#> mu.x -0.09586 0.06126 -1.56472 0.11765

#> sigma^2.x 0.92557 0.14341 6.45421 0.00000

#> sigma^2.u 0.95460 0.06269 15.22706 0.00000

#> alpha -0.60244 0.09737 -6.18723 0.00000

#> beta 0.41968 0.14650 2.86469 0.00417

#> theta 1 -1.19816 0.22248 -5.38551 0.00000

#> theta 2 -0.85647 0.12909 -6.63470 0.00000

#> theta 3 -0.64211 0.09783 -6.56358 0.00000

#> theta 4 -0.42744 0.11650 -3.66892 0.00024

#> theta 5 -0.07729 0.20509 -0.37687 0.70627

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 1.12087 0.38189 2.93507 0.00333

#>

outcome1

#> $‘theta5-theta1‘

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 1.120869 0.3818889 2.935066 0.003334765

#>

#> $theta

#> [1] -1.19815926 -0.85646628 -0.64211126 -0.42744384 -0.07729019

#>

#> $nuisance

#> mu.x sigma^2.x sigma^2.u alpha beta

#> -0.09585517 0.92556798 0.95459883 -0.60243921 0.41967852

#>
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#> $se.theta

#> [1] 0.22247851 0.12908888 0.09782948 0.11650410 0.20508530 0.38188885

#>

#> $se.nuisance

#> [1] 0.06126021 0.14340533 0.06269097 0.09736819 0.14650027

(5) Compare results from the proposed method to the naive approach.

# Estimate mean of X and variance of X (used for categorization)

mux_hat = mean(W_int)

su2e = mean(apply(W_ext, 1, var))

s2x_hat=max((var(W_int)-su2e), 0.2*var(W_int))

# 0.2*var(W_int) is the common bound to control the variance of X

# Run naive approach

thetaw(y, W_int, mux_hat, s2x_hat)

#> $theta

#> theta1 theta2 theta3 theta4 theta5

#> -0.9062404 -0.6523252 -0.7339692 -0.3321338 -0.4364273

#> theta5-theta1

#> 0.4698131

#>

#> $stderr.theta

#> theta1 theta2 theta3 theta4 theta5

#> 0.1873525 0.2466441 0.2483277 0.2281275 0.1762471

#> theta5-theta1

#> 0.2572237
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Given in the paper (Blas et al. 2018+), the true Θ = (−0.98,−0.64,−0.42,−0.21, 0.14)T.

Thus, the true θ5− θ1 = 1.12. The proposed method has the estimate 1.121, while the naive

approach provides an estimate 0.470. The results show that ignoring measurement error

and applying standard logistic regression directly with respect to W lead to poor inference

quality. On the contrary, the proposed method gives consistent estimate as expected.

Now we present the internal-only case for logistic regression.

# set seed

set.seed(1029356)

# Generate dataset

X_int = rnorm(n, mux, sqrt(sx2)) # X has no replicates

U_int = matrix(rnorm(n * r, 0, sqrt(su2)), n, r)

W_int = matrix(rep(X_int, r), n, r, byrow = FALSE) + U_int

# Generate response y

fHm <- function(x, a, b){1 / (1 + exp(-(a + b * x)))}

pr = fHm(X_int, a, b)

y = vector()

for(i in 1:n){y[i] = rbinom(1, 1, pr[i])}

Run the proposed method:

outcome2 = ccp( y = y, W_int = W_int, Type = "logistic")

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> mu.x 0.02596 0.05787 0.44863 0.65370
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#> sigma^2.x 1.17524 0.11983 9.80781 0.00000

#> sigma^2.u 0.99799 0.03300 30.24456 0.00000

#> alpha -0.42276 0.09483 -4.45815 0.00001

#> beta 0.37315 0.10978 3.39913 0.00068

#> theta 1 -0.98403 0.19389 -5.07510 0.00000

#> theta 2 -0.62657 0.11725 -5.34394 0.00000

#> theta 3 -0.41223 0.09576 -4.30478 0.00002

#> theta 4 -0.19753 0.10993 -1.79692 0.07235

#> theta 5 0.14149 0.17514 0.80789 0.41916

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 1.12552 0.31994 3.51794 0.00043

#>

outcome2

#> $‘theta5-theta1‘

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 1.125524 0.3199389 3.517935 0.0004349184

#>

#> $theta

#> [1] -0.9840299 -0.6265727 -0.4122278 -0.1975332 0.1414943

#>

#> $nuisance

#> mu.x sigma^2.x sigma^2.u alpha beta

#> 0.02596037 1.17523686 0.99798913 -0.42276043 0.37315138

#>

#> $se.theta
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#> [1] 0.19389368 0.11724928 0.09576047 0.10992873 0.17514103 0.31993886

#>

#> $se.nuisance

#> [1] 0.05786590 0.11982662 0.03299731 0.09482861 0.10977846

Run standard logistic regression:

row_mean_w = apply(W_int, 1, mean)

mux_hat = mean(row_mean_w)

s2w = apply(W_int, 1, var)

su2e = mean(s2w)/r

s2x_hat = max(mean((row_mean_w - mux_hat) ^ 2) - su2e,

0.2 * (mean((row_mean_w - mux_hat) ^ 2)))

thetaw(y, row_mean_w, mux_hat, s2x_hat)

#> $theta

#> theta1 theta2 theta3 theta4 theta5

#> -0.6539265 -0.6118015 -0.9075571 -0.1670541 0.1177830

#> theta5-theta1

#> 0.7717095

#>

#> $stderr.theta

#> theta1 theta2 theta3 theta4 theta5

#> 0.1974192 0.2195430 0.2470264 0.2048366 0.1836577

#> theta5-theta1

#> 0.2696377

We observe the similar pattern as shown in the external-internal case. For θ5−θ1 = 1.12,

the naive estimate is 0.772, while the proposed method estimates it as 1.126.
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4.5 Real data example

4.5.1 Data

Here we use the Eating at America’s Table (EATS) Study (Subar et al. 2001) data as

an example to illustrate the usage of the package. The dataset contains 964 participants

with multiple 24-hour recalls of diet per each person. Define Fat Density as the percentage

of calories coming from fat. We want to use this data to analyze the relative risk of being

obese, comparing the group of people with the highest level of Fat Density versus people

with the lowest level of Fat Density.

First, we load the data. However, we are not allowed to share this data. Thus, we show

several lines of the data so you can get a sense of what the data looks like.

head(EATSdata_all)

#> y w1 w2 w3 w4

#> 1 19.95373 -4.4810374 -1.7696515 -0.427827518 0.08514833

#> 2 29.31301 -1.6681290 -2.1910584 0.388690150 -0.49377952

#> 3 27.36617 1.3471425 1.0063977 -0.009499347 0.65078338

#> 4 18.91162 -3.5224474 -1.0915284 -0.600154597 -0.74033006

#> 5 25.26264 0.7229939 0.4309749 1.251822769 -0.02058828

#> 6 22.12660 0.9097210 1.7703199 0.114664950 0.14936229

In this study, we mainly focus on the following variables:

• Y : either the actual body mass index (BMI), or the indicator of obesity, defined as

body mass index > 30. The Y shown above is continuous. In linear regression, we use

the continuous one; the binary indicator is used for logistic regression.

• X: average daily Fat Density over a long time period (not shown above).
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• W : short-term Fat Density, observed in the study. As shown above, W has 4 replicates

per person.

For numerical stability, we first preprocess the data:

(1) delete outliers;

(2) centered and standardized W using (15 ∗W − 5)/
√

0.5.

Then we obtain a dataset with 929 observations. We then randomly selected 200 ob-

servations as the external dataset, the remaining 729 observations are the internal dataset.

More details are provided within the examples.

Before formally applied the our approach, we need to check the assumptions. In the

paper, we showed that it is reasonable to take (a) X to be normally distributed, (b) U to

be normally distributed, and (c) X and U to be independent. Hence, here we do not repeat

the detailed measurements we have done previously.

We first show the external-internal case, then the internal-only case. Each case contains

logistic regression with binary Y and linear regression with continuous Y .

4.5.2 External-internal case

First, we choose variables from the two datasets. We choose the first 2 records from the

external dataset, and the 3rd record from the internal dataset.

4.5.2.1 Logistic regression

The response variable BMI has been transferred to a binary variable with threshold 30.

In other words, Yoriginal > 30 =⇒ Ynew = 1, which indicates obesity.
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# select the first 2 records from external data

W_ext = data_external[,2:3]

# select the 3rd record from internal data

W_int = as.matrix(data_internal[,4])

# transfer continuous Y into binary

y = 1*((data_internal[,1])>30)

The following table shows the size of the external and internal datasets.

size recalls
internal 729 1
external 200 2

Table 4.1: summary for the external-internal case

Now we apply ccp with specified Type = "logistic".

results = ccp( y = y, W_int = W_int, W_ext = W_ext, Type = "logistic")

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> mu.x -0.17583 0.07196 -2.44330 0.01455

#> sigma^2.x 1.49050 0.29898 4.98520 0.00000

#> sigma^2.u 2.28989 0.11597 19.74567 0.00000

#> alpha -1.38789 0.09602 -14.45435 0.00000

#> beta 0.28892 0.14310 2.01901 0.04349
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#> theta 1 -1.92230 0.28106 -6.83954 0.00000

#> theta 2 -1.62510 0.16075 -10.10969 0.00000

#> theta 3 -1.43792 0.10224 -14.06373 0.00000

#> theta 4 -1.25018 0.11010 -11.35539 0.00000

#> theta 5 -0.93824 0.22507 -4.16863 0.00003

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 0.98406 0.46924 2.09714 0.03598

#>

The log relative risk - the term theta 5 - theta 1- is estimated as 0.984 with p-value

= 0.036 and is significant at the 0.05 level.

4.5.2.2 Linear regression

To fit linear regression, we use the scaled BMI as the continuous response. The internal

and external data are the same as before.

results = ccp(y = y,W_int = W_int, W_ext = W_ext, Type = "linear",

standardize = FALSE)

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> mu.x -0.17583 0.07196 -2.44330 0.01455

#> sigma^2.x 1.49050 0.29898 4.98520 0.00000

#> sigma^2.u 2.28989 0.11597 19.74567 0.00000

#> alpha 0.03051 0.03906 0.78097 0.43482

#> beta 0.17351 0.05618 3.08850 0.00201

#> theta 1 -0.29627 0.09479 -3.12541 0.00178
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#> theta 2 -0.11266 0.05104 -2.20705 0.02731

#> theta 3 -0.00002 0.03740 -0.00057 0.99954

#> theta 4 0.11263 0.05299 2.12552 0.03354

#> theta 5 0.29709 0.09983 2.97584 0.00292

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 0.59336 0.18 3.29639 0.00098

#>

Specifying Type = "linear" fits a linear regression. Because we already standardized

the data, we can simply choose standardize = FALSE. The default is TRUE.

results = ccp(y = y,W_int = W_int, W_ext = W_ext, Type = "linear",

standardize = FALSE)

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> mu.x -0.17583 0.07196 -2.44330 0.01455

#> sigma^2.x 1.49050 0.29898 4.98520 0.00000

#> sigma^2.u 2.28989 0.11597 19.74567 0.00000

#> alpha 0.03051 0.03906 0.78097 0.43482

#> beta 0.17351 0.05618 3.08850 0.00201

#> theta 1 -0.29627 0.09479 -3.12541 0.00178

#> theta 2 -0.11266 0.05104 -2.20705 0.02731

#> theta 3 -0.00002 0.03740 -0.00057 0.99954

#> theta 4 0.11263 0.05299 2.12552 0.03354

#> theta 5 0.29709 0.09983 2.97584 0.00292

#>
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#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 0.59336 0.18 3.29639 0.00098

#>

The estimate for θ5−θ1 is 0.59336, which is highly significant with a small p-value 0.00098.

4.5.3 Internal-only case

For the internal-only case, the syntax is similar to what we showed above. However, only

the internal data needs to be provided. If the user also provides external data, as long as

the internal data has replicates, the external data are ignored.

4.5.3.1 Logistic regression

# use first two replicates

W_int = EATSdata_all[, 2:3]

# transfer continuous Y into binary

y = 1*((EATSdata_all[, 1])>30)

size recalls
internal 929 2
external 0 0

Table 4.2: summary for the internal-only case

results = ccp(y = y, W_int = W_int, Type = "logistic")

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

100



#> mu.x -0.25953 0.05177 -5.01296 0.00000

#> sigma^2.x 1.22542 0.12745 9.61513 0.00000

#> sigma^2.u 2.52924 0.05546 45.60287 0.00000

#> alpha -1.30993 0.08364 -15.66189 0.00000

#> beta 0.35701 0.11386 3.13559 0.00172

#> theta 1 -1.94430 0.20962 -9.27521 0.00000

#> theta 2 -1.61125 0.12339 -13.05830 0.00000

#> theta 3 -1.40146 0.08725 -16.06194 0.00000

#> theta 4 -1.19114 0.09379 -12.69973 0.00000

#> theta 5 -0.84340 0.17019 -4.95564 0.00000

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 1.1009 0.34155 3.22324 0.00127

#>

4.5.3.2 Linear regression

W_int = EATSdata_all[, 2:3]

y = EATSdata_all[, 1]

y = as.numeric(scale(y))

results =ccp(y = y, W_int = W_int, Type = "linear", standardize = FALSE)

#> Summary

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> mu.x -0.25953 0.05177 -5.01296 0.00000

#> sigma^2.x 1.22542 0.12745 9.61513 0.00000

#> sigma^2.u 2.52924 0.05546 45.60287 0.00000
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#> alpha 0.04654 0.03583 1.29882 0.19401

#> beta 0.17931 0.04353 4.11897 0.00004

#> theta 1 -0.27818 0.07048 -3.94722 0.00008

#> theta 2 -0.10555 0.03932 -2.68424 0.00727

#> theta 3 0.00006 0.03279 0.00196 0.99843

#> theta 4 0.10561 0.04369 2.41743 0.01563

#> theta 5 0.27764 0.07681 3.61481 0.00030

#>

#> Estimate Std. Error z-value Pr(>|z|)

#> theta 5 - theta 1: 0.55582 0.13221 4.20416 3e-05

#>

For the external-internal and internal-only cases, our approach provides similar estimates.

However, the naive logistic regression, which is often used by epidemiology, has different

results in the two cases and not similar. Since method comparison is not in the scope of this

document, we refer readers to check the paper Categorizing a Continuous Predictor Subject

to Measurement Error for more details.
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5. VIGNETTE: HIGH-DIMENSIONAL BINARY CLASSIFICATION USING DAP

DAP package implements the method proposed in Gaynanova and Wang (2017) for high-

dimensional binary classification with unequal covariance matrices. In this document, we

give an overview of all functions available in the package, introduce the usage of apply_DAP

in details, provide a concrete illustration via simulations and real data analysis. We also

provide algorithm details while referring readers to Gaynanova and Wang (2017) for the

methodology itself.

5.1 Introduction

In recent years, high-dimensional binary classification has been widely used in many ar-

eas. Aiming at improving classification performance, most literatures focus on improving

Quadratic Discriminant Analysis (QDA) through requiring special structures on covariance

matrices or precision matrices, typically not computationally efficient and less flexible. Start-

ing from a different aspect, we propose a method named Discriminant Analysis via Projec-

tion (DAP) in Gaynanova and Wang (2017) to tackle the problem. We extend the idea of

Fisher’s Discriminant Analysis, leading to a sparse quadratic classification rule, featured in

fast computation, model flexibility and classification accuracy. An overview can be found

in the summarized diagram Figure 5.1. More details are presented in Gaynanova and Wang

(2017).

This document is a detailed vignette to illustrate how to use the DAP (Wang and Gay-

nanova 2018) package, which is designed for high-dimensional binary classification. The

main function is apply_DAP. This function is the implementation of DAP method, including

learning classification rule as well as performing classification to the test data. This package

implements 5-fold cross validation to select the tuning parameter.

There are other existing R packages for classification problems, such as JGL (Danaher
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Figure 5.1: Overview

2013), MGSDA (Gaynanova 2016), grpreg (Breheny and Huang 2015), RidgeFusion (Price,

Geyer, and Rothman 2014), sparsediscrim (Ramey 2017). We use those packages in Gay-

nanova and Wang (2017) for competitive methods comparison. DAP shows its computational

advantages universally in high-dimensional analysis. On the one hand, DAP does not require

large matrix inversion. On the other hand, the package itself has underlying code written in

C, which helps speed up the classification.

The rest of the document is organized as follows. First, we review the optimization

algorithm, explain briefly about the methodology. Then, we give an overview of functions

provided within the package. Finally, we use a simulation study and a real dataset from

Chowdary et al. (2006) to illustrate the usage of apply_DAP.
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5.1.1 Optimization problem review

Inspired by the Fisher’s Discriminant Analysis, we develop sparse quadratic classification

rules which depend on the two covariance matrices respectively, without assuming equal

covariance matrix. The proposed discriminant vectors can be found by maximizing between

group variability versus within (each) group variability, separately. Suppose each group

has mean µg and covariance matrix Σg, g = 1, 2, the discriminant vectors can be found as

following:

vg = argmaxvg∈Rp

{
vT
g (µ1 − µ2)(µ1 − µ2)Tvg

vT
g Σgvg

}
= cgΣ−1

g (µ1 − µ2) (g = 1, 2),

where cg are constant.

To estimate v1, v2 empirically, substituting µ1, µ2,Σ1,Σ2 with their plug-in estimates from

the sample leads to the following equation:

v̂g = argmaxvg∈Rp

{
vT
g (x̄1 − x̄2)(x̄1 − x̄2)Tvg

vT
g Sgvg

}
= cgS

−1
g (x̄1 − x̄2) (g = 1, 2),

where x̄1, x̄2 are sample means, and S1, S2 are sample covariance matrices, for each group

respectively.

Set V̂ = [v̂1, v̂2], given a new observation x, the new classification rule labels it as one of

the groups which minimize the following quantity:

h
V̂

(x) = argming∈{1,2}
{

(x− x̄g)TV̂ (V̂ TSgV̂ )−1V̂ T(x− x̄g) + log|V̂ >SgV̂ | − 2log(ng/n)
}
.
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To improve the classification accuracy in high-dimensional setting, we add sparse-

inducing penalty into the optimization problem:

V̂ = [v̂1 v̂2] = argminv1,v2∈Rp

{
L̂1(v1) + L̂2(v2) + λPen(V )

}
,

where L̂1(v1) and L̂2(v2) are empirical loss functions. We choose group-lasso penalty to

enforce row-sparse structure of V̂ . For the ith row of V̂ , if both v̂1i, v̂2i are nonzero, the ith

feature is selected and will affect the classification rule later. For simplicity, we state the

final form of the objective function and refer readers to Gaynanova and Wang (2017) for

more details.

minimizeV=[v1,v2]∈Rp×2

‖X1v1 − 1n1‖2
2

2n1
+ ‖X2v2 + 1n2‖2

2
2n2

+ λ
p∑
j=1

√
v2

1j + v2
2j

 , (5.1)

where X ∈ Rn×p is column-centered.

The methodology itself has several advantages. First, it is a convex optimization problem,

and thus it is easier to solve compared to nonconvex optimization problem. Second, the

empirical loss functions are invariant under the linear transformation of the data and bounded

from below. Further, we only assume V = [v1 v2] has a row-sparse structure. In other words,

we do not require any special structures on µ1, µ2, Σ1, Σ2 respectively, but only requires the

difference between µ1, µ2, after being adjusted by precision matrices (Σ−1
g ), is sparse. This

sparsity assumption is weaker and more realistic. Moreover, in the classification rule, the

only inversion, {(V TSgV̂ )−1}2×2, is most likely non-singular.

Although extended from Fisher’s Discriminant Analysis, this rule has connections to other

popular classification rules. DAP coincides with the sample plug-in quadratic discriminant

rule to V̂ Tx instead of x. Sparse LDA (Gaynanova, Booth, and Wells 2016, Mai, Zou, and

Yuan (2012)) can be viewed as a very special case of DAP when the two discriminant vectors
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v1, v2 are in the same direction. See Proposition 2 (Gaynanova and Wang 2017).

5.1.2 Algorithm

We now illustrate how to use block-coordinate descent algorithm to solve the optimization

problem presented above. Block-coordinate descent algorithm is widely used for optimiza-

tion. In each iteration, it updates one coordinate block to minimize the objective function,

with other blocks fixed. For example, let f(·) be the optimized function, in the (k + 1)th

iteration, we update the jth block xj as following:

x(k+1)
j = argmin

u
f(x(k+1)

1 , ...,x(k+1)
j−1 ,u,x(k)

j+1, ...,x(k)
p ).

Now, let us first derive the block-update for vj = [v1j, v2j], j = 1, ..., p. To solve the

convex optimization problem, we use Karush-Kunn-Tucker (KKT) conditions (Boyd and

Vandenberghe 2004, Chapter 5). Taking derivative to eq (1) with respect to v1, v2 separately,

we get

n−1
1 XT

1jX1jv1j = n−1
1 XT

1j(1n1 −
∑
k 6=j

v1kX1k)− λu1j,

n−1
2 XT

2jX2jv2j = n−1
2 XT

2j(−1n2 −
∑
k 6=j

v2kX2k)− λu2j;

where X1, X2 are training data labeled in two groups, respectively, and uj = (u1j, u2j)T

is the subgradient of
√

(v2
1j + v2

2j)

uj =


vj/‖vj‖2, if ‖vj‖2 6= 0;

∈ {u : ‖u‖2 ≤ 1}, if ‖vj‖2 = 0.
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Satisfying all KKT conditions, the solution is guaranteed to be optimal. However, vj =

[v1j, v2j] typically have no closed form to update it if n−1
1 XT

1 X1 6= n−1
2 XT

2 X2. Although a

line search along the coordinate directions can be used to search for the updates, we scale

the data first such that n−1
1 diag(XT

1 X1) = n−1
2 diag(XT

2 X2) = 1p. This enable us to find a

closed form of block-update. Before performing classification, we backscale v̂1 and v̂2.

The algorithm can be summarized as below, where rj is the residual term, mmax is the

maximum iteration number, ε controls the convergence criterion, and a+ = max(0, a).

Algorithm 1 Block-coordinate descent algorithm for problem
Given: m = 1, V (0), ε > 0, mmax.
repeat

V (m) ← V (m−1)

for j = 1 to p do

rj ←
(
n−1

1 XT
1j(1n1 −

∑p
l=1 v1lX1l)

n−1
2 XT

2j(−1n2 −
∑p
l=1 v2lX2l)

)
V

(m)
j ← (1− λ/‖vj + rj‖2)+ (vj + rj)

end for
m← m+ 1

until m = mmax or V (m) satisfies maxi ‖V (m)
i − V (m−1)

i ‖2 < ε

As described above in Algorithm 1, the block-coordinate descent algorithm iteratively

updates [v1, v2], as well as residuals [r1, r2] until convergence. Since the optimization problem

eq 5.1 is convex and bounded from below, the algorithm is guaranteed to converge to the

global minimum.

5.1.3 Functions overview

DAP contains several functions: apply_DAP, standardizeData, solve_DAP_C,

solve_DAP_seq, cv_DAP, and classify_DAP. Figure 2 gives an overview of the rela-

tionship among them.
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Figure 5.2: Functions overview

apply_DAP, serving as a wrapper function, takes training data, including their labels, and

test data as input. Within the function, it calls other functions as illustrated in the Figure

5.2. There are two different types of outcomes provided by apply_DAP: selected features, as

well as misclassification rate or predicted results. When the label of the test data is provided,

apply_DAP returns the misclassification rate; otherwise, it returns predicted labels for the

test data. There are some options which can be specified for user’s preference, such as seed

number, maximum iteration number, etc.

Now we provide a brief overview for other functions called within apply_DAP, starting

from the basic ones such as standardizeData, solve_DAP_C, to some higher level or wrapper

functions, e.g. solve_DAP_seq, cv_DAP, and finally classify_DAP, the one implements

classification rule.

The basic function, being used several times in the classification, is standardizeData. It
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provides centering and scaling. Recall that in the optimization section, we require X to be

column-centered in the objective function. Centering can be done by this function to enable

the training data Xn×p has column mean zero. In the algorithm section, we perform scaling

to get a closed form of block-update. Here scaling is performed within each group, making

the columns of X1 and X2 to have Eucledean norm equal to one, respectively.

solve_DAP_C, the fundamental function, is the actual function to implement the algo-

rithm and called by other functions. This function calls C code underlying and use block-

coordinate descent algorithm to solve the problem.The function requires scaled input X1

and X2, a given value of the tuning parameter λ. Users can also provide the initial value

for matrix V as a warm start. The convergence threshold and the maximum number of

iterations can be controlled via eps and maxiter.

solve_DAP_seq takes a sequence of λ and then assigns each of them to solve_DAP_C to

get V̂ . The threshold for the number of selected variable is n, the total sample size. The

sequence of λ is sorted in an ascending order; thus whenever the number of non-zero rows

in V̂ exceeds n, we stop considering the following λ in the sequence.

cv_DAP implements 5-fold cross-validation to select the tuning parameter λ. If the se-

quence of λ is not provided by users, it can be generated in apply_DAP. After cv_DAP provided

a matrix of misclassification rate corresponding to each λ, the tuning parameter with small-

est error is selected to find V̂ . classify_DAP is called to implement classification on the test

dataset and return the results to the user as the outcome from apply_DAP finally. When

the group size n1 6= n2, classify_DAP can be adjusted by the group size. Users who do

not want to perform the adjustment can simply set prior=FALSE. prior controls the prior

probabilities of class membership. When using default setting prior = TRUE, the class pro-

portions in the training dataset are used. Otherwise, the prior probability for each group

is equal to 0.5. Note that covariates X need to be centered and standardized within folds.

Back-standardization of V̂ is performed before classifying the test dataset.
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5.1.3.1 Get started

Now let us start with installation. The package can be installed using install.packages.

if("DAP" %in% rownames(installed.packages()) == FALSE) {

install.packages("DAP", repos = "http://cran.us.r-project.org")}

After the package is installed, the next step is to use library to make it accessible for

R.

library(DAP)

Once the package has been loaded, one can call the main function apply_DAP as follows.

apply_DAP(xtrin, ytrain, xtest, ytest = NULL, lambda_seq = NULL,

n_lambda = 50, maxmin_ratio = 0.1, nfolds = 5,

eps = 1e-4, maxiter = 10000, myseed = 1001, prior = TRUE)

To check the available functions in DAP or the usage of a specific function, you can either

use help or ??.

help( package = "DAP" )

??apply_DAP

The former command gives a brief summary of all functions in the package, while the

later one offers more detailed information for function apply_DAP.

5.1.4 Simulation example

In this section, we present a simulation study. The simulation design is as follows.

• Both training and test datasets have sample size n1 = n2 = 100, respectively;
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• Number of features p ∈ {100, 500};

• X1|(Y = 1) = N(µ1,Σ1) and X2|(Y = 2) = N(µ2,Σ2);

• Group means µ1 = 0p, µ2 = (15,−15, 0p−10)

• Covariance structures: Σ1 = Ip, Σ2 has the block-equicorrelation structure with block

size equals 100 and ρ = 0.8.

Σ2 =

ρI100 + (1− ρ)11001T
100 0

0 Ip−100

 .

(1) Set parameters as described above.

p = 100 # number of features

n1 = 100 # size of group 1 in training data

n2 = n1 # size of group 2 in training data

n_test=100 #size of group 1 and group 2 respectively in test data

(2) Create mean and covariance structures.

# Create equicorrelation matrix function

equicor <- function(p, rho, sblock){

Sigma = matrix(0, p, p)

Sigma[1:sblock, 1:sblock] = rho

diag(Sigma) = 1

return(Sigma)

}

# Create mean and covariance structures
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mu1 = rep(0, p)

mu2 = c(rep(1, 5), rep(-1, 5), rep(0, p-10))

Sigma2 = equicor(p, rho = 0.8, sblock = 100)

Sigma1 = diag(p)

(3) Generate the training and test data using the mvrnorm function from the R package

MASS.

library(MASS)

set.seed(20180509)

#training data

ytrain = c(rep(1, n1),rep(2,n2))

x1 = mvrnorm(n = n1, mu = mu1, Sigma = Sigma1)

x2 = mvrnorm(n = n2, mu = mu2, Sigma = Sigma2)

xtrain = rbind(x1, x2)

#test data

x1_test = mvrnorm(n = n_test, mu = mu1, Sigma = Sigma1)

x2_test = mvrnorm(n = n_test, mu = mu2, Sigma = Sigma2)

xtest = rbind(x1_test, x2_test)

ytest = c(rep(1, n_test), rep(2, n_test))

(4) Implement the proposed method by apply_DAP.
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DAP_p100 = apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50,

maxiter = 3000, eps = 1e-4)

#> 12345

DAP_p100

#> $error

#> [1] 0.03

#>

#> $features

#> [1] 9

#>

#> $features_id

#> [1] 1 2 3 4 5 7 8 9 10

Note: the outcome #> 12345 indicates it used 5-fold cross-validation.

(5) Check the true discriminant vectors and report the id of the nonzero features.

v1 = solve(Sigma1) %*% (mu1 - mu2)

v2 = solve(Sigma2) %*% (mu1 - mu2)

v1_id = which(abs(v1) > 1e-4)

v2_id = which(abs(v2) > 1e-4)

v1_id

#> [1] 1 2 3 4 5 6 7 8 9 10

v2_id

#> [1] 1 2 3 4 5 6 7 8 9 10

For this dataset, the proposed method DAP achieves misclassification rate is 0.03, using

9 features selected out of 100. Also, the variables in the true set are all selected except the
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6th feature. This result is only based on one randomly generated dataset. When we change

the seed and generate another dataset, the results are different.

set.seed(201805010)

# Generate training data

ytrain = c(rep(1, n1), rep(2, n2))

x1 = mvrnorm(n = n1, mu = mu1, Sigma = Sigma1)

x2 = mvrnorm(n = n2, mu = mu2, Sigma = Sigma2)

xtrain = rbind(x1, x2)

# Generate test data

x1_test = mvrnorm(n = n_test, mu = mu1, Sigma = Sigma1)

x2_test = mvrnorm(n = n_test, mu = mu2, Sigma = Sigma2)

xtest = rbind(x1_test, x2_test)

ytest = c(rep(1, n_test), rep(2, n_test))

# Implement DAP

apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50, maxiter = 3000,

eps = 1e-4)

#> 12345

#> $error

#> [1] 0.015

#>

#> $features

#> [1] 17
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#>

#> $features_id

#> [1] 1 2 3 4 5 6 7 8 9 10 16 55 61 67 86 93 98

Interestingly, for this particular dataset DAP selects 17 features, including all true features,

and achieves a lower misclassification rate as 0.015.

Now we present the results for p = 500 directly. For simplicity, we do not show the

model and data generation procedures, which remain the same except changing p to be 500.

Results are shown as follows.

DAP_p500 = apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50,

maxiter = 3000, eps = 1e-4)

#> 12345

DAP_p500

#> $error

#> [1] 0.01

#>

#> $features

#> [1] 10

#>

#> $features_id

#> [1] 1 2 3 4 5 6 7 8 9 10

Similarly, we print out the true discriminant vectors v1, v2 for the new model.

v1 = solve(Sigma1) %*% (mu1 - mu2)

v2 = solve(Sigma2) %*% (mu1 - mu2)

v1_id = which(abs(v1) > 1e-4)
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v2_id = which(abs(v2) > 1e-4)

v1_id

#> [1] 1 2 3 4 5 6 7 8 9 10

v2_id

#> [1] 1 2 3 4 5 6 7 8 9 10

In this dataset, DAP achieves a misclassification rate as 0.01. Further, all true features

have been selected by DAP and no extra features have been included in the classification rule.

In other words, in this dataset, the feature set that selected by DAP is exactly the true set.

5.1.5 Real data example

5.1.5.1 Preprocess data

Let us now try an example using chowdary data from datamicroarray (Ramey 2016).

We recommend readers to download chowdary.RData from Raymey’s Github and save it in

the current working directory. You can either use function load or directly open the file

chowdary.RData in R or Rstudio.

• Let us first look at the data by displaying a small subset. y is labeled as breast or

colon, indicating where the tissue comes from. Table 5.1 shows that n1 = 62, n2 = 42.

breast colon
62 42

Table 5.1: summary for the response y.

x contains gene expression profiles; Table 5.2 displays a subset of x.
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1007_s_at 1053_at 117_at 121_at 1255_g_at 1294_at 1316_at 1320_at
244.8 15.0 18.9 44.7 4.6 24.5 7.5 8.4
166.5 20.8 14.7 47.1 1.5 56.0 8.8 8.5
226.2 16.8 12.6 57.9 5.4 63.2 5.3 5.8
258.9 19.5 18.9 65.2 7.8 62.3 13.1 7.3
138.2 14.5 12.7 45.9 3.0 42.0 11.4 3.8

Table 5.2: A subset for x: the first 8 gene expression profiles for the first 5 observations.

• Then we assign x and y, as well as remove the large dataset to save computational

memory space. Note that it is unnecessary to use as.matrix for x in chowdary, because

chowdary$x is numeric already. However, in other datasets, e.g., gravier, if x or y is

not numeric, the function will return error message. To be consistent, here we also use

as.matrix and as.numeric for x and y respectively.

x = as.matrix(chowdary$x)

y = as.numeric(chowdary$y)

rm(chowdary)

• We here show some basic information about this dataset.

p_all = ncol(x)

n = length(y)

print(paste("This data set has", n, "observations,", "labeled as 2 groups."))

#> [1] "This data set has 104 observations, labeled as 2 groups."

print(paste("Each observation has", p_all, "features."))

#> [1] "Each observation has 22283 features."

• We split the data into 5 parts, using 80% for training and 20% for test.
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msep = 5

set.seed(293865) # set a seed

id = 1:n

for (i in 1:2) {

id[y == i] = sample(rep(seq_len(msep), length.out = sum(y == i)))

}

• Set training and test data

xtrain = x[id != 1, ]

ytrain = y[id != 1]

xtest = x[id == 1, ]

ytest = y[id == 1]

n1 = sum(ytrain == 1)

n2 = sum(ytrain == 2)

• Here we show what has been done in the paper Gaynanova and Wang (2017). p = 1000

features have been selected with largest absolute value of the two-sample t-statistic on

the training data. This approach is also used in Cai and Liu (2011).

# Select p features with largest value of the test statistic

p = 1000

x1s = scale(xtrain[ytrain==1,], scale=F)

x2s = scale(xtrain[ytrain==2,], scale=F)

t_stat = abs((attr(x1s, which="scaled:center") - attr(x2s, which

= "scaled:center")))/sqrt(colSums(x1s^2)/(n1*(n1-1))

+ colSums(x2s^2)/(n2*(n2-1)))

• Re-form the training and test dataset.
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r = order(t_stat, decreasing = TRUE)

index = r[1:p]

xtrain = xtrain[, index]

xtest = xtest[, index]

5.1.5.2 Apply DAP

If ytest is provided,

• Use apply_DAP.

outcome = apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50,

maxiter = 3000, eps = 1e-4)

#> 12345

• Check results. apply_DAP returns three items:

(1) error is the classification error examined by test data;

(2) features is the number of features selected by DAP;

(3) features\_id is the id or index of selected features.

outcome

#> $error

#> [1] 0

#>

#> $features

#> [1] 9

#>
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#> $features_id

#> [1] 1 2 15 44 45 55 56 59 82

Among 1000 features, DAP selects 9 features to achieve misclassification rate 0 in the test

data.

If ytest is not provided,

• apply_DAP returns a vector indicating predicted labels for the test data.

apply_DAP(xtrain, ytrain, xtest, n_lambda = 50, maxiter = 3000, eps = 1e-4)

#> 12345

#> $ypred

#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

#>

#> $features

#> [1] 9

#>

#> $features_id

#> [1] 1 2 15 44 45 55 56 59 82

From the results shown above, DAP has a very low misclassification rate nearly 0. However,

it is not a surprise. As shown in the paper, other competitors also achieved low misclassi-

fication rate. It indicates that this dataset has relatively simple structure, or strong signals

that can be easily detected.

5.1.5.3 Time it

• To measure the computational time, we use the R package microbenchmark (Mers-

mann 2015). It measures in nanosecond, more accurately than using system.time.
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# Install and import the package

if("microbenchmark" %in% rownames(installed.packages()) == FALSE) {

install.packages("microbenchmark", repos = "http://cran.us.r-project.org")}

library(microbenchmark)

• microbenchmark measures the calculation procedure several times, and then reports a

summary. In the example below, we set time = 10 and find the median time over 10

repetitions is only 5.03 seconds. microbenchmark can also used for comparing several

approaches at the same time. In Gaynanova and Wang (2017) (Table 2), we present

timing results comparison among all competitors. The proposed method DAP is the

fastest in high-dimensional settings.

# use microbenchmark to record the time

res = microbenchmark(apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50,

maxiter = 3000, eps = 1e-4), times = 10)

#> 12345123451234512345123451234512345123451234512345

print(res)

#> Unit: seconds

#> expr

#> apply_DAP(xtrain, ytrain, xtest, ytest, n_lambda = 50, maxiter = 3000,

eps = 1e-04)

#> min lq mean median uq max neval

#> 3.987161 4.044601 4.140979 4.078935 4.325035 4.361079 10
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6. CONCLUSIONS

Motivated by the real problems existing in public health, we explore nutrient-based anal-

ysis of disease risk and genetic-based discriminant analysis of complex human diseases. We

study the effect of measurement error existing in a misspecified model, as well as propose new

classification rules for high-dimensional binary classification to improve the computational

efficiency without sacrificing the classification accuracy.

Categorizing a continuous predictor is a common practice in epidemiology, because the

categorical model is thought to be more interpretable and robust. We propose a method to

get consistent estimators and improve qualified inferences when measurement error exists in

misspecified models. We also discuss some basic assumptions for our method and point out

that the proposed method is very general with realistic assumptions. The proposed method

does not require specific distribution for X given (W,Z), e.g., normal distribution, and the

true risk model is not restricted to be logistic regression. However, current literature avoid

discussing the basic issues we presented, but made some implausible assumptions about the

true models, e.g., assuming the true risk model is based on the categorized truth. Besides,

we also discuss other approaches as alternatives with respect to the problem of model mis-

specification and measurement error. First, one may apply Simulation-extrapolation to get

approximated estimates. However, differential measurement error may cause complications.

Another potential difficulty is to estimate the misclassification rate due to the measurement

error. Second, one possibility is to avoid the model misspecification brought by categorizing

a continuous predictor. Using Bsplines instead of the linear term can achieve similar goal to

avoid extreme comparison for the risk between the lowest and the highest values of risk pre-

dictor. There are approaches focusing on Bsplines and measurement error using regression

calibration; however, the interpretations of the model is not fully comparable with common

practice would have been done in epidemiology.
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High-dimensional binary classification has been studies for several years, while most

literatures extend either QDA or LDA. Starting from a different aspect, using the projection

idea, we build a quadratic classification rule showing computational advantages with the

increase in the number of features p. Furthermore, this benefit rewards a another potential

usage as a screening tool. This is especially attractive and useful for genomic information

analysis. For the future work, we may explore the screening properties and develop this

methodology into multi-group cases.

Besides exploring the effect of extrinsic factors like nutrition and the intrinsic factors like

gene, the next interesting project is analyzing the effect of gene-environment interactions on

complex human diseases. When focusing on rare diseases, which means the disease rate is

usually lower than 5% in the source population, random sampling is cost-prohibitive and

time consuming. Thus, case-control studies are often used, in which two groups of diseased

and non-diseased people are sampled independently from their own populations, separately.

However, this different sampling scheme leads to the question that whether we can still

apply the common techniques which would have been used if we get randomly sampled data.

Prentice and Pyke (1979) point out that ignoring the sampling scheme and perform logistic

regression lead to consistent estimator for nonintercept parameters. However, the interaction

terms may have large variance, thus leading to low power. Another way to analyze the data

is to use retrospective likelihood framework based on the sampling scheme feature.

We are going to adopt the retrospective likelihood framework and use profile technique,

aiming to decrease the variance of estimates, especially for the gene-environment interaction

terms. The only one assumption has been made is: in the source population, the marginal

distribution of inherited genetic and extrinsic environmental factors included in the model

are independent. Under this realistic and general assumption, our goal is to improve the

estimation efficiency for the interaction term without any further assumptions. With fully

unspecified marginal distribution for intrinsic and extrinsic factors, this approach enables

us to analyze complicated cases, such as multivariate genetic or environmental factors -
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usually hard to model by a parametric distribution, let along when the multivariate genetic

information contains unclear correlations.

In this manuscript, we focus on common problems in public health and develop novel

methodology to analyze extrinsic and intrinsic factors and their effects to complex human

diseases from different perspectives. We show how to solve the problem of misspecified model

with measurement error and give consistent estimators with asymptotic theorems. Moreover,

we propose sparse quadratic classification rules for high-dimensional binary classification

problem. Further, we provide two vignettes to illustrate the R packages developed for the

proposed methods, supporting the major projects from a practical aspect.
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