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ABSTRACT

Two general problems in the nonlinear geometry of Banach spaces are to determine the rela-
tionship between uniform and coarse embeddings and to characterize local/asymptotic properties
in terms of metric structure. The purpose of this research is to investigate these problems and to
contribute to a better overall understanding of the structure of Banach spaces and metric spaces.

First, we investigate the relationship between the small-scale and large-scale structures of
co(k). In 1994, Jan Pelant proved that a metric property related to the notion of paracompact-
ness called the uniform Stone property characterizes a metric space’s uniform embeddability into
co(r) for some cardinality k. We show that coarse Lipschitz embeddability of a metric space into
¢o(k) can be characterized in a similar manner. We also show that coarse, uniform, and bi-Lipschitz
embeddability into co(k) are equivalent notions for normed linear spaces.

Next, we investigate the relationship between the small-scale and large-scale structures of su-
perstable Banach spaces. In 1983, Yves Raynaud showed that if a Banach space uniformly em-
beds into a superstable Banach space, then X must contain an isomorphic copy of ¢, for some
p € [1,0). Using similar methods, we show that if a Banach space coarsely embeds into a super-
stable Banach space, then X has a spreading model isomorphic to ¢, for some p € [1,0). This
implies the existence of reflexive Banach spaces that do not coarsely embed into any superstable
Banach space.

Lastly, we define a class of graphs, which we call the “bundle graphs”, and use this to generalize
some known metric characterizations of Banach space properties in terms of graph preclusion.
In particular, we generalize the characterizations of superreflexivity within the class of Banach
spaces and asymptotic uniform convexifiability within the class of reflexive Banach spaces with
unconditional asymptotic structure. For the specific case of L;, we show that every Ny-branching

bundle graph bi-Lipschitzly embeds into L; with distortion no worse than 2.
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1. INTRODUCTION

1.1 Motivation and organization of research

A result proved by S. Mazur and S. Ulam [7] says that two Banach spaces are in fact linearly
isomorphic to each other if there is an onto isometry between them that maps 0 to O (and in fact,
each such isometry is itself a linear isomorphism). However, it was shown by M. 1. Kadets [5] that
any two separable infinite-dimensional Banach spaces are homeomorphic. These two extremes in
rigidity make it natural to investigate the extent to which the metric structure of a Banach space
determines the space’s linear structure. One celebrated result proved by M. Ribe [11] is Ribe’s
rigidity theorem, which says that two uniformly homeomorphic Banach spaces have the same
finite-dimensional subspaces up to linear isomorphism with distortion bounded by some constant.
This launched what is now called the “Ribe program”, an ongoing effort to characterize local
properties of Banach spaces in purely metric terms.

The Ribe program has led to many developments in the nonlinear geometry of Banach spaces.
Recently, however, there has emerged a need to investigate the large-scale geometry of Banach
spaces more thoroughly. This developed largely from work and observations relating to the Novikov
and (coarse) Baum-Connes conjectures by M. Gromov (see, for instance, [3]), and since then by
G. Kasparov and G. Yu (for instance, [6] and [14]). One strategy for understanding the large-scale
structure of Banach spaces is to determine how it relates to the small-scale structure. For instance,
it is an open problem to determine whether for any two Banach spaces X and Y, X is uniformly
embeddable into Y if and only if X is coarsely embeddable into Y. This problem motivates the
research displayed in Sections 2 and 3. The approach to both sections is the same: Start with a
specific embeddability result for small-scale structure and try to determine whether an analogous
result holds true for the large-scale structure. As will be seen, the approach can be quite effec-
tively used to obtain new information about the large-scale geometry of Banach spaces. A bonus

to the approach is that if a large-scale analogue cannot be found or is weaker than the motivating



small-scale result, then at least a strategy for solving the general problem in the negative can be
formed.

In Section 2, we discuss the large-scale structure of c¢o(x) spaces. We start by describing
some known embeddability results concerning cq(r) and providing the reader with the necessary
background in metric covers and coarse embeddings needed to prove the main result. Particular
attention is given to J. Pelant’s [9] intrinsic characterization of a metric space’s uniform embed-
dability into some ¢(x) in terms of the “uniform Stone property”. We then define the “coarse
Stone property”, a coarse analogue of the uniform Stone property (itself a uniform analogue of
paracompactness), and show that having this property is a necessary condition for a metric space
to be coarsely embeddable into some ¢q(x). To make the results more quantitative, we define a
modulus Ag? for each metric space X that can be used to determine whether X has the uniform or
coarse Stone property. The main result is that Ag?) can be used to characterize X’s coarse Lipschitz
embeddability into some cy(k). A corollary of this work shows that a Banach space is uniformly
embeddable into some ¢y () if and only if it is coarsely embeddable into cy(k) if and only if it is
bi-Lipschitzly embeddable into ¢q(x) if and only if it has the coarse Stone property. We conclude
the section by showing directly that certain classes of metric spaces have the coarse Stone prop-
erty. The contents of Section 2 were originally published in Fundamenta Mathematicae [12] and
are included here with permission from the copyright holder.

In Section 3, we discuss the large-scale structure of superstable Banach spaces. We start by
giving a short history of a small-scale result by Y. Raynaud [10], which says that any Banach space
that is uniformly embeddable into a superstable Banach space contains a linearly isomorphic copy
of ¢, for some p € [1,00). We then devote some time providing the reader with all the necessary
background in asymptotic Banach space geometry and topology needed for the rest of the section.
We proceed by carefully defining and developing the required notion of “space of types” associated
to a given Banach space. This space of types is a metric space that captures some of the algebra and
geometry of the given Banach space, but additionally possesses some nice compactness properties.

After much technical work using methods commonly found in proofs of the famous Krivine’s



Theorem from Banach space theory, we prove the main result which says that any Banach space
that is coarsely embeddable into a superstable Banach space contains an ¢, spreading model for
some p € [1,20). This is a strong enough analogue of Raynaud’s result to derive our concluding
corollary which says there exist reflexive Banach spaces that are not coarsely embeddable into any
superstable Banach space. The contents of Section 3 were jointly researched with B. M. Braga and
can be found in a separate preprint on the arXiv [2].

In Section 4, we provide a contribution to the Ribe program and related asymptotic Ribe pro-
gram (where the goal is to characterize asymptotic properties of Banach spaces in purely metric
terms). We start by listing some known results due to W. B. Johnson and G. Schechtman [4], M.
Ostrovskii and B. Randrianantoanina [8], and F. Baudier et al. [1] that contain characterizations
of Banach space properties in terms of non-equi-bi-Lipschitz-embeddability of certain classes of
graphs. We then rigorously define and vertex-label a new and much larger class of graphs we call
the “bundle graphs”. Most of the remainder of the section is used to generalize three embedding
results to the class of bundle graphs, with simpler proofs arising from usage of the new vertex-
labeling. At the end of the section, we show how bundle graphs behave under the graph-theoretic
@-product and infer generalizations of the previously known characterizations of superreflexivity
within the class of Banach spaces and asymptotic uniform convexifiability within the class of re-
flexive Banach spaces with an unconditional asymptotic structure. The contents of Section 4 will
be published in Mathematika [12] and are included here with permission from the copyright holder.

Finally, in Section 5, we give a quick summary of the main results and highlight some open

problems that they might be applied to in the future.
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2. ON COARSE LIPSCHITZ EMBEDDABILITY INTO ¢y (x)*

2.1 Introduction

I. Aharoni showed in 1974 [1] that for any K > 6, every separable metric space K -Lipschitzly
embeds into ¢ (where the positive cone of ¢y, denoted cg , is the set {(z;)72, € ¢o | z; = 0 forall i €
N} with metric inherited from cy); and also that ¢; does not K-Lipschitzly embed into ¢, for any
K < 2.In 1978, P. Assouad [3] improved Aharoni’s result and showed that for any K > 3, every
separable metric space K -Lipschitzly embeds into ¢ . The final improvement for ¢ came when
Pelant showed in 1994 [8] that every separable metric space 3-Lipschitzly embeds into c¢i and
that ¢; cannot be K-Lipschitz embedded into ¢ for any K < 3. This left open the problem of
finding the best constant for bi-Lipschitzly embedding a separable metric space into ¢y until N. J.
Kalton and G. Lancien showed in 2008 [6] that every separable metric space 2-Lipschitzly embeds
into ¢y. They do this by showing that every separable metric space has property I1(2), property
ITI(\) being a sufficient criterion they define for implying A-Lipschitz embeddability into ¢ for a
separable metric space. Recently, F. Baudier and R. Deville [4] have made a slight improvement
to Kalton and Lancien’s proof using a related criterion 7(\) to show that every separable metric
space 2-Lipschitzly embeds into ¢, via a special kind of bi-Lipschitz embedding.

It is natural to ask whether a similar result holds for non-separable metric spaces. In particular,
does every metric space bi-Lipschitzly embed into ¢y(x) for large enough cardinality x? The
answer to this question comes from the theory of uniform spaces. In 1948, A. H. Stone [10] showed
that every metric space is paracompact. In 1960 [11], Stone asked whether every uniform cover
of a metric space has a locally finite uniform refinement (or equivalently a point-finite uniform
refinement). That is, does every metric space possess a uniform analog of paracompactness (a
property that has come to be called the uniform Stone property)? The question was answered in

the negative by Pelant [7] and E. V. Shchepin [9], who showed that ¢, (I") fails to have the uniform

*Most of this section is reprinted with permission from A. Swift, On coarse Lipschitz embeddability into co(k),
Fund. Math. 241 (2018), 67-81. Copyright 2017 by IMPAN.



Stone property if I" has large enough cardinality. Moreover, Pelant [8] has shown that the uniform
Stone property characterizes uniform embeddability into ¢,(r) for some x and thus ¢, (I") does not
even uniformly embed into any cq(x) when I has large enough cardinality.

It remains an open problem in the nonlinear theory of Banach spaces to determine whether
a Banach space’s uniform embeddability into a given Banach space Y is equivalent to its coarse
embeddability into Y, and so one is led to ask whether a characterization of coarse embeddability
into ¢y(k) involving covers also exists. We suggest a natural candidate for such a “coarse Stone
property", and show this to be at least a necessary condition for coarse embeddability into co(k).
Related to this property, however, is a natural modulus Ag?) that can be defined for any metric
space X and whose growth can be used to characterize coarse Lipschitz embeddability (and also

bi-Lipschitz embeddability) into co(x). The main result is the following theorem.

Theorem 14. Let (X, dx) be a metric space with infinite density character k. If there are C' €
[1,0) and D € [0, ) such that Ag?(R) < CR + D for all R < w; then for any X > 0, any

K > 2(C+ \), and any L > w; there exists a coarse Lipschiiz embedding f: X — cg (k)

such that

dx(z,y) = L<|[f(z) = f(¥)]o < Kdx(,y)
forevery x,y e X. If D = 0, then it is possible to take L = 0.
2.2 Preliminaries and notation

Let (X,dx) and (Y, dy) be metric spaces. Given z € X and r € [0,0), we will denote by
B,.(x) the open ball of radius r centered at x. For amap f: X — Y, the modulus of continuity (or

modulus of expansion) of f is the function wy: [0, 0) — [0, 0] defined by
w(t) = sup{dy (f(x1), f(22)) | dx (21, 22) < 1},
and the modulus of compression of f is the function ps: [0,00) — [0, co] defined by

ps(t) = inf{dy (f (1), f(22)) | dx (21, 22) > t}.
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Note that w; and p; are non-decreasing and for all z1, x5 € X,

prldx (1, 22)) < dy (f(21), f(22)) < wyp(dx (71, 72)).

A map f is said to be uniformly continuous (or simply uniform) if lll% w(t) = 0 and is called
a uniform embedding if furthermore p;(t) > 0 for all £ > 0. A map f is said to be coarse (or
sometimes coarsely continuous) if ws(t) < oo forall ¢t € [0, c0) and is called a coarse embedding if
furthermore tlinolo ps(t) = 0. Amap f is called a coarse Lipschitz embedding (or a quasi-isometric
embedding, especially in the literature of geometric group theory) if there exist A > 1 and B > 0
such that w(t) < At + B and py(t) > 4t — B for all ¢ and is called a bi-Lipschitz embedding if

furthermore B can be taken to be equal to 0. The Lipschitz constant of f is defined to be

dy (f (z1), f(22))

dx ($1> $2)

Lip(f) = sup { 0 } .

A map f is said to be Lipschitz if Lip(f) < co. If f is injective, the distortion of f is defined to be
dist(f) = Lip(f) - Lip(f~!). If dist(f) < K, then f is called a K-Lipschitz embedding.

Given a,b € R*, S € X is called a-separated if dx(s1,s2) = a for all s1,s9 € S, b-dense
in X if dx(z,S) < bfor all z € X, and an (a, b)-skeleton of X if it is a-separated and b-dense
in X. Given a skeleton S of X, there is a coarse Lipschitz embedding f: X — S such that
sup{dx(f(z),S)}zex < oo (just map every point of the space to a nearest point in the skeleton),
and so questions about coarse embeddings of metric spaces can be reduced to questions about
coarse embeddings of uniformly discrete metric spaces. By Zorn’s Lemma, every a-separated set
can be extended to a maximal (in the sense of set containment) (a, a)-skeleton of X. Note that
|S| < dens(X) (where |S| denotes the cardinality of .S and where dens(.X), the density character
of X, is the smallest cardinality of a set dense in X') for any skeleton .S of X. And if X is a normed
linear space, then X = spT(S) (the closed linear span of S) for any skeleton of X (or else S is

not b-dense in X for any b € R™), and so in this case |S| = dens(X). The following lemma holds.

Lemma 1. Let (X, | - | x) be a normed linear space and (Y, dy ) a metric space. If there exists a

8



map f: X —Y such that lim,_,, p¢(t) = oo, then dens(X) < dens(Y").

Proof. Leta > 0be such that ps(a) > 0, and let S be an (a, a)-skeleton of X. Then f|s is injective

and maps S to a ps(a)-separated subset of Y. And so

dens(X) = |S| = |f(S)| < dens(Y). O

A family of sets Y < P(X) (where P(X) denotes the power set of X) is called a cover of X

if |J U = X. The diameter (or mesh) of a cover U of X is
Ueld

diam(U) = sup{diam(U) | U € U}

where for U € X, diam(U) = sup{dx (1, x2) | x1,x2 € U} is the diameter of U. The Lebesgue

number of a cover U of X is

L(U) = sup{d € [0,0) | For every E < X such that diam(F) < d,

there is U € U such that E < U}.

Note that by definition £({X}) = coand L({{z}},ex) = inf,., dx(x,y). A coverf of X is called
a uniform cover if L(U) > 0 and is called a uniformly bounded (or coarse) cover if diam(U) < oo.
A cover U of X is called point-finite if for all z € X, there are only finitely many U € U such that
x e U. A cover V of X is called a refinement of the cover U of X; and in this case, ) is said to

refine U; if for all V' € V), there is U € U such that IV = U. We have the following lemma.

Lemma 2. Let (X, dx) be a metric space with infinite density character k, and let U be a point-
finite uniform cover of X. There exists V < U such that |V| < k and such that V is a point-finite

uniform cover of X with L(V) = L(U).



Proof. Let {x.},, be adense setin X and let

V={Uel |z, €U forsome 7 < k}.

Then |V| < & since U is point-finite. Now take any A € X such that diam(A) < L(U). If A = &,
then clearly there is V' € V such that A < V, so suppose A # J and let x € A. Choose any
0<r<L(U)—diam(A) andlet B = AU B,.(z). Then diam(B) < L(U), and so there is U € U
such that B < U. But there is 7 < k such that =, € B,(z) € B < U by the density of {z,},,,
and so U € V. Therefore V is a cover of X such that £(V) > L(U). Furthermore, V is point-finite
and L(V) = L(U) because V < U. O

2.3 Characterizing embeddability

We start by defining the uniform Stone property, which characterizes a metric space’s uniform
embeddability into some co(r). One can view the property as a generalization of having finite
(uniform) covering dimension, which is the natural notion of dimension associated with the class

of uniform spaces.

Definition 3. A metric space (X, dx) is said to have the uniform Stone property if every uniform

cover of X has a point-finite uniform refinement.

The class of coarse spaces has a similar notion of dimension associated with it, called asymp-
totic dimension. It has become clear in recent years that many ideas in the uniform theory have
useful analogues in the coarse theory, and so the motivation behind the following definition is to
generalize the property of having finite asymptotic dimension in a manner similar to the way the

uniform Stone property generalizes having finite covering dimension.

Definition 4. A metric space (X, dx) is said to have the coarse Stone property if every uniformly

bounded cover of X refines a point-finite uniformly bounded cover.

We immediately turn to more quantitative formulations. Given a metric space (X, dx), define

10



the functions Ag?), Ag?: [0,00) — [0, 0] by
Ag?) (r) = sup{L(U) | U is a point-finite cover of X and diam () < r}

and

Ag?(R) = inf{diam(U) | U is a point-finite cover of X and L(U) > R}.
Proposition 5. Let (X, dx ) be a metric space.
(i) X has the uniform Stone property if and only ing?) (r) > 0 forallr > 0.
(ii) X has the coarse Stone Property if and only ing?(R) < w forall R € [0,0).

Proof. (i): Suppose first that X has the uniform Stone property, and take any » > 0. Let U =
{B,/2(2)}sex, and note that/ is a uniform cover of X with diam(i/) < r. By assumption, / has a
point-finite uniform refinement V), and so Ag?) (r) = L(V) > 0. Conversely, suppose Ag?) (r)>0
for all » > 0, and take any uniform cover / of X. Since U/ is uniform, there is » > 0 such that
L(U) > r. And by assumption, there is a point-finite cover } of X such that 0 < £(V) < Ag?) (r)
and diam()) < r. But then V is a point-finite uniform refinement of ¢/, and so X has the uniform
Stone property.

(ii): Suppose first that X has the coarse Stone property, and take any R € [0,00). Let i =
{Br(x)}sex, and note that I/ is a uniformly bounded cover of X with £(U/) > R. By assumption,
U refines a point-finite uniformly bounded cover V), and so Agg) (R) < diam(V) < co. Conversely,
suppose Ag?(R) < oo for all R € [0, 0), and take any uniformly bounded cover U/ of X. Since
U is uniformly bounded, there is R € [0, c0) such that diam(i/) < R. And by assumption, there
is a point-finite cover VV of X such that Ag?(R) < diam(V) < oo and £(V) > R. Butthen Visa

point-finite uniformly bounded cover refined by U/, and so X has the coarse Stone property. [

From this point forward, whenever we write “uniform Stone property” or “coarse Stone prop-
erty”, we are using the equivalent formulations of these properties in terms of Ag?) and Ag?,

respectively. We have the following lemma.

11



Lemma 6. Let (X, dx ) be a metric space and let r, R € (0, o0).
(i) A, Ag?) are non-decreasing functions.
(i) If AY(R) < oo, then A (AQ(R) + ) = Rforall e > 0.
(iii) Ing?) (r) > 0, then Ag?)(Ag?)(r) —¢e)<rforall0 <e< Ag?)(r).
(iv) X has the uniform Stone property if and only if}l{iir%) Ag?(R) = 0.
(v) X has the coarse Stone property if and only if Th_)% Ag?) (r) = .

Proof. (1): This is clear from the definitions.

(ii): If Ag?(R) < o0, then there is a point-finite cover ¢/ of X such that diam(U) < Ag?(R) +€
and £(U) > R. Thus AY(AQ(R) +¢) = L(U) > R.

(iii): If Ag?) (r) > 0, then there is a point-finite cover I/ of X such that L(U) > Ag?) (r) — e and
diam(U) < r. Thus A?(A%) (r) —e) < diam(U) < r.

(iv): Suppose first that X has the uniform Stone property and take any ¢ > 0. Then by as-
sumption, Ag}‘) (¢) > 0, and so Ag?)(R) < e forany R < Ag?) (¢) by parts (i) and (iii). Thus
limp_,o AS?(R) = 0. Conversely, suppose limp_,o A(;)(R) = (0 and take any r > 0. Let R > 0
be such that Ag?(R) < r. Then qu;) (r) = R > 0 by part (ii), and so X has the uniform Stone
property.

(v): Suppose first that X has the coarse Stone property and take any N € N. Then by assump-
tion, AS?(N) < o0, and so Ag?)(r) > N for any r > Ag?(N) by parts (i) and (ii). Thus
lim,_, Ag?) (r) = oo. Conversely, suppose lim, o, Ag?) (r) = oo and take any R € [0, 0). Let
r € [0, ) be such that Ag?) (r) > R. Then AS?(R) < r < oo by part (iii), and so X has the coarse

Stone property. [

It is clear that if X is a metric space with finite diameter, then there are C' € [0,1) and D €
[0,0) such that Ag?(R) < CR + D for all R € [0,00) (indeed, one may take C' = 0 and

D = diam(X) in this case). The converse is also true.
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Lemma 7. Let (X, dx) be a metric space. If C € [0,1) and D € [0, o) are such that Ag?)(R) <

CR+ D forall R € [0,0), then diam(X) < 2=.

Proof. Take any 0 < ¢ <1 — C'. Then for any R > %

AYR <CR+D<CR+(1-C—2)R=(1-¢)R.

So suppose there exist z,y € X such that dx (z,y) > —2—. Then

AQ((1 + e)dx(z,y)) < (1 — €)1+ e)dx(z,y) = (1 - *)dx(z,y).

Thus there is a point-finite cover &/ of X with L(U) > (1 + ¢)d(z,y) > d(z,y) satisfying
diam(U) < (1 — €?)d(x,y) < d(x,y). But this is a contradiction since diam({z,y}) = d(z,y).
Therefore d(z,y) < ;—2— for every z,y € X. Since 0 < ¢ < 1 — C was arbitrary, diam(X) <

D
i-c- O

In some cases it might be more natural to find bounds for Ag?) rather than Ag? or vice versa.
Lemma 6 provides a way of switching from one to the other and this is especially easy in the case

below.

Lemma 8. Let (X, dx) be a metric space. Given C' € (0, o), Ag?(R) < CRforall R € |0, o) iff

Ag?) (r) = &rforallr > 0.

Proof. Suppose first that Ag?(R) < CRforall R € [0,00). Take any » > 0 and 0 < € < r. Then

Ag? (%) < r — ¢ and so by Lemma 6,

Ag?)(r) > A_(;;) (Ag? <T;,€> +€> > é (r—e).

Since 0 < € < r was arbitrary, Ag?) (r) = &rforall r > 0.

Now suppose Ag?) (r) = &rforallr > 0. Take any R € [0,0) and € > 0. Then Ag?)((](R—i—e)) >

13



R + € and so by Lemma 6,
AQ(R) < AVAY(C(R+¢2)—e) <C(R+2).

Since € > 0 was arbitrary, Ag?(R) < CRforall R € [0,00). O
Lemma9. Let (X, | - ||x) be a normed linear space. The following are equivalent:
(i) AE?(R) < o for some R € (0, o).
(ii) There is C € [0, 00) such that Ag?(R) < CRforall R € |0,0).
(iii) X has the coarse Stone property.
(iv) X has the uniform Stone property.

Proof. (i) = (ii): Let R € (0, o) be such that Ag?(R) < o0. Pick any uniformly bounded point-
finite cover U of X such that £(U) > R. Simply scaling I/ shows that Ag?(R’ ) < %@R’ for
any R’ € [0, ).

(i1) = (iii): Clear.

(ii1) = (iv): If X has the coarse Stone property, then in particular, Ag? (1) < oo. Thus, X has the
uniform Stone property by (i) = (i1) and Lemma 8.

(iv) = (i): Lemma 6. [

The following two propositions show that the uniform (respectively, coarse) Stone properties is
hereditary in the sense that a uniformly (respectively, coarsely) embedded subset of a metric space
with the uniform (respectively, coarse) Stone property has the uniform (respectively, coarse) Stone

property respectively.

Proposition 10. Ler (X, dx ) be a metric space and (Y, dy) a metric space with the uniform Stone
property. If there exists a uniform embedding f: X — Y, then X has the uniform Stone property.
If [ is a bi-Lipschitz embedding and if there is ¢ > 0 such that Ag)(r) > cr forallr > 0, then

Ag?) (r) = Gy forallr > 0.

14



Proof. Fix r > 0. Since f is a uniform embedding, lim; ,ow(t) = 0 and ps(t) > 0 for all ¢ > 0.
Take any 0 < &1 < py(r)and 0 < &5 < Agﬁ‘)(pf('r) —¢1) and let V be a point-finite cover of Y such
that diam(V) < ps(r) —ey and L(V) > Ag}‘) (pr(r)—e1)—ea. Letd = {f~*(V)}vey. ThenU is a
cover of X. Note that { inherits point-finiteness from ). And for any V € V, diam(f~*(V)) < r

since diam(V') < py(r) — e1. This means diam(H/) < r. Thus,
AY (1) = LU) = infwi ([L(V), 0]) = infwi ([AY (pr(r) — €1) — €2,0]) > 0

by definition of Ag?), the assumptions on p; and wy, and since Y has the uniform Stone property.
Thus, X has the uniform Stone property. The special case follows by bounding wy, pf, and A$ )

with linear functions and letting 1,2 — 0. ]

Proposition 11. Let (X, dx) be a metric space and (Y, dy) a metric space with the coarse Stone
property. If there exists a coarse embedding f : X — Y, then X has the coarse Stone property. If
f is a coarse Lipschitz embedding and there are C, D € [0, ) such that Agf)(R) < CR+ D for
all R € [0,00), then there are C', D’ € [0, o0) such that AE?(R) < C'R+ D' forall R € [0, ).
If, in particular, f is a bi-Lipschitz embedding and D = 0, then Ag?(R) < Cdist(f)R for all
R € [0, 0).

Proof. Fix R € [0,00). Since f is a coarse embedding, ws(t) < oo for all ¢ € [0,0) and
limy o pr(t) = oo. Take any ¢ > 0 and let V be a point-finite cover of Y such that £L(V) >
wy(R) + ¢ and diam (V) < Al (w(R) + ¢) + . Let U = {f~1(V)}vey. Then U is a cover of X.
Note that ¢/ inherits point-finiteness from ). Now take any A < X such that diam(A) < R. Then
diam(f(A4)) < wy(R) + ¢, and so f(A) < V for some V € V. Therefore A = f~'(V) = U for

some U € U. Since A = X was arbitrary, this means £(U/) > R. Thus,

Ag?(R) < diam(U) < sup pJIl([O, diam(V)])

< sup p7 ([0, AY (wy(R) +€) +¢]) < 0
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by definition of Ag?), the assumptions on p; and wy, and since Y has the coarse Stone property.
Thus, X has the coarse Stone property. The special cases follow by bounding w¢, pf, and Agf)

with affine or linear functions and letting ¢ — 0. [l
Proposition 12. For any cardinality k, A(i)( )(R) = Rforall R € |0,0).
CO K

Proof. Take any n € N and R € [0,20). Given a finite subset M of k, denote the set {x €

(NU{0})" | xe = 0if £ ¢ M} by NM. For each finite subset M of x and z € N, let

Uz = {fecf{(mﬂf(g)e%%— l0,2R+%) forallﬁem}.

Then for a fixed finite subset M of x and a fixed f € ¢ (k), there are at most (2n[R] + 1) many

x € NM guch that f € Uy, Let
U = {Un, | M is a finite subset of x and z € NV} .

Now take any f € ¢j (). There is a finite subset M of  such that f(§) < 1 if £ ¢ M, and in this
case there is z € N such that Bg(f) < U (simply choose z¢ = |n(f(£) — R)| when & € M
and z¢ = 0 otherwise). Now suppose M’ 2 M and 2’ € NV "is such that f € U M . Then for all
§e M'\M, z; = 0 (orelse f(§) = <, contradicting the choice of M). Thus Uy, = Uy, for
some y € NM_ This means that for every f € c¢f (x), f € U for only finitely many U € U. By the
above, U is a point-finite cover of ¢j (k) refined by {Br(f)} fect (w) Such that diam () = 2R + i

Since every A < ¢f (k) such that diam(A) < 2R is contained in a ball of radius R (centered

at < sup 77 (A)—inf 7 (A)

5 ) , where 7, is the 7-th coordinate functional), this means £L(U) > 2R.
T<K

Thus, since n € N was arbitrary, A(i)( )(QR) < 2R. And so, by Lemma 7, A(i)( )(R) = R for all
CO K CO K
R € [0, ). O]

Corollary 13. For any infinite cardinality k, Aiz)(ﬁ)(R) = 2R forall R € [0, ).

Proof. Fix R € [0,00) and suppose A((:?(H)(R) < 2R. Then there exists a point-finite cover U of
co(k) such that L(U) > R and diam (i) < 2R. Let (e, ), be the standard basis for ¢y(x). Given
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a finite subset M of x and an e € {—1, 1}, let

1
Ape = {Z Crer | e,C; € (gdiam(u) -

TeEM

iR, %diam(l/{) + %R) } :

Fix a finite subset M of . Note that for any € € {—1, 1}, diam(A,;.) < R, and so there is Uy, €
U such that Ay S Upre. Butdiam(Ayy s 0 Ayr.) > diam(U) whenever 6, e € {—1, 1} are such
that § # ¢, and so in this case Uy; 5 # Upr. Thus, as 0 € A, for every every € € {—1, I}M, there
are at least 2/ different U € U such that 0 € U. But x is infinite, and so has subsets of arbitrarily
large finite cardinality. That is, there are infinitely many U € U such that 0 € U, contradicting the
point-finiteness of U/. Therefore Aﬁz)(ﬁ)(R) > 2R. Now, given f € cy(k), define gy € c¢f (k) by
9(2§) = max{0, f(§)} and g(2§ + 1) = max{0, —f(&)} for every £ < k. The map f — gyisa

2-Lipschitz embedding, and so by Proposition 11 and Proposition 12, Agz)(ﬁ)(R) < 2R. That is,
A(C)

co(

o(R) =2R. 0

Note that Proposition 11, Proposition 12, and Corollary 13 together show that the optimal
distortion for a bi-Lipschitz embedding of ¢y(x) into ¢ (x) is 2. We now come to the main result.

The proof combines techniques from both Pelant and Assouad.

Theorem 14. Let (X, dx ) be a metric space with infinite density character k. If there are C €
[1,00) and D € [0, ) such that AE?(R) < CR+ D forall R € [0,); then for any A > 0, any
K > 2(C+ \), and any L > w; there exists a coarse Lipschitz embedding f: X — c§ (k)

such that

dx(z,y) = L <[ f(z) = f(y)le < Kdx(x,y)
forevery x,y e X. If D = 0, then it is possible to take L = (.

Proof. Note that for any A > 0, Ag?(R) < (C + MR for every R € (£,00). Pick any t > 1,

any 0 < ¢ < 1,any A > 0, and any point O € X. Let K = & Jet A = {nez|t" > 2],

Then for each n € A there is a point-finite cover U,, = {U,, ;}-<, of X (one can take [U,,| < K

by Lemma 2) such that £(U,,) > t" and diam(U,) < (C' + \)t". Foreachn € A and 7 < &, let
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Vn,T = Un,T\B(C—l+)\)t"/2(O) and define fn,T: X — R+ by

for(z) = K min {dxos, Ve, %}

for each x € X. Then for eachn € A and 7 < &, f,, ; is Lipschitz with Lip(f) < K and bounded
by % Note that if f,, -(z) > 0, thenz € V,, ; and so x ¢ Bc_14a)m/2(O). Thus f, - is supported
on the complement of B(c_1,x)m/2(O). Therefore, by the bound on f, ; and the point-finiteness

of U, for fixed x € X and nn > 0, the set

{(n,7) € Ax K| fur(x) > n}

is finite. It follows that the map f: X — cj (k) defined by

f(:E) = Z fn,T(x)en,T

(n,7)EAXK

for every x € X (where {e, ;}(n rjcaxs is any enumeration of the standard basis of ¢y(x)) is a
well-defined Lipschitz map with Lip(f) < K. Now fix z,y € X such that dx(z,y) > (C +
A)inf{t" | n € A} and dx(z,0) = dx(y,0). Let n € A be such that (C' + \)t" < dx(z,y) <

(C' + A\)t" 1. Then by the triangle inequality,

dx(2,0) > (C +2)\)t _ % N (C— 12+ At

and so Bynjo(x) N Be—14aum2(0) = &. But L(U,) > t", and so there is 7 € x such that

Ba_gym2(z) < Uy, r. Therefore f,, - (x) = K%. Furthermore,

dx(y, Vo) = dx(z,y) — diam(V,, ) > (C + \)t" — (C+ \)t" =0
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and so f,, ,(y) = 0. Thus

@) = £ > Ufnrla) — forl) > ZE=DE

K(1—¢)

— m(C’ + " = dx (2, y).

And so, for every z,y € X,
dx(z,y) — (C+ ) inf{t" [ne A} <[ f(z) — f(y)]| < Kdx(z,y).

Since t > 1 and 0 < € < 1 were arbitrary, the theorem follows. 0

Corollary 15. A metric space (X, dx) is coarse Lipschitzly embeddable into co(k) for some car-
dinality k if and only if there are C, D € |0, ) such that Aﬁ?(R) < CR + D forall R € [0, ).
A metric space (X, dy) is bi-Lipschitzly embeddable into cy(k) for some cardinality r if and only

if there is C € [0, ) such that AS?(R) < CRforall R € 0, ).

Proof. The case when X is a finite metric space is trivial, so suppose X is an infinite metric space.
If X coarse Lipschitzly embeds into cy(k), then the implication follows from Corollary 13 and
Proposition 11.

Conversely, if there are C, D € [0, ) such that AS)(R) < CR + D for all R € [0,0), then
X coarse Lipschitzly embeds (bi-Lipschitzly embeds if D = 0) into ¢§ (dens(X)) and hence into
co(dens(X)) by Theorem 14. O

Compare the above corollary to Pelant [8], who shows the uniform Stone property characterizes
uniform embeddability of a metric space into ¢y (x) for some «; and to Baudier and Deville [4], who
show property 7(\) characterizes good-A-embeddability of a separable metric space into ¢ (see
[4] for the definitions). Lemma 6 and Corollary 15 together show that a metric space X’s uniform,
coarse Lipschitz, and bi-Lipschitz embeddability into ¢ () for some « can all be determined from

the modulus Ag?. In light of this, it is natural to ask whether a metric space’s coarse embeddability
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into ¢y (k) for some cardinality « can similarly be determined from Ag?. Proposition 11 shows that

the coarse Stone property is at least a necessary condition.

Corollary 16. Let X be a normed linear space. The following are equivalent:
(i) X coarsely embeds into cy(k).

(ii) X has the coarse Stone property.

(iii) X bi-Lipschitzly embeds into co(k).

(iv) X uniformly embeds into co(k).
(v) X has the uniform Stone property.

Proof. (i) = (ii): By Lemma 1, dens(X) < k. By Corollary 13 and Proposition 11, X has the
coarse Stone property.

(ii) = (iii): By Lemma 9, there is C' € [0, c0) such that Ag?(R) < CRforall R € [0,0). And so
X bi-Lipschitzly embeds into ¢q(x) by Theorem 14.

(iii) = (iv): Clear.

(iv) = (v): By Corollary 13 and Proposition 10, X has the uniform Stone property.

(v) = (i): By Lemma 9, there is C' € [0, o) such that Ag?(R) < CRforall R € [0,20). And so

X bi-Lipschitzly embeds (and therefore coarsely embeds) into ¢o(x) by Theorem 14. ]

Kalton [5] has shown that coarse/uniform/Lipschitz embeddability into /., are also equivalent
notions for normed linear spaces. So far ¢, and ¢,(x) seem to be the only spaces known to have this
property, and given that ¢y(c) (where ¢ is the cardinality of the continuum) bi-Lipschitzly embeds
into /4 (see [2]), one might ask whether the /., case actually follows from the cq(x) case. That
is, can one find a bi-Lipschitz embedding of /., into cy(c)? Equivalently, does ¢, have the coarse
(or uniform) Stone property? Pelant [7] and Shchepin [9] have shown that /., (I") fails to have
the uniform Stone property when |I'| is large enough, but to the author’s knowledge, the minimal

cardinality is unknown.
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2.4 Spaces with the coarse Stone property

In this subsection, we show directly that certain classes of metric spaces have the coarse Stone
property. In each of the examples given, C' € [0,0) is found such that Ag?(R) < CR for all
R € [0,00) and so one can use Theorem 14 to estimate how well X bi-Lipschitzly embeds into

some cg (). Recall that a metric space is called locally finite if every bounded set is finite.

Proposition 17. If (X, dx) is a locally finite metric space, then Ag?(R) < R forall R € [0, ).

Consequently, every locally finite metric space (2 + €)-Lipschitzly embeds into ¢ for all € > 0.

Proof. Fix R € [0,00). Letd = {U < X | diam(U) < R}. Then U is a cover of X such that
L(U) = R and diam(U) < R. Now take any x € X and suppose z € U. Then d(z,y) < R for all
y € U,and so U < Bg(x). But |Bgr(x)| < oo since X is locally finite. Thus, since there are only
21Br(@)l < o0 many U < X such that U < Bpg(x), there are only finitely many U € U such that

2 € U. This means U is point-finite, and thus, AS?(R) < R. O

Note that Proposition 17 actually recovers the best distortion for embedding the class of locally
finite metric spaces into car (found by Kalton and Lancien [6]). The author does not know whether
the same bound holds for Ag? when X is an arbitrary proper metric space (that is, a metric space

whose balls are all relatively compact).

Proposition 18. If (X, dx) is a separable metric space, then AS?(R) < 2R for all R € [0, ).

Consequently, every separable metric space (4 + €)-Lipschitzly embeds into ¢ for all € > 0.

Proof. Take any r > 0 and any 0 < ¢ < . Let {z,,};_, be a dense subset of X. For eachn € N,

let U, = B: (xn)\nL_Ji B.(z;). ThenU = {U,};"_, is a cover of X such that diam({/) < r. Now

fix z € X and sup;);se n € Nis such that dx(z,z,) < . If x € Uj, then j < n by the way U

was defined. Therefore « € U; for only finitely many j € N. Thus, I/ is point-finite. Now suppose

A < X is such that diam(A) < § —e. Letm = min{j € N | dx(z;, A) < }. Then foreachy € A,

dx (Tm,y) < dx(Tm, A) + diam(A) < § and dx(x;,y) = € forall j < m. Thus A < U,,, and
1

therefore L(U) > § — €. Since 0 < £ < 7 was arbitrary, Ag?) (r) = grforallr > 0. By Lemma 8,

AY(R) < 2Rforall R e [0, ). O
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Note that the 2 in Proposition 18 is optimal by Corollary 13. At this point, it should be remarked
that Ag) (R) = WR forevery p € [1,o0) and R € [0, c0). This follows from Theorem 14 and
Kalton and Lancien [6], who show that the best possible bi-Lipschitz embedding of ¢, into ¢; has

distortion (2P + 1)/7,
Definition 19. A metric space (7, dr) is called an R-zree if it satisfies the following conditions:

(i) Forany s,t € T, there exists a unique isometric embedding ¢ ¢: [0, d7(s,t)] — T such that

¢54(0) = s and ¢ (dr(s,t)) = t.
(ii) Any injective continuous mapping ¢: [0, 1] — T has the same range as ¢, (0),,(1)-

A rooted R-tree is an R-tree T" paired with a point ¢, € 7', and in this case t, is called the root
of T. Given ty,ty € T, apoint s € T is said to be between t, and ty if s = ¢y, 4,(x) for some
x € [0,dr(t1,t2)]. Given a nonempty subset A of a rooted R-tree (7', (), a point s € T is called a
common ancestor of A if s is between ¢y and ¢ for all t € A, and is called the (necessarily unique)
last common ancestor of Aif s = ¢y, (max{x € [0, dr(to,t)] | ¢r,.(x) is a common ancestor of A})
for some ¢t € A. One can think of an R-tree as being a graph-theoretical tree with the edges “filled

in".

Proposition 20. [f (T, dr) is an R-tree (possibly non-separable), then Agf)(R) < 2R forall R €

[0, 0). Consequently, every R-tree (4 + €)-Lipschitzly embeds into c§ (k) for some k for all € > 0.

Proof. Pick any t € T to be the root. Fix R € [0, ) and take any n € N. Foreach t € T, let

1
U, = {s e T | t is between o and s and dr(t,s) < R + —}.
n

0
For each m € N U {0}, let Uy, = {U; | dr(to,t) = 2}. LetUd = |J Uy,. Then for fixed s € T,
m=0
there are at most n| R| + 1 many U € U such that s € U. Thus U is a point-finite cover of 7" such
that diam(U) < 2(R + 1). Now take any A = 7" with diam(A) < R. Then if ¢ is the last common

ancestor of all the points in A and ¢’ = ¢y, (max{™ | m € Nu {0} and © < dr(lo,t)}), then
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A < Uy € U. This means L(U) > R. Thus, since n € N was arbitrary, A(Tc)(R) < 2R for all
R € [0, ). O]

Proposition 21. Given N € N, Agfv)(R) = Rforall R € [0,0).

Proof. Take any n € N. For each z € Z", let

Ux:{feég\f(j)e%Jr(—1,14—%)}.

Then for fixed f € (%, there are at most (2n + 1) many x € Z" such that f € U,. LetU =
{U, | = € Z"}. Then by the above, {{ is a point-finite cover of £ refined by {B1(f)} jc.y such that

diam(U) = 2 + L. Since every A = £ such that diam(A) < 2 is contained in a ball of radius

N

1 (centered at < sup(r; (A)); inf(r; (A))> , where m; is the j-th coordinate functional), this means
j=1

L(U) = 2. Thus, since n € N was arbitrary, Aéfv) (2) < 2. By Lemma 7 and (the proof of) Lemma
9, A[J(R) = Rforall R e [0,0). N
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3. COARSE EMBEDDINGS INTO SUPERSTABLE SPACES

3.1 Introduction

D. J. Aldous showed in Theorem 1.1 of [2] that every infinite-dimensional subspace of L,
contains an isomorphic copy of ¢, for some p € [1,0). In order to generalize Aldous’s result,
J. L. Krivine and B. Maurey [10] introduced the notion of stable Banach space. A metric space
(M, d) is called stable if

11115{1 1;1\1}1 d(z;,y;) = 1;%1 1111&1 d(zi,y;)

for all bounded sequences (z;);2, and (y;)72, in M, and all nonprincipal ultrafilters ¢/ and ) over
N. A Banach space is called stable if it is stable as a metric space with the metric induced by its
norm. Stability for general metric spaces seems to have first been defined by D. J. H. Garling [6].
Krivine and Maurey showed in Theorem IV.1 of [10] that every stable Banach space contains an
isomorphic copy of ¢, for some p € [1,00). As L, is stable for all p € [1,00) (see Theorem II.2 of
[10]), this is a generalization of Aldous’s result.

Krivine and Maurey’s result can be extended to the nonlinear setting as follows. Let (M, dy)
and (NN, dy) be metric spaces. Given f: M — N, define wy: [0,00) — [0, 0] and py: [0,00) —
[0, 0] by

wy(t) = supldn(f (), f(y)) | dar(,y) <t} (3.1

and

ps(t) = inf{dn (f(z), f(y)) | du(2,y) =t} 3.2)

for all ¢ € [0,00). The function f is called a uniform embedding (in which case M is said to
be uniformly embeddable into N) if lim, o+ w¢(t) = O (ie., if f is uniformly continuous) and
ps(t) > 0forall ¢ € [0,0) (ie., f~* exists and is uniformly continuous). The function f is called
a uniform equivalence (in which case M is said to be uniformly equivalent to N) if f is a uniform

embedding and is surjective. A Banach space X is said to be superstable if every Banach space
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that is finitely representable in X is also stable. Y. Raynaud showed in the corollary of Theorem
0.2 of [13] that if a Banach space is uniformly embeddable into a superstable Banach space, then
X contains an isomorphic copy of ¢, for some p € [1,0). As L, is superstable for all p € [1,c0)
(see Theorem 0.1 of [13]), this is a generalization of Krivine and Maurey’s result.

The interest in Banach spaces as metric spaces and their nonlinear geometric properties has
recently increased significantly, hence the question whether analogues of Raynaud’s result hold
for different kinds of nonlinear embeddings other than uniform embeddings becomes natural.
Given metric spaces (M, dys) and (N,dy), a function f: M — N is said to be expanding if
lim; o pr(t) = o0 and is said to be coarse if w(t) < oo for all t € [0, 0). If f is both expanding
and coarse, then f is called a coarse embedding (in which case M is said to be coarsely embed-
dable into N). If f is a coarse embedding and sup,cy dn(y, f(M)) < oo, then f is called a coarse
equivalence (in which case M is said to be coarsely equivalent to N). In Problem 6.6 of [8], N. J.
Kalton asked: If a Banach space X is coarsely embeddable into a superstable Banach space, must
X contain an isomorphic copy of ¢, for some p € [1,0)? Although we are not able to answer

Kalton’s question, we obtain the following result.

Theorem 3.7.4. If a Banach space X is coarsely embeddable into a superstable Banach space,
then X has a basic sequence that generates a spreading model isomorphic to {, for some p €
[1,0).

Kalton proved in Theorem 2.1 of [8] that every stable metric space is both uniformly and
coarsely embeddable into some reflexive Banach space (and this can be witnessed by a single
function). In Problem 6.1 of [8], Kalton asked: Is every (separable) reflexive Banach space coarsely
(or uniformly) embeddable into a stable metric space? By Raynaud’s result, it is clear that there are
separable reflexive spaces that are not uniformly embeddable into any superstable Banach space.
However, to the best of our knowledge, it was unknown whether every reflexive Banach space is
coarsely embeddable into some superstable Banach space. As a corollary of Theorem 3.7.4, we

obtain the following.
Corollary 3.7.6. There are separable reflexive Banach spaces that are not coarsely embeddable
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into any superstable Banach space.

We now describe the organization of this section. In Section 3.2, we recall all the background
that will be needed and prove two key lemmas, Lemma 3.2.1 and Lemma 3.2.5, that we could
not find elsewhere in the literature. In Section 3.3, we define the space of types that we will deal
with, along with its operations of dilation and convolution and the relevant notions of admissibility
and symmetry, and then derive some of its basic properties. In Section 3.4, we define conic class
and show both the existence of a minimal closed admissible conic class and the existence of a
common admissible point of continuity for the family of finitely many applications of dilation
and convolution within every closed admissible conic class. In Section 3.5, we discuss how to
associate a spreading model to a well-chosen admissible symmetric type and show how inequalities
involving the spreading model relate to inequalities involving the type. In Section 3.6, we use what
we call “coarse approximating sequences” to derive an inequality that allows long convolutions to
be shortened. Finally, in Section 3.7 we define what it means for a type to be a coarse £,-type and
show that every minimal closed admissible conic class must contain such a type. From the work
done in preceding sections, the main theorem follows.

The contents of this section were jointly researched with B. M. Braga and can be found in a

separate preprint on the arXiv [5].
3.2 Preliminaries

WeletN = {n}>*_ ,,Ny = {0}uN,R; =[0,00),and Q; = QnIR,. The Banach space notation
we use is standard, and we refer the reader to [1] if review is necessary. For instance, we denote
the closed unit ball of a Banach space X by Bx. Also, givenp € [1,0] and T = (2;), € R, we
let 7], = (S, |:f")” and |0 = max{|;| | 1 < i < N).

We define stability for metric spaces and superstability for Banach spaces as in Section 3.1. By
Theorem II.1 of [10] and Theorem 0.1 of [13], both stability and superstability are closed under
taking /,-sums, for p € [1,00). Precisely, given p € [1,00) and a stable (respectively, superstable)

Banach space X, ¢,(X) is also stable (respectively, superstable). We will use this property without

mention. In particular, ¢, is superstable for every p € [1,00). Note however that ¢, is not even
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coarsely or uniformly embeddable into a stable metric space (see [8]).

We say that (M, dyy) is a pseudometric space if dy;: M x M — R is a pseudometric, i.e., if
d is a nonnegative symmetric map satisfying the triangle inequality. We define stability for pseu-
dometric spaces analogously to stability for metric spaces. Given pseudometric spaces (M, dy;)
and (N, dy), we define wy and p; for a function f: M — N by the formulas given in Equations
3.1 and 3.2, and define uniform and coarse embedding and equivalence for pseudometric spaces
analogously to the same terminology for metric spaces found in Section 3.1. Two pseudomet-
rics dys and d; defined for the same set M are said to be coarsely equivalent if the identity map
Id: (M,dy) — (M, d,,) is a coarse equivalence.

A Banach space S is called a sequence space if it is the completion of ¢y under some norm such
that the standard basis vectors ((, ), of cyo each have norm one. Let (X, | - |) be a Banach space
and (z,)>_, a bounded sequence in X without Cauchy subsequences. Then, after possibly taking

a subsequence of (,,);;, there exists a sequence space (.5, | - |s) such that for all (o;)"_, = R,

= lim
ny<--<ng

Y

k
Dl
j=1

k
Z QjTn;
j=1

S

where for a function f: N* — R, limy,, <...<pn, f(n1,...,n%), when it exists, denotes the unique
L € R such that for every ¢ > 0, there is N € N such that |f(nq,...,nx) — L| < € whenever
N < n; < --- < ny. For a proof of this, see Theorem 11.3.7 in [1]. The space S is called
a spreading model for (x,)*_,. Within a spreading model, the sequence ((,)>_, is 1-spreading,
i.e., ((,)X_, is l-equivalent to all of its subsequences. Also, the sequence (Co—1 — Con)icy iS
1-unconditional (see Proposition 11.3.3 of [7]).

Let (X, | - ||) be a Banach space, I an index set, and U a nonprincipal ultrafilter over . We

define the ultrapower X' /U of X with respect to U as the set

{(%‘)ie] e X' sup [z;] < oo}/~,

el

where (2;)ier ~ (Yi)ier if limgy |27; — yi| = 0, equipped with the norm | - | xs,, defined by

28



(@)ier| x100 = lim;gq ;] for all equivalence classes (x;);c;. Every ultrapower X' /U of a Banach
space X is finitely representable in X (see Proposition 11.1.12(i) of [1]). On the other hand, if a
separable Banach space Y is finitely representable in X, then Y is isometrically isomorphically
embeddable into some ultrapower of X (see Proposition 11.1.12(i1) of [1]). Therefore a Banach
space X is superstable if and only if all of its ultrapowers are stable.

Given a coarse map f: X — Y between Banach spaces, we would like to be able to modify
f so that it has the additional property that the difference of the images of two points in X has
the same norm as the image of the difference. In the lemma below, we use Markov-Kakutani’s
fixed-point theorem to show that if we allow ourselves to substitute Y with an ultrapower of the

¢1-sum of Y, then such a modification is possible. Precisely, we have the following.

Lemma 3.2.1. Let X and Y be Banach spaces and f: X — Y a coarse map. Then there exists
a nonprincipal ultrafilter U on an index set I, and a map F: X — (1(Y)! /U, such that for all
T,y e X,

prlle =yl) < |F@x) = Fly)| = [F(z = )| < ws(lz = yl)-

Proof. Let

C= [ T[osllz=yhws(lz—yh].

(z,y)eX x X

We consider C' as a subset of R**¥ with its pointwise convergence topology. By the assumption
that f is coarse and Tychonoff’s theorem, C' is compact. Let d: X x X — R be defined by
d(z,y) = ||f(x) — f(y)| for all z,y € X and note that d € C.

For each z € X, define 2: RX¥*X — RYX*X by 2(g)(z,y) = g(x + 2,y + 2) forall g € R¥*X
and all z,y € X. Let A = conv{2(d) | 2 € X} < R**X. Then A < C by the definition
of the pointwise convergence topology on RX*X, The family {2} 4}.cx is easily seen to be a
commuting family of continuous, affine self-mappings of the compact convex subset A of R**X,

By Markov-Kakutani’s fixed-point theorem, there exists D € A such that 2(D) = D forall z € X.

29



That is, D(z + z,y + z) = D(x,y) for all z,y,z € X. By the definition of A, there is a set
{D;}icr < conv{z(d) | z € X} and a nonprincipal ultrafilter / over I such that D = lim;g, D;.
For each i € I, let (Oz,])j(:l)1 < [0,1] and (z”)j(zz)1 < X be such that Zj(i)l a;j = land D; =
ng @; ;2 j(d). Then for each i € I, define F;: X — (,(Y) by Fi(z) = (F;;(x))7, for each
z € X, where

;i (flr+2i5) — f(zij) 1<j<s(i)

Fij(x) =

0 otherwise
for each x € X and j € N. Finally, define F': X — (,(Y)! /U by F(z) = (Fy(2))ics. As
supser | F5(2)]|e, vy < wy(|z]|) for all 2 € X, the map F' is well-defined. And by definition of d, F,

and the norm on ¢,(Y)! /U,

|E (@) = E@)lesryr = D(,y)

for all z,y € X. Therefore, as D(z,y) = D(x — y,0) for all z,y € X, and F(0) = 0, we are
finished. —

Corollary 3.2.2. Let (X, |-|) be a Banach space and Y a superstable Banach space. If f: X — Y
is a coarse map, then there exists a translation-invariant stable pseudometric d on X such that
pi(lz —yl) < d(z,y) <ws(|lz —y|) forall x,y € X. In particular, if X is coarsely embeddable
into a superstable Banach space, then there exists a translation-invariant stable pseudometric d

on X such that the identity map 1d: (X, | -||) — (X, d) is a coarse equivalence.

Proof. Let F': X — (1(Y)! /U be obtained from Lemma 3.2.1 applied to f. Define a map d: X x
X — Ry byd(z,y) = [|F(z) = F(y)|e,vyru for all 2,y € X. It can easily be seen that d is
a translation-invariant pseudometric on X and that p¢(|z — y|) < d(x,y) < ws(|z — y]|) for all
z,y € X. As (,(Y)! U is stable, it follows that d is a stable pseudometric. Furthermore, if f is a
coarse embedding, then Id: (X, | - |) — (X,d) is a coarse equivalence since pf(t) < pa(t) and

wid(t) < wg(t) forall t € [0, 00). N

30



The corollary above is analogous to Theorem 0.2 of [13], which says that if a Banach space
(X, | - |) is uniformly embeddable into a superstable Banach space, then X has a translation-
invariant stable metric that is uniformly equivalent to the metric induced by | - |. However, Ray-
naud’s proof relies on an averaging process that uses the uniform continuity of a given uniform
embedding. Through the use of Markov-Kakutani’s fixed-point theorem, we have proved some-
thing more general, as it can be easily shown using the triangle inequality that uniformly continuous

maps between Banach spaces are automatically coarse.

Remark 3.2.3. Although not necessary for the main result, Corollary 3.2.2 can actually be im-
proved to show the existence of a translation-invariant stable metric on X coarsely equivalent to
the metric induced by the norm. Indeed, it has been shown by B. M. Braga in Theorem 1.6 of
[4] that if X and Y are Banach spaces and f: X — Y is a coarse embedding, then there is a
coarse embedding f : X — (;(Y') with uniformly continuous inverse (meaning p f(t) > 0 when-
ever ¢ > 0). Thus, the same proof as in Corollary 3.2.2 with ¢,(Y) replacing Y and f replacing f
will yield that Id: (X, |- |) — (X, d) is a coarse embedding with uniformly continuous inverse. In

particular, d is a metric because in this case d(z,y) = 0 implies x = y.

Let X and Y be metrizable topological spaces. Recall that a subset of a topological space is
called F, if it is the countable union of closed sets, is called G if it is the countable intersection
of open sets, and is called comeager if it is the countable intersection of sets with dense interiors.
A function f: X — Y is called Baire class 1 if the inverse image of any open subset of Y under f
is an F, subset of X. If Y is separable, and f is Baire class 1, then the set of points of continuity
for f is a comeager G subset of X. If Y is separable and (f,: X — Y)°_; is a sequence of
Baire class 1 functions, then (f,,)*_,: X — Y is a Baire class 1 function. The pointwise limit
of a sequence of continuous functions from X to Y is a Baire class 1 function. The restriction of
a Baire class 1 function is a Baire class 1 function. For proofs of these facts and more info about

Baire class 1 functions, see [9] and [11].

Lemma 3.2.4. Let X be a metrizable o-compact topological space, Y a topological space, and

let f: X xY — R be separately continuous. Given a metric d inducing the topology of X and a
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countable family KC of compact subsets of X such that X = | Jjoxc I, if there is 6 > 0 such that
foreach x € X, Bs(x) n K # & for only finitely many K € K, then f is the pointwise limit of a

sequence of continuous functions.

Proof. Foreachn € N, let {z,,;}~, bea ﬁ—dense setin (X, d) such that [{z,,;};”, N K| < w0
forevery K € K. For each n,i € N, define g,,;: X — R by g,,;(z) = max {n%l —d(xp, 1) ,O}
for every x € X. Note that g, ; is continuous and given x € X, g,,; [ s, () is a nonzero function
for some but only finitely many ¢ € N. Thus the function h,,; := ﬁ is well-defined and

continuous. For each n € N, define f,: X x Y — R by

fTL(*Tuy) = Z f (‘Tn,ivy) hnﬂ(‘r)

for every (x,y) € X x Y and note that f,, is itself continuous by the separate continuity of f and
the observation on g, ; | B, () The sequence (f,,):°_, converges pointwise to f. Indeed, take any
(z,y) € X xY and any £ > 0. Let N € N be such that | f(z,y) — f(2',y)| < ¢ whend(z, ') < £.

Then, forn > N,

[f (@, y) = fola,y)l = | 2, (F(@,9) = F (@0 ) hni()

e

=
I
fu

<

’f(ma y) - f (xn,ia y)’ hn,l('r)

F

Il
—_

7

o
<é€- Z hn,i(x)
i=1

=c. O]

Given a set X and a family F of functions from X x X to X, define the sequence (F [k]);il

of subsets of XX recursively by

FOI = {o s 2}

FEN = {o > f(r,9(x)) | f € F.g e FI}.
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The following lemma will be needed for the proof of Lemma 3.4.5, which is essential for the proof

of Theorem 3.7.4.

Lemma 3.2.5. Let X be a separable metric space and F a countable family of Baire class 1
functions from X x X to X. There is a comeager Gs subset E of X such that g is continuous on

E forall g e |, F*.

Proof. Certainly, g is continuous on Ey, = X for g € F1. Suppose k € Ny is such that there is a
comeager G5 subset F), of X such that g is continuous on E, for all g € F¥1. For each g € FI*!, let
Iy ={(z,9(z)) | x € Ei}. Since F is a countable family of Baire class 1 functions with separable
codomain X, there is a comeager G5 subset F, of I'y such that f [pg is continuous on [, for all
feF. Letm: X x X — X be the first coordinate projection. Consider U = I'y n'V x W,
where V, W are open subsets of X; and suppose = € w(U), so that (x,g(z)) € U. As W is open
and g(z) € W, there is r; > 0 such that B, (g(z)) < W. Since g is continuous on FJ, there is
ro > 0 such that g(B,,(x) n Ex) < B,,(g9(x)). Thus (V n B,,(x)) n E} is an open neighborhood
of z in Ej, contained in 7(U). Since x € w(U) was arbitrary, 7(U) is open in E;. And U was an
arbitrary element in a basis for the topology on I'y, so 7(U) is open in Ej whenever U is open in
I',. It follows easily that 7(F}) is a comeager GG subset of Ej, since F, is a comeager G5 subset
of I'y. Let Fjiq = ﬂgef[k] 7(Fy). Since FU¥l is countable, Ej.1 is a comeager G subset of E,
and therefore also of X, since F, is a comeager G5 subset of X. Now take any g € F**11. Then
there is f € F and ¢’ € FI¥l such that g(x) = f(z,¢'(z)) forall x € X. And if x € Ej,,, then
by construction z is a point of continuity for g’ and (z, g'(x)) is a point of continuity for f[r ,.
Therefore x is a point of continuity for g. Thus, we have constructed a comeager G5 subset Fj,

k+1]

of E}, such that g is continuous on Ej for all g € F*+11. And so we can recursively define such

E, for all k € N. The result follows by taking £ = (,_, Ex. O

3.3 Space of types

Following Raynaud, our strategy for proving Theorem 3.7.4 is to first make an appropriate

definition for the space of types of a Banach space coarsely embeddable into a superstable Banach
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space. This space of types needs to have certain compactness properties and needs to be able to
not only reflect the metric structure of the Banach space, but also the algebraic structure. Using
compactness and methods commonly employed in the proof of Krivine’s theorem, we’ll be able to
show the existence of a type that satisfies a nice /,,-inequality, and then push this back down onto
the Banach space.

To motivate the definition of the space of types, first consider a general metric space (M, d).
One may ask whether M can be compactified in a way that preserves the metric structure on
M. That is, under what conditions will there exist a compact metrizable space 7 such that M
homeomorphically maps onto a dense subset of 7 ? Separability is certainly a necessary condition,
and given that Lip, (M) (the space of all real-valued Lipschitz functions over M with Lipschitz
constant less than or equal to 1) is metrizable and closed in R™ under the pointwise-convergence
topology when M is separable, a natural o-locally compact metrizable 7 that contains a dense
homeomorphic copy of M is the closure of {Z},cp in RM, where 7 is defined for all z € M by
Z(y) = d(x,y) for all y € M. If d is a bounded metric, then 7 is in fact compact, and since every
topology induced by a metric can be induced by a bounded metric, separability is also a sufficient
condition.

Supposing now that M is a vector space, and lim, o, Ty, lim, . ¥, both exist, one may
further ask under what conditions do lim,,_,, (31:n—4—g/n) and lim,,_,, m exist, where « is some
scalar. Stability of d is enough to show the existence of lim,, o, lim,, o, T,(2 — y,,) for any
z € M, and if d is also translation-invariant, this means limnﬁwm exists after taking
an appropriate subsequence. If d is induced by a norm then lim,, m certainly exists since
(ax,)(y) = |a|Zn(y/e). Otherwise, a slight modification needs to be made to 7. One must
now account for scalars by defining 7 to be a subset of R"™*™  where I is the field of scalars,

and T(\,y) = d(Az,y) for all (\,y) € F x M. Now, in this setting, lim,,_,,, (cx,) exists since

(o) (N, y) = T (A, y). With these ideas in mind, we are now ready to explicitly define the space
of types we need. For a more complete discussion of some of the ideas above, see [6].

From now on, we consider a separable infinite-dimensional Banach space (X, | - |) which
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admits a translation-invariant stable pseudometric d coarsely equivalent to the metric induced by
| - ||, and the corresponding identity map Id: (X, | -||) — (X, d). By Corollary 3.2.2, such d exists

as long as X is coarsely embeddable into a superstable Banach space.

Remark 3.3.1. By Remark 3.2.3, we can actually assume that d is a metric. However, in order
to obtain the isomorphism constant in Remark 3.7.5 below, we need to work with d being the

pseudometric given by Corollary 3.2.2.

Remark 3.3.2. Our definition of the space of types will be similar to Raynaud’s, with a few
changes to the proofs resulting from having a metric that is coarsely equivalent rather than uni-
formly equivalent to the metric induced by the norm on X. Note in particular that, in our case,
a sequence may be dense in (X, | - |) while not being dense in (X, d). Thus, in order to have

metrizability, we must use a countable subset of X to define the space of types.

Let A be a countable | - |-dense Q-vector subspace of X. Given z € A, define the function
TE RgXA by T(\,y) = d(Ax,y) forall (\,y) € Q x A. The space of types on (A, d|axa), which
we denote by T, is defined to be the closure of {Z},ca in RZ*4 (with the topology of pointwise
convergence). An element o of 7 is called a type, and is called a realized type if o = T for some
x € A, in which case o is also called the type realized by z. The type 0 is called the null or trivial

type.

Note that the countability of Q x A implies that 7 is metrizable, and so every o € 7 can be

0

©_, in A. Such a sequence is called a defining

expressed as lim,, ., Z,, for some sequence (x,,)

sequence for 0. Note also that in this case o(\, z) = lim, ;y d(A\x,,, x) for every (A, z) € Q x A

0
n=1

and every nonprincipal ultrafilter ¢/ over N. In particular, lim,, ., d(z,,0) exists, and so (x,,)
is a d-bounded (and therefore also | - |-bounded) sequence in A.

Forevery M e R, welet Ty = {oc € T | 0(1,0) < M}. We will need the following lemma.
Lemma 3.3.3. Forall M € R_, Ty is compact.

Proof. Take any o € Ty, and let (x,)>_; is a defining sequence for . As lim,,_,,, d(z,,0) =

o(1,0) < M, we may suppose that the defining sequence for ¢ is contained in the d-ball of radius
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M + 1 around 0. As Id: (X, | -||) — (X,d) is expanding, there exists R < oo such thatt < R

whenever piq(t) < M + 1. Then, since pia(||x,|) < d(z,,0) < M + 1 for every n € N, we have
o(A z) =limd(Az,, z) < lim(d(Ax,,0) + d(0,2)) < wia(|A[R) + d(0, z)
for all (A, z) € Q x A. That is, we have

Tue [ [0.w(AR) +d(,0)],

(A z)eQxA

since 0 € 7Ty, was arbitrary. By Tychonoff’s theorem and the fact that 7, is closed, we are

finished. D
Corollary 3.3.4. The metric space T is o-locally compact.

The next lemma will allow us to define analogues of scalar multiplication and vector addition

in the space of types, capturing some of the algebraic structure of X.

Lemma 3.3.5. Suppose 0,7 € T. Then if (w,)"_, (v,)_, are defining sequences for o and

(Yn)2_1, (20)%_ are defining sequences for T, then
(i) The limits lim,, (qw,,) and lim,, (cz,) exist and are equal for every a € Q.
(ii) The limits lim,, lim,, (w, + y,,) and lim,, lim,, (x,, + z,,) exist and are equal.

Proof. Item (1) follows immediately from the definitions. By a straightforward argument using the

translation-invariance and stability of d, item (ii) also follows. ]

Definition 3.3.6. Let 0,7 € T and let (z,,)_1, (Ym)ro_, be any defining sequences for o and 7,
respectively. We define the dilation operation on T by (a,0) € Q x T — «a -0 € T, where
o - o = lim, (ax,). We define the convolution operation on T by (0,7) € T x T — ox7€ T,
where o * 7 := lim, lim,, m By Lemma 3.3.5, both dilation and convolution are well-
defined. For (0;)"_; = T, we define *’_, 0; in the obvious way, and we allow dilation to bind

more strongly than convolution in our notation, i.e., we write v - 0 = 7 to mean (o - ) * T.
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It follows easily from the definitions that, given o € 7 and a defining sequence (z,,):_, for o,
we have a-0(\, z) = o(Aa, x) forevery (A, z) € Qx Aand o*7 = lim,,_,,, T, *7 forevery 7 € T.
Furthermore, using the translation-invariance and stability of d, it is easily shown that convolution
is associative and commutative, and that dilation distributes over convolution. We now prove some

continuity properties of our dilation and convolution maps.

Lemma 3.3.7. Dilation is a right-continuous map from Q x T to T.

0
n=1

Proof. Fix a € Q and suppose (o) is a sequence in 7 converging to o € 7. Then « -
oA\ x) = oA, x) = lim, o 0 (A, ) = limy, 0 v - 0, (A, ) for all (A, z) € Q x A. Thus
a -0 = lim, ., a - g,. This was for an arbitrary converging sequence in 7, so dilation is right

continuous. [
Lemma 3.3.8. Convolution is a separately continuous map from T x T to T.

Proof. Let D be a metric compatible with the topology on 7. Fix 7 € T and suppose (0,,)>_; is a
sequence in 7 converging to o € 7. For each n € N, let (x,,,,,)s_, be a defining sequence for o,,,
and let m,, € N be such that D(0y,, T m,) < = and D(ZTpm, * 7,05 * 7) < +. Then (Zpm, )7,
is a defining sequence for o by the triangle inequality; and so, again by triangle inequality, o *

7 = lim, 0, = 7. This was for an arbitrary converging sequence in 7, so convolution (which is

commutative) is separately continuous. [
Corollary 3.3.9. Convolution is a Baire class 1 map from T x T to T.

Proof. Given (A\,xz) € Q x A,let &) ,: T x T — R be defined by ¢, ,(0,7) = o * 7(\, z) for all
o, T € T. Choose a compatible metric D for the topology on 7 and note that there is § > 0 such that
D(o,7) = § whenever |o(1,0) — 7(1,0)| is large enough. Now, by Lemma 3.3.8 and the topology
on7, ®, , is separately continuous; and by Lemma 3.3.3, T, is compact for every M € R, . Thus;
applying Lemma 324 with X =Y =7, f = @) ,,d = D, K = {Ty41\int(7ar) } 170> and with
0 as above; we have that @, , is the pointwise limit of a sequence of continuous functions, and is
therefore Baire class 1. As this is true for any (A, z) € Q x A, convolution is itself Baire class

1. U
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The sequence in the statement of our main theorem will be a defining sequence for one of
the types in 7. We will eventually prove an inequality for the type and then show that a similar
inequality holds for the spreading model associated to the sequence, but first we need to know under
what circumstances a type’s defining sequence even has a spreading model. We already know that
a defining sequence (x,,)°_; for a type o is bounded in norm, but we want to put a condition on o
that guarantees (z,,);_, is eventually bounded away from zero in norm. This motivates our next

definition.
Definition 3.3.10. A type o € T is called admissible if o(1,0) > inf;~qwiq().

Note that if o is an admissible type and (z,,);"_, is a defining sequence for o, then
lim inf wyq(||2,|) = limd(z,,0) = (1,0) > %ngwld(t).
n n >

Thus, since wyq is an increasing function, we can find 6 > 0 such that (z,,)_, is eventually 0-

bounded in norm away from zero. From this point forward, we will let v = inf;~qwiq(t).

Remark 3.3.11. If Id: (X, |-|) — (X, d) is uniformly continuous, then v = 0. If, in addition, d is
a metric, then the inequality in our definition is trivial, and every nontrivial type will be admissible.
Given our assumption that d is coarsely equivalent to the metric induced by | - |, we do not need
to place any additional conditions on a type to guarantee its defining sequences to be bounded in
norm. Had this not been the case, we would have had to include such a condition in our definition
of admissibility. One condition we could use would be to require a type o to also satisfy the
inequality o(1,0) < sup,_., p1a(t) (a trivial inequality in our case). In [13], where the author is

concerned with a translation-invariant stable metric d uniformly equivalent to the metric induced

by || -

, the author does exactly this.

At this point, we have established a condition to put on a type to guarantee its defining se-
quences are bounded in norm and eventually bounded away from zero in norm. In our goal to
obtain a spreading model, we now need an extra condition that will guarantee that a type’s defining

sequences contain no norm-Cauchy subsequences.
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Definition 3.3.12. A type o is said to be symmetric if o = (—1) - 0, i.e., if o(\,x) = o(=\, z),
for all (\,z) € Q x A. We denote {o € T | o is symmetric} by S and S n Ty, by Sy, for each
MeR,.

Note that by Lemma 3.3.7, § is closed, and therefore S;; is compact for all M € R, ..

Lemma 3.3.13. Suppose o € T is an admissible symmetric type and (x,,)_, is a defining sequence

foro. Then (x,)>_, has no | - ||-Cauchy subsequence.

Proof. Suppose to the contrary, that (x,,)_, has a || - [|-Cauchy subsequence. After taking this
subsequence, we can assume that (z,)’_; converges in norm to some x € X. Then, as o is
symmetric, we have

liminf d(Az,, — A\z,,)

n

— liminf <d()\xn, “Az) — 0\, —Azn) + o (=), —Axn))

n

— lim inf lim <d(/\xn, “Az) — A\, —ATn) + d(— Az, —/\xn)>

n m

< lim inf lim (d(/\xn, A + d(= A, —)\xn))

n m

< 2 liminf liminf wig(|A] - |2, — 2ml])

for all A € Q. This implies piq(|A\z||) < liminf,, p1q(2||Az,|) < 2 forall A € Q. As d is coarsely
equivalent to the metric induced by the norm of X, this can only happen if z = 0. But then the

admissibility of o yields
v < o(1,0) =limd(z,,0) < liminf wy(||z,]) = 7,

a contradiction. L]
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3.4 Conic classes

To show the existence of a type that satisfies an £,-inequality, we will use a limiting argument
and the existence of a shared point of continuity for every finite combination of convolutions and
dilations by a scalar. The definition of conic class below is motivated by the desire to use Lemma
3.2.5 with the Baire category theorem to find a shared point of continuity, and the need for a

minimality argument to make sure this point can be used in the limiting argument.
Definition 3.4.1. A nonempty subset C of S is called a conic class if

(i) C # {0},

(ii) N-oeCforall \e Qand o € C,
(iii) oxTeCforall o,7 € C.

Moreover, C is called admissible if C contains an admissible type, i.e., if there exists 0 € C such

that o(1,0) > .
Lemma 3.4.2. The set S is a closed admissible conic class.

Proof. That S is closed follows from Lemma 3.3.7. The properties (ii) and (iii) follow easily
from the definitions of dilation and convolution and from the translation-invariance of d. All that
remains is to show that there is an admissible (and therefore nontrivial) type o in S. Let R € [0, )
be such that prq(¢) > 7 whenever ¢ > R. By the infinite-dimensionality of X, there is a bounded
R-separated sequence ()5, in (X, | - |). After possibly taking a subsequence, we may suppose
that (x,,)°_, is a defining sequence for some o € 7. In this case,

(0% (—=1)-0)(1,0) = limlimd(x, — x,,,0) = inf d(z, — x,,,0) = pa(R) > 7.

n m n#m

That is, the symmetric type o = (—1) - ¢ is admissible. Therefore S is a closed admissible conic

class. O]
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Now that the existence of a closed admissible conic class has been shown, we will show the

existence of one that is minimal (with respect to set inclusion), using the following lemma.

Lemma 3.4.3. Let 0 be an admissible type. Given any 0 < 1y < 1y, there is « € Q. such that

pra(r) < a-o(1,0) < wia(ra).

Proof. Let (z,)_, be a defining sequence for 0. The admissibility of o implies that (z,)>_; is
a || - |-bounded sequence that is eventually | - |-bounded away from 0. Thus, we may suppose

after possibly taking a subsequence that lim,, | z,,|| exists and is nonzero. Let o € Q be such that

lim,, |ax,| € [r1,72]. As a-o(1,0) = lim, d(ax,,0), we then have

pra(r1) < a-o0(1,0) < wq(rs). n

Lemma 3.4.4. Every closed admissible conic class contains a minimal closed admissible conic

class.

Proof. Fix a closed admissible conic class C. Let F be the family of closed admissible conic
classes contained in C ordered by reverse set inclusion and let {C, };c; be some chain in F. We will

show that [),.; C; is a closed admissible conic class.

iel

Certainly, ﬂie ; Ci © S is closed and satisfies conditions (ii) and (iii) in the definition of conic
class. So we only need to show that [),_; C; contains an admissible type. For that, fix R € [0, o)
such that prq(t) > v whenever t > R and let B; = C; n (7o g+ \int (T, (r))) for all i € I. By
Lemma 3.3.3, B; is compact. Given i € [, let o; € C; be admissible. By the previous lemma, there
is o; € Q4 such that «v; - 0; € B;, and so B3; is nonempty. Hence, {B;},c; is a family of compact sets
with the finite intersection property, which implies (),.; C; 2 [ ),.; B; is nonempty. By our choice
of R, (,.; Bi can only contain admissible types, hence [),_; C; contains an admissible type. Thus,
ﬂie ; Ci is a closed admissible conic class, and so is an upper bound for the chain {C;},c; in F. By

Zorn’s lemma, F has a maximal element. That is, C contains a minimal closed admissible conic

class. O]
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We come now to the main result of this section. For Raynaud, it was enough to show that the
maps o — o * « - 0, where « is any scalar, share a point of continuity. He then uses this to show
oxa-0=(1+]|afP)?. o for some p € [1,0). With this equality, one may then easily show that

for any finite sequence of scalars @ = (a;)¥

X1, onehas %, a;-0 = [[@,-o. Inour case however,

we will only be able to show that given any (t,,);_; < Q converging to |@/, and (A, z) € Q x A,

limsup,, | %X, a; - (A, 2) =ty - 0(A, z)| < L, for some constant L depending on +y. The next

lemma will allow us to make sure . does not depend on the length of .

Lemma 3.4.5. Let C be a closed admissible conic class. Then there is an admissible ¢ € C such that

¢ is a common point of continuity for the family of functions {o — %7, a;-0 | (a;)7-; = Q} = €.

Proof. By Lemma 3.2.5 and Corollary 3.3.9 (with X =Cand F = {oc » a-0=f -0 | a, 5 € Q}),

there is a comeager G5 subset E of C such that g is continuous on E for all
ge o % o0l (a)f S Q) =

But C is closed, and so is locally compact, by Corollary 3.3.4. Therefore E is dense in C, by the

Baire category theorem, and the statement follows from the admissibility of C. [l

3.5 Spreading models associated to well-chosen types

Let o be an admissible symmetric type and (x,,)°_; a defining sequence for o. Then (z,,)%_,
is bounded, and by Lemma 3.3.13, has no | - [-Cauchy subsequence. So let (.5, || - ||) be a spreading
model for (z,,)_,, and let (,,);°_, be the standard basis for .S. Define (&,,)5_, by &, = Con—1 — Con

n=1>
for all n € N. Recall that (¢,);r_, is 1-spreading and (&,,);~_, is 1-unconditional.

LetT = 0% (—1)-0. As o = lim,Z,, we may assume after taking a subsequence that
T = lim, To,—1 — To,. As (x,,)°_; has no || - |-Cauchy subsequence, we may further assume after
taking another subsequence that inf,,.,, |z, — 2,/ > 0. As 7(1,0) = lim,, d(z2,_1 — x2,,0) =

pra(inf,zpm |, — x.,/), by dilating o, we can also assume that 7 is an admissible type. It is clear

that (span{,}>°_;, | - [|s) is a spreading model for (x4, 1 — =2,)>_;.
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From this point forward, we fix a minimal closed admissible conic class C and an admissible

¢ € C that is a common point of continuity for the family of functions

F={ow ¥ a;-0|(a)f, Q<
b

such that ¢) = ¢ = (—1) - ¢ is also admissible. We also fix a defining sequence (z,,)_; for ¢ with
spreading model (S, || - ||s) such that (z2,_1 — z2,)7, is a defining sequence for ). All this is
possible by Lemma 3.4.2, Lemma 3.4.4, Lemma 3.4.5, and the discussion above. Remember that
we have only defined dilation for rational numbers, and so we will restrict our attention to vectors
in S that have rational coefficients with respect to the basis ((,)_,. Given a set of vectors V', we

will denote the rational linear span of V' by spang V.

Definition 3.5.1. Given (o)7L, < Q, we say that ;7" | a;(; realizes the type 7., a; - ¢.

m2

Note that, if u = 37", a;(; realizes the type o, and v = > 7" |

B;¢; realizes the type 7, it

follows that u + v realizes the type o * T.

Lemma 3.5.2. Suppose u,v € spang{(, }s_, realize the types o and 7, respectively. Then for every
(A, x)eQx A,

sSup pld(|/\| ||U - UHS - 6) < O'()\,ZE) + 7'()\,1‘)

0<e<[AlJlu—v]s
and

o(02) — (A 2)| < inf wna(Al]u — o] + ).
In particular, for each § > 0, the following hold.
(i) If |u|s > 0, then o(1,0) = p1a(6).

(ii) If o(1,0) > wiq(0), then ||ulls = o.
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m

Z 6j T

ni

Proof. Let (a;)7Ly, (5;)7L; < Qbe such thatu = 37 | ;¢ and v = 37, 3;¢;. Then

< lilrln hmd< Z — Bj)n;, )

< lim. hm ( ()\Zajxn , ) +d <)\Zﬁjxnj,x
ni ]:1

=o(\x)+7(\ )

pra(|Al Jlu —v|g —¢) < limsup...limsup piqg (

forall 0 < e < |A||lu — v| 4. Similarly,

lo(A, z) — 7(\, x)| = lim. hm

ni

(Az%xn , > —d <)\iﬁjxm,x>

<§?.”wnd< z] /%xw,>

for all € > (. The particular case follows by letting v = 0 and A = 1. [

Z — By,

ni m

< liminf ... liminf wyg <

< wial([Alfu = vlg +¢)

Let H = spang{&,}y,. Given @ = (o)™, < Q, we define a bounded linear map Ty: H —
H as follows. For each n € N, let Ti5(&,) = Z;”zl a@;Emn+j—1 and extend T5 linearly to H. As
(&), is both 1-spreading and 1-unconditional, |T5(u)|¢ < |af1 |u|g for all w € H. Thus T
can be extended to all of H. If @ = (o) is a sequence of length 1, then Txu is just the scaling of

u by 1. We also define the function Tx: C — C by fa(a) = %7 a; -oforaloeC.

Lemma 3.5.3. Suppose a = (ai)?zl,ﬁ = (8)j21 < Q. Definey = ()i < Q by v = u3;
whenever k =n(j —1) +iforl <i<nandl < j<m.ThenT,oTs =T, and T, o fg = fv-
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Proof. For any k € N,

=1

j=
- Z Z ai/Bj€TL(mk+jfl)+i71

- Z Z aiﬁjfnmk+n(j—1)+i—1
j=

A~ A~

for all o € C, and so aoAgz 5. l

The previous lemma suggests the following notation. For @ = ()i, 8 = (8;)jL; < Q, we
denote by @ o 3 the sequence (v;,)?™, < Q defined by 4}, = «;3; whenever k = n(j — 1) + i for
1 <i<nandl<j<m. We define @ recursively by a@°! = @ and @°**! = @ o @°* for every

k € N. Note that YA”E’“ = faok for all finite length sequences @ < (Q and all k£ € N.

Lemma 3.5.4. Fixa = (a;)7.,; Q. Suppose u € H realizes the type . Then Tg(u) realizes the

type fa(a)'

Proof. Let (\;)!_; < Qbe such that u = > | \;&;, which implies o = %7, \; - ¢. Then

i=1 =
Ta(u) = Z Ai Z 04j5m+j—1 = Z Z Oéj)\ifmiﬂ—l,

i=1  j=1 j=11i=1

45



which realizes the type

gia]A,gD:%af%/\iw/): (o). ]

i=1j=1 j

Lemma 3.5.5. Fix N € Nand (b;)Y., € Q. And for each 1 < i < N, fix@;, ; € Q. Suppose

u;,v; € H realize the types o and T, respectively, for each 1 < i < N. Then for every (\,z) €

+5>.
S

Proof. Foreachm € N, let s,,,: H — H be the linear map defined by s,,,(&,,) = &+ foreachn €

QXA:

N AN N AN
% ;- Ty, o (N 2) — 3 b - T 7(A, ) — T3 v;
=1 g i

1=1

N
< infw (wE 1by] - ] .
e>0 =1

N, extended linearly to H. We construct sequences (u})Y , (v/)Y, < H recursively as follows. Let
uy = biTg,u1 and vy = biT5 vi. Given uj, v; for 1 <4 < N, let m; = max{supp(u;) U supp(v;)}
and then let uj,; = bis18m,(Ta,, uiv1) and viyy = biy15m, (T3, vis1). Clearly, both sequences
(uf)N, and (v!)¥, have disjoint supports. By Lemma 3.5.4 and the remark after Definition 3.5.1,

SV b and 3V o) realize %N b; - Tx,0 and %N b, - fgﬂ', respectively. Thus, by Lemma 3.5.2

N

Z u —’U )

i=1 s

< ggwld |>\|Z lu; — villg + 5)
=1

N
- g (WS-
1=

and the fact that (¢,,)°_, is 1-spreading,

< inf W1id
e>0

N N N ~
¥ by Tro(Nx) — % b; - TBiT()\,Z‘)

—Tgvi

+€>. O]
S

The goal of this section is to show that the type v satisfies the conclusion of Lemma 3.6.7

3.6 Coarse approximating sequences

below. For that, we introduce the notion of coarse approximating sequences.
Definition 3.6.1. Given u = Zle ;& € span{&,}>_,, a vector v € span{&,}*_; is said to be a
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. . k
spreading of wif v = ) | a;&,, forsomeny < ... <n;eN.

Definition 3.6.2. Fix N € N. Andforeach 1 <i < N, fixa; € Q and 5; € R,. A sequence of

types (0,)%_, < Cis called a coarse (a;, 3;)X,-approximating sequence if there exists a sequence

(un)y_y < H and sequences (u; )5, < H for each 1 < ¢ < N such that
(1) wu,, realizes o, foralln € N,

(i1) u;y is a spreading of u,, foralln e Nand 1 <¢ < N,

(iii) limy, |75, (un) — Bittin|g = O forall 1 <i < N.

Lemma 3.6.3. Fixa < Q, € Ry, and (u,)_; < H. If there is a spreading (ul,)""_; of (un)i_,
such that lim,, |T5(un,) — Bul,| g = O, then for every k € N there is a spreading (u),)r_; of (un)r_,

such that lim,, | T%(u,) — ﬁku;’lHS = 0.

Proof. For k = 1 the result is trivial. Suppose the result holds for some k € N. Let (u.)®*_, be a
spreading of (uy,);2_, such that limy,, | 7% (u,) — f*uj,| , = 0. By the definition of T, it follows that
(Tx(ull))>_, is a spreading of (Tx(u,))>_,, so there exists a spreading (u)*_; of (u,)_, such
that also (Tx(ur) — pult)*_, is a spreading of (1x(u,) — Pful,)y_,. Thus, by the fact that (&,)_;

is 1-spreading,

| T () = B85 )| o < | T8 (un) = Tel(BRuy) | g + | Ta(Brup) — B |
= (T ) = Bt + 8° [ Talul) = B

< | Talls - | T (un) = Brur | + BY [ Talun) — Bui| s -

S

Therefore lim,, HTakﬂ(un) — gty s = 0, and so the result holds for £ + 1. By induction, we

are finished. O

With the above lemma and Lemma 3.5.3, we have the following corollary.
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Corollary 3.6.4. Fix N € N. And foreach1 < i < N, fixa; <€ Q, 5; € Ry, and k; € N.
If (0,)%_, is a coarse (@, B;) Y., -approximating sequence, then it is also a coarse (@™, BF)N |-

approximating sequence.

Lemma 3.6.5. Fix N € N. And foreach 1 <1 < N, fixa; Q. Suppose &; o o; = & o @; for all
1 <i,j < N. Then there exist (3;), < Ry such that |a||, < B; < |||, for each 1 < i < N

and (o, < C such that (0,)*_, is a coarse (ou;, ;)N ,-approximating sequence. Moreover, we
n=1 ) i=1-app 8 q

nl*

may choose (0,)_, so that for alln € N, by < 0,,(1,0) < by for some v < by < by not depending

onn.

Proof. For those @;’s that are length 1 sequences, the lemma is clear with (/3;) = @;. So suppose
for each 1 < i < N that @; is a sequence of length at least 2. As the basis (£,)%, of H is

il [uls < |T,(uw)ls < @il Julg. for all u € H and all

1-unconditional and 1-spreading,
1 <i< N.Also, foreach1 <i < N, itis clear from the definition of 7%, that |75, (u) — &g > 0
for all u € H, and so Ty, is not invertible. Hence, the spectrum of Ty, has a real non-negative
boundary point, and so 75, has a real non-negative approximate eigenvalue foreach 1 < ¢ < N
(see Proposition IV.1 of [10]). By Lemma 3.5.3, T, commutes with 75, for all 1 < 4,7 <
N. Thus, there exists (3;)~, < R, and a single normalized sequence (u,,)*_, < H such that
lim,, |T5,un — Biun| g = 0 for every 1 < ¢ < N (see Proposition 12.18 of [3]). As |u,[s = 1 for
each n € N, the bounds above for |75, (u)| ¢ yield that |@; |, < 8; < |@;]; foreach 1 < i < N.
By density, one may assume that (u,,); ; < H and 1 < |u,|¢ < 2 for all n € N. Finally, let 6 > 0
be such that py(6/2) > ~ and let o, be the type realized by du,, for each n € N. The result now

follows by letting b; = p1a(d) and by = wiy(39) (see Lemma 3.5.2). O

Lemma 3.6.6. Fix N € N. And foreach 1 < i < N, fixa,; < Q. Suppose o; oa; = @ o o; for all
1 < i, < N. Then there exists (3;)Y., < R, such that |[a;] . < B; < ||ai| for each 1 <i < N

and such that every o € C is the limit of a coarse (q;, 3;) X -approximating sequence.

Proof. Lety < by < by, (5;)Y, € R,,and (¢,)*_, < C be given by Lemma 3.6.5, so that (o,,)%

n=1

is a coarse (@, ;) ,-approximating sequence and b; < 0,(1,0) < by for every n € N. Let C be

48



the subset of C consisting of all types of C which are the limit of a coarse (@;, 3;)Y,-approximating
sequence. Let Ty, 5, be the set {o € T | by < 0(1,0) < ba}. As Ty, 5, is compact and metrizable,
(0n)n has a converging subsequence which converges to an element o € C N Ty, ,. A subsequence
of a coarse (a;, 3;) ,-approximating sequence is still a coarse (@, 3;) ,-approximating sequence,
s0 C # {0}, and in particular C contains an admissible type.

By the minimality of C, it is enough to show that C is a closed conic class. Suppose o € C and
(0,)%_, is a coarse (@, ;)Y ,-approximating sequence converging to . Then, by Lemma 3.3.7,
A - o is the limit of (A - 0,,)%_,, which is easily seen to be a coarse (@;, ;)-approximating sequence
for every A € Q. Thus C is closed under dilation by any ) € Q.

Let D be a metric compatible with the topology of 7. Take any o, 7 € C and let (0,)%_, and
(7)%_, be coarse (@, 3;) ¥, -approximating sequences in C converging to o and 7, respectively. As
convolution is separately continuous, limy, o4 * 7 = ¢ * 7 and, for each fixed k € N, lim,, o}, * 7,, =
o, *7. Foreach k € N, let n(k) > k be such that D(oy, * Ty,x), 01 7) < 27, Letting o}, = 0, * T (k)
for each k € N, it follows that limy 0}, = o * 7. To show that 0 = 7 € (f, it remains to show that
(0,.)%., is a coarse (@, ;)Y ,-approximating sequence.

So foreach 1 < i < N, let (un)ily, (in)m—q, (Un)s_q and (v; )5, be sequences realizing
(0,)%_; and (7,)%_; respectively, as given by Definition 3.6.2. By translating the supports of
Un(ky and v; (), if necessary, we may assume that supp(ux) < supp(v,x)) and supp(u; ) <
supp (Vi) forall 1 < i < N and k € N. Let (2;);2; = (ux + Vn@)) 21, S0 that z;, realizes o),
for each k € N. Let (2;1)72, = (Ui + Ving))jey forall 1 <4 < N, so that z;, is a spreading of
2z, foreach k € Nand 1 < i < N. This shows that (0},){>, is a coarse (@, 3;)Y ,-approximating
sequence. Thus, o = T € é and so C is closed under convolution.

It remains to show that C is closed. Take any (0%)?_, < C converging to some o € C. For
each k € N, there exists a coarse (@, ;)\ ,-approximating sequence (o ,,)%_; in C converging

to 0. For each k € N, let (uy )", be a sequence realizing (oy,,)o_, and let (uy;,)"_, be a

n=1

spreading of (uy,);_, for each 1 < i < N as given by Definition 3.6.2. For each k € N, choose an

integer n(k) = k such that D(o (), 0%) < 1/k and HTEi(ukz,n(k)) - ﬂiukyi,n(k)HS < 1/k for each
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1 < i< N. Let7, = 04, for each k € N. Then (7;,)7, is a coarse (a;, ;) ¥, -approximating
sequence converging to o. That is, ¢ € C. Thus, C is closed since ¢ was an arbitrary limit point.
By what was shown, C is a closed admissible conic class contained in C. By the minimality of C,

we are finished. L]

Lemma 3.6.7. Fix N € N. And for each 1 <1 < N, fixa,; < Q. Suppose &; o o; = & o @; for all
1 < 4,7 < N. Then there exists (3;)Y., < R, such that ;| < B; < |ay|1 foreach1 <i < N
and such that

. N ks N ks
limsup | * b; - Tgp(N, x) — % bif;7, - v(A x)| <7
m o li=1 ' =1 "

for every (b;), = Q, every (k;)N; < N, every (\,z) € Q x A, and every sequence (3;,,)%_; <

Q. converging to B; for 1 <i < N.

Proof. Let (B;)Y, < R, be given by Lemma 3.6.6 and let (¢,)*_; be a coarse (@, 3;)N -
approximating sequence converging to ¢, also given by Lemma 3.6.6. For each n € N let ¢, =
¢n * (—1) - ¢,,. Then, by our choice of ¢ (see Lemma 3.4.5 and the intro to Section 3.5),

lim % b; - T3\ x) = %k b; - Toip(\ x)
. 1 ’L:l 2

n =1

and

lim z% b, (N, 2) = iﬁl bl (N, )
forall (\,z) e Q@ x A and all m € N.

By Corollary 3.6.4, (¢,)2_, is a coarse (@™, 3¥)N | -approximating sequence and we can pick
a sequence (uy, ), realizing (¢,);_, and sequences (u; )., that are spreadings of (u,);_, and
satisfy lim,, HTaokiUn — BfiuivnHS = O forevery 1 < i < N. Foreachn € N, let u/, € H have
the same basis coordinates as u,, except translated so that supp(u,) < supp(u!,) and supp(u; ) <

supp(uy,) for every 1 < i < N. Foreach 1 <i < N and n € N, let u;,, be a spreading of u,, so

that T_ox,uj, — B¥u] , is a spreading of T_ok, t,, — 31, , and such that supp(u;,) < supp(uj,, ).
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Note that both u,, — u;, and u;,, — u;,, realize 1,,. Therefore, by Lemma 3.5.5,

I %=
&

Fhigh, (0 ) — % BN (A
e n ,T) i>=kl i z,m¢n( , )

7

N ~ N ki
‘>—k1 b; - Ta?’fﬂvbn()V $) - _>_k1 bi i,;n ’ d}n()" 93)

N
< infuig | 1A 0] - | Tons (tm = ) = B (i — )
=1

+g)
S

k; k;
g + |B@ - Blm

N
. ki
< inf i ( 22 (E_l:lbi|-<HTa§kiun—ﬁi " : -||uns>) +g>

e>0

N
< inf Wrd 2|/\| Z |bz| : HTE%" Up — Bllf;num
i=1

for all (\,z) € Q@ x A. As the sequence (u,,)_; is bounded (see Lemma 3.5.2), taking the limit

superiors over n and m in the inequality above yields the result. 0

3.7 Coarse (,-types and coarse c)-types

In this section, we will define what it means for a type to be an /,-type or cy-type and use
Lemma 3.6.7 to show that 1) is such a type. Finally, we will show that H is isomorphic to ¢, for

some p € [1,00).

Definition 3.7.1. Fix p € [1,0). A type o is said to be a coarse (,,-type if there exists L > 0 such

that for all (\,7) € Q x Aand alla = ()Y, = Q,

limsup |k a; - c(A\,x) =t oA\ z)| < L

m

7

I %=

1

for all (¢,,)5_; < Q converging to |@l||,. A type o is said to be a coarse co-type if for all (A, z) €

m=1 —

Q x Aand all (o)Y, € Q,

< L.

N
ifl Q- O'(/\,l’) - 12112}}\[ |a1| ’ O-()‘V,E)

Theorem 3.7.2. The type 1) is either a coarse cy-type or a coarse U,,-type for some p € |1, ).
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(1,1) and @3 = (1,1, 1), and note that &y o &3 = a3 0 @y. Let B2, 53 € R be given

Proof. Letay =
< @ be nonzero increasing

by Lemma 3.6.7 for @, and @, respectively. Let (52.m)r 1, (B3.m)m_y

sequences converging to 3, and (33 respectively. By our choice of 3, and 3,

<7

b 3% (A ) = b8}, - v(A )

1=

lim sup

forall j € {2,3},allb € Q, all k € N, and all (\,z) € Q x A. Let {,k € N be such that
?k1§i < “Z?£1§i e . Let

g HZZ 1 g’t
. Then, for any p > 0,

3¢ < 20 < 3ML As (£,)%

ae € Q be such that 1 HZZ . fz

2t
<< Sl

3k+1

2ic1 i

M-
Qy

o<

S
AsId: (X, | -|) — (X,d) is expanding, we can pick p,n € Q such that piq(p/2) > 2wq(1) +
and pra(n[&1)ls/2) > 2wia(1) + . Let M € N be such that

3k+1 ,UﬁkJrl

E 7% w(1,0) -
Ay =1 Qy

< Y + wld(l)

~¥(1,0)

and let M’ > M be such that

< Yy + wld(l).

n- 7755,1\4/ '
e & 00,0 - el

Then, as (1/ay) - (Zf’:l &) realizes (p1/ay) - ;" 1, by Lemma 3.5.2(i),

T uByi
2wia(1) +v < a_g . ‘>_1<1 ¥(1,0) < ” “(1,0) + v 4+ wia(1).

Therefore, as (uﬁ t1/ag) - & realizes (uﬁk“/ag) 1, by Lemma 3.5.2(ii),

k+1
s - (3.3)

1<
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Similarly, by Lemma 3.5.2(i) and the fact that (/35 /55 5,) - &1 realizes (35 3,./585 5r) - s

Y4
Ui 2! B, mr
sk (1,0) = ———
Bé,M =1 ﬁS,M

. ¢(17 0) -7 — wld(l) > wld(l).

Thus, as (1/65 /) - (Zfil &) realizes (/55 ;) - 2 4, by Lemma 3.5.2(ii),

2 2 &
L PV ELY Y (34
B | B |,
After combining (3.3) and (3.4), one obtains
k k
1
5—3 = lim O >

B4 M BS,M " 2npBs I€1lls

The lower bound for 3% /3% above does not depend on k or /, so long as 2° < 3%, Similarly, a
lower bound for 35/3% that also does not depend on & and ¢ can be obtained, so long as 3* < 2°.
This implies the existence of a,b > 0 such that for all k and ¢ satisfying 3* < 2¢ < 3k+1,
a < % < b. Thus, there exists L > 0 such that 8, = 2” and 85 = 3~. Also, as 3, < 2, it must
be the case that L € [0, 1]. The same argument as for 2 and 3 works for arbitrary natural numbers.
Therefore 3y = N* forall N € N, where 3y is given by Lemma 3.6.7 for @ = (1)1L,.

Suppose first that L # 0 and let p = 1/L. Fix @ = (a;)Y, < Q and a sequence (¢,,)%_; <
Q converging to |@|,. Take any e > 0 and, for each 1 < j < N, let r; € Q, be such that
||| — r;/ P| < e. Let k € N be a common denominator so that for each 1 < j < N there is
n; € Ny such that r; = n;/k. Let s > 0 be a rational number such that |s — (1/k)'/?| < e. For
each1 < j < N, let (B;m)s_; < Q be a sequence converging to njl-/pand let (Bn)%_; < Qbea

sequence converging to . n; . cmma >5.J. and the symmetry o ,
q ging to (3}, n;)"/». By Lemma 3.5.5 (and the symmetry of )

I %=

1

Q- @D()\, ZL‘) — j%l Sﬁj,m : @ZJ(/\,QT)

N
< wi <|)\| Z | = sBiml 1€l + 5)

J a

33



and

[50m - (X @) =t - D (A, 2)| < wia([Al|sBm =t [€1]l5 + €)

forall (\,z) € Q@ x A. By Lemma 3.6.7 and what was shown above with L = 1/p,

N N n;j
lim sup '>%<1 $Bim - V(A x) — .>l<1 S - '*1@/)(/\, z)| <7
m o |i= j=1 =
and
N nj
limsup|s- %k %k (N z)— 3B, - v\ z)| <7
m j=1i=1

for all (\,z) € Q@ x A. Combining the four inequalities above with the triangle inequality, taking

a limit superior over m, and letting ¢ — (, one obtains

lim sup < 4y

m

I %=

aj PN x) =ty - (N 2)

1

J

for all (A, z) € Q x A. Therefore ¢ is a coarse £,-type.
Suppose now that L = 0. Fix @ = (;)¥;, < Qsuchthata; = landa; < 1for2 <j < N
(the general case will follow from dilation). Using Lemma 3.6.7, find 8 > 1 and a nonzero

increasing sequence (3,,)%_, < Q converging to (3 such that

limsup [b- TEp(N, z) — bBE - (N, 2)| < v

forallbe Q, k € Nand (\,z) € Q x A. Fix k € N and note that

(using the definition of fa and the distributivity of dilation over convolution). After combining

like terms using the commutativity of convolution, by Lemma 3.6.7 and what was shown above
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with L = 0,

k
b-TEp(A, z) —b- *Fna] )| <7
J=

for every b € Q and (\,z) € Q x A, where F' = {n = (n;)* Ny | Z] . nj = k}. Now, let

31—

p € Q be such that prg (g [&1] g /2) > 2wia(1) + 27. Fix M € N, and let M/’ > M be such that

[ 1By
|TT£¢(17 0) - ]i\/[ ’ (]-7 0)| <+ wld(l)'
M By

Combining the two inequalities above yields

k
PR p(1,0) ~ B ([Top)01,0)] < 27 + ).

k Dk

As (uB%,/B%,)& realizes (%, /B%;) - ¥, by Lemma 3.5.2(i),

k

ok ([Taf?) - w(1,0) = wia(1),

k
BM eF i=1

3

So, as ﬁ ZﬁeF(ngl ;") -Erm) realizes 7 *neF(Hf , a;”)-¢ for any injectivemap I : F — N,
by Lemma 3.5.2(i1),

e pp

S CY<1

k
”J
< | ST
M mefr

J=1

But this was for any &k, M € N, and so it must be the case that 5 < 1. Thatis, § = 1. Therefore

is a coarse cy-type. [

Lemma 3.7.3. Given p € [1,0), if ¢ is a coarse {,-type, then (), is equivalent to the standard

basis for C,,. If 1 is a coarse co-type, then (), is equivalent to the standard basis for cy.

Proof. Suppose that 1) € T is a coarse /,,-type (the ¢ case is similar). Let L > 0 be such that for
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any (o), < Q, any (tm);_; < Q converging to [@l|,, and any (A, z) € Q x A,

m=1

limsup | ¥ ;- (A, ) =t - (A, 2)| < L. (3.5)

m Jj=1

Let (), be the standard basis for ¢,, and define T": span{e, },_, — H by Te, = &,/ &4
for each n € N, extended linearly. Fix 0 < ¢ < 1 and let b € Q be such that 1/[|§]|g < b <

(1 +¢)/ &g Foreacha@ = (o), < Q, let tz € Q be such that |tz — |a|,| < ¢|@], and

| %I, a; - (b,0) — tz - ¥(b,0)| < L + . By (3.5) and Lemma 3.5.2,

< ) < pud <(1—€)

N
< %k o w(b, O)
=1

H§1||s

Sty (0,0)+L+e
1 (b]&]gta+e)+ L+e

<wi (L+e)?|al, +¢) + L +e,

forall@ = ()Y, < Q. Thus, as Id: (X, | - |) — (X,d) is a coarse equivalence, there exists

< K. Therefore 1T is bounded.

K > 0 such that |[@], < 1 implies HZZ | QG H£1Hs

Clearly, T is a bijection, and so has a linear inverse 7. By (3.5) and Lemma 3.5.2,

pa((L=e)aly) =L —e < pua (1 - )btz [&ills) — L —¢

te-(b,0) —L—¢

+5>

2% H&Hs

=

\.*Oéz Q/}

< Wid <b Z O‘zgz

w1d<1+€ )
S

foralla = (o), € Q. Thus,as Id: (X, |-||) — (X, d) is a coarse equivalence, there exists some
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R > 0 such that Hsz\il Q; Héil\s

; < 1 implies |@|, < R. Therefore 7' is bounded. This means

T is an isomorphism, and can be extended to an isomorphism between ¢, and Span{¢, },_;. U

Theorem 3.7.4. If a Banach space X is coarsely embeddable into a superstable Banach space,

then X has a basic sequence that generates a spreading model isomorphic to {, for some p €

[1,0).

Proof. By Corollary 3.2.2, if X is coarsely embeddable into a superstable Banach space Y, then
there exists a translation-invariant stable pseudometric d on X that is coarsely equivalent to the
metric induced by the norm of X. Thus, a space of types 7 can be defined as in Section 3.3. Let
1 € C be chosen as in the introduction to Section 3.5. By Theorem 3.7.2, v is either a cy-type or
an {,-type for some p € [1,00). Then, by Lemma 3.7.3, X has a spreading model isomorphic to
either ¢, or to ¢, for some p € [1, ).

Suppose X has a spreading model isomorphic to cy. In particular, ¢ is finitely representable in
X. Thus, ¢y is (isometrically) isomorphic to a subspace of an ultrapower of X. As ultrapowers of
X are coarsely embeddable into ultrapowers of Y/, this implies that ¢ is coarsely embeddable into
an ultrapower of Y, which is a stable space. But this is impossible (see Theorem 2.1 and Theorem
3.6 of [8]). Therefore X contains a spreading model isomorphic to ¢, for some p € [1, ).

Let (z,):°_, be a bounded sequence in X without Cauchy subsequences with a spreading model
isomorphic to £, for some p € [1, o0). By Rosenthal’s ¢; theorem, either (x,,);°_; has a subsequence
which is equivalent to the standard basis of /1, or it has a weakly Cauchy subsequence. In the first
case, (z,,):°_, is a basic sequence. So suppose (z,,)%_; is weakly Cauchy. Then (2,1 —x9,); is
weakly null and has a spreading model isomorphic to ¢,,. Thus, after possibly taking a subsequence,

we can assume that (22,1 — T2,)_; is basic. O

Remark 3.7.5. By the last inequality of the ¢, case in Theorem 3.7.2, and by following the proof

of Lemma 3.7.3, an upper bound of

2
(inf sup pig! ([0, wia(1) + 57 + <))
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can be found for the Banach-Mazur distance between ¢,, and the spreading model constructed for

X.

Corollary 3.7.6. There are separable reflexive Banach spaces that are not coarsely embeddable

into any superstable Banach space.

Proof. The original Tsirelson space (see [14]) does not have a spreading model isomorphic to ¢,
for any p € [1,90), and so provides an example. Another example is the space constructed by E.

Odell and Th. Schlumprecht (see Theorem 1.4 of [12]). ]
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4. A CODING OF BUNDLE GRAPHS AND THEIR EMBEDDINGS INTO BANACH
SPACES*

4.1 Introduction

Recall that given two metric spaces (X, dy) and (Y, dy), X is said to be bi-Lipschitzly embed-

dable into Y if there is a function f: X — Y and constants C, C5 > 0 such that

Cidx (z1,22) < dy(f(z1), f(22)) < Codx (21, 2) 4.1)

for all x1, x5 € X, and in this case f is called a bi-Lipschitz embedding. The distortion dist(f) of
a bi-Lipschitz embedding f is the infimum of C/C over all constants C, Cy > 0 satisfying (4.1).
We let ¢y (X) be the infimum of dist( f) over all bi-Lipschitz embeddings f: X — Y. A family of
metric spaces { X}z is said to be equi-bi-Lipschitzly embeddable into Y if sup,.; cy (X;) < 0.

In [5], J. Bourgain proved that superreflexivity of Banach spaces can be characterized by the
non-equi-bi-Lipschitz embeddability of the family of binary trees with finite height. Since then,
the non-equi-bi-Lipschitz embeddability of several other families of graphs have also been shown
to characterize superreflexivity ([3], [11], [17]). In [4], F. Baudier et al. proved that the non-
equi-bi-Lipschitz embeddability of the family of Ny-branching diamond graphs characterizes the
asymptotic uniform convexifiability of refexive Banach spaces with an unconditional asymptotic
structure. They also show that this same family of graphs is equi-bi-Lipschitzly embeddable into
L.

The families of graphs used in [11], [17], and [4] are all contained in a larger class of graphs,
that we call the “bundle graphs”. The class of (finitely branching) bundle graphs may be thought
of as the class of all bundles (see the seminal paper of A. Gupta, I. Newman, Y. Rabinovich, and

A. Sinclair [10]) that have regularity imposed on their branching. The goal of this paper is to gen-

*Most of this section is reprinted with permission from A. Swift, A coding of bundle graphs and their embeddings
into Banach spaces, Mathematika (to appear), arXiv:1710.00877 (2017), 27 pages. Copyright 2018 by University
College London.
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eralize the results mentioned above to this larger class while providing unified proofs. We order
the sections roughly in terms of ease of proof. In Section 4.2, we define what a bundle graph
is and provide a natural labeling of the vertices of such graphs. We then derive a formula for
the graph metric in terms of this labeling. In Sections 4.3 and 4.4, we generalize two results in
[4]. In Section 4.3 we show that every countably-branching bundle graph is bi-Lipschitzly em-
beddable into any Banach space with a good /.,-tree with distortion bounded above by a constant
depending only on the good /..-tree, which implies a more general characterization of asymptotic
uniform convexifiability for the class of reflexive Banach spaces with an unconditional asymptotic
structure. In Section 4.4 we show that every countably-branching bundle graph is bi-Lipschitzly
embeddable into L; with distortion bounded above by 2. In Section 4.5 we show that every finitely
branching bundle graph is bi-Lipschitzly embeddable into any Banach space containing an equal-
signs-additive basic sequence with distortion bounded above by a constant not depending on the
branching number (although it will still depend on the bundle graph). However, in Section 4.6, we
show that this constant does not increase with @-products, and thus generalize the characterizations
of superreflexivity found in [11] and [17].

The problem of characterizing superreflexivity in purely metric terms belongs to a more gen-
eral investigation of metric characterizations of local properties of Banach spaces, called the Ribe

program. Surveys of other results in this program can be found in [2] and [15].
4.2 Notation and definitions

We will denote N U {0} by Ny and given n € Ny, we will denote the set {i € Ny | i < n} by
[n]. Given a finite sequence A = (a;)"_; < Ny, the length of A, denoted by |A|, is defined to be n;
and the maximum of A, denoted by max A, is defined to be max{a;}?_;. If m € Ny, then we define
Al by Aty = (a),if m <nand Al,, = Aif m > n. We write B < Aif B = A},, for some
m € Ny, and write B < Aif B < A and B # A. Given another finite sequence B, we denote by
A A B the longest sequence C' such that C' < A and C' < B, and by A~ B the concatenation of
A and B. Note that if A; < Ay and A; £ B, then Ay, A B = A; A B. Note also thatif A; < B

and A; < B, then either A; < Ay or Ay < A;. We denote the sequence of length 0 (the empty
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sequence) by J. Given a set X and n € Ny, we denote by X" the set of sequences in X with
length equal to n and by X <™ the set of all sequences in X with length at most n.

Given a graph GG, we always use the (unweighted) shortest-path metric when discussing the
distance between two vertices in G. We denote the vertex set of G by V(G) and the edge set of G

by E(G).

Definition 4.2.1. Given a cardinality x # 0, a graph with two distinguished vertices, one des-
ignated the “top”, and the other the “bottom”, is called a k-branching bundle graph if it can be

formed by any (finite) sequence of the following operations:

o (Initialization) Create a path of length 1, with one endpoint designated the top and the other

the bottom.

e (Series Composition) Given two x-branching bundle graphs GG; and G5, create a new graph
G71 G, by identifying the top of GG with the bottom of 5. The bottom of G G2 will be the
bottom of (G; and the top of G| G2 will be the top of Gs.

e (Parallel Composition) Given a s-branching bundle graph G, create a new graph G!I" by
taking x copies of GG and then identifying all the bottoms with each other and all the tops
with each other. The bottom of GI" will be the bottom of G and the top of G!I" will be the

top of G.

The height of a bundle graph is the distance between its bottom and top. The height of a vertex v

in a bundle graph G is the distance between v and the bottom of G.

Remark 4.2.2. For finite ~, the class of bundle graphs described here is a proper subclass of the
class of arbitrary “bundles” found in [10]. Indeed, (finitely branching) bundle graphs are bundles
given an unweighted graph metric that have some regularity in the branching that occurs as one

travels from bottom to top.

For what follows, two bundle graphs are considered the same if there is a graph isomorphism

between them mapping top to top and bottom to bottom. Suppose G is a xk-branching bundle graph
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for some cardinality x # 0. If k = 1, then G is a path, and in this case GI" = G. If  is finite
and k > 1, then G # GI" whenever |[V(G)| > 3 by a simple cardinality argument. However, if
% is infinite, then (GI")I" = GI" (since x - k = x). But note that for x > 1, G’ could not have
been formed in the last step of the sequence of operations by both series composition and parallel
composition if |V (G)| = 3. This is because if G is formed in the last step via series composition,
then GG will have a vertex v that is neither the top nor bottom of G such that no other vertex in G
has the same height as v (this v is the glued vertex from the definition). That is, G has a vertex
cut consisting of one vertex v. And if GG is formed in the last step via parallel composition, then
no such vertex will exist. Thus, for infinite x, G # GII" implies G’ was formed in the last step via
series composition.

Now, suppose H is another x-branching bundle graph. Then if G’ is a k-branching bundle
graph with the same height as GG, and H' is a k-branching bundle graph, then G™H = G'~H' if
and only if G = G’ and H = H’, by an easy connected component argument. Finally, note that if
u,v € V(GI") are adjacent, then they must be copies of vertices that are adjacent in G and must
furthermore be contained in the same copy of G. Thus, if G # GI" and H # HI", then GI" = HI"

if and only if G = H. These observations show that the following definition is well defined.

Definition 4.2.3. Given a vertex v in a k-branching bundle graph G, the depth or level of v (with

respect to k) is defined recursively as follows:
e If v is the top or bottom of ¢, then v has depth 0.

e If v is neither the top nor bottom of GG, and GG can be constructed in the last step via series
composition between two x-branching bundle graphs GG; and G2, then the depth of v in G is

the same as its depth in G if v € V(G1) orits depth in G if v € V(G5).

e If v is neither the top nor bottom of (&, and G can be constructed in the last step via parallel
composition of a x-branching bundle graph G’ # G, then the depth of v in GG is one more

than the depth of v" in G’ if v is a copy of v' € V(G’).
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It isn’t difficult to see that given two x-branching bundle graphs, G and G, a new x-branching
bundle graph can be created by replacing every edge of G with a copy of G’ (where the bottom
of G’ is placed on the lower endpoint of the edge and the top on the higher). We give a proof of
this fact in Section 4.6. Thus the diamond and Laakso graphs used in [11], [17], and [4] are all
examples of bundle graphs.

Suppose G is a k-branching bundle graph with height M +1 for some cardinality x and M € Nj.
From the definitions, every vertex of GG at a given height will have the same depth. And if we
know the depth associated with each height, we can use Definition 4.2.3 to go backwards to find
a sequence of operations from Definition 4.2.1 that can be used to create G. That is, we don’t

actually need to know the sequence of operations used to create G. All information about G is

M+1

r=0 »

contained in the branching number « and the sequence of depths W = (w,) where w, is the
depth (with respect to x) associated to height r (we include wy = w41 = 0 for convenience).

Suppose r € [M + 1] is such that w, > 0, and let v be a vertex of G with height r. Since
w, > 0, v is a copy of some vertex v’ in some x-branching bundle graph G’ (that was used in
parallel composition in one of the steps to create 7). To distinguish v from other copies of v/, we
label the copies of G’ with elements of x and record the copy in which v was found as a,, . Now
in the graph G’, v has depth w, — 1. If w,, — 1 > 0, then we go through this process again for v’
to obtain a,,, 1. We repeat this process until we obtain a sequence A = (a;);"; that can be used to
distinguish v from any other vertex at height . Doing this for every vertex in GG yields a labeling
of the vertex set. Actually, we could perform this process on any finite sequence in Ny beginning
and ending in O to obtain a x-branching bundle graph (although in this case, the sequence we start
with may not correspond to the sequence of depths for the bundle graph).

With this labeling in mind, we are now in the position to give a non-recursive definition of a
bundle graph that is equivalent to Definition 4.2.1. Note that two adjacent vertices « and v of a
bundle graph must differ in height by exactly 1. And recall that if © and v are adjacent and were

created during parallel composition of a bundle graph G, then u and v must be in the same copy

of G'.
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Definition 4.2.4. Given a finite sequence W = (w,)M{' < Ny such that wy = w4, = 0 and a

cardinality x, the k-branching bundle graph associated with W is Ty, = (V, E), defined by

V={(r,A)|re[M+1]and A€ "},

E={{(r,A),(s;B)Y <V ||r—s|=1and A< B}.

The vertices (0, &) and (M + 1, &) in V' are called the bottom and top, respectively, of Tyy,..
We illustrate in Figure 4.1 below a typical bundle graph with its vertex labeling.

Remark 4.2.5. If we don’t specify the branching cardinality  (or if K = 1 or « is infinite), then
many bundle graphs have multiple representations from Definition 4.2.4. For instance, 1(92,0),2
and T 1,0,),4 are graph isomorphic (both represent a diamond graph of height 2 with 4 midpoints
between top and bottom). In the first case we think of the graph as being a 2-branching graph and
in the second a 4-branching graph. If we want our graphs to have both a unique branching number
and sequence of depths, we could modify Definition 4.2.1 to only allow parallel composition on
graphs that could not have been created by parallel composition (that is, we don’t allow parallel
composition to be performed twice in a row to obtain a bundle graph). Equivalently, we would
only allow parallel composition on graphs that contain a vertex v that is neither top nor bottom
such that no other vertex has the same height as v. Then we could put requirements on W in
addition to wy = wyr+1 = 0 to obtain a unique representation of all bundle graphs in Definition
4.2.4 (in this case T{,1,0,),4 would be the canonical representation for our example). However, this

is an unnecessary complication for the purpose of this paper.

Remark 4.2.6. The only graphs this paper deals with are bundle graphs. However, in some
cases, results concerning other graphs can be recovered. Note for instance that every tree is (iso-
metrically) contained in some bundle graph as a subgraph. Indeed, a x-branching tree with all
leaves having the same finite height can be “doubled” to obtain a bundle graph containing the
tree as its lower half. For instance, the binary tree with all leaves having height 3 is contained in

T(0,1,2.32,1,0),2-
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(11, &)

(10, (0)) (10, (1))

(9, (0,0)) (9, (L, 1))
(8, (0)) (8,(1))
(9,(0,1)) (9,(1,0))
(7,(0)) (7,(1))
(5,(0,1)) (5,(1,0))
(6, (0)) (6, (1))
(5, (0,0)) (5, (1, 1))
(4, D)
(3,9)
(2,(0)) (2,(1))
(1, D)
(0, 7)
Figure 4.1: Ty, with W = (0,0,1,0,0,2,1,1,1,2,1,0) and x = 2.
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Now that we have a way to represent a bundle graph with Definition 4.2.4, the next order of

business is deriving a formula for the shortest-path metric.

Lemma 4.2.7. Let Ty, = (V, E) be a bundle graph and fix uw = (r,A) and v = (s,B) in V. If

(ti, C;)i is a path between u and v, then there is i € [n] such that C; < A A B.

Proof. Suppose the statement is false and let (¢;, C;)!_, be a path starting at « and ending at v such
that C; ¥ A A B forall i € [n]. Then in particular, A = Cy ¥ B. Thatis, Cy is such that Cy ¥ B
and CoA B = AAB. Takeany i € [n—1] suchthat C; ¥ Band C; A B = AA B. Either C; 1 < C;
or C; < Cj41, so suppose first that C; < C; 1. ThenC;y; ¥ Band C;;y AB=C; AB=AAB
because C; £ B.

Suppose now that C; 1 < C;. In this case, either C;.; < B or C;;; £ B, so suppose first that
Ciz1 < B.Then AAB < C;y1 = Ciy 1 A Bbecause AA B < B and by hypothesis C; 1 ¥ AAB.
But C;;1 A B<C; A B=A A Bsince C;;1 < C;. This is a contradiction, and so it must be the
case that C;; X B. Therefore C; .1 A B=C; A B=A A Bsince C; 1 < C;.

By induction, it has been shown that for every i € [n], C; £ B (and C; A B = A A B).
In particular, B = C,, ¥ B, which is impossible. Therefore no such path (¢;, C;)"_, exists as

supposed, and so there is i € [n] such that C; < A A B. O

By Lemma 4.2.7, a path between two vertices u = (r, A) and v = (s, B) in a bundle graph
must contain a vertex (¢, C') such that both C' < A and C' < B. There are two cases to consider
when trying to create a shortest path between u and v: Either such a vertex (¢, C') can be found so
that ¢ is between r and s, or not. In either case we have w;, = |C| < |A A B].

We introduce some notation to differentiate these two possibilities. Given two vertices u =
(r,A) and v = (s, B) in a bundle graph, we will write u {} v to mean that there is t € [M + 1]
between 7 and s (inclusive) such that w, < |A A B|. We will write u }f v to mean the opposite.

Note, in particular, thatif A < Bor B < A, thenu {} v, and if u § v, then |[AA B| < min{|A|, |B|}.

Definition 4.2.8. Given two vertices u = (r, A) and v = (s, B) in a bundle graph, u is said to be

an ancestor of v and v is said to be a descendant of v if u § vandr < s.
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We show in the following proposition that the distance between a vertex in a bundle graph and
one of its ancestors or descendants is simply the difference in height between the two. By Lemma
4.2.7, finding the distance between two arbitrary vertices in a bundle graph thus amounts to finding
a highest common ancestor or lowest common descendant of the two vertices.

For example, using Figure 4.1, one may see that (5, (1,1)) — (6, (1)) — (7, (1)) — (8,(1)) —
(9, (1,0)) is a shortest path between (5, (1,1)) and (9,(1,0)). But a path between (5, (1,1)) and
(9, (0, 1)) must first go through either (4, &) or (11, ).

Given two vertices u = (r, A) and v = (s, B) in a bundle graph Ty, we define n(u,v) and

m(u, v) by

n(u,v) = max{t € [M + 1] | wy < |A A B| and t < min{r, s}},

m(u,v) = min{t € [M + 1] | wy < |A A B| and t > max{r, s}}.

Following the definitions, one sees that if « ﬂ v, then (n(u, v),A A B is the highest

wn(u,v))
common ancestor of © and v and (m(u, v),AA B [wm(u v>) is the lowest common descendant of u

and v.
Proposition 4.2.9. Let Ty, = (V,E) be a bundle graph with shortest-path metric d, and fix

u=(r,A)andv = (s,B) in V. Then

Ir — s ulv

d(u,v) =
min{r + s — 2n(u,v), 2m(u,v) — (r + s)} uffv

Proof. By the definition of the edge set F, d(u,v) > |r—s|. Suppose first that A < B. Recursively

construct the sequence (C;)!" ¢! by letting
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and given C;_; for i € [|r — s|]\{0}, choosing C; € k"mintrs}+i g0 that C;_1 A C; € {C;_1,C;} and
C; AB € {C;, B}. Then ((min{r, s}+i, C;))/"" is a path between u and v, and so d(u, v) < |r—s|.
That is, d(u,v) = |r — s|. The case B < A is similar.

Now, if u 1} v, then there is ¢ between r and s such that |A A B| = w,. Thus, by what was

shown above,

A(u,0) < d (1. A A Blo)) + (LA A Bla) )
=|r—t|+|t— s

= |r—s|

and so d(u,v) = |r — s|.

Ifu /ﬁ/ v, then by Lemma 4.2.7 a shortest path between v and v must contain a vertex that is
either a common ancestor or a common descendant of v and v. The result follows from what was
shown above by taking the minimum of lengths of paths between v and v that contain either the

highest common ancestor or lowest common descendant. U

Continuing our example from Figure 4.1, one may check that w; = 1 < [(1)] = |(1,1) A
(1,0)]. Thus (5,(1,1)) § (9,(1,0)) and so d((5,(1,1),(9,(1,0))) = 9 — 5 = 4 by Proposition
4.2.9. Similarly, there is no ¢ € [11] between 5 and 9 such that w, < 0 = |F] = [(1,1) A
(0,1)], meaning (5, (1,1)) § (9, (1,0)). One may determine that n((5, (1,1)), (9, (0,1))) = 4 and
m((5,(1,1)),(9,(0,1))) = 11. By Proposition 4.2.9, d((5, (1,1)),(9,(0,1))) = min{5 + 9 —2-
4,211 — (9 +5)} = 6.

Throughout the next few sections, we describe various bi-Lipschitz embeddings of bundle
graphs into Banach spaces. We define now the notation that will regularly be used, and fix for
the rest of the paper W = (w,)M{' < Ny such that wg = wys4; = 0. Forr € [M + 1] and i € N,

define x(r, 1), y(r, 1), and z(r, i) by
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.
0 1 =0

x(r, i) = <% 4.2)
max{t € [M + 1] |w; <iandt <r} i>0,

.

M+1 1=10

y(r,i) = < 4.3)
min{t e [M + 1] |w; <iandt >r} >0,

.

r 1=0

z(r,i) = < (4.4)
min{r — x(r,4),y(r,7) —r} @ >0.

\

Given r € [M + 1] and i € N, x(r,7) records the last height no greater than r in which the
vertices of a bundle graph associated with 1/ have depth less than i. Similarly, y(r, ) records the
first height no lesser than r in which the vertices of a bundle graph associated with W have depth
less than i. And z(r,¢) simply records the distance one would have to travel from height r to get to
a vertex with depth less than 7 in a bundle graph associated with 1. Note that z(r, ) = y(r,i) = r
and z(r,i) = 0 for i > w,.

Consider v = (r, A) and v = (s, B) in V(T,.) for some cardinality x. If u §f v (recall this
means there is no ¢t € [M + 1] between r and s such that w; < |A A BJ), then a comparison of
the definitions of n(u, v) and m(u, v) with notations (4.2) and (4.3), respectively, yields n(u,v) =
xz(r,|AA B|+1) =xz(s,|]AA B|+1) and m(u,v) = y(r,|AA B|+1) = y(s,|A A B| +1). This

fact will be used repeatedly in the proofs to follow.
4.3 Embedding into Banach spaces with good /. -trees

In this section, we show that for any countable cardinality «, Tyy,. is bi-Lipschitzly embeddable
into any Banach space with a good /..-tree of height max W with distortion bounded above by a

constant depending only on the good /. -tree.

Definition 4.3.1. Given n € N and C,D > 0, a Banach space (X, | - |x) is said to contain

a (C, D)-good l-tree of height n if given some enumeration (0;), of X5 such that i; < is
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whenever o;, < 0;,, there is a sequence (y,,);~, < Sx such that, given any (o), < R,
) 1/C()iolo < | Xp=za ipiyslx < Cfl(@i)io]o for all A e R,

(11) H Z?ilo QYo

x < DX iy, | for all my, my € Ny such that my < me.

In this case (y,, )2, is called a (C, D)-good {y-tree of height n.

The given definition is a finite height analogue of Definition 3.1 in [4]. The first condition
states that every “branch” (yg)p<4 of the good /,-tree is C*-equivalent to the unit vector basis of
¢!, The second condition states that the sequence making up the good ¢.-tree is basic with basis
constant less than or equal to D. Note that the condition on the enumeration implies oy = (.

Theorem 4.3.2 below generalizes Theorem 3.1 in [4]. The proof we show here has the same
main idea as the proof in [4], but is much shorter due to the fact that we fix at the beginning a single
bundle graph, rather than prove the result for an entire family of bundle graphs. This gets rid of a

lengthy induction argument.

Theorem 4.3.2. Fix a countable cardinality x and suppose X is a Banach space containing a
(C, D)-good ly-tree (y,,) of height max W for some C, D > 0. Then there is a bi-Lipschitz
embedding 1 Ty, — X such that for all u,v € V(Ty,,),

1

5o 7 Dyt ) < ) = 9(v)lx < Cd(w,v),

where d is the shortest-path metric for Ty, and furthermore, |{(u) —¢(v)|x = d(u,v)/D when

u v

Proof. Define the map ¢ : Tyy,, — X by

$((r,A) = 3 =(r,|Bl)ys

B<A

(see notation (4.4) in the previous section) for every (r, A) € V(Tw).
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Take any v = (r, A) and v = (s, B) in V(Tw,,) and suppose first that v and v are adjacent with

A < B (implying w, < wyg). Then,

[ (u) =9 (@)|x = | X, 2(r |Elye — D) (s, [Elys
= | X GO IED) = =(s. | ED)ys

< Coggﬁsﬂz(r,z)

—2(s,2)l}

<C,

where the second line follows from the assumption that A < B and the fact that z(r,i) = 0 for
w, < i < ws, the third line from property (i) of the /.,-tree, and the last line from the assumption
that |r —s| = 1. The triangle inequality applied to shortest paths then shows that [[1)(u) —1(v)|x <
Cd(u,v) for all u,v € V(Tw,,).

For the left-hand inequality, take any v = (r, A) and v = (s, B) in V (T, ), and suppose first

that u {} v. Then property (ii) of the ¢.,-tree yields

1 1 1
5|Z(T7 O) - 2(870)‘ = E‘T - S‘ = —d(U,U>.

[¢(u) =4 (v)]x = i)

Suppose now that u }f v. As mentioned in the last paragraph of the previous section, note that
n(u,v) = x(r,|[AAB|+1) = (s, |AA B|+1) and m(u,v) = y(r,|AAB|+1) = y(s,|AAB|+1).
Let n; € Ny be such that 0,,, < A and |0,,,| = |A A B| + 1. Similarly, let n, € Ny be such that

On, < Band|o,,| =|A A B|+ 1. Fori € N, let

-

2(r, |oil) = z(s, [ai])

z(r, |og])
o; = <

—2(s, |ail)

0

\
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Then, by property (ii) of the /,,-tree and Proposition 4.2.9,

o0
() — () = | > i
i=0 x
1 ni n9
= Emax Zaiyai , Zaiym ,||a0y®\|x
1=0 x |7=0 X
1
> D(l + D) max{|an1|, ’04”2|, |a0|}
1
"~ D1+ D) max{z(r, |A A B +1),2(s, |A A Bl + 1), [2(r, 0) — 2(s,0)[}
1
= B s oy mextmingr = nu,v),mu,v) =},
min{s - ’I"L(u, U>7m<u7 U) — 5}, ’T’ — S‘}
1
> ——d(u,v). 0
3001+ o))

Remark 4.3.3. In the proof above, 1 + D appears by using the triangle inequality and the fact that
D is a monotonicity constant for the sequence (y,,)2,. One may replace 1 + D with D if D is

actually a bimonotonicity constant.

It was also shown in [4] (see Theorem 3.2 of that paper) that any reflexive Banach space with an
unconditional asymptotic structure that is not asymptotically uniformly convexifiable will contain
(1 +¢&,1+ €)-good ¢ -trees of arbitrary height, for any ¢ > 0. Thus, Theorem 4.3.2 of this paper

yields the following corollary.

Corollary 4.3.4. For any € > 0, every countably-branching bundle graph is bi-Lipschitzly embed-
dable with distortion bounded above by 6+ ¢ into any reflexive Banach space with an unconditional

asymptotic structure that is not asymptotically uniformly convexifiable.

Finally, in [4] it was shown (see Theorem 4.1 of that paper) that if a Banach space X is
asymptotically midpoint uniformly convexifiable, then no family of bundle graphs with nontriv-
ial (meaning there is a vertex with nonzero depth) Ny-branching base graph is equi-bi-Lipschitzly
embeddable into X. This fact combined with Corollary 4.3.4 actually shows that the non-equi-

bi-Lipschitz embeddability of any family of bundle graphs generated by a nontrivial Ry-branching
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bundle graph characterizes asymptotic uniform convexifiability within the class of reflexive Ba-
nach spaces with an asymptotic unconditional structure. We recall the definition of a family of

bundle graphs generated from a base graph in Section 4.6.
4.4 Embedding into [,

In this section we show that for any countable cardinality ~, Tyy, is bi-Lipschitzly embeddable
into L, ([0, M + 1]) (equipped with Lebesgue measure A\) with distortion bounded above by 2.
Note however that for finite «, Ty, belongs to the family of series-parallel graphs and so is already
known to be bi-Lipschitzly embeddable into ¢; with distortion bounded above by 2 (see [8]). That
this distortion bound is optimal follows from work done in [14]. For each v € V(Ty,.), we map
v to the characteristic function of some set. To get the distortion we desire, we need to make sure
that the symmetric differences of the sets involved are large enough in Lebesgue measure. The
construction is somewhat technical, but is essentially done through intersections of supports of
independent Bernoulli random variables.

Let D be any common multiple of the numbers in [A/ + 1]\{0}. Let F be the family of all
finite unions of open subintervals of [0, M + 1] such that for each P € F, there is N € N such
that each maximal (with respect to set containment) subinterval of P is equal to (DqT[il, %)
for some ¢ € [(M + 1)DY — 1] and r € [D]; and given P € F, let N(P) be the minimum of
such IV associated with P. Note here that if P, P’ € F are such that N(P) < N(P’), then every
subinterval of P’ is either contained in a subinterval of P or has empty intersection with P.

Let (0;)2, be an enumeration of R5™>*" and let ()%, be an enumeration of F such that
Py = @ and N(P;) < i forall i € Ny. For each 4,5 € Ny, let 6(¢,7) = 23/ — N(P;). Define
fiRsmeW o F x [D] — F by

n DO 1
mD(ﬁg — CYK) (TI’LD + k‘) (ﬁg — O./g)
floi, Py, k) = EL_J) UO <Oze + Do+t M + Doig)+1

whenever P; = | |;_,(a, B¢) (where L means disjoint union), for all ¢, j € Ny and k € [D].

We list the properties we need from f in the following lemma, but one may think of f(A, P, k)
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as the intersection of P with the support of a Bernoulli random variable that has probability of
success equal to k/D. And if B # A, then f(B, P, k) is also such an intersection, but with a

Bernoulli random variable that is independent from that used for f(A, P, k).
Lemma 4.4.1. The following hold for all i, j € Ny and k € [ D]:
(i) f(oi, Py, k) < f(o;, Pj, k') < Pifk' € [D] is such that k < k'.
(i) 237 — 1 < N(f(0s, P;, k) < 23 + 2if j # 0 and k +# 0.
(iii) Af(os, Py k) = SA(F;).
(iv) A(P  f(0s, Py, k) = EX(P A By) if P e F is such that N(P) < N(P;).

Proof. (i): This is obvious from the definition of f.
(ii): Every maximal subinterval of P; has length less than or equal to 1/ D" (75), so by the definition

of f, every maximal subinterval of f(o;, P;, k) has length less than or equal to

k 1 k 1

DOGH+L DN~ Dzl S i

~

This means N(f(c;, Pj, k)) > 2'3 — 1. Similarly, every (nontrivial) maximal subinterval of P;
has length greater than or equal to 1/D™ ")+ and so every (nontrivial) maximal subinterval of

f(0i, P;, k) has length greater than or equal to

k 1 k 1
DOGH+1  DN@PHTL . p2izitz T priziee
Therefore N (f(oy, Pj, k)) < 237 + 2.
(iii): Supposing P; = | |,_,(cw, f¢), then
n D9G3 1
k(Be—au) K k
A f(oi, Py, k) = ;) D = 5;)(@ — ) = 5)\(131)-
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(iv): Since N(P) < N(P;), every subinterval of P; is either contained in a subinterval of P or

has empty intersection with P. Thus, if P; = | |,_,(cw, f¢) and I = {¢ € [n] | (ay, B¢) < P}, then

DoG.I) 1

AP flon Prk) =) > DG(”H 2—255—045 E(PmP) O

el m=0 lel

We are now ready to define the sets needed for our bi-Lipschitz embedding. This is done by
recursively defining the sets based on the depths of the vertices in our bundle graph. At any given
depth we construct the sets out of subsets of the sets that were defined for the previous depth. If a
vertex has height r and depth 0, we assign the set [0, r] to this vertex. Suppose there are vertices
at heights » < s with depth 0 and v is a vertex with depth 1 at height halfway between r and s. We
assign a set of measure 7+ (s—r) /2 to v by taking the union of [0, r| with half of the set [0, s]\[0, r].
So for instance, we might assign the set [0, 7] U [r, (s — 1) /2] to v. However, there will be another
vertex with depth 1 at the same height as v (if x > 1). For this vertex, we need to assign a different
set of measure r + (s — r)/2, so we take half of the set [0, s]\[0, ] in a way that is independent of
the way we did it with v. For instance, we might use [0, 7| U [r, (s—7)/4] U [(s—71)/2,3(s—r)/4].
A similar process for all depths is used until every vertex has a subset of [0, M + 1] assigned to it
with Lebesgue measure equal to its height. We use the function f defined above to take care of the
independent selection of sets. At this point we fix for the rest of the section a countable cardinality
k. The formal construction follows (recall notations (4.2) and (4.3) from Section 4.2).

Givenv = (r, A) € V(Tw,,), define the sets S, (v, i) and S, (v, ) in F for i € [w,] recursively
by

Sx(v, 0) = [07 l‘(T’, 1)]\[1:(7“’ 1)]a
Sy(v,0) = [0,y(r, H]\[y(r, 1)],
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and

Sa:(vai) =f AFi,Sy(U,Z' — 1)\C108(Sx(v,i — 1))’ IB(T,i + 1) — .CE(T, Z) D) 7

y(r,i) — z(r,1)

) = ; v,1 — 1)\clos v,1 — ylrit 1) —alr, i)
S,(v,1) = f (AFz,Sy( .1 — 1)\clos(S;(v,i — 1)), Y () — 2(r ) D) ;

for i  [w,]\{0}. Finally, let S(v) = clos (" Sa (v, )).

Lemma 4.4.2. Fixv = (r, A) € V(Tiw..). The following hold for all i € [w,].
(i) M(Su(v,1)) = a(r i+ 1) — a(r, ).

(ii) A(S,(v,1)) = y(r,i + 1) — x(r, 7).

(iii) A(S,(v,i)\Sa(v,i)) = y(ryi + 1) — x(r,i + 1).

(iv) Sp(v,1) N Sy(v,i') = & if i’ € [w,] is such that i’ # i.
(v) MUi_oSa(v, k) = 2(r,i + 1),

Proof. (1)-(ii1): These statements certainly hold true for 7 = 0. And by (simultaneous) induction
and Lemma 4.4.1 (i) and (iii), they hold true for all i € [w,].

(iv): By Lemma 4.4.1 (i), S, (v, w, — k) < Sy (v, w, —k —1)\S,(v, w, —k —1), and so S, (v, w, —
k) nSy(v,w, —k—1) = & forall k € [w, — 1]. In the same way, S, (v, w, —k —1) < S, (v, w, —
k—2)\S; (v, w, —k—2), and so the first set inclusion implies S, (v, w, —k) NS, (v, w, —k—2) = &
for all k € [w, — 2]. Inductively, S, (v, w, — k1) N Sy(v,w, — ko) = & forall ky < ks € [w,].

(v): This follows from parts (i) and (iv). L]

Lemma 4.4.3. Fixu = (r,A) and v = (s, B) in V(Ty,). Then

min{r, s} ulwv

A(S(u) N S(v)) =
’n,(u) U) + (r—n(u,v))(s—n(u,v)) Y /ﬁ( y

m(u,v)—n(u,v)
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Proof. Let K = |A A B|. Suppose first that u § vandr < s. Then y(r, K + 1) < z(s, K +1). Let
n € [ K] be such that z(s, i) < y(r,4) (which implies x(s,7) = x(r,4) and y(s,4) = y(r, 1)) for all
i € [n] while y(r,n+ 1) < x(s,n+ 1). An easy induction argument shows that S, (u, i) = S, (v, 1)
and Sy, (u,i) = Sy(v,7) for all i € [n — 1], and Sy(u,n) < S,(v,n). Another easy induction
argument and Lemma 4.4.1 (i) shows S, (u, i) < [ Jj_, Sz(v, j) for all i € [w,] by , and so Lemma
4.4.2 (v) yields

A(S(u) nS(v)) = A (U Sz(u, ) N USQC(U,j)) =) (US (N ) (ryw, +1) =

Suppose now that u § v. Then x(r, i) = x(s,4) and y(r,i) = y(s,i) forall i € [K + 1], and
s0 Sy(u,i) = Sy(v,i) and Sy (u,i) = Sy(v,4) for all i € [K], by an easy induction argument.
Note that z(r, K + 1) = z(s, K + 1) = n(u,v) and y(r, K + 1) = y(s, K + 1) = m(u,v). For
any i € [w,]\[K] and j € [ws|\[K], repeated applications of Lemma 4.4.1 (ii) and (iv) and then
Lemma 4.4.2 (iii) show

)\(Sx(u, Z) M Sx(vv ]))

_ x(r,i+ 1) — z(r, 1) x(s,j+ 1) —x(s,7)
oy, K+ 1) —2(r, K + 1) ‘ y(s, K +1) —z(s, K + 1) A8y (u, K)\Sa(u, K))

_ (x(ryi+ 1) —x(r,0))(z(s,j + 1) — x(s,7))
m(u,v) —n(u,v) '

This with Lemma 4.4.2 (iv) and (v) implies

MS() n S@)) = A (U S, (u,4) A U Sx(v,j)>
ol K+ 1) Z Z x(ryi+ 1) —z(ri))(x(s,7 + 1) — z(s, j))

m(u,v) —n(u,v)

(x(ryw, + 1) —z(r, K + 1)) (y(s,ws + 1) —y(s, K + 1))
m(u,v) — n(u,v)
(r —n(u,v))(s — n(u, v)) 0

m(u,v) — n(u,v)

=x(r, K +1)+

= n(u,v) +
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The next theorem generalizes Theorem 3.3 in [4] (and our earlier lemmas likewise generalized
Lemma 3.6 and its discussion in [4]). We once again follow the same line of thought in our proof
as in the proof in [4], but again our proof is shorter. This time we have still used a recursive process
to define the embedding (this has been absorbed in our lemmas), but it has been made simpler by
again fixing a single bundle graph at the beginning and performing the recursion over the depths

of its vertices.

Theorem 4.4.4. There is a bi-Lipschitz embedding ¢ : Ty, — Ly such that for all u,v € V(Tw,,),

1

5w, v) < [Y(u) =Y ()|r, < du,v),
where d is the shortest-path metric for Ty, and furthermore ||{)(u) — ¥ (v)| L, = d(u,v) when
u .

Proof. Define the map ¢: Tyy,. — L1 by ¥(v) = xs() for every v € V(Ti,.).
Take any u = (r, A) and v = (s, B) in V(T\y,) and suppose first that v { v. By Lemma 4.4.2

(v) and Lemma 4.4.3,
[ (uw) =1 (v)| L, = MS(w))+A(S())=2A(S(u)nS(v)) = r+s—2min{r, s} = |r—s| = d(u,v).

Lemma 4.2.7 and the triangle inequality applied to shortest paths then shows that [[¢)(u)—(v)]|z, <
d(u,v) for all u,v € V(Tw,).

Suppose now that u ﬂ v. By Lemma 4.4.2 (v) and Lemma 4.4.3,

[ (u) = ¢ (v)|L, = AS(w) + A(S(v)) = 2A(S5(u) N 5(v))

e () (s — ()
= s ) e wv)
=a+ﬁ—2%,

7

where o = r—n(u,v), f = s—n(u,v),and vy = m(u,v)—n(u,v). Suppose first that max{c, 5} <
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%7. Then by Proposition 4.2.9 and the above,

d(u,v).

N | —

[¢(u) = ()|, = a+  —minfe, f} = max{a, §} >

Suppose next that min{e, 3} < 37 < max{a, }. Then by Proposition 4.2.9 and the above,

1

[ (u) — Y(v)|r, = min{a, B} + max{a, 5} <1 - ZM) > 57 > %d(u, v).
Finally, suppose %7 < min{«, 5}. Then by Proposition 4.2.9 and the above,
o) = 0(0) |1, = 5 (207 + 257 — da)

1

= 5(72 — (20 =7)(28 —9))

> 5P = (a+B-9))

= 5@y~ (a+5)
1

= §d(u,v). O

4.5 Embedding into Banach spaces with ESA bases

In this section we show that for any finite cardinality ~, Tyy, 1s bi-Lipschitzly embeddable into
any Banach space with an ESA basis with distortion bounded above by a constant depending only

on W.
Definition 4.5.1. Let (X, || - | x) be a Banach space.

(i) A sequence (e,)*_, < X is said to be equal-signs-additive (ESA) if for all (a)*_, € ¢y and
q q 8 n=1

n=1 —

k € N such that aga, 1 = 0,

k—1 0 0
Z anen + (ag + ary1)ex + Z anen| = 2 nn
n=1 n=k+2 X n=1 X
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(ii) A sequence (e,)_; < X is said to be subadditive (SA) if for all (a)"_; € coo,

k—1 0 0
Z Ap€n + (ak + ak-‘rl)ek + Z Ap€n < Z An€n
n=1 n=k+2 X n=1 X
(iii) A sequence (e,)r_; < X is said to be invariant under spreading (IS) if for all (a);°_; € coo

and increasing sequences (k,)*_; < N,

0
2, nh,
n=1

0
3 e
n=1

The properties ESA, SA, and IS were first defined and studied by Brunel and Sucheston in
[6] and [7]. In [7], they show that a sequence is ESA if and only if it is SA, and that every ESA
sequence is also an IS basis for its linear span. We will use these facts without mention. More
information about ESA sequences can be found in [7] and [1].

To construct the embedding, we follow roughly the same procedure as used in the previous
section. However, with L; we were able to subdivide the interval [0, M + 1] as finely as needed to
accommodate the bundle graph. That is, we could use the existence of infinitely many independent
Bernoulli random variables. If instead of L, we try to embed into a general Banach space with a
basis, we still need independent Bernoulli random variables to choose the support of an embedded
vertex, but the random variables are now discrete. In other words, the more vertices in our graph
we have to embed, the further down the basis we have to go if we want to mimic the procedure
used for L;. This and the fact that we don’t have an explicitly defined norm anymore make the
argument more subtle.

We fix now for the rest of this section a finite cardinality  and let ;1 = !ngma"w] e N. We also
fix an independent collection {Y;}!_; of Bernoulli random variables defined on [2*]\{0} (equipped

with the uniform probability measure) with probability of success equal to 1/2. Concretely, for
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each i € [p]\{0}, we may define Y;: [2#]\{0} — {0,1} by

. 1 j=n (mod 2*~(=Y) for some n € [2+*]\{0}
Yi(j) =
0 otherwise
for all j € [2#]\{0}. For each j € N, let I; = [j(M + 1)]\[(j — 1)(M + 1)], and let F; be
the family of subsets of I; such that for each P € Fj, either P = &, or P # & and |P| =
max(P) — min(P) + 1 (which implies P has no “gaps”). That is, we break up the natural number
line into blocks of size M + 1 and let F; be the family of intervals contained in the the j-th block.
Let {0}/, be an enumeration of kK<™>W _ For A € x<™>W and i € [u], we let Yy = Y; if

A = 0;. Define for each j € [2#]\{0} the function f;: x<™>W x F; x [M]| — F; by

fi(oi, P k) = I 0 {Y; () (inf P + ), (1 = Y;(j)) (sup P — 0)}; =5

foralli e [u], P € Fj, and k € [M].

To summarize what is happening, we assign independent Bernoulli random variables to the
elements of k<™ W _ Given A € k<™ W with its assigned random variable Y, and an interval P
in I;, f;(A, P, k) will take the first k elements of P in I; if Y4(j) = 1 and the last k elements if
Ya(j) = 0. Note that f;(0;, P,k) = Pif k < |P|. Thus, if P is a union of subintervals of the s,
we can use the fs to simultaneously select k elements from P out of each interval P n I;, and

these selections will be independent for different elements of £<m*W

. This is quite analogous to
what happened in the last section. The construction of the supports of our embedded vertices is
likewise similar, but in the end we can’t just map a vertex to a characteristic function. We have to
modify slightly in order to use the ESA property to obtain a good distortion (again, recall notations

(4.2) and (4.3) from Section 4.2).

Given v = (r, A) € V(Tw,) and j € [2#]\{0}, define the sets S, ;(v,) and S, ;(v, ) in F; for
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i € [w,] recursively by

823 (0,0) = [ = DM + 1) + 2(r, YN[ = DM +1)],

Syi(v,0) = [(J = DM + 1) +y(r, DN = DM + 1)],

and

Suj(0,0) = fi (Al Sy(v,0 = D\Se (0,0 = 1), 2(r, 0 + 1) — x(r,4)) ,

Sy (v,1) = [ (Al Sy (v, = D\Sp (0,0 = 1), y(r i + 1) = a(r, 1)),

for i € [w,|\{0};

and then define

Si(v) = st,j(v,z').

Finally, let

S (0) =40 =DM + 1) +n[ne S},

Sj—(v) ={Bj = (M +1) —n[ne 5v)}.

S;+ will take a copy of S;(V') and put it in I5;_;. S;_ will also take a copy of S;(V') and put
itin I5;. The copy for S, _, however, is backwards. That is, S, _ is a reflection of S, ; across the
middle of I5;_; U I5;. The purpose of this is to allow us to take advantage of the subadditivity of

an ESA basis later.

Lemma 4.5.2. Fixv = (r, A) € V(Tw.). The following hold for all i € [w,] and j € [2*]\{0},
(i) |Szj(v,9)| = z(r,i+ 1) —z(r, ).
(ii) |S, (v, )| = y(r,i+ 1) — z(r, ).
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(iii) Sy ;(v,i)\Sz;(v,1)| = y(r,i +1) —z(r,i + 1).
(iv) Sui(v,7) A Suy(v, ) = O if i € [w,] is such that i’ # i.
() [ Uizo Sei(v, k)| = 2(ryi + 1),
(Vi) |Sj+ (V)] = [Sj-(v)| = r.
(vii) S;+(v) € Iy and S;_(v) < Iy;.
(viii) Ifi' € [w\[i] and Yar, () = 1 for all n € [i'\[i], then

(@) U_sir Seyj(v, k) = I; 0 {inf S, 5 (0, 0)\ S, (v,4) + £}l D7 mn=1

(b) S, (v,i"\Syp;(v,7') = I; A {inf S, ;(v,i)\Ss; (v, ) +£}£ y(rid'+1)—a(ri+1)-1

(r,i'+1)—x(ri+1)

(ix) If i € [w,|\[i] and Ya4,, (j) = O for all n € [i']\[], then

(@) Us_si1 Soy (0, k) = I; 0 {sup Sy 5 (0, i)\ S,y (v, 8) — )50 D7t D=L

(B) 850,08y (v, 11) = I 0 {sp 5, (v, D\Se (v, 8) = 10T )

x(r i +1)—z(r,i+1)"

Proof. (1)-(i11): These statements certainly hold true for : = 0. And by (simultaneous) induction,
they hold true for all i € [w;,].

(iv): We have S, ;(v,w, — k) < S, j(v, w, —k — 1)\S, j(v,w, —k —1),and so S, ; (v, w, — k) N
Sy.j(v,w,—k—1) = & forall k € [w, —1]. In the same way, S, ;(v,w, —k—1) < S, ;(v,w, —k—
2)\ S, ; (v, w, —k—2), and so the first set inclusion implies S, (v, w,—k) NS, j(v,w,—k—2) = &
for all k € [w, — 2]. Inductively, S, ;(v, w, — k1) N Sy ;(v,w, — ko) = & forall ky < ko € [w,].
(v): This follows from parts (i) and (iv).

(vi)-(vii): By definition, S;(v) < I;. The rest follows from the definitions, part (v), and the fact
that n — (j — 1)(M + 1) + n is a bijection from I; to Iy;_y andn — (35 —1)(M + 1) —nisa
bijection from /; to I5; for each j € [2#]\{0}.

(viii)-(ix): The statements are true for i’ = ¢ + 1 by the definitions of S, ;(v, + 1) and f;, and the

statements hold for arbitrary i’ by a simple induction. [
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At this point we are almost ready to define the embedding, but we need to be able to make sure
that for enough j € [p]\{0}, the symmetric difference of S;(u) and S;(v) is large enough when
u # v € V(Tw,,). Unfortunately, the amount of j € [1]\{0} we can do this for depends on /. We

define the parameter py, to be the minimum of all p € N such that for all € [M + 1] and i € Ny,
o z(ryi+p) = (x(r,i) + y(r,i))/2 whenever r > (x(r,7) + y(r,7))/2.
o y(ryi+p) < (x(r,i) +y(r,i))/2 whenever r < (z(r,i) + y(r,1))/2.

One may easily check that pyy < maxW + 1.

Lemma 4.5.3. Fixu = (r, A) and v = (s, B) in V(Tw,.) such that u §{ v and r < s. Let

Luw = {7 € [2"INO} [ Y1 4, 11, () = Tand Yy 1, () = O for all n € [pw\{0}}.

Then for each j € L, there is L; < | %4, )41 Su,j (v, k) such that
(i) |L;| = d(u,v)/2, where d is the shortest-path metric for Tyy,..
(ii) max L; < inf{Jp” 40 gy Seg(us k)

Proof. Let K = |A A B|. We have x(r,i) = z(s,i) and y(r,i) = y(s,q) forall i € [K + 1], and
50 Sy j(u,1) = S, (v,i) and Sy j(u,i) = S, ;(v, ) for all i € [K], by an easy induction argument.
Note that z(r, K + 1) = z(s,K + 1) = n(u,v) and y(r, K + 1) = y(s, K + 1) = m(u,v),
which implies |S, ;(v, K)\S; (v, K)| = m(u,v) — n(u,v) > 0, by Lemma 4.5.2 (iii). Note that
x(r,i) < x(s,i) and y(r,i) < y(s,i) forall i € [M + 1] by the fact that r < s.

Suppose first that s < (m(u,v) + n(u,v))/2 and let L; = | J;> . Saz.;(v, k) for each j € Z,,,.
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Then by definition of pyy,

min Sy ; (v, K)\S;; (v, K) + y(s, K + pw + 1) —n(u,v) — 1

m(u,v) —n(u,v) .
2

m(u,v) —n(u,v) 1)

< min S, (v, K)\S, (v, K) +

< max Sy, j (u, K)\Sy,;(u, K) — ( 2

< max Sy ;(u, K)\Sy;(u, K) — (y(r, K + pw + 1) — n(u,v) — 1),

and so, by Lemma 4.5.2 (viii) and (ix), £; n (U g 11 Sz.;(u, k)) = & and therefore max £; <

inf |, .1 Se,j(u, k) for each j € 7, ,,. Moreover, by Lemma 4.5.2 (v) and Proposition 4.2.9,
1L;| = x(s,ws + 1) — (s, K + 1) = 5 — n(u,v) = d(u,v)/2

for each j € Z,,,.

Suppose now that r > (m(u,v) + n(u,v))/2 and let

L= ( U Sw,j(”a@) \( U S5 (U, k))

k=K+1 k=K+1

for each j € 7, ,. Then by definition of pyy,

min S, (v, K)\S;,; (v, K) + (s, K + pw + 1) — n(u,v) — 1

m(u,v) —n(u,v) .
2

m(u,v) —n(u,v) 1)

> min S, ; (v, K)\S,;(v, K) +

> max Sy ;(u, K)\Sq ;(u, K) — ( 2

> max Sy j(u, K)\Sy j(u, K) — (z(r, K + pw + 1) — n(u,v) — 1),

and so, by Lemma 4.5.2 (viii) and (ix), £; U (U g 11 Sz (u, k) = Sy (v, K)\S, (v, K) and
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therefore , by Lemma 4.5.2 (v) and Proposition 4.2.9,

Gee)
k=K+1

= (m(u,v) — n(u,v)) = (r — n(u,v)) = m(u,v) —r = d(u,v)/2

|£j| = |Sy,;(v, Z)\ij v, 1)

for each j € Z,,,,. Moreover, max £; < inf(J;" ., S ;(u, k) for each j € Z,,,,.

Finally, suppose r < (m(u,v) + n(u,v))/2 < s and let
L; = {min S, ; (v, K)\S, (v, ) + £}§m{er) oDzt
for each j € 7, ,,. Then by definition of pyy,

max £; < min{ min S, ;(v, K)\S;; (v, K) + z(s, K + pw + 1) — n(u,v) — 1,

max Sy, ;(u, K)\Sz j(u, K) — (y(r, K + pw + 1) — n(u,v) — 1)},

and so, by Lemma 4.5.2 (viii) and (ix), £; S ;" jc11 S, (v, k) and max £; < inf | J,” 5,1 Saj(u, k)
for each j € 7, ,. Moreover, by Proposition 4.2.9, |£;| = (m(u,v) — n(u,v))/2 = d(u,v)/2 for

eachj € Z,,.. ]

The next theorem (combined with the two previous lemmas) generalizes the results and proce-
dures found in Section 3 of [17]. As in the previous two sections, the techniques we use are largely
inspired from the source, with perhaps the most important differences being the introduction of the
parameter py, and the fixing of a single bundle graph at the beginning. And as before, both the
labeling and recursive procedure here are simpler, with the main difficulty being taken care of in

Lemma 4.5.3.

Theorem 4.5.4. Suppose X is a Banach space with an ESA basis (e,,)>_,. Then there is a bi-
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Lipschitz embedding 1 : Ty, — X such that for all u,v € V(Tw,,),

1
7141 0) < [9(w) = ¥ (0)[x < d(u,v),

where d is the shortest-path metric for Ty, and furthermore ||{(u) — ¥ (v)|x = d(u,v) when

u v

QK
Proof. Letn = HZj:l €251 — €25

and define the map ¢: Ty, — X by
b'e

on
v)=1/m) | D e D, en
j=1 \neS; 1 (v) nes;,— (v)
forevery v e V(Tiw.).

Take any v = (r, A) and v = (s, B) in V(Tw,). Let K = |A A B| and suppose first that u {} v
and r < s. Then y(r, K + 1) < z(s, K + 1). Let n € [K] be such that z(s,i) < y(r,i) (which
implies z(r,7) = x(s,4) and y(r,i) = y(s,1)) foralli € [n] while y(r,n+1) < z(s,n+1). Aneasy
induction argument shows that S, ;(u, i) = S, ;(v,7) and S, j(u,i) = S, (v, 1) for all ¢ € [n] and
J € [2#]\{0}; and S, ;(u,n) < S, ;(v,n) for all j € [2#]\{0}. Another easy induction argument
shows S, ;(u,7) < (Jr_g Sz, (v, k) for all i € [w,] and j € [2#]\{0} (and so S; 4 (u) = S;+(v)
and S;_(u) < S;_(v) for all j € [2#]\{0}). Thus, by Lemma 4.2.9, Lemma 4.5.2 (vi), and the
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assumption that the basis is ESA;

o
1
[9(u) =¥ (v)|x = p Dioen— > e|=| D e D, en
Jj=1 neS; +(u) nes; —(u) nesS; +(v) nes; —(v) x
1|
= - Z €n — Z €n
g J=1 \nenS; +(v)\S;,+(u) neSj _ (v)\Sj,— (u) ¥
1|
= =X = r)lezjm1 — e3))
=s—r
= d(u,v).

Lemma 4.2.7 and the triangle inequality applied to shortest paths then shows that |1 (u)—1(v)|x <
d(u,v) for all u,v € V(Tw,).

Suppose now that u ﬂ vand r < s. Define Z,, as in Lemma 4.5.3 and for each j € Z,,,, let
L; be chosen as in Lemma 4.5.3. Note that, by independence of the Bernoulli random variables

defined at the beginning of this section, |Z,, ,| = 27" for some v € [2py/]. Let

Liv ={0-DM + 1) +nlneLl;},

L ={Bj—D)(M+1)—n|neL.

Recall that n — (j — 1)(M + 1) 4+ n is a bijection from [; to [, and n — (35 —1)(M + 1) —n
is a bijection from /; to I5; for each j € 7, ,. Furthermore, the images of the two maps will be

reflections of each other across the middle of /5;_; U I5; when the maps are applied to the same
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set. By Lemma 4.5.2 (vi), Lemma 4.5.3, and the assumption that the basis is ESA;

QK
1
\W(U)—w(v)HX:;Z Dioen— D e D ea— D) en
Jj=1 nesS; 4+ (u) nesS; —(u) neS; 4+ (v) neS; —(v) x
1
As((se- )3 a5
U J€Lupw nesS; 4+ (v) neS; 4+ (u) nes;, —(v) nesS;, — (u) x
= = Z Z €n — Z en
N J€Tuv \MeLj 4 nely x
d(u, v
> % D (eaj1 —e3))
" J€Tu,v X
d(u,v) 1 > R
_ <2 >-§'Z S (e — eay)
N k=1 || j=(k—1)20—¥+1 .
d(u, v el
> T |5 (ens = en)
2vtin |
X
1
Zmd(u,v). ]

We show in the next section that actually the entire family of bundle graphs generated by Ty,
is bi-Lipschitzly embeddable with the same distortion bound of 2??" ! into a Banach space with

an ESA basis.
4.6 The ©-product

Given two k-branching bundle graphs G and H, we can define a new k-branching bundle
graph G @ H by replacing every edge in G with a copy of H (where the bottom of H is identified
with the lower endpoint of the edge H is replacing and the top of H is identified with the higher
endpoint). The definition of @-product seems to have first been formally introduced by J. R. Lee
and P. Raghavendra in [14], although the family of 2-branching diamond graphs (see the comment
under Definition 4.6.5 for a definition involving @-products) were studied in [10] and [16].

For this section we fix another sequence W' = {w/}* ! < Ny such that w) = w},,, = 0.

We will show how to determine W” so that Ty, @ Tw,, = Twn» .. Once W” is found, we can
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use Theorem 4.5.4 to find a bound on the worst distortion for a bi-Lipschitz embedding of Ty~
into a Banach space with an ESA basis. In particular, we show that the distortion bound found
in Theorem 4.5.4 is no worse for Ty, @ Ty, than it was for Ty, allowing us to generalize the
characterizations of superreflexivity found in [11] and [17].

Given a bundle graph G = (V,E) and n € Ny, let V,, = {v € V | height(v) = n} and let
E, = {{u,v} € E|u € V,andv € V,,}. If another bundle graph H is given, we may create
a new bundle graph G @, H by replacing every edge in F,, with H for some n. Explicitly, if
G = (V,E)and H = (V' E’), and if b and t are the bottom and top, respectively, of H; then we
define G @, H = (V", E") by

VI =V u (B, x (V\{b,1}))

and

E'"={ecE|en (V,u V1) =T}
u {{u,(e,v)} | e€ E,, ueV, ne, and {b,v} € E'}
u {{u,(e,v)} | e€ E,, ue Vi1 ne, and {v,t} € E'}

u{{(e,u),(e,v)} | e € E, and ({u,v}\{b,t}) € E'}.

The formal definition of G @ H is similar (just remove the subscripts and the first term in the
definition of E”). It is clear that G @ H can be created by performing ©,,-products repeatedly until

all the edges that were originally in GG have been replaced.

Lemma 4.6.1. Given n € M|, the graph Ty . @, Tw ,; is the same bundle graph as Ty ., where
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W = (w)MM'*1 < Ny is defined by
(
Wy 0<i<n

W, = max{wy, wp41} +w,_, n<r<n+M +1

n

LwT_MI n+M+1<r<M+M +1.
Proof. We simply provide the graph isomorphism, and leave the details to the reader. Define
F: Twﬁ @ TW/’,Q - TW// by

-

(r, A) v=(r,A)andr <n
(n+r,B~C) wv=({nA),(n+1,B)},(r,C))and A < B
(n+r, AC) v=({(n,A),(n+1,B)},(r,C))and B < A

(r+M +1,A) v=(r,A)andr >n

\

foreach v € V(Tw.x @n Tw 1) l
With repeated application of Lemma 4.6.1, we obtain the following formula.

Proposition 4.6.2. The graph Ty ,. @ Ty, is graph-isomorphic to Ty . where
W" = (w;f)ﬁfoﬂ)(M’“) < Ny is defined by w = 0 and

max{wn, Wnt1} + W,_,0pyy (M +1) <r<(n+1)(M+1)

Wyt 1 r=n+1)(M +1)

foralln € [M].

Proposition 4.6.2 confirms what is to be expected regarding the depths of vertices in Ty, @
Twr .. Namely, that vertices in Ty, @ Tw . that originated from Tyy,, will keep the same depth as
they originally had, and vertices that arise from a copy of Ty, replacing an edge of Ty, would

keep the same depths as they originally had, except that the maximum depth of the endpoints of the
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edge being replaced will be added to these depths. We now fix W” obtained in Proposition 4.6.2.
For what follows, we define the functions 2" and ¢ for W', and 2” and y” for W”, in the same way

x and y were defined for W (notations (4.2) and (4.3)) at the end of Section 4.2.

Corollary 4.6.3. For each n € [M], let K,, = max{w,,w,.1}. Then for all n € [M], r €
[(n+ 1)(M' + 1)\[n(M' + 1)], and i € Ny,

-

(M’ + Dax(n + 1,1) r=mn+1)(M+1)
2" (r i) = < (M’ + 1)z(n, i) r# (n+ 1) (M +1)andi < K,

n(M' +1)+2'(r—n(M +1),i — K,) otherwise,
\
.

(M’ + Dy(n +1,4) r=(n+ (M +1)ori < K,
y//(T.??:) — <

n(M' +1)+y'(r—n(M +1),i— K,) otherwise.

\

Proof. We prove the formula for z”. The proof for y” is similar. Take any n € [M] and r €
[(n+1)(M'+1)]\[n(M'+1)]. The case i = Ois trivial, so take any i € N. Lett € [(M+1)(M'+1)]
be such that ¢t = 2”(r,7), and let m € [M + 1] be such that m(M' + 1) <t < (m + 1)(M' + 1).

Suppose first that r = (n+ 1)(M' +1). If t # r, then (m+ 1)(M'+ 1) < r by the definition of
m and z”. This means that £ = m(M’+ 1) by Proposition 4.6.2 and the definition of z”. Either way,
t = (M’ + 1) for some ¢ € [M], and by Proposition 4.6.2 and the definition of 2", w, = w} < i.
But, by definition of ¢ and 2", w;, > ¢ forall t < ¢’ < r, and in particular wg’,( M1y = 1 for all
¢ < !' < n+ 1. By Proposition 4.6.2, this means w, < ¢ < wy forall ¢ < ¢/ < n + 1. And so, by
the definition of =, x(n +1,4) = ¢. Thatis, 2" (n+1,i) =t = (M’ + 1)z(n+ 1,4). The case when
r# (n+ 1)(M'+ 1) and i < K, is similar because we may still conclude that t = ¢(M’ + 1) for
some ¢ € [M].

Suppose now that v # (n + 1)(M' + 1) and ¢ > K,,. Since wy ;) = wn < K, < i, we
must have m = n by the definition of 2”. Thus ¢t = n(M’ + 1) + ¢ for some ¢ € [M’']. And by
Proposition 4.6.2 and the definition of 2, w;, = w} — K,, < i — K,,. But, by definition of ¢, w}, > i

forall ¢ <t <, and in particular w ), = i forall ¢ < ¢ <r—n(M'+1). By Proposition
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4.6.2, this means w, < i — K, < wy, forall ¢ < ¢ <r —n(M'+ 1). And so, by definition of z’,

2 (r—n(M'+1),i—K,) = (. Thatis, 2"(n+1,1) =t = n(M'+1)+2'(r—n(M'+1),i—K,). O

In the next lemma we define py» for W and py» for W” in the same way py, was defined for

W before Lemma 4.5.3 in the last section.
Lemma 4.6.4. The parameter py» satisfies the inequality py» < max{pw, pw}.

Proof. Letr e [(M +1)(M’+1)] and i € Ny be such that r > (z"(r,4) + y"(r,7))/2 and suppose
first that r = (n + 1)(M' + 1) for some n € [M] (the case r = 0 is trivial). Then after using
Corollary 4.6.3 and dividing by M’ + 1, we see thatn + 1 > (z(n + 1,4) + y(n + 1,4))/2, which,
by definition of py, implies (n + 1,7 + pw) = (z(n +1),7) + y(n + 1,4))/2. By multiplying by
M’ + 1 and again using Corollary 4.6.3, we see that 2" (r, i + py ) = (2" (r,1) + y"(r,1)) /2.

Suppose now that n(M’ + 1) < r < (n + 1)(M’ + 1) for some n € [M] and i > K,, (Where
K, = max{w,,w,.1}). Then after using Corollary 4.6.3 and subtracting n(M’ + 1), we see
that r —n(M' + 1) = (2/(r —n(M' +1),i — K,,)) + ¢'(r —n(M' + 1),i — K,,))/2, which, by
definition of py- implies z'(r — n(M' + 1),i — K,, + pw') = (/(r — n(M' + 1),i — K,,) +
y'(r—n(M' +1),i— K,))/2. By adding n(M' + 1) and again using Corollary 4.6.3, we see that
2" (ryi+ pwr) = (2" (ryi) + " (r,i))/2.

Suppose finally that n(M’'+1) <r < (n+1)(M’'+1) for some n € [M] and i < K,,. Suppose
further that w,, < i < w,,1. Then x(n,i) = n and y(n + 1,7) > n + 1. Thus, after applying

Corollary 4.6.3 and then dividing by M’ + 1, we have

n+l>r/(M+1)=n+yn+1,1)/2

which implies n + 1 > y(n + 1, 1), a contradiction. Therefore, in order for the hypothesis to hold
true, either ¢ < min{w,, w,,1} or w,41 < w,. In either case, y(n,7) = y(n + 1,7). So after

applying Corollary 6.3 and dividing by M’ + 1, we have

n+1> (x(n,i) +yn+1,7)/2 = (z(n,i) + y(n,7))/2.
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This means n > (x(n,i) + y(n,7))/2 and so, by definition of pw, z(n,i + pw) = (z(n,i) +
y(n,1))/2 = (x(n,i) + y(n + 1,4))/2. After multiplying by M’ + 1 and again applying Corollary
4.6.3, we have

2 (ryi + pw) = 2" (n(M' +1),i + pw)
> ("(n(M"+1),0) +y"((n+ D)(M' + 1),1))/2

= (2" (r,i) + 4" (r,i))/2.

We have shown that for all » € [(M + 1)(M’' + 1)] and i € Ny, 2"(r,i + max{pw,pw'}) =
(x"(r,1) + y"(r,i))/2 whenever r > (2"(r,i) + y"(r,7))/2. Similarly it can be shown y"(r,i +
max{pw, pw:}) < (x"(r,7) + y"(r,i))/2 whenever r < (2"(r,4) + y"(r,7))/2. Therefore py» <
max{pw, pw}. u
Definition 4.6.5. Given a bundle graph G, the family of bundle graphs generated by G is the set
{G@k }OO , where G" is defined recursively by G2 = G and G2 = G@* @ G for all k € N.

k=1

There are a few families of bundle graphs that have earned special names. Given a cardinality ,
the family of x-branching diamonds is the family generated by T{¢ ; ¢),«, the family of x-branching
Laakso graphs is the family generated by 7/ 0.1,0,0),x> and the family of x-branching parasol graphs
is the family generated by 7 0,1,0),x- Diamond graphs seem to have first been introduced in [10]
and [16]. Laakso graphs were first introduced in [13], based on ideas found in [12]. Parasol graphs

were first introduced in [9]. Lemma 4.6.4 and Theorem 4.5.4 yield the following corollary.

Corollary 4.6.6. Given a finitely branching bundle graph G, the family of bundle graphs generated
by G is equi-bi-Lipschitzly embeddable into any Banach space with an ESA basis, with distortion
bounded above by a constant not depending on the target space or branching number of G. In par-
ticular, every finitely branching diamond, Laakso, and parasol graph is bi-Lipschitzly embeddable

into any Banach space with an ESA basis with distortion bounded above by 8.

Now that we’ve formally defined families of bundle graphs generated by a base graph, we

come to the characterizations of Banach space properties via non-equi-bi-Lipschitz embeddability

95



of families of graphs, as promised in the introduction. Work done by Brunel and Sucheston ([7]
and [6], see also Theorem 2.3 in [17]), shows that for every non-reflexive Banach space X, there
is a Banach space with an ESA basis that is finitely representable in X; and so every family of
bundle graphs generated by a finitely-branching bundle graph is equi-bi-Lipschitzly embeddable
into any non-reflexive Banach space by Theorem 4.5.4. Conversely, a consequence of Lemma 1 in
Section 4 of [11], says that the family of binary (that is, 2-branching) diamond graphs is not equi-
bi-Lipschitzly embeddable into any Banach space with uniformly convex norm. Virtually the same
proof shows that, in fact, every family of bundle graphs generated by a nontrivial bundle graph is
not equi-bi-Lipschitzly embeddable into a Banach space with uniformly convex norm. Every su-
perreflexive Banach space is uniformly convexifiable, so we have the following characterization(s)

of superreflexivity.

Theorem 4.6.7. Fix a nontrivial finitely branching bundle graph G. Then a Banach space X is
superreflexive if and only if the family of bundle graphs generated by G is non-equi-bi-Lipschitzly
embeddable into X.

Remark 4.6.8. Johnson and Schechtman [11] obtained a distortion bound of 16 + ¢ for the equi-bi-
Lipschitz embeddability of the family of binary diamond graphs into a non-superreflexive Banach
space. Ostrovskii and Randrianantoanina [17] improved and generalized this, obtaining a distortion
bound of 8 + ¢ for any family of finitely-branching diamond or Laakso graphs. Corollary 4.6.6
yields a further generalization, and recovers the same distortion bound of 8 + € for any family
of finitely-branching diamond, Laakso, or parasol graph. It is unknown to the author for which
families of bundle graphs, if any, the distortion bound implied by Corollary 4.6.6 is optimal, but
a distortion bound of 2 + ¢ was obtained for the 2-branching diamonds by Pisier in [18] (see the

proof of Theorem 13.17).

Theorem 3.2 in [4] shows that within the class of reflexive Banach spaces with an uncondi-
tional structure, a Banach space that is not asymptotically uniformly convexifiable will contain

(1+¢,1+ ¢e)-good {, trees of arbitrary height for all £ > 0. Theorem 4.1 in [4] then shows that
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every family of bundle graphs generated by a nontrivial infinitely-branching bundle graph is not
equi-bi-Lipschitzly embeddable into any Banach space that is asymptotically midpoint uniformly
convexifiable. Thus we have the following metric characterization(s) of asymptotic uniform con-

vexifiability within the class of reflexive Banach spaces with an unconditional asymptotic structure.

Theorem 4.6.9. Fix a nontrivial Ry-branching bundle graph G. Then a reflexive Banach space X
with an unconditional asymptotic structure is asymptotically uniformly convexifiable if and only if

the family of bundle graphs generated by G is non-equi-bi-Lipschitzly embeddable into X.
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5. SUMMARY

5.1 Possible applications of research

The purpose of this research was to investigate two general problems in the nonlinear geometry
of Banach spaces. As evidenced in the preceding sections, these general problems can inspire the
formulation of countless interesting subproblems that allow Banach space theorists to test the limits
of their methods. There are still many questions that remain unanswered, and the work done here
only scratches the surface. However, our results suggest some natural avenues of research that can
be pursued in the future.

In Sections 2 and 3, we investigated two specific instances of the following problem, whose

solution remains unknown for general X and Y.

Problem 5.1.1. Given two Banach spaces X and Y, determine whether X ’s uniform embeddability

into Y is equivalent to X’s is coarse embeddability into Y.

In Section 2, we were able to fully solve Problem 5.1.1 in the positive for Y = ¢y(k), given any
cardinality x. Not only that, but we have also shown that both uniform and coarse embeddability
into ¢o(k) can be characterized by an intrinsic property called the “coarse Stone property”. Thus,
a useful tool for future research into the coarse and uniform subspace structure of cy(x) spaces has
been provided. In particular, it seems to be an open problem (see [1]) to determine whether /.,
is uniformly or coarsely embeddable into cy(c) (where ¢ is the cardinality of the continuum). The
coarse Stone property provides a condition that might be checked for ¢, to solve this problem. The
coarse Stone property has already been used (see [2]) to show that, for a large enough cardinality
K, a Banach space with density character equal to x must have trivial cotype if it is uniformly or
(equivalently) coarsely embeddable into cy(k).

In Section 3, we were able to partially solve Problem 5.1.1 for when Y is a superstable Banach
space. Indeed, in this case we have shown that the problem has a positive solution for all X

containing no spreading model isomorphic to ¢, for some p € [1,20). However, there is a gap
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between this condition and the known requirement for uniform embeddability into a superstable
Banach space. A Banach space must in fact have a subspace isomorphic to ¢, if it is uniformly
embeddable into a superstable Banach space. The proof of our result relies heavily on a constant
~ being finite. However, the special case of v = 0 will only occur if uniform embeddability is
assumed, and this will imply the existence of an ¢, subspace. Thus, there is some hope that the
general solution to Problem 5.1.1 is negative, as it is possible that our result cannot be strengthened
to guarantee the existence of an ¢, subspace in Banach spaces that are only assumed to be coarsely
embeddable into a superstable Banach space. If one wants to try to solve Problem 5.1.1 in the
negative, a good strategy to do this now is to pick Y so that Y is superstable and to pick X so
that X has a spreading model isomorphic to some ¢, but no subspace isomorphic to any ¢,. In
particular, it is an open problem to determine whether there exist p,q,r € [1,00) such that r-
convexified Tsirelson space is coarsely embeddable into ¢, (¢,).

Finally, in Section 4, we generalized solutions to several specific instances of the following

problem.

Problem 5.1.2. Given a local or asymptotic property P of Banach spaces, find a purely metric

characterization of P.

The metric characterizations of interest for us were those stated in terms of graph preclusion.
Namely, the goal was to characterize P (or P’s negation) by the equi-bi-Lipschitz embeddability of
some family of graphs. In the primary literature we referenced, the two typical families considered
were the diamond graphs and the Laakso graphs. However, although the proofs involved were
similar, these families were always treated separately. In Section 4, we defined a larger class of
graphs (containing all families of diamond graphs and Laakso graphs) and were able to provide
a vertex-labeling that allowed us to generalize some previous results with easier proofs. It is
our hope that our vertex-labeling will make proofs involving diamond graphs, Laakso graphs, or
other similar families of graphs conceptually simpler in the future. There are still many properties
to consider for Problem 5.1.2, including Pisier’s property («) (a local property) and asymptotic

uniform smoothifiability (an asymptotic property).
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