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ABSTRACT

Two general problems in the nonlinear geometry of Banach spaces are to determine the rela-

tionship between uniform and coarse embeddings and to characterize local/asymptotic properties

in terms of metric structure. The purpose of this research is to investigate these problems and to

contribute to a better overall understanding of the structure of Banach spaces and metric spaces.

First, we investigate the relationship between the small-scale and large-scale structures of

c0pκq. In 1994, Jan Pelant proved that a metric property related to the notion of paracompact-

ness called the uniform Stone property characterizes a metric space’s uniform embeddability into

c0pκq for some cardinality κ. We show that coarse Lipschitz embeddability of a metric space into

c0pκq can be characterized in a similar manner. We also show that coarse, uniform, and bi-Lipschitz

embeddability into c0pκq are equivalent notions for normed linear spaces.

Next, we investigate the relationship between the small-scale and large-scale structures of su-

perstable Banach spaces. In 1983, Yves Raynaud showed that if a Banach space uniformly em-

beds into a superstable Banach space, then X must contain an isomorphic copy of `p, for some

p P r1,8q. Using similar methods, we show that if a Banach space coarsely embeds into a super-

stable Banach space, then X has a spreading model isomorphic to `p, for some p P r1,8q. This

implies the existence of reflexive Banach spaces that do not coarsely embed into any superstable

Banach space.

Lastly, we define a class of graphs, which we call the “bundle graphs”, and use this to generalize

some known metric characterizations of Banach space properties in terms of graph preclusion.

In particular, we generalize the characterizations of superreflexivity within the class of Banach

spaces and asymptotic uniform convexifiability within the class of reflexive Banach spaces with

unconditional asymptotic structure. For the specific case of L1, we show that every ℵ0-branching

bundle graph bi-Lipschitzly embeds into L1 with distortion no worse than 2.
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1. INTRODUCTION

1.1 Motivation and organization of research

A result proved by S. Mazur and S. Ulam [7] says that two Banach spaces are in fact linearly

isomorphic to each other if there is an onto isometry between them that maps 0 to 0 (and in fact,

each such isometry is itself a linear isomorphism). However, it was shown by M. I. Kadets [5] that

any two separable infinite-dimensional Banach spaces are homeomorphic. These two extremes in

rigidity make it natural to investigate the extent to which the metric structure of a Banach space

determines the space’s linear structure. One celebrated result proved by M. Ribe [11] is Ribe’s

rigidity theorem, which says that two uniformly homeomorphic Banach spaces have the same

finite-dimensional subspaces up to linear isomorphism with distortion bounded by some constant.

This launched what is now called the “Ribe program”, an ongoing effort to characterize local

properties of Banach spaces in purely metric terms.

The Ribe program has led to many developments in the nonlinear geometry of Banach spaces.

Recently, however, there has emerged a need to investigate the large-scale geometry of Banach

spaces more thoroughly. This developed largely from work and observations relating to the Novikov

and (coarse) Baum-Connes conjectures by M. Gromov (see, for instance, [3]), and since then by

G. Kasparov and G. Yu (for instance, [6] and [14]). One strategy for understanding the large-scale

structure of Banach spaces is to determine how it relates to the small-scale structure. For instance,

it is an open problem to determine whether for any two Banach spaces X and Y , X is uniformly

embeddable into Y if and only if X is coarsely embeddable into Y . This problem motivates the

research displayed in Sections 2 and 3. The approach to both sections is the same: Start with a

specific embeddability result for small-scale structure and try to determine whether an analogous

result holds true for the large-scale structure. As will be seen, the approach can be quite effec-

tively used to obtain new information about the large-scale geometry of Banach spaces. A bonus

to the approach is that if a large-scale analogue cannot be found or is weaker than the motivating

1



small-scale result, then at least a strategy for solving the general problem in the negative can be

formed.

In Section 2, we discuss the large-scale structure of c0pκq spaces. We start by describing

some known embeddability results concerning c0pκq and providing the reader with the necessary

background in metric covers and coarse embeddings needed to prove the main result. Particular

attention is given to J. Pelant’s [9] intrinsic characterization of a metric space’s uniform embed-

dability into some c0pκq in terms of the “uniform Stone property”. We then define the “coarse

Stone property”, a coarse analogue of the uniform Stone property (itself a uniform analogue of

paracompactness), and show that having this property is a necessary condition for a metric space

to be coarsely embeddable into some c0pκq. To make the results more quantitative, we define a

modulus ∆
pcq
X for each metric space X that can be used to determine whether X has the uniform or

coarse Stone property. The main result is that ∆
pcq
X can be used to characterizeX’s coarse Lipschitz

embeddability into some c0pκq. A corollary of this work shows that a Banach space is uniformly

embeddable into some c0pκq if and only if it is coarsely embeddable into c0pκq if and only if it is

bi-Lipschitzly embeddable into c0pκq if and only if it has the coarse Stone property. We conclude

the section by showing directly that certain classes of metric spaces have the coarse Stone prop-

erty. The contents of Section 2 were originally published in Fundamenta Mathematicae [12] and

are included here with permission from the copyright holder.

In Section 3, we discuss the large-scale structure of superstable Banach spaces. We start by

giving a short history of a small-scale result by Y. Raynaud [10], which says that any Banach space

that is uniformly embeddable into a superstable Banach space contains a linearly isomorphic copy

of `p for some p P r1,8q. We then devote some time providing the reader with all the necessary

background in asymptotic Banach space geometry and topology needed for the rest of the section.

We proceed by carefully defining and developing the required notion of “space of types” associated

to a given Banach space. This space of types is a metric space that captures some of the algebra and

geometry of the given Banach space, but additionally possesses some nice compactness properties.

After much technical work using methods commonly found in proofs of the famous Krivine’s

2



Theorem from Banach space theory, we prove the main result which says that any Banach space

that is coarsely embeddable into a superstable Banach space contains an `p spreading model for

some p P r1,8q. This is a strong enough analogue of Raynaud’s result to derive our concluding

corollary which says there exist reflexive Banach spaces that are not coarsely embeddable into any

superstable Banach space. The contents of Section 3 were jointly researched with B. M. Braga and

can be found in a separate preprint on the arXiv [2].

In Section 4, we provide a contribution to the Ribe program and related asymptotic Ribe pro-

gram (where the goal is to characterize asymptotic properties of Banach spaces in purely metric

terms). We start by listing some known results due to W. B. Johnson and G. Schechtman [4], M.

Ostrovskii and B. Randrianantoanina [8], and F. Baudier et al. [1] that contain characterizations

of Banach space properties in terms of non-equi-bi-Lipschitz-embeddability of certain classes of

graphs. We then rigorously define and vertex-label a new and much larger class of graphs we call

the “bundle graphs”. Most of the remainder of the section is used to generalize three embedding

results to the class of bundle graphs, with simpler proofs arising from usage of the new vertex-

labeling. At the end of the section, we show how bundle graphs behave under the graph-theoretic

m-product and infer generalizations of the previously known characterizations of superreflexivity

within the class of Banach spaces and asymptotic uniform convexifiability within the class of re-

flexive Banach spaces with an unconditional asymptotic structure. The contents of Section 4 will

be published in Mathematika [12] and are included here with permission from the copyright holder.

Finally, in Section 5, we give a quick summary of the main results and highlight some open

problems that they might be applied to in the future.

1.2 References
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2. ON COARSE LIPSCHITZ EMBEDDABILITY INTO c0pκq
˚

2.1 Introduction

I. Aharoni showed in 1974 [1] that for any K ą 6, every separable metric space K-Lipschitzly

embeds into c`0 (where the positive cone of c0, denoted c`0 , is the set tpxiq8i“1 P c0 | xi ě 0 for all i P

Nu with metric inherited from c0); and also that `1 does not K-Lipschitzly embed into c0 for any

K ă 2. In 1978, P. Assouad [3] improved Aharoni’s result and showed that for any K ą 3, every

separable metric space K-Lipschitzly embeds into c`0 . The final improvement for c`0 came when

Pelant showed in 1994 [8] that every separable metric space 3-Lipschitzly embeds into c`0 and

that `1 cannot be K-Lipschitz embedded into c`0 for any K ă 3. This left open the problem of

finding the best constant for bi-Lipschitzly embedding a separable metric space into c0 until N. J.

Kalton and G. Lancien showed in 2008 [6] that every separable metric space 2-Lipschitzly embeds

into c0. They do this by showing that every separable metric space has property Πp2q, property

Πpλq being a sufficient criterion they define for implying λ-Lipschitz embeddability into c0 for a

separable metric space. Recently, F. Baudier and R. Deville [4] have made a slight improvement

to Kalton and Lancien’s proof using a related criterion πpλq to show that every separable metric

space 2-Lipschitzly embeds into c0 via a special kind of bi-Lipschitz embedding.

It is natural to ask whether a similar result holds for non-separable metric spaces. In particular,

does every metric space bi-Lipschitzly embed into c0pκq for large enough cardinality κ? The

answer to this question comes from the theory of uniform spaces. In 1948, A. H. Stone [10] showed

that every metric space is paracompact. In 1960 [11], Stone asked whether every uniform cover

of a metric space has a locally finite uniform refinement (or equivalently a point-finite uniform

refinement). That is, does every metric space possess a uniform analog of paracompactness (a

property that has come to be called the uniform Stone property)? The question was answered in

the negative by Pelant [7] and E. V. Shchepin [9], who showed that `8pΓq fails to have the uniform

˚Most of this section is reprinted with permission from A. Swift, On coarse Lipschitz embeddability into c0pκq,
Fund. Math. 241 (2018), 67–81. Copyright 2017 by IMPAN.
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Stone property if Γ has large enough cardinality. Moreover, Pelant [8] has shown that the uniform

Stone property characterizes uniform embeddability into c0pκq for some κ and thus `8pΓq does not

even uniformly embed into any c0pκq when Γ has large enough cardinality.

It remains an open problem in the nonlinear theory of Banach spaces to determine whether

a Banach space’s uniform embeddability into a given Banach space Y is equivalent to its coarse

embeddability into Y, and so one is led to ask whether a characterization of coarse embeddability

into c0pκq involving covers also exists. We suggest a natural candidate for such a “coarse Stone

property", and show this to be at least a necessary condition for coarse embeddability into c0pκq.

Related to this property, however, is a natural modulus ∆
pcq
X that can be defined for any metric

space X and whose growth can be used to characterize coarse Lipschitz embeddability (and also

bi-Lipschitz embeddability) into c0pκq. The main result is the following theorem.

Theorem 14. Let pX, dXq be a metric space with infinite density character κ. If there are C P

r1,8q and D P r0,8q such that ∆
pcq
X pRq ď CR ` D for all R ă 8; then for any λ ą 0, any

K ą 2pC ` λq, and any L ą pC`λqD
λ

; there exists a coarse Lipschitz embedding f : X Ñ c`0 pκq

such that

dXpx, yq ´ L ď }fpxq ´ fpyq}8 ď KdXpx, yq

for every x, y P X . If D “ 0, then it is possible to take L “ 0.

2.2 Preliminaries and notation

Let pX, dXq and pY, dY q be metric spaces. Given x P X and r P r0,8q, we will denote by

Brpxq the open ball of radius r centered at x. For a map f : X Ñ Y , the modulus of continuity (or

modulus of expansion) of f is the function ωf : r0,8q Ñ r0,8s defined by

ωf ptq “ suptdY pfpx1q, fpx2qq | dXpx1, x2q ď tu,

and the modulus of compression of f is the function ρf : r0,8q Ñ r0,8s defined by

ρf ptq “ inftdY pfpx1q, fpx2qq | dXpx1, x2q ě tu.

7



Note that ωf and ρf are non-decreasing and for all x1, x2 P X ,

ρf pdXpx1, x2qq ď dY pfpx1q, fpx2qq ď ωf pdXpx1, x2qq.

A map f is said to be uniformly continuous (or simply uniform) if lim
tÑ0

ωf ptq “ 0 and is called

a uniform embedding if furthermore ρf ptq ą 0 for all t ą 0. A map f is said to be coarse (or

sometimes coarsely continuous) if ωf ptq ă 8 for all t P r0,8q and is called a coarse embedding if

furthermore lim
tÑ8

ρf ptq “ 8. A map f is called a coarse Lipschitz embedding (or a quasi-isometric

embedding, especially in the literature of geometric group theory) if there exist A ě 1 and B ě 0

such that ωf ptq ď At ` B and ρf ptq ě 1
A
t ´ B for all t and is called a bi-Lipschitz embedding if

furthermore B can be taken to be equal to 0. The Lipschitz constant of f is defined to be

Lippfq “ sup

"

dY pfpx1q, fpx2qq

dXpx1, x2q
| x1 ‰ x2

*

.

A map f is said to be Lipschitz if Lippfq ă 8. If f is injective, the distortion of f is defined to be

distpfq “ Lippfq ¨ Lippf´1q. If distpfq ď K, then f is called a K-Lipschitz embedding.

Given a, b P R`, S Ď X is called a-separated if dXps1, s2q ě a for all s1, s2 P S, b-dense

in X if dXpx, Sq ď b for all x P X , and an pa, bq-skeleton of X if it is a-separated and b-dense

in X . Given a skeleton S of X , there is a coarse Lipschitz embedding f : X Ñ S such that

suptdXpfpxq, SquxPX ă 8 (just map every point of the space to a nearest point in the skeleton),

and so questions about coarse embeddings of metric spaces can be reduced to questions about

coarse embeddings of uniformly discrete metric spaces. By Zorn’s Lemma, every a-separated set

can be extended to a maximal (in the sense of set containment) pa, aq-skeleton of X . Note that

|S| ď denspXq (where |S| denotes the cardinality of S and where denspXq, the density character

ofX , is the smallest cardinality of a set dense inX) for any skeleton S ofX . And ifX is a normed

linear space, then X “ spanpSq (the closed linear span of S) for any skeleton of X (or else S is

not b-dense in X for any b P R`), and so in this case |S| “ denspXq. The following lemma holds.

Lemma 1. Let pX, } ¨ }Xq be a normed linear space and pY, dY q a metric space. If there exists a

8



map f : X Ñ Y such that limtÑ8 ρf ptq “ 8, then denspXq ď denspY q.

Proof. Let a ą 0 be such that ρf paq ą 0, and let S be an pa, aq-skeleton ofX . Then f |S is injective

and maps S to a ρf paq-separated subset of Y . And so

denspXq “ |S| “ |fpSq| ď denspY q.

A family of sets U Ď PpXq (where PpXq denotes the power set of X) is called a cover of X

if
Ť

UPU
U “ X . The diameter (or mesh) of a cover U of X is

diampUq “ suptdiampUq | U P Uu

where for U Ď X , diampUq “ suptdXpx1, x2q | x1, x2 P Uu is the diameter of U . The Lebesgue

number of a cover U of X is

LpUq “ suptd P r0,8q | For every E Ď X such that diampEq ă d,

there is U P U such that E Ď Uu.

Note that by definitionLptXuq “ 8 andLpttxuuxPXq “ infx‰y dXpx, yq. A cover U ofX is called

a uniform cover if LpUq ą 0 and is called a uniformly bounded (or coarse) cover if diampUq ă 8.

A cover U of X is called point-finite if for all x P X , there are only finitely many U P U such that

x P U . A cover V of X is called a refinement of the cover U of X; and in this case, V is said to

refine U ; if for all V P V , there is U P U such that V Ď U . We have the following lemma.

Lemma 2. Let pX, dXq be a metric space with infinite density character κ, and let U be a point-

finite uniform cover of X . There exists V Ď U such that |V | ď κ and such that V is a point-finite

uniform cover of X with LpVq “ LpUq.

9



Proof. Let txτuτăκ be a dense set in X and let

V “ tU P U | xτ P U for some τ ă κu.

Then |V | ď κ since U is point-finite. Now take any A Ď X such that diampAq ă LpUq. If A “ H,

then clearly there is V P V such that A Ď V , so suppose A ‰ H and let x P A. Choose any

0 ă r ă LpUq ´ diampAq and let B “ AYBrpxq. Then diampBq ă LpUq, and so there is U P U

such that B Ď U . But there is τ ă κ such that xτ P Brpxq Ď B Ď U by the density of txτuτăκ,

and so U P V . Therefore V is a cover of X such that LpVq ě LpUq. Furthermore, V is point-finite

and LpVq “ LpUq because V Ď U .

2.3 Characterizing embeddability

We start by defining the uniform Stone property, which characterizes a metric space’s uniform

embeddability into some c0pκq. One can view the property as a generalization of having finite

(uniform) covering dimension, which is the natural notion of dimension associated with the class

of uniform spaces.

Definition 3. A metric space pX, dXq is said to have the uniform Stone property if every uniform

cover of X has a point-finite uniform refinement.

The class of coarse spaces has a similar notion of dimension associated with it, called asymp-

totic dimension. It has become clear in recent years that many ideas in the uniform theory have

useful analogues in the coarse theory, and so the motivation behind the following definition is to

generalize the property of having finite asymptotic dimension in a manner similar to the way the

uniform Stone property generalizes having finite covering dimension.

Definition 4. A metric space pX, dXq is said to have the coarse Stone property if every uniformly

bounded cover of X refines a point-finite uniformly bounded cover.

We immediately turn to more quantitative formulations. Given a metric space pX, dXq, define

10



the functions ∆
puq
X ,∆

pcq
X : r0,8q Ñ r0,8s by

∆
puq
X prq “ suptLpUq | U is a point-finite cover of X and diampUq ď ru

and

∆
pcq
X pRq “ inftdiampUq | U is a point-finite cover of X and LpUq ě Ru.

Proposition 5. Let pX, dXq be a metric space.

(i) X has the uniform Stone property if and only if ∆
puq
X prq ą 0 for all r ą 0.

(ii) X has the coarse Stone Property if and only if ∆
pcq
X pRq ă 8 for all R P r0,8q.

Proof. (i): Suppose first that X has the uniform Stone property, and take any r ą 0. Let U “

tBr{2pxquxPX , and note that U is a uniform cover of X with diampUq ď r. By assumption, U has a

point-finite uniform refinement V , and so ∆
puq
X prq ě LpVq ą 0. Conversely, suppose ∆

puq
X prq ą 0

for all r ą 0, and take any uniform cover U of X . Since U is uniform, there is r ą 0 such that

LpUq ą r. And by assumption, there is a point-finite cover V of X such that 0 ă LpVq ď ∆
puq
X prq

and diampVq ď r. But then V is a point-finite uniform refinement of U , and so X has the uniform

Stone property.

(ii): Suppose first that X has the coarse Stone property, and take any R P r0,8q. Let U “

tBRpxquxPX , and note that U is a uniformly bounded cover of X with LpUq ě R. By assumption,

U refines a point-finite uniformly bounded cover V , and so ∆
pcq
X pRq ď diampVq ă 8. Conversely,

suppose ∆
pcq
X pRq ă 8 for all R P r0,8q, and take any uniformly bounded cover U of X . Since

U is uniformly bounded, there is R P r0,8q such that diampUq ă R. And by assumption, there

is a point-finite cover V of X such that ∆
pcq
X pRq ď diampVq ă 8 and LpVq ě R. But then V is a

point-finite uniformly bounded cover refined by U , and so X has the coarse Stone property.

From this point forward, whenever we write “uniform Stone property” or “coarse Stone prop-

erty”, we are using the equivalent formulations of these properties in terms of ∆
puq
X and ∆

pcq
X ,

respectively. We have the following lemma.
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Lemma 6. Let pX, dXq be a metric space and let r, R P p0,8q.

(i) ∆
pcq
X , ∆

puq
X are non-decreasing functions.

(ii) If ∆
pcq
X pRq ă 8, then ∆

puq
X p∆

pcq
X pRq ` εq ě R for all ε ą 0.

(iii) If ∆
puq
X prq ą 0, then ∆

pcq
X p∆

puq
X prq ´ εq ď r for all 0 ă ε ă ∆

puq
X prq.

(iv) X has the uniform Stone property if and only if lim
RÑ0

∆
pcq
X pRq “ 0.

(v) X has the coarse Stone property if and only if lim
rÑ8

∆
puq
X prq “ 8.

Proof. (i): This is clear from the definitions.

(ii): If ∆
pcq
X pRq ă 8, then there is a point-finite cover U of X such that diampUq ď ∆

pcq
X pRq ` ε

and LpUq ě R. Thus ∆
puq
X p∆

pcq
X pRq ` εq ě LpUq ě R.

(iii): If ∆
puq
X prq ą 0, then there is a point-finite cover U of X such that LpUq ě ∆

puq
X prq ´ ε and

diampUq ď r. Thus ∆
pcq
X p∆

puq
X prq ´ εq ď diampUq ď r.

(iv): Suppose first that X has the uniform Stone property and take any ε ą 0. Then by as-

sumption, ∆
puq
X pεq ą 0, and so ∆

pcq
X pRq ď ε for any R ă ∆

puq
X pεq by parts (i) and (iii). Thus

limRÑ0 ∆
pcq
X pRq “ 0. Conversely, suppose limRÑ0 ∆

pcq
X pRq “ 0 and take any r ą 0. Let R ą 0

be such that ∆
pcq
X pRq ă r. Then ∆

puq
X prq ě R ą 0 by part (ii), and so X has the uniform Stone

property.

(v): Suppose first that X has the coarse Stone property and take any N P N. Then by assump-

tion, ∆
pcq
X pNq ă 8, and so ∆

puq
X prq ě N for any r ą ∆

pcq
X pNq by parts (i) and (ii). Thus

limrÑ8 ∆
puq
X prq “ 8. Conversely, suppose limrÑ8 ∆

puq
X prq “ 8 and take any R P r0,8q. Let

r P r0,8q be such that ∆
puq
X prq ą R. Then ∆

pcq
X pRq ď r ă 8 by part (iii), and so X has the coarse

Stone property.

It is clear that if X is a metric space with finite diameter, then there are C P r0, 1q and D P

r0,8q such that ∆
pcq
X pRq ď CR ` D for all R P r0,8q (indeed, one may take C “ 0 and

D “ diampXq in this case). The converse is also true.
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Lemma 7. Let pX, dXq be a metric space. If C P r0, 1q and D P r0,8q are such that ∆
pcq
X pRq ď

CR `D for all R P r0,8q, then diampXq ď D
1´C

.

Proof. Take any 0 ă ε ă 1´ C. Then for any R ą D
1´C´ε

,

∆
pcq
X pRq ď CR `D ă CR ` p1´ C ´ εqR “ p1´ εqR.

So suppose there exist x, y P X such that dXpx, yq ą D
1´C´ε

. Then

∆
pcq
X pp1` εqdXpx, yqq ă p1´ εqp1` εqdXpx, yq “ p1´ ε

2
qdXpx, yq.

Thus there is a point-finite cover U of X with LpUq ě p1 ` εqdpx, yq ą dpx, yq satisfying

diampUq ă p1 ´ ε2qdpx, yq ă dpx, yq. But this is a contradiction since diamptx, yuq “ dpx, yq.

Therefore dpx, yq ď D
1´C´ε

for every x, y P X . Since 0 ă ε ă 1 ´ C was arbitrary, diampXq ď

D
1´C

.

In some cases it might be more natural to find bounds for ∆
puq
X rather than ∆

pcq
X or vice versa.

Lemma 6 provides a way of switching from one to the other and this is especially easy in the case

below.

Lemma 8. Let pX, dXq be a metric space. Given C P p0,8q, ∆
pcq
X pRq ď CR for all R P r0,8q iff

∆
puq
X prq ě

1
C
r for all r ą 0.

Proof. Suppose first that ∆
pcq
X pRq ď CR for all R P r0,8q. Take any r ą 0 and 0 ă ε ă r. Then

∆
pcq
X

`

r´ε
C

˘

ď r ´ ε and so by Lemma 6,

∆
puq
X prq ě ∆

puq
X

´

∆
pcq
X

´r ´ ε

C

¯

` ε
¯

ě
1

C
¨ pr ´ εq.

Since 0 ă ε ă r was arbitrary, ∆
puq
X prq ě

1
C
r for all r ą 0.

Now suppose ∆
puq
X prq ě

1
C
r for all r ą 0. Take anyR P r0,8q and ε ą 0. Then ∆

puq
X pCpR`εqq ě

13



R ` ε and so by Lemma 6,

∆
pcq
X pRq ď ∆

pcq
X p∆

puq
X pCpR ` εqq ´ εq ď CpR ` εq.

Since ε ą 0 was arbitrary, ∆
pcq
X pRq ď CR for all R P r0,8q.

Lemma 9. Let pX, } ¨ }Xq be a normed linear space. The following are equivalent:

(i) ∆
pcq
X pRq ă 8 for some R P p0,8q.

(ii) There is C P r0,8q such that ∆
pcq
X pRq ď CR for all R P r0,8q.

(iii) X has the coarse Stone property.

(iv) X has the uniform Stone property.

Proof. (i) ñ (ii): Let R P p0,8q be such that ∆
pcq
X pRq ă 8. Pick any uniformly bounded point-

finite cover U of X such that LpUq ě R. Simply scaling U shows that ∆
pcq
X pR

1q ď
diampUq

R
R1 for

any R1 P r0,8q.

(ii)ñ (iii): Clear.

(iii) ñ (iv): If X has the coarse Stone property, then in particular, ∆
pcq
X p1q ă 8. Thus, X has the

uniform Stone property by (i)ñ (ii) and Lemma 8.

(iv)ñ (i): Lemma 6.

The following two propositions show that the uniform (respectively, coarse) Stone properties is

hereditary in the sense that a uniformly (respectively, coarsely) embedded subset of a metric space

with the uniform (respectively, coarse) Stone property has the uniform (respectively, coarse) Stone

property respectively.

Proposition 10. Let pX, dXq be a metric space and pY, dY q a metric space with the uniform Stone

property. If there exists a uniform embedding f : X Ñ Y , then X has the uniform Stone property.

If f is a bi-Lipschitz embedding and if there is c ą 0 such that ∆
puq
Y prq ě cr for all r ą 0 , then

∆
puq
X prq ě

c
distpfq

r for all r ą 0.
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Proof. Fix r ą 0. Since f is a uniform embedding, limtÑ0 ωf ptq “ 0 and ρf ptq ą 0 for all t ą 0.

Take any 0 ă ε1 ă ρf prq and 0 ă ε2 ă ∆
puq
Y pρf prq´ε1q and let V be a point-finite cover of Y such

that diampVq ď ρf prq´ε1 and LpVq ě ∆
puq
Y pρf prq´ε1q´ε2. Let U “ tf´1pV quV PV . Then U is a

cover of X . Note that U inherits point-finiteness from V . And for any V P V , diampf´1pV qq ď r

since diampV q ď ρf prq ´ ε1. This means diampUq ď r. Thus,

∆
puq
X prq ě LpUq ě inf ω´1

f prLpVq,8sq ě inf ω´1
f pr∆

puq
Y pρf prq ´ ε1q ´ ε2,8sq ą 0

by definition of ∆
puq
X , the assumptions on ρf and ωf , and since Y has the uniform Stone property.

Thus, X has the uniform Stone property. The special case follows by bounding ωf , ρf , and ∆
puq
Y

with linear functions and letting ε1, ε2 Ñ 0.

Proposition 11. Let pX, dXq be a metric space and pY, dY q a metric space with the coarse Stone

property. If there exists a coarse embedding f : X Ñ Y , then X has the coarse Stone property. If

f is a coarse Lipschitz embedding and there are C,D P r0,8q such that ∆
pcq
Y pRq ď CR `D for

all R P r0,8q, then there are C 1, D1 P r0,8q such that ∆
pcq
X pRq ď C 1R ` D1 for all R P r0,8q.

If, in particular, f is a bi-Lipschitz embedding and D “ 0, then ∆
pcq
X pRq ď CdistpfqR for all

R P r0,8q.

Proof. Fix R P r0,8q. Since f is a coarse embedding, ωf ptq ă 8 for all t P r0,8q and

limtÑ8 ρf ptq “ 8. Take any ε ą 0 and let V be a point-finite cover of Y such that LpVq ě

ωf pRq ` ε and diampVq ď ∆
pcq
Y pωf pRq ` εq ` ε. Let U “ tf´1pV quV PV . Then U is a cover of X .

Note that U inherits point-finiteness from V . Now take any A Ď X such that diampAq ă R. Then

diampfpAqq ă ωf pRq ` ε, and so fpAq Ď V for some V P V . Therefore A Ď f´1pV q “ U for

some U P U . Since A Ď X was arbitrary, this means LpUq ě R. Thus,

∆
pcq
X pRq ď diampUq ď sup ρ´1

f pr0, diampVqsq

ď sup ρ´1
f pr0,∆

pcq
Y pωf pRq ` εq ` εsq ă 8
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by definition of ∆
pcq
X , the assumptions on ρf and ωf , and since Y has the coarse Stone property.

Thus, X has the coarse Stone property. The special cases follow by bounding ωf , ρf , and ∆
pcq
Y

with affine or linear functions and letting εÑ 0.

Proposition 12. For any cardinality κ, ∆
pcq

c`0 pκq
pRq “ R for all R P r0,8q.

Proof. Take any n P N and R P r0,8q. Given a finite subset M of κ, denote the set tx P

pNY t0uqκ | xξ “ 0 if ξ RMu by NM . For each finite subset M of κ and x P NM , let

UM,x “

"

f P c`0 pκq | fpξq P
xξ
n
`

„

0, 2R `
1

n

˙

for all ξ P κ
*

.

Then for a fixed finite subset M of κ and a fixed f P c`0 pκq, there are at most p2nrRs` 1q|M | many

x P NM such that f P UM,x. Let

U “
 

UM,x |M is a finite subset of κ and x P NM
(

.

Now take any f P c`0 pκq. There is a finite subset M of κ such that fpξq ă 1
n

if ξ R M , and in this

case there is x P NM such that BRpfq Ď UM,x (simply choose xξ “ tnpfpξq ´ Rqu when ξ P M

and xξ “ 0 otherwise). Now suppose M 1 Ľ M and x1 P NM 1 is such that f P UM 1,x1 . Then for all

ξ P M 1zM , x1ξ “ 0 (or else fpξq ě 1
n

, contradicting the choice of M ). Thus UM 1,x1 “ UM,y for

some y P NM . This means that for every f P c`0 pκq, f P U for only finitely many U P U . By the

above, U is a point-finite cover of c`0 pκq refined by tBRpfqufPc`0 pκq such that diampUq “ 2R ` 1
n

.

Since every A Ď c`0 pκq such that diampAq ă 2R is contained in a ball of radius R (centered

at
´

supπτ pAq´inf πτ pAq
2

¯

τăκ
, where πτ is the τ -th coordinate functional), this means LpUq ě 2R.

Thus, since n P N was arbitrary, ∆
pcq

c`0 pκq
p2Rq ď 2R. And so, by Lemma 7, ∆

pcq

c`0 pκq
pRq “ R for all

R P r0,8q.

Corollary 13. For any infinite cardinality κ, ∆
pcq
c0pκq

pRq “ 2R for all R P r0,8q.

Proof. Fix R P r0,8q and suppose ∆
pcq
c0pκq

pRq ă 2R. Then there exists a point-finite cover U of

c0pκq such that LpUq ě R and diampUq ă 2R. Let peτ qτăκ be the standard basis for c0pκq. Given
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a finite subset M of κ and an ε P t´1, 1uM , let

AM,ε “

#

ÿ

τPM

Cτeτ | ετCτ P

ˆ

1

8
diampUq ´ 1

4
R,

1

4
diampUq ` 1

2
R

˙

+

.

Fix a finite subsetM of κ. Note that for any ε P t´1, 1uM , diampAM,εq ă R, and so there isUM,ε P

U such that AM,ε Ď UM,ε. But diampAM,δYAM,εq ą diampUq whenever δ, ε P t´1, 1uM are such

that δ ‰ ε, and so in this case UM,δ ‰ UM,ε. Thus, as 0 P AM,ε for every every ε P t´1, 1uM , there

are at least 2|M | different U P U such that 0 P U . But κ is infinite, and so has subsets of arbitrarily

large finite cardinality. That is, there are infinitely many U P U such that 0 P U , contradicting the

point-finiteness of U . Therefore ∆
pcq
c0pκq

pRq ě 2R. Now, given f P c0pκq, define gf P c`0 pκq by

gp2ξq “ maxt0, fpξqu and gp2ξ ` 1q “ maxt0,´fpξqu for every ξ ă κ. The map f ÞÑ gf is a

2-Lipschitz embedding, and so by Proposition 11 and Proposition 12, ∆
pcq
c0pκq

pRq ď 2R. That is,

∆
pcq
c0pκq

pRq “ 2R.

Note that Proposition 11, Proposition 12, and Corollary 13 together show that the optimal

distortion for a bi-Lipschitz embedding of c0pκq into c`0 pκq is 2. We now come to the main result.

The proof combines techniques from both Pelant and Assouad.

Theorem 14. Let pX, dXq be a metric space with infinite density character κ. If there are C P

r1,8q and D P r0,8q such that ∆
pcq
X pRq ď CR `D for all R P r0,8q; then for any λ ą 0, any

K ą 2pC ` λq, and any L ą pC`λqD
λ

; there exists a coarse Lipschitz embedding f : X Ñ c`0 pκq

such that

dXpx, yq ´ L ď }fpxq ´ fpyq}8 ď KdXpx, yq

for every x, y P X . If D “ 0, then it is possible to take L “ 0.

Proof. Note that for any λ ą 0, ∆
pcq
X pRq ă pC ` λqR for every R P pD

λ
,8q. Pick any t ą 1,

any 0 ă ε ă 1, any λ ą 0, and any point O P X . Let K “
2tpC`λq

1´ε
. Let A “

 

n P Z | tn ą D
λ

(

.

Then for each n P A there is a point-finite cover Un “ tUn,τuτăκ of X (one can take |Un| ď κ

by Lemma 2) such that LpUnq ě tn and diampUnq ď pC ` λqtn. For each n P A and τ ă κ, let
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Vn,τ “ Un,τzBpC´1`λqtn{2pOq and define fn,τ : X Ñ R` by

fn,τ pxq “ K min

"

dXpx, V
c
n,τ q,

tn

2

*

for each x P X . Then for each n P A and τ ă κ, fn,τ is Lipschitz with Lippfq ď K and bounded

by Ktn

2
. Note that if fn,τ pxq ą 0, then x P Vn,τ and so x R BpC´1`λqtn{2pOq. Thus fn,τ is supported

on the complement of BpC´1`λqtn{2pOq. Therefore, by the bound on fn,τ and the point-finiteness

of Un, for fixed x P X and η ą 0, the set

tpn, τq P Aˆ κ | fn,τ pxq ą ηu

is finite. It follows that the map f : X Ñ c`0 pκq defined by

fpxq “
ÿ

pn,τqPAˆκ

fn,τ pxqen,τ

for every x P X (where ten,τupn,τqPAˆκ is any enumeration of the standard basis of c0pκq) is a

well-defined Lipschitz map with Lippfq ď K. Now fix x, y P X such that dXpx, yq ą pC `

λq infttn | n P Au and dXpx,Oq ě dXpy,Oq. Let n P A be such that pC ` λqtn ă dXpx, yq ď

pC ` λqtn`1. Then by the triangle inequality,

dXpx,Oq ą
pC ` λqtn

2
“
tn

2
`
pC ´ 1` λqtn

2

and so Btn{2pxq X BpC´1`λqtn{2pOq “ H. But LpUnq ě tn, and so there is τ P κ such that

Bp1´εqtn{2pxq Ď Un,τ . Therefore fn,τ pxq ě K p1´εqtn

2
. Furthermore,

dXpy, Vn,τ q ě dXpx, yq ´ diampVn,τ q ą pC ` λqt
n
´ pC ` λqtn “ 0
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and so fn,τ pyq “ 0. Thus

}fpxq ´ fpyq} ě |fn,τ pxq ´ fn,τ pyq| ě
Kp1´ εqtn

2

“
Kp1´ εq

2pC ` λqt
pC ` λqtn`1

ě dXpx, yq.

And so, for every x, y P X ,

dXpx, yq ´ pC ` λq infttn | n P Au ď }fpxq ´ fpyq} ď KdXpx, yq.

Since t ą 1 and 0 ă ε ă 1 were arbitrary, the theorem follows.

Corollary 15. A metric space pX, dXq is coarse Lipschitzly embeddable into c0pκq for some car-

dinality κ if and only if there are C,D P r0,8q such that ∆
pcq
X pRq ď CR `D for all R P r0,8q.

A metric space pX, dXq is bi-Lipschitzly embeddable into c0pκq for some cardinality κ if and only

if there is C P r0,8q such that ∆
pcq
X pRq ď CR for all R P r0,8q.

Proof. The case when X is a finite metric space is trivial, so suppose X is an infinite metric space.

If X coarse Lipschitzly embeds into c0pκq, then the implication follows from Corollary 13 and

Proposition 11.

Conversely, if there are C,D P r0,8q such that ∆
pcq
X pRq ď CR ` D for all R P r0,8q, then

X coarse Lipschitzly embeds (bi-Lipschitzly embeds if D “ 0) into c`0 pdenspXqq and hence into

c0pdenspXqq by Theorem 14.

Compare the above corollary to Pelant [8], who shows the uniform Stone property characterizes

uniform embeddability of a metric space into c0pκq for some κ; and to Baudier and Deville [4], who

show property πpλq characterizes good-λ-embeddability of a separable metric space into c0 (see

[4] for the definitions). Lemma 6 and Corollary 15 together show that a metric space X’s uniform,

coarse Lipschitz, and bi-Lipschitz embeddability into c`0 pκq for some κ can all be determined from

the modulus ∆
pcq
X . In light of this, it is natural to ask whether a metric space’s coarse embeddability
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into c0pκq for some cardinality κ can similarly be determined from ∆
pcq
X . Proposition 11 shows that

the coarse Stone property is at least a necessary condition.

Corollary 16. Let X be a normed linear space. The following are equivalent:

(i) X coarsely embeds into c0pκq.

(ii) X has the coarse Stone property.

(iii) X bi-Lipschitzly embeds into c0pκq.

(iv) X uniformly embeds into c0pκq.

(v) X has the uniform Stone property.

Proof. (i) ñ (ii): By Lemma 1, denspXq ď κ. By Corollary 13 and Proposition 11, X has the

coarse Stone property.

(ii) ñ (iii): By Lemma 9, there is C P r0,8q such that ∆
pcq
X pRq ď CR for all R P r0,8q. And so

X bi-Lipschitzly embeds into c0pκq by Theorem 14.

(iii)ñ (iv): Clear.

(iv)ñ (v): By Corollary 13 and Proposition 10, X has the uniform Stone property.

(v) ñ (i): By Lemma 9, there is C P r0,8q such that ∆
pcq
X pRq ď CR for all R P r0,8q. And so

X bi-Lipschitzly embeds (and therefore coarsely embeds) into c0pκq by Theorem 14.

Kalton [5] has shown that coarse/uniform/Lipschitz embeddability into `8 are also equivalent

notions for normed linear spaces. So far `8 and c0pκq seem to be the only spaces known to have this

property, and given that c0pcq (where c is the cardinality of the continuum) bi-Lipschitzly embeds

into `8 (see [2]), one might ask whether the `8 case actually follows from the c0pκq case. That

is, can one find a bi-Lipschitz embedding of `8 into c0pcq? Equivalently, does `8 have the coarse

(or uniform) Stone property? Pelant [7] and Shchepin [9] have shown that `8pΓq fails to have

the uniform Stone property when |Γ| is large enough, but to the author’s knowledge, the minimal

cardinality is unknown.
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2.4 Spaces with the coarse Stone property

In this subsection, we show directly that certain classes of metric spaces have the coarse Stone

property. In each of the examples given, C P r0,8q is found such that ∆
pcq
X pRq ď CR for all

R P r0,8q and so one can use Theorem 14 to estimate how well X bi-Lipschitzly embeds into

some c`0 pκq. Recall that a metric space is called locally finite if every bounded set is finite.

Proposition 17. If pX, dXq is a locally finite metric space, then ∆
pcq
X pRq ď R for all R P r0,8q.

Consequently, every locally finite metric space p2` εq-Lipschitzly embeds into c`0 for all ε ą 0.

Proof. Fix R P r0,8q. Let U “ tU Ď X | diampUq ă Ru. Then U is a cover of X such that

LpUq ě R and diampUq ď R. Now take any x P X and suppose x P U . Then dpx, yq ă R for all

y P U , and so U Ď BRpxq. But |BRpxq| ă 8 since X is locally finite. Thus, since there are only

2|BRpxq| ă 8 many U Ď X such that U Ď BRpxq, there are only finitely many U P U such that

x P U . This means U is point-finite, and thus, ∆
pcq
X pRq ď R.

Note that Proposition 17 actually recovers the best distortion for embedding the class of locally

finite metric spaces into c`0 (found by Kalton and Lancien [6]). The author does not know whether

the same bound holds for ∆
pcq
X when X is an arbitrary proper metric space (that is, a metric space

whose balls are all relatively compact).

Proposition 18. If pX, dXq is a separable metric space, then ∆
pcq
X pRq ď 2R for all R P r0,8q.

Consequently, every separable metric space p4` εq-Lipschitzly embeds into c`0 for all ε ą 0.

Proof. Take any r ą 0 and any 0 ă ε ă r
2
. Let txnu8n“1 be a dense subset of X . For each n P N,

let Un “ B r
2
pxnqz

n´1
Ť

j“1

Bεpxjq. Then U “ tUnu8n“1 is a cover of X such that diampUq ď r. Now

fix x P X and suppose n P N is such that dXpx, xnq ă ε. If x P Uj , then j ď n by the way U

was defined. Therefore x P Uj for only finitely many j P N. Thus, U is point-finite. Now suppose

A Ď X is such that diampAq ă r
2
´ε. Letm “ mintj P N | dXpxj, Aq ă εu. Then for each y P A,

dXpxm, yq ď dXpxm, Aq ` diampAq ă r
2

and dXpxj, yq ě ε for all j ă m. Thus A Ď Um, and

therefore LpUq ě r
2
´ ε. Since 0 ă ε ă r

2
was arbitrary, ∆

puq
X prq ě

1
2
r for all r ą 0. By Lemma 8,

∆
pcq
X pRq ď 2R for all R P r0,8q.
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Note that the 2 in Proposition 18 is optimal by Corollary 13. At this point, it should be remarked

that ∆
pcq
`p
pRq ě p2p`1q1{p

2
R for every p P r1,8q and R P r0,8q. This follows from Theorem 14 and

Kalton and Lancien [6], who show that the best possible bi-Lipschitz embedding of `p into c`0 has

distortion p2p ` 1q1{p.

Definition 19. A metric space pT, dT q is called an R-tree if it satisfies the following conditions:

(i) For any s, t P T , there exists a unique isometric embedding φs,t : r0, dT ps, tqs Ñ T such that

φs,tp0q “ s and φs,tpdT ps, tqq “ t.

(ii) Any injective continuous mapping ϕ : r0, 1s Ñ T has the same range as φϕp0q,ϕp1q.

A rooted R-tree is an R-tree T paired with a point t0 P T , and in this case t0 is called the root

of T . Given t1, t2 P T , a point s P T is said to be between t1 and t2 if s “ φt1,t2pxq for some

x P r0, dT pt1, t2qs. Given a nonempty subset A of a rooted R-tree pT, t0q, a point s P T is called a

common ancestor of A if s is between t0 and t for all t P A, and is called the (necessarily unique)

last common ancestor ofA if s “ φt0,tpmaxtx P r0, dT pt0, tqs | φt0,tpxq is a common ancestor of Auq

for some t P A. One can think of an R-tree as being a graph-theoretical tree with the edges “filled

in".

Proposition 20. If pT, dT q is an R-tree (possibly non-separable), then ∆
pcq
T pRq ď 2R for all R P

r0,8q. Consequently, every R-tree p4` εq-Lipschitzly embeds into c`0 pκq for some κ for all ε ą 0.

Proof. Pick any t0 P T to be the root. Fix R P r0,8q and take any n P N. For each t P T , let

Ut “

"

s P T | t is between t0 and s and dT pt, sq ď R `
1

n

*

.

For each m P N Y t0u, let Um “
 

Ut | dT pt0, tq “
m
n

(

. Let U “
8
Ť

m“0

Um. Then for fixed s P T ,

there are at most nrRs ` 1 many U P U such that s P U . Thus U is a point-finite cover of T such

that diampUq ď 2pR` 1
n
q. Now take any A Ď T with diampAq ă R. Then if t is the last common

ancestor of all the points in A and t1 “ φt0,tpmaxtm
n
| m P N Y t0u and m

n
ď dT pt0, tquq, then
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A Ď Ut1 P U . This means LpUq ě R. Thus, since n P N was arbitrary, ∆
pcq
T pRq ď 2R for all

R P r0,8q.

Proposition 21. Given N P N, ∆
pcq

`N8
pRq “ R for all R P r0,8q.

Proof. Take any n P N. For each x P ZN , let

Ux “

"

f P `N8 | fpjq P
xj
n
`

ˆ

´1, 1`
1

n

˙*

.

Then for fixed f P `N8, there are at most p2n ` 1qN many x P ZN such that f P Ux. Let U “

tUx | x P ZNu. Then by the above, U is a point-finite cover of `N8 refined by tB1pfqufP`N8 such that

diampUq “ 2 ` 1
n

. Since every A Ď `N8 such that diampAq ă 2 is contained in a ball of radius

1 (centered at
´

suppπjpAqq´infpπjpAqq

2

¯N

j“1
, where πj is the j-th coordinate functional), this means

LpUq ě 2. Thus, since n P N was arbitrary, ∆
pcq

`N8
p2q ď 2. By Lemma 7 and (the proof of) Lemma

9, ∆
pcq

`N8
pRq “ R for all R P r0,8q.
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3. COARSE EMBEDDINGS INTO SUPERSTABLE SPACES

3.1 Introduction

D. J. Aldous showed in Theorem 1.1 of [2] that every infinite-dimensional subspace of L1

contains an isomorphic copy of `p, for some p P r1,8q. In order to generalize Aldous’s result,

J. L. Krivine and B. Maurey [10] introduced the notion of stable Banach space. A metric space

pM,dq is called stable if

lim
i,U

lim
j,V

dpxi, yjq “ lim
j,V

lim
i,U

dpxi, yjq

for all bounded sequences pxiq8i“1 and pyjq8j“1 in M , and all nonprincipal ultrafilters U and V over

N. A Banach space is called stable if it is stable as a metric space with the metric induced by its

norm. Stability for general metric spaces seems to have first been defined by D. J. H. Garling [6].

Krivine and Maurey showed in Theorem IV.1 of [10] that every stable Banach space contains an

isomorphic copy of `p for some p P r1,8q. As Lp is stable for all p P r1,8q (see Theorem II.2 of

[10]), this is a generalization of Aldous’s result.

Krivine and Maurey’s result can be extended to the nonlinear setting as follows. Let pM,dMq

and pN, dNq be metric spaces. Given f : M Ñ N , define ωf : r0,8q Ñ r0,8s and ρf : r0,8q Ñ

r0,8s by

ωf ptq “ suptdNpfpxq, fpyqq | dMpx, yq ď tu (3.1)

and

ρf ptq “ inftdNpfpxq, fpyqq | dMpx, yq ě tu (3.2)

for all t P r0,8q. The function f is called a uniform embedding (in which case M is said to

be uniformly embeddable into N ) if limtÑ0` ωf ptq “ 0 (i.e., if f is uniformly continuous) and

ρf ptq ą 0 for all t P r0,8q (i.e., f´1 exists and is uniformly continuous). The function f is called

a uniform equivalence (in which case M is said to be uniformly equivalent to N ) if f is a uniform

embedding and is surjective. A Banach space X is said to be superstable if every Banach space
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that is finitely representable in X is also stable. Y. Raynaud showed in the corollary of Theorem

0.2 of [13] that if a Banach space is uniformly embeddable into a superstable Banach space, then

X contains an isomorphic copy of `p for some p P r1,8q. As Lp is superstable for all p P r1,8q

(see Theorem 0.1 of [13]), this is a generalization of Krivine and Maurey’s result.

The interest in Banach spaces as metric spaces and their nonlinear geometric properties has

recently increased significantly, hence the question whether analogues of Raynaud’s result hold

for different kinds of nonlinear embeddings other than uniform embeddings becomes natural.

Given metric spaces pM,dMq and pN, dNq, a function f : M Ñ N is said to be expanding if

limtÑ8 ρf ptq “ 8 and is said to be coarse if ωf ptq ă 8 for all t P r0,8q. If f is both expanding

and coarse, then f is called a coarse embedding (in which case M is said to be coarsely embed-

dable into N ). If f is a coarse embedding and supyPN dNpy, fpMqq ă 8, then f is called a coarse

equivalence (in which case M is said to be coarsely equivalent to N ). In Problem 6.6 of [8], N. J.

Kalton asked: If a Banach space X is coarsely embeddable into a superstable Banach space, must

X contain an isomorphic copy of `p for some p P r1,8q? Although we are not able to answer

Kalton’s question, we obtain the following result.

Theorem 3.7.4. If a Banach space X is coarsely embeddable into a superstable Banach space,

then X has a basic sequence that generates a spreading model isomorphic to `p for some p P

r1,8q.

Kalton proved in Theorem 2.1 of [8] that every stable metric space is both uniformly and

coarsely embeddable into some reflexive Banach space (and this can be witnessed by a single

function). In Problem 6.1 of [8], Kalton asked: Is every (separable) reflexive Banach space coarsely

(or uniformly) embeddable into a stable metric space? By Raynaud’s result, it is clear that there are

separable reflexive spaces that are not uniformly embeddable into any superstable Banach space.

However, to the best of our knowledge, it was unknown whether every reflexive Banach space is

coarsely embeddable into some superstable Banach space. As a corollary of Theorem 3.7.4, we

obtain the following.

Corollary 3.7.6. There are separable reflexive Banach spaces that are not coarsely embeddable
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into any superstable Banach space.

We now describe the organization of this section. In Section 3.2, we recall all the background

that will be needed and prove two key lemmas, Lemma 3.2.1 and Lemma 3.2.5, that we could

not find elsewhere in the literature. In Section 3.3, we define the space of types that we will deal

with, along with its operations of dilation and convolution and the relevant notions of admissibility

and symmetry, and then derive some of its basic properties. In Section 3.4, we define conic class

and show both the existence of a minimal closed admissible conic class and the existence of a

common admissible point of continuity for the family of finitely many applications of dilation

and convolution within every closed admissible conic class. In Section 3.5, we discuss how to

associate a spreading model to a well-chosen admissible symmetric type and show how inequalities

involving the spreading model relate to inequalities involving the type. In Section 3.6, we use what

we call “coarse approximating sequences” to derive an inequality that allows long convolutions to

be shortened. Finally, in Section 3.7 we define what it means for a type to be a coarse `p-type and

show that every minimal closed admissible conic class must contain such a type. From the work

done in preceding sections, the main theorem follows.

The contents of this section were jointly researched with B. M. Braga and can be found in a

separate preprint on the arXiv [5].

3.2 Preliminaries

We let N “ tnu8n“1, N0 “ t0uYN, R` “ r0,8q, and Q` “ QXR`. The Banach space notation

we use is standard, and we refer the reader to [1] if review is necessary. For instance, we denote

the closed unit ball of a Banach space X by BX . Also, given p P r1,8s and x “ pxiqNi“1 Ď R, we

let }x}p “ p
řN
i“1 |xi|

pq1{p and }x}8 “ maxt|xi| | 1 ď i ď Nu.

We define stability for metric spaces and superstability for Banach spaces as in Section 3.1. By

Theorem II.1 of [10] and Theorem 0.1 of [13], both stability and superstability are closed under

taking `p-sums, for p P r1,8q. Precisely, given p P r1,8q and a stable (respectively, superstable)

Banach space X , `ppXq is also stable (respectively, superstable). We will use this property without

mention. In particular, `p is superstable for every p P r1,8q. Note however that c0 is not even
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coarsely or uniformly embeddable into a stable metric space (see [8]).

We say that pM,dMq is a pseudometric space if dM : M ˆM Ñ R is a pseudometric, i.e., if

d is a nonnegative symmetric map satisfying the triangle inequality. We define stability for pseu-

dometric spaces analogously to stability for metric spaces. Given pseudometric spaces pM,dMq

and pN, dNq, we define ωf and ρf for a function f : M Ñ N by the formulas given in Equations

3.1 and 3.2, and define uniform and coarse embedding and equivalence for pseudometric spaces

analogously to the same terminology for metric spaces found in Section 3.1. Two pseudomet-

rics dM and d1M defined for the same set M are said to be coarsely equivalent if the identity map

Id : pM,dMq Ñ pM,d1Mq is a coarse equivalence.

A Banach space S is called a sequence space if it is the completion of c00 under some norm such

that the standard basis vectors pζnq8n“1 of c00 each have norm one. Let pX, } ¨ }q be a Banach space

and pxnq8n“1 a bounded sequence in X without Cauchy subsequences. Then, after possibly taking

a subsequence of pxnq8n“1, there exists a sequence space pS, } ¨ }Sq such that for all pαjqkj“1 Ď R,

›

›

›

›

›

k
ÿ

j“1

αjζj

›

›

›

›

›

S

“ lim
n1ă¨¨¨ănk

›

›

›

›

›

k
ÿ

j“1

αjxnj

›

›

›

›

›

,

where for a function f : Nk Ñ R, limn1ă¨¨¨ănk fpn1, . . . , nkq, when it exists, denotes the unique

L P R such that for every ε ą 0, there is N P N such that |fpn1, . . . , nkq ´ L| ă ε whenever

N ď n1 ă ¨ ¨ ¨ ă nk. For a proof of this, see Theorem 11.3.7 in [1]. The space S is called

a spreading model for pxnq8n“1. Within a spreading model, the sequence pζnq8n“1 is 1-spreading,

i.e., pζnq8n“1 is 1-equivalent to all of its subsequences. Also, the sequence pζ2n´1 ´ ζ2nq
8
n“1 is

1-unconditional (see Proposition II.3.3 of [7]).

Let pX, } ¨ }q be a Banach space, I an index set, and U a nonprincipal ultrafilter over I . We

define the ultrapower XI{U of X with respect to U as the set

"

pxiqiPI P X
I
| sup

iPI
}xi} ă 8

*

{ „,

where pxiqiPI „ pyiqiPI if limi,U }xi ´ yi} “ 0, equipped with the norm } ¨ }XI{U defined by
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}pxiqiPI}XI{U “ limi,U }xi} for all equivalence classes pxiqiPI . Every ultrapowerXI{U of a Banach

space X is finitely representable in X (see Proposition 11.1.12(i) of [1]). On the other hand, if a

separable Banach space Y is finitely representable in X , then Y is isometrically isomorphically

embeddable into some ultrapower of X (see Proposition 11.1.12(ii) of [1]). Therefore a Banach

space X is superstable if and only if all of its ultrapowers are stable.

Given a coarse map f : X Ñ Y between Banach spaces, we would like to be able to modify

f so that it has the additional property that the difference of the images of two points in X has

the same norm as the image of the difference. In the lemma below, we use Markov-Kakutani’s

fixed-point theorem to show that if we allow ourselves to substitute Y with an ultrapower of the

`1-sum of Y , then such a modification is possible. Precisely, we have the following.

Lemma 3.2.1. Let X and Y be Banach spaces and f : X Ñ Y a coarse map. Then there exists

a nonprincipal ultrafilter U on an index set I , and a map F : X Ñ `1pY q
I{U , such that for all

x, y P X ,

ρf p}x´ y}q ď }F pxq ´ F pyq} “ }F px´ yq} ď ωf p}x´ y}q.

Proof. Let

C “
ź

px,yqPXˆX

rρf p}x´ y}q, ωf p}x´ y}qs.

We consider C as a subset of RXˆX with its pointwise convergence topology. By the assumption

that f is coarse and Tychonoff’s theorem, C is compact. Let d : X ˆ X Ñ R be defined by

dpx, yq “ }fpxq ´ fpyq} for all x, y P X and note that d P C.

For each z P X , define ẑ : RXˆX Ñ RXˆX by ẑpgqpx, yq “ gpx ` z, y ` zq for all g P RXˆX

and all x, y P X . Let A “ convtẑpdq | z P Xu Ď RXˆX . Then A Ď C by the definition

of the pointwise convergence topology on RXˆX . The family tẑæAuzPX is easily seen to be a

commuting family of continuous, affine self-mappings of the compact convex subset A of RXˆX .

By Markov-Kakutani’s fixed-point theorem, there exists D P A such that ẑpDq “ D for all z P X .
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That is, Dpx ` z, y ` zq “ Dpx, yq for all x, y, z P X . By the definition of A, there is a set

tDiuiPI Ď convtẑpdq | z P Xu and a nonprincipal ultrafilter U over I such that D “ limiPU Di.

For each i P I , let pαi,jq
spiq
j“1 Ď r0, 1s and pzi,jq

spiq
j“1 Ď X be such that

řspiq
j“1 αi,j “ 1 and Di “

řspiq
j“1 αi,j ẑi,jpdq. Then for each i P I , define Fi : X Ñ `1pY q by Fipxq “ pFi,jpxqq

8
j“1 for each

x P X , where

Fi,jpxq “

$

’

’

&

’

’

%

αi,jpfpx` zi,jq ´ fpzi,jqq 1 ď j ď spiq

0 otherwise

for each x P X and j P N. Finally, define F : X Ñ `1pY q
I{U by F pxq “ pFipxqqiPI . As

supiPI }Fipxq}`1pY q ď ωf p}x}q for all x P X , the map F is well-defined. And by definition of d, F ,

and the norm on `1pY q
I{U ,

}F pxq ´ F pyq}`1pY qI{U “ Dpx, yq

for all x, y P X . Therefore, as Dpx, yq “ Dpx ´ y, 0q for all x, y P X , and F p0q “ 0, we are

finished.

Corollary 3.2.2. Let pX, }¨}q be a Banach space and Y a superstable Banach space. If f : X Ñ Y

is a coarse map, then there exists a translation-invariant stable pseudometric d on X such that

ρf p}x´ y}q ď dpx, yq ď ωf p}x´ y}q for all x, y P X . In particular, if X is coarsely embeddable

into a superstable Banach space, then there exists a translation-invariant stable pseudometric d

on X such that the identity map Id : pX, } ¨ }q Ñ pX, dq is a coarse equivalence.

Proof. Let F : X Ñ `1pY q
I{U be obtained from Lemma 3.2.1 applied to f . Define a map d : X ˆ

X Ñ R` by dpx, yq “ }F pxq ´ F pyq}`1pY qI{U for all x, y P X . It can easily be seen that d is

a translation-invariant pseudometric on X and that ρf p}x ´ y}q ď dpx, yq ď ωf p}x ´ y}q for all

x, y P X . As `1pY q
I{U is stable, it follows that d is a stable pseudometric. Furthermore, if f is a

coarse embedding, then Id : pX, } ¨ }q Ñ pX, dq is a coarse equivalence since ρf ptq ď ρIdptq and

ωIdptq ď ωf ptq for all t P r0,8q.
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The corollary above is analogous to Theorem 0.2 of [13], which says that if a Banach space

pX, } ¨ }q is uniformly embeddable into a superstable Banach space, then X has a translation-

invariant stable metric that is uniformly equivalent to the metric induced by } ¨ }. However, Ray-

naud’s proof relies on an averaging process that uses the uniform continuity of a given uniform

embedding. Through the use of Markov-Kakutani’s fixed-point theorem, we have proved some-

thing more general, as it can be easily shown using the triangle inequality that uniformly continuous

maps between Banach spaces are automatically coarse.

Remark 3.2.3. Although not necessary for the main result, Corollary 3.2.2 can actually be im-

proved to show the existence of a translation-invariant stable metric on X coarsely equivalent to

the metric induced by the norm. Indeed, it has been shown by B. M. Braga in Theorem 1.6 of

[4] that if X and Y are Banach spaces and f : X Ñ Y is a coarse embedding, then there is a

coarse embedding f̂ : X Ñ `1pY q with uniformly continuous inverse (meaning ρf̂ ptq ą 0 when-

ever t ą 0). Thus, the same proof as in Corollary 3.2.2 with `1pY q replacing Y and f̂ replacing f

will yield that Id : pX, } ¨ }q Ñ pX, dq is a coarse embedding with uniformly continuous inverse. In

particular, d is a metric because in this case dpx, yq “ 0 implies x “ y.

Let X and Y be metrizable topological spaces. Recall that a subset of a topological space is

called Fσ if it is the countable union of closed sets, is called Gδ if it is the countable intersection

of open sets, and is called comeager if it is the countable intersection of sets with dense interiors.

A function f : X Ñ Y is called Baire class 1 if the inverse image of any open subset of Y under f

is an Fσ subset of X . If Y is separable, and f is Baire class 1, then the set of points of continuity

for f is a comeager Gδ subset of X . If Y is separable and pfn : X Ñ Y q8n“1 is a sequence of

Baire class 1 functions, then pfnq8n“1 : X Ñ Y N is a Baire class 1 function. The pointwise limit

of a sequence of continuous functions from X to Y is a Baire class 1 function. The restriction of

a Baire class 1 function is a Baire class 1 function. For proofs of these facts and more info about

Baire class 1 functions, see [9] and [11].

Lemma 3.2.4. Let X be a metrizable σ-compact topological space, Y a topological space, and

let f : X ˆ Y Ñ R be separately continuous. Given a metric d inducing the topology of X and a
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countable family K of compact subsets of X such that X “
Ť

KPKK; if there is δ ą 0 such that

for each x P X , Bδpxq XK ‰ H for only finitely many K P K, then f is the pointwise limit of a

sequence of continuous functions.

Proof. For each n P N, let txn,iu
8

i“1 be a δ
2pn`1q

-dense set in pX, dq such that
ˇ

ˇtxn,iu
8

i“1 XK
ˇ

ˇ ă 8

for every K P K. For each n, i P N, define gn,i : X Ñ R` by gn,ipxq “ max
 

δ
n`1

´ d pxn,i, xq , 0
(

for every x P X . Note that gn,i is continuous and given x P X , gn,iæBδ{2pxq is a nonzero function

for some but only finitely many i P N. Thus the function hn,i :“
gn,i

ř8
j“1 gn,j

is well-defined and

continuous. For each n P N, define fn : X ˆ Y Ñ R by

fnpx, yq “
8
ÿ

i“1

f pxn,i, yqhn,ipxq

for every px, yq P X ˆ Y and note that fn is itself continuous by the separate continuity of f and

the observation on gn,iæBδ{2pxq. The sequence pfnq8n“1 converges pointwise to f . Indeed, take any

px, yq P XˆY and any ε ą 0. Let N P N be such that |fpx, yq´fpx1, yq| ă ε when dpx, x1q ă δ
N

.

Then, for n ě N ,

|fpx, yq ´ fnpx, yq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“1

pfpx, yq ´ f pxn,i, yqqhn,ipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

i“1

|fpx, yq ´ f pxn,i, yq|hn,ipxq

ă ε ¨
8
ÿ

i“1

hn,ipxq

“ ε.

Given a set X and a family F of functions from X ˆ X to X , define the sequence
`

F rks
˘8

k“1

of subsets of XX recursively by

F r0s “ tx ÞÑ xu

F rk`1s
“
 

x ÞÑ fpx, gpxqq | f P F , g P F rks
(

.
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The following lemma will be needed for the proof of Lemma 3.4.5, which is essential for the proof

of Theorem 3.7.4.

Lemma 3.2.5. Let X be a separable metric space and F a countable family of Baire class 1

functions from X ˆX to X . There is a comeager Gδ subset E of X such that g is continuous on

E for all g P
Ť8

k“1F rks.

Proof. Certainly, g is continuous on E0 “ X for g P F r0s. Suppose k P N0 is such that there is a

comeagerGδ subsetEk ofX such that g is continuous onEk for all g P F rks. For each g P F rks, let

Γg “ tpx, gpxqq | x P Eku. Since F is a countable family of Baire class 1 functions with separable

codomain X , there is a comeager Gδ subset Fg of Γg such that fæΓg is continuous on Fg for all

f P F . Let π : X ˆ X Ñ X be the first coordinate projection. Consider U “ Γg X V ˆ W ,

where V,W are open subsets of X; and suppose x P πpUq, so that px, gpxqq P U . As W is open

and gpxq P W , there is r1 ą 0 such that Br1pgpxqq Ď W . Since g is continuous on Ek, there is

r2 ą 0 such that gpBr2pxq XEkq Ď Br1pgpxqq. Thus pV XBr2pxqq XEk is an open neighborhood

of x in Ek contained in πpUq. Since x P πpUq was arbitrary, πpUq is open in Ek. And U was an

arbitrary element in a basis for the topology on Γg, so πpUq is open in Ek whenever U is open in

Γg. It follows easily that πpFgq is a comeager Gδ subset of Ek since Fg is a comeager Gδ subset

of Γg. Let Ek`1 “
Ş

gPF rks πpFgq. Since F rks is countable, Ek`1 is a comeager Gδ subset of Ek,

and therefore also of X , since Ek is a comeager Gδ subset of X . Now take any g P F rk`1s. Then

there is f P F and g1 P F rks such that gpxq “ fpx, g1pxqq for all x P X . And if x P Ek`1, then

by construction x is a point of continuity for g1 and px, g1pxqq is a point of continuity for fæΓg1
.

Therefore x is a point of continuity for g. Thus, we have constructed a comeager Gδ subset Ek`1

of Ek such that g is continuous on Ek`1 for all g P F rk`1s. And so we can recursively define such

Ek for all k P N. The result follows by taking E “
Ş8

k“0Ek.

3.3 Space of types

Following Raynaud, our strategy for proving Theorem 3.7.4 is to first make an appropriate

definition for the space of types of a Banach space coarsely embeddable into a superstable Banach
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space. This space of types needs to have certain compactness properties and needs to be able to

not only reflect the metric structure of the Banach space, but also the algebraic structure. Using

compactness and methods commonly employed in the proof of Krivine’s theorem, we’ll be able to

show the existence of a type that satisfies a nice `p-inequality, and then push this back down onto

the Banach space.

To motivate the definition of the space of types, first consider a general metric space pM,dq.

One may ask whether M can be compactified in a way that preserves the metric structure on

M . That is, under what conditions will there exist a compact metrizable space T such that M

homeomorphically maps onto a dense subset of T ? Separability is certainly a necessary condition,

and given that Lip1pMq (the space of all real-valued Lipschitz functions over M with Lipschitz

constant less than or equal to 1) is metrizable and closed in RM under the pointwise-convergence

topology when M is separable, a natural σ-locally compact metrizable T that contains a dense

homeomorphic copy of M is the closure of txuxPM in RM , where x is defined for all x P M by

xpyq “ dpx, yq for all y P M . If d is a bounded metric, then T is in fact compact, and since every

topology induced by a metric can be induced by a bounded metric, separability is also a sufficient

condition.

Supposing now that M is a vector space, and limnÑ8 xn, limnÑ8 yn both exist, one may

further ask under what conditions do limnÑ8 pxn ` ynq and limnÑ8 pαxnq exist, where α is some

scalar. Stability of d is enough to show the existence of limmÑ8 limnÑ8 xnpz ´ ymq for any

z P M , and if d is also translation-invariant, this means limnÑ8 pxn ` ynq exists after taking

an appropriate subsequence. If d is induced by a norm then limnÑ8 pαxnq certainly exists since

pαxnqpyq “ |α|xnpy{αq. Otherwise, a slight modification needs to be made to T . One must

now account for scalars by defining T to be a subset of RFˆM , where F is the field of scalars,

and xpλ, yq “ dpλx, yq for all pλ, yq P F ˆM . Now, in this setting, limnÑ8 pαxnq exists since

pαxnqpλ, yq “ xnpλα, yq. With these ideas in mind, we are now ready to explicitly define the space

of types we need. For a more complete discussion of some of the ideas above, see [6].

From now on, we consider a separable infinite-dimensional Banach space pX, } ¨ }q which
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admits a translation-invariant stable pseudometric d coarsely equivalent to the metric induced by

} ¨ }, and the corresponding identity map Id : pX, } ¨ }q Ñ pX, dq. By Corollary 3.2.2, such d exists

as long as X is coarsely embeddable into a superstable Banach space.

Remark 3.3.1. By Remark 3.2.3, we can actually assume that d is a metric. However, in order

to obtain the isomorphism constant in Remark 3.7.5 below, we need to work with d being the

pseudometric given by Corollary 3.2.2.

Remark 3.3.2. Our definition of the space of types will be similar to Raynaud’s, with a few

changes to the proofs resulting from having a metric that is coarsely equivalent rather than uni-

formly equivalent to the metric induced by the norm on X . Note in particular that, in our case,

a sequence may be dense in pX, } ¨ }q while not being dense in pX, dq. Thus, in order to have

metrizability, we must use a countable subset of X to define the space of types.

Let ∆ be a countable } ¨ }-dense Q-vector subspace of X . Given x P ∆, define the function

x P RQˆ∆
` by xpλ, yq “ dpλx, yq for all pλ, yq P Qˆ∆. The space of types on p∆, dæ∆ˆ∆q, which

we denote by T , is defined to be the closure of txuxP∆ in RQˆ∆ (with the topology of pointwise

convergence). An element σ of T is called a type, and is called a realized type if σ “ x for some

x P ∆, in which case σ is also called the type realized by x. The type 0 is called the null or trivial

type.

Note that the countability of Q ˆ ∆ implies that T is metrizable, and so every σ P T can be

expressed as limnÑ8 xn for some sequence pxnq8n“1 in ∆. Such a sequence is called a defining

sequence for σ. Note also that in this case σpλ, xq “ limn,U dpλxn, xq for every pλ, xq P Q ˆ ∆

and every nonprincipal ultrafilter U over N. In particular, limnÑ8 dpxn, 0q exists, and so pxnq8n“1

is a d-bounded (and therefore also } ¨ }-bounded) sequence in ∆.

For every M P R`, we let TM “ tσ P T | σp1, 0q ďMu. We will need the following lemma.

Lemma 3.3.3. For all M P R`, TM is compact.

Proof. Take any σ P TM , and let pxnq8n“1 is a defining sequence for σ. As limnÑ8 dpxn, 0q “

σp1, 0q ďM , we may suppose that the defining sequence for σ is contained in the d-ball of radius
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M ` 1 around 0. As Id : pX, } ¨ }q Ñ pX, dq is expanding, there exists R ă 8 such that t ď R

whenever ρIdptq ďM ` 1. Then, since ρIdp}xn}q ď dpxn, 0q ďM ` 1 for every n P N, we have

σpλ, xq “ lim
n
dpλxn, xq ď lim

n
pdpλxn, 0q ` dp0, xqq ď ωIdp|λ|Rq ` dp0, xq

for all pλ, xq P Qˆ∆. That is, we have

TM Ď
ź

pλ,xqPQˆ∆

r0, ωp|λ|Rq ` dpx, 0qs,

since σ P TM was arbitrary. By Tychonoff’s theorem and the fact that TM is closed, we are

finished.

Corollary 3.3.4. The metric space T is σ-locally compact.

The next lemma will allow us to define analogues of scalar multiplication and vector addition

in the space of types, capturing some of the algebraic structure of X .

Lemma 3.3.5. Suppose σ, τ P T . Then if pwnq8n“1, pxnq
8
n“1 are defining sequences for σ and

pynq
8
n“1, pznq

8
n“1 are defining sequences for τ , then

(i) The limits limn pαwnq and limn pαxnq exist and are equal for every α P Q.

(ii) The limits limn limm pwn ` ymq and limn limm pxn ` zmq exist and are equal.

Proof. Item (i) follows immediately from the definitions. By a straightforward argument using the

translation-invariance and stability of d, item (ii) also follows.

Definition 3.3.6. Let σ, τ P T and let pxnq8n“1, pymq
8
m“1 be any defining sequences for σ and τ ,

respectively. We define the dilation operation on T by pα, σq P Q ˆ T ÞÑ α ¨ σ P T , where

α ¨ σ :“ limn pαxnq. We define the convolution operation on T by pσ, τq P T ˆ T ÞÑ σ ˚ τ P T ,

where σ ˚ τ :“ limn limm pxn ` ymq. By Lemma 3.3.5, both dilation and convolution are well-

defined. For pσjqkj“1 Ď T , we define ˚k
j“1 σj in the obvious way, and we allow dilation to bind

more strongly than convolution in our notation, i.e., we write α ¨ σ ˚ τ to mean pα ¨ σq ˚ τ .
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It follows easily from the definitions that, given σ P T and a defining sequence pxnq8n“1 for σ,

we have α¨σpλ, xq “ σpλα, xq for every pλ, xq P Qˆ∆ and σ˚τ “ limnÑ8 xn˚τ for every τ P T .

Furthermore, using the translation-invariance and stability of d, it is easily shown that convolution

is associative and commutative, and that dilation distributes over convolution. We now prove some

continuity properties of our dilation and convolution maps.

Lemma 3.3.7. Dilation is a right-continuous map from Qˆ T to T .

Proof. Fix α P Q and suppose pσnq8n“1 is a sequence in T converging to σ P T . Then α ¨

σpλ, xq “ σpλα, xq “ limnÑ8 σnpλα, xq “ limnÑ8 α ¨ σnpλ, xq for all pλ, xq P Q ˆ ∆. Thus

α ¨ σ “ limnÑ8 α ¨ σn. This was for an arbitrary converging sequence in T , so dilation is right

continuous.

Lemma 3.3.8. Convolution is a separately continuous map from T ˆ T to T .

Proof. Let D be a metric compatible with the topology on T . Fix τ P T and suppose pσnq8n“1 is a

sequence in T converging to σ P T . For each n P N, let pxn,mq8m“1 be a defining sequence for σn,

and let mn P N be such that Dpσn, xn,mnq ă
1
n

and Dpxn,mn ˚ τ, σn ˚ τq ă
1
n

. Then pxn,mnq8n“1

is a defining sequence for σ by the triangle inequality; and so, again by triangle inequality, σ ˚

τ “ limn σn ˚ τ . This was for an arbitrary converging sequence in T , so convolution (which is

commutative) is separately continuous.

Corollary 3.3.9. Convolution is a Baire class 1 map from T ˆ T to T .

Proof. Given pλ, xq P Qˆ∆, let Φλ,x : T ˆ T Ñ R be defined by Φλ,xpσ, τq “ σ ˚ τpλ, xq for all

σ, τ P T . Choose a compatible metricD for the topology on T and note that there is δ ą 0 such that

Dpσ, τq ě δ whenever |σp1, 0q ´ τp1, 0q| is large enough. Now, by Lemma 3.3.8 and the topology

on T , Φλ,x is separately continuous; and by Lemma 3.3.3, TM is compact for everyM P R`. Thus;

applying Lemma 3.2.4 with X “ Y “ T , f “ Φλ,x, d “ D, K “ tTM`1zintpTMqu8M“0, and with

δ as above; we have that Φλ,x is the pointwise limit of a sequence of continuous functions, and is

therefore Baire class 1. As this is true for any pλ, xq P Q ˆ ∆, convolution is itself Baire class

1.
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The sequence in the statement of our main theorem will be a defining sequence for one of

the types in T . We will eventually prove an inequality for the type and then show that a similar

inequality holds for the spreading model associated to the sequence, but first we need to know under

what circumstances a type’s defining sequence even has a spreading model. We already know that

a defining sequence pxnq8n“1 for a type σ is bounded in norm, but we want to put a condition on σ

that guarantees pxnq8n“1 is eventually bounded away from zero in norm. This motivates our next

definition.

Definition 3.3.10. A type σ P T is called admissible if σp1, 0q ą inftą0 ωIdptq.

Note that if σ is an admissible type and pxnq8n“1 is a defining sequence for σ, then

lim inf
n

ωIdp}xn}q ě lim
n
dpxn, 0q “ σp1, 0q ą inf

tą0
ωIdptq.

Thus, since ωId is an increasing function, we can find δ ą 0 such that pxnq8n“1 is eventually δ-

bounded in norm away from zero. From this point forward, we will let γ “ inftą0 ωIdptq.

Remark 3.3.11. If Id : pX, } ¨ }q Ñ pX, dq is uniformly continuous, then γ “ 0. If, in addition, d is

a metric, then the inequality in our definition is trivial, and every nontrivial type will be admissible.

Given our assumption that d is coarsely equivalent to the metric induced by } ¨ }, we do not need

to place any additional conditions on a type to guarantee its defining sequences to be bounded in

norm. Had this not been the case, we would have had to include such a condition in our definition

of admissibility. One condition we could use would be to require a type σ to also satisfy the

inequality σp1, 0q ă suptă8 ρIdptq (a trivial inequality in our case). In [13], where the author is

concerned with a translation-invariant stable metric d uniformly equivalent to the metric induced

by } ¨ }, the author does exactly this.

At this point, we have established a condition to put on a type to guarantee its defining se-

quences are bounded in norm and eventually bounded away from zero in norm. In our goal to

obtain a spreading model, we now need an extra condition that will guarantee that a type’s defining

sequences contain no norm-Cauchy subsequences.
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Definition 3.3.12. A type σ is said to be symmetric if σ “ p´1q ¨ σ, i.e., if σpλ, xq “ σp´λ, xq,

for all pλ, xq P Q ˆ ∆. We denote tσ P T | σ is symmetricu by S and S X TM by SM for each

M P R`.

Note that by Lemma 3.3.7, S is closed, and therefore SM is compact for all M P R`.

Lemma 3.3.13. Suppose σ P T is an admissible symmetric type and pxnq8n“1 is a defining sequence

for σ. Then pxnq8n“1 has no } ¨ }-Cauchy subsequence.

Proof. Suppose to the contrary, that pxnq8n“1 has a } ¨ }-Cauchy subsequence. After taking this

subsequence, we can assume that pxnq8n“1 converges in norm to some x P X . Then, as σ is

symmetric, we have

lim inf
n

dpλxn,´ λxnq

“ lim inf
n

´

dpλxn,´λxnq ´ σpλ,´λxnq ` σp´λ,´λxnq
¯

“ lim inf
n

lim
m

´

dpλxn,´λxnq ´ dpλxm,´λxnq ` dp´λxm,´λxnq
¯

ď lim inf
n

lim
m

´

dpλxn, λxmq ` dp´λxm,´λxnq
¯

ď 2 ¨ lim inf
n

lim inf
m

ωIdp|λ| ¨ }xn ´ xm}q

“ 2γ

for all λ P Q. This implies ρIdp}λx}q ď lim infn ρIdp2}λxn}q ď 2γ for all λ P Q. As d is coarsely

equivalent to the metric induced by the norm of X , this can only happen if x “ 0. But then the

admissibility of σ yields

γ ă σp1, 0q “ lim
n
dpxn, 0q ď lim inf

n
ωIdp}xn}q “ γ,

a contradiction.
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3.4 Conic classes

To show the existence of a type that satisfies an `p-inequality, we will use a limiting argument

and the existence of a shared point of continuity for every finite combination of convolutions and

dilations by a scalar. The definition of conic class below is motivated by the desire to use Lemma

3.2.5 with the Baire category theorem to find a shared point of continuity, and the need for a

minimality argument to make sure this point can be used in the limiting argument.

Definition 3.4.1. A nonempty subset C of S is called a conic class if

(i) C ‰ t0u,

(ii) λ ¨ σ P C for all λ P Q and σ P C,

(iii) σ ˚ τ P C for all σ, τ P C.

Moreover, C is called admissible if C contains an admissible type, i.e., if there exists σ P C such

that σp1, 0q ą γ.

Lemma 3.4.2. The set S is a closed admissible conic class.

Proof. That S is closed follows from Lemma 3.3.7. The properties (ii) and (iii) follow easily

from the definitions of dilation and convolution and from the translation-invariance of d. All that

remains is to show that there is an admissible (and therefore nontrivial) type σ in S. LetR P r0,8q

be such that ρIdptq ą γ whenever t ě R. By the infinite-dimensionality of X , there is a bounded

R-separated sequence pxnq8n“1 in pX, } ¨ }q. After possibly taking a subsequence, we may suppose

that pxnq8n“1 is a defining sequence for some σ P T . In this case,

pσ ˚ p´1q ¨ σqp1, 0q “ lim
n

lim
m
dpxn ´ xm, 0q ě inf

n‰m
dpxn ´ xm, 0q ě ρIdpRq ą γ.

That is, the symmetric type σ ˚ p´1q ¨ σ is admissible. Therefore S is a closed admissible conic

class.
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Now that the existence of a closed admissible conic class has been shown, we will show the

existence of one that is minimal (with respect to set inclusion), using the following lemma.

Lemma 3.4.3. Let σ be an admissible type. Given any 0 ď r1 ă r2, there is α P Q` such that

ρIdpr1q ď α ¨ σp1, 0q ď ωIdpr2q.

Proof. Let pxnq8n“1 be a defining sequence for σ. The admissibility of σ implies that pxnq8n“1 is

a } ¨ }-bounded sequence that is eventually } ¨ }-bounded away from 0. Thus, we may suppose

after possibly taking a subsequence that limn }xn} exists and is nonzero. Let α P Q` be such that

limn }αxn} P rr1, r2s. As α ¨ σp1, 0q “ limn dpαxn, 0q, we then have

ρIdpr1q ď α ¨ σp1, 0q ď ωIdpr2q.

Lemma 3.4.4. Every closed admissible conic class contains a minimal closed admissible conic

class.

Proof. Fix a closed admissible conic class C. Let F be the family of closed admissible conic

classes contained in C ordered by reverse set inclusion and let tCiuiPI be some chain in F . We will

show that
Ş

iPI Ci is a closed admissible conic class.

Certainly,
Ş

iPI Ci Ď S is closed and satisfies conditions (ii) and (iii) in the definition of conic

class. So we only need to show that
Ş

iPI Ci contains an admissible type. For that, fix R P r0,8q

such that ρIdptq ą γ whenever t ě R and let Bi “ Ci X pTωIdpR`1qzintpTρIdpRqqq for all i P I . By

Lemma 3.3.3, Bi is compact. Given i P I , let σi P Ci be admissible. By the previous lemma, there

is αi P Q` such that αi ¨σi P Bi, and so Bi is nonempty. Hence, tBiuiPI is a family of compact sets

with the finite intersection property, which implies
Ş

iPI Ci Ě
Ş

iPI Bi is nonempty. By our choice

of R,
Ş

iPI Bi can only contain admissible types, hence
Ş

iPI Ci contains an admissible type. Thus,
Ş

iPI Ci is a closed admissible conic class, and so is an upper bound for the chain tCiuiPI in F . By

Zorn’s lemma, F has a maximal element. That is, C contains a minimal closed admissible conic

class.
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We come now to the main result of this section. For Raynaud, it was enough to show that the

maps σ ÞÑ σ ˚ α ¨ σ, where α is any scalar, share a point of continuity. He then uses this to show

σ ˚ α ¨ σ “ p1` |α|pq1{p ¨ σ for some p P r1,8q. With this equality, one may then easily show that

for any finite sequence of scalars α “ pαjqNj“1, one has ˚N
j“1 αj ¨σ “ }α}p ¨σ. In our case however,

we will only be able to show that given any ptmq8m“1 Ď Q converging to }α}p and pλ, xq P Qˆ∆,

lim supm |˚
N
j“1 αj ¨ σpλ, xq ´ tm ¨ σpλ, xq| ď L, for some constant L depending on γ. The next

lemma will allow us to make sure L does not depend on the length of α.

Lemma 3.4.5. Let C be a closed admissible conic class. Then there is an admissible φ P C such that

φ is a common point of continuity for the family of functions tσ ÞÑ ˚m
j“1 αj ¨σ | pαjq

m
j“1 Ď Qu Ď CC .

Proof. By Lemma 3.2.5 and Corollary 3.3.9 (with X “ C and F “ tσ ÞÑ α ¨σ ˚β ¨σ | α, β P Qu),

there is a comeager Gδ subset E of C such that g is continuous on E for all

g P tσ ÞÑ
m
˚
j“1

αj ¨ σ | pαjq
m
j“1 Ď Qu Ď CC.

But C is closed, and so is locally compact, by Corollary 3.3.4. Therefore E is dense in C, by the

Baire category theorem, and the statement follows from the admissibility of C.

3.5 Spreading models associated to well-chosen types

Let σ be an admissible symmetric type and pxnq8n“1 a defining sequence for σ. Then pxnq8n“1

is bounded, and by Lemma 3.3.13, has no } ¨ }-Cauchy subsequence. So let pS, } ¨ }q be a spreading

model for pxnq8n“1, and let pζnq8n“1 be the standard basis for S. Define pξnq8n“1 by ξn “ ζ2n´1´ ζ2n

for all n P N. Recall that pζnq8n“1 is 1-spreading and pξnq8n“1 is 1-unconditional.

Let τ “ σ ˚ p´1q ¨ σ. As σ “ limn xn, we may assume after taking a subsequence that

τ “ limn x2n´1 ´ x2n. As pxnq8n“1 has no } ¨ }-Cauchy subsequence, we may further assume after

taking another subsequence that infn‰m }xn ´ xm} ą 0. As τp1, 0q “ limn dpx2n´1 ´ x2n, 0q ě

ρIdpinfn‰m }xn ´ xm}q, by dilating σ, we can also assume that τ is an admissible type. It is clear

that pspantξnu
8
n“1, } ¨ }Sq is a spreading model for px2n´1 ´ x2nq

8
n“1.
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From this point forward, we fix a minimal closed admissible conic class C and an admissible

φ P C that is a common point of continuity for the family of functions

F “ tσ ÞÑ
m
˚
j“1

αj ¨ σ | pαjq
m
j“1 Ď Qu Ď CC

such that ψ “ φ ˚ p´1q ¨ φ is also admissible. We also fix a defining sequence pxnq8n“1 for φ with

spreading model pS, } ¨ }Sq such that px2n´1 ´ x2nq
8
n“1 is a defining sequence for ψ. All this is

possible by Lemma 3.4.2, Lemma 3.4.4, Lemma 3.4.5, and the discussion above. Remember that

we have only defined dilation for rational numbers, and so we will restrict our attention to vectors

in S that have rational coefficients with respect to the basis pζnq8n“1. Given a set of vectors V , we

will denote the rational linear span of V by spanQV .

Definition 3.5.1. Given pαjqmj“1 Ď Q, we say that
řm
j“1 αjζj realizes the type ˚m

j“1 αj ¨ φ.

Note that, if u “
řm1

j“1 αjζj realizes the type σ, and v “
řm2

j“m1`1 βjζj realizes the type τ , it

follows that u` v realizes the type σ ˚ τ .

Lemma 3.5.2. Suppose u, v P spanQtζnu
8
n“1 realize the types σ and τ , respectively. Then for every

pλ, xq P Qˆ∆,

sup
0ăεď|λ|}u´v}S

ρIdp|λ| }u´ v}S ´ εq ď σpλ, xq ` τpλ, xq

and

|σpλ, xq ´ τpλ, xq| ď inf
εą0

ωIdp|λ|}u´ v}S ` εq.

In particular, for each δ ą 0, the following hold.

(i) If }u}S ą δ, then σp1, 0q ě ρIdpδq.

(ii) If σp1, 0q ą ωIdpδq, then }u}S ě δ.
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Proof. Let pαjqmj“1, pβjq
m
j“1 Ď Q be such that u “

řm
j“1 αjζj and v “

řm
j“1 βjζj . Then

ρIdp|λ| }u´ v}S ´ εq ď lim sup
n1

. . . lim sup
nm

ρId

˜
›

›

›

›

›

λ
m
ÿ

j“1

pαj ´ βjqxnj

›

›

›

›

›

¸

ď lim
n1

. . . lim
nm

d

˜

λ
m
ÿ

j“1

pαj ´ βjqxnj , 0

¸

ď lim
n1

. . . lim
nm

˜

d

˜

λ
m
ÿ

j“1

αjxnj , x

¸

` d

˜

λ
m
ÿ

j“1

βjxnj , x

¸¸

“ σpλ, xq ` τpλ, xq

for all 0 ă ε ă |λ| }u´ v}S . Similarly,

|σpλ, xq ´ τpλ, xq| “ lim
n1

. . . lim
nm

ˇ

ˇ

ˇ

ˇ

ˇ

d

˜

λ
m
ÿ

j“1

αjxnj , x

¸

´ d

˜

λ
m
ÿ

j“1

βjxnj , x

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
n1

. . . lim
nm

d

˜

λ
m
ÿ

j“1

pαj ´ βjqxnj , 0

¸

ď lim inf
n1

. . . lim inf
nm

ωId

˜
›

›

›

›

›

λ
m
ÿ

j“1

pαj ´ βjqxnj

›

›

›

›

›

¸

ď ωIdp|λ| }u´ v}S ` εq

for all ε ą 0. The particular case follows by letting v “ 0 and λ “ 1.

Let H “ spanQtξnu
8
n“1. Given α “ pαjqmj“1 Ď Q, we define a bounded linear map Tα : H Ñ

H as follows. For each n P N, let Tαpξnq “
řm
j“1 αjξmn`j´1 and extend Tα linearly to H . As

pξnq
8
n“1 is both 1-spreading and 1-unconditional, }Tαpuq}S ď }α}1 }u}S for all u P H . Thus Tα

can be extended to all of H . If α “ pα1q is a sequence of length 1, then Tαu is just the scaling of

u by α1. We also define the function pTα : C Ñ C by pTαpσq “ ˚m
j“1 αj ¨ σ for all σ P C.

Lemma 3.5.3. Suppose α “ pαiqni“1, β “ pβjq
m
j“1 Ď Q. Define γ “ pγkqnmk“1 Ď Q by γk “ αiβj

whenever k “ npj ´ 1q ` i for 1 ď i ď n and 1 ď j ď m. Then Tα ˝ Tβ “ Tγ and pTα ˝ pTβ “ pTγ .
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Proof. For any k P N,

pTα ˝ Tβqpξkq “ Tα

´

m
ÿ

j“1

βjξmk`j´1

¯

“

m
ÿ

j“1

n
ÿ

i“1

αiβjξnpmk`j´1q`i´1

“

m
ÿ

j“1

n
ÿ

i“1

αiβjξnmk`npj´1q`i´1

“

nm
ÿ

`“1

γ`ξnmk``´1

“ Tγpξkq

Therefore Tα ˝ Tβ “ Tγ , by linearity and continuity. Similarly,

ppTα ˝ pTβqpσq “
pTα

´

m
˚
j“1

βjσ
¯

“
m
˚
j“1

n
˚
i“1

αiβjσ “
nm
˚
`“1

γ`σ “ pTγpσq.

for all σ P C, and so pTα ˝ pTβ “
pTγ .

The previous lemma suggests the following notation. For α “ pαiqni“1, β “ pβjq
m
j“1 Ď Q, we

denote by α ˝ β the sequence pγkqnmk“1 Ď Q defined by γk “ αiβj whenever k “ npj ´ 1q ` i for

1 ď i ď n and 1 ď j ď m. We define α˝k recursively by α˝1 “ α and α˝k`1 “ α ˝ α˝k for every

k P N. Note that pT kα “ pTα˝k for all finite length sequences α Ď Q and all k P N.

Lemma 3.5.4. Fix α “ pαjqmj“1 Ď Q. Suppose u P H realizes the type σ. Then Tαpuq realizes the

type pTαpσq.

Proof. Let pλiqni“1 Ď Q be such that u “
řn
i“1 λiξi, which implies σ “ ˚n

i“1 λi ¨ ψ. Then

Tαpuq “
n
ÿ

i“1

λi

m
ÿ

j“1

αjξmi`j´1 “

m
ÿ

j“1

n
ÿ

i“1

αjλiξmi`j´1,
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which realizes the type

m
˚
i“1

n
˚
j“1

αjλi ¨ ψ “
m
˚
j“1

αj ¨
n
˚
i“1

λi ¨ ψ “ pTαpσq.

Lemma 3.5.5. Fix N P N and pbiqNi“1 Ď Q. And for each 1 ď i ď N , fix αi, βi Ď Q. Suppose

ui, vi P H realize the types σ and τ , respectively, for each 1 ď i ď N . Then for every pλ, xq P

Qˆ∆,

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTαiσpλ, xq ´
N
˚
i“1

bi ¨ pTβiτpλ, xq

ˇ

ˇ

ˇ

ˇ

ď inf
εą0

ωId

˜

|λ|
N
ÿ

i“1

|bi| ¨
›

›

›
Tαiui ´ Tβivi

›

›

›

S
` ε

¸

.

Proof. For each m P N, let sm : H Ñ H be the linear map defined by smpξnq “ ξn`m for each n P

N, extended linearly toH . We construct sequences pu1iq
N
i“1, pv

1
iq
N
i“1 Ď H recursively as follows. Let

u11 “ b1Tα1u1 and v11 “ b1Tβ1
v1. Given u1i, v

1
i for 1 ď i ă N , let mi “ maxtsupppu1iq Y supppv1iqu

and then let u1i`1 “ bi`1smipTαi`1
ui`1q and v1i`1 “ bi`1smipTβi`1

vi`1q. Clearly, both sequences

pu1iq
N
i“1 and pv1iq

N
i“1 have disjoint supports. By Lemma 3.5.4 and the remark after Definition 3.5.1,

řN
i“1 u

1
i and

řN
i“1 v

1
i realize ˚N

i“1 bi ¨
pTαiσ and ˚N

i“1 bi ¨
pTβiτ , respectively. Thus, by Lemma 3.5.2

and the fact that pξnq8n“1 is 1-spreading,

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTαiσpλ, xq ´
N
˚
i“1

bi ¨ pTβiτpλ, xq

ˇ

ˇ

ˇ

ˇ

ď inf
εą0

ωId

˜

|λ| ¨

›

›

›

›

›

N
ÿ

i“1

pu1i ´ v
1
iq

›

›

›

›

›

S

` ε

¸

ď inf
εą0

ωId

˜

|λ|
N
ÿ

i“1

}u1i ´ v
1
i}S ` ε

¸

“ inf
εą0

ωId

˜

|λ|
N
ÿ

i“1

|bi| ¨
›

›

›
Tαiui ´ Tβivi

›

›

›

S
` ε

¸

.

3.6 Coarse approximating sequences

The goal of this section is to show that the type ψ satisfies the conclusion of Lemma 3.6.7

below. For that, we introduce the notion of coarse approximating sequences.

Definition 3.6.1. Given u “
řk
i“1 αiξi P spantξnu

8
n“1, a vector v P spantξnu

8
n“1 is said to be a
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spreading of u if v “
řk
i“1 αiξni for some n1 ă . . . ă nk P N.

Definition 3.6.2. Fix N P N. And for each 1 ď i ď N , fix αi Ď Q and βi P R`. A sequence of

types pσnq8n“1 Ď C is called a coarse pαi, βiqNi“1-approximating sequence if there exists a sequence

punq
8
n“1 Ď H and sequences pui,nq8n“1 Ď H for each 1 ď i ď N such that

(i) un realizes σn for all n P N,

(ii) ui,n is a spreading of un for all n P N and 1 ď i ď N ,

(iii) limn }Tαipunq ´ βiui,n}S “ 0 for all 1 ď i ď N .

Lemma 3.6.3. Fix α Ď Q, β P R`, and punq8n“1 Ď H . If there is a spreading pu1nq
8
n“1 of punq8n“1

such that limn }Tαpunq ´ βu
1
n}S “ 0, then for every k P N there is a spreading pu2nq

8
n“1 of punq8n“1

such that limn

›

›T kαpunq ´ β
ku2n

›

›

S
“ 0.

Proof. For k “ 1 the result is trivial. Suppose the result holds for some k P N. Let pu2nq
8
n“1 be a

spreading of punq8n“1 such that limn

›

›T kαpunq ´ β
ku2n

›

›

S
“ 0. By the definition of Tα, it follows that

pTαpu
2
nqq

8
n“1 is a spreading of pTαpunqq8n“1, so there exists a spreading pu3nq

8
n“1 of punq8n“1 such

that also pTαpu2nq ´ βu3nq
8
n“1 is a spreading of pTαpunq ´ βu1nq

8
n“1. Thus, by the fact that pξnq8n“1

is 1-spreading,

›

›T k`1
α punq ´ β

k`1u3n
›

›

S
ď
›

›T k`1
α punq ´ Tαpβ

ku2nq
›

›

S
`
›

›Tαpβ
ku2nq ´ β

k`1u3n
›

›

S

“
›

›TαpT
k
αpunq ´ β

ku2nq
›

›

S
` βk }Tαpu

2
nq ´ βu

3
n}S

ď }Tα}S ¨
›

›T kαpunq ´ β
ku2n

›

›

S
` βk }Tαpunq ´ βu

1
n}S .

Therefore limn

›

›T k`1
α punq ´ β

k`1u3n
›

›

S
“ 0, and so the result holds for k ` 1. By induction, we

are finished.

With the above lemma and Lemma 3.5.3, we have the following corollary.
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Corollary 3.6.4. Fix N P N. And for each 1 ď i ď N , fix αi Ď Q, βi P R`, and ki P N.

If pσnq8n“1 is a coarse pαi, βiqNi“1-approximating sequence, then it is also a coarse pα˝kii , βkii q
N
i“1-

approximating sequence.

Lemma 3.6.5. Fix N P N. And for each 1 ď i ď N , fix αi Ď Q. Suppose αi ˝ αj “ αj ˝ αi for all

1 ď i, j ď N . Then there exist pβiqNi“1 Ď R` such that }αi}8 ď βi ď }αi}1 for each 1 ď i ď N

and pσnq8n“1 Ď C such that pσnq8n“1 is a coarse pαi, βiqNi“1-approximating sequence. Moreover, we

may choose pσnq8n“1 so that for all n P N, b1 ď σnp1, 0q ď b2 for some γ ă b1 ď b2 not depending

on n.

Proof. For those αi’s that are length 1 sequences, the lemma is clear with pβiq “ αi. So suppose

for each 1 ď i ď N that αi is a sequence of length at least 2. As the basis pξnq8n“1 of H is

1-unconditional and 1-spreading, }αi}8 }u}S ď }Tαipuq}S ď }αi}1 }u}S , for all u P H and all

1 ď i ď N . Also, for each 1 ď i ď N , it is clear from the definition of Tαi that }Tαipuq ´ ξ1}S ą 0

for all u P H , and so Tαi is not invertible. Hence, the spectrum of Tαi has a real non-negative

boundary point, and so Tαi has a real non-negative approximate eigenvalue for each 1 ď i ď N

(see Proposition IV.1 of [10]). By Lemma 3.5.3, Tαi commutes with Tαj for all 1 ď i, j ď

N . Thus, there exists pβiqNi“1 Ď R` and a single normalized sequence punq8n“1 Ď H such that

limn }Tαiun ´ βiun}S “ 0 for every 1 ď i ď N (see Proposition 12.18 of [3]). As }un}S “ 1 for

each n P N, the bounds above for }Tαipuq}S yield that }αi}8 ď βi ď }αi}1 for each 1 ď i ď N .

By density, one may assume that punq8n“1 Ď H and 1 ď }un}S ď 2 for all n P N. Finally, let δ ą 0

be such that ρIdpδ{2q ą γ and let σn be the type realized by δun for each n P N. The result now

follows by letting b1 “ ρIdpδq and b2 “ ωIdp3δq (see Lemma 3.5.2).

Lemma 3.6.6. Fix N P N. And for each 1 ď i ď N , fix αi Ď Q. Suppose αi ˝ αj “ αj ˝ αi for all

1 ď i, j ď N . Then there exists pβiqNi“1 Ď R` such that }αi}8 ď βi ď }αi}1 for each 1 ď i ď N

and such that every σ P C is the limit of a coarse pαi, βiqNi“1-approximating sequence.

Proof. Let γ ă b1 ď b2, pβiqNi“1 Ď R`, and pσnq8n“1 Ď C be given by Lemma 3.6.5, so that pσnq8n“1

is a coarse pαi, βiqNi“1-approximating sequence and b1 ď σnp1, 0q ď b2 for every n P N. Let C̃ be
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the subset of C consisting of all types of C which are the limit of a coarse pαi, βiqNi“1-approximating

sequence. Let Tb1,b2 be the set tσ P T | b1 ď σp1, 0q ď b2u. As Tb1,b2 is compact and metrizable,

pσnqn has a converging subsequence which converges to an element σ P CXTb1,b2 . A subsequence

of a coarse pαi, βiqNi“1-approximating sequence is still a coarse pαi, βiqNi“1-approximating sequence,

so C̃ ‰ t0u, and in particular C̃ contains an admissible type.

By the minimality of C, it is enough to show that C̃ is a closed conic class. Suppose σ P C̃ and

pσnq
8
n“1 is a coarse pαi, βiqNi“1-approximating sequence converging to σ. Then, by Lemma 3.3.7,

λ ¨σ is the limit of pλ ¨σnq8n“1, which is easily seen to be a coarse pαi, βiq-approximating sequence

for every λ P Q. Thus C̃ is closed under dilation by any λ P Q.

Let D be a metric compatible with the topology of T . Take any σ, τ P C̃ and let pσnq8n“1 and

pτnq
8
n“1 be coarse pαi, βiqNi“1-approximating sequences in C converging to σ and τ , respectively. As

convolution is separately continuous, limk σk ˚ τ “ σ ˚ τ and, for each fixed k P N, limn σk ˚ τn “

σk ˚τ . For each k P N, let npkq ě k be such thatDpσk ˚τnpkq, σk ˚τq ď 2´k. Letting σ1k “ σk ˚τnpkq

for each k P N, it follows that limk σ
1
k “ σ ˚ τ . To show that σ ˚ τ P C̃, it remains to show that

pσ1kq
8
k“1 is a coarse pαi, βiqNi“1-approximating sequence.

So for each 1 ď i ď N , let punq8n“1, pui,nq8n“1, pvnq8n“1 and pvi,nq8n“1 be sequences realizing

pσnq
8
n“1 and pτnq8n“1 respectively, as given by Definition 3.6.2. By translating the supports of

vnpkq and vi,npkq, if necessary, we may assume that supppukq ă supppvnpkqq and supppui,kq ă

supppvi,npkqq for all 1 ď i ď N and k P N. Let pzkq8k“1 “ puk ` vnpkqq
8
k“1, so that zk realizes σ1k

for each k P N. Let pzi,kq8k“1 “ pui,k ` vi,npkqq
8
k“1 for all 1 ď i ď N , so that zi,k is a spreading of

zk for each k P N and 1 ď i ď N . This shows that pσ1kq
8
k“1 is a coarse pαi, βiqNi“1-approximating

sequence. Thus, σ ˚ τ P C̃, and so C̃ is closed under convolution.

It remains to show that C̃ is closed. Take any pσkq8k“1 Ď C̃ converging to some σ P C. For

each k P N, there exists a coarse pαi, βiqNi“1-approximating sequence pσk,nq8n“1 in C converging

to σk. For each k P N, let puk,nq8n“1 be a sequence realizing pσk,nq8n“1 and let puk,i,nq8n“1 be a

spreading of puk,nq8n“1 for each 1 ď i ď N as given by Definition 3.6.2. For each k P N, choose an

integer npkq ě k such that Dpσk,npkq, σkq ď 1{k and
›

›Tαipuk,npkqq ´ βiuk,i,npkq
›

›

S
ă 1{k for each
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1 ď i ď N . Let τk “ σk,npkq for each k P N. Then pτkq8k“1 is a coarse pαi, βiqNi“1-approximating

sequence converging to σ. That is, σ P C̃. Thus, C̃ is closed since σ was an arbitrary limit point.

By what was shown, C̃ is a closed admissible conic class contained in C. By the minimality of C,

we are finished.

Lemma 3.6.7. Fix N P N. And for each 1 ď i ď N , fix αi Ď Q. Suppose αi ˝ αj “ αj ˝ αi for all

1 ď i, j ď N . Then there exists pβiqNi“1 Ď R` such that }αi}8 ď βi ď }αi}1 for each 1 ď i ď N

and such that

lim sup
m

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pT
ki
αi
ψpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψpλ, xq

ˇ

ˇ

ˇ
ď γ

for every pbiqNi“1 Ď Q, every pkiqNi“1 Ď N, every pλ, xq P Qˆ∆, and every sequence pβi,mq8m“1 Ď

Q` converging to βi for 1 ď i ď N .

Proof. Let pβiqNi“1 Ď R` be given by Lemma 3.6.6 and let pφnq8n“1 be a coarse pαi, βiqNi“1-

approximating sequence converging to φ, also given by Lemma 3.6.6. For each n P N let ψn “

φn ˚ p´1q ¨ φn. Then, by our choice of φ (see Lemma 3.4.5 and the intro to Section 3.5),

lim
n

N
˚
i“1

bi ¨ pT
ki
αi
ψnpλ, xq “

N
˚
i“1

bi ¨ pT
ki
αi
ψpλ, xq

and

lim
n

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq “

N
˚
i“1

biβ
ki
i,m ¨ ψpλ, xq

for all pλ, xq P Qˆ∆ and all m P N.

By Corollary 3.6.4, pφnq8n“1 is a coarse pα˝kii , βkii q
N
i“1-approximating sequence and we can pick

a sequence punq8n“1 realizing pφnq8n“1 and sequences pui,nq8n“1 that are spreadings of punq8n“1 and

satisfy limn

›

›Tα˝kiun ´ β
ki
i ui,n

›

›

S
“ 0 for every 1 ď i ď N . For each n P N, let u1n P H have

the same basis coordinates as un except translated so that supppunq ă supppu1nq and supppui,nq ă

supppu1nq for every 1 ď i ď N . For each 1 ď i ď N and n P N, let u1i,n be a spreading of un so

that T
α
˝ki
i
u1n ´ β

kiu1i,n is a spreading of T
α
˝ki
i
un ´ β

k1ui,n and such that supppui,nq ă supppu1i,nq.
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Note that both un ´ u1n and ui,n ´ u1i,n realize ψn. Therefore, by Lemma 3.5.5,

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pT
ki
αi
ψnpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTα˝kii
ψnpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq

ˇ

ˇ

ˇ

ˇ

ď inf
εą0

ωId

˜

|λ|
N
ÿ

i“1

|bi| ¨
›

›

›
T
α
˝ki
i
pun ´ u

1
nq ´ β

ki
i,mpui,n ´ u

1
i,nq

›

›

›

S
` ε

¸

ď inf
εą0

ωId

˜

2|λ|
N
ÿ

i“1

|bi| ¨
›

›

›
T
α
˝ki
i
un ´ β

ki
i,mui,n

›

›

›

S
` ε

¸

ď inf
εą0

ωId

˜

2|λ|

˜

N
ÿ

i“1

|bi| ¨
´
›

›

›
T
α
˝ki
i
un ´ β

ki
i un

›

›

›

S
` |βkii ´ β

ki
i,m| ¨ }un}S

¯

¸

` ε

¸

for all pλ, xq P Q ˆ ∆. As the sequence punq8n“1 is bounded (see Lemma 3.5.2), taking the limit

superiors over n and m in the inequality above yields the result.

3.7 Coarse `p-types and coarse c0-types

In this section, we will define what it means for a type to be an `p-type or c0-type and use

Lemma 3.6.7 to show that ψ is such a type. Finally, we will show that H is isomorphic to `p for

some p P r1,8q.

Definition 3.7.1. Fix p P r1,8q. A type σ is said to be a coarse `p-type if there exists L ą 0 such

that for all pλ, xq P Qˆ∆ and all α “ pαiqNi“1 Ď Q,

lim sup
m

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

αi ¨ σpλ, xq ´ tm ¨ σpλ, xq

ˇ

ˇ

ˇ

ˇ

ď L

for all ptmq8m“1 Ď Q converging to }α}p. A type σ is said to be a coarse c0-type if for all pλ, xq P

Qˆ∆ and all pαiqNi“1 Ď Q,

ˇ

ˇ

ˇ

ˇ

N
˚
i“1

αi ¨ σpλ, xq ´ max
1ďiďN

|αi| ¨ σpλ, xq

ˇ

ˇ

ˇ

ˇ

ď L.

Theorem 3.7.2. The type ψ is either a coarse c0-type or a coarse `p-type for some p P r1,8q.
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Proof. Let α2 “ p1, 1q and α3 “ p1, 1, 1q, and note that α2 ˝α3 “ α3 ˝α2. Let β2, β3 P R be given

by Lemma 3.6.7 for α2 and α3, respectively. Let pβ2,mq
8
m“1, pβ3,mq

8
m“1 Ď Q be nonzero increasing

sequences converging to β2 and β3 respectively. By our choice of β2 and β3,

lim sup
m

ˇ

ˇ

ˇ

ˇ

b ¨
jk

˚
i“1

ψpλ, xq ´ bβkj,m ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď γ

for all j P t2, 3u, all b P Q, all k P N, and all pλ, xq P Q ˆ ∆. Let `, k P N be such that

3k ď 2` ă 3k`1. As pξnq8n“1 is 1-unconditional,
›

›

›

ř3k

i“1 ξi

›

›

›

S
ď

›

›

›

ř2`

i“1 ξi

›

›

›

S
ď

›

›

›

ř3k`1

i“1 ξi

›

›

›

S
. Let

a` P Q be such that 1
2

›

›

›

ř2`

i“1 ξi

›

›

›

S
ď a` ď

›

›

›

ř2`

i“1 ξi

›

›

›

S
. Then, for any µ ą 0,

µ ď

›

›

›

›

›

µ ¨

ř3k`1

i“1 ξi
a`

›

›

›

›

›

S

.

As Id : pX, } ¨ }q Ñ pX, dq is expanding, we can pick µ, η P Q such that ρIdpµ{2q ą 2ωIdp1q ` γ

and ρIdpη}ξ1}S{2q ą 2ωIdp1q ` γ. Let M P N be such that

ˇ

ˇ

ˇ

ˇ

ˇ

µ

a`
¨

3k`1

˚
i“1

ψp1, 0q ´
µβk`1

3,M

a`
¨ ψp1, 0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď γ ` ωIdp1q

and let M 1 ěM be such that

ˇ

ˇ

ˇ

ˇ

ˇ

η

β`2,M
¨

2`

˚
i“1

ψp1, 0q ´
ηβ`2,M 1

β`2,M
¨ ψp1, 0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď γ ` ωIdp1q.

Then, as pµ{a`q ¨ p
ř3k`1

i“1 ξiq realizes pµ{alq ¨˚3k`1

i“1 ψ, by Lemma 3.5.2(i),

2ωIdp1q ` γ ă
µ

a`
¨

3k`1

˚
i“1

ψp1, 0q ď
µβk`1

3,M

a`
¨ ψp1, 0q ` γ ` ωIdp1q.

Therefore, as pµβk`1
3,M {a`q ¨ ξ1 realizes pµβk`1

3,M {a`q ¨ ψ, by Lemma 3.5.2(ii),

1 ď
βk`1

3,Mµ

a`
¨ }ξ1}S . (3.3)
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Similarly, by Lemma 3.5.2(i) and the fact that pηβ`2,M 1{β`2,Mq ¨ ξ1 realizes pηβ`2,M 1{β`2,Mq ¨ ψ,

η

β`2,M
¨

2`

˚
i“1

ψp1, 0q ě
ηβ`2,M 1

β`2,M
¨ ψp1, 0q ´ γ ´ ωIdp1q ą ωIdp1q.

Thus, as pη{β`2,Mq ¨ p
ř2`

i“1 ξiq realizes pη{β`2,Mq ¨˚
2`

i“1 ψ, by Lemma 3.5.2(ii),

2ηa`
β`2,M

ě

›

›

›

›

›

η
ř2`

i“1 ξi
β`2,M

›

›

›

›

›

S

ě 1. (3.4)

After combining (3.3) and (3.4), one obtains

βk3
β`2
“ lim

M

βk3,M
β`2,M

ě
1

2ηµβ3 }ξ1}S
.

The lower bound for βk3 {β
`
2 above does not depend on k or `, so long as 2` ă 3k`1. Similarly, a

lower bound for β`2{β
k
3 that also does not depend on k and ` can be obtained, so long as 3k ď 2`.

This implies the existence of a, b ą 0 such that for all k and ` satisfying 3k ď 2` ă 3k`1,

a ď
βk3
β`2
ď b. Thus, there exists L ě 0 such that β2 “ 2L and β3 “ 3L. Also, as β2 ď 2, it must

be the case that L P r0, 1s. The same argument as for 2 and 3 works for arbitrary natural numbers.

Therefore βN “ NL for all N P N, where βN is given by Lemma 3.6.7 for α “ p1qNj“1.

Suppose first that L ‰ 0 and let p “ 1{L. Fix α “ pαiqNi“1 Ď Q and a sequence ptmq8m“1 Ď

Q converging to }α}p. Take any ε ą 0 and, for each 1 ď j ď N , let rj P Q` be such that

||αj| ´ r
1{p
j | ă ε. Let k P N be a common denominator so that for each 1 ď j ď N there is

nj P N0 such that rj “ nj{k. Let s ą 0 be a rational number such that |s ´ p1{kq1{p| ă ε. For

each 1 ď j ď N , let pβj,mq8m“1 Ď Q be a sequence converging to n1{p
j and let pβmq8m“1 Ď Q be a

sequence converging to p
řN
j“1 njq

1{p. By Lemma 3.5.5 (and the symmetry of ψ),

ˇ

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, xq ´
N
˚
j“1

sβj,m ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď ωId

˜

|λ|
N
ÿ

j“1

||αj| ´ sβj,m| }ξj}S ` ε

¸
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and

|sβm ¨ ψpλ, xq ´ tm ¨ ψpλ, xq| ď ωIdp|λ||sβm ´ tm| }ξ1}S ` εq

for all pλ, xq P Qˆ∆. By Lemma 3.6.7 and what was shown above with L “ 1{p,

lim sup
m

ˇ

ˇ

ˇ

ˇ

N
˚
j“1

sβj,m ¨ ψpλ, xq ´
N
˚
j“1

s ¨
nj
˚
i“1

ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď γ

and

lim sup
m

ˇ

ˇ

ˇ

ˇ

s ¨
N
˚
j“1

nj
˚
i“1

ψpλ, xq ´ sβm ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď γ

for all pλ, xq P Q ˆ∆. Combining the four inequalities above with the triangle inequality, taking

a limit superior over m, and letting εÑ 0, one obtains

lim sup
m

ˇ

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, xq ´ tm ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď 4γ

for all pλ, xq P Qˆ∆. Therefore ψ is a coarse `p-type.

Suppose now that L “ 0. Fix α “ pαiqNi“1 Ď Q such that α1 “ 1 and αj ď 1 for 2 ď j ď N

(the general case will follow from dilation). Using Lemma 3.6.7, find β ě 1 and a nonzero

increasing sequence pβmq8m“1 Ď Q converging to β such that

lim sup
m

|b ¨ pT kαψpλ, xq ´ bβ
k
m ¨ ψpλ, xq| ď γ

for all b P Q, k P N and pλ, xq P Qˆ∆. Fix k P N and note that

pT kαψ “
N
˚
ik“1

¨ ¨ ¨
N
˚
i1“1
p

k
ź

`“1

αi`q ¨ ψ

(using the definition of pTα and the distributivity of dilation over convolution). After combining

like terms using the commutativity of convolution, by Lemma 3.6.7 and what was shown above
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with L “ 0,
ˇ

ˇ

ˇ

ˇ

ˇ

b ¨ pT kαψpλ, xq ´ b ¨ ˚
nPF
p

k
ź

j“1

α
nj
j q ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ď γ

for every b P Q and pλ, xq P Q ˆ ∆, where F “ tn “ pnjq
k
j“1 Ď N0 |

řk
j“1 nj “ ku. Now, let

µ P Q be such that ρIdpµ }ξ1}S {2q ą 2ωIdp1q ` 2γ. Fix M P N, and let M 1 ěM be such that

|
µ

βkM
pT kαψp1, 0q ´

µβkM 1

βkM
¨ ψp1, 0q| ď γ ` ωIdp1q.

Combining the two inequalities above yields

ˇ

ˇ

ˇ

ˇ

ˇ

µβkM 1

βkM
¨ ψp1, 0q ´

µ

βkM
¨ ˚
nPF
p

k
ź

j“1

α
nj
j q ¨ ψp1, 0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2γ ` ωIdp1q.

As pµβkM 1{βkMqξ1 realizes pµβkM 1{βkMq ¨ ψ, by Lemma 3.5.2(i),

µ

βkM
¨ ˚
nPF
p

k
ź

j“1

α
nj
j q ¨ ψp1, 0q ě ωIdp1q.

So, as µ
βkM

ř

nPF p
śk

j“1 α
nj
j q¨ξIpnq realizes µ

βkM
¨˚nPF p

śk
j“1 α

nj
j q¨ψ for any injective map I : F Ñ N,

by Lemma 3.5.2(ii),

1 ď

›

›

›

›

›

µ

βkM

ÿ

nPF

p

k
ź

j“1

α
nj
j q ¨ ξIpnq

›

›

›

›

›

S

ď
µ }ξ1}S

βkM

ź

αjă1

1

1´ αj
.

But this was for any k,M P N, and so it must be the case that β ď 1. That is, β “ 1. Therefore ψ

is a coarse c0-type.

Lemma 3.7.3. Given p P r1,8q, if ψ is a coarse `p-type, then pξnq8n“1 is equivalent to the standard

basis for `p. If ψ is a coarse c0-type, then pξnq8n“1 is equivalent to the standard basis for c0.

Proof. Suppose that ψ P T is a coarse `p-type (the c0 case is similar). Let L ą 0 be such that for
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any pαjqNj“1 Ď Q, any ptmq8m“1 Ď Q converging to }α}p, and any pλ, xq P Qˆ∆,

lim sup
m

ˇ

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, xq ´ tm ¨ ψpλ, xq

ˇ

ˇ

ˇ

ˇ

ď L. (3.5)

Let penq8n“1 be the standard basis for `p, and define T : spantenu
8
n“1 Ñ H by Ten “ ξn{ }ξ1}S

for each n P N, extended linearly. Fix 0 ă ε ă 1 and let b P Q be such that 1{ }ξ1}S ă b ă

p1 ` εq{ }ξ1}S . For each α “ pαiq
N
i“1 Ď Q, let tα P Q be such that |tα ´ }α}p| ď ε}α}p and

|˚N
j“1 αj ¨ ψpb, 0q ´ tα ¨ ψpb, 0q| ď L` ε. By (3.5) and Lemma 3.5.2,

ρId

˜

p1´ εq

›

›

›

›

›

N
ÿ

i“1

αi
ξj
}ξ1}S

›

›

›

›

›

S

¸

ď ρId

˜

p1´ εq

›

›

›

›

›

N
ÿ

i“1

αibξj

›

›

›

›

›

S

¸

ď
N
˚
i“1

αi ¨ ψpb, 0q

ď tα ¨ ψpb, 0q ` L` ε

ď ωId pb }ξ1}S tα ` εq ` L` ε

ď ωId

`

p1` εq2}α}p ` ε
˘

` L` ε,

for all α “ pαiq
N
i“1 Ď Q. Thus, as Id : pX, } ¨ }q Ñ pX, dq is a coarse equivalence, there exists

K ą 0 such that }α}p ď 1 implies
›

›

›

řN
i“1 αi

ξi
}ξ1}S

›

›

›

S
ď K. Therefore T is bounded.

Clearly, T is a bijection, and so has a linear inverse T´1. By (3.5) and Lemma 3.5.2,

ρId

`

p1´ εq2}α}p
˘

´ L´ ε ď ρId pp1´ εqbtα }ξ1}Sq ´ L´ ε

ď tα ¨ ψpb, 0q ´ L´ ε

ď
N
˚
i“1

αi ¨ ψpb, 0q

ď ωId

˜

b

›

›

›

›

›

N
ÿ

i“1

αiξi

›

›

›

›

›

S

` ε

¸

ď ωId

˜

p1` εq

›

›

›

›

›

N
ÿ

i“1

αi
ξi
}ξ1}S

›

›

›

›

›

S

` ε

¸

.

for all α “ pαiqNi“1 Ď Q. Thus, as Id : pX, } ¨}q Ñ pX, dq is a coarse equivalence, there exists some
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R ą 0 such that
›

›

›

řN
i“1 αi

ξi
}ξ1}S

›

›

›

S
ď 1 implies }α}p ă R. Therefore T´1 is bounded. This means

T is an isomorphism, and can be extended to an isomorphism between `p and spantξnu
8
n“1.

Theorem 3.7.4. If a Banach space X is coarsely embeddable into a superstable Banach space,

then X has a basic sequence that generates a spreading model isomorphic to `p for some p P

r1,8q.

Proof. By Corollary 3.2.2, if X is coarsely embeddable into a superstable Banach space Y , then

there exists a translation-invariant stable pseudometric d on X that is coarsely equivalent to the

metric induced by the norm of X . Thus, a space of types T can be defined as in Section 3.3. Let

ψ P C be chosen as in the introduction to Section 3.5. By Theorem 3.7.2, ψ is either a c0-type or

an `p-type for some p P r1,8q. Then, by Lemma 3.7.3, X has a spreading model isomorphic to

either c0 or to `p for some p P r1,8q.

Suppose X has a spreading model isomorphic to c0. In particular, c0 is finitely representable in

X . Thus, c0 is (isometrically) isomorphic to a subspace of an ultrapower of X . As ultrapowers of

X are coarsely embeddable into ultrapowers of Y , this implies that c0 is coarsely embeddable into

an ultrapower of Y , which is a stable space. But this is impossible (see Theorem 2.1 and Theorem

3.6 of [8]). Therefore X contains a spreading model isomorphic to `p for some p P r1,8q.

Let pxnq8n“1 be a bounded sequence inX without Cauchy subsequences with a spreading model

isomorphic to `p for some p P r1,8q. By Rosenthal’s `1 theorem, either pxnq8n“1 has a subsequence

which is equivalent to the standard basis of `1, or it has a weakly Cauchy subsequence. In the first

case, pxnq8n“1 is a basic sequence. So suppose pxnq8n“1 is weakly Cauchy. Then px2n´1´x2nq
8
n“1 is

weakly null and has a spreading model isomorphic to `p. Thus, after possibly taking a subsequence,

we can assume that px2n´1 ´ x2nq
8
n“1 is basic.

Remark 3.7.5. By the last inequality of the `p case in Theorem 3.7.2, and by following the proof

of Lemma 3.7.3, an upper bound of

´

inf
εą0

sup ρ´1
Id pr0, ωIdp1q ` 5γ ` εsq

¯2
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can be found for the Banach-Mazur distance between `p and the spreading model constructed for

X .

Corollary 3.7.6. There are separable reflexive Banach spaces that are not coarsely embeddable

into any superstable Banach space.

Proof. The original Tsirelson space (see [14]) does not have a spreading model isomorphic to `p

for any p P r1,8q, and so provides an example. Another example is the space constructed by E.

Odell and Th. Schlumprecht (see Theorem 1.4 of [12]).
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4. A CODING OF BUNDLE GRAPHS AND THEIR EMBEDDINGS INTO BANACH

SPACES˚

4.1 Introduction

Recall that given two metric spaces pX, dXq and pY, dY q, X is said to be bi-Lipschitzly embed-

dable into Y if there is a function f : X Ñ Y and constants C1, C2 ą 0 such that

C1dXpx1, x2q ď dY pfpx1q, fpx2qq ď C2dXpx1, x2q (4.1)

for all x1, x2 P X , and in this case f is called a bi-Lipschitz embedding. The distortion distpfq of

a bi-Lipschitz embedding f is the infimum of C2{C1 over all constants C1, C2 ą 0 satisfying (4.1).

We let cY pXq be the infimum of distpfq over all bi-Lipschitz embeddings f : X Ñ Y . A family of

metric spaces tXiuiPI is said to be equi-bi-Lipschitzly embeddable into Y if supiPI cY pXiq ă 8.

In [5], J. Bourgain proved that superreflexivity of Banach spaces can be characterized by the

non-equi-bi-Lipschitz embeddability of the family of binary trees with finite height. Since then,

the non-equi-bi-Lipschitz embeddability of several other families of graphs have also been shown

to characterize superreflexivity ([3], [11], [17]). In [4], F. Baudier et al. proved that the non-

equi-bi-Lipschitz embeddability of the family of ℵ0-branching diamond graphs characterizes the

asymptotic uniform convexifiability of refexive Banach spaces with an unconditional asymptotic

structure. They also show that this same family of graphs is equi-bi-Lipschitzly embeddable into

L1.

The families of graphs used in [11], [17], and [4] are all contained in a larger class of graphs,

that we call the “bundle graphs”. The class of (finitely branching) bundle graphs may be thought

of as the class of all bundles (see the seminal paper of A. Gupta, I. Newman, Y. Rabinovich, and

A. Sinclair [10]) that have regularity imposed on their branching. The goal of this paper is to gen-

˚Most of this section is reprinted with permission from A. Swift, A coding of bundle graphs and their embeddings
into Banach spaces, Mathematika (to appear), arXiv:1710.00877 (2017), 27 pages. Copyright 2018 by University
College London.
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eralize the results mentioned above to this larger class while providing unified proofs. We order

the sections roughly in terms of ease of proof. In Section 4.2, we define what a bundle graph

is and provide a natural labeling of the vertices of such graphs. We then derive a formula for

the graph metric in terms of this labeling. In Sections 4.3 and 4.4, we generalize two results in

[4]. In Section 4.3 we show that every countably-branching bundle graph is bi-Lipschitzly em-

beddable into any Banach space with a good `8-tree with distortion bounded above by a constant

depending only on the good `8-tree, which implies a more general characterization of asymptotic

uniform convexifiability for the class of reflexive Banach spaces with an unconditional asymptotic

structure. In Section 4.4 we show that every countably-branching bundle graph is bi-Lipschitzly

embeddable into L1 with distortion bounded above by 2. In Section 4.5 we show that every finitely

branching bundle graph is bi-Lipschitzly embeddable into any Banach space containing an equal-

signs-additive basic sequence with distortion bounded above by a constant not depending on the

branching number (although it will still depend on the bundle graph). However, in Section 4.6, we

show that this constant does not increase withm-products, and thus generalize the characterizations

of superreflexivity found in [11] and [17].

The problem of characterizing superreflexivity in purely metric terms belongs to a more gen-

eral investigation of metric characterizations of local properties of Banach spaces, called the Ribe

program. Surveys of other results in this program can be found in [2] and [15].

4.2 Notation and definitions

We will denote N Y t0u by N0 and given n P N0, we will denote the set ti P N0 | i ď nu by

rns. Given a finite sequence A “ paiqni“1 Ď N0, the length of A, denoted by |A|, is defined to be n;

and the maximum of A, denoted by maxA, is defined to be maxtaiu
n
i“1. If m P N0, then we define

Aæm by Aæm “ paiqmi“1 if m ď n and Aæm “ A if m ą n. We write B ĺ A if B “ Aæm for some

m P N0, and write B ă A if B ĺ A and B ‰ A. Given another finite sequence B, we denote by

A ^ B the longest sequence C such that C ĺ A and C ĺ B, and by A"B the concatenation of

A and B. Note that if A1 ĺ A2 and A1 ł B, then A2 ^ B “ A1 ^ B. Note also that if A1 ĺ B

and A2 ĺ B, then either A1 ĺ A2 or A2 ĺ A1. We denote the sequence of length 0 (the empty

61



sequence) by H. Given a set X and n P N0, we denote by Xn the set of sequences in X with

length equal to n and by Xďn the set of all sequences in X with length at most n.

Given a graph G, we always use the (unweighted) shortest-path metric when discussing the

distance between two vertices in G. We denote the vertex set of G by V pGq and the edge set of G

by EpGq.

Definition 4.2.1. Given a cardinality κ ‰ 0, a graph with two distinguished vertices, one des-

ignated the “top”, and the other the “bottom”, is called a κ-branching bundle graph if it can be

formed by any (finite) sequence of the following operations:

• (Initialization) Create a path of length 1, with one endpoint designated the top and the other

the bottom.

• (Series Composition) Given two κ-branching bundle graphs G1 and G2, create a new graph

G"
1 G2 by identifying the top of G1 with the bottom of G2. The bottom of G"

1 G2 will be the

bottom of G1 and the top of G"
1 G2 will be the top of G2.

• (Parallel Composition) Given a κ-branching bundle graph G, create a new graph G‖κ by

taking κ copies of G and then identifying all the bottoms with each other and all the tops

with each other. The bottom of G‖κ will be the bottom of G and the top of G‖κ will be the

top of G.

The height of a bundle graph is the distance between its bottom and top. The height of a vertex v

in a bundle graph G is the distance between v and the bottom of G.

Remark 4.2.2. For finite κ, the class of bundle graphs described here is a proper subclass of the

class of arbitrary “bundles” found in [10]. Indeed, (finitely branching) bundle graphs are bundles

given an unweighted graph metric that have some regularity in the branching that occurs as one

travels from bottom to top.

For what follows, two bundle graphs are considered the same if there is a graph isomorphism

between them mapping top to top and bottom to bottom. Suppose G is a κ-branching bundle graph
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for some cardinality κ ‰ 0. If κ “ 1, then G is a path, and in this case G‖κ “ G. If κ is finite

and κ ą 1, then G ‰ G‖κ whenever |V pGq| ě 3 by a simple cardinality argument. However, if

κ is infinite, then pG‖κq‖
κ
“ G‖κ (since κ ¨ κ “ κ). But note that for κ ą 1, G could not have

been formed in the last step of the sequence of operations by both series composition and parallel

composition if |V pGq| ě 3. This is because if G is formed in the last step via series composition,

then G will have a vertex v that is neither the top nor bottom of G such that no other vertex in G

has the same height as v (this v is the glued vertex from the definition). That is, G has a vertex

cut consisting of one vertex v. And if G is formed in the last step via parallel composition, then

no such vertex will exist. Thus, for infinite κ, G ‰ G‖κ implies G was formed in the last step via

series composition.

Now, suppose H is another κ-branching bundle graph. Then if G1 is a κ-branching bundle

graph with the same height as G, and H 1 is a κ-branching bundle graph, then G"H “ G1"H 1 if

and only if G “ G1 and H “ H 1, by an easy connected component argument. Finally, note that if

u, v P V pG‖κq are adjacent, then they must be copies of vertices that are adjacent in G and must

furthermore be contained in the same copy ofG. Thus, ifG ‰ G‖κ andH ‰ H‖κ , thenG‖κ “ H‖κ

if and only if G “ H . These observations show that the following definition is well defined.

Definition 4.2.3. Given a vertex v in a κ-branching bundle graph G, the depth or level of v (with

respect to κ) is defined recursively as follows:

• If v is the top or bottom of G, then v has depth 0.

• If v is neither the top nor bottom of G, and G can be constructed in the last step via series

composition between two κ-branching bundle graphs G1 and G2, then the depth of v in G is

the same as its depth in G1 if v P V pG1q or its depth in G2 if v P V pG2q.

• If v is neither the top nor bottom of G, and G can be constructed in the last step via parallel

composition of a κ-branching bundle graph G1 ‰ G, then the depth of v in G is one more

than the depth of v1 in G1 if v is a copy of v1 P V pG1q.
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It isn’t difficult to see that given two κ-branching bundle graphs, G and G1, a new κ-branching

bundle graph can be created by replacing every edge of G with a copy of G1 (where the bottom

of G1 is placed on the lower endpoint of the edge and the top on the higher). We give a proof of

this fact in Section 4.6. Thus the diamond and Laakso graphs used in [11], [17], and [4] are all

examples of bundle graphs.

SupposeG is a κ-branching bundle graph with heightM`1 for some cardinality κ andM P N0.

From the definitions, every vertex of G at a given height will have the same depth. And if we

know the depth associated with each height, we can use Definition 4.2.3 to go backwards to find

a sequence of operations from Definition 4.2.1 that can be used to create G. That is, we don’t

actually need to know the sequence of operations used to create G. All information about G is

contained in the branching number κ and the sequence of depths W “ pwrq
M`1
r“0 , where wr is the

depth (with respect to κ) associated to height r (we include w0 “ wM`1 “ 0 for convenience).

Suppose r P rM ` 1s is such that wr ą 0, and let v be a vertex of G with height r. Since

wr ą 0, v is a copy of some vertex v1 in some κ-branching bundle graph G1 (that was used in

parallel composition in one of the steps to create G). To distinguish v from other copies of v1, we

label the copies of G1 with elements of κ and record the copy in which v was found as awr . Now

in the graph G1, v1 has depth wr ´ 1. If wr ´ 1 ą 0, then we go through this process again for v1

to obtain awr´1. We repeat this process until we obtain a sequence A “ paiqwri“1 that can be used to

distinguish v from any other vertex at height r. Doing this for every vertex in G yields a labeling

of the vertex set. Actually, we could perform this process on any finite sequence in N0 beginning

and ending in 0 to obtain a κ-branching bundle graph (although in this case, the sequence we start

with may not correspond to the sequence of depths for the bundle graph).

With this labeling in mind, we are now in the position to give a non-recursive definition of a

bundle graph that is equivalent to Definition 4.2.1. Note that two adjacent vertices u and v of a

bundle graph must differ in height by exactly 1. And recall that if u and v are adjacent and were

created during parallel composition of a bundle graph G1, then u and v must be in the same copy

of G1.
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Definition 4.2.4. Given a finite sequence W “ pwrq
M`1
r“0 Ď N0 such that w0 “ wM`1 “ 0 and a

cardinality κ, the κ-branching bundle graph associated with W is TW,κ “ pV,Eq, defined by

V “ tpr, Aq | r P rM ` 1s and A P κwru ,

E “ ttpr, Aq, ps, Bqu Ď V | |r ´ s| “ 1 and A ĺ Bu.

The vertices p0,Hq and pM ` 1,Hq in V are called the bottom and top, respectively, of TW,κ.

We illustrate in Figure 4.1 below a typical bundle graph with its vertex labeling.

Remark 4.2.5. If we don’t specify the branching cardinality κ (or if κ “ 1 or κ is infinite), then

many bundle graphs have multiple representations from Definition 4.2.4. For instance, Tp0,2,0q,2

and Tp0,1,0,q,4 are graph isomorphic (both represent a diamond graph of height 2 with 4 midpoints

between top and bottom). In the first case we think of the graph as being a 2-branching graph and

in the second a 4-branching graph. If we want our graphs to have both a unique branching number

and sequence of depths, we could modify Definition 4.2.1 to only allow parallel composition on

graphs that could not have been created by parallel composition (that is, we don’t allow parallel

composition to be performed twice in a row to obtain a bundle graph). Equivalently, we would

only allow parallel composition on graphs that contain a vertex v that is neither top nor bottom

such that no other vertex has the same height as v. Then we could put requirements on W in

addition to w0 “ wM`1 “ 0 to obtain a unique representation of all bundle graphs in Definition

4.2.4 (in this case Tp0,1,0,q,4 would be the canonical representation for our example). However, this

is an unnecessary complication for the purpose of this paper.

Remark 4.2.6. The only graphs this paper deals with are bundle graphs. However, in some

cases, results concerning other graphs can be recovered. Note for instance that every tree is (iso-

metrically) contained in some bundle graph as a subgraph. Indeed, a κ-branching tree with all

leaves having the same finite height can be “doubled” to obtain a bundle graph containing the

tree as its lower half. For instance, the binary tree with all leaves having height 3 is contained in

Tp0,1,2,3,2,1,0q,2.
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p0,Hq

p1,Hq

p2, p0qq p2, p1qq

p3,Hq

p4,Hq

p5, p0, 1qq

p5, p0, 0qq

p6, p0qq

p7, p0qq

p5, p1, 0qq

p5, p1, 1qq

p6, p1qq

p7, p1qq

p8, p0qq

p9, p0, 0qq

p9, p0, 1qq

p10, p0qq

p8, p1qq

p9, p1, 1qq

p9, p1, 0qq

p10, p1qq

p11,Hq

Figure 4.1: TW,κ with W “ p0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0q and κ “ 2.
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Now that we have a way to represent a bundle graph with Definition 4.2.4, the next order of

business is deriving a formula for the shortest-path metric.

Lemma 4.2.7. Let TW,κ “ pV,Eq be a bundle graph and fix u “ pr, Aq and v “ ps, Bq in V . If

pti, Ciq
n
i“0 is a path between u and v, then there is i P rns such that Ci ĺ A^B.

Proof. Suppose the statement is false and let pti, Ciqni“0 be a path starting at u and ending at v such

that Ci ł A^ B for all i P rns. Then in particular, A “ C0 ł B. That is, C0 is such that C0 ł B

andC0^B “ A^B. Take any i P rn´1s such thatCi ł B andCi^B “ A^B. EitherCi`1 ĺ Ci

or Ci ĺ Ci`1, so suppose first that Ci ĺ Ci`1. Then Ci`1 ł B and Ci`1 ^B “ Ci ^B “ A^B

because Ci ł B.

Suppose now that Ci`1 ĺ Ci. In this case, either Ci`1 ĺ B or Ci`1 ł B, so suppose first that

Ci`1 ĺ B. ThenA^B ă Ci`1 “ Ci`1^B becauseA^B ĺ B and by hypothesis Ci`1 ł A^B.

But Ci`1 ^ B ĺ Ci ^ B “ A^ B since Ci`1 ĺ Ci. This is a contradiction, and so it must be the

case that Ci`1 ł B. Therefore Ci`1 ^B “ Ci ^B “ A^B since Ci`1 ĺ Ci.

By induction, it has been shown that for every i P rns, Ci ł B (and Ci ^ B “ A ^ B).

In particular, B “ Cn ł B, which is impossible. Therefore no such path pti, Ciqni“0 exists as

supposed, and so there is i P rns such that Ci ĺ A^B.

By Lemma 4.2.7, a path between two vertices u “ pr, Aq and v “ ps, Bq in a bundle graph

must contain a vertex pt, Cq such that both C ĺ A and C ĺ B. There are two cases to consider

when trying to create a shortest path between u and v: Either such a vertex pt, Cq can be found so

that t is between r and s, or not. In either case we have wt “ |C| ď |A^B|.

We introduce some notation to differentiate these two possibilities. Given two vertices u “

pr, Aq and v “ ps, Bq in a bundle graph, we will write u õ v to mean that there is t P rM ` 1s

between r and s (inclusive) such that wt ď |A ^ B|. We will write u ��õ v to mean the opposite.

Note, in particular, that ifA ĺ B orB ĺ A, then u õ v, and if u ��õ v, then |A^B| ă mint|A|, |B|u.

Definition 4.2.8. Given two vertices u “ pr, Aq and v “ ps, Bq in a bundle graph, u is said to be

an ancestor of v and v is said to be a descendant of u if u õ v and r ď s.
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We show in the following proposition that the distance between a vertex in a bundle graph and

one of its ancestors or descendants is simply the difference in height between the two. By Lemma

4.2.7, finding the distance between two arbitrary vertices in a bundle graph thus amounts to finding

a highest common ancestor or lowest common descendant of the two vertices.

For example, using Figure 4.1, one may see that p5, p1, 1qq ´ p6, p1qq ´ p7, p1qq ´ p8, p1qq ´

p9, p1, 0qq is a shortest path between p5, p1, 1qq and p9, p1, 0qq. But a path between p5, p1, 1qq and

p9, p0, 1qq must first go through either p4,Hq or p11,Hq.

Given two vertices u “ pr, Aq and v “ ps, Bq in a bundle graph TW,κ, we define npu, vq and

mpu, vq by

npu, vq “ maxtt P rM ` 1s | wt ď |A^B| and t ď mintr, suu,

mpu, vq “ mintt P rM ` 1s | wt ď |A^B| and t ě maxtr, suu.

Following the definitions, one sees that if u ��õ v, then
`

npu, vq, A^Bæwnpu,vq
˘

is the highest

common ancestor of u and v and
`

mpu, vq, A^Bæwmpu,vq
˘

is the lowest common descendant of u

and v.

Proposition 4.2.9. Let TW,κ “ pV,Eq be a bundle graph with shortest-path metric d, and fix

u “ pr, Aq and v “ ps, Bq in V . Then

dpu, vq “

$

’

’

&

’

’

%

|r ´ s| u õ v

mintr ` s´ 2npu, vq, 2mpu, vq ´ pr ` squ u ��õ v

Proof. By the definition of the edge setE, dpu, vq ě |r´s|. Suppose first thatA ĺ B. Recursively

construct the sequence pCiq
|r´s|
i“0 by letting

C0 “

$

’

’

&

’

’

%

A r ď s

B s ă r
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and given Ci´1 for i P r|r ´ s|szt0u, choosing Ci P κwmintr,su`i so that Ci´1 ^ Ci P tCi´1, Ciu and

Ci^B P tCi, Bu. Then ppmintr, su`i, Ciqq
|r´s|
i“0 is a path between u and v, and so dpu, vq ď |r´s|.

That is, dpu, vq “ |r ´ s|. The case B ĺ A is similar.

Now, if u õ v, then there is t between r and s such that |A ^ B| ě wt. Thus, by what was

shown above,

dpu, vq ď d pu, pt, A^Bæwtqq ` d ppt, A^Bæwtq , vq

“ |r ´ t| ` |t´ s|

“ |r ´ s|

and so dpu, vq “ |r ´ s|.

If u ��õ v, then by Lemma 4.2.7 a shortest path between u and v must contain a vertex that is

either a common ancestor or a common descendant of u and v. The result follows from what was

shown above by taking the minimum of lengths of paths between u and v that contain either the

highest common ancestor or lowest common descendant.

Continuing our example from Figure 4.1, one may check that w7 “ 1 ď |p1q| “ |p1, 1q ^

p1, 0q|. Thus p5, p1, 1qq õ p9, p1, 0qq and so dpp5, p1, 1q, p9, p1, 0qqq “ 9 ´ 5 “ 4 by Proposition

4.2.9. Similarly, there is no t P r11s between 5 and 9 such that wt ď 0 “ |H| “ |p1, 1q ^

p0, 1q|, meaning p5, p1, 1qq ��õ p9, p1, 0qq. One may determine that npp5, p1, 1qq, p9, p0, 1qqq “ 4 and

mpp5, p1, 1qq, p9, p0, 1qqq “ 11. By Proposition 4.2.9, dpp5, p1, 1qq, p9, p0, 1qqq “ mint5 ` 9 ´ 2 ¨

4, 2 ¨ 11´ p9` 5qu “ 6.

Throughout the next few sections, we describe various bi-Lipschitz embeddings of bundle

graphs into Banach spaces. We define now the notation that will regularly be used, and fix for

the rest of the paper W “ pwrq
M`1
r“0 Ď N0 such that w0 “ wM`1 “ 0. For r P rM ` 1s and i P N0,

define xpr, iq, ypr, iq, and zpr, iq by
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xpr, iq “

$

’

’

&

’

’

%

0 i “ 0

maxtt P rM ` 1s | wt ă i and t ď ru i ą 0,

(4.2)

ypr, iq “

$

’

’

&

’

’

%

M ` 1 i “ 0

mintt P rM ` 1s | wt ă i and t ě ru i ą 0,

(4.3)

zpr, iq “

$

’

’

&

’

’

%

r i “ 0

mintr ´ xpr, iq, ypr, iq ´ ru i ą 0.

(4.4)

Given r P rM ` 1s and i P N, xpr, iq records the last height no greater than r in which the

vertices of a bundle graph associated with W have depth less than i. Similarly, ypr, iq records the

first height no lesser than r in which the vertices of a bundle graph associated with W have depth

less than i. And zpr, iq simply records the distance one would have to travel from height r to get to

a vertex with depth less than i in a bundle graph associated with W . Note that xpr, iq “ ypr, iq “ r

and zpr, iq “ 0 for i ą wr.

Consider u “ pr, Aq and v “ ps, Bq in V pTW,κq for some cardinality κ. If u ��õ v (recall this

means there is no t P rM ` 1s between r and s such that wt ď |A ^ B|), then a comparison of

the definitions of npu, vq and mpu, vq with notations (4.2) and (4.3), respectively, yields npu, vq “

xpr, |A^B| ` 1q “ xps, |A^B| ` 1q and mpu, vq “ ypr, |A^B| ` 1q “ yps, |A^B| ` 1q. This

fact will be used repeatedly in the proofs to follow.

4.3 Embedding into Banach spaces with good `8-trees

In this section, we show that for any countable cardinality κ, TW,κ is bi-Lipschitzly embeddable

into any Banach space with a good `8-tree of height maxW with distortion bounded above by a

constant depending only on the good `8-tree.

Definition 4.3.1. Given n P N and C,D ą 0, a Banach space pX, } ¨ }Xq is said to contain

a pC,Dq-good `8-tree of height n if given some enumeration pσiq8i“0 of ℵďn0 such that i1 ď i2

70



whenever σi1 ĺ σi2 , there is a sequence pyσiq
8
i“0 Ď SX such that, given any pαiq8i“0 Ď R,

(i) 1{C}pαiq
n
i“0}8 ď }

ř

BĺA α|B|yB}X ď C}pαiq
n
i“0}8 for all A P ℵn0 ,

(ii) }
řm1

i“0 αiyσi}X ď D }
řm2

i“0 αiyσi}X for all m1,m2 P N0 such that m1 ď m2.

In this case pyσiq
8
i“0 is called a pC,Dq-good `8-tree of height n.

The given definition is a finite height analogue of Definition 3.1 in [4]. The first condition

states that every “branch” pyBqBĺA of the good `8-tree is C2-equivalent to the unit vector basis of

`n`1
8 . The second condition states that the sequence making up the good `8-tree is basic with basis

constant less than or equal to D. Note that the condition on the enumeration implies σ0 “ H.

Theorem 4.3.2 below generalizes Theorem 3.1 in [4]. The proof we show here has the same

main idea as the proof in [4], but is much shorter due to the fact that we fix at the beginning a single

bundle graph, rather than prove the result for an entire family of bundle graphs. This gets rid of a

lengthy induction argument.

Theorem 4.3.2. Fix a countable cardinality κ and suppose X is a Banach space containing a

pC,Dq-good `8-tree pyσiq
8
i“0 of height maxW for some C,D ą 0. Then there is a bi-Lipschitz

embedding ψ : TW,κ Ñ X such that for all u, v P V pTW,κq,

1

3Dp1`Dq
dpu, vq ď }ψpuq ´ ψpvq}X ď Cdpu, vq,

where d is the shortest-path metric for TW,κ, and furthermore, }ψpuq ´ψpvq}X ě dpu, vq{D when

u õ v.

Proof. Define the map ψ : TW,κ Ñ X by

ψppr, Aqq “
ÿ

BĺA

zpr, |B|qyB

(see notation (4.4) in the previous section) for every pr, Aq P V pTW,κq.
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Take any u “ pr, Aq and v “ ps, Bq in V pTW,κq and suppose first that u and v are adjacent with

A ĺ B (implying wr ď ws). Then,

}ψpuq ´ ψpvq}X “

›

›

›

›

›

ÿ

EĺA

zpr, |E|qyE ´
ÿ

EĺB

zps, |E|qyE

›

›

›

›

›

X

“

›

›

›

›

›

ÿ

EĺB

pzpr, |E|q ´ zps, |E|qqyE

›

›

›

›

›

X

ď C max
0ďiďws

t|zpr, iq ´ zps, iq|u

ď C,

where the second line follows from the assumption that A ĺ B and the fact that zpr, iq “ 0 for

wr ă i ď ws, the third line from property piq of the `8-tree, and the last line from the assumption

that |r´s| “ 1. The triangle inequality applied to shortest paths then shows that }ψpuq´ψpvq}X ď

Cdpu, vq for all u, v P V pTW,κq.

For the left-hand inequality, take any u “ pr, Aq and v “ ps, Bq in V pTW,κq, and suppose first

that u õ v. Then property (ii) of the `8-tree yields

}ψpuq ´ ψpvq}X ě
1

D
|zpr, 0q ´ zps, 0q| “

1

D
|r ´ s| “

1

D
dpu, vq.

Suppose now that u ��õ v. As mentioned in the last paragraph of the previous section, note that

npu, vq “ xpr, |A^B|`1q “ xps, |A^B|`1q andmpu, vq “ ypr, |A^B|`1q “ yps, |A^B|`1q.

Let n1 P N0 be such that σn1 ĺ A and |σn1 | “ |A ^ B| ` 1. Similarly, let n2 P N0 be such that

σn2 ĺ B and |σn2 | “ |A^B| ` 1. For i P N0, let

αi “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

zpr, |σi|q ´ zps, |σi|q σi ĺ A^B

zpr, |σi|q A^B ă σi ĺ A

´zps, |σi|q A^B ă σi ĺ B

0 otherwise.
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Then, by property (ii) of the `8-tree and Proposition 4.2.9,

}ψpuq ´ ψpvq}X “

›

›

›

›

›

8
ÿ

i“0

αiyσi

›

›

›

›

›

X

ě
1

D
max

#
›

›

›

›

›

n1
ÿ

i“0

αiyσi

›

›

›

›

›

X

,

›

›

›

›

›

n2
ÿ

i“0

αiyσi

›

›

›

›

›

X

, }α0yH}X

+

ě
1

Dp1`Dq
maxt|αn1 |, |αn2 |, |α0|u

“
1

Dp1`Dq
maxtzpr, |A^B| ` 1q, zps, |A^B| ` 1q, |zpr, 0q ´ zps, 0q|u

“
1

Dp1`Dq
maxtmintr ´ npu, vq,mpu, vq ´ ru,

mints´ npu, vq,mpu, vq ´ su, |r ´ s|u

ě
1

3Dp1`Dq
dpu, vq.

Remark 4.3.3. In the proof above, 1`D appears by using the triangle inequality and the fact that

D is a monotonicity constant for the sequence pyσiq
8
i“0. One may replace 1 ` D with D if D is

actually a bimonotonicity constant.

It was also shown in [4] (see Theorem 3.2 of that paper) that any reflexive Banach space with an

unconditional asymptotic structure that is not asymptotically uniformly convexifiable will contain

p1 ` ε, 1 ` εq-good `8-trees of arbitrary height, for any ε ą 0. Thus, Theorem 4.3.2 of this paper

yields the following corollary.

Corollary 4.3.4. For any ε ą 0, every countably-branching bundle graph is bi-Lipschitzly embed-

dable with distortion bounded above by 6`ε into any reflexive Banach space with an unconditional

asymptotic structure that is not asymptotically uniformly convexifiable.

Finally, in [4] it was shown (see Theorem 4.1 of that paper) that if a Banach space X is

asymptotically midpoint uniformly convexifiable, then no family of bundle graphs with nontriv-

ial (meaning there is a vertex with nonzero depth) ℵ0-branching base graph is equi-bi-Lipschitzly

embeddable into X . This fact combined with Corollary 4.3.4 actually shows that the non-equi-

bi-Lipschitz embeddability of any family of bundle graphs generated by a nontrivial ℵ0-branching
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bundle graph characterizes asymptotic uniform convexifiability within the class of reflexive Ba-

nach spaces with an asymptotic unconditional structure. We recall the definition of a family of

bundle graphs generated from a base graph in Section 4.6.

4.4 Embedding into L1

In this section we show that for any countable cardinality κ, TW,κ is bi-Lipschitzly embeddable

into L1pr0,M ` 1sq (equipped with Lebesgue measure λ) with distortion bounded above by 2.

Note however that for finite κ, TW,κ belongs to the family of series-parallel graphs and so is already

known to be bi-Lipschitzly embeddable into `1 with distortion bounded above by 2 (see [8]). That

this distortion bound is optimal follows from work done in [14]. For each v P V pTW,κq, we map

v to the characteristic function of some set. To get the distortion we desire, we need to make sure

that the symmetric differences of the sets involved are large enough in Lebesgue measure. The

construction is somewhat technical, but is essentially done through intersections of supports of

independent Bernoulli random variables.

Let D be any common multiple of the numbers in rM ` 1szt0u. Let F be the family of all

finite unions of open subintervals of r0,M ` 1s such that for each P P F , there is N P N0 such

that each maximal (with respect to set containment) subinterval of P is equal to
`

qD
DN`1 ,

qD`r
DN`1

˘

for some q P rpM ` 1qDN ´ 1s and r P rDs; and given P P F , let NpP q be the minimum of

such N associated with P . Note here that if P, P 1 P F are such that NpP q ă NpP 1q, then every

subinterval of P 1 is either contained in a subinterval of P or has empty intersection with P .

Let pσiq8i“0 be an enumeration of ℵďmaxW
0 and let pPiq8i“0 be an enumeration of F such that

P0 “ H and NpPiq ď i for all i P N0. For each i, j P N0, let θpi, jq “ 2i3j ´ NpPjq. Define

f : ℵďmaxW
0 ˆ F ˆ rDs Ñ F by

fpσi, Pj, kq “
n
ď

`“0

Dθpi,jq´1
ď

m“0

ˆ

α` `
mDpβ` ´ α`q

Dθpi,jq`1
, α` `

pmD ` kqpβ` ´ α`q

Dθpi,jq`1

˙

whenever Pj “
Ůn
`“0pα`, β`q (where \ means disjoint union), for all i, j P N0 and k P rDs.

We list the properties we need from f in the following lemma, but one may think of fpA,P, kq
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as the intersection of P with the support of a Bernoulli random variable that has probability of

success equal to k{D. And if B ‰ A, then fpB,P, kq is also such an intersection, but with a

Bernoulli random variable that is independent from that used for fpA,P, kq.

Lemma 4.4.1. The following hold for all i, j P N0 and k P rDs:

(i) fpσi, Pj, kq Ď fpσi, Pj, k
1q Ď P if k1 P rDs is such that k ď k1.

(ii) 2i3j ´ 1 ď Npfpσi, Pj, kqq ď 2i3j ` 2 if j ‰ 0 and k ‰ 0.

(iii) λfpσi, Pj, kq “ k
D
λpPjq.

(iv) λpP X fpσi, Pj, kqq “ k
D
λpP X Pjq if P P F is such that NpP q ă NpPjq.

Proof. (i): This is obvious from the definition of f .

(ii): Every maximal subinterval of Pj has length less than or equal to 1{DNpPjq, so by the definition

of f , every maximal subinterval of fpσi, Pj, kq has length less than or equal to

k

Dθpi,jq`1
¨

1

DNpPjq
“

k

D2i3j`1
ď

1

D2i3j
.

This means Npfpσi, Pj, kqq ě 2i3j ´ 1. Similarly, every (nontrivial) maximal subinterval of Pj

has length greater than or equal to 1{DNpPjq`1, and so every (nontrivial) maximal subinterval of

fpσi, Pj, kq has length greater than or equal to

k

Dθpi,jq`1
¨

1

DNpPjq`1
“

k

D2i3j`2
ě

1

D2i3j`2
.

Therefore Npfpσi, Pj, kqq ď 2i3j ` 2.

(iii): Supposing Pj “
Ůn
`“0pα`, β`q, then

λpfpσi, Pj, kqq “
n
ÿ

`“0

Dθpi,jq´1
ÿ

m“0

kpβ` ´ α`q

Dθpi,jq`1
“

k

D

n
ÿ

`“0

pβ` ´ α`q “
k

D
λpPjq.

75



(iv): Since NpP q ă NpPjq, every subinterval of Pj is either contained in a subinterval of P or

has empty intersection with P . Thus, if Pj “
Ůn
`“0pα`, β`q and I “ t` P rns | pα`, β`q Ď P u, then

λpP X fpσi, Pj, kqq “
ÿ

`PI

Dθpi,jq´1
ÿ

m“0

kpβ` ´ α`q

Dθpi,jq`1
“

k

D

ÿ

`PI

pβ` ´ α`q “
k

D
λpP X Pjq.

We are now ready to define the sets needed for our bi-Lipschitz embedding. This is done by

recursively defining the sets based on the depths of the vertices in our bundle graph. At any given

depth we construct the sets out of subsets of the sets that were defined for the previous depth. If a

vertex has height r and depth 0, we assign the set r0, rs to this vertex. Suppose there are vertices

at heights r ď s with depth 0 and v is a vertex with depth 1 at height halfway between r and s. We

assign a set of measure r`ps´rq{2 to v by taking the union of r0, rswith half of the set r0, sszr0, rs.

So for instance, we might assign the set r0, rs Y rr, ps´ rq{2s to v. However, there will be another

vertex with depth 1 at the same height as v (if κ ą 1). For this vertex, we need to assign a different

set of measure r ` ps´ rq{2, so we take half of the set r0, sszr0, rs in a way that is independent of

the way we did it with v. For instance, we might use r0, rsYrr, ps´rq{4sYrps´rq{2, 3ps´rq{4s.

A similar process for all depths is used until every vertex has a subset of r0,M ` 1s assigned to it

with Lebesgue measure equal to its height. We use the function f defined above to take care of the

independent selection of sets. At this point we fix for the rest of the section a countable cardinality

κ. The formal construction follows (recall notations (4.2) and (4.3) from Section 4.2).

Given v “ pr, Aq P V pTW,κq, define the sets Sxpv, iq and Sypv, iq in F for i P rwrs recursively

by

Sxpv, 0q “ r0, xpr, 1qszrxpr, 1qs,

Sypv, 0q “ r0, ypr, 1qszrypr, 1qs,
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and

Sxpv, iq “ f

ˆ

Aæi, Sypv, i´ 1qzclospSxpv, i´ 1qq,
xpr, i` 1q ´ xpr, iq

ypr, iq ´ xpr, iq
D

˙

,

Sypv, iq “ f

ˆ

Aæi, Sypv, i´ 1qzclospSxpv, i´ 1qq,
ypr, i` 1q ´ xpr, iq

ypr, iq ´ xpr, iq
D

˙

,

for i P rwrszt0u. Finally, let Spvq “ clos p
Ťwr
i“0 Sxpv, iqq.

Lemma 4.4.2. Fix v “ pr, Aq P V pTW,κq. The following hold for all i P rwrs.

(i) λpSxpv, iqq “ xpr, i` 1q ´ xpr, iq.

(ii) λpSypv, iqq “ ypr, i` 1q ´ xpr, iq.

(iii) λpSypv, iqzSxpv, iqq “ ypr, i` 1q ´ xpr, i` 1q.

(iv) Sxpv, iq X Sxpv, i1q “ H if i1 P rwrs is such that i1 ‰ i.

(v) λpYik“0Sxpv, kqq “ xpr, i` 1q.

Proof. (i)-(iii): These statements certainly hold true for i “ 0. And by (simultaneous) induction

and Lemma 4.4.1 (i) and (iii), they hold true for all i P rwrs.

(iv): By Lemma 4.4.1 (i), Sxpv, wr´kq Ď Sypv, wr´k´ 1qzSxpv, wr´k´ 1q, and so Sxpv, wr´

kqXSxpv, wr´ k´ 1q “ H for all k P rwr´ 1s. In the same way, Sypv, wr´ k´ 1q Ď Sypv, wr´

k´2qzSxpv, wr´k´2q, and so the first set inclusion implies Sxpv, wr´kqXSxpv, wr´k´2q “ H

for all k P rwr ´ 2s. Inductively, Sxpv, wr ´ k1q X Sxpv, wr ´ k2q “ H for all k1 ă k2 P rwrs.

(v): This follows from parts (i) and (iv).

Lemma 4.4.3. Fix u “ pr, Aq and v “ ps, Bq in V pTW,κq. Then

λpSpuq X Spvqq “

$

’

’

&

’

’

%

mintr, su u õ v

npu, vq ` pr´npu,vqqps´npu,vqq
mpu,vq´npu,vq

u ��õ v
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Proof. Let K “ |A^B|. Suppose first that u õ v and r ď s. Then ypr,K`1q ď xps,K`1q. Let

n P rKs be such that xps, iq ă ypr, iq (which implies xps, iq “ xpr, iq and yps, iq “ ypr, iq) for all

i P rns while ypr, n`1q ď xps, n`1q. An easy induction argument shows that Sxpu, iq “ Sxpv, iq

and Sypu, iq “ Sypv, iq for all i P rn ´ 1s, and Sypu, nq Ď Sxpv, nq. Another easy induction

argument and Lemma 4.4.1 (i) shows Sxpu, iq Ď
Ťn
j“0 Sxpv, jq for all i P rwrs by , and so Lemma

4.4.2 (v) yields

λpSpuq X Spvqq “ λ

˜

wr
ď

i“0

Sxpu, iq X
ws
ď

j“0

Sxpv, jq

¸

“ λ

˜

wr
ď

i“0

Sxpu, iq

¸

“ xpr, wr ` 1q “ r.

Suppose now that u ��õ v. Then xpr, iq “ xps, iq and ypr, iq “ yps, iq for all i P rK ` 1s, and

so Sxpu, iq “ Sxpv, iq and Sypu, iq “ Sypv, iq for all i P rKs, by an easy induction argument.

Note that xpr,K ` 1q “ xps,K ` 1q “ npu, vq and ypr,K ` 1q “ yps,K ` 1q “ mpu, vq. For

any i P rwrszrKs and j P rwsszrKs, repeated applications of Lemma 4.4.1 (ii) and (iv) and then

Lemma 4.4.2 (iii) show

λpSxpu, iq X Sxpv, jqq

“
xpr, i` 1q ´ xpr, iq

ypr,K ` 1q ´ xpr,K ` 1q
¨

xps, j ` 1q ´ xps, jq

yps,K ` 1q ´ xps,K ` 1q
¨ λpSypu,KqzSxpu,Kqq

“
pxpr, i` 1q ´ xpr, iqqpxps, j ` 1q ´ xps, jqq

mpu, vq ´ npu, vq
.

This with Lemma 4.4.2 (iv) and (v) implies

λpSpuq X Spvqq “ λ

˜

wr
ď

i“0

Sxpu, iq X
ws
ď

j“0

Sxpv, jq

¸

“ xpr,K ` 1q `
wr
ÿ

i“K`1

ws
ÿ

j“K`1

pxpr, i` 1q ´ xpr, iqqpxps, j ` 1q ´ xps, jqq

mpu, vq ´ npu, vq

“ xpr,K ` 1q `
pxpr, wr ` 1q ´ xpr,K ` 1qqpyps, ws ` 1q ´ yps,K ` 1qq

mpu, vq ´ npu, vq

“ npu, vq `
pr ´ npu, vqqps´ npu, vqq

mpu, vq ´ npu, vq
.
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The next theorem generalizes Theorem 3.3 in [4] (and our earlier lemmas likewise generalized

Lemma 3.6 and its discussion in [4]). We once again follow the same line of thought in our proof

as in the proof in [4], but again our proof is shorter. This time we have still used a recursive process

to define the embedding (this has been absorbed in our lemmas), but it has been made simpler by

again fixing a single bundle graph at the beginning and performing the recursion over the depths

of its vertices.

Theorem 4.4.4. There is a bi-Lipschitz embedding ψ : TW,κ Ñ L1 such that for all u, v P V pTW,κq,

1

2
dpu, vq ď }ψpuq ´ ψpvq}L1 ď dpu, vq,

where d is the shortest-path metric for TW,κ, and furthermore }ψpuq ´ ψpvq}L1 “ dpu, vq when

u õ v.

Proof. Define the map ψ : TW,κ Ñ L1 by ψpvq “ χSpvq for every v P V pTW,κq.

Take any u “ pr, Aq and v “ ps, Bq in V pTW,κq and suppose first that u õ v. By Lemma 4.4.2

(v) and Lemma 4.4.3,

}ψpuq´ψpvq}L1 “ λpSpuqq`λpSpvqq´2λpSpuqXSpvqq “ r`s´2 mintr, su “ |r´s| “ dpu, vq.

Lemma 4.2.7 and the triangle inequality applied to shortest paths then shows that }ψpuq´ψpvq}L1 ď

dpu, vq for all u, v P V pTW,κq.

Suppose now that u ��õ v. By Lemma 4.4.2 (v) and Lemma 4.4.3,

}ψpuq ´ ψpvq}L1 “ λpSpuqq ` λpSpvqq ´ 2λpSpuq X Spvqq

“ r ` s´ 2npu, vq ´ 2
pr ´ npu, vqqps´ npu, vqq

mpu, vq ´ npu, vq

“ α ` β ´ 2
αβ

γ
,

where α “ r´npu, vq, β “ s´npu, vq, and γ “ mpu, vq´npu, vq. Suppose first that maxtα, βu ď
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1
2
γ. Then by Proposition 4.2.9 and the above,

}ψpuq ´ ψpvq}L1 ě α ` β ´mintα, βu “ maxtα, βu ě
1

2
dpu, vq.

Suppose next that mintα, βu ď 1
2
γ ď maxtα, βu. Then by Proposition 4.2.9 and the above,

}ψpuq ´ ψpvq}L1 “ mintα, βu `maxtα, βu

ˆ

1´ 2
mintα, βu

γ

˙

ě
1

2
γ ě

1

2
dpu, vq.

Finally, suppose 1
2
γ ď mintα, βu. Then by Proposition 4.2.9 and the above,

}ψpuq ´ ψpvq}L1 “
1

2γ
p2αγ ` 2βγ ´ 4αβq

“
1

2γ
pγ2

´ p2α ´ γqp2β ´ γqq

ě
1

2γ
pγ2

´ pα ` β ´ γqγq

“
1

2
p2γ ´ pα ` βqq

“
1

2
dpu, vq.

4.5 Embedding into Banach spaces with ESA bases

In this section we show that for any finite cardinality κ, TW,κ is bi-Lipschitzly embeddable into

any Banach space with an ESA basis with distortion bounded above by a constant depending only

on W .

Definition 4.5.1. Let pX, } ¨ }Xq be a Banach space.

(i) A sequence penq8n“1 Ď X is said to be equal-signs-additive (ESA) if for all paq8n“1 P c00 and

k P N such that akak`1 ě 0,

›

›

›

›

›

k´1
ÿ

n“1

anen ` pak ` ak`1qek `
8
ÿ

n“k`2

anen

›

›

›

›

›

X

“

›

›

›

›

›

8
ÿ

n“1

anen

›

›

›

›

›

X

.
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(ii) A sequence penq8n“1 Ď X is said to be subadditive (SA) if for all paq8n“1 P c00,

›

›

›

›

›

k´1
ÿ

n“1

anen ` pak ` ak`1qek `
8
ÿ

n“k`2

anen

›

›

›

›

›

X

ď

›

›

›

›

›

8
ÿ

n“1

anen

›

›

›

›

›

X

.

(iii) A sequence penq8n“1 Ď X is said to be invariant under spreading (IS) if for all paq8n“1 P c00

and increasing sequences pknq8n“1 Ď N,

›

›

›

›

›

8
ÿ

n“1

anekn

›

›

›

›

›

“

›

›

›

›

›

8
ÿ

n“1

anen

›

›

›

›

›

.

The properties ESA, SA, and IS were first defined and studied by Brunel and Sucheston in

[6] and [7]. In [7], they show that a sequence is ESA if and only if it is SA, and that every ESA

sequence is also an IS basis for its linear span. We will use these facts without mention. More

information about ESA sequences can be found in [7] and [1].

To construct the embedding, we follow roughly the same procedure as used in the previous

section. However, with L1 we were able to subdivide the interval r0,M ` 1s as finely as needed to

accommodate the bundle graph. That is, we could use the existence of infinitely many independent

Bernoulli random variables. If instead of L1, we try to embed into a general Banach space with a

basis, we still need independent Bernoulli random variables to choose the support of an embedded

vertex, but the random variables are now discrete. In other words, the more vertices in our graph

we have to embed, the further down the basis we have to go if we want to mimic the procedure

used for L1. This and the fact that we don’t have an explicitly defined norm anymore make the

argument more subtle.

We fix now for the rest of this section a finite cardinality κ and let µ “
ˇ

ˇκďmaxW
ˇ

ˇ P N. We also

fix an independent collection tYiu
µ
i“1 of Bernoulli random variables defined on r2µszt0u (equipped

with the uniform probability measure) with probability of success equal to 1{2. Concretely, for
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each i P rµszt0u, we may define Yi : r2µs zt0u Ñ t0, 1u by

Yipjq “

$

’

’

&

’

’

%

1 j ” n pmod 2µ´pi´1qq for some n P r2µ´iszt0u

0 otherwise

for all j P r2µs zt0u. For each j P N, let Ij “ rjpM ` 1qszrpj ´ 1qpM ` 1qs, and let Fj be

the family of subsets of Ij such that for each P P Fj , either P “ H, or P ‰ H and |P | “

maxpP q ´minpP q ` 1 (which implies P has no “gaps”). That is, we break up the natural number

line into blocks of size M ` 1 and let Fj be the family of intervals contained in the the j-th block.

Let tσiu
µ
i“0 be an enumeration of κďmaxW . For A P κďmaxW and i P rµs, we let YA “ Yi if

A “ σi. Define for each j P r2µszt0u the function fj : κďmaxW ˆ Fj ˆ rM s Ñ Fj by

fjpσi, P, kq “ Ij X tYipjqpinf P ` `q, p1´ YipjqqpsupP ´ `quk´1
`“0

for all i P rµs, P P Fj , and k P rM s.

To summarize what is happening, we assign independent Bernoulli random variables to the

elements of κďmaxW . Given A P κďmaxW with its assigned random variable YA and an interval P

in Ij , fjpA,P, kq will take the first k elements of P in Ij if YApjq “ 1 and the last k elements if

YApjq “ 0. Note that fjpσi, P, kq Ď P if k ď |P |. Thus, if P is a union of subintervals of the I 1js,

we can use the f 1js to simultaneously select k elements from P out of each interval P X Ij , and

these selections will be independent for different elements of κďmaxW . This is quite analogous to

what happened in the last section. The construction of the supports of our embedded vertices is

likewise similar, but in the end we can’t just map a vertex to a characteristic function. We have to

modify slightly in order to use the ESA property to obtain a good distortion (again, recall notations

(4.2) and (4.3) from Section 4.2).

Given v “ pr, Aq P V pTW,κq and j P r2µszt0u, define the sets Sx,jpv, iq and Sy,jpv, iq in Fj for
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i P rwrs recursively by

Sx,jpv, 0q “ rpj ´ 1qpM ` 1q ` xpr, 1qszrpj ´ 1qpM ` 1qs,

Sy,jpv, 0q “ rpj ´ 1qpM ` 1q ` ypr, 1qszrpj ´ 1qpM ` 1qs,

and

Sx,jpv, iq “ fj pAæi, Sy,jpv, i´ 1qzSx,jpv, i´ 1q, xpr, i` 1q ´ xpr, iqq ,

Sy,jpv, iq “ fj pAæi, Sy,jpv, i´ 1qzSx,jpv, i´ 1q, ypr, i` 1q ´ xpr, iqq ,

for i P rwrszt0u;

and then define

Sjpvq “
wr
ď

i“0

Sx,jpv, iq.

Finally, let

Sj,`pvq “ tpj ´ 1qpM ` 1q ` n | n P Sjpvqu ,

Sj,´pvq “ tp3j ´ 1qpM ` 1q ´ n | n P Sjpvqu .

Sj,` will take a copy of SjpV q and put it in I2j´1. Sj,´ will also take a copy of SjpV q and put

it in I2j . The copy for Sj,´, however, is backwards. That is, Sj,´ is a reflection of Sj,` across the

middle of I2j´1 Y I2j . The purpose of this is to allow us to take advantage of the subadditivity of

an ESA basis later.

Lemma 4.5.2. Fix v “ pr, Aq P V pTW,κq. The following hold for all i P rwrs and j P r2µszt0u,

(i) |Sx,jpv, iq| “ xpr, i` 1q ´ xpr, iq.

(ii) |Sy,jpv, iq| “ ypr, i` 1q ´ xpr, iq.
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(iii) |Sy,jpv, iqzSx,jpv, iq| “ ypr, i` 1q ´ xpr, i` 1q.

(iv) Sx,jpv, iq X Sx,jpv, i1q “ H if i1 P rwrs is such that i1 ‰ i.

(v) |
Ťi
k“0 Sx,jpv, kq| “ xpr, i` 1q.

(vi) |Sj,`pvq| “ |Sj,´pvq| “ r.

(vii) Sj,`pvq Ď I2j´1 and Sj,´pvq Ď I2j .

(viii) If i1 P rwrszris and YAænpjq “ 1 for all n P ri1szris, then

(a)
Ťi1

k“i`1 Sx,jpv, kq “ Ij X tinf Sy,jpv, iqzSx,jpv, iq ` `u
xpr,i1`1q´xpr,i`1q´1
`“0 .

(b) Sy,jpv, i1qzSx,jpv, i1q “ Ij X tinf Sy,jpv, iqzSx,jpv, iq ` `u
ypr,i1`1q´xpr,i`1q´1
`“xpr,i1`1q´xpr,i`1q

(ix) If i1 P rwrszris and YAænpjq “ 0 for all n P ri1szris, then

(a)
Ťi1

k“i`1 Sx,jpv, kq “ Ij X tsupSy,jpv, iqzSx,jpv, iq ´ `u
xpr,i1`1q´xpr,i`1q´1
`“0 .

(b) Sy,jpv, i1qzSx,jpv, i1q “ Ij X tsupSy,jpv, iqzSx,jpv, iq ´ `u
ypr,i1`1q´xpr,i`1q´1
`“xpr,i1`1q´xpr,i`1q .

Proof. (i)-(iii): These statements certainly hold true for i “ 0. And by (simultaneous) induction,

they hold true for all i P rwrs.

(iv): We have Sx,jpv, wr ´ kq Ď Sy,jpv, wr ´ k ´ 1qzSx,jpv, wr ´ k ´ 1q, and so Sx,jpv, wr ´ kq X

Sx,jpv, wr´k´1q “ H for all k P rwr´1s. In the same way, Sy,jpv, wr´k´1q Ď Sy,jpv, wr´k´

2qzSx,jpv, wr´k´2q, and so the first set inclusion implies Sx,jpv, wr´kqXSx,jpv, wr´k´2q “ H

for all k P rwr ´ 2s. Inductively, Sx,jpv, wr ´ k1q X Sx,jpv, wr ´ k2q “ H for all k1 ă k2 P rwrs.

(v): This follows from parts (i) and (iv).

(vi)-(vii): By definition, Sjpvq Ď Ij . The rest follows from the definitions, part (v), and the fact

that n ÞÑ pj ´ 1qpM ` 1q ` n is a bijection from Ij to I2j´1 and n ÞÑ p3j ´ 1qpM ` 1q ´ n is a

bijection from Ij to I2j for each j P r2µszt0u.

(viii)-(ix): The statements are true for i1 “ i` 1 by the definitions of Sx,jpv, i` 1q and fj , and the

statements hold for arbitrary i1 by a simple induction.
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At this point we are almost ready to define the embedding, but we need to be able to make sure

that for enough j P rµszt0u, the symmetric difference of Sjpuq and Sjpvq is large enough when

u ‰ v P V pTW,κq. Unfortunately, the amount of j P rµszt0u we can do this for depends on W . We

define the parameter pW to be the minimum of all p P N such that for all r P rM ` 1s and i P N0,

• xpr, i` pq ě pxpr, iq ` ypr, iqq{2 whenever r ě pxpr, iq ` ypr, iqq{2.

• ypr, i` pq ď pxpr, iq ` ypr, iqq{2 whenever r ď pxpr, iq ` ypr, iqq{2.

One may easily check that pW ď maxW ` 1.

Lemma 4.5.3. Fix u “ pr, Aq and v “ ps, Bq in V pTW,κq such that u ��õ v and r ď s. Let

Iu,v “ tj P r2µszt0u | YBæ|A^B|`npjq “ 1 and YAæ|A^B|`npjq “ 0 for all n P rpW szt0uu.

Then for each j P Iu,v, there is Lj Ď
Ťws
k“|A^B|`1 Sx,jpv, kq such that

(i) |Lj| ě dpu, vq{2, where d is the shortest-path metric for TW,κ.

(ii) maxLj ă inf
Ťwr
k“|A^B|`1 Sx,jpu, kq.

Proof. Let K “ |A ^ B|. We have xpr, iq “ xps, iq and ypr, iq “ yps, iq for all i P rK ` 1s, and

so Sx,jpu, iq “ Sx,jpv, iq and Sy,jpu, iq “ Sy,jpv, iq for all i P rKs, by an easy induction argument.

Note that xpr,K ` 1q “ xps,K ` 1q “ npu, vq and ypr,K ` 1q “ yps,K ` 1q “ mpu, vq,

which implies |Sy,jpv,KqzSx,jpv,Kq| “ mpu, vq ´ npu, vq ą 0, by Lemma 4.5.2 (iii). Note that

xpr, iq ď xps, iq and ypr, iq ď yps, iq for all i P rM ` 1s by the fact that r ď s.

Suppose first that s ď pmpu, vq `npu, vqq{2 and let Lj “
Ťws
k“K`1 Sx,jpv, kq for each j P Iu,v.
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Then by definition of pW ,

minSy,jpv,KqzSx,jpv,Kq ` yps,K ` pW ` 1q ´ npu, vq ´ 1

ď minSy,jpv,KqzSx,jpv,Kq `
mpu, vq ´ npu, vq

2
´ 1

ď maxSy,jpu,KqzSx,jpu,Kq ´

ˆ

mpu, vq ´ npu, vq

2
´ 1

˙

ď maxSy,jpu,KqzSx,jpu,Kq ´ pypr,K ` pW ` 1q ´ npu, vq ´ 1q,

and so, by Lemma 4.5.2 (viii) and (ix), Lj X
`
Ťwr
k“K`1 Sx,jpu, kq

˘

“ H and therefore maxLj ă

inf
Ťwr
k“K`1 Sx,jpu, kq for each j P Iu,v. Moreover, by Lemma 4.5.2 (v) and Proposition 4.2.9,

|Lj| “ xps, ws ` 1q ´ xps,K ` 1q “ s´ npu, vq ě dpu, vq{2

for each j P Iu,v.

Suppose now that r ě pmpu, vq ` npu, vqq{2 and let

Lj “

˜

ws
ď

k“K`1

Sx,jpv, kq

¸

z

˜

wr
ď

k“K`1

Sx,jpu, kq

¸

for each j P Iu,v. Then by definition of pW ,

minSy,jpv,KqzSx,jpv,Kq ` xps,K ` pW ` 1q ´ npu, vq ´ 1

ě minSy,jpv,KqzSx,jpv,Kq `
mpu, vq ´ npu, vq

2
´ 1

ě maxSy,jpu,KqzSx,jpu,Kq ´

ˆ

mpu, vq ´ npu, vq

2
´ 1

˙

ě maxSy,jpu,KqzSx,jpu,Kq ´ pxpr,K ` pW ` 1q ´ npu, vq ´ 1q ,

and so, by Lemma 4.5.2 (viii) and (ix), Lj Y
`
Ťwr
k“K`1 Sx,jpu, kq

˘

“ Sy,jpv,KqzSx,jpv,Kq and
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therefore , by Lemma 4.5.2 (v) and Proposition 4.2.9,

|Lj| “ |Sy,jpv, iqzSx,jpv, iq| ´

ˇ

ˇ

ˇ

ˇ

ˇ

˜

wr
ď

k“K`1

Sx,jpu, kq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ pmpu, vq ´ npu, vqq ´ pr ´ npu, vqq “ mpu, vq ´ r ě dpu, vq{2

for each j P Iu,v. Moreover, maxLj ă inf
Ťwr
k“K`1 Sx,jpu, kq for each j P Iu,v.

Finally, suppose r ď pmpu, vq ` npu, vqq{2 ď s and let

Lj “ tminSy,jpv,KqzSx,Kpv, iq ` `u
pmpu,vq´npu,vqq{2´1
`“0

for each j P Iu,v. Then by definition of pW ,

maxLj ď mintminSy,jpv,KqzSx,jpv,Kq ` xps,K ` pW ` 1q ´ npu, vq ´ 1,

maxSy,jpu,KqzSx,jpu,Kq ´ pypr,K ` pW ` 1q ´ npu, vq ´ 1qu,

and so, by Lemma 4.5.2 (viii) and (ix),Lj Ď
Ťws
k“K`1 Sx,jpv, kq and maxLj ă inf

Ťwr
k“K`1 Sx,jpu, kq

for each j P Iu,v. Moreover, by Proposition 4.2.9, |Lj| “ pmpu, vq ´ npu, vqq{2 ě dpu, vq{2 for

each j P Iu,v..

The next theorem (combined with the two previous lemmas) generalizes the results and proce-

dures found in Section 3 of [17]. As in the previous two sections, the techniques we use are largely

inspired from the source, with perhaps the most important differences being the introduction of the

parameter pW and the fixing of a single bundle graph at the beginning. And as before, both the

labeling and recursive procedure here are simpler, with the main difficulty being taken care of in

Lemma 4.5.3.

Theorem 4.5.4. Suppose X is a Banach space with an ESA basis penq8n“1. Then there is a bi-
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Lipschitz embedding ψ : TW,κ Ñ X such that for all u, v P V pTW,κq,

1

22pW`1
dpu, vq ď }ψpuq ´ ψpvq}X ď dpu, vq,

where d is the shortest-path metric for TW,κ, and furthermore }ψpuq ´ ψpvq}X “ dpu, vq when

u õ v.

Proof. Let η “
›

›

›

ř2µ

j“1 e2j´1 ´ e2j

›

›

›

X
and define the map ψ : TW,κ Ñ X by

ψpvq “ 1{η
2µ
ÿ

j“1

¨

˝

ÿ

nPSj,`pvq

en ´
ÿ

nPSj,´pvq

en

˛

‚

for every v P V pTW,κq.

Take any u “ pr, Aq and v “ ps, Bq in V pTW,κq. Let K “ |A^B| and suppose first that u õ v

and r ď s. Then ypr,K ` 1q ď xps,K ` 1q. Let n P rKs be such that xps, iq ă ypr, iq (which

implies xpr, iq “ xps, iq and ypr, iq “ yps, iq) for all i P rnswhile ypr, n`1q ď xps, n`1q. An easy

induction argument shows that Sx,jpu, iq “ Sx,jpv, iq and Sy,jpu, iq “ Sy,jpv, iq for all i P rns and

j P r2µszt0u; and Sy,jpu, nq Ď Sx,jpv, nq for all j P r2µszt0u. Another easy induction argument

shows Sx,jpu, iq Ď
Ťn
k“0 Sx,jpv, kq for all i P rwrs and j P r2µszt0u (and so Sj,`puq Ď Sj,`pvq

and Sj,´puq Ď Sj,´pvq for all j P r2µszt0u). Thus, by Lemma 4.2.9, Lemma 4.5.2 (vi), and the
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assumption that the basis is ESA;

}ψpuq ´ ψpvq}X “
1

η

›

›

›

›

›

›

2µ
ÿ

j“1

¨

˝

¨

˝

ÿ

nPSj,`puq

en ´
ÿ

nPSj,´puq

en

˛

‚´

¨

˝

ÿ

nPSj,`pvq

en ´
ÿ

nPSj,´pvq

en

˛

‚

˛

‚

›

›

›

›

›

›

X

“
1

η

›

›

›

›

›

›

2µ
ÿ

j“1

¨

˝

ÿ

nPXSj,`pvqzSj,`puq

en ´
ÿ

nPSj,´pvqzSj,´puq

en

˛

‚

›

›

›

›

›

›

X

“
1

η

›

›

›

›

›

2µ
ÿ

j“1

ps´ rqpe2j´1 ´ e2jq

›

›

›

›

›

X

“ s´ r

“ dpu, vq.

Lemma 4.2.7 and the triangle inequality applied to shortest paths then shows that }ψpuq´ψpvq}X ď

dpu, vq for all u, v P V pTW,κq.

Suppose now that u ��õ v and r ď s. Define Iu,v as in Lemma 4.5.3 and for each j P Iu,v, let

Lj be chosen as in Lemma 4.5.3. Note that, by independence of the Bernoulli random variables

defined at the beginning of this section, |Iu,v| “ 2µ´ν for some ν P r2pW s. Let

Lj,` “ tpj ´ 1qpM ` 1q ` n | n P Lju ,

Lj,` “ tp3j ´ 1qpM ` 1q ´ n | n P Lju .

Recall that n ÞÑ pj ´ 1qpM ` 1q ` n is a bijection from Ij to I2j´1 and n ÞÑ p3j ´ 1qpM ` 1q ´ n

is a bijection from Ij to I2j for each j P Iu,v. Furthermore, the images of the two maps will be

reflections of each other across the middle of I2j´1 Y I2j when the maps are applied to the same
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set. By Lemma 4.5.2 (vi), Lemma 4.5.3, and the assumption that the basis is ESA;

}ψpuq ´ ψpvq}X “
1

η

›

›

›

›

›

›

2µ
ÿ

j“1

¨

˝

¨

˝

ÿ

nPSj,`puq

en ´
ÿ

nPSj,´puq

en

˛

‚´

¨

˝

ÿ

nPSj,`pvq

en ´
ÿ

nPSj,´pvq

en

˛

‚

˛

‚

›

›

›

›

›

›

X

ě
1

η

›

›

›

›

›

›

ÿ

jPIu,v

¨

˝

¨

˝

ÿ

nPSj,`pvq

en ´
ÿ

nPSj,`puq

en

˛

‚´

¨

˝

ÿ

nPSj,´pvq

en ´
ÿ

nPSj,´puq

en

˛

‚

˛

‚

›

›

›

›

›

›

X

ě
1

η

›

›

›

›

›

›

ÿ

jPIu,v

¨

˝

ÿ

nPLj,`

en ´
ÿ

nPLj,´

en

˛

‚

›

›

›

›

›

›

X

ě
dpu, vq

2η

›

›

›

›

›

ÿ

jPIu,v

pe2j´1 ´ e2jq

›

›

›

›

›

X

“
dpu, vq

2η
¨

1

2ν
¨

2ν
ÿ

k“1

›

›

›

›

›

›

k2µ´ν
ÿ

j“pk´1q2µ´ν`1

pe2j´1 ´ e2jq

›

›

›

›

›

›

X

ě
dpu, vq

2ν`1η

›

›

›

›

›

2µ
ÿ

j“1

pe2j´1 ´ e2jq

›

›

›

›

›

X

ě
1

22pW`1
dpu, vq.

We show in the next section that actually the entire family of bundle graphs generated by TW,κ

is bi-Lipschitzly embeddable with the same distortion bound of 22pW`1 into a Banach space with

an ESA basis.

4.6 The m-product

Given two κ-branching bundle graphs G and H , we can define a new κ-branching bundle

graph GmH by replacing every edge in G with a copy of H (where the bottom of H is identified

with the lower endpoint of the edge H is replacing and the top of H is identified with the higher

endpoint). The definition of m-product seems to have first been formally introduced by J. R. Lee

and P. Raghavendra in [14], although the family of 2-branching diamond graphs (see the comment

under Definition 4.6.5 for a definition involving m-products) were studied in [10] and [16].

For this section we fix another sequence W 1 “ tw1ru
M 1`1
r“0 Ď N0 such that w10 “ w1M 1`1 “ 0.

We will show how to determine W 2 so that TW,κ m TW 1,κ “ TW 2,κ. Once W 2 is found, we can
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use Theorem 4.5.4 to find a bound on the worst distortion for a bi-Lipschitz embedding of TW 2,κ

into a Banach space with an ESA basis. In particular, we show that the distortion bound found

in Theorem 4.5.4 is no worse for TW,κ m TW,κ than it was for TW,κ, allowing us to generalize the

characterizations of superreflexivity found in [11] and [17].

Given a bundle graph G “ pV,Eq and n P N0, let Vn “ tv P V | heightpvq “ nu and let

En “ ttu, vu P E | u P Vn and v P Vn`1u. If another bundle graph H is given, we may create

a new bundle graph G mn H by replacing every edge in En with H for some n. Explicitly, if

G “ pV,Eq and H “ pV 1, E 1q, and if b and t are the bottom and top, respectively, of H; then we

define Gmn H “ pV 2, E2q by

V 2 “ V Y pEn ˆ pV
1
ztb, tuqq

and

E2 “ te P E | eX pVn Y Vn`1q “ Hu

Y ttu, pe, vqu | e P En, u P Vn X e, and tb, vu P E 1u

Y ttu, pe, vqu | e P En, u P Vn`1 X e, and tv, tu P E 1u

Y ttpe, uq, pe, vqu | e P En and ptu, vuztb, tuq P E 1u.

The formal definition of G mH is similar (just remove the subscripts and the first term in the

definition of E2). It is clear that GmH can be created by performing mn-products repeatedly until

all the edges that were originally in G have been replaced.

Lemma 4.6.1. Given n P rM s, the graph TW,κmn TW 1,κ is the same bundle graph as TW 2,κ, where
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W 2 “ pw2rq
M`M 1`1
r“0 Ď N0 is defined by

w2r “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

wr 0 ď i ď n

maxtwn, wn`1u ` w
1
i´n n ă r ă n`M 1 ` 1

wr´M 1 n`M 1 ` 1 ď r ďM `M 1 ` 1.

Proof. We simply provide the graph isomorphism, and leave the details to the reader. Define

F : TW,κ m TW 1,κ Ñ TW 2 by

F pvq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

pr, Aq v “ pr, Aq and r ď n

pn` r, B"Cq v “ ptpn,Aq, pn` 1, Bqu, pr, Cqq and A ĺ B

pn` r, A"Cq v “ ptpn,Aq, pn` 1, Bqu, pr, Cqq and B ĺ A

pr `M 1 ` 1, Aq v “ pr, Aq and r ą n

for each v P V pTW,κ mn TW 1,κq.

With repeated application of Lemma 4.6.1, we obtain the following formula.

Proposition 4.6.2. The graph TW,κ m TW 1,κ is graph-isomorphic to TW 2,κ where

W 2 “ pw2rq
pM`1qpM 1`1q
r“0 Ď N0 is defined by w20 “ 0 and

w2r “

$

’

’

&

’

’

%

maxtwn, wn`1u ` w
1
r´npM 1`1q npM 1 ` 1q ă r ă pn` 1qpM 1 ` 1q

wn`1 r “ pn` 1qpM 1 ` 1q

for all n P rM s.

Proposition 4.6.2 confirms what is to be expected regarding the depths of vertices in TW,κ m

TW 1,κ. Namely, that vertices in TW,κm TW 1,κ that originated from TW,κ will keep the same depth as

they originally had, and vertices that arise from a copy of TW 1,κ replacing an edge of TW,κ would

keep the same depths as they originally had, except that the maximum depth of the endpoints of the
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edge being replaced will be added to these depths. We now fix W 2 obtained in Proposition 4.6.2.

For what follows, we define the functions x1 and y1 for W 1, and x2 and y2 for W 2, in the same way

x and y were defined for W (notations (4.2) and (4.3)) at the end of Section 4.2.

Corollary 4.6.3. For each n P rM s, let Kn “ maxtwn, wn`1u. Then for all n P rM s, r P

rpn` 1qpM 1 ` 1qszrnpM 1 ` 1qs, and i P N0,

x2pr, iq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pM 1 ` 1qxpn` 1, iq r “ pn` 1qpM 1 ` 1q

pM 1 ` 1qxpn, iq r ‰ pn` 1qpM 1 ` 1q and i ď Kn

npM 1 ` 1q ` x1pr ´ npM 1 ` 1q, i´Knq otherwise,

y2pr, iq “

$

’

’

&

’

’

%

pM 1 ` 1qypn` 1, iq r “ pn` 1qpM 1 ` 1q or i ď Kn

npM 1 ` 1q ` y1pr ´ npM 1 ` 1q, i´Knq otherwise.

Proof. We prove the formula for x2. The proof for y2 is similar. Take any n P rM s and r P

rpn`1qpM 1`1qszrnpM 1`1qs. The case i “ 0 is trivial, so take any i P N. Let t P rpM`1qpM 1`1qs

be such that t “ x2pr, iq, and let m P rM ` 1s be such that mpM 1 ` 1q ď t ă pm` 1qpM 1 ` 1q.

Suppose first that r “ pn`1qpM 1`1q. If t ‰ r, then pm`1qpM 1`1q ď r by the definition of

m and x2. This means that t “ mpM 1`1q by Proposition 4.6.2 and the definition of x2. Either way,

t “ `pM 1 ` 1q for some ` P rM s, and by Proposition 4.6.2 and the definition of x2, w` “ w2t ă i.

But, by definition of t and x2, w2t1 ě i for all t ă t1 ď r, and in particular w2`1pM 1`1q ě i for all

` ă `1 ď n` 1. By Proposition 4.6.2, this means w` ă i ď w`1 for all ` ă `1 ď n` 1. And so, by

the definition of x, xpn`1, iq “ `. That is, x2pn`1, iq “ t “ pM 1`1qxpn`1, iq. The case when

r ‰ pn` 1qpM 1 ` 1q and i ď Kn is similar because we may still conclude that t “ `pM 1 ` 1q for

some ` P rM s.

Suppose now that r ‰ pn ` 1qpM 1 ` 1q and i ą Kn. Since w2npM 1`1q “ wn ď Kn ă i, we

must have m “ n by the definition of x2. Thus t “ npM 1 ` 1q ` ` for some ` P rM 1s. And by

Proposition 4.6.2 and the definition of x2, w1` “ w2t ´Kn ă i´Kn. But, by definition of t, w2t1 ě i

for all t ă t1 ď r, and in particular w2npM 1`1q``1 ě i for all ` ă `1 ď r´npM 1` 1q. By Proposition
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4.6.2, this means w1` ă i ´Kn ď w1`1 for all ` ă `1 ď r ´ npM 1 ` 1q. And so, by definition of x1,

x1pr´npM 1`1q, i´Knq “ `. That is, x2pn`1, iq “ t “ npM 1`1q`x1pr´npM 1`1q, i´Knq.

In the next lemma we define pW 1 for W 1 and pW 2 for W 2 in the same way pW was defined for

W before Lemma 4.5.3 in the last section.

Lemma 4.6.4. The parameter pW 2 satisfies the inequality pW 2 ď maxtpW , pW 1u.

Proof. Let r P rpM ` 1qpM 1 ` 1qs and i P N0 be such that r ě px2pr, iq ` y2pr, iqq{2 and suppose

first that r “ pn ` 1qpM 1 ` 1q for some n P rM s (the case r “ 0 is trivial). Then after using

Corollary 4.6.3 and dividing by M 1 ` 1, we see that n` 1 ě pxpn` 1, iq ` ypn` 1, iqq{2, which,

by definition of pW , implies xpn` 1, i` pW q ě pxpn` 1q, iq ` ypn` 1, iqq{2. By multiplying by

M 1 ` 1 and again using Corollary 4.6.3, we see that x2pr, i` pW q ě px2pr, iq ` y2pr, iqq{2.

Suppose now that npM 1 ` 1q ă r ă pn ` 1qpM 1 ` 1q for some n P rM s and i ą Kn (where

Kn “ maxtwn, wn`1uq. Then after using Corollary 4.6.3 and subtracting npM 1 ` 1q, we see

that r ´ npM 1 ` 1q ě px1pr ´ npM 1 ` 1q, i ´ Knq ` y1pr ´ npM 1 ` 1q, i ´ Knqq{2, which, by

definition of pW 1 implies x1pr ´ npM 1 ` 1q, i ´ Kn ` pW 1q ě px1pr ´ npM 1 ` 1q, i ´ Knq `

y1pr ´ npM 1 ` 1q, i´Knqq{2. By adding npM 1 ` 1q and again using Corollary 4.6.3, we see that

x2pr, i` pW 1q ě px2pr, iq ` y2pr, iqq{2.

Suppose finally that npM 1`1q ă r ă pn`1qpM 1`1q for some n P rM s and i ď Kn. Suppose

further that wn ă i ď wn`1. Then xpn, iq “ n and ypn ` 1, iq ą n ` 1. Thus, after applying

Corollary 4.6.3 and then dividing by M 1 ` 1, we have

n` 1 ą r{pM 1
` 1q ě pn` ypn` 1, iqq{2,

which implies n ` 1 ě ypn ` 1, iq, a contradiction. Therefore, in order for the hypothesis to hold

true, either i ď mintwn, wn`1u or wn`1 ă wn. In either case, ypn, iq “ ypn ` 1, iq. So after

applying Corollary 6.3 and dividing by M 1 ` 1, we have

n` 1 ą pxpn, iq ` ypn` 1, iqq{2 “ pxpn, iq ` ypn, iqq{2.
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This means n ě pxpn, iq ` ypn, iqq{2 and so, by definition of pW , xpn, i ` pW q ě pxpn, iq `

ypn, iqq{2 “ pxpn, iq ` ypn` 1, iqq{2. After multiplying by M 1 ` 1 and again applying Corollary

4.6.3, we have

x2pr, i` pW q ě x2pnpM 1
` 1q, i` pW q

ě px2pnpM 1
` 1q, iq ` y2ppn` 1qpM 1

` 1q, iqq{2

“ px2pr, iq ` y2pr, iqq{2.

We have shown that for all r P rpM ` 1qpM 1 ` 1qs and i P N0, x2pr, i ` maxtpW , pW 1uq ě

px2pr, iq ` y2pr, iqq{2 whenever r ě px2pr, iq ` y2pr, iqq{2. Similarly it can be shown y2pr, i `

maxtpW , pW 1uq ď px2pr, iq ` y2pr, iqq{2 whenever r ď px2pr, iq ` y2pr, iqq{2. Therefore pW 2 ď

maxtpW , pW 1u.

Definition 4.6.5. Given a bundle graph G, the family of bundle graphs generated by G is the set
!

Gm
k
)8

k“1
, where Gmk is defined recursively by Gm1

“ G and Gmk`1
“ Gm

k
mG for all k P N.

There are a few families of bundle graphs that have earned special names. Given a cardinality κ,

the family of κ-branching diamonds is the family generated by Tp0,1,0q,κ, the family of κ-branching

Laakso graphs is the family generated by Tp0,0,1,0,0q,κ, and the family of κ-branching parasol graphs

is the family generated by Tp0,0,1,0q,κ. Diamond graphs seem to have first been introduced in [10]

and [16]. Laakso graphs were first introduced in [13], based on ideas found in [12]. Parasol graphs

were first introduced in [9]. Lemma 4.6.4 and Theorem 4.5.4 yield the following corollary.

Corollary 4.6.6. Given a finitely branching bundle graphG, the family of bundle graphs generated

by G is equi-bi-Lipschitzly embeddable into any Banach space with an ESA basis, with distortion

bounded above by a constant not depending on the target space or branching number of G. In par-

ticular, every finitely branching diamond, Laakso, and parasol graph is bi-Lipschitzly embeddable

into any Banach space with an ESA basis with distortion bounded above by 8.

Now that we’ve formally defined families of bundle graphs generated by a base graph, we

come to the characterizations of Banach space properties via non-equi-bi-Lipschitz embeddability
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of families of graphs, as promised in the introduction. Work done by Brunel and Sucheston ([7]

and [6], see also Theorem 2.3 in [17]), shows that for every non-reflexive Banach space X , there

is a Banach space with an ESA basis that is finitely representable in X; and so every family of

bundle graphs generated by a finitely-branching bundle graph is equi-bi-Lipschitzly embeddable

into any non-reflexive Banach space by Theorem 4.5.4. Conversely, a consequence of Lemma 1 in

Section 4 of [11], says that the family of binary (that is, 2-branching) diamond graphs is not equi-

bi-Lipschitzly embeddable into any Banach space with uniformly convex norm. Virtually the same

proof shows that, in fact, every family of bundle graphs generated by a nontrivial bundle graph is

not equi-bi-Lipschitzly embeddable into a Banach space with uniformly convex norm. Every su-

perreflexive Banach space is uniformly convexifiable, so we have the following characterization(s)

of superreflexivity.

Theorem 4.6.7. Fix a nontrivial finitely branching bundle graph G. Then a Banach space X is

superreflexive if and only if the family of bundle graphs generated by G is non-equi-bi-Lipschitzly

embeddable into X .

Remark 4.6.8. Johnson and Schechtman [11] obtained a distortion bound of 16`ε for the equi-bi-

Lipschitz embeddability of the family of binary diamond graphs into a non-superreflexive Banach

space. Ostrovskii and Randrianantoanina [17] improved and generalized this, obtaining a distortion

bound of 8 ` ε for any family of finitely-branching diamond or Laakso graphs. Corollary 4.6.6

yields a further generalization, and recovers the same distortion bound of 8 ` ε for any family

of finitely-branching diamond, Laakso, or parasol graph. It is unknown to the author for which

families of bundle graphs, if any, the distortion bound implied by Corollary 4.6.6 is optimal, but

a distortion bound of 2 ` ε was obtained for the 2-branching diamonds by Pisier in [18] (see the

proof of Theorem 13.17).

Theorem 3.2 in [4] shows that within the class of reflexive Banach spaces with an uncondi-

tional structure, a Banach space that is not asymptotically uniformly convexifiable will contain

p1 ` ε, 1 ` εq-good `8 trees of arbitrary height for all ε ą 0. Theorem 4.1 in [4] then shows that
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every family of bundle graphs generated by a nontrivial infinitely-branching bundle graph is not

equi-bi-Lipschitzly embeddable into any Banach space that is asymptotically midpoint uniformly

convexifiable. Thus we have the following metric characterization(s) of asymptotic uniform con-

vexifiability within the class of reflexive Banach spaces with an unconditional asymptotic structure.

Theorem 4.6.9. Fix a nontrivial ℵ0-branching bundle graph G. Then a reflexive Banach space X

with an unconditional asymptotic structure is asymptotically uniformly convexifiable if and only if

the family of bundle graphs generated by G is non-equi-bi-Lipschitzly embeddable into X .
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5. SUMMARY

5.1 Possible applications of research

The purpose of this research was to investigate two general problems in the nonlinear geometry

of Banach spaces. As evidenced in the preceding sections, these general problems can inspire the

formulation of countless interesting subproblems that allow Banach space theorists to test the limits

of their methods. There are still many questions that remain unanswered, and the work done here

only scratches the surface. However, our results suggest some natural avenues of research that can

be pursued in the future.

In Sections 2 and 3, we investigated two specific instances of the following problem, whose

solution remains unknown for general X and Y .

Problem 5.1.1. Given two Banach spacesX and Y , determine whetherX’s uniform embeddability

into Y is equivalent to X’s is coarse embeddability into Y .

In Section 2, we were able to fully solve Problem 5.1.1 in the positive for Y “ c0pκq, given any

cardinality κ. Not only that, but we have also shown that both uniform and coarse embeddability

into c0pκq can be characterized by an intrinsic property called the “coarse Stone property”. Thus,

a useful tool for future research into the coarse and uniform subspace structure of c0pκq spaces has

been provided. In particular, it seems to be an open problem (see [1]) to determine whether `8

is uniformly or coarsely embeddable into c0pcq (where c is the cardinality of the continuum). The

coarse Stone property provides a condition that might be checked for `8 to solve this problem. The

coarse Stone property has already been used (see [2]) to show that, for a large enough cardinality

κ, a Banach space with density character equal to κ must have trivial cotype if it is uniformly or

(equivalently) coarsely embeddable into c0pκq.

In Section 3, we were able to partially solve Problem 5.1.1 for when Y is a superstable Banach

space. Indeed, in this case we have shown that the problem has a positive solution for all X

containing no spreading model isomorphic to `p for some p P r1,8q. However, there is a gap
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between this condition and the known requirement for uniform embeddability into a superstable

Banach space. A Banach space must in fact have a subspace isomorphic to `p if it is uniformly

embeddable into a superstable Banach space. The proof of our result relies heavily on a constant

γ being finite. However, the special case of γ “ 0 will only occur if uniform embeddability is

assumed, and this will imply the existence of an `p subspace. Thus, there is some hope that the

general solution to Problem 5.1.1 is negative, as it is possible that our result cannot be strengthened

to guarantee the existence of an `p subspace in Banach spaces that are only assumed to be coarsely

embeddable into a superstable Banach space. If one wants to try to solve Problem 5.1.1 in the

negative, a good strategy to do this now is to pick Y so that Y is superstable and to pick X so

that X has a spreading model isomorphic to some `p, but no subspace isomorphic to any `p. In

particular, it is an open problem to determine whether there exist p, q, r P r1,8q such that r-

convexified Tsirelson space is coarsely embeddable into `pp`qq.

Finally, in Section 4, we generalized solutions to several specific instances of the following

problem.

Problem 5.1.2. Given a local or asymptotic property P of Banach spaces, find a purely metric

characterization of P .

The metric characterizations of interest for us were those stated in terms of graph preclusion.

Namely, the goal was to characterizeP (orP’s negation) by the equi-bi-Lipschitz embeddability of

some family of graphs. In the primary literature we referenced, the two typical families considered

were the diamond graphs and the Laakso graphs. However, although the proofs involved were

similar, these families were always treated separately. In Section 4, we defined a larger class of

graphs (containing all families of diamond graphs and Laakso graphs) and were able to provide

a vertex-labeling that allowed us to generalize some previous results with easier proofs. It is

our hope that our vertex-labeling will make proofs involving diamond graphs, Laakso graphs, or

other similar families of graphs conceptually simpler in the future. There are still many properties

to consider for Problem 5.1.2, including Pisier’s property (α) (a local property) and asymptotic

uniform smoothifiability (an asymptotic property).
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