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ABSTRACT 

Power transmission operation regimes are being changed for various technical and 

economic reasons seeking an improved power system resilience as a goal. However, some 

of these changes introduce new challenges in maintaining conventional transmission 

protection system dependability and security when meeting the operating complexities 

affecting power system resilience.  Frequently evolving network topology, as a result of 

multiple switching actions for corrective, predictive and post event purposes, as well as 

high penetration of distributed generation into the system are considered as major 

contradictory changes from the legacy transmission protection standpoint.  

This research investigates the above-mentioned challenges and proposes effective 

solutions to improve the transmission protection reliability facing the above-mentioned 

risks and power system resilience consequently. A fundamental protection scheme based 

on the Hierarchically Coordinated Protection (HCP) concept is proposed to illustrate 

various approaches to predictive, adaptive and corrective protection actions aimed at 

improving power system resilience. Novel computation techniques as well as intelligent 

machine-learning algorithms are employed in proposing predictive, adaptive, and 

corrective solutions which fit various layers of the HCP concept and incorporate a 

fundamental HCP-based approach to supervise the legacy transmission protection function 

for a dynamic balance between dependability and security. The proposed predictive, 

adaptive, and corrective protection approaches are tested and verified on various systems, 

including real-life and IEEE test systems, and their performance effectiveness is compared 

with the state of the art.  
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 NOMENCLATURE 

Nomenclature 1: General 

DG Distributed Generation 

PV Photo Voltaic 

TSO Transmission System Operator 

SVM Support Vector Machine 

HCP Hierarchically Coordinate Protection 

DoI Distance of Impact 

PCC Point of Common Coupling 

DIREC Disturbance Impact and Resiliency Evaluation Curve 
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Nomenclature 2: Section 5 

Nbu Number of buses in the network 

Nbr Number of branches in the network 

VLL Rated line-to-line voltage 

Irating The line current rating 

Z30
relay Relay reach in primary ohms at a power factor angle of 30 degrees 

Z1 Zone 1 phase reach in primary ohms 

Z2 Zone 2 phase reach in primary ohms 

Z3 Zone 3 phase reach in primary ohms 

Zl
2 Zone 2 phase reach based on line ohms only 

Zapp
2 Zone 2 phase reach based on the remote bus fault apparent  

 impedance 

Zl
3 Zone 3 phase reach based on line ohms only 

Zappbus3 Zone 3 phase reach based on apparent impedance of next adjacent 

 bus faults 

Zappend3 Zone 3 phase reach based on apparent impedance of next adjacent 

 Line-end faults 

zl Impedance of the line 

zadj
li Impedance magnitude of the next adjacent line i 

zadj
pi Line ohms path magnitude to the next adjacent bus i 

zrem Apparent impedance for three phase fault on remote bus 

zadj
i Apparent impedance for three phase fault on next adjacent bus i 

zadj
endi Apparent impedance for three phase line-end fault on the next  

 adjacent line i 
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Nadj Number of next adjacent buses 

Zcol Required updated column of Zbus corresponding to a line-end fault  

 implementation 

Vpost
n Post-fault voltage of bus n 

Vpre
n Pre-fault voltage of bus n 

Ri-j Distance relay looking from bus i to bus j 

Yij Admittance of the line between buses i and j 

Ysh Shunt capacitance in pi model of the line 
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1. INTRODUCTION 

1.1. Problem Statement 

Due to increase in power system complexity, it is becoming more obvious that the 

classical reliability-based perspective alone would not suffice ensuring a continuous power 

supply [1-2]. The emerging economic and environmental concerns have resulted in 

introduction of renewables, distributed generation, microgrids and other electricity grid 

infrastructure changes creating operating uncertainties and complexities. As a 

consequence, it is required from the power system to be resilient against the high-impact 

low-probability events, as well as conventional threats, and hence to surpass the existing 

performance [1-2]. Various aspects of power system such as protection, operation, 

planning, etc. should function properly to improve system resilience. The focus of this 

dissertation is on the role of transmission protection reliability in this pursue.  

Investigating major failures, such as cascading events, in the recent history of the 

power system operation has revealed that the protection malfunction has been a 

contributing factor in the majority of the failures [3-5]. Maintaining the balance between 

protection dependability and security has always been a challenge specially under the new 

operating complexities [5-6]. The conventional conservative viewpoint of outweighing 

protection dependability over security does not fit the new concept of resiliency and a 

fundamental approach is required to strike a balance between dependability and security 

for improving protection reliability and system resilience consequently.  

1.2. Research Objectives 

The focus of this dissertation is to identify the main challenges against proper 
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function of legacy transmission protection system under increased system complexities as 

a result of alleviating operating difficulties towards improving power system resilience. 

The idea is to propose a fundamental protection approach which supervises the legacy 

transmission protection function to dynamically balance the protection dependability and 

security. A combination of protection schemes including predictive protection, adaptive 

protection, and corrective protection will be proposed to incorporate a HCP based 

approach which prevents relay misoperation under high-impact low-probability events and 

supports power system resilience consequently.  

1.3. Dissertation Outline 

The rest of this dissertation is organized as follows. Section 2 reviews the power 

system resilience and protection reliability concepts as well as the correlation between 

them. The features of a resilient control system, power system protection in this study, are 

discussed and the impact of improving protection reliability on each of the features is 

explained. Furthermore, the system complexities which are considered as main 

contradictory changes from the legacy transmission protection standpoint are introduced 

and their impact on the proper function of the legacy transmission protection is discussed. 

Section 3 formulates the problem to be solved in addressing the system complexities under 

consideration. The concept of HCP and the theoretical framework of the proposed 

fundamental approach utilizing HCP concept to supervise legacy transmission protection 

function is explained. Section 4 surveys the state of the art and previous research efforts 

which can be considered as potential solutions for various layers of the fundamental 

HCP-based approach and the areas which have to be explored more are identified. Sections 
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5, 6, and 7 propose novel protection schemes as solutions which fit the predictive, adaptive, 

and corrective layers of the fundamental HCP-based supervisory approach respectively. 

At each of these Sections, the performance effectiveness of the proposed solution 

compared to the state of the art is discussed. The concluding remarks and main 

contributions of the dissertation are summarized in Section 8. Future research trends are 

also discussed in this Section. References are brought at the end. 
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2. BACKGROUND 

2.1. Power System Resilience 

There is not a universally accepted definition for the concept of resilience as it has 

been defined in several ways. According to the UK Energy Research Center [7], resilience 

is defined as “the capacity of an energy system to tolerate disturbance and to continue to 

deliver affordable energy services to consumers. A resilient energy system can speedily 

recover from shocks and can provide alternative means of satisfying energy service needs 

in the event of changed external circumstances.” Reference [8] defines a resilient system 

as a system which degrades gradually, and not abruptly, when it experiences stressed 

conditions and it is able to restore back into its normal state thereafter. The National 

Infrastructure Advisory Council (NIAC), USA [9], adds another property to the resilient 

system definition where a resilient system learns from its previous lessons and experiences 

under major disturbances and uses this knowledge to adapt and fortify itself to prevent or 

mitigate the consequences of a similar event in the future. The Cabinet Office U.K. defines 

a resilient system as a system able to “. . .anticipate, absorb, adapt to and/or rapidly recover 

from a disruptive event” [10]. Resilience is defined in [11] as the “robustness and recovery 

characteristics of utility infrastructure and operations, which avoid or minimize 

interruptions of service during an extraordinary and hazardous event”. The US National 

Academies report considers a resilient system the one which plans and prepares for a 

disruptive event, absorbs it and is able to recover from it. More importantly, it adapts itself 

for similar future events [12]. 

Referring to several definitions developed for resilience in the power system area, 
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it could be realized that unlike reliability which is a static concept, resilience has a 

dynamic, unfolding, and time-variant nature. Reliability can be defined as the ability of 

the power system to deliver electricity in the quantity and with the quality demanded by 

users [2]. It is generally measured by interruption indices defined by IEEE standards [13]. 

Reliability focuses on keeping the lights on in a consistent manner. This is a binary view 

of the system performance where systems are either functional or failed. On the other hand, 

resiliency suggests the idea that there is a flexible continuum between functional and 

failed, so moves beyond the rigid duality promoted by reliability. The main features of 

resilience are robustness (withstand low probability but high consequence events), 

resourcefulness (effectively manage a disturbance as it unfolds), rapid recovery (get things 

back to normal as fast as possible after the disturbance), and adaptability (absorb new 

lessons from a catastrophe). 

2.2. Protection System Reliability 

Our view of protection system reliability focuses on dependability and security 

[6,14]. A protection system operating correctly in the case of faults within its protection 

zone is defined as being dependable [15]. The security, on the other hand, focuses on 

preventing the protection system’s incorrect operation for faults out of protected zone or 

for normal (no-fault) operating conditions [16].  

Protection systems must be fundamentally designed to be both dependable and 

secure [17]. Overall design must strike a balance between dependability and security 

because it has been shown that relay designs can only meet one criteria at the expense of 

the other. Dependability based protection system failures can result in longer fault clearing 
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times and isolation of additional elements of the electric system. Security-based protection 

system failures can result in isolation of healthy elements of the electric system.  

Figure 1 shows an example of dependability-type failure of a protection system. 

The fault on line one is supposed to be detected by relays at both ends of the line and 

cleared by opening the corresponding breakers. However, if relay at substation 2, R2, fails 

to operate for any reason, then the backup protective devices, relays on generator, 

substation 3 and 4, R4 and R6, will clear the fault with a delay and also cause extended 

extent of outage by putting the generator, and lines 2 and 3 out of service.   

Figure 2 shows an example of a security-based failure of a protection system. In 

this example, the fault on line 1 is being cleared by relays at both ends as it is supposed to. 

However, as a result of a security-failure, the relay at substation 4, R4, is also acting on 

the fault which is not in its primary protection zone. The operation of relay at substation 3 

 

Figure 1. Dependability-type failure 
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will cause unnecessary outage of the healthy line 2 and extended extent of outage as well. 

2.3. Protection System Reliability’s Role in Power System Resilience 

An extensive study of the major disturbances and blackouts in the recent history 

shows that frequently they have been associated with both dependability and security-

based protection system failures [3-5]. Relay misoperation is known to be a contributing 

factor in 75 percent of the major disturbances in North America [3-5]. During abnormal 

conditions, the backup relays sometimes cannot differentiate faults from no-fault 

conditions (balance between dependability and security is inadequate), such as when 

overload and large power swings occur. It has been noted that while redundancy (providing 

backup protection and improving dependability) reduces the probability of a 

dependability-based protection system failure, it may increase the probability of a security-

based protection system failure [5-6]. As a result, finding the balance between 

dependability and security of protective relay operation remains a challenge. 

 

Figure 2. Security-type failure 
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Following a disturbance, the system may experience a transition between various 

operating states based on the severity of the disturbance [2]. The state of the system 

depends on how it was designed and how it is operated. These choices influence whether 

and how service is degraded during a disruption, how quickly it recovers, and how 

completely it recovers. For example, an electricity grid system that is designed with more 

redundancy, operated with more contingencies for backup, and designed with recovery in 

mind might experience a lesser and briefer disruption and, if so, would be more resilient 

than a system that has less redundancy, has fewer backups, and is more difficult to rebuild. 

Figure 3 shows the change of the resilience on a resilience curve as the system transitions 

between the various states unfold. When the system is operating at normal state, i.e. 

operational constraints as well as security margins are satisfied and respected, the 

resiliency level is high. The system is robust enough to handle a single (N-1) disturbance 

 
Figure 3. System’s resilience curve following a disturbance 
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effectively. Following the disturbance, resiliency degrades depending on the severity of 

the disturbance and the system enters the post-event state. Resourcefulness, redundancy, 

and adaptive self-organizing can play a critical role at this state to provide opportunities 

for implementing corrective, preventive, emergency, or in extreme mitigating actions to 

minimize the degradation level (Ro−Rpe) before restoration process begins. Finally, after 

the disturbance resulted in a partial or complete outage the restorative actions should be 

taken to restore the system into normal conditions and recover its highest resiliency.   

To better clarify the impact of protection reliability on system’s resilience, we can 

compare the legacy protection reliability-based perspective with what the requirements for 

resilience asks for today. While the legacy protection on transmission may be able to 

handle the N-1 contingency case without causing any misoperation, it may not be able to 

cope with N-m contingency cases (high-impact low-probability events) effectively. In 

other words, statically predetermined balance between dependability and security might 

not meet the system’s resilience criteria necessarily. This is simply because such balance 

does not exist statistically between the numerous N-m contingency cases in a real-life 

power system. In other words, it has to adapt and fine tune itself as the system’s conditions 

evolve. As Figure 3 shows, the system’s resilience is characterized by resiliency level at 

various states of the system as well as the transition time between the states. Maintaining 

the balance between protection dependability and security minimizes resilience 

degradation level (Ro−Rpe) and improves the gradual degradation by increasing 

degradation time (tpe−te) as the system experiences N-m contingencies. It does so by 

preventing any additional stress on the system as a consequence of protection misoperation 
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as the disturbances are unfolding.  

2.4. Protection System Reliability under System’s Operating Complexities  

Increased system complexities introduced to alleviate the operating difficulties, 

and improve system resilience ultimately, could become a counterproductive for proper 

functioning of conventional protection schemes and maintaining protection reliability 

which in turn may hurt the system resilience. To smooth the way of implementing these 

complexities in power systems operation, the challenges of maintaining proper operation 

of conventional protection schemes should be investigated and resolved. The complexities 

under consideration in this research are: 1) more frequent network topology changes as a 

result of switching actions, 2) high penetration of DGs (renewables specifically) into 

power systems, and 3) required sensitive anti-islanding controls and measures on DG 

interconnections according to the standards. 

2.4.1. Evolving Network Topology 

Multiple switching actions for various objectives such as avoiding congestion and 

mitigating cascades [18-19], preventing load-shedding [20-21], reducing the operation 

cost [22], supporting maintenance purposes [23-24], etc. is a big operational change which 

is gaining much attention these days. However, it also could be considered as one of the 

major causes of deterioration of reliability of the legacy transmission protection operation 

[25]. Evolving network topology may cause a change in the network short circuit value 

and affect setting coordination of the distance relays consequently [26-27]. The network 

relay settings that are set for a base network topology, might not be adequate for an 

evolving topology and the protection reliability might get affected. Revisiting the setting 
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coordination adequacy for evolving network topology seems to be critical in assuring that 

such an operating complexity does not affect resiliency. It should be noted that the power 

system fundamental (base) topology has been grown over decades based on the critical 

goal of having a stable system to provide the electricity for the end users as much as 

possible. Hence, the concept of achieving an optimal base topology which already takes 

into account the protection concerns and other challenges can be considered as a future 

trend of the power system which is out of scope of this study. 

A case study on the New-England 39-bus system, shown in Figure 4, is discussed 

here for a better understanding of the problem under consideration. The testing scenario is 

to assess the setting coordination adequacy for the relays R27-26 and R26-28 for a fault at 

x = 0.8 of the line 28-29 under the base network topology, i.e. all lines in service, and a 

 

Figure 4. One-line diagram of New-England 39 bus system 
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change in the network topology by switching out the lines 17-18 and 26-29. Figure 5 (a) 

and (b) show the apparent impedance trajectory during the fault scenario under the base 

network topology for the relays R27-26 and R26-28 respectively. As it could be seen the setting 

coordination has been maintained with regards to the back-up protection for the primary 

relay R28-29. However, following the topology change, both primary and backup relays are 

seeing the same fault in their third zone as it could be seen from Figure 5 (c) and (d) which 

is a miss-coordination and a thread to the protection reliability in case of the primary 

(a) 
 

(b) 

(c) 
 

(d) 

Figure 5. Apparent impedance trajectory seen by R27-26 and R26-28; (a)-(b) for base network 
topology; (c)-(d) for two lines 17-18 and 26-29 switched out 
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relay/breaker failure. This highlights the importance and critical role of revisiting the 

setting coordination adequacy for an evolving network topology to predict and plan for the 

protection vulnerabilities under future unpredictable faults and fulfilling a resilient 

operation of the power system consequently.  

2.4.2. High Penetration of Renewables 

It has been recognized that employing renewables as new sources of power will be 

significantly beneficial from both economic and environmental perspectives [28-30]. The 

new trend is towards incorporating significant amounts of renewables into power systems 

[28-30]. However, it is still a challenge to realize how to deal with their uncertain 

generation and its consequences on the power system resilient operation. As an example, 

from the transmission protection point of view, the uncertain power generation by 

renewables is translated into varying power flows on the lines that in case of significant 

changes could become a threat to proper operation of distance relay backup zones with 

respect to their loading limits. Currently, the distance relays are set in a network assuming 

that the loading of the lines are known [31]. The transmission protection schemes should 

be able to predict the protection vulnerabilities as a result of major power flow changes to 

maintain the protection dependability and security. 

2.4.3. Anti-Islanding Protection Schemes 

Microgrid technology and decentralized energy systems with the large-scale 

deployment of distributed energy resources and decentralized control can play a key role 

in providing resilience against system disturbances [2]. However, the enforcement of the 

standards for DG interconnection protection and control measures for detaching DGs from 
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the grid under certain circumstances might act as a threat to upstream protection 

coordination as DG penetration increases in the system [28-30]. As an example, a severe 

voltage sag propagating to the distribution side from the transmission level as a result of a 

three-phase fault can interfere with sensitive under-voltage based anti-islanding protection 

schemes and cause simultaneous tripping on DG units. NERC has recently reported an 

unintended tripping of 1200 MW PV generation from the grid as a consequence of 

sensitive under frequency/voltage protection measures (anti-islanding protection schemes) 

on the interconnection point [32]. The sudden increase of power flow to compensate the 

lack of DG in the system which is already under stress of previous disturbance as well as 

probable loss of synchronism between generators could initiate distance relay 

misoperation and lead to cascade events. This is among immediate concerns of some ISOs 

which have high penetration of DGs, PVs specifically, in their markets [33].  

Figure 6. New-England system with high 
penetration of DGs 

Figure 7. The apparent impedance trajectory 
for a DG tripping scenario following a short 

circuit in the system 
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A case study on the New-England 39-bus system is demonstrated here for a better 

understanding of the problem under consideration. Significant aggregated PV generation 

is assumed be located on the bus 27 of the system, as shown in Figure 6. Figure 7 shows 

the apparent impedance trajectory seen by a target relay in the vicinity of the DG PCC 

(Relay 25-26) when a 3-phase fault happens in the middle of the line 26-29, which clears 

after 0.2 second by tripping the line 26-29 out, and then 0.27 second later 150 MW PV is 

tripped. As Figure 7 shows, the impedance trajectory after the fault clearing has been 

shifted into the third zone of the relay, which can initiate a false trip as a result. According 

to measurements from the simulation, the target relay sees the impedance trajectory in its 

third zone for about 60 cycles which is critically close to issuing a trip signal. Obviously, 

based on the network topology, DG tripped capacity and the instant of DG tripping, the 

zone interference increases or decreases. This highlights the necessity to enable the 

protection on transmission side to adaptively balance security versus dependability for 

handling these unexpected events and save the power system from catastrophic failures. 

The protection scheme should be able to distinguish such cases from faults and 

block/unblock tripping signals of vulnerable relays accordingly.  

It is worth pointing out that the above-mentioned concern does not extend to 

conventional generator tripping in the system for two main reasons. Firstly, according to 

the NERC standard, conventional generators are required to stay connected to the grid 

throughout almost all the disturbances to maintain the system’s synchronization by their 

turbine-generator inertia [34-35]. They participate in load frequency control (LFC) and 

automatic governor control (AGC) actions performed by ISOs sending control signals and 
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set points to the generators in real-time to set their outputs [36]. Secondly, the dynamic 

planning studies performed by ISOs according to the NERC standard [37] already check 

the dynamic behavior of the system to be reliable and safe for N-1 contingency cases 

including each conventional generator tripping. Before a conventional generator is 

connected and added to the grid, it will be verified that its unintended tripping will not lead 

to any system instability or cascade event and the required precautions and corrective 

actions would be planned [37]. The distance protection on transmission side is coordinated 

for these N-1 contingency cases [31]. However, planning and protection studies for 

transmission network are based on the network models that do not contain DG protection 

models, and detailed protection information is not included in the bulk DG planning 

studies [38-39].  
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3. PROBLEM FORMULATION 

3.1. Dynamic Balance of Protection Dependability and Security 

As mentioned before, the problem under consideration is to improve protection 

reliability under high-impact low-probability events, N-m contingencies, and system 

resilience consequently. Obviously, it may not be reasonable to expect having protection 

solutions, e.g. proper settings, developed off-line to cover all the possible N-m contingency 

cases. Instead, a dynamic trade-off between security and dependability is required as the 

system goes through events. An improved protection system design must provide 

inherently dependable and secure operation. The HCP approach [40-41] aims at achieving 

that goal as discussed in the following. 

3.2. Hierarchically Coordinated Protection Concept 

HCP concept has been recently proposed in response to a need for implementing a 

dynamic trade-off between protection security and dependability [40-41]. The basic idea 

behind this concept is a dynamic balance between dependability and security, which is 

obtained through predictive, adaptive and corrective relaying actions. This provides 

flexibility in the protection schemes behavior to handle the uncertainties associated with 

the protection operation [40-41]. The concept of the three layers of protection (predictive, 

adaptive, and corrective), is aimed at balancing the dependability vs. security dynamically 

to prepare for the disruptive events, absorb them, and recover from them with an 

appropriated relaying action which leads to supporting system resilience consequently. 

Historical data and statistics on contingencies such as weather-related disturbances, 

equipment outages, etc. is employed by the Predictive Protection layer to identify similar 
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conditions which may lead to the major disturbances in the future. Advanced data analytics 

may be used by this layer to conduct the analysis. Possible anticipation of disturbance by 

this layer provides an opportunity of adjusting bias between dependability and security for 

the protection system by selecting between groups of relay settings as an example. This is 

in line with the feature of the system resilience where new lessons are absorbed from the 

past and proper tools and provisions are made for dealing with future similar crisis. 

Inherently Adaptive Protection layer, which is based on the learning algorithms 

from patterns of the features extracted from the real-time system measurements comes 

next. Numerous system conditions are involved in the learning process to cover the 

potential scenarios and then the pattern from real-time measurements are compared against 

those for system’s condition identification. This allows maintaining protection 

dependability and security without the need to outweigh one against the other. Effective 

adaptive protection is translated into providing robustness, resourcefulness and improving 

gradual degradation from the system resilience point of view. It provides resourcefulness 

and robustness by avoiding relay misoperation which may lead to system collapse or 

cascading failures under disruptive events (high-impact low probability events).  

The Corrective Protection layer deals with assessing the correctness of the 

protection system operation in real time by utilizing a tool to detect relay misoperation. 

Should a legacy protection scheme operate, this tool is activated immediately after to 

detect any misoperation and the corrective action as a consequence of that misoperation is 

initiated as needed to improve resourcefulness from the resilience perspective by avoiding 

any unnecessary outages as a result of possible relay misoperaiton and managing the 
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disturbance as it unfolds. 

Such protection adjustment approaches may be coordinated in a hierarchical way 

by implementing the predictive, adaptive and corrective actions simultaneously to assure 

improved resiliency by avoiding various unwanted relay operations due to a compromised 

dependability or security. 

3.3. HCP-Based Supervised Legacy Transmission Protection 

This dissertation aims at utilizing HCP concept to propose a fundamental 

protection approach which supervises legacy distance protection transmission lines to 

improve the protection reliability. Figure 8 shows the general block diagram of the 

proposed fundamental HCP-based approach. The idea is to supervise the operation of the 

distance relay before it operates, as it gets ready to operate, and immediately after it 

operates. The legacy distance protection operates as follows: 

 The distance relays primary and backup zones are set for a base network 

topology and anticipated maximum loadings of the lines. Should the 

apparent impedance trajectory seen by the relay, as a result of local 

measurement at the relay location, fall within any of its protective zones for 

the specific duration of the corresponding zone’s settings, the relay will 

issue a trip signal to the breaker to clear the fault.  

 As majority of the faults have a temporary nature, such as lightning hits on 

transmission lines, an automatic reclosing process is put in place to perform 

reclosing actions after the relay operation. The reclosing attempts take 

place with specific preset intervals (dead time) between the actions. If the 
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fault is still identified to exist by the relay after a definite number of 

reclosing attempts, the relay will issue the final trip signal and lockout any 

further breaker operation, i.e. the breaker will open the circuit and stay in 

the open status.   

The proposed HCP-based approach intends to supervise the above-mentioned 

distance operation by: 

 Real-time review of the distance settings for an evolving network topology 

as the predictive protection. The idea is to investigate the settings 

coordination adequacy before/after a planned/unintended change in the 

network topology. Vulnerable relay settings are identified, and proper set 

 

Figure 8. Traditional distance protection supervised by HCP 
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of settings are calculated for them to prevent any misoperation of the relay 

as a consequence of settings coordination inadequacy under the next 

unpredictable fault happening. Rendering the current network topology is 

provided via the SCADA system with a resolution in the order of a few 

minutes.  

 Adaptively manage the balance between dependability and security as the 

contingencies unfold and relay gets ready to operate is the goal of adaptive 

protection. Machine learning technique is utilized to take online local and 

system wide measurements as inputs in order to identify proper 

blocking/unblocking signals in supervising legacy distance relay operation. 

The learning algorithm can be trained off-line with numerous simulation 

cases of unintended disruptive events under consideration. Having trained 

the learning algorithm, the approach is expected to correctly distinguish 

whether the relay should operate or not under a new unseen case in real-

life. 

 Should a relay operate, its operation can be investigated immediately via 

the corrective protection. The idea is to perform a real-time fault analysis 

in the mean time between the reclosing attempts in order to supervise the 

reclosing actions and mitigate the consequences of a relay misoperation. 

For example, if the fault analysis output identifies that the fault is not within 

the protective zones of the relay which has operated, the reclosing attempts 

are supervised to avoid any extended extent of outage. 
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The aggregated hierarchical coordination of the above mentioned three layers of 

protection, i.e. predictive, adaptive, and corrective, results in a fundamental HCP-based 

protection scheme to supervise legacy transmission distance protection function and 

improve protection reliability and system resilience consequently. 
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4.  STATE OF THE ART 

As mentioned before, this dissertation is focused on utilizing HCP to supervise 

legacy transmission protection function. Previous research and efforts which can be 

considered as related to this area have been surveyed and discussed in the following. 

4.1. Automated Distance Setting Calculation 

A tedious and time-consuming task for protection engineers is selecting and setting 

protective relays manually [42-43]. Such a problem is suitable for solution by a computer-

aided-design (CAD) approach. Data management techniques are available so that large 

data sets can be conveniently manipulated and maintained [42-43]. Hence, the tedious 

manual work can be automated if it is thoroughly understood. But perhaps the most 

important feature of the CAD approach is the opportunity for the engineer to interact with 

and guide the solution process with his/her experienced judgement. He/she can exercise 

options based upon results at intermediate stages in the process to achieve solutions which 

represent his/her philosophy or take the intuition about the system into consideration. 

A major, previous effort to assist protection engineers was oriented toward off-line 

processing using interactive computer algorithms [44-46]. One of the most recent efforts 

in this area which has resulted a commercial software package, known as CAPE, could be 

considered as an effective automated relay setting calculation module which is being used 

in industry [31]. As mentioned before, this task is still considered as a significantly time-

consuming process because of its high computational burden specifically for real-time 

applications. The ever-improving computation technology calls for revisiting the problem 

and looking at opportunities for increasing the computation speed. The fast pace of 
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computation technology improvement can make the ever-desired ability to review the 

distance settings online which is investigated in this dissertation. 

4.2. Machine Learning-Based Protection Schemes 

As of late, supervised learning methods (pattern recognition techniques) such as 

fuzzy logic [47-48], artificial neural network (ANN) [49-54] and support vector machine 

(SVM) [55-59] have been employed in different areas of power system protection. SVM 

performance, when compared to the other conventional classifiers the performance of 

which might suffer from handling huge feature spaces, is not significantly affected by 

classified vectors dimension [60]. SVMs have the potential to handle very large feature 

spaces, because the training of SVM is carried out so that the dimension of classified 

vectors does not have as distinct influence on the performance of SVM as it has on the 

performance of conventional classifiers. That is why SVM is especially efficient in large 

classification problems. Furthermore, the great advantage of SVM, which makes it more 

powerful than other traditional methods based on risk minimization such as ANNs is that 

it deploys various ideas such as the Vapnik-Chervonenkis theory, statistical learning, 

maximum margin optimal hyperplane, kernel functions and so on [60]. Also, SVM-based 

classifiers are claimed to have good generalization properties compared to conventional 

classifiers, because in training the SVM classier, the so-called structural misclassification 

risk is to be minimized, whereas traditional classifiers are usually trained so that the 

empirical risk is minimized [60]. 

SVM technique has been deployed as a supervised learning method for different 

power system protection purposes recently. Ravikumar et al. [56] have used SVMs for 
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post-fault diagnosis purpose as an intelligent tool to identify the faulted line and the 

distance to the fault. They also have compared SVMs with neural networks for different 

types of faults on transmission lines. The same authors have deployed SVMs in 

coordinating the distance relay settings [57]. Samples of apparent impedance seen by the 

relay during faults are used as SVM input data. In [58], the authors have evaluated and 

compared various methods of implementing multiclass SVMs in studying the coordination 

of distance relay settings. Some other studies have used SVM technique for improving 

protection of transmission lines compensated by series capacitors [59]. They have 

presented a combined wavelet-SVM technique which uses three-line current samples to 

detect the faulted zone on a series compensated transmission line. 

Deployment of SVM to other applications in the power system protection area is 

yet to be explored. Employing SVM to address the protection reliability concerns under 

high penetration of DGs into the power system has not been implemented yet and is studied 

in this dissertation. 

4.3. Real-Time Fault Analysis Approaches 

A typical fault analysis tool performs fault detection, classification, and location as 

a total package. Several efforts in the past have been proposed in this area which are 

suitable for off-line analysis and not qualify for real-time applications [61-68]. Recent 

research efforts in this area have accomplished to propose an effective fault analysis 

approach which is very fast and accurate and proper for the real-time applications [41], 

[69-70]. In this dissertation the fault analysis approach proposed and improved in [69-70], 

and [41] is utilized in the corrective layer of the HCP-based protection scheme in order to 
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supervise the legacy reclosing actions. The fault analysis approach obtains accurate results 

within a few milliseconds which provides enough margin to be accommodated in the mean 

time between the first operation of the relay and the last reclosing attempt.  
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5. PREDICTIVE PROTECTION: AUTOMATED REVIEW OF DISTANCE 
SETTINGS ADEQUACY* 

5.1. Introduction 

Operational schemes are being changed in the re-structured power systems. 

Transmission line switching, mostly for various economic and technical reasons, as well 

as intermittent output of renewables (when highly penetrated into the system) can be 

considered as major contradictory changes from the legacy transmission protection 

standpoint. This is because the setting coordination of the distance relays may be affected 

due to the change of the network loading levels as well as short circuit values. The tool for 

real-time review of the distance relays protection coordination adequacy under evolving 

network topology and power flow is not available yet. Hence an assessment whether a 

change in the relay settings is needed to maintain the security and dependability of the 

power system protection at such times is typically not performed.   

The focus of this part of the dissertation is to propose a module to investigate the 

adequacy of the network relay settings for a new (evolving) network topology which takes 

into the account the current/future power flow data as well and identify the consequent 

vulnerable relays at selected locations in the transmission system. The proposed module 

could be used in practice to assess multiple switching impacts on the network relay 

settings. Furthermore, it enables identifying the relays prone to misoperate under 

 

*© 2016 IEEE. Part of this chapter is reprinted, with permission, from M. Tasdighi, M. 
Kezunovic, "Automated Review of Distance Relay Settings Adequacy After the Network 
Topology Changes," IEEE Transactions on Power Delivery, vol. 31, no. 4, pp. 1873-1881, 
Aug. 2016. 
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significant changes of renewables output, and power flow consequently, which could be 

anticipated more precisely using short-term forecasting data. The new calculated settings 

for the new system topology and power flow are compared with the previous ones to 

identify the affected relays. The module’s output contains the list of the relays whose 

settings have changed beyond an acceptable margin. It provides the transmission system 

operators (TSOs) with an extra decision-making tool to assess the adequacy of distance 

settings for an evolving network topology and power flow so that a proper action can be 

taken. For example, in the scenario that the operator is provided with a list of switching 

actions for corrective purposes, e.g. load shedding or cost reduction, he/she is able to assess 

the switching candidates in regard to their impact on the protection security and 

dependability when selecting the best option. If the topology has already changed due to 

maintenance purposes or cascading tripping as a consequence of relay mal-operation, the 

operator could assess the protection security and dependability for the current topology 

and take proper action. 

5.2. Phase Distance Setting Rules 

Utilities, all over the world, follow different rules in setting calculation of the 

distance relays depending on their approach to operating the network. The setting 

procedure followed in this study is the same as the default procedure in CAPE [31]. A 

modern distance relay has several elements which provide many protection functions in a 

single package. In this study, the focus is on the phase distance elements and mho settings 

of different zones. There are two ways to calculate the zone settings: one is based on the 

line ohms only, which is not so practical, and the other, which is used here, is to consider 
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both the line ohms and the apparent impedance of different fault types seen by the relay 

[43], Figure 9.  

To obtain the initial mho settings, regarding the apparent impedances, three types 

of fault calculation, as shown in Figure 9, are implemented: a) three-phase fault on remote 

bus, b) three-phase fault on the next adjacent bus, and c) three-phase line-end fault on the 

next adjacent line. The maximum torque angle (MTA) is considered the same as the first 

zone’s line angle, i.e., MTA = ∠ Zl. 

The apparent impedances are checked as follows to make sure they are valid during 

the setting procedure: 
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Figure 9. Fault types used for phase distance setting 
calculation: remote bus fault (F1), next adjacent bus fault (F2), 

and line-end fault (F3) 
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The phase distance setting rules are as follow: 

5.2.1. Zone 1 Setting Rule 

1 0.8 ZlZ     (4) 

5.2.2. Zone 2 Setting Rule 
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5.2.3. Zone 3 Setting Rule 
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Then, the load encroachment is evaluated for all zones to prevent phase protective 

relay settings from limiting the transmission system loading capacity while maintaining 

dependability of the network protection. According to NERC [71], the relay performance 

should be checked for 150% of the highest seasonal rating of the lines at 0.85 per unit 

voltage and a power factor angle of 30 degrees: 
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Furthermore, according to setting rules followed by CAPE, the zone settings are 

checked not to over-reach 20% of the transformer impedance in order not to interfere with 

the distance relay settings on the lines located after the transformer [31]. 

5.3. Relay Setting Calculation and Adequacy Check Module 

The proposed module contains algorithms which check the adequacy of the 

existing relay settings for the new system topology after switching. It performs fast relay 

setting calculation for the new topology and compares the new setting values with the 

current settings. Figure 10 shows a general flowchart of the proposed setting calculation 

module. 

The critical challenge for actual implementation of this methodology is that the 
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setting coordination check of distance relays in a transmission operator (TOP) sized system 

is a significantly time-consuming task and should be automated. Identifying the relays 

whose settings get affected due to a change of the network short circuit values following 

a network topology change could be considered as an initial step in conducting automated 

settings coordination check. Performing the setting coordination check on the affected 

relays should also be fast enough. As a result, the focus here is also to make the setting 

calculation process faster by investigating how to reduce the problem size and calculation 

burden.  

 

Figure 10. General flowchart of the relay setting calculation module 
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5.3.1. Short-Circuit Model Data Preparation 

The input for the relay setting calculation module is: 1) short-circuit model data for 

buses, branches, generators, 2) power flow data, and default relay settings and 3) list of 

network topology changes. Having recognized the network topology, the module builds 

up the Zbus for the whole network which is used in fault calculations. Furthermore, a list of 

network distance relays and their adjacent buses and branches is obtained from the network 

topology. For each relay the buses and branches on which the bus fault and line-end fault 

should be implemented respectively to obtain the relay settings are determined. Having 

identified the required fault calculations for the setting procedure of each distance relay in 

a network, this method could be implemented on a system with different types of relays 

without causing an interference with setting calculation of the distance relays in that 

network. The module could be run for the identified distance relays in the network to assess 

their settings. Moreover, any exclusive condition such as the type of the relay used at 

specific points in the network or specific setting procedures (rules) followed by a network 

operator could be predefined in the module, so the relays are set accordingly. 

5.3.2. Fault Database Preparation 

During the fault calculations several updates to Zbus are required depending on the 

fault type. This prevents repetitive and excessive Zbus calculation if not necessary. The 

sparsity-oriented compensation methods are used to perform updates to Zbus [72]. Zbus 

should specifically be modified by updating the required column when implementing a 

line-end fault as assumedly another bus is added to the network. The process of calculating 

the voltages of all the buses for the case of a line-end fault implemented on the j side of 
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the line from bus i to bus j, are formulated as follows using branch-oriented compensation 

method [72]:  
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5.4. Implementation of Parallel Computation 

The algorithm computation burden mostly relates to the creation of different fault 

type databases, as shown in the three blocks highlighted in Figure 10. Specifically, line-end 

fault database preparation for two ends of the line is a very time-consuming task. This is 

because the power system Zbus is a big order sparse matrix for which operations such as 

inversion and multiplication shown in (16) to (17), require more computation efforts from 
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the processor. Each of the fault databases contains the bus voltage and branch current 

values for the corresponding type of fault. The voltage and current values are then used to 

calculate the associate apparent impedances. To improve the calculation speed, parallel 

computation could be performed on the three fault types calculation independently.  

Figure 11 shows the general flowchart of implementing parallel computation for N tasks 

each of which might contain several sub-tasks. For the parallel computation to be 

implemented the tasks should be independent from each other, i.e., there should be no flow 

of data required between the tasks for each of them to be completed. In that case, all the 

tasks could be submitted to a group of workers (computing nodes) called pool of workers. 

Each worker might include several processing cores. The access to input data is provided 

 

Figure 11. General implementation of parallel computation for N tasks 
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for all the workers so they can use the same input data. However, the worker does not need 

any data obtained by other tasks.  

Now, as an example, let’s discuss how the line-end fault database preparation could 

be parallelized. Considering to-end of the lines, the goal is to obtain the voltages of all the 

buses for the faults implemented on all the to-ends of the lines. In other words, (13) to (17) 

should be calculated for i = 1:Nbr. As it could be understood from these equations, they 

could be conducted for branch n completely independent from those of branch m. For each 

implemented fault, the voltage of all the buses could be calculated and stored separately. 

This allows implementation of the parallel computation. The same process could be 

implemented for the from-end of the lines and also for the remote bus fault calculations. 

The latter could be conducted much faster as no change to Zbus is required to implement it. 

For a fault implemented on bus n, Zcol is simply the nth column of Zbus and there is no need 

to conduct (16) to (17). The network Zbus is the only common data fed into the three blocks. 

Having the voltages at both ends of the branches corresponding to each fault case together 

with their impedances, the branches currents could be easily calculated.  

5.5. Distance-of-Impact (DoI) Concept 

For the setting calculation process to be practical for real-time applications on real-

life networks, the calculation burden and corresponding time should be reduced further. 

The idea is to avoid the redundant calculations for assessing the adequacy of the settings 

following a network topology change. Thus far, the proposed setting calculation module 

is assumed to run the setting calculation for all of the relays in the network for a topology 

change to identify the relays which settings have been affected. However, the fundamental 
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concept of network Zbus, which is the core element of the distance settings calculations as 

mentioned before, brings the idea into mind that the impact of a change in the network 

topology on the short circuit values (voltages and currents) has to be limited to a certain 

electrical distance from the location of the network topology change and it should fade 

away for farther points in the network. This has been explained further in detail in the 

following. 

Network Zbus is a symmetrical full matrix which can be obtained by getting the 

inverse of the Ybus which is a symmetrical sparse matrix. The element Zik of the Zbus matrix 

can be interpreted as the change in the voltage of bus i (ΔVi) caused by injecting current 

into bus k (ΔIk). Therefore, if ΔIk is injected in bus k, the change of voltage on the network 

buses can be obtained as follows: 
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Which results in: 
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This interpretation from the network Zbus is specifically useful for power system 

contingency analysis applications. In this study, the focus is on the impact of a change in 

the network topology, adding/removing a line from the grid as an example, on the network 
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short circuit values. When considering line additions to or removals from an existing 

system, it is not always necessary to build a new Zbus or to calculate new triangular factors 

of Ybus especially if the only interest is to establish the impact of the changes on the existing 

bus voltages and line currents. An alternative procedure is to consider the injection of 

compensating currents into the existing system to account for the effect of the line changes. 

To illustrate the basic concept, let us consider removing a line with the impedance of Za 

from an existing system with known Zbus. 

Assume the impedance Za is connected between buses m-n of the system. The bus 

voltages V1, V2, …, VN are known to be produced in the original system (before removing 

Za) by current injections I1, I2, …, IN which are fixed in value as shown in Fig. 12. On a 

per-phase basis, the bus impedance equations for the original system are then given by: 
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Figure 12. Original system with voltages V1, V2, …, VN as a result of the current 

injection I1, I2, …, IN 
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The goal is to determine the changes in the bus voltages due to removing the branch 

Za. The line removal is equivalent to injecting opposite currents, compared to existing 

current injections at both ends of the line, as shown in Fig. 13. Therefore, the ΔV on the 

network buses as a result of the line removal can be obtained from:  
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And in a simpler form: 
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Now, let us picture what mentioned above on an example network (IEEE 118-bus 

 

(a) 

 

(b) 

Figure 13. Original system of Fig.12; (a) having Za in the network, (b) removing Za 
by injecting corresponding compensation currents at both ends 
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system; buses are renumbered for calculation purposes) to better understand the situation, 

Fig. 14. It is assumed that the line 20-21 is removed from the network and we want to 

estimate the impact of the branch removal on the voltage of the two buses 119 and 137 

which are considered electrically close and far from the ends of the line 20-21 respectively. 

The difference of Z119-20 and Z119-21 (i.e. Z119-20 – Z119-21) is a smaller value compared to 

 
Figure 14. A part of IEEE 118-bus system 
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the difference of Z137-20 and Z137-21 (i.e. Z137-20 – Z137-21); 0.002pu and 0.024pu respectively 

for this network. According to the above equations, this means a lower ΔV on the bus 119 

compared to that of bus 137 as a result of the branch removal. However, the ΔV on both 

buses depend on the system interconnectivity and the pre-removal line current magnitude 

on branch 20-21; therefore, identifying the electrical distance from the topology change 

beyond which the impact of the topology change on the bus voltages can be ignored is case 

specific for each network.  

For this purpose, we have investigated the distance-of-impact (DoI) concept, which 

determines how far from the line that experiences a switching action one can expect the 

relay settings to be affected. This has been verified from conducting numerous simulations 

on both the 118-bus and Alberta transmission operator systems as will be discussed in the 

next Section. In the case that the switching actions impact on the relay settings is limited 

to a certain electrical distance from the switching location, the calculations are then 

focused on the portion of the network within that distance. Figure 15 illustrates an example 

to clarify the DoI concept. For the switched transmission line a-b, the DoI of one includes 

the buses c to f with their corresponding branches and relays, and DoI of two includes 

 

Figure 15. Illustrating the concept of DoI 
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those of the buses c to j.  

5.6. Case Study 

The performance of the proposed module is tested on the synthetic IEEE 118-bus 

[73] and real-life Alberta transmission operator system [74]. The actual calculated relay 

setting values are verified by comparing them with the output of CAPE commercial 

package used in the project reports submitted to ARPA-E, U.S. Department of Energy 

[75]. The relays are assumed to be set only in the forward direction as shown in Figure 9. 

The transmission lines do not have mutual coupling and transformer protection is 

neglected for the sake of simplicity. In general, the impact of mutual coupling is limited 

to the relays on the lines with such feature and could be modeled by proper changes to the 

network Zbus so it does not harm the effectiveness and generality of the proposed approach 

and it does not introduce a significant additional computational burden. The distance 

protection is not the best option for transformer protection and it is assumed that 

transformers are normally protected by differential relays.  

5.6.1. Sensitivity Analysis  

In the first step of the simulations, a sensitivity analysis to investigate the impact 

on the network relay settings by N-2 contingencies with 2 lines switched out has been done 

using IEEE 118-bus test system. The N-2 contingencies are chosen to be studied because 

of two reasons: 1) the number of cases to be investigated and 2) they are practical switching 

scenarios in today’s power systems. Conducting each case is significantly fast as the size 

of the system is rather small. All N-2 contingencies for which the power flow solution 

converges have been considered (13945 cases in total). A sensitivity analysis is used to 
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detect and rank the probable system protection vulnerabilities following a network 

topology change leading to N-2 contingency.  

Multiple results from the sensitivity analysis conducted on IEEE 118-bus system 

could be seen in Table 1. The relays whose settings change for a greater number of N-2 

contingencies are identified as vulnerable points in the network protection. A relay is 

considered being affected if its zone 2 or zone 3 experiences a change beyond 5% of the 

Table 1. Results of sensitivity analysis on the IEEE 118 bus test system 

Rank 

Critical Relays 
Critical N-2 

Contingency Cases 
Critical Lines 

Relay 
Participation 

Ratio (%) 

Lines 
(from-

to) 

No. of 
Affected 
Relays 

Lines 
(from-

to) 

Participation 
Ratio (%) 

1 R98-80 18.32 
60-61 & 

82-83 
21 

82-83 35.74 

2 R57-56 16.9 
60-61 & 

82-96 
18 

94-
100 

27.58 

3 R58-56 12.35 
54-56 & 

82-83 
18 

82-96 26.45 

4 R16-17 10.24 
49-51 & 

82-83 
18 

60-61 23.13 

5 R70-24 10.2 
31-32 & 

82-83 
18 

11-12 19.42 

6 R62-60 10.13 
15-19 & 

82-83 
18 

31-32 19.34 

7 R54-55 10.06 
11-12 & 

82-83 
18 

49-51 18.54 

8 
R105-

106 
9.98 

82-83 & 
100-106 

17 
54-56 18.25 

9 R59-54 9.76 
82-83 
&100-

104 
17 

100-
103 

17.56 

10 R17-15 9.72 
60-61 & 
94-100 

17 
100-
104 

17.52 
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base network settings. Zone 1 is not a concern as it is only based on the line impedance. 

Top 10 vulnerable points (critical relays) in the network protection following N-2 

contingency cases are ranked in Table 1 based on the number of N-2 contingency cases 

which affect them. The participation ratio for a relay means the ratio of the number of N-2 

contingency cases which have affected the relay to the total number of contingency cases. 

Top 10 N-2 contingency cases according to their impacts on the network relay settings, 

and number of affected relays, are also shown in Table 1. The lines participating in the 

majority of the N-2 contingency cases with significant impacts on the relay settings could 

also be identified from the sensitivity analysis. Table 1 shows top 10 of such critical lines. 

Table 2. N-2 Contingency cases affecting major relay settings 

Rank Lines (from-to) No. of Affected Relays 

1 89-91 & 579-585 29 

2 420-865 & 666-1691 29 

3 420-865 & 1318-1344 25 

4 207-590 & 666-1200 23 

5 208-581 & 242-253 23 

6 35-331 & 167-737 22 

7 297-483 & 669-677 22 

8 35-331 & 666-1670 22 

9 152-988 & 1431-1484 22 

10 63-821 & 136-514 21 
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 In the second step of the simulations, the same sensitivity analysis was conducted 

for 1000 N-2 contingency cases on Alberta transmission operator system. The top 10 N-2 

contingency cases with major impact on the relay settings are shown in Table 2. The size 

of this system is rather big (2585 buses and 2970 branches) and the relay setting calculation 

process is time-consuming, specifically the process of creating and updating the line-end 

fault databases. The parallel computation and supercomputing facilities have been 

deployed to conduct the contingency cases as will be discussed in the next section.  

5.6.2. The Role of Parallelization 

Parallel computation technique is implemented to increase the calculation speed. 

For this purpose, Texas A&M University supercomputing facility [76] with the access to 

the maximum of 32 workers (nodes) of the facility to conduct the simulations has been 

employed.  

The simulation time to run the setting module for each N-2 contingency case of 

118-bus system is insignificant already (less than a second) when using only one 

processing node of supercomputing facilities even without employing parallel 

computation. Therefore, to show the effectiveness of the parallel computation technique 

in improving the calculation speed on IEEE 118-bus test system, it is deployed in 

conducting all the contingency cases (13945 cases) together when having access to 

different numbers of workers. On the other hand, running the setting calculation module 

for each contingency case of the real sized Alberta transmission operator system is 

significantly time consuming. The improvements from parallel computation could be seen 

when implemented on even one contingency case. For Alberta system, the setting module 
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is run for the case ranked first in Table 2 having access to different numbers of workers. 

Figure 16 (a) and (b) show how parallel computation could significantly improve the 

module calculation speed based on the available numbers of workers for IEEE 118-bus 

system and Alberta system respectively. In Figure 16, one worker represents running the 

module without parallelization. These results provide a perspective how parallel 

 

(a) 

 

(b) 

Figure 16. Simulation time based on the number of workers; (a) Running the module 
for all the N-2 contingency cases together in IEEE 118-bus system; (b) Running the 

module for the contingency case ranked 1st in Table 2 for Alberta system 
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computation benefits escalate especially when the module is conducted on a TOP-sized 

network. While the cost of supercomputing facility may be prohibitive for the control room 

setting today, the simulation time could be improved to a desired level just using the 

ordinary high-end control room computers. With the pace of the technology development, 

the use of the supercomputers in the control room may be feasible in the near future.   

5.6.3. The Role of Distance-of-Impact 

Another focus of the sensitivity analysis was to search for the DoI of the switching 

actions. For this purpose, a search space of the branches starting from the ones adjacent to 

both ends of the line participating in the switching action is created. The search space 

grows based on the network connectivity graph till it covers all the affected relays on the 

network branches. For IEEE 118-bus test system, it was observed that the impact of N-2 

contingency cases is limited to the relays on the branches within DoI=3 of the switching 

action as it could be seen for the top 10 cases in Table 3. Figure 17 shows one-line diagram 

of IEEE 118-bus test system for which the switching actions 60-61 and 82-83, the 

contingency case ranked first in Table 1, are highlighted in red. The neighboring branches 

up to DoI of three are highlighted in blue and as it could be seen the affected relays, which 

are shown by red arrows, are within the DoI. Using DoI concept, the relays for which the 

Table 3. Distance of impact for top 10 cases in both systems 

Rank 1 2 3 4 5 6 7 8 9 10 

DoI 
IEEE 118-bus system 3 2 3 3 3 3 3 2 2 2 

Alberta TOP system 5 5 5 3 4 5 5 5 4 4 
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short circuit values should be updated are the ones within the DoI of the switching action 

leading to a significant reduction in computational burden.  

The sensitivity analysis for the contingency cases in Alberta transmission operator 

system points the maximum of DoI to be 5 as shown in Table 3 for the previously obtained 

top 10 contingency cases. The number of buses and branches within DoI = 3 and DoI = 5 

for the top 10 cases in IEEE 118-bus and Alberta transmission operator systems 

 

Figure 17. One-line diagram of IEEE 118-bus test system 
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respectively are shown in Table 4. The number of relays which settings are to be checked 

is two times the number of branches in DoI. As mentioned before, creating and updating 

the line-end fault database is the most time-consuming part of the setting calculation 

process. Following the network topology change, the line-end fault values for the relays 

within DoI should be updated. Figure 18 (a) and (b) shows the simulation time for the 

cases ranked first in Tables 1 and 2 respectively based on different number of implemented 

line-end faults to obtain the updated values. Different numbers of line-end faults are 

obtained based on the number of relays within the DoI as it increases from the switching 

Table 4. Portion of the network within DoI for both systems 

Rank  
IEEE 118-bus (DoI=3)  Alberta (DoI=5) 

No. of Buses  No. of Branches No. of Buses No. of Branches 

1 56 113 239 420 

2 60 120 310 569 

3 65 122 242 467 

4 73 133 303 542 

5 64 131 168 325 

6 72 142 236 447 

7 59 120 198 348 

8 50 94 176 305 

9 50 94 364 660 

10 59 114 229 407 
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action location.  

These simulations are conducted while deploying 1 worker for IEEE 118-bus 

system and 30 workers for Alberta system. As it could be seen from Figure 15, simulation 

time could be significantly reduced depending on the required number of line-end fault 

simulations especially in a real sized system.  

 

(a) 

 

(b) 

Figure 18. Simulation time based on the required number of line-end faults; (a) Case 
ranked 1st in Table I in IEEE 118-bus system; (b) Case ranked 1st in Table I in 

Alberta transmission operator system 

116 194 239 294 335 378
0

0.2

0.4

0.6

0.8

1

Number of Implemented Line-End Faults

S
im

u
la

ti
o

n
 T

im
e 

(s
)

108 195 321 420 573 734 889 1038 1187 1332
0

200

400

600

800

1000

1200

Number of Implemented Line-End Faults

S
im

u
la

ti
o

n
 T

im
e 

(s
)



51 
 

Considering the DoI, the calculations could be done exclusively for the relays in 

the portion of the network within the distance. This leads to significant time savings in 

simulations as shown in Figure 19 (a) and (b). The calculation time for 10 cases of Tables 

1 and 2 could be compared respectively between 2 scenarios: 1) running the setting 

 

(a) 

 

(b) 

Figure 19. Simulation time comparison between with and without implementing DoI; 
(a) Top 10 cases of IEEE 118-bus system; (b) Top 10 cases of Alberta transmission 

operator system
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calculation module for the whole system and 2) doing it for the portion of the system within 

DoI = 3 for 118-bus system and DoI = 5 for Alberta transmission operator system. The 

parallel computation has been deployed in both scenarios for Alberta system. In the first 

scenario, the simulation time for all cases is almost the same while in the second scenario 

it changes based on the network connectivity graph. As it could be seen from Figure 19, 

the calculation time has been reduced significantly and real-time identification of 

vulnerable relays following a network topology change becomes more practical.  

5.7. Conclusions 

The contributions of this part of the research are as follows: 

 The proposed algorithm allows a novel way of setting calculation and 

evaluation under changing network topology. 

 The proposed parallel computation technique significantly reduces the 

computation time and makes the approach applicable for real-time analysis.  

 The proposed calculation module follows the same relay setting procedure 

as CAPE commercial package and is tested and verified on real-sized 

Alberta transmission operator systems.  

 The proposed distance of impact (DoI) metric is realized to handle 

numerous cases of network topology changes in the form of N-2 

contingencies, which significantly reduces the computation burden.  

The proposed decision-making tool can allow the utility staff to assess the impact 

of multiple switching actions and network topology changes on network protection 

security and dependability leading to a proper setting coordination action.   
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6. ADAPTIVE PROTECTION: SVM-BASED PROTECTION SCHEME* 

6.1. Introduction 

In today’s modern power systems, DGs are growing rapidly based on economic 

and environmental incentives [77]. They are required to follow standards for connecting 

to the grid and have control and protection measures on their interconnections to be able 

to disconnect from the distribution grid in case of an inadvertent islanding [78-83]. 

Inadvertent islanding is called to the situation when DG continues energizing a portion of 

the system, e.g. the feeder that it is connected to, while being disconnected from the main 

grid [84]. The duration and probability of an inadvertent island occurrence must be 

minimized for several reasons such as mitigating power quality, maintaining protection 

settings, addressing auto reclosing issues, and most importantly ensuring the staff safety 

[84]. Several anti-islanding protection schemes which are mainly categorized into 

communication based and local measurement-based methods have been proposed and 

developed based on this necessity [84-85]. Since deploying communication-based 

methods, known as transfer trip, is not cost effective for widespread use, the local 

measurement-based methods are commonly used for anti-islanding protection purposes at 

the distribution level [84]. Generally, the local measurement-based methods are divided 

into active and passive ones for which the set of protection schemes consist of under and 

over frequency and voltage relays [84-85]. 

 

*© 2017 IEEE. Part of this chapter is reprinted, with permission, from M. Tasdighi, M. 
Kezunovic, “Preventing transmission distance relays maloperation under unintended bulk 
DG tripping using SVM-based approach,” Electric Power Systems Research, vol. 142, pp. 
258-267, 2017. 
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On the other hand, sensitive protection schemes being in charge of tripping DGs 

could act as a threat to the upstream network’s post disturbance response as the DG 

penetration grows in the system. This is because of their probable maloperation as a 

consequence of a severe disturbance happening upstream which could trigger unintended 

bulk DG tripping on the distribution side and impose extra stress on the system.  

One critical consequence of the additional imposed load flow stress on the 

upstream network as a result of the unintended bulk DG tripping is the probable unforeseen 

interference with the conventional distance protection [28-29] as investigated in more 

detail in this part of the dissertation. According to what is mentioned thus far, it could be 

concluded that it is necessary to make sure the dependability and security of the protection 

on the transmission side is not affected by such unintended events to prevent damage 

extension from distribution to the bulk power system. Although the impacts of unintended 

DG tripping on transmission protection coordination has been brought up in the literature 

[28-29], no protection scheme has been specifically proposed against undesirable tripping 

of distance relays under such circumstances. In this part of the research, a novel 

SVM-based scheme is proposed to maintain the transmission protection security and 

dependability under unintended bulk DG tripping on the distribution side, which may 

occur as a result of maloperation of the deployed anti-islanding schemes. SVM machine 

learning method has been chosen here in order to handle large feature space which is the 

nature of the problem under consideration as well as to capture the dynamic interaction 

between the feature values, i.e. system measurements such as voltages, currents, etc., 

corresponding to system dynamic behavior under various events, e.g. faults, unintended 
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DG tripping, etc. 

The proposed SVM-based scheme enables the vulnerable distance relays (target 

relays), the backup settings (second or third zones) of which might get affected under 

unintended DG tripping events, to distinguish such events from faults and block/un-block 

the relay operation correspondingly. The proposed setting adequacy check module 

discussed in Section 5 is used to identify the target relays in the test system. Selective 

system wide measurements obtained by PMUs in addition to local measurements at the 

distance relay location are used to improve the proposed scheme accuracy. The scheme’s 

robustness against PMU data loss or unavailability as well as cost-wise use of system wide 

measurement technology has been taken into consideration in the proposed method. The 

SVM is trained such that it distinguishes the faults from the DG tripping cases and acts as 

the supervisory control of the distance backup protection. In the case of unintended DG 

tripping interference with the distance relay setting coordination, the proposed scheme 

blocks the conventional trip signal resulting from the distance mho elements’ pickup and 

prevents any follow on the distance relay misoperation. Furthermore, unlike conventional 

blocking schemes, the proposed method is able not only to block the relay operation due 

to DG tripping interference, but also to detect a fault during the blocking period and 

unblock the relay correspondingly. The proposed scheme is easily and quickly trainable 

for various possible scenarios of system operation in practice and gives significant 

selectivity. Moreover, it could be considered as another complementary application of 

SVM along with previously proposed ones to obtain a comprehensive supervisory control 

protection scheme and improve the protection security and dependability. 
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6.2. Background 

The anti-islanding protection schemes are responsible for detaching the DGs from 

the grid in case of an inadvertent islanding. The basic idea is sensing the voltage and 

frequency deviations and checking them against the threshold values to come up with the 

control action. The critical need to prevent islanding occurrence, especially in order to 

guarantee the personnel’s safety, along with some probable hard-to-detect cases of 

islanding [29] drives the anti-islanding protection control and measures to be sensitive 

enough to detect the islanding cases. On the other hand, these sensitive protection measures 

could affect the DG output unnecessarily under certain circumstances and aggravate the 

power system dynamic behavior during or after disturbances. Under frequency and voltage 

sensitivities are two important indicators of such conditions. The former corresponds to a 

generation-load mismatch situation which may trigger bulk DG tripping, which 

deteriorates the situation further. Such cases of unintended DG tripping could be mitigated 

by taking proper immediate load shedding actions, which is not the focus of this study. 

The voltage sag caused by severe disturbances such as 3-phase faults at the 

transmission side could propagate to the distribution level and interfere with DG’s under-

voltage protection measures, which may lead to unintended DG tripping. This might not 

raise any significant issue if the existing DG in the system is of small scale and the system 

is well-designed to handle that. However, in case of high penetration of DG in the 

distribution network, connected to upstream through a point of common coupling (PCC), 

the large-scale tripping of the DG units puts an extra power flow burden on the 

transmission lines. As a result, protection coordination of distance relays’ backup 
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protection zones on transmission side might get affected. The sudden power flow increase 

to compensate the lack of DG in the system which is already under stress from previous 

disturbance could initiate distance relay miss-operation and lead to cascade events. Other 

disturbances such as major switching actions (lines or generators tripping) could also lead 

to significant voltage deviations which might be potential cause of DG tripping.  

Figure 20 helps to illustrate the problem under consideration. Anti-islanding 

protection scheme makes sure that the DG connected to a feeder (Feeder 1-Feeder 4) would 

trip if the feeder’s source-side circuit breaker (CB1-CB4) opens, usually as a result of a 

fault on the feeder. A short-circuit happens on the line 9-6 and it is tripped to clear the 

fault. The voltage drop and deviations as a result of fault occurrence and clearing event 

 
Figure 20. Possible scenario of unintended bulk DG tripping as a consequence of 

under voltage trip sensitivity 
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propagates to the distribution side. Assuming the DGs are tripped mistakenly by their anti-

islanding protection systems, a sudden power flow increase is imposed on the lines 5-4 

and 4-6 to compensate for the lack of DGs while the system is still under the stress of the 

previous disturbance. This might cause an interference with setting coordination of 

distance relays on these lines (marked by red arrows) as a result of unexpected dynamic 

change of the impedance trajectory and trigger their miss-operation, isolation of buses 4 

and 6, and lead to the total system collapse consequently. It should be noted that, this is 

just a simple graphical example to help picturing the problem tentatively; of course, 

various parameters including the dynamic behavior of the system, impedances of the lines, 

the settings of the distance relays, the capacity and instant of the tripped DG, loadability 

of the lines, etc. are important in determining whether it would cause the distance relays 

misoperation or not. A real demonstration of this scenario on New-England 39-bus system 

will be presented in the case study Section. 

The problem described above highlights the necessity to manage the protection on 

transmission side to be able to come into the action and act quickly in case of an unintended 

operation by anti-islanding schemes on the distribution side to save the upstream network. 

It should be able to distinguish such cases from faults and block/unblock tripping signals 

of vulnerable relays’ backup protective zones accordingly. 

6.3. SVM Technique 

6.3.1. Brief Overview 

SVM is a relatively new and promising machine learning technique to be deployed 

as a pattern recognition and classification tool. It is based on the statistical learning theory 
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for ‘distribution-free learning from data’ proposed by Vapnik [86]. In this method, first, 

the input data is mapped into feature space which is a high-dimensional dot product space 

and then it is classified through a hyper-plane. Using optimization theory, the maximum 

separation is obtained by the optimal hyper-plane.  

Suppose xi ∊ Rn and i ∊ {1, ..., l} is the input data including l data points which 

could be classified into two classes, class I and class II, with the labels of yi = 1, and yi = -1. 

The goal of SVM linear separation is to identify the optimal hyper-plane which creates the 

maximum separation between the data points regarding their classes. For the above-

mentioned classes, such a separating hyper-plane could be achieved by finding out proper 

values for w, vector of weights, and b, biased scalar, in the following equation: 

( ) 0Tf x w x b     (1) 

For a separating hyper-plane: 

( ) 1   if  1

( ) 1   if  1
i i

i i

f x y

f x y

  
    

  (2) 

Therefore, yi f (xi) = yi (wTxi+b) ≥ 1 for i= 1, …, l. From the geometry, it is found 

that: m = 2||w||-1 in which m represents the separation margin. So, maximizing m which 

means better generalization capability of SVM requires to minimize ||w||. Hence, finding 

the optimal hyper-plane could be formulated as the following convex optimization 

problem:   
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There exists no hyper-plane if it is not possible to separate data linearly; i.e., the 

constraints in (2) cannot be satisfied all together. In such cases, a penalty factor C and 

slack variables ξi are deployed to introduce a soft margin. The optimization problem then 

changes to: 
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(4) 

In (2), ξi are non-negative variables which bring training errors into the scene. The 

penalty factor C, also called regularization factor, is always positive. In case it is small, 

the separating hyper-plane is more focused on maximizing the margin (m) while the 

number of misclassified points is minimized for larger C values. Support vectors which 

include the points closest to the optimal hyper-plane maintaining maximum margin, 

satisfying (2) with equality sign, are required to obtain the separating hyper-plane. 

The classification problems in practice are usually not linear. To implement SVMs 

for such cases, so called kernel functions are deployed for mapping training data by the 

use of nonlinear transform function ϕ(xi): 

 1( ) ( ),..., ( ) ,     where  i i m ix x x m n      (5) 

The equation which could define a kernel function is: K(xi,xj) = ϕ(xi)Tϕ(xi). Having 
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done such a mapping, the goal is to be able to implement the linear classification of the 

original input data x in the higher-dimensional space using linear SVM formulations. 

Although SVMs are designed to be deployed for the binary classifications, they 

could be used for multiclass classification purposes too. Generally, there are three 

approaches to implement a multiclass SVM: one-against-one (OAO), one-against-all 

(OAA), and one-step methods. The first two approaches are based on combining several 

binary SVMs; however, in the one-step method the SVM is designed in a way to include 

all the classes at once during the learning algorithm and solve only one optimization 

problem [86-88]. The performance comparison between these three methods has shown 

that the one-step approach gives better accuracy in addition to be faster than the others 

[58]. Hence, this method is chosen here. 

In one-step method, the idea is to create p two-class rules which are separated by 

p decision functions. For example, the vectors of class k are separated from the other 

vectors by the kth function wTϕ(x) + b. However, all the decision functions are obtained 

by solving one problem as follows: 

 
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1 1
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  (6) 

And the decision function is: 

  1,...,argmax T
k p k mw x b   
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6.3.2.   Kernel Function Selection  

Various kernel functions have been proposed by researchers such as linear, 

polynomial, radial basis function (RBF), and sigmoid kernel functions. In this study, RBF 

kernel F(xi,xj) = exp(-γ||xi - xj||2) for γ > 0 is considered as a reasonable first choice because 

of several reasons. Deploying RBF kernel provides non-linear mapping of input data sets 

and is able to deal with the non-linear correlation of the class labels and features, so it 

overweighs the linear kernel [88]. Besides, a linear kernel is considered as a subset of RBF 

because for a definite penalty factor, C’, it could be represented as the RBF kernel having 

specific parameters (C, γ) [89]. Sigmoid kernel also performs like RBF for certain 

parameters [90]. Moreover, there are some parameters for which the sigmoid kernel is not 

the dot product of two vectors, so it is not valid [86]. Polynomial kernel has more unknown 

parameters to be determined compared to RBF kernel and this makes the model selection 

for polynomial kernel more complex. Furthermore, polynomial kernel values might be not 

properly bounded. Last but not least, numerical difficulties for the RBF kernel are fewer 

than the others [88].   

6.3.3.   Parameter Selection 

C and γ are two unknown parameters which should be determined when using RBF 

kernel. Proper parameter search must be conducted on the grid of data to find the best of 

these values for a given problem. The focus is on finding (C, γ) values for SVM classifier 

to be able to predict the unknown data, i.e. testing data set, accurately. A common approach 

is to provide two sets of data which are called training and testing or known and unknown 

data sets respectively. The SVM performance is better evaluated by prediction accuracy 
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obtained from classifying the unknown independent data set. This process is called cross-

validation in its advanced form. 

In this study, C and γ are obtained by conducting a grid-search using cross-

validation. To implement n-fold cross-validation, the training data set is divided equally 

into n subsets of data. Then, to test each subset, the SVM is trained on the remaining ones 

(n-1 subsets) so each training instance is tested once, and training accuracy represents the 

number of subsets which were classified correctly. This technique is useful in preventing 

the over-fitting problem [88].  

6.4. Proposed Methodology  

6.4.1. Identifying the Vulnerable Relays 

To implement the proposed protection scheme, first, the relays which settings 

coordination might get affected due to unintended DG tripping should be identified 

according to the network topology. The automatic distance setting coordination check 

module previously proposed in Section 5 can be utilized to identify the vulnerable relays 

to the network topology change in terms of DG tripping from the steady state perspective. 

The power flow data for two cases of with and without DG in the system is given as the 

input to the setting adequacy check module. The module would identify the relays prone 

to misoperate according to their current settings and sort them as the critical relays for 

which the SVM-based detection could be implemented. At the substation level a 

SVM-based protection scheme is proposed, as discussed in the following Sections, which 

can be trained to capture the interactions of system’s dynamic behavior with distance 

backup protective zones as a result of DG tripping and enable the candidate relays to 
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distinguish between a fault and such an event. 

6.4.2. Proposed SVM-Based Protection Scheme 

In this part of the dissertation a SVM based protection scheme which enables the 

distance relay to distinguish between a fault and a DG tripping scenario when interfering 

with the protection coordination of distance backup protective zones is proposed. The 

detection is based on the DG tripping impact on the system dynamic behavior. As shown 

in Figure 21, two multiclass SVMs are deployed, one is trained based on local data only 

(SVM-1) and the other one is provided with system wide measurement data as well 

 
Figure 21. Block diagram of the proposed scheme 
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(SVM-2). Based on whether the PMU data is being received at the relay location or not, 

the method could switch between the employed SVMs outputs through the multiplexer 

shown in Figure 21. This is for maintaining the scheme’s robustness under probable PMU 

data unavailability or loss; however, the accuracy may decrease to some extent when using 

local data only as will be discussed later in the case study section. SVM-1 and SVM-2 are 

trained to classify fault, DG tripping, and other cases as “1”, “0”, and “-1” respectively. 

The outputs of these SVMs are filtered by a comparator as class label -1 is not of interest. 

The logical AND of the backup protective zones pickup signal and the output of the 

comparator, as shown in Figure 21, determines the trip/block signal value, i.e. 1 or 0.  

A proper modeling of the DG units is important to get a fair observation of their 

impact on the dynamic behavior of the network following a disturbance. In this research, 

the focus is on PVs in the distribution level (residential PVs) which are modeled as 

constant current loads corresponding to the negative power injections, which is used in 

other studies of this type [28, 35, 91]. The equivalent of DG units aggregated based on 

their generation type from the transmission perspective could be represented as shown in 

Figure 22 [28, 35]. For studies of this type, the downstream distribution network, 

 

Figure 22. DG plants equivalent from the transmission side 
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regardless of its connections, is modelled as the aggregated load and distributed generation 

imposed on the upstream network from the transmission point of view [28, 35]. This 

accepted type of modeling is especially appropriate when the distribution grid is connected 

to a well interconnected and stable upstream network, as is the case in this study. The 

cluster of PVs is modeled as an equivalent power output equal to the sum of individual 

outputs of each one of the units [28, 35]. It is worth to note that DGs are usually operated 

in constant power/power factor control mode [29]. From the transmission point of view, 

different types of DG would not be experienced significantly different from each other. 

Under specific cases of DG operation, if the majority of the DGs are facilitated with 

voltage regulation or speed controls based on their type, they should be modeled 

correspondingly [28]. We have focused on PVs because of their modeling simplicity. They 

are considered as the most promising type of DGs growing fast in the distribution level 

because of their economic and environmental incentives [35].  

Local measurements and calculations based on them at the relay point are the 

required elements of almost all of the protection schemes. Features selected from the local 

measurements as inputs for the SVM-1 and SVM-2 are: Vbus, |Iline|, Pline, and Qline 

representing the bus voltage phasor, line current phasor magnitude, line active and reactive 

power flow respectively. Thanks to the PMU technology, system wide measurements from 

various points of the system could be provided in today’s power system operation. When 

employing system wide measurements technology, implementation cost must be 

considered for the method to be economically justifiable. In other words, the more PMUs 

are deployed; the significantly higher implementation cost would be experienced although 
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a better system behavior observation may be obtained. It is assumed that phasor 

measurements from PCC and target relay bus in regard to the reference bus are available 

and by PCC, as shown in Figure 1, only the distribution to upstream connection bus is 

meant rather than all of the DG units’ interconnections individually. Therefore, 

implementing the proposed method would be economically practical. Net active (PDG) and 

reactive (QDG) power injections from the PCC into the transmission grid calculated from 

the PCC’s PMU measurements are two good features to be utilized to improve the SVM-2 

pattern recognition and classification accuracy. The other proper feature is the voltage 

phasor at the PCC on the grid side (VDG). Deploying these measurements and calculations 

is specifically beneficial to improve the SVM’s performance accuracy when classifying 

under more complicated scenarios such as detecting a second fault when the system is 

already under the stress of a post fault and subsequent DG tripping events. As it will be 

shown in the case study section, the proposed scheme is able to detect such cases and 

unblock the trip signal, so the protection security and dependability is well maintained.   

Depending on the application of the PMU, the role of communication requirements 

and latencies could get highlighted. The delay related to PMU deployment is caused from 

three main processes: phasor creation, transmission of data through the available 

communication link, and merging of data streams in phasor data concentrators (PDCs) 

[92]. The PMUs use fast mathematical algorithms, such as discrete furrier transform (DFT) 

and calculate the voltage and current phasors from RMS measurements obtained by 

voltage and current instrument transformers [92]. Then the phasor measurements are 

transmitted according to IEEE C37.118 [93] data format to PDCs via available 
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communication link and the delay depends on the link’s data transfer capability, the size 

of the PMU data output, as well as physical distance between PMU and PDC. The PDC 

delay, at the target substation in this study, corresponds to implementing time tag on the 

data and preparing a system-wide measurement [94]. There are various communication 

options available for wide area measurement system (WAMS) including telephone lines, 

fiber-optic cables, satellites, power lines, and microwave links [92]. Studies show that the 

average combined delay caused by the above-mentioned reasons over even long 

transmitting distances (in the order of 1000 miles) when using a communication media 

with a band-width of 56Kbps (data rate in telephone lines) is around 5-7 cycles of a 60 Hz 

system [94]. Therefore, deploying wide area measurements in the proposed method is a 

proper fit with regards to the method’s application for the purpose of improving distance 

relay back-up protection which, as mentioned before, operates with a time delay (20 and 

60 cycles for zones 2 and 3 respectively). Deploying advanced communication media such 

as fiber-optic cable by utilities provides a data transfer speed up to 2Mbps and significantly 

reduces the delay by removing the delay corresponding to the PMU data size [92]. 

The SVMs training scenarios includes different DG tripped capacities following 

3-phase faults on the transmission side at various points in the vicinity of the DG placement 

in order to have realistic scenarios of the severe disturbance impact propagation from 

transmission to distribution level. The possible DG tripping instant following the 

disturbance varies in a range assumed according to the standards for anti-islanding 

protection schemes. Having prepared the training data set the SVMs go through the 

learning process and their performances are verified on the testing data set as will be 
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discussed in the following Section.  

Employing SVM technique to approach the problem under consideration from the 

distribution side, when using local data only, may not be a proper fit. To maintain its 

operation accuracy under the probable upstream disturbances might be challenging. After 

all, the primary issue was raised when deviations propagating from transmission to the 

distribution side are close to and almost not differentiable from those caused by islanding 

situation which is a probable thread to any anti-islanding protection scheme. Under such 

circumstances, the accuracy of SVM may be affected if only relying on local 

measurements because training the SVM to differentiate between such cases actually 

means training it for instances with similar features yet different labels which lowers the 

classification accuracy. The unintended DG tripping risk still remains unless remote 

measurements are provided for each DG unit’s interconnection relay which is the same as 

the costly method of transfer trip. 

6.5. Case Study 

The simulations have been conducted on the New-England 39-bus test system [95], 

Figure 23. Having conducted a sensitivity analysis on the test system using the setting 

coordination check module proposed in Section 5, the buses for clustered DG location with 

higher impact on the network distance relay settings and their corresponding list of critical 

relays (target relays) are identified. It was concluded that clustered PVs on bus 27, as 

shown in Figure 20, is one of the locations with highest impact on distance relay settings 

for unintended PV tripping cases and the corresponding list of critical relays to this 

location is brought in Table 5.  
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Maximum PV penetration in the system is assumed to be a considerable amount of 

500 MW all of which has been tripped to sort the vulnerable relays in the system as the 

worst-case scenario. The penetration level could be defined in various ways based on the 

system’s total generation, system’s peak load, or amount of energy served [35]. For 

example, considering the system’s total generation, the penetration level is obtained from 

the following equation:  

Total DG generation (MW)
DG Penetration (%) = 

Total generation (MW)  
(7) 

That is around %10 in this study.  

For this study, the amount of the DG tripped capacity, the instant of the tripping 

 

Figure 23. One-line diagram of New-England 39 bus system with DG penetration 

 



71 
 

following the disturbance on transmission side, current distance relay settings, etc., which 

play the key role in the protection coordination interference, are more important than the 

total level of penetration. 

 The proposed method is implemented for the most critical relay (R25-26), which is 

considered as the target relay. As mentioned before, the PMUs are assumed to be located 

on the reference bus (bus 39), the target relay bus (bus 25) and DG PCC as shown by stars 

in Figure 20. The SVMs are trained for the unintended DG tripping scenarios seen by the 

target relay. Simulations have been performed by PSS/E software on a PC with an Intel 

Xeon W3530 C 2.8 GHz CPU. LIBSVM is used to train and test the SVMs [87, 96].  

6.5.1. Creating the Training and Testing Data Sets 

The SVM training data set consists of different cases (84 cases in total) including: 

3 DG tripped capacities (100 MW, 250 MW, and 500 MW), faults on transmission system 

at different distances in the vicinity of the DG placement, which also includes some points 

along the lines in the third zone of the target relay, and multiple DG tripping instants 

following the disturbance. According to the IEEE standard, the anti-islanding schemes 

should be able to detect all possible islanding conditions and trip DGs within 0.16 to 2 

Table 5. Vulnerable relays to DG tripping 

Rank Critical Relay 

1 R25-26 

2 R29-26 

3 R16-17 
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seconds depending on the level of voltage and frequency variations [84]. The reporting 

rate of the PMUs is considered 60 phasors per second in a 60 Hz system according to the 

standard [93]. It should be noted that this is different from the PMU sampling rate on the 

input signal. The sampling rate might be up to 512 samples per cycle [93]; however, one 

phasor per cycle is computed and reported by the PMU. Each instance of training includes 

2 cycles of data. As mentioned before, the local measurements include Vbus, |Iline|, Pline, and 

Qline at the target relay location. Deploying the PMU technology, VDG, PDG, and QDG at the 

DG PCC are also available. Note that the voltage phasors measurements include both 

magnitude and angle. Therefore, considering 1 phasor per cycle reporting rate and length 

of each instance (2 cycles), the input vector for each instance of training consists of 10 

(5×2) features from local measurements and 8 (4×2) from system wide measurements. 

Hence, the input vectors for SVM-1 and SVM-2 consist of 10 and 18 features respectively. 

Considering all the simulated training cases, i.e. 84 cases of one-and-half seconds system 

operation time, the training set consists of 3780 instances. The same procedure is taken to 

create the testing data set. The conditions including DG tripped capacity, fault location and 

instant of DG tripping, are chosen intentionally different from the training set to assess the 

performance of the SVMs for unseen scenarios. In total, there are 1692 instances in the 

testing data set. Different types of DGs and their modeling might cause a change in the 

measurement values of the selected features and the SVMs should be trained based on the 

updated values correspondingly. 

6.5.2.   SVM Parameters Selection, Training, and Testing  

The next step is to select SVMs parameters efficiently. It can get time consuming 
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to choose the best parameters in case proper selection cannot be drawn from the available 

knowledge on the problem and a systematic approach is not taken. An interactive grid 

search approach has been taken here to evaluate the training generalized accuracy. A five-

fold cross validation is implemented by dividing the training data set into 5 subsets of data. 

It is found that an effective approach to obtain proper values for the pairs of (C, γ) is to try 

growing their sequence of values exponentially. In order to avoid a complete grid search 

which is time consuming, first, a bigger incremental step is chosen for the sequence of 

values, e.g. C = 2-5, 2-3,…, 215 and γ = 2-15, 2-13,…, 23, which is called a loos grid search to 

find a proper region on the grid of data. When the proper parameter values are found, 

another search with smaller incremental step is conducted around the values, which is 

called fine grid search, to find any better value for the parameters. The graphical 

presentation of generalization contours for the SVMs after a five-fold cross-validation is 

shown in Figure 24 in which (a)-(b) and (c)-(d) corresponds to SVM-1 and SVM-2 for 

loos and fine searches on training grid of data respectively. Although the accuracies for 

the cases seen in Figure 24 are not significantly different, it should be noted that this is 

training accuracy which does not replicate the SVM performance fairly as the class labels 

are known. To verify the SVM actual performance, it should be evaluated on a data set 

with unknown labels to observe the testing accuracy. As it could be seen from Figure 24, 

proper values for the pairs of (C, γ) for SVM-1 and SVM-2 are determined to be (8192,4) 

and (1024,0.5) respectively. The parameter selection process has been accomplished in 

less than 10 minutes.  

Having found the proper parameters values, the SVM-1 and SVM-2 are trained and 
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tested for their corresponding sets of data. Table 6 shows the SVMs specifications and 

classification accuracy obtained in both cases of using local measurements only (SVM-1) 

and including system wide measurements as well (SVM-2). As it could be seen, the 

classification accuracy has been increased to a very desirable level when employing 

system wide measurements; however, an acceptable accuracy is still achieved while using 

local measurements only. This assures the robustness of the method against PMU data 

unavailability. In addition, the insignificant training and testing time for SVMs as shown 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 24. Interactive grid search using cross-validation for selecting SVMs parameter 
values; (a)-(b) loos and fine searches on training data-set for SVM-1; (c)-(d) loos and 

fine search on training data-set for SVM-2 
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in Table 6, infers the easy implementation and practicality of the proposed method.  

Figure 25 compares the outputs of SVM-1 and SVM-2 for a testing DG tripping 

scenario. The testing scenario is that a 3-phase fault happens on x = 0.3 of the line 26-29 

 
Figure 25. SVMs output comparison under the DG tripping scenario 
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Table 6. SVMs specifications 

SVM No. SVM-1 SVM-2 

C 8192 1024 

γ 4 0.5 

No. of Iterations 2112058 98096 

No. of SVs 772 753 

Testing Accuracy (%) 93.8 97.6 

Training Time (s) 39.67 8.76 
Testing Time (s) 0.147 0.19 
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at t = 1s and cleared at t = 1.2s by tripping this line out. As a consequence of miss-detection 

of PV interconnection relays on the distribution side, at t = 1.65s, 250 MW PV is tripped 

unintentionally. The signal values of “1”, “0”, and “-1” represent the fault, DG tripping, 

and other status respectively. As it could be seen both SVMs have classified the instances 

well. The temporary spikes seen in SVM-1 output (at t = 1.35s or t = 1.65s) are as a result 

of miss-classification; however, they do not affect the relay operation since they are not 

persistent.  

As mentioned before, employing the PMU measurements from PCC improves the 

accuracy of the SVM especially under more complicated scenarios of classification. To 

verify this, the above-mentioned scenario has been complicated by the occurrence of a 

second fault on x = 0.4 of the line 26-28 at t = 2.5s when the system is already experiencing 

the stress caused by previous fault and subsequent DG tripping. The SVMs’ performance 

under this scenario is illustrated in Figure 26. As it could be seen, SVM-2 has classified 

the instances with a better accuracy compared to SVM-1, i.e. lower number of 

misclassifications, especially during the second fault detection. Figure 27 compares the 

proposed method output, i.e. trip/block signal in Figure 21, with the legacy distance relay 

pickup on the above-mentioned testing scenario. As it could be seen, following DG 

tripping, the distance element of the target relay backup zone (zone 3) has picked up from 

t = 1.8s to the end while the proposed method blocks the relay operation during DG 

tripping interference and unblocks it at t = 2.5s when the second fault happens. 

 Table 7 summarizes and compares the performance of the SVMs in classifying the 

instances. As it could be seen from Table 7, the numbers of correctly detected cases of 
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faults, DG tripping, and others are higher when deploying SVM-2. In other words, the 

protection dependability and security has been better maintained when using system wide 

measurements. The accuracy in Table 7 is the ratio of the number of correctly detected 

instances of a type (e.g. fault) to the actual number of instances of that type. As mentioned 

before, the fault instances include complicated fault scenarios, i.e. a second fault 

happening on transmission side following DG tripping event, to test the dependability of 

the proposed method in addition to the security. To have an estimate on the proposed 

method’s dependability for normal fault situations on the transmission side, i.e., faults 

which are not following the DG tripping event, a total 117 of such fault cases were run and 

SVM-1 and SVM-2 performed detection with 99.1% and 100% accuracy respectively.    

 
Figure 26. SVMs output comparison for a fault during the DG tripping scenario 
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6.6. Conclusions  

 The main contributions of this part of the research are as follows:   

 A SVM-based protection scheme which prevents maloperation of distance 

relays in unintended DG tripping scenarios is proposed.  

 WA measurements have been used in addition to local measurements to 

increase the SVM’s classification accuracy and that of the protection 

scheme consequently. The proposed scheme is robust against PMU data 

loss or unavailability. 

 Unlike conventional blocking schemes, the proposed protection scheme not 

only blocks the relay following the interference of a DG tripping scenario 

Figure 27. Comparison of the proposed method output with the conventional distance 
pickup 
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with distance coordination but also detects a fault if it happens during the 

blocking period and unblocks the relay to operate properly. 

 Since the proposed scheme is easily and quickly trainable, it is applicable 

to various possible practical system operation scenarios and gives 

significant selectivity.   

In summary, deploying the WA measurements infrastructure not only improves the 

scheme accuracy but also makes it independent of the aggregated DG location in the 

system. The proposed scheme could be implemented in combination with other protection 

schemes such as power swing blocking to help maintaining power system protection 

dependability and security. 

   

Table 7. SVMs performance comparison 

Type of Instance Fault 
DG 

Tripping 
Others

Actual No. of Instances 263 897 532 

No. of Detected Instances 
SVM-1 284 913 495 
SVM-2 270 891 531 

No. of Correctly Detected 
Instances 

SVM-1 240 860 488 
SVM-2 251 874 527 

No. of Incorrectly Detected 
Instances 

SVM-1 44 53 7 
SVM-2 19 17 4 

Accuracy (%) 
SVM-1 91.3 95.9 91.7 
SVM-2 95.4 97.4 99.1 
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7. CORRECTIVE PROTECTION: REAL-TIME RELAY MISOPERATION 
DETECTION TOOL 

7.1. Introduction 

Distance relays may misoperate by seeing the fault in a protective zone by mistake 

when the fault is actually in another zone or out of zones of the relay. This is a no-fault 

condition which is seen as a fault within a protective zone of the relay, e.g. power swings; 

etc. When a relay operates, an on-line fault analysis can identify whether it has operated 

correctly. If this analysis is performed with a sufficiently high speed, it can be employed 

in the last step of an auto-reclosing action allowing enough time to produce results to 

correct a misoperation of the relay. Assume a re-closer has detected a fault and operated 

once, i.e. first trip, and it is waiting before it implements the second closing action. If the 

fault has happened outside the protective zone of the relay and it has operated incorrectly, 

the situation may repeat and cause a lock out (complete trip) after the reclosing action. 

With the use of the real-time fault analysis and relay misoperation detection approach, 

such tripping and locking out by the re-closer can be supervised and avoided. The interval 

between re-closers’ closing actions can also be set properly to accommodate and let for 

utilizing the fast misoperation detection module output for supervisory control. 

 The fault analysis approach based on fast synchronized sampling with high 

accuracy as well as event tree methods proposed in [41], [69-70] is utilized here to 

implement a relay misoperation detection tool at the substation level. Should a re-closer 

operate, the tool is activated to verify the operation correctness of the relay and in case of 

detecting any misoperation, the system can be saved from experiencing an unnecessary 

line outage. Very high speed of fault analysis is aimed to be achieved by the proposed 
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method such that it can be deployed to impact and improve the re-closing applications. 

7.2. Methodology 

Figure 28 depicts a typical transmission line setup with the event-triggered 

measurements from both ends. As it can be seen, the line can be monitored by different 

substation Intelligent Electronic Devices (IEDs) at both ends (details are only shown in 

substation 1). When a fault (or disturbance seen as a fault by the protective device) occurs, 

several IEDs can be triggered and they will capture event measurements. The assumption 

is that the data samples are synchronized and time-stamped using the Global Positioning 

System (GPS), and a high-speed communication link between substations and control 

center is available. The relay misoperation detection tool implementation is illustrated in 

 
Figure 28. Typical transmission line setup with measurements from both ends 
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Figure 29. Following is the description of each step. 

Step 1. DFR/DPR Events Import: The required IED device data consists of voltage 

and current samples captured by DFR or DPR. The fault data and system model data are 

necessary inputs for the tool to run and operate correctly and accurately. The involved 

DFR and DPR devices varied by vendor, types, and vintage. All data files from different 

vendors have been converted in unified COMTRADE file format (IEEE C37.111-1999).  

Step 2. System Model Import: The system model topology is obtained from the 

PSS/E (*.raw) file and used for pairing the event files coming from two ends of the same 

transmission line.  

Step 3. Pairing the Two-end Data: There can be multiple IED files created during 

a disturbance at different substations. Utilizing the network topology from the system 

model, the IED files from the neighboring nodes are paired to extract the two-end 

measurement data corresponding to the transmission line between the buses.  

Step 4. Re-sample and Align: After the two-end data are paired, they are processed 

in order to extract data samples for instantaneous voltage and current signals measured at 

both ends of the line. The extracted data samples are re-sampled and aligned (when the 

 

Figure 29. Automated analysis of time-synchronized event data (Relay misoperation 
detection tool) 
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triggering time was not the same) in order to obtain the same sampling rate at both ends as 

well as synchronized samples. 

Step 5. Relay mis-operation detection: The relay mis-operation detection tool core 

algorithm has been introduced in [41], [69-70] as mentioned before. Here, an overview of 

relay mis-operation detection core algorithm implemented as a part of the proposed tool is 

provided. In Figure 30, V1(t) and I1(t) represents voltage and current measured at one end 

(Bus 1) of the line at instance t. Similarly, V2(t) and I2(t) represent voltage and current 

measured at the other end (Bus 2) of the line respectively. Instantaneous powers calculated 

at both ends are: P1(t) = V1(t) × I1(t), and P2(t) = V2(t) × I2(t). 

During the normal operation, P1(t) and P2(t) will be in phase opposition to each 

other for the current directions assumed. However, for the faulty phases, when the fault is 

initiated, they will be in-phase with each other. For un-faulted phases the phase opposition 

will be maintained even after the fault inception. If a load level change or a fault in 

neighboring line occurs, the calculated instantaneous powers will remain in opposite 

direction. Therefore, the method can discriminate load level changes or external faults 

from internal ones. To represent this feature mathematically, signum function is employed 

 
Figure 30. Transmission line with two-end measurements 
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and defined as: 

1, 0

sgn( ) 0, 0

1, 0

x

x x

x

 
 
   

(1) 

sgn(P1(t)) and sgn(P2(t)) are calculated and their difference is obtained for each 

phase as: 

Psgn(t) = sgn(P1(t)) – sgn(P2(t)) (2) 

Theoretically, before a fault has been initiated, this difference Psgn(t) should be 

+/-2 and after fault occurrence Psgn(t) should be 0 on all faulty phases. The change of 

difference of sgn(t) is utilized as a signal to detect fault instant from (2). However, due to 

transients and noise in the measurements, some outliers exist. To avoid incorrect decisions 

caused by outliners, a moving window of 5 ms is used to check whether at least 80% of 

Psgn(t) are zero, which indicates a fault.  

Step 6. Results: The results of relay mis-operation detection tool are provided in 

real-time to be utilized in supervising the reclosing process. As shown in Figure 29, the 

outcome of the analysis may be: a) no fault, which means that the tripped line may be 

available to switch back in; b) fault detected and operation of relay has been confirmed, 

which means no need for further reclosing attempts. 

7.3. Case Study 

The relay mis-operation detection tool has been tested against various simulated 

and field data test cases. The following two examples demonstrate how the tool behaves 

in the case of a fault as well as relay mis-operation. In both cases, the sampled data are 
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taken from actual IED device in field.  

As shown in Figure 31 (a-c), the instantaneous powers from two ends at phase B 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 31. Single phase to ground fault detection and classification 
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and C are in the opposite direction before and after disturbance. While in phase A, the 

direction has been changed after fault initiation time. As a result, the output of the relay 

mis-operation detection tool results in the detection of “phase A to ground fault”. 

Figure 31 (d-f) depicts plot of Psgn(t) with respect to the time for three phases. It can be 

seen that in phases B and C less than 80% of the total samples are zero. However, more 

than 80% of the total samples of phase A is zero. 

Figure 32 shows the same type of output plots for a relay mis-operation test case. 

Figure 32 (a-c) depicts instantaneous power P1(t) and P2(t) calculated based on data 

captured by DFR units at the two ends of transmission line with respect to time. In this 

case, the information received by utility shows that the fault occurred on a neighboring 

line. The line has been falsely tripped as a result of the relay misoperation due to a single-

phase fault on an adjacent line according to the later investigation of the case.  

From Figure 32 (a-c) one can observe that the opposite direction of instantaneous 

powers from two ends stay the same before and after disturbance. As a result, the output 

of the tool indicates “no fault” condition. Figure 32 (d-f) shows plot of Psgn(t) with respect 

to time for three phases. It can be seen that less than 80% of the total samples are zero 

which means no fault has been detected in any of three phases. This detection happens in 

less than 5ms which is very desirable to be able to be accommodated in the reclosing 

applications. It should be noted that the reclosing attempts happen with intervals from 

20ms (first reclosing attempt after the initial trip) up to a few seconds after the initial trip 

depending on the number of reclosing attempts and interval settings between them [97-

98].  
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Figure 32. Relay Mis-operation Detection 
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7.4. Conclusions 

The main contributions of this part of the research are as follows:  

 A simple and effective fault analysis approach using synchronized samples 

from both ends of the transmission line is proposed which can be utilized 

as a relay misoperation detection tool 

 The method is very fast and accurate, so it can be used in a real-time manner 

to supervise the reclosing process and avoid/allow extra reclosing attempts 

depending on the fault analysis results 

 The proposed method can be utilized in the corrective layer of the 

fundamental HCP-based supervisory scheme. 

 The method is tested for several IEEE and real-life test cases and illustrates 

excellent performance accuracy 
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8. CONCLUSIONS 

8.1. Research Contributions 

The concluding remarks of this dissertation are as follows: 

 Investigating the role of power system protection reliability in improving 

the power system resilience. 

 Introducing the system complexities which aim at improving power system 

resilience as an ultimate goal while can be considered as main contradictory 

changes from the legacy distance protection scheme. 

 Proposing a fundamental HCP-based protection scheme to supervise legacy 

distance protection function which enables maintaining a dynamic balance 

between protection dependability and security.  

 Proposing an automated distance setting adequacy check module as a 

solution for the predictive layer of HCP-based supervisory scheme which 

employs advanced computational technique to implement real-time setting 

calculation on a real-life network for an evolving network topology. 

 Proposing the novel concept of DoI which saves significant computational 

burden by narrowing down the setting calculations on the affected part of 

the network rather than the whole of the network.   

 Proposing SVM-based protection scheme as a solution for the adaptive 

layer of the HCP-based supervisory scheme which employs local/system 

wide measurements and enables the distance relays to maintain the 

protection reliability under operating concerns as a result of high 
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penetration of DGs into the system. 

 Utilizing a previously proposed real-time fault analysis approach as a relay 

misoperation detection tool and a solution for the corrective layer of the 

HCP-based supervisory scheme which can improve the legacy reclosing 

actions by allowing/avoiding extra reclosing attempts depending on the 

fault analysis results. 

 Testing each of the predictive, adaptive, and corrective solutions on IEEE 

and real-life test systems demonstrating their performance effectiveness in 

comparison with the state of the art. 

 

8.2. Suggestions for Future Research 

The future works for the research performed in this dissertation could be generally 

categorized into improving solutions proposed at each layer of the fundamental HCP-

based approach or introducing other applications of them: 

 The network fundamental (base) topology can be investigated towards 

achieving an optimized network topology from the system’s performance 

perspective. The impact of the base topology on the system’s performance 

from different viewpoints of protection, stability, reliability, etc. can be of 

great importance as a potential fundamental approach in improving the 

power system resilience. 

 The potential of improving the computation speed of the proposed setting 

calculation module by implementing advanced computational and software 
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module development techniques can be investigated for better results when 

it comes to real-time applications. 

 complementary applications of SVM along with the proposed application 

in this dissertation can be investigated for achieving a comprehensive 

adaptive protection scheme to be employed at the adaptive layer of the 

HCP-based supervisory approach. 

 Other applications of real-time fault analysis approaches such as deploying 

it for improving outage management and restoration can be investigated. 
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