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ABSTRACT 

 

Unconventional shale reservoirs have been the most recent production frontier in 

the United States. Optimization of the production of shale reservoirs depends greatly on 

hydraulic fracture treatment. In recent studies, strongly contrasting properties of multi-

layered rocks and pervasively distributed weak interfaces become the primary factors in 

determining the propagation pathway of fractures, which further influences the fracture 

height growth and fracture geometry. Few of hydraulic fracture propagation models enable 

us to quantitatively estimate the fracture height containment or predict fracture geometry 

under the influence of multiple bedding planes. Therefore, development of a reliable and 

practical simulator for modeling fracture propagation that enables accurate prediction of 

the fracture height growth in multiple-layered shale formation is critical to efficient 

resource development.  

In this dissertation, I have developed a coupled three-dimensional hydraulic 

fracture propagation model considering the effects of bedding planes. In this model, a fully 

three-dimensional displacement discontinuity method is used to model the rock 

deformation. The advantage of this approach is that it addresses both the mechanical 

interaction between hydraulic fractures and weak bedding planes in three-dimensional 

space and the physical mechanism of slippage along weak bedding planes. Fluid flow 

governed by finite difference methodology considers the flow in both vertical fractures 

and opening bedding planes. An iterative algorithm is used to couple fluid flow and rock 

deformation. Comparison between the developed model and the PKN model showed good 

agreement. Analysis of different fracture geometry and sensitivity analysis of different 
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parameters are conducted to investigate their impacts on the opening of vertical fractures 

and bedding planes, and also the shear sliding along the bedding planes. A width jump, 

created along the vertical fracture when the vertical fracture penetrates the bedding plane, 

is regarded as a primary mechanism of fracture height containment. Both widths of 

fracture segments and shear sliding along the bedding plane are positively related with the 

distance between the injection source and the bedding plane segment. Higher formation 

Young’s modulus can restrict the opening of bedding plane and retard the fluid percolation 

into the bedding plane. Smaller fracture spacing gives rise of the opening reduction of the 

fracture segments. Our model enables us to provide a critical insight for the selection of 

the proppant grain size range and assessment of the required pumping rate to obtain the 

required width at both junction and intersected bedding plane. 
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NOMENCLATURE 

 

𝑢𝑗  Displacement Component at a Point, m 

𝜎𝑗𝑘 Stress Component at a Point, Pa 

𝑢𝑖 Displacement Component over the Boundary Region, m 

𝑡𝑖 Traction Component, Pa 

𝑀𝑖𝑗 , 𝑁𝑖𝑗 , 𝐸𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘 Tensor Fields with Displacements at a Point under a Certain 

Traction 

𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13, 𝜎23 Stress Components from Analytical Solution, Pa 

𝐷𝑆𝐿(𝐷1) Shear Displacement Discontinuity in the Fracture Length 

Direction, m 

𝐷𝑆𝐻(𝐷2) Shear Displacement Discontinuity in the Fracture Height 

Direction, m 

𝐷𝑁𝑁(𝐷3)   Normal Displacement Discontinuity, m 

G Shear Modulus, Pa 

𝜈 Poisson’s Ratio,  
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𝐽𝑖 Derivatives of a Kernel Analytical Solution for 𝑖 from 1 to 19 

(𝑥1, 𝑥2, 𝑥3) Local Coordinate System, m 

(𝑋, 𝑌, 𝑍) Global Coordinate System, m 

𝑅1 Matrix Considering the Rotation of 𝑦 Axis 

𝑅2 Matrix Considering the Rotation of 𝑧 Axis 

𝑅 Matrix Considering the Rotation of 𝑦 and 𝑧 Axis 

𝛽 Strike Angle 

𝜃 Dip Angle 

𝛾 Difference of Strike Angle between Element 𝑖 and Element 𝑗 

𝜑 Difference of Dip Angle between Element 𝑖 and Element 𝑗 

𝐴𝑆𝐿,𝑆𝐿
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                    

Fracture Length Direction of Element 𝑖 Resulting from Shear 

Displacement Discontinuity in the Fracture Length Direction 

of Element 𝑘 

𝐴𝑆𝐿,𝑆𝐻
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                    

Fracture Length Direction of Element 𝑖 Resulting from Shear 
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Displacement Discontinuity in the Fracture Height Direction 

of Element 𝑘 

𝐴𝑆𝐿,𝑁𝑁
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                    

Fracture Length Direction of Element 𝑖 Resulting from 

Normal Displacement Discontinuity of Element 𝑘 

𝐴𝑆𝐻,𝑆𝐿
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                  

Fracture Height Direction of Element 𝑖 Resulting from Shear 

Displacement Discontinuity in the Fracture Length Direction 

of Element 𝑘 

𝐴𝑆𝐻,𝑆𝐻
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                  

Fracture Height Direction of Element 𝑖 Resulting from Shear 

Displacement Discontinuity in the Fracture Height Direction 

of Element 𝑘 

𝐴𝑆𝐻,𝑁𝑁
𝑖𝑘  Boundary Influence Coefficient of Induced Shear Stress in the                                  

Fracture Height Direction of Element 𝑖 Resulting from 

Normal Displacement Discontinuity of Element 𝑘 

𝐴𝑁𝑁,𝑆𝐿
𝑖𝑘  Boundary Influence Coefficient of Induced Normal Stress of 

Element 𝑖 Resulting from Shear Displacement Discontinuity 

in the Fracture Length Direction of Element 𝑘 
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𝐴𝑁𝑁,𝑆𝐻
𝑖𝑘  Boundary Influence Coefficient of Induced Normal Stress of 

Element 𝑖 Resulting from Shear Displacement Discontinuity 

in the Fracture Height Direction of Element 𝑘 

𝐴𝑁𝑁,𝑁𝑁
𝑖𝑘  Boundary Influence Coefficient of Induced Normal Stress of 

Element 𝑖 Resulting from Normal Displacement 

Discontinuity of Element 𝑘 

𝜎𝑆𝐿
𝑖  Shear Stress in the Fracture Length Direction of Element 𝑖, Pa 

𝜎𝑆𝐻
𝑖  Shear Stress in the Fracture Height Direction of Element 𝑖, Pa 

𝜎𝑁𝑁
𝑖  Normal Stress of Element 𝑖, Pa 

𝜎𝑋𝑋
𝑃 Induced Normal Stress in the X Direction at Any Point 𝑃, Pa 

𝜎𝑌𝑌
𝑃 Induced Normal Stress in the Y Direction at Any Point 𝑃, Pa 

𝜎𝑍𝑍
𝑃 Induced Normal Stress in the Z Direction at Any Point 𝑃, Pa 

𝜎𝑋𝑌
𝑃 Induced Shear Stress in the XY Plane at Any Point 𝑃, Pa 

𝜎𝑋𝑍
𝑃 Induced Shear Stress in the XZ Plane at Any Point 𝑃, Pa 

𝜎𝑌𝑍
𝑃 Induced Shear Stress in the YZ Plane at Any Point 𝑃, Pa 

(𝑥̃1, 𝑥̃2, 𝑥̃3) Non-dimensional Coordinate System 
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𝜎̃𝑆𝐿 Non-dimensional Shear Stress along the Fracture Length 

Direction 

𝜎̃𝑆𝐻 Non-dimensional Shear Stress along the Fracture Height 

Direction 

𝜎̃𝑁𝑁 Non-dimensional Normal Stress 

𝐷̃𝑆𝐿 Non-dimensional Shear Displacement Discontinuity in the 

Fracture Length Direction 

𝐷̃𝑆𝐻 Non-dimensional Shear Displacement Discontinuity in the 

Fracture Height Direction 

𝐷̃𝑁𝑁 Non-dimensional Normal Displacement Discontinuity 

𝐻0 Reference Length, m 

𝑃0 Reference Pressure, Pa 

𝑤 Fracture Width, m 

𝑃 Net Pressure within the Fracture, Pa 

𝑏 Half-length of the Fracture, m 

𝑥 Location along the Fracture Length, m 
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𝑣⃗ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) Velocity Vector, m/s 

F⃗⃗ Body Force per Unit Mass, Pa 

𝜌 Fluid Density, kg/m3 

𝑝(𝑥, 𝑦, 𝑡) Pressure at a Certain Time 𝑡, Pa 

𝑄(𝑥, 𝑦, 𝑡) Fluid Injection Rate at a Certain Time 𝑡, m3/s 

𝑞𝑥 Flow Rate per Unit Length in the 𝑥 Direction, m2/s 

𝑞𝑦 Flow Rate per Unit Length in the 𝑦 Direction, m2/s 

𝑞𝐿 Leak-off Rate, m2/s 

𝐶𝐿 Experimentally determined leak-off coefficient 

𝜏(𝑥, 𝑦) Initiation time for the leak-off process at a point (𝑥, 𝑦), s 
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1. GENERAL INTRODUCTION 

 

1.1 Background 

Unconventional shale reservoirs have been the most recent production frontier in the 

United States. After 1990s, shale plays such as Barnett, Bakken, Eagle Ford, Permian, 

Niobrara and Utica, become the primary source of shale oil and shale gas for industrial use 

and people’s daily life (IlScams.org). Figure 1.1 depicts the forecast for shale oil production 

of different plays in the US from 2010 to 2025. From this figure, we observe that Bakken 

and Eagle Ford shales contribute the primary growth of shale oil production. Moreover, 

LUKOIL (2013) forecasted that shale oil production in the US would have an intensive 

growth in the following 5-10 years and the production amount would reach 3.9 mb/d by 

2025. 

With the technology breakthrough in the areas of horizontal drilling and hydraulic 

fracturing, US wants to hold the unconventional gas resources firmly in its hands. LUKOIL 

(2013) forecasted that US would become a net exporter of gas by 2020 due to flourish shale 

gas revolution. Figure 1.2 illustrates recoverable reserves of unconventional gas and 

unconventional gas production forecast, respectively. Figure 1.2 (a) reveals that those four 

regions, Asia, North American, Latin American, and Africa, become the dominant sources 

of shale gas supply in the world. Figure 1.2 (b) indicates that the forecasting production of 

unconventional gas in US far exceeds other world regions.   
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Although China has begun its own shale gas revolution in Sichuan basin, it is 

challenge to decrease the production cost as low as US in the short term as a result of 

shortage of gas infrastructure and limited water resources.  

 

Figure 1.1: Forecast for shale oil production in the US (Reprinted from LUKOIL 2013). 
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Figure 1.2: Unconventional gas (a) recoverable reserves and (b) production forecast 

(Reprinted from LUKOIL 2013). 

 

Optimization of the production of shale reservoirs is greatly dependent on 

hydraulic fracture treatment, which is successfully applied to most unconventional 

resources such as shale gas and tight oil. This technology aims at injecting a mixture of 

water, sand, chemical additives through a drilled well under a high but controlled pressure, 

so as to stimulate the oil/gas production (Lepotter 2014). According to the Geological 

Society of America, small cracks would be generated during the hydraulic fracture 

treatment and they would propagate to a desired distance from the wellbore by controlling 

the pumping rate, fluid pressure, and injection time (GSA 2014). Figure 1.3 illustrated an 

intuitive picture of horizontal drilling and hydraulic fracturing. A horizontal wellbore is 

drilled and mixture liquid (water, sand, and additives) would be injected into an oil-or-gas 

bearing rock formation via the pumper truck, small cracks are created at the beginning and 

more complex fracture geometry would generated with the continuous injection.  
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Figure 1.3: Horizontal drilling and Hydraulic Fracturing (Reprinted from Lepotter 2014). 

 

1.2 Problem Statement 

Shale formations, as a representative of unconventional reservoirs, have 

complicated structures with thin beds or laminations, accompanied by varying in-situ 

stress states, layer material properties, and interlayer interface properties. Rock layering, 

presented as bed parallel ash beds, mineralized veins and slickensides, pervasively exists 

in the shale reservoirs (Suarez-Rivera et al. 2016).  (2011) indicated that rock layering is 

comprised of vertically stacking of repetitious parasequences as a result of cyclic climate 

and sea level alteration. All these organic-rich and mineralized layers can be observed 

from different range of scales such as outcrop scale, core scale, small sample scale, and 

SEM scale (Suarez-Rivera et al. 2016). Figure 1.4 shows the photographs of thin rock 
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layering on outcrops from the Montney and Eagle Ford shales. We can observe that these 

multi-layered shales have strongly contrasting properties and the bedding plane/interface 

between two adjoining rock layers can break or slide during fracturing treatments.  

 

Figure 1.4: Photographs of thin rock layering on outcrops from the Montney and Eagle 

Ford Shales (Reprinted from Suarez-Rivera et al. 2016). 

 

Hydraulic fracture interactions with multiple bedding planes in shale formations 

during hydraulic fracturing treatment can generate T-shape fractures, kinks, branches, 

offsets, and ledges along the bedding planes as the result of fracture crossing, arresting, 

blunting, and/or diversion at the bedding planes (Fisher and Warpinski 2012; Abbas et al. 

2014; Cohen et al. 2017). Figure 1.5 elaborates the fracture height growth with multiple 

bedding layers. We labeled the fractures, bedding planes and wellbore as orange, yellow 

and black, respectively. Physical mechanisms of facture propagation in multiple bedding 

layers are concluded as: (1) The fracture directly penetrates the bedding plane; (2) The 
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fracture is arrested by the bedding plane; (3) The fracture contacts the bedding plane and 

then an offset is generated along the bedding plane. All these mechanisms would 

significantly influence the fracture height growth and final fracture geometry. Hence, 

multi-layered rocks and pervasively distributed weak bedding planes become the primary 

factors in determining the propagation pathway of fractures, which further influences the 

fracture height growth and whole fracture geometry.  

 

Figure 1.5: Fracture height growth with multiple bedding layers (Adapted from Suarez-

Rivera et al. 2016). 

 

Previous study indicated that fracture height is overestimated if hydraulic fracture 

models merely consider the mechanisms of stress contrast (Simonson et al. 1978; Palmer 

and Carroll Jr. 1983; Adachi et al. 2010) and modulus contrast (Van Eekelen 1982; Smith 

et al. 2001; Gu and Siebrits 2008) between adjacent layers. Based on previous field studies 

(Warpinski and Teufel, 1987; Rutledge et al. 2016; Suarez-Rivera et al. 2016), 
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experimental investigations (Teufel and Clark 1984; Thiercelin et al. 1987; Bunger et al. 

2015; Xing et al. 2016; Zhao et al. 2016; Lee et al. 2016; Llanos et al. 2017; Ma et al. 

2017; Li et al. 2017) and model analysis (Cooke 2001; Miskimins and Barree 2003; Zhang 

et al. 2007; Zhang and Jeffrey 2008; Gu et al. 2008; Gu and Weng, 2010; Wang et al. 

2012; Abbas et al. 2014; Chuprakov and Prioul 2015; Liu and Valko 2015; Zou et al. 2016; 

Cohen et al. 2017; Zhang et al. 2017), it reveals that weak bedding planes also play an 

important role in determining the fracture height growth during hydraulic fracturing 

treatments. Gu et al. (2008) considered the interfacial sliding between bedding layers 

(weak interfaces) as one of the mechanisms that would alter hydraulic fracture growth. 

Fisher and Warpinski (2012) indicated that weak interfaces are regarded as a significant 

factor in stopping fracture height growth at shallow depths, initiating interface fractures 

or creating offsets along the interface. Chuprakov (2015) developed an analytical model 

describing the fluid leak-off from the hydraulic fracture into permeable horizontal 

interfaces and demonstrating the significant effect of bedding layer leak-off on fracture 

propagation. Laboratory investigation showed that hydraulic fracture propagation is 

ceased as a result of fluid infiltration into the weak interface (Bunger et al. 2015). Zhao et 

al. (2016) conducted experiments to investigate the effect of bedding interfaces on 

hydraulic fracture propagation that revealed that thick and high strength bedding interfaces 

divert injected fluid along the bedding interfaces and thereby arrest growth of the main 

fracture. Suarez-Rivera et al. (2016) illustrated that the distribution of weak interfaces is 

an indicator for proper selection of the lateral landing depth, which helps improve the final 

propped and connected fracture height and enhances the well performance. Well 
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productivity alters significantly with different lateral landing depth in the Bakken, Barnett, 

Niobrara, Woodford, Montney, Eagle Ford and other plays. Llanos et al. (2017) conducted 

experimental studies and then demonstrated that the frictional interfaces would greatly 

affect the overall fracture growth due to the slip initiation along the interface. Thus, it is 

extremely necessary to develop a hydraulic fracture propagation model considering the 

effect of rock layering on fracture height growth.  

 

1.3 Motivation and Objectives 

Considering fracture propagation in shale formations with multiple bedding layers, 

more complicated fracture geometries with “T” shapes, kinks, and offsets are often 

induced (Olson 1995; Hedayati and Meadows 1996; Fisher and Warpinski 2012). 

Experiments (Warpinski et al. 1993) and microseismic measurements (Maxwell et al. 

2002; Fisher et al. 2002) also indicate that complex fracture networks pervasively exist in 

unconventional reservoirs during hydraulic fracturing stimulation. Weng (2015) reviewed 

current available hydraulic fracturing models that deal with complex hydraulic fracture 

networks. In terms of modeling fracture height growth, these models face challenges due 

to a lack of understanding effects of weak interfaces on hindering fracture height growth. 

Hence, the objective of my research is to develop a new model which can simulate the 

fracture height growth with discontinuities: (1) Develop a fully three-dimensional 

displacement discontinuity method to deal with multiple fractures with arbitrary angles in 

3D space; (2) Couple the rock deformation and fluid flow to simulate fracture propagation 
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in 3D space; (3) Investigate the effects of the weak bedding interfaces on fracture 

propagation; (4) Accurately quantify fracture width distribution on bedding planes. 

 

1.4 Literature Review 

Adachi et al. (2007) concluded that the basic processes for characterizing the 

physical mechanisms of hydraulic fracturing: rock deformation induced by the fluid 

injection, fluid flow in the fracture considering the leak-off effect, and fracture 

propagation in the formation. In terms of modeling rock deformation, the theory of linear 

elasticity is adopted and solutions are obtained via applying boundary element method 

(Crouch and Starfield 1983) or finite element method (Smith and Griffiths 1998). Finite 

element (Dhatt and Touzat 1984), finite difference (LeVeque 2007) or finite volume 

approaches (Versteeg and Malalasekera 2007) are used for fluid flow modeling in order 

to solve the partial differential equation satisfying the conservation of mass and the 

conservation of momentum, which also correlate with pressure gradient, fracture width, 

and fluid velocity (Weng 2015; Calhoun and LeVeque 2000). Fracture propagation 

criterion depends on the linear elastic fracture mechanics (LEFM) theory that propagation 

initiates if stress intensity factor along the fracture front approximates the rock toughness 

(Valko and Economides 1995).  

The simulation of hydraulic fracturing, dating back to 1950s (Hubbert and Willis 

1957; Crittendon 1959) and flourishing through nearly 60 years, is developed from simple 

2D models to pseudo 3D (P3D) models then to fully 3D models which depend on the 

degree of complexity of fracture geometry and required computational accuracy for the 
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predictions (Carter et al. 2000). The simple 2D models include PKN model (Perkins and 

Kern 1961; Nordren 1972), KGD model (Khristianovic and Zheltov 1955; Geertsma and 

de Klerk 1969) and radial model (Sneddon 1946; Green and Sneddon 1950). The pseudo 

3D models (Simonson et al. 1978; Settari and Cleary 1982; Palmer and Carroll 1982; 

Palmer and Carroll 1983; Palmer and Craig 1984; Settari and Cleary 1986; Meyer 1986; 

Fung et al. 1987; Mack and Warpinski 2000; Adachi et al. 2010) evolved from 1980s and 

gradually displaced the position of 2D models. These models behave more efficiently in 

computational process and account for the growth of fracture height. Since from 1980s, 

the planar 3D (PL3D) models (Clifton et al. 1981; Barree 1983; Abou-Sayed et al. 1984; 

Gu 1987; Gu and Yew 1988; Clifton and Wang 1991; Peirce and Siebrits 2001; Siebrits 

and Peirce 2002) emerged and with the following 20 years, they had a booming evolution. 

Compared with the P3D models, PL3D models reveal a better accuracy for the solution 

but less computational efficiency. Additionally, a majority of PL3D models integrate 3D 

rock deformation and 2D fluid flow in the lateral and vertical directions, however, most 

P3D models only consider the fluid flow in the lateral direction.  

 

1.4.1 Current Fracture Model for Unconventional Reservoirs 

All the planar hydraulic fracture models discussed above are called as conventional 

models, which use different numerical approaches and simulate the propagation of a single 

planar fracture. These models do not consider the effect of fracture interaction. However, 

factors such as the wellbore angle relative to the in-situ stress field, stress anisotropy and 

injection parameters, can determine the creation of the non-planar hydraulic fracture 
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(multiple-parallel fractures, reoriented fractures or T-shaped fractures) (Olson 1995; 

Abass et al. 1996). Moreover, microseismic monitoring reveals complex fracture networks 

generated in shale reservoirs during the hydraulic fracturing treatments (Fisher et al. 2002; 

Maxwell et al. 2002). Hence, the conventional hydraulic fracture models used for bi-wing 

planar geometry becomes inapplicable for complex fracture geometry in shale reservoirs 

(Weng et al. 2011). The complex fracture geometry is primarily created by two aspects: 

(1) multiple fracture initiation generated by perforation clusters; (2) the intersection 

between hydraulic fractures (HF) and pre-existing weak planes, such as natural fractures 

(NF) and bedding layers. Yamamoto et al. (2004), Wong and Xu (2013), and Shin and 

Sharma (2014) proposed multiple hydraulic fracture models instead of the conventional 

single planar model, accounting for both rock deformation and fluid flow. For the HF 

approaching the pre-existing NF in the formation, the intersection would give rise to 

opening of NF, branching or path diversion of HF and eventually generate complex 

fracture networks. Weng (2015)  put forward six scenarios of HF interaction with NF as: 

(1) direct crossing without offset; (2) crossing with offset; (3) HF arrested at NF; (4) 

branching at the intersecting location; (5) branching or turning at the end of NF; (6) NF 

dilation due to shear slippage. Moreover, laboratory hydraulic fracture experiments were 

made to study the interactions between hydraulic fractures and natural fractures (Fan et al. 

2014; Fan and Zhang 2014; Zhang and Fan 2014). Extensive theoretical (Renshaw and 

Pollard 1995; Gu and Weng 2010; Gu et al. 2011), experimental work (Blanton 1986; 

Warpinski and Teufel 1987) and numerical simulation (Zhang and Jeffrey 2006; Zhang 

and Jeffrey 2008; Bao et al. 2014; Zhao and Young 2009; Dahi-Taleghani and Olson 2011; 
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Chuprakov et al. 2013) are conducted to investigate the crossing criterion of fracture 

propagation at the intersection and given a reasonable explanation on fracture behaviors.  

Recently, hydraulic fracture models for unconventional reservoirs applied to 

complex fracture networks are developed to consider more comprehensive physical 

aspects (such as rock deformation, fluid flow and leak-off effect, fracture propagation, 

interaction between HF and NF or HF and HF, fracture height containment, proppant 

transport, effect of multi-layer, and formation heterogeneity) and implement microseismic 

monitoring, downhole temperature measurements (Cui and Zhu 2014; Cui et al. 2016) and 

diagnostic fracture injection testing (Liu and Ehlig-Economides 2015; Liu and Ehlig-

Economides 2016; Ehlig-Economides and Liu 2017) for estimating the fracture calibration 

parameters. The models are categorized as boundary element based models (Olson 2004; 

Olson 2008; Olson and Dahi-Taleghani 2009; McClure 2012; Yamamoto et al. 2004; 

Rungamornrat et al. 2005; Wong and Xu 2013; Wong et al. 2013; Wu 2014), coupled 

geomechanics and reservoir models (Ji et al. 2009; Dean and Schmidt 2008; Chen 2012; 

Singh et al. 2014; Huang et al. 2016; Yang et al. 2016), distinct element method based 

models (Shi 1988; Jing et al. 2001; Fu et al. 2011; Nagel et al. 2011; Riahi and Damjanac 

2013), lumped P3D network models (Xu et al. 2009; Meyer and Bazan 2011), and cell-

based P3D network models (Weng et al. 2011; Kresse et al. 2013).  

 

1.4.2 Current Models Considering Bedding Layer Effect 

Weak bedding planes play an important role in stopping fracture height growth, 

initiating interface fractures or creating offsets in the fracture. These offsets put a huge 
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restriction on fracture height growth due to the fact that fracture width becomes narrower 

in the offset range and possibility of proppant bridging. Currently, very few models have 

been developed to investigate the bedding layer effects on fracture geometry. Cooke 

(2011) developed a numerical model to investigate fracture-interface contacting problems 

and analyzed frictional slip and correlated opening-mode fracture propagation using a 

two-dimensional Boundary Element Method (BEM). Zhang et al. (2007) employed a two-

dimensional boundary element method (BEM) based model to study the interaction 

mechanisms between fracture and bedding interfaces. Gu et al. (2008) implemented an 

interfacial slip model to a pseudo-three-dimensional (P3D) hydraulic fracture simulator 

and indicated that interfacial slippage along the bedding planes plays a significant role in 

determining the fracture height growth, fracture width deformation, fracture pressure and 

entire fracture geometry. Abbas et al. (2014) employed the Extended Finite Element 

Method (XFEM) to study geometric effects of fracture offsets that retard fracture height 

growth, as depicted in Figure 1.6 (a). Chuprakov and Prioul (2015) elaborated a FracT 

model which can solve the problem of elasto-frictional fracture contact with weak 

horizontal interfaces, as illustrated in Figure 1.6 (b). Cohen et al. (2017) proposed a new 

Stacked Height Growth (SHG) model, regarded as an enhanced Pseudo 3D model (P3D), 

can model the effect of ledges at weak interfaces. Izadi et al. (2017) developed a fully 

coupled 3D hydraulic fracturing simulator to investigate multiple fractures interference 

with consideration of the effect of bedding planes. Zhang et al. (2017) described a new 

cell-based pseudo-3D (P3D) model which accounts for the effect of multiple elastic layers 

on fracture height growth. Llanos et al. (2017) conducted experiments by using 
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MineHF2D model developed by CSIRO and demonstrated that fracture propagation is 

greatly influenced by the slippage along the frictional interfaces.  All these models have 

limitations: (1) All models above are limited within two-dimensional space; (2) It is 

difficult for quantifying fracture width around the junction area between the vertical 

fracture and the bedding plane; (3) It rarely accounts for the multiple fracture cases. 

 

Figure 1.6: Models for simulating the bedding layer effects on fracture geometry (a) 

Extended Finite Element Method (XFEM) based model (Adapted from Abbas et al. 

2014) and (b) FracT model (Adapted from Chuprakov and Prioul 2015). 

 

1.4.3 Impact of Inclined Bedding Planes on Fracture Propagation 

In reality, multi-layered bedding planes are not horizontally distributed in the shale 

reservoirs and thus the intersection angle between the fractures and the inclined bedding 

planes is non-orthogonal. Previous studies showed that the intersection angle plays a 

significant impact on the fracture approaching at the frictional discontinuities such as 

natural fractures, interface planes and veins (Blanton 1982; Zhou et al. 2008; Gu and Weng 

2010; Virgo et al. 2014; Lee et al. 2016; Lee et al. 2018). Gu and Weng (2010) expanded 

the Renshaw and Pollard’s (1995) criterion for solving non-orthogonal approaching cases. 
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This modified Model indicated that a fracture is more difficult to cross the oblique bedding 

plane with a smaller intersection angle less than 𝟗𝟎°, which creates more chance for the 

fracture to divert or propagate along the bedding plane (Gu and Weng 2010; Gu et al. 

2011). Sarmadivaleh and Rasouli (2014) also proposed an extended criterion based on 

Renshaw and Pollard’s criterion to deal with non-orthogonal cohesive interface plane. 

Virgo et al. (2014) did tension tests based on Three-Dimensional Discrete Element 

Method (3D DEM) and found that fracture deflection occurs at a low approaching angle 

and the length of the deflection pathway along the interface increases with the decrement 

of approaching angle of the vein.  Lee et al. (2016) numerically modeled fracture-vein 

interactions with different approach angles and concluded that tensile fractures were more 

likely to divert into pre-existing veins in the case of smaller approach angle. Lee et al. 

(2018) found that the hydraulic fracture with a vein of smaller approach angle would 

propagate all the way along the vein and fracture would be kinked back into another layer 

leaving a short diversion along the vein when the approach angle is large. 
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2. ROCK DEFORMATION 

 

This chapter first introduces the development history of the three-dimensional 

displacement discontinuity method (3D DDM). Mathematical derivation of our developed 

3D DDM is then presented, which enables dealing with cases of multiple fractures with 

arbitrary angles in three dimensions. In other word, all the vertical/slanted hydraulic 

fractures and frictional discontinuities such as natural fractures and horizontal/oblique 

interface segments, can be simulated by our 3D DDM. The numerical solution from 3D 

DDM has a good match with the 2D analytical solution as shown in the model validation 

section. The cases of different fracture geometries are then analyzed in this chapter, such 

as a symmetric crossing-shaped fracture, a T-shaped fracture, an I-shaped fracture and a 

complex fracture geometry with offsets. For each case, horizontal fractures can be 

regarded as opening of weak horizontal interfaces and vertical fractures would either be 

arrested or step over from interfaces. Displacement discontinuities on vertical and 

horizontal fractures were investigated to study the effects of opening of weak horizontal 

interfaces. 

 

 

 

   ____________________________________ 

*Part of this section is reprinted with permission from “A 3-D Model for Simulation of Weak Interface 

Slippage for Fracture Height Containment in Shale Reservoirs” by J. Tang, K. Wu, 2018. International 

Journal of Solids and Structures, Copyright [2018] by Elsevier. 
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2.1 Three-Dimensional Displacement Discontinuity Method (3D DDM) 

Compared with finite element method (FEM), boundary element method (BEM) 

has the advantage of reducing the dimension of elasticity equation and only discretizing 

the fracture surface. Hence, BEM has high computational efficiency. With those 

advantages of surface-only discretization and high computational efficiency, a boundary 

element method, Displacement Discontinuity Method (DDM), has been widely used in 

modeling rock deformation of hydraulic fracturing treatments for both homogeneous and 

multi-layered formations in two dimensions or three dimensions (Vandamme and Curran 

1989; Siebrits and Peirce 2002; Siebrits and Peirce 2007; Wu and Olson 2015; Kumar and 

Ghassemi 2015; Kumar and Ghassemi 2016; Wu et al. 2016; Xie et al. 2018). Moreover, 

DDM can be also extended to stress evolution prediction, pressure distribution and 

production estimation (Yu et al. 2016; Sangnimnuan et al. 2017; Guo et al. 2018; Li et al. 

2018). In this dissertation, we employed this method with coupled fluid flow to investigate 

the effects of weak horizontal interfaces on fracture height growth and fracture geometry.  

The Displacement Discontinuity Method (DDM) firstly put forward by Crouch 

(1976). Crouch and Starfield (1983) then proposed 2D displacement discontinuity method 

(DDM) approach, which classified as a special direct boundary element method (BEM) 

for solving the stress and displacement within the unknown boundary under the given 

assumption. 2D DDM only does fracture discretization along fracture length and hence 

neglects the fracture width alteration along the fracture height direction. Olson (2004), 

Olson (2008) and Olson and Dahi-Taleghani (2009) developed an enhanced 2D DDM 

model for both single and multiple fractures propagation, which adding a correction factor 
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for taking the effect of fracture height into consideration. In this enhanced model, the 

fracture width at any location along the fracture length direction means the average width 

over the fracture height. Wu and Olson (2013) found that the computational accuracy of 

the enhanced 2D DDM Model for multiple fractures is less than that for single fracture 

due to the fact of underestimation of fracture interaction leading to larger fracture 

apertures. Shou (1993) developed a fully Three-Dimensional Displacement Discontinuity 

Method (3D DDM), regarding displacement discontinuity as a constant and using 

rectangular element mesh in an infinite medium. The analytical solutions for stress 

distribution and displacement discontinuity can be obtained by coordinate transformation. 

Shou (1997) then presented a 3D higher order displacement discontinuity element method, 

which using nine collocation points spread over a nine element patch, in order to 

accurately predict both stresses and displacements for the field points closer than one 

element length. Based on the fully 3D DDM, Wu (2014) proposed a simplified 3D DDM 

(S3D DDM) method that only pick a single element over the fracture height and derive 

the correction factor under the assumption of vertical fractures and without any dip-slip 

shear stress. This new model provides an accurate solution for the induced stress of 

fractures and works for multiple fractures but misses the displacement discontinuities in 

the fracture height direction. Nintcheu Fata (2016) proposed a three-dimensional DDM 

scheme applying unstructured triangular meshes instead of conventional rectangular-

shaped structure to conform to a domain of any shapes.  
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2.1.1 Mathematical Derivation 

Shou (1993) introduced Displacement Discontinuity Method (DDM) to determine 

the induced stresses and displacements for fractures in three dimensions with a given 

boundary condition, 

𝑢𝑗(𝜔) = ∫ 𝑀𝑖𝑗(𝜔, 𝜑)
𝛹

𝑡𝑖(𝜑)𝑑𝛹(𝜑) − ∫ 𝑁𝑖𝑗(𝜔, 𝜑)
𝛹

𝑢𝑖(𝜑)𝑑𝛹(𝜑)                           (2.1) 

𝜎𝑗𝑘(𝜔) = ∫ 𝐸𝑖𝑗𝑘(𝜔, 𝜑)
𝛹

𝑡𝑖(𝜑)𝑑𝛹(𝜑) − ∫ 𝛵𝑖𝑗𝑘(𝜔, 𝜑)
𝛹

𝑢𝑖(𝜑) 𝑑𝛹(𝜑)                        (2.2) 

     

where, 𝑢𝑗(𝜔) and 𝜎𝑗𝑘(𝜔) represent displacement components and stress components at a 

point 𝜔, respectively. 𝑀𝑖𝑗(𝜔, 𝜑), 𝑁𝑖𝑗(𝜔, 𝜑), 𝛦𝑖𝑗𝑘(𝜔, 𝜑), 𝛵𝑖𝑗𝑘(𝜔, 𝜑) are tensor fields with 

displacements at a point 𝜔 under the traction applied to a point 𝜑. 𝑡𝑖(𝜑) and 𝑢𝑖(𝜑) 

represent a traction component and a displacement component over the boundary region 

𝛹, respectively.  

Wu (2014) described a single three-dimensional vertical fracture discretized into 

numerous rectangular elements in an infinite elastic medium. The fully three-dimensional 

displacement discontinuity method (3D DDM) is further developed for modeling multiple 

fractures with arbitrary angles in three dimensions. Figure 2.1 illustrates a three-

dimensional horizontal fracture in an infinite elastic solid. The fracture is divided into 

many planar elements with the assumption of constant displacement discontinuities on 

each element. The global coordinates are (X, Y, Z) and the local coordinates are (𝑥1, 𝑥2, 

𝑥3). Each rectangular element has two opposite surfaces labeled as 𝑥3 = 0+ and 𝑥3 = 0−. 
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Figure 2.1: A three-dimensional horizontal crack in an infinite elastic solid (Tang and 

Wu 2018). 

 

The analytical solution for stress components, 𝜎𝑖𝑗, induced by an element with 

constant displacement discontinuities (Rongved 1957; Salamon 1964), can be given under 

the local coordinate system 𝑥1, 𝑥2, 𝑥3, as: 

𝜎11 =
𝐺

4𝜋(1 − 𝜈)
{𝐷1[2𝐽8 − 𝑥3𝐽10] + 𝐷2[2𝜐𝐽9 − 𝑥3𝐽11] + 𝐷3[𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]} 

𝜎22 =
𝐺

4𝜋(1 − 𝜈)
{𝐷1[2𝜐𝐽8 − 𝑥3𝐽13] + 𝐷2[2𝐽9 − 𝑥3𝐽14] + 𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]} 

𝜎33 =
𝐺

4𝜋(1 − 𝜈)
{𝐷1[−𝑥3𝐽16] + 𝐷2[−𝑥3𝐽17] + 𝐷3[𝛸6 − 𝑥3𝐽18]} 

𝜎12 =
𝐺

4𝜋(1 − 𝜈)
{𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

− 𝐷3[(1 − 2𝜐)𝐽7 + 𝑥3𝐽19]} 

𝜎13 =
𝐺

4𝜋(1 − 𝜈)
{𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] − 𝐷2[𝜐𝐽7 + 𝑥3𝐽19] − 𝐷3[𝑥3𝐽16]} 
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𝜎23 =
𝐺

4𝜋(1 − 𝜈)
{−𝐷1[𝜐𝐽7 + 𝑥3𝐽19] + 𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15] − 𝐷3[𝑥3𝐽17]}, 

……………………………………………………………………………………… (2.3) 

where G is the shear modulus and 𝜈 is the Poisson’s ratio. 𝐷1 is the shear displacement 

discontinuity in the fracture length direction, 𝐷2 is the shear displacement discontinuity in 

the fracture height direction, 𝐷3 is the normal displacement discontinuity, also named as 

fracture width. These three components of displacement discontinuities are depicted in 

Figure 2.2. 𝐽𝑖 represents the derivatives of a kernel analytical solution found using a 

Green’s function approach for 𝑖 ranging from 1 to 19.  

 

Figure 2.2: Three components of displacement discontinuities - 𝐷1(𝐷𝑆𝐿) is the shear 

displacement discontinuity in the fracture length direction (x axis), 𝐷2(𝐷𝑆𝐻)is the shear 

displacement discontinuity in the fracture height direction (z axis), 𝐷3(𝐷𝑁𝑁) is the normal 

displacement discontinuity (y axis) (Tang and Wu 2018). 

 

When determining stresses at a point (𝑋, 𝑌, 𝑍) with respect to global coordinate 

system induced by displacement discontinuities of element 𝑗, the point (𝑋, 𝑌, 𝑍) needs to 

be transformed to the local coordinate system (𝑥1, 𝑥2, 𝑥3) of element j, 
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 𝑥1 = (𝑋 − 𝑋𝑗) 𝑐𝑜𝑠 𝛽 + (𝑌 − 𝑌𝑗) 𝑠𝑖𝑛 𝛽 

𝑥2 = (𝑋 − 𝑋𝑗) 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 − (𝑌 − 𝑌𝑗) 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 + (𝑍 − 𝑍𝑗) 𝑐𝑜𝑠 𝜃                          (2.4)     

 𝑥3 = −(𝑋 − 𝑋𝑗) 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 + (𝑌 − 𝑌𝑗) 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 + (𝑍 − 𝑍𝑗) 𝑠𝑖𝑛 𝜃,   

where 𝛽 and 𝜃 represent the strike angle and dip angle, respectively. 

Before calculating the induced stresses at the midpoint of element 𝑖, the coordinate 

of element 𝑖 (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖) should be written as, 

𝑥1 = (𝑋𝑖 − 𝑋𝑗) 𝑐𝑜𝑠 𝛽 + (𝑌𝑖 − 𝑌𝑗) 𝑠𝑖𝑛 𝛽 

𝑥2 = (𝑋𝑖 − 𝑋𝑗) 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 − (𝑌𝑖 − 𝑌𝑗) 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 + (𝑍𝑖 − 𝑍𝑗) 𝑐𝑜𝑠 𝜃                       (2.5)                    

𝑥3 = −(𝑋𝑖 − 𝑋𝑗) 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 + (𝑌𝑖 − 𝑌𝑗) 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 + (𝑍𝑖 − 𝑍𝑗) 𝑠𝑖𝑛 𝜃.  

For vertical fractures, 𝑥2 is the direction of the fracture height for both coordinate 

of ith element and jth element. Hence, only matrix 𝑅1 is required to consider the rotation of 

y axis, 

𝑅1 = 𝑅𝑦 = [
𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽

0 1 0
−𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽

].                                                                                (2.6)                                                                                                      

For the matrix above, it is clockwise rotation matrix with strike angle 𝛽 is negative. 

However, if horizontal fractures are considered in 3D DDM model, another matrix 𝑅2 is 

required to consider the rotation of z axis, 

𝑅2 = 𝑅𝑧 = [
1 0 0
0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

].                                                                                (2.7)                                                       

Finally, the transformed matrix 𝑅1 should be multiplied by matrix 𝑅2 to obtain a 

new matrix 𝑅 as below, which utilized for transformation of 𝑥1 and 𝑥2, 



 

23 

 

 

𝑅 = 𝑅2𝑅1 = [
1 0 0
0 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] [
𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽

0 1 0
− 𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽

] =

                         [

𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃
].                                                (2.8)                

Transform the point (𝑋, 𝑌, 𝑍) of global coordinate system of element 𝑗 to the local 

coordinate system of element 𝑗, 

[

𝑥1

𝑥2

𝑥3

] = [

𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃
] [

𝑋 − 𝑋𝑗

𝑍 − 𝑍𝑗

𝑌 − 𝑌𝑗

].                                          (2.9)                                                        

Similarly, transform to local coordinate of ith element from local coordinate of jth 

element, 

[

𝑥1
𝑖

𝑥2
𝑖

𝑥3
𝑖

] = [

𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃
] [

𝑥1
𝑗

𝑥2
𝑗

𝑥3
𝑗

].                                               (2.10)                                                                                                                                  

The coordinate of the stresses need to transform from the local reference frame of 

element 𝑗 to that of element 𝑖 based on coordinate transformation, then we obtain the new 

stress tensor as, 

[

𝜎11
𝑖 𝜎12

𝑖 𝜎13
𝑖

𝜎21
𝑖 𝜎22

𝑖 𝜎23
𝑖

𝜎31
𝑖 𝜎32

𝑖 𝜎33
𝑖

] = 𝑅 [

𝜎11
𝑗

𝜎12
𝑗

𝜎13
𝑗

𝜎21
𝑗

𝜎22
𝑗

𝜎23
𝑗

𝜎31
𝑗

𝜎32
𝑗

𝜎33
𝑗

] 𝑅𝑇 .                                                              (2.11)                                                                                  

In the new stress tensor, only six stress components are independent and they are 

written as, 

𝜎11
𝑖 = 𝑐𝑜𝑠2 𝛽 𝜎11

𝑗
+ 𝑠𝑖𝑛2 𝛽 𝜎33

𝑗
+ 𝑠𝑖𝑛 2𝛽 𝜎13

𝑗
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𝜎22
𝑖 = 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 𝜎11

𝑗
+ 𝑐𝑜𝑠2 𝜃 𝜎22

𝑗
+ 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 𝜎33

𝑗
+ 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 𝜎12

𝑗

− 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 𝜎13
𝑗

− 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 𝜎23
𝑗

 

𝜎33
𝑖 = 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 𝜎11

𝑗
+ 𝑠𝑖𝑛2 𝜃 𝜎22

𝑗
+ 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 𝜎33

𝑗
− 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 𝜎12

𝑗

− 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 𝜎13
𝑗

+ 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 𝜎23
𝑗

 

𝜎12
𝑖 =

1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 𝜎11

𝑗
−

1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 𝜎33

𝑗
+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 𝜎12

𝑗
− 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 𝜎13

𝑗

+ 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 𝜎23
𝑗

 

𝜎13
𝑖 = −

1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 𝜎33

𝑗
+ 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 𝜎12

𝑗
+ 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 𝜎13

𝑗

+ 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝜎23
𝑗

 

𝜎23
𝑖 = −

1

2
𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝜃 𝜎22

𝑗
−

1

2
𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 𝜎33

𝑗
− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 𝜎12

𝑗

+
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 𝜎13

𝑗
+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 𝜎23

𝑗
. 

……………………………………………………………………………………… (2.12) 

If only vertical fractures exist in this model, we have 𝛽 ≠ 0°, 𝜃 = 0° and six stress 

components can be written as,  

𝜎11
𝑖 = 𝑐𝑜𝑠2 𝛽 𝜎11

𝑗
+ 𝑠𝑖𝑛2 𝛽 𝜎33

𝑗
+ 𝑠𝑖𝑛 2𝛽 𝜎13

𝑗
 

𝜎22
𝑖 = 𝜎22

𝑗
 

𝜎33
𝑖 = 𝑠𝑖𝑛2 𝛽 𝜎11

𝑗
+ 𝑐𝑜𝑠2 𝛽 𝜎33

𝑗
− 𝑠𝑖𝑛 2𝛽 𝜎13

𝑗
 

𝜎12
𝑖 = 𝜎21

𝑖 = 𝑐𝑜𝑠 𝛽 𝜎12
𝑗

+ 𝑠𝑖𝑛 𝛽 𝜎23
𝑗

 

𝜎13
𝑖 = 𝜎31

𝑖 = −
1

2
𝑠𝑖𝑛 2𝛽 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝛽 𝜎33

𝑗
+ 𝑐𝑜𝑠 2𝛽 𝜎13

𝑗
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𝜎23
𝑖 = 𝜎32

𝑖 = −𝑠𝑖𝑛 𝛽 𝜎12
𝑗

+ 𝑐𝑜𝑠 𝛽 𝜎23
𝑗
.   

……………………………………………………………………………………… (2.13) 

If only horizontal fractures exist in this model, we have 𝛽 = 0°, 𝜃 ≠ 0° and six 

stress components can be represented as,  

𝜎11
𝑖 = 𝜎11

𝑗
 

𝜎22
𝑖 = 𝑐𝑜𝑠2 𝜃 𝜎22

𝑗
+ 𝑠𝑖𝑛2 𝜃 𝜎33

𝑗
− 𝑠𝑖𝑛 2𝜃 𝜎23

𝑗
 

𝜎33
𝑖 = 𝑠𝑖𝑛2 𝜃 𝜎22

𝑗
+ 𝑐𝑜𝑠2 𝜃 𝜎33

𝑗
+ 𝑠𝑖𝑛 2𝜃 𝜎23

𝑗
 

𝜎12
𝑖 = 𝑐𝑜𝑠 𝜃 𝜎12

𝑗
− 𝑠𝑖𝑛 𝜃 𝜎13

𝑗
 

𝜎13
𝑖 = 𝑠𝑖𝑛 𝜃 𝜎12

𝑗
+ 𝑐𝑜𝑠 𝜃 𝜎13

𝑗
 

𝜎23
𝑖 =

1

2
𝑠𝑖𝑛 2𝜃 𝜎22

𝑗
−

1

2
𝑠𝑖𝑛 2𝜃 𝜎33

𝑗
+ 𝑐𝑜𝑠 2𝜃 𝜎23

𝑗
.   

……………………………………………………………………………………… (2.14) 

To be more general, the normal stress and two shear stresses on element 𝑖 with 

arbitrary strike and dip angles can be written as,  

𝜎33
𝑖 = 𝑠𝑖𝑛2 𝛾 𝑐𝑜𝑠2 𝜑𝜎11

𝑗
+ 𝑠𝑖𝑛2 𝜑𝜎22

𝑗
+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 𝜎33

𝑗
− 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 𝜎12

𝑗

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑𝜎13
𝑗

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 𝜎23
𝑗

 

𝜏13
𝑖 = −

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 𝜎33

𝑗
+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 𝜎12

𝑗
+ 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 𝜎13

𝑗

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 𝜎23
𝑗

 

𝜏23
𝑖 = −

1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝜑 𝜎22

𝑗
−

1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 𝜎33

𝑗
− 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 𝜎12

𝑗
+

1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 𝜎13

𝑗
+ 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 𝜎23

𝑗
     

𝛾 = 𝛽𝑖 − 𝛽𝑗 , 𝜑 = 𝜃𝑖 − 𝜃𝑗. 
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…………………………………………………………………………………… (2.15) 

Use Eq. (2.3) as mentioned above and use the terms 𝐷𝑆𝐿, 𝐷𝑆𝐻, 𝐷𝑁𝑁 to refer to 

𝐷1, 𝐷2, 𝐷3, 

𝜎𝑆𝐿
𝑖 = 𝜏13

𝑖 = −
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 𝜎33

𝑗
+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 𝜎12

𝑗

+ 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 𝜎13
𝑗

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 𝜎23
𝑗

= 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [2𝐽8 − 𝑥3𝐽10] +

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]) 𝐷𝑆𝐿

+ 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] +

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽17]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13] + 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷𝑆𝐻

+ 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 − 𝑥3𝐽18] + 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]

+ 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽16] + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [−𝑥3𝐽17])𝐷𝑁𝑁 

……………………………………………………………………………………… (2.16) 
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𝜎𝑆𝐻
𝑖 = 𝜏23

𝑖 = −
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 𝜎11

𝑗
+

1

2
𝑠𝑖𝑛 2𝜑 𝜎22

𝑗
−

1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 𝜎33

𝑗

− 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 𝜎12
𝑗

+
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 𝜎13

𝑗
+ 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 𝜎23

𝑗

= 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [2𝐽8 − 𝑥3𝐽10] +

1

2
𝑠𝑖𝑛 2𝜑 [2𝜐𝐽8 − 𝑥3𝐽13]

−
1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽16] − 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

+
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷𝑆𝐿

+ 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] +

1

2
𝑠𝑖𝑛 2𝜑 [2𝐽9 − 𝑥3𝐽14]

−
1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽17] − 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19] + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷𝑆𝐻

+ 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+
1

2
𝑠𝑖𝑛 2𝜑 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] −

1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 − 𝑥3𝐽18]

− 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] +
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [−𝑥3𝐽17])𝐷𝑁𝑁 

……………………………………………………………………………………… (2.17) 
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𝜎𝑁𝑁
𝑖 = 𝜎33

𝑖 = 𝑠𝑖𝑛2 𝛾 𝑐𝑜𝑠2 𝜑𝜎11
𝑗

+ 𝑠𝑖𝑛2 𝜑 𝜎22
𝑗

+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑𝜎33
𝑗

− 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 𝜎12
𝑗

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑𝜎13
𝑗

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 𝜎23
𝑗

= 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [2𝐽8 − 𝑥3𝐽10] + 𝑠𝑖𝑛2 𝜑 [2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽16] − 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] + 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷𝑆𝐿

+ 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] + 𝑠𝑖𝑛2 𝜑 [2𝐽9 − 𝑥3𝐽14]

+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽17] − 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19] + 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷𝑆𝐻

+ 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+ 𝑠𝑖𝑛2 𝜑 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] + 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 − 𝑥3𝐽18]

− 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] − 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽17])𝐷𝑁𝑁. 

𝐶𝑟 =
𝐺

4𝜋(1 − 𝜈)
 

……………………………………………………………………………………… (2.18) 

where G is the shear modulus and 𝜈 is the Poisson’s ratio.  

In term of the boundary influence coefficients matrix, each element of matrix is 

written as: 

𝐴𝑆𝐿,𝑆𝐿 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [2𝐽8 − 𝑥3𝐽10] +

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]) 
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𝐴𝑆𝐿,𝑆𝐻 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] +

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽17]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13] + 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]) 

𝐴𝑆𝐿,𝑁𝑁 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12] +

1

2
𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 𝜑 [𝐽6 − 𝑥3𝐽18]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] + 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 𝜑 [−𝑥3𝐽16]

+ 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜑 [−𝑥3𝐽17]) 

𝐴𝑆𝐻,𝑆𝐿 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [2𝐽8 − 𝑥3𝐽10] +

1

2
𝑠𝑖𝑛 2𝜑 [2𝜐𝐽8 − 𝑥3𝐽13]

−
1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽16] − 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

+
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]) 

𝐴𝑆𝐻,𝑆𝐻 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] +

1

2
𝑠𝑖𝑛 2𝜑 [2𝐽9 − 𝑥3𝐽14]

−
1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽17] − 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19] + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]) 
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𝐴𝑆𝐻,𝑁𝑁 = 𝐶𝑟 (−
1

2
𝑠𝑖𝑛2 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+
1

2
𝑠𝑖𝑛 2𝜑 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] −

1

2
𝑐𝑜𝑠2 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 − 𝑥3𝐽18]

− 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 2𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] +
1

2
𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 2𝜑 [−𝑥3𝐽17]) 

𝐴𝑁𝑁,𝑆𝐿 = 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [2𝐽8 − 𝑥3𝐽10] + 𝑠𝑖𝑛2 𝜑 [2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽16] − 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] + 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [−𝜐𝐽7 − 𝑥3𝐽19]) 

𝐴𝑁𝑁,𝑆𝐻 = 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [2𝜐𝐽9 − 𝑥3𝐽11] + 𝑠𝑖𝑛2 𝜑 [2𝐽9 − 𝑥3𝐽14]

+ 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽17] − 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

− 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [−𝜐𝐽7 − 𝑥3𝐽19] + 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]) 

𝐴𝑁𝑁,𝑁𝑁 = 𝐶𝑟(𝑠𝑖𝑛
2 𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+ 𝑠𝑖𝑛2 𝜑 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] + 𝑐𝑜𝑠2 𝛾 𝑐𝑜𝑠2 𝜑 [𝐽6 − 𝑥3𝐽18]

− 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 2𝜑 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] − 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠2 𝜑 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 2𝜑 [−𝑥3𝐽17]) 

……………………………………………………………………………………… (2.19) 

According to coordinate transformation, the induced normal stress and two shear 

stresses for a given element are calculated by summarizing contributions of displacement 

discontinuities of all boundary elements. The matrix equation can be formulated as, 

[

𝜎𝑆𝐿
𝑖

𝜎𝑆𝐻
𝑖

𝜎𝑁
𝑖

] = [

𝐴𝑆𝐿,𝑆𝐿
𝑖𝑘 𝐴𝑆𝐿,𝑆𝐻

𝑖𝑘 𝐴𝑆𝐿,𝑁𝑁
𝑖𝑘

𝐴𝑆𝐻,𝑆𝐿
𝑖𝑘 𝐴𝑆𝐻,𝑆𝐻

𝑖𝑘 𝐴𝑆𝐻,𝑁𝑁
𝑖𝑘

𝐴𝑁𝑁,𝑆𝐿
𝑖𝑘 𝐴𝑁𝑁,𝑆𝐻

𝑖𝑘 𝐴𝑁𝑁,𝑁𝑁
𝑖𝑘

] [

𝐷𝑆𝐿
𝑘

𝐷𝑆𝐻
𝑘

𝐷𝑁𝑁
𝑘

],                                                                         (2.20) 
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where 𝐷𝑆𝐿
𝑘  is the shear displacement discontinuity of element k in the fracture length 

direction, 𝐷𝑆𝐻
𝑘  is the shear displacement discontinuity of element k in the fracture height 

direction, 𝐷𝑁𝑁
𝑘  is the normal displacement discontinuity of element k. In addition, 

(𝜎𝑁𝑁)𝑖, (𝜎𝑆𝐿)
𝑖, (𝜎𝑆𝐻)𝑖 represent the normal stress and shear stresses in fracture length and 

height directions at element i, respectively.  

After calculating the displacement discontinuity values of all boundary elements, 

then the stresses at any point 𝑃 in the body frame can be determined by the following 

equations, 

𝜎𝑋𝑋
𝑃 = 𝑐𝑜𝑠2 𝛽 𝜎11 + 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 𝜎22 + 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 𝜎33 + 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 𝜎12

− 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 𝜎13 − 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 𝜎23 

𝜎𝑌𝑌
𝑃 = 𝑠𝑖𝑛2 𝛽 𝜎11 + 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 𝜎22 + 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 𝜎33 − 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 𝜎12

+ 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 𝜎13 − 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 𝜎23 

𝜎𝑍𝑍
𝑃 = 𝑐𝑜𝑠2 𝜃 𝜎22 + 𝑠𝑖𝑛2 𝜃 𝜎33 + 𝑠𝑖𝑛 2𝜃 𝜎23 

𝜎𝑋𝑌
𝑃 =

1

2
𝑠𝑖𝑛 2𝛽 𝜎11 −

1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 𝜎22 −

1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 𝜎33 − 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 𝜎12

+ 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 𝜎13 +
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 𝜎23 

𝜎𝑋𝑍
𝑃 =

1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 𝜎22 −

1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 𝜎33 + 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 𝜎12 + 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 𝜎13

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 𝜎23 

𝜎𝑌𝑍
𝑃 = −

1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 𝜎22 +

1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 𝜎33 + 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 𝜎12 + 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝜎13

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 𝜎23 

…………………………………………………………………………………… (2.21) 
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𝜎𝑋𝑋
𝑃 = 𝑐𝑜𝑠2 𝛽 {𝐶𝑟𝐷1[2𝐽8 − 𝑥3𝐽10] + 𝐶𝑟𝐷2[2𝜐𝐽9 − 𝑥3𝐽11]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]}

+ 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13] + 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]}

+ 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16] + 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]}

+ 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 {𝐶𝑟𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐶𝑟𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷3[−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]}

− 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 {𝐶𝑟𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] + 𝐶𝑟𝐷2[−𝜐𝐽7 − 𝑥3𝐽19]

+ 𝐶𝑟𝐷3[−𝑥3𝐽16]}

− 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]

+ 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟(𝑐𝑜𝑠
2 𝛽 [2𝐽8 − 𝑥3𝐽10] + 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 [2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽16] + 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

− 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] − 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷1

+ 𝐶𝑟(𝑐𝑜𝑠
2 𝛽 [2𝜐𝐽9 − 𝑥3𝐽11] + 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 [2𝐽9 − 𝑥3𝐽14]

+ 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽17] + 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

− 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [−𝜐𝐽7 − 𝑥3𝐽19] − 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟(𝑐𝑜𝑠
2 𝛽 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+ 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛2 𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] + 𝑠𝑖𝑛2 𝛽 𝑐𝑜𝑠2 𝜃 [𝐽6 − 𝑥3𝐽18]

+ 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] − 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [−𝑥3𝐽16]

− 𝑠𝑖𝑛2 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17])𝐷3 

……………………………………………………………………………………… (2.22) 



 

33 

 

 

𝜎𝑌𝑌
𝑃 = 𝑠𝑖𝑛2 𝛽 {𝐶𝑟𝐷1[2𝐽8 − 𝑥3𝐽10] + 𝐶𝑟𝐷2[2𝜐𝐽9 − 𝑥3𝐽11]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]} + 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14] + 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]}

+ 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16] + 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]}

− 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 {𝐶𝑟𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐶𝑟𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷3[−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]} + 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 {𝐶𝑟𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝐶𝑟𝐷2[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷3[−𝑥3𝐽16]}

− 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]

+ 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟(𝑠𝑖𝑛
2 𝛽 [2𝐽8 − 𝑥3𝐽10] + 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 [2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽16] − 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

+ 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] − 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷1

+ 𝐶𝑟(𝑠𝑖𝑛
2 𝛽 [2𝜐𝐽9 − 𝑥3𝐽11] + 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 [2𝐽9 − 𝑥3𝐽14]

+ 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽17] − 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [−𝜐𝐽7 − 𝑥3𝐽19] − 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟(𝑠𝑖𝑛
2 𝛽 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]

+ 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛2 𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] + 𝑐𝑜𝑠2 𝛽 𝑐𝑜𝑠2 𝜃 [𝐽6 − 𝑥3𝐽18]

− 𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 𝜃 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19] + 𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠 𝜃 [−𝑥3𝐽16]

− 𝑐𝑜𝑠2 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17])𝐷3 

……………………………………………………………………………………… (2.23) 
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𝜎𝑍𝑍
𝑃 = 𝑐𝑜𝑠2 𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13] + 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]} + 𝑠𝑖𝑛2 𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16]

+ 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]} + 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19]

+ 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15] + 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟(𝑐𝑜𝑠
2 𝜃 [2𝜐𝐽8 − 𝑥3𝐽13] + 𝑠𝑖𝑛2 𝜃 [−𝑥3𝐽16]

+ 𝑠𝑖𝑛 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷1

+ 𝐶𝑟(𝑐𝑜𝑠
2 𝜃 [2𝐽9 − 𝑥3𝐽14] + 𝑠𝑖𝑛2 𝜃 [−𝑥3𝐽17]

+ 𝑠𝑖𝑛 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟(𝑐𝑜𝑠
2 𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15] + 𝑠𝑖𝑛2 𝜃 [𝐽6 − 𝑥3𝐽18]

+ 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17])𝐷3 

……………………………………………………………………………………… (2.24) 
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𝜎𝑋𝑌
𝑃 =

1

2
𝑠𝑖𝑛 2𝛽 {𝐶𝑟𝐷1[2𝐽8 − 𝑥3𝐽10] + 𝐶𝑟𝐷2[2𝜐𝐽9 − 𝑥3𝐽11]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]} −
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14] + 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]}

−
1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16] + 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]}

− 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 {𝐶𝑟𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐶𝑟𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷3[−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]} + 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 {𝐶𝑟𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝐶𝑟𝐷2[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷3[−𝑥3𝐽16]}

+
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]

+ 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟 (
1

2
𝑠𝑖𝑛 2𝛽 [2𝐽8 − 𝑥3𝐽10] −

1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 [2𝜐𝐽8 − 𝑥3𝐽13]

−
1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽16] − 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11]

+ 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12] +
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷1

+ 𝐶𝑟 (
1

2
𝑠𝑖𝑛 2𝛽 [2𝜐𝐽9 − 𝑥3𝐽11] −

1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 [2𝐽9 − 𝑥3𝐽14]

−
1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 [−𝑥3𝐽17] − 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 [−𝜐𝐽7 − 𝑥3𝐽19] +
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟 (
1

2
𝑠𝑖𝑛 2𝛽 [𝐽6 + (1 − 2𝜐)𝐽5 − 𝑥3𝐽12]
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−
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛2 𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]

−
1

2
𝑠𝑖𝑛 2𝛽 𝑐𝑜𝑠2 𝜃 [𝐽6 − 𝑥3𝐽18] − 𝑐𝑜𝑠 2𝛽 𝑠𝑖𝑛 𝜃 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]

+ 𝑐𝑜𝑠 2𝛽 𝑐𝑜𝑠 𝜃 [−𝑥3𝐽16] +
1

2
𝑠𝑖𝑛 2𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17])𝐷3 
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𝜎𝑋𝑍
𝑃 =

1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13] + 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]} −
1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16]

+ 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]}

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 {𝐶𝑟𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐶𝑟𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷3[−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]} + 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 {𝐶𝑟𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝐶𝑟𝐷2[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷3[−𝑥3𝐽16]}

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]

+ 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟 (
1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [2𝜐𝐽8 − 𝑥3𝐽13] −

1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽16]

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19]) 𝐷1

+ 𝐶𝑟 (
1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [2𝐽9 − 𝑥3𝐽14] −

1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17]

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13] + 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 [−𝜐𝐽7 − 𝑥3𝐽19]

− 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟 (
1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]

−
1

2
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 − 𝑥3𝐽18] + 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝜃 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]

+ 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜃 [−𝑥3𝐽16] − 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 2𝜃 [−𝑥3𝐽17])𝐷3 
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𝜎𝑌𝑍
𝑃 = −

1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[2𝜐𝐽8 − 𝑥3𝐽13] + 𝐶𝑟𝐷2[2𝐽9 − 𝑥3𝐽14]

+ 𝐶𝑟𝐷3[𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]} +
1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 {𝐶𝑟𝐷1[−𝑥3𝐽16]

+ 𝐶𝑟𝐷2[−𝑥3𝐽17] + 𝐶𝑟𝐷3[𝐽6 − 𝑥3𝐽18]}

+ 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 {𝐶𝑟𝐷1[(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝐶𝑟𝐷2[(1 − 𝜐)𝐽8 − 𝑥3𝐽13]

+ 𝐶𝑟𝐷3[−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]} + 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 {𝐶𝑟𝐷1[𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝐶𝑟𝐷2[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷3[−𝑥3𝐽16]}

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 {𝐶𝑟𝐷1[−𝜐𝐽7 − 𝑥3𝐽19] + 𝐶𝑟𝐷2[𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15]

+ 𝐶𝑟𝐷3[−𝑥3𝐽17]}

= 𝐶𝑟 (−
1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [2𝜐𝐽8 − 𝑥3𝐽13] +

1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽16]

+ 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 [(1 − 𝜐)𝐽9 − 𝑥3𝐽11] + 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 [𝐽6 + 𝜐𝐽5 − 𝑥3𝐽12]

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 [−𝜐𝐽7 − 𝑥3𝐽19])𝐷1

+ 𝐶𝑟 (−
1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [2𝐽9 − 𝑥3𝐽14] +

1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [−𝑥3𝐽17]

+ 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 [(1 − 𝜐)𝐽8 − 𝑥3𝐽13] + 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 [−𝜐𝐽7 − 𝑥3𝐽19]

+ 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 [𝐽6 + 𝜐𝐽4 − 𝑥3𝐽15])𝐷2

+ 𝐶𝑟 (−
1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 + (1 − 2𝜐)𝐽4 − 𝑥3𝐽15]

+
1

2
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 2𝜃 [𝐽6 − 𝑥3𝐽18] + 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜃 [−(1 − 2𝜐)𝐽7 − 𝑥3𝐽19]

+ 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 [−𝑥3𝐽16] + 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 2𝜃 [−𝑥3𝐽17])𝐷3 

……………………………………………………………………………………… (2.27) 
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From Eqs. (2.21) to (2.26), we have 𝐷1 = 𝐷𝑆𝐿 , 𝐷2 = 𝐷𝑆𝐻 , 𝐷3 = 𝐷𝑁𝑁 . 

 

2.1.2 Non-dimensionalization 

It is of great importance to consider the non-dimensionlization for 3D DDM. We 

firstly selected a fracture height 𝐻 as the reference length and the non-dimensional 

coordinates would be written as, 

 𝑥̃1 = 
1

H
𝑥1,   𝑥̃2 = 

1

H
𝑥2,   𝑥̃3 =

1

H
𝑥3                                                                            (2.28) 

Then a reference pressure 𝑃 was chosen to do non-dimensionalization for the three 

components of stresses as, 

𝜎̃𝑆𝐿 =
1

𝑃
𝜎𝑆𝐿 , 𝜎̃𝑆𝐻 =

1

𝑃
𝜎𝑆𝐻 , 𝜎̃𝑁𝑁 =

1

𝑃
𝜎𝑁𝑁                                                                    (2.29)                                           

Three components of non-dimensional displacement discontinuities were written 

as below, 

𝐷̃𝑆𝐿 =
𝐸

𝐻𝑃
𝐷𝑆𝐿 , 𝐷̃𝑆𝐻 =

𝐸

𝐻𝑃
𝐷𝑆𝐻 , 𝐷̃𝑁𝑁 =

𝐸

𝐻𝑃
𝐷𝑁𝑁                                                           (2.30)                                    

where 𝐸 is the Young’s modulus.  

According to the coordinate transformation, we can determine the normalized 

induced normal stress 𝜎̃𝑁𝑁 and shear stresses 𝜎̃𝑆𝐿, 𝜎̃𝑆𝐻 for a given element by summarizing 

contributions of normalized displacement discontinuities of all N elements, as shown,  

𝜎̃𝑆𝐿
𝑖 = ∑𝐴̃𝑆𝐿,𝑆𝐿

𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐿
𝑗

+ ∑𝐴̃𝑆𝐿,𝑆𝐻
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐻
𝑗

+ ∑𝐴̃𝑆𝐿,𝑁𝑁
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑁𝑁
𝑗

 

𝜎̃𝑆𝐻
𝑖 = ∑𝐴̃𝑆𝐻,𝑆𝐿

𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐿
𝑗

+ ∑𝐴̃𝑆𝐻,𝑆𝐻
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐻
𝑗

+ ∑𝐴̃𝑆𝐻,𝑁𝑁
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑁𝑁
𝑗
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𝜎̃𝑁𝑁
𝑖 = ∑𝐴̃𝑁𝑁,𝑆𝐿

𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐿
𝑗

+ ∑𝐴̃𝑁𝑁,𝑆𝐻
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑆𝐻
𝑗

+ ∑𝐴̃𝑁𝑁,𝑁𝑁
𝑖𝑗

𝑁

𝑗=1

𝐷̃𝑁𝑁
𝑗

 

…………………………………………………………………………………… (2.31) 

We can reformulated Eq. (2.31) as a non-dimensional form,  

[

𝜎̃𝑆𝐿
𝑖

𝜎̃𝑆𝐻
𝑖

𝜎̃𝑁
𝑖

] =

[
 
 
 𝐴̃𝑆𝐿,𝑆𝐿

𝑖𝑗
𝐴̃𝑆𝐿,𝑆𝐻

𝑖𝑗
𝐴̃𝑆𝐿,𝑁𝑁

𝑖𝑗

𝐴̃𝑆𝐻,𝑆𝐿
𝑖𝑗

𝐴̃𝑆𝐻,𝑆𝐻
𝑖𝑗

𝐴̃𝑆𝐻,𝑁𝑁
𝑖𝑗

𝐴̃𝑁𝑁,𝑆𝐿
𝑖𝑗

𝐴̃𝑁𝑁,𝑆𝐻
𝑖𝑗

𝐴̃𝑁𝑁,𝑁𝑁
𝑖𝑗

]
 
 
 

[

𝐷̃𝑆𝐿
𝑗

𝐷̃𝑆𝐻
𝑗

𝐷̃𝑁𝑁
𝑗

], 

……………………………………………………………………………………… (2.32) 

where 𝐷̃𝑆𝐿
𝑗

 is the normalized shear displacement discontinuity of element j in the fracture 

length direction, 𝐷̃𝑆𝐻
𝑗

 is the normalized shear displacement discontinuity of element j in 

the fracture height direction, 𝐷̃𝑁𝑁
𝑗

 is the normalized normal displacement discontinuity of 

element j. Moreover, 𝜎̃𝑆𝐿
𝑖 , 𝜎̃𝑆𝐻

𝑖 , 𝜎̃𝑁𝑁
𝑖  are normalized normal stress and normalized shear 

stresses in fracture length and height directions at element i, respectively. Based on a given 

stress boundary condition on fractures, normalized displacement discontinuities can be 

calculated using Eq. (2.32).  

 

2.1.3 Flowchart of 3D DDM 

Figure 2.3 describes the flowchart of our rock deformation model. First, we did 

fracture discretization, which meshed the target fractures with prescribed boundary 

elements, then we made coordinate transformation and stress tensor transformation, which 

considering fractures with arbitrary strike angle and dip angle in three dimensions. Next, 

we determined the stresses on the boundary condition and then obtained the influence 
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coefficient matrix. Finally, a solver was applied to calculate the three normalized 

displacement discontinuities. 

 

Figure 2.3: Flowchart of our rock deformation model based on 3D DDM 

 

2.2 Model Validation 

2.2.1 Comparison with an Analytical Solution 

3D DDM can be utilized to calculate displacement discontinuities and induced 

stresses for fractures. To validate the 3D model with a 2D analytical solution, we 

calculated normal displacement discontinuity and induced stresses for a plane-strain 

fracture using both methods. Parameters of a plane-strain vertical fracture are given in 

Table 2.1. To satisfy the assumption of plane-strain on the vertical plane, the total fracture 

length is 2000 ft, which is much larger than the fracture height. The analytical solution of 
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opening along a fracture (Sneddon 1951; Crouch and Starfield 1983) can be written as, 

𝑤 = 𝑢(𝑥, 0−) − 𝑢(𝑥, 0+) = −
2𝑃𝑏(1−𝜈)

𝐺
√1 −

𝑥2

𝑏2                                                           (2.33)                             

where 𝑃 is the net pressure within the fracture, 𝑏 is half length of the fracture, 𝑥 is the 

location along the fracture length. 

Comparison of the normal displacement discontinuity is shown in Figure 2.4, 

which illustrates that the solution given by 3D DDM shows good agreement with the 2D 

analytical solution. The fracture width decreases from the fracture center to the tips. Figure 

2.5 indicates induced stresses normal to the vertical fracture plane at the center of the 

fracture. The solid lines represent the solution by 3D DDM and the dashed lines represent 

the 2D analytical solution. The normal horizontal stress is the stress normal to the vertical 

fracture plane, the lateral horizontal stress is the stress along the fracture length direction, 

and the vertical stress is the stress along the fracture height direction. With the increment 

of the distance normal to the fracture, induced stresses attenuate along the center line. The 

induced stresses reach their maximum values on the fracture. The lateral horizontal stress 

is the product of Poisson’s ratio and the sum of the normal horizontal stress and the vertical 

stress. The numerical solution from 3D DDM has a good match with the 2D analytical 

solution as shown in the figures. 
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Parameter Value Unit 

Vertical fracture length 2000 ft 

Vertical fracture height 100 ft 

Net pressure 1500 psi 

Young’s modulus 3.00E+06 psi 

Poisson’s ratio 0.25  

Table 2.1− Parameters of a vertical fracture for validation. 

 

 

Figure 2.4: Normal displacement discontinuity along vertical direction starting from 

fracture center (Tang et al. 2017). 
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Figure 2.5: Induced stresses normal to the vertical fracture (Tang et al. 2017). 

 

2.2.2 Comparison between Horizontal and Vertical Fractures 

The dimension of a vertical fracture is shown in Figure 2.6 (a) and the vertical 

fracture was rotated 90o to be a horizontal fracture as described in Figure 2.6 (b). The two 

fractures have identical fracture geometry and net pressure. The parameters are given in 

Table 2.2. The normal displacement discontinuity (i.e. fracture width) of both vertical and 

horizontal fractures were calculated using 3D DDM and shown in Figure 2.7 and Figure 

2.8. Due to the fact of the same dimension and net pressure within fractures for the two 

cases, the calculated fracture width should be identical after coordinate transformation. 

Figure 2.7 illustrates width profile along the shorter dimension (100 ft) for both vertical 

and horizontal fractures and shows that the width is exactly the same for both cases. Figure 

2.8 gives width profile along the dimension of 400 ft and also shows identical width for 

both fractures, as can be theoretically expected. Through this comparison study, we further 
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validated our model and proved that 3D DDM can be used to calculate displacement 

discontinuities for fractures in 3D space.  

 

Parameter Value Unit 

Vertical fracture length 400 ft 

Vertical fracture height 100 ft 

Horizontal fracture length in x direction 400 ft 

Horizontal fracture length in y direction 100 ft 

Net pressure within fractures 1000 psi 

Table 2.2−Five required parameters of a single fracture case. 

 

          

Figure 2.6: Sketch of vertical and horizontal fractures with the same dimension - (a). 

Dimension of a vertical fracture and (b). Dimension of a horizontal fracture (Tang and 

Wu 2018). 
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Figure 2.7: (a). Normal displacement discontinuity of the vertical fracture along the z 

direction; (b). Normal displacement discontinuity of the horizontal fracture along the y 

direction (Tang and Wu 2018). 

 

 

Figure 2.8: (a). Normal displacement discontinuity of the vertical fracture along the x 

direction; (b). Normal displacement discontinuity of the horizontal fracture along the x 

direction (Tang and Wu 2018).  

 

2.3 Different Fracture Geometry Analysis 

The fully 3DDDM can deal with the mechanical interaction between hydraulic 

fractures and pre-existing discontinuities such as weakly bedding planes, joints or veins 

in 3D space. The cases of different fracture geometries show how to calculate the fracture 

opening and shear displacements of the horizontal interfaces, which help to analyze the 



 

47 

 

 

sliding along the horizontal interface, fracture re-initiation from the horizontal interface 

and also the diversion of viscous fluid flow at fracture junctions if a coupled fracture 

propagation model is developed (Chuprakov et al. 2013), and further estimate the fracture 

height containment. In this section, different fracture geometries were prescribed with the 

combination of vertical and horizontal fractures to investigate the effects of opening 

interfaces on fracture geometry. Cases of a symmetric crossing-shaped fracture, a T-

shaped fracture, an I-shaped fracture and a complex fracture geometry with offsets were 

analyzed. Young’s modulus and Poisson’s ratio used in all cases are 3.0E6 psi and 0.25, 

respectively. 

 

2.3.1 Symmetric Crossing-shaped Fracture Geometry 

In this subsection, we assembled vertical and horizontal fractures together to 

investigate effects of an opening interface. A horizontal fracture represents a weak 

interface and is opened and crossed by a vertical fracture. A symmetric crossing-shaped 

fracture is shown in Figure 2.9. All required parameters are listed in Table 2.3. Generally, 

the overburden vertical stress is larger than the minimum horizontal stress in 

unconventional reservoirs. We assumed uniform fluid pressure within vertical and 

horizontal fractures, which implies that net pressure within fractures is different. In this 

section, it is assumed that net pressure within the vertical fracture is 1000 psi, while the 

net pressure within the horizontal fractures is 500 psi. Additionally, “DNN” represents the 

normal displacement discontinuity of vertical fractures, and the normal displacement 

discontinuity of horizontal fractures is abbreviated to “NDD” in all figures.   
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Normalized width profiles of the vertical fracture along the fracture height 

direction and the length direction are given in Figures 2.10 (a) and 2.10 (b). The red color 

represents the width profile of the vertical fracture in the case of symmetric crossing-

shaped fracture (Figure 2.9) under the influence of a horizontal fracture. “DNN-Single” 

means the width profile of a single vertical fracture without the effect of a horizontal 

fracture. The net pressure within this single vertical fracture is the same as in the vertical 

fracture in Figure 2.9. Figures 2.10 (a) and 2.10 (b) show that the normalized width of the 

vertical fracture under the effect of a horizontal fracture is relatively smaller than that of 

a single vertical fracture. According to Figure 2.12 (b), the induced normal stress acting 

on normalized x-z plane (𝜎𝑦𝑦) generated by the horizontal fracture, behaves as a 

compressive stress in the region of the vertical fracture (x axis is from -2 to 2, z axis is 

from -0.5 to 0.5). Because of additional compressive stress exerted on the vertical fracture, 

fracture width is reduced in the case of symmetric crossing-shaped fracture. Moreover, the 

maximum fracture width is obtained at the fracture center no matter which direction we 

chose.  

Figures 2.11 (a) and 2.11 (b) show the normalized displacement discontinuities of 

the horizontal fracture along x and y directions, respectively. “NDD-Single” represents 

the width of a single horizontal fracture without the influence of the vertical fracture and 

has the same net pressure with the horizontal fracture in Figure 2.9. “SDD-X” and “SDD-

Y” are shear displacement discontinuities of the horizontal fracture in x and y directions, 

respectively. From Figures 2.11 (a) and 2.11 (b), the opening of the horizontal fracture 

under the effect of the vertical fracture is also less than the opening of a single horizontal 
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fracture, as a result of compressive stress induced by the vertical fracture (Figure 2.12 (a)). 

When a horizontal fracture is totally symmetrical with a vertical fracture as depicted in 

Figure 2.9, shear displacement discontinuities of this horizontal fracture are zero in both 

x and y directions. In x direction, the fracture width decays with farther distance from x = 

0. The minimum width is obtained at the fracture tip. Generally, fracture width 

monotonically decreases from fracture center to a tip for the single fracture case. However, 

Figure 2.11 (b) presents a new perspective about width distribution of a horizontal fracture 

under the influence of a vertical fracture. The stress contour map in Figure 2.12 (a) can be 

used to make an explanation, which shows the additional normal stress acting on 

normalized x-y plane (𝜎𝑧𝑧) induced by the vertical fracture. The induced normal stress is 

negative (tensile stress) from y = -1.0 to y = -0.5. Then it becomes positive (compressive 

stress) in the range of y = -0.5 to y = 0.5. The sign of the stress changes to negative again 

from y = 0.5 to y = 1.0. Thus, the formation of fracture width “trough” is due to the positive 

induced normal stress which behaves as a compressive stress acting on the middle section 

of the horizontal fracture.  
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Parameter Value Unit 

Vertical fracture length 400 ft 

Vertical fracture height 100 ft 

Net pressure for vertical fracture 1000 psi 

Horizontal fracture length in x direction 400 ft 

Horizontal fracture length in y direction 200 ft 

Net pressure for horizontal fracture 500 psi 

Table 2.3−Six required parameters of a symmetric crossing-shaped fracture case. 

 

 

Figure 2.9: The dimension of a symmetric crossing-shaped fracture (Tang and Wu 

2018). 
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Figure 2.10: (a). Normalized normal displacement discontinuity of the vertical fracture 

along the z direction; (b). Normalized normal displacement discontinuity of the vertical 

fracture along the x direction (Tang and Wu 2018). 

 

 

Figure 2.11: (a). Normalized displacement discontinuities of the horizontal fracture along 

the x direction; (b). Normalized displacement discontinuities of the horizontal fracture 

along the y direction (Tang and Wu 2018). 
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Figure 2.12: (a). Normal stress (𝜎𝑧𝑧) acting on normalized x-y plane induced by the 

vertical fracture; (b). Normal stress (𝜎𝑦𝑦) acting on normalized x-z plane induced by the 

horizontal fracture (Tang and Wu 2018). 

 

2.3.2 T-shaped Fracture Geometry 

In this case, we combined a vertical fracture and a horizontal fracture together to 

create two types of fracture geometries illustrated in Figures 2.13 (a) and 2.13 (b). Figure 

2.13 (a) shows an asymmetric crossing-shaped fracture and Figure 2.13 (b) presents a T-

shaped fracture. Combined with the symmetric crossing-shaped fracture in the second 

case, there are three different fracture geometries. The only difference among them is the 

distance between the wellbore location and the horizontal fracture, which plays a 

significant role in determining the step-overs mechanism of the vertical fracture when it 

contacts with the weakly bedding interface. The horizontal fracture is regarded as opening 

of a bedding interface and the vertical fracture would either be arrested or step over the 

interface. A concept named interfacial sliding distance is studied in this case. All required 

parameters for this case are the same with the parameters in Table 2.3. 
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Figure 2.14 (a) shows the normalized width profiles of the vertical fracture along 

the vertical direction for three fracture geometries: a symmetric crossing-shaped fracture, 

an asymmetric crossing-shaped fracture, and a T-shaped fracture. The case of a symmetric 

crossing-shaped fracture (Figure 2.9) is regarded as a reference for the analysis of 

displacement discontinuities. When the vertical fracture intersects with a weak interface 

in the case of asymmetric crossing-shaped fracture, shear displacements are induced on 

the interface and result in a jump of fracture width on the vertical fracture at the crossing 

position of the interface (z = 0.25). This width jump can be defined as interfacial sliding 

distance which can be quantified by 3D DDM. For this case, width of the vertical fracture 

begins to increase from bottom location (z = -0.5) and reaches its maximum value at the 

location of the bedding interface (z = 0.25). A decrement of fracture width begins from 

the interface position to the upper tip of the vertical fracture (z = 0.5). Previously some 

researchers studied the physical mechanisms of the formation of T-shaped fractures 

(Chuprakov and Prioul 2015; Li et al. 2018a; Li et al. 2018b). In the T-shaped geometry, 

the vertical fracture is arrested by the weak horizontal interface. Width of the vertical 

fracture monotonically increases from the bottom position (z = -0.5) to the position at the 

weak interface (z = 0.5). From Figure 2.14 (a), we can observe that width of the vertical 

fracture along fracture height increases with the increment of distance between the 

horizontal interface and the center of the vertical fracture. Figure 2.14 (b) also indicates 

that the normalized width profile of the vertical fracture along fracture length at z = 0 has 

a positive correlation with the distance between the vertical fracture center and the weak 

interface.  
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All results above can be explained by the shear displacement discontinuities of the 

horizontal fracture segment. Figure 2.11 (b), Figures 2.15 (b) and 2.15 (d) illustrate shear 

displacement discontinuities of the horizontal fracture along the y direction for a 

symmetric crossing-shaped fracture, an asymmetric crossing-shaped fracture, and a T-

shaped fracture, respectively. The difference among these three fracture geometries is the 

distance between the center of the vertical fracture and the weak horizontal interface. The 

width profile of the vertical fracture for the case of a symmetric crossing-shaped fracture 

is continuous at the location of the horizontal interface due to zero shear displacement 

discontinuities along the horizontal segment (Figure 2.11 (b)). When the location of the 

weak interface moves to z = 0.25, a jump of vertical fracture width is induced at the 

interface due to the non-zero shear displacement discontinuity (i.e. SDD-Y) (Figure 2.15 

(b)). As the weak interface approximates z = 0.5, the shear displacement discontinuity 

continues increasing. The maximum SDD-Y is obtained when a T-shaped fracture forms. 

Moreover, the interfacial sliding distance also reaches its maximum in the case of the T-

shaped fracture. SDD-Y of the horizontal fracture segment along the y direction is used to 

determine the interfacial sliding distance along the horizontal interface and the width 

profile of the vertical fracture along the height direction.  

The normalized width profiles of vertical fractures along the dimension of 400 ft 

are delineated in Figure 2.14 (b). Along this direction, each fracture geometry obtains its 

minimum width at the fracture tip and maximum value at the center of the fracture. 

Additionally, we observe that the symmetric crossing-shaped fracture case has the smallest 

fracture width compared with the other two cases. Figures 2.15 (a) through 2.15 (d) 
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illustrate normalized displacement discontinuities of horizontal fractures for the 

asymmetric crossing-shaped geometry, the T-shaped geometry and a single fracture 

geometry, respectively. It’s worth mentioning that the horizontal fracture in the single 

fracture geometry has the same net pressure (500 psi) with the net pressure of the 

horizontal fracture in the other two geometries. From the figures, we find that the width 

profiles of a single horizontal fracture in both x and y directions are larger than that of the 

other two geometries, which having a similar trend with the results in Figures 2.11 (a) and 

2.11 (b). In addition, the T-shaped geometry has a larger shear displacement 

discontinuities (SDD-X and SDD-Y) in comparison with the asymmetric crossing-shaped 

geometry.  

In this case, we investigated the effect of the distance between the vertical fracture 

center and the horizontal interface, which is equivalent to the distance between the 

wellbore location and the interface during hydraulic fracture treatments. The larger the 

interfacial sliding distance, the more difficult the vertical fracture continues to propagate, 

which implies that the vertical fracture tends to be arrested by the interface when the 

wellbore is far away from the interface. Hence, if a hydraulic fracture intends to cross an 

interface and grows into the upper layer, the injection location should be closer to the 

interface.  
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Figure 2.13: The dimension of an asymmetric crossing-shaped fracture and a T-shaped 

fracture - (a). Dimension of an asymmetric crossing-shaped fracture; (b). Dimension of a 

T-shaped fracture (Tang and Wu 2018). 

 

 

Figure 2.14:  (a). Normalized normal displacement discontinuity of the vertical fracture 

along the z direction; (b). Normalized normal displacement discontinuity of the vertical 

fracture along the x direction (Tang and Wu 2018). 
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(a). Asymmetric crossing-shaped fracture 

– normalized displacement discontinuities 

of the horizontal fracture along the x 

direction. 

(b). Asymmetric crossing-shaped fracture 

– normalized displacement discontinuities 

of the horizontal fracture along the y 

direction 

  

(c). T-shaped fracture – normalized 

displacement discontinuities of the 

horizontal fracture along the x direction. 

(d). T-shaped fracture – normalized 

displacement discontinuities of the 

horizontal fracture along the y direction. 

Figure 2.15: Normalized displacement discontinuities of horizontal fractures in Figure 

2.14 (Tang and Wu 2018). 

 

The schematic diagram of the asymmetric crossing-shaped geometry could be 

depicted in Figure 2.16 (a). This figure shows a vertical fracture interacts with a weak 

horizontal interface and then steps over it. The fracture tip is arrested by the interface until 
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sufficient elastic strain energy is accumulated for crossing the interface (Chuprakov and 

Prioul 2015). During this process, some energy would be used for the shear sliding along 

the horizontal interface. Directions of sliding along two faces of the horizontal interface 

are labeled as the red arrows in Figure 2.16 (b). The face at the lower side of the interface 

behaves as outward sliding, while the face at the upper side slips inward. Therefore, the 

opening of vertical fracture at the lower side of the interface would increase, while at the 

upper side the vertical fracture width is reduced. This is why a jump of fracture width is 

generated in the vertical fracture. This width reduction above the weak interface can hinder 

fracture height growth, which regards as a primary mechanism of fracture height 

containment.  

 

Figure 2.16: Schematic diagram of a vertical fracture interacted with a weak horizontal 

interface. (a). Without considering the shear sliding along the horizontal interface; (b). 

Consider the shear sliding along the horizontal interface (Tang and Wu 2018). 
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2.3.3 I-shaped Fracture Geometry 

The formation pervasively contains multiple bedding layers with stress and 

modulus contrast. Hence, analysis of a static fracture geometry with multiple horizontal 

interfaces would provide a more reliable guideline for explaining the physical mechanisms 

of step-overs, sliding, and branching when the vertical fracture contacts with the bedding 

interfaces. Compared with the third case, one more horizontal fracture was added. An I-

shaped fracture consists of one vertical fracture and two horizontal fractures (upper and 

lower horizontal fractures). The parameters for this case is the same with the parameters 

in the third case. For upper and lower horizontal fractures, the geometric dimension and 

net pressure within the fracture are the same. Figure 2.17 shows two different fracture 

geometries, a symmetric crossing-shaped fracture with two horizontal segments and an I-

shaped fracture. Normalized normal displacement discontinuity of the vertical fracture 

along the dimension of 100 ft is illustrated in Figure 2.18 (a), which includes three fracture 

geometries: a symmetric crossing-shaped geometry with one horizontal segment (Figure 

2.9), a symmetric crossing-shaped geometry with two horizontal segments and an I-shaped 

geometry. The symmetric crossing-shaped geometry with one horizontal segment is 

regarded as a referential geometry. Figures 2.18 (a) and 2.18 (b) indicates that the width 

profile of the vertical fracture in the referential geometry is smaller compared to the other 

two fracture geometries.  

For the symmetric crossing-shaped geometry with two horizontal segments, the 

upper and lower horizontal fractures are located at z = 0.25 and z = -0.25, respectively. At 

these two locations, a jump of fracture width is observed. In this geometry, the upper and 
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lower horizontal fractures are regarded as two symmetric horizontal interfaces and the 

vertical fracture would step over these two interfaces after enough elastic strain energy 

has been built up. The interfacial sliding distance at two given interfaces is identical and 

is almost half the maximum width of the vertical fracture from the calculated results by 

3D DDM. For I-shaped geometry, both tips of the vertical fracture are arrested by the two 

symmetric horizontal interfaces. The fracture termination is caused by the enhanced 

interface sliding, which dissipates energy for propagating through the interface. The 

fracture width almost has no change along the vertical direction as a result of the outward 

interface sliding along two horizontal segments. 

From Figures 2.18 (a) and 2.18 (b), we can observe that the vertical fracture width 

in the I-shaped geometry is larger than that of the crossing-shaped geometry because of 

larger shear displacement discontinuity of the horizontal fracture along the y direction 

(SDD-Y) as illustrated in Figures 2.19 (b) and 2.19 (d). The previous case indicates that 

SDD-Y has a positive correlation with the distance between the horizontal fracture 

segment and the center of the vertical fracture. Hence, SDD-Y reaches its maximum value 

when the vertical fracture is arrested by the horizontal interface.  

Figures 2.19 (a) through 2.19 (d) illustrate normalized displacement discontinuities 

of the upper horizontal fracture for a symmetric crossing-shaped fracture with two 

horizontal segments, an I-shaped fracture, and a single horizontal fracture, respectively. 

The single horizontal fracture has the same net pressure (500 psi) with the net pressure of 

the horizontal fracture as in the other two fracture geometries. We find that the width 

profiles of the single horizontal fracture in both x and y directions are larger than that of 
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the other two fracture geometries, which is similar with Figures 2.15 (a) through 2.15 (d). 

In Figure 2.19, the upper horizontal fracture in the I-shaped geometry has larger 

displacement discontinuities in both x and y directions compared with the symmetric 

crossing-shaped geometry. Above results are due to the reason that fracture termination 

by weak horizontal interfaces depletes more strain energy for sliding along the interfaces, 

and thus a larger interfacial sliding distance would be created. The symmetric crossing-

shaped fracture would consume more energy for initiating new fracture from the 

horizontal interface and less energy would be used for interface sliding. The width profiles 

of the vertical fracture for the two different geometries are also used to validate the results 

above.  

Only normalized displacement discontinuities of the upper horizontal fracture are 

shown in Figure 2.19. The plots of normalized displacement discontinuities of lower 

horizontal fracture are not shown in this case due to the fact that the lower and upper 

horizontal fractures have the identical absolute value of shear displacement 

discontinuities, but opposite direction.  
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Figure 2.17: The dimension of a symmetric crossing-shaped fracture and an I-shaped 

fracture. (a) The dimension of a symmetric crossing-shaped fracture; (b). The dimension 

of I-shaped fracture (Tang and Wu 2018). 

   

 

Figure 2.18: (a). Normalized normal displacement discontinuity of vertical fracture along 

the z direction; (b). Normalized normal displacement discontinuity of vertical fracture 

along the x direction (Tang and Wu 2018). 
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(a). Symmetric crossing-shaped fracture 

with two horizontal fracture segments - 

normalized displacement discontinuities 

of the upper horizontal fracture along the 

x direction. 

(b). Symmetric crossing-shaped fracture 

with two horizontal fracture segments - 

normalized displacement discontinuities 

of the upper horizontal fracture along the 

y direction. 

 

(c). I-shaped fracture - normalized 

displacement discontinuities of the upper 

horizontal fracture along the x direction. 

(d). I-shaped fracture - normalized 

displacement discontinuities of the upper 

horizontal fracture along the y direction. 

Figure 2.19: Normalized Displacement discontinuities of the upper horizontal fracture 

(Tang and Wu 2018). 

 

2.3.4 Complex Fracture Geometry with Offsets 

When fracture propagates vertically and contacts with horizontal interfaces, ledges 

or offsets would be created along interfaces. In this case, a complex fracture geometry 
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with offsets is combined with five vertical fractures and two horizontal fractures, as 

depicted in Figure 2.20. The vertical fracture in the middle of the prescribed geometry is 

called the central vertical fracture, with the length as 400 ft and the height as 100 ft. The 

other four vertical fractures on the edge are called up-left, up-right, down-left and down-

right vertical fracture, respectively. These four vertical fractures have the same geometric 

dimension: fracture length is 400 ft and fracture height is 50 ft. The two horizontal 

fractures with identical dimension are named as upper horizontal fracture and lower 

horizontal fracture. Additionally, net pressure within all vertical fractures is 1000 psi and 

net pressure within all horizontal fractures is 500 psi. In Figure 2.20, the lateral distance 

between the central vertical fracture and any vertical fractures on the side is defined as the 

offset, which is prescribed as 100 ft in this case.  

The normalized width profile of down-right, central, and up-right vertical fractures 

along the vertical direction is given in Figure 2.21, which illustrates that average fracture 

width of the central vertical fracture is much larger than that of vertical fractures on the 

edge, as a result of large shear displacements of the horizontal fracture along the y 

direction. Considering the symmetry of this complex fracture geometry, Figure 2.22 only 

shows normalized displacement discontinuities of the fractures above the upper horizontal 

fracture, which include the up-left vertical fracture, the up-right vertical fracture and the 

upper horizontal fracture. From Figures 2.22 (a) and 2.22 (c), Figures 2.22 (b) and 2.22 

(d), we can observe that the width of the up-left fracture along lateral and vertical 

directions is the same with that of the up-right fracture. The shear displacement 

discontinuities of these two vertical fractures along lateral and vertical directions have the 
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same absolute value but opposite directions due to the fact that the direction of interface 

sliding is opposite. Figures 2.22 (e) and 2.22 (f) show the normalized displacement 

discontinuities of the upper horizontal fracture along the x and y directions at z = 50 ft, 

respectively. Results indicate that the shear displacement discontinuity in the y direction 

is larger than the opening of the horizontal fracture segment, which implies that more 

propagation energy is consumed for interfacial sliding, rather than opening of the 

horizontal fracture. The shear displacement discontinuities of the interfaces would 

influence the path of fluid flow and further hinder the fracture height growth. Additionally, 

proppant transportation within such fracture geometry is also affected due to the fact that 

the opening of the horizontal interface is extremely small, which is difficult for proppant 

passing through (Cohen et al. 2017). 

 

 

Figure 2.20: The dimension of a complex fracture geometry with offsets (Tang and Wu 

2018). 
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Figure 2.21: Normalized normal displacement discontinuity of down-right, central, and 

up-right vertical fractures along the z direction (Tang and Wu 2018). 

 

 

(a). Normalized displacement discontinuities 

of up-left vertical fracture along the x 

direction. 

(b). Normalized displacement discontinuities 

of up-left vertical fracture along the z 

direction. 
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(c). Normalized displacement discontinuities 

of up-right vertical fracture along the x 

direction. 

(d). Normalized displacement discontinuities 

of up-right vertical fracture along the z 

direction. 

 

 

(e). Normalized displacement discontinuities 

of upper horizontal fracture along the x 

direction. 

(f). Normalized displacement discontinuities of 

upper horizontal fracture along the y direction. 

Figure 2.22: Normalized displacement discontinuities of fracture segments above the 

upper horizontal fracture (Tang and Wu 2018). 

 

2.4 Conclusion 

In this chapter, a fully 3D DDM was developed to investigate the interaction of a 

vertical fracture and interfaces with arbitrary angles in three dimensions, which is in 



 

68 

 

 

application of fracture height growth in laminated shale reservoirs. Five different 

prescribed fracture geometries with the combination of a vertical fracture and horizontal 

interfaces were investigated to study the effects of weak horizontal interfaces on 

distributions of displacement discontinuities. The following conclusions can be drawn 

from this study:  

(1) A good match of fracture width and induced stresses between a 2D analytical solution 

and 3D DDM was obtained for a single fracture. The same results of displacement 

discontinuities were obtained for horizontal and vertical fractures with identical 

dimensions and net pressure.  

(2) Fracture width profile of the vertical fracture along the height direction is changed by 

opening of a weak horizontal interface. A width jump is induced and width is greatly 

reduced across the interface. This width reduction hinders vertical fracture propagation in 

the height direction, which is regarded as another primary mechanism of fracture height 

containment.  

(3) Shear displacement discontinuities induced on the horizontal interface is the root cause 

of width jump along the vertical fracture. With the increment of the distance between the 

wellbore location and the horizontal interface, shear displacement discontinuities become 

larger, resulting in greater width jump. This indicates that the vertical fracture is easier to 

be arrested as the wellbore location is far away from the interface. Selecting an optimal 

landing location of horizontal wellbore can minimize the fracture height containment.  

(4) Compared to a single horizontal fracture case, the opening of a horizontal fracture 

crossed by a vertical fracture greatly decreases as a result of the opening of the vertical 
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fracture and shear displacement discontinuities along the horizontal fracture, which has an 

intensive effect on the proppant transport within the fracture. 

(5) Although the fluid flow is not considered in this chapter, the analysis of different 

fracture geometries at the static condition provides a fundamental understanding of the 

effect of interface slippage on fracture height containment. Dynamic fracture growth as 

well as fluid flow diversion and proppant transport at fracture junction require further 

work of coupling this 3D model and fluid flow.   
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3. SENSITIVITY ANALYSIS 

 

In this chapter, we would separately discuss the cases of the orthogonal approach 

angle with the bedding plane and the non-orthogonal cases. Approach angle, is defined as 

the intersection angle between the initial fracture direction and the bedding plane. In each 

case, sensitivity analysis of different parameters would be done to investigate its impact 

on the width profiles of the vertical fracture and the bedding plane and also the shear 

displacement discontinuities along the bedding plane. 

 

3.1 Orthogonal Approach Angle with Bedding Plane 

In this section, we investigated cases of orthogonal approach angle with bedding 

plane. In other words, the bedding plane (interface) is horizontally distributed. There are 

the case of one vertical fracture and one interface, the case of multiple vertical fractures 

and one interface and that of single vertical fracture and multiple interfaces. The fracture 

geometry in each case is pre-determined. The required parameters are given in Table 3.1. 

Generally, the overburden vertical stress is larger than the minimum horizontal stress in 

unconventional reservoirs. We assumed uniform fluid pressure within vertical and 

horizontal fractures, which implies that net pressure (fluid pressure minus the stress 

normal to the fracture) within vertical fractures is larger than that in horizontal fractures.  

   ____________________________________ 

*Part of this section is reprinted with permission from “Investigate Effects of Weak Bedding Interfaces on 

Fracture Geometry in Unconventional Reservoirs” by J. Tang, K. Wu, B. Zeng, H. Huang, X. Hu, X. Guo, 

L. Zuo, 2017. Journal of Petroleum Science and Engineering, Copyright [2017] by Elsevier. 
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Parameter Value Unit 

Vertical fracture length 400 ft 

Vertical fracture height 100 ft 

Net pressure for vertical fracture 1000 psi 

Horizontal fracture length in x direction 400 ft 

Horizontal fracture length in y direction 200 ft 

Net pressure for horizontal fracture 500 psi 

Distance between center of vertical fracture and 

horizontal interface 

25 ft 

Young’s modulus 3.0E6 psi 

Poisson’s ratio 0.25 dimensionless 

Table 3.1−Required parameters of an asymmetric crossing-shaped fracture case (Tang et 

al. 2017). 

 

The fracture geometry is given in Figures 3.1 and 3.2, showing a 3D view and a 

front view of this asymmetric crossing-shaped fracture. The horizontal fracture segment 

is regarded as the opening of a bedding interface and vertical fracture would cross the 

interface. In the following sub-sections (except the section of fracture spacing), we did 

sensitivity analysis of parameters such as half-length of horizontal interface, fracture 

height, differential stresses (net pressure difference between the vertical fracture and 

horizontal interface), Young’s modulus, Poisson’s ratio, and also investigated their 

impacts on the displacement discontinuity profiles of the vertical fracture and the 

horizontal interface. 
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Figure 3.1: The geometry of an asymmetric crossing-shaped fracture (one vertical fracture 

and one horizontal interface) (Tang et al. 2017). 

 

Figure 3.2: Front view of an asymmetric crossing-shaped fracture (varying distance 

between center of the vertical fracture and the horizontal fracture) (Tang et al. 2017). 
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3.1.1 Half-Length of Horizontal Interface 

In this subsection, the effect of half-length of the horizontal fracture segment (y) 

was investigated. The distance between the center of the vertical fracture and the 

horizontal interface is prescribed as 25 ft (Z = 25ft). All required parameters for this case 

are listed in Table 3.1, except the horizontal fracture length in the y direction shown in 

Figure 3.1. 

 

Figure 3.3: (a) Impact of half-length of the horizontal fracture segment on fracture width 

along the vertical direction; (b) Impact of half-length of the horizontal fracture segment 

on fracture width along the fracture length direction (Tang et al. 2017). 

 

Figure 3.4: (a) Impact of half-length of the horizontal fracture segment on the opening of 

the horizontal interface along the x direction; (b) Impact of half-length of the horizontal 
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fracture segment on the shear displacement discontinuity of the horizontal interface along 

the x direction (Tang et al. 2017). 

 

Figures 3.3 (a) and 3.3 (b) shows the width profile of the vertical fracture along 

the vertical and the length directions with five different half-lengths of the horizontal 

fracture, respectively. The fracture width is continuous at the crossing position when the 

half-length of the horizontal fracture segment is 5 ft (y = 5 ft). This is because the shear 

displacement along the horizontal interface approximates zero, as depicted in Figure 3.4 

(b). The significant dimensional difference between the vertical fracture and the horizontal 

interface indicates that the effect of the horizontal interface can be neglected. As the half-

length increases, the shear displacement becomes larger and a jump of fracture width on 

the vertical fracture increases (Figure 3.3 (a)). This result indicates that the fracture height 

containment is more likely as half-length of the horizontal fracture segment (such as 

natural fracture, fault or other discontinuity) becomes larger. However, vertical fracture 

width starts to decrease when half-length of the horizontal fracture segment reaches a large 

value (i.e. y = 2500 ft). From y = 500 ft to y = 2500 ft, the value of shear displacement 

along horizontal interface falls sharply and thus the interfacial sliding distance is also 

reduced. This is because the asymmetric crossing-shaped fracture is dominated by the 

horizontal fracture when the dimension of the vertical fracture is much smaller than that 

of the horizontal fracture. Figure 3.4 (a) illustrates opening of the horizontal fracture 

segment (along with the x direction). Because the compressive stress induced by the 

vertical fracture is large, the horizontal interface is closed when half-length of horizontal 

fracture segment is small (i.e. y = 5 ft and y = 25 ft). When the size of horizontal fracture 
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segment becomes larger, the horizontal interface can be opened as a result of decrement 

of the compressive stress induced by the vertical fracture.  

 

3.1.2 Fracture Height 

In this subsection, we first studied the effect of distance between the center of the 

vertical fracture and the horizontal interface, which is equivalent to the distance between 

the injection point and the interface during hydraulic fracture treatments. The normal 

displacement discontinuity (i.e. fracture width) of the vertical fracture with different Z/H, 

named as the ratio of the distance between the center of the vertical fracture and the 

horizontal interface to the fracture height, is shown in Figure 3.5. In Figure 3.5 (a), there 

is a jump of fracture width on the vertical fracture at the crossing position of the interface 

due to the shear displacements along the horizontal interface. This width jump is defined 

as an interfacial sliding distance which can be quantified by 3D DDM. We could calculate 

the approximate value of interfacial sliding distance as 0.235 inches, 0.507 inches and 

0.826 inches when Z/H is 0.1, 0.25 and 0.4, respectively, which indicates that interfacial 

sliding distance has a positive correlation with the Z/H ratio. Moreover, Figures 3.6 (a) 

and 3.6 (b) elaborates the shear displacement discontinuities in the y direction (along with 

the horizontal interface), which also demonstrates that shear sliding increases with the 

increment of the distance. Therefore, we could infer that the interfacial sliding distance is 

greatest when the fracture tip contacts with the horizontal interface (Z/H = 0.5). Figure 3.5 

(b) illustrates the width profile of the vertical fracture along the length direction, which 

does not show obvious width alteration with the increment of the Z/H ratio. Figure 3.7 
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describes the normal displacement discontinuity of the horizontal interface along the x and 

the y directions, respectively. In Figure 3.7 (a), the opening of the horizontal interface 

along the x direction increases with the distance. However, a “trough” of fracture width 

can be observed in the range of y = -50 ft to y = 50 ft (Figure 3.7 (b)), as a result of positive 

normal stress induced by the vertical fracture behaving as a compressive stress which 

acting on the middle section of horizontal interface. With the increment of the distance, 

the normal stress induced by the vertical fracture decreases. 

 

Figure 3.5: (a) Impact of Z/H on fracture width along the vertical direction; (b) Impact of 

Z/H on fracture width along the fracture length direction (Tang et al. 2017).  

 

Figure 3.6: (a) Impact of Z/H on shear displacement discontinuity of the horizontal 

interface along the x direction; (b) Impact of Z/H on shear displacement discontinuity of 

the horizontal interface along the y direction (Tang et al. 2017). 
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Figure 3.7: (a) Impact of Z/H on the opening of the horizontal interface along the x 

direction; (b) Impact of Z/H on the opening of the horizontal interface along the y direction 

(Tang et al. 2017). 

 

If we consider a fracture propagating from the injection point, the Z/H ratio would 

always equal 0.5. When the fracture tip contacts with the horizontal interface, and the 

interfacial sliding distance would reach its maximum value. In order to test whether the 

distance between the injection point and the horizontal interface would affect the 

likelihood of fracture arrest, cases with different fracture height (50 ft, 100 ft, 200ft) are 

investigated and the horizontal interface is always placed at the upper tip of the fracture 

(Z/H = 0.5). Figure 3.8 (a) illustrates the impact of fracture height on the width profile of 

the vertical fracture along the vertical direction, which indicates that the fracture width 

grows monotonically from lower tip to upper tip and the maximum value of the interfacial 

sliding distance is obtained at the location of the interface. Additionally, it reveals that the 

interfacial sliding distance along the interface is positively correlated with the pre-

determined fracture height. The larger the interfacial sliding distance, the easier the 
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vertical fracture tends to be arrested by the interface when the injection point is far away 

from the interface. Impact of fracture height (H) on the opening of the horizontal interface 

(along with the y direction) is shown in Figure 3.8 (b). Along the interface, minimum 

normal displacement discontinuity is obtained at two tips and the maximum value is 

between the tip and the center point. A “trough” of opening is observed in the range of y 

= -25 ft to y = 25 ft, as a result a compressive stress acting in the middle section of the 

horizontal interface. With the increment of pre-determined fracture height, the opening of 

the horizontal interface decreases. Figures 3.9 (a) and 3.9 (b) illustrate the shear 

displacement discontinuities of the horizontal interface in the x and y directions, 

respectively, which is under the impact of different fracture heights. We could observe a 

positive relationship between the shear displacement discontinuity of the interface and the 

pre-determined fracture height, which proves that the fracture is more easily to be arrested 

by the interface when the injection point is far away from the horizontal interface. 

 

Figure 3.8: (a) Impact of fracture height on fracture width along the vertical direction; (b) 

Impact of fracture height on the opening of the horizontal interface along the y direction 

(Tang et al. 2017). 
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Figure 3.9: (a) Impact of fracture height on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of fracture height on shear 

displacement discontinuity of the horizontal interface along the y direction (Tang et al. 

2017). 

 

3.1.3 Differential Stress 

The net pressure within fracture segments also plays an important role in 

determining the fracture width distribution. The distance between the center of the vertical 

fracture and the horizontal interface is 25 ft. Other required parameters are shown in Table 

3.1. Figures 3.10 (a) and 3.10 (b) elaborate the normal displacement discontinuity of the 

vertical fracture along the vertical and the length directions, respectively. In this study, we 

kept the fluid pressure as a constant and only adjust the value of the overburden stress (Sv) 

and the horizontal minimum stress (Shmin). Pnh represents the net pressure within the 

horizontal fracture segment and Pnv is the net pressure within the vertical fracture. 

Additionally, the net pressure difference between the vertical fracture and the horizontal 

interface is kept as 500 psi, which means that the stress difference between Sv and Shmin 

is kept as 500 psi (Sv>Shmin).  
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From the figure, we can find that both fracture width and interfacial sliding 

distance along the horizontal interface increase with the increment of net pressure. The 

opening of the horizontal fracture segment along the large dimension (400 ft) and the small 

dimension (200 ft) are shown in Figures 3.11 (a) and 3.11 (b). When the net pressure 

within the horizontal fracture segment equals to zero, the opening of the horizontal 

interface is negative, which means the two surfaces of the horizontal interface compress 

each other and the interface is kept as closed status (Shen et al. 2015). This is due to that 

no fluid infiltration occurs in the horizontal fracture segment and this segment is also under 

the influence of compressive stress induced by the vertical fracture. As the net pressure 

within the vertical fracture and horizontal fracture segment simultaneously increase, the 

horizontal interface can be opened gradually. Moreover, the augment of net pressure 

within the fracture segment also explains why the opening of the horizontal interface 

increases. Figure 3.12 depicts the distribution of shear displacement discontinuities along 

the x and the y directions, respectively. We can observe that shear displacements along 

the horizontal interface are positively correlated with the net pressure within fracture 

segments. According to the result, it implies that the vertical fracture is much easier to be 

arrested by the horizontal interface with the increment of pumping pressure, although it 

makes the width of fracture segments much larger. 
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Figure 3.10: (a) Impact of net pressure on fracture width along the vertical direction; (b) 

Impact of net pressure on fracture width along the fracture length direction (Tang et al. 

2017). 

 

Figure 3.11: (a) Impact of net pressure on the opening of the horizontal interface along the 

x direction; (b) Impact of net pressure on the opening of the horizontal interface along the 

y direction (Tang et al. 2017). 
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Figure 3.12: (a) Impact of net pressure on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of net pressure on shear displacement 

discontinuity of the horizontal interface along the y direction (Tang et al. 2017). 

 

3.1.4 Young’s Modulus 

Different Young’s modulus’ (YM) result in different net pressures within the 

fracture if the coupled rock deformation and fluid flow model is used. In this paper, the 

net pressure within the fracture is kept as a constant value and we mainly focus on the 

effect of Young’s modulus on fracture width and shear displacements along the horizontal 

interface. In this case, we used the Young’s Modulus as 1.0E6 psi, 3.0E6 psi and 6.0E6 

psi and kept other parameters the same with that in Table 3.1. The distance between 

vertical fracture center and the horizontal interface is 25 ft. From Figure 3.13, we observe 

that the vertical fracture width decreases as Young’s Modulus becomes larger. 

Additionally, we find a negative correlation between interfacial sliding distance and 

Young’s modulus, as a result of decrement of shear displacements (y direction) along the 

horizontal interface when Young’s Modulus increases, which depicted in Figure 3.15. 

With the augment of Young’s Modulus, its effect on fracture width distribution becomes 

very obvious. Figures 3.14 (a) and 3.14 (b) illustrate the fracture width profile of horizontal 
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interface along the x and the y directions, respectively. The opening of the horizontal 

interface would increase as the decreasing of Young’s Modulus. At the same time, the 

width “trough” becomes more evident due to the fact that the compressive stress induced 

by the vertical fracture which acting on the middle section of horizontal fracture segment, 

becomes larger. The observation reveals that formation properties such as Young’s 

Modulus play an important role in determining the width of the vertical fracture and also 

the fracture height growth. During hydraulic fracturing treatment, shale formation with 

large Young’s Modulus should be utilized to decrease the fracture height containment 

induced by the horizontal interface.  

 

Figure 3.13: (a) Impact of Young’s modulus on fracture width along the vertical direction; 

(b) Impact of Young’s modulus on fracture width along the fracture length direction (Tang 

et al. 2017). 
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Figure 3.14: (a) Impact of Young’s modulus on the opening of the horizontal interface 

along the x direction; (b) Impact of Young’s modulus on the opening of the horizontal 

interface along the y direction (Tang et al. 2017). 

 

Figure 3.15: (a) Impact of Young’s modulus on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of Young’s modulus on shear 

displacement discontinuity of the horizontal interface along the y direction (Tang et al. 

2017). 

 

3.1.5 Poisson’s Ratio 

Poisson’s ratio (PR) also plays an important role in the fracture propagation with 

bedding interfaces. Figures 3.16 (a) and 3.16 (b) illustrate the impact of varying Poisson’s 

ratio on the normal displacement discontinuity of the vertical fracture along the vertical 

and length directions, respectively. A result is observed that the interfacial sliding distance 
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is negatively correlated with Poisson’s ratio. Hence, a smaller Poisson’s ratio, which 

leading to less magnitude of the compressive horizontal stress induced by the opening of 

the horizontal interface, then determine much larger width of the vertical fracture at the 

intersection between the fracture and the interface. Figure 3.17 shows the opening of the 

horizontal interface would increase as Poisson’s ratio decreases. Figures 3.18 (a) and 3.18 

(b) indicate the impact of Poisson’s ratio on the profile of the shear displacement 

discontinuity along the x and y directions, respectively. The maximum value is obtained 

at the interface center and the minimum value is achieved at two tips. Along the y 

direction, the sign of the shear displacement discontinuity is suddenly changed from 

negative to positive at the location y = 0. Additionally, Figure 18 also shows that Poisson’s 

ratio slightly affects the shear displacement discontinuity of the horizontal interface. 

 

Figure 3.16: (a) Impact of Poisson’s ratio on fracture width along the vertical direction; 

(b) Impact of Poisson’s ratio on fracture width along the fracture length direction (Tang 

et al. 2017). 
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Figure 3.17: (a) Impact of Poisson’s ratio on the opening of the horizontal interface along 

the x direction; (b) Impact of Poisson’s ratio on the opening of the horizontal interface 

along the y direction (Tang et al. 2017). 

 

Figure 3.18: (a) Impact of Poisson’s ratio on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of Poisson’s ratio on shear 

displacement discontinuity of the horizontal interface along the y direction (Tang et al. 

2017). 

 

3.1.6 Fracture Spacing 

In this subsection, two fracture geometries with two vertical fractures and one 

horizontal interface were investigated. The only difference of the two fracture geometries 

is the distance between the center of each vertical fracture and the horizontal interface. 

We analyzed effects of the opening interface on width profiles of multiple fractures. Figure 
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3.19 shows an asymmetric crossing-shaped fracture geometry with two vertical fractures 

and one horizontal interface. Other parameters are shown in Table 3.1. The front view of 

this fracture geometry is depicted in Figure 3.20. The varying parameter in this case is the 

distance between two adjoining vertical fracture (fracture spacing), which is defined as ds.  

 

Figure 3.19: The geometry of an asymmetric crossing-shaped fracture with two vertical 

fractures and one horizontal interface (Tang et al. 2017). 

 



 

88 

 

 

 

Figure 3.20: Front view of the asymmetric crossing-shaped fracture in Fig. 21 (Tang et al. 

2017). 

 

Figure 3.21 indicates the width profiles of vertical fracture (left) with three 

different fracture spacing, 50 ft, 100 ft and 150 ft. A geometry of two vertical fractures 

(100 ft fracture spacing) without a horizontal interface is regarded as a referential 

geometry, labeled as a black color. Compared with referential geometry, the geometry of 

two vertical fractures with 100 ft fracture spacing has smaller fracture width under the 

interaction with the horizontal interface. From the Figure 3.21 (a), we observed that 

vertical fracture width increases when the fracture spacing increases. However, the 

interfacial sliding distance along the interface decreases at the same time. In this case, the 

length of the interface is pre-determined and a larger fracture spacing means that the two 

vertical fractures intersect closer to the interface tips. The lateral distance between one 

interface tip and the neighboring vertical fracture can be regarded as the half effective 

length of the horizontal interface. Thus, the shorter effective length of the horizontal 
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interface creates a lower shear displacement. Figure 3.21 (b) also shows a positive 

correlation between vertical fracture width along fracture length direction and fracture 

spacing due to attenuation of stress shadow effects with the increasing of fracture spacing. 

Due to symmetry, two vertical fractures have the same width profile. Figure 3.22 only 

delineates the shear displacement discontinuities of the left vertical fracture along the 

fracture height and the fracture length directions, respectively. When fracture spacing 𝑑𝑠 

is 100 ft, the fracture geometry with an interface has larger shear displacements along both 

directions, compared with the geometry without an interface, which demonstrates that the 

horizontal interface has a significant impact on the shear displacement discontinuity of the 

vertical fracture. We also investigated that shear displacement discontinuities of the 

vertical fracture have a positive relation with fracture spacing according to Figure 3.22. 

Additionally, the sign of shear displacement discontinuity along the vertical direction is 

negative below the horizontal interface and turns to be positive above the interface, which 

indicates that the horizontal interface alters the direction of shear sliding along the vertical 

fracture. 

The width profiles of the horizontal interface along the x and the y directions are 

shown in Figure 3.23. With the attenuation of stress shadow effect caused by the increment 

of fracture spacing, the width of vertical fractures increases and opening of the horizontal 

interface is amplified at the same time. In Figure 3.23 (b), a width “trough” is generated 

at the intersection point of the vertical fracture and horizontal interface, as a result of large 

compressive stress induced by the vertical fracture. Figure 3.24 (a) illustrates that shear 

displacement discontinuity along the x direction of the horizontal interface approximates 
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zero for different fracture spacing. Figure 3.24 (b) shows shear displacement discontinuity 

along the y direction of the horizontal interface varying with the fracture spacing. The 

shear sliding direction along the horizontal interface is changed twice at the intersection 

points of vertical fractures and horizontal interface.  

 

Figure 3.21: (a) Impact of fracture spacing on fracture width along the vertical direction; 

(b) Impact of fracture spacing on fracture width along the fracture length direction (Tang 

et al. 2017). 

 

Figure 3.22: (a) Impact of fracture spacing on shear displacement discontinuity of the 

vertical fracture along the fracture height direction; (b) Impact of fracture spacing on shear 

displacement discontinuity of the vertical fracture along the fracture length direction 

(Tang et al. 2017). 
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Figure 3.23: (a) Impact of fracture spacing on the opening of the horizontal interface along 

the x direction; (b) Impact of fracture spacing on the opening of the horizontal interface 

along the y direction (Tang et al. 2017). 

 

Figure 3.24: (a) Impact of fracture spacing on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of fracture spacing on shear 

displacement discontinuity of the horizontal interface along the y direction (Tang et al. 

2017). 

 

The only difference between Figure 3.19 and Figure 3.25 is the distance between 

the center of vertical fractures and position of the horizontal interface. Other required 

parameters are the same as the previous case. In this case, we moved up the horizontal 

interface (Z = 50 ft) to make the vertical fracture arrested by the interface. Figure 3.26 

reveals a front view of a Π-shaped fracture. We studied its effect of fracture spacing on 
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displacement discontinuities for vertical fractures and the horizontal interface. In Figure 

3.27, it shows width distribution of left vertical fracture along the longer dimension (400 

ft) and the shorter dimension (100 ft), respectively. Three different fracture spacings are 

given in each subplot. From Figure 3.27 (a), the vertical fracture width increases from the 

lower tip to the center of fracture, and then gradually decreases from the center to the 

upper tip. When fracture width reaches its maximum at a certain position, it is then 

restricted and starts to decrease until vertical fractures are arrested by the horizontal 

interface. Additionally, Figures 3.27 (a) and 3.27 (b) both indicate a positive correlation 

between vertical fracture width and fracture spacing. This is due to the decay of stress 

shadow effects with enhancement of fracture spacing. The direction of shear sliding along 

the vertical fracture is determined by the sign of shear displacement discontinuities of the 

vertical fracture. From Figure 3.28 (a), the vertical fracture slips in one direction and 

reaches its maximum sliding at the crossing position with the horizontal interface (Z = 50 

ft). Compared with the slip along the fracture height direction, the sliding along the 

fracture length direction has a maximum value at the center of vertical fracture as depicted 

in Figure 3.28 (b). Moreover, Figure 3.28 elaborates a positive relation between shear 

displacement discontinuities of vertical fractures and fracture spacing.  
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Figure 3.25: The geometry of a Π-shaped fracture (two vertical fractures and one 

horizontal interface) (Tang et al. 2017). 

 

Figure 3.26: Front view of a Π-shaped fracture (The distance between two adjacent 

vertical fractures is variable) (Tang et al. 2017). 
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Figure 3.27: (a) Impact of fracture spacing on fracture width along the vertical direction; 

(b) Impact of fracture spacing on fracture width along the fracture length direction (Tang 

et al. 2017). 

 

 

Figure 3.28: (a) Impact of fracture spacing on shear displacement discontinuity of the 

vertical fracture along the fracture height direction; (b) Impact of fracture spacing on shear 

displacement discontinuity of the vertical fracture along the fracture length direction 

(Tang et al. 2017). 

 

Normal displacement discontinuity and shear displacement discontinuities of the 

horizontal interface are shown in Figures 3.29 and 3.30, respectively. Figure 3.29 

illustrates opening of the horizontal interface increases as fracture spacing increases. In 

Figure 3.29 (b), a sudden jump of the interface opening appears at each intersection point, 
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probably due to an intensive decrement of compressive stress induced by vertical fracture. 

When fracture spacing increases as 200 ft, the two upper tips of vertical fractures coincide 

with endpoints of the horizontal interface and no width jump occurs along the interface, 

which makes opening distribution of the horizontal interface is continuous. Along the x 

direction, the shear displacement discontinuity approximates zero and varies slightly as 

the alteration of fracture spacing, which is depicted in Figure 3.30 (a). Figure 3.30 (b) 

shows the shear displacement discontinuity along the y direction. The direction of shear 

sliding along the interface changes at each intersection point. The maximum shear 

displacement discontinuity is obtained at the two intersection points, which has equivalent 

magnitude but opposite direction. The minimum value stays in the middle of the horizontal 

interface.  

 

Figure 3.29: (a) Impact of fracture spacing on the opening of the horizontal interface along 

the x direction; (b) Impact of fracture spacing on the opening of the horizontal interface 

along the y direction (Tang et al. 2017). 
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Figure 3.30: (a) Impact of fracture spacing on shear displacement discontinuity of the 

horizontal interface along the x direction; (b) Impact of fracture spacing on shear 

displacement discontinuity of the horizontal interface along the y direction (Tang et al. 

2017). 

 

3.2 Non-orthogonal Approach Angle with the Bedding Plane 

In the real world, some multi-layered bedding planes, regarded as frictional 

discontinuities, are not horizontally distributed in the formation. In this subsection, we did 

sensitivity analysis of approach angle, Z/H ratio (the ratio of the distance between the 

center of the vertical fracture and the horizontal interface to the pre-determined fracture 

height), fluid pressure, Young’s modulus and Poisson’s ratio, and investigated their 

impacts on the normalized width profiles of the vertical fracture along the z direction and 

the x direction, normalized opening of the inclined interface along the interface and 

normalized shear displacement discontinuity along the interface. The selected pre-

determined fracture geometries for each case are illustrated in Figure 3.31. These two 

crossing-shaped fracture geometries in Figure 3.31 both consist of a vertical fracture and 

an inclined bedding plane with approach angle 𝛼. Figure 3.31 (a) reveals that the injection 

source locates at the bedding plane. There has a distance z between the injection point and 
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the center of the bedding plane in Figure 3.31 (b). All required parameters are given in 

Table 3.1. 

 

Figure 3.31: Sketch of a crossing-shaped fracture geometry consisting of a vertical fracture 

and an inclined bedding plane with approach angle 𝛼: (a) Injection point locates at the 

bedding plane; (b) Injection point has a z distance from the center of the bedding plane. 

 

3.2.1 Approach Angle 

Approach angle is defined as the intersection angle between the initial fracture 

direction and the bedding plane. In this subsection, we selected the fracture geometry 

shown in Figure 3.31 (a) and then chose different approach angles (𝛼) to analyze the 

induced normal and shear stresses, the openings of the vertical fracture and oblique 

interface and also the shear displacement discontinuity along the oblique interface. Figures 

3.32, 3.33 and 3.34 elaborates the contour map of normalized induced stresses acting on 

the normalized x-y plane when the approach angle 𝛼 = 15°, 𝛼 = 30° and 𝛼 = 45°, 

respectively. The left figure depicts the normalized induced normal stress 𝜎𝑧𝑧 acting on x-
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y plane and the normalized induced shear stress 𝜏𝑥𝑦 is shown in the right figures. Positive 

stress behaves as a compressive stress and negative value as a tensile stress. 

Figure 3.35 (a) indicates the impact of approach angle on the normalized fracture 

width along the z direction. In this figure, we can observe that the vertical fracture width 

has a negative correlation with the approach angle. In other words, the minimum averaged 

fracture width can be obtained when the vertical fracture orthogonally contacts with the 

bedding plane. Width profile of the vertical fracture along the x direction is described in 

Figure 3.35 (b). Similarly, the vertical fracture width decreases as the increment of 

approach angle. Moreover, an unconspicuous width “trough” in the middle section of 

vertical fracture length can be observed if the approach angle is non-orthogonal, as a result 

of the induced compressive stress increases in that region. Figure 3.36 (a) and Figure 3.36 

(b) illustrate the normalized opening of the interface and the normalized shear 

displacement discontinuity along the interface (x direction), respectively. In Figure 3.36 

(a), the opening of the interface is positively correlated with the approach angle. When the 

approach angle is small (𝛼 = 15° and 𝛼 = 30°), a width “crest” is created in the region (-

0.4, 0.4), due to the fact that the compressive stress induced by the vertical fracture 

suddenly decreases in this range. The width “crest” becomes a “trough” as the approach 

angle gradually increases to 45°. With the increment of the approach angle from 45° to 

90°, the width “trough” becomes deeper because of a sudden increment of compressive 

stress acting on the bedding plane. Lee et al. (2018) indicated that hydraulic fracture with 

a larger approach angle has a wider width at the junction area of the hydraulic fracture and 

oblique vein, in the simulation results for veins with two different approach angles of 30° 
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and 45°. Moreover, from three left figures of Figures 3.32, 3.33 and 3.34, we can observe 

that the normalized induced compressive stress along the x direction decreases with the 

increment of approach angle from 15° to 45°, which also demonstrates that the opening 

of the interface is positively correlated with the approach angle. Figure 3.36 (b) indicates 

that a shear displacement discontinuity is created when the vertical fracture interacts with 

the oblique interface. There is no shear displacement discontinuity when the approach 

angle is orthogonal. We also observed that shear displacement discontinuity increases as 

the increment of the approach angle. Additionally, a “trough” of shear displacement 

discontinuity appears in the middle section area along the y direction. With increment of 

the approach angle, the curvature of this “trough” becomes larger. Simulation results from 

Lee et al. (2018) illustrated that more shear cracks would aggregate at the junction area 

with a larger approach angle, which also demonstrates the positive correlation between 

the shear sliding along the interface and approach angle in the non-orthogonal case. In 

addition, three right figures of Figures 3.32, 3.33 and 3.34 illustrate the normalized 

induced shear stress 𝜏𝑥𝑦 along the interface becomes larger as the approaching angle 

increases from 15° to 45°, which also explains the “trough” depth of the shear 

displacement discontinuity is positively correlated with the approach angle. From Figure 

3.36, we knew that larger shear displacement discontinuity makes the opening of the 

interface smaller. It demonstrates that the bedding plane is much more difficult to be 

opened and shear sliding also occurs more easily along the interface when the vertical 

fracture interacts with an oblique interface. 
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Figure 3.32: Induced stresses acting on normalized x-y plane induced by crossing-shaped 

fracture when approach angle 𝛼 = 15° (a) Induced normal stress (𝜎𝑧𝑧); (b) Induced shear 

stress (𝜏𝑥𝑦). 

 

Figure 3.33: Induced stresses acting on normalized x-y plane induced by crossing-shaped 

fracture when approach angle 𝛼 = 30° (a) Induced normal stress (𝜎𝑧𝑧); (b) Induced shear 

stress (𝜏𝑥𝑦). 
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Figure 3.34: Induced stresses acting on normalized x-y plane induced by crossing-shaped 

fracture when approach angle 𝛼 = 45° (a) Induced normal stress (𝜎𝑧𝑧); (b) Induced shear 

stress (𝜏𝑥𝑦). 

 

 

Figure 3.35: (a) Impact of approach angle on the normalized fracture width along the z 

direction; (b) Impact of approach angle on the normalized fracture width along the x 

direction. 
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Figure 3.36: (a) Impact of approach angle on the normalized interface opening along the 

interface (x direction); (b) Impact of approach angle on the normalized shear displacement 

discontinuity along the interface (x direction). 

 

3.2.2 Distance with the Injection Point  

In this subsection, we selected the fracture geometry shown in Figure 3.31 (b). All 

required parameters are revealed in Table 3.1 and we only changed the value of Z/H ratio 

as 0, 0.25 and 0.4. Impact of Z/H ratio (the ratio of the distance between the center of the 

vertical fracture and the oblique interface to the fracture height) would be analyzed. This 

ratio can be regarded as an equivalent variable with the distance between the injection 

point and the interface during hydraulic fracture treatments. Figure 3.37 (a) elaborates the 

normalized width profiles of the vertical fracture along the z direction. A positive relation 

between the fracture width and Z/H ratio can be observed no matter the approach angle 

equals 45° or 90°. We also found that a width jump appears at the crossing position of the 

interface when the fracture geometry both satisfies that Z/H ratio does not equal zero and 

approach angle is orthogonal. This width jump is used for quantitatively calculating the 

interfacial sliding along the bedding plane, which is positively correlated with Z/H ratio 

when the approach angle equals 90°. Moreover, no obvious width jump occurs when the 
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vertical fracture non-orthogonally approaches with an inclined bedding plane, compared 

with the case of orthogonal approach angle. This is because the created shear displacement 

discontinuity along the bedding plane is smaller than that of orthogonal cases, as depicted 

in Figure 3.38 (b). Figure 3.37 (b) shows the normalized vertical fracture width along the 

x direction. Width alteration seems more obvious with the increment of Z/H ratio in the 

case of orthogonal approach angle. The normalized opening of interface (along the x 

direction) for different Z/H ratio and approach angle is described in Figure 3.38 (a). In the 

cases of orthogonal approach angle (labeled as yellow, light blue and light green colors), 

the opening of the interface is symmetric with x = 0. We observed a width “trough” in the 

middle section as a result of sudden increment of compressive stress acting on the 

interface. The “trough” depth is negatively correlated with Z/H ratio. Moreover, the 

opening of the interface is asymmetric with x = 0 if the approach angle equals 45° and 

Z/H ratio is not zero, due to the fact that the elevation of the interface makes the fracture 

geometry not symmetric any more. Figure 3.38 (b) illustrates the normalized shear 

displacement discontinuity along the interface (x direction). Compared with the case of 

orthogonal approach angle, the shear displacement discontinuity in the case of non-

orthogonal approach angle is much smaller. In addition, the shear displacement 

discontinuity increases slightly with the increment of approach angle in the non-

orthogonal case. 
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Figure 3.37: Impact of Z/H ratio for two different approach angle 45° and 90°: (a) 

Normalized vertical fracture width along the z direction; (b) Normalized vertical fracture 

width along the x direction. 

 

Figure 3.38: Impact of Z/H ratio for two different approach angle 45° and 90°: (a) 

Normalized opening of the bedding plane along the interface (x direction); (b) Normalized 

shear displacement discontinuity of the bedding plane along the interface (x direction). 

 

3.2.3 Fluid Pressure within Fracture  

Fluid pressure (Pf) is a significant parameter in determining the fracture width and 

further influence the fracture height growth. We would analyze the impact of fluid 

pressure on the width enlargement and restriction and also the shear displacement 

discontinuity along the interface, for two different approaching angle 45° and 90° in the 

fracture geometry depicted in Figure 3.31 (a). In Figures 3.39 and 3.40, we selected three 
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different fluid pressure 6000 psi, 6500 psi and 7000 psi. Figure 3.39 manifests that the 

vertical fracture width has a significantly positive correlation with the fluid pressure, 

irrespective of the approach angle. However, the change of fracture width is more 

noteworthy as the fluid pressure increases in the case of non-orthogonal angle. 

Interestingly, a “peak” is generated at the central region of the vertical fracture (region 

centered at z = 0 in Figure 3.39 (a) and region centered at x = 0 in Figure 3.39 (b)), as 

illustrated in Figure 3.39. In the case of non-orthogonal approach angle, we also observed 

an obvious “trough” in the centered region of the vertical fracture (along the x direction) 

when the fluid pressure is relatively small (Pf = 6000 psi). As we aggrandized the fluid 

pressure, it appears a transition from “trough” to “crest” (increasing fluid pressure from 

Pf = 6500 psi to Pf = 7000 psi). The opening of the bedding plane also positively related 

with the fluid pressure, as shown in Figure 3.40 (a). Fluid pressure has more impact on the 

tensile opening of the interface when the vertical fracture orthogonally approaches the 

horizontal interface, compared with the opening alteration in the case of non-orthogonal 

approach angle. Compressive stress acting on the middle section of the interface suddenly 

enlarges, which creates a “trough” of interface opening in this region. Figure 3.40 (b) 

shows that no shear sliding exists along the interface when approach angle equals 90°. 

However, shear displacement discontinuity is created as the interface becomes inclined 

and it has positive relation with fluid pressure. If the vertical fracture penetrates the oblique 

interface, larger fluid pressure makes the vertical fracture width much wider and the 

opening of the interface much narrower and more shear sliding appears along the interface, 
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which makes the fracture have more opportunity to divert its propagation pathway along 

the interface. 

 

Figure 3.39: Impact of fluid pressure for two different approach angle 45° and 90°: (a) 

Normalized vertical fracture width along the z direction; (b) Normalized vertical fracture 

width along the x direction. 

 

Figure 3.40: Impact of fluid pressure for two different approach angle 45° and 90°: (a) 

Normalized opening of the bedding plane along the interface (x direction); (b) Normalized 

shear displacement discontinuity of the bedding plane along the interface (x direction). 

 

3.2.4 Young’s Modulus 

Young’s modulus (YM), regarded as a significant rock property in the formation, 

has a big impact on the pathway of fracture propagation, which further determines the 
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fracture geometry. In this subsection, we used the fracture geometry from Figure 3.31 (a) 

and only altered the value of Young’s modulus (1E6 psi, 3E6 psi and 6E6 psi) and kept 

other parameters equivalent with that in Table 3.1, in order to investigate the impact of 

Young’s modulus on fracture width and shear displacements along the horizontal interface 

under the condition of two different approaching angle 45° and 90°. From Figures 3.41 

(a) and 3.41 (b), we firstly found a negative correlation between the width of the vertical 

fracture and Young’s modulus. Then we observed that the width of the vertical fracture 

increases as we changed the approach angle from orthogonal angle to non-orthogonal 

angle. However, the difference of the fracture width obtained from two different approach 

angle becomes smaller as the increment of Young’s modulus. No evident alteration can 

be observed when Young’s modulus reaches 6E6 psi. In terms of the opening of the 

interface, there is an obvious difference between width profile of the interface obtained 

from the case of orthogonal approach angle and that obtained from the non-orthogonal 

approach angle, with the same Young’s modulus, as depicted in Figure 3.42 (a). Smaller 

Young’s modulus makes the opening of the interface and shear displacement discontinuity 

both larger in the case of non-orthogonal approach angle, as illustrated in Figure 3.42 (a) 

and Figure 3.42 (b). At the same time, the impact of Young’s modulus on the shear sliding 

along the interface is more obvious than its impact on the opening of the interface. 
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Figure 3.41: Impact of Young’s modulus for two different approach angle 45° and 90°: 

(a) Normalized vertical fracture width along the z direction; (b) Normalized vertical 

fracture width along the x direction. 

 

Figure 3.42: Impact of Young’s modulus for two different approach angle 45° and 90°: 

(a) Normalized opening of the bedding plane along the interface (x direction); (b) 

Normalized shear displacement discontinuity of the bedding plane along the interface (x 

direction). 

 

3.2.5 Poisson’s Ratio 

In this subsection, we kept using the parameters in Table 3.1 and altered the value 

of Poisson’s ratio (PR) as 0.1, 0.25 and 0.4. Figures 3.43 and 3.44 indicate the impact of 

Poisson’s ratio on the normalized vertical fracture width along the x and z directions, and 

the normalized interface opening and shear displacement discontinuity along the interface 
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(x direction), with two different approach angle 45° and 90°, respectively. Figure 3.43 

shows that vertical fracture width has a negative relation with the Poisson’s ratio. Vertical 

fracture width decreases as the approach angle transforms from the non-orthogonal angle 

to the orthogonal angle. In Figure 3.44, Poisson’s ratio has almost no influence on the 

opening of the interface and shear displacement discontinuity along the interface in the 

case of non-orthogonal approach angle. The effect of Poisson’ ratio on the opening of the 

interface becomes observable when the vertical fracture orthogonally contacts with the 

interface. Hence, Poisson’ ratio is important of determining the opening of both the 

vertical fracture and interface, but it has less impact on the shear sliding along the 

interface, especially in the case of non-orthogonal approach angle.  

 

Figure 3.43: Impact of Poisson’s ratio for two different approach angle 45° and 90°: (a) 

Normalized vertical fracture width along the z direction; (b) Normalized vertical fracture 

width along the x direction. 
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Figure 3.44: Impact of Poisson’s ratio for two different approach angle 45° and 90°: (a) 

Normalized opening of the bedding plane along the interface (x direction); (b) Normalized 

shear displacement discontinuity of the bedding plane along the interface (x direction). 

 

3.3 Conclusion 

In this chapter, we did sensitivity analysis for the cases of orthogonal approach 

angle and non-orthogonal approach angle, respectively. In the section of orthogonal 

approach angle, we had a case of single fracture and single interface, a case of multiple 

fractures and single interface, and a case of single fracture and multiple interfaces. The 

width profile of fractures and the interaction of the vertical and horizontal fracture 

segments with predetermined fracture path were analyzed. We concluded that: 

(1) A jump of fracture width on the vertical fracture at the crossing position of the 

interface, also defined as the interfacial sliding distance, is created due to the shear 

displacement discontinuities along the horizontal interface; 

(2) Both widths of fracture segments and interfacial sliding distance are positively related 

with the distance between the center of the vertical fracture and the horizontal 

interface, half-length of horizontal fracture segment, the net pressure within fracture 

segments (vertical fracture or horizontal interface). However, Young’s Modulus has a 
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negative relationship with both width of fracture segments and interfacial sliding 

distance; 

(3) Compared with two fractures without the horizontal interface, the case of two vertical 

fractures with the interface has smaller fracture width under the interaction with the 

horizontal interface. Additionally, more energy would be dissipated in shearing sliding 

along the horizontal interface, which eventually causes the fracture height 

containment; 

(4) For the case of multiple fractures, fracture spacing plays an important role in 

determining fracture width profiles, interfacial sliding distance and shear 

displacements along the fracture segments. Both widths of vertical fracture and 

horizontal interface are increasing with the increment of fracture spacing. 

 

The 3-D fracture model developed by 3D DDM, also enables to simulate the 

interaction between the hydraulic fracture and oblique interface or other inclined frictional 

discontinuities. In the section of non-orthogonal approach angle with bedding planes, 

width profiles of both vertical fracture and interface segment were analyzed under the 

influence of different parameters, such as approaching angle, Z/H ratio, fluid pressure, 

Young’s modulus and Poisson’s ratio. We concluded that: 

(1) Interface is much more difficult to be opened and shear sliding appears along the 

interface when the vertical fracture contacts with the oblique bedding plane; 

(2) In the case of non-orthogonal approach angle, the opening of the interface has a 

positive correlation with the approach angle between the vertical fracture and the 
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interface. Moreover, shear displacement discontinuity along the interface increases 

with the increment of approach angle; 

(3) Elevating the interface from the injection source has an unconspicuous impact on the 

interface opening and shear sliding along the interface in the case of non-orthogonal 

approach angle. In the orthogonal case, vertical fracture width is highly influenced by 

Z/H ratio; 

(4) When the vertical fracture contacts with the oblique interface, fluid pressure has less 

influence on the opening of the interface but has an obvious effect on the shear sliding 

along the interface. Moreover, the increment of fluid pressure makes the alteration of 

vertical fracture more apparently in the case of non-orthogonal approach angle; 

(5) Young’s modulus and Poisson’s ratio, as very significant formation properties, also 

influence the opening and the shear sliding of the interface. Compared with the case 

of non-orthogonal approach angle, the interface is easier to be opened in the orthogonal 

case, especially with a small Young’s modulus. Smaller Young’s modulus also creates 

larger shear displacement discontinuity along the interface when the approach angle is 

non-orthogonal. Additionally, Poisson’ ratio does have an obvious effect on the 

interface opening and almost no effect on the shear sliding in the non-orthogonal case. 
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4. FLUID FLOW 

 

This chapter includes five sections: fluid flow mathematical model, numerical 

modeling, model flowchart, iterative coupling algorithm of rock deformation and fluid 

flow, and conclusion. In terms of fluid flow mathematical model, two governing equations 

are introduced. There are governing equation of fluid flow inside the fracture and 

governing equation of material balance. In the section of numerical modeling, two-

dimensional discretization and boundary condition at the bedding plane are described. 

Then model flow chart and iterative coupling algorithm are shown in the following 

sections.  

 

4.1 Fluid Flow Mathematical Model 

4.1.1 Governing Equations of Fluid Flow inside the Fracture 

Figure 4.1 shows a hydraulic fracture geometry. Currie (1974) reformulated the 

Navier-Stokes equation for the case of the incompressible Newtonian fluid as, 

𝜌
𝑑𝒗⃗⃗⃗

𝑑𝑡
= 𝜌𝑭⃗⃗⃗ + 𝜇𝛻2𝒗⃗⃗⃗ − 𝛻𝑝                                                                                               (4.1) 

where 𝐯⃗⃗ = (vx, vy, vz) is the velocity vector, ρ is the fluid density, 𝐅⃗ is the body force per 

unit mass, 𝜇 is the fluid viscosity, p = p(x, y, t) is the pressure. ρ
𝑑𝐯⃗⃗

𝑑𝑡
  is the inertia part and 

𝜌𝐅⃗  is the body force part. If we neglect the inertia and body forces, the equation above 

can be simplified as, 

𝛻𝑝 = 𝜇𝛻2𝒗⃗⃗⃗                                                                                                                    (4.2) 
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Additionally, we know that ∇2𝐯⃗⃗ contains three components, 

𝛻2𝒗⃗⃗⃗ =
𝜕2𝒗

𝜕𝑥2
+

𝜕2𝒗

𝜕𝑦2
+

𝜕2𝒗

𝜕𝑧2
                                                                                                  (4.3) 

 

 

Figure 4.1: Hydraulic fracture geometry in three dimensions.  

 

The derivatives of the velocity components in the x-y plane with respect to z are 

much larger than other derivatives of the velocity components because of the fluid 

pressure variation along the fracture width is negligible. Hence, Eq. (4.3) can be simplified 

as, 

𝛻𝑝 = 𝜇𝛻2𝒗⃗⃗⃗ = 𝜇(
𝜕2𝒗

𝜕𝑥2
+

𝜕2𝒗

𝜕𝑦2
+

𝜕2𝒗

𝜕𝑧2
) ≈ 𝜇

𝜕2𝒗

𝜕𝑧2
                                                                   (4.4) 

Then Eq. (4.4) is split into two components along the x and y directions, 

respectively,  

𝜕𝑝

𝜕𝑥
= 𝜇

𝜕2𝑣𝑥

𝜕𝑧2 = 𝜇
𝜕

𝜕𝑧
(
𝜕𝑣𝑥

𝜕𝑧
)                                                                                               (4.5) 
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𝜕𝑝

𝜕𝑦
= 𝜇

𝜕2𝑣𝑦

𝜕𝑧2 = 𝜇
𝜕

𝜕𝑧
(
𝜕𝑣𝑦

𝜕𝑧
)                                                                                                (4.6) 

Integrate Eqs. (4.5) and (4.6) with respect to z, we can obtain the equations, 

∫
𝜕𝑝

𝜕𝑥
𝑑𝑧

𝑧

0
= ∫ 𝜇

𝜕

𝜕𝑧
(
𝜕𝑣𝑥

𝜕𝑧
) 𝑑𝑧

𝑧

0
 ⇒  

𝜕𝑝

𝜕𝑥
𝑧 = 𝜇

𝜕𝑣𝑥

𝜕𝑧
+ 𝑘1(𝑥, 𝑦)                                              (4.7) 

∫
𝜕𝑝

𝜕𝑦
𝑑𝑧

𝑧

0
= ∫ 𝜇

𝜕

𝜕𝑧
(
𝜕𝑣𝑦

𝜕𝑧
) 𝑑𝑧

𝑧

0
 ⇒  

𝜕𝑝

𝜕𝑦
𝑧 = 𝜇

𝜕𝑣𝑦

𝜕𝑧
+ 𝑘2(𝑥, 𝑦)                                              (4.8) 

where 𝑘1 and 𝑘2 are arbitrary functions of coordinates x and y. Eqs. (4.7) and (4.8) can be 

integrated again with respect to z and we can obtain the equations, 

 ∫
𝜕𝑝

𝜕𝑥
𝑧𝑑𝑧

𝑧

0
= ∫ [𝜇

𝜕𝑣𝑥

𝜕𝑧
+ 𝑘1(𝑥, 𝑦)] 𝑑𝑧

𝑧

0
 ⇒  𝑣𝑥 =

𝑧2

2𝜇

𝜕𝑝

𝜕𝑥
+

𝑘1(𝑥,𝑦)

𝜇
𝑧 + 𝑘3(𝑥, 𝑦)               (4.9) 

∫
𝜕𝑝

𝜕𝑦
𝑧𝑑𝑧

𝑧

0
= ∫ [𝜇

𝜕𝑣𝑦

𝜕𝑧
+ 𝑘2(𝑥, 𝑦)] 𝑑𝑧

𝑧

0
 ⇒  𝑣𝑦 =

𝑧2

2𝜇

𝜕𝑝

𝜕𝑦
+

𝑘2(𝑥,𝑦)

𝜇
𝑧 + 𝑘4(𝑥, 𝑦)              (4.10) 

where 𝑘3 and 𝑘4 are arbitrary functions of coordinates x and y. We assume that no slip 

occurs in the x direction on the surface of the fracture, 

𝑣𝑥 = 0 , at 𝑧 = −
𝑤

2
 and 𝑧 =

𝑤

2
                                                                                    (4.11) 

Hence, Eq. (4.9) can be formulated according to the boundary condition above, 

1

2𝜇

𝜕𝑝

𝜕𝑥
(
𝑤

2
)
2

+
𝑘1(𝑥,𝑦)

𝜇
(
𝑤

2
) + 𝑘3(𝑥, 𝑦) = 0, when 𝑧 =

𝑤

2
                                                (4.12) 

1

2𝜇

𝜕𝑝

𝜕𝑥
(−

𝑤

2
)
2

+
𝑘1(𝑥,𝑦)

𝜇
(−

𝑤

2
) + 𝑘3(𝑥, 𝑦) = 0, when 𝑧 = −

𝑤

2
                                     (4.13) 

Then we can obtain the solution for 𝑘3(𝑥, 𝑦) as, 

𝑘3(𝑥, 𝑦) = −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑥
                                                                                              (4.14) 

Similarly, we also implement the same boundary condition along the y direction, 

𝑣𝑦 = 0 , at 𝑧 = −
𝑤

2
 and 𝑧 =

𝑤

2
                                                                                    (4.15) 



 

116 

 

 

Eq. (4.10) can be formulated according to the boundary condition in Eq. 

(4.15), 

1

2𝜇

𝜕𝑝

𝜕𝑦
(
𝑤

2
)
2

+
𝑘2(𝑥,𝑦)

𝜇
(
𝑤

2
) + 𝑘4(𝑥, 𝑦) = 0, when 𝑧 =

𝑤

2
                                                (4.16) 

1

2𝜇

𝜕𝑝

𝜕𝑦
(−

𝑤

2
)
2

+
𝑘2(𝑥,𝑦)

𝜇
(−

𝑤

2
) + 𝑘4(𝑥, 𝑦) = 0, when 𝑧 = −

𝑤

2
                                     (4.17) 

Then the solution of 𝑘4(𝑥, 𝑦) can be obtained, 

𝑘4(𝑥, 𝑦) = −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑥
                                                                                              (4.18) 

Eqs. (4.9) and (4.10) can be determined by the boundary conditions from Eqs. 

(4.11) to (4.18). Hence, the velocity profiles across the fracture width can be obtained as, 

𝑣𝑥 = −
1

8𝜇
[𝑤2 − 4𝑧2]

𝜕𝑝

𝜕𝑥
                                                                                             (4.19) 

𝑣𝑦 = −
1

8𝜇
[𝑤2 − 4𝑧2]

𝜕𝑝

𝜕𝑦
                                                                                             (4.20) 

where 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) represents the fracture width (fracture opening). Thereafter we can 

derive the flow rates per unit length (𝑚2/𝑠) in the x and y directions revealed as, 

𝑞𝑥 = ∫ 𝑣𝑥𝑑𝑧

𝑤
2

−
𝑤
2

= ∫ −
1

2𝜇
[(

𝑤

2
)
2

− 𝑧2]
𝜕𝑝

𝜕𝑥
𝑑𝑧

𝑤
2

−
𝑤
2

= ∫ [−
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑥
+

𝑧2

2𝜇

𝜕𝑝

𝜕𝑥
]𝑑𝑧

𝑤
2

−
𝑤
2

= ∫ −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑥
𝑑𝑧

𝑤
2

−
𝑤
2

+ ∫
𝑧2

2𝜇

𝜕𝑝

𝜕𝑥
𝑑𝑧

𝑤
2

−
𝑤
2

= −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑥
(
𝑤

2
− (

𝑤

2
)) +

1

6𝜇

𝜕𝑝

𝜕𝑥
𝑧3|

−
𝑤
2

+
𝑤
2 = −

𝑤3

8𝜇

𝜕𝑝

𝜕𝑥
+

𝑤3

24𝜇

𝜕𝑝

𝜕𝑥

= −
𝑤3

12𝜇

𝜕𝑝

𝜕𝑥
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……………………………………………………………………………………… (4.21) 

𝑞𝑦 = ∫ 𝑣𝑦𝑑𝑧

𝑤/2

−𝑤/2

= ∫ −
1

2𝜇
[(

𝑤

2
)
2

− 𝑧2]
𝜕𝑝

𝜕𝑦
𝑑𝑧

𝑤/2

−𝑤/2

= ∫ [−
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑦
+

𝑧2

2𝜇

𝜕𝑝

𝜕𝑦
]𝑑𝑧

𝑤
2

−
𝑤
2

= ∫ −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑦
𝑑𝑧

𝑤
2

−
𝑤
2

+ ∫
𝑧2

2𝜇

𝜕𝑝

𝜕𝑦
𝑑𝑧

𝑤
2

−
𝑤
2

= −
1

2𝜇
(
𝑤

2
)
2 𝜕𝑝

𝜕𝑦
(
𝑤

2
− (

𝑤

2
)) +

1

6𝜇

𝜕𝑝

𝜕𝑦
𝑧3|

−
𝑤
2

+
𝑤
2 = −

𝑤3

8𝜇

𝜕𝑝

𝜕𝑦
+

𝑤3

24𝜇

𝜕𝑝

𝜕𝑦

= −
𝑤3

12𝜇

𝜕𝑝

𝜕𝑦
 

……………………………………………………………………………………… (4.22) 

  

For simplification, Gu (1987) ignored the gravity term and spurt terms. 

Additionally, there is only one injection source (set at the center point of the first boundary 

element of a growing fracture). Figure 4.2 reveal the flow rate conservation within the 

fracture (Gu 1987). We have the balance equation of control volume as, 

[𝑞𝑥∆𝑦 − (𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
∆𝑥) ∆𝑦] + [𝑞𝑦∆𝑥 − (𝑞𝑦 +

𝜕𝑞𝑦

𝜕𝑦
∆𝑦)∆𝑥] = (

𝜕𝑤

𝜕𝑡
+ 𝑞𝐿)∆𝑥∆𝑦       (4.23) 

Eq. (4.24), as a continuity equation of flow rate conservation, is reformulated after 

eliminating equivalent items from Eq. (4.23), 

−
𝜕𝑞𝑥

𝜕𝑥
−

𝜕𝑞𝑦

𝜕𝑦
=

𝜕𝑤

𝜕𝑡
+ 𝑞𝐿                                                                                                (4.24) 

where 
𝜕w

𝜕𝑡
 represents the rate of fracture volume change and qL represents the fluid leak-

off rate which is from the fracture surfaces into the rock formation, 
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𝑞𝐿 =
2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
                                                                                                              (4.25) 

where 𝐶𝐿 is an experimentally determined leak-off coefficient and 𝜏(𝑥, 𝑦) is the time at 

which fluid leak-off begins at a point (𝑥, 𝑦) on the fracture surface. 

 

 

 

Figure 4.2: Flow rate conservation inside the fracture (Gu 1987). 
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Combining with the Eqs. (4.21), (4.22), (4.24) and (4.25), we obtain the simplified 

governing equation for the fluid motion inside the fracture, 

𝜵 ∙ [
𝑤3

12𝜇
𝜵𝑝] =

𝜕

𝜕𝑥
[
𝑤3

12𝜇

𝜕𝑝

𝜕𝑥
] +

𝜕

𝜕𝑦
[
𝑤3

12𝜇

𝜕𝑝

𝜕𝑦
] =

𝜕𝑤

𝜕𝑡
+

2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
                                           (4.26) 

𝐷(𝑤) =
𝑤3

12𝜇
                                                                                                                 (4.27) 

Additionally, the following cubic law equation governs the flow of incompressible 

fluid at the injection point, 

−
𝑤3(𝑥,𝑦,𝑡)

12𝜇
𝛻𝑝(𝑥, 𝑦, 𝑡) = 𝑄(𝑥, 𝑦, 𝑡)                                                                              (4.28) 

where ∇ represents two-dimensional gradient operator, p(x, y, t) is the fluid pressure inside 

the fracture, 𝜇 is the fluid viscosity, Q(x, y, t) represents the fluid injection rate. 

 

4.1.2 Governing Equations of Material Balance  

We can combine Eqs. (4.26) and (4.28) and then do the integration as, 

∫
𝜕𝑤

𝜕𝑡
𝑑𝑉

𝛺(𝑡)
= ∫ [𝜵 ∙ [𝐷(𝑤)𝜵𝑝] −

2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
+ 𝛿(𝑥, 𝑦)𝑄(𝑥, 𝑦, 𝑡)]𝑑𝑉

𝛺(𝑡)
                      (4.29) 

Divergence theorem can be applied as,  

∭ (𝜵 ∙ 𝑭⃗⃗⃗)𝑑𝑉
𝑉

= ∯ (𝑭⃗⃗⃗ ∙ 𝒏⃗⃗⃗)
𝑆

𝑑𝑆                                                                                 (4.30) 

Then the first term of the right-hand side of Eq. (4.29) can be written as, 

∫ [𝜵 ∙ [𝐷(𝑤)𝜵𝑝]𝑑𝑉
𝛺(𝑡)

= ∫ 𝐷(𝑤) 𝜵𝑝 𝒏⃗⃗  𝑑𝑆
𝜕𝛺(𝑡)

= ∫ 𝐷(𝑤) 
𝜕𝑝

𝜕𝒏⃗⃗ 
 𝑑𝑆

𝜕𝛺(𝑡)
                      (4.31) 

In terms of Dirac delta function, we know that, 

𝛿2(𝑥, 𝑦) = {
0   𝑥2 + 𝑦2 ≠ 0

∞   𝑥2 + 𝑦2 = 0
                                                                                      (4.32) 
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Then the third term of the right-hand side of Eq. (4.29) is reformulated as,  

∫ 𝛿(𝑥, 𝑦)𝑄(𝑥, 𝑦, 𝑡)
𝛺(𝑡)

𝑑𝑉 = 𝑄(𝑥, 𝑦, 𝑡) ∫ √𝛿(𝑥)𝛿(𝑦)
𝛺(𝑡)

𝑑𝑉 = 𝑄(𝑥, 𝑦, 𝑡)                  (4.33) 

Application of Leibnitz’s rule gives,  

𝑑

𝑑𝑥
(∫ 𝑓(𝑥, 𝑦)𝑑𝑦

𝑦1

𝑦0
) = ∫ 𝑓𝑥(𝑥, 𝑦)𝑑𝑦

𝑦1

𝑦0
                                                                         (4.34) 

Hence, the deformation formulas of the left-land side of Eq. (4.29) can be written 

as, 

 ∫
𝜕𝑤

𝜕𝑡
𝑑𝑉

𝛺(𝑡)
=

𝜕

𝜕𝑡
∫ 𝑤𝑑𝑉
𝛺(𝑡)

                                                                                         (4.35) 

Hence, we obtain the deformed formulas for Eq. (4.29),  

𝜕

𝜕𝑡
∫ 𝑤𝑑𝑉
𝛺(𝑡)

= ∫ 𝐷(𝑤)
𝜕𝑝

𝜕𝒏⃗⃗ 
𝑑𝑆

𝜕𝛺(𝑡)
− ∫

2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
𝑑𝑉

𝛺(𝑡)
                                               (4.36) 

The boundary condition as the fluid flux at the fracture front equals to zero,  

−𝐷(𝑤)
𝜕𝑝

𝜕𝒏⃗⃗⃗
= −

𝑤3

12𝜇

𝜕𝑝

𝜕𝒏⃗⃗⃗
= 0, 𝜕𝛺𝑓                                                                                 (4.37) 

Thus, we have, 

∫ 𝐷(𝑤)
𝜕𝑝

𝜕𝒏⃗⃗ 
𝑑𝑆

𝜕𝛺(𝑡)
= 0                                                                                                 (4.38) 

Then we get new formulas for Eq. (4.29), 

𝜕

𝜕𝑡
∫ 𝑤𝑑𝑉
𝛺(𝑡)

= 𝑄(𝑥, 𝑦, 𝑡) − ∫ [
2𝐶𝐿

√𝑡 − 𝜏(𝑥, 𝑦)
] 𝑑𝑉

𝛺(𝑡)

= 𝑄(𝑥, 𝑦, 𝑡) − ∫
2𝐶𝐿

√𝑡 − 𝜏(𝑥, 𝑦)
𝑑𝑉

𝛺(𝑡)

= 𝑄(𝑥, 𝑦, 𝑡) − ∫
2𝐶𝐿

√𝑡 − 𝜏(𝑥, 𝑦)
𝑑𝑉

𝛺(𝑡)

 

……………………………………………………………………………………… (4.39) 
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We do integration with respect to time from the beginning of the pumping process, 

we obtain the solvability condition,  

∫ [
𝜕

𝜕𝑡
∫ 𝑤𝑑𝑉
𝛺(𝑡)

]𝑑𝑡
𝑡

0

= ∫ [𝑄(𝑥, 𝑦, 𝑡) − ∫
2𝐶𝐿

√𝑡 − 𝜏(𝑥, 𝑦)
𝑑𝑉

𝛺(𝑡)

]𝑑𝑡
𝑡

0

 

∫ 𝑤𝑑𝑉
𝛺(𝑡)

= ∫ 𝑄(𝑥, 𝑦, 𝑡) 𝑑𝑡
𝑡

0

− ∫ ∫
2𝐶𝐿

√𝑡 − 𝜏(𝑥, 𝑦)
𝑑𝑉

𝛺(𝑡)

𝑡

0

𝑑𝑡 

……………………………………………………………………………………… (4.40) 

The equation of global conservation of mass can be formulated as, 

∫ 𝑄(𝑥, 𝑦, 𝑡)𝑑𝑡
𝑡

0
= ∫ 𝑤 𝑑𝑉

𝛺(𝑡)
+ ∫ [∫

2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
𝑑𝑉

𝛺(𝑡)
] 𝑑𝑡

𝑡

0
                                           (4.41) 

 

4.2 Numerical modeling  

4.2.1 Two-Dimensional Discretization 

According to Eq. (4.41), the fracture volume balance equation below can be 

implemented for calculating the pumping time for each time step, which is then used to 

determine the change rate of fracture width in Eq. (4.28), 

∑ 𝐴𝑖
(𝑇)

𝑤𝑖
(𝑇)𝑁(𝑇)

𝑖=1 − ∑ 𝐴𝑖
(𝑇−1)

𝑤𝑖
(𝑇−1)𝑁(𝑇−1)

𝑖=1 = 𝑞0𝛥𝑡 − ∑ 𝐴𝑖
(𝑇)

(
2𝐶𝐿

√𝑡−𝜏(𝑥,𝑦)
)
𝑖

(𝑇)

𝛥𝑡𝑁(𝑇)

𝑖=1         (4.42) 

where 𝐴𝑖
(𝑇)

 and 𝑤𝑖
(𝑇)

 represent the cross-section area and the opening of boundary element 

𝑖 at the current time step, respectively. 𝐴𝑖
(𝑇−1)

 and 𝑤𝑖
(𝑇−1)

 represent the cross-section area 

and the opening of boundary element 𝑖 at the previous time step, respectively. 𝑁(𝑇) and 

𝑁(𝑇−1) are total number of boundary element at the current time step and at the previous 

time step, respectively. q0 is the pumping rate at the current time step, Δt is the pumping 
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time for current time step. Moreover, Eq. (4.26) can be written as a matrix equation form 

via finite difference method (LeVeque 2007), 

𝑇̃𝑝 = 𝑏⃗                                                                                                                          (4.43) 

where 𝑇̃ is the transmissibility matrix, 𝑝  is the vector representing the pressure within each 

boundary element of the fracture, 𝑏⃗  is the vector including the term of the rate of fracture 

volume change.  

According to Eq. (4.26), we can do two-dimensional discretization along the x 

and y directions (neglecting the leak-off term), as shown in Figure 4.3, 

𝜕𝑤𝑖,𝑗

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑤3

12𝜇
∙
𝜕𝑝

𝜕𝑥
] +

𝜕

𝜕𝑦
[
𝑤3

12𝜇
∙
𝜕𝑝

𝜕𝑦
]

=
1

48𝜇∆𝑥𝑖,𝑗
[
(𝑤𝑖−1,𝑗 + 𝑤𝑖,𝑗)

3

𝑎𝑖−1,𝑗 + 𝑎𝑖,𝑗
(𝑝𝑖−1,𝑗 − 𝑝𝑖,𝑗)

−
(𝑤𝑖,𝑗 + 𝑤𝑖+1,𝑗)

3

𝑎𝑖,𝑗 + 𝑎𝑖+1,𝑗
(𝑝𝑖,𝑗 − 𝑝𝑖+1,𝑗)]

+
1

48𝜇∆𝑦𝑖,𝑗
[
(𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1)

3

𝑏𝑖,𝑗 + 𝑏𝑖,𝑗−1
(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1)

−
(𝑤𝑖,𝑗 + 𝑤𝑖,𝑗+1)

3

𝑏𝑖,𝑗 + 𝑏𝑖,𝑗+1
(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗+1)] 

……………………………………………………………………………………… (4.44) 

where 𝑤𝑖,𝑗, 𝑝𝑖,𝑗, 𝑎𝑖,𝑗, 𝑏𝑖,𝑗 represent the width of element (𝑖, 𝑗), the presure of element (𝑖, 𝑗), 

the half-length of element (𝑖, 𝑗) and the half-height of element (𝑖, 𝑗), respectively. 

 



 

123 

 

 

 

Figure 4.3 2D discretization example. 

 

Then Eq. (4.44) can be reformulated as,  

𝜕𝑤𝑖,𝑗

𝜕𝑡
= 𝑇

𝑖−
1
2
,𝑗
(𝑝𝑖−1,𝑗 − 𝑝𝑖,𝑗) − 𝑇

𝑖+
1
2
,𝑗
(𝑝𝑖,𝑗 − 𝑝𝑖+1,𝑗) + 𝑇

𝑖,𝑗−
1
2
(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1)

− 𝑇
𝑖,𝑗+

1
2
(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗+1)

= (𝑇
𝑖−

1
2
,𝑗
) 𝑝𝑖−1,𝑗 + (𝑇

𝑖+
1
2
,𝑗
) 𝑝𝑖+1,𝑗 + (−𝑇

𝑖,𝑗−
1
2
)𝑝𝑖,𝑗−1 + (𝑇

𝑖,𝑗+
1
2
) 𝑝𝑖,𝑗+1

+ (−𝑇
𝑖−

1
2
,1

− 𝑇
𝑖+

1
2
,1

+ 𝑇
𝑖,𝑗−

1
2
− 𝑇

𝑖,𝑗+
1
2
) 𝑝𝑖,𝑗

= 𝒂𝒊,𝒋𝑝𝑖−1,𝑗 + 𝒃𝒊,𝒋𝑝𝑖+1,𝑗 + 𝒄𝒊,𝒋𝑝𝑖,𝑗−1 + 𝒅𝒊,𝒋𝑝𝑖,𝑗+1 + 𝒆𝒊,𝒋𝑝𝑖,𝑗 

……………………………………………………………………………………… (4.45) 

𝒂𝒊,𝒋 = 𝑇
𝑖−

1
2
,𝑗

=
1

48𝜇∆𝑥𝑖,𝑗

(𝑤𝑖−1,𝑗 + 𝑤𝑖,𝑗)
3

𝑎𝑖−1,𝑗 + 𝑎𝑖,𝑗
=

(𝑤𝑖−1,𝑗 + 𝑤𝑖,𝑗)
3

96𝜇(𝑎)2
 

𝒃𝒊,𝒋 = 𝑇
𝑖+

1
2
,𝑗

=
1

48𝜇∆𝑥𝑖,𝑗

(𝑤𝑖,𝑗 + 𝑤𝑖+1,𝑗)
3

𝑎𝑖,𝑗 + 𝑎𝑖+1,𝑗
=

(𝑤𝑖,𝑗 + 𝑤𝑖+1,𝑗)
3

96𝜇(𝑎)2
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𝒄𝒊,𝒋 = −𝑇
𝑖,𝑗−

1
2
= −

1

48𝜇∆𝑦𝑖,𝑗
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……………………………………………………………………………………… (4.46) 

 

4.2.2 Boundary Condition at Bedding Planes 

Boundary condition at the bedding planes should be taken into consideration when 

discretizing the continuity equation. In terms of the vertical fracture element which is not 

fully surrounded by other elements, the pressure at its end without adjacent element is 

assumed as the horizontal minimum stress 𝜎ℎ𝑚𝑖𝑛. In terms of the interface element, its 

pressure at the end without adjacent element is assumed as the over-burden stress 𝜎𝑣. In 

this subsection, four examples of discretization are illustrated in Figures (4.4) and (4.5). 

Figure 4.4 indicates the case that one vertical fracture element 𝑖 both adjoins with 

the element (𝑖 + 1) on the interface and another vertical fracture element (𝑖 − 1). 

According to the continuity equation shown in Eq. (4.26), we did discretization on these 

three boundary elements only along the y direction (height direction) and obtained the 

formulas revealing the relation between the width and pressure as, 
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Figure 4.4: Vertical fracture element 𝑖 adjoins with the interface element (𝑖 + 1) and 

another vertical fracture element (𝑖 − 1). 

 



 

126 

 

 

Figure 4.5 depicts the case that an interface element 𝑖 both adjoins with two vertical 

fracture elements (𝑖 − 1) and (𝑖 + 1) at its upper end and lower end. In this case, we can 

do discretization along the y direction as, 
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Figure 4.5: Interface element 𝑖 both adjoins with one vertical fracture element (𝑖 − 1) at 

its upper end and another vertical fracture element (𝑖 + 1) at its lower end. 
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4.3 Model Flowchart 

Figure 4.6 shows the flowchart of fluid flow model. First, we had the calculated 

fracture width profile from the rock deformation section (3D DDM), then we used fracture 

volume balance equation to determine the pumping time at current time step, then 

continuity equation and boundary condition are applied to construct the transmissibility 

matrix, then a solver is implemented for determining the fluid pressure for each boundary 

elements on both vertical fractures and horizontal bedding planes. 

 

Figure 4.6: Flowchart of fluid flow. 

 

4.4 Iterative Coupling Algorithm of Rock Deformation and Fluid Flow  

An iterative algorithm (such as Picard iteration) was applied to couple the rock 

deformation and fluid flow at every updated time step. First we calculated the difference 
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of updated fracture width and previous calculated fracture width. If the convergence 

criterion is not satisfied, we modified the fracture width as 

𝑤𝑘+1 = (1 − 𝛼)𝑤𝑘−1 + 𝛼𝑤𝑘                                            (4.49) 

where 𝛼 is a retardation coefficient ranging from 0 to 1 that prevents sudden jump or 

extreme fluctuations in fracture width. If the convergence criterion fails, decreasing this 

coefficient can improve convergence. 

Figure 4.7 illustrates the workflow of the main algorithm in 3D hydraulic fracture 

propagation model. First, we had input parameters as fracture properties (dimension and 

angle of each boundary element on the fracture), fluid properties (viscosity, pumping rate) 

and formation properties (Young’ modulus, Poisson’s ratio, location of the bedding 

layers). Second, we plugged all inputs into the main algorithm, which was labeled by 

orange color and utilized to couple the rock deformation and fluid flow together. In the 

main algorithm, we did initialization and then used the fluid pressure calculated from last 

time step to obtain the initial fracture width for the current time step, via 3D DDM. The 

fracture volume balance equation can be used to determine the pumping time for current 

time step. Next, finite difference method is implemented to obtain the updated fluid 

pressure for each boundary element and 3D DDM is used again to calculate the updated 

fracture width. Convergence testing causes further Picard iteration to update a new 

fracture width as an input into the fracture volume balance equation when the change in 

fracture width is above the tolerance. Convergence below the tolerance advances the 

calculation to the next time step. After each time step, we could generate the output 

illustrated in the green dashed box, which includes the profiles of both the fracture width 
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and fluid pressure, and also the plots of the pressure-time and the width-time at the 

injection point. 

 

Figure 4.7: Flowchart of three-dimensional hydraulic fracture propagation model which 

includes input, main algorithm and output. 

 

4.5 Conclusion 

In this chapter, the mathematical derivation of flow rate conservation was firstly 

introduced. Then material balance equation was derived from the global conservation of 

mass in order to calculate the pumping time for each time step. Finite difference method 

was implemented to do discretization based on the continuity equations. Combining with 

the calculated pumping time and the width profile determined by the rock deformation, 

transmissibility matrix was constructed and then a solver was applied to calculate the fluid 

pressure for each boundary element on the fracture geometry. An iterative algorithm, 

aiming at checking the difference of updated fracture width and previous calculated 
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fracture width, was applied to couple the rock deformation and fluid flow at every updated 

time step. If the convergence criterion is not satisfied, fracture width was modified.  
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5. FRACTURE PROPAGATION MODEL 

 

In this chapter, based on a new three-dimensional dynamic fracture propagation 

model developed in chapter 4, effects of weak bedding planes on fracture propagation 

were investigated. Comparison between the developed model and the PKN model showed 

good agreement. Our fracture propagation model was utilized to investigate the impact of 

different controlling parameters on hydraulic fracture propagation. These parameters 

include pumping rate, fluid viscosity, and Young’s modulus. In each case, we analyzed 

the fracture width profile at the injection point and that near the junctions (intersection 

area between the vertical fracture and the bedding plane), the opening of the boundary 

element along the bedding planes which connects with the boundary element on the 

vertical fracture, the pressure distribution within the fracture and also the shear 

displacement discontinuities along the bedding planes. Additionally, our model enables 

assessment of the pumping rate required to ensure the fracture width at junctions and along 

intersected bedding planes which is sufficient for proppant transport, which also avoiding 

the potential bridging and screen-out of the proppant at the junctions. 

 

5.1 Model Validation with PKN Model 

For static fracture geometry, we calculated normal displacement discontinuity 

(fracture width) and induced stresses for a plane-strain fracture using 3D DDM and 2D 

analytical method in order to validate the 3D model. The numerical solution from 3D 

DDM has a good match with the 2D analytical solution in chapter 2 (Tang et al. 2017). In 
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terms of dynamic fracture propagation, we utilized PKN model for validation. The 

required input parameters for the PKN model are given in Table 5.1. Eqs. (5.1) to (5.3) 

are used to calculate fracture half-length, fracture width at the injection point and fluid 

pressure at the injection source, respectively (Valko and Economides 1995). 

 

                                                 𝐿 = 0.524 (
𝑄3𝐸

𝜇(1−𝜐2)ℎ𝑓
4)

0.2

𝑡0.8                                              (5.1) 

 

                                                𝑤 = 3.04 (
𝑄2(1−𝜐2)𝜇𝑡

𝐸ℎ𝑓
)
0.2

                                                     (5.2) 

 

                                               𝑃 = 𝜎ℎ𝑚𝑖𝑛 + 1.52 (
𝑄2𝐸4𝜇𝑡

(1−𝜐2)4ℎ𝑓
6)

0.2

                                          (5.3) 

 

 

 

Parameter Value Unit 

Young’s modulus 3.0E+06 psi 

Poisson’s ratio 0.25 Dimensionless 

Viscosity 20 cp 

Fracture Height 40 ft 

Injection Rate 20 bbl/min 

Table 5.1− Required parameters of the PKN model for validation. 

 

For the PKN model, the fracture height is a constant (40 ft) and the fracture only 

propagates laterally. For the 3D DDM model, the fracture both propagates vertically and 

laterally at the beginning, it stops vertical growth when it contacts with the bedding planes 

and then it only grows laterally. Figure 5.1 illustrates the relation between the half-length 

of the fracture and the pumping time. The averaged relative error of 3D DDM model 

compared with the PKN model is approximately 3.5%. 
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Figure 5.1: Comparison of the half-length of the fracture between PKN model and 3D 

DDM model. 

 

Figures 5.2 (a) and 5.2 (b) indicate the profiles of pressure-time and width-time at 

the injection point, respectively. The averaged relative error of 3D DDM model is 

approximately as 5.1% for the pressure comparison and as 5.4% for the width comparison. 

From Figures 5.1 and 5.2, it reveals that our coupled model has a good match with the 

PKN model. 
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Figure 5.2: (a) Comparison of the fluid pressure within the fracture at the injection source; 

(b) Comparison of the fracture width at the injection source. 

 

5.2 Base Case Analysis 

In this section, we investigated the base case of a vertical fracture interacting with 

two symmetric bedding planes (I-shaped fracture geometry), as depicted in Figure 5.3. 

Injection source, junctions and bedding planes are shown by different colors in this figure. 

Junction, labeled as a red color, is the intersection area of the vertical fracture tip and the 

bedding planes. The fracture propagates vertically and laterally at the beginning. When 

the vertical fracture contacts with the bedding planes, the interface at the junction area is 

opened and fluid would infiltrate into the interface. During the fluid percolation into the 

bedding planes, shear displacement discontinuities would be created along the planes. In 

this case, we only accounted for the condition of the vertical fracture arrested by the 

bedding layers and its propagation along the bedding planes, and then studied the profiles 
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of displacement discontinuities (fracture width and shear displacement discontinuities) 

and pressure at different locations in the I-shaped fracture geometry. The required 

parameters in the base case are shown in Table 5.2.  

 

Figure 5.3: The geometry of an I-shaped fracture (one vertical fracture and two horizontal 

bedding planes). 
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Parameter Value Unit 

Young’s modulus 3.0E+06 (2.068E+10) psi (Pa) 

Poisson’s ratio 0.25 Dimensionless 

Viscosity 20 (0.02) cp (Pa · sec) 

Injection Rate 30 (0.052) bbl/min (m3/sec) 

Maximum horizontal stress 5000 (3.447 E+7) psi (Pa) 

Minimum horizontal stress 5000 (3.447 E+7) psi (Pa) 

Over-burden stress 5000 (3.447 E+7) psi (Pa) 

Rock toughness 262.7 (1.0E+6) psi · √ft (Pa · √m) 

Vertical location of upper interface 56 (17.069) ft (m) 

Vertical location of lower interface -56 (-17.069) ft (m) 

Table 5.2− Required parameters for the base case (I-shaped fracture geometry). 

 

Figures 5.4 and 5.5 show the three-dimensional visualizations of pressure profile 

and width profile of an I-shaped fracture at the end of injection, respectively. From Figure 

5.5, we observed that the width of the vertical fracture is much larger than that of the 

bedding planes. 

 

Figure 5.4: Pressure profile of the I-shaped fracture (one vertical fracture and two 

symmetric horizontal bedding planes) at the end of pumping treatment. 
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Figure 5.5: Width profile of the I-shaped fracture (one vertical fracture and two symmetric 

horizontal bedding planes) at the end of pumping treatment. 

 

Two sub-figures in Figure 5.6 illustrate the displacement discontinuities profile 

and pressure profile at different location of the I-shaped fracture, respectively. In Figure 

5.6 (a), “Vertical Width 1”, “Vertical Width 2”, “Interface Opening” and “Interface 

Shearing” represent the vertical fracture width at the injection point, the vertical fracture 

width at the junction area, the opening of the bedding plane at the junction area, the shear 

displacement discontinuities along the bedding plane at the junction area. In Figure 5.6 

(b), “Vertical Pressure 1”, “Vertical Pressure 2”, “Interface Pressure” represent the vertical 

fracture pressure at the injection point, the vertical fracture pressure at the junction area, 

the pressure of the bedding plane at the junction area. In Figure 5.6 (a), we observed that 

displacement discontinuities in the four cases increase with increment of pumping time. 

At the early stage of injection, the vertical fracture width at the injection point is larger 

than other three displacement discontinuities. During the interim and later period of the 

treatment, the width of the vertical fracture at the junction area grows faster than that of 
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vertical fracture at the injection point. Moreover, we found that the vertical fracture width 

at the junction area is far greater than the opening of the bedding planes, identically 

observed from Figure 5.5. At the junction area, shear displacement discontinuities along 

the bedding plane is larger than the opening of the plane, which illustrates that the shear 

sliding plays a dominant role compared with the tensile opening of the bedding plane. 

Figure 5.6 (b) shows the pressure profiles at different locations of the I-shaped fracture. 

At the injection point, the fluid pressure drops rapidly at the early stage of injection and 

then decreases slightly from the interim period to the end of injection. At the junction area, 

the pressure of the vertical fracture is equivalent with the pressure at the opening of the 

interface. 

 

Figure 5.6: (a) Displacement discontinuity profiles at different locations of the I-shaped 

fracture; (b) Pressure profiles at different locations of the I-shaped fracture. 

 

Figure 5.7 (a) indicates the profiles of displacement discontinuities of the vertical 

fracture along the fracture length direction at the end of injection. We labeled the fracture 

width of the vertical fracture as a red color and the shear displacement discontinuities as 

a blue color. Along the fracture length direction (across the centerline of the vertical 
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fracture), shear displacement discontinuities would not be generated and fracture width 

decreases quickly as it is far away from the fracture center. Along the upper bedding plane, 

both the opening of the interface and the shear displacement discontinuities of the interface 

would decrease as the lateral location moves away from the fracture center, as observed 

in Figure 5.7 (b).  

 

Figure 5.7: (a) Displacement discontinuity profiles of the vertical fracture along its length 

direction at the end of injection; (b) Displacement discontinuity profiles of the upper 

bedding planes along the interface at the end of injection. 

 

5.3 Controlling Parameters Analysis 

In this section, we investigated the case of one vertical fracture and two symmetric 

bedding planes (I-shaped fracture geometry) and studied the effects of different 

parameters (pumping rate, fluid viscosity, and Young’s modulus) on the width profile of 

the vertical fracture, opening of horizontal bedding planes and also shear displacement 

discontinuities along the bedding planes.  
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5.3.1 Fluid Pumping Rate 

In terms of sensitivity analysis for pumping rate (pr), three values are given as 10 

bbl/min, 20 bbl/min, and 30 bbl/min. Other parameters are the same with those in the base 

case. In this case, we utilized pumping fluid volume instead of pumping time to represent 

the lateral coordinate, and then investigated the impact of pumping rate on other variables 

(vertical coordinate) such as width and pressure of the vertical facture at the injection 

point, width and pressure of the vertical facture at the junction area, opening and pressure 

of the bedding plane at the junction area, shear displacement discontinuities along the 

bedding plane at the end of injection. 

Figure 5.8 (a) elaborates the impact of pumping rate on the vertical fracture width 

at the injection point and we found that the vertical fracture width increases with the 

increment of pumping fluid volume. Moreover, the vertical fracture width is positively 

correlated with the pumping rate with equivalent fluid volume. However, the pressure of 

the vertical fracture at the injection point drops rapidly as the pumping fluid volume 

increases, which is illustrated in Figure 5.8 (b). A positive relation between the pressure 

of the vertical fracture and the pumping rate is observed when the fluid volume is the 

same. 
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Figure 5.8: (a) Impact of pumping rate on the width of vertical fracture at the injection 

point; (b) Impact of pumping rate on the pressure of vertical fracture at the injection point. 

 

Two sub-figures in Figure 5.9 indicate the impact of pumping rate on the width 

and pressure of the vertical fracture at the junction area, respectively. Both width and 

pressure of the vertical fracture at the junction area are positively related with the pumping 

fluid volume as the pumping rate is kept as a constant. In Figure 5.9 (a), the increment of 

the vertical fracture width at the junction area is obvious as the pumping rate increases 

from 10 bbl/min to 20 bbl/min. Continuously increment of pumping rate from 20 bbl/min 

to 30bbl/min makes the change of the vertical fracture width relatively smaller compared 

with the width alteration from 10 bbl/min to 20 bbl/min. Figure 5.9 (b) shows the pressure 

profile of the vertical fracture at the junction area, which has a similar trend as shown in 

Figure 5.9 (a). With the increment of the fluid volume, the pressure of the vertical fracture 

increases rapidly at the early-stage of the pumping treatment and then aggrandizes slightly 

during the interim and later period of the stimulation. Moreover, we observed that more 

fluid volume is required for the vertical fracture contacting with the bedding planes as the 
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pumping rate increases, although we knew that the time of the vertical fracture intersecting 

with the bedding planes is less if a larger pumping rate is given.  

 

Figure 5.9: (a) Impact of pumping rate on the width of vertical fracture at the junction 

area; (b) Impact of pumping rate on the pressure of vertical fracture at the junction area. 

 

When the vertical fracture is arrested by the bedding planes, the interface is opened 

at the junction area and the fluid would infiltrate into the bedding planes, and then the 

shear displacement discontinuities are generated along the bedding planes. Figure 5.10 (a) 

manifests that the impact of pumping rate on the opening of the bedding planes at the 

junction area when the vertical fracture is simultaneously arrested by two symmetric 

bedding planes. Interface at the junction area is opened wider as more fluid is injected into 

the formation. The opening of the bedding plane changes slightly as the pumping rate 

increases from 10 bbl/min to 30 bbl/min. Nevertheless, the pressure of fluid percolated 

into the interface alters less apparent as the pumping rate increases, which illustrated in 

Figure 5.10 (b). 
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Figure 5.10: (a) Impact of pumping rate on the opening of bedding plane at the junction 

area; (b) Impact of pumping rate on the pressure of bedding plane at the junction area. 

 

Figure 5.11 introduces the impact of pumping rate on the opening of the bedding 

plane and also the shear displacement discontinuities, along the upper bedding plane at the 

end of injection treatment, respectively. From Figure 5.11 (a), we observed that the 

opening of the bedding plane decreases as the lateral location along the upper interface is 

far away from the junction area. The maximum width of the bedding plane is obtained at 

the junction area. At the same lateral location along the upper interface, the opening of the 

bedding plane is positively correlated with the pumping rate. Similarly, Figure 5.11 (b) 

shows a positive relation between the pumping rate and the shear displacement 

discontinuities along the upper interface. The maximized value of shear displacement 

discontinuities is also obtained at the junction area. At the same position along the upper 

interface, the shear displacement discontinuities is larger than the opening of the interface, 

which provides an insight that the shear sliding plays a dominant role compared with the 

tensile mechanism of the bedding plane. Additionally, the width of the vertical fracture at 

the junction area is approximately twice than the opening of the bedding plane at the end 
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of the pumping treatment, as observed from Figure 5.9 (a) and Figure 5.10 (a). This 

observation provides a guideline for selecting appropriate size range of the proppant 

during the stimulation treatment. 

 

Figure 5.11: (a) Impact of pumping rate on the interface opening along the upper bedding 

plane at the end of injection treatment; (b) Impact of pumping rate on the shear 

displacement discontinuities along the upper bedding plane at the end of injection 

treatment. 

 

5.3.2 Fluid Viscosity 

In the section of analyzing the effect of fluid viscosity (miu), we chose three 

different values as 5 cp, 20 cp, 100 cp. Figures 5.12 (a) and (b) separately demonstrate the 

impact of fluid viscosity on the width and the pressure of the vertical fracture at the 

injection point. The lateral coordinate represents the total pumping time. From Figure 5.12 

(a), we observed a positive relation between the fluid viscosity and the width of the vertical 

fracture at the injection point, with the same total pumping time. The pressure of the 

vertical fracture also increases with the augment of fluid viscosity, as illustrated in Figure 

5.12 (b). Increasing the viscosity of the pumping fluid is an effective way to obtain the 

required width of the vertical fracture. 
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Figure 5.12: (a) Impact of fluid viscosity on the width of vertical fracture at the injection 

point; (b) Impact of fluid viscosity on the pressure of vertical fracture at the injection point. 

 

Two sub-figures in Figure 5.13 indicate the impact of fluid viscosity on the width 

profile and pressure profile of the vertical fracture at the junction area, respectively. A 

positive correlation between the fluid viscosity and the vertical fracture width at the 

junction area, is very obvious in Figure 5.13 (a). At the junction area, the pressure profile 

of the vertical fracture (Figure 5.13 (b)) also has a positive correlation with the fluid 

viscosity. Figure 5.14 (a) shows the width profile of the bedding plane under the influence 

of the fluid viscosity, when the vertical fracture is arrested by the symmetric bedding 

planes. With smaller fluid viscosity, it takes less time for the vertical fracture to be arrested 

by the bedding planes, which means that the fracture propagates faster in the vertical 

direction. From Figures 5.14 (a) and 5.14 (b), we observed that both width and pressure 

of the bedding plane at the junction area, have a positive relation with the fluid viscosity. 

Greater prominence of the effect of the shear sliding (shear displacement discontinuities 

profile in Figure 5.15 (b)) along the bedding plane than that of tensile opening (width 

profile of the bedding plane in Figure 5.15 (a)), is illustrated in Figure 5.15. Both the 
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opening of the interface and the shear displacement discontinuities along the bedding 

plane drop very quickly when the lateral location along the bedding plane is far away from 

the junction area. Moreover, the opening and the shear displacement discontinuities of the 

bedding plane are both positively correlated with the fluid viscosity. 

 

Figure 5.13: (a) Impact of fluid viscosity on the width of vertical fracture at the junction 

area; (b) Impact of fluid viscosity on the pressure of vertical fracture at the junction area. 

 

 

Figure 5.14: (a) Impact of fluid viscosity on the opening of bedding plane at the junction 

area; (b) Impact of fluid viscosity on the pressure of bedding plane at the junction area. 
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Figure 5.15: (a) Impact of fluid viscosity on the interface opening along the upper bedding 

plane at the end of injection treatment; (b) Impact of fluid viscosity on the shear 

displacement discontinuities along the upper bedding plane at the end of injection 

treatment. 

 

5.3.3 Young’s Modulus 

The formation properties such as Young’s modulus (YM) and Poisson’s ratio, also 

play an important role in determining the fracture height growth and the fracture width 

profile. In this subsection, we discussed the impact of different Young’s modulus (1×106 

psi, 3×106 psi, 6×106 psi) on the width and pressure profiles of the vertical fracture at the 

injection source and at the junction area, those profiles of the bedding plane at the junction 

area, the opening of the interface and shear displacement discontinuities along the bedding 

plane at the end of the injection. Figures 5.16 (a) and 5.16 (b) indicate the impact of 

Young’s modulus on the vertical fracture width and the impact of Young’s modulus on 

the pressure of the vertical fracture, at the injection point, respectively. The vertical 

fracture width at the injection point has a negative correlation with Young’s modulus. 

However, the pressure of the vertical fracture at the injection point is positively related 

with Young’s modulus.  
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Figure 5.16: (a) Impact of Young’s modulus on the width of vertical fracture at the 

injection point; (b) Impact of Young’s modulus on the pressure of vertical fracture at the 

injection point. 

 

Figure 5.17 (a) shows a negative correlation between the Young’s modulus and 

the width of the vertical fracture at the junction area, after the vertical fracture contacts 

with two interface. Figure 5.17 (b) manifests that the pressure of the vertical fracture 

increases with the increment of the Young’s modulus. Figure 5.17 also reveals that larger 

Young’s modulus makes the vertical fracture earlier approaching the symmetric bedding 

planes.  

 

Figure 5.17: (a) Impact of Young’s modulus on the width of vertical fracture at the 

junction area; (b) Impact of Young’s modulus on the pressure of vertical fracture at the 

junction area. 
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Figure 5.18 (a) illustrates that a larger Young’s modulus makes the opening of the 

bedding plane smaller at the junction area. The influence of Young’s modulus is less on 

the opening of the bedding plane at the junction area, but it has more effect on the fluid 

pressure of the bedding plane at the junction area, as observed in Figure 5.18 (b). From 

Figures 5.17 and 5.18, we also found that the vertical fracture width is twice than the 

opening of the bedding plane at the junction area, when the vertical fracture is arrested by 

the bedding planes. 

 

Figure 5.18: (a) Impact of Young’s modulus on the opening of bedding plane at the 

junction area; (b) Impact of Young’s modulus on the pressure of bedding plane at the 

junction area. 

 

The impact of Young’s modulus on the interface opening along the upper bedding 

plane at the end of injection, is described in Figure 5.19 (a). Figure 5.19 (b) elaborates that 

shear displacement discontinuities along the bedding planes are negatively related with 

the Young’s modulus. Moreover, a higher Young’s modulus in the formation can prevent 

the opening of the bedding plane and avoid more fluid percolated into the interface, and 

further reduce the fracture height containment. 
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Figure 5.19: (a) Impact of Young’s modulus on the interface opening along the upper 

bedding plane at the end of injection treatment; (b) Impact of Young’s modulus on the 

shear displacement discontinuities along the upper bedding plane at the end of injection 

treatment. 

 

5.4 Conclusion 

This chapter introduces to investigate the mechanical interaction between 

hydraulic fractures and weak bedding planes in three dimensions and the physical 

mechanism of shear sliding along the bedding planes using a coupled hydraulic fracture 

propagation model. The investigation enables the following conclusions:  

(1) Without considering layering, our fracture propagation model reproduces half-length, 

pressure, and width profiles at the injection point for the PKN model, thereby verifying 

it reproduces established model characteristics; 

(2) During the period of injection, when bedding planes arrest growth of a vertical 

fracture, they open at the junction area and fluid percolates into the planes and creates 

shear displacement discontinuities along the planes. Both the width of the vertical 

fracture and shear displacement discontinuities along the bedding planes are far greater 
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than the opening of the bedding planes at the junction area, and this differential 

provides insight for selecting the proppant grain size range; 

(3) Increased fluid injection rate into the formation slightly widens the opening of bedding 

planes at the junction area, but shear displacement discontinuities along the planes are 

a more obvious effect from rate variation. Moreover, our model enables assessment of 

the pumping rate required to obtain the required fracture width at both junctions and 

intersected bedding planes, which makes them sufficient for proppant transport; 

(4) With lower fluid viscosity, a vertical fracture propagates faster and height growth is 

more easily arrested by the bedding planes. However, increasing the fluid viscosity is 

an effective way to obtain the large width of the vertical fracture. Hence, the fluid 

viscosity poses a trade-off between fracture height containment and width growth; 

(5) Higher formation Young’s modulus can prevent the opening of a bedding plane and 

reduce the fluid percolation into the interface, thus impairing the fracture height 

containment. 
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6. CONCLUSIONS AND FUTURE WORK 

 

In this chapter, my primary research work in the dissertation were summarized. 

The new three-dimensional fracture propagation model considering the effect of bedding 

planes were developed. Thereafter, my future work were introduced with related 

references. 

 

6.1 Conclusions 

In this dissertation, I proposed a three-dimensional displacement discontinuity 

method (3D DDM) which can deal with cases of multiple fractures with arbitrary angles 

in three dimensions. A good match of fracture width and induced stresses between a 2D 

analytical solution and 3D DDM was obtained for a single fracture. Analysis of different 

fracture geometry and sensitivity analysis of different controlling parameters have been 

done to investigate the effects of the opening of the weak bedding plane and physical 

mechanism of slippage along the bedding plane, which provides a critical insights of 

fracture width distribution and their impacts on proppant transport. Then a three-

dimensional hydraulic fracture propagation model was developed, which couples with 

rock deformation and fluid flow and also considers the effect of the bedding layers. In this 

model, the rock deformation part is governed by 3D DDM. The fluid flow part, governed 

by finite difference method, considers the flow along both the fracture length and height 

directions and is coupled with the rock deformation part via Picard iterative algorithm. 
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Comparison between the developed model and the PKN model showed a good agreement. 

From the dissertation, conclusions can be made as, 

(1) Vertical fracture width is altered by the opening of a weak bedding plane and a width 

jump is created along the vertical fracture when the vertical fracture penetrates the bedding 

plane. This width jump, regarded as a primary mechanism of fracture height containment, 

is induced by the shear sliding along the bedding plane and positively correlated with the 

distance between the wellbore location and the horizontal interface. This mechanism not 

only indicates that the vertical fracture is easier to be arrested as the well location is far 

away from the bedding plane, but also helps us select an optimal landing location of the 

horizontal wellbore; 

(2) Both widths of fracture segments and shear sliding along the bedding plane have 

positive correlation with the dimension of the bedding plane segment, the distance 

between the injection source and the bedding plane segment, the net pressure within the 

fracture segments. Conversely, higher formation Young’s modulus can prevent the 

opening of a bedding plane and reduce the fluid percolation into the bedding plane 

segment, thus impairing the fracture height containment; 

(3) The case of multiple fractures with the bedding plane has smaller fracture width 

compared with the case without the bedding plane, as a result of energy dissipation for 

shear sliding along the bedding plane. Moreover, fracture spacing significantly determines 

the fracture width distribution and shear displacements along the bedding plane. Both the 

openings of the vertical fracture and bedding plane segment has a positive correlation with 

the fracture spacing; 
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(4) It is more difficult for the opening of the bedding plane segment when the vertical 

fracture approaches the bedding plane with a non-orthogonal angle. Both the opening of 

the bedding plane segment and the shear displacement discontinuity along the plane have 

a positive relation with the approach angle. Elevating the bedding plane from the injection 

source has an unconspicuous impact on the opening of the bedding plane and shear sliding 

along the plane, when the approach angle is non-orthogonal; 

(5) During the period of injection, both the vertical fracture width and shear displacement 

discontinuities along the bedding plane are far greater than the opening of the bedding 

plane at the junction area, when the vertical fracture is arrested by the bedding plane. 

Increasing the fluid viscosity is an effective way to obtain the large width of the vertical 

fracture. In addition, the increment of the pumping rate slightly widens the opening of the 

bedding plane but more obviously alters the shear displacement discontinuities along the 

plane. Our model enables to provide a critical insight for the selection of the proppant 

grain size range and assessment of the required pumping rate to obtain the required width 

at both junction and intersected bedding plane. 

 

6.2 Future Work 

Currently our 3D fracture propagation model can only simulate one vertical 

fracture interacts with multiple bedding planes. The case of multiple fractures would be 

added to the fracture propagation model in the future. In the rock deformation section, the 

maximum-circumferential-stress criterion would be implemented to calculate the stress 

intensity factors for both the opening mode and shear sliding mode, which are then utilized 
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to determine the fracture propagation direction. In the fluid flow section, we would 

consider the volume conservation and the pressure continuity by setting restrictions, such 

as hydrostatic-pressure change, perforation frictional pressure drop and frictional pressure 

loss in each casing interval (Wu and Olson 2015). Kirchoff’s first and second laws would 

be applied to determine the flow rate distribution in multiple fractures (Siriwardane and 

Layne 1991; Mack et al. 1992; Elbel et al. 1992). Moreover, the internal and boundary 

heat sources would be added to our model so as to simulate the temperature distribution 

and induced thermal stresses (Shen et al. 2012). Microseismic mapping would be 

implemented to characterize the fracture complexity, which further evaluates the 

completion performance and modifies the design parameters of hydraulic fracture 

treatment (Cipolla et al. 2011). 
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