A COUPLED THREE-DIMENSIONAL HYDRAULIC FRACTURE PROPAGATION

MODEL ACCOUNTING FOR THE EFFECT OF BEDDING LAYERS

A Dissertation

by
JIZHOU TANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Kan Wu

Committee Members, Christine Ehlig-Economides
Peter Valko
Benchun Duan

Head of Department, Jeff Spath

August 2018

Major Subject: Petroleum Engineering

Copyright 2018 Jizhou Tang



ABSTRACT

Unconventional shale reservoirs have been the most recent production frontier in
the United States. Optimization of the production of shale reservoirs depends greatly on
hydraulic fracture treatment. In recent studies, strongly contrasting properties of multi-
layered rocks and pervasively distributed weak interfaces become the primary factors in
determining the propagation pathway of fractures, which further influences the fracture
height growth and fracture geometry. Few of hydraulic fracture propagation models enable
us to quantitatively estimate the fracture height containment or predict fracture geometry
under the influence of multiple bedding planes. Therefore, development of a reliable and
practical simulator for modeling fracture propagation that enables accurate prediction of
the fracture height growth in multiple-layered shale formation is critical to efficient
resource development.

In this dissertation, | have developed a coupled three-dimensional hydraulic
fracture propagation model considering the effects of bedding planes. In this model, a fully
three-dimensional displacement discontinuity method is used to model the rock
deformation. The advantage of this approach is that it addresses both the mechanical
interaction between hydraulic fractures and weak bedding planes in three-dimensional
space and the physical mechanism of slippage along weak bedding planes. Fluid flow
governed by finite difference methodology considers the flow in both vertical fractures
and opening bedding planes. An iterative algorithm is used to couple fluid flow and rock
deformation. Comparison between the developed model and the PKN model showed good

agreement. Analysis of different fracture geometry and sensitivity analysis of different



parameters are conducted to investigate their impacts on the opening of vertical fractures
and bedding planes, and also the shear sliding along the bedding planes. A width jump,
created along the vertical fracture when the vertical fracture penetrates the bedding plane,
is regarded as a primary mechanism of fracture height containment. Both widths of
fracture segments and shear sliding along the bedding plane are positively related with the
distance between the injection source and the bedding plane segment. Higher formation
Young’s modulus can restrict the opening of bedding plane and retard the fluid percolation
into the bedding plane. Smaller fracture spacing gives rise of the opening reduction of the
fracture segments. Our model enables us to provide a critical insight for the selection of
the proppant grain size range and assessment of the required pumping rate to obtain the

required width at both junction and intersected bedding plane.
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1. GENERAL INTRODUCTION

1.1 Background

Unconventional shale reservoirs have been the most recent production frontier in the
United States. After 1990s, shale plays such as Barnett, Bakken, Eagle Ford, Permian,
Niobrara and Utica, become the primary source of shale oil and shale gas for industrial use
and people’s daily life (IIScams.org). Figure 1.1 depicts the forecast for shale oil production
of different plays in the US from 2010 to 2025. From this figure, we observe that Bakken
and Eagle Ford shales contribute the primary growth of shale oil production. Moreover,
LUKOIL (2013) forecasted that shale oil production in the US would have an intensive
growth in the following 5-10 years and the production amount would reach 3.9 mb/d by
2025.

With the technology breakthrough in the areas of horizontal drilling and hydraulic
fracturing, US wants to hold the unconventional gas resources firmly in its hands. LUKOIL
(2013) forecasted that US would become a net exporter of gas by 2020 due to flourish shale
gas revolution. Figure 1.2 illustrates recoverable reserves of unconventional gas and
unconventional gas production forecast, respectively. Figure 1.2 (a) reveals that those four
regions, Asia, North American, Latin American, and Africa, become the dominant sources
of shale gas supply in the world. Figure 1.2 (b) indicates that the forecasting production of

unconventional gas in US far exceeds other world regions.



Although China has begun its own shale gas revolution in Sichuan basin, it is
challenge to decrease the production cost as low as US in the short term as a result of

shortage of gas infrastructure and limited water resources.

Forecast for shale oil production in the US, mb/d
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Figure 1.1: Forecast for shale oil production in the US (Reprinted from LUKOIL 2013).
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Figure 1.2: Unconventional gas (a) recoverable reserves and (b) production forecast
(Reprinted from LUKOIL 2013).

Optimization of the production of shale reservoirs is greatly dependent on
hydraulic fracture treatment, which is successfully applied to most unconventional
resources such as shale gas and tight oil. This technology aims at injecting a mixture of
water, sand, chemical additives through a drilled well under a high but controlled pressure,
so as to stimulate the oil/gas production (Lepotter 2014). According to the Geological
Society of America, small cracks would be generated during the hydraulic fracture
treatment and they would propagate to a desired distance from the wellbore by controlling
the pumping rate, fluid pressure, and injection time (GSA 2014). Figure 1.3 illustrated an
intuitive picture of horizontal drilling and hydraulic fracturing. A horizontal wellbore is
drilled and mixture liquid (water, sand, and additives) would be injected into an oil-or-gas
bearing rock formation via the pumper truck, small cracks are created at the beginning and

more complex fracture geometry would generated with the continuous injection.
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Figure 1.3: Horizontal drilling and Hydraulic Fracturing (Reprinted from Lepotter 2014).

1.2 Problem Statement

Shale formations, as a representative of unconventional reservoirs, have
complicated structures with thin beds or laminations, accompanied by varying in-situ
stress states, layer material properties, and interlayer interface properties. Rock layering,
presented as bed parallel ash beds, mineralized veins and slickensides, pervasively exists
in the shale reservoirs (Suarez-Rivera et al. 2016). (2011) indicated that rock layering is
comprised of vertically stacking of repetitious parasequences as a result of cyclic climate
and sea level alteration. All these organic-rich and mineralized layers can be observed
from different range of scales such as outcrop scale, core scale, small sample scale, and

SEM scale (Suarez-Rivera et al. 2016). Figure 1.4 shows the photographs of thin rock



layering on outcrops from the Montney and Eagle Ford shales. We can observe that these
multi-layered shales have strongly contrasting properties and the bedding plane/interface

between two adjoining rock layers can break or slide during fracturing treatments.

Figure 1.4: Photographs of thin rock layering on outcrops from the Montney and Eagle
Ford Shales (Reprinted from Suarez-Rivera et al. 2016).

Hydraulic fracture interactions with multiple bedding planes in shale formations
during hydraulic fracturing treatment can generate T-shape fractures, kinks, branches,
offsets, and ledges along the bedding planes as the result of fracture crossing, arresting,
blunting, and/or diversion at the bedding planes (Fisher and Warpinski 2012; Abbas et al.
2014; Cohen et al. 2017). Figure 1.5 elaborates the fracture height growth with multiple
bedding layers. We labeled the fractures, bedding planes and wellbore as orange, yellow
and black, respectively. Physical mechanisms of facture propagation in multiple bedding

layers are concluded as: (1) The fracture directly penetrates the bedding plane; (2) The



fracture is arrested by the bedding plane; (3) The fracture contacts the bedding plane and
then an offset is generated along the bedding plane. All these mechanisms would
significantly influence the fracture height growth and final fracture geometry. Hence,
multi-layered rocks and pervasively distributed weak bedding planes become the primary
factors in determining the propagation pathway of fractures, which further influences the

fracture height growth and whole fracture geometry.

Figure 1.5: Fracture height growth with multiple bedding layers (Adapted from Suarez-
Rivera et al. 2016).

Previous study indicated that fracture height is overestimated if hydraulic fracture
models merely consider the mechanisms of stress contrast (Simonson et al. 1978; Palmer
and Carroll Jr. 1983; Adachi et al. 2010) and modulus contrast (Van Eekelen 1982; Smith
et al. 2001; Gu and Siebrits 2008) between adjacent layers. Based on previous field studies

(Warpinski and Teufel, 1987; Rutledge et al. 2016; Suarez-Rivera et al. 2016),



experimental investigations (Teufel and Clark 1984; Thiercelin et al. 1987; Bunger et al.
2015; Xing et al. 2016; Zhao et al. 2016; Lee et al. 2016; Llanos et al. 2017; Ma et al.
2017; Lietal. 2017) and model analysis (Cooke 2001; Miskimins and Barree 2003; Zhang
et al. 2007; Zhang and Jeffrey 2008; Gu et al. 2008; Gu and Weng, 2010; Wang et al.
2012; Abbas et al. 2014; Chuprakov and Prioul 2015; Liu and Valko 2015; Zou et al. 2016;
Cohen et al. 2017; Zhang et al. 2017), it reveals that weak bedding planes also play an
important role in determining the fracture height growth during hydraulic fracturing
treatments. Gu et al. (2008) considered the interfacial sliding between bedding layers
(weak interfaces) as one of the mechanisms that would alter hydraulic fracture growth.
Fisher and Warpinski (2012) indicated that weak interfaces are regarded as a significant
factor in stopping fracture height growth at shallow depths, initiating interface fractures
or creating offsets along the interface. Chuprakov (2015) developed an analytical model
describing the fluid leak-off from the hydraulic fracture into permeable horizontal
interfaces and demonstrating the significant effect of bedding layer leak-off on fracture
propagation. Laboratory investigation showed that hydraulic fracture propagation is
ceased as a result of fluid infiltration into the weak interface (Bunger et al. 2015). Zhao et
al. (2016) conducted experiments to investigate the effect of bedding interfaces on
hydraulic fracture propagation that revealed that thick and high strength bedding interfaces
divert injected fluid along the bedding interfaces and thereby arrest growth of the main
fracture. Suarez-Rivera et al. (2016) illustrated that the distribution of weak interfaces is
an indicator for proper selection of the lateral landing depth, which helps improve the final

propped and connected fracture height and enhances the well performance. Well



productivity alters significantly with different lateral landing depth in the Bakken, Barnett,
Niobrara, Woodford, Montney, Eagle Ford and other plays. Llanos et al. (2017) conducted
experimental studies and then demonstrated that the frictional interfaces would greatly
affect the overall fracture growth due to the slip initiation along the interface. Thus, it is
extremely necessary to develop a hydraulic fracture propagation model considering the

effect of rock layering on fracture height growth.

1.3 Motivation and Objectives

Considering fracture propagation in shale formations with multiple bedding layers,
more complicated fracture geometries with “T” shapes, kinks, and offsets are often
induced (Olson 1995; Hedayati and Meadows 1996; Fisher and Warpinski 2012).
Experiments (Warpinski et al. 1993) and microseismic measurements (Maxwell et al.
2002; Fisher et al. 2002) also indicate that complex fracture networks pervasively exist in
unconventional reservoirs during hydraulic fracturing stimulation. Weng (2015) reviewed
current available hydraulic fracturing models that deal with complex hydraulic fracture
networks. In terms of modeling fracture height growth, these models face challenges due
to a lack of understanding effects of weak interfaces on hindering fracture height growth.
Hence, the objective of my research is to develop a new model which can simulate the
fracture height growth with discontinuities: (1) Develop a fully three-dimensional
displacement discontinuity method to deal with multiple fractures with arbitrary angles in

3D space; (2) Couple the rock deformation and fluid flow to simulate fracture propagation



in 3D space; (3) Investigate the effects of the weak bedding interfaces on fracture

propagation; (4) Accurately quantify fracture width distribution on bedding planes.

1.4 Literature Review

Adachi et al. (2007) concluded that the basic processes for characterizing the
physical mechanisms of hydraulic fracturing: rock deformation induced by the fluid
injection, fluid flow in the fracture considering the leak-off effect, and fracture
propagation in the formation. In terms of modeling rock deformation, the theory of linear
elasticity is adopted and solutions are obtained via applying boundary element method
(Crouch and Starfield 1983) or finite element method (Smith and Griffiths 1998). Finite
element (Dhatt and Touzat 1984), finite difference (LeVeque 2007) or finite volume
approaches (Versteeg and Malalasekera 2007) are used for fluid flow modeling in order
to solve the partial differential equation satisfying the conservation of mass and the
conservation of momentum, which also correlate with pressure gradient, fracture width,
and fluid velocity (Weng 2015; Calhoun and LeVeque 2000). Fracture propagation
criterion depends on the linear elastic fracture mechanics (LEFM) theory that propagation
initiates if stress intensity factor along the fracture front approximates the rock toughness
(\Valko and Economides 1995).

The simulation of hydraulic fracturing, dating back to 1950s (Hubbert and Willis
1957; Crittendon 1959) and flourishing through nearly 60 years, is developed from simple
2D models to pseudo 3D (P3D) models then to fully 3D models which depend on the

degree of complexity of fracture geometry and required computational accuracy for the



predictions (Carter et al. 2000). The simple 2D models include PKN model (Perkins and
Kern 1961; Nordren 1972), KGD model (Khristianovic and Zheltov 1955; Geertsma and
de Klerk 1969) and radial model (Sneddon 1946; Green and Sneddon 1950). The pseudo
3D models (Simonson et al. 1978; Settari and Cleary 1982; Palmer and Carroll 1982;
Palmer and Carroll 1983; Palmer and Craig 1984; Settari and Cleary 1986; Meyer 1986;
Fung et al. 1987; Mack and Warpinski 2000; Adachi et al. 2010) evolved from 1980s and
gradually displaced the position of 2D models. These models behave more efficiently in
computational process and account for the growth of fracture height. Since from 1980s,
the planar 3D (PL3D) models (Clifton et al. 1981; Barree 1983; Abou-Sayed et al. 1984;
Gu 1987; Gu and Yew 1988; Clifton and Wang 1991, Peirce and Siebrits 2001; Siebrits
and Peirce 2002) emerged and with the following 20 years, they had a booming evolution.
Compared with the P3D models, PL3D models reveal a better accuracy for the solution
but less computational efficiency. Additionally, a majority of PL3D models integrate 3D
rock deformation and 2D fluid flow in the lateral and vertical directions, however, most

P3D models only consider the fluid flow in the lateral direction.

1.4.1 Current Fracture Model for Unconventional Reservoirs

All the planar hydraulic fracture models discussed above are called as conventional
models, which use different numerical approaches and simulate the propagation of a single
planar fracture. These models do not consider the effect of fracture interaction. However,
factors such as the wellbore angle relative to the in-situ stress field, stress anisotropy and

injection parameters, can determine the creation of the non-planar hydraulic fracture
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(multiple-parallel fractures, reoriented fractures or T-shaped fractures) (Olson 1995;
Abass et al. 1996). Moreover, microseismic monitoring reveals complex fracture networks
generated in shale reservoirs during the hydraulic fracturing treatments (Fisher et al. 2002;
Maxwell et al. 2002). Hence, the conventional hydraulic fracture models used for bi-wing
planar geometry becomes inapplicable for complex fracture geometry in shale reservoirs
(Weng et al. 2011). The complex fracture geometry is primarily created by two aspects:
(1) multiple fracture initiation generated by perforation clusters; (2) the intersection
between hydraulic fractures (HF) and pre-existing weak planes, such as natural fractures
(NF) and bedding layers. Yamamoto et al. (2004), Wong and Xu (2013), and Shin and
Sharma (2014) proposed multiple hydraulic fracture models instead of the conventional
single planar model, accounting for both rock deformation and fluid flow. For the HF
approaching the pre-existing NF in the formation, the intersection would give rise to
opening of NF, branching or path diversion of HF and eventually generate complex
fracture networks. Weng (2015) put forward six scenarios of HF interaction with NF as:
(1) direct crossing without offset; (2) crossing with offset; (3) HF arrested at NF; (4)
branching at the intersecting location; (5) branching or turning at the end of NF; (6) NF
dilation due to shear slippage. Moreover, laboratory hydraulic fracture experiments were
made to study the interactions between hydraulic fractures and natural fractures (Fan et al.
2014; Fan and Zhang 2014; Zhang and Fan 2014). Extensive theoretical (Renshaw and
Pollard 1995; Gu and Weng 2010; Gu et al. 2011), experimental work (Blanton 1986;
Warpinski and Teufel 1987) and numerical simulation (Zhang and Jeffrey 2006; Zhang

and Jeffrey 2008; Bao et al. 2014; Zhao and Young 2009; Dahi-Taleghani and Olson 2011;
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Chuprakov et al. 2013) are conducted to investigate the crossing criterion of fracture
propagation at the intersection and given a reasonable explanation on fracture behaviors.

Recently, hydraulic fracture models for unconventional reservoirs applied to
complex fracture networks are developed to consider more comprehensive physical
aspects (such as rock deformation, fluid flow and leak-off effect, fracture propagation,
interaction between HF and NF or HF and HF, fracture height containment, proppant
transport, effect of multi-layer, and formation heterogeneity) and implement microseismic
monitoring, downhole temperature measurements (Cui and Zhu 2014; Cui et al. 2016) and
diagnostic fracture injection testing (Liu and Ehlig-Economides 2015; Liu and Ehlig-
Economides 2016; Ehlig-Economides and Liu 2017) for estimating the fracture calibration
parameters. The models are categorized as boundary element based models (Olson 2004;
Olson 2008; Olson and Dahi-Taleghani 2009; McClure 2012; Yamamoto et al. 2004;
Rungamornrat et al. 2005; Wong and Xu 2013; Wong et al. 2013; Wu 2014), coupled
geomechanics and reservoir models (Ji et al. 2009; Dean and Schmidt 2008; Chen 2012;
Singh et al. 2014; Huang et al. 2016; Yang et al. 2016), distinct element method based
models (Shi 1988; Jing et al. 2001; Fu et al. 2011; Nagel et al. 2011; Riahi and Damjanac
2013), lumped P3D network models (Xu et al. 2009; Meyer and Bazan 2011), and cell-

based P3D network models (Weng et al. 2011; Kresse et al. 2013).

1.4.2 Current Models Considering Bedding Layer Effect

Weak bedding planes play an important role in stopping fracture height growth,

initiating interface fractures or creating offsets in the fracture. These offsets put a huge
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restriction on fracture height growth due to the fact that fracture width becomes narrower
in the offset range and possibility of proppant bridging. Currently, very few models have
been developed to investigate the bedding layer effects on fracture geometry. Cooke
(2011) developed a numerical model to investigate fracture-interface contacting problems
and analyzed frictional slip and correlated opening-mode fracture propagation using a
two-dimensional Boundary Element Method (BEM). Zhang et al. (2007) employed a two-
dimensional boundary element method (BEM) based model to study the interaction
mechanisms between fracture and bedding interfaces. Gu et al. (2008) implemented an
interfacial slip model to a pseudo-three-dimensional (P3D) hydraulic fracture simulator
and indicated that interfacial slippage along the bedding planes plays a significant role in
determining the fracture height growth, fracture width deformation, fracture pressure and
entire fracture geometry. Abbas et al. (2014) employed the Extended Finite Element
Method (XFEM) to study geometric effects of fracture offsets that retard fracture height
growth, as depicted in Figure 1.6 (a). Chuprakov and Prioul (2015) elaborated a FracT
model which can solve the problem of elasto-frictional fracture contact with weak
horizontal interfaces, as illustrated in Figure 1.6 (b). Cohen et al. (2017) proposed a new
Stacked Height Growth (SHG) model, regarded as an enhanced Pseudo 3D model (P3D),
can model the effect of ledges at weak interfaces. Izadi et al. (2017) developed a fully
coupled 3D hydraulic fracturing simulator to investigate multiple fractures interference
with consideration of the effect of bedding planes. Zhang et al. (2017) described a new
cell-based pseudo-3D (P3D) model which accounts for the effect of multiple elastic layers

on fracture height growth. Llanos et al. (2017) conducted experiments by using
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MineHF2D model developed by CSIRO and demonstrated that fracture propagation is
greatly influenced by the slippage along the frictional interfaces. All these models have
limitations: (1) All models above are limited within two-dimensional space; (2) It is
difficult for quantifying fracture width around the junction area between the vertical

fracture and the bedding plane; (3) It rarely accounts for the multiple fracture cases.

Width

-

i point

Figure 1.6: Models for simulating the bedding layer effects on fracture geometry (a)
Extended Finite Element Method (XFEM) based model (Adapted from Abbas et al.
2014) and (b) FracT model (Adapted from Chuprakov and Prioul 2015).

1.4.3 Impact of Inclined Bedding Planes on Fracture Propagation

In reality, multi-layered bedding planes are not horizontally distributed in the shale
reservoirs and thus the intersection angle between the fractures and the inclined bedding
planes is non-orthogonal. Previous studies showed that the intersection angle plays a
significant impact on the fracture approaching at the frictional discontinuities such as
natural fractures, interface planes and veins (Blanton 1982; Zhou et al. 2008; Gu and Weng
2010; Virgo et al. 2014; Lee et al. 2016; Lee et al. 2018). Gu and Weng (2010) expanded

the Renshaw and Pollard’s (1995) criterion for solving non-orthogonal approaching cases.
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This modified Model indicated that a fracture is more difficult to cross the oblique bedding
plane with a smaller intersection angle less than 90°, which creates more chance for the
fracture to divert or propagate along the bedding plane (Gu and Weng 2010; Gu et al.
2011). Sarmadivaleh and Rasouli (2014) also proposed an extended criterion based on
Renshaw and Pollard’s criterion to deal with non-orthogonal cohesive interface plane.
Virgo et al. (2014) did tension tests based on Three-Dimensional Discrete Element
Method (3D DEM) and found that fracture deflection occurs at a low approaching angle
and the length of the deflection pathway along the interface increases with the decrement
of approaching angle of the vein. Lee et al. (2016) numerically modeled fracture-vein
interactions with different approach angles and concluded that tensile fractures were more
likely to divert into pre-existing veins in the case of smaller approach angle. Lee et al.
(2018) found that the hydraulic fracture with a vein of smaller approach angle would
propagate all the way along the vein and fracture would be kinked back into another layer

leaving a short diversion along the vein when the approach angle is large.
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2. ROCK DEFORMATION

This chapter first introduces the development history of the three-dimensional
displacement discontinuity method (3D DDM). Mathematical derivation of our developed
3D DDM is then presented, which enables dealing with cases of multiple fractures with
arbitrary angles in three dimensions. In other word, all the vertical/slanted hydraulic
fractures and frictional discontinuities such as natural fractures and horizontal/oblique
interface segments, can be simulated by our 3D DDM. The numerical solution from 3D
DDM has a good match with the 2D analytical solution as shown in the model validation
section. The cases of different fracture geometries are then analyzed in this chapter, such
as a symmetric crossing-shaped fracture, a T-shaped fracture, an I-shaped fracture and a
complex fracture geometry with offsets. For each case, horizontal fractures can be
regarded as opening of weak horizontal interfaces and vertical fractures would either be
arrested or step over from interfaces. Displacement discontinuities on vertical and
horizontal fractures were investigated to study the effects of opening of weak horizontal

interfaces.

*Part of this section is reprinted with permission from “A 3-D Model for Simulation of Weak Interface
Slippage for Fracture Height Containment in Shale Reservoirs” by J. Tang, K. Wu, 2018. International
Journal of Solids and Structures, Copyright [2018] by Elsevier.
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2.1 Three-Dimensional Displacement Discontinuity Method (3D DDM)

Compared with finite element method (FEM), boundary element method (BEM)
has the advantage of reducing the dimension of elasticity equation and only discretizing
the fracture surface. Hence, BEM has high computational efficiency. With those
advantages of surface-only discretization and high computational efficiency, a boundary
element method, Displacement Discontinuity Method (DDM), has been widely used in
modeling rock deformation of hydraulic fracturing treatments for both homogeneous and
multi-layered formations in two dimensions or three dimensions (Vandamme and Curran
1989; Siebrits and Peirce 2002; Siebrits and Peirce 2007; Wu and Olson 2015; Kumar and
Ghassemi 2015; Kumar and Ghassemi 2016; Wu et al. 2016; Xie et al. 2018). Moreover,
DDM can be also extended to stress evolution prediction, pressure distribution and
production estimation (Yu et al. 2016; Sangnimnuan et al. 2017; Guo et al. 2018; Li et al.
2018). In this dissertation, we employed this method with coupled fluid flow to investigate
the effects of weak horizontal interfaces on fracture height growth and fracture geometry.

The Displacement Discontinuity Method (DDM) firstly put forward by Crouch
(1976). Crouch and Starfield (1983) then proposed 2D displacement discontinuity method
(DDM) approach, which classified as a special direct boundary element method (BEM)
for solving the stress and displacement within the unknown boundary under the given
assumption. 2D DDM only does fracture discretization along fracture length and hence
neglects the fracture width alteration along the fracture height direction. Olson (2004),
Olson (2008) and Olson and Dahi-Taleghani (2009) developed an enhanced 2D DDM

model for both single and multiple fractures propagation, which adding a correction factor
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for taking the effect of fracture height into consideration. In this enhanced model, the
fracture width at any location along the fracture length direction means the average width
over the fracture height. Wu and Olson (2013) found that the computational accuracy of
the enhanced 2D DDM Model for multiple fractures is less than that for single fracture
due to the fact of underestimation of fracture interaction leading to larger fracture
apertures. Shou (1993) developed a fully Three-Dimensional Displacement Discontinuity
Method (3D DDM), regarding displacement discontinuity as a constant and using
rectangular element mesh in an infinite medium. The analytical solutions for stress
distribution and displacement discontinuity can be obtained by coordinate transformation.
Shou (1997) then presented a 3D higher order displacement discontinuity element method,
which using nine collocation points spread over a nine element patch, in order to
accurately predict both stresses and displacements for the field points closer than one
element length. Based on the fully 3D DDM, Wu (2014) proposed a simplified 3D DDM
(S3D DDM) method that only pick a single element over the fracture height and derive
the correction factor under the assumption of vertical fractures and without any dip-slip
shear stress. This new model provides an accurate solution for the induced stress of
fractures and works for multiple fractures but misses the displacement discontinuities in
the fracture height direction. Nintcheu Fata (2016) proposed a three-dimensional DDM
scheme applying unstructured triangular meshes instead of conventional rectangular-

shaped structure to conform to a domain of any shapes.
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2.1.1 Mathematical Derivation
Shou (1993) introduced Displacement Discontinuity Method (DDM) to determine
the induced stresses and displacements for fractures in three dimensions with a given

boundary condition,
w(@) = [, Mij(w,9) t;(9) d¥ (@) — [, Nj(w, @) u(@) d¥ (@) (2.1)

gj(w) = [, Eij(w, @) t;(p) d¥(p) — [, Tiji(w, ) u;(p) d¥ (p) (2.2)

where, u;(w) and oj, (w) represent displacement components and stress components at a
point w, respectively. M;;(w, @), N;j(w, p), E;ji(w, @), Tijx(w, @) are tensor fields with
displacements at a point w under the traction applied to a point ¢. t;(¢) and u; (@)
represent a traction component and a displacement component over the boundary region
¥, respectively.

Wu (2014) described a single three-dimensional vertical fracture discretized into
numerous rectangular elements in an infinite elastic medium. The fully three-dimensional
displacement discontinuity method (3D DDM) is further developed for modeling multiple
fractures with arbitrary angles in three dimensions. Figure 2.1 illustrates a three-
dimensional horizontal fracture in an infinite elastic solid. The fracture is divided into
many planar elements with the assumption of constant displacement discontinuities on
each element. The global coordinates are (X, Y, Z) and the local coordinates are (x;, x5,

x3). Each rectangular element has two opposite surfaces labeled as x; = 0T and x; = 0~.
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X3

Figure 2.1: A three-dimensional horizontal crack in an infinite elastic solid (Tang and
Wu 2018).

The analytical solution for stress components, o;;, induced by an element with
constant displacement discontinuities (Rongved 1957; Salamon 1964), can be given under

the local coordinate system x;, x,, x5, as:

011 = mUH [2]g — x3/10] + D2[20]o — x3]11] + D3lJs + (1 — 2v)J5 — x3/121}

Oy9 = mU% [2v]g — x3/13] + D2[2]g — x3J14] + D3lJe + (1 — 2v)]4 — x3/15]}

033 = m{D1 [—x3/16] + D2[—x3/17] + D3[Xs — x3/181}

012 = {D1[(1 —v)Jg — x3J11] + D,[(1 — V)]s — x3/13]

4 (1l —v)

— D3[(1 = 2v)]; + x3/10]}

013 = m{D1 Us + vJs — x3J12] — Da[v)7 + x3J10] — Dslx3/161}
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O3 = m{—D1 [v/7 + x3]10] + D2ls + U4 — x3/15] — D3lx3/171}

where G is the shear modulus and v is the Poisson’s ratio. D; is the shear displacement
discontinuity in the fracture length direction, D, is the shear displacement discontinuity in
the fracture height direction, D5 is the normal displacement discontinuity, also named as
fracture width. These three components of displacement discontinuities are depicted in
Figure 2.2. J; represents the derivatives of a kernel analytical solution found using a

Green’s function approach for i ranging from 1 to 19.

>

D,(Dsy) D;(Dsy) D5(Dyy)

rg
X

Figure 2.2: Three components of displacement discontinuities - D;(Ds;) is the shear
displacement discontinuity in the fracture length direction (x axis), D,(Dsy)is the shear
displacement discontinuity in the fracture height direction (z axis), D3 (Dyy) is the normal
displacement discontinuity (y axis) (Tang and Wu 2018).

When determining stresses at a point (X,Y,Z) with respect to global coordinate
system induced by displacement discontinuities of element j, the point (X,Y, Z) needs to

be transformed to the local coordinate system (x4, x,, x3) of element j,
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x; =(X—X;)cosB+ (Y —Y)sinp

x; = (X —X;)sinBsing — (Y —Y;)cos Bsin0 + (Z — Z;) cos 6 (2.4)
x3=—(X—X;)sinBcosO+ (Y —Y;)cosBcos®+(Z—Z)sin,

where 8 and 6 represent the strike angle and dip angle, respectively.

Before calculating the induced stresses at the midpoint of element i, the coordinate

of element i (X;,Y;, Z;) should be written as,
x;, = (X;i—X;)cos B+ (Y; = Y;)sinp
Xy = (Xi — Xj) sinfsinf — (Yi — Y]) cosfsinf + (Zi - Zj) cos @ (2.5)
x3 = —(X; — X;) sin B cos 0 + (Y; — Y;) cos B cos 0 + (Z; — Z;) sin 6.
For vertical fractures, x, is the direction of the fracture height for both coordinate

of i element and j™ element. Hence, only matrix R, is required to consider the rotation of

y axis,
cosf 0 sinp
Ry =R, = 0 1 0 ] (2.6)
—sinff 0 cosp

For the matrix above, it is clockwise rotation matrix with strike angle £ is negative.
However, if horizontal fractures are considered in 3D DDM model, another matrix R, is

required to consider the rotation of z axis,

1 0 0
R, =R,=1|0 cos@ —sinf]|. (2.7)
0 sin@ cos@

Finally, the transformed matrix R, should be multiplied by matrix R, to obtain a

new matrix R as below, which utilized for transformation of x; and x,,
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R=R;R, =|0 cosf® —sinf 0 1 0

0 sinf cos@ Il—sinfp 0 cosp

1 0 0 ”cosﬁ 0 sinﬁ]

sinfsin@ cos@ —cospsinf
—sinficos@ sin@ cosPcosB

cosf 0 sinf
[ ] (2.8)

Transform the point (X, Y, Z) of global coordinate system of element j to the local

coordinate system of element j,

X1 cos fB 0 sin 8 X — X
[h‘ = [ sinffsin@ cos@ —cosBsinb||Z—Z;|. (2.9)
X3 —sinfcos8 sin® cosBcost I|Y-Y;

Similarly, transform to local coordinate of i element from local coordinate of j*
element,

]

xt cos B 0 sin B X1
xi|=| sinBsin@ cos® —cospsin 9] xJ |- (2.10)
x% —sinficos@ sin@ cosPBcosB )

3

The coordinate of the stresses need to transform from the local reference frame of
element j to that of element i based on coordinate transformation, then we obtain the new

stress tensor as,

i i i j j J

L L L
011 012 013 011 012 01

i i i | = ) J j | pT
031 Oy 033l =R|oy, 05, 05|R. (2.11)
i i i j j j
031 032 033 0, 04, Oy

In the new stress tensor, only six stress components are independent and they are

written as,

o1, = cos? B o], + sin? B o), + sin2pB o,
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03, = sin® B sin? 6 a], + cos? 0 o, + cos? B sin? 6 0, + sin B sin 260 g},
— sin 2f sin“ 6 0;; — cos f sin 26 o,
043 = sin? B cos? 6 o], + sin® 0 63, + cos? B cos? 0 6], — sin B sin 26 g,
; 29 47 i J
—sin2f cos“ 0 o]; + cos B sin 20 0,
ol, = lSin 2F sin6 ol — 1sin 2 sin@ ol + cos f cos 0 ol — cos 20 sin@ o’
12 — 2 11 2 33 12 13
; J
+ sin ff cos 0 054

. 1 o1 . . .
013 = =5 sin2p cos ol + 7 5in2p cos 6 0l + cos B sin@a, + cos 2f cos 6 o,

, , j
+ sinf sin 0 0,4

. 1 1 1 , .
Oy = — Esin2 Bsin26a] + > sin 200), — Ecos2 B sin 20 a4, — sin 8 cos 26 o7,

1 . .
+ 5 sin2p sin 26 075 + cos B cos 20 a5

If only vertical fractures exist in this model, we have 8 # 0°,6 = 0° and six stress
components can be written as,

ot = cos? B o], + sin® B o, + sin2B af,

i )
022 = 0y
o4y = sin? B o], + cos? B o), — sin2B o,

01, = 04 = cos B oi, +sinf o),

. . 1 1 . ,
O13 = 031 = —5sin 2 ol + > sin2p o), + cos 2B o,
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043 = 04, = —sin B al, + cos B 03,.

If only horizontal fractures exist in this model, we have g = 0°,6 # 0° and six

stress components can be represented as,
i — 5

011 = 014

0, = cos? 0 o), + sin? 0 ol, — sin 26 0},

033 = sin® 0 a5, + cos? 0 o, + sin 20 0,

o1, = cos 0 o, — sin6 i,

013 = sinf i, + cos 0 o}
ol, = lsin 20 gl — lsin 20 o) + cos 26 o)
23 =3 2275 33 23

To be more general, the normal stress and two shear stresses on element i with

arbitrary strike and dip angles can be written as,
ois = sin?y cos? @ o], + sin? ¢ 0}, + cos?y cos? ¢ 0, — siny sin 2¢ a7,
— sin 2y cos? ¢ 0], + cosy sin2¢ g5,

1 .

iy = — 5 sin 2y cosp ol + 5 sin 2y cos @ 03 + cosy sin g oi, + cos 2y cos ¢ 07
+ siny sin @ 03,
i, = —2sinysin2¢ o, +2sin2¢ o), — = cos?y sin2¢ al, — siny cos 2@ o, +
23 = T3 Y P01 T3 P 032 —3 Y ¢ 033 Y P oy,

1. . j J
5 Sin2y sin2¢ o33 + cosy cos 2¢ 0,5

Yy =Bi—Bj,¢=06,—6;
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Use Eq. (2.3) as mentioned above and use the terms Ds;,, Dsy, Dy to refer to

Dy, Dy, D3,

i i
Os;, = T13

1 . .
= —5sin2y cos ¢ o, + =sin2y cos ¢ ol + cosy sing g},

2
+ cos 2y cos ¢ 011'3 + siny sing 021-3
1 1
= C, (—Esm 2y cos @ [2]g — x3]10] + Esm 2y cos @ [—x3]16)
+ cosysing [(1 —v)Jg — x3/11] + cos 2y cos ¢ [Jo + V)5 — x3]12]

+ siny sin @ [-v]; — x3]19]) Dg,
1 . 1.
+ C, (— S sin 2y cos ¢ [2v]g — x3]11] + > sin 2y cos ¢ [—x3]17]

+ cosy sing [(1 —v)Jg — x3/13] + cos 2y cos ¢ [—v]; — x3]1]

+sinysing [Jo + v/s — x3]15]> Dsy
1
+C, (—Esm 2y cos @ [J¢ + (1 — 2v)]s — x3/15]
1 .
+ =sin 2y cos ¢ [J¢ — x3]15] + cosy sin [—(1 — 2v)]; — X3]10]

2

+ cos 2y cos ¢ [—x3]16] + siny sin @ [—x3]17]) Dyn
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ol, =1l =—lsin2 sin2¢ o’ +lsin2 o’ —lcos2 sin2¢ o’
SH 23 5 14 Y014 > ¢ 03, > 14 ¥ 033

1 , .
— siny cos 2¢ 07, + Esin 2y sin2¢ o/, + cosy cos 2¢ o),
Lo 1.
= Cy (‘ESm Yy sin2¢ [2]g — x3/10] + Esm 2¢ [2v]g — x3/335]
1 o .
- ECOS Y sin2¢ [—x3]16] — siny cos 2¢ [(1 — v)]o — x3/11]

1
+ Esin 2y sin2¢ [Jo + vJs — x3J12] + cosy cos 2¢ [—v]; — x3]19]) Dg;
1, 1
+ G, (‘ESm ysin2¢ [2v]o — x3/11] + Esm 20 [2]g — x3]14]
1, .
- ECOS ysin2¢ [—x3J17] — siny cos 2¢ [(1 — v)Jg — x3/13]
1 .
+ Esm 2y sin2¢ [—v]; — x3]19] + cosy cos 2¢ [Jo + V], — x3]15]) Dy
1 .
+ C, (—Esmz ysin2¢ [Jg + (1 — 2v)Js — x3/15]
1 T
+ 5 St 2¢ [Jo + (1 = 2v)]4 — x3/15] — 5 cosTysin 2¢ [J — x3/15]

1
—sinycos 2¢ [—(1 — 2v)]; — x3J10] + Esin 2y sin2¢ [—x3/16]

+ cosy cos 2¢ [—x3]17]) Dyn
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oly = 0l = sin®y cos? @ o), + sin® @ 6, + cos? y cos® ¢ a1, — siny sin2¢ o,
— sin 2y cos? 0] 0{3 +cosysin2e 021-3
= C,(sin*y cos® @ [2]g — x3/10] + sin? @ [2v]g — x3/13]
+ cos?y cos® @ [—x316] — siny sin 29 [(1 —v)]s — x3/11]
— sin 2y cos? @ [Js + vJs — x3/1,] + cosy sin2¢ [—v]; — x3]19]) Ds;,
+ C,(sin®y cos? ¢ [2v]q — x3]11] + sin® ¢ [2]g — x3/14]
+ cos?y cos® @ [—x3)17] — siny sin2¢ [(1 — v)]g — x3/13]
— sin 2y cos? @ [—v]; — x3]10] + cosy sin2¢ [J¢ + v]4 — x3/15]) Dsy
+ Cr(sin®y cos? @ [J + (1 — 20)/5 — x3/12]
+sin® @ [Jo + (1 — 2v)J4 — x3/15] + cos?y cos® ¢ [J¢ — x3/15]
— siny sin2¢ [—(1 — 2v)J; — x3J19] — sin 2y cos® ¢ [—x3/16]

+ cosy sin2¢ [—x3/17]) Dyn-

where G is the shear modulus and v is the Poisson’s ratio.
In term of the boundary influence coefficients matrix, each element of matrix is

written as:

1 1
Agps1, = Cr (_ Esm 2y cos ¢ [2]g — x3]10] + Esm 2y cos @ [—x3]16]
+ cosysing [(1—v)Jy — x3]11] + cos 2y cos ¢ [J + V)5 — x3]12]

+ siny sing [~v]; — x3]19])
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1 1
Asrsu = Gy (‘ Esm 2y cos @ [2v]g — x3/11] + Esm 2y cos ¢ [—x3]17]
+ cosy sing [(1 —v)Jg — x3/13] + cos 2y cos ¢ [-v]; — x3]19]

+ sinysing [Jg + v, — x3]15]>

1 1
As, vy = Cr (_ESin 2ycos @ [Jg + (1 = 2v)]5 — x3]12] + Esm 2y cos ¢ [J¢ — x3]15]

+ cosy sin [—(1 — 2v)]; — x3]19] + c0S 2y cos @ [—x3]16]
+ siny sin g [—x3]17])
1, 1
Asp st = Cy (‘ Esm ysin2¢ [2]g — x3]10] + Esm 29 [2v]g — x3/13]
1, .
- ECOS Y sin2@ [—x3J16] — siny cos 2¢ [(1 —v)Jg — x3/11]
1 .
+ —sin 2y sin 2@ [J¢ + v]s — x3J12] + cosy cos 2¢ [—v], — x3]19]>

2

1 . 1
Asp sy = Cr <_55m2 Y sin2¢ [2v]o — x3/11] + Esm 20 [2]g — x3]/14]
1 .
- ECOS Y sin2¢ [—x3]17] — siny cos 2¢ [(1 — v)Jg — x3/13]

1
+ Esin 2y sin 2@ [—v]; — x3]19] + cosy cos 2¢ [Jo + ], — x3]15])
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1 . )
Asunn = Gy (—Esmz ysin2¢ [J¢ + (1 — 2v)J5 — x3/12]

1 1
+ Esm 20 [Je + (1 = 2v)], — x3/15] — ECOSZ Y sin2¢ [Jo — x3/1]

1
—sinycos 2¢ [—(1 — 2v)]; — x3J10] + Esin 2y sin 2@ [—x3/16]

+ cosy cos 2¢ [—x3]17])

Ayn st = Cr(sin®y cos? ¢ [2]g — x3]10] + sin® ¢ [2v]g — x3]13]

+ cos®y cos® @ [~x3)16] — siny sin2¢ [(1 — v)]s — x3/14]

— sin 2y cos® @ [Jo + vJ5 — x3J12] + cosy sin 2¢ [—v]; — x3/10])
Annsn = Cr(sin?y cos? ¢ [2v]s — x3/11] + sin® ¢ [2]5 — X3]14]

+ cos®y cos? @ [~x3/,7] — siny sin 2¢ [(1 — v)]s — x3/13]

— sin 2y cos? ¢ [~v]; — x3/10] + cosy sin2¢ [Js + v/4 — x3/15])
Aynn = Cr(sin®y cos? @ [Jo + (1 — 20)]s — x3/12]

+sin® @ [Jg + (1 — 20)]4 — x3/15] + cos®y cos® @ [Jo — x3/15]

— siny sin2¢ [~(1 — 2v)J; — x3/10] — sin 2y cos? ¢ [~x3/16]

+ cosy sin2¢ [—x3/17])

According to coordinate transformation, the induced normal stress and two shear
stresses for a given element are calculated by summarizing contributions of displacement

discontinuities of all boundary elements. The matrix equation can be formulated as,

i ik ik ik Kk

a¢ Asi st Asisu Aspan |[ DY,
i | — | pik ik ik k

osy| = |Asus.  Asusu  Asunn || Dsu | (2.20)
i ik ik ik k

Oy Anns. Annsw  ANnwn Dyn
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where D& is the shear displacement discontinuity of element k in the fracture length
direction, D%, is the shear displacement discontinuity of element k in the fracture height
direction, DX, is the normal displacement discontinuity of element k. In addition,
(onn)b (0s.)b (osy)t represent the normal stress and shear stresses in fracture length and
height directions at element i, respectively.

After calculating the displacement discontinuity values of all boundary elements,
then the stresses at any point P in the body frame can be determined by the following
equations,
oxx" = cos? B 011 + sin? B sin? 0 o5, + sin? B cos? 6 a33 + sin 2P sin B oy,

— sin2f cos 0 0,3 — sin? B sin 26 0,5
oyy" = sin? B 0,1 + cos? B sin? 6 65, + cos? B cos? 0 o33 — sin 23 sin 6 oy,
+ sin 2f cos 0 6,3 — cos? B sin 20 0,5

077" = c0s? 0 05, + sin? 0 035 + sin 20 0,5

oxy! = Esin 2B 011 — Esin 2 sin? 0 oy, — Esin 2f3 cos? 0 33 — cos 23 sin 0 o4,

1
+ cos 2[5 cos 0 0,5 + Esin 2[ sin 20 0,3
p_ 1 . . . :
Ox; = Esmﬁ sin 260 0,, — Esmﬁ sin 26 a33 + cos B cos 0 01, + cos [ sin 0 043
— sin ff cos 260 0,5
, 1 , , . .
oyzl = — 5 cos B sin 26 05, + = cos  sin 20 a33 + sin f cos 0 g,, + sin § sin 0 043

2

+ cos [ cos 260 0,3
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oxx" = cos? B{C,D1[2]g — x3)10] + CD;[20]g — x3]14]
+ CrD3[J + (1 — 20)]s — x3/121}
+ sin? B sin® 0 {C,D;[2v]g — x3)13] + C;D3[2]o — x3]14]
+ CrD3[J + (1 — 20)]4 — x3/15]}
+ sin? B cos? 6 {C,Dy[—x3]16] + CrDy[—x3]17] + CD3[Js — x3]15]}
+ sin 28 sin 0 {C,.D; [(1 — v)]o — x3J11] + C,-Do[(1 — v)Jg — X3/13]
+ G D3[—(1 = 2v)J7 — x3/101}
— sin 28 cos 6 {C,.D,[J + vJs — x3J12] + CrDy[~v]; — X3)16]
+ CrD3[—x3/161}
— sin? B sin 20 {C,.D,[—v], — x3J10] + CrD;[Js + )y — X3)15]
+ CrD3[—x3/171}
= C,(cos? B [2]s — x3)10] + sin? B sin? @ [2v]g — x3)13]
+ sin? 8 cos? 0 [—x3)16) + sin 2B sin O [(1 — v)Jy — x3/11]
— sin2f cos 6 [Jg + vJs — x3J12] — sin? B sin 26 [—v]; — x3J15]) Dy
+ Cr(cos? B [2u]s — x3J11] + sin? B sin? 6 [2]g — x3]14]
+ sin? f cos? 0 [—x3);,] + sin 2B sin O [(1 — v)Js — x3/13]
— sin 2f8 cos 0 [—v]; — x3]10] — sin? B sin 20 [Jg + v]y — x3/15])D;
+ C,(cos? B [Jo + (1 — 2v)Js — x3/12]
+ sin? B sin? 0 [Jg + (1 — 20)J, — x3)15] + sin? B cos? 8 [Jg — x3)15]
+ sin 2 sin 0 [—(1 — 2v)J, — x3]19] — sin 2 cos O [—x3]16]

— sin? B sin 20 [—x3J,,1) D3
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oyy" = sin? B {C,D,[2]s — x3J10] + CrD3[20]5 — x3]11]
+ C,.D3[Js + (1 — 2v)J5 — x3J121} + cos? B sin? 6 {C, D1 [2v]g — x3]15]
+ C,Dy[2)5 — x3]14) + CrD3[J6 + (1 — 20)]4 — x3/15]}
+ cos? B cos? 0 {C,Dy[—x3]16) + CrD3[—x3J17] + CrD3[Jg — x3/15]}
— sin2B sin 6 {C,D1[(1 —v)]Jy — x3)11] + C-Do[(1 — v)Jg — x3/13]
+ C,D3[—(1 — 2v)]; — x3]10]} + sin 2 cos 0 {C.D[Js + v]s — x3)15]
+ CrDy[—v]7 — x3/10] + Cr-D3[—x3/161}
— cos? B sin 260 {C,D,[—v]; — x3)10] + CrD3[Je + V)4 — x3J15]
+ CrD3[—x3/17]}
= Cr(sin? B [2Jg — x3]10] + cos? B sin? 0 [2u]g — x3]43]
+ cos? B cos? 0 [—x3]16] — sin 2B sin 6 [(1 — v)]y — x3)14]
+ sin 2B cos 6 [Jg + v]s — x312] — cos? B sin 20 [—v], — x3]10]) Dy
+ C,(sin? B [2v]g — x3]11] + cos? B sin? 0 [2]g — x3]14]
+ cos? B cos? 0 [—x3]17] — sin2B sin6 [(1 — v)]g — x3/13]
+ sin 2 cos 0 [—v]; — x3]10] — cos? B sin 20 [Jg + v]y — x3)15])D-
+ C,(sin®* B [Jo + (1 — 20)J5 — x3/12]
+ cos? B sin® 0 [Jo + (1 — 2v)], — x3)15] + cos? B cos? 0 [Jo — x3)15]
— sin2B sin @ [—(1 — 2v)]; — x3)10] + Sin 2 cos 6 [—x3]1¢]

— cos? B sin 20 [—x3J;7]) D3
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077" = c0s? 0 {C,.D;[2v]g — x3J13] + Cr-D5[2]g — x3]14]
+ C,D3[J¢ + (1 — 2v)], — x3/15]} + sin? 0 {C,. D1 [—x3]16]
+ C,.Dy[—x3]17] + Cr-D3[Jg — x3J18]} + sin 20 {C,.D1[—v]; — x3]19]
+ CrDalJs +v]s — x3/15] + G- D3[—x3/171}
= C,(cos? 0 [2v]g — x3]13] + sin? 0 [—x3)16]
+ sin 20 [—v]; — x3]19])D;
+ C,(cos? 0 [2]g — x3]14] + sin® 0 [—x3]17]
+ sin 20 [J¢ + v]4 — x3J15]1)D;
+ C,(cos? 0 [Jo + (1 — 2v)]4 — x3)15] + sin? 0 [Jg — x3/18]

+ 5in 20 [—x3/17]) D3
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1
oxy! = Esm 2B {C,.D1[2]g — x3]10] + Cr-D3[20]g — x3]14]

1
+ C:D3[Js + (1 = 20)]5 — x3]121} — ESin 2 sin® 6 {C,D1[2v]g — X3]13]
+ CD3[2]9 — x3/14] + C:D3lJg + (1 — 20)]4 — x3/15]}
1
- ESin 2P cos* 0 {C,D1[—x3]/16] + C,Dy[—x3]17] + CD3[Js — X3]181}

—cos 2 sin 0 {C,.D1[(1 —v)]g — x3/11] + C-D,[(1 —v)]g — x3]43]
+ C-D3[—(1 — 2v)]; — x3/10]} + cos 23 cos 0 {C,-D [J + v]s — x3/12]

+ C-Dy[—v]; — x3]19] + C-D3[—x3]16]}

1
+ ESin 2f3 sin 26 {CD1[—v]; — x3]19] + CrD;[Jg + V)4 — X3/15]
+ C,D3[—x3]171}

= Cy (%Sin 2B [2]g — x3J10] — %Sin 28 sin® 6 [2v]g — x3/13]

- %sin 2 cos? 0 [—x3]16] — cos 2B sin @ [(1 —v)]y — x3]11]

+ cos 2B cos O [Jg + v]s — x3]12] + %sin 2B sin 26 [—v], — x3]19]) D,
1 1

+ C, (E sin2p [2v]q — x3J11] — Esin 2 sin? 0 [2]y — x3])14]

- %sin 2 cos? 0 [—x3];7] — cos 2B sin 0 [(1 —v)Jg — x3]13]

1
+ cos 28 cos 0 [—v]; — x3]19] + Esin 2B sin26 [Jo +v], — x3]15]> D,

1
+ C, (E sin2f [Je + (1 — 2v)J5 — x3/12]
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— %sin 20 sin?0 [Jg + (1 — 2v)], — x3/15]
- %sin 2B cos? 0 [J¢ — x3J18] — cos 2B sin O [—(1 — 2v)], — x3]10]

1
+ cos 28 cos 0 [—x3]16] + Esin 2[ sin 26 [—x3]17]) Dy
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1 . )
oxz" = Esmﬁ sin 26 {C,D;[2v]g — x3]13] + C,-Dz[2]5 — x3/14]

1
+ CD3[Js + (1 = 20)]4 — x3]15]} — ESinﬁ sin 260 {C,-Dy[—x3/6]

+ CDy[—x3]17] + C-D3lJs — X3/18]}

+ cos B cos 0 {C.D;[(1 — v)]o — x3J11] + C,D,[(1 — v)]g — X3/13]

+ C,.D3[—(1 — 2v)]; — x3)19]} + cos B sin 6 {CD;[Js + v]s — x3/12]
+ C-Dy[~v]7 — x3/10] + C-D3[—x3/16]}

— sin B cos 20 {C,;D;[—v]; — x3J19] + CrDa[J6 + Vs — x3/;5]

+ CD3[—x3]171}

1 1
= C, (E sin B sin 20 [2v]g — x3J13] — Esin/j sin 260 [—x3/1¢]

+ cosBcos O [(1 —v)Jg — x3]11] + cos Bsinb [Jg + v]s — x3]/12]

—sin B cos 20 [—v], — x3]19]> D,

+ C, (% sinBsin20 [2]g — x3J14] — %sinﬁ sin 26 [—x3],7]
+ cos Bcos B [(1 —v)Jg — x3]13] + cos B sin B [—v]; — x3]19]

—sinfcos 20 [J¢ +v], — x3]15]) D,
1
+ C, (ESinﬁ sin20 [Jo + (1 — 2v)], — x3/15]
— %sinﬁ sin 20 [Jo — x3J1g] + cos B cos 0 [—(1 — 2v)]; — x3]10]

+ cos B sin 0 [—x3]1¢] — sin B cos 26 [—x3]17]> Ds

37



1 )
oyz’ = — ECOS.B sin 20 {C,D1[2v]g — x3/13] + C,D2[2]5 — x3]14]

1
+ CD3lJs + (1 = 20)]4 — x3/15]} + ECOSB sin 26 {C,D;[—x3/16]

+ CDy[—x3]17] + C-D3lJs — X3/18]}

+ sin B cos 0 {C,D1[(1 — v)]o — x3/11] + C;D;[(1 — v)Jg — Xx3/13]

+ C,.D3[—(1 — 2v)]; — x3)19]} + sin B sin 8 {C, D1 [Js + v]s — x3/12]
+ C-Dy[~v]7 — x3/10] + C-D3[—x3/16]}

+ cos ff cos 260 {C,D1[—v]; — x3]19] + C;D;[Js + v]4 — x3]15]

+ CD3[—x3]171}

1 1
= C, (— - ¢os B sin 20 [2v]g — x3]13] + - ¢cos B sin 20 [—x3/16]

+sinBcosO[(1 —v)Jg — x3J11] +sinBsinO [Js + v]s — x3/12]

+ cos B cos 20 [—v], — x3]19]> D,

+ C, (— % cos B sin26 [2]g — x3]14] + %cos B sin 26 [—x3],7]
+ sinB cos 0 [(1 —v)]Jg — x3J13] + sin B sin O [—v], — x3]19]

+ cos B cos 20 [Jo + v], — x3]15]> D,
1
+ C, (—Ecosﬁ sin26 [Jo + (1 — 2v)], — x3/;5]
+ %COS,B sin20 [Jo — x3J1g] + sinB cos 0 [—(1 — 2v)]; — x3]10]

+ sin f sin 0 [—x3J16] + cos B cos 26 [—x3]17]> Ds
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From Egs. (2.21) to (2.26), we have D, = Dg;, D, = Dy, D3 = Dyy-

2.1.2 Non-dimensionalization
It is of great importance to consider the non-dimensionlization for 3D DDM. We
firstly selected a fracture height H as the reference length and the non-dimensional
coordinates would be written as,
X, = %xl, X, = %xz, X; = %X3 (2.28)
Then a reference pressure P was chosen to do non-dimensionalization for the three
components of stresses as,
Os = %USL; Osy = %O_SHI Onn = %O—NN (2.29)
Three components of non-dimensional displacement discontinuities were written
as below,
55L = %DSL' 5SH = %DSH' 5NN = %DNN (2.30)
where E is the Young’s modulus.
According to the coordinate transformation, we can determine the normalized

induced normal stress &, and shear stresses &, , 65y for a given element by summarizing

contributions of normalized displacement discontinuities of all N elements, as shown,

~i NJ NJ J
O-SEL - ZASLSL DSL +ZASLSH DSH +ZASLNNDNN

N
~1 ] ~
O-SH_ZASHSLDSL-I_ZASHS Z SHNN
] :
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j=1 j=1 j=1
................................................................................................ (2.31)
We can reformulated Eqg. (2.31) as a non-dimensional form,
. Fij Fij Fij ~j
6L ATS‘.L,SL A.'S'L,SH A..S‘.L,NN‘I D},
~i | | 7 Fij fij 7J
Osu| = |ASH,SL Agh su ASH,NNl Dgy |
5l Fij fij iij ~J
N lANN,SL Ay sH ANN,NNJ Dy
................................................................................................... (2.32)

where ﬁst is the normalized shear displacement discontinuity of element j in the fracture
length direction, ﬁst is the normalized shear displacement discontinuity of element j in

the fracture height direction, 5,{,,\, is the normalized normal displacement discontinuity of

element j. Moreover, 6%, 6, G5y are normalized normal stress and normalized shear
stresses in fracture length and height directions at element i, respectively. Based on a given
stress boundary condition on fractures, normalized displacement discontinuities can be

calculated using Eq. (2.32).

2.1.3 Flowchart of 3D DDM

Figure 2.3 describes the flowchart of our rock deformation model. First, we did
fracture discretization, which meshed the target fractures with prescribed boundary
elements, then we made coordinate transformation and stress tensor transformation, which
considering fractures with arbitrary strike angle and dip angle in three dimensions. Next,

we determined the stresses on the boundary condition and then obtained the influence
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coefficient matrix. Finally, a solver was applied to calculate the three normalized

displacement discontinuities.

-
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Figure 2.3: Flowchart of our rock deformation model based on 3D DDM

2.2 Model Validation

2.2.1 Comparison with an Analytical Solution

3D DDM can be utilized to calculate displacement discontinuities and induced
stresses for fractures. To validate the 3D model with a 2D analytical solution, we
calculated normal displacement discontinuity and induced stresses for a plane-strain
fracture using both methods. Parameters of a plane-strain vertical fracture are given in
Table 2.1. To satisfy the assumption of plane-strain on the vertical plane, the total fracture

length is 2000 ft, which is much larger than the fracture height. The analytical solution of
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opening along a fracture (Sneddon 1951; Crouch and Starfield 1983) can be written as,

2Pb(1-v) x2
—— 1 % (2.33)

w=u(x,07)—u(x,0%) =
where P is the net pressure within the fracture, b is half length of the fracture, x is the
location along the fracture length.

Comparison of the normal displacement discontinuity is shown in Figure 2.4,
which illustrates that the solution given by 3D DDM shows good agreement with the 2D
analytical solution. The fracture width decreases from the fracture center to the tips. Figure
2.5 indicates induced stresses normal to the vertical fracture plane at the center of the
fracture. The solid lines represent the solution by 3D DDM and the dashed lines represent
the 2D analytical solution. The normal horizontal stress is the stress normal to the vertical
fracture plane, the lateral horizontal stress is the stress along the fracture length direction,
and the vertical stress is the stress along the fracture height direction. With the increment
of the distance normal to the fracture, induced stresses attenuate along the center line. The
induced stresses reach their maximum values on the fracture. The lateral horizontal stress
is the product of Poisson’s ratio and the sum of the normal horizontal stress and the vertical

stress. The numerical solution from 3D DDM has a good match with the 2D analytical

solution as shown in the figures.
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Parameter Value Unit
Vertical fracture length 2000 ft
Vertical fracture height 100 ft

Net pressure 1500 psi
Young’s modulus 3.00E+06 psi
Poisson’s ratio 0.25

Table 2.1- Parameters of a vertical fracture for validation.

Normal Displacement
Discontinuity (inch)

03 { —e—3DDDM RN
= = 2D Analytical Solution 1
0 : : : : |
0 10 20 30 40 50

Vertical Distance from Fracture Center (ft)

Figure 2.4: Normal displacement discontinuity along vertical direction starting from
fracture center (Tang et al. 2017).
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Figure 2.5: Induced stresses normal to the vertical fracture (Tang et al. 2017).

2.2.2 Comparison between Horizontal and Vertical Fractures

The dimension of a vertical fracture is shown in Figure 2.6 (a) and the vertical
fracture was rotated 90° to be a horizontal fracture as described in Figure 2.6 (b). The two
fractures have identical fracture geometry and net pressure. The parameters are given in
Table 2.2. The normal displacement discontinuity (i.e. fracture width) of both vertical and
horizontal fractures were calculated using 3D DDM and shown in Figure 2.7 and Figure
2.8. Due to the fact of the same dimension and net pressure within fractures for the two
cases, the calculated fracture width should be identical after coordinate transformation.
Figure 2.7 illustrates width profile along the shorter dimension (100 ft) for both vertical
and horizontal fractures and shows that the width is exactly the same for both cases. Figure
2.8 gives width profile along the dimension of 400 ft and also shows identical width for

both fractures, as can be theoretically expected. Through this comparison study, we further
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validated our model and proved that 3D DDM can be used to calculate displacement

discontinuities for fractures in 3D space.

Parameter Value Unit
Vertical fracture length 400 ft
Vertical fracture height 100 ft
Horizontal fracture length in x direction 400 ft
Horizontal fracture length in y direction 100 ft
Net pressure within fractures 1000 psi

Table 2.2—Five required parameters of a single fracture case.

>Y 400 V Ay
100 ft|
/ /100t
7 /400 ft

X

Figure 2.6: Sketch of vertical and horizontal fractures with the same dimension - (a).
Dimension of a vertical fracture and (b). Dimension of a horizontal fracture (Tang and
Wu 2018).
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Figure 2.7: (a). Normal displacement discontinuity of the vertical fracture along the z
direction; (b). Normal displacement discontinuity of the horizontal fracture along the y
direction (Tang and Wu 2018).
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Figure 2.8: (a). Normal displacement discontinuity of the vertical fracture along the x
direction; (b). Normal displacement discontinuity of the horizontal fracture along the x
direction (Tang and Wu 2018).

2.3 Different Fracture Geometry Analysis

The fully 3DDDM can deal with the mechanical interaction between hydraulic
fractures and pre-existing discontinuities such as weakly bedding planes, joints or veins
in 3D space. The cases of different fracture geometries show how to calculate the fracture

opening and shear displacements of the horizontal interfaces, which help to analyze the
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sliding along the horizontal interface, fracture re-initiation from the horizontal interface
and also the diversion of viscous fluid flow at fracture junctions if a coupled fracture
propagation model is developed (Chuprakov et al. 2013), and further estimate the fracture
height containment. In this section, different fracture geometries were prescribed with the
combination of vertical and horizontal fractures to investigate the effects of opening
interfaces on fracture geometry. Cases of a symmetric crossing-shaped fracture, a T-
shaped fracture, an I-shaped fracture and a complex fracture geometry with offsets were
analyzed. Young’s modulus and Poisson’s ratio used in all cases are 3.0E6 psi and 0.25,

respectively.

2.3.1 Symmetric Crossing-shaped Fracture Geometry

In this subsection, we assembled vertical and horizontal fractures together to
investigate effects of an opening interface. A horizontal fracture represents a weak
interface and is opened and crossed by a vertical fracture. A symmetric crossing-shaped
fracture is shown in Figure 2.9. All required parameters are listed in Table 2.3. Generally,
the overburden vertical stress is larger than the minimum horizontal stress in
unconventional reservoirs. We assumed uniform fluid pressure within vertical and
horizontal fractures, which implies that net pressure within fractures is different. In this
section, it is assumed that net pressure within the vertical fracture is 1000 psi, while the
net pressure within the horizontal fractures is 500 psi. Additionally, “DNN” represents the
normal displacement discontinuity of vertical fractures, and the normal displacement

discontinuity of horizontal fractures is abbreviated to “NDD” in all figures.
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Normalized width profiles of the vertical fracture along the fracture height
direction and the length direction are given in Figures 2.10 (a) and 2.10 (b). The red color
represents the width profile of the vertical fracture in the case of symmetric crossing-
shaped fracture (Figure 2.9) under the influence of a horizontal fracture. “DNN-Single”
means the width profile of a single vertical fracture without the effect of a horizontal
fracture. The net pressure within this single vertical fracture is the same as in the vertical
fracture in Figure 2.9. Figures 2.10 (a) and 2.10 (b) show that the normalized width of the
vertical fracture under the effect of a horizontal fracture is relatively smaller than that of
a single vertical fracture. According to Figure 2.12 (b), the induced normal stress acting
on normalized x-z plane (o,,) generated by the horizontal fracture, behaves as a
compressive stress in the region of the vertical fracture (x axis is from -2 to 2, z axis is
from -0.5 to 0.5). Because of additional compressive stress exerted on the vertical fracture,
fracture width is reduced in the case of symmetric crossing-shaped fracture. Moreover, the
maximum fracture width is obtained at the fracture center no matter which direction we
chose.

Figures 2.11 (a) and 2.11 (b) show the normalized displacement discontinuities of
the horizontal fracture along x and y directions, respectively. “NDD-Single” represents
the width of a single horizontal fracture without the influence of the vertical fracture and
has the same net pressure with the horizontal fracture in Figure 2.9. “SDD-X" and “SDD-
Y” are shear displacement discontinuities of the horizontal fracture in x and y directions,
respectively. From Figures 2.11 (a) and 2.11 (b), the opening of the horizontal fracture

under the effect of the vertical fracture is also less than the opening of a single horizontal
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fracture, as a result of compressive stress induced by the vertical fracture (Figure 2.12 (a)).
When a horizontal fracture is totally symmetrical with a vertical fracture as depicted in
Figure 2.9, shear displacement discontinuities of this horizontal fracture are zero in both
x and y directions. In x direction, the fracture width decays with farther distance from x =
0. The minimum width is obtained at the fracture tip. Generally, fracture width
monotonically decreases from fracture center to a tip for the single fracture case. However,
Figure 2.11 (b) presents a new perspective about width distribution of a horizontal fracture
under the influence of a vertical fracture. The stress contour map in Figure 2.12 (a) can be
used to make an explanation, which shows the additional normal stress acting on
normalized x-y plane (o,,) induced by the vertical fracture. The induced normal stress is
negative (tensile stress) fromy =-1.0 to y = -0.5. Then it becomes positive (compressive
stress) in the range of y = -0.5 to y = 0.5. The sign of the stress changes to negative again
fromy=0.5to y=1.0. Thus, the formation of fracture width “trough” is due to the positive
induced normal stress which behaves as a compressive stress acting on the middle section

