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ABSTRACT

The negative powers of an elliptic operator can be approximated via its Dunford-Taylor integral

representation, i.e. we approximate the Dunford-Taylor integral with an exponential convergent

sinc quadrature scheme and discretize the integrand (a diffusion-reaction problem) at each quadra-

ture point using the finite element method. In this work, we apply this discretization strategy

for a parabolic problem involving fractional powers of elliptic operators and a stationary prob-

lem involving the integral fractional Laplacian. The approximation of the parabolic problem is

twofold: the homogenous problem and the non-homogeneous problem. We propose an approxi-

mation scheme for the homogeneous problem based on a complex-valued integral representation

of the solution operator. An exponential convergent sinc quadrature scheme with a hyperbolic

contour and a complex-valued finite element method are developed. The approximation of the

non-homogeneous problem in space follows the same idea from the homogeneous problem but we

need to additionally discretize the problem in the time domain. Here we consider two different

approaches: a pseduo-midpoint quadrature scheme in time based on Duhamel’s principle and the

Crank-Nicolson time stepping method. Both methods guarantee second order convergence in time

but require different sinc quadrature schemes to approximate the corresponding fractional opera-

tors. The time stepping method is stable provided that the sinc quadrature spacing is sufficiently

small. In terms of the approximation of the stationary problem involving integral fractional Lapla-

cian, we consider a Dunford-Taylor integral representation of the bilinear form in the weak formu-

lation. After approximating the integral with a sinc quadrature scheme, we need to approximate

the integrand at each quadrature point which contains a solution of a diffusion-reaction equation

defined on the whole space. We approximate the integrand problem on a truncated domain together

with the finite element method.

For both problems, we provide L2 error estimates between solutions and their final approxi-

mations. Numerical implementation and results illustrating the behavior of the algorithms are also

provided.
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CHAPTER I

INTRODUCTION

Various natural phenomena can be modeled by fractional diffusion or anomalous diffusion

[53]. A typical example is the Lévy flights with the isotropic measure |x|−d−2sdx, where d is

the space dimension and s ∈ (0, 1). This is also called the symmetric s-stable Lévy process [4]

and the corresponding infinitesimal generator is called fractional Laplacian and denoted by (−∆)s

(see also the definition below). The fractional Laplacian has been applied to various areas such as

finance [22], predator search patterns [65], peridynamics [64] and porous media flow [27]. Another

motivation comes from some physical models in Rd involving the Dirichlet-to-Neumann (DTN)

map in Rd+1, e.g. electroconvection [26] and the surface quasigeostrophic models [39]. One can

realizes the DTN map as the fractional Laplacian with the power 1/2. In fact, it is shown in [20]

that the fractional Laplacian with any power s ∈ (0, 1) can be treated as a DTN map via the

so-called s-harmonic extension problem.

In this work, we consider two kinds of spatial fractional differential operators which are fre-

quently used in above models: fractional powers of elliptic operators and the fractional Laplacian.

The former is from spectral theory. Let X and Y be two Hilbert spaces such that Y is dense in X

and Y can be compactly embedded into X . The unbounded L mapping from Y to X is defined

based on a bilinear form d(·, ·) which is symmetric, coercive and bounded on Y × Y , namely,

(Lw, θ) = d(w, θ), for all θ ∈ Y,

where (·, ·) denotes the X inner product. We also refer to Section II.2 for a detailed definition. The

fractional differential operator Ls for s ∈ (0, 1) is defined by the eigenfunction expansion

Lsv =
∞∑
j=1

λsj(v, ψj)ψj. (I.1)
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Here {ψj} is an X-orthonormal basis of eigenfunctions of L with positive non-decreasing eigen-

values {λj}. In this work, we set Ω be a bounded Lipschitz domain, X = L2(Ω), and Y = H1
0 (Ω).

If Ω is convex, the Dirichlet form d(u, v) =
∫

Ω
∇u·∇v dx for u, v ∈ H1

0 (Ω) defines the unbounded

operator L = −∆ with the domain D(L) = H1
0 (Ω) ∩H2(Ω) (also called the Dirichlet Laplacian)

and Ls is referred to as the spectral fractional Laplacian. Thanks to the Fredholm Alternative The-

orem, the definition (I.1) makes sense with the domain of the operator D(Ls) = {v ∈ L2(Ω) :

Lsv ∈ L2(Ω)}.

The definition of the second operator relies on the Fourier transform. Given v in the Schwartz

class, the fractional Laplacian is defined as a pseudo-differential operator with symbol |ζ|2s, i.e.

F((−∆)sv)(ζ) = |ζ|2sF(v)(ζ) (I.2)

with F denoting the Fourier transform. Parseval’s theorem implies that the domain of (−∆)s is a

subspace of H2s(Rd). An equivalent pointwise definition is given by (cf. [47])

(−∆)sv(x) = cd,sP.V.
∫
Rd
K(x− y)(v(x)− v(y)) dy, with K(y) =

1

|y|d+2s
, (I.3)

where cd,s is a normalization constant and P.V. stands for the principle value. To distinguish with

the spectral fractional Laplacian, (−∆)s is also referred to as the integral fractional Laplacian.

A crucial tool to investigate the PDEs involving the above fractional differential operators is

the equivalent DTN map mentioned above. With this approach, one can study the solution of a

local problem in Rd+1, which implies the properties of the solution to the original problem; see

[21, 59, 67].

I.1 Model Problems and Existing Numerical Approaches

The numerical approximation to PDEs involving fractional differential operators is necessary.

Unfortunately, unlike the case s = 1, a direct numerical approach (e.g. the finite element method

using local basis functions), i.e. assembling and solving a linear system with a dense system matrix

2



is unattractive from a computational point of view. It is also a demanding computational problem

as the size of the system matrix becomes large. Our goal is to seek efficient “indirect approaches”

to construct and solve such linear systems.

The approximation of stationary problems involving the fractional differential operators has

become a popular topic in recent years; see e.g. [41, 54, 12, 13, 2, 31, 40] and the references

therein.

A Stationary Problem involving Fractional Powers of Elliptic Operators

Given a bounded Lipschitz domain Ω ⊂ Rd and a right hand side data f ∈ L2(Ω), we want to

find the solution u ∈ D(Ls) satisfying

Lsu = f, in Ω, (I.4)

where the fractional differential operator Ls is defined by (I.1). In [43], Kato proposed to represent

the solution u = L−sf as a Dunford-Taylor integral with a complex contour encompassing the

eigenvalues of L (Cauchy integral in the operator form). Deforming the contour of the integral

appropriately, one derives the so-called Balakrishnan formula [6],

u = L−sf =
sin(πs)

π

∫ ∞
0

µ−s(µI + L)−1f dµ. (I.5)

We note that the formula above is a general definition of negative powers of regularly accretive

operators; see [43]. The formula (I.5) also suggests the following discretization strategy: apply a

numerical integration scheme to the integral with a quadrature spacing k > 0 together with a set

of quadrature points {µj}; use finite element methods to approximate (µjI + L)−1f for each j.

In [12], an exponentially convergent sinc quadrature scheme [48] is developed and a conforming

finite element discretization is applied to approximate the integrand at each quadrature point.

Two alternative approaches are available. In [41], the numerical approximation of the stationary

problem is based on the eigenfunction expansion of Lsh, where Lh is an approximation of L in a

3



finite dimensional space. The resulting approximation is essentially the same as its Dunford-Taylor

integral representation (cf. (II.24)) but it requires the computation of the discrete eigenvectors

and their eigenvalues (e.g. singular value decomposition). Another approach [54] is to treat the

fractional power of L as a DTN map via the s-harmonic extension problem on the semi-infinite

cylinder Ω × (0,∞). If u(x, y) for (x, y) ∈ Ω × (0,∞) is the solution to the local extension

problem, then u(x) = u(x, 0). Numerically, the extension problem can be approximated using the

finite element method in a truncated domain Ω× (0,Y) for some Y > 1. The truncation error in Y

becomes exponentially small as Y increases. We refer to the review paper [8] for extensions based

on this approach, such as time dependent problems, obstacle problems and adaptivity.

A Stationary Problem involving the Integral Fractional Laplacian

The stationary problem involving the integral fractional Laplacian reads: given Ω ⊂ Rd and

f ∈ L2(Ω), we want to find u ∈ L2(Rd) satisfying

u = 0, in Ωc, (−∆)su = f, in Ω. (I.6)

Here (−∆)s is defined by (I.2). We first provide a variational formulation of (I.6): seek u ∈ H̃s(Ω)

so that

a(u, φ) :=

∫
Rd

(
(−∆)s/2ũ

)(
(−∆)s/2φ̃)

)
dx =

∫
Ω

fφ dx, ∀φ ∈ H̃s(Ω), (I.7)

where H̃s(Ω) stands for the set of functions in Ω whose extension by zero belongs toHs(Rd) and ũ

and φ̃ denote extensions by zero. The bilinear form a(·, ·) on the left hand side of (I.7) is bounded

and coercive in H̃s(Ω). Thus, the Lax-Milgram theory guarantees the existence and uniqueness of

the solution u satisfying (I.7) (see Section V.1 for details).

For simplicity, we use continuous piecewise linear finite element spaces to approximate the

solution of (I.7). The convergence analysis is classical once the regularity properties of solutions

to problem (I.7) are understood (regularity results for (I.7) have been studied; see [2] and [59]).
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However, the implementation of the resulting discretization suffers from the fact that, the entries

of the stiffness matrix, namely, a(φi, φj), with {φk} denoting the finite element basis, cannot be

computed exactly except for the one dimensional case.

Similar to the operator form (I.3), an integral representation of the bilinear form is given by

a(u, φ) =
cd,s
2

∫
Rd

∫
Rd

(ũ(x)− φ̃(y))(ũ(x)− (φ̃(y))K(x− y) dy dx. (I.8)

It is possible to apply the techniques developed for the approximation of boundary integral stiff-

ness matrices [60] to deal with some of the issues associated with the approximation of the dou-

ble integral above, namely, the application of special techniques for handling the singularity and

quadratures. However, (I.8) requires additional truncation techniques as the non-locality of the

kernel implies a non-vanishing integrand over Rd. These techniques are used to approximate (I.8)

in [31, 2]; see also [1] for a detailed implementation. In particular, [2] use their regularity theory

to do a priori mesh refinement near the boundary to the rate of convergence under the assumption

of exact evaluation of the stiffness matrix.

I.2 Contents of this Work

In this work, we follow the Dunford-Taylor integral approach for the stationary problem (I.4) to

develop numerical algorithms for a time dependent problem involving fractional powers of elliptic

operators as well as the stationary problem (I.6). Our presentation is organized as follows. We start

from Chapter I.2 with basic notations and norm equivalence between different Sobolev spaces. Our

instrumental methods of discretization, the finite element method and sinc approximation on the

real line are also introduced in Chapter I.2. In Chapter III and Chapter IV, we develop approxima-

tion schemes for the time dependent problem. Chapter V discuss the numerical approximation of

the bilinear form in (I.7) via its Dunford-Taylor integral representation and provide error estimates

for the resulting discrete problem in both the energy and L2(Ω) norms.

More detailed descriptions of the contents of this work are given in the following.
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Approximation of the Homogeneous Parabolic Problem

The numerical approximation to the time depended problem

ut + Lsu = f, in Ω, u(t = 0) = v (I.9)

is twofold: the approximation to the homogeneous problem (f = 0 and v 6= 0) and the approxima-

tion to the non-homogeneous problem (f 6= 0 and v = 0). The former is similar to the stationary

problem (I.4). The only difference is that we apply a complex-valued integral representation of the

solution operator W (t) = e−tL
s with a hyperbolic contour; see [36, 52, 62] for similar techniques.

A sinc quadrature scheme together with a complex-valued finite element approximation are devel-

oped in Chapter III. Given a fixed time t, we provide the L2(Ω) error estimate for the finite element

approximation Wh(t) = e−tL
s
h in Theorem III.3. Our proof is based on the elliptic regularity for

the unbounded operator L. We also note that when the fractional power s = 1, Theorem III.3

provides the same rate of convergence as in [69, Chapter 20]. Theorem III.5 and Remark III.4

show that the L2(Ω) error between the finite element approximation and its sinc approximation

with 2N + 1 quadrature points decays in the rate O(e−cN/ lnN) for some positive constant c. The

total error can be estimated by combining the finite element error and the sinc quadrature error (see

Theorem III.6).

Approximation of the Non-homogeneous Parabolic Problem

The numerical approximation the non-homogeneous problem requires two steps: the finite

element approximation to static problem and the numerical discretization in the time domain.

The error estimates for the finite element approximation to the static problem follows the ho-

mogeneous case; see Theorem IV.1. It turns out that the rate of convergence may degenerate if f

is nonsmooth in space.

Starting from the finite element approximation to the static problem, we further consider two

different approaches for the discretization in time. One can directly discretize the solution operator,

which by Duhamel’s principle, is a convolution in time between Wh(t) and the L2(Ω)-projection
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of f onto the finite element space. Here we apply a pseudo midpoint quadrature scheme, i.e. given

a partition {tj} on [0, t],

∫ t

0

Wh(ξ)πhf(t− ξ) dξ =
∑
j

∫ tj

tj−1

Wh(ξ)πhf(t− ξ) dξ

≈
∑
j

(∫ tj

tj−1

Wh(ξ) dξ πhf(t− tj− 1
2
)
)
.

where πh is the L2(Ω) projection into the finite element space. Theorem IV.2 shows that the

error for the above approximation with N uniform subintervals is bounded by O(N−2) provided

that the right hand side data is in H2(0, t;L2(Ω)). We then apply an exponentially convergent

sinc quadrature scheme to approximate the Dunford-Taylor integral representation of the discrete

operator
∫ tj
tj−1

Wh(r) dr with 2N + 1 quadrature points. This leads to an additional error with the

rate O(e−c
√
N); see Theorem IV.4.

The second approach is to apply the implicit time stepping methods. Here we consider the

Crank-Nicolson scheme. Theorem IV.7 guarantees the second order convergence rate in time but

the right hand side data needs to be more regular in space compared with the previous approach. At

each time step, one still needs to approximate the discrete fractional operator (I + τLsh)
−1, where

τ > 0 denotes the time step. This can be approximated by invoking a similar Balakrshnan formula

(see (IV.27)). Theorem IV.9 provides the error estimate for the exponentially convergent sinc ap-

proximation at each time step. The error between the solution and its final approximation consists

of the error from the discretization in both time and space, and errors from the sinc approximation

at each time step (see Theorem IV.11).

Both time discretization schemes have their own advantages. As mentioned before, the numer-

ical integration approach requires less regularity in space on the right hand side data. The time

stepping method leads to a set of approximations at all time nodes in [0, t], while the numerical

integration approach only gives an approximation at the target value of t.
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Approximation of the Integral Fractional Laplacian

In Chapter V, we propose a nonconforming finite element algorithm to discretize the problem

(I.7) via the Dunford-Taylor integral approach which avoids computing the singular integral (I.8).

We first derive an alternative integral representation of the bilinear form in (I.7). That is

a(η, θ) = cs

∫ ∞
0

t1−2s

∫
Ω

((−∆)(I − t2∆)−1η̃)θ dx dt (I.10)

for η, θ ∈ H̃s(Ω). There are two issues needed to be addressed in developing the numerical

methods based on the above integral formulation:

• The discretization of the infinite integral with respect to t using a quadrature scheme;

• The approximation of the function w(t) := w(t, x) = (−∆)(I − t2∆)−1η̃.

We address the former issue above by first making the change of variable t−2 = ey which

results in an integral over R. We then apply a sinc quadrature to obtain the approximation of the

bilinear form

ak(η, θ) :=
csk

2

N+∑
j=−N−

esyj
∫

Ω

((−∆)(eyjI −∆)−1η̃)θ dx, for all θ, η ∈ L2(Ω), (I.11)

where k is the quadrature spacing, yj = kj, and N− and N+ are positive integers. For θ ∈ H̃s(Ω)

and η ∈ H̃δ(Ω) with δ ∈ (s, 2 − s]. Theorem V.3 together with Remark V.3 shows that the error

between a(η, θ) and ak(η, θ) is bounded by O(e−π
2/(2k)) provided that N+ +N− = O(1/k2).

Note that for each sinc quadrature point tj = e−yj/2, w(tj) is defined in whole space Rd and

decays exponentially as |x| tends to infinity since u is supported on Ω; see [5, Lemma 2.1]. By

taking the advantage of this decay property, we approximate w(tj) in the following two steps. We

first approximate w(tj) in a truncated domain BM(tj) which is defined by

BM(tj) :=

 {(1 + tj(1 +M))x : x ∈ B} , t ≥ 1

{(2 +M)x : x ∈ B} , t < 1,
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where B is a bounded convex set containing Ω. Then we define the approximation wM(tj) solving

the same equation but vanishing on the boundary of BM(tj). Replacing w(tj) with wM(tj) in

(I.11) leads to the approximation of ak(·, ·), denoting by ak,M(·, ·). Theorem V.5 guarantees that

for sufficiently large M and η, θ ∈ L2(Ω), the error between ak(η, θ) and ak,M(η, θ) is bounded by

O(e−cM). Next, we associate to a subdivision of BM(tj) the finite element space VM
h (tj) and the

restriction ak,Mh (·, ·) of ak,M(·, ·) to VM
h (tj) × VM

h (tj). For simplicity, the subdivisions of BM(tj)

are constructed to coincide on Ω. Denoting by Vh(Ω) the set of finite element functions restricted

to Ω and vanishing on ∂Ω, our approximation to the solution of (I.7) is the function uh ∈ Vh(Ω)

satisfying

ak,Mh (uh, vh) =

∫
Ω

fvh dx, for all vh ∈ Vh(Ω). (I.12)

Lemma V.11 guarantees the Vh(Ω)-coercivity of the bilinear form ak,Mh (·, ·) assuming the sinc

quadrature spacing is sufficiently small. Consequently, uh is well defined again from the Lax-

Milgram theory. Moreover, for every tj , given a sequence of quasi-uniform subdivisions ofBM(tj),

we show (in Theorem V.9) that for η in H̃β(D) with β ∈ (s, 3/2) and for θh ∈ Vh(D),

|ak,M(ηh, θh)− ak,Mh (ηh, θh)| ≤ C(1 + ln(h−1))hβ−s‖η‖H̃β(Ω)‖θh‖H̃s(Ω).

Here C is a constant independent of M,k and h, and ηh ∈ Vh(Ω) denotes the Scott-Zhang inter-

polation or the L2 projection of v depending on whether β ∈ (1, 3/2) or β ∈ (s, 1].

The first Strang’s Lemma implies that the error between u and uh in the H̃s(Ω)-norm is

bounded by the error of the best approximation in H̃s(Ω) and the sum of the consistency errors

from the above discretization steps (see Theorem V.13). If the domain is smooth, we can apply

the regularity results from [38] together with standard duality argument to obtain the L2(Ω) error

estimate; see Theorem V.14.
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CHAPTER II

PRELIMINARIES

In this chapter, we review some mathematical tools for both discretization strategies and nu-

merical analysis for our model problems. The outline is as follows. We introduce Sobolev spaces

and scales of interpolations spaces in Section II.1 and Section II.2, respectively. We shall use

the intepolation spaces to define fractional powers of elliptic operators. This will be discussed in

Section II.3. Our numerical techniques, the Galerkin finite element method and the sinc approxi-

mation, are reviewed in Section II.4 and Section II.5, respectively. In Section II.6 we review the

numerical algorithm for the problem (I.4) as well as the error analysis.

We use the notation

A ≤ cB and A ≤ CB

where c and C are generic constants independent of A, B and discretization parameters. We may

hide the above constants by using the notation

A � B and A � B.

Given two Hilbert spaces X and Y , ‖ · ‖X→Y denotes the operator norm with the definition

‖F‖X→Y = sup
θ∈X,θ 6=0

‖F (θ)‖Y
‖θ‖X

.

II.1 Sobolev Spaces

In this work, Sobolev spaces are used to characterize the smoothness of functions. For more

details about Sobolev spaces, we refer to [3, 51, 66].
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The Weak Derivative.

Let α = (α1, α2, · · · , αd) be a multi-index and define |α| =
∑d

j=1 αj . For a smooth real-valued

function v defined on Ω, the differential operator Dα is given by

Dαv =
∂|α|v

∂xα1
1 ∂x

α2
2 · · · ∂x

αd
d

.

Let C∞0 (Ω) be the space of infinity differentiable functions which are compactly supported in Ω.

A locally integrable function u has a weak derivative v, if v is locally integrable and satisfies

∫
Ω

vφ dx = (−1)|α|
∫

Ω

vDαφ dx, for all φ ∈ C∞0 (Ω).

Throughout the disseration, Dα denotes the weak derivative.

Sobolev Spaces.

Given a Lebesgue measurable function v defined in Ω and p ≥ 1, define the norm ‖ · ‖Lp(Ω) by

‖v‖Lp(Ω) :=

(∫
Ω

|v(x)|p dx
)1/p

.

Denote Lp(Ω) the collection of all such v for which ‖v‖Lp(Ω) is finite. Then, given an integer r ≥ 0,

the Sobolev space W r,p(Ω) is defined by

W r,p(Ω) := {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) for all |α| ≤ r}.

The corresponding Sobolev norm and semi-norm of W r,p(Ω) are given by

‖v‖W r,p(Ω) :=

∑
|α|≤r

‖Dαv‖pLp(Ω)

1/p

and |v|W r,p(Ω) :=

∑
|α|=r

‖Dαv‖pLp(Ω)

1/p

,

respectively.

11



For σ ∈ (0, 1), define the fractional Sobolev semi-norm | · |Wσ,p(Ω) by

|v|Wσ,p(Ω) :=

(∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|d+σp
dx dy

)1/p

and set W σ,p(Ω) := {v ∈ Lp(Ω) : |v|Wσ,p(Ω) < ∞}. For a positive and non-integer r, we write

r = m + σ where m is the largest integer less than r so that σ ∈ (0, 1). Then, the Sobolev space

W r,p(Ω) is defined by

W r,p(Ω) := {v ∈ Wm,p : Dαv exists and in W σ,p(Ω) for all |α| = m}

and the full norm is given by

‖u‖W r,p(Ω) :=

‖u‖pWm,p(Ω) +
∑
|α|=m

|Dαu|pWσ,p(Ω)

1/p

.

For r ≥ 0, W r,p(Ω) is a Banach space (see [3]). In particular, when p = 2, the Sobolev space

Hr(Ω) := W r,2(Ω) is a Hilbert space.

We note that in the space

H1
0 (Ω) := {v ∈ H1(Ω) | u = 0 on ∂Ω},

the semi-norm | · |H1(Ω) is equivalent with the full norm ‖ · ‖H1(Ω) thanks to the Poincaré inequality.

Define the dual space H−1(Ω) to be the set of bounded linear functionals acting on H1
0 (Ω) such

that the norm

‖F‖H−1(Ω) := sup
v∈H1

0 (Ω)

〈F, v〉
|v|H1(Ω)

is finite. Here 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Note that L2(Ω) ⊂

H−1(Ω) by identifying f ∈ L2(Ω) with the linear functional (f, ·)Ω ∈ H−1(Ω), where (·, ·)Ω is the

L2(Ω) inner product (v, w)Ω =
∫

Ω
vw dx.
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II.2 Scales of Interpolations Spaces

The Unbounded Operator L and the Dotted Spaces.

Let us assume that dΩ(·, ·) is a symmetric, coercive and bounded bilinear form on H1
0 (Ω) ×

H1
0 (Ω). This means that there exists two positive constants c0 and c1 such that

c0|v|2H1(Ω) ≤ dΩ(v, v); |dΩ(v, w)| ≤ c1|v|H1(Ω)|w|H1(Ω), for all v, w ∈ H1
0 (Ω).

For f ∈ L2(Ω) define Tf := w ∈ H1
0 (Ω) to be the unique solution (guaranteed by the Lax-

Milgram Theorem) of

dΩ(w, θ) = (f, θ)Ω, for all θ ∈ H1
0 (Ω). (II.1)

Note that T is obviously one to one. So we denote L to be the inverse of T and define the domain

of L to be the image of L2(Ω) under T .

Now we define the dotted spaces for r ≥ 0 with respect to the operator L. We note that since T

is compact and symmetric on L2(Ω), Fredholm theory guarantees that T has a L2(Ω)-orthonormal

basis of eigenfunctions {ψj}∞j=1 (also orthogonal in H1
0 (Ω)) with non-increasing real eigenvalues

µ1 ≥ µ2 ≥ µ3 ≥ ... > 0. Clearly, ψj is also an eigenfunction of L with the eigenvalue λj = 1/µj

for every positive integer j. For r ≥ 0, the dotted space Ḣr(Ω) is defined by

Ḣr(Ω) :=

{
f ∈ L2(Ω) :

∞∑
j=1

λrj |(f, ψj)Ω|2 <∞

}
.

These spaces form a Hilbert scale of interpolation spaces equipped with the norm

‖v‖Ḣr(Ω) :=

( ∞∑
j=1

λrj |(v, ψj)Ω|2
)1/2

.
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We also denote by Ḣ−r(Ω) the dual space of Ḣr(Ω) when s ∈ [0, 1]. It is known that

Ḣ−r(Ω) =

{
F ∈ H−1(Ω) : ‖F‖Ḣ−r(Ω) :=

( ∞∑
j=1

λ−rj |〈F, ψj〉|2
)1/2

<∞

}
.

The following lemma is instrumental to our numerical analysis.

Lemma II.1. Let a ∈ [0, 2] and b ∈ [0, 1] satisfying a+ b ≤ 2. Then for µ ∈ (0,∞), there holds

‖(µI + T )−1φ‖Ḣ−b(Ω) ≤ µ(a+b)/2−1‖φ‖Ḣa(Ω), for all φ ∈ Ḣa(Ω).

Proof. Writing φ in the form of the eigenfunction expansion yields

‖(µI + T )−1φ‖2
Ḣ−b(Ω)

=
∞∑
j=1

λ−bi
(µ+ λ−1

j )2
|(φ, ψj)Ω|2

=
∞∑
j=1

λaj

(
λ
−(a+b)/2
j

µ+ λ−1
j

)2

|(φ, ψj)Ω|2

≤ µa+b−2‖φ‖2
Ḣa(Ω)

.

The above inequality follows from the Young’s inequality

(λ−1
j )(a+b)/2µ1−(a+b)/2

µ+ λ−1
j

≤ 1.

Real Interpolation between two Hilbert Spaces.

Let X and Y be two Hilbert spaces. Y is continuously embedded and dense in X . For each

t > 0 and v ∈ X , define the K-functional

KX,Y (t, v) := inf
θ∈Y
‖v − θ‖2

X + t2‖θ‖2
Y . (II.2)
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For σ ∈ (0, 1), we define the norm (cf. [45, 18])

‖u‖[X,Y ]σ :=

(∫ ∞
0

t−2σKX,Y (t, u)
dt

t

)1/2

.

The corresponding intermediate space [X, Y ]σ is then given by

[X, Y ]σ = {u ∈ X : ‖u‖[X,Y ]σ <∞}.

By convention, [X, Y ]0 = X and [X, Y ]1 = Y . The space [X, Y ]σ is a Hilbert scale between X

and Y . If [X0, Y0]σ is another scale (as above) and L is a linear operator which is simultaneously

bounded from X0 to X and Y0 to Y , i.e. ‖Lu‖X ≤ C1‖u‖X0 and ‖Lu‖Y ≤ C2‖u‖Y0 , then,

‖Lu‖[X,Y ]σ ≤ C1−σ
1 Cσ

2 ‖u‖[X0,Y0]σ . (II.3)

The Intermediate Spaces between H−1(Ω) and H2(Ω) ∩H1
0 (Ω).

Define the intermediate spaces Hs(Ω) for r ∈ [−1, 2] by

Hr(Ω) :=


Hr(Ω) ∩H1

0 (Ω), 1 ≤ r ≤ 2,

[L2(Ω), H1
0 (Ω)]r, 0 ≤ r ≤ 1,

[H−1(Ω), L2(Ω)]r+1, −1 ≤ r ≤ 0.

Here we note that for r ∈ [0, 1], we use the semi-norm | · |H1(Ω) as the norm of H1
0 (Ω). Hence, the

corresponding K-functional is

KΩ(t, u) := inf
θ∈H1

0 (Ω)
‖u− θ‖2

L2(Ω) + t2|θ|2H1(Ω). (II.4)
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Norm Equivalency.

Since ‖ · ‖Ḣr(Ω) = ‖ · ‖Hr(Ω) for r = −1, 0, 1, the spaces Hr(Ω) and Ḣr(Ω) coincide for

r ∈ [−1, 1] and their norms are equal. In order to extend the equivalency to r ∈ [1, 2], we shall

extend the definition of the solution operator T , i.e. we define TF = w as the solution to (II.1)

with the right hand side replaced by 〈F, θ〉. We then assume that

Assumption II.1. There exists α ∈ (0, 1] so that for every r ∈ [0, α],

(a) T is a bounded operator mapping from H−1+r(Ω) into H1+r(Ω);

(b) The functional F defined by

〈F, θ〉 := dΩ(u, θ), for all θ ∈ H1
0 (Ω)

is a bounded operator from H1+r(Ω) to H−1+r(Ω).

Under the above assumption, we are able to extend the equivalency property to r ∈ [1, 1 + α]:

Proposition II.2 ([12], Proposition 4.1). Hr(Ω) and Ḣr(Ω) coincide for r ∈ [−1, 1 +α] and their

norms are equivalent. In particular when r ∈ [−1, 1], ‖v‖Ḣr(Ω) = ‖v‖Hr(Ω) for v ∈ Hr(Ω).

Remark II.1. For r ∈ (1, 1 + α), the equivalency constants between ‖ · ‖Ḣr(Ω) and ‖ · ‖Hr(Ω) may

depend on Ω due to the regularity estimates in Assumption II.1. In particular, when Ω is a dilation

of a fixed domain, these constants are independent of the dilation parameter. This will be proved

in Chapter V.

II.3 Fractional Powers of Elliptic Operators

We shall give the definition of fractional powers of elliptic operators based on the eigenfunction

expansion. When the fractional power is negative, we introduce an equivalent definition using the

Dunford-Taylor integral. We also refer to [47, Chapter 4] for general definitions of fractional

powers of operators, .
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Fractional Powers of Elliptic Operators.

For s ∈ (0, 1), define the fractional power of L by eigenfunction expansion (I.1) under the

setting in Section II.2. That is,

Lsv :=
∞∑
j=1

λsj(v, ψj)Ωψj, (II.5)

with v in the domain of the operator is D(Ls) := {v ∈ L2(Ω) : Lsv ∈ L2(Ω)} = Ḣ2s(Ω). For

v, w ∈ Ḣs(Ω), the bilinear form

A(v, w) := (Ls/2v, Ls/2w)Ω =
∞∑
j=1

λsj(v, ψj)Ω(w,ψj)Ω. (II.6)

satisfies A(v, v) = ‖v‖2
Ḣs(Ω)

.

The Dunford-Taylor Integral Representation.

For s ∈ (0, 1) and f ∈ L2(Ω), we define L−sf by replacing s with −s in (II.5). L−s is a

bounded operator on L2(Ω) and we have the following Dunford-Taylor integral representation

L−sf =
1

2πi

∫
C(r0,θ0)

z−s(zI − L)−1f dz for f ∈ L2(Ω). (II.7)

Here z−s = e−s ln z with the branch cut for the logarithm along the negative real axis. The above

integral contour should encompass the eigenvalues of L and avoid the negative real axis. Indeed,

we may choose the contour C(r0, θ0) for r0 > 0 and 0 < θ0 < π consisting in the following three

segments (see also Figure II.1) :

C1 =
{
z(r) := reiθ0 with r real going from +∞ to r0

}
followed by

C2 =
{
z(θ) := r0e

iθ with θ going from θ0 to − θ0

}
followed by

C3 =
{
z(r) := re−iθ0 with r real going from r0 to +∞

}
.

(II.8)

17



Letting r0 → 0 and θ0 → π ,we obtain the well known Balakrishman formula (cf. [47])

L−sf =
sin(πs)

π

∫ ∞
0

µ−s(µI + L)−1f dµ. (II.9)

Above two integrals converge as Bochner integrals and coincide with the definition of L−sf for all

f ∈ L2(Ω) (Theorem 2.1 of [12]).

 r
0  θ

0

 λ
1

Figure II.1: The example contour C(r0, θ0) in (II.7).

II.4 Galerkin Finite Element Approximation

Finite Element Spaces.

We additionally assume that Ω is polyhedral. Let {Tj(Ω)}∞j=1 be a sequence of globally shape

regular and quasi-uniform (cf. [34]) conforming subdivisions of Ω made of simplexes. This means

that for any positive integer j and any simplex τ ∈ Tj(Ω), there are positive constants ρ and c

independent of j such that if Rτ denotes the diameter of τ and rτ denotes the radius of the largest
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ball which can be inscribed in τ , then,

(shape regular) Rτ/rτ ≤ c and (II.10)

(quasi-uniform) max
τ∈Tj(Ω)

Rτ ≤ ρ min
τ∈Tj(Ω)

Rτ . (II.11)

Fix the positive integer j and denote by Vj(Ω) ⊂ H1
0 (Ω) the space of continuous piecewise linear

functions subodinate to Tj(Ω) and by Mj the dimension of Vj(Ω). Let hj = maxτ∈Tj(Ω)Rτ and

set hj → 0 as j → ∞. Throughout this dissertation, we omit the subscript j and relate the finite

element spaces to h = hj , i.e. fix h > 0, denote by Th(Ω) the above subdivision, by Vh(Ω) the

finite element space, and by Mh the dimension of Vh(Ω).

Discrete Operators and Discrete Norms.

For any F ∈ H−1(Ω), we define the finite element approximation ThF ∈ Vh(Ω) of TF ∈

H1
0 (Ω) as the unique solution to (again, invoking the Lax-Milgram Theorem)

dΩ(ThF, φh) = 〈F, φh〉, for all φh ∈ Vh(Ω). (II.12)

For f ∈ L2(Ω), using the previously mentioned identification, Thf = Thπhf , where πh is the

L2(Ω) orthogonal projection onto Vh(Ω), namely,

(πhf, φh)Ω = (f, φh)Ω, for all φh ∈ Vh(Ω).

The operator Lh : Vh(Ω)→ Vh(Ω) defined by

(Lhvh, φh)Ω = dΩ(vh, φh), for all φh ∈ Vh(Ω).

is the discrete counterpart of L. Lh is the inverse of Th restricted to Vh(Ω). Similar to T ,

Th|Vh(Ω) has positive eigenvalues {µj,h}Mh
j=1 with corresponding L2(Ω)-orthonormal eigenfunctions

{ψj,h}Mh
j=1. The eigenvalues of Lh are denoted by λj,h := µ−1

j,h for j = 1, 2, . . . ,Mh.

19



Define the discrete fractional operator Lsh : Vh(Ω)→ Vh(Ω) by

Lshvh :=

Mh∑
j=1

λsj,h(vh, ψj,h)Ωψj,h, (II.13)

and the bilinear form Ah(·, ·) on Vh(Ω)× Vh(Ω) by

Ah(vh, wh) :=

Mh∑
j=1

λsj,h(vh, ψj,h)Ω(wh, ψj,h)Ω. (II.14)

For r ≥ 0, we also define the discrete dotted norms ‖ · ‖Ḣr
h(Ω) by

‖vh‖Ḣr
h(Ω) :=

(
Mh∑
j=1

λrj,h|(vh, ψj,h)Ω|2
)1/2

, for vh ∈ Vh(Ω).

Due to the fact that maxj λj,h ≤ Ch−2 (cf. [18, eq. (2.8)]), the above discrete dotted norms directly

implies the following inverse estimate: for r, σ ≥ 0, we have

‖vh‖Ḣr+σ
h (Ω) ≤ Ch−σ‖vh‖Ḣr

h(Ω), for vh ∈ Vh(Ω), (II.15)

where the constantC only depends on c and ρ in (II.10) and (II.11), respectively. A discrete version

of Lemma II.1 is the following.

Lemma II.3. Let a ∈ [0, 2] and b ∈ [0, 1] with a+ b ≤ 2. Then for any µ ∈ (0,∞),

‖(µI + Th)
−1φh‖Ḣ−bh (Ω) ≤ µ(a+b)/2−1‖φh‖Ḣa

h(Ω), for all φh ∈ Vh(Ω).

Approximation Results.

By Lemma 5.1 of [13], there exists a constant c(r, σ) independent of h such that for σ ∈ [0, 2]

and r ∈ [0, 1] satisfying r + σ ≤ 2, there holds

‖(I − πh)f‖Hr(Ω) ≤ c(r, σ)hσ‖f‖Hr+σ(Ω). (II.16)
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Also we recall the following finite element error estimate from [13].

Proposition II.4 ([13], Lemma 6.1). Let part (a) of Assumption II.1 holds for some α ∈ (0, 1]. Let

r ∈ [0, 1
2
] and set α∗ = (α+ min(1− 2r, α))/2. Then there is a constant C independent of h such

that for all f ∈ Hα−1(Ω),

‖(T − Th)f‖H2r(Ω) ≤ Ch2α∗‖f‖Hα−1(Ω). (II.17)

Norm Equivalency between Continuous and Discrete Scales.

We shall need the norm equivalency between ‖vh‖Ḣr
h(Ω) and ‖vh‖Ḣr(Ω) for vh ∈ Vh(Ω). When

r ∈ [0, 1], there holds

c‖vh‖Ḣr
h(Ω) ≤ ‖vh‖Ḣr(Ω) ≤ ‖vh‖Ḣr

h(Ω), (II.18)

where the constant c only depending on shape-regularity and quasi-uniformity. The right inequality

above follows from the interpolation and the fact that the norms in L2(Ω) andH1(Ω) coincide with

those of Ḣ0
h(Ω) and Ḣ1

h(Ω) when restricted to vh ∈ Vh(Ω). In view of (II.16) with σ = 0, πh is

stable in Hr(Ω) norms (see also [17]) for r ∈ [0, 1], i.e.

‖πhf‖Hr(Ω) ≤ c‖f‖Hr(Ω), for all f ∈ Hr(Ω). (II.19)

Letting r = 0 and r = 1 respectively yields that πh is simultaneously bounded from L2(Ω) to

Ḣ0
h(Ω) and H1(Ω) to Ḣ1

h(Ω). Invoking the interpolation estimates (II.3) and setting f ∈ Vh(Ω)

yield the left inequality of (II.18).

Remark II.2. Let α be the regularity index given by Assumption II.1. For r ∈ [1, 1 + α]∩ [1, 3/2)

and for all vh ∈ Vh(Ω), it follows that (see [70, Prop. 3.10] for a proof)

c‖vh‖Ḣr
h(Ω) ≤ ‖vh‖Ḣr(Ω) ≤ C‖vh‖Ḣr

h(Ω),

where the dependency of the constant c is the same as the constant in (II.18) but the constant C
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additionally depends on constants in Assumption II.1.

When r ∈ (1, 1 + α], we have

Lemma II.5. For v ∈ Ḣr(Ω) with r ∈ [1, 1 + α], there exists a constant C independent of h so

that

‖πhv‖Ḣr
h(Ω) ≤ C‖v‖Ḣr(Ω). (II.20)

Proof. Let w ∈ H1
0 (Ω), define the Riesz projection rhw := wh ∈ Vh(Ω) which uniquely solves

dΩ(wh, φh) = dΩ(w, φh), for all φh ∈ Vh(Ω).

We claim that ‖rhv‖Ḣr
h(Ω) ≤ C‖v‖Ḣr(Ω). Indeed,

‖rhv‖Ḣr
h(Ω) = sup

φ∈Vh(Ω)

dΩ(rhv, φ)

‖φ‖Ḣ2−r
h (Ω)

≤ C sup
φ∈Ḣ2−r(Ω)

dΩ(v, φ)

‖φ‖Ḣ2−r(Ω)

= C‖v‖Ḣr(Ω)

Here the inequality above holds due to (II.18) and Vh(Ω) ⊂ Ḣ2−r(Ω). Hence, for v ∈ Ḣr(Ω), we

apply the above result to obtain

‖πhv‖Ḣr
h(Ω) ≤ ‖rhv‖Ḣr

h(Ω) + ‖(πh − rh)v‖Ḣr
h(Ω)

≤ ‖rhv‖Ḣr
h(Ω) + Ch1−r

(
‖(I − πh)v‖Ḣ1(Ω) + ‖(I − rh)v‖Ḣ1(Ω)

)
≤ C‖v‖Ḣr(Ω).

Note that in the second inequality above we use the inverse estimate (II.15) and in the third in-

equality we apply (II.16), Proposition II.2 and the approximation property of rh (e.g. [69, eq.

(2.23)])

‖(I − rh)v‖H1(Ω) ≤ Chr−1‖v‖Ḣr(Ω).

The proof is complete.

22



II.5 Sinc Quadrature on the Real Line

The sinc method is our primary technique to discretize the integral representation such as (II.9).

In this section, we introduce a class of functions whose integrals along the real line can be approx-

imated with exponential accuracy with respect to the spacing using a sinc method.

The Sinc Method.

Given f ∈ L1(R), we want to approximate the integral
∫
R f(x) dx. We first subdivide the real

line by equally spaced intervals with a quadrature spacing k > 0 and approximate

∫
R
f(x) dx ≈ k

∞∑
j=−∞

f(jk). (II.21)

Then we approximate the above infinite sum by a finite sum, i.e. given two positive integers N+

and N− depending on k, define the sinc approximation by

k
N+∑

j=−N−
f(jk). (II.22)

Error Analysis.

Let us consider the following function space for the sinc approximation.

Definition II.1. Given d > 0, define the space S(Bd) to be the set of functions f defined on R

satisfying

(a) f extends to an analytic function in the infinite strip

Bd := {z ∈ C : Im(z) < d}

and is continuous on Bd.
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(b) There exists a constant C independent of y ∈ R such that

k

∫ d

−d
|g(y + iw)| dw ≤ C;

(c)

N(Bd) :=

∫ ∞
−∞

(|g(y + id)|+ |g(y − id)|) dy <∞.

Note that the above definition is stronger than that used in [48]. By [48, Theorem 2.20], we

have the error estimate for the quadrature scheme (II.21):

∣∣∣∣∣
∫ ∞
−∞

f(x) dx− k
∞∑

j=−∞

f(jk)

∣∣∣∣∣ ≤ N(Bd)

e2πd/k − 1
. (II.23)

To further obtain the error estimate between (II.21) and (II.22), we need the exponentially decay

estimates of the function f . We will provide the full error estimate when f is explicitly defined.

II.6 Approximation of Negative Powers of Elliptic Operators

Let L be the unbounded operator defined in Section II.3. Given f ∈ L2(Ω) and s ∈ (0, 1),

we consider the stationary problem (I.4). The solution is u = L−sf . In this section, we briefly

overview the finite element approximation of u from [12, 13]. We shall follow the ideas provided

in this section and consider the approximation of a time dependent problem in the next chapter.

II.6.1 Space Discretization

We first apply the Balakrishman formula (II.9) to the negative power of Lh. That is

uh := L−sh πhf =
sin(πs)

π

∫ ∞
0

µ−swh(t) dµ. (II.24)

where wh(t) = (µI + Lh)
−1πhf solves

µ(wh, φh)Ω + dΩ(wh, φh) = (f, φh)Ω, for all φh ∈ Vh(Ω).
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The theorem below provides the L2(Ω) error estimate between u and uh. The idea of the proof

is to bound the error with the Balakrishman formula and utilize the the finite element error es-

timate (II.17) together with (II.16), Lemma II.1, Lemma II.3 and the norm equivalency results

(Proposition II.2 and (II.18)).

Theorem II.6 (Theorem 4.3 of [12]). Suppose that u is the solution of (I.4) and uh is finite element

approximation given by (II.24). Let Assumption II.1 holds for some α ∈ (0, 1]. Set γ = α−s when

α ≥ s and γ = 0 when α < s. For f ∈ H2δ(Ω) with δ ≥ γ, there exists a constant C uniform in h

such that

‖u− uh‖L2(Ω) ≤ Chh
2α‖f‖H2δ(Ω). (II.25)

Here

Ch =


C ln(1/h) : if δ = γ and α ≥ s,

C : if δ > γ and α ≥ s,

C : if s > α.

II.6.2 Sinc Quadrature

We further approximate uh by discretizing the Dunford-Taylor integral (II.24) with a sinc

quadrature scheme. To this end, we use the change of variable t = ey and apply the formula

(II.22), i.e. given the quadrature spacing k > 0 and two positive integers N−, N+ depending on k,

the approximation of uh is

ukh :=
k sin(πs)

π

N+∑
j=−N−

e(1−s)yjwh(tj) (II.26)

with yj = kj and tj = eyj .

We follow Section II.5 to prove the exponential convergence of ukh. The idea of the proof will

be applied in Section III.3, IV.2 and IV.3. So we sketch the proof and refer to [12, Theorem 3.5]

for more details.
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We expand ukh in the discrete eigenvector basis and get

‖ukh − uh‖2
L2(Ω) =

sin(πs)

π

Mh∑
j=1

|E(λj,h)|2|(πhf, ψj,h)Ω|2

≤ sin(πs)

π
max

j∈{1,...,Mh}
|E(λj,h)|2‖f‖2

L2(Ω),

(II.27)

where

E(λ) :=

∫ ∞
−∞

gλ(y) dy − k
N+∑

j=−N−
gλ(jk)

with

gλ(y) = e(1−s)y(ey + λ)−1

Thus, we can focus on scaler case, namely, proving the exponential decay of E(λ) for all λ ≥ λ1

(recalling that λ1 is the smallest eigenvalue of L). In fact, letting d = π/2, we can show that gλ

satisfies the decay property

|gλ(z)| ≤


e−sRez : for Rez > 0,

1

λ1

e(1−s)Rez : for Rez ≤ 0,

for all z ∈ Bd and λ ≥ λ1. Apply the decay property yields gλ ∈ S(Bd) and hence the error bound

(II.23) holds when f is replaced by gλ. Also, the decay estimate implies that

k

−∞∑
j=−N−−1

|gλ(jk)| ≤
∞∑

j=−N−−1

1

λ1

e(1−s)jk ≤ 1

λ1

∫ −kN−
−∞

e(1−s)y dy ≤ 1

(1− s)λ1

e−(1−s)N−k.

Similarly,

k

∞∑
j=N++1

|gλ(jk)| ≤ 1

s
e−sN

+k.

Combing above two estimates together with (II.23) yields the full error estimate of the sinc ap-

proximation.

Theorem II.7 (Theorem 3.5 of [12]). Let uh and ukh be defined by (II.24) and (II.26), respectively.
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Let d = π/2 and S(Bd) be defined by Definition II.1. Then, there holds

‖uh − ukh‖L2(Ω) ≤
sin(πs)

π

(
N(Bd)

eπ2/k − 1

+
1

s
e−sN

+k +
1

(1− s)λ1

e−(1−s)N−k
)
.

(II.28)

Here the constant N(Bd) is defined as in part (c) of Definition II.1.

II.6.3 Choice of Parameters

In practice, we advocate to balance the three exponentials on the right hand side of (II.28),

thereby imposing

π2/k ≈ sN+k ≈ (1− s)N−k.

Thus, given k > 0, we choose

N+ =

⌈
π2

sk2

⌉
, and N− =

⌈
π2

(1− s)k2

⌉
, (II.29)

which leads to

‖uh − ukh‖L2(Ω) � e−π
2/k. (II.30)

Combing the right hand side of (II.25) and (II.30) gives the L2(Ω) estimate of the error between

the solution u and its final approximation ukh. We can take the advantage of the exponential decay

(II.30) by letting k as a function of h. Without the knowledge of the regularity of the right hand

side data, we set

h2 = e−π
2/k ⇒ k =

π2

ln (h−1)
.

Now we let Uh := ukh with k,N+, N− defined as above. According to (II.26), we shall compute

Uh by solving (eyjI + Lh)
−1πhf independently. Totally there are N− + N+ + 1 ∼ O((lnh)2)

equations need to be solved.
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CHAPTER III

APPROXIMATION OF THE HOMOGENEOUS PARABOLIC PROBLEM ∗

Let us consider the numerical approximation of time dependent problems involving fractional

powers of elliptic operators. In this chapter we focus on the homogeneous parabolic problem: find

u : Ω× [0,T]→ R satisfying


ut + Lsu = 0, in Ω× (0,T],

u = v, on Ω× {0},
(III.1)

where v ∈ L2(Ω), s ∈ (0, 1) and Ls is defined by (II.5).

Here is the online of this chapter. We first provide the weak formulation of the homogenous

problem and a Dunford-Taylor integral representation of the weak solution in Section III.1. In

Section III.2, we show a L2(Ω) error estimate between the solution u(t) and its finite element

approximation uh(t) for a fixed time t. Section III.3 discusses an exponentially convergent sinc

quadrature scheme approximating uh(t). Numerical results are provided in Section III.4.

III.1 Integral Representation of the Solution

Given a final time T > 0, the weak formulation of (III.1) is: find u ∈ L2(0,T; Ḣs(Ω)) with

ut ∈ L2(0,T; Ḣ−s(Ω)) such that


(ut, φ)Ω + A(u, φ) = 0 for all φ ∈ Ḣs(Ω) and for a.e. t ∈ (0,T],

u(0) = v,

(III.2)

where the bilinear formA(·, ·) is given by (II.6). The standard analysis for time dependent parabolic

equations, see for example [35, Section 7.1.2], implies the existence and uniqueness of a solution

∗Chapter III is reprinted from “The approximation of parabolic equations involving fractional powers of elliptic
operators”, 2017, Journal of Computational and Applied Mathematics, 315, 32–48, Copyright [2017] by Elsevier.
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of (III.2) (it is the limit of the partial sums below) given by

u(t) =
∞∑
j=1

e−tλ
s
j (v, ψj)Ωψj. (III.3)

We shall use the contour C := C(r0, θ) given by (II.8) with r0 ∈ (0, λ1) and θ = π/4 to define

the Dunford-Taylor integral representation of the solution. The Cauchy’s theorem applied to the

partial sums of (III.3) and the Bochner integrability of the Dunford-Taylor integral implies that

u(t) = e−tL
s

v :=
1

2πi

∫
C
e−tz

s

Rz(L)v dz. (III.4)

Here Rz(L) = (zI − L)−1 and zs := es ln z with the logarithm defined with branch cut along the

negative real axis. Note that e−tzs is also well defined since the range of zs is smaller than its

preimage and hence avoids the branch cut.

Remark III.1. We have to point out that it is sufficient to set θ ∈ (0, π/2] in (II.8) so that the

integral (III.4) is finite. This is because when z = re±iθ with r ≥ r0, Re(e−tz
s
) = e−tr

s cos(sθ). So

we require θ ≤ π/(2s) for all s ∈ (0, 1) so that Re(e−tz
s
) decays exponentially as r →∞.

Notations.

According to the above remark, we cannot deform the contour (II.8) and rewrite (III.4) as a

real integral like (II.9). So we will directly discretize (III.4) over a more appropriate path (not

C) in the complex plane. Given a complex number z, the definition of Rz(L) = (zI − L)−1

requires the Sobolev spaces of complex valued functions. As usual, a complex Sobolev space is

just two copies of the real valued space. For instance, the complex version of H1
0 (Ω) is the set of

functions v + iw where v, w are real valued functions in H1
0 (Ω) with the norm ‖v + iw‖H1

0 (Ω) :=

(‖v‖2
H1

0 (Ω)
+ ‖w‖2

H1
0 (Ω)

)1/2. For convenience, in the complex case, we shall use the same notations

for the Sobolev spaces. We have to point out that the negative spaces are defined using bounded

antilinear functionals. Also the L2(Ω) inner product should be (v, w) =
∫

Ω
vw dx with w denoting

the conjugate of w and definitions of bilinear forms like A(·, ·) follows a similar change. Note that
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the properties of Sobolev spaces and discrete operators introduced in Chapter I.2 still hold in the

complex setting.

In the rest of this chapter, all spaces are defined on Ω. So we omit the domain part in the

notation of function spaces and inner-products. For example, we write Ḣs = Ḣs(Ω), Vh = Vh(Ω)

and (·, ·) = (·, ·)Ω.

III.2 Finite Element Approximation

III.2.1 The Approximation Scheme

The finite element approximation of (III.2) considered here reads: find uh ∈ H1(0,T;Vh) such

that 
(uh,t(t), φh) + Ah(uh(t), φh) = 0, for t ∈ (0,T], and φh ∈ Vh, and

uh(0) = vh := πhv.

(III.5)

Here uh,t is the partial derivative of uh with respect to t and Ah(·, ·) is given by (II.14). Similar to

(III.4), the solution of (III.5) is given by

uh(t) = e−tL
s
hvh :=

Mh∑
j=1

e−tλ
s
j,h(vh, ψj,h)ψj,h =

1

2πi

∫
C
e−tz

s

Rz(Lh)vh dz. (III.6)

III.2.2 Error estimates

We shall adopt the same procedure as we mentioned in Section II.6.1 to estimate the error

between u(t) and uh(t). To this end, we need to update Lemma II.1 and Lemma II.3 in the complex

setting.

Lemma III.1. Let T and Th defined by (II.1) and (II.12), respectively. Then there is a positive

constant C not depending on z ∈ C and f ∈ L2 such that

|z|−s‖T 1−s(z−1I − T )−1f‖L2 ≤ C‖f‖L2 . (III.7)

The same inequality holds on Vh with T replaced by Th.
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Proof. 1 We first show that

|µj − z−1|−1 ≤ C(µj + |z|−1)−1, for z ∈ C, (III.8)

with {µj} the set of non-increasing eigenvalues of T . According to the definition of C in (II.8), we

shall bound the left hand side of (III.8) for z ∈ Ci for i = 1, 2, 3.

For z ∈ C2, the triangle inequality implies that

r−1
0 − µ1 ≤ r−1

0 − µj ≤ |z−1 − µj|.

Also,

|z|−1 + µj ≤ 2r−1
0 .

So
r−1

0 − µ1

2r−1
0

(|z|−1 + µj) ≤ |z−1 − µj|. (III.9)

If z ∈ C3, then z−1 is on the line segment connecting 0 to r−1
0 eiπ/4; see Figure III.1. It follows

that |z−1 − µj| ≥ Im(z−1) = |z|−1/
√

2. Also, |z−1 − µj| is greater than or equal to the distance

from µj to the line segment, i.e., |z−1−µj| ≥ µj/
√

2. The same inequalities hold for C1 and hence

|µj − z−1| ≥
√

2

4
(µj + |z|−1), for all z ∈ C1 ∪ C3. (III.10)

Combining (III.9) and (III.10) completes the proof of (III.8).
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Figure III.1: Plot of z−1 − µj for z ∈ C3.

2 Now we are ready to show (III.7). As the proof of the continuous and discrete cases are

essentially identical, we provide the proof for the former. Expanding the square of left hand side

of (III.7) gives

W := |z|−2s‖T 1−s(z−1I − T )−1f‖2
L2 =

∞∑
j=1

( |z|−sµ1−s
j

|z−1 − µj|

)2

|(f, ψj)|2. (III.11)

Thus, invoking (III.8) yields

W ≤ C
∞∑
j=1

( |z|−sµ1−s
j

|z|−1 + µj

)2

|(f, ψj)|2.

The Young’s inequality yields

|z|−sµ1−s
j

|z|−1 + µj
≤ s|z|−1 + (1− s)µj

|z|−1 + µj
≤ 1
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so that combining the above two inequalities gives

W ≤ C‖f‖2
L2

and completes the proof of the lemma.

Remark III.2. We note that the constant C in (III.7) only depends on r0 and λ1 by (III.9). In fact,

since we can choose any r0 ∈ (0, λ1), we can avoid the dependencies by choosing r0 = λ1/2.

The following lemma provides the estimate between πhRz(L)v andRz(Lh)πhv for z ∈ C. This

is the crucial step for the error analysis.

Lemma III.2 (Approximation of the resolvent). Let Assumption II.1 hold for some α ∈ (0, 1].

Then for z ∈ C and v ∈ Ḣ2δ with δ ∈ [0, (1 + α)/2], we have

‖(πhRz(L)−Rz(Lh)πh)v‖L2 ≤ C|z|−1+α−δh2α‖v‖Ḣ2δ . (III.12)

with C independent of z, v and h.

Proof. 1 Noting that Rz(L) = (zI − L)−1 = T (zT − I)−1 and Rz(Lh)πh = (zI − Lh)−1πh =

(zTh − I)−1Thπh = (zTh − I)−1Th, we obtain

πhRz(L)−Rz(Lh)πh = πh(Rz(L)−Rz(Lh)πh)

= πh[T (zT − I)−1 − (zTh − I)−1Th]

= πh(zTh − I)−1[(zTh − I)T − Th(zT − I)](zT − I)−1

= πh(zTh − I)−1(Th − T )(zT − I)−1

= −(zTh − I)−1πh(T − Th)(zT − I)−1,

33



where for the last step we used the fact that πh(zTh − I)−1 = (zTh − I)−1πh. Let

W (z) := |z|1−α+δ(zTh − I)−1πh(T − Th)(zT − I)−1

= |z|−1−α+δ(Th − z−1I)−1πh(T − Th)(T − z−1I)−1.

To complete the proof, it suffices to show that

‖W (z)‖Ḣ2δ→L2 ≤ Ch2α. (III.13)

Notice that

‖W (z)‖ ≤‖z−(1+α)/2(Th − z−1I)−1πh‖Ḣ1−α→L2︸ ︷︷ ︸
=:I

‖(T − Th)‖Ḣα−1→Ḣ1−α︸ ︷︷ ︸
=:II

‖z−(1+α)/2+δ(T − z−1I)−1‖Ḣ2δ→Ḣα−1︸ ︷︷ ︸
=:III

.

(III.14)

Now, we estimate the three terms on the right hand side above separately. For III, we have

‖(T − z−1)−1‖Ḣ2δ→Ḣα−1 = sup
w∈Ḣ2δ

‖T (1−α)/2(T − z−1I)−1w‖L2

‖Lδw‖L2

= sup
θ∈L2

‖T (1−α)/2(T − z−1I)−1T δθ‖L2

‖θ‖L2

= ‖T 1−[(1+α)/2−δ](T − z−1I)−1‖L2 .

Applying Lemma III.7 for s := (1 + α)/2− δ ∈ [0, 1] to obtain

III = ‖z−(1+α)/2+δ(T − z−1I)−1‖Ḣ2δ→Ḣα−1 ≤ C. (III.15)
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To estimate I, we invoke (II.19) and (II.18) to write

‖(Th − z−1I)−1πh‖Ḣ1−α→L2 ≤ C‖(Th − z−1I)−1πh‖Ḣ1−α
h →L2

≤ C‖(Th − z−1I)−1‖Ḣ1−α
h →L2‖πh‖Ḣ1−α→Ḣ1−α

h

≤ C‖(Th − z−1I)−1‖Ḣ1−α
h →L2

≤ C‖T 1−[(1+α)/2]
h (Th − z−1I)−1‖L2 .

(III.16)

Since (1 + α)/2 ∈ [0, 1], applying Lemma III.7 again gives

I = ‖z−(1+α)/2(Th − z−1)−1πh‖Ḣ1−α→L2 ≤ C. (III.17)

Combining (III.15), (III.17) and applying Proposition II.4 with r = (1− α)/2 to estimate II yield

(III.13). The proof is complete.

Now we are in a position to show the main result of this section.

Theorem III.3 (Finite element approximation). Assume that Assumption II.1 holds for some α ∈

(0, 1]. Let u(t) be the solution of the homogeneous problem (III.2) and let uh(t) be the finite

element approximation given by (III.5). Given the initial data v ∈ H2δ with δ ∈ [0, (1 + α)/2],

there exists a constant C(t) independent of h such that

‖u(t)− uh(t)‖L2 ≤ C(t)h2α‖v‖H2δ , (III.18)

where

C(t) =


C : if α < δ,

C max{1, ln(1/t)} : if α = δ,

Ct−(α−δ)/s : if α > δ.

(III.19)

Remark III.3. If α < 1, then the above theorem guarantees the rate of h2α for all δ > α without

any degeneration as t→ 0. Note that the theorem only guarantees a rate of ln(1/t)h2 for small t,
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δ ≥ 1 and α = 1. In contrast, the classical analysis when s = α = δ = 1 [69] provides the rate

Ch2 (without the ln(1/t) for small t).

Proof of Theorem III.3. By the norm equivalency mentioned in Remark II.1, we use the Ḣr norm

instead of Hr norm for r ∈ [−1, 1 + α] in the proof.

1 We shall analyze the error in two parts, i.e. by triangle inequality

‖u(t)− uh(t)‖L2 = ‖(e−tLs − e−tLshπh)v‖L2

≤ ‖(I − πh)e−tL
s

v‖L2 + ‖πh(e−tL
s − e−tLshπh)v‖L2 .

In view of (II.16),

‖(I − πh)e−tL
s

v‖L2 ≤ Ch2α‖e−tLsv‖Ḣ2α .

We bound the term on the right hand side by eigenfunction expansion setting cj = (v, ψj), the

Fourier coefficient of v, and distinguish two cases. When δ ≥ α, we use the representation (III.3)

of e−tLsv to write

‖e−tLsv‖2
Ḣ2α =

∞∑
j=1

λ2α
j e−2λsj︸ ︷︷ ︸

≤1

|cj|2 ≤ λ
2(α−δ)
1

∞∑
j=1

λ2δ
j |cj|2 = λ

2(α−δ)
1 ‖v‖2

Ḣ2δ .

Otherwise, when δ < α,

‖e−tLsv‖2
Ḣ2α = t−2(α−δ)/s

∞∑
j=1

λ2δ
j |(tλsj)(α−δ)/se−tλ

s
j |2|cj|2.

Using the fact that for x ≥ 0 and η = (α− δ)/s, xηe−x ≤ C(η) = C and hence

‖e−tLsv‖2
Ḣ2α ≤ Ct−2(α−δ)/s‖v‖2

Ḣ2δ .

2 Thus, we are left to bound

‖πh(e−tL
s − e−tLshπh)v‖L2 . (III.20)
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Since

πh(e
−tLs − e−tLshπh)v =

1

2πi

∫
C
e−tz

s

πh(Rz(L)−Rz(Lh)πh)v dz,

we have

‖πh(e−tL
s − e−tLshπh)v‖L2 ≤ 1

2π

∫
C
|e−tzs|‖πh(Rz(L)−Rz(Lh)πh)v‖L2 d|z|.

Applying Lemma III.2 gives

‖πh(e−tL
s − e−tLshπh)v‖L2 ≤ Ch2α‖v‖Ḣ2δ

∫
C
|e−tzs||z|−1+α−δ d|z|.

3 It remains to show that for a constant C(t) independent of h,

∫
C
|e−tzs||z|−1+α−δ d|z| ≤ C(t). (III.21)

Note that |z| = r0 for z ∈ C2 and hence

∫
C2
|e−tzs||z|−1+α−δ d|z| ≤ C.

For the remaining part of the contour, we have

I1 :=

∫
C1∪C3

|e−tzs ||z|−1+α−δ d|z| = 2

∫ ∞
r0

e− cos(sπ/4)trsr−1+α−δdr. (III.22)

If δ > α,

I1 ≤ C

∫ ∞
r0

r−1+α−δ dr ≤ C.

If δ < α, we use the change of variable y = cos(sπ/4)trs to get

I1 = Ct(δ−α)/s

∫ ∞
cos(πs/4)trs0

e−yy−1+(α−δ)/s dy ≤ C

s
t(δ−α)/sΓ

(α− δ
s

)
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where Γ(x) is the Gamma function. Finally, when δ = α, the same change of variables yields

I1 = C

∫ ∞
cos(πs/4)trs0

e−yy−1 dy.

If t is large such that cos(πs/4)trs0 ≥ 1, then

I1 ≤ C

∫ ∞
1

e−yy−1 dy ≤ C

∫ ∞
1

e−y dy = C/e.

Otherwise, splitting the integral gives

I1 ≤ C

∫ 1

cos(πs/4)trs0

e−yy−1 dy + C/e

≤ C

∫ 1

cos(πs/4)trs0

y−1 dy + C/e ≤ C max{1, ln(1/t)}.

This completes the proof of (III.21) and hence the theorem.

III.3 Sinc Approximation

In this section, we develop an exponentially convergent quadrature approximation to (III.6).

III.3.1 The Sinc Method

For a real constant b ∈ (0, λ1/
√

2), define

γ(z) := b(cosh z + i sinh z), z ∈ C (III.23)

and set the contour

Ĉ := {γ(y) : y ∈ R}.

We replace C with Ĉ in (III.6) to obtain,

uh = e−tL
s
hvh =

1

2πi

∫
Ĉ
e−tz

s

Rz(Lh)vh dz

=
1

2πi

∫ −∞
∞

e−tγ(y)sγ′(y)[(γ(y)I − Lh)−1vh] dy.

(III.24)
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The sinc approximation QN,k
h (t)vh to (III.6) with 2N + 1 quadrature points and quadrature spacing

k > 0 is defined by

QN,k
h (t)vh := − k

2πi

N∑
j=−N

e−tγ(yj)
s

γ′(yj)[(γ(yj)I − Lh)−1vh] (III.25)

with yj := jk.

III.3.2 Error of the Sinc Approximation and the Total Error

Following the idea from Section II.6.2, it suffices to bound the error

E(λ, t) :=

∫ ∞
−∞

gλ(y, t) dy − k
N∑

j=−N

gλ(jk, t), (III.26)

where

gλ(z, t) = e−tγ(z)s(γ(z)− λ)−1γ′(z), for z ∈ C, t > 0. (III.27)

The lemma below (see the proof in the next section) guarantees the exponential decay of E(λ, t)

uniformly in λ ≥ λ1. It uses the following notations for b ∈ (0, λ1/
√

2), N an integer, k > 0 as

above and d ∈ (0, π/4)

κ := cos
[
s(π/4 + d)

][√
2b sin(π/4− d)

]s
,

N(d, t) := max
λ≥λ1

{∫ ∞
−∞
|gλ(y + id, t)|+ |gλ(y − id, t)| dy

}
, and

M(t) := (1 + L(κt)), where L(x) := 1 + | ln(1− e−x)|.

(III.28)

Lemma III.4. Let E(λ, t) be given by (III.26) for an integer N and k > 0 and κ be defined by

(III.28). Then, there is a constant C not depending on t, h, k and N satisfying

|E(λ, t)| ≤ C
( N(d, t)

e2πd/k − 1
+
M(t) cosh(kN)

sinh(kN)
e−κ2−stekNs

)
. (III.29)

The function N(d, t) is uniformly bounded when t is bounded away from zero and bounded by
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CM(t) as t→ 0.

Theorem III.5 (Sinc approximation). Let uh(t) be the finite element approximation defined by

(III.5). QN,k
h (t)vh defined by (III.25) is the sinc approximation of uh(t). Then there exists a constant

C independent of t, h, k and N , satisfying

‖uh(t)−QN,k
h (t)vh‖L2 ≤ C

( N(d, t)

e2πd/k − 1
+
M(t) cosh(kN)

sinh(kN)
e−κ2−stekNs

)
‖v‖L2 . (III.30)

Given a positive constant c, assume that kN ≥ c. Since M(t) � max(1, ln(1/t)), we have

‖uh(t)−QN,k
h (t)vh‖L2 ≤ C max(1, ln(1/t))

(
e−2πd/k + e−κ2−stekNs

)
‖v‖L2 .

Proof. We expand vh in the discrete eigenvector basis {ψj,h} and get

‖(e−tLsh −QN,k
h (t))vh‖2

L2 = (2π)−2

Mh∑
j=1

|E(λj,h, t)|2|(vh, ψj,h)|2

≤ (2π)−2 max
j=1,...,Mh

|E(λj,h, t)|2‖vh‖2
L2 ,

Applying Lemma III.4 into the right hand side above and using the fact ‖vh‖L2 ≤ ‖v‖L2 complete

the proof of the theorem.

Remark III.4 (Rate of convergence). As in [46], we set k := lnN/(sN) for some N > 1. The

mononicity of coshx/ sinhx for positive x implies that

cosh(kN)

sinh(kN)
≤ cosh(ln 2/s)

sinh(ln 2/s)
(III.31)

and hence for a fixed time t,

‖uh(t)−QN,k
h (t)vh‖L2 ≤ C

(
N(d, t)

e4sπdN/lnN − 1
+

M(t)

eκt2−sN

)
‖v‖L2 = O

(
e−CN/ lnN

)
. (III.32)
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Remark III.5 (A balanced scheme). When t is small, we attempt to balance the error coming from

the two terms in (III.30) by setting
2πd

k
≈ κt2−sesNk.

To this end, given an integer N > 0, we define k to be the unique positive solution of

kesNk =
21+sπd

κt
.

It follows that for t ≤ 1 and N > 1,

Nk esNk =
22+sNπd

κt
≥ 21+sπd

κ
.

It follows that Nk ≥ ζ with ζ being the root of

ζesζ =
21+sπd

κ

so that
cosh(kN)

sinh(kN)
≤ cosh(ζ)

sinh(ζ)
.

Thus,

‖uh(t)−QN,k
h (t)vh‖L2 ≤ C max(1, ln(1/t))e−2πd/k.

We combine Theorem III.3 and Theorem III.5 with the balanced scheme from Remark III.5 to

obtain the estimate of the total error.

Theorem III.6 (Total error). Let u(t) be the solution of the problem (III.2). Set ukh = QN,k
h (t)vh

with N determined by k according to Remark III.5. Let Assumption II.1 hold for some α ∈ (0, 1].

Then. given the initial data v ∈ H2δ, there holds

‖u− ukh‖L2 � (C(t)h2α + max(1, ln(1/t))e−2πd/k)‖v‖H2δ ,
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where C(t) is given by (III.19).

III.3.3 Proof of Lemma III.4

We first mention a fundamental ingredient provided in [46].

Lemma III.7 ([46], Lemma 1). For r, γ > 0,

∫ ∞
0

e−γ cosh(x) dx ≤ L(γ) (III.33)

and ∫ ∞
r

e−γ cosh(x) dx ≤ (1 + L(γ))e−γ cosh r, (III.34)

with L(γ) defined as in (III.28).

Two properties of gλ(z, t) are required to show Lemma III.4: gλ(z, t) ∈ Bd for some d > 0 and

gλ(z, t) decays exponentially as Rez → ±∞. The following lemma provides the ingredients for

showing these properties.

Lemma III.8. Let 0 < d < π/4 and λ > λ1, γ(z) be defined by (III.23) andBd = {z ∈ C : Im(z) < d} .

The following assertions hold.

(a) There exists a constant C > 0 only depending on λ1, b and d such that

|γ(z)− λ| ≥ C for all z ∈ Bd; (III.35)

(b) There exists a constant C > 0 only depending on λ1, b and d such that

|γ′(z)(γ(z)− λ)−1| ≤ C for all z ∈ Bd;

(c)

Re(γ(z)s) ≥ κ cosh(Re(z))s ≥ κ2−ses|Rez| for all z ∈ Bd.
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Proof. For z ∈ C, we rewrite γ(z) by

Re(γ(z)) =
√

2b cosh(Re(z)) sin

(
π

4
− Im(z)

)
and

Im(γ(z)) =
√

2b sinh(Re(z)) sin

(
π

4
+ Im(z)

)
.

(III.36)

In order to show part (a), let y0 > 0 be any number such that C0 := λ1 −
√

2b cosh (y0) > 0. Then

for z ∈ Bd with |Re(z)| ≤ y0,

|γ(z)− λ| ≥ |Re(γ(z)− λ)| = |
√

2b cosh (Re(z)) sin

(
π

4
− Im(z)

)
− λ|

≥ λ1 −
√

2b cosh(y0) = C0.

(III.37)

On the other hand, if z ∈ Bd with |Re(z)| > y0,

|γ(z)− λ| ≥ |Im(γ(z)− λ)| =
√

2b| sinh (Re(z))| sin
(
Im(z) +

π

4

)
≥
√

2b sinh(y0) sin

(
π

4
− d

)
.

(III.38)

Combing (III.37) and (III.38) proves parts (a).

To show part (b), note that

|γ′(z)| ≤ |Re(γ′(z))|+ |Im(γ′(z))| ≤ 2
√

2b cosh(Re(z)). (III.39)

For z ∈ Bd with |Re(z)| ≤ y0, (III.37) yields

|γ′(z)(γ(z)− λ)−1| ≤ 2
√

2b cosh(y0)

C0

. (III.40)

Similarly, for z ∈ Bd with |Re(z)| > y0, there holds

|γ′(z)(γ(z)− λ)−1| ≤ 2 cosh(Re(z))

| sinh(Re(z))| sin(π/4− d)
≤ C, (III.41)
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where to derive the last inequality we used the fact

cosh(x)

| sinh (x)|
≤
∣∣∣∣1 +

2

e2y0 − 1

∣∣∣∣, for x ∈ R with |x| ≥ y0.

Hence (III.40) and (III.41) imply part (b).

To show part (c), we note that by (III.36),

∣∣∣∣Im(γ(z))

Re(γ(z))

∣∣∣∣ =
| sinh(Re(z))| sin(π/4 + Im(z))

cosh(Re(z)) sin(π/4− Im(z))
≤ tan

(π
4

+ d
)
, for all z ∈ Bd.

Thus,

| arg(γ(z))| ≤ π

4
+ d, for all z ∈ Bd,

so that together with the observation |γ(z)| ≥ |Re(γ(z))| and (III.36), we arrive at

Re(γ(z)s) = |γ(z)|s cos(s arg(γ(z)))

≥ cos(s(π/4 + d))|γ(z)|s

≥ cos(s(π/4 + d))|Re(γ(z))|s

≥ κ cosh(Re(z))s ≥ κ2−ses|Rez|, for all z ∈ Bd.

Lemma III.9. Let gλ be defined by (III.27).

(a) (Exponential decay) There holds

|gλ(z, t)| ≤ Ce−tκ(coshRez)s , for all z ∈ Bd and λ ≥ λ1. (III.42)

(b) gλ(y, t) ∈ S(Bd) for all λ ≥ λ1.

Proof. (a) follows from part (b) and (c) in Lemma III.8. We now show part (b) by verifying

Definition II.1 for gλ. Part (a) of Lemma III.8 implies part (a) of Definition II.1. Applying (III.42)
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yields ∫ d

−d
|gλ(y + iη, t)| dη ≤ 2dCe−tκ(cosh y)s ≤ C, for all y ∈ RR,

and
N(d, t) = max

λ≥λ1

∫ ∞
−∞

(|gλ(y − id, t)|+ |gλ(y + id, t)|) dy

≤ C

∫ ∞
0

e−κt(cosh y)s dy

≤ C

∫ 1

0

e−κt(cosh y)s dy + C

∫ ∞
1

e−κt(cosh y)s dy.

(III.43)

The first integral on the right hand side above is bounded by 1. For the second, making the change

of integration variable, (cosh y)s = cosh η, gives

I2 :=

∫ ∞
1

e−κt(cosh y)s dy =
1

s

∫ ∞
η0

e−κt cosh η sinh η cosh y

cosh η sinh y
dη (III.44)

where η0 = cosh−1[(cosh (1))s]. As cosh(y)/ sinh(y) is decreasing for positive y and sinh(η)/ cosh(η) <

1 for positive u, applying Lemma III.7 gives

I2 ≤
cosh(1)

s sinh(1)

∫ ∞
η0

e−κt cosh η dη ≤ cosh(1)

s sinh(1)
(1 + L(κt))e−κt cosh(1)s . (III.45)

Combining this with the bound for the first integral of the right hand side of (III.43) proves (c)

Proof of Lemma III.4. We split the error E(λ, t) in two parts, i.e.

|E(λ, t)| ≤
∣∣∣∣ ∫ ∞
−∞

gλ(y, t) dy − k
∞∑

j=−∞

gλ(jk, t)

∣∣∣∣+ k
∑
|j|>N

|gλ(jk, t)|. (III.46)

In view of Lemma III.9, part (b), we invoke (II.23) to get

J1 :=

∣∣∣∣ ∫ ∞
−∞

gλ(y, t) dy − k
∞∑

j=−∞

gλ(jk, t)

∣∣∣∣ ≤ N(d, t)

e2πd/k − 1
.
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For the second term of (III.46), we take the advantage of (III.42) to derive that

J2 : =

∣∣∣∣∣∣k
∑
|j|>N

gλ(jk, t)

∣∣∣∣∣∣ ≤ Ck
∑
|j|>N

e−tκ cosh(jk)s ≤ C

∫ ∞
kN

e−tκ cosh(y)s dy. (III.47)

Repeating the arguments in (III.44) and (III.45) (with u0 := cosh−1(cosh(kN)s)) gives

J2 ≤
C cosh(kN)

sinh(kN)
(1 + L(κt))e−κt cosh(kN)s

≤ C cosh(kN)

sinh(kN)
(1 + L(κt))e−κ2−stekNs .

This completes the estimate for the second term of (III.46) and proof.

III.4 Numerical Illustration

In this section, we present some numerical experiments illustrating the error estimates provided

in Section III.2 and Section III.3.

III.4.1 Error from the Finite Element Approximation

Consider the one-dimensional domain Ω := (0, 1). Let L be the unbounded operator associated

with the form d(u, v) =
∫ 1

0
u′v′ dx and set the initial data

v(x) :=


2x, x < 0.5,

2− 2x, x ≥ 0.5.

(III.48)

To illustrate the error behavior predicted by Theorem III.3, we use a mesh of equally spaced

points, i.e., h = 1/(M + 1) with M being the number of interior nodes. We set Vh to be the set

of continuous piecewise linear functions surbodinate this mesh vanishing at 0 and 1. The resulting

stiffness Ãh and mass M̃h matrices defined in terms of the standard hat-function finite element

basis {φi}, i = 1, . . . ,M are tri-diagonal matrices with (tri-)diagonal entries h−1(−1, 2,−1) and

h(1/6, 4/6, 1/6), respectively. The matrix form of Lh is given by L̃h = M̃−1
h Ãh.

These matrices can be diagonalized using the discrete sine transform, i.e., the M ×M matrix
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with entries Sij :=
√

2h sin(ijπh). Thus, the matrix representation of Lh can be rewritten as

L̃h = S−1ΛS with Λ denoting the diagonal matrix with diagonal Λii = 6h−2(1− cos(iπh))/(2 +

cos(iπh)), i = 1 . . . ,M . The matrix L̃h takes coefficients of a function wh ∈ Vh to those of Lhwh.

Let Ṽ be the vector in RM defined by

Ṽj = (v, φj), j = 1, . . . ,M.

Then, the matrix representing e−tLshwh is thus given by S−1e−tΛ
s
S so the vector of coefficients

representing uh(t) = e−tL
s
hπhv is given by

S−1D(t)SṼ

where D(t) is the diagonal matrix with diagonal entries

D(t)ii =
3e−tΛ

s
ii

h(2 + cos(iπh))
, i = 1, . . . ,M.

The action of S on a vector can be efficiently computed using the Fast Fourier Transform in

O(M lnM) operations and S−1 = S.

Note that v of (III.48) belongs to Ḣ3/2−2ε(0, 1) for any ε > 0. Theorem III.3 with α = 1

guarantees

‖u(t)− uh(t)‖L2 ≤ Ct−(1/4+ε)/sh2.

To compute the solution u(t) at the finite element nodes, the exact solution u is approximated

using the first 50000 modes of its Fourier representation. The number of modes is chosen large

enough such that it does not influence the space discretization error.

Table III.1 reports the L2 error ei := ‖u(t)− uhi(t)‖L2 and its observed rate of convergence

L2-OROCi :=
ln(ei/ei+1)

ln(hi/hi+1)
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for different s at time t = 0.5. In all cases, we observed ‖u(t) − uh(t)‖L2 ∼ h2 as predicted by

Theorem III.3, see also (III.18).

h s = 0.25 s = 0.5 s = 0.75

1/8 1.13× 10−3 1.21× 10−3 9.41× 10−4

1/16 3.08× 10−4 1.87 3.03× 10−4 2.00 2.37× 10−4 1.99

1/32 7.97× 10−5 1.95 7.58× 10−5 2.00 5.94× 10−5 1.99

1/64 2.01× 10−5 1.98 1.89× 10−5 2.00 1.48× 10−5 2.00

1/128 5.05× 10−6 2.00 4.74× 10−6 2.00 3.71× 10−6 2.00

Table III.1: L2 errors and observed rate of convergence (L2-OROC) for different values of s. The
observed error decay is in accordance with Theorem III.3.

III.4.2 Error from the Sinc Quadrature

We now focus on the quadrature error estimate given in Theorem III.5 and study the two differ-

ent relations between k and N discussed in Remark III.4 and Remark III.5. Here we consider the

scalar case to verify Lemma III.4. To do this we introduce an approximation to ‖E(·, t)‖L∞(10,∞)

defined by the following procedure.

(I) We examine the value of |E(λ, t)| for λj = 10µj for j = 0, 1, · · · ,N . Here µ > 1 and N

is chosen sufficiently large so that |E(λ, t)| is monotonically decreasing when λ ≥ λN (for

t = .5, we take µ = 3/2 and N = 40).

(II) We set k := argmaxj=1,...,N (|E(λj, t)|) and approximate

‖E(·, t)‖L∞(10,∞) ≈ max
l=1,...,N

|E(ρl, 0.5)|, where ρl := λk−1 +
λk+1 − λk−1

N
l.

By adjusting µ, N and l, we can obtain ‖E(·, t)‖L∞(10,∞) to any desired accuracy.
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In Figures III.2 and III.3, we report values of ‖E(·, t)‖L∞(10,∞) as a function of N obtained by

runing the above algorithm withN and µ adjusted so that the results are accurate to the number of

digits reported. When considering Remark III.5, we choose d = π/8.

For Figure III.2, we take t = 0.5. The blue lines give the results for Remark III.4 while the red

lines give the results for Remark III.5. Except for the case of s = .25, the scheme in Remark III.5

is somewhat better.

For Figure III.3, we take N = 32 and report the errors as a function of t. In all cases, we see

significant improvement from Remark III.4 to Remark III.5 when t is small. When considering

Remark III.5, we choose d = π/8 so that k can be computed as a function of N .
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1e-14

1e-12

1e-10

1e-8

1e-6

1e-4

1e-2

1e0

 10  100

s=0.25

s=0.50

s=0.75

Figure III.2: ‖E(·, 0.5)‖L∞(10,∞) as a function of N discussed in Remark III.4 and Remark III.5
reported in blue and red, respectively.
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Figure III.3: ‖E(·, t)‖L∞(10,∞) with N = 32 as a function of t discussed in Remark III.4 and
Remark III.5 reported in blue and red, respectively.

III.4.3 A Two Dimensional Problem

Set Ω to be the unit square (0, 1)2 and L is the unbounded operator associated with the form

d(u, v) =
∫

Ω
∇u · ∇v dx. The initial data is set to be the checkerboard function

v(x1, x2) =


1 if (x1 − 0.5)(x2 − 0.5) > 0,

0 otherwise.
(III.49)

Since we have v ∈ Ḣ1/2−2ε(Ω) for all ε > 0, Theorem III.3 guarantees an L2 error decay

‖u(t)− uh(t)‖L2 ≤ Ct−(3/4+ε)/sh2.

To approximate the solution, we use the scheme (III.25) with N = 40 and k = ln(N)/(sN)

(the scheme in Remark III.4). Here we use triangle [63] to generate meshes such that each mesh is

quasi-uniform and controlled by maximum area of cells. Approximation QN,k
h (0.5)vh for different

values of s are provided in Figure III.4, thereby illustrating the effect of s on the diffusion strength.

In addition, snapshots of QN,k
h (t)vh at different times t are provided in Figure III.5.
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s = 0.25 s = 0.5 s = 0.75

Figure III.4: Approximations QN,k
h (0.5)vh for initial data problem for different values of s. The

diffusion process is faster when increasing s.

t = 1.0 t = 1.5 t = 2.0

Figure III.5: Evaluation of the solution QN,k
h (t)vh at different time when s = 0.25.

Finally, the total approximation errors ‖QN,k
h (t)vh − u(t)‖L2 at t = 0.5 are reported in Ta-

ble III.2 for different values of s. The optimal order 2 predicted by Theorem III.6 is obtained for

large s, while the asymptotic regime for s = 0.25 was not reached in the computations.
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h2 s = 0.25 s = 0.5 s = 0.75

0.02 2.38× 10−2 1.47× 10−3 6.11× 10−4

0.005 6.20× 10−3 1.94 4.72× 10−4 1.64 1.66× 10−4 1.88

0.00125 1.59× 10−3 1.96 1.21× 10−4 1.96 4.32× 10−5 1.94

0.0003125 4.26× 10−4 1.90 3.17× 10−5 1.93 1.09× 10−5 1.99

0.000078125 1.13× 10−4 1.91 7.88× 10−6 2.01 2.73× 10−6 2.00

Table III.2: Total approximation error ‖QN,k
h (t)−u(t)‖L2 at t = 0.5 and convergence rate for initial

data (III.49) with different values of s. The optimal order 2 predicted by Theorem III.6 is obtained
for large s, while the asymptotic regime for s = 0.25 was not reached in the computations.
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CHAPTER IV

APPROXIMATION OF THE NON-HOMOGENEOUS PARABOLIC PROBLEM ∗

This chapter is continuation of the preceding chapter on the numerical approximation of the

parabolic problem. So notations mentioned in Chapter III are still applied to this chapter. We now

focus on the numerical approximation of the non-homogeneous problem: given a right hand data

f ∈ L2(0,T;L2(Ω)), we want to find u : Ω× [0,T]→ R satisfying


ut + Lsu = f, in Ω× (0,T],

u = 0, on Ω× {0}.
(IV.1)

The weak formulation reads: find u ∈ L2(0,T; Ḣs(Ω)) with ut ∈ L2(0,T; Ḣ−s(Ω)) such that


(ut, φ)Ω + A(u, φ) = (f(t), φ) for all φ ∈ Ḣs(Ω) and for a.e. t ∈ (0,T],

u(0) = 0.

(IV.2)

By Duhamel’s principle, the solution of the above problem is given by

u(t) =

∫ t

0

e−ξL
s

f(t− ξ) dξ. (IV.3)

We again obtain the finite element approximation of (IV.1) by replacing L with Lh. The error

analysis is provided in Section IV.1. The major task of this chapter, is the discretization in time.

Here we consider two approaches. In Section IV.2, we discuss the approximation to the solution

(IV.3) using a numerical quadrature scheme. In Section IV.3, we consider the time discretization

of (IV.1) with the Crank-Nicolson time stepping scheme. Some numerical results are provided in

Section IV.4 to support the error analysis for above discretization schemes.

∗Section IV.1 and Section IV.4.1 are reprinted from “The approximation of parabolic equations involving fractional
powers of elliptic operators”, 2017, Journal of Computational and Applied Mathematics, 315, 32–48, Copyright [2017]
by Elsevier.
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IV.1 The Finite Element Approximation

The finite element approximation of (IV.2) reads: find uh ∈ H1(0,T;Vh) such that


(uh,t, φh) + Ah(uh, φh) = (f(t), φh), ∀φh ∈ Vh and a.e. t ∈ (0,T),

uh(0) = 0,

(IV.4)

with the solution given by

uh(t) =

∫ t

0

e−ξL
s
hπhf(t− ξ) dξ. (IV.5)

If f ∈ L∞(0,T;H2δ), Theorem III.3 immediately implies the following L2 error estimate

‖u(t)− uh(t)‖L2 ≤
∫ t

0

‖(e−ξLs − e−ξLshπh)f(ξ)‖L2 dξ

≤
∫ t

0

C(ξ)h2α‖f(t− ξ)‖H2δ dξ

≤ C(h, t)‖f‖L∞(0,T;H2δ).

Here C(t) is given by (III.19) and

C(h, t) = h2α

∫ t

0

C(ξ) dξ =


Cth2α : δ > α,

Ctmax(1, ln(1/t))h2α : δ = α,

Ch2α

∫ t

0

ξ−(α−δ)/s dξ : δ < α.

(IV.6)

When δ < α, the above argument shows that the optimal convergence rate 2α̃ is achieved provided

that the integral
∫ t

0
ξ−(α̃−δ)/s dξ is finite, i.e. α̃ = s + δ − ε for every ε > 0. We summarize the

above discussion in the following theorem.

Theorem IV.1 (Finite element approximation). Suppose Assumption II.1 holds for some α ∈ (0, 1].

Furthermore, we assume that f ∈ L∞(0,T;H2δ) with δ ∈ [0, (1 + α)/2]. Let u be the solution of

(IV.2) and uh is the finite element approximation given by (IV.4). Let α̃ = min(α, s + δ − ε) with
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ε positive and sufficiently small. Then we have

‖u(t)− uh(t)‖L2 ≤ C̃(t)h2α̃‖f‖L∞(0,T;H2δ).

Here

C̃(t) :=


Ct : δ > α,

Ctmax(1, ln(1/t)) : δ = α,

Ct1−
α̃−δ
s : δ < α.

(IV.7)

IV.2 Time Discretization via Numerical Integration

IV.2.1 Discretization in Time

We now further approximate uh given by (IV.5) by discretizing the integral with respect to ξ.

To do this, we decompose the integral [0, t] onto N subintervals

0 = t0 < t1 < . . . < tN−1 < tN = t,

where, for ` = 0, . . . ,N ,

t` := `τ, with τ = t/N . (IV.8)

On each subinterval we set t`− 1
2

= 1
2
(t`−1 + t`) and propose the pseudo-midpoint approximation

∫ t`

t`−1

e−ξL
s
hπhf(t− ξ) dξ ≈

∫ t`

t`−1

e−ξL
s
h dξ πhf(t− t`− 1

2
)

= L−sh
(
e−t`−1L

s
h − e−t`Lsh

)
πhf(t− t`− 1

2
)

=: L−sh (Wh(t`−1)−Wh(t`))gh(t`− 1
2
).
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Here we set Wh(r) = e−rL
s
h and gh(r) = πhf(t − r). We further use the bar symbol to denote

average quantities over the subinterval [t`−1, t`], e.g.

W ` : Vh → Vh, W ` :=
1

τ

∫ t`

t`−1

Wh(ξ) dξ.

and

g` :=
1

τ

∫ t`

t`−1

gh(ξ) dξ.

Hence, by summing up the contributions from each subinterval, the time discretization of uh be-

comes

uNh (t) :=
N∑
`=1

L−sh (Wh(t`−1)−Wh(t`))gh(t`− 1
2
) = τ

N∑
`=1

W `gh(t`− 1
2
). (IV.9)

Let us estimate the error between uh(t) and uNh (t) in the measure of L2.

Theorem IV.2 (Time discretization). Assume that g(r) = f(t− r) belongs to H2(0,T;L2). Then

for t ∈ [t0,T] with t0 > 0, there exists a constant C independent of h and τ satisfying

‖uh(t)− uNh (t)‖L2 ≤ τ 2((1 +
√
t)‖ftt‖L2(0,t;L2) + C lnN‖ft‖L∞(0,t;L2)). (IV.10)

where ft and ftt denote the first and second partial derivative in time of f .

Proof. 1 We note that since ‖Wh(r)‖L2→L2 ≤ 1 for r ∈ (0, t) and ‖πh‖L2→L2 ≤ 1,

∥∥∥∥∫ t1

0

Wh(ξ)πh(g(ξ)− g(t 1
2
)) dξ

∥∥∥∥
L2

≤
∫ t1

0

‖Wh(ξ)‖L2→L2‖(g(ξ)− g(t 1
2
))‖L2 dξ

≤ τ 2‖gt‖L∞(0,T ;L2).

Here we use the fact that

‖g(ξ)− g(t 1
2
)‖L2 = ‖

∫ ξ

t 1
2

gt(η) dη‖L2 ≤ |ξ − t 1
2
|‖gt‖L∞(0,t;L2) ≤ τ‖gt‖L∞(0,t;L2).
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For the rest of subintervals, namely I` = [t`−1, t`] with ` ≥ 2, we use the following decoposition

∫ t`

t`−1

Wh(ξ)(gh(ξ)− gh(t`− 1
2
)) dξ

= τW `πh(g` − g(t`− 1
2
))︸ ︷︷ ︸

=:E1

+

∫ t`

t`−1

(Wh(ξ)−W `)πh(g(ξ)− g(t`− 1
2
)) dξ︸ ︷︷ ︸

=:E2

.

2 We estimate E1 by

‖E1‖L2 ≤ τ‖W `πh‖L2→L2‖g` − g(t`− 1
2
)‖L2 . (IV.11)

We now bound ‖W `πh‖L2→L2 and ‖g` − g(t`− 1
2
)‖L2 separately. For the latter, we expand g(η) at

η = t`− 1
2

to get

g(η)− g(t`− 1
2
) = (η − t`− 1

2
)gt(t`− 1

2
) +

∫ η

t
`− 1

2

(r − t`− 1
2
)gtt(r) dr.

As a consequence, taking advantage of t`− 1
2

being the midpoint of the interval I`, we obtain

g` − g(t`− 1
2
) =

1

τ

∫ t`

t`−1

(
g(η)− g(t`− 1

2
)
)
dη

=
1

τ

∫ t`

t`−1

∫ η

t
`− 1

2

(r − t`− 1
2
)gtt(r) dr dη

and hence using a Cauchy-Schwarz inequality

‖g` − g(t`− 1
2
)‖L2 ≤ τ 3/2‖gtt‖L2(t`−1,t`;L2). (IV.12)

In order to bound ‖W `πh‖L2→L2 , we note that form the definition of Wh(r) and the stability of πh,
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we derive that

‖W `πh‖L2→L2 ≤ 1

τ

∫ t`

t`−1

‖e−ξLshπh‖L2→L2 dξ

≤ 1

τ

∫ t`

t`−1

dξ = 1.

(IV.13)

Estimates (IV.12) and (IV.13) into (IV.11) give the final bound for E1:

‖E1‖L2 ≤ τ 5/2‖gtt‖L2(t`−1,t`;L2). (IV.14)

3 We estimate E2

‖E2‖L2 ≤
∫ t`

t`−1

‖(Wh(ξ)−W `)πh‖L2→L2‖g(ξ)− g(t`− 1
2
)‖L2 dξ. (IV.15)

In this case as well, we need to estimate two terms separately, namely ‖(Wh(ξ) −W `)πh‖L2→L2

and ‖g(ξ)− g(t`− 1
2
)‖L2 . For the latter, we write

‖g(ξ)− g(t`− 1
2
)‖L2 = ‖

∫ ξ

t
`− 1

2

gt(η) dη‖L2 ≤ τ‖gt‖L∞(t`−1,t`;L2). (IV.16)

Next, we bound ‖(Wh(ξ)−W `)πh‖L2→L2 . As before, it suffices to estimate ‖Wh(ξ)−W `‖L2→L2 .

To achieve this, we use set of the orthonormal eigenfunctions {ψj,h} of Lh and derive that

‖W ′
h(r)ψj,h‖L2 = λsj,he

−rλsj,h ≤ r−1 ≤ t−1
`−1, for r ∈ [t`−1, t`].

Whence, ‖W ′
h(r)‖L2→L2 ≤ t−1

`−1 and

‖Wh(ξ)−W `‖L2→L2 ≤ τ sup
r∈I`
‖W ′

h(r)‖L2→L2 ≤ τt−1
`−1.

The above estimate and (IV.16) in (IV.15) imply the final bound on E2

‖E2‖L2 ≤ τ 3t−1
`−1‖gt‖L∞(t`−1,t`;L2).
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4 Summing up the estimates ofE1 andE2 from each subinterval and using a Cauchy-Schwarz

inequality, we yield that

‖uh − uNh ‖L2 ≤ τ 2‖gt‖L∞(0,t;L2) + τ 5/2

N∑
`=2

‖gtt‖L2(t`−1,t`;L2) + τ 3‖gt‖L∞(0,t;L2)

N∑
`=2

t−1
`−1

≤ τ 2‖gtt‖L∞(0,t;L2) + τ 5/2N 1/2‖gtt‖L2(0,t;L2) + τ 2

N−1∑
`=1

1

`
‖gt‖L∞(0,t;L2)

= τ 2((1 +
√
t)‖gtt‖L∞(0,t;L2) + C lnN‖gt‖L∞(0,t;L2)).

(IV.17)

We note that for the last inequality above we used the fact that
∑N

j=1 j
−1 ≤ C ln(N − 1). To

conclude, we observe that

‖gt‖L∞(0,t;L2) = ‖ft‖L∞(0,t;L2), ‖gtt‖L2(0,t;L2) = ‖ftt‖L2(0,t;L2)

and that the embedding H1(0, t) ⊂ L∞(0, t) is continuous with norm independent of t ≥ t0.

Remark IV.1. In (IV.10), we can remove the term lnN when ft ∈ L∞(0, t;Hε) with ε > 0. In

fact, we can estimate ‖E2‖L2 in (IV.15) by

‖E2‖L2 ≤
∫ t`

t`−1

‖(Wh(ξ)−W `)‖Ḣε
h→L2‖πh‖Ḣε→Ḣε

h
‖g(ξ)− g(t`− 1

2
)‖Ḣε dξ.

In view of (II.18) and Proposition II.2, we have ‖πh‖Ḣε→Ḣε
h
≤ C and also ‖g(ξ)− g(t`− 1

2
)‖Hε ≤

τ‖gt‖L∞(t`−1,t`;Hε). We also note that

‖W ′
h(r)ψj,h‖L2 = λsj,he

−rλsj,h = r−1+ε/sλεj,h(rλ
s
j,h)

1−ε/se−rλ
s
j,h

≤ Cλεj,ht
−1+ε/s
`−1 , for r ∈ [t`−1, t`]

and hence ‖Wh(ξ)−W `‖Ḣε
h→L2 ≤ Cτt

−1+ε/s
`−1 . This leads to ‖E2‖L2 ≤ Cτ 3t

−1+ε/s
`−1 ‖gt‖L2(t`−1,t`;Hε).

Since τ
∑N−1

j=2 t
−1+ε/s
`−1 ≤

∫ t
0
ξ−1+ε/s dξ ≤ C, we insert these results back into (IV.17) to obtain

‖uh − uNh ‖L2 ≤ τ 2((1 +
√
t)‖ftt‖L∞(0,t;L2) + C‖ft‖L∞(0,t;Hε)).
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IV.2.2 Sinc Approximation of (IV.9)

In view of (IV.9), one remaining problem is to compute the quantity

Dh(t, τ)gh := L−sh (e−tL
s
h − e−(t+τ)Lsh)gh.

for t > 0, τ > 0 and gh ∈ Vh. We proceed as in the homogeneous case discussed in Section III.3.

We consider the Dunford-Taylor integral representation of Dh(t, τ) with the contour Ĉ given by

(III.23). Given a sinc quadrature spacing k > 0, we use a positive integer N to be defined below.

For t, τ > 0 and gh ∈ Vh, we propose the following sinc approximation to Dh(t, τ):

Qk
h(t, τ)gh := − k

2πi

N∑
j=−N

(
e−tγ(yj)

s − e−(t+τ)γ(yj)
s)
γ(yj)

−sγ′(yj)[(γ(yj)I − Lh)−1gh], (IV.18)

with yj = jk. Hence, a computable approximation of the solution to the non-homogeneous prob-

lem becomes

uN ,kh (t) :=
N∑
`=1

Qk
h(t`−1, τ)πhf(t− t`− 1

2
). (IV.19)

Remark IV.2 (Implementation). To minimize the number of system ((γ(yj)I−Lh)−1) solves gh in

(IV.19), we write

uN ,kh (t) = − k

2πi

N∑
`=1

N∑
j=−N

(
e−t`−1γ(yj)

s − e−t`γ(yj)
s)
γ(yj)

−sγ′(yj)(γ(yj)I − Lh)−1πhf(t− t`− 1
2
).

= − k

2πi

N∑
j=−N

γ(yj)
−sγ′(yj)(γ(yj)I − Lh)−1Dj,

where

Dj :=
N∑
`=1

(
e−t`−1γ(yj)

s − e−t`γ(yj)
s)
πhf(t− t`− 1

2
). (IV.20)

To implement the above, we proceed as follows:

1) Compute the inner product vectors, i.e., the integral of f(t − t`−1/2) against the finite element

basis vectors, for all `.
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2) For each, j:

a) compute the sums in (IV.20) but replacing πhf(t−t`−1/2) by the corresponding inner product

vector, and

b) compute γ(yj)
−sγ′(yj)(γ(yj)I−Lh)−1Dj by inversion of the corresponding stiffness matrix

applied to the vector of Part a).

3) Sum up all contribution and multiply the result by − k
2πi

.

To analysis the error between uNh (t) and uN ,kh (t), we start with the approximation of Dh(t, τ)

by Qk
h(t, τ) with t > 0.

Lemma IV.3. Let τ > 0 and d ∈ (0, π/4). Assume that kN > c for some positive constant c.

When t > 0, there exists a constant C independent of h, N and k such that for any gh ∈ Vh,

‖(Dh(t, τ)−Qk
h(t, τ))gh‖L2 ≤ Cτ max(1, ln(1/t))

(
e−2πd/k + e−κ2−stekNs

)
‖gh‖L2 . (IV.21)

When t > 0, we have

‖(Dh(0, τ)−Qk
h(0, τ))gh‖L2 ≤ C(e−2πd/k + e−sNk)‖gh‖L2 . (IV.22)

Proof. For z ∈ Bd, define

gλ(z, t, τ) =
(
e−tγ(z)s − e−(t+τ)γ(z)s

)
γ(z)−sγ′(z)(γ(z)I − λ)−1

Note that in view of part (b) of Lemma III.8, gλ(z, t, τ) with t, τ > 0 has the exponential decay

property

|gλ(z, t, τ)| ≤ C|γ(z)−s|
∫ t+τ

t

|γ(z)se−rγ(z)s| dr

= C

∫ t+τ

t

e−rRe(γ(z)s) dr ≤ Cτe−tRe(γ(z)s) ≤ Cτe−tκ(coshRez)s
(IV.23)
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with κ defined by (III.28). Hence we follow the proof of Lemma III.4 and Remark III.5 to obtain

the estimate (IV.21).

When t = 0, we note that

Dh(0, τ)gh = (L−sh − L
−s
h e−τL

s
h)gh.

does not have the exponential decay property (IV.23) due to the term L−sh gh. So we estimate the

sinc approximation error for L−sh gh and L−sh e−τL
s
hgh separately. In view of Lemma III.8.(c), we

have

|gλ(z)| := |z−sγ′(z)(γ(z)I − λ)−1| ≤ Cκ2se−s|Rez|.

So we follow the argument before Theorem II.7 together with the above decay property to conclude

that the L2 error between L−sh gh and its sinc approximation in Qk
h(t, τ)gh should be bounded by

C(e−2πd/k + e−sNk). Here the constant C is independent of h, τ , N and k. On the other hand, we

simply estimate the sinc approximation error for L−sh e−τL
s
hgh by using the same exponential decay

estimate as above since |e−τγ(z)s| ≤ 1 for z ∈ Bd. Hence we have shown (IV.22) and the proof is

complete.

We are now ready to show the error estimate for the sinc approximation on the non-homogeneous

problem.

Theorem IV.4. Let t > 0 and assume that f ∈ L∞(0, t;L2). Assume that Nk ≥ c for some

positive constant c. Let uNh and uN ,kh be defined by (IV.9) and (IV.18), respectively. Then there

exists a positive constant C independent of h, τ , k and N satisfying

‖uNh − u
N ,k
h ‖L2 ≤ Ctmax(1, ln(1/t))(e−2πd/k + e−kNs/2)‖f‖L∞(0,t;L2). (IV.24)
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Proof. We write

‖uNh − u
N ,k
h ‖L2 ≤ ‖(Dh(0, τ)−Qk

h(0, τ))πhf(t 1
2
)‖L2

+
N−1∑
`=2

‖(Dh(t`−1, τ)−Qk
h(t`−1, τ))πhf(t− t`− 1

2
)‖L2 .

The first term on the right hand side follows from (IV.22). In terms of the summation above, we

apply (IV.21) to get

N−1∑
`=2

‖(Dh(t`−1, τ)−Qk
h(t`−1, τ))πhf(t− t`− 1

2
)‖L2

≤ C‖f‖L∞(0,t;L2)τ
N−1∑
`=2

max(1, ln(1/t`−1))
(
e−2πd/k + e−κ2−st`−1e

kNs
)

≤ C‖f‖L∞(0,t;L2)

(
e−2πd/kτ

N−1∑
`=2

max(1, ln(1/t`−1))

+ e−kNs/2τ
N−1∑
`=2

t
−1/2
`−1 max(1, ln(1/t`−1))

)
≤ C(tmax(1, ln(1/t))e−2πd/k +

√
tmax(1, ln(1/t))e−kNs/2)‖f‖L∞(0,t;L2).

Combing above two estimate yields the desired estimate.

Remark IV.3 (Relation between N and k). We balance the error in (IV.24) by letting 2πd/k =

sNk/2 so that Nk =
√

4πdN/s >
√

4πd/s when N > 1. Hence the error of the sinc approxi-

mation is bounded by C(tmax(1, ln(1/t))e−2πd/k.

IV.2.3 The Total Error

We end this section by combining the error estimates from Theorem IV.1, IV.2 and IV.4.

Theorem IV.5 (Total Error). Let u(t) be the solution of the non-homogeneous problem (IV.2).

uN ,kh (t) is the approximation of u defined by (IV.19) together with the choice of N based on

Remark IV.3. Given the regularity index α ∈ (0, 1] from Assumption II.1, assume that f ∈

L∞(0, t;H2δ) ∩ H2(0, t;L2) with δ ∈ [0, (1 + δ)/2]. Then for t ≥ t0 > 0, there exists a posi-
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tive constant C satisfying

‖u(t)− uN ,kh (t)‖L2 ≤ C̃(t)h2α̃‖f‖L∞(0,T;Ḣ2δ)

+ τ 2((1 +
√
t)‖f‖H2(0,t;L2) + C ln

t

τ
‖ft‖L∞(0,t;L2))

+ Ctmax(1, ln(1/t))e−2πd/k‖f‖L∞(0,t;L2).

Here C̃(t) is given by (IV.6).

IV.3 The Crank-Nicolson Time Stepping Method

In this section, we consider an alternative approximation in the time domain. Recall from (IV.4)

that the finite element approximation uh(t) satisfies the equation

uh,t + Lshuh = πhf(t), for t > 0 with uh(0) = 0.

The Crank-Nicolson time stepping scheme reads: given a time step τ > 0 and a nonnegative

integer n, we approximate {uh(tn)}∞n=0 with tn = nτ by {unh}∞n=0 ⊂ Vh satisfying

un+1
h − unh
τ

+ Lsh

(
un+1
h + unh

2

)
= f

n+1/2
h , for n ≥ 0 with u0

h = πhv, (IV.25)

where fn+1/2
h = πhf(tn+ 1

2
). We simplify the above equation and find that

un+1
h = (I +

τ

2
Lsh)

−1(I − τ

2
Lsh)u

n
h + τ(I +

τ

2
Lsh)

−1f
n+1/2
h

= (I +
τ

2
Lsh)

−1(2unh + τf
n+1/2
h )− unh.

(IV.26)

The remaining issue is to approximate Eτgh := (I + τLs)−1gh for gh ∈ Vh. To do this, we invoke

the following Balakrishman formula:

(I + Lsh)
−1 =

sin(πs)

π

∫ ∞
0

µs

1 + 2µs cos(πs) + µ2s
(µI + Lh)

−1 dµ. (IV.27)
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Hence

Eτgh =
sin(πs)

π

∫ ∞
0

µs

1 + 2µs cos(πs) + µ2s
(µI + τ 1/sLh)

−1gh dµ.

Now we apply a sinc method to the above integral representation. We use the change of variable

µ = ey and set the quadrature spacing k > 0 together with a positive integerN . The approximation

of Eτgh is given by

Qk
τgh :=

sin(πs)k

π

N∑
j=−N

eyj(s+1)

1 + 2esyj cos(πs) + e2syj
(eyjI + τ 1/sLh)

−1gh. (IV.28)

We replace Eτ/2 = (I + τ
2
Lsh)

−1 with Qk
τ/2 to obtain our final approximation, i.e. we approximate

{uh(tn)} using {un,kh } which satisfies

un+1,k
h = Qk

τ/2(2un,kh + τf
n+1/2
h )− un,kh for n > 0 with u0,k

h = 0. (IV.29)

IV.3.1 Error Analysis for the Time Discretization

Let us consider the estimate of the L2 error between the finite element approximation uh(tn)

and its time discretization unh. Let Wτ := (I + τ
2
Lsh)

−1(I − τ
2
Lsh). Recalling in Section IV.2 that

Wh(tn) = e−tnL
s
h , W n

τ should be an approximation of Wh(tn). The error between the two is given

by the following lemma.

Lemma IV.6. Assume that τ maxj=1,...,Mh
{λsj,h} ≤ α0 for some 0 < α0 <∞. For gh ∈ Vh, there

exists a positive constant C independent of h, τ and n satisfying

‖(Wh(tn)−W n
τ )gh‖L2 ≤ Ctδ/s−2

n τ 2‖gh‖Ḣ2δ
h
, (IV.30)

where δ ∈ [0, 2s].

Proof. For the cases δ = 0 and δ = 2s, (IV.30) follows from Theorem 7.2 and 7.1 in [69],

respectively. The proof is complete by invoking the interpolation estimate (II.3) with these two

cases.
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Remark IV.4. We can remove the assumption τ maxj{λsj,h} ≤ α0 in the above lemma by applying

the Backward scheme at the first two time steps, i.e.

un+1
h = Eτ (u

n
h + τfn+1

h ), for n = 0, 1.

Then we apply the Crank-Nicolson scheme for n ≥ 2. The same error estimate has been proved in

[69, Theorem 7.4]; see also [49] for more details.

Theorem IV.7 (Error estimate for the Crank-Nisolson scheme). Let tn = nτ with τ > 0 and

the nonnegative integer n. Let uh(tn) and unh given by (IV.4) and (IV.25), respectively. Under

Assumption II.1 for some α ∈ (0, 1), we assume that s ∈ (0, (1 + α)/2]. Assume that the right

hand side data f satisfies f ∈ L∞(0, tn;H2δ), ft ∈ L∞(0, tn;H2δ′) and ftt ∈ L1(0, tn;L2), where

δ ∈ (s, (1 + α)/2] and δ′ ∈ (0, (1 + α)/2]. We additionally assume that τ maxj{λsj,h} ≤ α0. Then

there exists a positive constant C independent of h and τ satisfying

‖uh(tn)− unh‖L2 ≤Cτ 2

(
1 + (tδ/s−1

n )‖f‖L∞(0,tn;H2δ)

+ (1 + tδ
′/s
n )‖ft‖L∞(0,tn;H2δ′ ) + ‖ftt‖L1(0,tn;L2)

)
.

Proof. 1 Recalling that fnh = πhf(tn), we apply the first equation of (IV.26) recursively from

n− 1 to 0 and get

unh = τ
n−1∑
j=0

W n−j−1
τ Eτ/2f

j+1/2
h . (IV.31)

On the other hand, we let fh(t) = πhf(t) and rewrite uh(tn) as

uh(tn) =
n−1∑
j=0

∫ tj+1

tj

Wh(tn − ξ)fh(ξ) dξ

= τ
n−1∑
j=0

Wh(tn−j−1)

∫ 1

0

Wh(τ − τξ)fh(tj + τξ) dξ︸ ︷︷ ︸
=:Ijτ

.
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Thus,

enh := unh − uh(tn) = τ

n−1∑
j=0

(
W n−j−1
τ Eτ/2f

j+1/2
h −Wh(tn−j−1)Ijτ

)
= τ

n−2∑
j=0

(
W n−j−1
τ −Wh(tn−j−1)

)
Eτ/2f

j+1/2
h

+ τ
n−2∑
j=0

Wh(tn−j−1)
(
Eτ/2f

j+1/2
h − Ijτ

)
+ τ

(
Eτ/2f

n−1/2
h − In−1

τ

)
=: enh,1 + enh,2 + enh,3.

We shall bound enh,i for i = 1, 2, 3 separately.

2 We first bound enh,1. Since Eτ/2 and Wh(tn−j−1) commute and ‖Eτ/2‖L2→L2 ≤ 1, we have

‖enh,1‖L2 ≤ τ
n−2∑
j=0

∥∥∥(W n−j−1
τ −Wh(tn−j−1))f

j+1/2
h

∥∥∥
L2
.

Applying Lemma IV.6 yields

‖enh,1‖L2 ≤ Cτ 3

n−2∑
j=0

t
−(2− δ

s
)

n−j−1 ‖f
j+1/2
h ‖Ḣ2δ

h

≤ Cτ 2

∫ tn−1

0

ξ−2+ δ
s dξ ‖f‖L∞(0,tn;Ḣ2δ) ≤ Ct−1+δ/s

n τ 2‖f‖L∞(0,tn;H2δ).

Note that for the second inequality, ‖f j+1/2
h ‖Ḣ2δ

h
≤ C‖f(tj+1/2)‖Ḣ2δ ≤ C‖f‖L∞(0,tn;Ḣ2δ) due to

Lemma II.20.

3 Before we estimate ‖enh,2‖L2 , let us consider ‖Eτ/2f j+1/2
h − Ijτ‖L2 for j = 0, . . . , n − 2.

According to the Taylor expansion of f j+1/2
h at tj , we write

Eτ/2f
j+1/2
h = Eτ/2πhf(tj) + τEτ/2πhft(tj) + Eτ/2

∫ tj+τ/2

tj

(tj + τ/2− ξ)πhftt(ξ) dξ.
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Similarly,

Ijτ =

∫ 1

0

Wh(τ − ξτ) dξ πhf(tj) + τ

∫ 1

0

Wh(τ − ξτ)ξ dξ πhft(tj)

+

∫ 1

0

Wh(τ − ξτ)

(∫ tj+ξτ

tj

(tj + ξτ − η)πhftt(η) dη

)
dξ.

Notice that in above two equations, both the L2 norm of last terms on the right hand side can be

bounded by

Cτ

∫ tj+1

tj

‖ftt‖L2 dξ.

It remains to bound ‖τ lEτ/2πhf(tj) − τ l
∫ 1

0
Wh(τ − ξτ)ξl dξ πhf

(l)(tj)‖L2 for l = 0, 1, where

f (0) = f and f (1) = ft. Note that for λ > 0, there exists a positive constant C satisfying

∣∣∣∣(1 + λ/2)−1 −
∫ 1

0

ξle−(1−ξ)λ dξ

∣∣∣∣ ≤ Cλ2−l for 0 ≤ l ≤ 2.

So let us consider the case l = 1 and the case l = 0 should follow the same argument. Using the

eigenfunction expansion with respect to {ψ`,h} and letting c`,h be the corresponding decomposition

coefficients for ` = 1, 2, . . . ,Mh, we obtain

‖τ(Eτ/2 −
∫ 1

0

Wh(τ − ξτ)ξ dξ)Wh(tn−j−1)πhft(tj)‖2
L2

= τ 2

Mh∑
`=1

(
(1 + τλs`,h/2)−1 −

∫ 1

0

ξe−(1−ξ)τλs`,h dξ

)2

e−2tn−j−1λ
s
`,hc2

`,h

≤ Cτ 2

Mh∑
`=1

(τλs`,h)
2e−2tn−j−1λ

s
`,hc2

`,h

≤ Ct
−2(1−δ′/s)
n−j−1 τ 4

Mh∑
`=1

λ2δ′

`,h

(
tn−j−1λ

s
`,h

)2−2δ′/s
e−2tn−j−1λ

s
`,hc2

`,h

≤ Ct
−2(1−δ′/s)
n−j−1 τ 4

Mh∑
`=1

λ2δ′

`,hc
2
`,h = Ct

−2(1−δ′/s)
n−j−1 τ 4‖πhft(tj)‖2

Ḣ2δ′
h

.

(IV.32)

Similarly,

‖(Eτ/2 −
∫ 1

0

Wh(τ − ξτ) dξ)Wh(tn−j−1)πhf(tj)‖L2 ≤ Ct
−(2−δ/s)
n−j−1 τ 2‖πhf(tj)‖Ḣ2δ

h
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Now we can apply the above two estimates to bound enh,2. That is

‖enh,2‖ ≤ Cτ 3

n−2∑
j=0

(
t
−(2−δ/s)
n−j−1 ‖fh(tj)‖Ḣ2δ

h
+ t
−(1−δ/s)
n−j−1 ‖πhft(tj)‖Ḣ2δ′

h

)
+ τ 2

n−2∑
j=0

∫ tj+1

tj

‖ftt(ξ)‖ dξ

≤ Cτ 2
(
tδ
′/s−1
n ‖f‖L∞(0,tn;H2δ) + tδ

′/s
n ‖ft‖L∞(0,tn;H2δ′ ) + ‖ftt‖L1(0,tn−1;L2)

)
.

4 We follow the same argument in the previous step to bound ‖en3,h‖L2 with j = n − 1. The

only difference is in (IV.32). Note that

‖τ(Eτ/2 −
∫ 1

0

Wh(τ − ξτ)ξ dξ)πhft(tj)‖2
L2 ≤ Cτ 2

Mh∑
`=1

(τλs`,h)
2c2
`,h ≤ Cτ 2‖ft(tn−1)‖2

L2 ,

where we used the assumption τλs`,h ≤ α0 to bound the second inequality. Hence

‖en3,h‖L2 ≤ Cτ 2
(
‖f(tn−1)‖L2 + ‖ft(tn−1)‖L2 +

∫ tn

tn−1

‖ftt‖L2 dξ
)
.

5 The proof is complete by combing the estimates of eni,h for i = 1, 2, 3.

IV.3.2 Error Analysis for the Sinc Approximation

The key to the error analysis between Qk
τ and Eτ is showing that the integrand function

gλ(τ ; z) =
ez(s+1)

1 + 2 cos(πs)esz + e2sz
(ez + τ 1/sλ)−1,

defined in Bd for some d > 0 has an exponential decay as |Rez| → ∞. In fact, we can show that

Lemma IV.8 (Exponential decay). Given d ∈ (0,min(π/2, π/s − π)), there exists a positive

constant C independent of τ satisfying

|gλ(τ ; z)| ≤ Ce−s|Rez|, for z ∈ Bd.
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Proof. We factorize gλ(τ ; z) as

gλ(τ ; z) =
esz

(1 + esz+isπ) (1 + esz−isπ)

ez

ez + τ 1/sλ
. (IV.33)

We first note that ∣∣∣∣ ez

ez + τ 1/sλ

∣∣∣∣ ≤ eRez

eRez cos(Imz) + τ 1/sλ
≤ 1

cos d
. (IV.34)

For Rez ≤ 0,

∣∣1 + esz+isπ
∣∣ ≥ ∣∣Re(1 + esz+isπ)

∣∣ = 1 + esRez cos s(Imz + π)

≥ 1 + esRez cos s(d + π) ≥ 1 + min(0, cos s(d + π)) =: c0 > 0.

Analogously, |1+esz−isπ| ≥ c0. Thus, we combine above estimates and conclude that for Rez ≤ 0,

|gλ(τ ; z)| ≤ esRez

c2
0 cos d

.

For Rez ≥ 0, we write gλ(τ ; z) as

gλ(τ ; z) =
e−sz

(1 + e−sz+isπ) (1 + e−sz−isπ)

ez

ez + λ
(IV.35)

and follow the same argument as the case Rez ≤ 0. Hence the proof is complete.

We are able to provide the error estimate between Qk
τ and Eτ .

Theorem IV.9 (SINC quadrature error for one-step time iteration). Let Qk
τ defined by (IV.28) be

the sinc approximation of Eτ = (I + τLsh)
−1 Given d ∈ (0,min(π/2, π/s − π)), there exists a

positive constant C independent of h, k and τ and N satisfying

‖Qk
τ − Eτ‖L2→L2 ≤ 2 sin(πs)

πsc2
0 cos d

(
2

e2πd/k − 1
+ e−sNk

)
. (IV.36)
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Proof. It suffices to show the scalar case, i.e.

E(τ ;λ) :=
∣∣∣k ∫ ∞

−∞
gλ(τ ; y) dy − k

N∑
j=−N

gλ(τ ; kj)
∣∣∣ ≤ 2

sc2
0 cos d

(
2

e2πd/k − 1
+ e−sNk

)
. (IV.37)

Note that for z ∈ Bd and λ > 0. |ez+τ 1/sλ| ≥ τ 1/sλ > 0. Also based on the proof of Lemma IV.8,

the denominators of gλ(τ ; z) in (IV.33) and (IV.35) are bounded away from zero. So gλ(τ ; z) is

analytic in Bd. Also, invoking the decay estimate (IV.36),

∫ d

−d
|gλ(τ ; y + iη)| dη ≤ 2d

c2
0 cos d

<∞

and

N(Bd) ≤
4

c2
0 cos d

∫ ∞
0

e−sy dy =
4

sc2
0 cos d

<∞.

Hence gλ(τ ; z) ∈ S(Bd) and (II.23) holds for f = gλ(τ ; ·). Also,

k
∑
|j|≥N+1

|gλ(τ ; jk)| ≤ 2

c2
0 cos d

∫ ∞
Nk

e−sy dy ≤ 2e−sNk

sc2
0 cos d

.

Combing the above estimate as well as (II.23) gives the desired estimate.

Remark IV.5. In spite of the usual choose k = 1/
√
N , we balance the two exponential terms on

the right hand side of (IV.36), i.e. given a fixed k, we choose N = 2πd/(sk2) so the quadrature

error estimate becomes O(e−2πd/k).

Before we analysis the error ‖unh−u
n,k
h ‖L2 , let us discuss the stability of the numerical scheme

(IV.29). LetEτ (λ) andQk
τ (λ) be the scalar version ofEτ andQk

τ by replacing Lh with λ. Recalling

the notation E(τ ;λ) in (IV.37), we assume that N is large enough so that

r(k) :=
sin(πs)

π

2

sc2
0 cos d

(
2

e2πd/k − 1
+ e−sNk

)
≤ min

(
τλs1,h/2

1 + τλs1,h/2
,

1

1 + τλsMh,h
/2

)
(IV.38)
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so that for j = 1, . . . ,Mh,

|Qk
τ (λj,h)| ≤ |Eτ/2(λj,h)|+ |Qk

τ (λj,h)− Eτ/2(λj,h)|

= |Eτ/2(λj,h)|+
sin(πs)

π
|E(λj,h)|

≤ |Eτ/2(λj,h)|+
τλsj,h

2 + τλsj,h
= 1.

Also for j = 1, . . . ,Mh,

Qk
τ (λj,h) ≥ Eτ/2(λj,h)− |Qk

τ (λj,h)− Eτ/2(λj,h)|

= Eτ/2(λj,h)−
sin(πs)

π
|E(τ ;λj,h)|

≥ Eτ/2(λj,h)−
1

1 + τλsj,h/2
= 0.

So 0 ≤ Qk
τ (λj,h) ≤ 1 for all τ > 0. Applying this to the scheme (IV.29) yields that ‖2Qk

τ −

I‖L2→L2 ≤ 1 and hence

‖un+1,k
h ‖L2 ≤ ‖un,kh ‖L2 + τ‖f(tn+ 1

2
)‖L2 .

This implies the stability of the numerical scheme.

Theorem IV.10 (Error estimate on sinc approximation). Given a time step τ , the number of time

steps n and a sinc quadrature spacing k, let un,k defined by (IV.29) be the approximation of unk

given by (IV.26). We also assume that k is small enough so that (IV.38) holds. If f ∈ L∞(0, tn;L2),

then there holds

‖unh − u
n,k
h ‖L2 ≤ t2nr(k)

2τ
‖f‖L∞(0,tn;L2).

Proof. Note that Qk
τ/2 and 2Qk

τ − I are approximations of Eτ/2 and Wτ , respectively. Similar to

(IV.31), we write

un,kh = τ
n−1∑
j=0

(2Qk
τ/2 − I)n−j−1Qk

τ/2f
j+1/2
h .
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Hence,

unh − u
n,k
h = τ

n−1∑
j=0

(
W n−j−1
τ − (2Qk

τ/2 − I)n−j−1
)
Qk
τ/2f

j+1/2
h

+ τ

n−1∑
j=0

W n−j−1
τ (Eτ/2 −Qk

τ/2)f
j+1/2
h =: ẽ1 + ẽ2.

We simply bound ẽ2 by

‖ẽ2‖L2 ≤ τnr(k)‖f‖L∞(0,tn;L2). (IV.39)

In terms of ẽ1, noting that ‖(2Qk
τ/2 − I)‖L2→L2 ≤ 1 by stability,

‖W n
τ − (2Qk

τ/2 − I)n‖L2→L2

≤ ‖Eτ/2 −Qk
τ/2‖L2→L2

n−1∑
j=0

‖W j
τ ‖L2→L2‖(2Qk

τ/2 − I)n−1−j‖L2→L2 ≤ nr(k).

So

‖ẽ1‖L2 ≤ τ
n−1∑
j=0

(n− j − 1)‖f‖L∞(0,tn;L2) =
n(n− 1)

2
τ‖f‖L∞(0,tn;L2). (IV.40)

Combing (IV.40) and (IV.39) together with the relation tn = nτ gives the desired estimate.

IV.3.3 The Total Error

Let us summarize the error estimates from Theorem IV.1, IV.7 and IV.10.

Theorem IV.11. Given a time step τ , the number of time stepping n and a sinc quadrature spac-

ing k, let un,kh defined by (IV.26) be the approximation of u(tn) defined by (IV.2). Assume that

Assumption (II.1) holds for some α ∈ (0, 1]. We also assume that τλsMh,h
≤ α0 for some α0 > 0

and (IV.38) holds so that the numerical scheme (IV.26) is stable. If the right hand side data f

satisfies f ∈ L∞(0, tn;H2δ) for δ ∈ (s, (1 + α)/2], ft ∈ L∞(0, tn;H2δ′) for δ′ ∈ (0, (1 + α)/2]
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and ftt ∈ L1(0, tn;L2). Then

‖u(tn)− un,kh ‖L2 ≤ C̃(t)h2α̃‖f‖L∞(0,T;H2δ)

+ Cτ 2
(

(1 + tδ/s−1
n )‖f‖L∞(0,tn;H2δ) + (1 + tδ/sn )‖ft‖L∞(0,tn;H2δ′ ) + ‖ftt‖L1(0,tn;L2)

)
+
t2nr(k)

2τ
‖f‖L∞(0,tn;L2).

Here C̃(t) is given by (IV.6).

Let us discuss the relations between discretization parameters to end this section.

Remark IV.6 (Choice of parameters). Given a fixed mesh size h, we can first choose τ so that

τ ≤ α0λ
−s
Mh,h

∼ Ch2s. Then we set r(k) ≤ Cτ 3 so that the numerical scheme is stable and the

second order convergence in time is also guaranteed.

IV.4 Numerical Illustration

In this section, we provide some numerical simulations to verity the error estimates we have

shown in Section IV.1, Section IV.2 and Section IV.3.

IV.4.1 Error Behavior based on Finite Element Approximation

Consider the one dimensional non-homogeneous problem (IV.4) with the bilinear form d(u, v) =∫ 1

0
u′v′ dx and the right hand side f(t, x) = f(x) = v(x) in (III.48). We compute the finite el-

ement approximation uh(t) using the method mentioned in Section III.4.1. In Table IV.1, we

report the asymptotic observed convergence rate for t = 0.5. This rate is defined by OROC:=

ln(eh9/eh10)/ ln 2 for s > 1/4 and OROC:= ln(eh12/eh13)/ ln 2) for s < 1/4 where the mesh size

hi = 1/2i. The finer mesh sizes were used in the case of s < 1/4 to get closer to the asymptotic

convergence order.
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s < 0.25 s > 0.25

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OROC 1.73 1.88 1.95 1.99 2.00 2.00 2.00 2.00 2.00

THM 1.7 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Table IV.1: Observed rate of convergence (OROC) for different values of s together the rates
predicted by Theorem IV.1 (THM).

IV.4.2 Error Behavior in Time via Numerical Integration

We consider the non-homogeneous problem (IV.4) in the square domain Ω = [0, 1]2 and we set

the bilinear form d(u, v) =
∫

Ω
∇u · ∇v dx for u, v ∈ H1

0 (Ω). We also let the right hand side data

f(t, x, y) = (3t2 + t2(2π2)s) sin(πx) sin(πy). Since sin(πx) sin(πy) is a eigenfunction of L and

2π2 is the corresponding eigenvalue, the solution should be u(t, x, y) = t3 sin(πx) sin(πy).

We test the numerical scheme (IV.19) by fixing a uniform triangle mesh with the mesh size

h = 1/128. We also choose N = 160 and the sinc quadrature spacing k =
√
πd/(sN) with

d = π/8. This guarantees that the error from the time discretization dominants the total error.

Table IV.2 reports the L2 error between u(t) and uN ,kh for t = 1 andN = t/τ against the time step

τ . The convergence order τ 2 is observed.
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τ s = 0.3 s = 0.5 s = 0.7

1 3.03× 10−1 3.55× 10−1 3.91× 10−1

1/2 9.83× 10−2 1.62 1.40× 10−1 1.34 1.90× 10−1 1.04

1/4 2.65× 10−2 1.89 4.04× 10−2 1.79 6.29× 10−2 1.59

1/8 6.94× 10−3 1.93 1.05× 10−2 1.94 1.72× 10−2 1.87

1/16 1.95× 10−3 1.83 2.67× 10−3 1.98 4.39× 10−3 1.97

Table IV.2: L2 errors and observed rate of convergence for different values of s. The observed
error decay in time is in accordance with Theorem IV.2.

IV.4.3 Error Behavior in Time using the Crank-Nicolson Time Stepping Method

We consider solving the same problem as above but using the scheme (IV.29). We again set

h = 1/128. In terms of the sinc approximation (IV.28), we set N = 160 and k = 1/
√

2πd/(sN)

with d = 1
2

min(π/2, π/s − π) so that the error from the quadrature scheme is sufficiently small.

Table IV.3 reports the L2 error between u(t) and un,kh for t = 1 and n = t/τ against the time step

τ . The convergence order τ 2 is observed.

τ s = 0.3 s = 0.5 s = 0.7

1 2.63× 10−1 2.97× 10−1 3.25× 10−1

1/2 7.00× 10−2 1.91 7.97× 10−2 1.90 8.69× 10−2 1.90

1/4 1.75× 10−2 1.99 1.99× 10−2 2.00 2.14× 10−2 2.02

1/8 4.35× 10−3 2.01 4.96× 10−3 2.01 5.36× 10−3 2.00

1/16 1.06× 10−3 2.04 1.21× 10−3 2.03 1.33× 10−3 2.01

Table IV.3: L2 errors and observed rate of convergence for different values of s. The observed
error decay in time is in accordance with Theorem IV.7.
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CHAPTER V

APPROXIMATION OF INTEGRAL FRACTIONAL LAPLACIAN

The goal of this chapter is to study the numerical approximation of solutions of partial differ-

ential equations on bounded domains involving the integral fractional Laplacian (I.2). Recall the

problem (I.6): given the right hand side data f defined in Ω, we want to find u satisfying

(−∆)sũ = f, in Ω, (V.1)

where ·̃ denotes the extension by zero. A weak formulation of the above problem is introduced

in Section V.1. We will discretize the weak formulation based the Dunford-Taylor integral rep-

resentation of the bilinear form. The representation is provided in Section V.2. In Section V.3,

Section V.4 and Section V.5, the approximation scheme is developed in three steps and consistency

error estimates are also provided for each step. We use the final approximation of the bilinear form

to generate our discrete problem and show an energy norm error estimate for the approximated

solution in (V.6). The L2(Ω) error estimate is also discussed assuming that the domain is smooth.

Detailed implementation of the approximation scheme together with numerical experiments are

provided in Section V.7.

V.1 Test Space and Variational Formulation

V.1.1 The Sobolev spaces Hr(Rd) and H̃r(Ω)

For v ∈ L2(Rd), the Fourier transform

(Fv)(ζ) :=
1

(2π)d/2

∫
Rd
e−ix·ζv(x) dx, for ζ ∈ Rd

77



is an invertible mapping form L2(Rd) onto L2(Rd). It is known that for r ≥ 0

(∫
Rd

(1 + |ζ|2)r|Fv(ζ)|2 dζ
)1/2

is an equivalent norm for Hr(Rd) (see e.g. [68]).

For r ∈ [0, 2], the set of functions in Ω whose extension by zero are in Hr(Rd) is denoted by

H̃r(Ω). The norm of H̃r(Ω) is given by ‖̃·‖Hr(Rd). Note that for r ∈ (0, 1) and v in the Schwartz

space,

((−∆)rv, v) =

∫
Rd
|ξ|2r|Fv(ξ)|2 dξ = |cd,r|

∫
Rd

∫
Rd

(v(x)− v(y))2

|x− y|d+2r
dx dy. (V.2)

Thus, we prefer to use

|v|H̃r(Ω) =

(∫
Rd
|ξ|2r|F ṽ(ξ)|2 dξ

)1/2

=

(
|cd,r|

∫
Rd

∫
Rd

(ṽ(x)− ṽ(y))2

|x− y|d+2r
dx dy

)1/2

(V.3)

as the norm on H̃r(Ω) for r ∈ (0, 1). This is justified upon invoking a variant of the Peetre-Tartar

compactness argument. Suppose that the sequence {un}∞n=1 ⊂ H̃r(Ω) satifsies ‖un‖H̃r(Ω) = 1 but

‖un‖L2(Ω) > n|un|H̃r(Ω). Since H̃r(Ω) ⊂ Hr(Ω) and the injection ofHr(Ω) into L2(Ω) is compact

(cf. [37, Theorem 1.4.5.2 and 1.4.3.2]), without loss of generality by passing to a subsequence, un

convergences in L2(Ω) as n→∞. This implies that {un} is a Cauchy sequence in H̃r(Ω) and we

set the limit to be v. Notice that

0 = |v|H̃r(Ω) =

(∫
Rd
|ξ|2r|F ṽ(ξ)|2 dξ

)1/2

,

F ṽ = 0 and hence v = 0, which contradicts to the assumption ‖un‖H̃r(Ω) = 1. Therefore,

‖v‖L2(Ω) ≤ C|v|H̃r(Ω) for u ∈ H̃r(Ω) and the full norm of H̃r(Ω) is equivalent its semi norm.
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V.1.2 The Variational Formulation

The variational formulation of (V.1) is: find u ∈ H̃s(Ω) satisfying

a(u, v) = (f, v)Ω, for all v ∈ H̃s(Ω), (V.4)

where

a(u, v) =

∫
Rd

[(−∆)s/2ũ][(−∆)s/2ṽ] dx. (V.5)

We refer to Section V.7.1 for the description of model problems. According to the discussion in

Section V.1.1, the bilinear form a(·, ·) is bounded on H̃s(Ω) × H̃s(Ω) and coercive on H̃s(Ω).

Thus, the Lax-Milgram Theory guarantees existence and uniqueness.

V.1.3 More Notations

We define the Dirichlet form on H1(Ω)×H1(Ω) to be

dΩ(η, φ) :=

∫
Ω

∇η · ∇φ dx.

According to Section II.2, we denote TΩ the solution operator associated with the form (v, w)Ω +

dΩ(v, w) for v, w ∈ H1
0 (Ω). This means that for F ∈ H−1(Ω), θ = TΩF ∈ H1

0 (Ω) solves

(θ, φ)Ω + dΩ(θ, φ) = 〈F, φ〉, for all φ ∈ H1
0 (Ω). (V.6)

Set LΩ to be the inverse of TΩ and define the dotted spaces Ḣr(Ω) with r ∈ [−1, 2] is defined using

the unbounded operator LΩ.

Remark V.1 (Norm equivalence for Lipschitz domains). For r ∈ (1, 3/2), it is known that H̃r(Ω) =

Hr(Ω) ∩ H1
0 (Ω) = Hr(Ω). On the other hand, we note that when ∂Ω is Lipschitz, −∆ is an iso-

morphism from Hr(Ω) to Hr−2(Ω), i.e. Assumption II.1 holds for α ∈ (0, 1/2); see [42, Theorem

0.5(b)]. We apply this regularity result into Proposition II.2 to obtain Hr(Ω) = Ḣr(Ω). Since

H̃r(Ω) coincides with Hr(Ω) for r ∈ [0, 1] (see e.g. [23, Lemma 4.11]), the norms of H̃r(Ω) and
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Ḣr(Ω) are equivalent for r ∈ [0, 3/2) and the equivalence constant may depend on Ω. In this chap-

ter, we use H̃r(Ω) to describe the smoothness of functions defined in Ω. When functions defined

on a larger domain (see Section V.4 and V.5), we will use these interpolation spaces separately so

that we can investigate the dependency of constants.

V.2 An Alternative Integral Representation of the Bilinear Form

The goal of this section is to derive the Dunford-Taylor integral representation of the bilinear

form a(·, ·) and some of its properties.

Theorem V.1 (Equivalent Representation). Let s ∈ (0, 1) and 0 ≤ r ≤ s. For η ∈ Hs+r(Rd) and

θ ∈ Hs−r(Rd),

((−∆)(s+r)/2η, (−∆)(s−r)/2θ)Rd = cs

∫ ∞
0

t2−2s(−∆(I − t2∆)−1η, θ)
dt

t
, (V.7)

where

cs :=

(∫ ∞
0

y1−2s

1 + y2
dy

)−1

=
2 sin(πs)

π
. (V.8)

Proof. Let I(η, θ) denotes the right hand side of (V.7). Parseval’s theorem implies that

(−∆(I − t2∆)−1η, θ) =

∫
Rd

|ζ|2

1 + t2|ζ|2
F(η)(ζ)F(θ)(ζ) dζ. (V.9)

and so

I(η, θ) = cs

∫ ∞
0

t1−2s

∫
Rd

|ζ|2

1 + t2|ζ|2
F(η)(ζ)F(θ)(ζ) dζ dt. (V.10)

In order to invoke Fubini’s theorem, we now show that

cs

∫
Rd

∫ ∞
0

t1−2s |ζ|2

1 + t2|ζ|2
|F(η)(ζ)| |F(θ)(ζ)| dζ dt <∞.

Indeed, the change of variable y = t|ζ| and the definition (V.8) of cs implies that the above integral
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is equal to

cs

∫
Rd
|F(η)(ζ)||F(θ)(ζ)|

∫ ∞
0

t1−2s |ζ|2

1 + t2|ζ|2
dt dζ =

∫
Rd
|ζ|2s|F(η)(ζ)| |F(θ)(ζ)| dζ,

which is finite for η ∈ Hr(Rd) and θ ∈ Hs−r(Rd). We now apply Fubini’s theorem and the same

change of variable y = t|ζ| in (V.10) to arrive at

I(η, θ) =

∫
Rd
|ζ|2sF(η)(ζ)F(θ)(ζ) dζ = ((−∆)(s+r)/2η, (−∆)(s−r)/2θ)Rd .

This completes the proof.

Theorem V.1 above implies that for η, θ in H̃s(Ω),

a(η, θ) = cs

∫ ∞
0

t−2s(w(η̃, t), θ)Ω
dt

t
, (V.11)

where for ψ ∈ L2(Rd)

w(t) := w(ψ, t) := −t2∆(I − t2∆)−1ψ.

Examining the Fourier transform of w(ψ, t), we realize that w(t) := w(ψ, t) := ψ+ v(ψ, t) where

v(t) := v(ψ, t) ∈ H1(Rd) solves

(v(t), φ)Rd + t2dRd(v(t), φ) = −(ψ, φ)Rd , for all φ ∈ H1(Rd). (V.12)

The integral in (V.11) is the basis of our numerical method for (V.4). The following lemma, in-

strumental in our analysis, provides an alternative characterization for the inner product appearing

on the right hand side of (V.11).

Lemma V.2. Let η be in L2(Rd). Then,

(w(η, t), η)Rd = inf
θ∈H1(Rd)

{‖η − θ‖2 + t2dRd(θ, θ)} =: K(η, t). (V.13)
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Proof. Let η be in L2(Rd). We start by observing that for any positive t and ζ ∈ Rd,

φ̂(ζ) :=
F(η)(ζ)

1 + t2|ζ|2

solves the minimization problem

inf
z∈C
{|F(η)(ζ)− z|2 + t2|ζ|2|z|2}

and so

inf
z∈C
{|F(η)(ζ)− z|2 + t2|ζ|2|z|2} =

t2|ζ|2

1 + t2|ζ|2
|F(η)(ζ)|2. (V.14)

We denote φ to be the inverse Fourier transform of φ̂. Note that φ is in H1(Rd) (actually, φ is

in H2(Rd)). Applying the Fourier transform, we find that

K(η, t) = inf
θ∈H1(Rd)

∫
Rd

(|F(η)(ζ)−F(θ)(ζ)|2 + t2|ζ|2|F(θ)(ζ)|2) dζ. (V.15)

Now, φ is the pointwise minimizer of the integrand in (V.15) and since φ ∈ H1(Rd), it is also the

minimizer of (V.13). In addition, (V.14), (V.15) and (V.9) imply that

K(η, t) =

∫
Rd

t2|ζ|2

1 + t2|ζ|2
|F(η)(ζ)|2 dζ = (w(η, t), η)Rd .

This completes the proof of the lemma.

Remark V.2 (Relation with the vanishing Dirichlet boundary condition case). The above lemma

implies that for η ∈ H̃s(Ω),

a(η, η) = cs

∫ ∞
0

t−2sK(η̃, t)
dt

t
.

On the other hand,

cs

∫ ∞
0

t−2sK0
Ω(η, t)

dt

t
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with

K0
Ω(η, t) := inf

θ∈H1
0 (Ω)
{‖η − θ‖2

L2(Ω) + t2dΩ(θ, θ)} (V.16)

is an equivalent norm for η ∈ Ḣs(Ω). Let {ψ0
i } ⊂ H1

0 (Ω) denote the L2(Ω)-orthonormal basis of

eigenfunctions satisfying

dΩ(ψ0
i , θ) = λi(ψ

0
i , θ)Ω, for all θ ∈ H1

0 (Ω).

As the proof in Lemma V.2 but using the expansion in the above eigenfunctions, it is not hard to see

that

(wΩ(η, t), η)Ω = K0
Ω(η, t) (V.17)

with wΩ(η, t) = η + v and v ∈ H1
0 (ω) solving

(v, θ)Ω + t2dΩ(v, θ) = −(u, θ)Ω, for all θ ∈ H1
0 (Ω).

This means that if η ∈ L2(Ω), K(η̃, t) ≤ K0
Ω(η, t) and hence

(w(η̃, t), η)Ω ≤ (wΩ(η, t), η)Ω.

V.3 Approximation of the Bilinear Form: Sinc Approximation

In this section, we analyze a sinc quadrature scheme applied to the integral (V.11).

V.3.1 The Sinc Quadrature Scheme

We first use the change of variable t−2 = ey so that (V.11) becomes

a(η, θ) =
cs
2

∫ ∞
−∞

esy(w(η̃, t(y)), θ)Ω dy.
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Given a quadrature spacing k > 0 and two positive integers N− and N+, set yj := jk so that

tj = e−yj/2 = e−jk/2 (V.18)

and define the approximation of a(η, θ) by

ak(η, θ) :=
csk

2

N+∑
j=−N−

esyj(w(η̃, tj), θ)Ω. (V.19)

V.3.2 Consistency Bound

The convergence of the sinc quadrature depends on the properties of the integrand

g(y; η, θ) := esy(w(η̃, t(y)), θ)Ω = esy
(
−∆(eyI −∆)−1η̃, θ̃

)
Rd
. (V.20)

More precisely, we shall show that g(y; η, θ) ∈ S(Bd) with d = π/4. In our context, this leads to

the following estimates for the sinc quadrature error.

Theorem V.3 (Sinc quadrature consistency). Let d = pi/4. Suppose θ ∈ H̃s(Ω) and η ∈ H̃δ(Ω)

with δ ∈ (s, 2 − s]. Let a(·, ·) and ak(·, ·) be defined by (V.4) and (V.19), respectively. Then we

have

|a(η, θ)− ak(η, θ)| ≤ N(Bd)

eπ2/(2k) − 1

+
2
√

2

δ − s
e(s−δ)N+k/2‖η‖H̃δ(Ω)‖θ‖H̃s(Ω)

+

√
2

s
e−sN

−k‖η‖L2(Ω)‖θ‖L2(Ω).

(V.21)

Proof. We start by showing that the conditions (a), (b) and (c) of Definition II.1 hold. For (a),

we note that g(·; η, θ) in analytic on Bd if and only if the operator mapping z 7→ (ezI − ∆)−1 is

analytic on Bd. To see the latter, we fix z0 ∈ B and set p0 := ez0 . Clearly, p0I − ∆ is invertible

from L2(Rd) to L2(Rd). Let M0 := ‖(p0I −∆)−1‖L2(Rd)→L2(Rd). For p ∈ C, we write

pI −∆ = (p− p0)I + (p0I −∆) = (p0I −∆)
(
(p− p0)(p0I −∆)−1 + I

)
,
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so that the Neumann series representation

(pI −∆)−1 =

(
∞∑
j=0

(−1)j(p− p0)j(p0I −∆)−j

)
(p0I −∆)−1

is uniformly convergent provided ‖(p− p0)(p0I −∆)−1‖L2(Rd)→L2(Rd) < 1 or

|p− p0| < 1/M0.

Hence (pI −∆)−1 is analytic in an open neighborhood of p0 = ez0 for all p0 ∈ B and (a) follows.

To prove (b) and (c), we first bound g(z; η, θ) for z in the band Bd. Assume η ∈ H̃δ(Ω) and

θ ∈ H̃s(Ω) with δ ∈ (s, 2−s]. For z ∈ B, we use the Fourier transform and estimate |g| as follows

|g(z; η, θ)| =
∣∣∣∣esz ∫

Rd

|ζ|2

ez + |ζ|2
F(η̃)F(θ̃) dζ

∣∣∣∣
≤
√

2esRez

∫
Rd

|ζ|2

eRez + |ζ|2
|F(η̃)||F(θ̃)| dζ.

Here we used the fact that |ez + |ζ|2| ≥ Reez + |ζ|2 ≥ (eRez + |ζ|2)/
√

2. If Rez < 0, we deduce

that

|g(z; η, θ)| ≤
√

2esRez‖η‖L2(Ω)‖θ‖L2(Ω). (V.22)

Instead, when Rez ≥ 0, we write

|g(z; η, θ)| ≤
√

2e(s−δ)Rez/2

∫
Rd

(|ζ|2)1−(δ+s)/2(eRez)(δ+s)/2

eRez + |ζ|2
|ζ|δ+s|F(η̃)||F(θ̃)| dζ.

Whence, Young’s inequality guarantees that

|g(z; η, θ)| ≤
√

2e(s−δ)Rez/2‖η‖H̃δ(Ω)‖θ‖H̃s(Ω). (V.23)
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Gathering the above two estimates (V.22) and (V.23) gives

∫ d

−d
|g(y + iw; η, θ)| dw ≤


π√
2
‖η‖L2(Ω)‖θ‖L2(Ω), y < 0,

π√
2
‖η‖H̃δ(Ω)‖θ‖H̃s(Ω), y ≥ 0,

(V.24)

and

N(Bd) ≤
4
√

2

δ − s
‖η‖H̃δ(Ω)‖θ‖H̃s(Ω) +

2
√

2

s
‖η‖L2(Ω)‖θ‖L2(Ω). (V.25)

Estimates (V.24) and (V.25) prove (b) and (c) respectively.

Having established (a), (b), and (c), we can use the sinc quadrature estimate (II.23). In addition,

from (V.22) and (V.23) we also deduce that

k
−∞∑

j≤−N−−1

|g(kj; η, θ)| ≤
√

2

s
e−sN

−k‖η‖L2(Ω)‖θ‖L2(Ω) and

k
∞∑

j≥N++1

|g(kj; η, θ)| ≤ 2
√

2

δ − s
e(s−δ)N+k/2‖η‖H̃δ(Ω)‖θ‖H̃s(Ω).

(V.26)

Combining (II.23) and (V.26) shows (V.21) and completes the proof.

Remark V.3 (Choice of N− and N+). Balancing the three exponentials in (V.21) leads to the

following choice

π2/(2k) ≈ (δ − s)N+k/2 ≈ sN−k.

Hence, for given the quadrature spacing k > 0, we set

N+ :=

⌈
π2

k2(δ − s)

⌉
and N− :=

⌈
π2

2sk2

⌉
. (V.27)

With this choice, (V.21) becomes

|a(η, θ)− ak(η, θ)| ≤ γ(k)‖η‖H̃δ(Ω)‖θ‖H̃s(Ω) (V.28)
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where

γ(k) := 3

(
2
√

2

δ − s
+

√
2

s

)
e−π

2/(2k). (V.29)

V.4 Approximation of the Bilinear Form: Domain Truncation

Let B be a convex bounded domain containing Ω and the origin. Without loss of generality, we

assume that the diameter of B is 1. This auxiliary domain is used to generate suitable truncation

domains to approximate the solution of (V.12). We introduce a domain parameter M > 0 and

define the dilated domains

BM(t) :=

 {y = (1 + t(1 +M))x : x ∈ B} , t ≥ 1,

{y = (2 +M)x : x ∈ B} , t < 1.
(V.30)

The approximation of ak(·, ·) in (V.19) reads

ak,M(η, θ) :=
csk

2

N+∑
j=−N−

eβyj(wM(η̃, tj), θ)Ω, (V.31)

with tj := t(yj) = e−yj/2, according to (V.18), and

wM(t) := wM(η̃, t) = η̃|BM (t) + vM(η̃, t), (V.32)

where vM(t) := vM(η̃, t) solves

(vM(t), φ)BM (t) + t2dBM (t)(v
M(t), φ) = −(η, φ)Ω, for all φ ∈ H1

0 (BM(t)); (V.33)

compare with (V.12). The domains BM(tj) are constructed for the truncation error to be exponen-

tially decreasing as a function of M . This is the subject of next section.
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V.4.1 Consistency

The main result of this section provides an estimate for ak − ak,M . It relies on decay proper-

ties of v(η̃, t) satisfying (V.12). In fact, Lemma 2.1 of [5] guarantees the existence of universal

constants c and C such that

t‖∇v(η̃, t)‖L2(AM (t)) + ‖v(η̃, t)‖L2(AM (t)) ≤ Ce−max(1,t)cM/t‖η‖L2(Ω), (V.34)

provided η ∈ L2(Ω) and v(t) := v(η̃, t) is given in (V.12). Here

AM(t) := {x ∈ AM(t) : dist(x, ∂AM(t)) < t}

so that the minimal distance between points in Ω ⊂ B and AM(t) is greater than M max(1, t). An

illustration of the different domains is provided in Figure V.1.

AM(t)

Ω

B

BM(t)

Figure V.1: Illustration of the different domains in R2. The domain of interest Ω is a L-shaped
domain, B ⊂ BM(t) are interior of discs, and AM(t) is the filled portion of BM(t).
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Lemma V.4 (Truncation error). Let η ∈ L2(Ω), e(t) := v(η̃, t) − vM(η̃, t) and c be the constant

appearing in (V.34). There is a positive constant C not depending on M and t satisfying

‖e(t)‖L2(BM (t)) ≤ Ce−max(1,t)cM/t‖η‖L2(Ω). (V.35)

Proof. In this proof, C denotes a generic constant only depending on Ω. Note that e(t) satisfies

the relations
(e(t), φ)BM (t) + t2dBM (t)(e(t), φ) = 0, ∀φ ∈ H1

0 (BM(t)),

e(t) = v(t), on ∂BM(t).

(V.36)

Let χ(t) ≥ 0 be a bounded cut off function satisfying χ(t) = 1 on ∂BM(t) and χ(t) = 0 on

BM(t) \ AM(t). Without loss of generality, we may assume that ‖∇χ(t)‖L∞(Rd) ≤ C/t. This

implies

‖χ(t)v(t)‖L2(BM (t)) + t‖∇(χ(t)v(t))‖L2(BM (t))

≤ C(‖v(t)‖L2(AM (t)) + t‖∇v(t)‖L2(AM (t)))

≤ Ce−max(1,t)cM/t‖η‖L2(Ω).

Here we use the decay estimate (V.34) for last inequality above. Now, setting e(t) := χ(t)v(t) +

ζ(t), we find that ζ(t) ∈ H1
0 (BM(t)) satisfies

(ζ(t), φ)BM (t) + t2dBM (t)(ζ(t), φ) = −(χ(t)v(t), φ)BM (t) − t2dBM (t)(χ(t)v(t), φ)

for all φ ∈ H1
0 (BM(t)). Taking φ = ζ(t), we deduce that

‖ζ(t)‖2
L2(BM (t)) + t2‖∇ζ(t)‖2

L2(BM (t)) ≤ ‖χ(t)v(t)‖2
L2(AM (t)) + t2‖∇(χ(t)v(t))‖2

L2(AM (t))

≤ Ce−2 max(1,t)cM/t‖η‖2
L2(Ω).

Thus, combining the estimates for ζ(t) and χ(t)v(t) completes the proof.

Lemma V.4 above is instrumental to derive exponentially decaying consistency error as M →
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∞. Indeed, we have the following theorem.

Theorem V.5 (Truncation error). Let c be the constant appearing in (V.34) and assume M >

2(s+ 1)/c. Then, there is a positive constant C not depending on M nor k satisfying

|ak(η, θ)− ak,M(η, θ)| ≤ Ce−cM‖η‖L2(Ω)‖θ‖L2(Ω), for all η, θ ∈ L2(Ω). (V.37)

Proof. In this proof C denotes a generic constant only depending on Ω. Let η, θ be in L2(Ω). It

suffices to bound

E :=

∣∣∣∣∣∣csk2
N+∑

j=−N−
esyj(w(tj)− wM(tj), θ)Ω

∣∣∣∣∣∣
≤ C

k −1∑
j=−N−

esyj |(v(tj)− vM(tj), θ)Ω|+ k
N+∑
j=0

esyj |(v(tj)− vM(tj), θ)Ω|


=: E1 + E2

with v(t) = v(η̃, t) defined by (V.12) and vM(t) = vM(η̃, t) defined by (V.33). We estimate E1

and E2 separately, starting with E1.

From the definition tj = e−yj/2, we deduce that when j < 0, tj > 1 so that (V.35) gives

E1 ≤ Cke−cM
−1∑

j=−N−
esyj‖η‖L2(Ω)‖θ‖L2(Ω)

≤ Ce−cM
ke−sk

1− e−sk
‖η‖L2(Ω)‖θ‖L2(Ω) ≤ Ce−cM‖η‖L2(Ω)‖θ‖L2(Ω).
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Similarly, for j ≥ 0, i.e. tj < 1, using (V.35) again, we have

E2 ≤ Ck

N+∑
j=0

esyje−cM/tj‖η‖L2(Ω)‖θ‖L2(Ω)

≤ Ck

N+∑
j=0

esyje−cM(1+yj/2)‖η‖L2(Ω)‖θ‖L2(Ω)

= Cke−cM
N+∑
j=0

e(s−cM/2)yj‖η‖L2(Ω)‖θ‖L2(Ω)

≤ Ce−cM
k

1− exp(k(s− cM/2))
‖η‖L2(Ω)‖θ‖L2(Ω)

≤ Ce−cM

cM/2− s
‖η‖L2(Ω)‖θ‖L2(Ω) ≤ Ce−cM‖η‖L2(Ω)‖θ‖L2(Ω),

where we have also used the property cM/2 − s > 1 guaranteed by the assumption M > 2(s +

1)/c.

V.4.2 Uniform Norm Equivalence on Convex Domains

Since the domains BM(t) are convex, the regularity index α in Assumption II.1 is 1. Thus the

norms in Ḣr(BM(t)) are equivalent to those in Hr(BM(t))∩H1
0 (BM(t)) for r ∈ [1, 2]. However,

as we mentioned in Remark V.1, the equivalence constants depend a priori onBM(t) and therefore

on M and t. We show in this section that they can be bounded uniformly independently of both

parameters.

To simplify the notation introduced in Section V.1 and Section II.2. We shall denote TΩM (t) by

Tt, LBM (t) by Lt and Ḣs(BM(t)) by Ḣs. We recall that BM(t) is a dilatation of the convex and

bounded domain Ω containing the origin, see (V.30). We then have the following lemma.

Lemma V.6 (Ellipitic Regularity on Convex Domains). Let f ∈ L2(BM(t)). Then θ := Ttf is in

H2(BM(t)) ∩H1
0 (BM(t)) and satisfies

‖θ‖H2(BM (t)) ≤ C‖f‖L2(BM (t)), (V.38)

where C is a constant independent of t and M .
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Proof. It is well known that the convexity ofB and hence that ofBM(t) implies that θ ∈ H2(BM(t))∩

H1
0 (BM(t)). Therefore, the crucial point is to show that the constant in (V.38) does not depend on

M or t. To see this, the H2 elliptic regularity on convex domains implies that for θ̂ ∈ H1
0 (B) with

∆θ̂ ∈ L2(B) then θ̂ ∈ H2(B) and there is a constant C only depending on B such that

|θ̂|H2(B) ≤ C‖∆θ̂‖L2(B). (V.39)

Let γ be such that BM(t) = {γx, x ∈ B} (see (V.30)) and θ̂(x̂) = θ(γx̂) for x̂ ∈ B. Once scaled

back to BM(t), estimate (V.39) gives

|θ|H2(BM (t)) ≤ C‖∆θ‖L2(BM (t)) = C‖f − θ‖L2(BM (t)). (V.40)

Now θ = Ttf immediately implies that ‖θ‖H1(BM (t))) ≤ ‖f‖L2(BM (t)) and (V.38) follows by the

triangle inequality and obvious manipulations.

Remark V.4 (Intermediate Spaces). Lemma V.6 implies that D(Lt) = Ḣ2 = H2(BM(t)) ∩

H1
0 (BM(t)) with norm equivalence constants independent of M and t. As D(L

1/2
t ) = Ḣ1 =

H1
0 (BM(t)), for r ∈ [1, 2]

Ḣr = [H1(BM(t)), H2(BM(t)) ∩H1
0 (BM(t))]r−1= Hr(BM(t)) ∩H1

0 (BM(t))

with norm equivalence constants independent of M and t.

Lemma V.7 (Norm Equivalence). For β ∈ [1, 3/2), let θ be in Ḣβ and θ̃ denote its extension by

zero outside of BM(t). Then θ̃ is in Hβ(Rd) and

‖θ‖Ḣβ ≤ C‖θ̃‖Hβ(Rd)

with C not depending on t or M .

Proof. Given θ ∈ H1(BM(t)), we denote Rθ to be the elliptic projection of θ into H1
0 (BM(t)),
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i.e., Rθ ∈ H1
0 (BM(t)) is the solution of

(Rθ, φ)BM (t) + dBM (t)(Rθ, φ)

= (θ, φ)BM (t) + dBM (t)(θ, φ), for all φ ∈ H1
0 (BM(t)).

It immediately follows that

‖Rθ‖Ḣ1 = ‖Rθ‖H1(BM (t)) ≤ ‖θ‖H1(BM (t)).

Also, if θ ∈ H2(BM(t)), Lemma V.6 (see also Remark V.4) implies

‖Rθ‖Ḣ2 ≤ C‖Rθ‖H2(BM (t)) ≤ C‖θ‖H2(BM (t))

with C not depending on t or M . Hence, it follows by interpolation that

‖Rθ‖Ḣβ ≤ Cβ‖θ‖[H1(BM (t)),H2(BM (t))]β−1
. (V.41)

Now when θ ∈ Ḣβ ⊂ H1(BM(t)), Rθ = θ so that in view of (V.41), it remains to show that

‖θ‖[H1(BM (t)),H2(BM (t))]β−1
≤ C‖θ̃‖Hβ(Rd),

for a constant C independent of M and t. To see this, note that θ̃ is in H1(Rd) and the extension of

∇θ by zero is in Hβ−1(Rd). We refer to Theorem 1.4.4.4 of [37] for a proof when d = 1 proof and

the techniques used in Lemma 4.33 of [32] for the extension to the higher dimensional spaces. This

implies that θ̃ belongs to Hβ(Rd). Moreover, the restriction operator is simultaneously bounded

from Hj(Rd) to Hj(BM(t)) for j = 1, 2. Hence, by interpolation again, we have that

‖θ‖[H1(BM (t)),H2(BM (t))]β−1
≤ ‖θ̃‖Hβ(Rd).

This completes the proof of the lemma.
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V.5 Approximation of the Bilinear Form: Finite Element Approximation

In this section, we turn our attention to the finite element approximation of each subproblems

(V.33) in ak,M(·, ·). Throughout this section, we omit when no confusion is possible the subscript

j in tj , i.e. we consider a generic t keeping in mind that the subsequent statements only hold for

t = tj with j = −N−, ..., N+. We also make the additional unrestrictive assumption that B used

to define BM(t) (see (V.30)) is polygonal. In turn, so are all the dilated domains BM(t).

V.5.1 Finite Element Approximation of ak,M(·, ·)

Based on the notations introduced in Section II.4, we set T Mh (t) := Th(BM(t)) for t = tj ,

j = −N−, ..., N+, given by (V.18). We assume that the conditions (II.10) and (II.11) hold for

T Mh (tj) with constants c, ρ not depending on j. We also require that all the subdivisions match on

Ω, i.e.

Th(Ω) ⊂ T Mh (tj) (V.42)

for each j. We discuss in Section V.7 how to generate subdivisions meeting these requirements.

Finally, in terms of the finite element space, we use the short notation VM
h (t) := Vh(B

M(t)).

We are now in position to define the fully discrete/implementable problem. For ηh and θh in

Vh(Ω), the finite element approximation of ak,M(·, ·) given by (V.31) is

ak,Mh (ηh, θh) :=
csk

2

N+∑
j=−N−

esyj(wMh (η̃h, tj), θh)Ω (V.43)

with

wMh (η̃h, t) := η̃h|BM (t) + vMh (t) (V.44)

and where vMh (t) ∈ VM
h (t) solves

(vMh (t), φh)BM (t) + t2dBM (t)(v
M
h (t), φh) = −(η̃h, φh)BM (t), ∀φh ∈ VM

h (t). (V.45)

Remark V.5 (Assumption (V.42)). Two critical properties follow from (V.42). On the one hand,
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our analysis below relies on the fact that the extension by zero ṽh of vh ∈ Vh(Ω) belongs to all

VM
h (t). This property greatly simplifies the computation of (wMh (η̃h, tj), θh)D in (V.43).

V.5.2 Approximations on BM(t)

Since ak,Mh (·, ·) requires approximations by the finite element methods on domains BM(t).

Standard finite element argumentations would lead to estimates with constants depending onBM(t)

and therefore M and t. In this section, we exhibit results where this is not the case due to the par-

ticular definition (V.30) of BM(t).

We can use interpolation to develop approximation results for functions in the intermediate

spaces with constants independent of M and t. The Scott-Zhang interpolation construction [61]

gives rise to an approximation operator πszh : H1
0 (BM(t))→ VM

h (t) satisfying

‖η − πszh η‖H1(BM (t)) ≤ C‖η‖H1(BM (t)),

for all η ∈ H1
0 (BM(t)) = Ḣ1 and

‖η − πszh η‖H1(BM (t)) ≤ Ch‖η‖H2(BM (t)),

for all η ∈ H2(BM(t)) ∩H1
0 (BM(t)) = Ḣ2. The Scott-Zhang argument is local so the constants

appearing above depend on the shape regularity of the triangulations but not on t or M . Interpo-

lating the above inequalities shows that for all r ∈ [0, 1]

inf
χ∈VMh (t)

‖η − χ‖H1(BM (t)) ≤ Chr‖η‖Ḣ1+r , for all η ∈ Ḣ1+r (V.46)

with C not depending on t or M .

Let Tt,h denote the finite element approximation to Tt, i.e., for F ∈ Ḣ−1, Tt,hF := wh with

wh ∈ Vh
M(t) being the unique solution of

(wh, φh)BM (t) + dBM (t)(wh, φh) = 〈F, φh〉, for all φh ∈ VM
h (t).
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The approximation result (V.46) and standard finite element analysis techniques implies that for

any r ∈ [0, 1],

‖TtF − Tt,hF‖L2(BM (t)) ≤ Ch1+r‖TtF‖Ḣ1+r ≤ Ch1+r‖F‖Ḣ−1+r , (V.47)

where the last inequality follows from interpolation since ‖TtF‖H1(BM (t)) ≤ ‖F‖H−1(BM (t)) and

(V.38) hold.

For f ∈ L2(BM(t)), we define the solution operator associated with the Dirichlet form dBM (t)(·, ·).

That is

Stf := η ∈ H1
0 (BM(t)) (V.48)

satisfying,

dBM (t)(η, φ) = (f, φ)BM (t), for all φ ∈ H1
0 (BM(t))

and let St,hf ∈ VM
h (t) denote its finite element approximation; compare with Tt and Th,t. Although

the Poincaré constant depends on the diameter of BM(t), we still have the following lemma.

Lemma V.8. There is a constant C independent of h, t, or M satisfying

‖Stf − St,hf‖L2(BM (t)) ≤ Ch2‖f‖L2(BM (t)).

Proof. For f ∈ L2(BM(t)), set eh := (St − St,h)f . The elliptic regularity estimate (V.40) on

convex domain and Cea’s Lemma imply

|eh|H1(BM (t)) = inf
χh∈VMh (t)

|Stf − χh|H1(BM (t)) ≤ Ch|Stf |H2(BM (t))

≤ Ch‖∆Stf‖L2(BM (t)) = Ch‖f‖L2(BM (t)),

where C is a constant independent of h, t and M . Galerkin orthogonality and the above estimate
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give

‖eh‖2
L2(BM (t)) = dBM (t)(eh, Steh) = dBM (t)(eh, (St − St,h)eh)

≤ |eh|H1(BM (t))|(St − St,h)eh|H1(BM (t))

≤ Ch|eh|H1(BM (t))‖eh‖L2(BM (t)).

Combining the above two inequalities and obvious manipulations completes the proof of the

lemma.

We shall also need norm equivalency on discrete scales. Set Ḣr
h := Ḣr

h(BM(t)) for r∈ [−1, 2].

Recall from (II.18) and Remark II.2 that for r ∈ [0, 3/2), there exists a constant c and C indepen-

dent of h satisfying

c‖vh‖Ḣr
h
≤ ‖vh‖Ḣr ≤ ‖vh‖Ḣr

h
, for all vh ∈ VM

h (t). (V.49)

Lemma V.6 guarantees that the constants above also independent of M and t. The spaces for

negative r are defined by duality and the stability of the L2(BM(t))-projection πh yields for r ∈

[0, 1],

c‖vh‖Ḣ−r ≤ ‖vh‖Ḣ−rh ≤ ‖vh‖Ḣ−r . for all vh ∈ VM
h (t). (V.50)

V.5.3 Consistency

We are now ready to estimate the consistency error between ak,M(·, ·) and ak,Mh (·, ·) on Vh(Ω).

Its decay depends on a parameter β ∈ (s, 3/2), which will be related later to the regularity of the

solution u to (V.4).

Theorem V.9 (Finite element consistency). Let β ∈ (s, 3/2) and α ∈ [s,min(2s, s + 1/2)]. We

assume that the quadrature parameters N− and N+ are chosen according to (V.27). There exists

a constant C independent of h, k and M satisfying

|ak,M(ηh, θh)− ak,Mh (ηh, θh)| ≤ C(1 + ln(h−1))hβ+α−2s‖ηh‖H̃β(Ω)‖θh‖H̃α(Ω) (V.51)
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for all ηh, θh ∈ Vh(Ω).

Proof. In this proof, C denotes a generic constant independent of h, M , k and t.

Fix ηh ∈ Vh(Ω) and denote by η̃h its extension by zero outside Ω. We first observe that for

θh ∈ Vh(Ω) and θ̃h its extension by zero outside Ω, we have

(wM(η̃h, tj), θh)Ω = (π̃hw
M(η̃h, tj), θ̃h)BM (t), (V.52)

where π̃h denotes the L2 projection onto VM
h (t). Using the above identity and recalling that tj =

e−yj/2, we obtain

ak,M(ηh, θh)− ak,Mh (ηh, θh) =
cs
2
k
∑
tj≤ 1

2

esyj(π̃hw
M(η̃h, tj)− wMh (η̃h, tj), θ̃h)BM (t)︸ ︷︷ ︸

=:E1

+
cs
2
k
∑
tj>

1
2

esyj(π̃hw
M(η̃h, tj)− wMh (η̃h, tj), θ̃h)BM (t)︸ ︷︷ ︸

=:E2

.

We bound the two terms separately and start with the latter.

1 In view of the definitions (V.32) of wM(t) and (V.44) of wMh (t), we have

π̃hw
M(η̃h, t)− wMh (η̃h, t) = π̃hv

M(η̃h, t)− vMh (η̃h, t). (V.53)

We recall that Tt = TBM (t) and St are defined by (V.6) with the domain BM(t) and (V.48) respec-

tively. Using these operators and the relations satisfied by vM(t) and vMh (t) (see (V.33) and (V.45)),

we arrive at

π̃hw
M(η̃h, t)− wMh (η̃h, t) = [St,h(St,h + t2I)−1 − π̃hSt(St + t2I)−1]η̃h

= t2(Sh,t + t−2I)−1π̃h(St,h − St)(St + t2I)−1η̃h.

(V.54)
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Thus,

‖π̃hwM(η̃h, t)− wMh (η̃h, t)‖L2(ΩM (t))

≤ t2‖(St,h + t2I)−1π̃h(St,h − St)(St + t2I)−1‖ ‖η̃h‖L2(ΩM (t))

≤ t2‖(St,h + t2I)−1π̃h‖ ‖St,h − St‖ ‖(St + t2I)−1‖ ‖η̃h‖L2(ΩM (t)).

Here we have used ‖ · ‖ to denote the operator norm of operators from L2(BM(t)) to L2(BM(t)).

Combining

‖(St,h + t2I)−1π̃h‖ ≤ t−2, ‖(St + t2I)−1‖ ≤ t−2

and Lemma V.8 gives

‖π̃hwM(η̃h, t)− wMh (η̃h, t)‖ ≤ Ct−2h2‖η̃h‖L2(BM (t)).

Whence,

|E2| ≤ Ch2k
∑
tj>

1
2

e(s+1)jk‖η̃h‖L2(ΩM (t))‖θ̃h‖L2(ΩM (t))

≤ Ch2‖ηh‖L2(Ω)‖θh‖L2(Ω)

(
k
∑

jk<2 ln 2

e(s+1)jk

)
≤ Ch2‖ηh‖L2(Ω)‖θh‖L2(Ω).

2 We now focus on E1 which requires a finer analysis using intermediate spaces. Also, we

argue differently for β ∈ (1, 3/2) and for β ∈ (s, 1]. In either case, we define

ε := min(1 + α− 2s, 1/ ln(1/h))

and note that

ε−1 ≤ c(1 + ln(1/h)) and h−ε ≤ c (V.55)

with c depending on s but not h.
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When β ∈ (1, 3/2), we invoke (V.53) again to deduce

|E1| ≤ k
∑
tj≤ 1

2

esyj‖π̃hvM(η̃h, tj)− vMh (η̃h, tj)‖Ḣ−αh ‖θ̃h‖Ḣα
h
. (V.56)

We set µ(t) := t−2 − 1 and compute

π̃hv
M(η̃h, t)− vMh (η̃h, t) = t−2[(I + µ(t)Tt,h)

−1Tt,h − π̃hTt(I + µ(t)Tt)
−1]η̃h

= (tµ(t))−2(µ(t)−1I + Tt,h)
−1π̃h(Tt,h − Tt)(µ(t)−1I + Tt)

−1η̃h,

(V.57)

which is now estimated in three parts. In view of Lemma II.1 with T = Tt, we have

‖(µ(t)−1I + Tt)
−1‖Ḣβ→Ḣβ−2 ≤ 1,

For the second part, the error estimate (V.47) with 1 + r = β reads

‖Tt,h − Tt‖Ḣβ−2→L2(BM (t)) ≤ Chβ.

We estimate the last term of the product in the right hand side of (V.57) by

‖(µ(t)−1 + Tt,h)
−1π̃h‖L2(BM (t))→Ḣ−αh

≤ C‖(µ(t)−1 + Tt,h)
−1‖Ḣ−α+2s+ε

h →Ḣ−αh
‖π̃h‖L2(BM (t))→Ḣ−α+2s+ε

h
.

Thus, Lemma II.3, the inverse estimate (II.15) and (V.55) yield

‖(µ(t)−1 + Tt,h)
−1π̃h‖L2(BM (t))→Ḣ−αh

≤ Chα−2s−εt(2s+ε−2) ≤ Chα−2st(2s+ε−2).

Note that for t ∈ (0, 1/2], 0 < t2 ≤ µ(t)−1 ≤ 4
3
t2 ≤ 1

3
so that

(tµ(t))−2 ≤ 16t2

9
.
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Combining the above estimates with (V.57) gives

‖π̃hvM(η̃h, t)− vMh (η̃h, t)‖Ḣ−αh ≤ Ct2s+εhβ+α−2s‖η̃h‖Ḣβ , (V.58)

Since tj = e−yj/2,

esyj t2s+εj = e−εyj/2.

Estimates (V.56) and (V.58) then yield

|E1| ≤ Chβ+α−2sk
∑

kyj≥2 ln 2

e−εyj/2‖η̃h‖Ḣβ‖θ̃h‖Ḣα

≤ Chβ+α−2sε−1‖η̃h‖Ḣβ‖θ̃h‖Ḣα
h
.

(V.59)

3 Now we bound the right hand side above in two cases. If α ≤ 1 (i.e. s ≤ 1/2), in view of

Remark V.1 and (V.49), there exists a constant C satisfying

‖θ̃h‖Ḣα
h
≤ C‖θ̃h‖Ḣα ≤ C‖θh‖Ḣα(Ω) ≤ C‖θh‖H̃α(Ω) (V.60)

We apply Lemma V.7 for ηh together with the above inequality to arrive at

|E1| ≤ Chβ+α−2s−ε‖η̃h‖Hβ(Rd)‖θh‖H̃α(Ω)

k ∑
t(yj)≤ 1

2

e−εjk/2


≤ Cε−1hβ+α−2s−ε‖η̃h‖Hβ(Rd)‖θh‖H̃α(Ω) = Chβ+α−2s(1 + ln(h−1))‖ηh‖H̃β(Ω)‖θh‖H̃α(Ω).

If α > 1, we estimate ‖θ̃h‖Ḣα using Lemma V.7 to get the same bound as above.

4 When β ∈ (s, 1], we bound (V.57) with different norms. In fact, there hold

‖(µ(t)−1I + Tt)
−1‖Ḣβ→Ḣ−1 ≤ tβ−1, ‖Tt,h − Tt‖Ḣ−1→L2(BM (t)) ≤ Ch,
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and

‖(µ(t)−1 + Tt,h)
−1π̃h‖L2(ΩM (t))→Ḣ−αh

≤ Ch−1+β+α−2s−εt(2s+ε−β−1).

Combining these estimates leads to the same result as in (V.59). The rest of the proof are the same

as in the previous step except that we use the fact ‖η̃h‖Ḣβ ≤ C‖ηh‖H̃β(Ω) as in (V.60).

5 The proof of the theorem is complete upon combining the estimates for E1 and E2.

V.6 The Discrete Problem and Error Estimates

The finite element approximation of the problem (V.1) is to find uh ∈ Vh(Ω) so that

ak,Mh (uh, θh) = (f, θh)Ω for all θh ∈ Vh(Ω). (V.61)

Analogous to Lemma V.2, we have the following representation using K-functional. The proof

of the lemma is similar to that of Lemma V.2 and is omitted.

Lemma V.10 (K-functional formulation on the discrete space). For ηh ∈ Vh(Ω), there holds

(wMh (η̃h, t), ηh)D = (wMh (η̃h, t), η̃h)BM (t) =: Kh(η̃h, t),

where

Kh(η̃h, t) := min
ϕh∈VMh (t)

(
‖η̃h − ϕh‖2

L2(BM (t)) + t2dBM (t)(ϕh, ϕh)
)
.

We emphasize that for vh ∈ VM
h (t), its extension by zero η̃h belongs to H1(Rd) and therefore

Kh(ṽh, t) ≥ K(ṽh, t). (V.62)

This property is critical in the proof of next theorem, which ensures the Vh(Ω)-ellipticity of the

discrete bilinear for ak,Mh . Before describing this next result, we recall that according to (V.28)

|a(ηh, θh)− ak(ηh, θh)| ≤ γ(k)‖ηh‖H̃δ(Ω)‖θh‖H̃s(Ω)
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with δ between s and min(2 − s, 3/2) (since Vh(Ω) ⊂ H̃3/2−ε(Ω) for any ε > 0) and γ(k) ∼

Ce−π
2/(2k). Also, we note that based on (II.15) and the norm equivalency (cf. Remark V.1 and

(II.18)), there holds the inverse estimate

‖vh‖H̃r+ (Ω) ≤ cIh
r−−r+‖vh‖H̃r− (Ω), ∀vh ∈ VM

h (t). (V.63)

Theorem V.11 (Vh(Ω)-ellipticity). Let δ in Theorem V.3 between s and min(2 − s, 3/2), k be

the quadrature spacing and cI be the inverse constant in (V.63). We assume that the quadrature

parameters N− and N+ are chosen according to (V.27). Let γ(k) be given by (V.29) and assume

that k is chosen sufficiently small so that

cIγ(k)hs−δ < 1.

Then, there is a constant c independent of h, k and M such that

ak,Mh (ηh, ηh) ≥ c‖ηh‖2
H̃s(Ω)

, for all ηh ∈ Vh(Ω).

Proof. Let ηh ∈ Vh(Ω) so that η̃h ∈ H1(Rd). We use the equivalence relations provided by

Lemmas V.2 and V.10 together with the monotonicity property (V.62) to write

ak,Mh (ηh, ηh) =
csk

2

N+∑
j=−N−

esyjKh(η̃h, tj) ≥
csk

2

N+∑
j=−N−

esyjK(η̃h, tj) = ak(ηh, ηh).

The quadrature consistency bound (V.28) supplemented by an inverse inequality (V.63) yields

ak,Mh (ηh, ηh) ≥ a(ηh, ηh)− γ(k)‖ηh‖H̃δ(Ω)‖ηh‖H̃s(Ω) ≥ a(ηh, ηh)− cIγ(k)hs−δ‖ηh‖2
H̃s(Ω)

.

The desired result follows from assumption cIγ(k)hs−δ < 1 and the coercivity of a(·, ·); see

(V.2).
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Now that the consistency error between a(·, ·) and ak,Mh (·, ·) is obtained, we can apply the first

Strang’s lemma to deduce the convergence of the approximation uh towards u in the energy norm.

To achieve this, we need a result regarding the stability and approximability of the Scott-Zhang

interpolant πszh [61] in the fractional spaces H̃β(Ω) with β ∈ (1, 3/2).

This is the subject of the next lemma. We refer to [10, Appendix A] for a detailed proof. We

also refer to [24] for the proof when β ∈ (1/2, 1].

Lemma V.12 (Scott-Zhang Interpolant). Let β ∈ (1, 3/2). Then, there is a constant C independent

of h such that

‖πszh v‖H̃β(Ω) ≤ C‖v‖H̃β(Ω) (V.64)

and for s ∈ [0, 1],

‖πszh v − v‖H̃s(Ω) ≤ Chβ−s‖v‖H̃β(Ω), (V.65)

for all v ∈ H̃β(Ω).

We note that the above lemma holds for β ∈ (0, 1) and s ∈ (0, β) provided that πszh is re-

placed by πh, the L2 projection onto Vh(Ω); see (II.19) and (II.16). In order to consider both case

simultaneously in the following proof, we set Πh = πh when β ∈ [0, 1] and Πh = πszh when

β ∈ (1, 3/2).

Theorem V.13. Assume that the solution u of (V.1) belongs to H̃β(Ω) for β ∈ (s, 3/2). Let

δ := min(2 − s, β) be as in Theorem V.3, k be the quadrature spacing and cI be the inverse

constant in (V.63). We assume that the quadrature parameters N− and N+ are chosen according

to (V.27). Let γ(k) be given by (V.29) and assume that k is chosen sufficiently small so that

cIγ(k)hs−δ < 1.

Moreover, let uh ∈ Vh(Ω) be the solution of (V.61). Then there is a constant C independent of h,
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M and k satisfying

‖u− uh‖H̃s(Ω) ≤ C(γ(k) + e−cM + (1 + ln (h−1))hβ−s)‖u‖H̃β(Ω). (V.66)

Proof. In our context, the first Strang’s lemma (see e.g. Theorem 4.1.1 in [25]) reads

‖u− uh‖H̃s(Ω) ≤ C inf
vh∈Vh(Ω)

(
‖u− vh‖H̃s(Ω) + sup

wh∈Vh(Ω)

|(a− ak,Mh )(vh, wh)|
‖wh‖H̃s(Ω)

)
,

where C is a constant independent of h, k and M . From the consistency estimates (V.28), (V.37)

and (V.51) with α = s, we deduce that

‖u− uh‖H̃s(Ω) ≤ C‖u− Πhu‖H̃s(Ω)

+ C(γ(k) + e−cM + (1 + ln (h−1))hβ−s)‖Πhu‖H̃β(Ω)

The desired estimate follows from the approximability and stability of Πh.

Next, we show a L2(Ω) error estimates using a duality argument. We note that Theorem 7.1

together with Theorem 5.4 in [38] (see also Proposition 2.7 in [14]) guarantees that when ∂Ω is of

C∞ class and f is in L2(Ω), the solution of the problem (V.1) is in H̃α(Ω) for α = min{2s, 1/2 +

s}−ε for every ε > 0. Now we apply this regularity result to a dual problem. That is, if z ∈ H̃s(Ω)

solves

a(θ, z) = (u− uh, θ)Ω, for all θ ∈ H̃s(Ω), (V.67)

we have

‖z‖H̃α(Ω) ≤ C‖u− uh‖L2(Ω). (V.68)

Theorem V.14. Under the assumptions in Theorem V.13, assume ∂Ω is of C∞ class and let

α =min{2s, s+ 1/2} − ε. We have

‖u− uh‖L2(Ω) ≤ C ln (h−1)(γ(k) + e−cM + ln (h−1)hβ+α−2s)‖u‖H̃β(Ω). (V.69)
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Proof. We let eh = u− uh and θ = eh in (V.67) to write

‖eh‖2
L2(Ω) = a(z, eh).

By adding and subtracting a(Πhz, eh) and a(Πhz,Πhu) together with the relation

a(Πhz, u) = (f,Πhz) = ak,Mh (Πhz, uh),

we obtain that

‖eh‖2
L2(Ω) = a((I − Πh)z, eh) + a(Πhz, eh)

= a((I − Πh)z, eh) + a(Πhz,Πheh) + a(Πhz, u− Πhu)

= a((I − Πh)z, eh) + a(Πhz,Πheh) + ak,Mh (Πhz, uh)− a(Πhz,Πhu)

= a((I − Πh)z, eh) + [a(Πhz,Πheh)− ak,Mh (Πhz,Πheh)]

+ [ak,Mh (Πhz,Πhu)− a(Πhz,Πhu)] =: I + II + III.

(V.70)

We first deduce with the help of Lemma V.12 and (V.68) that

|I| ≤ ‖z− Πhz‖H̃s(Ω)‖eh‖H̃s(Ω)

≤ Chα−s‖z‖H̃α(Ω)‖eh‖H̃s(Ω) ≤ Chα−s‖eh‖L2(Ω)‖eh‖H̃s(Ω).

Next, we invoke the consistency error estimates in Theorem V.3, V.5 and V.9 with θh = Πheh and

ηh = Πhz to obtain

|II| ≤ C(γ(k) + e−cM + ln(h−1)hα−s)‖z‖H̃α(Ω)‖eh‖H̃s(Ω)

≤ C(γ(k) + e−cM + ln(h−1)hα−s)‖eh‖L2(Ω)‖eh‖H̃s(Ω).

106



Finally, we apply the consistency error estimates again with θh = Πhz and ηh = Πhu to get

|III| ≤ C(γ(k) + e−cM + ln(h−1)hβ+α−2s)‖z‖H̃α(Ω)‖u‖H̃β(Ω)

≤ C(γ(k) + e−cM + ln(h−1)hβ+α−2s)‖eh‖L2(Ω)‖u‖H̃β(Ω).

Combining above three estimates into (V.70) and the energy norm estimate (V.66) for ‖eh‖H̃s(Ω)

gives the L2 error bound (V.69).

V.7 Numerical Implementation and Results

In this section, we present detailed numerical implementation to solve the following model

problems.

V.7.1 Model Problems

One of the difficulties in developing numerical approximation to (V.4) is that there are relatively

few examples where analytical solutions are available. One exception is the case when Ω is the

unit ball in Rd. In that case, the solution to the variational problem

a(u, φ) = (1, φ)D, for all φ ∈ H̃s(Ω) (V.71)

is radial and given by, (see [31])

u(x) =
2−2sΓ(d/2)

Γ(d/2 + s)Γ(1 + s)
(1− |x|2)s. (V.72)

It is also possible to compute the right hand side corresponding to the solution u(x) = 1− |x|2

in the unit ball. The corresponding right hand side can be derived by first computing the Fourier

transform of ũ, i.e.,

F(ũ) = 2J2(|ζ|)/|ζ|2,
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where Jn is the Bessel function of the first kind. When 0 < s < 1, we obtain

f(x) = F−1(2|ζ|2s−2J2(|ζ|)) =
22sΓ(d/2 + s)

Γ(d/2)Γ(2− s)2F1

(
d/2 + s, s− 1, d/2, |x|2

)
, (V.73)

where 2F1 is the Gaussian or ordinary hypergeometric function.

Remark V.6 (Smoothness). Even though the solution u(x) = 1−|x|2 is infinitely differentiable on

the unit ball, the right hand side f has limited smoothness. Note that f is the restriction of (−∆)sũ

to the unit ball. Now ũ ∈ H3/2−ε(Rd) for ε > 0 but is not in H3/2(Rd). This means that (−∆)sũ is

only in H3/2−2s−ε(Rd) and hence f is only in H3/2−2s−ε(Ω). This is in agreement with the singular

behavior of 2F1 (d/2 + s, s− 1, d/2, t) at t = 1 (see [58, Section 15.4]). In fact,

2F1 (d/2 + s, s− 1, d/2, 1) =
Γ(d/2 + s)Γ(1− 2s)

Γ(d/2 + 1− s)Γ(−s)
when 0 < s < 1/2,

lim
t→1−

2F1 (d/2 + s, s− 1, d/2, t)

− log(1− t)
=

Γ(d/2)

Γ(−1/2)Γ(1/2)
when s = 1/2,

lim
t→1−

2F1 (d/2 + s, s− 1, d/2, t)

(1− t)−2s+1
=

Γ(d/2)

Γ(−1/2)Γ(1/2)
when 1/2 < s < 1.

This implies that for s ≥ 1/2, the trace on |x| = 1 of f(x) given by (V.73) fails to exist (as for

generic functions in H3/2−2s(Rd)). This singular behavior affects the convergence rate of the finite

element method when the finite element data vector is approximated using standard numerical

quadrature (e.g. Gaussian quadrature).

V.7.2 Numerical Implementation

Based on the notations in Section V.4, we set Ω = B to be either the unit disk in R2 or Ω =

(−1, 1) in R. Let BM(t) be corresponding dilated domains. In one dimensional case, we consider

Th(Ω) to be a uniform mesh and Vh(Ω) to be the continuous piecewise linear finite element space.

For the two dimensional case, Th(Ω) a regular (in the sense of page 247 in [25]) subdivision made

of quadrilaterals. In this case, Vh(Ω) is the set of continuous piecewise bilinear functions.
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Non-uniform Meshes for BM(t).

We extend Th(Ω) to non-uniform meshes T Mh (t), thereby violating the quasi-uniform assump-

tion. For t ≤ 1, we use a quasi-uniform mesh on BM(t) = BM(1) with the same mesh size h.

When t > 1 and Ω = (−1, 1), we use an exponentially graded mesh outside of Ω, i.e. the mesh

points are ±eih0 for i = 1, . . . , dM/he with h0 = h(ln γ)/M , where γ is the radius of BM(t) (see

(V.30)). Therefore, we maintain the same number of mesh points for all BM(t). When Ω is a unit

disk in R2, we start with a coarse subdivision ofBM(t) as in the left of Figure V.2 (the coarse mesh

of Ω in grey). Note that all vertices of a square have the same radial coordinates. We also point

out that the position of the vertices along the radial direction and outside of Ω follow the same

exponential distribution as in the one dimensional case. Then we refine each cell in Ω by con-

necting the midpoints between opposite edges. For the cells outside of Ω, we consider the same

refinement in the polar coordinate system (ln r, θ) with r > 1 and θ ∈ [0, 2π]. This guarantees

that mesh points on the same radial direction still follows the exponential distribution after global

refinements and the number of mesh points in T Mh (t) is unchanged for all t > 0. The figure on the

right of Figure V.2 shows the exponentially graded mesh after three times global refinement.

Figure V.2: Coarse gird (left) and three-times-refined non-uniform grid (right) of BM(t) with
M = 4 and t = 1. Grids of D are in grey.
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Matrix Aspects

To express the linear system to be solved, we denote by U to be the coefficient vector of uh

and F to be the coefficient vector of the L2 projection of f onto Vh(Ω). Let Mh(t) and Ah(t) be

the mass and stiffness matrix in VM
h (t). Denote MΩ,h to be the mass matrix in Vh(Ω). The linear

system is given by

sin (πβ)k

π

N+∑
i=−N−

esyiMΩ,h(e
yiMh(ti) + Ah(ti))

−1Ah(ti)U = F (V.74)

with yi = ik and ti = e−yi/2. Here MΩ,h, U and F are all extended by zeros so that the dimension

of the system is equal to the dimension of VM
h (t).

Preconditioner

Since the linear system is symmetric, we apply the Conjugate Gradient method to solve the

above linear system. Due to the norm equivalence between Hs(Ω) and H̃s(Ω), the condition num-

ber of the system matrix is bounded by Ch−2s. In order to reduce the number of iterations in one

dimensional space, we use fractional powers of the discrete Laplacian LΩ,h as a preconditioner,

where LΩ,h : H1
0 (Ω)→ L2(Ω) is defined by

dD(LΩ,hw, φh) = dΩ(w, φh), for all φh ∈ Vh(Ω).

This can be computed by the discrete sine transform similar to the implementation discussed in

Section III.4.

In two dimensional space, we use the multilevel preconditioner advocated in [16].

V.7.3 Numerical Illustration for the Non-smooth Solution

We first consider the numerical experiments for the model problem (V.71) and study the be-

havior of the L2(Ω) error.
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Influence from the Sinc Quadrature and Domain Truncation.

When D = (−1, 1), we approximate the solution on the fixed uniform mesh with the mesh

size h = 1/8192. The domain truncation parameter M is also fixed to be 20. Thus, h is small

enough and M is large enough so that the L2(Ω)-error is dominant by the sinc quadrature spacing

k. The left part of Figure V.3 shows that the L2(Ω)-error quickly converges to the error dominant

by the Galerkin approximation when k approaches zero. Similar results are observed from the

right part of Figure V.3 when the domain truncation parameter M increases. In this case, the mesh

size h = 1/8192 and the quadrature step size k = 0.2.

Error Convergence from the Finite Element Approximation

We note that we implement the numerical algorithm for the two dimensional case using the

deal.ii Library [7] and we invert matrices in (V.74) using the direct solver from UMFPACK [28].

Figure V.4 shows the approximated solutions for s = 0.3 and s = 0.7, respectively. Table V.1 re-

ports errors ‖u− uh‖L2(Ω) and rates of convergence with s = 0.3, 0.5 and 0.7. Here the quadrature

spacing (k = 0.25) and the domain truncation parameter (M = 4) are fixed so that the finite ele-

ment discretization dominates the error. Since the solution u is inHs+1/2−ε(Ω) (see [2] for a proof),

Table V.1 matches the expected rate of convergence min(1, s+ 1/2) according to Theorem V.14.

111



1e-6

1e-5

1e-4

1e-3

1e-2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

s=0.3

s=0.5

s=0.7

1e-5

1e-4

1e-3

1e-2

1e-1

 1  2  3  4  5  6  7

s=0.3

s=0.5

s=0.7

Figure V.3: The above figures report the L2(Ω)-error behavior when D = (−1, 1). The left one
shows the error as a function of the quadrature spacing k for a fixed mesh size (h = 1/8192) and
domain truncation parameter (M = 20). The right plot reports the error as a function of the domain
truncation parameterM with fixed mesh size (h = 1/8192) and quadrature spacing (k = 0.2). The
spatial error dominates when k is small (left) and M is large (right).

#DOFS s = 0.3 s = 0.5 s = 0.7

345 2.69× 10−1 - 1.63× 10−1 - 1.03× 10−1 -

1361 1.59× 10−1 0.7575 9.07× 10−2 0.8426 5.55× 10−2 0.8918

5409 9.56× 10−2 0.7323 5.05× 10−2 0.8438 2.95× 10−2 0.9091

21569 5.71× 10−2 0.7447 2.78× 10−2 0.8633 1.54× 10−2 0.9366

86145 3.38× 10−2 0.7547 1.51× 10−2 0.8832 7.91× 10−3 0.9641

344321 1.99× 10−2 0.7644 8.07× 10−3 0.9004 3.97× 10−3 0.9936

Table V.1: L2(Ω)-errors for different values of s versus the number of degree of freedom used
for the 2-D nonsmooth computations. #DOFS denotes the dimension of the finite element space
VM
h (t).

V.7.4 Numerical Illustration for the Smooth Solution

When the solution is smooth, the finite element error (assuming the exact computation of the

stiffness entries, i.e. no consistency error) satisfies

‖u− uh‖L2(Ω) ≤ ch2−2s+min(s,1/2).
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Figure V.4: Approximated solutions of (V.72) for s = 0.3 (left) and s = 0.7 (right) on the unit
disk.

In contrast, because of the inherent consistency error, our method only guarantees (c.f., Theo-

rem V.13)

‖u− uh‖L2(Ω) ≤ ch3/2−2s+min(s,1/2). (V.75)

Table V.2 reports L2(Ω)-errors and rates for the problem (V.4) with the smooth solution u(x) =

1− |x|2 and the corresponding right hand side data (V.73) in the unit disk. To see the error decay,

here we choose the quadrature step size k = 0.2 and the domain truncation parameter M = 5.

The observed decay in the error does not match the expected rate (V.75). We think this loss of

accuracy may be due either to the deterioration of the shape regularity constant in generating the

subdivisions of BM(t) (see Section V.7.2) or to the imprecise numerical integration of the singular

right hand side in (V.73).

To illustrate this, we consider the one dimensional problem. Instead of using (V.73) to compute

the right hand side vector, we compute

(f, φj) = a(u, φj) =
(∂2s−1
L φj, u

′)Ω + (∂2s−1
L u, φ′j)Ω

2 cos(sπ)
(V.76)

with Ω = (−1, 1). We note that when s < 1/2, the fractional derivative with the negative power

2s − 1 still makes sense for the local basis function φj . The right hand side of (V.76) can now be
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computed exactly.

#DOFS s = 0.3 s = 0.5 s = 0.7

409 6.24× 10−2 - 9.55× 10−2 - 1.35× 10−1 -

1617 2.90× 10−2 1.10 4.33× 10−2 1.14 6.27× 10−2 1.10

6433 1.44× 10−2 1.01 1.94× 10−2 1.15 2.81× 10−2 1.16

25665 7.21× 10−3 1.00 8.55× 10−3 1.19 1.20× 10−2 1.23

102529 3.56× 10−3 1.02 3.67× 10−3 1.22 4.78× 10−3 1.32

409857 1.74× 10−3 1.04 1.54× 10−3 1.25 1.73× 10−3 1.47

Table V.2: L2(Ω)-errors and rates for s = 0.3, 0.5 and 0.7 for the problem (V.4) with the right hand
side (V.73). #DOFS denotes the number of degree of freedoms of ΩM(t).

We illustrate the convergence rate for the one dimensional case in Table V.3 when the L2(Ω)-

projection of right hand side is computed from (V.76). In this case, we compute at s = 0.3, 0.4, 0.7

as the expression in (V.76) is not valid for s = 0.5. We also fix k = 0.2 and M = 6. In all cases,

we observe the predicted rate of convergence min(3/2, 2− s), see (V.75).

h s = 0.3 s = 0.4 s = 0.7

1/16 4.51× 10−4 3.47× 10−4 9.27× 10−4

1/32 1.42× 10−4 1.58 1.02× 10−4 1.77 4.16× 10−4 1.16

1/64 4.25× 10−5 1.63 3.31× 10−5 1.62 1.80× 10−4 1.21

1/128 1.34× 10−5 1.66 1.14× 10−5 1.54 7.66× 10−5 1.23

1/256 4.43× 10−6 1.59 4.06× 10−6 1.49 3.21× 10−5 1.25

1/512 1.50× 10−6 1.56 1.46× 10−6 1.48 1.33× 10−5 1.27

Table V.3: L2(Ω)-errors and rates for s = 0.3, 0.4 and 0.7 for the one dimensional problem when
right hand side of the discrete problem is computed by (V.76).
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CHAPTER VI

CONCLUSIONS, EXTENSIONS AND FUTURE RESEARCH

This dissertation has provided numerical schemes for parabolic problems involving fractional

powers of elliptic operators and a stationary problem involving the integral fractional Laplacian.

The approximations of both problems are based on the Dunford-Taylor integral representation of

the corresponding solution operators. We note that since the integrand subproblems are diffusion-

reaction problems, finite element software libraries can be applied.

Our studies in this dissertation have also contributed to the theoretical understanding our nu-

merical methods. As a natural extension of the stationary problem (I.4), Chapter III shows that

the L2(Ω) error between the solution to the homogenous problem and its final approximation con-

sists of two parts: the error from the space approximation and the exponentially convergent sinc

approximation. The convergence rate in space only depends on the elliptic regularity index (As-

sumption II.1). In Chapter IV, the approximation schemes for the non-homogeneous problem have

an extra time discretization error. The convergence rate in space for the non-homogeneous problem

not only depends on the regularity index but also on the smoothness of the right hand side data.

Both time discretization approaches for the non-homogenous problem, i.e. the pseduo-midpoint

quadrature scheme in time and the Crank-Nicolson time stepping method, guarantee the second

order convergence. In Chapter V, the error of the approximation to the stationary problem involv-

ing the integral fractional Laplacian consists of three terms: the error of the sinc approximation,

domain truncation and the finite element approximation. The first two errors decay exponentially

and the convergence rate for the finite element approximation depends on the regularity of the

solution.

We next consider two extensions.

• Approximation of Space-time Fractional Parabolic Equations. Numerical methods discussed

in Chapter III and Section IV.2 can be applied to the following space-time fractional parabolic
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problem: given v ∈ L2(Ω) and f ∈ L∞(0,T;L2(Ω)), find u satisfying


∂γt u+ Lsu = 0, in Ω× (0,T],

u = v, on Ω× {0},

where ∂γt denotes the left-sided Caputo fractional derivative with the order γ ∈ (0, 1). The

above problem has a unique solution (see [55, Theorem 6]), which can be explicitly written

as

u(t) := u(t, ·) = E(t)v +

∫ t

0

W (r)f(t− r) dr.

Here, for w ∈ L2(Ω),

E(t)w := eγ,1(−tγLs)w =
∞∑
j=1

eγ,1(−tγλsj)(w,ψj)Ωψj

and

W (t)w := tγ−1eγ,γ(−tγLs)w =
∞∑
j=1

tγ−1eγ,γ(−tγλsj)(w,ψj)Ωψj,

with eγ,µ(z) denoting the Mittag-Leffler function. Noting that the kernel W (t) is singular at

t = 0, we can apply the numerical scheme from Section IV.2 and overcome the singularity

by utilizing a geometric refinement towards t = 0 so that we still obtain the second order

convergence in time (up to a logarithmic factor). We refer to [9] for the details.

• Error Estimates in Hs(Ω) Norm. In this dissertation, we only consider L2(Ω) error estimate

for the numerical approximation of the parabolic problem. We note that we can also show

error estimates in the energy norm, i.e. Hs(Ω) norm. The Hs(Ω) norm error estimate for the

space-time fractional parabolic equation is provided in [9] and the idea of the proof can be

applied to the parabolic problem (I.9). Refined error estimates for sinc approximation are

given in [11].

We end this chapter with two direction for future research.
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• Fractional Diffusion on Surfaces. The Matérn field on a manifold can be constructed through

a fractional stochastic partial differential equation, i.e. solving the problem (I.4) on a smooth

surface with L replaced by the Laplace-Beltrami operator and f replaced by the Gaussian

white noise; see [44]. We can also invoke the formula (I.5) to approximate this problem by

replacing L with an finite element approximation on the surface. We note that the common

finite element methods on surface like parametric finite element methods [33], trace finite

element methods [57] and the narrow band methods [30, 29] are non-comforming. The error

analysis using these numerical methods with a non-smooth right hand side data is an open

question.

• Obstacle Problems involving the Integral Fractional Laplacian. The American option pric-

ing problem is modeled by a parabolic obstacle problem involving a pseudodifferential op-

erator [15]. In particular, the pseudodifferential operator is defined by a convolution with a

kernel function K(y) = e−λ|y|/|y|1+2s. This diffusion process is called the tempered stable

process and when λ = 0, we are back to the s-stable Lévy process (i.e. integral fractional

Laplaican). A priori error analysis and a posteriori error analysis for the obstacle problems

using the singular integral representation are discussed in [50, 56] as well as 1d numerical

simulations. Here we consider the numerical approximation in two or higher dimensional

space using the Dunford-Tarylor integral approach to approximate the American option pric-

ing problems on multiple assets (cf. [19]).
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