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ABSTRACT

More than ten years ago, Bose-Einstein condensation (BEC) of magnons (or quantized spin

waves) was experimentally observed in yttrium iron garnet (YIG) films at room temperature.

Since BEC and superfluidity are closely related phenomena, it is natural to ask whether such

magnon condensates can transport as superfluid and, if so, how such superfluid looks like. In

this work, we study theoretically superfluidity of magnons in ferromagnetic films. We first give

an review of the basic theory of magnons in ferromagnetic films. We then discuss BEC of

magnons from both experimental and theoretical points of view. Then we study superfluidity of

magnons in ferromagnetic films by starting from a model of spins in ferromagnetic films. Model

in terms of magnon operators is then introduced, and a Hamiltonian describing the condensed

magnons is derived. Focusing on the one-dimensional (1D) stationary case, we study behaviors

of superfluid formed by the condensed magnons. We found an unconventional soliton-like profile

of the magnon superfluid, as compared to a uniform superflow, which we argued to be due to the

dipolar interaction. We also show by estimates that in YIG films it is possible to have a superfluid

current that strongly exceeds the current of normal magnons, so the magnon superfluidity could

possibly be observed.
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NOMENCLATURE

BEC Bose-Einstein condensation

BLS Brillioun light scattering

EOM equation of motion

EPM easy-plane magnet

YIG yttrium iron garnet

1D one dimension/one-dimensional

2D two dimension/two-dimensional

3D three dimension/three-dimensional
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1. INTRODUCTION

In 2006, Bose-Einstein condensation (BEC) of magnons (quantized spin waves) was

experimentally observed in yttrium iron garnet (YIG) films at room temperature [1]. The magnons

are excited by an external ac magnetic field. The pumped magnons have a large lifetime, so that

before dissipating their energies to other system (e.g. phonons) and disappearing, they relax among

themselves and reach a quasi-equilibrium. Therefore, there exists a chemical potential associated

with the magnons, which magnitude is determined by the strength of pumping. When the pumping

power exceeds a certain threshold, the chemical potential reaches the gap of the spectrum, and

additional magnons aggregate at the bottom of the spectrum, forming a condensate.

The spectrum of magnons in thin ferromagnetic films, when taking into account the dipolar

interaction, has two minima [2] Correspondingly, there exist two condensates of magnons. By

observing interference patterns of these two condensates [3], the coherence of the condensate wave

function was proved, giving a strong support that the magnons indeed develop BECs.

Properties of the magnon BEC in YIG have also been studied theoretically. In [4], it

was predicted that, depending on the film thickness and external magnetic field strength, the

magnon BEC can develop different states – the symmetric state where the two condensates are

populated equally, and the non-symmetric state where they are populated unequally. In general,

the symmetric state is more favorable for thinner films. It was also proposed that a new type of

oscillation mode called zero-sound exists, which corresponds to modulation of the relative phase

and density of the two condensates [4].

Since BEC and superfluidity are closed related, it is natural to ask whether such magnon

condensates in YIG can behave like superfluid, and further what are the properties of such magnon

superfluid. In this dissertation, we study theoretically superfluidity of magnons in ferromagnetic

films, especially in YIG. Since superfluid flow is dissipationless, it can serve as an effective media

to transfer information. Thus, this study may have promising applications in the field of magnonics,

which investigates information transport and processing by spin waves [5]. The study presented in
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this dissertation have been published in [6] and in [7].

The outline of this dissertation is as follows:

In Chapter 2, we review the theory of magnons in ferromagnetic films. We will first give

an introduction to the mathematical formulation of spin operators. We then talk about various

magnetic interactions, including the exchange interaction, the dipolar interaction and the Zeeman

interaction. After that we discuss the model describing magnons in ferromagnetic films. Starting

from a Hamiltonian in terms of spin operators, we perform the Holstein-Primakoff transformation

to write the Hamiltonian in terms of bosonic operators. After a further Bogoliubov transformation

we arrive at a Hamiltonian in terms of magnon operators, from which we could obtain the spectrum

of magnons.

In Chapter 3, we discuss Bose-Einstein condensation (BEC) of magnons in ferromagnetic

films, especially in the material yttrium iron garnet (YIG). We will start with discussing magnetic

properties of the material YIG on which magnon BEC was discovered. We then discuss about the

experimental observations of BEC of magnons. It is followed by a discussion on the theory that

describing this magnon BEC. We also mention an alternative classical interpretation of the magnon

condensate.

In Chapter 4, we consider superfluidity of condensed magnons in YIG. Starting with a

Hamiltonian for magnon condensates, we will first derive and examine the equations of motion of

the condensate amplitudes, and further for the condensate densities and phases. We then fix to the

one-dimensional stationary situation and show by calculations that the superfluidity of condensed

magnons is indeed possible, and that such superfluid has a rather unconventional behavior, namely,

the superfluid flow is not uniform but soliton-like. We further argue that such a behavior has its

origin due to the existence of the dipolar interaction, which breaks the U(1) rotation symmetry

of the condensate phase. For the calculations we use a variational method and then an improved

numerical shooting method. We also make connections to previous theories of superfluidity in

magnetic systems, estimate the relative strength of superfluid and normal currents to show that the

magnon superfluidity can indeed manifest itself, and discuss propose possible ways to achieve this
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superfluidity experimentally.

At the end of each of the previous three chapters, we discuss several other issues, e.g. on

validity of our considerations or approximations, or on some alternative approaches. Those

discussions may be “marginal” and skipping them should does not impact the completeness of

materials in the chapters, but they could help in clarification.

Finally, in Chapter 5 we present conclusions and discuss open questions.

3



2. THEORY OF MAGNONS IN FERROMAGNETIC FILMS

Spin waves, introduced by Bloch [8], are collective motion of spins in magnetically ordered

media. Their roles in magnetic media is similar to the roles that sound waves play in elastic media.

Classically, a spin wave is a precession of magnetization vectors around the equilibrium direction

that propagates through some magnetic medium, as illustrated in Fig. 2.1. A magnetic medium that

supports spin waves could be ferromagnetic or antiferromagnetic. The equilibrium configuration

can be a spontaneously ordered state without any external magnetic field, or, in the ferromagnetic

case, it can be set by the direction of an applied magnetic field.

The quantum mechanical version of spin waves, known as magnons, was also introduced by

Bloch [8]. Magnons are elementary excitations from a ferromagnetic (or antiferromagnetic) ground

state. Qualitative theory for magnons was introduced by Holstein and Primakoff [9] and by Dyson

[10]. They showed by using the second quantization formalism that magnons behave as weakly

interacting bosonic quasiparticles. As a quasiparticle, a magnon carry certain energy, momentum

and spin.

Figure 2.1: Illustration of a spin wave (figure from Wikipedia). Magnetization vectors M process
around their equilibrium direction, which is here determined by the external magnetic field H.

In this chapter, we present an introduction to fundamental theories of magnons in ferromagnets,
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focusing on the geometry of films. We will first discuss the mathematical formulation of

spin operators, then various magnetic interactions, finally the model describing magnons in

ferromagnetic films. This chapter serves as a basis of discussions on BEC and superfluidity of

magnons in later chapters.

2.1 Mathematical formulation of quantum spins

In models of magnetic systems, the fundamental objects are spins. We will focus on quantum

mechanical models, in which spins are described by spin vector operators Si = (Sxi , S
y
i , S

z
i )

defined on lattice sites labelled by the index i. Physically, a spin of a site could originate from

localized electrons of the atom on that site. Here we will not worry about the physical nature of

spins, but instead just consider them as abstract objects.

The fundamental properties of spin operators are their commutation relations. Spins operators

on different sites commute, whereas spin operators on the same site satisfy commutation relations

analogous to those of angular momenta:

[Sαi , S
β
i ] = i~εαβγSγi , α, β = x, y, (2.1)

where εαβγ is the Levi-Civita symbol, and summation over the repeated index γ = x, y, z is

assumed. According to quantum mechanics, the component of a spin operator Sα measured along

any direction can take a discrete set of values

Sα = ~sα, sα ∈ {−s,−(s− 1), . . . , s− 1, s}, α = x, y, z, (2.2)

where s is the so-called principal spin quantum number which can take any non-negative half-

integer, and sα is the so-called spin projection quantum number along the α-axis. Note the

appearance of ~, which indicates that the spin operators have the same dimension as an angular

momentum. In later discussions, we will take the convention that ~ = 1. The eigenvectors of the
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operators S2 ≡ (Sx)2 + (Sy)2 + (Sz)2 and Sz are:

S2|s,ms〉 = s(s+ 1)|s,ms〉, (2.3)

Sz|s,ms〉 = ms|s,ms〉, (2.4)

wherems ≡ sz is the spin projection quantum number along the z-axis (also known as the magnetic

quantum number).

In many cases it is convenient to introduce the spin raising and lowering operators S± ≡

Sx ± iSy. Acting them on the eigenvectors |s,ms〉, we have:

S±|s,ms〉 =
√
s(s+ 1)−ms(ms ± 1)|s,ms ± 1〉. (2.5)

Namely, acting S+ or S− on a state gives another state with a projection higher or lower by 1. The

commutation relations in terms of Sz and S± read:

[Sz, S+] = S+, (2.6)

[Sz, S−] = S−, (2.7)

[S+, S−] = 2Sz. (2.8)

2.2 Magnetic interactions

Before discussing the model describing magnons in ferromagnets, we review different kinds

of interactions in magnetic materials. Among them are the exchange interaction, the Zeeman

interaction, and the dipolar interaction.

2.2.1 Exchange interaction

The exchange interaction is perhaps the most important interaction in magnetic materials. Its

origin is completely quantum-mechanical – the wave function of indistinguishable particles has

exchange symmetry. Consider a system with two electrons in two atoms (like the situation in a
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hydrogen molecule). The Coulomb interaction between the electrons splits the energies of the

symmetric and antisymmetric spatial wave functions of the two electrons, so the one with a lower

energy is favored. For a system of fermions the overall wave function must be antisymmetric,

so for the symmetric/antisymmetric spatial wave function the spin-part of the wave function is

antisymmetric/symmetric. This means that a state when the spins of the two electrons are parallel

and a state when the spin are antiparallel have different energies. Focusing on the spin variables,

we could write an effective interaction proportional to the dot product of the two spins, with a

coefficient proportional to the aforementioned energy splitting. For a lattice of spins, this argument

leads to the following expression of the exchange interaction, known as the Heisenberg model:

Hex = −
∑
i,j

JijSi · Sj, (2.9)

where Jij is the exchange constant between the sites i and j. An important property of the exchange

energy in the form of (2.9) is that, it is invariant under a uniform rotation of every spin (an SO(3)

symmetry). This symmetry corresponds to conservation of any component of the total spin of all

the sites Sαtot ≡
∑

i S
α
i (α = x, y, z), as can be checked by calculating [Hex, S

α
tot] = 0 using the

commutation relations (2.1).

In practice, models with nonzero couplings Jij only for nearest neighbors are often considered,

and the couplings are taken to be uniform, namely,

Jij =

 J, if i, j are nearest neighbors,

0, else.
(2.10)

Under these simplifications, the exchange interaction (2.9) becomes:

Hex = −J
∑
〈i,j〉

Si · Sj, (2.11)

where 〈i, j〉 denotes summation over nearest-neighbor sites only. Now we could distinguish
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between the two cases of J > 0 and J < 0. For J > 0, the exchange interaction is called

ferromagetic, in which case the ground state spin configurations have all spins pointing in the

same direction. The ground states are degenerate, due to the aforementioned SO(3) symmetry.

For J < 0, the exchange interaction is called antiferromagetic. Neighboring spins would favor

antiparallel configuration, and the overall spin configuration depends on type of the lattice. For a

lattice which can be separated into two interpenetrating sublattices with any site on one sublattice

having all nearest neighbors belonging to the other sublattice (e.g. a 2D square lattice), the ground

states are such that all spins in each sublattice are in the same direction, and the two sublattices

have opposite spin directions. If all spins are of the same amplitudes there will be no net total

magnetization. But it may happen that spins on the two sublattices have different magnitudes,

in which case there will be a finite net total magnetization. Materials of this kind are known as

ferrimagnets. Later in this work, we will focus on the ferromagnetic case.

2.2.2 Zeeman interaction

Zeeman energy describes interaction of spins with an external magnetic field. It takes a simple

form:

HZ = −gµB
∑
i

Si ·H, (2.12)

where g is the Landé g-factor, µB is the Bohr magneton, and H is a uniform external magnetic field.

The effect of HZ is to lower the energy of the system when spins are pointing in the same direction

of H. It lifts the degeneracy of the ground states when there is only the exchange interaction, so

that the ground state is now unique, with all spins pointing in the field direction. The Zeeman

interaction breaks the rotational symmetry around any axis not parallel to H, but the rotational

symmetry around H (a U(1) symmetry) is still preserved, and the component of the total spin

along the direction of H is conserved. For example, if H is along z-axis, then Sztot is conserved, as

one can check that HZ commutes with Sztot.
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2.2.3 Dipolar interaction

Another important interaction in magnetic systems is the dipolar interaction. Unlike the

exchange interaction which arises quantum mechanically, the dipolar interaction can be explained

purely classically – it is the direct interaction between two magnetic dipoles. In terms of spin

operators, it can be written as:

Hd = −1

2
(gµB)2

∑
i 6=j

3(Si · r̂ij)(Sj · r̂ij)− Si · Sj
r3
ij

, (2.13)

where rij ≡ ri − rj is the vector from the site j to the site i (with ri being the position of the site

i), and r̂ij ≡ rij/rij is the unit vector along rij . The summation is over any lattice sites i and j, but

excluding the cases of i = j.

Generally, the dipolar interaction is weak as compared to the exchange interaction. But its long-

ranged nature indicates that it could play important roles at large scales, or equivalently at small

wavevectors. In fact, the dipolar interaction is responsible for the formation of different domains in

ferromagets. Another important fact is that the dipolar interaction is not invariant under a uniform

rotation of all spins, which is due to the first term in the numerator of (2.13). Correspondingly, no

components of the total spin is conserved when the dipolar interaction is included.

2.2.4 Other interactions

The aforementioned three types of interactions will be encountered for later considerations.

Besides, there are other interactions, which we will mention briefly here.

The anisotropy energy is another commonly considered type of energy in magnetic systems. It

favors magnetization along certain axis or in certain plane. Its origin could be crystalline structures.

Besides, for a given shape of material, the dipolar interaction usually causes a certain direction or

plane to be preferable, which leads to an effective anisotropy. In fact, in many cases it may be

difficult to treat the dipolar interaction directly, and as an approximation this effective anisotropy

enters the considered model instead.

Another kind of interaction, the Dzyaloshinsky-Moriya interaction [11, 12], arises only in
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materials which lack inversion symmetry. Absence of this symmetry could exist for a crystal

structure which is by itself non-centrosymmetric, or it could exist at an interface between two

different materials. It favors formations of helical structures and skyrmions.

2.3 Model of magnons in ferromagnetic films

Now we are ready to discuss the model of magnons in ferromagets. Our starting point is

a model for a lattice of spins, with a Hamiltonian that includes the nearest-neighbor exchange,

Zeeman and dipolar interactions:

H = Hex +HZ +Hd, (2.14)

Hex = −J
∑
〈i,j〉

Si · Sj, (2.15)

HZ = −gµBH0

∑
i

Szi , (2.16)

Hd = −1

2
(gµB)2

∑
i 6=j

3(Si · r̂ij)(Sj · r̂ij)− Si · Sj
r3
ij

, (2.17)

where we have taken the external magnetic field H0 to be along the +z direction. We assume J > 0

so the exchange interaction is ferromagnetic. We will consider the geometry of a film, namely, one

of the dimension is much smaller than the other two. In particular, we take the material to be

extended in the x and z directions with a large area A, but confined in the y direction with a small

thickness d, as sketched in Fig. 2.2. We also take the lattice to be simple cubic with a lattice

constant a and three primitive lattice vectors along x, y and z directions, respectively.

2.3.1 Hamiltonian in wavevector space

In our model (2.14), the spins are defined on a lattice. It will be more convenient to work in

the wavevector space, which can be achieved by performing a Fourier transformation. Let’s define
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Figure 2.2: Geometry of the considered model. The material is extended in the x and z directions
with an area A, and has a thickness d in the y direction. The external magnetic field H0 is applied
in the film plane in the +z direction.

Fourier transformation of the spin vector operators as:

Si =
1√
N

∑
k

eik·rS(k), (2.18)

S(k) =
1√
N

∑
i

e−ik·rSi. (2.19)

where N is the total number of sites. Similarly, we define Fourier transformation for the spin

raising operators S+
i ≡ Sxi + iSyi :

S+
i =

1√
N

∑
k

eik·rS+(k), (2.20)

S+(k) =
1√
N

∑
i

e−ik·rS+
i , (2.21)

and for the spin lowering operators S−i ≡ Sxi − iS
y
i :

S−i =
1√
N

∑
k

eik·rS−(k), (2.22)

S−(k) =
1√
N

∑
i

e−ik·rS−i . (2.23)

Note that according to these definitions we have S(−k) = [S(k)]† and S−(−k) = [S+(k)]†.
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Let’s now reexpress the Hamiltonian (2.14) in terms of the Fourier transformed operators. For

the exchange and Zeeman terms, the transformation is straightforward:

Hex = −J
∑
k

∑
δ

eik·δ [Sx(k)Sx(−k) + Sy(k)Sy(−k) + Sz(k)Sz(−k)] , (2.24)

where δ is a vector from a site to any of its nearest neighbor site, and

HZ = −gµBH0

√
NSz(k = 0). (2.25)

For the dipolar interaction, the transformation to wavevector space is more complicated due to

its long-ranged nature. We first note that the dipolar interaction (2.17) could be written in a simpler

form:

Hd =
1

2
(gµB)2

∑
i 6=j

Sαi S
β
j ∂αi∂βj

1

rij
, (2.26)

where α and β are summed over x, y, z. In getting this expression we used ∂αi∂βj(1/rij) =

δαβ/r3
ij − 3rαijr

β
ij/r

5
ij . Next we make use of the film geometry where the thickness (in the y-

direction) is much less than the other two dimensions. We will adopt the so-called “ uniform mode

approximation” [13], which assumes the magnetization in y-direction to be a constant, and replaces

it by its average value over y-coordinate. This means that in the expression of Hd we will make

the following replacement:

Sα(xi, yi, zi)→
∫
dy′i
d
Sα(xi, y

′
i, zi), (2.27)

Sβ(xj, yj, zj)→
∫
dy′j
d
Sβ(xj, y

′
j, zj). (2.28)

We will also temporarily view the lattice as a continuous media, so the summations
∑

i 6=j are
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replaced by integrals:

∑
i 6=j

→
∫
N2dxidyidzidxjdyjdzj

V 2
≡
∫
N2dridrj

V 2
. (2.29)

The dipolar interaction then reads:

Hd =
1

2
(gµB)2

∫
N2dridrj

V 2

(∫
dy′i
d
Sα(xi, y

′
i, zi)

)(∫
dy′j
d
Sβ(xj, y

′
j, zj)

)
∂αi∂βj

1

rij
, (2.30)

where V = Ad is the volume of the material. Next make use of the expression

1

rij
=

4π

A

∑
k‖

eik‖·r‖,ijGk‖ (yi − yj) , (2.31)

Gk‖(y) =
e−k‖|y|

2k‖
, (2.32)

where k‖ = kxx̂ + kz ẑ is a wavevector in the xOz plane, r‖,ij = (xi − xj)x̂ + (zi − zj)ẑ is the

xOz-plane projection of rij , and Gk‖(y) is the Green function of an 1D Helmholtz equation:

(
d2
y − k2

‖
)
Gk‖ (y) = −δ (y) . (2.33)

Putting (2.31) into (2.30), we get:

Hd =
1

2
(gµB)2

∫
N2dridrj

V 2

(∫
dy′i
d
Sα(xi, y

′
i, zi)

)(∫
dy′j
d
Sβ(xj, y

′
j, zj)

)
× ∂αi∂βj

4π

A

∑
k‖

eik‖·r‖,ijGk‖ (yi − yj) . (2.34)

Recall that α and β are summed over x, y, z. Let’s consider the possible cases of these summations.

When both α and β are x or z, the two derivatives ∂αi∂βj generate kα‖ k
β
‖ . When only one of the two

indices is y, say α = y, then ∂αi acts on Gk‖ (yi − yj). But the integral
∫
dyi
∫
dyj∂yiGk‖ (yi − yj)

would vanish, since Gk‖ (yi − yj) is an even function of yi − yj . So the case that only one of the

two indices is y would give no contribution to Hd. Finally, when both α and β are y, we would get
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the integral
∫
dyi
∫
dyj∂yi∂yjGk‖ (yi − yj). Therefore,

Hd =
1

2
(gµB)2

∫
N2dridrj

V 2

(∫
dy′i
d
Sα(xi, y

′
i, zi)

)(∫
dy′j
d
Sβ(xj, y

′
j, zj)

)
× 4π

A

∑
k‖

kα‖ k
β
‖ e

ik‖·r‖,ijGk‖ (yi − yj)

+
1

2
(gµB)2

∫
N2dridrj

V 2

(∫
dy′i
d
Sy(xi, y

′
i, zi)

)(∫
dy′j
d
Sy(xj, y

′
j, zj)

)
× 4π

A

∑
k‖

eik‖·r‖,ij∂yi∂yjGk‖ (yi − yj) . (2.35)

Now we rewrite the integral
∫
dxidzidxjdzjdy

′
idy
′
j back to the discrete form, and use the expression

of Fourier transformation of S (Eq. (2.19)):

Hd =
1

2
(gµB)2 4πN

A

∑
k‖

Sα(−k‖)Sβ(k‖)k
α
‖ k

β
‖

∫
dyidyj
d2

Gk‖ (yi − yj)

+
1

2
(gµB)2 4πN

A

∑
k‖

Sy(−k‖)Sy(k‖)
∫
dyidyj
d2

∂yi∂yjGk‖ (yi − yj) . (2.36)

Performing the integrals over yi and yj , we get the expression of dipolar interaction in wavevector

space:

Hd =
2πN

V
(gµB)2

∑
k‖

[
(1− Fk‖)

kα‖ k
β
‖

k2
‖
Sα(−k‖)Sβ(k‖) + Fk‖S

y(−k‖)Sy(k‖)

]
, (2.37)

where we defined the “form factor”

Fk =
1− e−kd

kd
. (2.38)

Note that although in the first term in (2.37) the indices α and β are formally summed over x, y, z,

only the terms with α, β = x, z will be nonzero, since k‖ = kxx̂ + kz ẑ has no y-components.
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Writing out those terms separately, we get:

Hd =
2πN

V
(gµB)2

∑
k‖

{
(1− Fk‖)

[
sin2 θSx(−k‖)Sx(k‖) + cos2 θSz(−k‖)Sz(k‖)

+ sin θ cos θSx(−k‖)Sz(k‖) + sin θ cos θSz(−k‖)Sx(k‖)
]

+ Fk‖S
y(−k‖)Sy(k‖)

}
, (2.39)

where we introduced the angle between k‖ and the z-axis as θ, so that kx = k‖ sin θ, kz = k‖ cos θ.

Note that in this expression of Hd in wavevector space, summation over only 2D wavevectors

in the xOz plane are involved, which is due to the uniform mode approximation we used. Thus,

although in the previous expression of exchange Hamiltonian (2.24) the summation is over 3D

wavevectors, later we will consider wavevectors only in the xOz plane. In summary, we get the

following Hamiltonian in 2D wavevector space:

H = Hex +HZ +Hd

= −J
∑
k‖

∑
δ

eik‖·δ
[
Sx(k‖)S

x(−k‖) + Sy(k‖)S
y(−k‖) + Sz(k‖)S

z(−k‖)
]
− gµBH0

√
NSz(k = 0)

+
2πN

V
(gµB)2

∑
k‖

{
(1− Fk‖)

[
sin2 θSx(−k‖)Sx(k‖) + cos2 θSz(−k‖)Sz(k‖)

+ sin θ cos θSx(−k‖)Sz(k‖) + sin θ cos θSz(−k‖)Sx(k‖)
]

+ Fk‖S
y(−k‖)Sy(k‖)

}
. (2.40)

For simplicity, from now on we will write k instead of k‖, while keeping in mind that k is a 2D

vector in the xOz plane.

2.3.2 Holstein-Primakoff transformation

As stated before, magnons are bosonic excitations from a ferromagnetic ground state. But our

current Hamiltonian is in terms of spin operators instead of bosonic operators. The change from

spin system to a bosonic system is accomplished via the Holstein-Primakoff transformation [9],
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which we describe in this subsection. This transformation is written as:

S+
i =

√
2S − a†iaiai, (2.41)

S−i = a†j

√
2S − a†iai, (2.42)

Szi = S − a†iai, (2.43)

where ai (a†j) is a bosonic annihilation (creation) operator for the site i, which satisfies standard

bosonic commutation relations:

[ai, aj] = [a†i , a
†
j] = 0, (2.44)

[ai, a
†
j] = δij. (2.45)

One can check that the commutation relations for the spin operators (2.1) are recovered by plugging

in directly the transformation (2.41)-(2.43) and using (2.44) and (2.45). This means that the

Holstein-Primamoff transformation is an exact mapping from spin operators to bosonic operators.

Let’s look at the physical meaning of the bosonic operators. According to Eqs. (2.41)-(2.42),

a† acting on any state increases the projection by 1, where a† acting on any state decreases the

projection by 1. In the case that the state with maximal projection (|S,ms = +S〉) is the ground

state (which will be the situation in our later considerations), then a† creates to an excitation from

this ground state. Besides, (2.42) says that the number of bosons for a given state (a†a) is equal to

the difference of the maximal projection (S) and the projection of that state.

After performing the Holstein-Primakoff transformation, a Hamiltonian in terms of spin

operators is transferred to one in terms of bosonic operators. Generally a bosonic Hamiltonian

is more easily to handle as compared to a spin Hamiltonian. Thus, the Holstein-Primakoff

transformation is expected to be very useful. However, there is a technical difficulty for its

applications: the appearance of operators under square roots. To overcome this, approximations
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are usually needed. In (2.41) and (2.42), let’s expand the square roots in orders of 1/S:

S+
i =
√

2S[ai −
1

4S
a†i (ai)

2 +O(
1

S2
)], (2.46)

S−i =
√

2S[a†i −
1

4S
(a†i )

2ai +O(
1

S2
)]. (2.47)

If we focus on the configurations close to the ground state, namely, if the states we are considering

have number of bosons for any site i satisfying 〈a†iai〉 � S, then it will be a good approximation

to keep the leading order terms in the expansions (2.46) and (2.47).

2.3.3 Hamiltonian in terms of bosonic operators

Let’s now employ the Holstein-Primakoff transformation in our treatment of the magnetic

system described by the Hamiltonian (2.14), and by (2.40) in the wavevector space. Like for

the spin operators, we define Fourier transformation of the bosonic operators:

ai =
1√
N

∑
k

eik·rak, (2.48)

ak =
1√
N

∑
i

e−ik·rai. (2.49)

In terms of ak and a†k, Fourier transformation of the spin operators reads:

S+(k) =
√

2S

(
ak −

1

4SN

∑
q,q′

a†q+q′−kaqaq′ +O(
1

S2
)

)
, (2.50)

S−(−k) =
√

2S

(
a†k −

1

4SN

∑
q,q′

a†qa
†
q′aq+q′−k +O(

1

S2
)

)
, (2.51)

Sz(k) =
√
NSδk,0 −

1√
N

∑
q

a†qaq+k. (2.52)

Putting these expressions into (2.40) and using S±(k) = Sx(k) ± iSy(k), we could obtain a

Hamiltonian expressed by bosonic operators ak and a†k.
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2.3.3.1 Without dipolar interaction

Let’s first consider the case when there is no dipolar interaction. The Hamiltonian in

wavevector space reads:

H = Hex +HZ

= −J
∑
k

∑
δ

eik·δ [Sx(k)Sx(−k) + Sy(k)Sy(−k) + Sz(k)Sz(−k)]− gµBH0

√
NSz(k = 0)

= −J
2

∑
k

∑
δ

eik·δ
[
S+(k)S−(−k) + S−(k)S+(−k) + 2Sz(k)Sz(−k)

]
− gµBH0

√
NSz(k = 0).

(2.53)

Note that here k can be understood as a 3D wavevector. Plugging Eqs. (2.50), (2.51) and (2.52)

into this Hamiltonian and keeping terms up to second order in ak and a†k, we get:

H = −6JS2N − gµBH0SN +
∑
k

[
gµBH0 + 2JS

∑
δ

(1− eik·δ)

]
a†kak. (2.54)

Let’s examine the different terms of this Hamiltonian. The constant terms correspond to the

ground state energy. (The coefficient 6 is the number of nearest neighbors for a site in a simple

cubic lattice.) It can also be obtained directly by acting the original spin Hamiltonian on the ground

state in which |S,ms = +S〉 for every site.

The quadratic term corresponds to energy of excitations from the ground state. We note that

only terms of the form a†kak appear, so the number of excitations corresponding to the ak and a†k

operators is conserved. We can then recognize the ak and a†k operators as annihilation and creation

operators of a magnon, which has well-defined momentum and energy. In particular, a†k creates

a magnon with wavevector k and energy gµBH0 + 2JS
∑

δ(1 − eik·δ). Thus, the spectrum of

magnons is

ω(k) = gµBH0 + 2JS
∑
δ

(1− eik·δ). (2.55)
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For a simple cubic lattice, performing the summation over δ we get:

ω(k) = gµBH0 + 2JS[6− 2 cos(kxa)− 2 cos(kya)− 2 cos(kza)]. (2.56)

In the case that only small enough wavevectors are considered so that k � 1/a, we can expand the

cosine functions and obtain the following approximate form of magnon spectrum:

ω(k) = gµBH0 +Dk2, (2.57)

where we introduced the exchange coupling D = 2JSa2. Note that in this form the spectrum is

isotropic. It has a gap proportional to the external field H0, and is quadratic in wavevector k. If

there is no external field (namely only exchange interaction is considered), the magnon spectrum

will be gapless with ω(k = 0) = 0. This means that an excitation with infinitely long wavelengths

will have infinitely small energy. According to Goldstone’s theorem, this gapless spectrum is a

direct consequence of spontaneously breaking of the previously discussed 3D rotational symmetry

of the exchange Hamiltonian.

2.3.3.2 With dipolar interaction

Now we include the dipolar interaction. In terms of S±(k) operators, we have

Hd =
2πN

V
(gµB)2

∑
k

{
1

4

[
(1− Fk) sin2 θ − Fk

] [
S+(−k)S+(k) + S−(−k)S−(k)

]
+

1

4

[
(1− Fk) sin2 θ + Fk

] [
S+(−k)S−(k) + S−(−k)S+(k)

]
+ (1− Fk‖) cos2 θSz(−k)Sz(k)

+
1

2
(1− Fk) sin θ cos θ

[
S+(−k)Sz(k) + Sz(−k)S+(k) + Sz(−k)S−(k) + S−(−k)Sz(k)

]}
.

(2.58)
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where k is now understood as a 2D wavevector in the xOz plane. Plugging Eqs. (2.50), (2.51) and

(2.52) into this Hamiltonian and keeping terms up to second order in ak and a†k, we get:

Hd =
πN

V
(gµB)2 S

∑
k

[
(1− Fk) sin2 θ + Fk

]
+

2πN

V
(gµB)2 S

∑
k

{[
(1− Fk) sin2 θ − Fk

]
a†kak +

1

2

[
(1− Fk) sin2 θ − Fk

] (
aka−k + a†ka

†
−k

)}
.

(2.59)

We see that, for the quadratic terms, not only terms of the form a†kak appear, terms of aka−k and

a†ka
†
−k appear as well. This means that the number of bosons corresponding to the ak and a†k

operators is not conserved any more. Thus, inclusion of the dipolar interaction leads to a dramatic

difference.

Let’s now write the quadratic part of the Hamiltonian for all interactions together:

H(2) =
∑
k

[
Aka

†
kak +

1

2
Bk
(
aka−k + a†ka

†
−k

)]
, (2.60)

where the coefficients are

Ak = γH0 +Dk2 + γ2πM
[
(1− Fk) sin2 θ + Fk

]
, (2.61)

Bk = γ2πM
[
(1− Fk) sin2 θ − Fk

]
, (2.62)

and we have introduced the gyromagnetic ratio γ = gµB and the magnetization M = gµBNS/V ,

so that (gµB)2NS/V = γM . Note that we have adopted the approximation of small wavevectors;

in this case the exchange interaction gives a quadratic term Dk2.

Since now the Hamiltonian (2.60) involves number-non-conserving terms, we cannot read out

the spectrum directly. The standard procedure to treat a Hamiltonian like (2.60) is to perform a

Bogoliubov transformation [14], which purpose is to cast the Hamiltonian into a form without the
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number-non-conserving terms. Let’s introduce new bosonic operators ck and c†k as:

ak = ukck + vkc
†
−k, (2.63)

a†k = ukc
†
k + vkc−k, (2.64)

uk =

√
Ak + ωk

2ωk

, (2.65)

vk = sgn(Bk)

√
Ak − ωk

2ωk

, (2.66)

ωk =
√
A2

k − B2
k. (2.67)

The choice of coefficients uk and vk ensures that the operators ck and c†k satisfy the standard

bosonic commutating relations, and that the Hamiltonian H(2) is “diagonalized”, in the sense that

only number-conserving terms appear:

H(2) =
∑
k

ωkc
†
kck. (2.68)

We see that, with existence of the dipolar interaction, the number-conserving excitations are not

corresponding to the originally introduced operators ak and a†k, but to the “tilted” operators ck and

c†k. These new operators now serve as the magnon operators. The quantity ωk is the spectrum of

magnons:

ωk =
√
A2

k − B2
k =

√[
γH0 +Dk2 + γ4πM(1− Fk) sin2 θ

]
(γH +Dk2 + γ4πMFk). (2.69)

Let’s look at this spectrum in more detail. First, if there is no dipolar interaction (namely, if we set

M = 0), this spectrum reduces to the previous expression (2.57), as expected. Second, recalling

that Fk = (1− e−kd/(kd), we see that the value of Fk is always between 0 and 1. Then for a fixed

k, a larger sin2 θ will give a larger ωk. Thus, minima of spectrum can only exist at θ = 0, or when

k is along z-direction. This means that magnons with lowest energy have wavevectors along or
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opposite to the external magnetic field. The spectrum along this direction reads:

ωk =
√

(γH0 +Dk2
z) (γH0 +Dk2

z + γ4πMFk). (2.70)

Fig. 2.3 plots this spectrum along the z-direction (the blue curve). It is symmetric about kz = 0,

as expected. For comparison, the red and dashed curve shows the spectrum without the dipolar

interaction (Eq. (2.57)), which is simply a parabola. We see that at large enough kz the two curves

approach each other, but at small kz they are quite different. The dipolar interaction introduces a

cusp at kz = 0 and, together with the exchange interaction, produces two symmetric minima at

kz 6= 0. The positions of the two minima are at approximately kz = ±7.5 µm for the parameters

chosen in the figure. The fact that the dipolar interaction has a large effect at small wavevectors is

consistent with its long-ranged nature. For more detailed discussions on the spectrum please see

Ref. [15].

2.4 Discussions

In summary, in this chapter we considered magnons in ferromagnetic films. Starting from a

Hamiltonian in terms of spin operators, we performed the Holstein-Primakoff transformation to

write the Hamiltonian in terms of bosonic operators. Then after a Bogoliubov transformation (in

the case when dipolar interaction is taken into account) we arrive at a Hamiltonian in terms of

magnon operators, from which we obtain the spectrum of magnons. Below are discussions on

several relevant points:

1. In our consideration we included only terms up to quadratic order in magnon operators.

Thus, the magnons appear to be not interacting with others. Inclusion of higher order terms will

generate interaction between magnons. In particular, in later chapters we will consider fourth order

interaction of magnons. It will turn out to play important roles in determining properties of magnon

BEC and superfluidity.

2. When treating the dipolar interaction we made the uniform mode approximation [13],

which assumes that there is no modulation of magnetization in the direction transverse to the

22



-40 -20 0 20 40
2.5

3.0

3.5

4.0

4.5

5.0

kz (μm
-1)

ω
k
(G
hz

)

Figure 2.3: Spectrum of the magnons along the direction of the external field (z-direction). The
blue and solid curve is the spectrum calculated from Eq. (2.70). The spectrum is symmetric and
has two minima at kz = ±7.5 µm. For comparison, the red and dashed curve shows the spectrum
without dipolar interaction calculated from Eq. (2.57). The parameters are chosen as: γ = 1.2 ×
10−5 eV/kOe, D = 0.24 eVÅ2, H0 = 1 kOe, 4πM = 1.78 kOe, and d = 5 µm.

film plane (the y-direction in our case). Under this approximation only the lowest band in the

transverse direction is taken into account and this lowest band is taken to have zero ky, so the

system becomes effectively 2D. An improved treatment would take into account the transverse

variation of magnetization, in which case the wavevectors could have non-zero components

in the y-direction, and the spectrum has infinitely number of bands labelled by ky. In the

literature, since the seminal work by Damon and Eshbach [2], magnon spectrum in ferromagnetic

films with transverse modulation of magnetization have been theoretically studied extensively

[16, 17, 18, 19, 20, 21, 22, 23, 24]. In this work we will confine ourselves to the uniform mode

approximation, thus avoiding the complications arisen from considering transverse modulation of

magnetization.

3. The theory of magnons described in this chapter is of quantum-mechanical nature, namely,
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it is based on spin operators. Alternatively, spin waves can also be treated purely classically by the

Landau-Lifshitz equation [25, 26]. This classical treatment is generally valid when the wavelength

of spin waves is much larger than the lattice constant (or equivalently when the wavevector is

small), so that properties of spin waves does not depend on the microscopic details of the discrete

lattice. By linearizing the Landau-Lifshitz equation the spectrum with exchange and Zeeman

interactions could be derived, which will be the same as Eq. (2.57).
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3. BOSE-EINSTEIN CONDENSATION OF MAGNONS IN FERROMAGNETIC FILMS∗

For a long time after Einstein’s prediction of the condensation for the ideal Bose-gas the only

experimentally demonstrated example of this phenomenon was the transition of liquid 4He to the

superfluid state discovered in 1938 by Kapitza [27] and Allen and Misener [28]. They found that

viscosity of 4He vanishes at temperature 2.17 K and normal pressure. F. London was the first to

propose that this phenomenon is associated with the Bose-Einstein condensation (BEC) [29]. L.D.

Landau [30] found a criterion to the excitation spectrum of a quantum Bose-liquid, that must be

satisfied in order for the liquid to become superfluid at low enough temperature. N.N. Bogoliubov

[14] extended the idea of BEC to the weakly interacting Bose-gas and found its spectrum that

indeed satisfied the Landau criterion.

It took nearly 70 years before Wieman, Cornell and Ketterle discovered two other systems

displaying BEC, both of them being laser-cooled gases of alkali atoms (potassium and sodium)

[31, 32]. They condensed at temperatures of a few hundreds nanokelvin. Later experiments

identified the quantized vortex lines in these gases driven by rotation of the gas as a whole [33].

This discovery was considered a definitive proof of superfluidity.

The beginning of this century brought new systems where BEC were observed. They were

gases of excitations (quasiparticles) rather than atomic gases or liquids, specifically: i) magnons in

a ferrite film [1]; ii) excitons-polaritons in quantum dots [34]; iii) photons in a microcavity filled

by a gas of dye molecules [35]. In the cases i) and iii) Bose-condensation proceeded at room

temperature. Zero-dimensional geometry of the condensation of photons and excitons-polaritons

disallowed the study of transport properties. The magnon condensation was instead studied in a

macroscopic film. It thus provides a good platform for studying transport properties related to

BEC.
∗Part of this chapter uses material with permission from “Bose-Einstein condensation and superfluidity of magnons

in yttrium iron garnet films” by Chen Sun, Thomas Nattermann and Valery L. Pokrovsky, 2017, Journal of Physics
D: Applied Physics, 2017, 50, 143002, Published 7 March 2017, DOI: https://doi.org/10.1088/1361-6463/aa5cfc,
Copyright 2017 by IOP Publishing
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In this chapter, we discuss BEC of magnons in ferromagnetic films. We will start with

discussing magnetic properties of the material yttrium iron garnet (YIG) on which magnon BEC

was discovered. We then talk about the experimental facts of BEC of magnons, and the theory

describing it. We also discuss an alternative classical interpretation of the magnon condensate. In

the next chapter when we consider superfluidity of magnons, the knowledge of magnon BEC will

be useful.

3.1 Yttrium iron garnet

Yttrium iron garnet (YIG) [36] is a synthetic garnet with chemical composition Y3Fe5O12. Its

crystalline structure is body-center cubic, with a lattice constant a = 1.24 nm. The structure is quite

complex – there are 80 atoms in each elementary cell. 20 of them are Fe3+ ions, which occupies

8 octahedral and 12 tetrahedral sites. Couplings between these iron ions from different kinds of

sites are antiferromagnetic, and ions in the two kinds of sites exhibit different spins. These result

in partial compensation of spins in an elementary cell, which determines YIG to be ferrimagnetic.

The average spin per elementary cell is S = 14.5 at room temperature.

YIG has a very high Curie temperature Tc = 560 K. Thus, at room temperature it is well inside

the ferromagnetic phase. Magnons in YIG has very small attenuation with a Gilbert damping as

low as α ∼ 10−4. Estimate from magnon-phonon interaction gives a characteristic attenuation

time∼ 1 µs. YIG has been used in microwave, acoustic, optical, and magneto-optical devices, e.g.

in microwave YIG filters.

With 20 magnetic ions in a unit cell, the spectrum of magnons in YIG is very complicated

[36]. But if we are only interested in low-energy excitations, we could ignore the distribution of

spins on iron ions inside a unit cell and treat each cell to have a single total spin S. Adopting this

approximation, the material can be effectively viewed as ferromagnetic, and the model described

in the previous chapter can be used to describe magnons in YIG.
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3.2 Experimental discovery of Bose-Einstein condensation of magnons

3.2.1 Basic experimental facts

In 2006, the discovery of BEC of magnons was reported in a seminal work by S.O. Demokritov

and coworkers [1]. In the experiment, they pumped the magnons using a microstrip resonator into

a film of YIG at room temperature. A microwave photon from the resonator was converted into

two magnons with opposite momenta and frequency ωp equal to 1/2 of the photon frequency. As

discussed in the previous chapter, in ferromagnetic film the magnons spectrum has two symmetric

minima at wave vectors ±Q directed along and opposite to the external magnetic field, which is

applied in the film plane. The energy gap in the magnon spectrum for thick films (2 to 6 µm in the

experiment) is roughly equal to the Zeeman energy ∆ = γH0. The values of magnetic field and the

frequency of pumped magnons were selected to satisfy the inequality ωp < 2∆. Then the decay

processes of the pumped magnons and magnons with lower energy are forbidden by the energy

conservation and only the elastic scattering of magnons is possible. At this processes the number

of magnons is conserved. It does not mean that the processes violating the conservation of number

of magnons are completely forbidden. The dipolar interaction enables thermal magnon to radiate

a low-energy magnon via Cherenkov process and inverse process of merging of a low-energy and

high-energy magnons. The energy of high-energy magnon participating in these processes must

be higher than a threshold value that is much larger than ∆. At such high energy the dipolar

interaction is much weaker than the exchange interaction. The ratio of velocities of these magnons

is very high yielding additional kinematic suppression of these processes due to small Mach angle.

Therefore, the lifetime τl of the low-energy magnons is much longer than their relaxation time

τr determined by scattering processes. The number of low energy particles is conserved during

the relaxation. Therefore, the pumping establishes a quasi-equilibrium distribution with non-zero

chemical potential µ. In the absence of pumping the equilibrium distribution of the magnons

establishes during the longer decay time (lifetime) τl. Thus, in the state of equilibrium the value

of chemical potential is µ = 0. The chemical potential of quasi-equilibrium magnon gas grows
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with the pumping power W at a fixed temperature T . At a critical value of power it reaches the

value ∆. As the power increases further, the chemical potential remains equal to ∆, and excessive

magnons go to the condensate. In the study [1] the authors indeed observed a dramatic increase of

the magnon population with minimal energy and narrowing of its line-width, much less than the

corresponding value for non-coherent magnons with the same energy.

In 2012, researchers in the same group observed an interference pattern from superposition of

two condensates at the two minima [3]. They identified the signal from condensate in the Brilloin

light scattering (BLS) [37, 38]. Scanning the laser spot along two lateral directions of the YIG

film, they have found that the intensity of the BLS signal changes periodically vs. coordinate

in the direction of magnetization (or that of the magnetic field) with the wave vector 2Q. The

BLS signal is proportional to the variation of magnetization in the light spot. This variation is

proportional to the square of the condensate wave function:

ψ (x) = ψ+e
iQ·x + ψ−e

−iQ·x, (3.1)

where ψ± =
√
N±/V e

iφ± are the condensates amplitudes at the two minima of energy, N± are

the number of magnons in each condensate and φ± are their phases, and V is the volume of the

sample. In terms of the number-phase variable we find for the total condensate density:

n (x) = n+ + n− + 2
√
n+n− cos (2Q · x + φ+ − φ−) . (3.2)

Here n± = N±/V are densities of the two condensates. In the experiment the contrast of the

interference pattern β = (nmax − nmin)/nmin was rather low (5-10%). This can be explained

by spontaneous breaking of the reflection symmetry of the two minima, which we will show by

theoretical arguments later.

28



3.2.2 Explanation of condensation at room temperature

The fact that BEC of magnons can exist at room temperature is astonishing. To understand

why, let us consider how the chemical potential is related to the total number of pumped magnons.

A simple equation for this relation was first derived in the review by Bunkov and Volovik [39].

It was based on the concept discussed previously: before the pumping begun the magnons were

in equilibrium with chemical potential equal to zero, whereas under pumping they acquire a finite

chemical potential µ. The magnon occupation number of a state with energy ε before the pumping

is f0(ε) = T/ε and becomes f(ε) = T/(ε− µ) after the relaxation. We apply the Rayleigh-Jeans

distribution since only magnons with energy ε � T are pumped. Since the occupation numbers

are increased by pumping, µ is positive. Thus, the density of pumped magnons is:

np =

∫ ∞
∆

[f(ε)− f0(ε)]ν(ε)dε. (3.3)

The magnon density of state ν(ε) at large energies ε � ∆, γM grows as
√
ε. Therefore, the

integral in (3.3) converges. The characteristic energy of pumped magnons is of the order of µ.

Eq. (3.3) determines the chemical potential µ as a function of density of pumped magnons. µ is a

monotonically growing function of np. The chemical potential µ cannot exceed the energy gap ∆.

Therefore, the density of pumped magnons defined by Eq. (3.3) does not exceed a critical value

npc determined by Eq. (3.3) at µ = ∆.

On the other hand the density of pumped magnons at a stationary pumping is proportional to

the absorbed pumping power Wp:

np =
Wpτl
V ~ωp

. (3.4)

Thus, the number of pumped magnons is uniquely determined by the pumping power. When Wp

exceeds a critical valueWpc = npcV ~ωp/τl, the difference np−npc falls into the state with minimal

energy ∆, i.e. condensate. It means that the density of the condensate is also uniquely determined
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by the pumping power.

Despite the high temperature of the normal magnons, the pumped magnons, as is clear from

Eq. (3.3) have very low energy of the order of ∆. Only these magnons participate in the BECM.

The room temperature does not interfere with the condensation because the interaction of the low-

energy with high-energy magnons is weak. It leads to non-conservation of the number of pumped

magnons in the time interval τl, which is much much longer than the relaxation time. Condensation

can only be possible if pumped magnons do not enter the high energy range. This restriction would

not be satisfied if they have a temperature different from the temperature of normal magnons as it

was proposed in the work [40].

While only the low-energy magnons contribute to the total number of magnons, it is not so

in case of energy. A formal calculation of the contribution of pumped magnon to energy yields

divergence. This shows that the pumped energy goes far to the thermal region and causes negligibly

small increase of temperature ∆T ∼ (Wpτr(T ))/C, where τr(T ) is the relaxation time of thermal

magnons and C is the specific heat of the magnon system. By the order of magnitude τr(T ) ∼

10−12 s at room temperature and ∆T ∼ 10−2 K at the pumping power 1W. As we mentioned earlier

the part of the pumping power Wp absorbed by the magnon gas is much less than the total power.

Thus, the heating effect is even less than our estimate.

Let us compare this simplified theory with the experiment by Demidov et al. [41]. It shows

that pumping of magnons into the YIG film starts when the power of the microstrip resonator

Wr exceeds some threshold value Wth. This can be expected since the process of conversion of

a photon into two magnons in the classical limit turns into the parametric resonance. It is well

known that the latter process starts with a threshold power. Therefore, only part of the resonator

power Wr − Wth goes to the pairs of pumped magnons. Indeed, the experiment confirmed that

the condensate density is proportional to Wr − Wth. However, only a small part of this power

remains with the pumped particles, the rest goes to thermal magnons, to phonons and presumably

beyond the YIG film. Indeed the estimate of the absorbed pumping power Wp using Eq. (3.4) at

reasonable experimental values np = 1018 cm−3, τ = 3 µs, half-frequency of pumping ωp = 4
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GHz, the thickness of the film d = 5 µm and two other linear sizes L = 1 mm, gives Wp = 0.001

W, whereas the powerWr−Wth in the experiment reached the value 0.33 W. Another experimental

observation of the same work [41] is that, after condensate is formed the population of the state with

Q = 0 (maximum of energy) saturates and stops to vary when the power Wr continues to grow.

This fact is in agreement with the theory, which states that after condensation, chemical potential

assumes permanent value µ = ∆. The occupation number of any non-condensate state with energy

ε acquires a permanent value equal to f(ε) = T/(ε − ∆). The third important experimental

finding of this study was that the relaxation (thermalization) time at pumping power exceeding the

threshold value, decreases with Wr −Wth growing, but after appearance of condensate it changes

much slower or becomes saturated. This is also in agreement with the theory: once the density

of low-energy particles increases, their collisions become more frequent. After the formation of

condensate the density of normal particles remains constant.

3.3 Theory of Bose-Einstein condensation of magnons

The condensate state of non-interacting magnons in a film is degenerate in contrast with

the same state in the bulk. This happens because the energy does not change redistribution

of the magnons between two minima without changing their total number in condensate. This

degeneration is lifted by interaction between magnons [4].

Let ψ± =
√
n±e

iφ± be the amplitudes of the condensates corresponding to the two minima of

magnon energy at the wave vectors ±Q, the same as in the previous section; n± and φ± are the

densities and phases of these two condensates. The magnon interaction is described by terms of

higher power than quadratic in the expansion of the energy in powers of the condensate amplitudes

and their complex conjugated values. The leading terms are cubic and of the fourth power. The

energy should conform to the requirements of translational invariance and reality. The translational

invariance requires the sum of momenta in each term of the expansion to be zero (the momenta

of complex conjugated amplitudes must be accounted with opposite sign). Since the momenta of

condensates are ±Q, there is no cubic terms that satisfy the condition for translational invariance.

For this energy we also require that the symmetry of exchange between + and − is satisfied, and
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that the interaction coefficients are real. The most general fourth power density of the interaction

energy satisfying these conditions reads:

Hint =
A

2

(
|ψ+|4 + |ψ−|4

)
+B|ψ+|2|ψ−|2

+
C

2

(
|ψ+|2 + |ψ−|2

) (
ψ+ψ− + ψ∗+ψ

∗
−
)

+
D

2

(
ψ2

+ψ
2
− + ψ∗2+ ψ

∗2
−
)
. (3.5)

Here A,B,C,D are the interaction coefficients; stars denote the complex conjugation. Fig. (3.1)

presents typical diagrams for the terms appearing in this interaction energy. The physical meanings

of the terms with coefficientsA andB are obvious: the first is the energy of interaction between two

magnons from the same condensate, the second is the energy of interaction between two magnons

from different condensates. They conserve the number of magnons. On the other hand, the terms

with coefficients C and D do not conserve the number of magnons. If only the exchange and

Zeeman interactions are taken into account, then the Hamiltonian would only contain terms that

conserve the total number of magnons. Thus, we make an important observation that the existence

of C and D terms is due to the dipolar interaction only. The coefficients C and D are small

in comparison with A and B at least in thick films, but these terms violate the U(1) symmetry

of multiplication of the wave functions with arbitrary phase factor eiφ. The coefficient D was

introduced in [42]. In terms of the density-phase variables the interaction energy reads:

Hint =
A

2

(
n2

+ + n2
−
)

+Bn+n− + C
√
n+n− (n+ + n−) cosφ+Dn+n− cos 2φ, (3.6)

where φ = φ+ +φ−. Note that the energy (3.6) depends only on one phase variable φ and does not

depend on the second variable φ̄ = φ+ − φ−. We will discuss the physical meaning of this fact at

the end of this section.

Minimization of energy (3.6) proceeds in two steps. First we minimize it over the angle φ at

fixed densities. All constants in (3.6) must be real to ensure the real value of the condensate energy.

At negative D, the minimum is reached either at φ = 0 if C is also negative or at φ = π if C is

positive. We will not consider more complicated case for positive D since calculations show that
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(a) (b)

(c) (d)

Figure 3.1: Diagram of typical process for each term in the interaction energy (3.5): (a) A : 2→ 2
process for the same condensate; (b) B : 2 → 2 process between different condensates; (c) C :
1→ 3 or 3→ 1 process; (d) D : 0→ 4 or 4→ 0 process.

D is negative for all values of the thickness and magnetic field studied thus far. Thus, the phase is

trapped at one of the two values corresponding to different states of the condensate. The transition

from the “0 state” to the “π state” proceeds along the curve C = 0 in the d-H plane. This simple

calculation shows how phase trapping emerges in ferromagnetic films. It also clearly demonstrates

that phase trapping is caused by magnetic dipolar interaction. The trapping of phase establishes

coherence between the two condensates.

After minimization over φ, the interaction energy for the densities can be obtained from (3.6)

by replacement C → −|C|, cosφ = cos 2φ→ 1. This energy should be minimized at a fixed total

condensate density n ≡ n+ + n− = n0 that is uniquely determined by the pumping power. The

result depends on the sign of a simple combination of the energy constants Γ = A−B+ |C| −D.

At Γ > 0, the symmetric phase with n+ = n− has minimal energy; at Γ < 0 the non-symmetric

phase wins. The contrast of the interference pattern in the non-symmetric condensate state equals

β =
4
√
n+n−

n+ 2
√
n+n−

=
2|C|

B − A+D + |C|
. (3.7)

The dependence of β on magnetic field has a cusp singularity at the 0-π transition curve. It

originates from the dependence of β on |C|, whereas C is a regular function of the field.
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The values of the interaction coefficients can be approximately calculated using the Holstein-

Primakoff approximation [4, 13, 15, 42, 43]. The calculations are similar to those described in

the previous chapter, except that now fourth order terms in magnon operators need to be kept.

We refer the reader to Eq. (1.9) in [42] for the explicit expressions of those coefficients (note that

in our convention the coefficients in (3.5) are defined with an additional factor of 2 compared to

theirs). Spin of the elementary cell in YIG is 20 at zero temperature and 14.5 at room temperature.

Therefore, the Holstein-Primakoff approximation is valid with precision of roughly 10%. If

calculated with this approximation coefficient A in thick films d > 0.2 µm is negative, and B

is positive [15]. It means that the magnons belonging to the same condensate attract each other

and repulse the magnons belonging to other condensate. If two other coefficients C and D would

be zero, the condensate magnons would go to one of the minima leaving the second minimum

empty. However, any non-zero value of C leads to emergence of nonzero condensate in the second

minimum. It occurs because when the value of one of the condensate densities is low, the term

with coefficient C in the condensate energy (6) is negative and large compared to the terms with

coefficients B and D.

The state diagram found in [4] with coefficient C corrected according to Salman et al. [42] is

shown in Fig. 3.2. The transitions from non-symmetric to symmetric state and from 0 to π-states

can be observed in a given film at at varying magnetic field.

The two phases φ = φ+ + φ− and φ̄ = φ+ − φ− play very different roles in the condensate

behavior. The first is trapped in quasi-equilibrium state by dipolar interaction. The second is

a Goldstone mode. According to Eq. (3.2) it shifts the interference pattern as a whole with no

change of energy. Its oscillations generate a sound-like collective excitation of the condensate

called zero-sound [4].

3.4 Classical interpretation of magnon condensate

The BEC in cooled gases and in the liquid is definitely a quantum phenomenon. It proceeds

when the thermal de Broglie wavelength assumes the same order of magnitude as the distance

between particles. However, the condensate wave function becomes a classical field with both
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Figure 3.2: The state diagram in the d-H plane. S, N0 and Nπ correspond to the symmetric state,
the non-symmetric 0 state and the non-symmetric π state, respectively. The symmetric state is
favorable at smaller d and H . The parameters are chosen as: γ = 1.2 × 10−5 eV/kOe, D = 0.24
eVÅ2, and 4πM = 1.78 kOe.

the amplitude and phase simultaneously well defined. The condensation of magnons is a purely

classical phenomenon. The condensate wave function is related to the local value of the complex

transverse spin S+(x) ≡ Sx(x) + iSy(x) by:

ψ(x) =
S+(x)√

2Sv0

, (3.8)

where v0 is the volume of an elementary cell. Thus, the existence of condensate means the

emergence of a macroscopic component of the total spin perpendicular to the average spin. Since

there exists an external magnetic field along the average spin, this component rotates as a whole

in time with angular velocity equal to Ω = ∆/~. In the frame of reference rotating in the spin

space with this angular velocity the order parameter S+(x) does not depend on time, but it is

oscillating in space being a superposition of two plane waves as follows from eq. (3.1). The
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transition to the rotating frame of reference is achieved by adding the term −µNc to the total

condensate Hamiltonian, where Nc is total number of magnons in the condensate. In the presence

of condensate µ = ∆.

Thus, it is possible in principle to solve the Landau-Lifshitz equation for magnetization, while

avoiding any wave function. This is proposed by Rückriegel and Kopietz in the work [44].

However, we believe that the language of wave function and Bose-Einstein condensation is more

adequate for this problem. The reason of the concentration of magnons at minima of the magnon

energy is the same as in the conventional ideal or weakly interacting gas of Bose-Einstein particles:

the finite “capacity” of the system in equilibrium. It means that, at a fixed temperature, the

density of particles in Bose-Einstein gas cannot exceed a maximal value corresponding to chemical

potential µ equal to the minimal energy of a particle. The wave function is a complex representation

of the classical action-phase variables that lead to simplification of the mathematical structure of

equations. The familiar idea of condensate, its flow and interference says more to physical intuition

than a rather complicated picture of time-dependent magnetization.

To illustrate how the transition to condensate wave function simplifies the problem we

demonstrate below magnetization corresponding to a simple condensate wave function of Eq. (3.2):

Sx =
√

2Sv0 [
√
n+ cos (Q · x− Ωt+ φ+) +

√
n− cos (Q · x + Ωt− φ−)] , (3.9)

Sy =
√

2Sv0 [
√
n+ sin (Q · x− Ωt+ φ+)−√n− sin (Q · x + Ωt− φ−)] , (3.10)

Sz = S − v0

[
n+ + n− + 2

√
n+n− cos

(
2Q · x + φ̄

)]
. (3.11)

Eqs. (3.9-3.11) show the meaning of the phases φ± in terms of the spin vector. The second term

in Eq. (3.11) is square of length of the perpendicular component of magnetization. It independent

of time, but is an oscillating function of coordinate x. The angle α between the perpendicular

component of local spin and x-axis depends on coordinates and time:

α(x, t) = − arctan

√
n+ sin (Q · x− Ωt+ φ+)−√n− sin (Q · x + Ωt− φ−)
√
n+ cos (Q · x− Ωt+ φ+) +

√
n− cos (Q · x + Ωt− φ−)

. (3.12)
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The complex time dependence of the rotation angle is associated with the interference of the

two condensates. If one of them, for example n− becomes zero, the rotation proceeds with a

constant angular velocity Ω independent of coordinates. The spin components in rotating frame of

references Sx′ = Sx cos Ωt − Sy sin Ωt and Sy′ = Sx sin Ωt + Sy cos Ωt do not depend on time.

The angle between this two-component vector and the x-axis is equal to

α′ = arctan

[√
n+ ∓

√
n−√

n+ ±
√
n−

tan(Q · x + φ+)

]
. (3.13)

In this equation we have employed the trapped phase φ. The upper signs correspond to φ = 0, the

lower signs correspond to φ = π.

3.4.1 Discussions

We now discuss several other points:

1. The condensates of magnons observed in YIG is formed under external pumping, thus the

condensate is formed not at equilbrium but at quasi-equilibrium. The the lifetime of magnons

is much larger than the thermalization time between magnons, so that the system could reach a

quasi-equibrium state for condensation to occur. This is quite different from the situation of BEC

of cooled atoms – there the condensate is formed at equilibrium. Thus, there has been debates

about whether the magnon condensate in YIG can indeed be called BEC [45]. But there will be

no problem if one adopt that spontaneous coherence of quasiparticles is a defining characteristic of

BEC. In [3] by observing the interference patterns between the two condensates, coherence of the

magnons has been proved. Furthermore, in [46] it was shown that the coherence is not related to

the coherent external pumping, thus it has to be spontaneous. With these observations, we believe

that it is appropriate to call the magnon condensates in YIG “Bose-Einstein Condensates”.

2. In this section when describing theoretically the formation of condensates we adopted a

model in which all magnons has the same temperature and chemical potential. This was also the

model used in the original experimental work [1]. In a later work [40] another model has been

proposed to describe the formation of magnon condensates. The idea in [40] is that the external
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pumping introduces a new energy scale, so that magnons are separated into two parts – the low-

energy part which is directly influenced by pumping, and the high-energy part which is not directly

influenced by pumping. Magnons in these two parts are taken to have different temperatures

and chemical potentials: the high-energy part has room temperature and zero chemical potential,

whereas the lower-energy part has a much higher temperature and chemical potential equal to

the gap of the spectrum. Interactions between magnons in these two parts are governed by

the so-called “evaporative supercooling” mechanism, which could be understood as similar to

evaporation of liquid into gas, in which process heat is taken away from the remaining liquid

so it is been cooled. Here because magnons in the lower-energy part have very high temperature,

this cooling mechanism is very effective to lower the energies of these magnons (thus the name

“supercooling”). This cooling from evaporation is responsible for the formation of condensates

at the bottom of the lower-energy magnons. In [40] this model is used to explain their new

experimental findings, but for our purpose the simpler model with a single temperature and

chemical potential should be sufficient.
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4. SUPERFLUIDITY OF MAGNONS IN FERROMAGNETIC FILMS∗

BEC and superfluidity are closely related phenomena. Thus, natural questions arise for the

BEC of magnons observed in YIG: can the magnon condensates behave like superfluid, and

if so what are the properties of such magnon superfluid? Experimentally, observation of this

superfluidity is still not realized. Currently there is only an indirect experimental evidence of

magnon superfluidity in YIG reported by Bozhko et al. [47]. The authors observed relaxation of

the condensate in a hot spot under the laser beam and stated that their series of curves could not be

explained without non-zero supercurrent.

The possibility of superfluidity in a magnetic system was initially proposed by E.B. Sonin

in 1978 [23]. His ideas regarding superfluidity in magnetic systems and in the exciton liquid in

semiconductors are summarized in a review article [48] (Later we will make a detailed comparison

between Sonin’s work and our work). Several other theories were proposed in this century, most of

them in the past 4 years. [49, 50, 51, 52, 53, 54]. Takei et al. [49] suggested to excite magnons in

antiferromagnets. Takei and Tserkovniak [50], as well as Duine et al. [53], proposed to use electric

current in metals to induce magnons with finite chemical potential in magnetic insulator like YIG.

These are especially interesting since they relate to thin films and small samples, which are most

important for potential technological applications.

In this chapter, we consider the possibility of superfluidity of condensed magnons in YIG.

Starting with a Hamiltonian for magnon condensates, we will first derive and examine the equations

of motion (EOMs) of the condensate amplitudes, and further for the condensate densities and

phases. We then fix to the 1D stationary situation and show by calculations that the superfluidity of

condensed magnons is indeed possible, and further that such superfluid has a rather unconventional

∗Part of this chapter uses material with permission from “Unconventional superfluidity in yttrium iron Garnet
films Physical review letters” by Chen Sun, Thomas Nattermann and Valery L. Pokrovsky, 2016, Physical Review
Letters, 116, 257205, DOI: https://doi.org/10.1103/PhysRevLett.116.257205, Copyright 2016 by APS; and from
“Bose-Einstein condensation and superfluidity of magnons in yttrium iron garnet films” by Chen Sun, Thomas
Nattermann and Valery L. Pokrovsky, 2017, Journal of Physics D: Applied Physics, 2017, 50, 143002, Published
7 March 2017, DOI: https://doi.org/10.1088/1361-6463/aa5cfc, Copyright 2017 by IOP Publishing
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behavior. For the calculations we will first use a variational method and an improved numerical

shooting method. We also estimate the relative strength of superfluid and normal currents to show

that the magnon superfluidity can indeed manifest itself, and discuss propose possible ways to

achieve this superfluidity experimentally.

4.1 Model of superfluidity of magnons

4.1.1 Hamiltonian

Our starting point of calculation of superfluidity of magnons is based on the previously

discussed theory of magnon condensates with fourth order interactions (3.5). We assume that

the condensate amplitudes ψ+ and ψ− in (3.1) are slow functions of coordinates. For quadratic

terms of the condensate amplitudes, we adopt the “effective mass approximation”, so that total

Hamiltonian for ψ+ and ψ− reads [4]:

H =

∫
d3x

[
1

2m

(
|∇ψ+|2 + |∇ψ−|2

)
− µ

(
|ψ+|2 + |ψ−|2

)
+
A

2

(
|ψ+|4 + |ψ−|4

)
+B|ψ+|2|ψ−|2

+
C

2

(
|ψ+|2 + |ψ−|2

) (
ψ+ψ− + ψ∗+ψ

∗
−
)

+
D

2

(
ψ2

+ψ
2
− + ψ∗2+ ψ

∗2
−
)]
. (4.1)

Here the 1/(2m) term is the effective mass term, and m is the effective mass of magnons at the

spectrum minima along the direction of the external magnetic field. From the spectrum along this

direction (2.70), we obtain m = 1/(6D). The chemical potential µ is a Lagrangian factor ensuring

the conservation of number of magnons in the condensate. This number is maintained constant by

external microwave pumping. Correspondingly, the average density of condensed magnons n0 is

a constant. The meaning of the fourth order terms has been explained in the previous chapter in

the paragraph after Eq. (3.5). Here we emphasize again that the C and D terms originate solely

from the dipolar interaction, which does not conserve the number of magnons. We also note that

generally D � C, thus in further considerations we will put D = 0.
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4.1.2 Equations of motion

Starting from the Hamiltonian (4.1), let’s write the equations of motions (EOMs) for

condensate amplitudes ψ±. This is achieved by taking functional differentiations i∂tψ± =

δH/δψ∗±:

i∂tψ+ = −3D∇2ψ+ +
(
A |ψ+|2 +B |ψ−|2

)
ψ+ +

C

2

[
ψ2

+ψ− +
(
2 |ψ+|2 + |ψ−|2

)
ψ∗−
]
− µψ+,

(4.2)

i∂tψ− = −3D∇2ψ− +
(
A |ψ−|2 +B |ψ+|2

)
ψ− +

C

2

[
ψ2
−ψ+ +

(
2 |ψ−|2 + |ψ+|2

)
ψ∗+
]
− µψ−.

(4.3)

Note that the EOMs of the amplitudes ψ+ and ψ− are related to each other by exchanging

all subscripts + and −. This is a direct consequence of the symmetry between the + and −

condensates in the Hamiltonian (4.1). These two equations play the same role for the gas of

magnons as the Gross-Pitaevskii equation for the gas of Bose-particles [55, 56].

The EOMs (4.2) and (4.3) can be rewritten in terms of the condensate densities n± and phases

φ± (recall that ψ± =
√
n±e

iφ±). We also define the currents as j± = (n±/m)∇φ± = 6Dn±∇φ±.

Due to the complex nature of ψ±, there will be 4 EOMs in terms of n± and φ±:

∂tn+ +∇ · j+ = C(n+ + n−)
√
n+n− sin(φ+ + φ−), (4.4)

∂tφ+ = 3D
[
∇2n+

2n+

− (∇φ+)2

]
− (An+ +Bn−)− C

2

(
3
√
n+n− +

n
3
2
−√
n+

)
cos(φ+ + φ−) + µ,

(4.5)

∂tn− +∇ · j− = C(n+ + n−)
√
n+n− sin(φ+ + φ−), (4.6)

∂tφ− = 3D
[
∇2n−
2n+

− (∇φ−)2

]
− (An− +Bn+)− C

2

(
3
√
n+n− +

n
3
2
+√
n−

)
cos(φ+ + φ−) + µ.

(4.7)

In light of the symmetry between + and −, let’s introduce the symmetric and antisymmetric

41



variables for these densities, phases and currents: n = n+ + n−, n̄ = n+ − n−, φ = φ+ + φ−,

φ̄ = φ+ − φ−, j = j+ + j− and j̄ = j+ − j−. The EOMs in terms of these new “symmetrized”

variables read:

∂tn+∇ · j = 2Cn
√
n2 − n̄2 sinφ, (4.8)

∂tn̄+∇ · j̄ = 0, (4.9)

∂tφ = 3D
∑
σ=±

[
∇2√nσ√

nσ
− (∇φσ)2

]
− (A+B)n− C (2n2 − n̄2) cosφ√

n2 − n̄2
+ 2µ, (4.10)

∂tφ̄ = 3D

(∑
σ=±

σ∇2√nσ√
nσ

−∇φ∇φ̄

)
− (A−B)n̄+ C

nn̄ cosφ√
n2 − n̄2

. (4.11)

We see that the first two equations are in the form of continuity equations. They demonstrate

that the antisymmetric density n̄ is a conserved value, whereas the local conservation of the total

density is violated, due to the source term proportional to the coefficient C in the right-hand side

of (4.8). The conservation of the antisymmetric current is a consequence of the symmetry of

the Hamiltonian with respect to the free change of the Goldstone phase φ̄. The violation of the

local conservation law for the total number of magnons in condensate is a consequence of the

fact that dipolar interaction is non-invariant under the rotation in momentum space. It virtually

turns the spin angular moment into the local rotation of the lattice and vice versa. This is why

the local conservation is violated. However, globally the number of magnons may be conserved if

the integral of the right-hand side of equation (4.8) is zero. Such opportunity may become regular

due to the remnant symmetry of the Hamiltonian φ ↔ −φ. The dissipation due to rare decays

and mergings with high-energy magnons is compensated by the pumping and does not introduce

decoherence.

4.2 One-dimensional stationary superfluid flow

The EOMs (4.8-4.11) are too complicated to be solved exactly. Let’s look at special cases to

gain some physical insight. First, let’s fix to the symmetric state, for which we have n+ = n− =

n/2. We will also take φ+ = φ− = φ/2. In this case n̄ = φ̄ = 0, and the two equations for the
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antisymmetric variables are trivially satisfied. The equations for the symmetric variables read:

∂tn+∇ · j = 2Cn2 sinφ, , (4.12)

∂tφ = 6D∇
2
√
n√
n
− 3

2
D (∇φ)2 + (A+B)n− 2Cn cosφ+ 2µ. (4.13)

If we further assume that n is a constant: n = n0, then the continuity equation (4.12) becomes:

3D
2
n0∇2φ = 2Cn2

0 sinφ, (4.14)

or

∇2φ =
4Cn0

3D
sinφ. (4.15)

If we further fix to the one-dimensional (1D) case, namely we assume that φ depends only on

one spatial coordinate, then we recognize this equation as a sine-Gordon equation with no time

dependence. Typical solutions of sine-Gordon equation are solitons. Solitons are structures where

some quantity stays almost constant during large intervals but varies dramatically in a much smaller

scale – the “soliton width”. A periodic soliton structure is illustrated in Fig. 4.1.

For the actual system of equations (4.12) and (4.13), if we assume n = const., then we would

get only trivial solutions with φ = const. But it is reasonable to expect that this system of equations

could still have nontrivial 1D solutions similar to solitons.

With this in mind, let’s look at this 1D case in more detail. Consider a sample infinite in the

direction parallel to the external field (or to the in-plane magnetization) that we define as the x-

axis. This geometry is sketched in Fig. 4.2. (Note that previously we denote this direction to be

the z-axis, but here since we are considering to the 1D case we will use the more natural spatial

coordinate x.) We assume that condensate wave functions ψ± depend only on this coordinate x, not

on other coordinates and on time. That is, we fix to the 1D stationary case. We will first consider

the symmetric state, for which we have n+ = n− = n/2, and we assume φ+ = φ− = φ/2. In this

43



L

l

Figure 4.1: Illustration of phase (red) and superfluid velocity (green) of a periodic soliton structure
in the approximation n = const. L is the period, ` is the soliton width. The velocity is proportional
to the spatial derivative of the phase.

case, the Hamiltonian (4.1) reduces to:

H = A
∫
dx

{
~2

8m

[
1

n

(
dn

dx

)2

+ n

(
dφ

dx

)2
]

+
A+B

4
n2 +

C

2
n2 cosφ− µn

}
, (4.16)

where A is the sample’s cross section area perpendicular to the x direction. In obtaining this

Hamiltonian we have written ψ± in terms of n± and φ± and then used n+ = n− = n/2 and

φ+ = φ− = φ/2. Also we have dropped the D term.

We will look for a special class of solutions which are “quasiperiodic” with a period L. It

means that the density n is a periodic function of x with the period L, whereas the phase φ is

periodic by modulus 2π:

n(x+ L) = n(x), (4.17)

φ(x+ L) = φ(x) + 2π. (4.18)
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Figure 4.2: Geometry of the consideration for 1D case. The sample is infinite in the direction
parallel to the external field H, which is taken to be the x-axis.

The solutions should satisfy the condition of a fixed average density:

1

L

∫ L

0

n(x)dx = n0. (4.19)

We now scale the density n to be n/n0, so that the average of density becomes 1. It is convenient

to introduce a new unit of length, the “soliton width” `:

` =
√

3D/(2 |C|n0). (4.20)

We also scale x to be x/` so that it becomes dimensionless. Plugging these new variables into the

energy (4.16), we find the energy per unit volume in the unit
√

3|C|Dn3
0/8:

H
V

=
1

L

∫ L

0

dx
[(n′2

n
+ nφ′2

)
+ (κ+ c cosφ)n2 − µn− E

]
. (4.21)

Here we introduced a new Lagrangian factor E to minimize at fixed change of φ per period, defined

c = sgn c, κ = (A+B)/(2|C|), and scaled µ to be (n0|C|/2)µ. Prime denotes the derivative over

x.

We further assume that φ is a monotonically growing function of x. Thus, we can introduce the
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variable φ as argument instead of x. To solve the problem of stationary flow it is necessary to find

periodic functions n(φ) and f(φ) ≡ (dφ/dx)2 with period 2π that minimize the energy and obey

the constraints of fixed averages:

∫ 2π

0

n(φ)
dφ√
f(φ)

=

∫ 2π

0

dφ√
f(φ)

= L. (4.22)

After we find such functions, the dependence φ(x) can be calculated by the inverse function:

x =

∫ φ

0

dφ√
f(φ)

. (4.23)

The energy per unit volume (4.21) in this representation reads:

H
V

=
1

L

∫ 2π

0

[( ṅ2

n
+ n
)
f + (κ− cosφ)n2 − µn− E

] dφ√
f
, (4.24)

where dots denote differentiation over φ, and we have we taken C < 0 for definiteness. Thus, now

our problem is to find periodic functions n(φ) and f(φ) with period 2π that minimize the energy

density (4.24) under constraints of fixed average density and spatial period (4.22).

We note that the Hamiltonian (4.24) as well as constraints (4.22) are invariant with respect

to the reflection φ → 2π − φ. Therefore the functions f and n corresponding to its energy

minimum must be either even or odd. But being positive, these functions can not be odd. Thus,

their Fourier expansions contain only cosmφ. This symmetry implies the global conservation law

since it requires

∫ 2π

0

n2 sinφ
dφ√
f(φ)

=

∫ L

0

n2(x) sin [φ(x)] dx = 0. (4.25)

Thus, integrating Eq. (4.8) over a period and employing parity of n, one finds that globally the

number of particles in the condensate is conserved.
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4.2.1 Variational method

To find the functions n(φ) and f(φ) in the energy density (4.24), we first employ a variational

approach [6]. We approximate the functions n(φ) and f(φ) by Fourier-series truncated after the

first two terms:

f(φ) = f0 − f1 cosφ, (4.26)

n(φ) = n0 + n1 cosφ. (4.27)

Since n > 0 and f > 0 for any φ, the 4 variational parameters f0, f1, n0 and n1 should satisfy

n0 > |n1| and f0 > |f1|.

4.2.1.1 Finite L – Periodic soliton structure

For any finite period L, we can use the two constraints (4.22) explicitly to eliminate 2 of the 4

parameters. In this case, the Lagrangian multiplier terms with µ and E in (4.24) are not necessary.

Namely, we will minimize

H
V

=
1

L

∫ 2π

0

[( ṅ2

n
+ n
)
f + (κ− cosφ)n2

] dφ√
f
, (4.28)

under the constraints (4.22). (Note that we will use the same symbol H/V as in (4.24), although

the µ and E terms are dropped.) The simplicity of the trial functions (4.26) and (4.27) allows us to

perform analytically the integral in the variational Hamiltonian (4.28). The results are written in

terms of complete elliptic integrals:

H
V

=
4

L
√
γ − 1

{√
f 1

[
n2

1 − n2
0

n1

(
n0 + γn1

n0 + n1

Π

(
2n1

n0 + n1

,− 2

γ − 1

)
−K

(
− 2

γ − 1

))
+2n0(γ − 1)E

(
− 2

γ − 1

)]
+

1√
f 1

{[
κn2

0 + (2κn0n1 − n2
0)γ +

1

3
(κn2

1 − 2n0n1)(2γ2 + 1)− 1

15
n2

1γ(8γ2 + 7)

]
K

(
− 2

γ − 1

)
−
[
(2κn0n1 − n2

0) +
2

3
(κn2

1 − 2n0n1)γ − 1

15
n2

1(8γ2 + 9)

]
(γ − 1)E

(
− 2

γ − 1

)}}
, (4.29)
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where we have introduced the ratio

γ ≡ f0

f1

, (4.30)

and theK(k),E(k) and Π(m, k) functions are the complete elliptic integrals of the first, the second

and the third kind, respectively, defined as:

K(k) =

∫ π
2

0

dθ√
1− k sin2 θ

, (4.31)

E(k) =

∫ π
2

0

dθ
√

1− k sin2 θ, (4.32)

Π(m, k) =

∫ π
2

0

dθ

(1−m sin2 θ)
√

1− k sin2 θ
. (4.33)

We then use the constraints to eliminate 2 of the 4 parameters. Putting in the trial functions (4.26)

and (4.27), the constraints (4.22) become:

4√
f1(γ − 1)

K

(
− 2

γ − 1

)
= L, (4.34)

n0 + n1γ − n1(γ − 1)
E
(
− 2
γ−1

)
K
(
− 2
γ−1

) = 1. (4.35)

From them we can express f1 and n0 in terms of γ and n1:

√
f1 =

4K
(
− 2
γ−1

)
L
√
γ − 1

, (4.36)

n0 = 1− n1

γ − (γ − 1)
E
(
− 2
γ−1

)
K
(
− 2
γ−1

)
 . (4.37)

Plugging them into Eq. (4.29), we get the expression of the energy density H/V in terms of the 2

parameters γ and n1. We then perform numerical minimization of H/V in (4.29) with respect to

γ and n1.

48



In Fig. 4.3 we show the dependences of the parameters (a) n0 and n1, (b) f0 and (c) γ =

f0/f1 on L at κ = 2. Fig. 4.3(d) demonstrates that at small L the amplitude f0 grows as L−2.

Simultaneously the ratio γ = f0/f1 tends to∞, and n1/n0 tends to zero approaching the standard

superfluidity limit. In opposite limiting case of large L the ratio γ tends to 1, whereas f0, n0 and

n1 asymptotically approach to their single-soliton values (to be discussed later).
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Figure 4.3: Dependence of the variational parameters on the period L in the symmetric phase at
κ = 2: (a) n0 and n1; (b) f0; (c) γ = f0/f1. In (d) the quantity f0/(2π/L)2 is plotted, which tends
to 1 at small L.

49



Finally the dependence over coordinate x is restored by using (4.23). The results at different

L’s are shown in Figs. 4.4 and 4.5. In plots of Fig. 4.4 only one period is shown, whereas in the

plots of Fig. 4.5 three periods are shown, which make the structures clearer. We see that at small

L, the flow looks almost uniform where the phase φ increase uniformly and n slightly modulates

around its average value. This is what we have in a traditional superfluid flow. However, at large L,

the flow is non-uniform and “soliton-like”: variations of both n and φ are confined to the “soliton”

region; outside of this region, the angle stays near integer multiples of 2π. This is the effect of

the cosφ term in the Hamiltonian (4.28), which breaks the U(1) symmetry of rotation of the phase

φ. Since minima of − cosφ are at multiples of 2π, this term has the effect to trap the angle φ

into multiples of 2π. Recalling that this cosine term comes from the C term which originates

from the dipolar interaction, we can make an important observation that the dipolar interaction

is responsible for such a soliton-like behavior of the superfluid flow. Physically, the number of

magnons is not conserved locally in a stationary flow of the condensate. This non-conservation is

associated with the transfer of spin moment to the lattice and with the inverse process induced by

the dipolar interaction.

We note that starting from Eq. (4.24) we have assumed C < 0. The situation at C > 0 is

similar, since it can be recovered by sending φ to φ+ π in (4.24). In that case, the properties of the

soliton-like motion will be the same, but the angle φ would prefer to stay at odd integer multiples

of π instead of at integer multiples of 2π.

4.2.1.2 Infinite L – single-soliton case

Our previous calculations apply to any finite L. The L → ∞ case, when there is a single

soliton, requires special treatment. In this case, we expect that in x → ±∞ we have φ = 0 or

2π and dφ/dx = 0. Thus, in the φ presentation, at φ = 0 we should have f = 0. This indicates

f0 = f1 for the 2-harmonics trial function (4.26). Besides, the constraints (4.22) reduces to:

∫ 2π

0
n(φ) dφ√

f(φ)∫ 2π

0
dφ√
f(φ)

= 1. (4.38)
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Figure 4.4: Variational solutions of the soliton structure in the symmetric state for different periods
L, at κ = 2. The density n (blue, dashed curves) and the phase φ (red, solid curves) vs coordinate
x are plotted within a single period L for: (a) L = 0.02π, (b) L = 2π, (c) L = 10π, (d) L → ∞.
In (d) a single soliton is shown in the range x ∈ (−10, 10). The depth of modulation of the density
and the phase decreases when L decreases. Note the different scales of n in different plots.

This equation is satisfied if we take n = 1 at φ = 0, which implies n0 + n1 = 1. Thus, the

2-harmonics trial functions for the L→∞ case are

f(φ) = f0(1− cosφ), (4.39)

n(φ) = 1− n1 + n1 cosφ. (4.40)
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Figure 4.5: Variational solutions of the soliton structure in the symmetric state for different periods
L, at κ = 2. The density n (blue, dashed curves) and the phase φ (red, solid curves) vs coordinate
x are plotted within 3 periods for: (a) L = 0.02π; (b) L = 10π. Note the different scales of n in
different plots.

The µ and E terms need to be included to make the integral of energy finite, because the integral

of (κ− cosφ)n2/
√
f diverges. We choose µ and E to satisfy that ∂n[(κ− cosφ)n2− µn−E ] = 0
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and (κ− cosφ)n2 − µn− E = 0 at φ = 0. These two conditions fix η = 2(κ− 1) and E = κ− 1.

Performing the integrals in the (4.24), we get:

H
A

= 4

{√
f0

[
2
√

2(1− n1)−
√

1− 2n1

n1

arcsin
√

2n1

]
+

√
2√
f0

[
1− 8

3
n1 + 4

(
1

5
+
κ

3

)
n2

1

]}
.

(4.41)

Note that in this case the energy is finite for infinite L, and the energy per unit volumeH/V is zero.

Thus, in Eq. (4.41) we have written the energy per unit area H/A instead. We then numerically

minimize (4.29) with respect to f0 and n1. The minimum for κ = 2 is at f0 = 0.7555, n1 = 0.3846,

which in turn give f1 = 0.7555, n0 = 0.6164. In Fig. 4.3(a), we see that n0 and n1 at large L indeed

approach to these single-soliton values. The observation in Fig. 4.3(c) that γ ≡ f0/f1 tends to 1

at large L is also consistent with the condition f0 = f1 as argued at the beginning of this section.

Restoring the corresponding dependence on x, we find the single soliton structure, as illustrated in

Fig. 4.4(d).

4.2.2 Shooting method

In the variational method discussed in the previous subsection, we were able to perform

analytically the integration in the energy densities, which make the calculations convenient.

However, since this method only includes 2-harmonics in the Fourier expansion, it does not claim

for a high precision. Attempts to extend the length of truncated Fourier series lead to integrals

which cannot be evaluated analytically. In this section, for the single-soliton case, we will use an

advanced approach which reduces the two variational functions (f and n) to only one function.

The price is a more complicated functional of energy that is not more a quadratic function of

derivatives. Nevertheless, numerical calculation can still be performed.

The starting point of this approach is an observation that variational equation for function f(φ)

has a simple explicit solution. Let’s rewrite the Hamiltonian (4.24) in the form:

H[n(φ), f(φ)]

V
=

1

L

∫ 2π

0

(
K
√
f +

P√
f

)
dφ, (4.42)
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where

K ≡ K (ṅ, n) =
ṅ2

n
+ n, (4.43)

and

P ≡ P (n, φ) = (κ− cosφ)n2 − µn− E . (4.44)

Minimizing Eq. (4.42) over f , we find:

f =
P

K
. (4.45)

Plugging this result into Eq. (4.42), we obtain the energy functional for the condensate density

n(x):
H[n(φ)]

V
=

2

L

∫ 2π

0

√
KPdφ. (4.46)

Equation of stationary flow following from Eq. (4.46) reads:

d

dφ

(
∂K

∂ṅ

√
P

K

)
=
∂K

∂n

√
P

K
+
∂P

∂n

√
K

P
. (4.47)

This equation can be solved numerically by the shooting method for the single-soliton case, namely

when L→∞. In this case the constraints (4.22) must be replaced by boundary conditions:

n(0) = n(2π) = 1, (4.48)

ṅ(π) = 0. (4.49)

The value of chemical potential is the same as in the quasi-equilibrium state µ = 2(κ− 1). It was

found by minimization of energy: (∂P/∂n)|φ=0 = 0. Boundary conditions for the function f read

f(0) = f(2π) = 0. Together with Eq. (4.45) it implies P
∣∣
φ=0

= 0 or equivalently E = κ−1. Thus,

for a single soliton solution P = (κ− 1)(n− 1)2 + κn2(1− cosφ). At φ→ 0, P approaches zero

as φ2. According to Eqs. (4.23) and (4.45), at x→ ∓∞, the phase φ(x) asymptotically approaches

0 and 2π, respectively, as e−const.|x|.

We solved Eq. (4.47) numerically by shooting from the point φ = π with zero derivative
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and slowly change the value n(π) until the boundary condition n(0) = 1 is satiefied. Fig. 4.6

shows several graphs of n(φ) for soliton solutions at different values of κ. The graphs of the same

functions obtained by 2-harmonics variational method are also displayed in the same figure for

comparison. They show that at κ = 2 and 3, the variational curve deviates from more precise

shooting curve, though not dramatically. Their agreement becomes much better for κ > 3. We

see that the variational approach is not too precise but works reasonably well for large enough κ

(κ > 3). The shooting method becomes unstable and leads to unphysical singularities for κ < 1.

This fact may be treated as an indication that the soliton solution does not exist in this range of κ,

though we do not have a rigorous proof of this statement.

As compared to the variational method, the shooting method provides a more accurate

treatment of the 1D superfluid flow problem. Still, there is no qualitative difference between

the results of the two approaches. Especially, calculations by the shooting method confirms the

soliton-like structure of the superfluid flow.

4.2.3 Stationary superfluid flow in the non-symmetric state

Let’s now consider the non-symmetric state that according to the theory [4] emerges in thick

films. In equilibrium the densities of the two condensates are different, i.e. n+ 6= n−. The

stationary flow requires j̄ =const. Due to the larger number of variables, the calculation is more

difficult. We found solution of this problem only for a special case j̄ = 0. This relation allows to

eliminate the variable φ̄ and obtain the effective Hamiltonian for remaining 3 variables:

H
V

=
1

L

∫
dx

[
n′2+
4n+

+
n′2−
4n−

+
n+n−
n

φ′2 (4.50)

+
a

2

(
n2

+ + n2
−
)

+ bn+n− −
√
n+n−n cosφ− µn

]
,

where a = A/C and b = B/C. If φ is a monotonically growing function of x, it is possible to

introduce the variable φ instead of x as argument as we did in previous section. After this change,
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Figure 4.6: The condensate density n vs phase φ for different choices of κ’s, for the single-soliton
case (L → ∞). The solid lines are generated by the shooting method, and the dashed lines are
produced by the 2-harmonics variational method. The curves generated by the shooting method
are more flat near φ = π compared to the variational result which includes only 2 harmonics. For
κ = 2 the shooting method gives a considerably lower minimum value of n at φ = π. Their
agreement is better for κ > 3.

the energy (4.50) assumes a form:

H
V

=
1

L

∫ 2π

0

[(
ṅ2

+

4n+

+
ṅ2
−

4n−
+
n+n−
n

)
f (4.51)

+
a

2

(
n2

+ + n2
−
)

+ bn+n− −
√
n+n−n cosφ− µn

] dφ√
f
,
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where we used the same notation f ≡ (dφ/dx)2. Minimizing energy (4.51) over f we find again

that f is determined by Eq. (4.45) but with different K and P :

K =
ṅ2

+

4n+

+
ṅ2
−

4n−
+
n+n−
n

, (4.52)

P =
a

2

(
n2

+ + n2
−
)

+ bn+n− −
√
n+n−n cosφ− µn, (4.53)

Thus, it is possible to eliminate f and get the Hamiltonian for the two densities n+ and n− that has

the same form (4.46) but with different K and P defined by Eqs. (4.52) and (4.53). Minimization

of this energy over n+, n− results in two differential equations. They must be solved with the

constraints: ∫ 2π

0

nσ
dφ√
f

=
1

2

(
1 + σ

√
1− 1

(b− a)2

)
, σ = ±. (4.54)

The shooting method for a system of two equations appears more difficult. Here, we perform the

previously used variational calculation with two harmonics in each function solution for a single

soliton. The result is shown in Fig. 4.7. They suggest that variation of density within a soliton in

the non-symmetric state is much less than in symmetric one. This result has a simple explanation:

in thick films the product n+n− is much less than n2. It leads to a strong decrease of the coefficient

at cosφ in the Hamiltonian since |C|n√n+n− ≈ |C|2n2/(B − A). Thus, the coupling of phase

to density is weakened by the factor |C|/(B − A) ∼ 1/Qd. For a 5 µm thick film this factor is

approximately 0.025.

4.2.4 Comparison with previous work

We have proposed that periodic soliton structures for superfluid flow can exist for BEC of

magnons in YIG. The priority in finding periodic inhomogeneous soliton structure for superfluidity

belongs to E.B. Sonin [23]. He has found it for easy-plane magnet (EPM) with a weaker in-plane

anisotropy. The solitons in EPM emerge as a result of violation of the U(1) invariance exactly

as in YIG. However, there are significant differences between the EPM and YIG. In the EPM the

paramagnet-ferromagnet transition plays role of the BE condensation. In YIG the condensation
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Figure 4.7: Variational single-soliton solution in the non-symmetric state at a = 1 and b = 3. Blue,
dashed curve corresponds to n+, purple, dot-dashed curve to n+, and red, solid curve to φ.

is an independent transition at any temperature below the Curie point. The magnon BEC in the

EPM is an equilibrium property (it is another name for the paramagnet-ferromagnet transition),

whereas the BEC of magnons in YIG requires pumping. There is only one condensate in the EPM

compared to two condensates in YIG-films. The superfluid flow in the EPM is a helical magnetic

structure in which the total moment rotates around hard axis. This state is rather far from the

ground state. It is not clear how it can be achieved starting from the homogeneous ground state.

In YIG the moving condensate is a relatively small transverse perturbation of magnetization. The

density of condensate (the absolute value of magnetization) remains constant in the superfluid flow

in EPM, but as our calculation show, it varies significantly in YIG. In view of these differences,

the existence of superfluid soliton structure in YIG does not follow from Sonin’s theory. Our

calculations show that indeed, the soliton structure does not exist in a range of parameter κ. It is

also different in the symmetric and non-symmetric states.
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4.3 Estimates of superfluid and normal currents

We have predicted the superfluidity of magnons in YIG, but there is an obstacle for this

superfluidity to manifest itself – the dominance of the normal magnon density over the condensed

magnon density. In the experiment [1], the density of condensed magnons is only ∼ 1% of the

density of normal magnons, and further increase of the condensate density is difficult. In this

section, by estimating the relative strength of superfluid and normal currents, we show that the

magnon superfluid, despite its much smaller density, can indeed manifest itself, since the strength

of the superfluid current can be much larger than that of the normal current. (Note that there is

another possible way to overcome the aforementioned obstacle: in an experimental setup when

a short pulse of inhomogeneous magnetic field is applied to set the magnons in motion, after the

magnetic field is switched off the normal flow relaxes after collision time, whereas the superfluid

motion continues. Thus, it is possible for the superfluid flow to manifest itself in this situation.)

The spectrum of excitations in the magnet is determined in the rest frame of the crystal, i.e.

in the lab frame. Therefore, the Landau criterion for superfluidity does not apply. Instead the

critical velocity is determined as magnon velocity at which its decay into two magnons becomes

possible. Since the kinetic energy strongly exceeds the interaction, the critical velocity is equal

to the velocity of an excitation whose energy is equal to doubled energy gap 2γH . Thus, for the

critical velocity we find vc = 2
√
DγH/~ ≈ 0.42 km/s. The excitation with this energy has wave

vector q much larger than Q.

Another type of excitations is a vortex ring. We model it as a torus with the radius of central line

R and the radius of transverse cross-section also R. The flow lines inside the torus are circles in

planes perpendicular to the central line. Since the circulation of velocity is quantized in units h/m,

the energy of the vortex ring is Ev = 1/(2m)(nh)2R ln(R/a) and its momentum is pv = π2~nR2.

The probability of fluctuation with such energy at room temperature becomes reasonably high

at R ≤ 100 nm. The critical velocity for excitation of such a vortex ring is vc = Ev/2pv =

(~/mR) ln(R/a) ≈ 1 km/s.

The condensate and the normal magnons are accelerated by the Stern-Gerlach force F =
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gµBs∇H . Due to dipolar forces the spin of a magnon s is not exactly equal to 1, but the deviation is

small in two important intervals of energy: in the vicinity of minimal energy and at magnon energy

much higher than 4πγM and γH . Under the action of Stern-Gerlach force thermal magnons with

energy ∼ T perform diffusive drift motion with drift velocity vn = Fτn/mn, where τn is the

collision time of thermal magnons and mn = ~2/ (2D) is their mass. The attenuation (level

width) of a thermal magnon can be roughly estimated as T/S2 which gives τn ∼ 10−12 s at room

temperature. Let the magnetic field to be generated by the current J flowing through a thin wire

suspended over the YIG film at a distance equal to the width of the film w and parallel to its long

side. Then the field gradient has the order of magnitude J/(cw2). Taking J = 100 mA and w = 10

µm, we find |∇H| ≈ 1 T/cm and F ≈ 10−16 g·cm·s−2. The drift velocity of normal magnons is

vn ∼ 1 mm/s, 5-7 decimal orders of magnitude less than the superfluid critical velocity. However

it is possible that the width of film is insufficient and the force can not accelerate the superfluid to

its critical velocity. At fixed F , the length necessary to reach critical velocity is lc = mv2
c/F . At

the same data lc = 1 mm. It is larger than the width of the film in our example. Then the maximal

velocity reached by the superfluid on the length w is vs =
√

2Fw/m ≈ 100 m/s, still by 5 orders

of magnitude above the drift velocity. Thus, we realistically expect that the spin superfluid current

equal to 1022−1023 cm−2s−1 is by 3-5 decimal orders larger than the normal current. This justifies

our consideration of the superfluid motion by itself, without any normal component, as we did in

previous analysis.

4.4 Possible experiments to observe magnon superfluidity

Up to now, direct evidence of the existence of superfluidity of magnons in YIG has not

been reported. In this section, we discuss possible ways to experimentally achieve and observe

superfluidity.

To achieve superfluid flow in YIG is not a trivial problem since the magnons are confined

within the sample. Stationary superfluid flow is possible in a film shaped as annulus with magnetic

field directed along its central line. The superfluid flow in such a sample can be detected by

measurement of the the Brilloin frequency shift: in a superfluid flow it changes by kinetic energy
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of a condensate magnon in comparison to unmoving condensate.

An alternative approach is to excite a propagating non-linear wave in the condensate by

applying a pulse of inhomogeneous magnetic field confined to a finite volume, for example by

a superconducting ring or a wire. The emerging wave will propagate with a constant velocity

determined by the energy transferred by the pulse. Such time-dependent flow can be registered by

BLS.

The superfluid flow may influence spin injection into a metal contacting with the YIG film

(usually Pt and Au are used) and the voltage bias in the metal induced by the inverse Spin-

Hall effect [57]. The effect based on spin-torque mechanism is proportional to the spin current

at the interface between the YIG film and metal. It can be strongly enhanced on the arrival

of the condensate wave at the interface. This phenomenon may be important for technological

applications.

The convective heat transfer similar to that in superfluid 4He is hardly possible in magnon

superfluids. The condensate density is very low compared to the total density of magnons. The

gas of magnons as a whole is highly compressible. Therefore, the motion of a superfluid magnons

causes only very weak counterflow of normal magnons. Consequently, the transfer of entropy is

almost zero.

For the technological purposes and from the point of view of basic science it would be very

useful to achieve the magnon BEC and superfluidity in small samples of YIG with the thickness

3-30 nm and other linear sizes between a few tens to 100 nm. This is technically quite challenging.

The microstrip resonator cannot be applied since it is too big. Maximal size of the film can not be

smaller than the magnon wavelength at minimum of magnon energy. In a thick film with d = 5

µm it is about 1 µm and it depends on thickness as d1/3. The minimal possible thickness is the

lattice constant 1.2 nm. The wavelength corresponding to this thickness is only 0.1 µm. However,

it may be very different if other sizes of the sample also are small.

Detection of condensate in thin and small films cannot be realized by the BLS since an optical

signal from such a small sample is very weak and optical wavelength becomes larger than the
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size of sample. Instead the detection of condensate may be based on specific spectrum of the

condensate oscillations.

Takei and Tserkovniak [49] and Duino et al. [53] proposed to apply electric current in adjacent

thin layer of heavy metal Pt or Au to pump magnons into YIG film in the amount sufficient for

appearance of the condensate. The idea is that in close proximity to the interface of the YIG film

and an adjacent metal electron flopping its spin can excite a magnon. Energy and moment from

electric current are transferred to the spin system due to Spin Hall effect. This idea is an attractive

hypothesis since surface reactions are especially effective in thin samples. However, two features

of these works make their relevance to YIG indirect. First, they use a simplified quadratic spectrum

of magnons and thus miss all effects associated with the two condensates. More importantly, the

electrons pump the magnons in a broad range of energy of the order of temperature and therefore

only 1/100 of them has a chance to relax to the condensate at magnetic field of the order 0.1 T.

4.5 Discussions

Discussions on several other issues are in order:

1. In the model we used to consider superfluidity of magnons, we made the effective mass

approximation. But in reality this approximation may not be very accurate. Certainly, near each

energy minimum there exists a range of quadratic dependence of energy on momentum. However,

specifically in YIG this range is rather narrow. Until the quadratic approximation is valid, the

same change of energy for the left and right minima corresponds to the same velocity of magnons

in the two condensates. But if the quadratic approximation fails, the velocities of magnons in

different condensates become different. For example, at magnetic field in the pulse by 30-40 Oe

on the background of the permanent magnetic field 600 Oe, the ratio of the two velocities becomes

equal to 2. Very soon such two condensates loose their coherence. It may lead to independent

propagation of the two condensates at high velocities.

2. There is another problem – what does superfluidity mean if the pumping is necessary to

support the condensate? In this respect our system is close to the laser. It may support a strong

coherence at the cost of energy consumption. YIG film and laser are essentially different in the
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character of the condensate state. In the case of laser the electromagnetic field plays the role of

condensate. It is in the state very far from its ground state. Each photon of has energy very high

compared to photon minimal energy and to the temperature of environment. In contrast to a laser,

in YIG film the magnons in condensates have energy very close to minimal energy and much less

than temperature.

3. Though the formation of magnon condensates and superfluidity requires pumping, the

stability of the condensate at superfluid motion is warranted by the conservation laws that forbid

reactions until the velocity reaches critical value. Therefore, it is reasonable to expect that once

created superfluid motion will persist for a time interval long in comparison with intrinsic time

scales without additional pumping.
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5. CONCLUSIONS AND OPEN QUESTIONS

In this work, we considered superfluidity of magnons in ferromagnetic films. We predict

that superfluid propagation in magnons is possible, and that it differs from superfluid motion in

a usual bosonic sytem. The number of magnons is not conserved locally in a stationary flow of the

condensate. This non-conservation is associated with the transfer of spin moment to the lattice and

with the inverse process, which is mediated by the dipolar interaction. We looked especially at the

1D stationary case. We find that at low average superfluidity velocity the phase changes by 2π in

the phase solitons and stays near its preferred values 2nπ or (2n+ 1) π on long intervals between

solitons. The density also changes inside the solitons and is almost constant over the long intervals

between them. This effect can possibly be observed by the BLS measurements. We demonstrated

that in the developed flow the velocity of superfluid magnons is by several decimal orders larger

than the velocity of normal magnons. As a consequence, the superfluid magnetic current strongly

exceeds the normal current. We proposed several realizations of superfluid flow in the magnon

liquid and the ways of its observation.

Below are some open questions which may worth further studies:

1. In our calculations to find the profile of superfluid flow, we applied shooting method to an

infinite period L. It will be good to generalize the shooting method to the case of finite period L,

but we haven’t found ways to do so. The difficulty is that we don’t know L in advance for each

shooting calculation.

2. Our study has focused on the behavior of the static solitons of the magnon superfluid, i.e. the

case when the superfluid density and phase do not depend on time. It is tempting to generalize the

soliton solutions to the dynamic case when the solitons are moving. The shape of solitons should

now depend on the moving velocity. For small velocities, we expect the shape to be close to that

of the soliton, and perturbative methods could be useful. Calculations for the time-dependent are

expected to be more complicated due to existence of the additional time variable.

3. In our calculations we assumed an ideal geometry which is infinite in one of the dimensions.
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In reality materials must have boundaries. When a moving soliton reaches the end of a wire, we

expect it to bounce back. It would be interesting to look at the behavior of a soliton at such

a bouncing process, and find how its shape will change. This requires to study the dynamic

generalization of solitons first.

4. In our model we include only interaction within magnons in the condensates, and assumed

that the total number of condensed magnons is fixed. But the influence of normal fluid magnons on

superfluid magnons may also be important. Thus, development of a more delicate model including

the interactions from normal magnons would be useful. For this properties of normal magnons

themselves are also needed, e.g. hydrodynamics of these magnons should be considered.

5. For the model it would also be nice to go beyond the effective mass approximation and take

into account the asymmetry in the directions near each energy minimum in the magnon spectrum.

6. More extended directions on the study of magnon superfluidity could be: its excitation

methods, its interaction with other systems (e.g. phonons), its possible applications to transferring

information, ...
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