
SYNTHESIS TECHNIQUES FOR POWER-EFFICIENT INTEGRATED CIRCUITS

A Dissertation

by

CHAOFAN LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jiang Hu
Committee Members, Duncan M. Walker

Gwan S. Choi
Tie Liu

Head of Department, Miroslav Begovic

August 2018

Major Subject: Computer Engineering

Copyright 2018 Chaofan Li

ABSTRACT

In the past few years, power efficiency has been increasingly important for integrated circuits.

As the Moore’s law effects slows down, the improvement of power consumption through scaling

of silicon process technology is hitting the limits. At the same time, IC chips are more often em-

bedded into mobile devices, which usually have no outer continuous power supply. The power

efficiency is even more critical due to the limited electricity stored in batteries of these mobile

devices. Besides, the high-performance ICs used in server farms or data centers also require im-

proved power efficiency to alleviate the heat dissipation of the chips, which causes additional cost

to lower the temperature of the facilities. The profit of crypto-currency mining is even directly

affected by the electrical energy consumption of the mining hardware including ASICs, GPUs and

FPGAs, which accounts for the largest part of the cost. Thus, more techniques for power efficiency

were exploited in recent years to achieve further power reduction in addition to that achieved by

silicon process advancements.

Among the techniques for improving power efficiency, approximate computing has been rec-

ognized as an effective low power technique for applications with intrinsic error tolerance, such

as image processing and machine learning. Existing efforts on this are mostly focused on approx-

imate circuit design, approximate logic synthesis or processor architecture approximation tech-

niques. Chapter 2 of this research aims to make good use of approximate circuits at system and

block levels. In particular, approximation aware scheduling, functional unit allocation and binding

algorithms are developed for data intensive applications. Simple yet credible error models, essen-

tial for precision control in the optimizations, are investigated. The algorithms are further extended

to include bitwidth optimization in fixed point computations. Experimental results, including those

from Verilog simulations, indicate that the proposed techniques facilitate desired energy savings

under latency and accuracy constraints.

With their flexibility in allowing reconfiguration for different applications, hardware such as

FPGAs have become increasingly preferred over ASICs as a platform for high-performance com-

ii

puting like accelerators. However, this advantage is partially defeated by the time-intensive high-

level synthesis (HLS) process and the poor controllability for the synthesized architecture. We

propose a fast mapping-based high level synthesis technique friendly to local incremental change.

It exploits the SSA (Static Single Assignment) form with array SSA extension and ϕ-function

based flow control. It first maps the SSA form based IR to a fully pipelined circuit, then alters

the circuit to a partially pipelined or nonpipelined circuit by resource sharing in an optional phase

of resource optimization. Pipeline interlocking to address the pipeline hazards is also provided,

which has better power-efficiency.

Adaptive Supply Voltage (ASV) is another power-efficient approach to achieving resilience

against process variation and circuit aging. Fine-grained ASV offers further power efficiency gains,

but entails relatively complex control circuit, which has not been well studied yet. Chapter 4 of this

research presents two control design techniques: one is rule-based control derived from network

flow optimization and the other is finite state machine control. For the FSM control, a graph-based

algorithm that automates the control vector generation is proposed. This research also presents

an iterative greedy heuristic for delay sensor deployment in ASV designs. The effectiveness of

these techniques is confirmed by experiments performed on ICCAD 2014 benchmark circuits. The

results show that our techniques achieve around 20% leakage power reduction compared to coarse-

grained ASV, while maintain about the same timing yield.

iii

DEDICATION

To my family

iv

ACKNOWLEDGMENTS

I am very grateful to my advisor Prof. Jiang hu, who guided me during my PhD and led me to

the field of computer-aided design for integrated circuits. I appreciated it very much that Prof. Hu

gave me this opportunity to explore the frontiers of CAD, especially the high-level synthesis. I am

also very grateful to Prof. Sachin Sapatnekar, who gave me many advices for the research. They

always shared their insights and experience with me during research.

I want to thank my dissertation committee members, who made their comments on my research

so that I could refine my dissertation.

I am very thankful to Wei Luo, who was a master student when I was working on chapter 2

of this research. He was very diligent and helped me finish the experiments on time. Also, I want

to thank Ang Lv who shared with me his work on gate clustering so that I could continue the

fine-grained control synthesis of adaptive supply voltage systems following his work.

Last but not the least, I want to thank my parents and my aunt, who supported me to study in

America for my PhD. Without their support, I couldn’t have the opportunity to pursue this PhD

degree.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

The chapter 2 was advised by Prof. Jiang Hu and Prof. Sachin Sapatnekar of University of

Minnesota. Part of the experiments were performed by Wei Luo. The work was published in [1].

The chapter 3 was advised by Prof. Jiang Hu, Prof. Sachin Sapatnekar. Hongbo Rong of Intel

Corporation also provided many comments.

The chapter 4 was also advised by Prof. Jiang Hu and Prof. Sachin Sapatnekar. The work was

published in [2].

Funding Sources

Graduate study was supported by a research assistantship from Prof. Jiang Hu. The research

of chapter 4 was partially supported by NSF (CCF-1255193, CCF-1525749, CCF-1525925) and

SRC (2013-TJ-2421).

vi

NOMENCLATURE

ASV Adaptive Supply Voltage

ASAP As-Soon-As-Possible

ALAP As-Late-As-Possible

ASIC Application-Specific Integrated Circuit

CTS Clock Tree Synthesis

CUDA Compute Unified Device Architecture

CPU Central Computing Unit

DAG Directed Acyclic Graph

DSE Design Space Exploration

DVFS Dynamic Voltage Frequency Scaling

EDA Electronic Design Automation

FU Functional Unit

FPGA Field Programmable Gate Array

FSM Finite-State Machine

GCC GNU Compiler Collection

GDSII Graphic Database System II

GNU GNU is Not Unix

GPU Graphic Processing Unit

HLS High-Level Synthesis

HDL Hardware Description Language

IR Intermediate Representation

ILP Integer Linear Programming

vii

LLVM Low-Level Virtual Machine

LP Linear Program

MIP Mixed Integer Programming

P&R Place & Route

RTL Register Transfer Level

SSA Static-Single Assignment

STA Static Timing Analysis

SDK Software Development Kit

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . ix

LIST OF FIGURES . x

LIST OF TABLES. xi

1. INTRODUCTION. 1

1.1 Motivation . 1
1.2 Common Synthesis Techniques . 2
1.3 High-Level Synthesis for Power-Efficiency . 4

1.3.1 HLS for Approximate Circuits . 7
1.3.2 Mapping-Based HLS for Pipelined Circuits . 7

1.4 Adaptive Circuits . 8
1.4.1 Control Circuits Synthesis for Adaptive Supply Voltage. 9

1.5 Summary of Contributions . 9

2. HIGH-LEVEL SYNTHESIS FOR APPROXIMATE COMPUTIN . 11

2.1 Introduction . 11
2.1.1 Error Control . 13

2.2 Preliminaries . 14
2.3 Analytic Error Models . 15
2.4 Knapsack-Based HLS for Approximate Computing . 21

2.4.1 Knapsack-Based Precision Optimization . 21
2.4.2 Approximation-Aware HLS . 22

2.4.2.1 Conventional List Scheduling . 22
2.4.2.2 Iterative List Scheduling . 23

2.5 ILP-Based HLS for Approximate Computing . 27
2.6 Experiment . 28

ix

2.7 Conclusion . 32

3. MAPPING-BASED HIGH-LEVEL SYNTHESIS FOR PIPELINED CIRCUITS 33

3.1 Introduction . 33
3.2 Backgrounds . 35

3.2.1 Distributed Memories . 35
3.2.2 SSA Form . 37

3.3 Phase I: Mapping . 39
3.3.1 Scheduling . 39
3.3.2 Storage Binding for Scalar Variables. 41
3.3.3 Datapath Control . 42
3.3.4 Synthesis of Array Datapaths. 43
3.3.5 Loops . 46

3.4 Phase II: Resource Optimization . 46
3.4.1 Iterative Resource Sharing . 47
3.4.2 Pipeline Interlock Synthesis . 49
3.4.3 Sharing for Loops . 51

3.5 Support for parallelization . 52
3.5.1 Array SSA and Parallelization. 53
3.5.2 Structural Recursion . 53

3.6 Experimental Results . 54
3.7 Conclusions and Future Works . 62

4. CONTROL CIRCUIT SYNTHESIS FOR ADAPTIVE SUPPLY VOLTAGE DESIGNS . . 64

4.1 Introduction . 64
4.2 Backgrounds on ASV. 66
4.3 Problem Formulation . 68
4.4 Rule-Based Control . 69
4.5 Finite State Machine Control . 70

4.5.1 Phase I: Initial Response . 71
4.5.2 Phase II: Incremental Responses for FSM . 76

4.6 Delay Sensor Deployment . 77
4.7 Experiments . 80

4.7.1 Adaptive Design Flow . 80
4.7.2 Experimental Results . 82

4.8 Conclusions . 84

5. CONCLUSION. 88

REFERENCES . 90

APPENDIX A. TRANSISTOR-LEVEL HDL FOR AN APPROXIMATE ADDER 101

APPENDIX B. TRANSISTOR-LEVEL HDL FOR AN ACCURATE ADDER. 103

x

LIST OF FIGURES

FIGURE Page

1.1 Overview of typical IC design flow . 3

1.2 Example of task graph for high-level synthesis . 5

1.3 The ASAP scheduling result of task graph in figure 1.2 . 5

1.4 The ALAP scheduling result of task graph in figure 1.2 . 6

2.1 The comparison of the accurate and the approximate adder [3] . 12

2.2 An error from an approximate adder may cancel itself along reconvergent paths. 19

2.3 (a)Task graph; (b) Conventional list scheduling results in two multipliers; (c) The
two multiplications can share one multiplier. 24

2.4 (a)Task graph; (b) Conventional list scheduling results in 3 adders for latency con-
straint of 3; (c) Two adders are sufficient. 24

2.5 Overview of the experiment flow . 28

2.6 Energy normalized with respect to All-Prcs results. 30

2.7 Error standard deviation normalized with respect to standard deviation constraints. . . 30

2.8 Energy-error tradeoff from ILP result. The MSE results are from Verilog simulations. 31

2.9 Runtime (in log scale) comparison. 32

3.1 The storage binding for code 3.2. The circuit is divided into pipeline stages indi-
cated by dashed horizontal lines. Each black font name corresponds to one register
in code 3.2 and each gray font name indicates a newly added register for pipeline
synchronization or control. Every variable has one pipeline register storing its
value. The registers in dashed rectangles, except Phi, are for data synchroniza-
tion in the pipeline. On FPGA, these registers can be implemented by configuring
look-up tables (LUT) to shift registers and thus have low cost [4]. 40

xi

3.2 Details of the shaded region in Figure 3.1 (stage 2 and 3). The AND operations
require that the enable signals such as %if.then.3 are replicated to have the
same bit-width as the arithmetic operations. The dashed arrows and boxes indicate
an alternative implementation of the Φ function where an enable signal resets the
register in a dashed box (with synchronous active-low RST) such that the value is
zero and the corresponding AND operation can be avoided. 42

3.3 Example of array SSA: arrays are propagated to different pipeline stages. 45

3.4 Example of resource sharing: the enable signals, similar to the %entry in Figure
3.1, are initialized to 0. (a) The original circuit with no sharing. (b) Two operations
sharing the same one adder. This shared adder selects inputs according to the
enable signal. The enable signal asserts when the corresponding input is valid.
If the enable signals do not assert consecutively, there is no structural hazard. A
bubble needs to be inserted between two consecutive valid inputs to avoid hazards.
(c) All operations sharing the same operator, equivalent to a loop adding 1 for five
times. 55

3.5 Example of interlocked pipelines for the same example in figure 3.4: (a) two oper-
ations sharing one operator. (b) another operation added to the periodic sharing list
sharing the same operator with the two operations in (a). The IN(a) and IT (a)
are the same as the IT and IN in (a) and are updated with Algorithm 3. 56

3.6 Diagram of the basic blocks in code 3.4: the basic blocks in red are part of the
loop, which can be shared among different loop cycles. The back edges would
also cause pipeline stall, similar to the back edges in figure 3.4. 57

3.7 Bitonic sorter: another example of structural recursion. Each line represents a
number. The arrows mean swapping the two numbers. The bitonic sorter is a
common structure for sorting in parallel. Figure courtesy of Magnus Manske. 57

3.8 Example of structural recursion. The inputs are recursively decomposed. Each box
represents a recursive structure except the upper four terminating box. 58

3.9 The throughput-power comparison among different methods. Each point repre-
sents a case. The no-array-SSA results are from modifying our HLS by removing
the use of array SSA. 61

4.1 Fine grained ASV using canary flip-flop as delay sensors for detecting process
variations and circuit aging. Dashed lines indicate timing paths. 65

4.2 Schematic of voltage interpolation [5]. 67

4.3 Network flow model for assigning sensors to adaptivity blocks. The edge cost
between block and sensor vertex is inversely proportional to the overlap between
the sensor fanin cone and the block. The red edges indicate a flow solution. 69

xii

4.4 Dominance graph for matrix (4.1) and its pruning, on the assumption that the power
overhead of b3 and b6 combined is less than that of b2. 73

4.5 Partial FSM transition diagram for control matrix (4.1). 76

4.6 The paths to FF2 are largely covered by paths to FF1 and FF3. 78

4.7 Impact of ω on the preference metric with horizontal axis for ω and vertical axis
for p. If ω > 2.6571, p3 > p2 > p1; if ω < 2.4857, p1 > p2 > p3. 79

4.8 The flow of experiments . 81

4.9 The layout of testcase b19: The power domains are divided according to the gate
clustering results . 82

4.10 Results for ICCAD 2014 benchmarks. 85

4.11 Timing yield vs. leakage power for circuit b19 with different timing constraints.
For each curve, results on the right are from tighter timing constraints. 86

4.12 Comparison among different sensor deployment methods on b19. 86

4.13 Impact of the number of sensors on b19. 87

xiii

LIST OF TABLES

TABLE Page

2.1 Existing error metrics . 13

2.2 Notations for HLS with approximate computing . 16

2.3 Verilog simulation results. 31

3.1 Storage options on Xilinx Virtex 7 series FPGAs: depth and width is when the
RAM is configured with maximal bandwidth. 36

3.2 The comparison of post-layout results obtained from our mapping phase alone
without resource optimization and a state-of-the-art commercial HLS tool. The
Sscan and Pscan are designs for sequential scan and parallel scan as described in
[6]. Bsort is a Bitonic sorter of 16 32-bit numbers [7]. SHA256 is 256-bit secure
hash algorithm fully unrolled except the outer-most loop. Designs with arrays are
marked with *. The average percentages are our mapping results compared with
the commercial tool. 59

3.3 The post-route results obtained from our HLS after the resource optimization phase,
with two variants: pipelined circuits without interlock (marked with “-”) and inter-
locked pipelined circuits (marked with “+”). The percentages are compared with
the mapping results in Table 3.2. The last column is the total HLS runtime (Phase
I + Phase II) compared with the mapping results (Phase I). 60

4.1 Area and wire length comparison of two cases for conventional design and adaptive
design . 81

4.2 Testcases; total number of gates; number of adaptivity blocks; percentage of gates
in adaptivity blocks; area overhead due to adaptivity (%A) and average number of
blocks at high VDD (#H) for rule-based and FSM control. 83

xiv

1. INTRODUCTION

1.1 Motivation

With the billions of transistors integrated on a chip, large-scale integrated circuits rely heavily

on automated synthesis techniques to build robust designs. In recent years, the ICs are often used

in mobile devices such as cell phones, tablets, and sensors. These devices are critically sensitive to

the power consumption as a result of limited battery capacity. Even for ICs with continuous power

supply such as FPGAs, the power density is an increasingly crucial constraint for the number of

transistors per unit die area. However, the demands for these high-performance ICs are soaring

with the development of applications such as deep learning and high-concurrency computing. As

the VLSI technology scaling slows down, the ICs have almost reached their performance ceilings.

Design methods for resilient or reprogrammable integrated circuits with better power efficiency

are increasingly important to achieve both high performance and low power simultaneously.

Therefore, this research aims to advance the synthesis techniques for high-performance power-

efficient integrated circuits including high-level synthesis for approximate circuits and high perfor-

mance FPGA computing, and control circuits synthesis for adaptive supply voltage (ASV) systems.

This chapter will first introduce the current challenges of common synthesis techniques, especially

high-level synthesis. Then, it will introduce approximate circuits, FPGAs, adaptive supply voltage

systems and how the synthesis techniques can be used to exploit the power-efficiency of these inte-

grated circuits. The contributions of this research can also be summarized as these three synthesis

techniques for power-efficiency:

1. Models for high-level synthesis with approximate circuits and precision constraints at the

primary outputs (PO). The approximate circuits can reduce the power while cause errors at

the primary outputs. Our proposed HLS model is able to reduce the power with bound error

at POs.

2. A fast mapping-based high-level synthesis technique targeting high-throughput pipelined

1

circuits, with a emphasis on transforming the intermediate representation of compilers di-

rectly to fully pipelined and parallelized circuits in Verilog HDL format. This technique can

substantially increase the synthesis runtime for fully or partially pipelined circuits, which

have better power-efficiency.

3. Fine-grained control circuits synthesis for adaptive supply voltage.

1.2 Common Synthesis Techniques

Synthesis in the context of electronic design automation (EDA), usually refers to automatically

generating a form of design in a certain level from a specification in another level subject to a set

of constraints. Synthesis techniques have been researched and used for decades. Due to the large

number of components involved in different levels, such as registers in the register-transfer level

and wires in the transistor level, different efficient synthesis techniques has become necessary for

modern integrated circuits design. At the point of writing this dissertation, logic synthesis is the

best known type of synthesis techniques, which transform the design from register-transfer level

(RTL) to gate-level net-list. High-level synthesis (HLS), although it has also been researched for

several decades since 1990s with early publications such as [8, 9], is not so widely-adopted as

logic synthesis is. The high-level synthesis aims to transform the programs or algorithms writ-

ten in high-level languages such as C and Haskell to hardware description languages (HDL) in

register-transfer level. Partly because the high level languages are not originally designed for use

with hardware description, high-level synthesis is rarely used for ASIC design but attracts more

attention and adoption for FPGA synthesis. The quality requirement of synthesized RTL designs

for FPGA is a little lower since they can be reprogrammed. So, if there were errors or inefficien-

cies discovered after deployed, they could be fixed later by simply repeating the synthesis process.

The cost is much lower compared with the tape-out cost of ASICs. The synthesis process for FP-

GAs thus might be repeated many times during the design space exploration (DSE), which wants

to find the best design parameters for a FPGA design. Since many developers want to use FP-

GAs as accelerators and program FPGAs like software, the synthesis runtime for FPGAs is more

2

High-Level
Synthesis

Logic Synthesis

Algorithmic Level

Register-Transfer
Level

Gate Level

Place & Route (P&R)

Layout

Verilog HDL/VHDL

E.g. Verilog Netlist

GDSII Format

C/C++/Haskell

Clock Tree Synthesis
(CTS)

Floor Planning
Timing Analysis
Power Planning

Pysical
Design

Cell Library

Scheduling

Resource
Allocation&Binding

Tape-out

Figure 1.1: Overview of typical IC design flow

3

important. These challenges and demands emerged in recent years as the general-purpose micro-

processors have encounter performance bottlenecks. Alternative computing architectures such as

GPU and FPGA are often used to accelerate computing through parallelism. Although FPGAs

are more flexible than GPU, the synthesis complexity and runtime became a serious obstacle for

FPGAs to be used by developers for a wide range of applications such as deep learning and high-

concurrency processing. These applications, if deployed on FPGAs, would be orders of magnitude

power-efficient than deployed on servers with microprocessors.

1.3 High-Level Synthesis for Power-Efficiency

High-level synthesis was originally modeled as a optimization problem. The focus of research

is on how to achieve optimized RTL design within a set of constraints. After more than two

decades, there is still no common input form or specification for HLS as Verilog HDL and VHDL

for logic synthesis. Often C or C++ are used as inputs for HLS but some other forms such as

Haskell, SystemVerilog and SystemC are also used or researched [10, 11, 12]. Therefore, many

research works often start with task graphs extracted from any high-level languages as inputs. The

task graph is modeled as a directed acyclic graph (DAG). Each node in the DAG represents an

inseparable computing task such as addition and multiplication. Each edge then represents the

precedence relationships between these computing tasks. Figure 1.2 is just such a task graph.

Starting from the directed acyclic graph, the HLS can be divided into several steps including

scheduling, resource allocation and binding. The scheduling divides the algorithmic level input

into several control steps and assign different operations to appropriate control steps. Early studies

of the scheduling proposed several simple yet effective algorithms such as as-soon-as-possible

(ASAP) and as-late-as-possible (ALAP) scheduling algorithms. Figure 1.3 and figure 1.4 show the

results of ASAP and ALAP scheduling of task graph in figure 1.2 respectively. More complex list

scheduling is also proposed along with ASAP and ALAP [13]. ASAP and ALSP can be seen as

special variants of topological ordering.

More advanced but time-consuming models for HLS such as Integer Linear Programming

(ILP) are also proposed later. As specified in [8], scheduling in HLS is modeled as a Integer

4

Figure 1.2: Example of task graph for high-level synthesis

Step 1

Step 2

Step 3

Step 4

Figure 1.3: The ASAP scheduling result of task graph in figure 1.2

5

Step 1

Step 2

Step 3

Step 4

Figure 1.4: The ALAP scheduling result of task graph in figure 1.2

Linear Programming problem with each scheduling option for each task having a corresponding

decision variable. Another work in 2006 [14] modeled the scheduling problem as solving a system

of difference constraints (SDC), which still requires a linear programming solver to solve.

These works later contributed to more attentions of high-level synthesis, especially for FPGAs.

There are some HLS frameworks for research proposed such as SPARK [15] and xPilot [16].

The latter one uses the SDC formulation of scheduling and was incorporated into Vivado Design

Suite by Xilinx as Vivado HLS [17]. Open-source HLS frameworks were also proposed such as

LegUp [18] and ROCCC [19]. These works all take C/C++ as input high-level language. Except

SPARK, xPilot, LegUp and ROCCC 2.0 all use the LLVM compiler infrastructure [20] as front-

end. The LLVM compiler framework is able transform the C/C++ inputs to LLVM intermediate

representation (LLVM IR). Then, the directed acyclic graph of operation precedence relationships

can be extracted from the LLVM IR. The LLVM compiler framework partially standardized the

input specification of HLS. After LLVM’s release, most newly implemented HLS frameworks use

it and transform the high-level languages to LLVM IR first.

6

1.3.1 HLS for Approximate Circuits

Since the demands for lower-power ICs are increasing rapidly, the approximate circuits were

proposed several years ago as a paradigm for improving power-efficiency. Approximate adder

and multiplier designs were also proposed such as [3, 21, 22]. Similar to operations with lower

precision, these designs are able to reduce the power consumption compared with traditional full-

precision circuits, but provide more accuracy than lower-precision designs. Generally, they remove

parts of the original full-precision circuits, the result then becomes inaccurate with a possibility of

error. With these recent advancements in circuits design, new requirements for high-level synthesis

emerge. It is then possible for HLS to reduce the power consumption as much as possible while

achieving reasonable precision of the final results.

This research therefore propose an ILP model and a heuristic algorithm to reach this goal [1], by

automatically choosing the proper precision option for the implementation of every operations. The

ILP model is able to get the optimal HLS results; while the heuristic algorithm delivers suboptimal

results with tenth of runtime.

1.3.2 Mapping-Based HLS for Pipelined Circuits

FPGA is known to be more power-efficient than GPU and CPU. For example, before custom

ASICs dominated bitcoin mining, FPGAs were used to replace GPUs for a short time, as they

typically can achieve slightly worse hash-rates compared with GPUs while only cost no more than

half of the power [23]. FPGAs were also used for some machine learning applications [24].

Although FPGAs have these benefits, there are several key challenges for them to be more

widely adopted as an option for low-power high-performance applications:

1. The FPGA programming is difficult than the GPU programming. With CUDA (Compute

Unified Device Architecture) introduced in 2007 [25] by NVida, the general-purpose pro-

gramming for GPU is simplified to a degree that no special training in the computer graph-

ics programming or the GPU architecture is required. However, developers still need special

knowledge of the hardware design to be able to write the Verilog HDL code or tune the

7

HLS-generated Verilog code to get better performance. This hinders software developers to

program with FPGAs.

2. The HLS softwares are generally orders of magnitude slower than software compilers, which

costs much time to do trial and error for debugging and optimization. This partly is because

the HLS aims to get optimized design and thus costs much time on optimization with limited

knowledge of the lower level hardware requirements. The software compilers, however, is

able to perform iterative and local optimizations. For instance, there are three optimization

levels for GCC, O1, O2 and O3.

3. The existing HLS tools lack support for key features required by some algorithms such as

recursion.

4. The existing HLS tools lack support for synthesizing fully pipelined and parallelized cir-

cuits, which are the key features that distinguish FPGAs from sequential processing CPUs.

Besides, these tools didn’t consider specially designed parallel algorithms, which have ad-

ditional design methodologies that are not seen in general algorithm design [26].

Due to these drawbacks of HLS tools, the industry adoptions of FPGAs for high-performance

computing acceleration are still in small-scale compared with GPUs. This research proposes a

fast mapping-based high-level synthesis technique that targets synthesizing fully pipelined and

parallelized circuits with substantially reduced synthesis runtime.

1.4 Adaptive Circuits

Adaptive integrated circuits are another type of technologies that were often used to achieve

better power-efficiency. These techniques adjust the operating parameters such as supply voltage

and frequency according to the varying conditions the IC chips might encounter, including pro-

cess variations [27], transistor aging effects [28] and work load variations [29]. Dynamic Voltage

Frequency Scaling (DVFS) is one of the most prominent among these adative circuits techniques,

which has been deployed in a wide range of CPUs for both computers and mobile devices.

8

The adaptive circuits often contain some type of sensors to detect potential operating condition

variations of the IC chip. One of the first sensor design was proposed in 2003, namely Razor [30],

which uses a shadow latch to detect timing errors. These detection results then can be used to

adjust the supply voltage and make more aggressive voltage scaling possible.

Another major question for adaptive circuits is how to tune the voltage or frequency of the

circuits. The voltage of the circuit can often be tune through body biasing [31] and voltage in-

terpolation [5]. The voltage interpolation provides several supply voltage options and divide the

entire circuits into several blocks. Different blocks then are able to choose between these differ-

ent voltage options, according to the sensor outputs. Recent works also proposed methods for

Statistical Static Timing Analysis (SSTA) [32] and gate clustering [33] for adaptive circuits.

1.4.1 Control Circuits Synthesis for Adaptive Supply Voltage

Previous control logic for adaptive voltage are simple. The voltage of entire circuits are ad-

justed simultaneously. Although this coarse-grained tuning can reduce some unnecessary power

consumption, fine-grained tuning, which divide the entire circuits into different clusters and tuning

individual cluster independently, provide even more power reduction.

In this research, we use the voltage interpolation to tune the supply voltage, and propose a

automatic synthesis method for the fine-graind adaptive supply voltage (ASV) control circuits [2].

1.5 Summary of Contributions

In this research, we explored several synthesis methods and techniques especially the high-level

synthesis techniques, which improves the power-efficiency of modern integrated circuits.

1. We propose a error model that can be integrated into the integer linear programming (ILP)

model for high-level synthesis. Based on the error model, we also propose two HLS flow

for joint high-level synthesis and precision optimization. Experiments are done on task

graphs, which can be modeled as directed acyclic graph. We also manually designed several

approximate adder and multiplier design to test our HLS flow.

2. In addition to the HLS for approximate circuits, we exploit the parallelism in hardware such

9

as FPGAs and propose a mapping-based high-level synthesis technique that transforms the

static-single assignment (SSA)-form intermediate representation (IR) to Verilog HDL design

of fully pipelined circuits. An optional phase of resource optimization is also proposed. It is

able to alter the fully pipelined circuit to a partially pipelined circuit or nonpipelined circuit.

Pipeline interlocking to address the hazards due to resource conflicts is provided, which

achieves better power-efficiency and allows more flexibility of input patterns.

3. We propose a control synthesis algorithm that can automatically generate control circuit

block used to adjust the supply voltages of different power domains. An adaptive design

flow is also developed to validate our control circuit synthesis algorithm.

10

2. HIGH-LEVEL SYNTHESIS FOR APPROXIMATE COMPUTING1

2.1 Introduction

Approximate computing is an emerging research topic for improving power-efficiency [3, 21,

34, 35, 36]. In conventional designs, datapath computations are precise for its bitwidth, i.e., the

error is restricted to those less than the least significant bit weight. We term them as per-bitwidth

precise computing. Approximate computing exploits the intrinsic error tolerance in certain applica-

tions such as JPEG compression in digital image processing [37] and weights updating in machine

learning [38], and allows occasional small errors beyond the quantization error caused by limited

bitwidth. This makes it possible to achieve further power reduction compared with per-bitwidth

precise circuits. There has been research works done for the analysis and modeling of approxi-

mate computing [39, 40, 41, 36] and the approximate circuits design [3, 21, 42]. These works help

implementing power-efficient circuits with approximate computing. One example of approximate

adder is shown in figure 2.1, compared with the accurate adder design. The transistor-level Verilog

HDL code is also attached in the appendix.

The analysis and modeling of approximate computing are mainly in the logic synthesis level.

The increasing complexity of integrated circuits prompts us to explore automated system-level de-

sign and high-level synthesis for approximate computing. High level decisions usually generate

large impact to the overall system performance and power. Given a rich body of low/circuit level

approximation techniques, how to efficiently utilize them at system level is of great importance

but not well studied yet. In [39], an automated design space exploration technique is introduced to

choose between approximate and per-bitwidth precise implementations for each operation. How-

ever, it pays little attention to scheduling and resource allocation/binding algorithms, which are the

core techniques in HLS.

This research attempts to find techniques that make efficient use of approximate circuits at

1Reprint with permission from “Joint Precision Optimization and High-Level Synthesis for Approximate Comput-
ing” by Chaofan Li, Wei Luo, Sachin S. Sapatnekar and Jiang Hu, 2015. Proceedings of the 52nd Annual Design
Automation Conference, Article 104, Copyright 2015 by the authors.

11

(a) One accurate adder design (b) One approximate adder design

Figure 2.1: The comparison of the accurate and the approximate adder [3]

system/block level by considering them in high-level synthesis. While conventional HLS mostly

emphasizes performance, power and area, the notion of approximate computing requires error

control especially, since the error incurred by approximation cannot be too large. Existing error

models for approximate computing [40, 43, 41] are mostly targeted to post-design analysis and

very difficult to be used within optimizations. In this research, we first study optimization-friendly

error models that can be integrated into the HLS flow. Then, we propose and investigate two

HLS approaches that cover scheduling, Functional Unit (FU) allocation/binding together with ap-

proximation assignment. We focus on data-intensive applications as opposed to control-intensive

applications since approximate computing mostly occurs at datapaths. The two HLS approaches

are as follows:

1. An ILP (Integer Linear Programming) formulation for simultaneous precision optimization

and high-level synthesis including scheduling and FU allocation and binding.

2. A multiple choice multiple dimension Knapsack formulation is introduced for precision opti-

mization that concurrently considers approximation selection and bitwidth optimization, fol-

lowed by an iterative list scheduling heuristic is developed to perform simultaneous schedul-

ing, FU allocation and binding with consideration of approximation.

12

2.1.1 Error Control

The error control in approximate computing is similar to the bitwidth optimization. The differ-

ence is that for bitwidth optimization, the inaccuracy or error incurred by truncation or rounding

is expected and certain, while the error caused by approximate circuits is unexpected. For a cer-

tain computation, the result might be accurate or inaccurate. Research for bitwidth optimization

has been performed for at least a decade [44, 45], where bitwidth options of each operation is se-

lected to minimize implementation cost subject to precision constraints. Bitwidth optimization has

also been studied together with HLS [46, 47]. The HLS and bitwidth optimization interact with

each other but are considered separatedly. In per-bitwidth precise designs, the quantization error

analysis must be accurate and thus is too complex to be incorporated within HLS. However, the

requirement for accuracy is less strict in approximate computing. Thus, we integrate bitwidth op-

timization and approximation assignment with HLS such that the solution space is searched more

thoroughly. The approximate functional units are considered together with functional units with

lower precision.

Error Metric Definition

Error Rate ER =
∑

Xs.t.Oappx(X)̸=Oref (X) Pr(X)

Error Significance ES = E[Oappx(X)−Oref (X)]

Signal-Noise Ratio SNR = E[
O2

ref (X)

[Oappx(X)−Oref (X)]2
]

Average Relative Error Significance ARES = E[
Oappx(X)−Oref (X)

Oref (X)
]

Mean Squared Error MSE = E[|Oappx(X)−Oref (X)|2]

Maximum Error MAXE = max[|Oappx(X)−Oref (X)|]

Table 2.1: Existing error metrics

13

In previous research works, many error metrics have been proposed to measure the inaccuracy

caused by either bitwidth optimization or approximation. Table 2.1 summarizes these metrics.

In this research, we propose a variance-based error model that is very simple to use in optimiza-

tions. It is enhanced by error sensitivity to capture structural correlations in error propagation. Its

credibility is validated by Verilog-based Monte Carlo simulations. The proposed techniques are

evaluated by simulations on benchmark applications including Verilog simulations. The results

confirm the effectiveness of our techniques.

2.2 Preliminaries

The input to the our methods is a task graph or dataflow graph G(V,E) where the node set V is

composed by disjoint subsets of primary inputs PI , computation operation nodes V̂ and primary

outputs PO, and the edges E indicate data dependencies. Since we only consider data paths, there

are no loops. This graph can be modeled as Directed Acyclic Graph (DAG). Each node ω ∈ V

has an operation type τω, such as addition and multiplication. One example of such task graph is

shown in figure 1.2.

In approximate computing, a key part is precision control. When there are multiple approxima-

tion options, e.g., the approximate adder can be implemented with different numbers of imprecise

bits, we need to decide how to choose among different approximate implementations. Further, ap-

proximate implementation can be considered together with bitwidth optimization, which decides

how many bits are utilized in implementing a computation. The conventional bitwidth optimiza-

tion consists of two parts: one that decides the data range and the other that affects the computing

precision. We focus on the precision part as it coheres better with approximate computing.

For each operation type τ , there is a set of implementations Iτ = {F ϕ1
τ , F ϕ2

τ , ...} of different

precisions ϕ1, ϕ2, ... and we use I⪰ϕ
τ to represent the subset in Iτ that has at least precision ϕ.

The precision optimization is to find the lowest precision level ϕ(ω) for each ω ∈ V such that the

system precision specification is satisfied.

The HLS in this work considers FU allocation, binding and scheduling. An Functional Units

(FU) is an instance of certain operation implementation. Binding is to associate an operation

14

ω ∈ V with an FU instance f of implementation F ∈ Iτω and we also use the notation F (ω)

and f(ω) to tell the implementation and FU instance for ω, respectively. We allow operation ω

to be bound to an FU of precision higher than ϕ(ω) in order to encourage FU sharing, i.e., ω can

be bound to any instance of F ∈ I⪰ϕ(ω)
τω . Given a latency constraint Q, the scheduling is to find

start time 0 ≤ s(ω) < Q − ΛF (ω), ∀ω ∈ V , where ΛF (ω) is the execution latency for the FU of ω.

When we try to bind/schedule an operation but there is no corresponding FU available, a new FU is

allocated. Thus, the allocation is decided along with binding and scheduling. The overall objective

is to minimize total leakage energy consumption while latency and system precision constraints

are satisfied. The extension to include dynamic energy is not difficult. Leakage energy is also

highly correlated with FU cost, which is a typical objective function in conventional HLS.

The notations can be summarized in table 2.2.

2.3 Analytic Error Models

If not carefully used, approximation may result in errors that are extravagant and beyond ac-

ceptable level. Hence, precision control and error models are of critical importance for approxi-

mate computing. An error model should quantify the difference between the precision of a system

implementation and the precision specification. If a model is to be employed within optimization

algorithms, i.e., to guide each solution search step during optimization, it must be simple to com-

pute as it would be called very frequently. Meanwhile, it must be credible and close to accurate

analysis.

The work of [40] attempts to find a couple of error models that do not rely on time consum-

ing simulations. One is based on interval arithmetic, which can be overly pessimistic, and the

other is based on affine arithmetic, which has poor storage scalability. Moreover, both techniques

entail lookup tables in error propagation, which is restrictive to use in optimizations and is hard

to integrate into the HLS integer linear programming (ILP) models. Error rate [41], which is the

probability that an approximate result is different from its precise counterpart, is simple to use

with ILP by taking logarithm since the logarithm of error rate can be summed together to get the

error rate at the primary outputs. The ILP needs only to constrain the error rate at the primary out-

15

G(V,E) The task graph (modeled as a directed acyclic graph) G

with operation set V (modeled as the vertex set of the DAG) and

precedence relationship set E (modeled as the edge set of the DAG)

PO ⊆ V The set of operations that are also primary output

V̂ ⊆ V The set of operations that are not primary output

ω ∈ V A certain operation in the operation set V

τω The operation type of the operation ω. e.g., addition and multiplication

Iτ The set of implementations of the type of operation

F ϕ1
τ ∈ Iτ A certain implementation for operation type τ with precision ϕ1

I⪰ϕ
τ ⊆ Iτ Implementation subset for operation type τ with at least precision ϕ

ϕ(ω) The lowest precision level for ω such that the system precision specification is satisfied

F (ω) The implementation of an operation ω

f(ω) The FU instance of the implementation of operation ω

Q The latency constraint

ΛF (ω) The execution latency for the FU implementation F (ω) for an operation ω

s(ω) The start time of an operation ω

ϵ Error of a certain operation or value

µ(ϵ) Mean of the error

ν(ϵ) Variance of the error

Table 2.2: Notations for HLS with approximate computing

16

puts. However, it only addresses error frequency without attention to error magnitude. A variance

based error model is described in [45]. However, it neglects structural correlations among signal

propagations, which can be quite remarkable and it doesn’t consider the approximate circuits and

HLS.

We now discuss how errors are propagated in a couple of typical operations. Consider addition

operation y = a + b and let errors of a, b, the addition and s be denoted by ϵa, ϵb, ϵ+ and ϵy,

respectively. Then, the approximate addition can be represented by

y + ϵy = (a+ ϵa) + (b+ ϵb) + ϵ+. (2.1)

Likewise, the error propagation in multiplication p = a× b is described by

p+ ϵp = a · b+ aϵb + bϵa + ϵ×���+ϵaϵb. (2.2)

For the sake of simplicity without significant loss of accuracy, we neglect the second order error

ϵaϵb.

We propose an error model where each error ϵ is treated as a random variable. Then, an error

can be characterized by its mean µ(ϵ) and variance ν(ϵ). We argue that the mean error µ(ϵ) at

a system/block output under the operations of approximate computing is systematic and can be

compensated by a constant offset. Then, the overall computation precision is determined by the

variance ν(ϵ).

Lemma: If an error ϵ is a random variable, its variance after the constant compensation is

equivalent to the Mean Squared Error (MSE).

Definitions:

MSE(ϵ) = E(ϵ2)

ν(ϵ) = E[(ϵ− µ(ϵ))2]

17

Proof:

ν(ϵ) = E[(ϵ− µ(ϵ))2]

= E[ϵ2 − 2µ(ϵ)ϵ+ µ2(ϵ)]

= Eϵ2 − 2µ2(ϵ) + µ2(ϵ)

= Eϵ2 − µ2(ϵ)

= MSE(ϵ)− µ2(ϵ)

MSE is a common error model in approximate computing [41] and equivalent to Peak Signal

Noise Ratio, which is employed in [3, 34]. According to Equations (2.1) and (2.2), the error of

system output is a linear combination of the operation errors. The variance of a linear combination

of random variables X1, X2, ..., Xn is

ν(
n∑

i=1

kiXi) =
n∑

i=1

k2i ν(Xi)

���������������

+2
n∑

i=1

n∑
j=i+1

kikjcov(Xi, Xj), (2.3)

where ki denotes constant coefficient and cov(Xi, Xj) is the covariance between Xi and Xj .

The overall system error is a composite effect due to error generation, like the ϵ+ in Equation

(2.1) and ϵ× in Equation (2.2), and error propagation like ϵa and ϵb in Equation (2.1) and (2.2). The

error generations among different operations are largely independent of each other, except a rare

case where two operations use the same implementation and the same input data. Therefore, we

drop the covariance term in our model. This simplification also helps to avoid nonlinear terms of

decision variables in optimization.

Error propagations exhibit strong structural correlations that cannot be ignored. For example,

an error from the approximate adder in Figure 2.2 is propagated along two paths and it is subtracted

in the upper path. When the two paths reconverge, the error from the lower path is canceled by the

one propagated along the upper path. We propose the concept of error sensitivity (ES) to capture

the first order effect of such structural correlation. For a single error ϵω from operation ω ∈ V̂

18

+

+

-

+
error

Approx.

Figure 2.2: An error from an approximate adder may cancel itself along reconvergent paths.

and the error ϵω,o incurred by ϵω at a primary output o ∈ PO, the error sensitivity is defined as

ESω,o =
ϵω,o

ϵω
. Then, the error variance of an output o ∈ PO can be expressed as

ν(ϵo) =
∑
∀ω∈V̂

ES2
ω,o · ν(ϵω). (2.4)

Please note that ES is squared here like the coefficient k in Equation (2.3).

The ES of each node ω ∈ V̂ can be obtained through an extension to depth first search (DFS)

of G. If all operations are addition, ϵω,o is simply n × ϵω, where n is the number of distinct paths

from node ω to output o, and thus ESω,o is n. If the error ϵω experiences a scaling ×K operation

along one of the paths to o, ESω,o is (n− 1) +K. If it is multiplied by another variable, the error

propagation is approximated by scaling of an empirical value. Given a task graph, the DFS-based

ES estimation is performed once as a pre-processing. The pseudo-code for algorithm is shown in

algorithm 1.

19

1 Error_Sensitivity(G(V,E)) begin
2 foreach ω ∈ V, o ∈ PO do
3 ESω,o ← 0
4 end
5 foreach v ∈ V do
6 DFS(v)
7 end
8 end
9 DFS(v) begin

10 if v is visited then
11 return
12 else if v == o ∈ PO then
13 ESv,o ← 1
14 else
15 foreach edge (v, w) ∈ E do
16 foreach o ∈ PO do
17 DFS(w)
18 if w is scaling ×K then
19 ESv,o ← ESv,o + ESw,o ×K
20 else if output of v is subtracted in w then
21 ESv,o ← ESv,o − ESw,o

22 else if output of v is added in w then
23 ESv,o ← ESv,o + ESw,o

24 else
25 ESv,o ← ESw,o

26 end
27 end
28 end
29 end
30 end

Algorithm 1: Error sensitivity computation.

20

2.4 Knapsack-Based HLS for Approximate Computing

We describe a sequential heuristic that first decides precisions, considering both approximation

selection and bitwidth optimization, and then performs a list scheduling-based HLS algorithm with

consideration of approximation.

2.4.1 Knapsack-Based Precision Optimization

In the simplest case, each operation ω ∈ V has only one approximate implementation, i.e.,

|Iτω | = 1. A binary decision variable xω ∈ {0, 1} tells if to choose approximation for ω or not. If

the energy saving for using approximation at ω is Ψω, we wish to maximize the total energy savings

subject to error variance constraint at the output. If there is a single output at G, the formulation is

maximize
∑
ω∈V̂

Ψω · xω (2.5)

s.t.
∑
ω∈V

ES2
ω · ν(ϵω) · xω ≤ νB (2.6)

where νB is the error variance bound at the output. This formulation is the well-known 0-

1 knapsack problem. Note that inequality (2.6) has a linear form as a result of removing the

covariance term in Equation (2.3).

If there are more than one primary output, for example, k primary outputs, the problem be-

comes a k-dimensional knapsack problem:

maximize
∑
ω∈V

Ψω · xω

s.t.
∑
ω∈V

ES2
ω,o · ν(ϵω) · xω ≤ νBo ∀o ∈ PO

xω ∈ {0, 1} ∀ω ∈ V

When we consider multiple approximation implementations, simultaneous bitwidth optimizations

and multiple output nodes, the above formulations can be extended as a Multiple choice Multiple

21

dimension Knapsack Problem (MMKP). In MMKP, a set of items are partitioned into n classes and

k dimensions. One needs to choose exactly one item from each class such that the overall benefit is

maximized while the capacity constraint of each dimension is satisfied. To our case, each operation

ω ∈ V̂ is a class, which corresponds to a set Iτω of implementations, and each dimension is for

one output o ∈ PO with error variance bound νBo . The decision variable becomes xω,F ∈ {0, 1},

which tells if to choose F ∈ Iτω for operation ω ∈ V̂ . The formulation is:

maximize
∑
ω∈V

∑
F∈Iτω

Ψω,F · xω,F

s.t.
∑
ω∈V

∑
F∈Iτω

ES2
ω,o · ν(ϵω,F) · xω,F ≤ νBo , ∀o ∈ PO

∑
F∈Iτω

xω,F = 1, ∀ω ∈ V

Please note the set Iτω includes implementations of different bitwidths, different approximation

and their combinations for operation type τω. As such, bitwidth optimization and approximation

selection are carried out in an integrated manner. We solve this MMKP problem using an ILP

solver. The result tells the lowest precision ϕ(ω) for each node ω ∈ V such that the overall system

precision specification is satisfied. Please note the ϕ(ω) is not a commitment but a guidance to the

subsequent HLS.

2.4.2 Approximation-Aware HLS

2.4.2.1 Conventional List Scheduling

One popular heuristic for HLS is the list scheduling [46, 9], which has two variants: one is to

minimize resource cost subject to latency constraint and the other is to minimize latency subject

to resource constraint. We take the former variant as a basis due to its similarity to our problem

formulation, and make a remarkable extension to take approximation/precision into account. The

list scheduling handles FU allocation/binding as well.

The core part of conventional list scheduling is preceded by ASAP (As Soon As Possible) and

ALAP (As Late As Possible) schedulings. For each node ω ∈ V̂ , the lower (upper) bound of its

22

start time tω (t̄ω) is its ASAP (ALAP) schedule. Then, the range of its schedule is initially [tω, t̄ω].

Next, the core algorithm is a one-pass topological order traversal of the task graph G. During the

traversal, a ready list maintains the nodes whose precedent nodes are either in PI or have already

been scheduled. Among all nodes in the ready list, the one ω ∈ V̂ with the minimum t̄ω is selected

to be scheduled. If an FU f that implements ω has already been allocated and is available in

[tω, t̄ω], then ω is bound to f and scheduled to the earliest available time of f in [tω, t̄ω]. If no such

FU can be found, a new FU is allocated and bound to ω. This procedure is repeated till all nodes

are scheduled.

When approximation/precision is considered, a binding has multiple implementation options

of asymmetric compatibility. That is, a low precision operation can be bound to a high precision

FU of the same type, but not vice versa. This creates a subtlety that makes the conventional

list scheduling inefficient. Consider the example in Figure 2.3 where an adder delay is 1 and a

multiplier delay is 2. In conventional list scheduling, the approximate multiplication is first bound

to an approximate multiplier and later a precise multiplier must be allocated and bound to the

precise multiplication, as shown in Figure 2.3 (b). However, the two multiplications can share a

single precise multiplier as in Figure 2.3 (c).

Even if approximation is not considered, the conventional list scheduling may be inefficient due

to its myopic nature. This is illustrated by the example in Figure 2.4, where the latency deadline is 3

and an adder delay is 1. In the conventional scheduling, when nodeB is considered for scheduling,

it can be bound to Adder1 without violating latency constraint. Then, node C can no longer use

Adder1 due to the latency constraint and Adder2 is allocated. In the last time step, all of nodes D,

E and F must be scheduled to satisfy the latency constraint. Overall, three adders are allocated.

However, one can see that actually only two adders are necessary, as shown in Figure 2.4 (c).

2.4.2.2 Iterative List Scheduling

In order to solve the aforementioned problems, we propose two significant changes to the list

scheduling and show the overall pseudo code in Algorithm 2. We first change the algorithm to be

iterative instead of one-pass graph traversal. The iterations are shown as the while loop in step 7,

23

+ X

+

X

Approx.

Approx.
+

+

X

X
Precise

Adder Multiplier 1

Multiplier 2

+

+

Adder Multiplier

X

X

(a) (b) (c)

A

B

C

D

A

B

C

D

D

C

Figure 2.3: (a)Task graph; (b) Conventional list scheduling results in two multipliers; (c) The two
multiplications can share one multiplier.

+ +

+ +
+

AB
C

D E

F

+

+ +

+ + +

A

B C

D E F

+ +

+ +

+ +

(a) (b) (c)

A B

C D

Adder1 Adder2

+

Adder3 Adder1 Adder2

E F

1

2

3

Figure 2.4: (a)Task graph; (b) Conventional list scheduling results in 3 adders for latency constraint
of 3; (c) Two adders are sufficient.

24

where F i indicates the set of FUs allocated in iteration i. The first iteration generates the initial

FU allocation and the subsequent iterations try to reduce the FU allocation.

1 Approximation_Aware_HLS(G(V,E)) begin
2 foreach ω ∈ V̂ do
3 tω ← ASAP_schedule, t̄ω ← ALAP_schedule
4 F0

τω ← ∅ // Initialize allocated FUs for τω
5 end
6 i = 0
7 while i ≤ 1 or |F i| < |F i−1| do
8 i++

9 foreach ω ∈ V̂ do
10 F i

τω ← ∅
11 end
12 Initialize Ready_List from PI
13 while Ready_List ̸= ∅ do
14 ω ← node with min t̄ in Ready_List

15 Candidatesi−1 ← f ∈ F⪰underlineϕ(ω),i−1
τω & free in [tω, t̄ω]

16 Candidatesi ← f ∈ F⪰ϕ(ω),i
τω And free in [tω, t̄ω]

17 if Candidatesi−1 ̸= ∅ or Candidatesi ̸= ∅ then
18 if ΥCandidatesi−1

≺ω < γ · UpsilonCandidatesi−1 then
19 Find f̂ ∈ Candidatesi−1 with min start time
20 break tie with max Υ

21 else
22 Find f̂ ∈ Candidatesi with max Υ
23 break tie with min start time
24 end
25 else
26 Allocate f̂ of F

ϕ(ω)
τω

27 end
28 F i

τω ← F
i
τω ∪ {f̂}, f(ω)← f̂ // binding

29 s(ω)← earliest available time for f̂ in [tω, t̄ω]

30 Update Ready_List, update [tω, t̄ω],∀ω ∈ V̂

31 end
32 end
33 end

Algorithm 2: Algorithm for approximation aware HLS.

The second and more important change is step 15-24. In step 15 and 16, a set of candidate FUs

25

are identified from the FUs F⪰ϕ(ω)
τω that are allocated in current and the previous iterations. The

“free in [tω, t̄ω]" means that the FU is available from a time in [tω, t̄ω] to an extent long enough to

accommodate one complete operation on the FU. The selection of FUs among the candidates is

based on two factors. (i) Early start time: if an operation is scheduled to start early, greater slack

(or mobility) is left to subsequent nodes, which consequently have greater chance to share FUs and

reduce the number of FUs. (ii) Utilization: if we move operations from FUs with low utilization

to those with high utilization, there would be greater chance to empty some FUs.

We define utilization ΥF of a set F of FUs as the ratio of the total time the FUs are used versus

the total latency multiplied by the number FUs in the set. For example, the utilization ofAdder3 in

Figure 2.4 (b) is 1
3

and the utilization for all three adders is 6
3×3

. We also define ancestor utilization

ΥF
≺ω with respect to operation ω ∈ V̂ as the ratio of the total time the FUs in F being used by

ancestor nodes of ω versus the wall-to-wall time of these uses multiplied by the number of FUs in

F .

Ideally, we wish all FUs are fully and equally loaded by operations. In other words, at any

specific time step, the FU utilization is preferred to be equal to the overall utilization among all

FUs. In step 18, we choose the utilization for all candidates ΥCandidatesi−1 scaled by a correction

factor γ as the target. If the utilization of candidate FUs by ancestor nodes of ω is less than the

target, the utilization so far is relatively low and we prefer to schedule ω as early as possible.

Otherwise (step 22), we only use FUs allocated in current iteration and prefers to squeeze the

operation into the FU with high utilization. Steps 20 and 23 tell how break tie.

Now let us see how our algorithm solves the case of Figure 2.3. After the first iteration, as

in Figure 2.3 (b), one approximate multiplier and one precise multiplier are allocated. In the sec-

ond iteration, when node C is considered, both multipliers are candidates and the corresponding

ΥCandidates1 is 1
2
. As there is no node preceding C, we go to branch of step 19. Since both multi-

pliers can be scheduled to time step 1, we break tie according to utilization. Excluding operation

C, the utilization of the approximate multiplier is 0 while the utilization of the precise multiplier

is 1
2
. Thus, node C is bound to the precise multiplier and the approximate multiplier is no longer

26

used in the second iteration.

For the example in Figure 2.4, we reach (b) after the first iteration. When we try to schedule

node B in the second iteration, the ΥCandidates1

≺B means the utilization of Adder1 in time step 1,

which is 1
3
. This is less than the overall utilization of 2

3
and therefore we go to step 19 to bind B

with Adder2 and start B at time step 1. Eventually, the second iteration would reach a result like

Figure 2.4 (c).

2.5 ILP-Based HLS for Approximate Computing

Integer Linear Programming is an early high-level synthesis formulation proposed in [8]. To

integrate the precision optimization with the ILP model for high-level synthesis, we simply add

error constraints for every primary outputs. Since the error sensitivities can be accumulated to-

gether at the primary outpus, there is no need to constrain every internal operations. Then, The

precision optimization, scheduling, FU allocation and binding can be performed simultaneously

through ILP:

Min
∑

F LF · uF ·Q (2.7)

s.t.
∑

0≤t<Q

∑
F xω,t,F = 1, ∀ω ∈ V (2.8)∑

t

∑
F xω,t,F · t− s(ω) = 0, ∀ω ∈ V (2.9)

s(v) +
∑

t

∑
F xv,t,F · ΛF ≤ s(ω), (v, ω) ∈ E (2.10)

s(o) ≤ Q, ∀o ∈ PO (2.11)∑
t|t≤t̂<t+ΛF

∑
ω∈V xω,t,F ≤ uF ≤ UF , 0 ≤ t̂ < Q, ∀F (2.12)∑

ω∈V
∑

t

∑
F ES

2
ω,oν(ϵF)xω,t,F ≤ νBo ,∀o ∈ PO (2.13)

The latency constraint is denoted as Q and thus all operations must be executed in the time range

0 ≤ t < Q. Decision variable xω,t,F ∈ {0, 1} tells if operation ω ∈ V̂ is scheduled to start at time t

and bound to an FU of implementation F . The leakage power and latency of implementation F are

represented by LF and ΛF , respectively. The number of FUs of implementation F being allocated

27

Data Flow Graph (DFG) is a
Directed Acyclic Graph (DAG)

in Graphviz’s *.dot format

Input

Parsed and analyzed

ILP model Knapsack model

Precision

Output
Conventional

List Scheduling

Output

CPLEX solver

Input

Precision choices
of each operation

Iterative
List Scheduling

Output

DFG

Functional representation in Verilog

Synopsys VCS

Output including scheduling, binding, and estimated
error statistics at primary outputs

Simulated with random normal distributed
inputs, get the error statistics at primary

outputs, which are compared to the
estimated error statistics.

Simulation

Figure 2.5: Overview of the experiment flow

is uF and UF is a constant upper bound for uF . The start time of operation ω is denoted by s(ω).

The objective here is to minimize the total leakage energy. Constraint (2.8) ensures that each

operation is scheduled to only one time and bound to only one FU. Inequality (2.10) is the prece-

dence constraint and inequality (2.11) is the latency constraints at PO. The FU allocation is realized

through inequality (2.12). The last constraint is to bound variance at each PO node.

2.6 Experiment

We implemented gate level designs of approximate adder [3] and approximate multiplier [21],

along with 24-bit, 28-bit and 32-bit precise adder/multipliers using 15nm technology [48]. The

full adder Verilog HDL design of approximate adder in [3] is included in appendix 1. Energy

and latency are characterized through SPICE simulations while error variance is obtained through

Verilog-based Monte Carlo simulations using Synopsys VCS [49]. The experiments are performed

on a set of MediaBench applications [50] and some other common applications like FIR, IIR and

28

ARF, each of which has about 10 to 100 nodes. The ILP and Knapsack problems are solved by

the CPLEX Optimizer [51]. Since there is no previous work on scheduling/binding considering

approximate computing, we compare the following methods:

• All-Prcs: all FUs take the most precise implementation upon the conventional list scheduling

result.

• All-Apprx: all FUs choose an approximate implementation upon the conventional list schedul-

ing result.

• K-LS: our Knapsack based precision optimization followed by conventional list scheduling.

• KILS: our Knapsack based precision optimization followed by our iterative list scheduling.

• ILP: our integer linear programming approach.

An overview of the experiment setup can be seen in figure 2.5.

The main results are shown in figure 2.6 and figure 4.10b, where 2.6 is for energy and 4.10b

is for error standard deviation, which is equivalent to variance. Unlike variance that is in the

dimension of square of data, standard deviation has the same dimension as data and provides more

intuitive sense. The rightmost clusters of bars are the average results. All results satisfy latency

constraints. The energy savings from K-LS, which is the conventional list scheduling, is about 11%

while our ILP can achieve average energy reduction of 40%. Our KILS heuristic also outperforms

the conventional approach by reducing 16% energy. ILP often results in less energy than All-Apprx

as it uses less number of FUs. Figure 4.10b shows that all methods except All-Apprx satisfy the

error constraint. Without error control, the All-Apprx method causes standard deviation about 5×

of the constraints, although it provides 20% energy savings.

In order to confirm the credibility of our variance-based model, we implement the ILP results in

Verilog for two cases - ARF (Auto Regression Filter) and FIR filter. We run Verilog-based 20K-run

Monte Caro simulations to obtain MSE at the outputs, which are compensated by constant offsets

to nullify the mean errors. We observe that there is about 10% difference between our variance

29

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

fir	
 arf	
 sds	
 pyr	
 jbmp	
 iir4	
 mv	
 AVE	

En
er
gy
	

Normalized	
 Energy	

K-­‐LS	

KILS	

All-­‐Apprx	

ILP	

Figure 2.6: Energy normalized with respect to All-Prcs results.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

fir	
 arf	
 	
 sds	
 pyr	
 jbmp	
 iir4	
 mv	
 AVE	

St
an
da
rd
	
 D
ev
ia
Ao

n	

Normalized	
 Error	
 Standard	
 Devia2on	

K-­‐LS	

KILS	

All-­‐Apprx	

ILP	

Figure 2.7: Error standard deviation normalized with respect to standard deviation constraints.

30

and the simulated MSE. However, the correlation coeffcient between them is 0.94, which means

they are highly correlated. We further plot the energy-error tradeoff curves using the two different

error models in Figure 2.8. For each of FIR and AFR cases, the curves from the two models are

almost identical. This reminds the Elmore delay model, which is inaccurate but has high fidelity

and provides reliable guidance in optimizations. Figure 2.8 also confirms that our approach can

realize different energy-error tradeoffs.

Testcases
K-LS KILS ILP

Estm ν Siml ν Diff Estm ν Siml ν Diff Estm ν Siml ν Diff
FIR 28792 24826 16% 28792 24826 16% 28792 23285 24%
ARF 24717 24344 l.5% 1438 1270 13% 29153 21011 39%

Table 2.3: Verilog simulation results.

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	

N
or
m
al
ize

d	

En

er
gy
	

Normalized	
 Error	

FIR	
 Var.	

FIR	
 MSE	

ARF	
 Var.	

ARF	
 MSE	

Figure 2.8: Energy-error tradeoff from ILP result. The MSE results are from Verilog simulations.

31

0.01	

0.1	

1	

10	

100	

1000	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Ru
n,

m
e	

(s
ec
on

ds
)	

Number	
 of	
 nodes	

CPU	
 Run(me	

ILP	

KILS	

Figure 2.9: Runtime (in log scale) comparison.

We compare runtime of KILS and ILP in Figure 2.9. One can see that KILS is usually one

order of magnitude faster than ILP. Moreover, KILS has better scalability. KILS has an advantage

in handling large cases, although its solutions are not as good as those from ILP.

2.7 Conclusion

In this work, we propose a simple yet credible error model. We develop a sequential heuristic

and an ILP based exact approach for joint precision optimization and approximation-aware HLS.

The approaches provide energy vs. error tradeoff at system level.

32

3. MAPPING-BASED HIGH-LEVEL SYNTHESIS FOR PIPELINED CIRCUITS

3.1 Introduction

High-level synthesis (HLS), which automatically synthesizes designs from high-level languages

to implementations in register-transfer level (RTL), has been increasingly adopted by designers, es-

pecially for FPGA synthesis. Since the FPGA has become a popular platform for high performance

computing, such as that in FPGA-based accelerators [52], HLS plays a central role in bridging

the gap between algorithms written in high-level languages, such as C/C++ [18, 53, 54, 15] and

Haskell [12, 55, 56], and RTL designs specified in hardware description languages (e.g. Verilog

HDL and VHDL). The C/C++-based HLS usually spends a lot of effort on resource-constrained

optimizations and loop transformations. The loop transformation may include both simple loop

unrolling, also generally supported by software compilers, and complex polyhedral analysis [57].

The HLS with Haskell, quite different from the C/C++-based HLS, pays little attention to loops

due to the functional programming nature of Haskell. Instead, recursion is often preferred [12].

The functional programming patterns are also exploited to better support parallel computing [58].

The C/C++-based HLS has more commercial frameworks, such as Vivado HLS [53], LegUp [18]

(Open-source till version 4.0), Synopsys Synphony [59] and Cadence Stratus [60]. While, the only

commercial HLS tool with Haskell, to the best of our knowledge, is Bluespec [55], based on an

extension of Haskell called Bluespec SystemVerilog (BSV). Our work is C-based HLS and thus it

is mostly compared with C/C++-based previous works. Some features in Haskell-based HLS are

also inspiring such as focusing on the controllability [61] of HLS and support for recursion [12].

Despite the tremendous progress on HLS technologies, C/C++-based HLS still requires com-

plex configuration of constraints and pragma/directive insertions in the high-level language source

code. For designers, it is very hard to control the architecture and predict the performance and cost

of synthesized RTL designs according to these parameters of constraints and pragmas before a

complete run of HLS. In practice, it is very rare to start with a single run of HLS and then continue

33

to logic and physical synthesis. Instead, HLS is more often employed as a solution evaluation ker-

nel frequently called in design space exploration (DSE), which searches for parameters that lead

to the optimized designs [62, 63, 64, 65, 66, 67]. Although HLS is much faster than logic and

physical synthesis, it is called so often such that its runtime is still a major bottleneck for DSE. By

attempting many possible combinations of constraints and pragma parameters, a DSE can easily

run for hours to days. The nontrivial HLS runtime is mainly caused by the optimization process

in most C/C++-based HLS frameworks, which usually calls a mathematical optimization solver to

solve the models including one or more of integer linear programming (ILP) [8] (which we also

used in chapter 2), linear programming (LP) [14] and boolean satisfiability problem (SAT) [68].

These solvers are also hard to control the results and to perform incremental optimizations, since

the detailed process of optimization is hidden in the solving process.

In this work, we propose a fast mapping-based HLS technique that is friendly to local incre-

mental design and with particular support to pipelined circuit synthesis and parallel processing. In

stead of constrained optimization via optimization engine such as ILP and LP, our approach first

directly maps a static-single assignment (SSA)-form intermediate representation (IR) onto a fully

pipelined circuit with temporary relaxation of resource constraints. To facilitate the fast mapping,

we propose a new datapath control synthesis leveraging the Φ function used in SSA IR instead of

the conventional finite-state machine based approach. If there is resource constraint violation after

the mapping, resource optimizations are performed to achieve resource sharing in an iterative man-

ner. The iterations can proceed till the circuit is only partially pipelined or even without pipelining,

depending on design needs. The resource relaxation and Φ function based data path control help

fast HLS, while the iterative resource optimization allows local incremental modifications.

Resource sharing in a pipelined circuit may lead to structural hazards. In conventional HLS,

this problem is solved by regulating the input data patterns according to interval pragmas in source

code and different pragmas may result in quite different levels of resource sharing. We solve this

problem through a new approach of automatic interlock synthesis, which can relax the requirement

of regulated input patterns and fits well with our iterative resource optimization procedure. As such,

34

we can achieve explicit control on resource sharing as opposed to the conventional trial pragma

approach. This controllability can further reduce the trial HLS runs in design space exploration. To

the best of our knowledge, this is the first work on automatic pipeline interlock synthesis together

with HLS. Perhaps the only remotely related work is [69], where local clock gating for interlocked

pipelines is studied and the large wire delay of stall signals is addressed by two-phase transparent

latches or master-slave flip-flops.

The contributions of this work are summarized as follows.

(1) We propose a fast mapping-based high-level synthesis technique, which is an order of magni-

tude faster than a state-of-the-art commercial HLS tool.

(2) A new dataflow control synthesis approach based on the Φ function is developed. It plays an

important role in the mapping-based HLS.

(3) Hardware oriented array SSA exploitation is first studied in this work, to the best of our knowl-

edge. It helps increase the throughput of synthesized circuits.

(4) An iterative resource optimization method is developed. It supports interlocked pipeline syn-

thesis, which does not require data input regulation and helps reduce trial runs of HLS.

(5) The proposed HLS can handle structural recursion, which is a feature not well studied before.

3.2 Backgrounds

In this section, we first introduce two important techniques that are important to the mapping-

based HLS: distributed memories in hardware such as FPGAs and the static-single assignment

form. The distributed memories in FPGAs make it more efficient to implement pipelined circuits

first and alter it to partially pipelined or nonpipelined circuits later; the SSA-form provides a good

form of description of the RTL designs to synthesize with our mapping-based HLS.

3.2.1 Distributed Memories

Compared with traditional architectures used in microprocessors, hardware such as FPGAs

provide much more distributed memory resources. There are mainly two types of distributed

35

memories in FPGAs: the LUT RAMs and registers, both of which are located within the logic

blocks.

Look-up tables (LUT) are the main programmable logic resources on FPGAs. Since LUTs are

programmable, they can also be configured as memories. For instance, on Xilinx’s FPGAs the

LUTs can be configured as ROM, RAM or even RAM-based shift registers, which is commonly

called distributed RAM [70]. This LUT memory implemented as shift registers is especially useful

to support pipelining delay compensations as shown in figure 3.1 and [4].

The logic block, which consists of several slices or cells, provides the main logic resources on

FPGAs. For FPGAs these logic resources also need to be reconfigurable, and thus they must have

some memories to store the logic information, which is just the look-up tables (LUTs). Therefore,

the main logic resources on FPGAs are intrinsically programmable memories. Naturally, the LUTs

might be able to perform as memories.

Also, the logic blocks often contains many flip-flops, which can be used to implement discrete

registers, and thus can be seen as another type of distributed memories. As an example, table

3.1 summarizes the characteristics of the major three types of memories on Xilinx Virtex 7 series

FPGAs.

Block RAM Distributed RAM Flip-flops
Size 28.8–64.8 Mb 6.912–21.016 Mb 0.408–2.4 Mb

Width 57.6–129.6 Kb 162–516 Kb 0.408–2.4 Mb
Depth 512 36 1

Table 3.1: Storage options on Xilinx Virtex 7 series FPGAs: depth and width is when the RAM is
configured with maximal bandwidth.

Although the total capacity of distributed memories are not negligible, recent memory alloca-

tion schemes for high-level synthesis often focus on the on-chip block RAM such as the memory

partitioning [71, 72, 73]. and multi-ported RAM [74]. Due to the limited reading/writing ports

in block RAMs of FPGAs, memory partitioning attempts to partition the data into several parts

36

and map them to different block RAM banks. Since each bank has its independent reading/writing

ports, these additional ports help minimize the memory access conflicts if the memory can be care-

fully partitioned in accordance with the memory access patterns. Another work about multi-ported

RAM also focused on block RAMs [74].

More comprehensive memory management methods with a compiler approach were explored

in [75], which considers both the block RAMs and discrete registers together with compiler ap-

proaches of data distribution, data replication and scalar replacement. Data distribution is similar

to memory partitioning, which partitions an array’s data into disjoint data sets, and maps them

to different single-ported memories; data replication creates copies of the data mapped to distinct

memory blocks, which [74] also considers to support multi-read RAM; Scalar replacement or reg-

ister promotion maps array references to discrete registers that can be accessed concurrently, as if

the array elements are scalar variables.

In our HLS, we promotes the memory references to registers whenever possible. The register

promotion for scalar variables stored in the stack is well supported by existing compiler frame-

works, and we also implement the register promotion for array references to better support parallel

access of array data.

3.2.2 SSA Form

SSA (Static Single Assignment) [76] is a form of intermediate representation (IR) used in

compilers for helping code optimizations. A variable in SSA is assigned value exactly once. If a

variable needs to be assigned value more than once in a program, a new renamed variable is created

corresponding to each value assignment. In SSA form, expressions like i = i + 1 would virtually

become i2 = i1 + 1. Then, variable i might cause the use of two different registers corresponding

to i1 and i2, respectively. As a small yet complete example, code 3.1 can be transformed to LLVM

IR, a SSA-form-based IR used in the LLVM compiler framework [77], in code 3.2.

1 int br(int a, int b){

2 a = a + b ;

3 if(a > 0) b = b + 1 ;

37

4 else b = b - 1 ;

5 return b ;

6 }

Listing 3.1: Simple C program with a branch.

The labels such as “if.then:” divide a function in the IR into several basic blocks. All

instructions in LLVM IR lie in a certain basic block. The label marks the starting point of a

basic block, which is terminated by terminating instructions such as br and ret. For example,

lines 9-11 in code 3.2 form a basic block. Each function has an entry basic block, which has no

preceding basic blocks. Other basic blocks always have at least one preceding basic block. The br

instruction has labels as arguments, which determine the succeeding basic blocks to enter. All these

basic blocks within a function and their preceding/succeeding relationships constitute a directed

graph.

Since each original variable has different names for every different values it may have during

its lifetime, it is mapped to different registers for newly assigned values. These registers can be

naturally used as pipeline registers that divide a computing flow into multiple pipeline stages.

One key problem for the SSA transformation is that when two branches merge afterwards, the

program may need to select which renamed variable (or register) from the two branches to use,

since they may belong to the same variable in the original program. The function that makes the

selection is traditionally called phi or Φ function in literatures related to SSA. The work of [78]

proposed an efficient algorithm to decide where to insert Φ functions.

1 define i32 @br(i32 %a, i32 %b) #0 {

2 entry:

3 %add = add nsw i32 %a, %b

4 %cmp = icmp sgt i32 %add, 0

5 br i1 %cmp, label %if.then,label %if.else

6 if.then:

7 %add1 = add nsw i32 %b, 1

8 br label %if.end

38

9 if.else:

10 %sub = sub nsw i32 %b, 1

11 br label %if.end

12 if.end:

13 %b.addr.0 = phi i32 [%add1, %if.then],

14 [%sub, %if.else]

15 ret i32 %b.addr.0

16 }

Listing 3.2: Code 3.1 compiled to LLVM IR by clang -emit-llvm and optimized by LLVM

optimizer opt with -mem2reg, memory to register promotion which promotes scalar vari-

ables from the stack in memory to registers, removes LLVM instructions such as load, store,

alloca, and adds appropriate phi (Φ) functions.

The SSA form was originally proposed for scalar variables. In [79], software compiling tech-

niques were introduced for handling array SSA, which is much more complicated than scalar SSA.

Although SSA form is often employed in C/C++-based HLS, the existing approaches are mostly

for software level code optimizations with scalar SSA [80]. To the best of our knowledge, there

has been no study on hardware oriented use of array SSA yet.

3.3 Phase I: Mapping

Before HLS, the input C language code is first fed to the “clang” compiler that performs op-

timizations, such as register promotion, loop unrolling and dead code elimination, and generates

LLVM IR. Then, our HLS starts with the mapping phase that conducts scheduling, resource bind-

ing, and datapath control generation in one pass scan of the SSA form based LLVM IR. The IR

is directly mapped to a fully pipelined circuit with high throughput or input data rates. Resource

constraint is temporarily relaxed in this phase such that the mapping can be finished in linear time.

3.3.1 Scheduling

Scheduling determines the relative start time for operations or computing tasks obeying data

and control dependencies. Since resource optimizations are deferred to next phase, we choose

39

%add

%cmp

%add1 %sub

%b.addr.0

%a %b

0 %b.1

%b.21
1

Phi

%entry.1

%entry.2

%entry
Stage 0

Stage 1

Stage 2

Stage 3

Figure 3.1: The storage binding for code 3.2. The circuit is divided into pipeline stages indicated
by dashed horizontal lines. Each black font name corresponds to one register in code 3.2 and each
gray font name indicates a newly added register for pipeline synchronization or control. Every
variable has one pipeline register storing its value. The registers in dashed rectangles, except Phi,
are for data synchronization in the pipeline. On FPGA, these registers can be implemented by
configuring look-up tables (LUT) to shift registers and thus have low cost [4].

the as-soon-as-possible (ASAP) scheduling, which has linear time complexity and can be easily

integrated in the one pass scan of the LLVM IR.

Before scheduling, one needs to estimate the delay or number of clock cycles for each oper-

ation. If the operations that require multiple clock cycles to finish are not pipelined, they would

cause additional computing latency in the synthesized circuits. To simplify the synthesis, all the

LLVM IR instructions performing actual computing tasks such as add and sub are assumed to

take one clock cycle. Some trivial operations such as sext, the sign extension operation, and

trunc, the truncation operation, are set to zero clock cycle, since they do not form a pipeline

stage by themselves and can be inserted into the datapath with negligible latency overhead.

After the computing delay estimation, a control data flow graph (CDFG) is obtained to cap-

ture operation dependencies. The SSA form is originally used for control data flow analysis in

compilers and thus the SSA form based LLVM framework already builds a dependence graph of

40

instructions in the IR, which can be reused for CDFG. Therefore, the ASAP scheduling is per-

formed on the instruction dependence graph of the parsed LLVM IR. Each instruction is assigned

to the first available step or pipeline stage. No two sequentially dependent LLVM instructions are

assigned to the same stage (e.g. the addition preceding %add and the comparison before %cmp in

Figure 3.1 are sequentially dependent), otherwise clock frequency must be reduced. On the other

hand, a low frequency design with less registers can be obtained by merging some pipeline stages

by simply removing the pipeline registers. For instructions with two or more inputs, often one

input has data available several cycles earlier than the other inputs. Then, the input receiving data

early requires additional pipeline stages using shift registers like variable %b in Figure 3.1. Every

basic block has a starting pipeline stage to synchronize the data from its precedent basic blocks.

3.3.2 Storage Binding for Scalar Variables

In this mapping phase, the storage binding for scalar variations is straightforward. Each re-

named scalar variable in the SSA form is bound to one register. If the value of a variable is

propagated to later pipeline stages without computing operations, like variable %b in Figure 3.1, it

is bound to a shift register. Otherwise the variable is bound to a discrete register. On FPGA, shift

registers can be realized by configuring look-up tables (LUTs) such that a low cost is enjoyed [4].

For example, the pipeline registers of value %b in Figure 3.1 cost 32 × 2 = 64 flip-flops, which

would occupy 32 slices but only use 32/2 = 16 slices if implemented in LUTs (assuming there are

2 flip-flops and 2 LUTs in each slice of Xilinx FPGAs).

In Figure 3.1, each solid rectangle represents a discrete register, and each instruction that as-

signs a value in the LLVM IR has a distinct register allocated to store the value. Therefore, registers

are never shared across different variables, or different values of the same variable in the original

C program during its lifetime. Without register sharing, pipelining is well supported. At each mo-

ment, registers at different levels can store values of different program runs with different inputs.

For instance, in Figure 3.1, %b.addr.0 can be storing the final result of the first set of %a and

%b. At the same time, %add1 and %sub are storing the intermediate results of the second set of

inputs, %cmp and %b.2 are storing the intermediate results of the third set of inputs, and %add

41

and %b.1 are storing the intermediate results of the fourth set of inputs.

3.3.3 Datapath Control

Datapath synthesis involves assigning multiplexers to select appropriate inputs for some op-

erations. Existing works such as [81, 15] often use a finite-state machine (FSM) to control such

multiplexing. Pipeline stages are recorded as the FSM states. If there is no br instruction or other

branch instructions (e.g. switch in LLVM IR), the next states of the FSM are statically deter-

mined without inputs to the FSM. If there are branches, the next states are decided dynamically

according to the branch variables. In a fully pipelined circuit like our case, there are many pipeline

stages that make the FSM design rather complex.

%cmp

%add1 %sub

%b.addr.0

%b.2

1 1

%if.then
=%cmp & %entry.2

%if.else
=(~%cmp) & %entry.2

%if.then.3 %if.else.3

AND AND

OR

%entry.2

Stage 2

Stage 3

Figure 3.2: Details of the shaded region in Figure 3.1 (stage 2 and 3). The AND operations require
that the enable signals such as %if.then.3 are replicated to have the same bit-width as the
arithmetic operations. The dashed arrows and boxes indicate an alternative implementation of the
Φ function where an enable signal resets the register in a dashed box (with synchronous active-low
RST) such that the value is zero and the corresponding AND operation can be avoided.

We propose a new flow control method that dovetails with pipelined circuits as well as our

42

mapping procedure. It directly maps the Φ functions in SSA-form IR to control circuits. An

example of implementing the Φ function in Figure 3.1 is shown in Figure 3.2. The variable %cmp is

extracted to enable signals %if.then and %if.else, which are propagated to the next pipeline

stage as %if.then.3 and %if.else.3, respectively. The AND and OR operations with %add1

and %sub basically select the result from the two arithmetic operations. Alternatively, one can

reset one operation register, e.g. %add1, if corresponding enable signal is false. In this alternative

approach, registers %if.then.3 and %if.else.3 can be omitted.

We describe the Φ function based flow control for a C language function using code 3.2 as an

example. If the enable signal is 1 for the entry basic block, which starts with entry: in code

3.2, the inputs to this C function is available. If the circuit is fully pipelined, the input can be fed

to the function continuously and the enable signal is 1 continuously as well. For non-entry basic

blocks, their enable signals are determined by the operands of branch instructions like br. For

example, one br may have one variable operand and two label operands. It selects the basic block

marked by the first label if the variable has value 1, and otherwise selects the basic block marked

by the second label. If br has only one label operand, it always selects the labeled basic block,

and behaves like a jump instruction in assembly language.

The enable signal for each basic block is propagated through the entire block. For example,

there is an enable signal (%entry) propagated through the basic block of lines 2-5 in code 3.2.

The enable signal %if.then for basic block of lines 6-8 is 1 when the enable signal %entry.2

is 1 and the br in line 5 selects basic block with label %if.then:.

3.3.4 Synthesis of Array Datapaths

Although scalar SSA has been widely used in modern compilers, array SSA [79] has not been

supported very well. For example, the LLVM IR treats arrays in a similar way as C language,

where arrays can only be accessed through a pointer. The instructions related to arrays are quite

different from scalar instructions. To access an element in an array, load and store instructions

are used. Before loading or storing value to a location in an array, an address or pointer of the

element must be acquired using instructions such as getelementptr. All these intermediate

43

instructions are based on an assumption that there is a single large continuous memory address

space, which microprocessors often have. However, hardware such as FPGAs have much more

flexible and distributed memories with no such continuous memory address space. Moreover,

these memory reference instructions are rarely compatible with parallelization, while hardware

such as FPGAs are intrinsically parallel. Thus, these intermediate instructions used in LLVM IR

do not fit hardware synthesis.

Array SSA has been studied for software compilers [79]. Such array SSA treats the elements

in an array in a similar way to scalar variables, instead. It creates a new array every time a new

value is assigned to the original array, and chooses the appropriate one to use later. The main

difference from scalar SSA is that array SSA extends the usage of Φ functions to also merge two

partially different arrays (i.e. some elements of the two arrays are different). With the array SSA

extension, the generalized Φ function supports not only selection of different versions of variables,

including both scalar variables and arrays, from different basic blocks, but also merging of the

partially modified array and the original array, which is called define-ϕ in [79]. One example is

shown in code 3.3.

X0[0:7] = {1,2,3,4,5,6,7,8}

X1[i] = 0;

X2 = phi(X0,X1)

Listing 3.3: An example of define-Φ: elements in X1 other than X1[i] are undefined; elements

in X2 are selected either from X0 or X1, according to whether the index equals i. X0, X1 and X2

all correspond to the same array in the original source code.

In [79], array SSA is used to do element-level data flow analysis and loop parallelization.

However, it is for software compiling on microprocessors while the actual storage and hardware

implementation are not specified for hardware. For HLS, we introduce a new technique of imple-

menting array SSA transformations along with the register promotion of array elements in order

to support element-level pipelining and parallelization for computations involving arrays, required

44

by some parallel algorithms involving arrays such that prefix sum [6]. The register promotion

transforms the memory reference instructions such as load, store and getelementptr to

register accesses. After the register promotion, array elements are stored individually similar to

scalar variables. The key problem is how to construct new versions of the array across pipeline

stages for the define-Φ functions.

In this work, two different methods are devised to synthesize the define-Φ for merging two

versions of an array.

Figure 3.3: Example of array SSA: arrays are propagated to different pipeline stages.

Merging on Writing After each writing to the array, a new array is constructed. All the array

elements then can be treated in the same way as scalar variables.

45

Merging on Reading The modified array element and the corresponding array index are stored

elsewhere as a patch element and are not merged with the original array, until an element in

the array is accessed.

Depending on how many elements in the original version of array are not constants, the two meth-

ods have different resource cost.If there are more constants in the array, the merging on reading

method is better.One example of array merging on writing is shown in figure 3.3.

3.3.5 Loops

In this phase, no loop unrolling is performed, since it can be done more easily by the compiler

front-end during the IR generation. For loops not unrolled, dynamically or at runtime the variables

within loop bodies in the SSA-form IR might still be assigned different values multiple times.

The name of “Static Single Assignment” just means the variables are assigned exactly once only

statically at compile-time or literally in the SSA-form IR.

The loops, that result in cycles in the CDFG of the IR, are mapped directly to Verilog HDL

from the SSA form, implying sharing both the registers and operators within the loop bodies by

executing them multiple times (e.g., Figure 3.4c is equivalent to a loop adding 1 for five times),

which inevitably causes pipeline hazards. How to avoid these hazards incurred by resource sharing

is provided in Section 3.4.

3.4 Phase II: Resource Optimization

After the mapping phase, if any resource constraint is violated, our HLS proceeds with the re-

source optimization phase. Other than explicit resource sharing via a loop, operations of the same

type in different pipeline stages can share the same operator or functional unit. In this optimization

phase, resources are incrementally shared in an iterative manner so that the resource usage is low-

ered in sacrifice of input data rates. When resources are shared in pipelined circuits, the conflict of

operations in different pipeline stages trying to use the same operator inevitably causes structural

hazards. The hazards also exist in pipelined microprocessors such as MIPS (Microprocessor with-

out Interlocked Pipe Stages), which are usually solved by interlocked pipelines. A simpler option

46

used by MIPS is inserting NOP instructions, which create bubbles in the pipelined microprocessors,

by compilers or manually in the assembly code. Then, pipeline interlocking is not needed.

In this phase, both corresponding methods are supported: the manual insertion (or by some-

thing like a FIFO) of bubbles in the input stream, similar to the NOP insertions, is trivial; Other than

that, automatic synthesis of the stall and bubble signals for pipeline interlocking is also provided.

3.4.1 Iterative Resource Sharing

The number of possible combinations of sharing is very large and with the number of opera-

tions increasing, grows even faster than exponentially. To implement m distinct operations with n

identical operators, where m ⩾ n > 0, the number of possible sharing combinations is equal to

the number of ways to partition a set of size m into n non-empty subsets, known in combinatorics

as Stirling numbers of the second kind or {m
n
}. In particular,

{m
1
} = {m

m
} = 1

which means there is only one way for m operations to share a single operator, and one way to

implement m operations with m operators (assuming no wasted operators), i.e., no sharing at all.

Then, the total number of possible combinations of sharing for m distinct operations with any

number of identical operators is

Bm = {m
0
}+ {m

1
}+ {m

2
}+ · · ·+ {m

m
} =

m∑
k=0

{m
k
}

whereBm is themth Bell number, huge even for a smallm. For example,B19 = 5, 832, 742, 205, 057.

Although the number of possible combinations of sharing is very large, lots of them are illegal

(e.g., operations in the same pipeline stage) or impossible to implement with interlocked pipelines.

In this work, we choose a representative subset of all possible combinations of sharing, where

operations sharing the same operator can be iteratively added and the pipeline interlocks can be

added accordingly without causing deadlock. The operations need to be evenly distributed in

47

different pipeline stages. Formally, if the pipeline stages are numbered starting from 0, according

to the order of input to output like that in Figure 3.1, 3.4 and 3.5, then we can define that a list

OP = {op0, op1, . . . , opN−1} of N operations is a periodic sharing list, if and only if

∀m,n ∈ {0, 1, 2, . . . , N − 1} ∃K ∈ N∗ :

stage(opm)− stage(opn) = K · (m− n) (3.1)

where K is a positive constant integer indicating the period of the periodic sharing list, and

stage(opn) represents the number of the pipeline stage of opn. Equation (3.1) implies

stage(opm)− stage(opn) = 0⇔ m = n (3.2)

stage(opm)− stage(opn) ≡ 0 mod K (3.3)

stage(opm)− stage(opn) = stage(opp)− stage(opq)⇔ m− n = p− q (3.4)

We define that an empty list and a list with only one operation are also periodic sharing lists.

If the operations in a periodic sharing list all share the same operator, the maximal asymptotic

data rate without causing structural hazards will be f/N , where f is the clock frequency. Note

that N is not the same as the initiation interval, which is the number of clock cycles between the

start times of two consecutive valid inputs. Only when K = 1, they are equal. For example,

If K = 3 and N = 3, an input stream of the enable signals without structural hazards will be

1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, The pattern cannot even be specified by

the function initiation interval pragma (#pragma HLS PIPELINE II=X).

Figure 3.4 shows a special example of iterative resource sharing, where the period K is 1.

The operations are iteratively added to a periodic sharing list with period 1. Figure 3.4b shows the

circuit when two operations are in the sharing list; Figure 3.4c shows the circuit when all operations

are added to the sharing list. Note that the multiplexers in Figure 3.4c can be simplified to only

one multiplexer, like the implementation of a loop, for this special periodic sharing list where the

48

Data:
OP ← {}, N ← 0
K ← the period of the periodic sharing list OP
IT ← 1 i.e., VDD
{INi} ← undefined wire signals
STALL← an undefined wire signal
BUBBLE ← an undefine wire signal
Input:
op, the operation to share the same operator with operations in OP
Results: Updated STALL,BUBBLE,OP,N, IT, INi

1 if N = 0 then
2 OP ← {op0 = op}
3 N ← N + 1
4 foreach INi do
5 INi ← INi(op)
6 end
7 else if stage(op) - stage(opN−1) = K then
8 OP ← {op0, op1, . . . , opN−1, opN = op}
9 N ← N + 1

10 foreach INi do
11 INi ←MUX{en[stage(op)− 1], INi, INi(op)}
12 end
13 IT ← OR{IT, en[stage(op)− 1]}
14 else if stage(op) - stage(opN−1) ̸= K then
15 Illegeal op
16 end
17 if op is legal and N ≥ 2 then
18 STALL← AND{IT, en(stage(op0)− 1)}
19 BUBBLE ← AND{NOT (IT), en[stage(op0)− 1]}
20 end
Algorithm 3: Update the stall, the bubble and the input signals of the operator to be shared,
after adding an operation to a periodic sharing list sharing the same operator.

output of opn is the input of opn+1.

3.4.2 Pipeline Interlock Synthesis

Resource sharing may hinder pipelining and lower the throughput. If the input data rate is

already lowered with bubble insertion in the input stream, no pipeline hazards would occur. Oth-

erwise, the circuit cannot work correctly without proper pipeline interlocks.The even distribution

49

condition of the periodic sharing list defined in (3.1) guarantees that if there is only one periodic

sharing list sharing the same operator, the resource conflicts could only happen between the op0

and one of the remaining operations in the list at a certain clock cycle and no deadlock would

happen. This property can proved as follows:

Proof. (1) For a periodic sharing list {op0, op1}, the resource conflicts can only happen between

op0 and op1.

(2) i Assume for a periodic sharing list {op0, op1, . . . , opN−1}, the resource conflicts can only

happen between op0 and opn where 0 < n < N . Then, if we add one operation in the

list, the list becomes {op0, op1, . . . , opN−1, opN}. Since the resource conflicts between op0

and opN−1 will be resolved, no resource conflicts will happen between op1 and opN (By

equation (3.4), stage(opN)− stage(op1) = stage(opN−1)− stage(op0)).

ii According to the assumption, there are no resource conflicts between opn and opN−1,

where 0 < n < N − 1. So, no resource conflicts between opn+1 and opN (By equation

(3.4), stage(opN)− stage(opn+1) = stage(opN−1)− stage(opn)).

iii According to i and ii, no resource conflicts will happen between opm and opN , where

0 < m < N , i.e., for periodic sharing list {op0, op1, . . . , opN−1, opN}, resource conflicts

can only happen between op0 and opn, where 0 < n < N ⇒ recource conflicts can only

happen between op0 and opm, where 0 < m < N + 1.

(3) By induction, for every periodic sharing list {op0, op1, . . . , opN−1} sharing one operator with

interlocked pipelines, resource conflicts can only happen between op0 and opn, where 0 < n <

N .

This property substantially reduces the complexity of the pipeline interlocking. The stall signal

and the bubble signal are only needed for the operation op0. However, if there are multiple periodic

sharing lists, each sharing an operator respectively, they have the above property when at least one

of the two following conditions is satisfied:

50

1. All the periodic sharing lists have the same period K.

2. Any two of the periodic sharing lists don’t overlap, i.e., for every two periodic sharing lists

OP 0 and OP 1,

either, stage[min(OP 0)] > stage[max(OP 1)]

or, stage[min(OP 1)] > stage[max(OP 0)]

where, for a list OP = {op0, op1, op2, . . . , opN−1} ,

min(OP) = op0, max(OP) = opN−1

Then, for a periodic sharing list, the corresponding stall, bubble and input signals can be syn-

thesized iteratively with Algorithm 3. The periodic sharing list OP is first initialized to an empty

list. The IT is an internal variable representing a wire to generate theBUBBLE and the STALL.

The INi is the ith input to the shared operator. Then, the algorithm is iterated and the operations is

added one by one. The INi and IT are also updated iteratively. The OR, AND,MUX and NOT

mean generating corresponding gates. Particularly, the first input of MUX is the selection signal

sel. The second input is selected when the sel is low; the third input of MUX is selected when

sel is high. Figure 3.5 shows how they are synthesized for the same example in Figure 3.4.

3.4.3 Sharing for Loops

define i32 @man(i32 %a, i32 %c, i32 %e) #0 {

br label %1

; <label>:1

%.0 = phi i32 [%e, %0], [%4, %5]

%i.0 = phi i32 [0, %0], [%6, %5]

%2 = icmp slt i32 %i.0, %a

br i1 %2, label %3, label %7

; <label>:3

51

%4 = add nsw i32 %.0, %c

br label %5

; <label>:5

%6 = add nsw i32 %i.0, 1

br label %1

; <label>:7

ret i32 %.0

}

Listing 3.4: Example LLVM IR for program with a loop. The basic block 5 has basic block 1 as

its succeeding basic block, and the control flow through basic block 1 is possible to continue to go

through basic block 5, which constitutes a loop.

As shown in code 3.4, the basic blocks %1, %3, and %5 are part of the loop as shown in figure 3.6.

There are two preceding basic blocks for basic block %1, and one of them is part of a loop. We can

not use the same techniques as in figure 3.1 and figure 3.2, since the starting level of basic block %1

would be infinitely large. However, the techniques for resource optimization can be used again. As

mentioned before, each basic block has an enable signal. Each br instruction also generates one

or two control signals. In the case in figure 3.6, the basic block %5’s terminating br instruction

has only one control signal, which together with the control signal from basic block %0 controls

the enable signal of basic block %1. Similar to the resource optimization case in figure 3.4, if

both the control signals are high, we know there is a conflict and pipeline stall is need to resolve

the conflict. In the above case in figure 3.6, the loop control signal would have higher priority. If

not, the intermediate results stored in the pipeline registers in the loop would be destroyed by new

inputs from basic block %0, which are the inputs of this function.

3.5 Support for parallelization

Hardware such as FPGAs has intrinsic parallelism, which is worth to be well exploited in

HLS, especially for throughput driven applications. However, previous works on C/C++-based

HLS mostly rely on loop transformations and code optimizations for parallelization instead of

making good use of this intrinsic parallelism. Specially designed parallel algorithms [82] also

52

lack adequate support from HLS. This section shows how our work achieves better parallelization

support.

3.5.1 Array SSA and Parallelization

Parallel algorithms often require parallel access to arrays, which is enabled by the register

promotion in this work. For parallelization of pipelined circuits, our array SSA implementation

further provides an intermediate representation form that helps build additional pipelining storage

for arrays and the datapath for different versions of the array across multiple pipeline stages.

The array SSA requires substantially higher register usage, as shown in figure 3.3, to achieve

pipelining and parallelization. However, this can be alleviated by register sharing using Algo-

rithm 3.

3.5.2 Structural Recursion

Recursive function calls are usually not supported by HLS frameworks. Generally, recursion

requires additional memory space for the call stack and a controller such as that in [83]. The

state machine controller and memory stack make pipelining and parallelizing even more difficult.

We notice that one special recursive function call, the structural recursion, can be integrated into

our HLS flow for pipelined and parallelized circuits. Structural recursion decomposes the inputs

(e.g. an array) recursively till the inputs cannot be decomposed. In contrast, generative recursion

generates new inputs for the recursive function calls.

1 generate

2 /* Recursively decomposing the input a */

3 if(SIZE == 1) begin

4 assign out0[31:0] = a[31:0];

5 assign out1[31:0] = 32’b0;

6 end else if(SIZE == 2) begin

7 assign out0[31:0] = a[31:0];

8 assign out1[31:0] = a[63:32];

9 end else begin

10 recursion #(.SIZE(SIZE / 2)) re0(

53

11 .a(a[32*(SIZE / 2) - 1:0]),

12 .clk(clk),

13 .out(out0));

14 recursion #(.SIZE(SIZE - SIZE / 2)) re1 (

15 .a(a[32*SIZE - 1:32*(SIZE / 2)]) ,

16 .clk(clk),

17 .out(out1));

18 end

19 endgenerate

Listing 3.5: The recursive generate struct in Verilog that can be used to implement structure

recursion. This example shows the part for the structure of figure 3.8 with 32 inputs.

Some parallel algorithms can be naturally expressed as structural recursion such as part of the

structure in parallel prefixsum [6, 84] as shown in figure 3.8, and the bitonic sorter [7], which is

shown in figure 3.7. We implemented the structural recursion and synthesized the parameterized

Verilog module with generate construct, which supports the recursive module instantiation.

One example of the generate construct is shown in code 3.5.

3.6 Experimental Results

We implemented our high-level synthesis system with LLVM compiler [77] as the front-end,

similar to existing tools such as LegUp [18] and Altera FPGA SDK [85]. The C code is first

transformed to the LLVM IR using LLVM-based C compiler “clang”. The proposed mapping-

based HLS, performed with and without the the resource optimization phase, transforms the LLVM

IR to Verilog HDL code. We also generated Verilog HDL code using a state-of-the-art commercial

HLS tool. We tried several different settings of the commercial tool for each case and selected the

best results. After HLS, all the Verilog codes are fed into Xilinx Vivado for logic synthesis, place

and route with targeted device of Zynq-7000 family FPGAs. The experiments are conducted on a

PC with 2.0GHz processor and 8GB memory.

54

1
Enable Signal Input

1

1

1

1

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

(a)

1

1

1

1

Input

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

(b)

1

0 1

Input

0 1

0 1

0 1

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

(c)

Figure 3.4: Example of resource sharing: the enable signals, similar to the %entry in Figure
3.1, are initialized to 0. (a) The original circuit with no sharing. (b) Two operations sharing the
same one adder. This shared adder selects inputs according to the enable signal. The enable signal
asserts when the corresponding input is valid. If the enable signals do not assert consecutively,
there is no structural hazard. A bubble needs to be inserted between two consecutive valid inputs
to avoid hazards. (c) All operations sharing the same operator, equivalent to a loop adding 1 for
five times.

55

1

1

1

1

Enable
Stall

Signal

Bubble

Input

IT

IN

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 4

0 1

1

1
0 1

Stall
Signal

0 1

Bubble

1
Enable Input

IT

IN

IT(a)

IN(a)

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.5: Example of interlocked pipelines for the same example in figure 3.4: (a) two operations
sharing one operator. (b) another operation added to the periodic sharing list sharing the same
operator with the two operations in (a). The IN(a) and IT (a) are the same as the IT and IN in
(a) and are updated with Algorithm 3.

56

 Basic Block %0

 Basic Block %1

 Basic Block %3 Basic Block %7

 Basic Block %5

Start

End

Figure 3.6: Diagram of the basic blocks in code 3.4: the basic blocks in red are part of the loop,
which can be shared among different loop cycles. The back edges would also cause pipeline stall,
similar to the back edges in figure 3.4.

Figure 3.7: Bitonic sorter: another example of structural recursion. Each line represents a number.
The arrows mean swapping the two numbers. The bitonic sorter is a common structure for sorting
in parallel. Figure courtesy of Magnus Manske.

57

Figure 3.8: Example of structural recursion. The inputs are recursively decomposed. Each box
represents a recursive structure except the upper four terminating box.

58

#L
U

T
#R

eg
is

te
r

#D
SP

Fr
eq

ue
nc

y
(M

H
z)

L
at

en
cy

(n
s)

Po
w

er
(m

W
)

D
at

a
R

at
e

(M
H

z)
H

L
S

R
un

tim
e

(s
)

A
dd

M
ap

pi
ng

18
35

0
27

6.
47

10
.8

5
1

27
6.

47
0.

05
6

C
om

m
er

ci
al

19
28

0
19

0.
84

10
.4

8
1

19
0.

84
3.

44
0

M
ul

M
ap

pi
ng

78
13

3
6

12
0.

05
24

.9
9

12
12

0.
05

0.
05

7
C

om
m

er
ci

al
80

16
9

6
12

8.
04

46
.8

6
11

12
8.

04
3.

18
0

FI
R

8*
M

ap
pi

ng
36

7
55

3
0

23
3.

10
34

.3
2

17
23

3.
10

0.
06

4
C

om
m

er
ci

al
25

2
22

7
0

13
7.

93
50

.7
5

9
17

.2
4

3.
48

0

Ss
ca

n*
M

ap
pi

ng
35

2
89

6
0

12
9.

03
54

.2
5

12
12

9.
03

0.
06

2
C

om
m

er
ci

al
37

6
26

3
0

14
7.

06
47

.6
0

8
18

.3
8

2.
89

0

Ps
ca

n*
M

ap
pi

ng
43

2
96

0
0

11
8.

20
33

.8
4

13
11

8.
20

0.
06

5
C

om
m

er
ci

al
35

9
26

3
0

10
4.

06
67

.2
7

7
13

.0
1

3.
40

0

M
M

*
M

ap
pi

ng
27

76
36

48
19

2
62

.6
6

63
.8

4
17

8
62

.6
6

0.
07

8
C

om
m

er
ci

al
13

05
86

7
96

88
.1

4
17

0.
18

12
4

5.
51

18
.3

70

B
so

rt
M

ap
pi

ng
45

44
46

07
0

20
2.

72
49

.3
3

33
4

20
2.

72
0.

06
0

C
om

m
er

ci
al

53
90

49
69

0
15

1.
72

65
.9

1
30

5
15

1.
72

6.
21

0

SH
A

25
6

M
ap

pi
ng

32
89

5
41

85
9

0
19

8.
65

95
6.

46
22

32
19

8.
65

0.
22

8
C

om
m

er
ci

al
31

09
2

45
97

6
0

19
9.

72
12

66
.7

7
22

00
19

9.
72

12
1.

96
0

A
ve

ra
ge

M
ap

pi
ng

11
9.

33
%

21
9.

69
%

15
0.

00
%

11
4.

14
%

72
.1

3%
13

6.
03

%
57

1.
46

%
1.

36
%

(7
3.

5x
)

Ta
bl

e
3.

2:
T

he
co

m
pa

ri
so

n
of

po
st

-l
ay

ou
t

re
su

lts
ob

ta
in

ed
fr

om
ou

r
m

ap
pi

ng
ph

as
e

al
on

e
w

ith
ou

t
re

so
ur

ce
op

tim
iz

at
io

n
an

d
a

st
at

e-
of

-t
he

-a
rt

co
m

m
er

ci
al

H
L

S
to

ol
.

T
he

Ss
ca

n
an

d
Ps

ca
n

ar
e

de
si

gn
s

fo
r

se
qu

en
tia

ls
ca

n
an

d
pa

ra
lle

ls
ca

n
as

de
sc

ri
be

d
in

[6
].

B
so

rt
is

a
B

ito
ni

c
so

rt
er

of
16

32
-b

it
nu

m
be

rs
[7

].
SH

A
25

6
is

25
6-

bi
ts

ec
ur

e
ha

sh
al

go
ri

th
m

fu
lly

un
ro

lle
d

ex
ce

pt
th

e
ou

te
r-

m
os

tl
oo

p.
D

es
ig

ns
w

ith
ar

ra
ys

ar
e

m
ar

ke
d

w
ith

*.
T

he
av

er
ag

e
pe

rc
en

ta
ge

s
ar

e
ou

rm
ap

pi
ng

re
su

lts
co

m
pa

re
d

w
ith

th
e

co
m

m
er

ci
al

to
ol

.
.

59

#L
U

T
#R

eg
is

te
r

#D
SP

Fr
eq

ue
nc

y
(M

H
z)

L
at

en
cy

(n
s)

Po
w

er
(m

W
)

D
at

a
R

at
e

(M
H

z)
Ti

m
e

A
dd

-
10

56
%

35
10

0%
0

27
8.

32
10

1%
10

.7
8

99
%

1
10

0.
00

%
13

9.
16

50
%

10
4%

+
12

67
%

35
10

0%
0

26
6.

95
97

%
11

.2
4

10
4%

1
10

0.
00

%
13

3.
48

48
%

10
7%

M
ul

-
95

12
2%

11
6

87
%

3
12

7.
36

10
6%

23
.5

6
94

%
9

75
.0

0%
63

.6
8

53
%

10
9%

+
97

12
4%

11
6

87
%

3
12

7.
62

10
6%

23
.5

1
94

%
9

75
.0

0%
63

.8
1

53
%

11
2%

FI
R

8
-

28
8

78
%

52
5

95
%

0
23

2.
88

10
0%

34
.3

5
10

0%
17

10
0.

00
%

11
6.

44
50

%
10

0%
+

26
0

71
%

12
84

23
2%

0
22

0.
26

94
%

36
.3

2
10

6%
13

76
.4

7%
11

0.
13

47
%

10
0%

Ss
ca

n
-

25
7

73
%

83
6

93
%

0
11

9.
22

92
%

67
.1

0
12

4%
11

91
.6

7%
59

.6
1

46
%

10
5%

+
23

3
66

%
14

79
16

5%
0

13
1.

37
10

2%
60

.9
0

11
2%

9
75

.0
0%

65
.6

9
51

%
11

0%

Ps
ca

n
-

35
3

82
%

89
9

94
%

0
11

7.
69

10
0%

33
.9

9
10

0%
14

10
7.

69
%

58
.8

4
50

%
10

5%
+

35
9

83
%

10
28

10
7%

0
11

5.
55

98
%

34
.6

2
10

2%
9

69
.2

3%
57

.7
8

49
%

10
5%

M
M

-
23

77
86

%
35

07
96

%
19

2
64

.3
6

10
3%

62
.1

5
97

%
17

4
97

.7
5%

32
.1

8
51

%
10

0%
+

26
21

94
%

41
32

11
3%

19
2

69
.9

2
11

2%
57

.2
1

90
%

18
7

10
5.

06
%

34
.9

6
56

%
10

4%

AV
G

-
83

%
94

%
75

%
10

0%
10

3%
95

.3
5%

50
%

10
4%

+
84

%
13

4%
75

%
10

1%
10

1%
83

.4
6%

51
%

10
6%

Ta
bl

e
3.

3:
T

he
po

st
-r

ou
te

re
su

lts
ob

ta
in

ed
fr

om
ou

r
H

L
S

af
te

r
th

e
re

so
ur

ce
op

tim
iz

at
io

n
ph

as
e,

w
ith

tw
o

va
ri

an
ts

:
pi

pe
lin

ed
ci

rc
ui

ts
w

ith
ou

t
in

te
rl

oc
k

(m
ar

ke
d

w
ith

“-
”)

an
d

in
te

rl
oc

ke
d

pi
pe

lin
ed

ci
rc

ui
ts

(m
ar

ke
d

w
ith

“+
”)

.
T

he
pe

rc
en

ta
ge

s
ar

e
co

m
pa

re
d

w
ith

th
e

m
ap

pi
ng

re
su

lts
in

Ta
bl

e
3.

2.
T

he
la

st
co

lu
m

n
is

th
e

to
ta

lH
L

S
ru

nt
im

e
(P

ha
se

I
+

Ph
as

e
II

)
co

m
pa

re
d

w
ith

th
e

m
ap

pi
ng

re
su

lts
(P

ha
se

I)
.

60

A comparison of the post-layout results from our mapping phase alone and the commercial tool

is provided in Table 3.2. On average, our mapping-based HLS achieves about 74× speedup with

same or better performance. The direct mapping leads to average data rate that is over 5× faster

than the commercial tool. The price paid here is more resource utilization, especially registers, as

resource constraints are relaxed in this phase. The results in Figure 3.9 is to show the importance

of our array SSA implementation. Without the array SSA, the remaining part of our HLS cannot

reach high throughput or input data rates.

0

50

100

150

200

250

300

0 5 10 15 20 25

TH
R

O
U

G
H

P
U

T
(M

H
Z)

POWER (MW)

Phase I Phase II No array SSA

Figure 3.9: The throughput-power comparison among different methods. Each point represents a
case. The no-array-SSA results are from modifying our HLS by removing the use of array SSA.

We also conducted experiments with both the mapping and resource optimization phases of

our HLS. In the experiment, the number of shared operations is limited to no more than four. The

results of both variants, pipeline with and without interlock, are obtained and shown in Table 3.3.

The LUT usage is lower with both variants. However, the interlocked pipelined circuits consume

about 42% more registers while achieves about 13% power saving on average. The power saving

is from the local clock gating, which lowers the switching activities, but the clock-gated registers

cannot be mapped to LUT shift registers. Thus, the register usage is significantly higher than those

without interlocking.

Our techniques have some advantages that are difficult to be evaluated in a quantitative manner.

61

For example, the support to structural recursion is an yes/no feature and difficult to be quantified.

Our automatic pipeline interlock synthesis would help reduce trial HLS runs in design space ex-

ploration. However, its evaluation requires to expand the research scope to not only HLS but also

DSE.

3.7 Conclusions and Future Works

We develop a fast mapping-based high level synthesis technique, which leads to 74× speedup

over a commercial tool. Such fast speed will facilitate extensive solution search in design space

exploration. Although our technique is described and validated on FPGA, it can be extended to

ASIC HLS as well. One important feature of our technique is the support to pipeline synthesis,

especially the synthesis of pipelined circuit with interlock, which is the first such work, to the

best of our knowledge. The local incremental resource optimization helps reduce the number

of HLS trials over different pragmas in source code. Moreover, our HLS can handle structural

recursion, which is not well addressed in previous works. Our HLS often leads to circuits with

higher data rates than the commercial tool, but at the expense of resource utilization increase. In

future research, we will refine the resource optimization and validate the proposed techniques in

design space exploration.

Although for many cases, the phase of resource optimization is not needed, it can be extended

and further divided into more optimization passes similar to those in LLVM compiler framework.

Since the LLVM IR is originally designed for microprocessors with a large continuous-address

main memory, which is not true in most hardware other than microprocessor-centric systems, a

newly designed IR might be a better choice than LLVM IR for the HLS phases and possibly fine-

grained HLS passes.

Some functional programming languages prefer use of parallel patterns such as map, filter

and reduce [86] and recursions rather than loops. Recent work has applied these functional lan-

guages patterns for generating hardware [58, 12]. These functional programming languages might

be better fitted for high-level synthesis for hardware to support parallel computing. Theoretically,

this mapping-based HLS technique should be able to work with any programming languages hav-

62

ing SSA-form based compiler front-end. Other programming languages with support of functional

parallel patterns might be a better choice than C as the front-end language.

63

4. CONTROL CIRCUIT SYNTHESIS FOR ADAPTIVE SUPPLY VOLTAGE DESIGNS1

4.1 Introduction

Despite the slowing down of VLSI technology scaling, market needs continuously drive for

higher performance, more functionalities and better energy-efficiency in chip products. To achieve

these goals under the challenges of power and variability, new designs include more and more self

management features [87], which make a circuit adapt its operations and resource allocation to cir-

cuit state and environment. One such feature is adaptive supply voltage (ASV) [88, 89, 5, 90, 91],

which adjusts circuit supply voltage according to its own variations. On-chip delay sensors have

been developed [92, 93, 94, 90] to detect the variations and enable truly autonomous ASV adjust-

ment. For example, the supply voltages of a chip can be tuned right after fabrication to compensate

its process variations, and later periodically tuned to mitigate circuit aging effects. Through the

dynamic power adjustment, there is no need to constantly maintain large timing margin, which

accounts for a considerable portion of overall chip power. By using per-core ASV, IBM Power7

processor [90] achieves about 24% chip power reduction without performance loss.

ASV granularity makes difference on the efficiency of resilience against process variations

and circuit aging. Coarse-granularity means a small number of large adaptivity blocks [88, 90],

wherein all cells in a block share the same tuning actions. Less blocks implies less tuning knobs and

relatively simple control. This explains why coarse-grained ASV is quickly adopted in industrial

products [90]. However, some variation effects are intrinsically fine-grained, e.g., transistor doping

fluctuations. Fine-grained ASV allows more precise control of power allocation and conceptually

offers more power saving, which is confirmed by recent studies [5, 91]. Nevertheless, its control

can be complicated. For instance, in Figure 4.1, a delay sensor (canary flip-flop [92, 93]) may

involve paths passing through multiple adaptivity blocks, and the supply voltage of one block may

affect multiple sensors. This is in contrast to coarse-grained ASV, where each sensor is associated

1Reprint with permission from “Control Synthesis and Delay Sensor Deployment for Efficient ASV Designs” by
Chaofan Li, Sachin S. Sapatnekar and Jiang hu, 2016. Proceedings of the 35th International Conference on Computer-
Aided Design, Article 64, Copyright 2016 by the authors.

64

with only one block. Moreover, circuit aging can be partially recovered if the circuit is powered

off or gated for a long time. As such, the supply voltage tuning is not always monotone and thus

the control can be even more complicated. The few existing methods on fine-grained ASV are for

regular datapath [5] or small circuits [91], and none of them elaborates the control design. To the

best of our knowledge, there is no previous work for control design of general fine-grained ASV.

Canary
FF 1

FF

Canary
FF 2

Adaptivity
Block A

Adaptivity
Block B

Combinational Logic Circuit

Figure 4.1: Fine grained ASV using canary flip-flop as delay sensors for detecting process varia-
tions and circuit aging. Dashed lines indicate timing paths.

Previous studies such as [5, 91] have shown the need for fine-grained ASV. In [5], a fine-

grained voltage tuning technique – voltage interpolation, is proposed for processor designs and

shown to be effective in addressing delay variations. In [91], a dual-level ASV system with fine-

grained voltage regulators is reported. It shows superior power-delay trade-off curve compared to

conventional coarse-grained ASV system.

One question is whether or not the need for fine-grained ASV is well justified, especially con-

sidering the increased design complexity. The answer lies in the history of VLSI technology ad-

vancement, e.g., the changes from constant supply voltage to dynamic voltage scaling, from single

threshold voltage (Vt) to multi-Vt design, from single voltage/clock domain to multi-voltage/clock

65

domains. These once forefront techniques are now ordinary and prevalent, despite that they in-

crease design complexity. The technology trend foresees that the power challenge will continue

to worsen. Hence, one can expect that the additional power savings from fine-grained ASV will

become a necessity.

We introduce two design techniques for the control of general fine-grained ASV. One is a rule-

based control that is derived according to min-cost network flow model. The other is Finite State

Machine (FSM) control, which is obtained through a new design methodology. Moreover, new

delay sensor deployment techniques are proposed. All the control design and sensor deployment

techniques can be fully automated and incorporated in EDA software. Experiments are performed

on ICCAD 2014 Incremental Timing Driven Placement Contest benchmark circuits, which include

cases of near one million gates. The results show that our techniques achieve 20% leakage power

reduction compared to coarse-grained ASV, while maintain about the same timing yield in presence

of process variations and aging effects. The proposed delay sensor deployment techniques also

outperform the only previous work.

4.2 Backgrounds on ASV

ASV is an effective approach to power-efficient resilience against process variations and circuit

aging in nanometer VLSI designs. An ASV design usually consists of three main components: (1)

delay sensors that detect circuit delay variations, (2) voltage tuning knobs that can change circuit

supply voltage, (3) control circuit that takes sensor results as inputs and decides the tuning knob

actions.

Broadly speaking, there are two types of delay sensors – critical path replica [94, 90] and ca-

nary flip-flop [92, 27]. A critical path replica is separated from functional circuits and relies on

probabilistic correlations to sense delay variations of actual circuits. The separation allows a rel-

atively easy integration with conventional design flows. A canary flip-flop extends conventional

flip-flop by adding a redundant sampling to additionally delayed logic signals [92] or logic switch-

ing detection near clock edge [27]. It is placed within the actual circuits, and therefore its sensing

is more accurate than critical path replica. In addition, it has relatively small size and is friendly to

66

B1 B2 B3

VddH 1.2V

VddL 1.0V

Effective Vdd 1.13V

Figure 4.2: Schematic of voltage interpolation [5].

fine-grained ASV design.

Supply voltage tuning can also be carried out in two different ways. In the first approach,

the supply voltage of a circuit block is tuned by a dedicated voltage regulator [90, 91]. This

approach provides relatively large tuning flexibility. However, regulators usually have large area

overhead and their use is mostly restricted to coarse-grained ASV. The other approach is voltage

interpolation [5], which divides combinational circuits into different blocks, and supplies two VDD

lines of different voltages to multiple blocks. Each block can choose higher or lower VDD between

the two lines. A schematic of voltage interpolation is provided in Figure 4.2. In this way, the

timing path passing through different blocks is operating at an “effective” supply voltage, which is

determined by the supply voltage combination of these blocks. Since it needs only two regulators

regardless the number of blocks, this approach is flexible in accommodating different adaptivity

granularities. Experimental results in [5] also shows that if the difference between the two supply

voltages is small, level shifters are not needed.

67

The control design for coarse-grained ASV is straightforward and similar to the control for

dynamic voltage frequency scaling (DVFS). In DVFS, the voltage and frequency are usually ad-

justed according to workload and controlled by runtime software [95]. In ASV designs, the voltage

tuning is mostly for compensating process variations and aging effects. In coarse-grained ASV, the

voltage tuning of an adaptivity block solely depends on the block’s own sensors and there is almost

no interaction among different blocks. For fine-grained ASV, as illustrated in Figure 4.1, the con-

trol is a MIMO (multi-input and multi-output) system and its design is no longer straightforward.

For example, if the fanin cone of FF2 has more overlapping cells with block B than with block A,

and there is a warning signal from FF2, it is better to tune the voltage of block B. Even though it is

possible that the aging in block A causes the warning, tuning block B to high voltage is still able

to compensate the variations warned by FF2. However, if there are warning signals from both FF1

and FF2, we might want to tune block A as it involves timing paths to both FF1 and FF2.

4.3 Problem Formulation

Without loss of generality, we consider using canary flip-flop as delay sensors and voltage

interpolation as voltage tuning knobs. Each canary flip-flop has a binary output. We overload

notation s as both the object of a canary flip-flop and its output variable. If a canary flip-flop

si = 0, the slack at si is not too small and no tuning action is needed. Output si = 1 means

a warning signal, which tells that the slack is small and near violation of timing constraint. In

voltage interpolation, there are two VDD options for each block and the default is low VDD. We

also overload notation b as the object of a block and the binary control variable to its supply voltage,

with bi = 0 for low VDD and bi = 1 for high VDD.

The control system takes sensor output vector s = [sk sk−1 ... s1]
T as input and generates the

control vector b = [bm bm−1 ... b1]
T as output. By turning some blocks from b = 0 to b = 1, the

delay for corresponding blocks should be reduced and consequently related sensor outputs may

change from s = 1 to s = 0. The control is to find value for b such that all sensor warning signals

are eliminated in presence of variations. Switching the voltage of a block from low to high causes

more power dissipation. When there are multiple b values that can make s = 0, we need to choose

68

the one with the minimum power dissipation.

4.4 Rule-Based Control

One approach for ASV control is combinational logic circuit with input s and output b. A

brute force method for designing such circuit is to build its truth table. In order to do so, one needs

to find a specific value of b for each certain value of s such that the power overhead is minimized

while all warning signals are eliminated. The best value of b can be found by examination (e.g.,

timing analysis) of all its 2m combinations in the worst case. This search is repeated for all 2k

sensor output combinations. Such brute force method requires 2m · 2k runs of timing analysis and

is evidently not scalable. For example, a circuit of m = 10 and k = 10 would need over one

million runs of timing analysis.

We suggest a rule-based heuristic where a block is switched to high VDD by the warning from

one sensor. In other words, one sensor is assigned to one block. This is a matching problem that

can be formulated and solved by network flow model.

A

B

C

1

2

3

S T

Block Sensor

Capacity = 1

Cost = 0

Capacity = 1

Cost = 0

Capacity = 1
Figure 4.3: Network flow model for assigning sensors to adaptivity blocks. The edge cost between
block and sensor vertex is inversely proportional to the overlap between the sensor fanin cone and
the block. The red edges indicate a flow solution.

69

The network is a graph G = (V,E) (see Figure 4.3). The vertices V is composed by block

vertices Vb, sensor vertices Vs, the source vertex S and the target vertex T . The set E includes

edges ESb from the source vertex to each block vertex, Ebs for edges between Vb and Vs, and EsT

for edges from each sensor vertex to the target vertex. Every edge has capacity of one. The cost

for each edge in ESb and Est is zero. The cost for edge (b, s) ∈ Ebs is the inverse of the number of

cells that are in both block b and the fanin cone of sensor s, i.e. overlapping cells. If the overlap

between b and fanin cone of s is empty, no edge between them exists in the network. Then, we

run off-the-shelf min-cost flow algorithm on this network with flow constraint equal to the total

capacity of ESb. The flow solution would match a sensor to a block with large overlap to its fanin

cone.

Sometimes the number of blocks |Vb| is different from the number of sensors |Vs|. If |Vb| > |Vs|,

we choose the sensors (canary flip-flops) with the minimum nominal slack and duplicate their

vertices. Such sensors usually involve long timing paths, which may need more cells with high

VDD. When |Vb| < |Vs|, we select some sensors and merge their vertices. For each sensor, one can

find the block that has the largest overlap with its fanin cone. Based on the pigeonhole principle,

there are at least two sensors si and sj that have the largest overlap with the same block. We take

si OR sj as the warning signal in place of the separated signals from si and sj . Then, one can use

the merged vertex si,j ∈ Vs in the network.

4.5 Finite State Machine Control

The ASV control may have different states, which are represented by different values of b =

[bm bm−1 ... b1]
T . A Finite State Machine (FSM) generates new output bnew according to not only

s but also current output or state bcurrent. As such, FSM can account for the feedback from the

effect of current block voltages, and iteratively improve the control result. Obviously, this is a more

powerful technique than the rule-based method introduced in section 4.4, which considers only s.

The number of states is 2m, which can be huge for an FSM design. Therefore, we propose a new

methodology that is different from conventional FSM designs. It has two phases. Phase I makes

the minimum effort in response to warning signals at the initial state, which is b = [0 0 ... 0]T .

70

Phase II makes incremental changes in an effort for fixing all timing warnings.

4.5.1 Phase I: Initial Response

We define that an adaptivity block bi flags a sensor sj , if the block has large overlap with the

fanin cone of sj , i.e., the value of bi has significant impact to the output of sj . For example, in

Figure 4.1, block A flags canary FF1. If a block control variable bi changes from 0 to 1 due to

warning signal at sj , block bi is said to respond to sj . Setting bi = 1 means the supply voltage of

block bi is the high VDD, which costs more power dissipation than the default low VDD setting.

Problem formulation. The design of the initial response is to ensure that every sensor with warn-

ing signal is responded by at least one of its flagging blocks and the total power overhead due to

the responses is minimized.

We define flag matrixC with rows corresponding to adaptivity blocks and columns correspond-

ing to sensors. A matrix element cij = 1 if block bi flags sensor sj . One example of flag matrix is

given below.

C =

s1 s2 s3 s4 s5 s6



b1 0 0 0 1 1 1

b2 1 1 1 0 0 0

b3 0 0 1 0 0 0

b4 0 1 1 0 0 0

b5 0 0 0 0 1 1

b6 1 0 0 0 0 0

(4.1)

In this example, block 2 flags sensor 1, 2 and 3. For s6 = 1, either b1 or b5 can respond. To reduce

power dissipation, the one with less power between b1 and b5 is set to high VDD. When s4 = 1,

the initial response needs to make b1 = 1. The initial control vector b generation procedure uses

the following two concepts.

Definition 1 Maximum Single-Response Scenario (MaxSRS): A maximum single-response sce-

71

nario Ψ is the maximum set of sensors that can be flagged by only one block. For instance, there

are two MaxSRS {s3, s2, s1} and {s6, s5, s4} in the example of flag matrix (4.1).

Definition 2 Single-Response Scenario (SRS): A single-response scenario ψ is a set of sensors that

is an element in the power set P(Ψ) of a MaxSRS Ψ. Additionally, all sensors in ψ have output

1 and all sensors in Ψ − ψ have output 0. For example, the sensor scenarios for the MaxSRS

{s3, s2, s1} include {s3, s2, s1}, {s2, s1}, {s3, s2}, {s3, s1}, {s1}, {s2} and {s3}. Please note

{s3, s1} implies s3 = s1 = 1 and s2 = 0.

For each SRS ψi, we can always find at least one block, called response block, to respond to

all sensors in ψi. If there are multiple such blocks, we choose the one with the minimum power

overhead as the response block. If bi is the response block for SRS ψ, then ψ is called the stimulus

SRS to bi. The initial response of b is largely decided by the response block and stimulus SRS

relation.

Single response control generation. Adaptivity block bi = 1 if any of its stimulus SRS asserts.

Hence, the value of bi equals logic OR among all of its stimulus SRS, i.e., sum of minterms that

correspond to stimulus SRS. For the example in matrix (4.1), b4 = s̄3s2s̄1 + s3s2s̄1, if power

overhead of b4 is less than b2. A minterm or an SRS ψ ∈ P(Ψ) is the logic AND operation among

the output or output complement of all sensors in Ψ. For example, SRS {s3, s1} means s3s̄2s1.

Usually, the sum of minterm logic contains redundancy. For example, b4 = s̄3s2s̄1+ s3s2s̄1 can be

simplified to b4 = s2s̄1.

Multi-response control generation. Multi-response means that a sensor scenario is responded by

multiple blocks. For example, a sensor scenario {s3, s1} for matrix (4.1) can be responded by sin-

gle block b2, or by two blocks {b6, b3}, and it is likely that the later case incurs less power overhead.

We develop a graph based algorithm to handle both the multi-response control generation and the

logic simplification of control circuits. First, we construct a dominance graph, where each vertex

corresponds to one SRS. There is an edge from SRS ψi to ψj if ψj ⊂ ψi, i.e., ψi dominates ψj . The

dominance graph for matrix (4.1) is shown in Figure 4.4(a). The response block for each SRS is

also labeled for each vertex. The vertices are colored according to their response blocks. The dom-

72

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{4,5,6}

{4,5} {4,6} {5,6}

{4} {5} {6}

b2

b2 b2 b4

b6 b4 b3

b1

b1 b1 b5

b1 b5 b5

(a) The dominance graph for control matrix (4.1). Each vertex is labeled with its sensor scenario and
response block.

{1,2,3}

{1,2} {2,3}

{1} {2} {3}

{4,5,6}

{4,5} {4,6} {5,6}

{4} {5} {6}

b2

b2 b4

b6 b4 b3

b1

b1 b1 b5

b1 b5 b5

(b) The dominance graph after pruning.

Figure 4.4: Dominance graph for matrix (4.1) and its pruning, on the assumption that the power
overhead of b3 and b6 combined is less than that of b2.

inance graph is pruned to facilitate the optimal response with the minimum power overhead. The

pruning is a depth-first search of the dominance graph as outlined in Algorithm 4. The key steps

are from line 8 to line 17, where a vertex and its associated edges are removed if its corresponding

73

power overhead is greater than that of its successor vertices. An example of such pruning is shown

in Figure 4.4(b).

1 PruneGraph(G(V,E))
/* G is the dominance graph */

2 foreach v ∈ V without predecessor do
3 Prune(v)
4 end

1 Prune(v)
2 if v has no successor vertex then
3 return
4 end
5 foreach (v, w) ∈ E do
6 Prune(w)
7 end
8 if P ({vsucc}) < P (v) then

/* P ({vsucc}) is the total power overhead of all the unique
blocks associated with successor vertices of v, P (v) is
the power overhead of the block corresponding to
vertex v */

9 foreach (v, wi) ∈ E do
10 foreach (pj, v) ∈ E do
11 if (pj, v, wi) is the only path from pj to wi then
12 E = E ∪ {(pj, wi)}
13 end
14 end
15 end
16 Remove vertex v, edge (pj, v) and edge (v, wi), ∀i, j /* Remove v and its

incident edges */
17 end

Algorithm 4: Graph Pruning Algorithm

The optimal multi-response control vector can be directly derived from the pruned dominance

graph. Denote Bi as the set of sensor scenarios that block bi should respond to, i.e., the vertices in

the dominance graph labeled with bi. For each set of sensor scenarios Bi, there is a unique sensor

scenario with the maximum number of sensors, which is defined as the max-scenario for bi and is

74

denoted Bmax
i . Also, Bi contains a set of scenarios with the minimum number of sensors, which

is defined as the min-scenario set of bi and denoted as Bmin
i ⊆ Bi. For the flag matrix (4.1), the

min-scenario sets and the max scenario for b5 and b4 are:

B5 = {{s6, s5}, {s6}, {s5}} B4 = {{s2}, {s3, s2}}

Bmax
5 = {s6, s5} Bmax

4 = {s3, s2}

Bmin
5 = {{s6}, {s5}} Bmin

4 = {{s2}}

The value for bi can be decided by considering only Bmin
i and Bmax

i . Please note Bmax
i must

correspond to a vertex in the dominance graph. More precisely speaking, we need to consider

the complement of the sensors in the predecessor of Bmax
i but not in Bmax

i itself. For example,

Bmax
5 = {s6, s5} and its predecessor vertex corresponds to sensor scenario {s6, s5, s4}. Then, we

include s̄4 in constructing the circuit for b5. The algorithm for generating multi-response control

with logic simplification is provided in Algorithm 5.

1 GenerateTerm(G(V,E), bi)
2 Find Bmax

i and Bmin
i

3 bi = 0
4 foreach Bmin

ij ∈ Bmin
i do

5 bi = bi+ m(Bmin
ij)

/* m generates product term for a sensor scenario, e.g.,
m({s2, s1}) = s2s1 */

6 end
7 foreach (pj, v

max
i) ∈ E do

/* vmax
i corresponds to Bmax

i */

8 bi = bi· m(pj −Bmax
i)

/* pj is the sensor scenario for pj, e.g.,

m({s3, s2, s1} − {s3}) = s2s1 = s̄2 + s̄1 */
9 end

10 return bi
Algorithm 5: Control Generation Algorithm

75

Using the proposed algorithms, we can generate the control vectors for flag matrix (4.1):

b1 = s4 b2 = s1s2

b3 = s3s̄2 b4 = s2s̄1

b5 = (s5 + s6)s̄4 = s5s̄4 + s6s̄4 b6 = s1s̄2

Even for a complex dominance graph, our algorithms can generate simplified logic circuit

for the control signal vector b. The control vectors are guaranteed to be optimal in terms of

power overhead, with an assumption that for every two max scenarios Bmax
i and Bmax

j , either

Bmax
i ⊆ Bmax

j or Bmax
j ⊆ Bmax

i , i.e., either Bmax
j dominates Bmax

i or Bmax
i dominates Bmax

j .

4.5.2 Phase II: Incremental Responses for FSM

000000

000001100000

000000

Initial State

001000001000

001001
101000

010001100000

000101001000

011001
100000

001101001000

011101
101000

000000

000000

000000

Figure 4.5: Partial FSM transition diagram for control matrix (4.1).

After the initial response, there still might be sensors with warning signals and we need to

76

switch more blocks to high VDD. The initial response leads the circuit into different states accord-

ing to different sensor outputs. Ideally, we like to repeat phase I for each of these states. However,

such approach would result in overly complex control. Therefore, we suggest greedy incremental

changes for the states after the initial response. For each sensor sj = 1, we pick one of its flag-

ging blocks bi that has value 0 after the initial response and the minimum power overhead, and set

bi = 1. This procedure is repeated till all sensor outputs become 0 or all control signals become

1. A part of the FSM design corresponding matrix (4.1) is shown in Figure 4.5, where question

marks means either 0 or 1. The complete design is too complicated to be presented in a figure.

4.6 Delay Sensor Deployment

The role of a delay sensor is to monitor timing paths and produces warning signal when a

path delay is near timing violation. In general, there are two competing design goals for delay

sensor deployment. First, sensors should monitor all paths whose delay variations pose a risk on

timing violation, i.e., the monitoring coverage needs to be sufficiently high. Second, the number

of sensors needs to be restricted or minimized, as they cause area and power overhead.

We consider fine-grained ASV using canary flip-flops as delay sensors. The work of [96],

perhaps the only previous work on canary FF deployment, simply selects flip-flops with slack

below certain threshold and converts them into canary FFs. One observation is that there may

be large overlap among timing paths to different flip-flops. For instance, in Figure 4.6, the timing

paths to FF2 are largely covered by paths to FF1 and FF3. Then, FF2 does not need to be a sensor if

both FF1 and FF3 become canary FFs. By incorporating this observation, we propose two problem

formulations and corresponding algorithms for the delay sensor (canary FF) deployment.

Before presenting the formulations and algorithms, we first define some terms. A timing crit-

ical path is a path that has the maximum delay to a flip-flop and its slack is below a threshold τ .

This definition is slightly different from the conventional definition for the convenience of present-

ing the algorithms. A logic gate or a part of a path is called covered if it is within the fanin cone of

any canary FF.

Delay Sensor Deployment Formulation 1: Given a circuit, find a subset of flip-flops to be con-

77

b

c

a Canary
FF1

Canary
FF3

FF2

Figure 4.6: The paths to FF2 are largely covered by paths to FF1 and FF3.

verted to canary FFs, such that the coverage to the timing critical paths is maximized while the

number of canary FFs is no greater than a given budget.

The algorithm for solving this formulation is an iterative greedy heuristic. In each iteration,

one flip-flop is selected to be canary FF according to the following preference metric.

pi = (di − ω) ·
d̄i
di

(4.2)

where di is the longest path delay to flip-flop i, d̄i is the delay of uncovered portion of this path,

and ω is a weighting factor. The first term indicates the timing criticality for a flip-flop and the

second term favors a flip-flop whose critical path has not been covered much. The weighting factor

ω provides a tradeoff between the two terms. A greater value of ω emphasizes more on the timing

criticality than the coverage. If ω = 0, the preference is solely based on coverage. The tradeoff

is illustrated by an example in Figure 4.7. This example has three flip-flops, with delay vector

(2.9, 3, 3.1) and uncovered delay vector (1.8, 1.5, 1.2). The first flip-flop has the smallest delay but

the largest uncovered delay. By increasing ω from 2.4 to 2.7, the preference changes from flip-flop

78

1 to flip-flop 3. The algorithm iteratively chooses the flip-flop with the largest value of p to be

canary FF till the constraint on the number of canary FFs is reached.

Figure 4.7: Impact of ω on the preference metric with horizontal axis for ω and vertical axis for p.
If ω > 2.6571, p3 > p2 > p1; if ω < 2.4857, p1 > p2 > p3.

Delay Sensor Deployment Formulation 2: Given a circuit, find a subset of flip-flops to be con-

verted to canary FFs, such that the number of canary FFs is minimized while the coverage to all

timing critical paths is no less than a given constraint.

The second formulation is very similar as the set cover problem. Given a universe U =

{1, 2, 3, ...,m} with m elements, a family of element sets S = {S1, S2, ...}, where Si ⊂ U , the

set cover problem is to find a subset C ⊆ S such that all elements in U are contained in C and the

cardinality |C| is minimized. By treating timing critical paths as the elements and flip-flops as S,

the canary FF deployment problem can be mapped to the set cover problem with a minor change.

We define that a path i is covered if the ratio d̄i/di is less than a parameter ρ. This definition is

in accordance with the observation in Figure 4.6 and problem formulation 2. The set cover problem

79

can be solved by integer linear programming, Boolean satisfiability or greedy heuristic. We adopt

a greedy heuristic where a flip-flop with the largest uncovered critical path is iteratively selected

till all timing critical paths are covered.

4.7 Experiments

4.7.1 Adaptive Design Flow

The experiments are performed on ICCAD 2014 Incremental Timing Driven Placement Con-

test benchmark circuits, whose gate counts are provided in Table 4.2. The flow of experiments is

shown in figure 4.8. We use Cadence SoC Encounter to insert buffers to the circuit layout. Accord-

ing to the placement results, we cluster cells with similar timing criticalities and spatially close to

each other, to form cell blocks using the method proposed in [33]. We also used the method in [97]

to get the timing analysis results for clustering. The timing critical blocks are designated as adap-

tivity blocks. Then, another phase of more accurate timing analysis for delay sensor deployment is

conducted using Synopsys PrimeTime. The cell timing and power information are obtained from

the Nangate 45nm Open Cell Library [98]. The delay sensor design by [27] is adopted and the

sensor deployment is conducted using our method of formulation 1 in Section 4.6. Then, the up-

dated design is placed and routed by Cadence SoC Encounter again. One example of the layout is

shown in figure 4.9. Like in [5], the high VDD and low VDD in the voltage interpolation are set

to 1.25V and 1.1V, respectively. The process variation and aging variation models are the same as

[91]. We consider gate length variation with σ being 5% of nominal value, and threshold voltage

variation with σ being 7% of nominal value. The spatial correlation among gate length variations

is included. The aging effect is captured as additional threshold voltage variation, with mean of

10% and σ of 3% of nominal value. Based on these models and SPICE simulations, cell delay and

power variations are obtained. Timing yield of a circuit is estimated through 5K-run Monte Carlo

simulation of timing analysis.

80

Initial Placement

Timing Analysis Clustering
Delay Sensor Placement
Control Circuit Synthesis

Gate Sizing
Adaptivity Assignment

Final PlacementRouting
Parasitic

Extraction

Statistical Timing
Analysis

Monte Carlo
Simulations

Timing Yield
Power Consumption

Synopsys PrimeTime

Cadence Encounter

DEF file

SPEF file
Nangate Library

Adaptive Circuits
Design Flow

Evaluation Flow

Figure 4.8: The flow of experiments

Core area(µm2) Normalized Wire length (µm) Normalized

b19
Adaptive design 342912 1.0306 2624987 1.1727

Conventional design 332733 1 2238409 1

mgc_edit_dist
Adaptive design 756900 1.0476 4785085 0.8858

Conventional design 722500 1 5401957 1

Table 4.1: Area and wire length comparison of two cases for conventional design and adaptive
design

81

(a) The layout after placement with power domains (b) The layout of the same design after routing

Figure 4.9: The layout of testcase b19: The power domains are divided according to the gate
clustering results

4.7.2 Experimental Results

As there is no previous work on fine-grained ASV control, to the best of our knowledge, we

compare the following:

Baseline: The entire circuit has static high VDD.

Coarse: All adaptivity cells are merged into one block, which can be set to high VDD by warning

from any sensor.

Rule: Our rule-based control.

FSM: Our finite state machine control.

All-low: The entire circuit has static low VDD.

The main results are shown in Figure 4.10 and Table 4.2. Figure 4.10(a) compares the timing

yields from different methods. The timing yields from the baseline (all-static-high VDD) are very

82

Testcases #gates
Adp blk Rule FSM

% %A #H %A #H
edit_dist 130661 13 94 0.07 3.36 0.25 1.67

matrix_mult 155325 6 61 0.07 2.02 1.28 1.22
vga_lcd 164891 12 69 0.04 1.23 0.17 0.72

b19 219263 10 77 0.04 0.94 0.15 0.77
leon3mp 649191 9 41 0.01 1.77 0.15 1.01

leon2 794286 16 52 0.01 2.27 0.12 1.17
netcard 958780 17 69 0.01 2.41 0.16 1.26

Average 0.04 2.00 0.33 1.12

Table 4.2: Testcases; total number of gates; number of adaptivity blocks; percentage of gates in
adaptivity blocks; area overhead due to adaptivity (%A) and average number of blocks at high
VDD (#H) for rule-based and FSM control.

near to 1 for all cases. The average timing yields for coarse, rule and FSM are 99.5%, 98.9%

and 98.7%, respectively. The timing yield from all-low is much lower. The leakage power data in

Figure 4.10(b) are normalized with respect to the results from the baseline. Only leakage power is

investigated because it is quite significant in nanometer technology, correlates with dynamic power

and does not rely on switching activities. Both our rule and FSM methods cause significantly less

leakage than coarse with very similar timing yields. Our FSM is slightly better than rule on

leakage and reaches about the same yield. Compared to coarse, the FSM causes 20% less leakage

power on average. Overall, FSM achieves timing yield near baseline and leakage power not far

from all-low.

Table 4.2 lists circuit statistics and additional results. The 4th column displays the percentage

of gates in adaptivity blocks. Columns 5 and 7 show the percentage adaptivity area overhead

mainly including the area increase from canary flip-flops and the control circuits. Columns 6 and

8 are the average number of blocks being switched to high VDD obtained from the Monte Carlo

simulation.

Figure 4.11 are the timing yield vs. leakage plots for circuit b19 with various timing constraints.

Coarse tends to reach high yield solutions with relatively large leakage power. FSM is superior to

rule in maintaining high yield for different timing constraints. Overall, FSM has the high timing

83

yield as coarse and the low leakage power as rule.

The impact of the number of sensors is investigated for circuit b19 and the results are shown in

Figure 4.13a. For coarse, both timing yield and leakage power increase with sensor count at the

beginning and then get saturated. The leakage power from rule is not sensitive to the number of

sensors. The yield of rule peaks when the number of sensors is close to the number of adaptivity

blocks, which is 10. In other words, the network flow method does not work well when there

is significant mismatch between the numbers of sensors and blocks. FSM has the yield close to

coarse and leakage power almost the same as rule over different number of sensors. Thus, FSM

is the best among the three methods.

In Figure 4.12, we compare our sensor deployment methods (formulation 1 and 2 in Sec-

tion 4.6) with the previous work [96]. A good method should provide high coverage on critical

paths with small number of sensors. Both our methods are superior to [96] in the coverage vs.

sensor count tradeoff. Our formulation 1 is the best, and is utilized in all the other experiments.

4.8 Conclusions

ASV is an effective approach to power-efficient resilience against process variations and circuit

aging in nanometer VLSI designs. We propose two techniques for fine-grained ASV control, which

has not been well studied before. Our FSM control can achieve about the same timing yield as

coarse-grained ASV, but costs 20% less leakage power. In fact, the leakage from our FSM control

is not far from using static low VDD for the entire circuit. We also show new techniques of delay

sensor deployment, which are demonstrated to be superior to the only previous work. All these

proposed techniques can be fully automated.

84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

edit_dist matrix_mult vga_lcd b19 leon3mp leon2 netcard Average

Coarse Rule FSM All Low

(a) Timing Yield

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

edit_dist matrix_mult vga_lcd b19 leon3mp leon2 netcard Average

Coarse Rule FSM All Low

(b) Leakage power of adaptive blocks normalized to baseline

Figure 4.10: Results for ICCAD 2014 benchmarks.

85

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Ti
m

in
g

Yi
el

d

Normalized leakage power of adaptive blocks

Coarse Rule FSM

Figure 4.11: Timing yield vs. leakage power for circuit b19 with different timing constraints. For
each curve, results on the right are from tighter timing constraints.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70

N
u

m
b

er
 o

f
co

ve
re

d
 c

ri
ti

ca
l p

at
h

s

Number of sensors

Previous work

Formulation 1

Formulation 2

Figure 4.12: Comparison among different sensor deployment methods on b19.

86

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

4 6 8 10 12 14 16

Ti
m

in
g

Yi
el

d

Number of Sensors

Coarse Rule FSM

(a) Timing yield

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 L
ea

ka
ge

Number of Sensors

Coarse Rule FSM

(b) Normalized leakage power of adaptive blocks

Figure 4.13: Impact of the number of sensors on b19.

87

5. CONCLUSION

This research addresses several issues in synthesis especially high-level synthesis. The meth-

ods and techniques achieve better power-efficiency. In addition to that, the high-level synthesis

techniques for hardware such as FPGAs achieve significant runtime speedup.

With the slowing down of Moore’s law, it relies increasingly on innovations of architectures and

designs to improve the power-efficiency. These emerging architectures brought new challenges for

synthesis techniques. To take advantage of these new designs and architectures, the synthesis tool

needs to consider more metrics such as the error rate and magnitude for joint HLS, approximate

computing and synthesis runtime of HLS.

In this research, A novel error model is proposed to measure the error incurred by approximate

computing and bitwidth optimization. In a task graph (modeled by a directed acyclic graph), the

error caused by internal operations may cancel in later nodes. Moreover, the existing error metrics

are difficult to integrate with the integer-linear programming model for high-level synthesis. The

error metric should be able to predict the accumulated error at the primary outputs according to

the error in the internal nodes. The error variance is just such an error model. If the errors caused

by individual operations are independent with each other, the variance can be accumulated to

get the error variance at the primary output. Based on this model, two HLS flow are designed.

One is ILP based simultaneous precision optimization and high-level synthesis and the other is

Knapsack-based precision optimization followed by list scheduling. Our results show that the

Knapsack-based method is one order of magnitude faster than the ILP based method. However,

the ILP method could get the optimal results subject to the constraints.

A mapping-based HLS flow is developed to map the LLVM IR to pipelined circuits in hard-

ware. Hardware such as FPGAs have special architectures that can be reprogrammed. They also

have plenty of registers and distributed memories available once manufactured. These resources

are suitable to perform high-throughput computing with pipelining and parallelizing. This research

designs a HLS technique that targets pipelined circuits first. Partially pipelined or non-pipelined

88

circuits then can be simplified from the pipelined circuits later by an optional phase of resource

optimization. Pipeline interlocking to address pipeline hazards is also provided, that can achieve

better power-efficiency and allows more flexible input patterns. This mapping-base HLS provides

better controllability and an order of magnitude faster speed compared to a commercial tool.

We also develop synthesis techniques to automatically construct the control circuits for fine-

grained adaptive supply voltage systems. Most previous supply voltage adjustment techniques are

coarse-grained. This research proposes fine-grained voltage adjustment techniques following gate

clustering techniques and statistical static timing analysis techniques for adaptive supply voltage.

The gate clustering is able to group gates into several clusters and these clusters are managed

by different power domains. We use the voltage interpolation technique to provide two levels of

voltage to each power domain. Then, the entire circuit is operating at an effective supply voltage

depending on the voltage levels of every power domains. A delay sensor placement technique is

also addressed with balanced gate coverage and timing criticality.

89

REFERENCES

[1] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization and high level

synthesis for approximate computing,” in Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE, pp. 1–6, IEEE, 2015.

[2] C. Li, S. S. Sapatnekar, and J. Hu, “Control synthesis and delay sensor deployment for effi-

cient asv designs,” in Proceedings of the 35th International Conference on Computer-Aided

Design, p. 64, ACM, 2016.

[3] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact: imprecise adders

for low-power approximate computing,” in Proceedings of the 17th IEEE/ACM international

symposium on Low-power electronics and design, pp. 409–414, IEEE Press, 2011.

[4] K. Chapman, “Saving costs with the SRL16E,” Xilinx techXclusive, p. 6, 2008.

[5] X. Liang, G.-Y. Wei, and D. Brooks, “Revival: A variation-tolerant architecture using voltage

interpolation and variable latency,” in Computer Architecture, 2008. ISCA’08. 35th Interna-

tional Symposium on, pp. 191–202, IEEE, 2008.

[6] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan) with CUDA,” GPU

Gems, 2007.

[7] K. E. Batcher, “Sorting networks and their applications,” in spring joint computer conference,

pp. 307–314, ACM, 1968.

[8] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling problem in

high level synthesis,” IEEE TCAD, vol. 10, no. 4, pp. 464–475, 1991.

[9] M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level synthesis of digital

systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301–318, 1990.

90

[10] R. Nikhil, “Bluespec system verilog: efficient, correct rtl from high level specifications,” in

Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. Proceedings. Second

ACM and IEEE International Conference on, pp. 69–70, IEEE, 2004.

[11] “Bsv high-level hdl: Best-in-class, general purpose high-level synthesis (hls) tools.” http:

//bluespec.com/54621-2/, 2018.

[12] K. Zhai, R. Townsend, L. Lairmore, M. A. Kim, and S. A. Edwards, “Hardware synthesis

from a recursive functional language,” in Hardware/Software Codesign and System Synthesis

(CODES+ ISSS), 2015 International Conference on, pp. 83–93, IEEE, 2015.

[13] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on high-level synthesis,” in Pro-

ceedings of the 25th ACM/IEEE Design Automation Conference, pp. 330–336, IEEE Com-

puter Society Press, 1988.

[14] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based on sdc formu-

lation,” in Design Automation Conference, 2006 43rd ACM/IEEE, pp. 433–438, IEEE, 2006.

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: A high-level synthesis framework for

applying parallelizing compiler transformations,” in VLSI Design, 2003. Proceedings. 16th

International Conference on, pp. 461–466, IEEE, 2003.

[16] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Platform-based behavior-level and system-

level synthesis,” in SOC Conference, 2006 IEEE International, pp. 199–202, IEEE, 2006.

[17] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.

[18] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and

T. Czajkowski, “Legup: high-level synthesis for fpga-based processor/accelerator systems,”

in Proceedings of the 19th ACM/SIGDA international symposium on Field programmable

gate arrays, pp. 33–36, ACM, 2011.

[19] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing modular hardware accelerators

in c with roccc 2.0,” in Field-Programmable Custom Computing Machines (FCCM), 2010

18th IEEE Annual International Symposium on, pp. 127–134, IEEE, 2010.

91

http://bluespec.com/54621-2/
http://bluespec.com/54621-2/

[20] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis

& transformation,” in Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization, p. 75, IEEE Computer Society,

2004.

[21] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate multiplier

with configurable partial error recovery,” in Design, Automation and Test in Europe Confer-

ence and Exhibition (DATE), 2014, pp. 1–4, IEEE, 2014.

[22] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet efficient accuracy configurable adder de-

sign,” in Low Power Electronics and Design (ISLPED, 2017 IEEE/ACM International Sym-

posium on, pp. 1–6, IEEE, 2017.

[23] M. B. Taylor, “Bitcoin and the age of bespoke silicon,” in Proceedings of the 2013 Interna-

tional Conference on Compilers, Architectures and Synthesis for Embedded Systems, p. 16,

IEEE Press, 2013.

[24] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator

design for deep convolutional neural networks,” in FPGA, 2015.

[25] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

[26] G. E. Blelloch and B. M. Maggs, “Parallel algorithms.” https://www.cs.cmu.edu/

~guyb/papers/BM04.pdf, 2004.

[27] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer cmos,” in Proceed-

ings of the 44th annual Design Automation Conference, pp. 396–399, ACM, 2007.

[28] J. Keane and C. H. Kim, “Transistor aging,” IEEE Spectrum, vol. 48, no. 5, pp. 28–33, 2011.

[29] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws of diminishing

returns,” in Proceedings of the 2010 international conference on Power aware computing and

systems, pp. 1–8, 2010.

92

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://www.cs.cmu.edu/~guyb/papers/BM04.pdf

[30] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,

K. Flautner, et al., “Razor: A low-power pipeline based on circuit-level timing speculation,”

in Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitec-

ture, p. 7, IEEE Computer Society, 2003.

[31] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P. Chandrakasan,

and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter

variations on microprocessor frequency and leakage,” IEEE Journal of Solid-State Circuits,

vol. 37, no. 11, pp. 1396–1402, 2002.

[32] Y. Shen and J. Hu, “Gpu acceleration for pca-based statistical static timing analysis,” in Com-

puter Design (ICCD), 2015 33rd IEEE International Conference on, pp. 674–679, IEEE,

2015.

[33] A. Lu, H. He, and J. Hu, “Proximity optimization for adaptive circuit design,” in Proceedings

of the 2016 on International Symposium on Physical Design, pp. 91–97, ACM, 2016.

[34] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthesis of quality-energy

optimal approximate adders,” in Computer-Aided Design (ICCAD), 2012 IEEE/ACM Inter-

national Conference on, pp. 728–735, IEEE, 2012.

[35] K. Nepal, Y. Li, R. Bahar, and S. Reda, “Abacus: A technique for automated behavioral

synthesis of approximate computing circuits,” in Proceedings of the conference on Design,

Automation & Test in Europe, p. 361, European Design and Automation Association, 2014.

[36] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under general error

magnitude and frequency constraints,” in Proceedings of the International Conference on

Computer-Aided Design, pp. 779–786, IEEE Press, 2013.

[37] F. S. Snigdha, D. Sengupta, J. Hu, and S. S. Sapatnekar, “Optimal design of jpeg hardware

under the approximate computing paradigm,” in Proceedings of the 53rd Annual Design Au-

tomation Conference, p. 106, ACM, 2016.

93

[38] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited

numerical precision,” in International Conference on Machine Learning, pp. 1737–1746,

2015.

[39] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco: Modeling and anal-

ysis of circuits for approximate computing,” in Computer-Aided Design (ICCAD), 2011

IEEE/ACM International Conference on, pp. 667–673, IEEE, 2011.

[40] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality tradeoff using impre-

cise hardware,” in Proceedings of the 49th Annual Design Automation Conference, pp. 504–

509, ACM, 2012.

[41] W.-T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Statistical analysis and

modeling for error composition in approximate computation circuits,” in Computer Design

(ICCD), 2013 IEEE 31st International Conference on, pp. 47–53, IEEE, 2013.

[42] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet efficient accuracy-configurable adder

design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018.

[43] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of approximate and prob-

abilistic adders,” IEEE Transactions on Computers, vol. 62, no. 9, pp. 1760–1771, 2013.

[44] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,

“Accuracy-guaranteed bit-width optimization,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[45] S. Lee and A. Gerstlauer, “Fine grain word length optimization for dynamic precision scaling

in dsp systems,” in Very Large Scale Integration (VLSI-SoC), 2013 IFIP/IEEE 21st Interna-

tional Conference on, pp. 266–271, IEEE, 2013.

[46] K.-I. Kum and W. Sung, “Combined word-length optimization and high-level synthesis of

digital signal processing systems,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 20, no. 8, pp. 921–930, 2001.

94

[47] J. Cong, Y. Fan, G. Han, Y. Lin, J. Xu, Z. Zhang, and X. Cheng, “Bitwidth-aware scheduling

and binding in high-level synthesis,” in Design Automation Conference, 2005. Proceedings

of the ASP-DAC 2005. Asia and South Pacific, vol. 2, pp. 856–861, IEEE, 2005.

[48] “Nangate freepdk15 generic open cell library.” http://www.nangate.com/?page_

id=64&id=2481, 2014.

[49] “Synopsys VCS verilog compiled simulator.” https://www.synopsys.com/

verification/simulation/vcs.html, 2014.

[50] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems,” in Microarchitecture, 1997. Pro-

ceedings., Thirtieth Annual IEEE/ACM International Symposium on, pp. 330–335, IEEE,

1997.

[51] IBM, “Cplex optimizer.” https://www.ibm.com/analytics/data-science/

prescriptive-analytics/cplex-optimizer.

[52] A. Putnam and et al, “A reconfigurable fabric for accelerating large-scale datacenter services,”

in ISCA, 2014.

[53] “Xilinx vivado high-level synthesis.” https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html.

[54] C. Pilato and F. Ferrandi, “Bambu: A free framework for the high level synthesis of complex

applications,” University Booth of DATE, vol. 29, p. 2011, 2012.

[55] R. S. Nikhil, “Bluespec: A general-purpose approach to high-level synthesis based on parallel

atomic transactions,” in High-Level Synthesis, pp. 129–146, Springer, 2008.

[56] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware design in haskell,” in

ACM SIGPLAN Notices, vol. 34, pp. 174–184, ACM, 1998.

[57] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong, “Improving high level syn-

thesis optimization opportunity through polyhedral transformations,” in Proceedings of the

95

http://www.nangate.com/?page_id=64&id=2481
http://www.nangate.com/?page_id=64&id=2481
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

ACM/SIGDA international symposium on Field programmable gate arrays, pp. 9–18, ACM,

2013.

[58] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. De Sa, C. Kozyrakis, and K. Olukotun,

“Generating configurable hardware from parallel patterns,” ASPLOS, pp. 651–665, 2016.

[59] “Synopsys synphony c compiler.” https://www.synopsys.

com/implementation-and-signoff/rtl-synthesis-test/

synphony-c-compiler.html.

[60] “Cadence stratus high-level synthesis.” https://www.

cadence.com/content/cadence-www/global/en_US/

home/tools/digital-design-and-signoff/synthesis/

stratus-high-level-synthesis.html.

[61] R. S. Nikhil and K. R. Czeck, “BSV by example,” 2010.

[62] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-space explo-

ration with high-level synthesis,” in Design Automation Conference (DAC), 2013 50th

ACM/EDAC/IEEE, pp. 1–7, IEEE, 2013.

[63] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design space exploration of

multiple loops on fpgas using high level synthesis,” in Computer Design (ICCD), 2014 32nd

IEEE International Conference on, pp. 456–463, IEEE, 2014.

[64] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power estimation and low-power de-

sign space exploration for fpgas,” in Proceedings of the 2007 Asia and South Pacific Design

Automation Conference, pp. 529–534, IEEE Computer Society, 2007.

[65] B. C. Schafer and K. Wakabayashi, “Divide and conquer high-level synthesis design space

exploration,” ACM Transactions on Design Automation of Electronic Systems (TODAES),

vol. 17, no. 3, p. 29, 2012.

[66] J. Keinert, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Meredith, et al.,

“Systemcodesigneran automatic esl synthesis approach by design space exploration and be-

96

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

havioral synthesis for streaming applications,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 14, no. 1, p. 1, 2009.

[67] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to fast hardware design space

exploration in fpga-based systems,” in Proceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation, PLDI ’02, (New York, NY, USA),

pp. 165–176, ACM, 2002.

[68] S. Dai, G. Liu, and Z. Zhang, “A scalable approach to exact resource-constrained scheduling

based on a joint sdc and sat formulation,” in Proceedings of the 2018 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, pp. 137–146, ACM, 2018.

[69] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer, and C. J.

Myers, “Synchronous interlocked pipelines,” in Asynchronous Circuits and Systems, 2002.

Proceedings. Eighth International Symposium on, pp. 3–12, IEEE, 2002.

[70] 7 Series FPGAs Configurable Logic Block User Guide. Xilinx Inc, Sept 2016.

[71] Y. Ben-Asher and N. Rotem, “Automatic memory partitioning: increasing memory paral-

lelism via data structure partitioning,” CODES+ISSS, pp. 155–162, 2010.

[72] Y. Wang, P. Zhang, X. Cheng, and J. Cong, “An integrated and automated memory optimiza-

tion flow for FPGA behavioral synthesis,” ASP-DAC, pp. 257–262, 2012.

[73] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning for multidimensional

arrays in high-level synthesis,” DAC, p. 12, 2013.

[74] A. Abdelhadi, Architecture of block-RAM-based massively parallel memory structures:

multi-ported memories and content-addressable memories. PhD thesis, UBC, 2016.

[75] N. Baradaran and P. C. Diniz, “A compiler approach to managing storage and memory band-

width in configurable architectures,” ACM TODAES, vol. 13, no. 4, p. 61, 2008.

[76] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers and redundant com-

putations,” POPL, 1988.

97

[77] C. Lattner and V. Adve, “LLVM language reference manual.” http://llvm.org/

docs/LangRef.html#abstract.

[78] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently computing

static single assignment form and the control dependence graph,” ACM TOPLAS, 1991.

[79] K. Knobe and V. Sarkar, “Array SSA form and its use in parallelization,” POPL, pp. 107–120,

1998.

[80] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level synthesis

for FPGAs: From prototyping to deployment,” IEEE TCAD, vol. 30, no. 4, pp. 473–491,

2011.

[81] “LegUp documentation 4.0,” 2015.

[82] G. E. Blelloch and B. M. Maggs, “Parallel algorithms.” https://www.cs.cmu.edu/

~guyb/papers/BM04.pdf, 1996.

[83] D. B. Thomas, “Synthesisable recursion for C++ hls tools,” in IEEE ASAP, 2016.

[84] G. E. Blelloch, “Prefix sums and their applications.” https://www.cs.cmu.edu/

~guyb/papers/Ble93.pdf, 1990.

[85] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,

P. Yiannacouras, and D. P. Singh, “From OpenCL to high-performance hardware on FPGAs,”

FPL, pp. 531–534, 2012.

[86] R. E. Pattis, “Functions as data: map, filter, reduce.” https://www.ics.uci.edu/

~pattis/ICS-31/lectures/functionsasdata/functionsasdata.txt,

2013.

[87] S. Sarma, N. Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian, “On-chip self-

awareness using cyberphysical-systems-on-chip (cpsoc),” in Proceedings of the 2014 Inter-

national Conference on Hardware/Software Codesign and System Synthesis, p. 22, ACM,

2014.

98

http://llvm.org/docs/LangRef.html#abstract
http://llvm.org/docs/LangRef.html#abstract
https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://www.ics.uci.edu/~pattis/ICS-31/lectures/functionsasdata/functionsasdata.txt
https://www.ics.uci.edu/~pattis/ICS-31/lectures/functionsasdata/functionsasdata.txt

[88] J. W. Tschanz, S. Narendra, R. Nair, and V. De, “Effectiveness of adaptive supply voltage and

body bias for reducing impact of parameter variations in low power and high performance

microprocessors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 826–829, 2003.

[89] T. Chen and S. Naffziger, “Comparison of adaptive body bias (abb) and adaptive supply

voltage (asv) for improving delay and leakage under the presence of process variation,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 5, pp. 888–899,

2003.

[90] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock, J. A. Tierno, J. B.

Carter, and R. W. Berry, “Active guardband management in power7+ to save energy and

maintain reliability,” IEEE Micro, vol. 33, no. 4, pp. 35–45, 2013.

[91] K.-N. Shim, J. Hu, and J. Silva-Martinez, “Dual-level adaptive supply voltage system for

variation resilience,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 21, no. 6, pp. 1041–1052, 2013.

[92] T. Sato and Y. Kunitake, “A simple flip-flop circuit for typical-case designs for dfm,” in

Quality Electronic Design, 2007. ISQED’07. 8th International Symposium on, pp. 539–544,

IEEE, 2007.

[93] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit failure prediction and its application

to transistor aging,” in VLSI Test Symposium, 2007. 25th IEEE, pp. 277–286, IEEE, 2007.

[94] Q. Liu and S. S. Sapatnekar, “Capturing post-silicon variations using a representative critical

path,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 29, no. 2, pp. 211–222, 2010.

[95] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core

dvfs using on-chip switching regulators,” in High Performance Computer Architecture, 2008.

HPCA 2008. IEEE 14th International Symposium on, pp. 123–134, IEEE, 2008.

99

[96] Y. Kunitake, T. Sato, and H. Yasuura, “A replacement strategy for canary flip-flops,” in De-

pendable Computing (PRDC), 2010 IEEE 16th Pacific Rim International Symposium on,

pp. 227–228, IEEE, 2010.

[97] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu, “Timing verification for adaptive in-

tegrated circuits,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),

2015, pp. 1587–1590, IEEE, 2015.

[98] “Nangate freepdk45 generic open cell library,” 2011.

100

APPENDIX A

TRANSISTOR-LEVEL HDL FOR AN APPROXIMATE ADDER

// Library - Design, Cell - MA_appr4_Nan, View - schematic

// LAST TIME SAVED: Nov 14 20:30:24 2014

// NETLIST TIME: Nov 14 21:02:11 2014

‘ifndef __MA_APPR4_NAN_V__

‘define __MA_APPR4_NAN_V__

‘timescale 1ns / 1ns

module MA_appr4_Nan (Cout, SUM, GND, Vdd, A, B, Cin);

output Cout, SUM;

inout GND, Vdd;

input A, B, Cin;

specify

specparam CDS_LIBNAME = "Design";

specparam CDS_CELLNAME = "MA_appr4_Nan";

specparam CDS_VIEWNAME = "schematic";

endspecify

pmos M14 (SUM, Vdd, cdsNet0);

pmos M11 (Cout, Vdd, cdsNet1);

pmos M0 (cdsNet1, Vdd, A);

pmos M1 (net57, Vdd, A);

pmos M2 (net57, Vdd, B);

101

pmos M3 (cdsNet0, net57, cdsNet1);

pmos M4 (cdsNet0, Vdd, Cin);

nmos M12 (Cout, GND, cdsNet1);

nmos M13 (SUM, GND, cdsNet0);

nmos M5 (cdsNet1, GND, A);

nmos M6 (cdsNet0, net72, cdsNet1);

nmos M7 (net72, GND, Cin);

nmos M8 (cdsNet0, net73, Cin);

nmos M9 (net73, net74, B);

nmos M10 (net74, GND, A);

endmodule

‘endif

102

APPENDIX B

TRANSISTOR-LEVEL HDL FOR AN ACCURATE ADDER

‘ifndef __FA_X1_V__

‘define __FA_X1_V__

‘timescale 1ns / 1ns

module FA_X1 (A, B, Cin, Cout, SUM);

supply1 Vdd;

supply0 GND;

output Cout, SUM;

//inout GND, Vdd;

input A, B, Cin;

specify

specparam CDS_LIBNAME = "Design";

specparam CDS_CELLNAME = "FA_X1";

specparam CDS_VIEWNAME = "schematic";

endspecify

pmos M27 (Cout, Vdd, cdsNet0);

pmos M24 (SUM, Vdd, net95);

pmos M0 (net90, Vdd, A);

pmos M1 (net90, Vdd, B);

pmos M2 (net117, Vdd, B);

103

pmos M3 (cdsNet0, net90, Cin);

pmos M4 (cdsNet0, net117, A);

pmos M5 (net96, Vdd, A);

pmos M6 (net96, Vdd, B);

pmos M7 (net96, Vdd, Cin);

pmos M8 (net95, net96, cdsNet0);

pmos M9 (net119, Vdd, A);

pmos M10 (net118, net119, B);

pmos M11 (net95, net118, Cin);

nmos M25 (SUM, GND, net95);

nmos M26 (Cout, GND, cdsNet0);

nmos M12 (cdsNet0, net88, Cin);

nmos M13 (cdsNet0, net116, A);

nmos M14 (net88, GND, A);

nmos M15 (net88, GND, B);

nmos M16 (net116, GND, B);

nmos M17 (net95, net94, cdsNet0);

nmos M18 (net94, GND, B);

nmos M19 (net94, GND, Cin);

nmos M20 (net94, GND, A);

nmos M21 (net95, net120, Cin);

nmos M22 (net120, net121, A);

nmos M23 (net121, GND, B);

endmodule

‘endif

104

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	Common Synthesis Techniques
	High-Level Synthesis for Power-Efficiency
	HLS for Approximate Circuits
	Mapping-Based HLS for Pipelined Circuits

	Adaptive Circuits
	Control Circuits Synthesis for Adaptive Supply Voltage

	Summary of Contributions

	HIGH-LEVEL SYNTHESIS FOR APPROXIMATE COMPUTIN
	Introduction
	Error Control

	Preliminaries
	Analytic Error Models
	 Knapsack-Based HLS for Approximate Computing
	Knapsack-Based Precision Optimization
	Approximation-Aware HLS
	Conventional List Scheduling
	Iterative List Scheduling

	ILP-Based HLS for Approximate Computing
	Experiment
	Conclusion

	MAPPING-BASED HIGH-LEVEL SYNTHESIS FOR PIPELINED CIRCUITS
	Introduction
	Backgrounds
	Distributed Memories
	SSA Form

	Phase I: Mapping
	Scheduling
	Storage Binding for Scalar Variables
	Datapath Control
	Synthesis of Array Datapaths
	Loops

	Phase II: Resource Optimization
	Iterative Resource Sharing
	Pipeline Interlock Synthesis
	Sharing for Loops

	Support for parallelization
	Array SSA and Parallelization
	Structural Recursion

	Experimental Results
	Conclusions and Future Works

	CONTROL CIRCUIT SYNTHESIS FOR ADAPTIVE SUPPLY VOLTAGE DESIGNS
	Introduction
	Backgrounds on ASV
	Problem Formulation
	Rule-Based Control
	Finite State Machine Control
	Phase I: Initial Response
	Phase II: Incremental Responses for FSM

	Delay Sensor Deployment
	Experiments
	Adaptive Design Flow
	Experimental Results

	Conclusions

	CONCLUSION
	REFERENCES
	APPENDIX TRANSISTOR-LEVEL HDL FOR AN APPROXIMATE ADDER
	APPENDIX TRANSISTOR-LEVEL HDL FOR AN ACCURATE ADDER

