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ABSTRACT

In this dissertation we investigate the performance of various wireless communication systems

that feature selection of the k-th best link from a number of links. We first consider the best link

selection (i.e., k = 1) and analyze the effective throughput of a transmit antenna selection scheme

for multiple antenna systems subject to Rayleigh fading. We derive an analytical expression for

the effective throughput and closed form expressions for the effective throughput in asymptotically

high and low signal-to-noise ratio (SNR) regimes.

Next, we consider the k-th best link selection scheme over various channel models that are

widely used to characterize fading in wireless communication systems such as, Weibull, Gamma,

α -µ and Gamma-Gamma. Assuming a large number of links, we use extreme value theory to show

that the k-th highest SNR converges uniformly in distribution to a log-gamma random variable for

a fixed k and large number of links. We derive simple closed-form asymptotic expressions for the

average throughput, effective throughput and average bit error probability of the k-th best link. The

derived results cover many practical systems of interest in radio frequency and free space optical

systems.

Furthermore, we analyze the asymptotic performance of a multiuser diversity scheme for an

interference limited secondary multiuser network of underlay cognitive radio systems. Assuming

a large number of secondary users and that the noise at each secondary user’s receiver is negligible

compared to the interference from the primary transmitter, the secondary transmitter transmits

information to the secondary user with the k-th best signal-to-interference ratio (SIR). We use

extreme value theory to show that the k-th highest SIR converges uniformly in distribution to an

inverse gamma random variable for a fixed k and large number of secondary users. We use this

result to analyze the asymptotic average throughput, effective throughput, average bit error rate

and outage probability for the k-th best secondary user under continuous power adaptation at the

secondary transmitter, which ensures satisfaction of an instantaneous interference constraint at the

primary receiver caused by the secondary transmitter.
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Finally, we investigate the secrecy performance of a multiuser diversity scheme for an inter-

ference limited wireless network with a base-station (BS), multiple legitimate users and an eaves-

dropper, in the presence of a single dominant interferer. Assuming interference dominates noise

power at the eavesdropper and at each legitimate user’s receiver, the BS transmits information to

the legitimate user with the k-th best SIR. We derive a closed-form expression for the secrecy

outage probability for an arbitrary number of users and an asymptotic expression for a fixed k and

large number of users. Furthermore, we derive a closed form asymptotic expression for the ergodic

secrecy capacity of the k-th best user and show that it scales logarithmically with the number of

users.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Diversity in Wireless Communications

The basic idea of diversity in wireless systems is to exploit information from several signals

transmitted over independent paths. Diversity can significantly improve the performance of wire-

less systems since it exploits the low probability of concurrence of deep fades in all diversity paths

to increase the transmit-receive link quality [1]. The most commonly employed diversity schemes

in wireless systems are:

1. Space diversity, which employs multiple antennas spaced enough from each other to ensure

independent fading.

2. Frequency diversity, which is very advantageous in frequency selective fading environment.

In this case the information signal is modulated over multiple sub-channels separated from

each other by at least the coherence bandwidth.

3. Time diversity, which features transmitting the information signal over multiple time slots

separated from each other by at least the coherence time of the channel.

1.1.1 Diversity Combining Techniques

Maximal ratio combining (MRC) diversity, equal gain combining (EGC) and selection diver-

sity (SD) are among the most common diversity combining techniques employed in wireless com-

munications. In MRC technique, all diversity branches are used simultaneously. Each branch is

multiplied by an optimal weight coefficient to maximize the received signal strength at the receiver.

In some cases, it is not possible to find the optimal weight coefficients to perform MRC. Hence, all

weight coefficient are set to unity and each signal is rotated in phase and added simultaneously to

provide EGC. The SD scheme is a very simple combining technique, it basically selects only one

diversity branch which has the strongest (best) signal-to-noise ratio (SNR).
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Due to its low complexity and simple implementation, SD is an attractive scheme for multiple

antennas configuration, multiuser networks and relay networks in many practical communication

systems, such as radio frequency (RF), cognitive radios (CR) and free space optical communication

(FSO) systems. The main focus of this dissertation is to explore the performance of many practical

wireless communication systems under a general SD scheme in which the k-th best link (k-th

highest SNR or k-th largest order statistics) is selected instead of the best link. We base our

performance analysis on the extreme value theory (EVT).

1.1.2 An Overview of EVT

EVT investigates the asymptotic behavior of the extremes (maximum or minimum) of a set

of random variables [2]. EVT is a very useful tool to analyze SD schemes in wireless systems

since it provides simple asymptotic expressions for the commonly used performance metrics such

as, ergodic throughput (capacity) and bit error rate (BER). In particular, EVT was used to analyze

the asymptotic average throughput (in the limit of large number of links) of the conventional SD

scheme, in which the link with the highest SNR is selected for transmission or reception [3], [4].

EVT was also used to evaluate the average BER of the conventional SD scheme [5], [6]. In Theo-

rem 1.1 and Theorem 1.2 below, we provide a brief overview of the main results of EVT.

Theorem 1.1. [2] Let X1, X2, ..., XN be independent identically distributed (i.i.d) random vari-

ables with common cumulative distribution function (CDF) of F (x) and let X(N) = max
i=1,...,N

Xi.

Then, the limiting CDF of the sequence X(N)−aN
bN

, where aN and bN > 0 are normalizing constants,

must belong to one of the three extreme value distributions Gi(x), namely,

1. Fréchet:

G1(x) =


0, x ≤ 0,

exp(−x−α), x > 0, α > 0

, (1.1)
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2. Weibull:

G2(x) =


exp[−(−x)−α], x > 0, α > 0

1, x > 0,

, (1.2)

3. Gumbel:

G3(x) = exp(−e−x), −∞ < x <∞. (1.3)

In the following Theorem we summarize the sufficient conditions for absolutely continuous F (x)

to belong to the domain of attraction of Gi(x), namely, F ∈ D (Gi).

Theorem 1.2. [2] Sufficient conditions for F (x) to belong to D (Gi) are as follows:

1. F ∈ D (G1) if F ′(x) = f(x) > 0 for all large x and for some α,

lim
x→∞

xf(x)

1− F (x)
= α. (1.4)

The normalizing constant bN can be obtained as

bN = F−1

(
1− 1

N

)
. (1.5)

2. F (x) ∈ D (G2) if ζ1 <∞ and for some α,

lim
x→ζ1

(ζ1 − x)f(x)

1− F (x)
= α, (1.6)

where f(x) = F
′
(x). The normalizing constant bN can be obtained as

bN = ζ1 − F−1

(
1− 1

N

)
. (1.7)
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3. F (x) ∈ D (G3) if F ′(x) = f(x) > 0 and is differentiable for all x ∈ (x1, ζ1) for some x1,

and

lim
x→ζ1

d

dx

[
1− F (x)

f(x)

]
= 0. (1.8)

The normalizing constants aN and bN can be obtained as

aN = F−1

(
1− 1

N

)
, (1.9)

bN = F−1

(
1− 1

Ne

)
− F−1

(
1− 1

N

)
. (1.10)

In what follows, we combine the results from Sections 10.5 and 10.6 (distribution of the k-th

extreme) of [2] in Theorem 1.3 below.

Theorem 1.3. [2] Let X(N) denote the largest order statistic of N i.i.d random variables with

a common CDF F (x), where X(1) ≤ X(2) ≤ .... ≤ X(N). If X(N)−aN
bN

, where aN and bN are

normalizing constants, has a limiting CDF, G(x) = Gi(x), then, for a fixed k and N → ∞, the

limiting CDF of X(N−k+1)−aN
bN

is of the form

G(k)(x) = G(x)
k−1∑
j=0

[− log (G(x))]j

j!
. (1.11)

Equivalently, for a fixed k and N → ∞, the sequence X(N−k+1)−aN
bN

converges uniformly in distri-

bution to a random variable X , where the CDF of X is as in (1.11). We will use the result from

Theorem 1.3 to analyze the performance of the k-th best link selection in the following chapters.
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1.2 The k-th Best Link Selection Scheme

1.2.1 Overview

Motivated by its simple implementation and low complexity, SD is an important diversity tech-

nique to enhance the performance of wireless communication systems. The theory of order statis-

tics [2] is considered a powerful tool to analyze the performance of SD techniques. As a classical

example, the theory of order statistics was used to analyze the performance of conventional SD

schemes in which the link with the highest SNR is selected for transmission or reception from

independent and identically distributed (i.i.d) links [1]. However, in practical communication sys-

tems the link with highest SNR may not be available for transmission or reception under given

traffic conditions. Therefore, a more general SD scheme that features selection of the k-th best

link (k-th highest SNR or k-th largest order statistics) is of practical interest in wireless commu-

nication systems. In what follows, we discuss the motivation behind addressing the k-th best link

selection problem for wireless systems.

1.2.2 Motivation

The motivation behind considering the k-th best link selection scheme can be summarized in

the view of the following communication systems configurations:

1. Relay networks: In cooperative-diversity or cognitive relay networks, the best relay may

not be selected due to imperfect channel state information (CSI), some scheduling or load-

balancing conditions [7], [8]. In such cases, the second best relay or in general the k-th best

relay can be selected.

2. Multiple antenna cognitive radio systems: Controlling the amount of interference caused

by the secondary transmitter to the primary receiver is the major challenge in the design of

cognitive radio systems. Considering a secondary transmitter with transmit antennas selec-

tion scheme, the antenna that maximizes the signal to noise ratio (best antenna) may not be

selected if the induced interference at the primary receiver exceeds the acceptable threshold

[9].
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3. Generalized multiuser diversity in wireless networks: Consider a generalized multiuser di-

versity scheme in a wireless network where the first M best users are selected, based on

their SNRs, from a total number of N users. The M users are allowed to access the channel

simultaneously in time-division multiple access (TDMA) fashion [10].

4. Fairer multiuser diversity in wireless networks: Selecting the best user is not always bene-

ficial since it prevents other users with good channel quality from transmission or reception

although it can achieve maximum diversity gain. One might improve the performance from a

fairness standpoint by selecting the k-th best user to achieve some fairness to multiple users

with good channels conditions [11]. Fairer multiuser diversity is also beneficial in secondary

multiuser cognitive radio networks where only one secondary user can access the channel at

any time instant.

5. Priority aware multiuser diversity in wireless networks: In this scenario, we select the first

M best users from a total number of N users. Then only one user is selected which is the

one with the most important data (higher priority) among the M users. This scenario is

of practical interests in secondary multiuser cognitive radio networks where the secondary

users are competing for the channel in opportunistic fashion. If the second, third best or in

general the k-th best secondary user has more important data then it will be granted access

instead of the best user.

1.3 Dissertation Outline and Contributions

The rest of this dissertation is divided into five chapters. In Chapter 2 we provide a detailed

analysis of the achievable effective throughput of multiple-input single-output (MISO) with trans-

mit antenna selection (TAS). More specifically, we present a novel integral expression for the

effective throughput of MISO/TAS systems in terms of the cumulative distribution function (CDF)

of the channel gain assuming a generalized fading environment. Then, we analyze the effective

throughput specifically in Rayleigh fading and derive closed-form expressions for it in asymp-

totically high and low SNR regimes. Furthermore, we consider a MISO/TAS system with large
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number of transmit antennas and generalized antenna selection and derive an asymptotic analytical

expression for the effective throughput.

The exact results for the effective throughput and average throughput derived in Chapter 2

and [12], respectively, are valid only for the conventional SD scheme in Rayleigh fading and it

is hard to extend them for general SD schemes and different fading channels, such as Weibull,

Gamma, α − µ and Gamma-Gamma. In Chapter 3, another approach based on EVT or extreme

order statistics is used to analyze the effective throughput, average throughput and average BER

of the k-th best link over different fading channels. We utilize EVT to derive simple closed-form

asymptotic and more intuitive expressions for the average throughput, effective throughput and

average BER of the k-th best link over various fading channel models, such as Weibull, Gamma,

α − µ and Gamma-Gamma. To the best of our knowledge, such analysis has not been considered

in the literature before.

In Chapter 4, we consider an interference-limited secondary multiuser network, where the

noise at each secondary user receiver is negligible compared to the interference from the primary

transmitter (PT). We assume that the secondary transmitter transmits information to the k-th best

secondary user (SU), namely, the SU with the k-th highest signal-to-interference ratio (SIR). Mean-

while, the ST adjusts its transmit power to satisfy the instantaneous interference constraint at the

primary receiver (PR). We use EVT to analyze the performance of the k-th best SU in underlay

CR systems.. More specifically, we show that the SIR of the k-th best user converges uniformly

in distribution to an inverse gamma random variable for a fixed k and large number of secondary

users. Then, we derive novel closed-form asymptotic expressions for the average and effective

throughputs of the k-th best SU employing continuous power adaptation at the ST with both lim-

ited and unlimited transmit power. Furthermore, novel closed-form asymptotic expressions for the

average BER and outage probability with continuous power adaptation and unlimited ST power

are derived.

Chapter 5 is devoted to study the secrecy performance of the k-th best user selection scheme in

multiuser wireless network. In particular, we analyze the the secrecy outage probability (SOP) and
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the ergodic secrecy capacity (ESC) of the k-th best user selection scheme of a multiuser wireless

network in the presence of a single dominant interferer. Assuming that the noise power at each

user’s receiver and Eve’s receiver are negligible compared to the interference power, and the user

with the k-th best signal to interference ratio (SIR) is selected from a total number of users N ,

we derive a closed-form expression for the secrecy outage probability for an arbitrary N and an

asymptotic expression for a fixed k and large N . Furthermore, we derive an asymptotic closed

form expression for the ESC of the k-th best user and show that the ESC scales like O (log(N))

for a fixed k and large N .

Finally, Chapter 6 concludes the dissertation and discuss future work orientations and exten-

sions.
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2. EFFECTIVE THROUGHPUT OF MISO SYSTEMS WITH TRANSMIT ANTENNA

SELECTION IN RAYLEIGH FADING ∗

2.1 Introduction

Motivated by the fact that the most important emerging real time applications (such as voice 

over IP, smart grid applications, interactive and multimedia streaming) impose stringent quality of 

service (QoS) constraints, the concept of effective throughput (capacity) was introduced by Wu 

and Negi [13] to address the impact of statistical delay QoS on system performance. Recently, 

there has been an increased interest in the theory of effective throughput to quantify the achievable 

rate of various wireless systems under delay QoS limitations. In particular, the effective capacity of 

multiple-antenna wireless systems in Rayleigh fading is investigated in [14]. Effective throughput 

analysis of multiple-input single-output (MISO) systems was extensively studied over different 

fading channel models. In [15], the effective throughput of Nakagami-m, Rician and generalized-

K MISO fading channels were investigated. In [16]-[18], the authors study the effective throughput 

of, η − µ, k − µ and α − µ fading channels, respectively. In [19], [20] the authors analyze the 

effective throughput of correlated MISO in Rayleigh and Nakagami-m fading, respectively. The 

effective throughput over independent but not identical (i.n.i.d) MISO Weibull fading channels is 

considered in [21].

Antenna selection schemes in multiple-input multiple-output (MIMO) wireless systems pro-

vide significant advantages in practical communication since they can reduce complexity and sub-

stantially increase capacity [22]. Motivated by these advantages, the effective capacity analysis 

of wireless systems with receive/transmit antenna selection schemes has been recently considered 

in [23]. The authors analyze the effective capacity of a multiple-input multiple-output (MIMO) 

system in two different cases with receive antenna selection (RAS) and transmit antenna selection 

(TAS) schemes. For the TAS scheme, the authors consider an optimal power-control policy in-
∗Reprinted with permission from “On the effective rate of MISO/TAS systems in Rayleigh fading,” Y. H. Al-

Badarneh, C. N. Georghiades, and C. E. Mejia, 2017 IEEE International Symposium on Information Theory (ISIT), 
pp. 2328-2332, Copyright c©2017 IEEE.
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vestigated in [24] that can maximize the effective capacity; they also investigated the maximum

effective capacity in two asymptotic cases with loose and strict QoS requirements. While the work

in [23] has improved our knowledge on the effective capacity of multiple antenna systems with

antennas selection, some implications on the effective achievable throughput have not yet been

investigated. Motivated by [15], in this chapter we provide a detailed analysis of the achievable

effective throughput of MISO/TAS to draw some conclusions on the impact of system parameters

on the effective throughput. More specifically, we present a novel integral expression for the ef-

fective throughput of MISO/TAS systems in terms of the cumulative distribution function (CDF)

of the channel gain assuming a generalized fading environment. Then, we analyze the effective

throughput specifically in Rayleigh fading and derive closed-form expressions for it in asymptot-

ically high and low signal-to-noise ratio (SNR) regimes. Furthermore, we consider a MISO/TAS

system with large number of transmit antennas and generalized antenna selection and derive an

asymptotic analytical expression for the effective throughput.

The rest of this chapter is organized as follows. In Section II we discuss the system and channel

models. In Section III we discuss the effective throughput of the MISO/TAS system. Section IV

includes numerical results. Finally, Section V concludes.

2.2 System Model

Consider a MISO system in which the transmitter selects the best transmit antenna from N

available ones to transmit information to the receiver. Let hi denote the complex channel gain

between the i-th transmit antenna and the receiver and Xi the squared magnitude of the channel

gain, where i = 1, 2, ..., N . The received signal can be expressed as

y = h(N)s+ w, (2.1)

where s is the complex valued symbol transmitted with (normalized) power ρ, w is the circularly

symmetric additive white Gaussian noise (AWGN) with zero mean and unit variance and h(N) is

the flat fading channel gain of the best best transmit antenna. Then, the instantaneous SNR at the
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receiver side is ρX(N) where X(N) = |h(N)|2 and we assume the ordering X(1) ≤ X(2) ≤ .... ≤

X(N). According to [2], the probability density function (PDF) of X(N) can be expressed in terms

of the PDF, f(x), and cumulative distribution function (CDF), F (x), of Xi as

fX(N)
(x) = Nf(x)[F (x)]N−1. (2.2)

The effective throughput is defined in [13] as the maximum constant arrival rate that can be

supported by a time-varying wireless system under a statistical QoS constraint described by the

delay QoS exponent θ. Assuming block fading channels, the effective throughput of the service

process can be formulated as

α(ζ) = − 1

ζT
log
(
E
{
e−ζTR

})
, ζ > 0, (2.3)

where R is a random variable which represents the instantaneous throughput during a single block

and T is the block length. The delay QoS exponent ζ captures the so-called asymptotic decay-rate

of the buffer occupancy and is given by [14]

θ = − lim
x→∞

log Pr{L > x}
x

, (2.4)

where L is the equilibrium queue-length of the buffer at the transmitter. ζ = 0 implies there is no

delay constraint and the effective throughput is then the ergodic throughput of the corresponding

wireless channel.

2.3 Effective Throughput of MISO/TAS Systems

Considering a MISO/TAS scheme described in Section I, the effective throughput can be ex-

pressed as

α(ρ, θ,N) = − 1

A
log2

(∫ ∞
0

e−A log(1+ρx)fX(N)
(x)dx

)
bit/s/Hz, (2.5)
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where A ∆
= θTB

ln(2)
, with B denoting the bandwidth of the system and fX(N)

(x) as defined in (2.2).

An alternative representation of (2.5) using integration by parts is

α(ρ, θ,N) = − 1

A
log2(ρA)− 1

A
log2

(∫ ∞
0

(1 + ρx)−A−1[F (x)]Ndx

)
, (2.6)

where we assume that limx→∞ (1 + ρx)−A[F (x)]N = 0, and limx→0 (1 + ρx)−A[F (x)]N = 0, for

all N ≥ 1. These assumptions hold for the family of exponential distributions that are widely

used to characterize fading in wireless communication. In the analysis that follows, we focus

on the effective throughput of a MISO/TAS system in Rayleigh fading and derive an analytical

expression for it. The asymptotically high and low-SNR regimes are also considered to provide

physical insight of system and channel parameters on the effective throughput.

2.3.1 Exact Analysis

Proposition 2.1. The effective throughput of MISO/TAS in Rayleigh fading can be expressed as

α(ρ, θ,N) = − 1

A
log2

(
1 + A

N∑
n=1

(
N

n

)
(−1)n exp

(
n

ρ

)
Γ

(
−A, n

ρ

)(
n

ρ

)A)
, (2.7)

where Γ(s, x) =
∫∞
x
us−1e−udu is the upper incomplete gamma function.

Proof. Starting from the fact that in Rayleigh fading, F (x) = 1 − e−x, and applying binomial

expansion, we have

∫ ∞
0

(1 + ρx)−A−1[F (x)]Ndx =

∫ ∞
0

(1 + ρx)−A−1 [1− e−x]N dx
=

N∑
n=0

(
N

n

)
(−1)n In(ρ,A),

(2.8)
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where In(ρ,A) is given by

In(ρ,A) =

∫ ∞
0

(1 + ρx)−A−1 e−nxdx =


1
ρA
, n = 0

1
ρ

exp
(
n
ρ

)
Γ
(
−A, n

ρ

)(
n
ρ

)A
, n = 1, 2, ...N

.

(2.9)

Making use of (2.8) and (2.9) in (2.6), after some basic algebraic manipulation, the effective

throughput can be expressed as in (2.7).

2.3.2 Asymptotic SNR Analysis

In this section we study the effective throughput for asymptotically high and low SNR regimes.

In the high-SNR regime, i.e., (ρ→∞) in (2.6), we have

α(ρ, θ,N) ≈ log2(ρ)− 1

A
log2

(
A

∫ ∞
0

x−A−1(1− e−x)Ndx
)
, (2.10)

as ρ→∞, where N ≥ 1 and 0 < A < N are required for the above integral to converge. The first

condition results from (2.6) while the second condition results from the convergence behavior of

the integrand in (2.10) as x → 0 and x → ∞. As x → 0 the integrand behaves like O
(
xN−A−1

)
and therefore A < N is required for convergence. On the other hand, as x → ∞, the integrand

behaves like O
(
x−A−1

)
and therefore A > 0 is required for convergence.

Proposition 2.2. For N ≥ A + 1 ≥ 2 and A an integer, the effective throughput in (2.10) can be

expressed as

α(ρ, θ,N) ≈ log2(ρ)− 1

A
log2

(
(−1)A+1

(A− 1)!

N∑
n=1

(
N

n

)
(−1)n nA log(n)

)
, (2.11)

as ρ→∞.

Proof. Let g(x) = (1 − e−x)N ; using binomial expansion, the j-th derivative of g(x) is gj(x) =∑N
n=0(−1)n+j

(
N

n

)
nje−nx. Note that gj(x) = O(xN−k) as x → 0 for 0 ≤ k ≤ N . Furthermore,
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gj(x) = O(e−x) as x→∞ for 1 ≤ k ≤ N . Using these observations and applying integration by

parts m times, we can write

∫ ∞
0

x−mg(x)dx =
−1

(m− 1)!

∫ ∞
0

gm(x) log(x)dx

=
(−1)m−1

(m− 1)!

N∑
n=0

(−1)n
(
N

n

)
nm
∫ ∞

0

e−nx log(x)dx,

(2.12)

for N ≥ m ≥ 2. Invoking Eq. (4.352.1) of [25], we have
∫∞

0
e−nx log(x)dx = −E0−log(n)

n
, where

E0 is the Euler constant. Substituting this and m = A + 1 in (2.12) after some straightforward

algebraic manipulations we reach (2.11).

At low SNR, the effective throughput can be evaluated via a second-order Taylor expansion of

α(ρ, θ,N) at ρ = 0; hence we can write [26]

α(ρ, θ,N) = α′(0, θ, N)ρ+ α′′(0, θ, N)
ρ2

2
+ o(ρ2), (2.13)

where α′(0, θ, N) and α′′(0, θ, N) denote, respectively, the first and second derivatives of the ef-

fective throughput with respect to ρ at ρ = 0. In order to investigate the effective throughput in the

low SNR regime, two important parameters of interest, the minimum transmit energy per infor-

mation bit normalized by the noise spectral density, Eb
N0 min

, and the wideband slope S0, have been

introduced in [27]. These two parameters can be obtained as

Eb
N0 min

= lim
ρ→0

ρ

α(ρ, θ,N)
=

1

α′(0, θ, N)
, (2.14)

S0 = −2 ln(2) [α′(0, θ, N)]2

α′′(0, θ, N)
. (2.15)
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Hence, the effective throughput at low SNRs can be expressed as [27]

α

(
Eb
N0

, θ, N

)
= S0 log2

(
Eb
N0

/
Eb
N0 min

)
. (2.16)

Proposition 2.3. For a MISO/TAS scheme in Rayleigh fading, Eb
N0 min

and S0 are given by

Eb
N0 min

=
ln(2)

ψ(N + 1) + E0

, (2.17)

S0 =
2 (ψ(N + 1) + E0)2

(ψ(N + 1) + E0)2 + (A+ 1)
(
π2

6
− ψ(1, N + 1)

) , (2.18)

where, ψ(x) is the digamma function and ψ(m,x) is the m-th derivative of ψ(x).

Proof. Invoking (2.5) and following the same line of reasoning as in Appendix I of [19], the first

and second derivatives in (2.13) are given by

α′(0, θ, N) =
E
[
X(N)

]
ln(2)

, (2.19)

α′′(0, θ, N) =
A

ln(2)

(
E
[
X(N)

])2 − A+ 1

ln(2)
E
[
(X(N))

2
]
, (2.20)

where E
[
X(N)

]
and E

[
(X(N))

2
]

are given by

E
[
X(N)

]
= ψ(N + 1) + E0, (2.21)

E
[
(X(N))

2
]

= (ψ(N + 1) + E0)2 +
π2

6
− ψ(1, N + 1). (2.22)

We provide a detailed proof for (2.21) and (2.22) in Appendix A. Making use of (2.19) - (2.22)

in (2.14) and (2.15), after some straightforward algebraic manipulations, we get (2.17) and (2.18).
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Note that the minimum bit energy is a function of the number of transmit antennas N . It is

interesting to observe that for N = 1, it follows that Eb
N0 min

= ln(2) and S0 = 2
A+2

. These results

are in agreement with what was obtained for MISO Nakagami-m fading by setting m = 1, Nt =

1,Ω = 1 in Eq. (20)-(21) of [15]. From (2.18), it can be also shown that S0 is a decreasing function

of A.

For large number of transmit antennas (N →∞), the minimum Eb
N0

and the wideband slope S0

are respectively given by

Eb
N0 min

=
ln(2)

log(N)
, (2.23)

S0 = 2. (2.24)

In order to prove (2.23) and (2.24), we invoke Eq. (6.13.18) and Eq. (6.4.12) of [28], then we have

ψ(N) = O (log(N)) and ψ(1, N + 1) = O (1/N), respectively as N → ∞. Substituting these in

(2.17) and (2.18) we get (2.23) and (2.24). Note that S0 is a monotonically increasing function in

the number of transmit antennas with maximum value of S0 = 2.

2.3.3 Asymptotic Effective Throughput for Large N

In this section we analyze the effective throughput of a MISO system with large N where

generalized transmit antenna selection is performed such that we select the bestL from all available

N antennas, where 1 ≤ L ≤ N . With perfect CSI and transmit beamforming, the achievable

throughput of this system can be expressed as [29]

I = log2

(
1 + ρ

L∑
i=1

X(N−i+1)

)
bit/s/Hz. (2.25)

The effective throughput of this system is given in the following proposition.
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Proposition 2.4. For fixed ρ, 1 ≤ L ≤ N , andN →∞, the effective throughput of MISO systems

with generalized transmit antenna selection and transmit beamforming can be expressed as

α(ρ, θ,N, L) = − 1

A
log2 [LI (A ln(2))] bit /s/Hz, (2.26)

where LI(·) is the Laplace transform of the PDF of the random variable I , given by

LI(t) = e
r2t2

2
−µt
[
1− Φ

(
−µ
r

+ rt
)]

+ e
r2t2

2
+µt
[
1− Φ

(µ
r

+ rt
)]
, (2.27)

where Φ(·) is the CDF of standard normal random variable. The terms µ and r are given by

µ = log2

(
1 +

(
1 + ln

N

L

)
ρL

)
, (2.28)

r =

√√√√(log2(e))2 ρ2L
(
2− L

N

)(
1 +

(
1 + ln N

L

)
ρL
)2 . (2.29)

Proof. According to Theorem 1 of [29], for large N , the CDF of the random variables I can be

approximated by a folded normal distribution with parameters of µ and r2, where µ and r as given

in (2.28) and (2.29), respectively. Then the effective throughput can be expressed as

α(ρ, θ,N, L) = − 1

A
log2

(
E
{
e−A ln(2)I

})
bit /s/Hz. (2.30)

Using the fact that the term E
{
e−A ln(2)I

}
represents the Laplace transform of the PDF of the

random variable I , LI(t) at t = A ln(2), the effective throughput of this system can be expressed

as in (2.26). As a special case of L = 1, the expression in (2.26) can be used to approximate the

effective throughput derived in (2.7) for asymptotically large N .

Note that µ→∞ and r → 0 asN →∞, then LI(A ln(2)) behaves like e−A ln(2)µ for a fixedA.
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Therefore the effective throughput in (2.26) converges asymptotically almost surely to the mean µ.

This implies that employing transmit antenna selection in the presence of large number of antennas

is asymptotically optimal in the sense that the effective throughput tends to the ergodic (Shannon)

throughput and the delay requirement vanishes asymptotically when N grows large.

2.4 Numerical Results
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Figure 2.1: Exact analytical effective throughput and high-SNR approximation versus SNR of
MISO/TAS systems.

In this section, we numerically illustrate and verify the obtained analytical results in the pre-

vious section. In Fig. 2.1, we compare the exact effective throughput of a MISO/TAS system in
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(2.7) with the high-SNR approximation of Proposition 2.2. As shown, the high-SNR expression in

(2.11) is quite accurate even at moderate SNR values. In Fig. 2.2, we plot the effective throughput

as a function of the normalized bit energy for N = 10, we note that the minimum bit energy for all

values of A is -6.259 dB. In Fig. 2.3, we plot the effective throughput as a function of the transmit

antennas, N , for different values of selected antennas L. We validate the obtained analytical re-

sults using Monte Carlo simulations. We observe that the asymptotic expression is accurate even

for small N . We also observe that asymptotic expression becomes more accurate as L increases.
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Figure 2.2: Low-SNR effective throughput of MISO/TAS systems versus bit energy for N = 10
and A=1, 2, 3, 4.
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Figure 2.3: Asymptotic effective throughput of MISO/TAS systems versus the number of transmit
antennas for L = 1, 5, 10 and A = 2, at ρ = 0 dB.

2.5 Summary

A detailed effective throughput analysis of MISO/TAS systems was considered. An analytical

expression for the effective throughput of the considered system in Rayleigh fading is obtained.

Moreover, we analyzed the effective throughput in the asymptotically low and high-SNR regimes

and closed form expressions were derived. At the low-SNR regime, we showed that the minimum

bit energy depends on the number of transmit antennas but not on the delay constraint. However,

we observed that the wideband slope is a decreasing function of the delay constraint and monoton-

ically increasing in the number of transmit antennas. Finally, we derived an asymptotic analytical
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expression for the effective throughput of MISO/TAS systems with large number of transmit an-

tennas and showed that effective throughput tends to the ergodic (Shannon) throughput and the

delay requirement vanishes asymptotically as the number of transmit antennas grows large.
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3. ASYMPTOTIC PERFORMANCE ANALYSIS OF THE K-TH BEST LINK SELECTION

OVER WIRELESS FADING CHANNELS: AN EXTREME VALUE THEORY

APPROACH ∗

3.1 Introduction

Motivated by its simple implementation and low complexity, selection-diversity (SD) is an 

important diversity technique to enhance the performance of wireless communication systems. 

The theory of order statistics [2] is considered a powerful tool to analyze the performance of 

SD techniques. As a classical example, the theory of order statistics was used to analyze the 

performance of conventional SD schemes in which the link with the highest signal-to-noise ratio 

(SNR) is selected for transmission or reception from independent and identically distributed (i.i.d) 

links [1]. However, in practical communication systems the link with highest SNR may not be 

available for transmission or reception under given traffic c onditions. Therefore, a  more general 

SD scheme that features selection of the k-th best link (k-th highest SNR or k-th largest order 

statistics) is of practical interest in wireless communication systems. Selection of the k-th best link 

has been considered in relay networks [7], [8] and cognitive radio networks [9].

Other applications of ordered statistics in wireless communication systems include analyzing 

the performance of generalized multiuser diversity schemes [10], minimum-selection generalized 

selection combining (MS-GSC) [30] and modeling the aggregate interference for centralized and 

decentralized selection schemes for the radio environment map (REM) approach in cognitive radio 

networks [31].

The effective throughput is defined as the maximum constant arrival rate that can be supported 

by a time-varying wireless channel under a statistical delay quality of service (QoS) constraint 

[13]. If no delay constraint is imposed, the effective throughput is the average (ergodic) throughput 

(capacity) of the corresponding wireless channel. In general, it is difficult to express in closed form
∗Reprinted with permission from “Asymptotic Performance Analysis of the k-th Best Link Selection over Wire-

less Fading Channels: An Extreme Value Theory Approach,” Yazan Hussein Al-Badarneh, C. N. Georghiades, and 
Mohamed-Slim Alouini, 2018 IEEE Transactions on Vehicular Technology, pp. 1-1, Copyright©c 2018 IEEE.
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the exact effective and average throughputs of SD schemes for various fading channel models.

This is due to the complicated nature of the distribution of the SNR of the selected link. For

example, the exact effective throughput of the conventional SD scheme in Rayleigh fading can be

expressed as a logarithmic function of a finite sum of weighted Tricomi hypergeometric functions

[32]. Furthermore, the average throughput of the conventional SD scheme in Rayleigh fading was

expressed as a finite sum of weighted exponential integral functions [12].

The exact results for the effective throughput and average throughput derived in [32] and [12],

respectively, are valid only for the conventional SD scheme in Rayleigh fading and it is hard to

extend them for general SD schemes and different fading channels, such as Weibull, Gamma,

α − µ and Gamma-Gamma. A recent attempt to analyze the average throughput of the k-th best

link selection over a generalized Gamma (α − µ) fading channel was considered in [33], where

the authors derived lower and upper bounds on the average throughput. However they did not

investigate the effective throughput and average bit error probability (BEP).

In this Chapter, another approach based on extreme value theory (EVT) or extreme order statis-

tics is used to analyze the effective throughput, average throughput and average BEP of the k-th

best link over different fading channels. EVT was used to analyze the asymptotic average through-

put (in the limit of large number of links) of the conventional SD scheme [3], [4]. EVT was also

used to evaluate the average BEP of the conventional SD scheme [5], [6]. Our contribution is to

utilize EVT to derive simple closed-form asymptotic and more intuitive expressions for the average

throughput, effective throughput and average BEP of the k-th best link over various fading channel

models, such as Weibull, Gamma, α−µ and Gamma-Gamma. To the best of our knowledge, such

analysis has not been considered in the literature before.

The rest of this Chapter is organized as follows. In Section 3.2 we discuss the system model.

In Section 3.3 we discuss the average and effective throughputs of the k-th best link over Weibull,

Gamma, α− µ and Gamma-Gamma fading channels. In Section 3.4 we analyze the average BEP.

Section 3.5 includes numerical results and Section 3.6 concludes.
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3.2 System Model

Consider a system in which the transmitter selects the k-th best link from N i.i.d links to trans-

mit information to the receiver. Let hi denote the complex channel gain of the i-th link between

the transmitter and the receiver and Xi the squared magnitude of the channel gain of the i-th link,

where i = 1, 2, ..., N . The received signal can be expressed as

y = h(N−k+1)s+ w, (3.1)

where s is the complex valued symbol transmitted with (normalized) power ρ, w is the circularly

symmetric additive white Gaussian noise (AWGN) with zero mean and unit variance and h(N−k+1)

is the flat fading channel gain of the k-th best link for k = 1, 2, ..., N . Then, the instantaneous

SNR at the receiver side is ρX(N−k+1) where X(N−k+1) = |h(N−k+1)|2 and we assume the ordering

X(1) ≤ X(2) ≤ .... ≤ X(N). According to [2], the probability density function (PDF) of X(N−k+1)

can be expressed in terms of the PDF, f(x), and cumulative distribution function (CDF), F (x), of

Xi as

fX(N−k+1)
(x) = k

(
N

k

)
f(x)F (x)N−k (1− F (x))k−1 . (3.2)

Let Ri = B log2(1 + ρXi) denote the instantaneous throughput of the i-th link; then R(N−k+1)

represents the instantaneous throughput of the selected link and can be evaluated as

R(N−k+1) = B log2

(
1 + ρX(N−k+1)

)
, (3.3)

where R(1) ≤ R(2) ≤ .... ≤ R(N) and B is the system bandwidth. Therefore, the average through-

put of the selected link, E
[
R(N−k+1)

]
, can be evaluated as

E
[
R(N−k+1)

]
= B

∫ ∞
0

log2(1 + ρx)fX(N−k+1)
(x)dx. (3.4)

Considering the k-th best link selection scheme, the effective throughput of the selected link,
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α(θ, k,N), can be expressed as

α(θ, k,N) = −1

θ
log2

(
E
[
e−θ ln(2)R(N−k+1)

])
(3.5)

where θ = ζT and the expectation is taken over the distribution ofR(N−k+1). Applying L’hospital’s

rule, one can show that limθ→0 α(θ, k,N) = E
[
R(N−k+1)

]
, as stated before.

In general, it is difficult to obtain closed form expressions for E
[
R(N−k+1)

]
and α(k, θ,N)

over various fading distributions. Therefore, in this Chapter, we consider another approach based

on extreme value theory to analyze the average throughput and effective throughput over Weibull,

Gamma, α− µ and Gamma-Gamma fading channels.

3.3 Throughput Analysis

In this section, we invoke Theorem 1.3. to derive the limiting distribution of the throughput of

the k-th best link and to evaluate the average throughput and effective throughput.

Theorem 1.3. [2] Let Z(N) denote the largest order statistic of N i.i.d random variables with

a common CDF F (z), where Z(1) ≤ Z(2) ≤ .... ≤ Z(N). If Z(N)−aN
bN

, where aN and bN are

normalizing constants, has a limiting CDF, G(z), then, for a fixed k and N → ∞, the limiting

CDF of Z(N−k+1)−aN
bN

is of the form

G(k)(z) = G(z)
k−1∑
j=0

[− log (G(z))]j

j!
. (3.6)

Equivalently, for a fixed k and N → ∞, the sequence Z(N−k+1)−aN
bN

converges uniformly in distri-

bution to a random variable Z, where the CDF of Z is as in (3.6).

Let Xi be i.i.d non-negative random variables for i = 1, 2, ..N , where Xi can be modeled as

one of the following distributions: Exponential, Weibull, Gamma, α − µ and Gamma-Gamma. In

what follows we use Lemma 1 of [3] to obtain the limiting distribution of the largest order statistic,

X(N). If the CDF of Xi satisfies the conditions of this lemma, then the limiting distribution of the
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largest order statistic, X(N), is such that the sequence X(N)−ãN
b̃N

converges uniformly in distribution,

for large N , to a normalized Gumbel random variable whose CDF, G(x), is given by

G(x) = e−e
−x
, −∞ < x <∞. (3.7)

Furthermore, the normalizing constants ãN and b̃N can be determined from the CDF of Xi as [3]

ãN = F−1

(
1− 1

N

)
, (3.8)

b̃N = F−1

(
1− 1

Ne

)
− F−1

(
1− 1

N

)
, (3.9)

where F−1(x) = inf{y : F (y) ≥ x}. It was shown that the CDFs of Exponential, Gamma and

Weibull distributions [3], α − µ [34] and Gamma-Gamma [35] satisfy the conditions of Lemma 1

of [3]. Consequently, X(N)−ãN
b̃N

has a limiting distribution as expressed in (3.7). The normalizing

constants ãN and b̃N for the distributions of interest are tabulated in Table 3.1.

Recall that Ri = B log2(1 + ρXi) is the instantaneous throughput of the i-th link, where Xi

can be modeled as one of the distributions referred to above. The limiting throughput distribution

(LTD) Theorem of [3] provides a simpler approach to investigate the instantaneous throughput

of the best link, R(N). The LTD Theorem indicates that the CDF of Ri = B log2(1 + ρXi)

also satisfies the conditions of Lemma 1 of [3] and states that the sequence R(N)−aN
bN

converges

uniformly in distribution to a normalized Gumbel random variable with CDF, G(x), as in (3.7).

The normalizing constants aN and bN associated with R(N) can be obtained from ãN and b̃N as [3]

aN = B log2(1 + ρãN), (3.10)

bN = B log2

(
1 +

ρb̃N
1 + ρãN

)
. (3.11)
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Table 3.1: Normalizing constants for common fading distributions

Distribution PDF ãN b̃N
Exponential e−xu(x) log(N) 1

Weibull ηxη−1

αη e−x
η
αη u(x) α (ln (N))

1
η α

η (ln (N))
− η−1

η

Gamma xm−1e−x

Γ(m) u(x)
log(N) + (m − 1) log(log(N)) +
O(log(log(log(N))))

1

Gamma-
Gamma
[35]

2(km)
k+m

2

Γ(m)Γ(k) (x)
k+m

2
−1 ×

Kk−m

[
2
√
kmx

]
u(x)

(log(N))2

4km + O (log(N) log(log(N)))
log(N)
2km

α− µ [34]
αµµx

αµ
2 −1 exp

(
−µx

α
2

ζ
α
2

)
2ζ
αµ
2 Γ(µ)

u(x)

ζ
(

log(K)
µ

) 2
α+

O

((
log(N)
µ

) 2
α
−1

log(log(N))

) 2ζ
(

log(N)
µ

)−1+ 2
α

αµ

While we focus next on the case whereXi can be modeled as Exponential, Weibull, Gamma, α−µ

and Gamma-Gamma to derive the average throughput, effective throughput and average BEP for

the k-th best link, it should be noted that the following derived results are valid for any random

variable Xi whose CDF satisfies the conditions of Lemma 1 of [3].

3.3.1 Average Throughput

The LTD Theorem states that the sequence R(N)−aN
bN

converges in distribution to a normalized

Gumbel random variable. Using this and Theorem 1.3, we characterize the limiting distribution of

the throughput of the k-th best link, R(N−k+1), in the following proposition.

Proposition 3.1. For a fixed k and N → ∞, the sequence R(N−k+1)−aN
bN

converges uniformly in

distribution to a random variable X with CDF given by

G(k)(x) = e−e
−x

k−1∑
j=0

e−jx

j!
, −∞ < x <∞. (3.12)

Furthermore, the average throughput can be approximated as

E
[
R(N−k+1)

]
≈ aN − ψ(k)bN , (3.13)
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where ψ(x) is the digamma function.

Proof. The sequence R(N)−aN
bN

converges uniformly in distribution to a normalized Gumbel random

variable with CDF G(x) = e−e
−x
, −∞ < x < ∞, where aN and bN are as defined in (3.10) and

(3.11), respectively. Using Theorem 1.3, it follows that for a fixed k and N → ∞, the sequence
R(N−k+1)−aN

bN
converges uniformly in distribution to a random variable X with CDF G(k)(x) as

expressed in (3.12).

To prove (3.13) of Proposition 3.1, we first prove the following Lemma in Appendix B.

Lemma 3.1 : If R(N−k+1)−aN
bN

converges in distribution to a random variable X whose CDF as

expressed in (3.12) then for any positive real number p, we have

E

[(
R(N−k+1) − aN

bN

)p]
→ E [Xp] , (3.14)

for a fixed k and N → ∞. Furthermore, E [X] = −ψ(k) and the moment generating function

(MGF) associated with X ,MX(t) = E
[
etX
]

= Γ(k − t)/(k − 1)!, k > t.

It follows from this Lemma that for p = 1, E
[(

R(N−k+1)−aN
bN

)]
→ E [X] = −ψ(k), for a fixed

k and N →∞. Therefore, the average throughput can be approximated as

E
[
R(N−k+1)

]
≈ aN − bNψ(k). (3.15)

As special case, if k = 1, ψ(1) = −γ (Euler’s constant) and thus E
[
R(N)

]
≈ aN +γbN , which

is exactly the same expression derived in [3]. Since ψ(k) > 0, for k > 1 and integer k, it follows

that E
[
R(N−k+1)

]
< E

[
R(N)

]
, for k > 1. It should be noted that the result in Proposition 3.1 can

be used to evaluate the outage throughput of the k-th best link. Given a rate R0, Pout(R0) can be
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approximated as

Pout(R0)
∆
= Pr{R(N−k+1) ≤ R0}

= Pr

{
R(N−k+1) − aN

bN
≤ R0 − aN

bN

}
≈ Pr

{
X ≤ R0 − aN

bN

}
= G(k)

(
R0 − aN
bN

)
,

(3.16)

where G(k)(x) is as expressed in (3.12).

3.3.2 Effective Throughput

In this subsection, we use the result from Proposition 3.1 to analyze the effective throughput of

the k-th best link as in the following proposition.

Proposition 3.2. The effective throughput of the k-th best link, α(θ, k,N), can be approximated

as

α(θ, k,N) ≈ aN −
1

θ
log2

(
Γ (θ ln(2)bN + k)

(k − 1)!

)
(3.17)

for fixed k, θ > 0 and N →∞, where Γ(·) is the gamma function.

Proof. Invoking (3.5), the term E
[
e−θ ln(2)R(N−k+1)

]
represents the MGF associated with the ran-

dom variable R(N−k+1), MR(N−k+1)
(t), at t = −θ ln(2). Since θ > 0, then we are always in-

terested in the case t ∈ (−∞, 0). Applying the result from Theorem 2 of [36], which implies

that ifMR(N−k+1)
(t) exists for all t ∈ (−∞, 0) and the sequence YN,k =

R(N−k+1)−aN
bN

converges

uniformly in distribution to a random variable X with CDF as expressed in (3.12) and MGF of

MX(t) which exists for all t ∈ (−∞, 0), then for a fixed k, limN→∞MYN,k(t) = MX(t) for all

t ∈ (−∞, 0), whereMYN,k(t) is the MGF associated with the random variable YN,k.

It is obvious thatMX(t) = Γ(k − t)/(k − 1)! exists for all t ∈ (−∞, 0). However, to show

thatMR(N−k+1)
(t) exists for all t ∈ (−∞, 0), we use Lemma 1.7.2. of [37], with g(x)= (1 + x)t,
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x ≥ 0 and t ∈ (−∞, 0); we have

MR(N−k+1)
(t) = E

[
etR(N−k+1)

]
= E

[
e

tB
ln(2)

log(1+X(N−k+1))
]

= E
[(

1 +X(N−k+1)

) tB
ln(2)

]
≤ N !

(k − 1)!(N − k)!
E
[
(1 +Xi)

tB
ln(2)

]
.

(3.18)

Since Xi is non-negative random variable and it can be modeled as Exponential, Weibull,

Gamma, α − µ and Gamma-Gamma, it follows that E
[
(1 +Xi)

tB
ln(2)

]
< ∞, for all t ∈ (−∞, 0).

Using Theorem 2 of [36], we have

lim
N→∞

E

[
e
t

(
R(N−k+1)−aN

bN

)]
= E

[
etX
]

=
Γ(k − t)
(k − 1)!

, (3.19)

for all t ∈ (−∞, 0). Therefore,

E
[
e−θ ln(2)R(N−k+1)

]
= E

[
e
−θ ln(2)

[
bN

(
R(N−k+1)−aN

bN

)
+aN

]]

≈ e−θ ln(2)aNE
[
e−θ ln(2)bNX

]
=
e−θ ln(2)aNΓ(k + θ ln(2)bN)

(k − 1)!
,

(3.20)

for a fixed k and N →∞. Substituting (3.20) in (3.5) we reach (3.17).

It is interesting to observe that if θ → 0, the effective throughput in (3.17) becomes the average

throughput in (3.14). In order to show this, we apply L’hospital’s rule and use ∂
∂x

log(Γ(x)) =

ψ(x); then we have

lim
θ→0

α(θ, k,N) ≈ aN − bN lim
θ→0

(θ ln(2)bN + k)

= aN − bNψ(k) = E
[
R(N−k+1)

]
.

(3.21)
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3.4 Asymptotic Average Bit Error Probability

We consider a general class of modulation schemes whose conditional BEP, Pe, is given by [1]

Pe = Ce−gY , (3.22)

whereC and g are positive constants and Y is a random variable which represents the instantaneous

received SNR. The average BEP, Pe, can be expressed as

Pe = CE
[
e−gY

]
. (3.23)

Considering the k-th best link selection scheme, the instantaneous received SNR is Y = ρX(N−k+1),

as stated earlier. Therefore, the average BEP of the k-th best link is Pe = CE
[
e−gρX(N−k+1)

]
. Us-

ing the fact that the sequence X(N)−ãN
b̃N

converges in distribution to a normalized Gumbel random

variable along with Theorem 1.3, we derive the average BEP of the k-th best link in the following

proposition.

Proposition 3.3. The average BEP of the k-th best link, Pe, can be approximated as

Pe ≈ Ce−gρãN
Γ(k + gρb̃N)

(k − 1)!
(3.24)

for fixed k and N →∞.

Proof. Using moment generating function approach, the average BEP of the k-th best link can be

expressed as [1]

Pe = CE
[
e−gρX(N−k+1)

]
= CMX(N−k+1)

(−gρ), (3.25)

whereMX(N−k+1)
represents the MGF associated with the random variable X(N−k+1). Using the

fact that the sequence X(N)−ãN
b̃N

converges uniformly in distribution for large N to a normalized

Gumbel random variable, it follows that, from Theorem 1.3, the sequence X(N−k+1)−ãN
b̃N

converges
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uniformly in distribution to the random variable X with CDF as expressed in (3.12). Following

similar analysis in the proof of the effective throughput, we infer that the MGF of X(N−k+1)−ãN
b̃N

converges to the MGF of X and therefore Pe can be approximated as

Pe = CE
[
e−gρX(N−k+1)

]
≈ Ce−gρãNE

[
e−gρb̃NX

]
= Ce−gρãN

Γ(k + gρb̃N)

(k − 1)!
,

(3.26)

for a fixed k and N →∞.

3.5 Numerical Results

We consider a multiple-input single-output (MISO) channel withN transmit antennas in Weibull

fading. The PDF of the Weibull distribution can be characterized by shape parameter η and scale

parameter α[1]. According to [2], the normalizing constants for Weibull distribution are given

by ãN = α (ln (N))
1
η and b̃N = α

η
(ln (N))−

η−1
η , as N → ∞. In Fig. 3.1, we plot the average

throughput versus the number of transmit antennas, N , for η = 2 and α = 3 and different values

of k. We validate the obtained analytical results using Monte Carlo simulations. We observe that

the asymptotic expression is accurate even for not so large N while for small values of N the

asymptotic expression is less accurate compared to the simulations.

It is intractable to provide a mathematical characterization of the difference between the exact

and the asymptotic results for the average throughput. However, numerical results show that this

difference is not large even for small values ofN as shown in Fig. 3.1. For example, if we consider

the worst case in which there exist three transmit antennas and we select the third best channel (the

worst channel) the difference in average throughput between the asymptotic and simulation results

for the case of N = 3 and k = 3 is approximately 0.4 bit/s, while the difference for the case of

N = 100 and k = 3 is approximately 0.025 bit/s, which emphasizes that the difference vanishes

asymptotically as N grows large with respect to k.

Furthermore, we can observe from Fig. 3.1 that the gap between the asymptotic and simulation

results increases as k increases. This is because the asymptotic analysis is more accurate for large
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N relative to a fixed k. Consequently, if the value of k is close enough to N , it is expected that

the asymptotic expression will be less accurate. For example, the gap between the asymptotic and

simulation results for N = 5, and k = 3 is larger compared to the case when N = 5, k = 2 and

N = 5, k = 1.
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Figure 3.1: Average throughput versus the number of transmit antennasN , for k = 1, 2, 3, at ρ = 0
dB.

In Fig. 3.2, we plot the effective throughput as a function of delay exponent, θ, for N = 5 and

N = 50, for η = 2 and α = 3 and different values of k. We observe that for N = 5 the derived

asymptotic result is less accurate as θ increases. However, for N = 50 the derived asymptotic

results becomes very accurate and the effective throughput does not dramatically change as θ

increases and it remains close to the average throughput (θ = 0). This is because employing SD
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Figure 3.2: Effective throughput versus delay exponent, θ, for N = 5, 50 for different values of k
at ρ = 0 dB.

schemes takes advantage of the tail behavior of the fading distribution as the number of antennas

increases. This emphasizes that employing SD schemes in the presence of large number of transmit

antennas will combat stringent delay QoS requirements. We also observe that the asymptotic

expression is less accurate as k gets closer to N as previously observed for the average throughput.

In Fig. 3.3, we plot the asymptotic average BEP as a function of the number of transmit

antennas, N , for η = 2 and α = 5 and different values of k. We validate the obtained analytical

results using Monte Carlo simulations. We observe that the asymptotic expression is accurate even

for not so large N .
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Figure 3.3: Asymptotic BER of BFSK (C = g = 0.5) versus the number of transmit antennas N ,
for k = 1, 2, 3, at ρ = 0 dB.

3.6 Summary

We used extreme value theory to derive the asymptotic distribution of the throughput of the k-

th best link over Weibull, Gamma, α − µ and Gamma-Gamma fading channels. Using this result,

we derived simple closed-form asymptotic expressions for the average throughput and effective

throughput. Furthermore, we analyzed the average BEP and derived closed-form asymptotic ex-

pression for it. As a special case, we considered the Weibull fading channel model and used Monte

Carlo simulations to confirm the accuracy of the derived asymptotic expressions.
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4. ASYMPTOTIC PERFORMANCE ANALYSIS OF THE K-TH BEST SECONDARY

USER SELECTION FOR INTERFERENCE-LIMITED UNDERLAY COGNITIVE RADIO

SYSTEMS ∗

4.1 Introduction

Cognitive radio (CR) is an important technology to maximize radio spectrum utilization effi-

ciency [38]-[40]. In CR systems, the secondary network is allowed to share the spectrum allocated 

to the primary network provided that the interference caused by the secondary transmitter (ST) 

does not deteriorate the performance of the primary network. Consequently, the challenge is to 

maintain the interference caused by the ST to the primary receiver (PR) below a pre-determined 

threshold level. This can be achieved by adapting the ST transmit power that ensures satisfaction 

of the interference constraint at the PR [41].

Multiuser diversity is considered an important diversity technique to improve wireless commu-

nication systems performance [42]. Considering a multiuser network where the users experience 

independent fading conditions, the basic idea of multiuser diversity is to select the users with 

the best fading conditions for transmission or reception to obtain a specific p erformance gain. 

Multiuser diversity in CR systems has attracted much attention recently. Researchers analyze the 

performance of multiuser diversity techniques for uplink multiuser underlay CR systems without 

taking the interference from the primary network into consideration[43] -[48]. In particular, the 

ergodic capacity (throughput) of multiuser diversity gain of uplink multiuser underlay CR systems 

is investigated in [43]. In [44], the authors analyze the achievable capacity gain of uplink multiuser 

spectrum-sharing systems over dynamic fading environments. In [45], the outage probability and 

effective capacity are analyzed for opportunistic spectrum sharing in Rayleigh fading environment. 

In [46], the authors analyze the outage probability, average symbol error rate (SER) and ergodic 

capacity of an opportunistic multiuser cognitive network with multiple primary users assuming
∗Part of this chapter is reprinted with permission from “On the Asymptotic Throughput of the k-th Best Secondary 

User Selection in Cognitive Radio Systems,” Yazan Hussein Al-Badarneh, C. N. Georghiades, and Mohamed-Slim 
Alouini, 2018 IEEE 88th Vehicular Technology Conference (VTC 2018-Fall), Copyright©c 2018.  
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the channels in the secondary network are independent but not identical Nakagami-m fading. In

[47], [48] the authors analyze the outage probability and average capacity of multiuser diversity in

single-input multiple-output (SIMO) spectrum sharing systems. The ergodic capacity of multiuser

diversity in CR systems with interference from the primary network is investigated in [49]. Re-

cently, the ergodic capacity of various multiuser scheduling schemes in downlink cognitive radio

networks with interference from the primary network is analyzed in [50]; here, the authors ana-

lyze the ergodic capacity of multiuser diversity scheduling under the outage constraint of multiple

primary user receivers and the secondary user (SU) maximum transmit power limit. Interference-

limited underlay CR systems are considered in [6], where the authors analyze the average BER

and outage probability for receive antenna selection schemes under discrete power adaptation at

the ST.

Related previous work has focused on conventional multiuser diversity in underlay CR systems

where the user with the best link quality is selected. However, in practical underlay CR systems

the secondary user with the best link quality may not be available for transmission or reception

under given traffic conditions. Consequently for such systems, a more general multiuser diversity

scheme that features selection of the secondary user with the k-th best link quality (k-th best

secondary user) is of practical interest.

In this Chapter we consider an interference-limited secondary multiuser network, where the

noise at each secondary user receiver is negligible compared to the interference from the primary

transmitter (PT). We assume that the ST transmits information to the k-th best secondary user

(SU), namely, the SU with the k-th highest signal-to-interference ratio (SIR). Meanwhile, the ST

adjusts its transmit power to satisfy the instantaneous interference constraint at the primary receiver

(PR). In general, it is hard to find exact and tractable expressions for the common performance

measures of the k-th best SU, such as average and effective throughputs, average bit error rate

(BER) and outage probability. This difficulty is due to the complicated nature of the distribution of

the received SIR at the k-th best secondary user’s receiver. Therefore, another approach based on

extreme value theory (EVT) or extreme order statistics is used to analyze the performance of the
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k-th best SU in underlay CR systems. EVT was considered for traditional wireless communication

systems with no spectrum sharing. In particular, EVT was used to analyze the asymptotic average

throughput of the conventional selection diversity scheme where the link with the highest signal

to-noise ratio (SNR) is selected from independent and identically distributed (i.i.d) links [4], [3].

EVT was also used to analyze the average BER and outage probability for underlay CR systems

with receive antenna selection under discrete power adaptation [6]. Recently, we used EVT to

derive simple closed form asymptotic expressions for the average throughput, effective throughput

and average BER of the k-th best link over different wireless fading channels[51].

Our contribution is to utilize EVT to analyze the performance of the k-th best SU for underlay

CR systems. More specifically, we show that the SIR of the k-th best user converges uniformly

in distribution to an inverse gamma random variable for a fixed k and large number of secondary

users. Then, we derive novel closed-form asymptotic expressions for the average and effective

throughputs of the k-th best SU employing continuous power adaptation at the ST with both limited

and unlimited transmit power. Furthermore, novel closed-form asymptotic expressions for the

average BER and outage probability with continuous power adaptation and unlimited ST power

are derived.

The rest of this Chapter is organized as follows. In Section II we discuss the system model.

In Section III we discuss the asymptotic average and effective throughputs of the k-th best SU. In

Section IV we analyze the average BER. In Section V we analyze the outage probability. Section

VI includes numerical results and Section VII concludes.

4.2 System Model

As described in Fig. 4.1, we consider an underlay secondary network consisting of one ST

equipped with a single antenna, and N secondary users each equipped with a single antenna. The

secondary network is sharing the spectrum of a primary network with one PT and one PR. The

PT and PR are equipped with a single antenna each. Let gi denote the channel gain from the

PT to the i-th secondary user’s receiver (SU-Rx), where i = 1, 2, ..., N . Let h0 and hi denote

the channel gain from the ST to the PR and the i-th SU-Rx, respectively. We assume that the
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primary network is far away from the secondary network and therefore |h0| and |gi| are assumed

to be independent Rayleigh distributed random variables. This implies that the channel power

gains, |h0|2 and |gi|2 have a probability density functions (PDFs) f0(x) = ηe−ηxu(x) and g(x) =

λe−λxu(x), respectively, where u(x) is the unit step function and the parameters η and λ are the

fading parameters. The channel power gains in the secondary network, |hi|2, for i = 1, 2, ..., N ,

are assumed to be independent and identically distributed (i.i.d) Gamma RVs with PDF of

PT

PR

SU 1

SU 2

SU N

ST

g1

gN
h0

h1

h2

hN

Figure 4.1: An underlay cognitive radio network with an ST serving N secondary users.

f(x) =
xm−1

βmΓ(m)
e−

x
β u(x). (4.1)
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where the parameters m and β are positive reals and Γ(m) is the Gamma function.

Similar to [41], [44], [46], [6], [52] and [53], it is assumed that the ST has perfect channel state

information (CSI) regarding the secondary transmitter to primary receiver channel, h0. The ST can

be informed about h0 through a mediate band manager between PR and ST [54] or by considering

proper signaling [55]. Analyzing the performance of the k-th best SU with imperfect CSI is left

for future work; thus, the derived results throughout this Chapter are optimistic compared to the

results with imperfect CSI.

With a perfect knowledge of |h0|2, we consider a continuous power adaptation policy at the

ST to control its interference to the PR such that the instantaneous transmit power of the ST is

P = min
(
PS,

T
|h0|2

)
, where PS is the maximum instantaneous power available at the ST and T

is the maximum tolerable interference level at the PR. Assuming the noise at the i-th SU-Rx is

negligible compared to the interference from the PT, then the ST will select the k-th best SU;

namely, the SU with the k-th highest signal-to-interference ratio (SIR); i.e.,

i∗ = arg k-th max
i
{PZi}Ni=1 (4.2)

where Zi = |hi|2
PM |gi|2

, PM is the transmit power of the PT and PM |gi|2 is the PT interference power

at the i-th SU-Rx.

Let PZ(N−k+1) denote the instantaneous SIR at the k-th best SU-Rx, where Z(1) ≤ Z(2) ≤

.... ≤ Z(N). According to [2], the PDF of Z(N−k+1) can be expressed in terms of the PDF, f(z),

and CDF, F (z), of Zi as

fZ(N−k+1)
(x) = k

(
N

k

)
f(z)F (z)N−k (1− F (z))k−1 , (4.3)

where the CDF and PDF of Zi are given by [6]

F (z) =

(
PMz

λβ + PMz

)m
u(z), (4.4)
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f(z) =
mλβ (PM)m zm−1

(λβ + PMz)m+1 u(z). (4.5)

Let R(N−k+1) = B log2(1 + PZ(N−k+1)) denote the instantaneous throughput of the k-th best SU,

where R(1) ≤ R(2) ≤ .... ≤ R(N) and B is the system bandwidth. Then, the average throughput of

the k-th best SU, E
[
R(N−k+1)

]
, can be evaluated as

E
[
R(N−k+1)

]
= E

[
log2(1 + PZ(N−k+1))

]
(4.6)

in bit/s/Hz. The expectation in (4.6) is taken over the joint distribution of random variables P and

Z(N−k+1).

Considering the selection of the k-th best SU, the effective throughput of the k-th best SU,

α(θ, k,N), can be expressed as

α(θ, k,N) = − 1

A
log2

(
E
[(

1 + PZ(N−k+1)

)−A])
, (4.7)

in bit/s/Hz, where A = θTB/ ln(2) and the expectation is taken over the joint distribution of P

and Z(N−k+1).

If we conisder a general class of modulation schemes whose conditional BER, Pe, is given by

Pe = c e−gY , (4.8)

where c and g are positive constants and Y is a random variable which represents the instantaneous

received SIR, the average BER of the k-th best SU can be expressed as

Pe(k,N) = cE
[
e−gPZ(N−k+1)

]
, (4.9)

where the expectation is taken over the joint distribution of P and Z(N−k+1).

Due to the complicated nature of the distribution of the instantaneous SIR at the k-th best SU-

Rx, it is difficult to obtain exact expressions forE
[
R(N−k+1)

]
, α(θ, k,N) and Pe(k,N). Therefore,
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in this Chapter we consider another approach based on extreme value theory to analyze the perfor-

mance of the k-th best SU in terms of average throughput, effective throughput, outage probability

and average BER.

4.3 Asymptotic Throughput Analysis

In this section, we derive the limiting distribution of Z(N−k+1) based on Theorem 1.3 and use

this result to analyze the average and effective throughputs of the k-th best SU.

4.3.1 The Limiting Distribution of Z(N−k+1)

Using Theorem 1.3 and the following Proposition, we derive the limiting distribution ofZ(N−k+1)

in Proposition 4.2.

Proposition 4.1. Let Z(N) denote the largest order statistic of N i.i.d random variables with a

common CDF F (z), as expressed in (4.4), then for N → ∞, the CDF of Z(N)−a
b

converges to a

unit Fréchet distribution; i.e.,

G(z) = e−z
−1

u(z), (4.10)

where a = 0 and b = βλ

PM

(
(1− 1

N )
− 1
m−1

) > 0.

Proof. The proof is identical to that provided in Proposition 2 of [6].

Proposition 4.2. Let Z(N−k+1) denote the k-th largest order statistic of N i.i.d random variables

with a common CDF of F (z), as expressed in (4.4), then for a fixed k and N → ∞, Z(N−k+1)−a
b

converges in distribution to a random variable Z with CDF G(k)(z), which can be characterized by

an inverse gamma distribution as

G(k)(z) =
Γ
(
k, 1

z

)
(k − 1)!

u(z), (4.11)
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where a = 0, b = βλ

PM

(
(1− 1

N )
− 1
m−1

) > 0 and Γ(s, x) =
∫∞
x
us−1e−udu is the upper incomplete

gamma function. Furthermore, the PDF of Z, f (k)(z), can be obtained as

f (k)(z) =
e−z

−1

zk+1(k − 1)!
u(z). (4.12)

Proof. From Proposition 4.1, Z(N)−a
b

converges in distribution to a unit Fréchet distribution i.e.,

G(z) = e−z
−1
u(z), where a = 0 and b = F−1

(
1− 1

N

)
= βλ

PM

(
(1− 1

N )
− 1
m−1

) . Using Theorem

1.3, it follows that for a fixed k and N → ∞, the sequence Z(N−k+1)

b
converges in distribution to a

random variable Z with CDF of G(k)(z). From (3.6), G(k)(z) can be expressed as

G(k)(z) = e−z
−1

k−1∑
j=0

(z−1)j

j!
u(z). (4.13)

Using the fact that Γ(k, x) = (k−1)! e−x
∑k−1

j=0
xj

j!
for an integer k,G(k)(z) can be finally expressed

as in (4.11). By differentiating (4.11) we obtain (4.12).

4.3.2 The Distribution of the ST Transmit Power

We consider a continuous power adaptation scheme in which the transmit power of the ST

can be adapted with a power limit of PS; therefore, the instantaneous transmit power of the ST is

P = min
(
PS,

T
|h0|2

)
. Furthermore, we consider a continuous power adaptation scheme in which

the transmit power of the ST can be adapted without any power limit, i.e. PS = ∞ [52], [53].

In such case, the ST transmit power, P , can be written as P = T
|h0|2 . We focus next on the PDF

of the instantaneous transmit power of the ST, P = min
(
PS,

T
|h0|2

)
, then we use this PDF and

Proposition 4.2 to evaluate the average and effective throughputs of the k-th best SU.

Considering P = min (PS, X) is a continuous random variable, where X = T
|h0|2 and PS is

constant, then the CDF of the random variable P , FP (t), can be given as

FP (t) = FX(t) + u(t− PS)− u(t− PS)FX(t), (4.14)
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where FX(t) is the CDF of the random variable X = T
|h0|2 and u(t − PS) is the unit step function

given by

u(t− PS) =


1, t ≥ PS

0, t < PS

. (4.15)

Then it follows that the PDF of P , fP (t), can be expressed as

fP (t) =fX(t) [1− u(t− PS)] + δ(t− PS) [1− FX(PS)] , (4.16)

where fX(t) is the PDF of the random variable X and δ(t − PS) is the Dirac delta function, the

derivative of u(t− PS).

Using the PDF of |h0|2, f0(x) = ηe−ηxu(x), and variable transformation then it follows that

FX(t) = e−
ηT
t u(t) and fX(t) = ηT

t2
e−

ηT
t u(t). Finally we can write

fP (t) =
η T

t2
e−

η T
t [1− u(t− PS)] + δ(t− PS)

(
1− e−

η T
PS

)
. (4.17)

4.3.3 Average and Effective Throughputs

Proposition 4.3. The average and effective throughputs of the k-th best SU for continuous power

adaptation with limited ST power are respectively given by

E
[
R(N−k+1)

]
≈

ln (bPS)− E1
(
η T
PS

)
− ψ (k)

ln(2)
, (4.18)

α(θ, k,N) ≈ − 1

A
log2

Γ (k + A) Γ
(
A+ 1, η T

PS

)
(bηT )A (k − 1)!

+
Γ (k + A)

(
1− e−

η T
PS

)
(bPS)A (k − 1)!

 , (4.19)
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for fixed k and N →∞, where E1(x) =
∫∞
x

e−y

y
dy, x ≥ 0 is the exponential integral function and

Γ(s, x) =
∫∞
x
us−1e−udu is the upper incomplete gamma function, ψ(x) is the digamma function

and γ is the Euler’s constant.

Proof. Average Throughput:

From Proposition 4.2, the CDF of Z(N−k+1)

b
approaches the CDF of Z for a fixed k and N → ∞,

where the CDF of Z is as expressed in (4.11). Or equivalently, the PDF of Z(N−k+1) can be

approximated by the PDF of bZ for a fixed k and N →∞, where the PDF of Z is as expressed in

(4.12). Then for a fixed k,N →∞ and conditioning on the ST transmit power P , E
[
R(N−k+1)|P

]
can be approximated as

E
[
R(N−k+1)|P

]
≈ 1

ln(2)
E [log (1 + bPZ) |P ]

=
1

ln(2)

∫ ∞
0

ln(1 + bPz)
e−z

−1

zk+1(k − 1)!
dz.

(4.20)

Noting that b is an increasing function of N , we have ln(1+bPz) ≈ ln(bPz) in (4.20) for large N .

Using this and variable transformation of u = (bPz)−1, E
[
R(N−k+1)|P

]
can be further approxi-

mated as

E
[
R(N−k+1)|P

]
≈
∫ ∞

0

− ln(u) (bP )k e−bPuuk−1

ln(2)(k − 1)!
du =

ln(bP )− ψ(k)

ln(2)
, (4.21)

where the above integral is evaluated with help of Eq. (4.352, 1) of [25]. Averaging ln(P ) over the

PDF of fP (t) yields

∫ ∞
0

ln(t)fP (t)dt =

∫ PS

0

ln(t)
ηT

t2
e−

ηT
t dt+

(
1− e−

η T
PS

)
ln (PS) . (4.22)

Using variable transformation of u = PSt
−1 with help of Eq. (4.331, 2) of [25] and after some
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basic algebraic manipulation, we have

∫ PS

0

ln(t)
ηT

t2
e−

ηT
t dt = e

− η T
PS ln (PS)− E1

(
η T

PS

)
. (4.23)

Combining (4.21), (4.22) and (4.23), it follows that E
[
R(N−k+1)

]
is as expressed in (4.18).

Effective Throughput:

Conditioning on the ST transmit power P in (4.7) and by exploiting Lemma 3 of Appendix C, we

infer that E
[(

1 + PZ(N−k+1)

)−A |P] can be approximated as

E
[(

1 + PZ(N−k+1)

)−A |P] ≈ E
[
(1 + bPZ)−A |P

]
=

∫ ∞
0

(1 + bPz)−A e−z
−1

zk+1(k − 1)!
dz,

(4.24)

for fixed k andN →∞. Making use as above of 1+bPz ≈ bPz for largeN in (4.24) and variable

transformation of u = (bPz)−1, E
[(

1 + PZ(N−k+1)

)−A |P] can be further approximated as

E
[(

1 + PZ(N−k+1)

)−A |P] ≈ ∫ ∞
0

(bP )k uA+k−1e−bPu

(k − 1)!
dz

=
(bP )−AΓ (A+ k)

(k − 1)!
,

(4.25)

where the above integral is evaluated with help of Eq. (3.351, 3) of [25]. Averaging (4.25) over

the PDF of fP (t) yields

E
[(

1 + PZ(N−k+1)

)−A] ≈∫ ∞
0

(bt)−A Γ (A+ k)

(k − 1)!
fP (t)dt

=

∫ PS

0

Γ (k + A) η Te−
η T
t

bAtA+2 (k − 1)!
dt+

Γ (k + A)
(

1− e−
η T
PS

)
(bPS)A (k − 1)!

.

(4.26)

Using variable transformation of u = ηT t−1 and using the definition of the upper incomplete
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gamma function, Γ(s, x) =
∫∞
x
us−1e−udu, we have

∫ PS

0

Γ (k + A) η Te−
η T
t

bAtA+2 (k − 1)!
dt =

Γ (k + A) Γ
(
A+ 1, η T

PS

)
(bηT )A (k − 1)!

. (4.27)

Combining (4.26), (4.27) and (4.7), it follows that α(θ, k,N) is as expressed in (4.19).

Now we consider a continuous power adaptation with PS =∞ [53], [52]. In this case, the ST

transmit power, P , can be written as P = T
|h0|2 . Using the result from Proposition 4.3, we derive

the average and effective throughputs of the k-th best SU with unlimited ST power in the following

corollary.

Corollary 4.1. The average and effective throughputs of the k-th best SU for continuous power

adaptation with unlimited ST power are respectively given by

E
[
R(N−k+1)

]
≈ ln(bTη)− ψ(k) + γ

ln(2)
, (4.28)

α(θ, k,N) =
ln(bTη)

ln(2)
− 1

A
log2

(
Γ (A+ k) Γ (A+ 1)

(k − 1)!

)
, (4.29)

for fixed k and N →∞.

Proof. Average Throughput:

Using Puiseux series for the exponential integral function, E1(x), we have

E1(x) = −γ − ln(x)−
∞∑
n=1

(−x)n

nn!
, x > 0. (4.30)

Invoking (4.18) and with the help of (4.30), one can show that limPS→∞

(
ln (bPS)− E1

(
η T
PS

))
=

ln (bTη) + γ. Therefore, as PS →∞, the average throughput is as expressed in (4.28).
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Effective Throughput:

Invoking (4.19) and limPS→∞ Γ(A+ 1, ηT
PS

) = Γ(A+ 1) one can show that the effective throughput

is as expressed in (4.29) as PS →∞.

4.4 Average BER

We now derive the average BER for the limited and unlimited continuous ST power in the

following proposition.

Proposition 4.4. The average BER of the k-th best SU for continuous limited power adapdation

scheme can be approximated as

Pe(k,N) ≈
∫ PS

0

2
(gbt)k/2Kk

(
2
√
gbt
)
η T

(k − 1)! t2
e−

η T
t dt

+
2 (gbPS)k/2Kk

(
2
√
gbPS

)
(k − 1)!

(
1− e−

η T
PS

)
,

(4.31)

for fixed k and N →∞, where Kν (·) is the modified Bessel function of the second kind and order

ν. Furthermore, for the unlimited ST transmit power, the average BER of the k-th best SU can be

approximated as

Pe(k,N) ≈
c (η Tgb)k/2−1G3,0

0,3

(
η Tgb

∣∣∣ −1+k/2,2−k/2,1−k/2

)
(k − 1)!

, (4.32)

for fixed k and N →∞, where Gm,n
p,q (.) is the Meijer G-function [56].

Proof: Conditioning on the ST transmit power P in (4.9) and by exploiting Lemma 2 of Appendix

C, we infer that E
[
e−gPZ(N−k+1)

∣∣P ] can be approximated as

E
[
e−gPZ(N−k+1)

∣∣P ] ≈ E
[
e−gbPZ

∣∣P ]

=

∫ ∞
0

e−gbPze−z
−1

zk+1 (k − 1)!
dz

=
2 (gbP )k/2Kk

(
2
√
gbP

)
(k − 1)!

,

(4.33)

for a fixed k and N →∞, where the above integral is evaluated with help of Eq. (2.11) of [57]. It
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is hard to find an analytical expression for the avearge BER for the limited ST transmit power case.

Therefore, averaging (4.33) over fP (t) in (4.17) yields the average BER for limited ST power as

in (4.31). For the unlimited ST transmit power, one can show that by letting PS → ∞ in (4.31),

we have

Pe(k,N) ≈
∫ ∞

0

2c (gbt)k/2Kk

(
2
√
gbt
)

(k − 1)!

η T

t2
e−

η T
t dt. (4.34)

The above integral can be expressed in terms of the Meijer G-function as in (4.32)

4.5 Outage Probability

We now derive the outage probability for limited and unlimited continuous ST power in the

following proposition.

Proposition 4.5. The outage probability of the k-th best SU for continuous limited power adapda-

tion scheme can be approximated as

Pout(x0) ≈
∫ PS

0

Γ

(
k,
bt

x0

)
η T

(k − 1)! t2
e−

η T
t dt

+ Γ

(
k,
bPS
x0

) (1− e−
η T
PS

)
(k − 1)!

,

(4.35)

for fixed k and N →∞. Furthermore, for the unlimited ST transmit power, the outage probability

of the k-th best SU can be approximated as

Pout(x0) ≈
2
(
ηTb
x0

) k
2
Kk

(
2
√

ηTb
x0

)
(k − 1)!

,
(4.36)

for fixed k and N →∞.
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Proof. The outage probability of the k-th best SU, Pout(x0), can be expressed as

Pout(x0) =

∫ ∞
0

Pr{tZ(N−k+1) ≤ x0}fP (t)dt.

=

∫ ∞
0

Pr{tZ(N−k+1) ≤ x0}fP (t)dt,

(4.37)

where fP (t) as given in (4.17). From Proposition 4.2, the CDF of Z(N−k+1)

b
approaches the CDF of

Z for fixed k and N →∞, where the CDF of Z is as expressed in (4.11). Then, we have

Pout(x0) =

∫ ∞
0

Pr{tZ(N−k+1) ≤ x0}fP (t)dt.

=

∫ ∞
0

Pr

{
Z(N−k+1)

b
≤ x0

bt

}
fP (t)dt,

≈
∫ ∞

0

Pr
{
Z ≤ x0

bt

}
fP (t)dt,

=

∫ ∞
0

Γ
(
k, bt

x0

)
(k − 1)!

fP (t)dt.

(4.38)

Averaging (4.38) over fP (t) in (4.17) yields the outage probability for the limited ST power as in

(4.35). For the unlimited ST transmit power, one can show that by letting PS → ∞ in (4.35), we

have

Pout(x0) ≈
∫ ∞

0

Γ

(
k,
bt

x0

)
η T

(k − 1)! t2
e−

η T
t dt

=
2
(
ηTb
x0

) k
2
Kk

(
2
√

ηTb
x0

)
(k − 1)!

,

(4.39)

where the integral above is evaluated with help of Eq. (6.453) of [25] after variable transformation

of u = (ηT t)−1.

4.6 Numerical Results

In this section, we numerically illustrate and verify the obtained asymptotic expressions in the

previous sections. In Fig. 4.2, we plot the average throughput of the k-th best SU versus the number
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of secondary users, N , for unlimited ST power, PS =∞, and limited ST power with PS = 10 dB,

for k = 1, 2, 3. We validate the obtained asymptotic expressions for the average throughput using

Monte Carlo simulations. We observe that the asymptotic expressions are accurate even for not

so large N while for small values of N the asymptotic expressions are less accurate compared

to the simulations. In Fig. 4.3, we plot the average throughput of the best SU versus the ST

power, PS , in dB. We observe that, compared to the simulations, the accuracy of the asymptotic

average throughput increase as N increase from 6 to 30. We also observe that the accuracy of the

asymptotic average throughput increases as PS increases. Furthermore, for larger values of PS the

asymptotic average throughput approaches the one with unlimited ST power, PS =∞.

In Fig. 4.4, we plot the average throughput of the best SU versus the interference level, T , in

dB for unlimited ST power, PS =∞, and limited ST power with PS = −20 dB. Some interesting

observations can be made from this figure. First, we observe that, compared to the simulations, the

accuracy of the asymptotic average throughputs increase as N increases from 20 to 200. Second,

as T or PS increases, the accuracy of the asymptotic average throughputs also increases. Last, for

the limited ST power, PS = −20dB, the average throughput is saturated and it does not improve

as T ≥ −30 dB. This is due to the fact that for higher values of T , the ST will select PS with a

higher probability.

In Fig. 4.5, we plot the effective throughput of the k-th best SU versus the number of secondary

users,N , with unlimited ST power, PS =∞ and limited ST power with PS = 5 dB, for k = 1, 2, 4.

We observe that the accuracy of the asymptotic effective throughput increases as N increases.

However, it is shown that for k = 4, the asymptotic effective throughputs is less accurate for small

to moderate values of N . This is because the asymptotic analysis is more accurate for large N

relative to a fixed k. Consequently, if the value of k is close enough to N , it is expected that the

asymptotic expression will be less accurate.

In Fig. 4.6, we plot the effective throughput of the best SU versus the delay exponent, A,

for N = 30 and different values of PS . We observe that the effective throughput significantly

decreases for smaller values of PS . On the other hand, for reasonably large values of PS , the
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Figure 4.2: Average throughput of the k-th best SU versus the number of secondary users N with
unlimited ST power, PS = ∞ and limited ST power with PS = 10 dB, for k = 1, 2, 3, λ = 2,
β = 3, η = 20, T = −10 dB and PM = 0 dB.
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Figure 4.3: Average throughput of the best SU versus the ST power, PS(dB), forN = 6, 30, λ = 2,
β = 3, η = 20, T = −10 dB, PM = 0 dB.
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Figure 4.4: Average throughput of the best SU versus interference level, T , in (dB), for N =
20, 100, λ = 2, β = 3, η = 20 and PM = 0 dB at PS = −20 dB, PS =∞,
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Figure 4.5: Effective throughput of the k-th best SU versus the number of secondary users (N) with
unlimited ST power, PS = ∞ and limited ST power with PS = 5 dB, for k = 1, 2, 4, A = 1/2,
λ = 2, β = 3, η = 20, T = −10 dB and PM = 0 dB.

effective throughput does not significantly improve compared to the unlimited ST power case,

PS =∞. This is due to the fact that for higher values of PS the effective throughput is dominated

by the interference level T .

In Fig. 4.7, we plot the outage probability of the k-th best SU versus the number of secondary

users, N , for the unlimited ST power, PS = ∞ and limited ST power with PS = −10 dB, for

k = 1, 2 and x0 = 10 dB . In Fig. 4.8, the outage probability of the k-th SU is plotted versus

interference level, T , in (dB) at N = 30 with unlimited ST power, PS =∞ and limited ST power

with PS = −10 dB, for k = 1, 2 at x0 = 13 dB. The saturation in the outage probability for the
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Figure 4.6: Effective throughput of the best SU versus delay exponent at N = 30, for λ = 2,
β = 3, η = 20, T = −10 dB, PM = 0 and different values of PS .
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Figure 4.7: Outage probability of the k-th best SU versus the number of secondary users (N) with
unlimited ST power, PS = ∞ and limited ST power with PS = −10 dB, for k = 1, 2, λ = 2,
β = 3, η = 20, T = −20 dB, PM = 0 dB and x0 = 10 dB.
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Figure 4.8: Outage probability of the k-th best SU versus interference level, T , in (dB) at N = 30
with unlimited ST power, PS =∞ and limited ST power with PS = −10 dB, for k = 1, 2, λ = 2,
β = 3, η = 20, PM = 0 and x0 = 13 dB.

limited ST power case is due to the fact that for higher values of T , the ST will select PS for most of

the time. In Fig. 4.9, we plot the asymptotic average BEP as a function of the number of secondary

users, N , for the unlimited ST power with PS = ∞ and limited ST power with PS = −5 dB, for

k = 1.
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Figure 4.9: Average BER of BFSK (C = g = 0.5) versus the number of secondary users N with
unlimited ST power, PS = ∞ and limited ST power with PS = −5 dB, for k = 1, λ = 2, β = 3,
η = 20, T = −10 dB and PM = 0 dB.
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4.7 Conclusion

We analyzed the asymptotic performance of the k-th best SU for an interference-limited sec-

ondary multiuser network of underlay CR systems. We used extreme value theory to show that the

k-th highest SIR converges in distribution to an inverse gamma random variable for a fixed k and

large number of secondary users. We used this result to analyze the asymptotic average throughput,

effective throughput, average BER and outage probability for the k-th best SU under continuous

power adaptation at the ST. We verified the accuracy of the derived asymptotic expressions, for

different system parameters, through Monte Carlo simulations.
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5. ON THE SECRECY PERFORMANCE OF GENERALIZED USER SELECTION FOR

INTERFERENCE-LIMITED MULTIUSER WIRELESS NETWORKS

5.1 Introduction

The notion of secure communication was first introduced by Shannon in [58]. Thereafter,

Wyner introduced the wiretap channel in which Alice transmits confidential messages to Bob in

the presence of an eavesdropper, Eve [59]. Physical layer (PHY) security was first investigated

in [60], where the authors analyze the secrecy outage probability (SOP) and the ergodic secrecy

capacity (ESC) for single-input single-output (SISO) systems subject to a quasi-static Rayleigh

fading.

Multiuser diversity can improve PHY security. The impact of interference on the PHY security

for multiuser diversity schemes is investigated in [61] where the authors analyze the SOP and

secrecy diversity order of multiuser diversity scheduling in the presence of cochannel interference,

but no closed form expression was derived for the SOP. In [62], the SOP of a multiuser diversity

scheme of cognitive radio systems is investigated in the presence of interference from the primary

transmitter. The fading statistics of the interference were modeled as complex Gaussian, assuming

the primary signal is generated by a random Gaussian codebook. Most recently, the effect of

fading of multiple interference channels is considered in [63] where the authors analyze the SOP

for a single user (no multiuser diversity).

Related previous work focused on the secrecy performance of the conventional multiuser diver-

sity scheme where the user with the best fading (the best user) is selected. However, in a practical

wireless network the best user may not be available under given traffic conditions. Accordingly, the

main contribution of this Chapter is to study the secrecy performance of a more general multiuser

diversity scheme which selects the k-th best user. In particular, we analyze the SOP and ESC

of a k-th best user selection scheme of a multiuser wireless network in the presence of a single

dominant interferer. Assuming that the noise power at each user’s receiver and Eve’s receiver are
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negligible compared to the interference power, and the user with the k-th best signal to interference

ratio (SIR) is selected from a total number of users N , we derive a closed-form expression for the

secrecy outage probability for an arbitrary N and an asymptotic expression for a fixed k and large

N . Furthermore, we derive an asymptotic closed form expression for the ESC of the k-th best user

and show that the ESC scales like O (log(N)) for a fixed k and large N .

In Section II we discuss the system model. In Section III we analyze the SOP of the k-th best

user and in Section IV the ESC. Sections V and VI present numerical results and the conclusion,

respectively.

5.2 System Model

As shown in Fig. 5.1, we consider a wireless network consisting of one BS (Alice), N le-

gitimate users (Bobs) and an eavesdropper (Eve), in the presence of another interfering BS. We

assume that Eve is equipped with L receive antennas and all other terminals with one antenna

each. Let hi and tl denote the channel gain from Alice to the i-th user’s receiver and Eve’s l-th

receive antenna, respectively. Let gi denote the channel gain from the interfering BS to the i-th

user’s receiver and el the channel gain from the interfering BS to Eve’s l-th receive antenna. The

channel gains are modeled as independent Rayleigh distributed random variables. In particular,

|tl|2 and |el|2, for l = 1, 2, ..., L, are independent identically distributed (i.i.d) exponential random

variables with parameters λE and βE , respectively. Furthermore, |hi|2 and |gi|2, for i = 1, 2, ..., N ,

are i.i.d exponential random variables with parameters λM and βM , respectively. Assuming the

interference power from the BS is much larger than the noise power at the i-th user’s receiver, the

signal-to-interference ratio (SIR) at the i-th user’s receiver is given by

Zi =
P |hi|2

PI |gi|2
, (5.1)
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Figure 5.1: Multiuser wireless network with a BS (Alice), N legitimate users (Bobs), an eaves-
dropper (Eve) equipped with L antennas, in the presence of another interfering BS.

where P and PI are the transmit power of Alice and the interfering BS, respectively. The cumula-

tive distribution function (CDF) Zi is given by [6]

F (z) =
z

CM + z
u(z), (5.2)

where CM = PβM
PIλM

and u(z) is the unit step function. We sort the random variables Zi in an

increasing order denoted as Z(1) ≤ Z(2).... ≤ Z(N−k+1) ≤ .... ≤ Z(N), such that Alice selects the
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user with the k-th highest SIR, Z(N−k+1). The CDF of Z(N−k+1) then is [2]

FZ(N−k+1)
(x) =

N∑
v=N−k+1

(
N

v

)
(F (z))v (1− F (z))N−v . (5.3)

Assuming Eve is equipped with L receive antennas and the noise power at the l-th receive

antenna is negligible compared to the interference power from the interfering BS, the instantaneous

SIR at the Eve’s l-th receive antenna is Xl = P |tl|2
PI |el|2

. The CDF of Xl is similar to that in (5.2), but

with parameter CE = PβE
PIλE

. Assuming that selection combining (SC) is employed at Eve, such that

the best receive antenna is selected, the instantaneous SIR of the SC output is X(L) = max
k=1,...,L

Xl.

Using (5.3), the CDF and the probability density function (PDF) of X(L) are

FX(L)
(z) =

(
z

CE + z

)L
u(z), (5.4)

fX(L)
(z) =

d
(
FX(L)

(z)
)

dz
=

LCE z
L−1

(CE + z)L+1
u(z). (5.5)

We focus next on analyzing the secrecy outage probability assuming that Alice has no knowledge

about the eavesdropper’s channel state information (CSI), similar to Scenario A in [64].

5.3 SOP

For k-th best user selection, the secrecy capacity is given by

Cs(k,N, L) =


log2

(
1+Z(N−k+1)

1+X(L)

)
, Z(N−k+1) > X(L)

0, Z(N−k+1) ≤ X(L)

. (5.6)

The SOP for a target secrecy rate Rs is given by [60]

Pout(Rs) = Pr {Cs(k,N, L) ≤ Rs}

=

∫ ∞
0

fX(L)
(z)FZ(N−k+1)

(τ − 1 + τz) dz,
(5.7)
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where τ = 2Rs . Using (5.7), the probability of strictly positive secrecy capacity (SPSC) can be

evaluated as Pr {Cs(k,N, L) > 0} = 1− Pout(0).

We derive next an exact expression for the SOP of k-th best user selection for arbitrary values

of N and L, an asymptotic expression for the SOP of the k-th best user for arbitrary L and large

N compared to fixed k and τ , and obtain a simple asymptotic expression for the SOP for large N

compared to fixed k and τ and for large L.

5.3.1 Exact SOP Analysis

In Proposition 5.1, we provide an exact analysis for the SOP of the k-th best user in (5.7).

Then, we derive exact expressions for probability of SPSC of the k-th best user and the SOP when

Alice and Eve are equipped with one antenna. in Corollary 5.1 and Corollary 5.2, respectively.

Proposition 5.1. For arbitrary N and L, the exact SOP of the k-th best user is

Pout(Rs) =
L

τL (CE)L

N∑
v=N−k+1

(
N

v

)
(CM)N−v

v∑
j=0

(
v

j

)
× (τ − 1)v−j B (L+ j,N − j + 1)

× (τ − 1 + CM)L+j−N
2F1 (L+ 1, L+ j;

N + L+ 1; 1− τ − 1 + CM
τ CE

)
,

(5.8)

where τ = 2Rs , 2F1 (x, y; z;w) is the Gauss hypergeometric function and B (x, y) is the Beta

function.

Proof. Using (5.2), (5.3) and (5.5), after some basic algebraic manipulations, Pout(Rs) in (5.7) can
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be expressed as

Pout(Rs) =LCE

N∑
v=N−k+1

(
N

v

)
τ v−N (CM)N−v

×
∫ ∞

0

zL−1
(
z + τ−1

τ

)v(
z + τ−1+CM

τ

)N
(z + CE)L+1

dz︸ ︷︷ ︸
I

.
(5.9)

Applying binomial expansion for the term
(
z + τ−1

τ

)v and making use of Eq. (3.197.1) of [25], I

can be expressed as

I =
v∑
j=0

(
v

j

)(
τ − 1

τ

)v−j
B (L+ j,N − j + 1)

CE
L+1

×
(
τ − 1 + CM

τ

)L+j−N

2F1 (L+ 1, L+ j;

N + L+ 1; 1− τ − 1 + CM
τ CE

)
.

(5.10)

Combining (5.9) and (5.10), Pout(Rs) can be finally expressed as in (5.8).

Corollary 5.1. Setting Rs = 0 (i.e., τ = 1) in (5.8), the probability of SPSC is

′

Pr {Cs(k,N, L) > 0} =1− L
(
CM
CE

)L N∑
v=N−k+1

(
N

v

)
×B (L+ v,N − v + 1) 2F1 (L+ 1,

L+ v;N + L+ 1; 1− CM
CE

)
.

(5.11)

Corollary 5.2. As a special case if Alice serves only one user (i.e., N = 1) and Eve is equipped

with a single antenna (i.e., L = 1), Pout(Rs) in (5.8) reduces to

Pout(Rs) =
1

τCE

1∑
j=0

(τ − 1)1−j B (1 + j, 2− j) (τ − 1 + CM)j

× 2F1

(
2, 1 + j; 3; 1− τ − 1 + CM

τ CE

)
.

(5.12)
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5.3.2 Asymptotic SOP Analysis

In Proposition 5.2 below, we derive an asymptotic expression for the SOP of the k-th best user

for an arbitrary L and large N relative to fixed k and τ . Then, we derive an asymptotic expression

for the probability of SPSC in Corollary 5.3.

Proposition 5.2. For arbitrary L and large N , with respect to fixed k and τ , the SOP of the k-th

best user can be approximated as

Pout(Rs) ≈ 1−
(

bN
τ CE

)k
U

(
k; k + 1− L;

bN
τ CE

)
, (5.13)

where bN = CM(N − 1) and U (a; d; z) is the Tricomi hypergeometric function [65].

Proof. As shown in Proposition 4.2, if the random variable Zi has a CDF F (z) as in (5.2), then

for a fixed k and N → ∞, Z(N−k+1)

bN
converges in distribution to a random variable Z whose CDF,

Gk(z), has an inverse gamma distribution.

Gk(z) =
Γ
(
k, 1

z

)
(k − 1)!

u(z). (5.14)

Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function and bN = CM(N − 1). Equiva-

lently, for fixed k and N →∞, FZ(N−k+1)
(z) can be approximated as

FZ(N−k+1)
(z) ≈

Γ
(
k, bN

z

)
(k − 1)!

u(z). (5.15)

Based on the asymptotic distribution of Z(N−k+1)

bN
above and noting that bN is an increasing
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function of N , we derive next an asymptotic expression for Pout(Rs). Invoking (5.7), we have

Pout(Rs) =

∫ ∞
0

fX(L)
(z)FZ(N−k+1)

(τ − 1 + τz) dz

= Pr
{
Z(N−k+1) ≤ τ − 1 + τX(L)

}
= Pr

{
Z(N−k+1)

bN
≤
τ − 1 + τX(L)

bN

}
≈ Pr

{
Z ≤

τX(L)

bN

}
,

(5.16)

for fixed k and τ and N →∞, where the CDF of Z is as in (5.14). Using (5.16), Pout(Rs) can be

expressed as

Pout(Rs) ≈
∫ ∞

0

LCEz
L−1

(CE + z)L+1

Γ
(
k, bN

τz

)
(k − 1)!

dz︸ ︷︷ ︸
I1

,
(5.17)

as N →∞ and for fixed k and τ . Using integration by parts:

I1 = 1−
∫ ∞

0

(
z

z + CE

)L
(bN)kτ−kz−1−k

(k − 1)!
e−

bN
τ z dz. (5.18)

Using u = CE
z

and Eq. (39) of [65], I1 can be finally expressed as in (5.13).

Corollary 5.3. For arbitrary L and large N , with respect to fixed k and τ , the probability of SPSC

is

Pr {Cs(k,N, L) > 0} ≈
(
bN
CE

)k
U

(
k; k + 1− L;

bN
CE

)
. (5.19)

In Proposition 5.2 above, we derive the SOP of the k-th best user for an arbitrary L and large N

relative to fixed k and τ . If we further assume that L is large we derive a simpler and an accurate

expression for the SOP as in Proposition 5.3 below.

Proposition 5.3. For large N compared to fixed k and τ and for large L, the SOP of the k-th best
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user can be approximated as

Pout(Rs) ≈ 1−
(

1 +
τbL
bN

)−k
, (5.20)

where bN = CM(N − 1) and bL = CE(L− 1).

Proof. As discussed earlier, Zi and Zl have the same CDF with parameters CM and CE , respec-

tively. Then the asymptotic distribution of X(L) for large L can be obtained by replacing N with L

and setting k = 1 in (5.15). Hence, as L → ∞, with bL = CE(L− 1), FX(L)
(z) can be expressed

as

FX(L)
(z) ≈ e−

bL
z u(z). (5.21)

Making use of (5.21) in (5.16) we have

Pout(Rs) ≈ Pr

{
Z ≤

τX(L)

bN

}

=

∫ ∞
0

d
(
e−

bL
z

)
dz

Γ
(
k, bN

τz

)
(k − 1)!

dz

=

∫ ∞
0

bL e
− bL

z

z2

Γ
(
k, bN

τz

)
(k − 1)!

dz

= 1−
(

1 +
τbL
bN

)−k
,

(5.22)

for large N relative to fixed k and τ and for large L. The above integral is evaluated using Eq.

(6.451, 2) of [25].

Note that Pout(Rs) in (5.22) is an increasing function of L and k, and a decreasing function

of N . As a special case, if N = L and L is large, Pout(Rs) converges to a constant value, i.e,.

Pout(Rs) ≈ 1−
(

1 + τβEλM
λEβM

)−k
. This shows that if L is large and scales linearly with N , the SOP

converges to a constant that only depends on the fading parameters and Rs. This can be intuitively

explained by the fact that for large L and scaling linearly with N , the multiuser diversity effect on
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the SOP is eliminated due to the employment of the selection combining scheme at Eve.

5.4 ESC

For k-th best user selection, the ESC is given by [66]

Cs(k,N, L) =
1

ln(2)

∫ ∞
0

FX(L)
(z)

1 + z

(
1− FZ(N−k+1)

(z)
)
dz, (5.23)

which in general is intractable to express in closed form for arbitrary values of N and L. However,

using the asymptotic approximation of FZ(N−k+1)
(z) in (5.15) yields a closed form asymptotic ex-

pression for the ESC when Eve has a single antenna (i.e., L = 1). In Proposition 5.4 below, we

derive the ESC of the k-th best user for large N relative to a fixed k and L = 1. We use Cs(k,N)

to denote Cs(k,N, L) at L = 1.

Proposition 5.4. For large N relative to fixed k, the ESC of the k-th best user can be approximated

as

Cs(k,N) ≈


−ψ(k)+

CEV (k; bNCE )−V (k;bN )

CE−1

ln(2)
, CE 6= 1

−ψ(k)+V (k;bN )−(bN )kebN Γ(−k+1,bN )
ln(2)

, CE = 1

, (5.24)

where ψ(k) is the digamma function, bN = CM(N − 1) and V (k; a) is as expressed in (5.31).

Proof. Using (5.15) and the fact that Γ(k,x)
(k−1)!

= 1− γ(k,x)
(k−1)!

, then

1− FZ(N−k+1)
(z) ≈

γ
(
k, bN

z

)
(k − 1)!

, (5.25)

where γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function. Substituting (5.4) and
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(5.25) in (5.23), yields

Cs(k,N) ≈ 1

ln(2)

∫ ∞
0

z

(1 + z)(CE + z)

γ
(
k, bN

z

)
(k − 1)!

dz︸ ︷︷ ︸
I2

.
(5.26)

Using x = bN
z

and the integral representation of the lower incomplete gamma function, I2 can be

expressed as

I2 =

∫ ∞
0

(bN)2

x (x+ bN) (CEx+ bN)

∫ x

0

tk−1e−t

(k − 1)!
dt dx. (5.27)

Changing the order of integration, I2 can be rewritten as

I2 =

∫ ∞
0

tk−1e−t

(k − 1)!

(∫ ∞
t

(bN)2

x (x+ bN) (CEx+ bN)
dx

)
︸ ︷︷ ︸

I3(t)

dt,
(5.28)

where I3(t) can be easily evaluated as

I3(t) =


− ln (t) +

CE ln
(
t+

bN
CE

)
−ln(t+bN )

CE−1
, CE 6= 1

− ln (t) + ln (t+ bN)− bN
t+bN

, CE = 1

. (5.29)

Combining (5.26) and (5.28), we have

Cs(k,N) ≈ 1

ln(2)

∫ ∞
0

tk−1e−t

(k − 1)!
I3(t)dt. (5.30)

To evaluate (5.30), let V (k; a) =
∫∞

0
tk−1e−t

(k−1)!
ln(t + a)dt. Using Eq. (4.337, 5) of [25], then we
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have

V (k; a) =
k−1∑
µ=0

1

(k − µ− 1)!

(
(−1)k−µ ak−µ−1eaEi(−a)+

k−µ−1∑
v=1

(v − 1)!(−a)k−µ−1−v

)
+ ln(a),

(5.31)

where Ei(x) = −
∫∞
−x

e−y

y
dy is the exponential integral function. From Eq. (4.352, 1) and Eq.

(3.383, 10) of [25], we have

∫ ∞
0

tk−1e−t

(k − 1)!
ln (t) dt = ψ(k) (5.32)

∫ ∞
0

bN
t+ bN

tk−1e−t

(k − 1)!
dt = (bN)kebNΓ (−k + 1, bN) , (5.33)

respectively. Making use of (5.31)-(5.33) in (5.30), we finally obtain Cs(k,N) in (5.24).

In what follows, we use Proposition 5.4 to obtain a scaling law for the ESC in Corollary 5.4

below.

Corollary 5.4.: For large N relative to a fixed k, Cs(k,N) scales as

Cs(k,N) ∼ O (log(N)) . (5.34)

Furthermore,

Cs(1, N)− Cs(k,N)→
H(k−1)

ln(2)
bits/s/Hz, (5.35)

where H(k−1) = E0 +ψ(k) is the harmonic number and E0 = −ψ(1) = 0.5772156649 is the Euler

constant.
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Proof. Using the asymptotic behavior of Γ(s, x) ≈ xs−1e−x for large x, one can show that

(bN)kebNΓ (−k + 1, bN) ≈ 1, (5.36)

for large N relative to a fixed k. Applying Jensen’s inequality:

V (k; bN) =

∫ ∞
0

tk−1e−t

(k − 1)!
ln(t+ bN)dt

≤ ln

(∫ ∞
0

tke−t

(k − 1)!
dt+ bN

)
= ln (k + bN) ≈ ln (bN)

(5.37)

for large N relative to a fixed k. From (5.31) and (5.37), we have V (k; bN) ≈ ln(bN) as N →∞.

Using V (k; bN) ≈ ln(bN) and (5.36) with bN = CM(N − 1), (5.24) can be rewritten as

Cs(k,N) ≈


−ψ(k)+ln[CM (N−1)]−CE ln(CE)

CE−1

ln(2)
, CE 6= 1

−ψ(k)+ln[CM (N−1)]−1
ln(2)

, CE = 1

. (5.38)

From (5.38), we see thatCs(k,N) ∼ O (log(N)). Furthermore,Cs(1, N)−Cs(k,N)→ ψ(k)−ψ(1)
ln(2)

=

H(k−1)

ln(2)
.

5.5 Numerical Results

Fig. 5.2, plots the SOP of the k-th best user versus the number of users, N , for k = 1, 2,

Rs = 1, 4 bit/s/Hz and L = 2. Some interesting observations can be made: First, we observe that

the exact SOP is in good agreement with the simulation results, and the accuracy of the asymptotic

SOP in (4.10) increases as N increases. Second, we see that the asymptotic SOP expression is less

accurate for small to moderate values of N , as k or Rs increase. This is due to the fact that the

asymptotic analysis holds with a high accuracy for largeN compared to fixed k andRs. Therefore,

if the value of k or Rs is close enough to N then the accuracy of the asymptotic analysis decreases.

In Fig. 5.3, we plot the SOP of the k-th user as a function of the number of receive antennas,
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Figure 5.2: SOP of the k-th best user vs number of users for k = 1, 2, Rs = 1, 4 bit/s/Hz, P/PI =
2, βM = 2, λM = 1/2, βE = 5, λE = 4 and L = 2.

L, for k = 1, 2, Rs = 1/2 bit/s/Hz and for different values of N . We verify the accuracy of the

asymptotic SOP expressions derived in (5.13) and (5.20) by comparing them with the exact SOP

result. As expected, we observe that for N = 20, the SOP increases as L increases. However, for

N = L, the SOP remains constant as L grows large as we discussed earlier at the end of Section

III.

In Fig. 5.4, we plot the ESC of the k-th best user versus the number of users, N , for k = 1, 2, 3.

We validate the accuracy of the asymptotic ESC using Monte Carlo simulations. We observe that

the asymptotic ESC is accurate for small to moderate values ofN . We also observe that asymptotic

74



1 5 10 15 20 25 30 35 40 45 50

Number of receive antennas (L)

10-2

10-1

100

S
O

P

Exact
Asymptotic Eq.( 19)
Asymptotic Eq.( 12)

N=L, k=2

N=L, k=1

N=20, k=1 N=20, k=2

Figure 5.3: SOP of k-th best user vs number of receive antennas for N = 20 and N = L, k = 1, 2,
Rs = 1/2 bit/s/Hz, P/PI = 2, βM = 2, λM = 1/2, βE = 5 and λE = 4.
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Figure 5.4: ESC of the k-th best user vs number of users N for k = 1, 2, 3, P/PI = 4, βM = 2,
λM = 4, βE = 3 and λE = 3 and L = 1.
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ESC is less accurate as k approaches N .
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6. SUMMARY AND CONCLUSIONS

In this dissertation we analyzed the performance of many practical wireless communication

systems under a general SD scheme in which the k-th best link. We base our performance analysis

on the extreme value theory (EVT). The derived results cover many practical systems of interest in

RF, FSO and CR systems. We also analyzed the secrecy performance of the k-th best link in the

context of multiuser wireless networks.

In Chapter 2, a detailed effective rate analysis of MISO/TAS systems was considered. An

analytical expression for the effective rate of the considered system in Rayleigh fading is obtained.

Moreover, we analyzed the effective rate in the asymptotically low and high-SNR regimes and

closed form expressions were derived. At the low-SNR regime, we showed that the minimum bit

energy depends on the number of transmit antennas but not on the delay constraint. However, we

observed that the wideband slope is a decreasing function of the delay constraint and monotonically

increasing in the number of transmit antennas. Finally, we analyzed the effective rate of MISO/TAS

systems with large number of transmit antennas and generalized antenna selection and derived an

asymptotic analytical expression for it.

In Chapter 3, we used extreme value theory to derive the asymptotic distribution of the through-

put of the k-th best link over Weibull, Gamma, α−µ and Gamma-Gamma fading channels. Using

this result, we derived simple closed-form asymptotic expressions for the average throughput and

effective throughput. Furthermore, we analyzed the average BEP and derived closed-form asymp-

totic expression for it. As a special case, we considered the Weibull fading channel model and used

Monte Carlo simulations to confirm the accuracy of the derived asymptotic expressions.

In Chapter 4, we analyzed the asymptotic performance of the k-th best SU for an interference-

limited secondary multiuser network of underlay CR systems. We used extreme value theory to

show that the k-th highest SIR converges in distribution to an inverse gamma random variable

for a fixed k and large number of secondary users. We used this result to analyze the asymptotic

average throughput, effective throughput, average BER and outage probability for the k-th best SU
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under continuous power adaptation at the ST. We verified the accuracy of the derived asymptotic

expressions, for different system parameters, through Monte Carlo simulations.

Finally, in Chapter 5 we analyzed the secrecy performance of the k-th best user for an interference-

limited multiuser network consisting of N legitimate users. We derived closed form exact and

asymptotic expressions for the SOP of the k-th best user assuming an arbitrary N and large N

relative to a fixed k, respectively. Furthermore, we derived an asymptotic closed form expression

for the ESC of k-th best user and showed that the ESC scales like O (log(N)) when N grows large

relative to a fixed k. We also showed that the loss in the ESC between the best user and the k-th

best user selection converges to a fixed value and it can be quantified by the harmonic number

H(k−1). The accuracy of the derived exact and asymptotic expressions were verified, for different

system parameters, through Monte Carlo simulations.

6.1 Challenges and Further Work

In this section we address some challenges in our research and some the future extensions that

account for more practical considerations. First, in our investigation of the k-th best selection

scheme we assumed that the CSI is perfectly known at the transmitter. However, perfect CSI is an

idealistic assumption that simplifies the analysis and yields tractable closed- form expressions in

most scenarios. As a future endeavor, imperfect or outdated CSI can be considered to investigate

their impact on the asymptotic analysis. In particular, considering the imperfect CSI in CR systems

is of significant practical interest due to the difficulty of acquiring perfect CSI of the ST-PR cross

link.

Second, in chapters 4 and 5 we considered a multiuser network with a determinist number of

users. However, in practical multiuser network the number of active users competing to access the

channel is a random variable. For example, one might consider a Poisson distributed number of

users and analyze the impact of the number of users randomization on the performance. Further-

more, we only considered multiuser network under small-scale fading throughout this dissertation.

As a future direction, one can consider the path loss effect which accounts for users locations.

Finally, we focused on analyzing the secrecy outage probability and the average secrecy capac-
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ity assuming that the transmitter has no knowledge about the eavesdropper’s CSI. As part of future

research, the analysis can be extended to consider the case when eavesdropper’s CSI is accounted

for at the transmitter
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APPENDIX A

THE FIRST AND SECOND MOMENT OF X(N)

The n-th moment of the random variable X(N) can be expressed as

E
[(
X(N)

)n]
= N

∫ ∞
0

xn
(
1− e−x

)N−1
e−xdx. (A.1)

Using change of variables u = e−x, (A.1) can be expressed as

E
[(
X(N)

)n]
= N

∫ 1

0
[− ln(u)]n (1− u)N−1du. (A.2)

Invoking Proposition 9.1 of [67], we have

∫ 1

0
ua−1(1− u)b−1 ln(u)du =

Γ(a)Γ(b)

Γ(a+ b)
(ψ(a)− ψ(a+ b)) , (A.3)

where a and b are positive real numbers. Making use of (A.2) with n = 1 and set a = 1, b = N in

(A.3), then the first moment can be expressed as

E
[
X(N)

]
= ψ(N + 1) + E0. (A.4)

In order to obtain the second moment, we differentiate (A.3) with respect to a, then we have

∫ 1

0
ua−1(1− u)b−1 (ln(u))2 du =

Γ(a)Γ(b)

Γ(a+ b)

(
(ψ(a)− ψ(a+ b))2 + ψ(1, a)− ψ(1, a+ b)

)
, (A.5)

where a and b are positive real numbers. Making use of (A.2) with n = 2 and set a = 1, b = N in

(A.5), then the second moment can be expressed as

E
[(
X(N)

)2
]

= (ψ(N + 1) + E0)2 +
π2

6
− ψ(1, N + 1). (A.6)
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APPENDIX B

PROOF OF LEMMA 3.1

To prove Lemma 3.1 in Chapter 3, we first need the following Lemma from [3].

Lemma: For any sequence ZN converging in distribution to a random variable X that has a

nondegenerate distribution function, if E [[(ZN)−]p] < ∞ for any positive real number p, where

(x)− = max(−x, 0), then

lim
N→∞

E [Zp
N ] = E [Xp] , (B.1)

provided E [|X|p] <∞.

SinceR(N−k+1) represents the k-th maximum of non-negative random variables, then it follows

that E{[(R(N−k+1))
−]p} < ∞ is satisfied. However, for E

[(
R(N−k+1)−aN

bN

)p]
→ E [Xp] to hold,

E [|X|p] < ∞ should be also satisfied. Let Y = |X|, where the CDF of X is as expressed in

(3.12). Then the CDF of Y , G(y), can be expressed as

G(y) =
k−1∑
j=0

e−e
−y
e−jy − e−eyejy

j!
, y ≥ 0, (B.2)

and E [Y p] can be expressed as

E [Y p] = p

∫ ∞
0

yp−1 [1−G(y)] dy

= p

∫ ∞
0

yp−1

[
1 +

k−1∑
j=0

e−e
y
ejy − e−e−ye−jy

j!

]
dy.

(B.3)

As y → 0, the integrand behaves like yp−1, using p-test; the integral is convergent for all p > 0. As

y →∞, the integrand behaves like O
(
−yp−1

∑k−1
j=1 e

−jy
)

and therefore the integral is convergent

for all p > 0. Hence, we conclude that E [|X|p] < ∞ for p > 0. To prove the rest of Lemma 3.1,
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we need the PDF of X , f (k)(x). Differentiating (3.12), after some basic algebraic manipulation,

f (k)(x) can be simplified as

f (k)(x) =
e−kxe−e

−x

(k − 1)!
, −∞ < x <∞. (B.4)

Then, E [Xp] can be expressed as

E [Xp] =

∫ ∞
−∞

xpe−kxe−e
−x

(k − 1)!
dx. (B.5)

Using u = e−x, we have

E [Xp] =

∫ ∞
0

(− ln (u))p e−uuk−1

(k − 1)!
du. (B.6)

From the definition of gamma function, we have Γ(k) =
∫∞

0
uk−1e−udu. By differentiating both

sides with respect to k, where k is an integer, we have Γ(k)ψ(k) =
∫∞

0
uk−1e−u ln(u)du. Using

this and setting p = 1 in (B.6), it follows that E [X] = −ψ(k). Using (B.4) and the transformation

of u = e−x,MX(t) can be expressed as

MX(t) = E
[
etX
]

=

∫ ∞
0

e−uuk−t−1

(k − 1)!
du.

=
Γ(k − t)
(k − 1)!

, k > t.

(B.7)
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APPENDIX C

MGF AND MOMENTS CONVERGENCE OF Z(N−K+1)

Lemma 2 below establishes the connection between convergence in distribution and conver-

gence of MGF. For a positive random variable X , the MGF of is E
[
etX
]

=
∫∞

0
etxf(x)dx, where

f(x) is the PDF of X .

Lemma 1: If Z(N−k+1)

b
converges in distribution to a random variable Z whose CDF is as in (4.11),

then for a fixed k we have

lim
N→∞

E

[
e
t

(
Z(N−k+1)

b

)]
= E

[
etZ
]
, t < 0, (C.1)

where E
[
etZ
]

=
2(−t)k/2Kk(2

√
−t)

(k−1)!
, t < 0.

Proof : Theorem 2 of [36] implies that if E

[
e
t

(
Z(N−k+1)

b

)]
exists for all t < 0 and Z(N−k+1)

bN

converges uniformly in distribution to a random variable Z with CDF as in (4.11) where E
[
etZ
]

exists for all t < 0, then for a fixed k, limN→∞E

[
e
t

(
Z(N−k+1)

b

)]
= E

[
etZ
]
, for all t < 0. We

note that E
[
etZ
]

for all t < 0 exists and can be evaluated as

E
[
etZ
]

=

∫ ∞
0

etze−z
−1

zk+1 (k − 1)!
dz

=
2 (−t)k/2Kk

(
2
√
−t
)

(k − 1)!
, t < 0,

(C.2)

where the above integral is evaluated with help of Eq. (2.11) of [57].

To show that E

[
e
t

(
Z(N−k+1)

b

)]
exists for all t < 0, we use Lemma 1.7.2. of [37], with g(x) =

etx, x ≥ 0 and t < 0; we have

E

[
e
t

(
Z(N−k+1)

b

)]
≤ N !

(k − 1)!(N − k)!
E
[
e
tZi
b

]
, (C.3)
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where the CDF and PDF of Zi are as in (4.4) and (4.5), respectively. We note that E
[
e
tZi
b

]
exists

for all t < 0 and it can be expressed as

E
[
e
tZi
b

]
=

∫ ∞
0

mλβ (PM)m zm−1e
tz
b

(λβ + PMz)m+1 dz

= Γ (m+ 1) e
− λβ t

2bPMW−m,−1/2

(
−λβ t
bPM

)
, t < 0,

(C.4)

where Wl, n (·) is the Whittaker function[68]. Using (C.3) and (C.4), we infer that for all t <

0, E

[
e
t

(
Z(N−k+1)

b

)]
< ∞. Finally, since both E

[
e
t

(
Z(N−k+1)

b

)]
and E

[
etZ
]

exist, based on

Theorem 2 of [36], (C.1) holds.

Lemma 3 below establishes the connection between convergence in distribution and conver-

gence of negative moments.

Lemma 3: If Z(N−k+1)

b
converges in distribution to a random variable Z whose CDF is as in (4.11),

then for a fixed k we have

lim
N→∞

E

[(
1 +

Z(N−k+1)

b

)−A]
= E

[
(1 + Z)−A

]
, A > 0. (C.5)

Proof : To prove (C.5), it is equivalent to show that

lim
N→∞

E

[
e
−A ln

(
1+

Z(N−k+1)
b

)]
= E

[
e−A ln(1+Z)

]
, A > 0. (C.6)

Using continuous mapping theorem [69], we infer that if Z(N−k+1)

b
converges in distribution to a

random variable Z whose CDF is as in (4.11); then ln
(

1 +
Z(N−k+1)

b

)
converges in distribution to

ln(1 + Z).

Theorem 2 of [36] implies that to show that (C.6) holds, it suffices to show that E
[
(1 + Z)−A

]
and E

[(
1 +

Z(N−k+1)

b

)−A]
exist, for A > 0. We note that E

[
(1 + Z)−A

]
exists and it can be
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evaluated as

E
[
(1 + Z)−A

]
=

∫ ∞
0

(1 + z)−A e−z
−1

zk+1(k − 1)!
dz

=
U (A+ k; k + 1; 1) Γ (A+ k)

(k − 1)!
, A > 0,

(C.7)

where U (a; b; z) = 1
Γ(a)

∫∞
0
e−ztta−1(1 + t)b−a−1dt, a > 0 is the Tricomi hypergeometric function.

The above integral is evaluated after variable transformation of u = z−1 and with the help of Eq.

(39) of [65].

To show that E
[(

1 +
Z(N−k+1)

b

)−A]
exists for all A > 0, we use Lemma 1.7.2. of [37], with

g(x) = (1 + x)−A, x ≥ 0 and A > 0; we have

E

[(
1 +

Z(N−k+1)

b

)−A]
≤ N !

(k − 1)!(N − k)!
E

[(
1 +

Zi
b

)−A]
, (C.8)

where the CDF and PDF of Zi are as in (4.4) and (4.5), respectively. Making use of Eq. (3.197.1)

of [25], we note that E
[(

1 + Zi
b

)−A]
exists for A > 0 and can be expressed as

E

[(
1 +

Zi
b

)−A]
=
mλβbA

PM

∫ ∞
0

zm−1

(b+ z)A
(
λβ
PM

+ z
)m+1dz

= mB (m,A+ 1) 2F1

(
A;m;A+m+ 1; 1− λβ

bPM

)
, A > 0,

(C.9)

where 2F1 (x; y; z;w) is the Gauss hypergeometric function [25] and B (x, y) is the Beta function.

Combining (C.8) and (C.9), we infer that E
[(

1 +
Z(N−k+1)

b

)−A]
< ∞ for all A > 0. Finally,

since both E
[(

1 +
Z(N−k+1)

b

)−A]
and E

[
(1 + Z)−A

]
exist for A > 0, based on Theorem 2 of

[36], (C.5) holds.
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